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ABSTRACT

A Comprehensive Study on Tool Condition Monitoring Using Time-Frequency
Transformation and Artificial Intelligence
Javad Soltani Rad

Tool failure is one of the probable faults during machining process which may
cause unscheduled downtime and damage of tools, machines and work pieces. There-
fore, developing an accurate and reliable online tool condition monitoring (TCM)
system is in high demand. This research investigates TCM using time-frequency
transformation methods and artificial intelligence. Multi-sensory monitoring sys-
tems and sensor fusion are investigated in the first step. Many different sensors
at various locations are tested to determine the best input sets with most compli-
mentary information. Three data fusion techniques 1) feature level, 2) score level,
and 3) decision level are implemented and compared in this step. The result sug-
gests that score level data fusion is superior for this application. Moreover, five
advanced time-frequency transformation methods are employed due to superior abil-
ity of time-frequency transformation to reveal time variant characteristics of a signal
as well as its frequency components. S-transform demonstrates the most accurate
results among these methods. This research also proposes a novel feature extraction
method to select the most discriminative information and reduce data’s dimensional-
ity and calculation cost. This method selects a local region of data in time-frequency
domain using genetic algorithm optimization. The proposed method is also combined
with 2D principal component analysis which has improved the systems in terms of
accuracy and performance. Finally, three well-known artificial intelligence methods
1) multi-layer perceptron artificial neural network, 2) radial basis function artificial
neural network and 3) adaptive neuro-fuzzy inference system are applied to find a
model between extracted features and system fault. Based on the results, radial basis
function has the minimum mean error and adaptive neuro-fuzzy produces the lowest

maximum error.
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Chapter 1

Introduction

Conventional machining operations, which include turning, milling, and drilling, are
among the most common activities in the manufacturing industry[1]. Turning refers
to removing the unwanted material while the part is rotated and a cutter with single
cutting edge moves along the workpiece to cut[2|(Figurel.1). Milling is a process
of using multi-toothed rotating cutters to remove material from the surface (face
milling) or periphery (end milling) of the workpiece[3,4](Figurel.2). Drilling is
also a cutting process which uses a rotary drill bit advanced along its rotation access
to make or enlarge a hole in the workpiece material[5|(Figurel.3).

The increasing demand for higher product rate, quality, reliability, and manu-
facturing efficiency has imposed strong desire for total autonomy in manufacturing
industry[3,6]. In a machining center, the cutting tool gradually wears out due to
thermal fracturing, attrition, abrasion, plastic deformation, diffusion, chemical wear,
and grain-pullout, etc.[7]. This affects the machining process, health of the machine
tool, the product quality and may cause unwanted vibration, spoils the surface finish
and causes dimensional inaccuracy[7]. The cutting tool may also break while it is
engaged with the workpiece. Cutting tool breakage can cause unscheduled downtime

which is costly, not only in terms of time lost, but also in terms of tools, machines



and work pieces damaged or destroyed. Some researchers estimated that the amount
of downtime due to tool breakage is about 20% of the total machine downtime[1,8].
Moreover, to reduce manufacturing costs, ideally, cutting tools should be max-
imally utilized as tooling is quite expensive. On the other hand, estimation of the
tool wear can help to decide about possible optimization of the machining parameters
(cutting speed, feed rate and depth of cut). Estimation of tool wear is also helpful
for tool wear compensation. It can also increase production quality and efficiency.
Therefore, it is in high demand for manufacturing industries to continuously monitor

the tool wear condition during the machining process|7].

Figure 1.1: Turning operation|9]

Among many possible tool faults, there are three most common cases in the
industrial applications.

1- Tool wear which can directly influence the size and quality of the finished
surface and also cause fatigue endurance limit changes. It can also influence lubri-
cation retention capability by changing the distribution of heights and slopes of the

surface. Furthermore, excessive tool wear can lead to tool breakage.



2- Tool breakage and fracture which is the dominant mode of failure for more
than one quarter of all advanced tooling material.

3- Chatter (the self-excited vibration of the machine tool that causes the insta-
bility of the cutting process) which is often a serious limitation to achieving higher
rates of removal. Moreover, it deteriorates the surface finish, affects dimensional
accuracy, and may cause tool and machine damaged.

Therefore, a tool fault detection system is crucial to detect the faults rapidly
and make a proper action before it damages the workpiece, tool, or the machine.
Additionally, it should be accurate to eliminate unnecessary downtime due to false

alarms[10].

Figure 1.2: End milling operation[11]

A process monitoring system generally performs its task through the analysis
of process measurements such as force, vibration, power, acoustic emission , etc. Any
deviation from normal situation is considered as an abnormality in the system and
the source of this change should be determined for further analysis[10]. This research
investigates tool wear monitoring in milling operation due to its importance in the

todays industry. The goal is to develop an online reliable method for tool condition



monitoring purposes. Tool wear is considered as the monitoring variable due to its
frequency in machining operation. The developed method should be practical and
inexpensive to be used in the industry. It needs to be capable of online use and
able to produce immediate responses. It should also have a high accuracy and fault

detection/estimation performance.

Figure 1.3: Drilling operation|12]

1.1 Tool Condition Monitoring (TCM)

A general methodology for developing an intelligent monitoring system for machining
is composed of four key components|13]:

1- Sensors: Sensor refers to a device which transforms a physical quantity into
the corresponding electrical signals. Selecting the best sensor and process variable is

an important step in TCM. The ideal variable for monitoring purposes is the one that



is highly sensitive to the parameters we want to monitor, however, it is insensitive to
the other process parameters[10]. Reliability, applicability in industrial environment
and cost of the sensors are also among the other factors should be considered|13,14].

2- Signal processing: A suitable signal processing strategy is compulsory in
this step because of the high levels of mechanical, electrical and acoustic noises in
industrial environments. Moreover, Signal processing helps to determine whether
the change in the signal is due to tool wear or a change in the process conditions.
Signal processing can be more or less complex due to the nature of signals and the
strategy to solve the problem[13,14].

3- Feature generation, selection/extraction: The signal acquired by sensors has
to be transformed into appropriate features which represent the desired character-
istics of the system. Many features can be extracted from a signal which are well
correlated with the desired monitoring fault from time, frequency and time—frequency
domain. Afterwards, it should be decided that which of the generated features are
the best system reflectors. Feature selection and feature extraction are two useful
methods to define the most useful sensory features[13,14].

4- Artificial Intelligence (Al) or mathematical models for decision making: The
monitoring system should be able to learn complex non-linear relationships between
faults and relevant extracted features from signals. Previous knowledge of the pro-
cess, the nature of the process and model, number of experimental samples and the
desired model accuracy are among the points should be considered in the selection of
AT algorithm. Finally a decision should be made based on the output of Al. Instead
of Al methods, mathematical models can be used as well[10,13,14]. Figurel.4

presents the steps of TCM.
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Figure 1.4: Steps to design a tool condition monitoring system

1.1.1 Sensors

The first step of process monitoring is to select and make appropriate use of some
sensors which provide the most discriminative information of the machining process.
Dynamometers, accelerometers, acoustic emission sensors, current sensors, ultrasonic
sensors, temperature sensors and optical sensors are explained in this section as the

most common sensors used in this application.
e Dynamometers

Dynamometers are sensors to measure cutting force. Cutting force is a variable
that best describes the cutting process and can reflect different features of cutting.
It is very sensible to faults during machining specially tool faults and can reflect it
accurately[13]. Cutting force signals have been widely used for monitoring purposes
in all machining processes (turning, milling, drilling, etc.)[1]. This signal can reflect
surface quality and properties and may be applied for wear, breakage and chatter
detection[13].

One of the drawbacks of using dynamometers is that any change in cutting
force due to a fault is strongly dependent on other cutting conditions together with
the cutting material, work material, etc. Furthermore, it is very difficult to apply
them in industry mainly because of the high cost of multi-axis dynamometers, their
intrusive nature in production environments and the limited frequency response they

can provide[13].

e Accelerometers



Accelerometers are sensors to measure vibration. Vibration is another signifi-
cant factor which is able to reflect tool conditions, surface roughness, and dimensional
accuracy in machining processes|[15]. Vibration monitoring is common for predic-
tion of surface roughness especially in turning process. Vibration amplitude usually
varies during machining due to the progressive flank wear which provides a tool sig-
nature. Vibration signals can also be used for tool breakage detection as the cutting
vibration alters due to tool breakage[13,14].

Monitoring systems based on accelerometers are practical and cost-effective
and have the advantage of simplicity. However, vibration signals may not be as
accurate and reliable as dynamometer or acoustic emission signals. Vibration is
highly sensitive to machining speed. It should remain within a specific range during

the monitoring which is one of the accelerometer drawbacks[13,14].

e Acoustic Emission (AE) Sensors

As a material (tool, workpiece, machine body, etc.) undergoes stress, a tran-
sient elastic energy is released from it which is called AE. This stress may be gen-
erated by deformation, fracture, friction and thermal reactions of the tool, chips,
workpiece, machine body and etc. The frequency range of AE signals is much higher
than the frequency range of the machine vibrations and environmental noises which
is its advantage for monitoring purposes, however, it is really sensitive to cutting pa-
rameters which makes the signal processing and feature extraction very important.

A large amount of AE is generated during tool breakage and fracture which
makes AE signal to be well suited to the tool breakage detection. However, there is
still a debate in the literature about the usage of AE in detection of other faults such
as wear. AFE sensors are easy to install and inexpensive, but they are sensitive to
location. Therefore, they should be located in an appropriate position and carefully

calibrated[13,14].



e Current and Power Sensors

Motor armature current is proportional to cutting forces, therefore, current
measurement is an indirect way to sense the machining forces. Power sensors measure
the spindle or axis drive power and their application and limitations are basically
similar to current sensors. These sensors are not as accurate as dynamometers,
however, they are low cost and easy to install which makes them a suitable candidate
to be used as complementary information in monitoring systems. One of the major
defects of these signals is that they do not cover high frequency components of cutting
forces. Therefore, they are not appropriate for applications which need immediate

response[13,14].

e Other Sensors

Temperature sensors, optical sensors and ultrasonic sensors are among other
sensors can be used for monitoring purposes. Temperature of the cutting zone reflects
cutting process very well. For example, it varies with the tool wear because of the
changes in the tool geometry and its ability to cut, however, it is very difficult to
measure accurate cutting temperature. As a result, average temperatures around
the cutting tool is usually used instead of the exact value which may cause loss of
information|13].

Ultrasonic sensors and optical sensors also have been applied to monitor the
surface quality, roughness and etc. An ultrasonic pulse is sent by an ultrasonic
sensor to the surface and the amplitude of the returned signal is used to build a
model. Optical sensors work based on the intensity of the beam of the light that is
reflected from the machined surface in the specular direction and it can be correlated

with the surface quality[13].

e Sensor Fusion Concept



If cutting parameters change, the sensitivity and the noise rejection of the
sensed signal changes and this can affect the reliability of the monitoring system sig-
nificantly. Using more than one sensor is useful in this situation to avoid uncertainty.
It should be considered that some sensors may represent the same information. For
example, a dynamometer and a current sensor provides the same information with
different level of accuracy. Therefore, using them together is not considered as sensor
fusion. In sensor fusion, sensors should be selected in a way to represent comple-
mentary information. Using AE and vibration or force signals are good examples
of sensor fusion as they are less correlated and can be used effectively[13,14]. An-
other approach is using multiple sensors from the same type to mainly improve the

reliability.

1.1.2 Signal Processing

There are high levels of mechanical, electrical and acoustic noises in industrial en-
vironments. Moreover, indicator signals may change due to changing the process
as well as fault occurrence. Therefore, a signal processing operation is mandatory
before feature generation/selection step.

After data acquisition by sensors, signal is filtered to keep the signal within the
range of the frequency response of the sensor and to avoid noises. The next step is
to convert a continuous signal to a discrete signal called sampling. After this step
the analog signals will be changed to digital signals.

Digital filtering is next possible step which involves some quality improvement
methods and noise reductions. The main function of digital filtering is to keep
the principal components of a signal which have most correlation with the variable
we are monitoring. For example, cutting force signal may be filtered so as to be
able to study only the signals’ information which is closely related to the cutting

tool wear and cutting mechanism such as the signals’ information at the tooth-pass



frequency. Furthermore, transient mechanical events like breaking of a built-up edge,
local variation in hardness over the work piece, etc. may cause high frequency noises
and signal oscillations which can be prevented by digital filtering.

Many different operations and methods can be used for finding the most infor-
mative portion of a signal with respect to the fault and signal enhancements in time
domain, frequency domain, time-frequency domain and etc. Signal segmentation is
another optional operation which can be performed to extract the signal information
when the cutting tool is actually removing metal in a steady state[13,14].

Finally, the signal is ready to be used in the feature generation, selection and

extraction step.

1.1.3 Feature Generation, Selection/Extraction

The next step is feature generation and selection. The features which are most
related to what we are monitoring should be generated and selected at this step. The
nature of the signal is very important in deciding which feature better represents the
signal. Many different features of a signal can be extracted in time domain, frequency
domain and time-frequency domain. In the feature generation step, a large number
of features may be generated. Therefore, it should be decided that which set of
features are more appropriate for our application.

It is difficult to manually estimate which features are more sensitive to fault
due to various factors such as machine tool characteristics, material properties, lubri-
cation, location of the sensors, signal to noise ratios of the data acquisition system,
etc. that can influence the effectiveness of the features. Therefore, a systematic
approach to reduce the number of features for the successful development of reliable
and robust TCM system is helpful[13,14].

Dimensionality reduction is useful as it can lead to less complicated learning

10



algorithms and simpler robust models on small datasets with less variance. How-
ever, it should be noted that feature reduction should not affect the accuracy of the
prediction and principal features of the signal should not be neglected during this
procedure|13].

Two methods can be used for dimensionality reduction of feature space. Feature
selection methods which refer to selecting a number of features by feature ranking
based on their correlation with the monitoring variable. Subset selection is an exam-
ple of this approach benefits from optimization algorithms such as genetic algorithm
which helps in the optimal subset selection. After selecting the most discriminative
features, non-selected features no longer be employed. Therefore it helps to reduce
computational cost.

The second approach is called feature extraction which refers to finding a new
set of k features that are a combination of the original d features. This approach
has a higher degree of freedom in finding the set of the most significant features in
comparison to the feature selection. Principal component analysis (PCA) is the main
feature extraction technique which has a great potential in making principal features
based on the sensor features[13,14].

Increasing number of features generally leads to a lower training error, however,
not necessarily a lower validation and test error. Dimensionality reduction methods
may improve the reliability of the monitoring system, however, the new features do

not provide a physical explanation of the system[13,14].

1.1.4 Al Techniques for Decision Making

Indirect monitoring involves determining a system state based on physical signals
which indirectly reflect the system and fault’s information. Therefore, a more com-
plex and accurate model is necessary in monitoring these systems to interpret infor-

mation from sensors, eliminate unnecessary information, identify abnormalities and

11



make an appropriate decision. Artificial intelligence (Al) is a good solution to build
such a model. Artificial neural networks (ANN) are the main Al techniques applied
for modeling and monitoring machining systems. Fuzzy logic systems and hybridiza-
tion of them with ANN, called neuro-fuzzy inference systems, are also among the
techniques having been widely used. Other Al approaches such as Bayesian network
hidden Markov models or support vector machines are also applicable but not used
as widely as the mentioned methods[13]. Figure 1.5 presents the frequency of usage

of AI approaches in machining applications.

4%

® ANN (59%)

m Fuzzy (15%)

m Neuro—fuzzy (10%)

m Bayesian Networks (4%)
m Others (12%)

Figure 1.5: Frequency of usage of Al approaches in intelligent machining systems in

the research platform ISI-Web of knowledge|[13].

Many factors can influence choosing an Al technique such as monitoring pur-
pose, experimental dataset for modeling the process, training and development du-
ration, previous knowledge of the process etc. Advantages and disadvantages of a

number of the most used techniques in this application is provided as follows:
e ANN

This method has the potential to provide high accuracy even in the cases that
there is no previous knowledge of the process. The most important disadvantage of
these systems is that they need a large number of training data. They are also not
suitable to be used in the applications which require the inverse problem solving,
such as the selection of cutting parameters to ensure a certain value of machining

performance[13,14].

12



e Fuzzy Inference Systems

One of the applications of these systems is when the experimental data set
consists of low/medium number of samples. In these systems, part of the model is
developed using previous knowledge in a qualitative way. Therefore, this approach
is used where there is enough knowledge from the process and this knowledge is
intended to help the model to be more accurate. One of the other applications is
where the inverse problem has to be solved. However, the accuracy of these systems

are generally less than ANN|[13,14].
e Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

Neuro-fuzzy systems are a hybridization of ANN and fuzzy systems to benefit
from the advantages of both. Therefore, their application is a combination of both
ANN and fuzzy systems. They are used when previous knowledge needed to be added

to system and hidden knowledge from experimental data should be extracted[13,14].
e Bayesian Networks (BN)

Bayesian networks have generally less accuracy but more reliability in compar-
ison to the other methods. The aim of these systems is to extract hidden knowledge
from experimental data in the form of causal relationships and probabilities as well
as using previous knowledge. They comparatively, need large training data and can
be used for solving inverse problems such as finding the optimal cutting parame-

ters[13,14].

1.2 Literature Review

This section presents the previous researches on machining monitoring and provides

some potential research topics in this field. Two different methods are implemented

13



in the literature and practice for monitoring the machining process in order to predict
part accuracy and diagnose cutting-tool state: direct and indirect methods. Direct
methods refer to a direct measurement of the tool condition using sensors like laser,
optical, and ultrasonic sensors. The drawbacks of these methods are that they are
still very expensive, not suitable for online application and also difficult to apply in
the machining process environment. On the other hand, indirect methods monitoring
systems are more economical. These systems infer the machining state by relating it
to the physical parameters of system such as cutting forces, vibrations, temperatures,
current consumption, etc.[13,14].

There exist a large number of tool condition monitoring methods in the litera-
ture which use different sensors for indirect tool condition monitoring. Four sensors
have been widely applied to monitor machining systems: dynamometers, accelerom-
eters, acoustic emission (AE) sensors and current sensors|13,16].

Cutting force is the variable that can describe the cutting process perfectly and
many researches employed this feature for tool condition monitoring[17-22|. In their
study, Liu et al.[23]have designed an online tool wear monitoring system based on
cutting forces in turning of stainless steel parts. They employed back-propagation
neural networks (BPNs) and the adaptive neuro-fuzzy inference system (ANFIS)
for classification of the tool condition. While cutting forces have been proven to be
sensitive to tool faults, the change in cutting force due to tool wear is strongly depen-
dent on other cutting conditions together with the type of wear, cutting material,
work material, etc. Moreover, dynamometer are relatively expensive to industrial
usage|13].

It is also common to use vibration and AE signals as fault indicators in mon-
itoring algorithms based on their ease of use in industry[15,24-31]. Vibration am-

plitude usually varies as a result of tool fault in machining process which makes
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vibration monitoring also an effective way for tool condition monitoring. As an ex-
ample, vibration signal is employed in deep hole boring operation for tool condition
monitoring[32].

AE signal derived from metal cutting also can represent the tool condition as
it consists of continuous and transient signals, which have distinctly different char-
acteristics in faulty situations. An important advantage of using AE signal is that
its frequency range is much higher than that of machine vibrations and environ-
mental noise, however, it is sensitive to sensor location and cutting parameters|13].
Kosaraju et al.[33]proposed an AE-based tool condition monitoring method in turn-
ing titanium with PVD-coated carbide tools. Power signal is also a practical and
inexpensive cutting condition indicator in the industrial environment[34,35]. For
instance, a tool condition monitoring system is designed based on the power signal
of spindle and S-transform|36].

Any change in cutting conditions such as machining parameters, tool wear,
machine stiffness, etc. may manipulate the sensitivity and the noise rejection of
the sensed signals. Using several sensors is a strategy to increase the reliability of
sensor’s information under varying conditions and also it helps to avoid uncertainty
[13]. Implementing multiple sensors with non-complementary measurements defines
a multi-sensor monitoring system while sensor fusion refers to the use of more than
one sensor signal in a complementary manner to provide a more robust monitoring
system|[13].

Ghosh et al.[7]have developed a neural network based sensor fusion method for
tool wear monitoring in milling operation. Some features from cutting forces, spindle
vibration, spindle current, and sound pressure level signals have been extracted and
combined to estimate the flank wear of the tool. In another study, force, vibration
and acoustic emission signals are used for tool condition monitoring based on a

fuzzy inference system[37]. Wang et al.[38]has combined a direct sensor (vision)
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information with an indirect sensor (force) for online tool condition monitoring in
milling operation. Cho et al.[39]have designed a multi-sensor fusion-based tool
condition monitoring system in end milling. The sensors employed in the study were
force, vibration, acoustic emission, and spindle power sensors and features from time
domain and frequency domain were extracted. Based on the literature review, there
is not still a strong conclusion which set of signals provide best results in sensor
fusion. Moreover, different data fusion techniques are not studied in depth in this
application.

After signal acquisition, a set of features with best correlation to tool fault
condition should be extracted from the acquired signals. The features are desired not
to be affected by process conditions[14]. The features can be extracted from time
domain, frequency domain, statistical domain and time-frequency domain. Time
domain descriptors simplicity in terms of extraction makes them easy to use, however,
they are susceptible to disturbances[13,14]. Frequency and statistical domain feature
extraction is also popular among researchers[14]. While these techniques provide
acceptable performance in stationary conditions, they fail to provide robust result in
non-stationary situations which could result from fast operational condition or the
presence of a fault causing a discontinuity in the signal[40].

Due to non-stationary nature of faulty signals, time-frequency domain represen-
tation can reveal rich information about machinery health conditions by identifying
the signal frequency components and revealing their time-varying features at the
same time. Therefore, discriminative fault features can be extracted from a faulty
signal by choosing a proper time-frequency transformation method[41]. However,
there is still a lack of using advanced time-frequency methods for signal process-
ing in the field of machining monitoring[16]. While many advanced time-frequency
transformation methods have been tested with promising result in similar applica-

tions, there is not a comprehensive comparative study to report the efficiency and
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performance of these methods in tool condition monitoring.

In order to make the fault detection problem solvable, time-frequency domain
information of a signal should be converted to feature vectors ideally containing
only relevant information. Linear transformation methods such as principal compo-
nent analysis and partial least squares (PLS) can be utilized to decrease the time-
frequency information dimensions and construct a feature vector. However, for high
dimensional datasets, computing the features increase the calculation cost and the
obtained components are not always representative of the most discriminative infor-
mation. Selecting a local confined portion of data instead of the entire time-frequency
plane can help to conquer this problem. However, in local-based analysis, the im-
portant issue is the selection of the size and location of relevant area which is highly
dependent on the final application[42]. Selective regional correlation (SRC) is a local
time-frequency analysis method which is used by Rehorn et al.[3]for detection and
diagnosis of brush seizing faults in the spindle positioning. However, to the authors’
best knowledge, an effective local time—frequency feature generation method with
the ability of finding the most relevant information still has not been addressed in
the field of TCM.

Monitoring systems require reliable models for making a decision based on the
extracted feature. The models should be capable of learning complex non-linear re-
lationships between process operation variables, extracted features and the system’s
faults[13]. Artificial intelligence methods are good candidates to perform this task.
Based on the literature, artificial neural network, fuzzy logic and neuro-fuzzy systems
are leading methods for this application|[13,14,16,43-50]. Bayesian networks, hid-
den Markov models, evolutionary algorithms and support vector machines are also
gaining more attention recently[13,14,51-53]. An appropriate artificial intelligence
method should be selected according to the monitoring purpose, the experimental

dataset and number of extracted features for modeling the process, the previous
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knowledge of the process and training time as the final step for decision-making.
Based on the literature review, there is a high potential in literature to study
sensor selection, multi-sensory systems, and sensor fusion concept. Moreover, the ef-
fects of locations of the sensors and different levels of data fusion on the monitoring
algorithms are still not addressed in the literature. Time-frequency signal process-
ing methods deserve more attention due to their superior ability to interpret time
variant signals. An efficient method for dimensionality reduction is also necessary
to make time-frequency interpretation more practical. Finally, the applicability and
performance of artificial intelligence methods need to be investigated in combination

with the signal processing and feature generation techniques.

1.3 Thesis Outline

The thesis is organized as follows: Chapterlprovides an introduction to the concept
of tool condition monitoring, explains the monitoring steps, reviews the recent litera-
ture, and describes the potential subjects of research in this field. Chapter2presents
the methodology and mainframe of monitoring systems in this research and intro-
duces the experimental dataset for validation of this research. Chapter3toGeach
represents one of the steps of tool condition monitoring. Chapter3deals with sensor
fusion concept, multi-sensor systems and different methods of data fusion. Chapter4
is devoted to a comparative study between popular time-frequency transformation
methods as powerful signal processing tools and compares the performance of five
superior techniques. Chapterbpresents a novel feature selection method proposed
in this study to reduce the dimensionality of time-frequency transformation output
and make the problem solvable. Chapter6compares three well-known artificial in-
telligence methods employed for making a model between extracted features and

tool wear state. Finally, Chapter7draws the conclusion and outlines the future
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extensions of this study.
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Chapter 2

Methodology Overview

This chapter consists of two sections. In the first section the methodology of tool
condition monitoring employed in this research is explained and the techniques and
approaches in each step are defined. The next section deals with experimental dataset
which is used for validation of this work. Available monitoring signals and charac-

teristics of the benchmark dataset are explained and clarified.

2.1 The Monitoring Algorithm Framework

In this section the methodology of designing an automated tool condition monitoring
system for this research is explained. The intelligent monitoring systems comprised
of four main components. The first step in tool condition monitoring is signal acqui-
sition. These signals play the role of fault indicator in our system. After signal ac-
quisition, the signals should be processed to improve their quality. Depending on the
needs and characteristics of the signals, signal processing may include amplification,
low pass and high pass filtering, time domain, frequency domain, or time-frequency
domain processing etc.

After processing the signal, appropriate features should be extracted from that.
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An ideal feature is the one which reflects our system monitoring variable character-
istics perfectly and it is invariant with respect to other process parameters. Finally
a machine learning algorithm should identify the relations between extracted fea-
tures and corresponding system state. Based on the information that monitoring
system provides from the machining process and machine state, appropriate com-

mands should be sent to the machine for possible adjustments, or in extreme cases,

stopping the process.
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Figure 2.1: The general framework of the tool condition monitoring systems in this

research

Figure2.1represents the baseline of the monitoring system in this work. In
this research, two AE sensors and two vibration sensors are utilized. One of sensors
is mounted on the machine table and the other on the spindle of machining center

to collect information from the machine. A current sensor also provides necessary
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information of the current of the spindle motors. Chapter3discusses possible fusion
techniques of these signals and provides a comparative study on which pair of signals
has best accuracy. Due to the environmental noise and to improve the signal quality,
some pre-processing operations are performed to each signal. These pre-processing
operations for each individual signal are explained in the following section.

The next step is to process signal to prepare it for feature extraction. Five
advanced signal processing methods are employed in this step and the results are
compared in Chapterd. Feature extraction is the next necessary step to make the

monitoring problem solvable.

Figure 2.2: Schematic diagram of the the experimental setup[54]

The results of time-frequency transformation have high dimensions and a method
should be utilized to convert them to the most informative features which can repre-
sent the important characteristics of the system comprehensively and also have less
dimensions to be applicable for online use. A novel method to find the best local
region of time-frequency domain is proposed and it is combined with 2D principal

component analysis (2D PCA) in Chapter5. In this step, the results of using the
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abrasive wear

flank face of insert

Figure 2.3: Tool wear as it seen on the insert[54]

whole information of time-frequency domain, using the best local region approach
and using the combination of best local region and 2D PCA are implemented and
compared.

After preparing the informative low dimensional features, an artificial intel-
ligence method is necessary to find a model between the extracted features and
system state. The method should have the ability to deal with complex non-linear
situations. For this purpose, three most popular artificial intelligence methods in
mechanical condition monitoring are employed in Chapter6and the performance
results are compared. Real experimental data is utilized for training the system and
the trained system can be used online to estimate the tool fault severity. Based on
the estimated tool fault, a threshold can decide whether the system should continue
to cut or the cutting should be stopped. The tool fault value can be exploited to

optimize the machining parameters and tool compensation.

2.2 Experimental Dataset

The NASA Ames and UC Berkeley benchmark milling dataset[54is used for

methodology validation. This dataset consists of experiments from runs on a milling
machine under various operating conditions. The Matsuura MC-510V machining
center is used for experiments. The advantage of the dataset for this research is that

it provides diverse signals information acquired from various practical commonly
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used sensors for tool condition monitoring. In this dataset, depth of cut, feed rate
and workpiece material as the operation variables are subjected to change and the
tool wear was investigated in a regular cut as well as entry cut and exit cut. The
experiment setup is depicted in Figure2.2.

Two acoustic emission sensors (model WD 925) and two vibration sensors
(model 7201- 50, ENDEVCQO), are each mounted to the table and the spindle of
the machining center and a current sensor (model CTA 213) of spindle is used for
signal acquisition. All sensors’ signals except current sensor are amplified and fil-
tered and fed through two root mean square (RMS) filter. Figures2.4to2.8present
samples of each dataset signal. A 70mm face mill with 6 KC710 inserts was chosen
based on its industrial applicability as the cutting tool.

Tool flank wear (Vb) as a generally accepted parameter for evaluating tool
wear is investigated as the monitoring variable. Flank wear refers to the distance
from the cutting edge to the end of the abrasive wear on the flank face. Figure2.3
presents an image of tool wear as it is seen on the insert. After each experimental
run, the insert was taken out of the tool and the flank wear was measured with the
help of a microscope.

The data is organized in a MATLAB structure array. Table2.1provides a
description of the structure fields. There are 16 cases each includes varying number
of runs depending on the degree of measured flank wear up to a wear limit (and
sometimes beyond). In each case, operation conditions are constant and workpiece
material is cast iron or steel. Table2.2represents the operation condition of 16 cases

in the dataset.
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Table 2.1: Names and descriptions of dataset structure elements in MATLAB

Field Name Description

case Case number (1-16)

run Counter for experimental runs in each case
VB Flank wear, measured after runs

time Duration of experiment (restarts for each case)
DOC Depth of cut (does not vary for each case)
feed Feed (does not vary for each case)

material Material (does not vary for each case)

smcAC AC spindle motor current

smcDC DC spindle motor current

vib_table Table vibration
vib_spindle Spindle vibration
AE table Acoustic emission at table

AE_ spindle Acoustic emission at spindle
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Figure 2.4: Acoustic emission signal (table)
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Table 2.2: Experimental conditions

Case Depth of Cut Feed Material

1 1.5 0.5 1 — cast iron
2 0.75 0.5 1 — case iron
3 0.75 0.25 1 — cast iron
4 1.5 0.25 1 — cast iron
5 1.5 0.5 2 — steel
6 1.5 0.25 2 — steel
7 0.75 0.25 2 — steel
8 0.75 0.5 2 — steel
9 1.5 0.5 1 — cast iron
10 1.5 0.25 1 — cast iron
11 0.75 0.25 1 — cast iron
12 0.75 0.5 1 — cast iron
13 0.75 0.25 2 — steel
14 0.75 0.5 2 — steel
15 1.5 0.25 2 — steel
16 1.5 0.5 2 - steel

AE spindle {processed responsej

1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 G000 7000 8OO0 5000
Sample
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Figure 2.5: Acoustic emission signal (spindle)
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AC current (processed response)
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Figure 2.8: Spindle motor current signal
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Chapter 3

Sensor Selection/Fusion

3.1 Introduction

If cutting conditions such as machining parameters and machine stiffness change, it
can affect the sensitivity and the noise rejection of the sensed signals. Therefore, it is
helpful to use more than one sensor in order to increase the reliability of the system
and avoid uncertainty. Two strategies for using more than one sensor are using
multiple sensors and sensor fusion. Multiple sensors monitoring refers to using more
than one sensor but with non-complementary information to increase the reliability.
For example, using vibration sensors at different locations and use the combined
information for monitoring purpose.

Sensor fusion is to use signals of more than one sensor with complimentary
information. Each sensor has some advantages and some disadvantages. A proper
sensor fusion approach can assist to benefit from the advantages of different sensors
and omit the drawbacks. For example, cutting forces and AE are less correlated and
they can be used effectively as complementary information[13].

This research uses vibration signals, AE signals and AC current of the spindle

as fault indicators. One of each vibration and AE sensors is located on the table of
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machining center and the other is mounted on the spindle. Following two important
decisions should be made in designing multi-sensors or sensor fusion systems:

1- Which sensors have the most complementary information and can work
together perfectly;

2- How the sensors information should be combined for maximum performance
and accuracy.

This chapter addresses these questions in the investigated machining tool con-

dition monitoring application.

3.2 Sensor Fusion Methodology

AFE signals, vibration signals and spindle motor current signal are used as the input
signals for monitoring purpose in this chapter. After the signals are acquired and
amplified, they should be converted to the features representing the fault situation
in order to make the problem solvable. Due to the time variant nature of faulty
signals, time-frequency analysis can reveal valuable information about the system.
S-transform as an advanced time-frequency transformation method is used to convert
the signal from one dimensional time domain to two dimensional time-frequency
domain.

The transformed data to time-frequency domain has high dimensions. This
makes the calculation cost high, particularly for online applications in which imme-
diate response is necessary. Moreover, the most relevant data to the faulty situation
should be used to eliminate the inaccuracy because of the irrelevant information. A
2D principal component analysis is performed on the data to extract most relevant
information and reduce the dimensionality of the data. Based on this technique a
group of ranked features are extracted from each signal.

Figure3.lillustrates the methodology from the signal acquisition step to the
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fault estimation. Three common methods of data fusion are investigated in this study.

Figure3.1-a to c represent these three levels of data fusion and their differences.
e Feature level data fusion

In the first approach (Figure3.1-a), feature level data fusion, the outputted
ranked features from two indicator signals are combined to form a combined matrix
of features and combined features are used for further analysis. Afterwards, the
combined features for each case should be compared with the extracted combined
features of the machine in normal state. The deviations from the normal situation
can be correlated with the fault. A 2D correlation analysis is employed in this
step and a correlation score is assigned to each case based on its similarity to normal
situation. After obtaining the corresponding correlation scores for each system state,
MATLARB curve fitting toolbox is used to determine a model between the correlation

scores of each machine state and the corresponding fault values.
e Score level data fusion

Figure3.1-b represents the second sensor fusion technique, score level data
fusion. The sensors information in this approach are compared one step later in
comparison to previous method. In this system, the correlation of each signal indi-
vidually evaluated with the same type of signal and under same operation condition
but in normal situation. Therefore, two scores are produced based on two input sig-
nals. Subsequently, the average of these scores is used as the combined score for the
next steps. The same as the first method, a function between the combined scores

and their corresponding flank wear values is obtained in the last step of this method.
e Decision level data fusion

In the third technique (Figure3.1-c), decision level data fusion, the signals

information does not be combined with each other until the final step. Therefore, a
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Figure 3.1: Methodology overview: a) Feature level sensor fusion, b) Score level

sensor fusion, ¢) Decision level sensor fusion

system based on each individual signal is designed. After defining a function between
tool fault and the correlation score for each signal, the fault value is estimated.
Finally, the average of two estimated fault values is used as the tool fault magnitude
for decision step.

For each level of data fusion, different pairs of signals are tested and a com-
parison between the performance of pairs of sensors as well as levels of data fusion

is presented in the following sections.

3.3 Background of Techniques

In this section, the algorithms which are used for each step of the monitoring system
are presented and the formulation is provided. S-transform is an advanced time-
frequency transformation method which is used for converting the signals from time
domain to time-frequency domain. S-transform formulation and descriptions are

provided in Chapterdalong with other time-frequency transformation methods. 2D

32



PCA is an extension of the original PCA which is implemented in this chapter for
dimensionality reduction and the 2D correlation analysis is employed to reflect the

similarity of each machine state to the healthy state as a feature extraction method.

3.3.1 2D Principal Component Analysis

Principal component analysis is a classical feature extraction and dimensionality re-
duction technique widely used in the areas of pattern recognition. In the PCA-based
feature extraction, the 2D matrices must be previously transformed into 1D vectors.
It is difficult to evaluate the covariance matrix accurately in the high dimensional-
ity due to the large size and the relatively small number of training samples. 2D
PCA extends the original PCA to be capable of working directly with the original
matrix rather than its vectored sample. As a result, it is easier to evaluate the co-
variance matrix accurately in 2D PCA and less time is required to determine the
corresponding eigenvectors[55]. 2D PCA algorithm is defined as follows:

Assume a training set of 2D matrices { X1, Xa... X}, 2D PCA first constructs

the total covariance matrix Gy using all the training samples|56].

N T 3
Gi=Y(Xi—X) (Xi=X), (3.1)

i=1

where N is the number of training samples, X; is the ith training sample and X is
the mean of all training samples. The projection axes of 2D PCA, Wy, Ws, ..., Wp,

can be achieved by calculating maximal value of the sample scatter criterion.
iwy=wre,w, (3.2)

where W is a unitary column vector. Actually, Wi, Ws,...,Wp are the eigenvectors
corresponding to maximal eigenvalue of G;. Finally the features can be extracted

based on following equation:
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Y =X Wop, (3.3)

where
Wopt = [W17 W27 s 7Wd] ’ (34)

3.3.2 2D Correlation Analysis

Tool faults such as flank wear cause some abnormality in the acquired signal of the
machine. Therefore, a similarity analysis between the acquired signals from machine
actual state and the ideal healthy state can represent the system condition. To
evaluate this, a 2D correlation analysis between the machine state and the ideal state
is implemented. As the fault value increases in the system, the indicator signals show
more deviation from the healthy situation and the correlation coefficient decreases.
The correlation coefficient approaches to 1 if two signals are more similar. The
correlation coefficient between two matrices A and B (transformed signals to time-
frequency domain) can be derived based on the following equation:

- Zm Zn (Amn _z> (an _F) (35)

\/ (En S (Amn = A)2) (S S0 (Bun ~ B)”)

where A and B are the mean value of A and B, respectively.

3.4 Sensor Fusion Results

The important question in using more than one sensor is that which sensors can
provide more complementary information and work effectively together in a system

to increase accuracy and reliability of the monitoring system. In this step score
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level sensor fusion methodology (Figure3.1-b) is implemented and many combina-
tion pairs of signals are tested as the input of systems. Each table from3.1t03.5
represents the combination of one signal with all the other available signals in the
dataset. All possible multi-sensor and sensor fusion as well as single input systems
are investigated and compared in this section.

Table3.1provides the fault estimation errors for the systems which work with
combination of AE of table signal with other available signals. When AE of table is
used individually, the mean error and maximum error of corresponding monitoring
systems are 8.65% and 16.52% respectively. When two AE sensors are used together
in a system, the mean error is decreased to 5.91% and maximum error is decreased
to 10.14%. This suggests that using multiple AE sensors can improve the accuracy
of the system. The best accuracy is achieved with the fusion set of AE table sensor
and vibration spindle sensor. Mean error of this case is 4.28% which is less than half
of using just one sensor. It can be also interpreted from this table that if acoustic
emission of table is used as the first signal in fusion, it is better that the other sensor

such as vibration be mounted on the spindle of the machining center.

Table 3.1: Score level sensor fusion for AE of table with other signals

AE table No fusion AE spindle Vib table Vib spindle AC current

Mean error 8.65 5.91 7.57 4.82 8.36

Max error 16.52 10.14 13.57 8.57 13.36

The fusion information of AE of spindle signal with the other available sig-
nals is provided in Table3.2. The best results is achieved by fusion of this signal
with AC current signal. The error of fault estimation can decrease to 2.67% mean
error and 5.9% maximum error which is a robust accuracy for practical usage. It
should be noted that for some fusion of signals, if the provided information are not

complimentary, it can even deteriorate the results. For example using just AE of
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spindle provides more accurate information in comparison to AE of spindle and ta-
ble together. However, in the case that one of the sensors fails, the other sensor can
still assure the reliability. It is worth to mention that combining AE spindle and
vibration table gives more accurate results in comparison to combining AE spindle
with the vibration sensor at the same location, i.e., spindle. It implies that in using

more than one sensor it is appropriate to locate the sensors in different positions.

Table 3.2: Score level sensor fusion for AE of spindle with other signals

AE spindle No fusion AE table Vib table Vib spindle AC current

Mean error 3.9 5.91 3.77 4.25 2.67

Max error 8.25 10.14 8.78 9.31 5.9

Based on Table3.3, for vibration signal at table of machining center, the best
fusion set result is obtained by combining it with the AE of spindle. In this case,
3.77% for mean error and 8.78% for maximum error are obtained. It is worthwhile to
note that fusion of the vibration signal of the table with AE of the spindle can increase
the accuracy around 5 times (from 16.99% to 3.77%). However, using multiple
vibration sensors cannot improve the results significantly. This table also suggests
that the combination of information of a sensor mounted on the table with another
mounted on the spindle gives better results than both of them mounted at the same

place.

Table 3.3: Score level sensor fusion for vibration of table with other signals

Vib table  No fusion AE table AE spindle Vib spindle AC current

Mean error 16.69 7.57 3.77 15.89 11.94

Max error 25.44 13.57 8.78 23.33 14.96

The information for combination of vibration of spindle signal with other signals
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is provided in Table3.4. While all the fusion sets improve the results significantly
and decrease the error to less than half, using multiple sensors of vibration do not
improve the results. The lowest fault estimation mean error is achieved by the
combination of vibration of spindle and AE of spindle signals (4.25%). However, the
lowest maximum error is achieved by the combination of vibration of spindle and
AE of table signals (8.57%). The table information implies that AE signal is a good

candidate to use with vibration signal.

Table 3.4: Score level sensor fusion for vibration of spindle with other signals

Vib spindle No fusion AE table AE spindle Vib table AC current

Mean error 11.46 4.82 4.25 15.89 5.9

Max error 18.19 8.57 9.31 23.33 12.15

Table3.5presents the information for AC current of spindle signal. While
its individual accuracy is not high with mean error of 15.9%, combining it with
other signals can increase the accuracy and decrease the error rate significantly. The
combination of AC current and table AE reduces the fault estimation error by 7.5%.
The best accuracy is obtained by the fusion of AC current and AE of spindle. The
fusion of AC current signal gives better results when the other sensor is mounted
on the spindle. Based on the results, while the AC current sensor has not robust
accuracy to be used individually, it can give accurate results when it is combined with
another signals. The industrial applicability and cost efficiency of this sensor also
encourage using this signal as a complimentary information in sensor fusion systems.

With an overall view of Tables3.1t03.5, best accuracy can be reached by
fusion of AC current signal and AE of spindle. Generally, combination of AE and
vibration signals gives better results when one of them is mounted on the table and
another on the spindle rather than both of them in the same place. AC current sensor

is also improved the accuracy when it is fused with another signal in all experiments
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Table 3.5: Score level sensor fusion for AC current with other signals

AC current No fusion AE table AE spindle Vib table Vib spindle

Mean error 15.9 8.36 2.67 11.94 5.9

Max error 45.43 13.36 5.9 14.96 12.15

and can be an ideal choice for sensor fusion although it has not provided promising
results individually. Additionally, using multiple sensors did not improve the results

significantly in comparison to selecting the proper fusion set.

3.5 Comparison Between Different Levels of Data

Fusion

Data fusion based monitoring techniques combine data from different sources to
achieve best accuracy and reliability. In designing a sensor fusion method, it is
important to determine in which level of process the signals information should be
combined. In this section, three practical levels of data fusion are implemented and
compared. Figure3.1(a to ¢) explains these approaches.

The first method is feature level fusion. In this method, the outputs of 2D
PCA for both signals are used to form a combined feature vector. This method
can be considered as a combination of the raw data or not highly processed data
from different sources. After combining the data at this level, it will be determined
that how much this new combined feature vector is deviated from the feature vector
obtained by the same fusion technique and signals but in normal situation. A score
will be assigned to fusion set based on the result of this correlation analysis and a
monitoring algorithm is designed bades on that score.

The second approach is score level fusion. In the score level fusion, the output of
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Table 3.6: Mean and maximum fault estimation errors for systems designed with

feature, score and decision level data fusion

Signal pairs

Feature level fusion Feature level fusion Decision level fusion

Mean err Max err Mean err  Max err Mean err Max err
AE table &
5.63 12.08 5.91 10.14 6.28 10.05
AE spindle
AE table &
16.54 26.18 7.57 13.57 6.07 9.74
Vib table
AE table &
8.6 15.85 4.82 8.57 5.62 10.78
Vib spindle
AE table &
15.6 44.01 8.36 13.36 9.39 24.15
AC current
AE spindle
15.88 24.3 3.77 8.78 6.42 8.6
& Vib table
AE spindle
4.84 9.11 4.25 9.31 5.59 9.16
& Vib spindle
AF spindle
15.02 41.44 2.67 5.9 .72 26.29
& AC current
Vib table &
16.97 24.13 15.89 23.33 11.9 19.25
Vib spindle
Vib table &
18.48 42.1 11.94 14.96 10.71 15.04
AC current
Vib spindle
15.77 44.93 5.9 12.15 13.68 27.06
& AC current
Average error 15.66 25.24 5.91 11.15 7.57 12.91
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2D PCA is compared with the healthy state output using 2D correlation analysis for
each signal and a correlation score is assigned to each signal individually. Afterwards,
the obtained scores from each signal are integrated and the average of them is used
as the combined score.

In the third method, decision level fusion, each signal estimates the fault indi-
vidually and the average of estimations is used as the final fault value. These three
methods are implemented and tested with all dataset signals. Table3.6provides the
information of fault estimation mean and maximum errors for the dataset fusions.

The last row is the average of these errors in all the cases.
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Figure 3.2: Comparison between mean percentage error of systems designed with

different data fusion techniques for various sets of input signals

It is implied from this table that score level data fusion method outperform
the other two methods while decision level fusion provides lower error in comparison
to feature level fusion. Figure3.2illustrates the detection mean error results for

different signal pairs and different fusion levels. Blue bars represent feature level
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fusion, red bars represent score level and green bars represent decision level fusion.
It is clear from the graph that in most cases and also in average of errors, score level
fusion outperforms the other two data fusion level methods. It can be explained as
in feature level data fusion, the information is comparatively raw and combining the
data at this level may end up in loosing some information. In other words, it is too
early to combine the data at this stage. In decision level data fusion, however, the
datasets are combined too late and after many filtrations. Score level may be ideal

as it combines the data at an appropriate time.

3.6 Chapter Summary

In this chapter, sensor fusion based flank wear monitoring in milling operation is
investigated. S-transform is employed to convert the signals from time domain to
time-frequency domain and 2D PCA algorithm decreases the dimensionality of the
S-transform outputs and provides ranked features. Many pairs of signals are fed into
the system in each fusion scenario and the monitoring and fault estimation accuracy
results for different signal pairs are compared together and also with the results
obtained from a single signal input.

In another experiment, the signals information are combined together at three
different levels, feature level, score level, and decision level, and the performance of
each fusion level is evaluated and compared with others.

It is observed from Table3.1to Table3.5that the highest accuracy can be
achieved with the AE of spindle and AC current with the mean detection error of
2.67% and maximum fault estimation error of 5.9% in score level fusion. Vibration
and current signals both can be good candidates to be combined with AE signal for
sensor fusion.

In using two different sensors such as vibration and AE; it is better that one of
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them be mounted on the spindle and the other on the table of the machining center
rather than both of them at the same place. Moreover, AC current signal is a perfect
candidate to be fused with the other signals based on its low cost and the comple-
mentary information it can provide for other signals and it can improve the accuracy
significantly. However, employing this signal individually in a monitoring system
may not be reliable since the maximum error reaches to 45.43% in this experience.

In contrast, AE and vibration signals can be used individually as fault indicator
signals with acceptable results. AE signal is also a candidate with high potential for
sensor fusion with vibration and AC current as its less correlated nature to them.
Furthermore, while well selected sensor fusion can improve the monitoring system
accuracy significantly, using multiple sensors from the same type has not a significant
effect on the system.

Comparison between different levels of fusion also suggests that score level
sensor fusion has best accuracy for this design with average mean and maximum
monitoring errors of 5.91% and 11.15% respectively. Decision level sensor fusion has

also better performance than feature level fusion.
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Chapter 4

Time-Frequency Signal Processing

4.1 Introduction

Acquired signals in industrial environment have a significant noise level. Moreover,
changes in the signal pattern can be due to various reasons such as a change in oper-
ation condition or different source of faults. Furthermore, faulty signals usually have
a time variant nature. Therefore, time-frequency analysis is an effective approach for
tool condition monitoring based on its ability to reveal time variant characteristics
of the signal as well as identifying the signal’s frequency components.

In this chapter, a comparative study between performance of five time-frequency
transformation methods in tool condition monitoring application is conducted. The
definition and formulation of the time-frequency transformations which are used in
this research are explained in the next section. Results section reports the perfor-
mance of each method in terms of mean and maximum error of fault estimation.

The structure of the designed systems in this chapter are presented in Figure
4.1. The systems are tested for all available signals in the dataset. In each sys-
tem, one signal is inputted to the system and after pre-processing, a time-frequency

transformation is conducted. In the next step, 2D PCA and correlation analysis
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converts data from time-frequency domain to feature space. 2D PCA decreases the
dimensions of time-frequency output and provides the principal components of the
time-frequency matrix. Afterwards, the correlation analysis compares the results
with the results of a healthy signal in the same operation conditions and assigns a
score to the signal. This method assigns 1 to a signal when the signal is exactly
similar to the healthy case signal and the score decreases as the signal deviates from
normal signal. Finally a curve is obtained based on the derived scores and their cor-

responding fault values using MATLAB. This curve is used to estimate faults values

for future signals.

Figure 4.1: Monitoring systems structure with various time-frequency methods and

different sets of input signals

4.2 Background of Techniques

4.2.1 Short Time Fourier Transform (STFT)

Short time Fourier transform represents the time-varying characteristics of a signal
by adding a time variable to the traditional Fourier spectrum. It assumes that
in a short duration, the segmented signal can be assumed to be stationary due to
minor changes. After defining the window function and its length, this method’s

time-frequency resolution is fixed. In practice, for higher frequency components, a
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shorter time window should be implemented and vice versa. Heisenberg uncertainty
principle determines that the best time location and the frequency resolution cannot
be obtained at the same time. Therefore, this method lacks adaptability and it is
not suitable to analyze highly transient phenomena in signals, like impulses|41].

Equation (4.1) represents continuous expression of STET[57].
+00 9
STFT, (t,v,h)= [ xz(u)h* (u—t)e 7™"du (4.1)
—00
where h(t) is a short time analysis window localized around t =0, v = 0. Figure 4.2

represents the STEFT of the acoustic emission signal at spindle for a healthy signal

and a signal with Vb = 0.65 state.
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Figure 4.2: STFT representation of spindle AE signals: a) Vb = 0 and b) Vb = 0.65.

4.2.2 Wavelet Transform (WT)

Wavelet transform is widely used for health condition monitoring systems in the lit-

erature. In the wavelet transform, wavelets are used as the basis instead of sinusoidal
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functions. It is an effective tool for transient signal analysis as well as time-frequency
localization since, it adds a scale variable in addition to the time variable in the inner
product transform. It has a better time localization but a lower frequency resolution
for higher frequency components. In contrast, for lower frequency components, the
frequency resolution is higher while the time localization is worse. Equation (4.2)

describes the formulation of the continuous wavelet transform[41].
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Figure 4.3: WT representation of spindle AE signals: a) Vb = 0 and b) Vb = 0.65.

1 +o0 (u—t)

o5 L

where wavelet ¢ (u—t) /a is derived by dilating and translating the wavelet basis

WT,(t,a) =

du (4.2)

Y (t), 1/y/a is a normalization factor to maintain energy conservation and a > 0.
Figure4.3depicts the WT of the acoustic emission signal of spindle for a healthy

signal and a signal with Vb = 0.65.
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4.2.3 S-Transform (ST)

S-transform is an advanced time-frequency transformation with a great ability to
interpret from low quality signals. This method can be considered as an extension of
the continuous wavelet transform (CWT) concept known for its local spectral phase
properties. A localizing Gaussian window is employed in this method in a way that
while the localizing scalable Gaussian window dilates and translates, the modulating
sinusoids are fixed with respect to the time axis[58].

The employed window function in S-transform technique is a function of both
time and frequency which is the advantage of S-transform in comparison to STFT.
Due to this property, the window is wider in the time domain for lower frequencies,
and narrower for higher frequencies. Therefore, the window can provide good local-
ization in the time domain for high frequencies, while it provides good localization

in the frequency domain for low frequencies|59].
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Figure 4.4: ST representation of spindle AE signals: a) Vb = 0 and b) Vb = 0.65.
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Continuous S-transform of a time dependent function of h(t) is defined as

follows|60].

S (r,f)= f h(t) \&f%; (r=)21%/2  —i2nft gy (4.3)

There are computational advantages to use the equivalent frequency domain

definition of the S-transform for the discrete case. It can be defined as[60]:

g {jT, NT} i [m-i—n} 6—27r2m2/n2€i27rmj/N7n £0
m=0 (4.4)
S[iT.0] = + Z himT],n=0
m=0
where H[n/NT]J is the Fourier transform of the N-point time series h[kT] and j,m,
and n = {0,1,...., N —1}. Averaging the S-transform over time to get the Fourier

transform spectrum, and inverting to the time domain gives the discrete inverse of

the S-transform as follows|60]:

N-1 1N1 i2mnk
AAEDS NZSWNAeN (4.5)
J=

n=0
Figure4.4shows the ST representation of the acoustic emission signal of spindle for

a healthy signal and a signal with Vb = 0.65.

4.2.4 Smoothed Pseudo-Wigner-Ville Distribution (PW)

Smoothed Pseudo-Wigner-Ville distribution belongs to bilinear time-frequency dis-
tribution category which represents the signal energy distribution in the joint time-
frequency domain. The basis of almost all the bilinear time-frequency distributions
is the Wigner-Ville distribution. It has a high time-frequency resolution, however,
the drawback of this method is that for multi-component signals, it suffers from the
inevitable cross-term interferences. To overcome this problem, Cohen class distri-
butions are proposed to obtain the expected properties like higher resolution, non-

negativity and removal of cross terms by smoothing the Wigner-Ville distribution
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through time and frequency shifting with a kernel function|41]. Smoothed Pseudo-
Wigner-Ville distribution is one of these modified methods. Equation (4.6) presents

this transformation equation[61]:
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Figure 4.5: PW distribution of spindle AE signals: a) Vb = 0 and b) Vb = 0.65.

Figure4.5represents the PW distribution of the acoustic emission signal of

spindle for a healthy signal and a signal with Vb = 0.65.

4.2.5 Choi-Williams Distribution (CW)

Choi-Williams distribution is also a time-frequency distribution which uses an ex-
ponential kernel function for smoothing the Wigner-Ville distribution. The kernel

function is fixed and it determines the ability to suppress cross-terms. However,
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suppressing cross-terms with a time-frequency smoothing kernel function often de-
teriorate time-frequency resolution and it may also create extra interferences|[60].

Equation (4.7) express the formulation of this distribution[62]:

+ 25 .
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Figure 4.6: CW distribution of spindle AE signals: a) Vb = 0 and b) Vb = 0.65.

Figured.6illustrates the CW distribution of the acoustic emission signal of

spindle for a healthy signal and a signal with Vb = 0.65.
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4.3 Comparison between Time-Frequency Trans-
formation Methods

This section provides a comparison between monitoring systems each are made based
on one set of dataset input signals (AE at table, AE at spindle, vibration at table,
vibration at spindle and AC current of the spindle motor) and one of the time-
frequency transformation methods. For each system, 80% of the available signals are
used as the training dataset and 20% as the test dataset. For the training signals,
the correlation scores with normal case are extracted and a model is derived between
the scores and corresponding fault values using MATLAB curve fitting toolbox. Af-
terwards, a set of unseen signals called test signals are fed into the system and the
fault values are estimated based on the derived model. Finally the estimated faults
of the test dataset are compared to the actual experimental values and mean error

and maximum error are calculated.

Table 4.1: Mean error for different time-frequency transformation techniques

Smoothed
Choi-
Mean Error Wavelet pseudo-
STEFT S-transform Williams
Percentage transform Wigner-Ville
distribution

distribution
AE table 10.04 10.53 7.51 10.29 10.39
AE spindle 10.3 8.89 9.04 11.03 11.17
Vibration table 17.74 16.45 14.55 15.68 17.32
Vibration spindle  15.8 12.35 14.93 14.14 12.24
AC current 8.07 7.59 5.57 15.18 9.85
Average 12.39 11.16 10.32 13.26 12.19

Table4.1presents the mean error and Table4.2presents the maximum error of
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fault estimation in each monitoring system. Based on Table4.1, ST has the lowest

mean error in almost all the scenarios. Wavelet transform as a widely used technique

for condition monitoring also shows promising fault estimation accuracy. Last row of

the table shows the average error based on all the systems. It reveals that ST has the

minimum average of mean errors (10.32%) among all transformation methods. WT

is in the second place with 11.16%. The other three methods also provide acceptable

results for practical purposes.

Table 4.2: Maximum error for different time-frequency transformation techniques

Smoothed
Choi-
Maximum Error Wavelet pseudo-
STET S-transform Williams
Percentage transform Wigner-Ville
distribution

distribution
AE table 21.45 22.56 19.85 29.24 28.1
AFE spindle 25.66 26.41 24.59 18.18 21.21
Vibration Table  30.88 29.92 28.43 39.86 29.23
Vibration spindle  29.27 23.6 39.39 32.16 26.31
AC current 20.45 20.6 12.12 28.38 17.05
Average 25.54 24.62 24.87 29.56 24.38

Maximum error is also calculated as a representative of the system reliability

and presented in Table 4.2. All the maximum errors are around 24 to 25 percent

except smoothed Pseudo-Wigner-Ville distribution maximum error which is around

29.5%. Figure4.7compares the mean error of systems for different time-frequency

transformation methods and input signals.
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Figure 4.7: Fault estimation mean error of different time-frequency transformation

methods.

4.4 Chapter Summary

In this chapter, tool condition monitoring using time-frequency transformation meth-
ods is investigated. All dataset input signals are utilized individually as the fault indi-
cators. Three linear popular time-frequency methods in condition monitoring appli-
cation, STFT, WT and ST, and two bilinear time-frequency distribution, smoothed
Pseudo-Wigner-Ville and Choi-Williams are employed for signal processing step.

The accuracy of fault detection in the monitoring systems are acceptable in
all the systems which implies solid monitoring systems can be achieved using time-
frequency transformation. This enforces the applicability of time-frequency analysis
as a promising approach for tool condition monitoring.

It is observed that the best time-frequency transformation method in this study
is ST. Wavelet transform also shows promising results and as a widely used technique

for condition monitoring is the runner-up. The other three methods also provide



acceptable results for practical purposes. Maximum error is also calculated for each
scenario which can be a representative of system reliability. Average of maximum
errors for each transformation method is about 25% except PW with an average of

29.56%.
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Chapter 5

Feature Extraction/Selection

5.1 Introduction

After transferring the faulty signal to time-frequency domain, an important issue
for using the information is the high dimensions of the output which makes an in-
terpretation of the signal time-consuming and inappropriate for online application.
Moreover, low quality signals may deteriorate the fault detection performance due
to noise in the time-frequency domain. Therefore, extracting discriminative features
with low dimensions which provides a robust representation of variable of interest
(in this case: tool wear) and be relatively invariant to other process variables is an
helpful solution. This chapter proposes a feature selection method based on a lo-
cal region of interest with most informative data in time-frequency domain rather
than using the entire information. This approach can be suitable to overcome the
aforementioned issues. It can improve the signal resolution as well as reducing the
computational cost. This chapter attempts to address the question of how to select

this most informative area for this application.
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5.2 A Novel Feature Generation Method in Time-
Frequency Domain

This section presents a novel method proposed by this research for dimensionality
reduction of the output of time-frequency domain information. Let us assume that
it is expected to design a monitoring system which works with AE of spindle signal
as the fault indicator. Figure5.1(a to c¢) demonstrates the AE signals for three
sample fault values in time domain. It is visible the Figure5.1that as the fault
value increases, more deviation is observed from normal situation, especially in the

amplitude of the signals.

Figure 5.1: Spindle AE signal in time domain: a) Vb = 0, b) Vb = 0.24, and ¢) Vb

= (.50.

Time-frequency transformation has a high potential to reveal a fault in a signal

as faults show their characteristics better in certain frequency ranges. A frequency



analysis is helpful to search for a fault signature around an appropriate frequency
band which for tool faults is usually around tooth pass frequency. With this ap-
proach, one can focus only on the data which is related to tool faults and omit
unnecessary information of the environment and other equipments. For example,
for monitoring vibration signals, final signal is an accumulation of vibrations from
different sources and frequencies. However, only the changes in the vibration signals
due to tool faults is important for tool condition monitoring purpose. This makes an
frequency analysis helpful to provide the desired information. Faulty signals are also
mostly non-stationary and an analysis of the signal changes over time is beneficial for
revealing the system’s information. Therefore, time-frequency analysis can provide
the necessary information for fault monitoring in both time and frequency domains
simultaneously, which makes it an ideal approach for signal processing step.

A time-frequency analysis using S-transform is provided in Figure5.2(a to
c¢) for the same signals of the previous figure. The colors change from lower values
(blue) to higher values (red) in the graphs for different frequencies and fault values.
As the fault value (Vb) increases in the system, higher values for transformation
output is observed in certain frequencies. The fault occurrence and growth are
well reflected with comparing these graphs. However, an automated approach to
convert the visualized data to simple informative values for further analysis and
decision making is in demand. Moreover, there are large amount of information
which may be unnecessary for monitoring analysis. This method should select the
most informative region of data to represent fault values. A method which provides a
smaller amount of data with most relevance to the monitoring goal has many benefits
like less computational cost and noise rejection capability. This research proposes
to extract a local region of time-frequency domain information and use that as the
representative of entire information.

Local feature extraction has many advantages such as focusing on the desired
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Figure 5.2: Spindle AE signals in time-frequency domain: a) Vb = 0, b) Vb = 0.24,
and ¢) Vb = 0.50.

variables, low calculation cost and neglecting some of the undesirable noise. This
local region should not disregard any important information. To fulfill this purpose, a
local region with most informative information should be selected. Then the question
is how to find the location and size of this local region. An issue with finding this
region is that it is really dependent on the application. This section explains the
method of this research to find this region.

Let us assume that the local region in time-frequency domain has the 71 and 7

boundaries in time domain and 7; and 72 boundaries in frequency domain (Figure



Figure 5.3: Local region boundaries in time-frequency domain: a) Vb = 0 and b) Vb

= 0.50.

5.3). It is assumed that the time-frequency domain representation of the healthy
signal and faulty signal are Sy, (¢, f) and Sy (¢, f) respectively. It is proposed that for
the rest of calculations, only the region of interest (¢ € [r1,72] and f € [y1,72]) will
be taken into account.

This research proposes an optimization based algorithm to find this region with
the most discriminative information. Genetic algorithm is selected as the optimiza-
tion method based on the nonlinear nature of the problem. The boundaries of the
region of interest (71, 72, 71, 72) should be find in a way that the region defined
by them has most discriminative data and be suitable for fault detection problem
(Figure5.3). The advantage of this method and its contribution is that both size
and location of this region can be altered within the time-frequency domain until
the best solution is found. A minimum and maximum limits are set for the length of

this region as it should not cross the length of time-frequency output and be within



Figure 5.4: Flow chart of GA optimization method

an acceptable range.

The objective of optimization is to determine the coordinates of a region that
can represent the signal relation with the fault characteristics and magnitude per-
fectly. For this purpose, signals of dataset are divided into three categories: training
(65%), validation (15%) and test (20%). A multi-step nonlinear objective function is
chosen to solve the problem. The same fault detection algorithm in previous chapter
is also used in this section. The only difference is that instead of entire information
of input signal, only the selected local region is fed to the system. In each iteration,
a set of values will be selected for boundary conditions of the local region and a fault
detection system is developed using training dataset.

Afterwards, the system accuracy is evaluated with the validation dataset and
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Figure 5.5: GA optimization trend

mean error is calculated exactly the same as former chapter. Making the mean error
of the system minimum is the objective function of this problem. The boundaries
of the local region are updated using the genetic algorithm rules and again the
objective function is evaluated. After the GA procedure terminated and the local
region boundaries are determined, the third subset of data which was unseen in the
training and genetic algorithm steps is employed to evaluate and compare the result
of the final system with the obtained boundaries from optimization problem. Figure
5.4depicts the steps of genetic algorithm procedure and Figure5.5shows its trend

for one sample case.
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Figure 5.6: Monitoring systems’ structure with different dimensionality reduction

methods and various sets of input signals

5.3 Results and Analysis

The proposed method for dimensionality reduction is implemented and the results
are compared with the result of the system without this method to evaluate its per-
formance. Three scenarios have been investigated. The first scenario is using the
entire time-frequency information output for correlation analysis and fault estima-
tion. The second scenario is employing the proposed local feature generation to use
an optimal region in time-frequency domain instead of entire information and the
third one is to combine the proposed method with 2D PCA.

Figure 5.6 represents a schematic diagram of these cases. Five sets of input
signals are employed to validate the work five times with different inputs. After the
per-processing step and performing ST transformation, a dimensionality reduction
strategy is conducted based on each explained scenarios. Finally 2D correlation
analysis and curve fitting and function approximation approach determine a function
between extracted features and fault values. The unseen test dataset is used for
evaluation of accuracy of the systems and comparison.

Tableb.1presents the mean error and maximum error of the monitoring sys-

tems in the explained three scenarios using different signals as input. While generally,
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Table 5.1: Accuracy results of designed systems with different feature extraction and

dimensionality reduction methods

Feature extraction Time-frequency Local feature Local feature

methods output generation generation + 2DPCA

‘ Mean Maximum  Mean Maximum  Mean Maximum
Input signals

error %  error %  error %  error %  error % error %
AE table 6.98 13.36 8.31 18.32 5.55 6.98
AE spindle 19.58 16.82 3.95 6.38 9.17 19.58
Vibration Table 25.86 34.12 14.56 28.44 10.44 25.86
Vibration spindle 21.54 36.17 4.03 35.86 4.09 21.54
AC current 6.19 14.27 5.85 11.59 3.16 6.19
Average 16.03 22.95 7.34 20.12 6.48 16.03

local feature generation of this work outperforms the conventional method and in-
creases the accuracy and reliability significantly, combining it with 2D PCA can even
lead to better results. Last row shows the average of errors in all the tested systems.
The combination of proposed local feature generation and 2D PCA has the minimum
average error of 6.48% while the local feature generation produces a system with the
average error of 7.34% and conventional method average error is 12.10%.

The same trend is also evident in the maximum error. It is also important that
the selected local area in time-frequency domain has less dimensions and therefore
less calculation is needed in the correlation coefficients evaluation step that reduces
the calculation cost significantly which is desirable for online applications. Figures
5.7and5.8represent the mean and maximum percentage error respectively for the

systems.
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Figure 5.7: Mean percentage error of designed systems with different feature extrac-

tion and dimensionality reduction methods

Figure 5.8: Maximum percentage error of designed systems with different feature

extraction and dimensionality reduction methods



5.4 Chapter Summary

This chapter investigates a novel local time-frequency domain feature extraction
method for tool condition monitoring in milling process. The output of time-frequency
analysis has high dimensions and is costly for further investigations. This chap-
ter proposed to use a local region of interest instead of entire information in time-
frequency domain. An optimization approach is employed for finding the local region
with the most discriminative information. Three cases are investigated and the re-
sults are compared. In the first case, the entire information of time-frequency output
is implemented. In the second case, only a local region of interest determined by
the proposed method is employed and in the third case, a combination of the local
feature extraction method and 2D PCA is utilized. The results suggest that the
combination of local feature extraction and 2D PCA provides best results and local

feature extraction outperforms using the entire information.
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Chapter 6

Fault Detection Using Artificial

Intelligence Methods

6.1 Introduction

In the industrial machining process, environmental factors, machining parameters
and fault characteristics are subjected to change. The use of indirect methods to
predict faults also can provide additional unnecessary information. Moreover, the
relation between fault variables and extracted features from signals is complex and
has a non-linear nature. Therefore, an effective pattern recognition method is in
demand with capability to learn complex non-linear relations. Artificial intelligence
methods have shown great potential to perform such a task. In this chapter, three
well-known and practical artificial intelligence methods are implemented to provide a
model for fault diagnosis and estimation. Backgrounds of these methods are provided
in the next section. Afterwards, a comparative study is conducted and the accuracy

results for the algorithms are provided and discussed.
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6.2 Background of Techniques

6.2.1 Multi-Layer Perceptron Artificial Neural Network (MLP-

ANN)

Multi-layer perceptron is one the most widely used algorithms for pattern recognition
in mechanical fault diagnosis. It is benefited from a feed-forward artificial neural
network model consisting of an input layer, some hidden layers and an output layer.
The procedure direction of feed-forward networks is from input layers to output
layers and there is not any cycles or loops in the network. FEach layer consists
of some neurons which are connected to next layer with some connection weights.
Knowledge in ANNSs is stored as a set of connection weights. The process of modifying
the connection weights is called training.

MLP utilizes backpropagation method for training the network. Let us assume
Wi represent the weights between the input and the hidden layers and W, represent
the weights between the hidden and the output layers. The first iteration will be
started by random weights . The operation of back error propagation (BEP) with a
Tansig transfer function consists of following three stages|63]:

1- Feed-forward stage:

v(n) = wye(n)y(n); (6.1)

2
~ 14exp[—2v(n)]’

o(n) = ¢(v(n)))

where n is the number of iterations, o is the output, y is the output of hidden layer

(6.2)

and ¢ is the activation function. Based on this equation, the output of the network
is derived for the current weights.

2- Back-propagation stage:

d(n) = e(n).plo(n)] = [d(n) —o(n)].lo(n)].[1 = o(n)]; (6.3)
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where 0 represents the local gradient function, e shows the error function, o and d
are the actual and desired outputs, respectively.

3- Adjust weighted value:

Wap(n+ 1) = wap(n) + Aty (m) = wap(n) +n3().o(n); (6.4)

where 7 is the learning rate. Repeating these three stages conclude to a value of the

error function that will be zero or a constant value.

6.2.2 Radial Basis Function Artificial Neural Network (RBF-
ANN)

Radial basis function is another network structure introduced by Broomhead and
Lowe[64]. This method employs radial basis functions as activation functions and
the output of this network is a combination of radial basis functions of the inputs
and neuron parameters. The output of the network ¢ is related to inputs X with

the following function: N
p(X) = Z;am (X —ci) (6.5)

i—
where a; is the weight of neuron ¢ in the output layer, ¢; is the center vector of neuron
7 and N is the number of neurons in the hidden layer. The method of this research

uses a static Gaussian function as the nonlinearity for the hidden layer processing

elements.

p(X—c)=exp |[-BX—c] (6.6)

The important issue for successful implementation of this network is to find
proper centers for the Gaussian functions as they responds only to a small region of
the input space where the Gaussian is centered. A hybrid supervised-unsupervised

topology is utilized for training of the system as supervised learning performs better
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to find suitable centers for the Gaussian functions, but an unsupervised approach

usually produces better results.

6.2.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

Adaptive neuro-fuzzy inference system (ANFIS) integrates fuzzy systems and neu-
ral networks to capture the advantages of both. This method has the capability to
generate and optimize fuzzy rule sets and parameters of membership function by
training the fuzzy interference systems. The ANFIS employs a fuzzy Sugeno model
in the framework of adaptive systems to facilitate learning and adaptation[65,66]. A
single output Sugeno-type fuzzy interference system (FIS) is used to provide initial
conditions for ANFIS training. Two membership functions, generalized Bell type
and Gaussian-type, are employed based on the characteristics of each case. The gen-

eralized Bell type membership function can be defined with the following expression:

2by 1
) (6.7)

is the cluster center which defines the position of the membership function

ot
T Cq

a

Af] (x) = (1—1—

7

where Cq

and a and b are parameters to define the shape of membership function. Gaussian-
type membership function can be defined as follows:

i 2
A (z) = exp [— 0.5 (‘”;Cq> ] (6.8)

q
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i

where Cq

is the center of cluster and aé is the dispersion of cluster. In a Sugeno fuzzy

model utilized in this paper N fuzzy rules for a set of inputs are given by:

Rulel : If xyis A}, wois AS, ..., a:qisAé,
then y' (z1,72, ..., 2g) = by +ajzr1 +agza+... + ajzg
Rulei:]fxlisAﬁ,xgisAg,...,xqisAfl, (6.9)
theny' (z1,22, ..., xq) = by +adjzin+ajza+... + alz,
Rule N :If xyis AY, xgz'sAéV, ey xqisAéV,
then yN (v1,29, ..., 1) = b +al¥r1 +adza+... + af]\fxq

where x1,29, ..., x4 are the individual input variables and y'(i=1to N) are the

first-order polynomial functions in the sequence. This method calculates the Sugeno-
type FIS parameters using neural network. To train the system, a hybrid method
of back-propagation and least-mean-square (LMS) is employed. Back-propagation
method and LMS are utilized to determine the parameters associated with the input
membership functions and to estimate the parameters associated with the output
membership functions, respectively. The cost function to be minimized in the train-

ing problem has the following form:

1
€= §(ydes_y)2 (610)

where y4.5 is the desired output. For each rule, the output yi(:cl,xg,...,xq) can be

defined by:
Oe

yit+1) =y (t)—kya—yi (6.11)

where the ky is the step size. The parameters for the jth membership function of

the ith fuzzy rule for a generalized Bell-type membership function are determined as
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follows:

alj (t+1)= a7] (t) — ke 22

da’.
Jj

E(t) — ko 22 (6.12)

bi(t+1)=b e

J

{ _ 0
cjt+1)= c(t) ke

C(f)’i,
ct
J

If a Gaussian-type membership function is used, the parameters of the jth

membership function for the ith fuzzy rule are determined with the following equa-

tions:
ol(t+1)= ob(t) — ke 25
i7 AJ {()crj (613)
ci(t+1)= ci(t) —kjj

Afterwards, the learning algorithm will tune all these modifiable parameters to

make the ANFIS output match with the training data actual fault values.

6.3 Results of Comparison Between AI Methods

Figure 6.1: Monitoring systems structure with different AT methods and various sets

of input signals

In this section, the effectiveness and performance of three well-known pattern
recognition methods in the application of tool condition monitoring are investigated.

Figure6.1represents the methodology and designing steps of systems in this chapter.
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Table 6.1: Accuracy results of designed systems with different artificial intelligence

methods
Adaptive Neuro Multi-Layer Perceptron  Radial Basis Function
Al
Fuzzy Inference Artificial Neural Artificial Neural
Methods
System (ANFIS) Network (MLP-ANN) Network (RBF-ANN)
Input Mean Max Mean Max ean Max
NRMSD NRMSD NMRSD
signals Err Err Err Err Err  Err
AE table 6.34  14.41 0.17 531 10.93 0.14 548 18.72 0.18
AE spindle  7.25  13.58 0.19 4.48  8.66 0.13 7.79  23.23 0.29
Vib table 8.84 15.93 0.25 10.31 279 0.33 8.53  28.87 0.3
Vib spindle  9.67 18.85 0.29 9.43 28.63 0.31 74 16.79 0.22
AC current  5.46  13.96 0.18 4.58  7.54 0.12 3.03  6.25 0.09
Average 7.51 15.35 0.22 6.82 16.73 0.21 6.45 18.77 0.22

All five dataset signals are used to compare the results of each Al technique
based on the input signal of the system. For each system, 80% of the data is used
for training step and 20% of the data is considered for test. The parameters of each
system like number of neurons in each layer are optimized with genetic algorithm
optimization method. To improve the training process, normalization is applied to
all input data.

In each scenario, mean error of fault estimations for the test dataset, maximum
error of fault estimations for the test dataset and normalized root mean square devi-
ation (NRMSD) of the systems are reported to validate and compare the methods.
NRMSD is the root mean square error divided by the range of the observed values

of a variable being predicted. It can be calculated as follows:

2?21(?46—@0)
NRMSD = + "

Ymax — Ymin

(6.14)
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Figure 6.2: Fault estimation mean percentage error for different AI methods

where y, denotes the estimated values of fault and y, is observed value in the exper-
iments.

The signals in the dataset contain cases with different operation conditions i.e.
depth of cut and feed rate. The fault estimation results are presented in Table 6.1.

Figures 6.2 to 6.4 demonstrate the mean error, maximum error and NRMSD
for the systems trained with different signals and pattern recognition methods re-
spectively. It is observed that for systems with AE signal as input, MLP results
outperforms RBF and ANFIS results. Superiority of MLP is noticeable in mean
error, maximum error and NRMSD. The mean error of (4.48%) for the monitoring
systems is achieved when AE sensor is mounted on the spindle of machining center
and MLP is employed as the pattern recognition algorithm. The low maximum error
of 8.66% also confirms the reliability of this system. NRMSD can be interpreted
as a factor of stability of monitoring systems. NRMSD is also lower in AE based
MLP systems which reflects higher stability of the monitoring algorithm in this case.

While RBF gives more accurate results for the table AE signals as fault indicator in
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Figure 6.3: Fault estimation maximum percentage error for different AT methods

comparison to ANFIS, ANFIS surpass in AE spindle with lower maximum error.

When the vibration sensors are used as the fault indicator, RBF results outper-
form MLP and ANFIS by providing the minimum mean error. The most accurate
system in this case is achieved by RBF when the sensor is mounted on the spindle
with the 7.40% of fault estimation mean error. In this case, ANFIS provides low
maximum error which makes it a reliable method as the maximum error does not
exceeds 18.85% for any test samples.

For AC current also RBF provides the lowest mean error, maximum error and
NRMSD. MLP is also superior to ANFIs in terms of accuracy, reliability and stability,
when AC current signal is the input of the system.

The last row of the table shows the average errors for each column. It suggests
that RBF has lowest average of mean errors in the systems and MLP also surpass the
ANFIS method. However, in terms of maximum error, ANFIS has the lowest average.
ANFIS errors in all the systems never exceed 18.85% while maximum error for MLP

and RBF reaches to 28.63% and 28.87% respectively. It means that with an overall
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Figure 6.4: Fault estimation NRMSD for different AT methods

view, although ANFIS may not be as accurate as the other two pattern recognition
methods in estimation of error, its error is always within acceptable limits. On the
other hand, RBF and MLP provide accurate fault estimation results for the test

dataset, however, their maximum error is generally higher than ANFIS.

6.4 Chapter Summary

This chapter studies the performance of different AI methods in the application of
tool condition monitoring. After preparing proper features to describe the system
fault, a pattern recognition algorithm is necessary to relate extracted features to
system state. Multi-layer perceptron artificial neural network, radial basis function
artificial neural network and adaptive neuro-fuzzy inference system are three tested
algorithms in this chapter. All the dataset signals are utilized and the systems

are designed with different inputs and the presented machine learning algorithms.

1)



The results indicate that RBF-ANN provides the lowest mean error while MLP-
ANN outperforms ANFIS. In contrast, ANFIS provides lowest maximum error which

implies that the error is within an acceptable limit.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

This research investigates the design of automated, reliable tool condition monitoring
systems in machining process using time-frequency transformation and Al methods.
Flank wear in particular is explored as one of the most common tool faults in ma-
chining process. The methodology is explained in Chapter2. Designing an Al based
machining monitoring system comprised of four main steps: 1) signal acquisition, 2)
signal processing, 3) feature extraction/selection and 4) decision making using Al
methods. Each chapter from Chapter3to6is investigated on one of these steps.

Chapter3investigates using multiple sensors to improve the accuracy and
robustness of monitoring algorithm. It examines many pairs of signals in multi-
sensor systems as well as sensor fusion and compares the results with the single signal
systems. Afterwards, it investigates the strategies of data fusion and compares three
methodology for data combination: 1) feature level, 2) score level, and 3) decision
level.

The highest accuracy was achieved when the AE of spindle and AC current sig-

nals are used with score level sensor fusion. AC current signal is a perfect candidate
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as a complementary information for other signals based on its low cost, simultane-
ously, it can improve the accuracy significantly. However, using it individually may
not satisfy the reliability conditions. In contrast, AE and vibration signals can be
used individually with acceptable results. AE signal is also a suitable candidate with
high potential for sensor fusion with vibration and AC current as its nature is less
correlated to them.

Results show that in using two different types of sensors, it is better to place
them in different locations rather than placing both of them at the same place.
Furthermore, while well selected sensor fusion signals can improve the monitoring
system accuracy significantly, using multiple sensors from the same type do not have
a significant effect on the system. It can be helpful to improve the reliability in the
case that if one of the sensors fails the other performs the task.

A comparison between different levels of data fusion reveals that score level
data fusion is superior to two other methods while decision level data fusion gives
better results than feature level.

Chapter4dstudies three linear time-frequency transformation methods in con-
dition monitoring application, STFT, WT and ST, and two bilinear time-frequency
distribution, smoothed Pseudo-Wigner—Ville and Choi-Williams for signal process-
ing step and the results of different systems designed with each method are extracted
and compared.

It is shown that ST outperforms other methods and provides the monitoring
systems with less average error and higher accuracy. Wavelet transform also as a
widely used technique for condition monitoring shows promising results. Maximum
error is also reported for each case as a representative of the systems reliability. The
results show that ST and W'T also produce the monitoring systems with compara-
tively low maximum errors. The other three time-frequency transformation methods

also provide acceptable results which suggest time-frequency transformation as a
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powerful tool to design solid monitoring systems.

Chapterbexplores feature generation, extraction/selection techniques. A novel
feature extraction method is proposed and tested in this chapter. This method was
based on using information of a local region in time-frequency domain with most
discriminative information rather than using the entire data. This region is obtained
by GA optimization.

The results from the experiments show that the proposed method can improve
the accuracy and reliability of the monitoring system significantly. This method
not only improves the accuracy, but also is able to decrease the calculation cost by
reducing the dimensionality of the data and facilitate the online tool condition moni-
toring procedure. A hybrid algorithm based on the proposed local feature generation
method and 2D PCA is also presented which provided the most accurate result in
comparison to other cases.

Chapterbinvestigates Al methods for the last step of monitoring algorithm.
Three well-known AI methods, ANFIS, MLP-ANN and RBF-ANN are employed to
build a model between the extracted features and fault values.

The results show that RBF provides more accurate results for tool condition
monitoring in overall. MLP also outperforms ANFIS considering the average of
mean errors in all the systems. However, all the methods can be considered to
provide promising results. It is also concluded that although ANFIS results were not
as accurate as two other methods in terms of mean error, its error range is lower than
two other methods and the maximum error never exceeds 19% in any cases which
makes it superior with respect to reliability.

Finally, this research proposes a monitoring system with 1) AE of spindle and
AC current as input signals, 2) S-transform as the time-frequency analysis method,
3) the hybrid method of local feature extraction and 2D PCA for dimensionality re-

duction and feature generation, and 4) RBF as the decision-making model to achieve
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an accurate monitoring system for this dataset.

The main contributions of this work can be summarized as:

e This research investigated multi-sensor systems and compares using multiple
sensors from the same type, sensor fusion and using a single signal. It also

examines the effects of sensors’ location on the monitoring systems.

e [t proposed recommendations on which pairs of signals provide more compre-

hensive and complimentary information based on the research results.

e [t investigated different strategies of data fusion and their performance in tool

condition monitoring.

e [t perform a comparative study on five of the most common time-frequency

transformation methods and their application in tool condition monitoring.

e [t proposed a novel dimensionality reduction method which improves the mon-
itoring accuracy by providing the most discriminative local region in time-
frequency domain and reducing the calculation cost significantly which is nec-

essary for online application

e This research employs a combination of the proposed dimensionality reduction
method with 2D PCA which produces monitoring systems with even more

accurate results.

e This research conducts a comparative study between three of the most com-
monly used machine learning methodologies in tool condition monitoring and

investigates their advantages and disadvantages.

e [t uses a real benchmark milling data for validation which makes it more cred-

ible for industrial use.
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e Finally, this research develops an accurate, automatic, tool condition monitor-
ing algorithm which uses practical sensors and is capable to work online and

under changing operation conditions.

7.2 Publications

The following research papers are published /submitted based on the results of this
research:

Published:

e Javad Soltani Rad, Fatemeh Aghazadeh, Youmin Zhang, Chevy Chen, A study
on tool wear monitoring using time-frequency transformation techniques, Pre-
sented in International Conference on Innovative Design and Manufacturing

(ICIDM), Montreal, Canada, 2014

e Javad Soltani Rad, Youmin Zhang, Chevy Chen, A novel local time-frequency
domain feature extraction method for tool condition monitoring using s-transform
and genetic algorithm, Presented in The 19th World Congress of the Interna-
tional Federation of Automatic Control (IFAC 2014 ), Cape Town, South Africa,
2014

e Javad Soltani Rad, Ensieh Hosseini, Youmin Zhang, Chevy Chen, Online tool
wear monitoring and estimation using power signals and S-transform, presented
in 2nd International Conference on Control and Fault-Tolerant Systems (Sys-

Tol2013), Nice, France, 2013
Under review:

e Javad Soltani Rad, Fatemeh Aghazadeh, Youmin Zhang, Chevy Chen, A com-
prehensive study on tool condition monitoring using time-frequency transfor-

mation and artificial intelligence, Submitted to Mechanical Systems and Signal
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Processing, ISSN: 0888-3270

e Javad Soltani Rad, Fatemeh Aghazadeh, Youmin Zhang, Chevy Chen, A sensor
fusion based tool condition monitoring for milling operation using S-Transform

technique, Submitted to The International Journal of Advanced Manufacturing

Technology, ISSN: 0268-3768

7.3 Future Works

There is a high potential and need for researches in different directions of manu-
facturing fields as growing demand of industries on manufacturing processes. This
research has investigated designing an online tool condition monitoring technique to
maximize the usage period of a tool, predict tool wear, prevent tool breakage and
stop the process before machine or workpiece being damaged or destroyed. More-
over, it provides tool wear information for possible process optimization and tool

compensation. This research can be improved in the following directions:

e In signal acquisition step, more sensors such as temperature sensors, ultrasonic
sensors, etc. can be mounted to the system at different positions and their

performance can be evaluated.

e The experiments can be repeated for different machines and with more opera-
tion conditions and effects of changing these factors can be investigated on the

monitoring systems.

e In signal processing step, more advanced techniques and modern signal pro-

cessing methods can be evaluated for this application.

e A modified version of signal processing algorithms may be adjusted to online
application with lower computational cost. For instance, fast S-transform is a

modified version of ST which can be applied in this problem.
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Dimensionality reduction as one of the most important steps always needs to
be improved as it provides the features of the signal for fault detection. More
studies and researches should be conducted in this area to find features which
are less dependent on the cutting parameters and more informative with re-
spect to monitoring variable. For instance, finding an approach for normalizing
the features to operation conditions is a subject with high potential to be in-

vestigated.

In the case of using PCA or similar methods for dimensionality reduction, an

optimization method can select a final set of features from the ranked output

of PCA.

Based on the extracted features and knowledge of the process, more advanced
and modern Al methods can be implemented and tested in decision making

unit.

Ensemble of classifiers can be utilized for more accurate and reliable results.
It should be determined that which methods can be used together and also
different ensembles strategies should be implemented and compared in this

application.

Methodologies for online optimization of cutting parameters based on the re-

ported fault values by the monitoring system may be designed.

A reliability analysis of the monitoring systems under different cutting param-
eters than they were trained for is beneficial to design more robust and general

methods.

One of the issues of these monitoring systems is that they can not easily be
implemented on other machines than the one they were trained for. An study

to provide solutions for adjusting one monitoring algorithm designed for one

83



machine to another machines with minimum number of experiments and cost

has to be investigated.

This research investigates fault diagnosis and estimation. More researches
should focus on prognosis to determine the fault growth and tool life. This
study requires precise experiment design and research on fault growth over

time.

This study investigates tool flank wear as the monitoring variable. Other com-
mon machining faults can be also investigated. Time-frequency analysis can
be helpful for this purpose due to its ability to provide vast information of the
signals. A unique signature for each specific fault may be discovered in time-
frequency domain to help detect a specific fault in the systems with multiple-

faults.
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