
THE IMPACT OF KNOWLEDGE LOSS ON SOFTWARE

PROJECTS: TURNOVER, CUSTOMER FOUND

DEFECTS, AND DORMANT FILES

Samuel M. Donadelli

A thesis

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

For the Degree of Master in Applied Sciences Software Engineering

Concordia University

Montréal, Québec, Canada

April 2015

c© Samuel M. Donadelli, 2015

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Samuel M. Donadelli

Entitled: The impact of knowledge loss on software projects:

turnover, customer found defects, and dormant files

and submitted in partial fulfillment of the requirements for the degree of

Master in Applied Sciences Software Engineering

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Examiner

Supervisor

Approved
Chair of Department or Graduate Program Director

20

Dean

Faculty of Engineering and Computer Science

Dr. D. Goswami
Dr. J. Rilling
Dr. E. Shihab

Dr. P. Rigby

Abstract

The impact of knowledge loss on software projects: turnover, customer

found defects, and dormant files

Samuel M. Donadelli

The success of a software project is dependent on the expertise and knowledge of its

developers. In this dissertation, we use empirical studies to develop an understanding

of the impact of knowledge loss on software projects. First, we studied the damage

done to projects from turnover, the susceptibility of the project to future turnover,

and the suggestion of potential successors to assume abandoned files. Based on the

project vulnerability to turnover, project leaders can induce key developers to stay

with the project and to mitigate files abandonment. Second, we did an empirical

research on the impact of turnover on the quality of a software project. Third, we

performed an examination of the impact of inactive files (dormant files).

Our findings on the first research topic showed that the greater the spread of

knowledge the less likely a project is to be affected by turnover. Moreover, we found

that knowledgeable developers, rather than newcomers, take over abandoned code. In

our second study, we observed an unexpected result that in the Chrome web-browser

project, the number of developers who leave and join both decreased the number of

post-release defects. We discuss this unexpected result. The third study on dormant

files, i.e. inactive files, contrasted a legacy system with a popular system. We found

that for a legacy system, the developers that take on dormant files were experienced

developers.

iii

Acknowledgments

At the conclusion of a stage, you must thank those who have been by our side,

because, without support, we are helpless.

In particular to God who gives me hope and faith, in every moment of my life.

Professor Peter Rigby, my thesis supervisor, who have taught me research method-

ology and supported me in my research.

Thanks to all my lab mates Rupak, Shams, Louis, Murtuza and Latifa for all the

knowledge and experiences we shared together. Special thanks to Yuecai for all the

help and support in a statistical point of view.

Thanks to the people from other labs Davoud, Everton, Giri, Andy and others, for

the times they accepted me in their labs. I was always there to share a good conver-

sation, in my break times, and we talked about everyday life, courses, programming.

Special thanks to Professor Tsantalis for such nice conversations we had during my

research period.

To Concordia University, for the opportunity to perform my Master in Applied Sci-

ences Software Engineering and to the Canadian government for provided me through

my advisor’s grants.

My family, even being so far from me, we are always together in my heart and

thoughts. My special thanks to Paulo, my love, who gave me strength and wise advice

each and every day of my life. Finally, thanks to my friends Zara, Abel, Francy and

Cyrille, that were always there to listen and share their thoughts.

iv

Contribution of Authors

I had the pleasure to work with Yue Cai Zhu during my Master Thesis research.

He assisted me in the following parts:

• Chapter 2 - Developer turnover and succession Empirical studies of the suscep-

tibility and damage from developer turnover. He developed the truck factor

algorithm and wrote the Section 2.4.

• Chapter 3 - Organizational volatility and post-release defects: A replication

case study using data from Google Chrome. He assisted with the statistical

model selection (Section 3.2.2).

• Chapter 4 - A preliminary examination of dormant files on software projects.

He assisted with the idea of the figure “Dormant file lifecycle”.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Research Statement and Overall Methodology 3

1.2 Outline of the thesis . 3

2 Developer Turnover and Succession: Empirical studies of the sus-

ceptibility and damage from developer turnover 10

2.1 Research Questions . 11

2.2 Methodology, and Data . 13

2.2.1 Project Selection . 17

2.3 Damage from Past Turnover . 19

2.4 Truck Factor . 22

2.4.1 Limitations of the Naive Algorithm 22

2.4.2 Truck factor definitions . 23

2.4.3 Stop Condition . 24

2.4.4 Knowledge loss . 27

2.5 Successors . 28

2.5.1 Possible Successors . 30

2.5.2 Suggesting Successors . 33

2.6 Threats to Validity . 35

2.7 Contributions and Conclusion . 36

vi

3 Organizational volatility and post-release defects: A replication case

study using data from Google Chrome 38

3.1 Quality Predictors . 39

3.2 Methodology and data . 42

3.2.1 Data . 42

3.2.2 Methodology . 44

3.3 Results and Discussion . 45

3.4 Threats to Validity . 49

3.5 Conclusion . 49

4 A preliminary examination of dormant files on software projects 51

4.1 Research Questions . 52

4.2 Methodology and data . 54

4.2.1 Project Selection . 54

4.2.2 Method . 54

4.3 Results and Discussion . 56

4.4 Threats to Validity . 60

4.5 Conclusion . 61

5 Conclusions 63

5.1 Contribution of the empirical study on the impact of knowledge loss on

software project caused by turnover, post-release defects and dormant

files . 64

5.2 Future Work . 67

5.2.1 Developer Turnover and Succession: Empirical studies of the

susceptibility and damage from developer turnover 67

5.2.2 Organizational volatility and post-release defects: A replication

case study using data from Google Chrome 68

5.2.3 A preliminary examination of dormant files on software projects 68

vii

List of Figures

1.1 Stages in the Research Process . 4

2.1 The percentage of files that are abandoned per period 21

2.2 The percentage of files loss per number of developers 27

2.3 Experience of developer taking over maintenance of a file 29

2.4 Number of Successors . 32

4.1 Total of dormant and non-dormant files and its LOC 56

4.2 Dormant file lifecycle . 58

4.3 Experience of developers who assumes dormant files 59

viii

List of Tables

1 Project summaries . 17

2 Developers turnover from 2007-2013 20

3 Core developers turnover from 2007-2013 20

4 Successors - precision and recall . 34

5 Quality predictors from Mockus’s paper. We are unable to include

certain predictors based on the available Chrome data. All predictors

are measured per release at the directory level. 40

6 Prediction Models for CFDs . 46

7 Effect of Organization, Directory, Change and Social factors on the

Number of CFDs . 46

8 Project summaries . 54

ix

Chapter 1

Introduction

Know-how is vital to any organization. The loss of knowledge can reduce a com-

pany’s efficiency and effectiveness. The quality of software projects is affected by the

reduction of developers in the team. To gauge the employee retention in a company

there is the turnover rate which measures the joining and leaving of employees in

an organization. The know-how is also affected when a particular task is performed

infrequently, the knowledge rate decreases considerably tending to zero [31]. The fac-

tors mentioned above influence the loss of know-how in a software project, in other

words, the software projects lose their competitive edge.

Knowledge loss happens when a software developer leaves the project. This know-

how gap is manifested as abandoned files on the software system. Because the files

are abandoned, they are harder to be maintained. In the first chapter, we study

three aspects of knowledge loss. (1) damage, (2) risk of future turnover, and (3)

potential successors. Based on the turnover rate and the number of abandoned files,

1

it is important to discover what is the damage done to projects from turnover, to

obtain a better understanding of the susceptibility of project to future turnover, and

to discover potential successors who can take over the abandoned files. The greater

the turnover rate the greater the risk of knowledge loss.

In Chapter 2, we focus on turnover and software quality. The software quality,

as measured by the number of defects that customers experience, is affected by the

knowledge loss created by turnover and other organizational changes. In previous

research, Mockus et al. [19] found that the greater the number of leaving developers in

a software project, the greater was the number of customer found defects. Considering

that Mockus research was performed in a volatile environment in which layoffs were

frequent, it is important to understand the effect of turnover in other environments.

For instance, in a context of a growing and successful OSS such as Google Chrome. It

appears that, the greater the number of leaving developers in Chrome, the lower the

number of customers found defects. We discuss possible explanations for this result.

The impact on the quality of a software project is dependent on the context in which

the project is included.

Since knowledge loss also occurs when a task is not worked regularly, in Chapter 3

we look at how familiar a developer is with source files. The research about forgetting

curve suggests that if students do not review information regularly they will forget

the information as time goes by [31]. Adapting this context to software development,

the code that does not change regularly will be forgotten. Long time inactive files

(dormant files) will be hardly remembered because developers no longer understand

2

the file and its relationships to other files in the system. The goals of studying

dormant files are to observe their amount on the project, the presence of developers

who worked on dormant files, the experience of people who take over these files,

and dormant files bugs. We find that the longer the file is inactive the greater the

decreasing of knowledge rate.

1.1 Research Statement and Overall Methodology

In Figure 1.1, we observe the four objectives in this thesis. We used five distinct Open

Source Software projects (OSS) to comprehend turnover, organizational volatility,

and dormant files. We performed each of this studies using different data sets (i.g.

review project documents, project history) and different approaches (i.e. statistical

and grounded theory analyzes). By the use of this diverse material and techniques,

we are able to enhance the generality and reliability of our contribution [37].

1.2 Outline of the thesis

The chapters of this thesis have distinct sections for literature, research questions,

methodology and data, and results. We believe that this structure is suitable for the

purpose of each chapter (see Figure 1.1).

Developer Turnover and Succession: Empirical studies of the

susceptibility and damage from developer turnover - Chapter 2

Motivation: The success of a software project is dependent on the expertise and

3

Developer Turnover and
Succession: Empirical studies of

the susceptibility and damage from
developer turnover

Chapter 2

 Organizational volatility and post-
release defects: A replication case

study using data from Google
Chrome

Chapter 3

A preliminary examination of
dormant files on software projects

Chapter 4

Contribution on software project
threats caused by turnover,

organization volatility, post-release
defects and dormant files.

Chapter 5

Figure 1.1: Stages in the Research Process

4

knowledge of its developers. When a developer leaves a project the team losses that

developer’s knowledge. The remaining developers must take over the maintenance of

the code the leaver abandoned.

Research questions: (Q1) What is the rate of developer turnover? How much

knowledge loss has occurred as a result of turnover? (Q2) How susceptible is a project

to future turnover and knowledge Loss? (Q3) Can we mitigate the impact of developer

turnover by suggesting potential successors?

Literature: We reviewed the literature on code abandonment, turnover in soft-

ware projects, succession, truck factor and coordination requirements.

Metodology:First, we observed the turnover rate on software projects divided

by periods of three months. Second, we used an enhanced truck factor algorithm

to calculate the project damage caused by turnover. Finally, we used an expertise

matrix calculation to define potential successors to abandoned code.

Outcome: We find large successful project can function with an abandonment

ratio of up to 22%. We provide an algorithm that can calculate the hypothetical max-

imum knowledge loss when a group of developers leaves the projects. We introduce

a stopping condition and prove that our algorithm finds the optimal solution. Given

a group size of 10 and a team size of 250 developers we calculate the knowledge loss

with 13 orders of magnitude fewer calculations than previous work – our algorithm

works on large projects. We find that instead of newcomers, experienced developers

who have been with the project for multiple years take over the maintenance of aban-

doned files. As a result, we are able to accurately suggest successors based on the

5

files that have co-changed with the abandoned file.

Organizational volatility and post- release defects: A repli-

cation case study using data from Google Chrome - Chapter

3

Motivation: The quality of software projects is affected by developer turnover.

Mockus [19] studied organizational volatility in the context a large switching software

project at Avaya. We replicate his model of the impact of organizational volatility

on post-release defects. At the time of Mockus’s study, Avaya was experimenting

with outsourcing and layoffs were prevalent. In contrast, we study volatility on the

Chrome web-browser, which is growing rapidly in terms of popularity and team size.

Research questions: (Q1) Is the number of changes that are made to a code

related to the number of defects found in it? (Q2) Does the number of developers

that touch a software artifact influence the number of defects found in it? (Q3) When

a project loses a developer, this project loses knowledge. Does it affect the number

of found defects? (Q4) Do newcomers bring fresh ideas to the project? (Q5) Does

the number of co-changing files increases the number of found defects in a file? (Q6)

Does the experience and the expertize of a developer impact on the number of defects

found in a file?

Literature: We reviewed literature on abandonment of code, turnover in software

projects, prediction models of defects, software dependencies, the impact of churn on

software defects.

Metodology: The history of the software was divided per releases. For each

6

release, we looked the past development branch to calculate the dependent variables,

and we looked for the independent variable (the customer found defects) from the

date of the release until the start date of the next release. Finally, we were able to

build our prediction model.

Outcome: The greater the complexity, the number of developers working on the

file, the greater the number of defects. The greater the number of newcomers, leavers

and developer experience, the lower the number of defects. The former findings

agree with the literature, while the latter are suprising. We suggest two possible

explanations that deserve future work. First, when a developer leaves the project,

the features they were working on may be put on hold, which would lead to fewer

changes and fewer defects. Second, existing co-owners may take over the leaving

developers work leading to a more focused set of changes and fewer defects.

A preliminary examination of dormant files on software projects

- Chapter 4

Motivation: Files that are inactive for a long period (dormant files) will be

hardly remembered by the developers who worked with these files.

Research questions: (Q1) How many files are dormant and how many LOCs

are contained in dormant files? (Q2) When will a file become dormant? How many

dormant files become active and how many of them remain dormant? How long does

it take for a dormant file to become active again? (Q3) How much experience does

a developer who works on a dormant file have? (Q4) How many dormant files have

surprise bugs?

7

Literature: We reviewed the literature on legacy systems, prediction of defects

based on software history, psychology regarding forgetting curve, and surprise defects.

Metodology: We identified the dormant files as per their difference in days

between each commit. We obtained the LOC using a script that counts LOC per

file. The experience of a developer was considered, from the first date the developer

participated in the project to the date of the commit. The bug extraction was done

by mining the bug database and linking each bug number with the respective commit.

Outcome: The legacy system used in this research, Evolution OSS, is more prone

to dormant files. Moreover, the complexity of dormant files in the legacy system

accounted for 80% of all complexity. The positive side is despite the fact that the

systems we studied had dormant files, the developers that assumed these dormant

files were experienced to the project.

Discussion and Conclusion - Chapter 5

The main objective of this work is the contribution on threats of knowledge man-

agement on software project caused by turnover, customer found defects, and dormant

files. This contribution can be described as:

The greater the spread of knowledge the less likely a project is to be effect by

turnover. Knowledgable developers, rather than newcomers, take over abandondned

code. We observed an unexpected result that in Chrome web-browser project, the

number of developers who leave and join both reduce the number of post-release

defects. Our findings on the dormant files study, showed that for the legacy system,

the proportion of files in the system is that the dormant files was greater than the

8

active files. Futhermore, the developers who assume dormant files were experienced

developers.

9

Chapter 2

Developer Turnover and Succession:

Empirical studies of the susceptibility

and damage from developer turnover

In the previous chapter, we presented our research goals. In this chapter, we verify

the following aspects of turnover in software projects: the knowledge loss caused by

turnover, the susceptibility of project to turnover and we observe the possibility to

solve the lack of knowledge caused by the leaving developer.

High turnover rates have been shown to lead to a decrease in a firm’s productiv-

ity [14]. Like other jobs that involve knowledge workers, when a software developer

leaves there is a knowledge gap. This gap is manifested as abandoned files on the

software system that can be difficult to maintain. Turnover has also been shown to

decrease the quality of software products [17]. As a predictor of future defects the

10

number of developers to abandon a file is second only to the number of changes to a

file [23].

Turnover reduces the spread of knowledge. In the worst case, when a single

developer controls the entire system or the most critical parts of a large system

their loss is catastrophic. In the Agile community the spread of knowledge across

the development team is colloquially know as the ‘truck factor’ – the number of

developers that must leave (e.g., get hit by a truck) before the project becomes

unsustainable [38, 34]. Agile development practices, such as pair programming, have

the consequence of ensuring that no single developer hold the knowledge of a file

exclusively [36]. Similarly, peer review practices expose developers to parts of the

system that they would otherwise not have seen thereby reducing the potential for

knowledge loss[28, 27].

The goal of this chapter is to first quantify the damage that has been done by past

turnover, to quantify the knowledge spread and exposure to future turnover, and to

mitigate the impact of turnover by suggesting successors for abandoned code.

2.1 Research Questions

We answer the following research questions to understand the impact of knowledge

loss on software projects.

RQ1, Damage from Past Turnover: What is the rate of developer turnover? How

much knowledge loss has occurred as a result of turnover?

11

Maintaining abandoned code is difficult because the team lacks knowledge of its

creation and structure. We gauge the rate of turnover on projects and measure

the proportion of files that have been abandoned. We contrast the turnover ratio

among projects and compare it with other industries. These basic results frame our

subsequent findings.

RQ2, Truck Factor: How susceptible is a project to future turnover and knowledge

loss?

Previous work has calculated the maximum number of files that are lost when

a group of developers leaves. Since this calculation has a time complexity of
(

n

g

)

for all cases, they were able to examine small projects only. We contribute with a

stopping condition that allows us to calculate the maximum loss quickly, so that we

can examine the truck factor on large projects. We prove that we find the optimal

solution. We measure the potential for knowledge loss on Linux and Chrome.

RQ3, Successors: Can we mitigate the impact of developer turnover by suggesting

potential successors?

In the previous research questions, we addressed the impact and future risk of

turnover, but what should a project do when a developer leaves? There have been

many excellent studies of introducing new developers to a project [1, 40, 19, 5]. How-

ever, we find that when a file is abandoned the developer who takes it over has

multiple years of experience. As a result, we use a modified version of Cataldo et al.’s

[7] coordination requirements matrix to suggest developers who have worked in sim-

ilar areas as potential successors instead of new developers. We measure how many

12

possible successors exist for each abandoned file on the system and evaluate how well

our technique predicts actual successors of abandoned files.

The remainder of this chapter is structured as follows. In Section 2.2, we de-

scribe our methodology and dataset. In Section 2.3, we measure the impact of past

turnover. This section is the background necessary for the subsequent sections. In

Section 2.4 we prove that our truck factor algorithm finds the optimal solution and

present the maximum knowledge loss that occurs when a group of developers leaves.

In Section 2.5, we show that most abandoned files are adopted by expert develop-

ers and suggest possible successors to abandoned files. In the final two sections, we

discuss threats to validity, future work and conclude the chapter.

2.2 Methodology, and Data

Knowledge loss occurs when a developer leaves a project. Since we do not have the

official records of when a developer joins and leaves a project, we consider a developer

to have left the project when they make their last commit. We exclude the final year

of development to avoid mistakenly assuming a developer has left the project when

they have simply been inactive [16].

To resolve duplicate email addresses to a single individual, we use Canfora et al.

[5] name aliasing tool. We added an additional cleaning stage where diacritics are

converted into their ASCII form as their tool cannot handle these characters (e.g., ŏ

is converted to o).

13

File ownership: The amount of knowledge lost when a developer leaves is depen-

dent on what the developer owned. Determining ownership and the related concept

of developer expertise has received considerable attention in the software engineering

literature. Previous studies summed each commit to a software artifact to determine

a developer’s ownership and expertise [20, 2]. This measure is appropriate for exper-

tise assessment because each change increases a developer’s knowledge. However, a

commit based measure is not representative of the current state of knowledge in the

system. Files and lines of code that have been deleted no longer need to be main-

tained. With a commit-based approach the deletion and addition of lines are counted

equally. However, the deletion of a line removes knowledge that must be maintained,

while an addition increases the maintenance burden. As a result, a commit-based

approach is inappropriate when assessing the amount of knowledge that must be

maintained when a developer leaves a project. For example, a team could delete the

leaving developers module reducing the knowledge loss in the system to zero.

Instead of a commit-based approach, we use a blame-based approach. The blame

function present in version control systems, in our case git-blame, are able to

determine the person who last changed a line of code. git-blame tracks moved

lines of code assigning them to the developer who wrote the code not the developer

who moved it. In this way we are able to follow the ownership over time of each

line of code in the system. We limit our analysis to source files only, for example, on

Linux we only consider ‘.c’ and ‘.h’ files.

Migration commits: Each of the projects we studied migrated their system to a

14

new version control system. When this happens the history of the system is elimi-

nated. In git-blame the developer who made the migration commit will get credit

for writing every line in the system. For example, when Linux migrated to git in

2005, Torvalds added every line to git without including the previous history. Since

git-blame attributes Torvalds as the author of every line, if he left the project we

would have 100% knowledge loss.

This problem of false attribution can be solved by excluding the migration commits

on all projects. By excluding this commit, our analysis only includes development

that occurs after migration. Since the projects were already active with a community

of developers before migration, the first period after the migration will see a huge

number of “new" developers making changes to the project. To avoid this problem,

we do not analyze the first two years of data that follow the migration commit to

allow the development team to conduct substantial work before we begin our analysis.

Shared knowledge: We are interested in shared knowledge because the greater the

sharing of knowledge the lower the risk of turnover [11]. Previous works did not con-

sider shared knowledge, for example, Robles et al. examined the number of individual

lines of code that are abandoned on a project [16]. We consider shared knowledge

at the file level. Previous works on knowledge distribution considered all developers

who had modified the file overestimating shared knowledge by considering transient

developers. A developer who owns one line is considered equal to the developer who

owns 1000 lines in the same file. Since open source project have many developers who

make a single contribution we are only interested in developers who own at least 10%

15

of the lines of code in a file.

Files abandonment: We considered a file to be abandoned in a given period if there

was no developers who have previously changed that file. The rate of abandoned files

is obtained by dividing the total number of abandoned files in a given period by the

total number of files in the project in the same period.

Succession matrices calculation: We want to know the current situation of de-

velopers knowledge about each other tasks. The git-blame relation and the 10%

ownership rule cannot be used because nobody owns any LOC once a file is aban-

doned. However, we still can use past changes relationship based on commits. The

tables we use to execute the matrices calculation (see Equation 1) are:

• Task Assignments (Developers per files matrix): represents in which files a

developer have worked in the past. For instance, a developer A have worked

232 times on file X.

• Task Dependencies (Files per Files matrix): represents how many times the pair

of files have been changed together as a part of a commit. For instance, file X

with file Z have been commited together for 158 times. Files that have changed

together as part of the same change request share logical dependencies [6].

The output table shows the distribution of how much knowledge developers should

be aware about the files.

(Devs/F iles) ∗ (Files/F iles) (1)

16

Table 1: Project summaries

Project Name Period Total Files Total Devs Core Devs
Linux 2007-2012 46679 7913 697

Chrome 2009-2012 45713 911 175
Gimp 2007-2013 3714 165 12
V8 2009-2013 2579 78 25

Successors precision and recall: To validate the efficacy of our potential successors

to abandoned files, we performed a precision and recall calculation (see Equation 2

and Equation 3). First, we based our calculation on the top 10 developers in the list

of potential successors in a given period. After that, we observed in the next period

if one of the top 10 would be the developer to assume the abandoned file. Our True

Positive (TP) are the developers who assumed abandoned files and they were in the

top 10 list. Our False Positive (FP) are the developers who assumed abandoned files

and they were not in the top 10 list. Our False Negative (FN) are the developers who

did not assume abandoned files and they were in the top 10 list.

PPV = TP/(TP + FP) (2)

TPR = TP/(TP + FN) (3)

2.2.1 Project Selection

We select the following projects: the Linux Kernel, the Gimp image manipulation

program, the Chromium (Chrome) web-browser, and the V8 JavaScript engine. The

17

projects range in size of development team and product as well as the community

that surrounds them. Table 8 shows basic size information about the project and

the time periods we analyze. We define the core team using Mockus et al.’s measure

of the number of developers who contributed 80% of the development work over a

period of time. 1

The Linux kernel has the largest development community associated with it. Over

six year period we study, the core team consists of 697 developers. 2 It has also

been extensively studied by empirical software engineering researchers [12, 30], so our

findings regarding developer turnover will contribute to a growing understanding of

how this project functions.

Google Chrome is especially interesting because it is a Google-lead project that

has an open source software license. Chrome development is conducted in public but

the practices it uses mirror those used by Google internally. Over a a four year period

Chrome’s core team consists of 175 developers.

Gimp was selected as a replication from the work by Robles et al. [16] who studied

the historical file loss when a developer leaves the project. We also analyzed the two

other projects they examined: Evolution and Nautilus. However, since these projects

are similar in size to Gimp and the results were similar, we do not present them in the

interest of keeping our figures less cluttered. Gimp has a relatively small core team

of 12 developers. This core team size is similar to that found on the Apache project

by Mockus et al. [18].

1Unless otherwise stated, a period is three months or a quarter
2Not all core developers are active at the same time

18

Ricca et al. [26] studied the knowledge distribution of a project when a group

of developers leaves. However, as we will discuss later, their algorithm has a time

complexity of
(

n

g

)

making their calculations impractical on large projects. We selected

three projects from their study to replicate in our own. However, these projects were

so small, with only a few core developers, that the results are uninteresting. For

example, the core team on the Closure compiler has only three core developers and

Erlide has only one. We do not need any analysis to determine that if any one of these

core developer leaves the project will be effectively abandoned. We present results

only for the V8 project, which has 25 core developers.

2.3 Damage from Past Turnover

RQ1: What is the rate of developer turnover? How much knowledge loss has occurred

as a result of turnover?

To gauge the rate of annual turnover on a project, we use the British institute of

management definition [33]. Figure 2 shows the turnover rate for each project. Core

developers are defined as the group of developers who wrote 80% of the system [18].

NumberOfLeaversInAY ear

(NumAtBeginning +NumAtEnd)/2
∗ 100 (4)

The turnover results are presented in Table 2. In terms of core developers for

Linux there are on average 37 joiners and 42 leavers with an average core team

size of 524. The Chrome team has grown dramatically and there are on average 30

19

Table 2: Developers turnover from 2007-2013

2007 2008 2009 2010 2011 2012 2013
USTurn. 17% 19% 16% 16% 14% 15% 15%
Linux 38% 44% 47% 49% 55% 69% na

Chrome na na 24% 22% 34% 42% na
Gimp 10% 25% 54% 49% 47% 47% na
V8 na na 42% 41% 79% 42% 31%

Table 3: Core developers turnover from 2007-2013

2007 2008 2009 2010 2011 2012 2013
USTurn. 17% 19% 16% 16% 14% 15% 15%
Linux 4% 5% 5% 7% 10% 19% na

Chrome na na 6% 6% 6% 11% na
Gimp 0% 25% 0% 15% 18% 50% na
V8 na na 9% 7% 50% 43% 11%

joiners and 9 leavers with an average core team size of 134. The average turnover

rate in the US for 2008 to 2013 is 15.2%, this estimate was performed by Compdata

Surveys which includes data from over 34K companies in the US. 3 There are a large

number of developers that contributed in only one year. The overall turnover ratio

of the surround community fluctuates dramatically and is much higher than the US

national average.

For Gimp and V8 that have 12 and 25 core developers respectively, we see periods

of relatively little turnover followed by large turnover. The rates range from 9%

to 50% for the projects and hover above the US average. The impact of transient

contributors on these small projects is much more influential and we see a transient

turnover rate of 10% to 54% for Gimp and 31% to 79% for V8.

How much knowledge loss has occurred as a result of turnover?

3Turnover information available at http://www.compensationforce.com/2014/02/

2013-turnover-rates-by-industry.html

20

Periods in yearly quarters

A
b
a
n
d
o
n
e
d
 f
ile

s
 l
o
g
 (

%
)

0 5 10 15 20 25

2
5

1
0

2
0

5
0

Linux

Chrome

Gimp

V8

Figure 2.1: The percentage of files that are abandoned per period

We defined a file to be abandoned when there is no developer who owns at least

10% of the file. In Figure 2.1 we can see that file abandonment can be quite high.

While some projects fluctuate dramatically, most notably, V8 follows an increasing

pattern as developers write code and eventually leave the projects. For V8 on the

last quarter, we observe a reduction in the rate of code abandonment. This increase

in abandonment provides evidence for the decay of software systems [9]. Decay and

entropy are inevitable even on an intangible software product as the most conscien-

tious leaver who trains other developers will leave a gap in the teams understanding

of the system.

21

2.4 Truck Factor

RQ2: How susceptible is a project to future turnover?

The ‘truck factor’ is essentially a measure of how the knowledge is spread across

the development team. To calculate the truck factor, we measure the number of files

that will be lost when a group of size g leaves.

Zazworka et al. manually calculated the truck factor to determine the distribution

of development effort on Agile student projects [38]. Ricca et al. contributed a naive

truck factor algorithm that in all cases has a time complexity of
(

n

g

)

combinations

[26]. As a result, they can only calculate the truck factor for small projects [34]. We

contribute a stopping condition. We prove that the stopping condition allows us to

calculate the truck factor for large projects.

These previous papers also have a significant flaw – they calculate the truck factor

value at the most recent time point, but do not consider that some of the developers

have already left the project. For example, a developer who left the project in 2005 will

still be included in the developer combinations considered by Ricca et al. [26] when

they calculate the truck factor in 2014. We exclude developers who have already left

from our truck factor calculations.

2.4.1 Limitations of the Naive Algorithm

The naive truck factor algorithm proposed by Ricca et al. [26] has a prohibitively

high time complexity in all cases. When n is the size of development team and m is

22

the total number of files in the project then the time complexity is given by:

T (n,m) =
n

∑

i=1

n!

i!(n− i)!
∗m (5)

For example, if a project has 30 developers then the number of developer combina-

tions is over 17 million. This time complexity means that in their work they consider

only small projects with the largest project having only 38 total developers[26, 34].

We are considering much larger projects, for example, Chrome and Linux have hun-

dreds of contributors. It is impractical to compute all developer combination using

this algorithm. Besides, even with improvements in the truck factor algorithm, we

still could only obtain a group of 7 and 13 for Chrome and Linux, respectively.

We introduce a stopping condition which we prove identifies, for a given group

size g, the set of developers who’s loss will result in the maximum file loss.

2.4.2 Truck factor definitions

We define the following symbols:

D = the set of all developers on the project.

di = a particular developer in D, i is the id of the developer.

F = the set of all files in the project.

fj =a particular file in F , j is the id of the file.

M(fj) = the set of developers who have modified the file fj.

23

I() is the logic function defined as:

I(condition) =















1 if condition is true

0 otherwise

We calculate the proportion of the file fi that developer di owns:

L(di, fj) =
1

|M(fj)|
∗ I(di ∈M(fj)) (6)

Then the file loss (FL) function returns how many files would be abandoned if a

given developer combination C left the project:

FL(C) =
∑

di∈C

∑

fi∈F

(I(M(fi) ⊆ C) ∗ L(di, fi)) (7)

Then the maximum file loss for a given group size g is returned by the truck factor

function:

TF (C) = max(FL(C))

We can see that a naive implementation of this algorithm will have a complexity

of
(

n

g

)

, which is impractical to compute for large projects.

2.4.3 Stop Condition

The shared proportion of the number of files a developer di has modified on the

project:

24

L(di) =
∑

fi∈F

L(di, fj) (8)

The upper bound of the file loss for a given developer combination C is:

UFL(C) =
∑

di∈C

L(di) (9)

Since

∀condition : I(condition) ≤ 1

We have:

FL(C) ≤
∑

di∈C

∑

fi∈F

[1 ∗ L(di, fi)] = UFL(C) (10)

For each group size, we order the developer combinations by their UFL value

and calculate the FL for each developer combination until the stopping condition,

UFL(C) < max(FL) is met.

In other words, we have shown that the number of files that a given group of

developers modify, UFL, will be less than or equal to the number of files that these

developers own exclusively, FL. Provided that we order the developers by the number

of files that they modify, UFL, we can stop when the maximum loss that we calcu-

lated from the FL function is greater than or equal to the total number of files that

the subsequent group of developers modify. The pseudocode for the TruckFactor

algorithm is presented below.

25

Algorithm 1: Pseudocode for TruckFactor algorithm

Data: developerList, the list of all developer in the project sorted by their L
value descending

length(), the length of the input list

g, the given combination size

FL(), the FL value for a given group of developers

UFL(), the UFL value for a given group of developers
Output: output all developer combinations that have the UFL larger than

the stopping condition and their FL value

initialize an empty array: list
stop =FL(Combo(0, 0))
for i← 0 to [length(developerList)− g] do

if UFL(Combo(0, i)) ≥ stop then
list.append((Combo(0, i), 1, i+ 1))

else

break, the stopping condition has been met

while length(list) > 0 do

remove the first element in list and assign it to e
if e[1] <= g then

for i← e[2] to [length(developerList)− g + e[1]− 1] do

if Combo(e[1], i, e[0]).UFL > stop then
list.append(Combo(e[1], i, e[0]))

else

break, the stopping condition has been met

else

output combination e[0] and FL(e[0])
update stop = Max(stop, FL(e[0]))

26

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of developers

M
a
x
im

u
m

 p
e
rc

e
n
ta

g
e
 o

f
fi
le

s
 l
o
s
s

Linux

Chrome

v8

Gimp

Figure 2.2: The percentage of files loss per number of developers

2.4.4 Knowledge loss

In Figure 2.2 we calculate the knowledge that would be lost on each project for a

given group size. To obtain a reasonable comparison between the small group of core

developers from GIMP and V8 against the larger group of core developers from Linux

and Chrome we decided to work with a group of developers up to 20 developers.

On projects with a large core group size, the knowledge is distributed across a

larger number of developers, see Linux and Chrome in the figure. In contrast, Gimp

and V8 are highly dependent on a small number of developers. With Gimp the loss

of a single developer would lead to the loss of 80% of the files in the system. For

V8, we see a more even knowledge distribution, with one developer owning 30% of

27

the system. At this period, the V8 core consists of 9 developers, so a loss of 4 top

developers would lead to a loss of only 50%. Although V8 had suffered from a high

degree of turnover in the past (See Figure 2.1), for the size of the core team, the

project has a reasonable knowledge distribution when compared to GIMP.

2.5 Successors

RQ3: Can we mitigate the impact of developer turnover by suggesting potential suc-

cessors?

A development team can either hire a new developer or assign an existing developer

to the abandoned files left behind by the leaver. We first ask, how much experience

does the developer who takes over maintenance have?

There is a large literature on mentoring and integrating new developers into soft-

ware projects. For example, Zhou and Mockus examined the impact of development

environment on new developers [40]. Bird et al. [1] looked at the survival rate of new

developers. Zhou and Mockus examined the amount of time until a developer be-

comes productive. Mockus [19] suggested mentors for developers based on past work

and Canfora et al. [5] suggested mentors based on the email communication network.

While adding a new developer seems an obvious solution to file abandonment, on

the projects we studied, the experts adopted these files.

In Figure 2.3 we found that median experience for developers to take over aban-

doned files is 1 year for Chrome, 2.75 years for Linux, 7 years for GIMP and 1.4 years

28

Linux Chrome Gimp V8

Y
e
a
rs

1
 d

a
y

.5
1

5

Figure 2.3: Experience of developer taking over maintenance of a file

for V8. It is clear that experienced developers tend to take over abandoned files. De-

velopers who had less than six monthly of experience account for a small proportion

of the adopted files: 9% for Gimp, 20% for V8, 17% for Linux, 29% for Chrome.

Our findings are consistent with Zhou and Mockus’s [39] developer learning curve.

They find that although the number of tasks a new developer takes on plateaus at

three to 12 months, when the centrality (i.e. how many files are included in a task) and

difficult are accounted for, developer productivity continues to increase over the entire

measurement period of three years. In our study, we see that the most experienced

developers tend to be the ones taking over the maintenance burden of abandoned

files. Future work determining the type of files that newcomers tend to take on would

29

be interesting.

2.5.1 Possible Successors

How many possible successors are there?

For each abandoned file we want to determine which developer has the most ex-

pertise related to the file. We calculate the developer to file matrix (Dev-File) based

on the number of times a developer has changed a file. We calculate the file to aban-

doned file matrix (File-AbandondedFile) based on the files that have co-changed with

each abandoned file. We multiple the Dev-File matrix with the File-AbandondedFile

matrix and are left with the Dev-AbandondedFile matrix. Since there are no develop-

ers who have changed the abandoned file left on the project, the Dev-AbandondedFile

matrix represents the number of times each developer has changed a file that has co-

changed with the abandoned file. We rank possible successors based by the number

of files that they have changed that have co-changed with the abandoned file.

The intuition behind this succession measure is that if file A has changed with

file B, and file A becomes abandoned, then the developer who works on file B will

likely know something about file A. Our measure incorporates the commonly used

measure of developer experience [20] and co-changes among files [4]. The measure

can also be seen as incorporating the first matrix multiplication in Cataldo et al.’s [7]

coordination requirements measure, adopting the assumption that a developer should

know about files that changed with the files he or she works on.

On large projects like Linux it can become very computationally expensive to

30

perform these matrix multiplication. We also eliminated commits that contained over

100 files as Hindle and German [15] showed that these commit are misleading as they

usually represent uninteresting changes, such as changing the copyright for all files

in the system. The developer making this massive change is unlikely to understand

all the relationships between these files. We implemented a database approach to

multiply matrices and only include those files which co-changed with abandoned files

making it possible to perform the multiplications on large projects.

In Figure 2.4, we find that the V8 team is very cohesive. We see that the median

number of possible successors is 23 developers. Which means that the core team of

developers is very aware of the entire system. Interviews of developers on the similarly

sized projects, Apache and Subversion, indicated that developers felt comfortable with

the entire codebase [29]. We see a similar phenomenon with V8. We also see this with

the V8 truck factor that increases gradually with group size indicating a relatively

uniform knowledge spread.

Over the long lifetime of the Gimp project there have been periods with a large

number of potential successors. The median is 20. However, as of 2013 there are only

three core developers. As we see in Table 2, Gimp has suffered from high level of

developer turnover and currently has low knowledge spread leaving it susceptible to

future turnover, see Figure 2.2.

For Chrome, the distribution is bimodal. We see that the bottom 50% of aban-

doned files are co-changed by a relatively small number of developers. However, there

is an equally large group that has 100’s of potential successors. Chrome clearly has

31

1
2

5
1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

Linux Chrome Gimp V8

N
u
m

b
e
r

o
f
s
u
c
c
e
s
s
o
rs

 (
lo

g
)

Figure 2.4: Number of Successors

modules that are at higher risk to turnover. One possible explanation is that Google

pays developers to work on particular modules so that knowledge is less spread out.

Future work could examine the importance of each file and determine if the level of

co-ownership is high enough to mitigate the risk of turnover.

The Linux distribution is similar to V8 in that the knowledge is dispersed more

evenly among the development team. Files that are abandoned have a median of

50 successors who have modified co-changing files. Although Linux is divided into

different modules, such as networking vs USB support, the shared knowledge across

each of these modules remains high reducing the risk of turnover.

32

2.5.2 Suggesting Successors

Can we mitigate the impact of developer turnover by suggesting potential successors?

In answering this question, the work that is most similar to ours is that of Mockus

who created a measure to find mentors and successors for a developer who’s job is

being moved off-shore [17]. Much of the complexity of Mockus’s measures relate to

the need to determine which developer began modifying a file first to determine who is

mentor and who is follower. In our work, the file is abandoned, so no current developer

has modified the file. Furthermore, Mockus only considers the ownership matrix (i.e.

Dev-File), while we multiply this matrix with the files that have co-changed with the

abandoned file. Our output suggests who should take over an abandoned file, while

Mockus’s output suggests which developer should succeed or train a new developer.

The measure from the previous section calculates the potential successor of an

abandoned file based on the files that have co-changed in the past. At each period,

we use our succession measure to suggest the top 10 potential successors for each

abandoned file. We calculate the precision and recall by comparing our prediction

with the developers who actually take over the maintenance of an abandoned file.

Since we cannot predict new developers as successors, we present results including

and excluding newcomers.

Table 4 shows the precision and recall highly depend on the size of the development

team, the distribution of knowledge, and the number of newcomers who join the

project. For V8, the knowledge is spread across the core team. The precision is 31%

and recall is 40%. These low numbers suggest that there is little code ownership

33

Table 4: Successors - precision and recall

Projects New dev Precision Recall

Linux
No 52% 54%
Yes 40% 42%

Chrome
No 59% 65%
Yes 44% 52%

Gimp
No 99% 100%
Yes 57% 57%

V8
No 45% 55%
Yes 31% 40%

making it more difficult to suggest the top ten potential successors. However, on such

a project, succession is not difficult because developers can work on large swaths of

the system.

For Gimp, there are a large number of transient developers, so the prediction with-

out newcomers is very high, almost 100%. However, when newcomers are included

precision drops to 57%. Future work could use the parts of the system that have little

co-ownership to suggest areas where newcomers should focus their effort to reduce

the risk of turnover.

For Linux and Chrome, the precision of 40% and 44% is impressive given that

they have 100’s of developers who have made significant contributions to the project.

These values also indicate that the modularity of the projects is quite high and that

subteams work in relative isolation.

34

2.6 Threats to Validity

The generalizability of our study is threatened by the use of open source data only.

We have tried to mitigate this problem by also studying Chrome, which is a Google-

lead project that employs Google developers and uses development practices that

mirror those used internally at Google. The projects we have selected range by

application type, such as infrastructure vs end-user, and inter terms of team and code

as, the data for each project is publicly available. Large projects that are divided into

modules could be viewed as separate smaller projects. Future work done at different

granularities will indicate the risk of turnover at module level.

Ownership and dates: In the methodology section, we describe how we deal with

the limitation surrounding our data collection and our calculations of ownership.

Since there are many transient developers on open source projects, we used Mockus

et al.’s definition of core group. Changes in this definition could lead to slightly

different results.

Types of knowledge: We have only considered source files. Knowledge exists

in documentation and in developer communication, so our quantification of source

knowledge represent an important but limited view of all possible system knowledge.

Future work could include creating similar measures to suggest knowledge loss from

other software artifacts.

35

2.7 Contributions and Conclusion

We reported results related to our research question:

• the damage done to projects from turnover

• the susceptibility of project to future turnover

• a metric to mitigate turnover by suggesting possible successors based on files

that co-changed with abandoned files.

The turnover rates among the core development team grows over time and ulti-

mately matches that of the US average. On small projects, the turnover rate can be

fluctuate drastically because the team size is small making the system highly suscep-

tible to turnover. Further, we see that successful projects can maintain a relatively

high level of file abandonment and continue to function effectively. It is possible that

some of these abandoned files are related to legacy code that runs infrequently. Future

work to determine the level of importance of abandonment would be interesting.

Past work on the knowledge distribution of a project or the ‘truck factor’ was

hampered by the number of developer calculations that must be done, in all cases

(

n

g

)

combinations. This limited the size of the development team on which the cal-

culations could be run to small projects. We contribute and prove that our stopping

condition finds the optimal solution and given the distribution of developer contribu-

tions, does so with relatively few combinations. This allows to perform the knowledge

distribution and loss calculation on large projects, such as Linux and Chrome that

36

have hundreds of core developers. We hope that researchers and practitioners will

use our implementation to calculate the potential knowledge loss on their projects.

In terms of mitigating the risks of turnover, we discover that successors tend not

to be newcomers, but are experienced developers that have been with the project

for multiple years. This result agrees with Zhou and Mockus’s developer learning

curve which indicates that developers continue to increase their knowledge even after

having been with the project for multiple years.

We suggest possibles successor by combining measures of past developer expertise

[20] and files that change together [4]. The novelty of our measure comes in examine

files that co-change only with abandoned files and suggest successors for these files

based on relevant developer expertise. We attain a reasonably high precision and

recall. We discuss how the precision and recall is effected by the team size as well as

the knowledge distribution.

Our results are relevant for both researchers and practitioners as they show how

turnover, knowledge distribution, and team size influence software projects.

37

Chapter 3

Organizational volatility and

post-release defects: A replication

case study using data from Google

Chrome

In the previous chapter, we discussed about the damage on knowledge loss caused

by turnover, we calculated potential loss using truck factor algorithm, and we offered

a list of possible candidates to assume abandoned code. In this chapter, we study

the impact of changes in the development team, i.e. the arrival and the departure of

employees in a project, on the number of post-release defects.

As developers join and leave a project, the organization of that project is effected.

For example, new developers might bring innovations while departing developers will

38

leave knowledge gaps that other team members will have to fill. Our goal is to

understand how changes to the development team affect software quality. Mockus

[19] conducted a study on a single project at Avaya and determined that developers

leaving the project had a small negative impact on software projects. In contrast,

newcomers did not have a statistically significant impact on quality.

Our goal is to replicate Mockus’s study in the context of Google Chrome. During

Mockus’s study period, Avaya was going through turnover in the form of layoffs and

outsourcing[17]. In contrast, Chrome has seen drastic growth in terms of popularity

and number of developers. This contrasting replication allows us to determine whether

Mockus’s findings generalize and to understand which variables are important in

predicting organizational volatility in a growth context.

We use the same response variable as Mockus – the number of post-release cus-

tomer found defects (CFD). However, we make two changes: first, we group measures

at the directory level instead of the file level because few files have multiple defects,

second, we use a count of CFDs instead of a binary response.

3.1 Quality Predictors

Many studies have modeled bugs, so we included control variables to take into account

known strong predictors such as developer expertise as well as our leaver and joiner

measures. Table 5 lists the predictors used in our model and in Mockus’s model as

well as a description of how each is calculated. Below, we provide a brief conjecture

39

Table 5: Quality predictors from Mockus’s paper. We are unable to include certain pre-

dictors based on the available Chrome data. All predictors are measured per release at the

directory level.

Predictors Included Description
Co-owners Yes The number of developers who have worked

in a directory. Mockus calls this “size of or-
ganization"

Time from prior and
next change

No Mockus had information about changes to
the development team. We do not have this
information for Chrome.

Leavers Yes The number of developers who left the
project per directory

Joiners and Newcom-
ers

Yes The number of developers who joined the
project per directory

Churn Yes The sum of the lines of code added and
deleted from all files in a directory.

Co-changing directo-
ries

Yes The number of directories that have co-
changed with a directory. Mockus calls this
“logical dependencies." The greater the num-
ber of directories in a commit the greater the
complexity of the change.

Change Diffusion Yes The maximum number of co-changing direc-
tories in a commit. We drop change diffusion
from our model as it is highly correlated with
the number of co-changing directories.

Release Dependencies No At Avaya, a change could become part of
multiple releases, for Chrome, each change
is included in only one release.

Workflow No We do not calculate the developer workflow
network

Developer Experience Yes The minimum number of years of experience
across all developers working in a directory.

Distributed Develop-
ment

No We are unable to count the number of differ-
ent offices Chrome developers work in.

Mentor Offshore No We do not calculate mentors and cannot
know when a developer is working offshore.

40

on the influence of each predictor.

Churn: The more changes are made to a software artifact the more defects that

are found in it. Larger size generally correlates with complexity and increased bug

density [13, 24].

Co-owners: There is evidence that when more developers touch a software artifact

there will be more bugs [2, 19].

Leavers: When a developer leaves a project the team losses that developer’s knowl-

edge of the system. This can lead to tacit knowledge gaps that can result in defects

[19].

Newcomers or Joiners: Newcomers may not be experienced on the project, but

they can bring fresh ideas [8]. Since the core team of Chrome are Google employees,

they are stringently vetted increasing the likelihood that they will be good additions.

Newcomers may, however, introduce defects through a lack of knowledge about the

system and will take time from core developers when they ask questions.

Co-changes and change diffusion: The greater the number of co-changing software

artifacts the lower the quality of a software is expected to be. The idea of logical

coupling was introduced by Gall et al.’s [10] who implied that logical coupling relates

to the files that change together in a commit. Change diffusion is the maximum

number of co-changing directories in a commit. Mockus et al.’s [21] found that change

diffusion was an important predictor to estimate defects.

Developer experience: The quality of a system is tightly coupled to the experience

and expertise of the developers. Further, experienced developers have a detailed

41

understanding of the design and evolution of a system and are less likely to introduce

defects [22].

The chapter is structured as follows. In Section 3.2, we describe the methodology

and data. In Section 3.3, we present and discuss our results. Finally, we present

conclude the chapter.

3.2 Methodology and data

3.2.1 Data

Google Chrome was started in 2008. We mined Chrome data from July 2008 to May

2013. It is developed by more than 1000 contributors and it has more than 150K files.

A core team of 176 developers have made 80% of the changes to Chrome. Since our

goal is to predict the number of post-release defects, we describe the Chrome release

process and how we partition each change and bug into a release.

Chrome uses the issue tracker provide by Google Code.1 Issues include a summary,

a detailed description of the issue, and attachments. After an issue is opened, there

is a section where we can find specific details such as status, owner, type, priority,

release, operational system and release block. We are able to differentiate between

bugs and feature requests, and only include bugs in this work. We are able to link bugs

to commits, because the developer who fixed the bug records the commit number.

The identification of CFDs is important to our prediction model because all commits

1Chrome issues website http://code.google.com/p/chromium/issues/list

42

have an issue number. This fact would misrepresent our data, given that commits

would be highly related to issues.

Classify bugs as CFDs: First, we use the information we mined from the bug

database. Second, we need to classify which of these bugs are opened by users. The

issue form has a field called “Reported by". In this field, we can find the reporter’s

e-mail and determine whether the reporter is a project member. If the creator is not

a project member, then the bug was opened by a user.

Releases identification: The official release dates for Chrome is reported in Chrome

developers web page.2 Starting at release 5 Chrome transitioned to a rapid release

cycle and produces a release every 6 weeks. We use Rahman and Rigby’s tool to

extract and differentiate development changes from post-release changes [25].

Developers identification: The developers are identified by the email addresses

they used to submit the commit. There are some duplicated email addresses. To

resolve this issue, we use Canfora et al. [5] name aliasing tool. However, the tool had

some flaws. For instance, we created a new automatic script to resolve names that

had less than 5 characters.

Newcomers and people leaving the organization: For a given developer, we consider

the date of his first change to be his starting date, and the date of his last change to

be his ending date.

2Chrome release information available at http://www.chromium.org/developers/

calendar

43

3.2.2 Methodology

Quality predictors

Mockus et al. [19] used release dates as the starting point for looking one year to

the past at file level to calculate the factors mentioned on Table 5, instead of LOCs

we use directory churn, which is a strongly correlated measure [13]. As a response,

Mockus looked one year to the future, trying to identify if a file had at least one CFD

for the specific file during the measurement period.

Our model will be different regarding the granularity level. Instead of examining

files, we will use directory level. The Chrome release process is also more frequent,

so we will consider the cycle of development channel (six weeks) for each release to

calculate the predictors in Table 5.

Model selection

Mockus modelled bugs using a logistic regression, either a file had a bug or it did not.

We tried the same model, however, the results were not significant because most files

do not have bugs leading to a zero-inflated dataset. As result, we grouped bugs at

the directory level and used bug counts as the response, instead of binary response.

We considered poisson, zero-inflated poisson and quasi-poisson models to fit our data.

We dropped the poisson model because there is overdispersion in our data. The zero

inflated poisson model was compared with quasi-poisson model using the Vuong test

available in R statistical software. The Vuong test selects the better model based on

the likelihood ratio and non-nested hypothesis [35]. After testing both models, the

44

quasi-poisson model was superior.

3.3 Results and Discussion

There is an extensive literature on bug prediction models, so before we create a model

with all of our predictors, we evaluate how well churn and the number of co-owners

predict post-release defects. These two initial models give us a baseline against which

to compare our future models. Our first model only includes the level of activity,

i.e. the churn, that a directory has undergone. In Table 6 we can see that this

simple model does quite well explaining 45.23% of the deviance. Other researchers

have shown that churn is a good predictor of the number of defects in a module

[24, 41]. We replicate these findings showing that the more changes that are made to

a directory, the more post-release defects it will contain.

In our second model, we used the number of developers who work in a directory,

i.e. the number of co-owners. We find that this model does even better explaining

66% of the deviance. Our findings support previous research that has shown that the

greater the number developers working on a software artifact, the greater the number

of defects [19, 2].

In our third model, the number of co-owners of a directory is highly correlated

with all other predictors. This correlation means that the more developers who touch

a file, the more churn, the greater the number of leavers, the greater the number of

joiners, and so on. For this reason, we decided to normalize the other predictors by

45

co-owners. By dividing by co-owners, we are in effect taking the average per developer

within each module. The resulting model, Model 3 in Table 6, explains 71% of the

deviance. All predictors are statistically significant with the exception of the number

of co-changing directories, which is dropped from further analysis.

Table 6: Prediction Models for CFDs

Model 1 Model 2 Model 3 b

Churn 0.67 0.16
Co-owners 1.28 1.05

Leavers -3.04
Newcomers -0.62

Developer Experience -1.60
Co-changes *

Deviance Explained 45.23 66 71
a (p<0.001, except * p<1)
b Predictors normalized by co-owners.

Table 7: Effect of Organization, Directory, Change and Social factors on the Number of

CFDs

Variables Estimate 10% 50% 100% 200%
Directory Churn log(churn/co-owners) 0.16 1.53 6.67 b 11.66 19.10

Organization log(co-owners) 1.06 10.63 53.69 108.48 220.42
log(leavers/co-owners) -3.04 -25.18 -70.89 -87.88 -96.47
log(joiners/co-owners) -0.62 -5.73 -22.20 -34.90 -49.35

Experience log(experience/co-owners) -1.60 -14.18 -47.81 -67.10 -82.83
a The quasi-Poisson dispersion parameter is taken to be 6.4 (over-dispersion). To make

interpretation easier the proportional change at 10% to 200% is shown for each variable.
b For example, a doubling in the average churn made by a developer increases the number

of post-release defects by 6.67%.

The interpretation of each variable is complicated because a quasi-poisson model

has a log-link function and the explanatory model is on log scale. For these reasons,

we investigate the rates of change shown in Table 7. For instance, a 50% increase in

number of co-owners leads to an increase of 54% in the number of post release defects.

46

Directory churn: Normalizing churn by number of co-owners means that we are

modelling the average churn of developers per directory. By tripling the average churn

a developer makes, the number of post-release defects increase by 19%.

Co-owners: Increasing the number of co-owners in a directory has a high impact

in the CFDs post-release. For instance, a doubling in the number of co-owners in a

directory doubles the number of post-release CFDs.

This result adds to the growing consensus that too many developers touching a

software artifact can introduce defects in the form of unexpected dependencies [6].

Number of developers leaving the organization: The correlation between the num-

ber of leavers and CFDs is positive. However, this relationship is largely influenced

by the number of co-owners – the larger the total number of developers, the larger the

number of developers who can leave. As a result, we normalized leavers by the num-

ber of co-owners, leavers/co-owners. With this normalization, we see that the more

people who leave the fewer number of post-release defects reported by customers.

This finding is unintuitive and the opposite direct to what Mockus found. We have

conjectured that leavers would lead to knowledge loss and to less experienced team

members taking over code they are unfamiliar with.

We suggest two possible explanations that deserve future work. First, when a

developer leaves the project, the features they were working on may be put on hold,

which would lead to fewer changes and fewer defects. Second, existing co-owners may

take over the leaving developers work leading to a more focused set of changes and

fewer defects.

47

Number of newcomers: Increasing the ratio of newcomers/co-owners in a directory

decreases the number of CFDs post-releases. By doubling the ratio of newcomers, we

see a decrease of 34.9% CFDs post-release. In Mockus’s work, the impact of new-

comers was not statistically significant. We find preliminary support that newcomers

bring positive innovation without increasing the number of defects. One contextual

factor related to Chrome is that Google’s hiring process is very stringent allowing

them to hire highly skilled developers. The impact of newcomers who are less strin-

gently vetted may lead to different results.

Experience: The longer a developer has been on the project, the fewer the number

of CFDs that are found in his or her code. For example, doubling the developer

experience decreases the CFDs post-release by 27.31%. The more experienced people

are in the project, the better the quality of the code is [22].

Co-changing directories: The number of directories that where co-changed did

not have a statistically significant impact on the number of post-release bugs. This

runs counter to the findings of Mockus and other who found that logical dependencies

were important in determining post-release defects [19, 32]. Logical dependencies are

usually calculated at the file level and the more coarse grained directory used in this

study may have influenced the result.

48

3.4 Threats to Validity

This study is a replication of Mockus’s [19] study of a switching system at Avaya. The

context of our study is drastically different from the outsourcing that existed at the

time of Mockus’s study. As a result, some of our findings differ from those of Mockus

and future replications are necessary to provide a more generalized understanding of

organizational volatility and turnover. We were able to replicate most of the measures

used by Mockus and feel that other should be easily able to replicate our work. Future

work may also want to investigate different levels of granularity, such as directories

vs modules.

Concerning the internal validity of our measures, the greatest threat is the relia-

bility of bug data. The Chrome data set is an excellent source because we are able

to differentiate internal issues from bugs reported by end users. Internal issues are

highly related to churn, while end user bugs tend to be more representative of defects.

One difficulty for further replication will be finding projects that allow research to

differentiate internal and external bugs.

3.5 Conclusion

In this chapter, we presented a contrasting replication of Mockus’s research on orga-

nizational volatility [19]. We mined the data from Google Chrome project which is

growing in team size and popularity and contrasts with the project at Avaya that was

experiencing outsourcing.

49

We used three predictors that have been extensively studied. We found that the

number of co-owners in a directory increases the number of CFDs found post-release.

This finding adds to the growing consensus that as more developers work on a software

artifact there will be more uncoordinated and buggy changes. In terms of churn,

i.e. development activity, we found that higher churn leads to more complexity and

greater post-release defects. We also found that the greater the developer experience,

the fewer the number of CFDs post-releases.

After normalizing for the number of co-owners, we found that the greater the ratio

of leavers in a directory, the fewer the number of post-release defects. This result is

counter-intuitive and needs future work to determine if other factors are at play. We

also found that adding new developers to a directory actually reduced the number

of post-release defects. While we find this result surprising and deserving of future

work, we suspect that Google does a good job of vetting replacement developers.

Our findings add another data point in our understanding of organizational volatil-

ity. There is a clear need for other studies in new contexts to strengthen our under-

standing turnover on software projects.

50

Chapter 4

A preliminary examination of

dormant files on software projects

In the previous chapters, we discussed about the turnover and its impact on the loss of

knowledge on software projects. We also described quality predictors, which included

leaving and joining developers in a software project, and their impact in the quality

of the software, we conclude that in Chrome’s case the greater the number of leaving

and joining developers the lower the number of defects. This findings deserve a future

research. In this chapter we examine the impact of dormant files on software projects

and we discuss the knowledge that is lost when developers stop working on a file.

The forgetting curve suggests that if students do not review information regularly,

one month later they will retain only 20% of the original information and only 15% of

the information after two months [31]. Applied to software development, this implies

that code that is not regularly maintained will be forgotten even by the developer

51

who created it. We define a dormant file to be a file that has not been modified for at

least one year. Maintenance of dormant files is difficult because developers no longer

understand the file and its relationships to other files in the system. Without proper

knowledge of a dormant file, developers can unintentionally make changes to related

files that could lead to surprise bugs in unchanged files [32].

Since larger systems are known to be more complex [13], the accumulation of

dormant files make maintenance more difficult. Further, when a newcomer joins

a project, they not only need to understand active files, but also the dead weight

dormant files.

4.1 Research Questions

The goal of this work is to provide a preliminary quantification of dormant files

through the following research questions.

RQ1 Total number of dormant files and LOC: How many files are dormant and

how many LOCs are contained in dormant files?

Over time, a system can become more complex and hard to understand. If files

are not modified for a long period of time, it will be difficult for future developers

to understand the untouched files. LOCs are highly correlated with source code

complexity [13].

RQ2 Dormant file lifecycle: When will a file become dormant? How many dor-

mant files become active and how many of them remain dormant? How long does it

52

take for a dormant file to become active again?

We want to understand the lifecycle of a dormant file. We first measure the amount

of time from when a file was created until it became dormant. We also measure the

time between the changes that happened immediately before a file becomes dormant

to understand whether a file suddenly or gradually becomes dormant. Once a file is

dormant, we measure how long it remains dormant. Files that never become active

again are excluded from this last measurement.

RQ3 Experience: How much experience does a developer who works on a dormant

file have?

We conjecture that the greater a developer’s experience on a project, the easier it

will be for the developer to understand a dormant file. Experienced developers can

relate their knowledge of the project with that of a dormant file. We compare the

experience of developers that take over dormant files with the experience of developers

of active files.

RQ4 Surprise Bugs: How many dormant files have surprise bugs?

A bug that is found in a dormant file will have been present for at least a year.

These bugs are a surprise as they have remained untriggered for an extended period

of time. It is also possible that changes related to the dormant file may have triggered

the surprise bug by, for example, causing the dormant file to be used in an unexpected

manner [32].

The remainder of this paper is structured as follows. In Section 4.2, we describe

our methodology and data. In Section 4.3, we present the results. In Section 4.4, we

53

Table 8: Project summaries

Project Period Files LOC Devs
Chrome 2008-2013 32481 23595185 1205

Evolution 1999-2014 1681 201255 524

describe the threats to validity. In the final section, we conclude the paper.

4.2 Methodology and data

4.2.1 Project Selection

We study Google Chrome and Evolution. The projects respective sizes and time

periods are in Table 8. Chrome is a Google-lead project and uses similar development

processes to those used internally by Google. Chrome has more than a thousand

contributors. Evolution was selected because it is an example of a legacy system [3].

Evolution has a relatively small core team of 24 people while Chrome has more than

100 people in its core team.

4.2.2 Method

Data extraction: We mine the data from Chromium and Evolution from their respec-

tive git repositories. We consider only the .c and .h source files.

LOC: To obtain the LOC, we use a script that counts the LOCs per file.

Dormant files identification: First, we obtain the history of file changes (commits).

Second, we ordered each commit in ascending order by its date. Third, we calculate

the difference between the dates each consecutive commit. Fourth, we mark the files

54

related to commits where the differences are greater than one year as dormant files.

A file’s least active period before it becomes dormant: We use the commit date as

above, but from each of the selected commits, we consider the previous two commits.

We calculate the difference between these dates to give a sense of how active the code

was before the current commit.

Dormant file becoming active: Once a file has been marked as dormant, we look

for future commits and calculate how long it takes until the dormant file becomes

active. If no future change is made to a file, it remains dormant and is excluded.

Experience: We consider the project experience of a developer in years as the

difference between the authors first commit and the date the he or she modifies a

dormant file.

Bug extraction: To identify bugs on the Evolution project, we search for “bug" in

the commit log. The files changed in this commit are considered to be related a bug

fix. For Chrome, we use the issues that are reported in the project’s issue tracker.

We only take issues that are tagged as a bug fix and that are linked to a commit, so

that we are able to identify the files involved in bug fixes.

4.3 Results and Discussion

RQ1 Total number of dormant files and LOC: How many files are dormant and how

many LOCs are contained in dormant files?

We observe in Figure 4.1 that in Evolution, of the total 1681 files, 49% are dormant

55

Chrome Evolution Chro.LOC Evo.LOC

P
e
rc

e
n
ta

g
e

0
2
0

4
0

6
0

8
0

1
0
0

Active files

Dormant files

Figure 4.1: Total of dormant and non-dormant files and its LOC

and 51% are active. In terms of LOCs, for Evolution, there are a total of 201 KLOC,

88% belongs to dormant files and 12% belongs to active files. This level of dormant

files makes it clear that Evolution is a legacy system. With more than 15 years of

history, Evolution is now evolving at a slow pace and the dormant files are responsible

for a great part of the system and its complexity.

For Chrome, we find that, of the total 33,060 files, 10% are dormant and 90% are

active. In terms of LOCs in Chrome there are a total 23.6 MLOC, 1.4% belongs to

dormant files and 98.6% belongs to active files. Chrome is a younger project when

compared with Evolution. Chrome has a remarkably small number of dormant files

indicating that the project is constantly evolving and growing. Chrome’s dormant

56

files represent few LOC compared to the entire system. In other words, the dormant

files are not adding much complexity to the project.

RQ2 Dormant file lifecycle: When will a file become dormant? How many dor-

mant files become active and how many of them remain dormant? How long does it

take for a dormant file to become active?

The amount of time from when a file was created until it became dormant is 1479

days for Evolution and 609 days for Chrome.

In Figure 4.2, we observe that for Chrome and Evolution the period before a

file becomes dormant is 39 and 106 days, respectively. These changes that proceed

dormancy indicate that when a file has not been changed in the last 2 to 4 months,

it is more likely to become dormant.

For Evolution, we find that, of the total 820 dormant files, 52% become active

from dormancy and 48% remain dormant. For Chrome, we find that, of the total

3496 dormant files, 49% become active from dormancy and 51% remain dormant. The

rates of becoming active from dormancy and remaining dormant are fairly constant

across the two projects.

The period of time for a dormant file to become active is 457 days for Chrome

and 623 days for Evolution. This time gap is problematic as developers will likely

remember little of the content of a dormant file. For example, the forgetting curve

suggests that if we do not review information regularly after one month we will only

retain 20% of the original information [31]. While future work is necessary, the

dormant files that have not been touched by anyone for more than one year will be

57

Least active
period

39 days 365 days

File becomes dormant

457 days

Dormant file reactivates

49% of dormant files
reactivate

51% of dormant files
remain dormant

Google Chrome dormant file lifecycle

Least active
period

106 days 365 days

File becomes dormant

623 days

Dormant file reactivates

52% of dormant files
reactivate

48% of dormant files
remain dormant

Evolution dormant file lifecycle

Figure 4.2: Dormant file lifecycle

mostly forgotten. We suspect that overall expertise on the system may increase a

developers ability to recall a file.

RQ3 Experience: How much experience does a developer who works on a dormant

file have?

Figure 4.3 shows the distribution of the experience for developers who modify

dormant files and those who modify active files. In Chrome, we find that the median

experience is 1.12 years for developer of dormant files and 1.2 years for active files. A

Wilcoxon test shows that this difference is statistically significant with p << 0.001.

The median developer experience for Chrome is almost similar for both conditions,

however, it is clear that developers working in both groups tend to be experienced.

58

Google Chrome Evolution

D
e
ve

lo
p
e
r

e
x
p
e
ri

e
n
c
e
 i
n
 y

e
a
rs

 (
lo

g
)

Dormant files

Active files

1
 d

a
y

1
3

1
0

Figure 4.3: Experience of developers who assumes dormant files

In Evolution, we find that the median experience is 2.85 years for developers of

dormant files and 1.44 years for active files. A Wilcoxon test shows that this difference

is statistically significant with p << 0.001. The median developer experience for

Evolution is greater for developers who work on dormant files. This experience may

alleviate the negative impact of the forgetting curve and the complexity of large

dormant files that exist on the system.

RQ4 Surprise Bugs: How many dormant files have bugs?

The proportion of bugs found in dormant files on Chrome and Evolution is 5%

and 17%, respectively. The proportion of bugs found in active files on Chrome and

Evolution is 23% and 19%, respectively.

59

Dormant files have lower chance to have bugs in Chrome and a almost equal

chance in Evolution. Chrome is a younger project and we observe in Figure 4.1 that

most of it is active. Evolution is an old project and half of its code is active and half

is dormant. Bugs in dormant files can catch developers by surprise and may be more

difficult to fix as the knowledge of these files is lost.

4.4 Threats to Validity

Our findings may not generalize outside the two projects that we studied. However,

the projects were selected to contrast, with Chrome being the rapidly evolving system

and Evolution being the legacy system.

We mined bugs from the commit log. An email to a core developer on Evolution

confirmed that they require committers to link each bug to the commit that fixed it.

Chrome follows a similar practice requiring each change to be linked to an issue. This

bug linking technique has been widely used in the MSR community.

Our measures of dormant files are preliminary and based on an arbitrary one year

time frame. Given that over 20% of knowledge is forgotten by students after one

year [31], we feel that developers will have little recollection of changes made over a

year ago. Future work, however, could experiment with other values and may find

that even more of the system is dormant than we measured. Alternatively, developers

may modify files related to a dormant file, thereby maintaining their knowledge of

the unchanged file, in this scenario we would be overestimating knowledge loss.

60

4.5 Conclusion

Dormant files make a system harder to understand and more difficult to maintain.

In this preliminary work, we have determined that a large proportion of Evolution,

a legacy system, is dormant, 88% of the LOCs and 49% of the files. In contrast,

only a small proportion of the actively growing Chrome project is dormant, 1.4% of

the LOCs and 10% of the files. Of the files that become dormant, on both project

approximately half of the will become active again with in the next 1.5 to 2 years.

Future work is necessary to understand what drives these changes.

Surprise bugs are contained in files that do not change. For Chrome, we found

that dormant files had fewer bugs than active files, but that 5% of the dormant files

contained a dormant bug. For Evolution, bugs are found in equal proportion in active

and dormant files. Evolution clearly suffers from a stale codebase. Interestingly, new

developers do not take over dormant files, instead developers with a median of at least

one year of experience make changes to dormant files. These developers likely have

a better understanding of the interactions of the system and so are more qualified

to understand and modify dormant files. Future work is necessary to study the

activity patterns of dormant files and to create models of dormancy. Future work is

needed to identify the proportion of the dormant files that are only inactive and the

proportion that are stable code. Future work is needed to evaluate how beneficial is

the experience of developers who assume dormant files. Future work is necessary to

evaluate if the surprise bugs are actually bugs and not just a ripple due to feature or

61

requirement changes.

62

Chapter 5

Conclusions

The final chapter, we conclude this work with a discussion of the impact of knowledge

loss on software projects caused by turnover, customer found defects and dormant

files. Section 5.1, is described in the context of what we found in our previous chapters,

derived from different OSS software empirical observations and methodology. Section

5.2 future work that was derived from the research we performed.

63

5.1 Contribution of the empirical study on the im-

pact of knowledge loss on software project caused

by turnover, post-release defects and dormant

files

The main goal of this work is a contribution of the impact of knowledge loss on

software project caused by turnover, post-release defects, and dormant files. Below

we revisit the previous chapters, their research questions, data, and methodology.

Finally, we present our contribution combined with our findings.

Turnover and succession (Chapter 2): By examining four OSS, Linux, Google

Chrome, GIMP, and V8, we were able to measure turnover, the loss of knowledge

and to define skilled people in the project. We addressed the following topics in our

research questions:

• the damage caused to projects from turnover

• the susceptibility of the project to future turnover

• a metric to mitigate turnover by suggesting possible successors based on files

that co-changed with abandoned files.

Organization volatility and defects (Chapter 3): We replicate an empirical study

using Google Chrome project. We were able to create a statistical model of customer-

found defects. We addressed the following quality predictors:

64

• Churn,

• Co-owners,

• Leavers,

• Newcomers or joiners,

• Co-changes and change diffusion.

Dormant files (Chapter 4): We performed a preliminary examination of dormant

files in software projects. We addressed the following topics:

• Total number of dormant files and LOC,

• the lifecycle of a dormant file,

• the experience of developers who assumes a dormant file,

• and the proportion of dormant files that presented defects.

Knowledge spread:

We observed that the loss of core developers grows over time. Small projects

depend heavily on core developers. When core developers leave small projects, they

take all the knowledge about the system and cause the project to fail. In contrast,

larger projects have knowledge spread among developers. For this reason, larger

projects are more likely to continue for a long time than smaller projects.

Abandonded code:

65

We discover that successors tend not to be newcomers but are experienced devel-

opers that have been with the project for multiple years. This result agrees with Zhou

and Mockus’s developer learning curve which indicates that developers continue to

increase their knowledge even after having been with the project for multiple years.

Defect prediction model:

Using Google Chrome, we found that the greater the ratio of leavers in a directory,

the fewer the number of post-release defects. This result is counter-intuitive and needs

future work to determine if other factors are at play. We also found that adding new

developers to a directory actually reduced the number of post-release defects. While

we find this result surprising and deserving of future work, we suspect that Google

does a good job of vetting replacement developers.

Knowledge decay:

We observed that in newer systems such as Google Chrome, it code base is highly

active. In contrast, a legacy system as Evolution OSS, most part of its code is

dormant. For this reason, the longer it takes to developers to change these files the

less will be remembered, as already reported in previous research about forgetting

curve [31]. Interestingly, new developers do not take over dormant files, instead

developers with a median of at least one year of experience make changes to dormant

files. These developers likely have a better understanding of the interactions of the

system and so are more qualified to understand and modify dormant files.

66

5.2 Future Work

In the previous section, we discussed the contribution of the impact of knowledge loss

on in software projects. In this section, we state the future works that emerged from

the research we performed. They will be presented in the form of subsections with

the chapters names.

5.2.1 Developer Turnover and Succession: Empirical studies

of the susceptibility and damage from developer turnover

The future work that emerged from the research on the Developer Turnover and

Succession are the following:

• Analyzing and suggesting areas of the system with little or no ownership to

newcomers

• determining the type of files that newcomers is likely take on

• examining the importance of each file and determining the optimal degree of

co-ownership to mitigate the risk of turnover

• performing an analysis of turnover, truck factor and succession at different gran-

ularities, e.g. module level, instead of the file level

• replicating the same methodology used in this research to analyze knowledge

loss in other software artifacts, such as documentation

• determining the level of importance of an abandoned file.

67

5.2.2 Organizational volatility and post-release defects: A repli-

cation case study using data from Google Chrome

The future work that emerged from the research on the Organizational volatility and

post-release defects are the following:

• A feature based analysis to understand how developer loss affects features under

development

• analysing the abandoned code that was taken over by remaining developers to

understand how they managed to insert fewer bugs

• comparing different granularities levels, such as directories versus files

• investigating the reason the greater the number of leaving developers the lower

the number of post-release defects. We suspect the vetting of new hires plays

an important role.

5.2.3 A preliminary examination of dormant files on software

projects

The future work that emerged from the research on the Examination of dormant files

are the following:

• Conducting a qualitative research to observe how much knowledge the develop-

ers recall about files that they have touched in the past

68

• Developers may modify files related to a dormant file, thereby maintaining their

knowledge of the unchanged file. To understand these relationships, we would

like to study file dependencies.

• investigating why files become dormant and then become active at a later date

• studying activity patterns of dormant files and creating models of dormancy.

69

Bibliography

[1] Christian Bird, Alex Gourley, Prem Devanbu, Anand Swaminathan, and Greta

Hsu. Open borders? immigration in open source projects. In MSR: Proceedings

of the Fourth International Workshop on Mining Software Repositories, page 8.

IEEE Computer Society, 2007.

[2] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and

Premkumar Devanbu. Don’t touch my code!: examining the effects of ownership

on software quality. pages 4–14, 2011.

[3] Jesús Bisbal, Deirdre Lawless, Bing Wu, and Jane Grimson. Legacy information

systems: Issues and directions. IEEE software, 16(5):103–111, 1999.

[4] Lionel Briand, Walcélio Melo, Carolyn Seaman, and Victor Basili. Characterizing

and assessing a large-scale software maintenance organization. pages 133–143,

1995.

[5] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano

Panichella. Who is going to mentor newcomers in open source projects? page 44,

2012.

70

[6] M. Cataldo, A. Mockus, J.A. Roberts, and J.D. Herbsleb. Software dependencies,

work dependencies, and their impact on failures. Software Engineering, IEEE

Transactions on, 35(6):864–878, Nov 2009.

[7] Patrick A. Cataldo, Marcelo an dWagstrom, James D. Herbsleb, and Kathleen M.

Carley. Identification of coordination requirements: implications for the design

of collaboration and awareness tools. In Proceedings of the 2006 20th anniversary

conference on Computer supported cooperative work, CSCW’06, pages 353–362,

NewYork,NY,USA, 2006. ACM.

[8] Marie A Cini. Group newcomers: From disruption to innovation. Group Facili-

tation, 3(2001):3–13, 2001.

[9] Stephen G Eick, Todd L Graves, Alan F Karr, James S Marron, and Audris

Mockus. Does code decay? assessing the evidence from change management

data. IEEE Transactions on Software Engineering, 27(1):1–12, 2001.

[10] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on prod-

uct release history. In Software Maintenance, 1998. Proceedings., International

Conference on, pages 190–198, Nov 1998.

[11] Xun Ge, Yifei Dong, and Kun Huang. Shared knowledge construction process

in an open-source software development community: An investigation of the

gallery community. In Proceedings of the 7th international conference on Learning

sciences, pages 189–195. International Society of the Learning Sciences, 2006.

71

[12] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A case

study. In Proceedings of the International Conference on Software Maintenance

(ICSM’00), ICSM ’00, pages 131–. IEEE Computer Society, 2000.

[13] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Predicting fault

incidence using software change history. IEEE Transactions on Software Engi-

neering, 26(7):653–661, 2000.

[14] James P Guthrie. High-involvement work practices, turnover, and productivity:

Evidence from new zealand. Academy of management Journal, 44(1):180–190,

2001.

[15] Abram Hindle, Daniel M German, and Ric Holt. What do large commits tell

us?: a taxonomical study of large commits. pages 99–108, 2008.

[16] D. Izquierdo-Cortazar, G. Robles, F. Ortega, and J.M. Gonzalez-Barahona. Us-

ing software archaeology to measure knowledge loss in software projects due to

developer turnover. In System Sciences, 2009. HICSS ’09. 42nd Hawaii Inter-

national Conference on, pages 1–10, 2009.

[17] A. Mockus. Succession: Measuring transfer of code and developer productivity.

In Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference

on, pages 67–77, 2009.

[18] A. Mockus, R.T. Fielding, and J. Herbsleb. A case study of open source software

72

development: The apache server. ICSE: Proceedings of the 22nd international

conference on Software Engineering, pages 262–273, 2000.

[19] Audris Mockus. Organizational volatility and its effects on software defects.

In Proceedings of the eighteenth ACM SIGSOFT international symposium on

Foundations of software engineering, FSE ’10, pages 117–126, New York, NY,

USA, 2010. ACM.

[20] Audris Mockus and James D. Herbsleb. Expertise browser: a quantitative ap-

proach to identifying expertise. In ICSE: Proceedings of the 24th International

Conference on Software Engineering, pages 503–512. ACM Press, 2002.

[21] Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell

Labs Technical Journal, 5(2), April 2000. ISSN 1089-7089.

[22] Audris Mockus and David M Weiss. Predicting risk of software changes. Bell

Labs Technical Journal, 5(2):169–180, 2000.

[23] Audris Mockus, Randy Hackbarth, and John Palframan. Risky files: an approach

to focus quality improvement effort. In Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering, ESEC/FSE 2013, pages 691–694, New

York, NY, USA, 2013. ACM.

[24] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to

predict system defect density. In Proceedings of the 27th International Conference

on Software engineering, ICSE ’05, pages 284–292. ACM, 2005.

73

[25] M. Rahman and P. Rigby. Release stabilization on linux and chrome. Software,

IEEE, pages 2–9, March-April 2015.

[26] Filippo Ricca, Alessandro Marchetto, and Marco Torchiano. On the difficulty of

computing the truck factor. In Proceedings of the 12th International Conference

on Product-focused Software Process Improvement, PROFES’11, pages 337–351,

Berlin, Heidelberg, 2011. Springer-Verlag.

[27] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and

Daniel German. Contemporary peer review in action: Lessons from open source

development. IEEE Software, 29(6):56–61, November 2012.

[28] Peter C. Rigby and Christian Bird. Convergent contemporary software peer

review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering, ESEC/FSE 2013, pages 202–212, New York, NY, USA,

2013. ACM.

[29] Peter C. Rigby and Margaret-Anne Storey. Understanding broadcast based peer

review on open source software projects. In Proceeding of the 33rd international

conference on Software engineering, ICSE ’11, pages 541–550, New York, NY,

USA, 2011. ACM.

[30] Peter C. Rigby, Daniel M German, Laura Cowen, and Margaret-Anne Storey.

Peer Review on Open Source Software Projects: Parameters, Statistical Models,

and Theory. To appear in the ACM Transactions on Software Engineering and

Methodology, page 34, August 2014.

74

[31] Daniel L Schacter, Daniel T Gilbert, and Daniel M Wegner. Introducing psy-

chology. Macmillan, 2009.

[32] Emad Shihab, Audris Mockus, Yasutaka Kamei, Bram Adams, and Ahmed E.

Hassan. High-impact defects: A study of breakage and surprise defects. In Pro-

ceedings of the 19th ACM SIGSOFT Symposium and the 13th European Confer-

ence on Foundations of Software Engineering, ESEC/FSE ’11, pages 300–310,

New York, NY, USA, 2011. ACM.

[33] H. Silcock. The phenomenon of labour turnover. Journal of the Royal Statistical

Society. SeriesA(General), 117(4):pp.429–440, 1954.

[34] Marco Torchiano, Filippo Ricca, and Alessandro Marchetto. Is my project’s

truck factor low?: theoretical and empirical considerations about the truck factor

threshold. In Proceedings of the 2nd International Workshop on Emerging Trends

in Software Metrics, WETSoM ’11, pages 12–18, New York, NY, USA, 2011.

ACM.

[35] Quang H Vuong. Likelihood ratio tests for model selection and non-nested hy-

potheses. Econometrica: Journal of the Econometric Society, pages 307–333,

1989.

[36] L. Williams, R.R. Kessler, W. Cunningham, and R. Jeffries. Strengthening the

case for pair programming. IEEE Software, 17(4):19–25, 2000.

75

[37] Robert K. Yin. Case Study Research: Design and Methods, volume 5 of Applied

Social Research Methods Series. Sage Publications Inc., 3 edition, 2003.

[38] Nico Zazworka, Kai Stapel, Eric Knauss, Forrest Shull, Victor R. Basili, and Kurt

Schneider. Are developers complying with the process: An xp study. In Proceed-

ings of the 2010 ACM-IEEE International Symposium on Empirical Software

Engineering and Measurement, ESEM ’10, pages 14:1–14:10, New York, NY,

USA, 2010. ACM.

[39] Minghui Zhou and Audris Mockus. Developer fluency: Achieving true mastery in

software projects. In Proceedings of the Eighteenth ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE ’10, pages 137–146,

New York, NY, USA, 2010. ACM.

[40] Minghui Zhou and Audris Mockus. Does the initial environment impact the

future of developers? In Proceedings of the 33rd International Conference on

Software Engineering, ICSE ’11, pages 271–280, New York, NY, USA, 2011.

ACM.

[41] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In Pre-

dictor Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops

2007. International Workshop on, pages 9–9, May 2007.

76

