
AUTOMATED QUALITY ASSURANCE OF

NON-FUNCTIONAL REQUIREMENTS FOR

TESTABILITY

ABDERAHMAN RASHWAN

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN

SOFTWARE ENGINEERING

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

APRIL 2015

c© ABDERAHMAN RASHWAN, 2015

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Abderahman Rashwan

Entitled: Automated Quality Assurance of Non-Functional Re-

quirements for Testability

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in

Software Engineering

complies with the regulations of this University and meets the accepted

standards with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Emad Shihab

Examiner
Dr. Leila Kosseim

Examiner
Dr. Nikolaos Tsantalis

Supervisor
Dr. René Witte

Supervisor
Dr. Olga Ormandjieva

Approved
Chair of Department or Graduate Program Director

20
Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Automated Quality Assurance of

Non-Functional Requirements for Testability

Abderahman Rashwan

A Software Requirements Specification (SRS) document contains all the require-

ments to describe a software system to be developed. These requirements are

typically separated into Functional Requirements (FRs), which describe the fea-

tures of the system under development and Non-Functional Requirements (NFRs),

which include quality attributes and design constraints, among others. NFRs can

have a significant impact on the time of a system’s development process and its

total cost, as they frequently describe cross-cutting concerns. NFRs that are not

testable are typically ignored in system development, as there is no way to verify

them. Thus, NFRs must be checked for testability. However, for natural language

requirements, this so far had to be done manually, which is time-consuming and

therefore costly.

In order to improve software development support, we propose a semantic

quality assurance method that automatically detects non-testable NFRs in nat-

ural language specifications. Our work contains four significant contributions

towards this goal: (1) building a generic ontology which represents the main con-

cepts in requirements statements and their relations; (2) Based on this generic

ontology, two corpora are developed: The first one is a new gold standard corpus

containing annotations for different NFR types. The second one is for require-

ments thematic roles and testability; (3) A Support Vector Machine (SVM) classi-

fier to automatically categorize requirements sentences into the different ontology

classes is introduced; (4) Finally, a rule-based text mining system is used to an-

alyze requirement thematic roles and to flag non-testable NFRs. Based on the

SRS corpus, our results demonstrate that the proposed approach is feasible and

effective, with an F-measure of 80% for non-testability detection.

iii

Acknowledgments

I pay my sincere gratitude to all the people who made this thesis possi-

ble. Much of my appreciations go to my supervisors, Dr. René Witte, and

Dr. Olga Ormandjieva, for their continuous guidance and support.

Many thanks to the members of the Semantic Software Lab for their

timely suggestions, including Nona Naderi, Elian Angius, and Bahar Sateli.

Rolan Abdukalykov, Olga Ormandjieva, Ishrar Hussain, Mohamad Kassab,

and Zakaria Siddiqui are acknowledged for annotating the corpus. I also

would like to thank Matthew Smith for managing the manual annotation

process.

On a personal note, I would like to convey my thanks to my parents,

and my wife for their inspirations and encouragements to complete this

task.

iv

Table of Contents

List of Figures viii

List of Tables x

List of Acronyms xii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Research Goals and Objectives 4

1.4 Outline . 6

2 Background 8

2.1 Software Engineering Concepts 8

2.1.1 Requirements Engineering 8

2.1.2 Software Requirement Specifications 9

2.1.3 Non-Functional Requirements 9

2.2 Requirements Quality Assurance 11

2.3 Semantic Computing Concepts 13

2.3.1 Knowledge Representation using Ontologies 13

2.3.2 Natural Language Processing 14

2.3.3 Machine Learning . 16

2.4 Summary . 19

3 Literature Review 20

3.1 NLP-based Requirements Engineering 20

3.2 NFR Classification . 21

v

3.3 Requirement Quality Assurance 23

3.4 Semantic Analysis of RE Statements 26

3.5 Discussion . 27

4 System Design 30

4.1 Methodology . 30

4.1.1 Ontology Building Phase 32

4.1.2 Corpus Annotation Phase 32

4.1.3 NFR Classification Phase 33

4.1.4 Requirements Thematic Roles Extraction Phase 33

4.1.5 Non-Testability Detection Phase 33

4.2 System Overview . 34

4.3 Data Layer . 35

4.3.1 The NFRs View . 36

4.3.2 Thematic Roles View . 36

4.3.3 Fit-Criteria View . 36

4.4 NFR Preprocessing Layer . 39

4.4.1 Automatic Classification of Requirements 39

4.4.2 Thematic Roles Extractor 42

4.5 Quality Assurance Layer . 44

4.6 Summary . 46

5 Implementation 48

5.1 Implementation Tools . 48

5.1.1 GATE . 48

5.1.2 Protégé . 50

5.2 System Implementation . 51

5.2.1 NFR Ontology . 51

5.2.2 NFR Classifier . 52

5.2.3 Ontology Population . 54

5.2.4 Requirement Analysis ReqAnalysis 55

5.3 Summary . 59

vi

6 Corpora and Evaluation 60

6.1 NFR Corpora . 60

6.1.1 Enhanced PROMISE Corpus 60

6.1.2 SRS Concordia Corpus 65

6.2 System Evaluation . 69

6.2.1 NFR Classifier . 70

6.2.2 Thematic Roles Extractor 72

6.2.3 Non-Testability Detector 73

6.3 Summary . 75

7 Conclusions and Future Work 76

Bibliography 77

A NFR Classifier Configuration 88

B Gazetteer Lists 90

B.1 Modality . 90

B.2 Quantification . 92

B.3 Condition and Limit . 92

C JAPE Rules for Requirement Thematic Roles Extractor 95

C.1 Modality . 95

C.2 Agent . 95

C.3 Action . 97

C.4 Theme . 98

C.5 Fit-Criteria . 98

C.6 Condition . 100

C.7 Instrument . 101

C.8 Goal . 102

C.9 Non-Testability Detection . 103

D OwlExporter 104

vii

List of Figures

1 Defects Map . 11

2 An Example [CV95] of a Separable Problem in a Two-dimensional

Space. 19

3 Phases of our Methodology . 31

4 High-Level System Design . 34

5 Requirements Ontology (excerpt) 37

6 RE Ontology (Thematic Role View) 37

7 RE Ontology (NFR-Fit Criteria View) 39

8 NFR Classifier Design . 41

9 Text Mining System Design for Analyzing NL Requirements

Statements . 42

10 Auxiliary Verbs Structure . 43

11 Thematic Role Output Example 43

12 Non-Testability Detector Example 45

13 GATE Architecture Overview [ea11] 49

14 NFR Ontology . 51

15 NFR classifier pipeline . 52

16 Batch Learning PR . 53

17 NFR Classifier Output Annotations 54

18 Individuals Populated into the Ontology for Security NFR us-

ing OwlExporter . 55

19 SPARQL Query for all Security NFR Sentences in the Ontology

using Protégé . 55

20 Requirement Thematic Roles Extractor Pipeline 56

21 Thematic Roles Rules Example 58

22 Thematic Roles, Fit-Criteria, and Non-Testability Annotations 58

viii

23 Manual Annotation Process Example for the Enhanced PROMISE

Corpus . 62

24 Examples of Different Types of Syntactic Forms Present in

the Enhanced PROMISE Corpus 65

25 Manual Annotation Process Example for SRS Concordia Corpus 67

ix

List of Tables

1 Examples for Testable and Non-Testable NFRs 5

2 NFR Definitions . 10

3 Requirements Defects Definitions [van09] 12

4 Thematic Roles [JM09] . 17

5 Thematic Roles in SRS Documents 38

6 Fit-Criteria Concepts Description 40

7 Analysis of the Fit-Criteria on the Enhanced PROMISE Corpus 40

8 NFR Classifier Example Input Sentences 41

9 Patterns for Detecting the Different Thematic Roles in the Re-

quirements . 44

10 Patterns of Different Types of Fit-criteria 45

11 System Requirements vs. Design 47

12 NFR Classes within the Enhanced PROMISE Corpus 61

13 Corpus Patterns Statistics of the Enhanced PROMISE Corpus. 63

14 SRS Concordia Corpus: SRS Documents and their Source for

the SRS Concordia Corpus . 66

15 Numbers of Annotation Classes Sentences per each Document 68

16 Cohen’s Kappa between each Pair of Annotators 69

17 SVM Results Compared to other Machine Learning Algorithms 71

18 Results for the SVM Classifiers on the SRS Concordia Corpus 72

19 Confusion Matrices . 73

20 Comparison between SVM and Indicator Classifiers on the

PROMISE Corpus . 74

21 Thematic Role Evaluation Results 74

22 Evaluation of the Automatic Non-Testability Detector on the

Enhanced PROMISE Corpus . 75

x

23 Non-Testability Detector: Confusion Matrices 75

xi

List of Acronyms

API Application Programming Interface

CREOLE A Collection of REusable Objects for Language Engineering

DT Decision Tree

EBNF Extended Backus–Naur Form

EM Expectation-Maximization

FR Functional Requirement

GATE General Architecture for Text Engineering

GUI Graphical User Interface

IR Information Retrieval

JAPE Java Annotation Patterns Engine

KNN K-Nearest Neighbor

LR Language Resource

ML Machine Learning

NFR Non-Functional Requirement

NLP Natural Language Processing

NN Neural Network

NR Non Requirement

OWL Web Ontology Language

PAUM Perceptron Algorithm with Uneven Margins

POS Part-of-speech

xii

PR Processing Resources

QA Quality Assurance

SBVR Semantic of Business Vocabulary and Rules

SDLC Software Development Life-Cycle

SQWRL Semantic Query-Enhanced Web Rule Language

SRS Software Requirement Specification

SVM Support Vector Machine

TF-IDF Term Frequency - Inverse Document Frequency

UML Unified Modeling Language

XML Extensible Markup Language

xiii

Chapter 1

Introduction

If you can’t measure a requirement, it is

not really a requirement.

Suzanne Robertson

This thesis is concerned with the development of an automatic quality

assurance system, focused on providing confidence that non-functional re-

quirements (NFRs) can be fulfilled. The goal of our approach is to ensure

the testability of NFRs written in a Software Requirements Specifications

(SRS) document. The application of this work is to ensure high quality of

the NFRs and thereby improve effectiveness for the consequent testing of

these NFRs. We propose a domain-independent quality assurance frame-

work that extracts the different types of NFRs from requirements text, ana-

lyzing their main thematic roles, in order to use it in the quality assurance

process.

1.1 Motivation

When an initial set of requirements has been elicited and evaluated, it can

be captured in a requirements document. Natural language requirements

specifications are the most commonly used form (as opposed to formal

models, based on a logical framework), accounting for up to 90% of all spec-

ifications [MFI04]. However, natural language specifications are prone to

a number of errors and flaws, in particular due to the ambiguity inherent

1

in natural language. Moreover, there is a lack of available methods and

tools that aid software engineers in managing textual requirements. As

the requirements are written in informal natural language, they cannot be

easily analyzed for defects. Our approach to overcome these challenges is

based on natural language processing (NLP), machine learning techniques,

and ontologies.

Recent studies show that designers and developers often focus more on

the behaviour of a system (i.e., functional requirements (FRs)) and under-

estimate the cost and the time of the NFRs [Kas09]. This can lead to cost

and time overruns, and ultimately to project failures. Hence, the detection

and classification of NFRs has become more important in Requirement

Engineering (RE), and is therefore the goal of the work described here.

Most of the terms and concepts in use for describing NFRs have been

loosely defined and often there is no commonly accepted term for a gen-

eral concept [Gli07]. In [CNYM00], the authors present a decomposition

and operationalization of NFRs into types and managing them by refin-

ing and inter-relating NFRs, justifying decisions, and determining their

impact, elaborated in the NFR framework [CNYM00]. Decomposition re-

fines NFRs into more detailed NFRs. For instance, performance can be

decomposed into response time and throughput; while operationalization

results in strategies for achieving the NFRs, such as prototyping for a us-

ability NFR. Another NFR decomposition operationalization technique is

classification, e.g., as provided by the ISO/IEC 25010 international stan-

dard [ISO10]. NFR refinement is often enhanced with domain-specific

knowledge, as in [JKCW08], where the authors introduce knowledge and

rules provided by a domain ontology to induce non-functional require-

ments in specified domains. Al Balushi and Dabhi [ABSDL07] also use

an ontology-based approach to requirements elicitation, aimed at empow-

ering requirements analysts with a knowledge repository that helps in the

process of capturing precise non-functional requirements during elicita-

tion interviews. The approach is based on the application of functional

and non-functional domain ontologies (quality ontologies) to underpin the

elicitation activities. In contrast, our work aims at providing a more generic

2

solution to all types of NFRs, independent from any context.

NFRs that are not testable are typically ignored in system development,

as there is no way to verify them. Thus, NFRs must be checked for testabil-

ity. However, for natural language requirements, this so far had to be done

manually, which is time-consuming and therefore costly. We propose a se-

mantic quality assurance method that automatically detects non-testable

NFRs in natural language specifications, in order to improve software de-

velopment support.

1.2 Problem Statement

NFRs represent the borders or the constraints for a software system. They

are hard to model, as they are stated informally, and it is difficult to mea-

sure them, due to their subjective nature.

There are requirements artifacts and documents written in natural lan-

guage, describing the system-to-be within the requirement gathering phase.

Requirements are generally categorized into FRs and NFRs. Usually, NFRs

receive less attention than the FRs, and this may lead to project failure,

huge budget increases and/or delays for project delivery [Kas09]. So the

problem has many dimensions, requirement statements written in natu-

ral language that can be vague and interpreted in different ways. When

NFRs are not testable or quantifiable, they are likely to be ambiguous,

incomplete, or incorrect [PA09]. The following examples illustrate this is-

sue [RR06]:

1. “The application shall be user-friendly.”

This requirement is vague and non-measurable. A possible re-stated

requirement could be:

A new administrator shall be able to add a student, change a student’s

data, and delete a student within 30 minutes of their first attempt at

using the application.

2. “The system shall be intuitive.”

The word “intuitive” here is not clear and has different meanings. In

3

addition, we also do not know for what user group it should be intu-

itive. A re-phrased requirement can be:

The student shall be able to apply for the course within ten minutes of

encountering the application for the first time without reference to any

out-of-application help.

3. “The response shall be fast enough.”

The concept “fast enough” is not measurable. A modified requirement

can be:

The response time shall be no more than 2 seconds for 90 percent of

responses, and no more than 5 seconds for the remainder.

In Table 1, we provide examples for both non-testable and testable types

of NFRs.

1.3 Research Goals and Objectives

The main goal of this work is to provide a quality assurance assessment

framework of NFR using an automated system. We aim to turn unclear

requirements into testable shape, by highlighting all non-testable require-

ments to the stakeholders, in order to encourage them to improve the

requirement. This also makes the system maintainable after the end of

a project, and gives the ability to measure progress during project devel-

opment, through clear objectives and measures. The long-term vision of

this work is to create quality assurance applications for different types of

defects and errors, in order to decrease the probability of software project

failures. This main goal is further decomposed into the following four sub-

goals: (1) Building a generic ontology that represents the main concepts

in the requirements domain, as well as their relations; (2) Based on this

generic ontology, two corpora are developed: The first one is a new gold

standard corpus containing annotations for different NFR types, the sec-

ond one is for requirements thematic roles and testability; (3) A Support

Vector Machine (SVM) classifier to automatically categorize requirements

sentences into the different ontology classes is introduced; (4) Finally, a

4

Table 1: Examples for Testable and Non-Testable NFRs
NFR Non-Testable Testable

Availability

(A)

The product shall be avail-

able most of the time.

The product shall achieve at

least 98% uptime.

Look-and-

Feel (LF)

The intranet pages should

display appropriately in all

resolutions.

The intranet pages should

display appropriately in all

resolutions from 800x600

and higher.

Legal (L) All actions that modify an ex-

isting dispute case must be

recorded.

All actions that modify an ex-

isting dispute case must be

recorded for 7 years.

Maintain-

ability (M)

The product shall be updated

on a regular basis.

Maintenance releases will be

offered to customers once a

year.

Operational

(O)

The System shall allow many

users to work at the same

time.

The System shall allow work

for a minimum of 6 users to

work at the same time.

Performance

(P)

The product shall be fast to

respond to the queries.

On a 56k connection the sys-

tem response time must be

no more than 6 seconds 90%

of the time.

Scalability

(SC)

The concurrency capacity

must be able to handle peak

scheduling times.

The product shall be able to

process 10000 transactions

per hour within two years of

its launch.

Security

(SE)

The system shall store mes-

sages for tracking purposes.

The product shall store mes-

sages for a minimum of one

year for audit and transac-

tion tracking purposes.

Usability

(US)

The product shall be intuitive

and self-explanatory.

At least 90% of untrained re-

altors shall be able to install

the product without printed

instructions.

5

rule-based text mining system is used to analyze requirement thematic

roles and to flag non-testable NFRs. We can break down these goals in the

following more detailed research objectives:

1. Design a gold standard corpus for six different requirement docu-

ments from different backgrounds, to annotate the different types

of NFRs and FRs.

2. Design a classifier to classify the requirements into FRs, different

types of NFRs, and non requirements (NRs). The classifier allows to

convert the requirements artifacts into a machine processable form.

This also help the stakeholders by highlighting the NFRs to the ana-

lysts and designers.

3. Design a gold standard corpus for the main thematic roles of the

requirements statements, including Agent, Modality, Action, Theme,

Condition, Goal, and Instrument.

4. Design a rule-based application to automatically extract these main

thematic roles and evaluate it by comparing its output with the gold

standard corpus.

5. Develop a rule-based technique to highlight non-testable NFRs. This

may encourage the stakeholders to enhance these requirements. This

is developed to measure the progress during project development

through clear objectives and measures.

1.4 Outline

In this chapter, we explained the motivation for applying automatic quality

assurance to requirements documents and briefly described our research

goals and objectives towards this goal. The remainder of this thesis is

structured as follows:

In Chapter 2, we cover the foundations for our work and describe the

software engineering concepts that relate to this research. In addition, we

also provide an overview of semantic computing concepts that we used in

6

our work, including ontology representation, natural language processing,

and support vector machines.

Chapter 3 contains our literature survey, where we describe the related

work for NFR classification, requirements conceptualization, and SRS doc-

ument quality.

The system design is introduced in Chapter 4. The design includes

three layers: (1) The description of the ontology and corpus as a data layer;

(2) The quality assurance layer, including the NFR classifier and thematic

roles extractor; and (3) The non-testability detector layer.

Chapter 5 provides details for the implementation of each layer.

The detailed specification for the corpus and the evaluation of our sys-

tem is covered in Chapter 6.

Finally, a summary of this research work and possible future develop-

ments are discussed in Chapter 7.

7

Chapter 2

Background

Informal textual descriptions written in

natural language are a common means

for specifying requirements in early

phases of software projects.

Luisa Mich

In this chapter, a number of basic concepts underlying this thesis are

introduced. In particular, software engineering, semantic computing, and

machine learning concepts are presented.

2.1 Software Engineering Concepts

In this section, we will briefly define the main concepts for the software

engineering domain involved in our thesis, in particular requirements en-

gineering, SRS documents, NFRs, and Testability.

2.1.1 Requirements Engineering

Requirements Engineering (RE) is one of the most important phases of a

software project. The success or failure of software projects is highly de-

pendent on successful requirements engineering. Industry statistics show

that insufficient RE is the root cause in more than 50% of all unsuccessful

software projects [van09].

8

The requirement engineering activities include requirements elicitation,

requirements identification, requirements analysis and negotiation, require-

ments specification, requirements validation, and requirements manage-

ment [Som06]. Our goal in this work is to focus on quality assurance for

requirements specifications, which is introduced in the following subsec-

tion.

2.1.2 Software Requirement Specifications

The software requirements specification (SRS) document is the main arti-

fact in software requirements engineering. The SRS document is designed

to foster communication between the technical stakeholders, such as ana-

lysts, developers, and testers on one side, and non-technical people, such

as the clients and the product managers, on the other side. It may be con-

sidered as a contract between the service provider and the client to ensure

the software will meet their needs. It is typically written in informal nat-

ural language [MFI04], which impedes its automated analysis. The SRS

includes all system requirements, including the functional requirements

(FRs) and the non-functional requirements (NFRs). The FRs describe the

system functions, while the NFRs represent quality requirements or con-

straints in the design and the implementation. In our work, we concentrate

on the quality assurance of the NFRs, which are addressed below.

2.1.3 Non-Functional Requirements

Non-functional requirements (NFRs) define the system qualities or attributes

for a software system [van09]. The different types of NFRs interact both

with each other and with the FRs. In this thesis, the ISO 25010 stan-

dard [ISO10] is used to define the different types of NFRs, such as testabil-

ity, maintainability, extensibility, security, and scalability. Testability for

NFRs is the main goal for this work. Table 2 defines the NFR types that we

use in our ontology, together with examples.

9

Table 2: NFR Definitions
Class Definition Example

Constraint Constraints are defined in [LW03] as re-

strictions on the design of the system, or

the process by which a system is devel-

oped, that do not affect the external be-

havior of the system but that must be

fulfilled to meet technical, business, or

contractual obligations.

“The system’s design will rely

heavily on existing patterns

and models for the organiza-

tion of system components.”

Utility The ease with which a user can learn to

operate, prepare inputs for, and interpret

outputs of a system or component (Exter-

nal and internal quality, Utility [Fir03]).

“The GUI under the rehearsal

session should be designed

to help students to prepare

exams.”

Security A measure of the system’s ability to re-

sist unauthorized attempts at usage and

denial of service while still providing its

services to legitimate users (Functional-

ity quality requirement [ISO10]).

“The system shall allow sys-

tem administrators to man-

age the users by creating,

editing, or deleting users.”

Efficiency The performance relative to the amount

of resources used under stated condi-

tions [ISO10].

“The system should be able

to handle the concurrent ac-

cess of the maximum capac-

ity of an exam room during

an exam session.”

Reliability The ability of a system or component

to perform its required functions under

stated conditions for a specified period of

time [ISO10].

“The system shall provide

the capability to back-up the

Data.”

Maintainability The degree of effectiveness and efficiency

with which a product or system can

be modified by the intended maintain-

ers [ISO10].

“The system shall keep a log

of all the errors.”

Functional

Suitability

The degree to which a product or system

provides functions that meet stated and

implied needs when used under speci-

fied conditions [ISO10]. It is only con-

cerned with whether the functions meet

stated and implied needs, not the func-

tional specification

“The system’s intrinsic char-

acteristic of being designed

for change will allow it to

easily integrate with any

required third-party compo-

nents.”

10

2.2 Requirements Quality Assurance

Based on a list of defects contained in [van09], Figure 1 shows a require-

ments defects map. Out of this list, our focus in this thesis is non-testability

defect detection. A complete list of requirements defects and their defini-

tions are provided in Table 3.

Figure 1: Defects Map

ISO/IEC 25010:2011

The Systems and software Quality Requirements and Evaluation (SQuaRE)

standard [ISO10] provides system and software quality models, including:

1. Quality in use model, which defines five characteristics that relate to

the outcome of an interaction when a product is used in a particular

context. The quality in use model includes effectiveness, efficiency,

satisfaction, freedom from risk, and context coverage.

2. Product quality model, which defines eight characteristics related to

the static properties of software and dynamic properties of the com-

puter system. The product quality model includes functional suit-

ability, performance efficiency, compatibility, usability, reliability, se-

curity, maintainability and portability. Each characteristic has sub-

characteristics, for example, maintainability includes modularity, re-

usability, and testability.

11

Since testability is part of the product quality model, our definitions and

concepts are based on that model.

Testability

Testability is defined according to ISO25010 [ISO10] as a degree of effec-

tiveness and efficiency with which test criteria can be established for a

Table 3: Requirements Defects Definitions [van09]

Defect Definition

Omission A problem world feature not stated by any requirement

Contradiction A requirement defining a feature in an incompatible way

Inadequacy A requirement not adequately stating a problem world fea-

ture

Ambiguity A requirement allowing a feature to be interpreted in differ-

ent ways

Unmeasurability A requirement stating a feature in a way that cannot be

precisely compared with alternative options

Noise A requirement has no information related to any problem

world feature

Overspecification A requirement has information related to the solution

world not the problem world

Unfeasibility A requirement that cannot be realistically implemented

within assigned budget, schedule or development platform

Unintelligibility A requirement stated in an incomprehensive way for those

who need to use it

Poor structuring Requirement not organized according to any sensible and

visible structure rule

Forward reference A requirement stating a feature that is not defined yet

Remorse A requirement stating a feature too late or incidentally

Poor modifiability A requirement whose modification may propagate to other

requirements

Opacity A requirement whose rationale, source or dependencies

are invisible

12

system, product or component and tests can be performed to determine

whether those criteria have been met. Testability is part of maintainability,

which is the efficiency with which a product or system can be modified by

the intended maintainers. A testable requirement is a requirement that

has been broken down to a level where it is precise, unambiguous, and

not divisible into lower level requirements.

2.3 Semantic Computing Concepts

In this section, we give a brief introduction to knowledge representation us-

ing ontologies, natural language processing (NLP), machine learning (ML),

supervised learning, and support vector machines (SVMs), which are used

in this thesis.

2.3.1 Knowledge Representation using Ontologies

Ontologies have the ability to model a domain through a formal and explicit

representation. An ontology contains concepts and relations to represent

a domain semantically. Recently, researchers have increasingly adapted

ontologies to conceptualize large amounts of information [CBCG10].

Ontologies have been used in the requirements engineering field for

a number of years [CBCG10] for describing SRS documents. Dragoni et

al. [DDCPT10] introduced an ontological representation approach for SRS

documents. The system queries the concepts using a vector space model.

Ontologies also used for formally representing requirements. Dobson and

Sawyer [DS06] introduce an ontology for requirements dependability repre-

sentation. It includes several NFRs, such as: availability, reliability, safety,

integrity, maintainability, and confidentiality. Kassab [Kas09] proposed an

approach for using ontologies for representing NFRs knowledge. His ap-

proach provides NFRs definitions for ontology concepts, without reference

to any specific domain. Ontologies are also used for formally representing

application domain knowledge. Ontologies should be designed for a spe-

cific task [Dev02]. They can be used at development time or at run time

within software development [Fon07]. Breitman and Sampaio do Prado

13

Leite [BSdPL03] proposed an application ontology building process, based

on the Language Extended Lexicon (LEL). The lexicon provides elicitation,

model and analysis systematization of ontology terms.

Web Ontology Language (OWL). The World Wide Web Consortium (W3C)

published the OWL1 standard in 2004, with three levels of expressiveness,

including OWL Lite, OWL DL (Description Logic), and OWL full. Powerful

software tools for ontologies are reasoners, which have the capability to in-

fer logical consequences from the existing ontology concepts and relations,

such as the Racer [HM01] and FaCT++ [TH06] systems.

2.3.2 Natural Language Processing

Natural Language processing (NLP) is defined according to [Lid01] as “a

theoretically motivated range of computational techniques for analyzing and

representing naturally occurring texts at one or more levels of linguistic anal-

ysis for the purpose of achieving human-like language processing for a range

of tasks or applications.”

Natural Language processing is considered part of the Artificial Intelli-

gence (AI) discipline. In our work, NLP is used to implement tasks, such

as software quality assurance for documents and artifacts, according to

specific guidelines in the problem domain.

Natural Language Processing is often divided into [Lid01]:

1. Phonology level deals with sounds.

2. Morphology level identifies units, such as root and affixes, within

words.

3. Lexical level converts a sequence of characters into a sequence of

tokens.

4. Syntactic level deals with the word within the sentence, in order to

determine its linguistic structure and meaning.

14

5. Semantic level deals with meaning. Our system is considered at the

semantic level, as it enhances the requirements sentences quality. It

tries to detect non-testable sentences.

6. Discourse level deals with many sentences together as we cannot un-

derstand the sentence without their context.

7. Pragmatic level deals with the general context understanding of the

text.

The main NLP applications can be summarized as [Lid01]:

1. Information Retrieval (IR) to search for documents in a large document

collection.

2. Information Extraction (IE) for extracting structured information from

unstructured text. Our system tries to extract the main requirement

phrases from a SRS.

3. Question-Answering provides a list of answers relative to a user ques-

tion.

4. Summarization provides a shorter version of a larger text.

5. Dialogue systems are usually focused in a particular domain. Dia-

logue systems can support a lot of business applications, such as

responding to customers’ questions in the domains like flight book-

ing or hotel reservations.

The main NLP tasks that we are using in our system are:

1. Tokenization, which deals with chopping a stream of text into pieces

such as words, phrases, symbols, or other meaningful elements called

tokens [MRS08].

2. Sentence splitting task combines tokens into sentences.

3. Part-Of-Speech tagging task reads a stream of text in some language

and assigns parts of speech to each token, such as noun, verb, adjec-

tive, etc. [TM00].

15

4. Morphological Analysis identifies units, such as root and affixes, within

tokens.

5. Text pattern extraction provides for building custom rules to extract

text patterns, e.g., by regular expression matching. The Common

Pattern Specification Language (CPSL) is another example technique.

CPSL is designed to specify information extraction rules by specifying

finite-state grammars [AO98]. We use the Java Annotation Patterns

Engine (JAPE), a variant of CPSL, in our rule-based requirement the-

matic roles extractor system.

Shallow Semantic Parsing

Semantic role labeling or shallow semantic parsing is an NLP task to label

the semantic arguments in a sentence. The labels are the thematic roles

or relations that were introduced in the generative grammar by [Gru65,

Fil68, Jac72]. For example, in the sentence “The system shall refresh the

display”, the task would be to recognize “refresh” as the verb, “The system”

as representing the AGENT, and “The display” as representing the THEME.

A list of the most commonly used thematic roles is provided in Table 4.

2.3.3 Machine Learning

Machine Learning (ML) is defined according to [Sim13] as “the field of

study that gives computers the ability to learn without being explicitly pro-

grammed”. It is also defined by [Mit97] as “A computer program is said

to learn from experience E with respect to some class of tasks T and per-

formance measure P, if its performance at tasks in T, as measured by P,

improves with experience E”. Machine learning is categorized into three

main fields, including: supervised learning, unsupervised learning, and

reinforcement learning. We discuss supervised learning here, as it is the

technique applied in this thesis.

16

Table 4: Thematic Roles [JM09]
Class Definition Example

Agent The volitional causer of an event “The waiter spilled the soup”

Experiencer The experiencer of an event “John has a headache”

Force The non-volitional causer of the event “The wind blows debris from

the mall into our yard”

Theme The participant most directly affected by

an event

“Only after John broke the

ice”

Result The end product of an event “The government has built

a regulation-size baseball dia-

mond”

Content The proposition or content of a proposi-

tional event

“John asked ‘You met Mary at

a supermarket’”

Instrument An instrument used by an event “He gave John a shocking de-

vice”

Beneficiary The beneficiary of an event “She makes hotel reserva-

tions for her boss”

Source The origin of the object of a transfer event “I flew in from Boston”

Goal The destination of an object of a transfer

event

“I drove to Portland”

Supervised Learning

Supervised learning is one of the machine learning branches that requires

having an output associated with each input data point. To be able to

map inputs to correct outputs, parameters for these algorithms are trained

mainly to minimize an objective function that quantifies the discrepancy

between the predicted outputs produced by the algorithm and the true

outputs provided to the trainer. If the desired output exhibits continuous

values, the task is referred to as a regression problem, which are normally

evaluated by using the squared error between the true and predicted out-

put values (e.g., estimating an apartment rent given inputs related to its

location, area, and date of construction). Classification problems, on the

other hand, have categorical outputs like predicting the sentiment of social

17

media post concerning certain topics of interest. Classification tasks are

evaluated by using either the classification error rate (CER), which is the

percentage of predicting the wrong class, or the cross entropy (CE), which

measures the distance between the correct output vector and the predicted

output.

Examples algorithms in this category include Support Vector Machine

(SVM), Neural Network (NN), Decision Tree (DT), K-Nearest Neighbor (KNN),

and Gaussian Process (GP). The range of successful applications for super-

vised learning cover a wide variety of domains, including text classification,

machine translation, Automatic Speech Recognition (ASR), Optical Char-

acter Recognition (OCR), visual object detection and recognition, among

others.

Support Vector Machines (SVMs)

SVMs were theoretically developed from Statistical Learning Theory in the

60s and introduced in COLT-92 [BGV92] by Boser, Guyon & Vapnik.

A Support Vector Machine or Support Vector Network is a supervised

learning model used for classification and regression analysis. The train-

ing phase in the binary classification problem assigns each example into

one category or class. Then, the SVM algorithm assigns new examples to

the given two categories. The SVM model is a representation of the exam-

ples in space as points and tries to find the widest gap (margin) to act as a

separator to the categories, as shown in Figure 2.

In addition to linear classification, kernels are used to perform non-

linear classification by projecting the points into a higher dimensional

space to improve the categories separation. Linear, Gaussian, and poly-

nomial are examples of kernels. We use a third order polynomial kernel in

our NFR classification system.

18

Figure 2: An Example [CV95] of a Separable Problem in a Two-dimensional

Space.

2.4 Summary

In this chapter, we detailed the foundations related to our work. In Chap-

ter 3, we compare similar efforts related to the different parts of this the-

sis, namely NFR classifiers, requirement thematic roles extraction, and

requirements quality.

19

Chapter 3

Literature Review

The idea is to quantify the extent to

which each requirement must be met.

Joanne Atlee

In this chapter, we survey existing efforts that are similar to our re-

search work. In Section 3.1, general reviews and studies on requirements

engineering related to our work are presented. Section 3.2 addresses

related work for NFR classification. Then, Section 3.3 introduces a dis-

cussion of similar work for requirements quality assurance. Finally, Sec-

tion 3.4 discusses work related to requirements thematic roles extraction.

3.1 NLP-based Requirements Engineering

The foundational requirement engineering concepts have been defined in

Section 2.1. In this section, we will discuss five market research studies,

surveys, and reviews related to our research work.

An interesting market research survey [LMP04] studied market needs

for linguistic tools in requirements analysis. This survey, done on 142

American and European software companies, shows that about 70% of

the companies need requirements identification automation. It also shows

that only one-third of the cases use tools to support requirements analy-

sis. The study found that the market needs requirements analysis tools,

20

because most of the requirements artifacts are in unrestricted natural lan-

guage or controlled natural language.

Betty [CA07] presents requirements engineering state of the art and

challenges facing the domain. The study states that linguistic analysis

and ontologies are one of the important state of the art techniques for the

analysis, validation, verification of requirements.

Anthony Finkelstein [Fin94] created a review and research agenda for

requirements engineering. The study lists a number of important points,

such as research direction preconditions, including organizational settings,

groundwork, acquisition, modeling, analysis, measurement, communica-

tion, and documentation. In the analysis section, the author mentioned

several points, such as using automation tools for requirements inspec-

tion. In addition, he mentioned using automation with formal reasoning

for requirement verification.

Requirements documents, use cases, detailed design documents, use

case maps, source code, and comments are all artifacts that use text

throughout the software life cycle, as stated in the review [CGC12] by

Agustin Casamayor. The study lists a number of areas that use NLP and

IR techniques in the RE field. This includes detection and classification of

requirements, detection of potentially ambiguous requirements, clustering

requirement specifications by functionality, NFR classification, and map-

ping of concerns in the problem domain to solution domain components.

The use of ontologies in RE was introduced in [CBCG10]. The paper

presents three areas where a researcher can apply ontologies, such as

requirements specification documents description, the application domain

knowledge formal representation, and the formal representation of require-

ments.

3.2 NFR Classification

We previously defined the different NFR types in Section 2.1.3. Several

attempts have been made to develop automated tools for detecting and

classifying NFRs from SRS. Cleland-Huang et al. [CHSZS06] developed the

21

PROMISE corpus, which contains 15 SRS documents annotated by master

students at DePaul University. They use the corpus to design an NFRs

classifier that consists of two stages: The first stage is identifying indicator

items for each NFR class and then calculates a probabilistic weight for

each indicator. The weight represents the level of an indicator’s importance

to a specific NFR class. The second stage is calculating the probability

of the classified sentence, based on these indicators. Then, thresholds

are applied to decide which class a requirements statement belongs to.

All unclassified sentences belong to the functional requirement class. A

normalization step is performed before classification, including removing

stop words and stemming all remaining words.

Examples of indicators for the security class are “authen” and “access”.

Due to the limited amount of training data, the leave-one-out strategy is

used to evaluate the algorithm on the PROMISE corpus. The indicators are

extracted and weighted based on two different methods: The first method

is selecting the highest 5, 10, or 15 indicators repeated for each NFR class.

The second method includes all terms as indicators. The classification is

done by picking the top score or doing a multi-classification. The multi-

classification was finally adopted, as it achieves better results. The work

performed three different experiments: The first one using the fixed indica-

tors, giving the poorest results, the second one is using dynamic indicators

during the training phase, and the third one is based on test data collected

from an industrial domain. Using all indicator terms, the system achieves

59% recall and 29% precision [FBY92]. Using indicator terms mined from

30% of the industrial test data results in 79% recall and 43% precision,

which is their best result.

Hussain et al. [HKO08] have built their classifier on the assumption

that an NFR sentence’s characteristic is that it contains numeric values.

The PROMISE corpus is used for classifier training, but with only two

classes, FR and NFR. The Stanford parser is used to morphologically stem

the words in order to extract the features that train the classifier. A large

set of features is then extracted to train the classifier: The authors found

22

that three syntactic features and eight sets of keywords features are dom-

inant in the classification process. A Java application was built to select

the features parsed from the sentences. In addition, the Weka [HFH+09]

decision tree C4.5 tool kit is used for classification. A ten cross-fold vali-

dation method was performed for the evaluation, resulting in 100% recall

and 97.8% precision.

Casamayor et al. [CGC09] proposed a recommender system using a

semi-supervised learning technique. At the beginning, a sentence is clas-

sified into FR or NFR. If the sentence is a NFR, the system suggests the

type of the NFR for the analyst to choose. The analyst’s feedback is used to

enhance the system for the next iteration. A Java tool is built for the rec-

ommendation system interface. A Naive Bayes classifier is implemented

using the EM (Expectation-Maximization) strategy. For their evaluation,

the authors compare the results with supervised classifiers, such as TF-

IDF, Naive Bayes, and KNN. Ten cross-fold validation is used to evaluate

the algorithms, trained on the PROMISE corpus. For EM training, 75% of

the data corpus are used, and 25% are used for testing. The advantage of

this approach is a reduction of the labeling effort, compared to supervised

methods. It can help to improve a system during the analysis phase. In

contrast, it can be hard to build more layers on top of the classification

layer, such as the automatic quality assurance layer, using this method,

as the tool needs input from a user.

3.3 Requirement Quality Assurance

Requirements quality assurance (QA) is an active area of research, where

numerous automated tools have been proposed.

Hussain et al. [HOK07, OHK07] developed a decision tree C4.5 classi-

fier to detect ambiguity in SRS documents. The process is semi-automated,

due to client interaction. The results using 10-fold cross-validation demon-

strate 86.67% accuracy. This work concentrates on detecting surface un-

derstanding ambiguities, rather than conceptual understanding. Ambigu-

ous keywords, syntactic and discourse-level features are used to build the

23

classifier. The problem descriptions are collected from a corpus1, which is

annotated to train the classifier.

Ferrari et al. [FdSG14] proposed a quality assurance tool, named Com-

pleteness Assistant for Requirements (CAR), which helps a requirements

engineer in discovering relevant concepts and interactions in a require-

ments document. The development steps are Part of Speech (POS) tag-

ging, selecting some sequences of POS as linguistic filters, calculating the

C-NC [BDMV10] value that indicates how much a word or a multi-word

is likely to be conceptually independent from the context in which it ap-

pears. Two terms are related when they frequently appear together. The

authors performed a pilot project to evaluate their CAR tool, by writing

requirements both with and without tool support. The work also presents

two different metrics to measure the requirements completeness, called

degree of concept completeness and degree of interaction completeness.

The usage of the tool helped in improving the completeness of the require-

ments specification. The authors argue that the proposed tool can play a

complementary role during requirements definition. Backward functional

completeness is higher when the tool is employed with 8.6% in average.

Forward functional completeness is higher when the tool is employed with

14.3% on one subject, lower with 10% one the other subject.

Park et al. [PKKS00] proposed a requirements analysis support system,

where they identify possible redundancies and inconsistencies. In addition,

they extract possibly ambiguous requirements, by measuring the similar-

ity between requirement sentences. The authors use an indexing scheme,

then combine a sliding window method with a syntactic parser. The system

uses z-scores [MBK91] and Salton’s cosine coefficients [SM86] to measure

similarity between sentences.

Fabbrini et al. [FFGL01] propose a tool called QuARS (Quality Analyzer

of Requirements Specification) for natural language software requirements

analysis. First, SRS documents are analyzed by a lexical analyzer to verify

the English grammar. A syntactical analyzer is used to build the deriva-

tion trees of each sentence. Finally, a quality evaluator, which depends

1ACM’s OOPSLA designfest available online at http://designfest.acm.org/

24

on the rules of a quality model and dictionaries to perform the sentences

evaluation, is applied. The tool aims to provide its users with warning

messages about potential defects. Their quality model contains several

high-level properties, including completeness, understandability, and con-

sistency. The authors applied QuARS on four different domains: business,

space software, telecommunication, and security applications. The tool de-

tects about 50% of the defects on each document. Multiplicity, vagueness

and under-specification indicators are the most common defects detected

in the test set. In one example of the security domain, the requirement

mentions the word “key”, but it is vague because it could be public key,

private key, or secret key.

Castaneda et al. [CBC12] propose a tool called OntoSRS for SRS doc-

uments to improve the quality using an ontology. This work attempts to

address requirements quality attributes, such as ambiguity, insufficiency,

and incompleteness. OntoSRS is based on the organized SRS defined in

the IEEE 830 standard [Pre98]. Their main idea is to populate the SRS into

an ontology and then apply a query language, such as SQWRL [OD08], to

extract the defects. The authors did not evaluate the impact of their tool

on a specification.

ReqWiki [SAW13] is a novel open source web-based approach for soft-

ware requirements engineering. It is based on a semantic wiki that in-

cludes natural language processing (NLP) assistants, which work collab-

oratively with humans on the requirements specification documents. It

is the first Requirements Engineering tool that combines wiki technology

for collaborative use and semantic knowledge representation for formal

queries and reasoning with natural language processing assistants within

a single, cohesive interface. ReqWiki provide a number of services to help

the analysts to write a better requirement such as, writing quality assess-

ment, readability assessment, information extractor, requirement quality

assurance, and document indexer. Requirement quality assurance is a ser-

vice based on the NASA requirements quality metrics [Pow07]. It detects

issues like incompletes, Options and Weak Phrases within specifications.

To measure the effectiveness of the NLP services, the authors compared

25

outstanding defects in revised SRS documents with and without NLP sup-

port. They found that using NLP services for SRS quality assessment pur-

poses significantly reduced the number of remaining issues throughout all

defects.

3.4 Semantic Analysis of RE Statements

Several attempts have been made to develop automated tools for extracting

requirements thematic roles.

Farfeleder et al. [FMK+11] propose a semantic guidance system (i.e., a

boilerplate requirements elicitation tool) to assist requirements engineers.

In their approach, capturing requirements is based on a semi-formal rep-

resentation. The relations and axioms of the domain ontology are used to

suggest concept names and thematic roles. The guidance system provides

good suggestions for more than 85% of the cases. However, the authors

mention that their tool needs to be evaluated on a larger data set.

Umber et al. [UBN11] developed a prototype tool based on the semantics

of a business vocabulary and corresponding rules (SBVR). SBVR business

vocabulary consists of terms and concepts used by a business organiza-

tion or community. Their tool can be used by software engineers to record

and automatically transform natural language software requirements to

a (SBVR) software requirements specification. However, this work does

not address the analysis of NFRs for testability. The analysis steps of

their tool are tokenization, sentence splitting, Part-of-Speech (POS) Tag-

ging, morphological analysis, semantic interpretation, extracting object

types, extracting individual and verb concepts, extracting quantifications,

constructing fact types, applying semantic formulation, and finally gen-

erating SBVR requirements. This tool achieves a recall of 91.66% and a

precision of 93.61% on a small case study, containing seven sentences

from the domain of an online ordering system.

OntRep [MWHB11] is designed to keep a set of requirements consistent.

The OntRep tool creates predefined concepts, providing the requirements

to be categorized, removing stop words, stemming, finding synonyms, and

26

hyponyms using WordNet [Mil95], assigning requirements to categories,

saving the elements in the ontology. Finally, semantic requirement con-

flict analysis is performed by parsing requirements using a EBNF [RSH09]

grammar templates, linking requirements components to semantic con-

cepts, and applying ontology-based reasoning to extract logical inconsis-

tencies between facts, as well as numerical inconsistencies. The authors

evaluated the effectiveness of the OntRep conflict analysis approach in a

case study with 6 project managers in 2 teams. A requirements expert and

an OntRep user performed the same tasks to enable comparing the quality

of results. OntRep found all conflicts in the requirements, while manual

conflict analysis identified 30 to 80% of the conflicts.

3.5 Discussion

In Section 3.1, the use of ontologies in RE study is presented. In this thesis,

an ontology is used to represent the different types of NFRs, such as secu-

rity, usability, and maintainability. We also employ an ontology model for

requirements phrase constituents, such as agent, modality, action, theme,

condition, goal, instrument.

In Section 3.2, we presented Gokhan et al.’s work [GCSY08]. Their

approach is very close to our work [ROW13], where machine learning is

used for NFR classification. However, the target of their research is quite

different from our work, where quality assurance is the main task to be

automated.

In this thesis, we developed a new NFR corpus that contains richer an-

notations, based on a formal ontology. Our SVM-based classifier also sig-

nificantly improves on previously described works based on the PROMISE

corpus. The ontological foundation of our work allows to automatically

transform software requirements documents into a semantic representa-

tion, which can then be further processed in order to (i) estimate the cost

of the software system and (ii) measure the quality of the written require-

ments.

Now, we will discuss the research gap we detected in existing work.

27

1. While evaluating the PROMISE corpus that most of the NFR classi-

fiers systems described above use [CHSZS06, HKO08, CGC09], we

realized that:

(a) It does not cover all requirements artifact types, such as vision

documents, use case descriptions, supplementary specifications,

as well as information included in e-mails or minutes of meet-

ings.

(b) Requirement sentences in this corpus contain only a single re-

quirements type. This is an artificial assumption, as a single

sentence can contain multiple requirements.

(c) The documents in the corpus were written by master students.

However, real-world SRS and related requirements documents

are written using different writing styles and at levels of abstrac-

tion.

In this thesis, we develop a new corpus that handles the limitations

of the PROMISE corpus above.

2. The NFR classifiers discussed before [CHSZS06, HKO08, CGC09] are

not based on any NFR semantic ontology. This means, they do not

provide for populating an ontology and run any queries using reason-

ers. In our work, we first propose an ontology for the different types of

NFRs, which forms the formal basis for constructing an NFR corpus

and training a classifier based on it.

3. The requirement quality assurance tools presented in Section 3.3 ad-

dress quality attributes for requirements, such as, ambiguity detec-

tion, completeness assistance, inconsistencies, understandability, in-

sufficient, and consistency identification. However, testability has not

been addressed so far. In addition, existing research [HOK07, OHK07,

FdSG14, PKKS00, FFGL01, CBC12, OD08] covers requirements spec-

ification in a general way. In our work, we deal with NFRs specifically,

as it is one of the important failure points in software projects.

28

In Chapter 4, we discuss our system’s requirements, based on the re-

search gap presented above. Then, we will address its design according to

these requirements.

29

Chapter 4

System Design

Elaborating a good requirement

document is difficult. We need to cater

for multiple diverse quality factors.

Each of them may be hard to reach.

Axel van Lamsweerde

The goal of our work is to assess the requirement quality attribute Testa-

bility.

In this chapter, we present our system design. In particular, the system

requirements are derived based on the research gap analysis presented in

the last chapter. Our system design contains three layers, which are (1)

corpus and ontology, (2) SVM classifier and thematic roles extractor, and

(3) the non-testability detector.

4.1 Methodology

In this section, we analyze the requirements for our system, based on what

we discussed and summarized in the literature review in Chapter 3. In

particular, the non-testability quality assurance methodology phases are

presented in Figure 3.

30

 Inception:
Understanding quality
assurance problem from
textual requirements & review

existing solutions

Inputs OutputsPhases

Testability detector

Related Literature

Experts opinion
Scopes of Practical

Application

Research Problems

Ontology Building:
Building ontologies based on
ISO 25010, and analysis of

requirements texts

SRS documents

ISO 25010 standard

requirements
thematic roles and

fit-criteria ontology

 NFR Ontology

Corpora Annotation:
Building corpora in order to
evaluate the NFR classifier and
thematic roles extractor

systems

6 SRS documents

PROMISE corpus

Ontologies
Enhanced PROMISE

corpus

SRS Concordia

annotated corpus

NFR Classifier:
Experiment to use our SVM
machine learning-based
approach for classifying
requirements as functional and
different types of non-

functional requirements.

SRS documents

NFR ontology Classified Functional &
Non-Functional)

Requirements

Implementation of our

requirements classifier

Non-Testability Detector:

Classify the non-testable

NFR sentences by

searching the fit-criteria

NFR sentences

Fit-criteria annotations
Non-testable

sentences

Implementation

of our testability

detector

Evaluation:
Compare the accuracy of our
automated system with the

annotated requirements corpus.

Annotated Requirements

Results of the non-

testability detection

Results from NFR

classifier, and thematic

roles extractor

Testability detector

Thematic Roles Extractor:
Extract the requirements main
thematic roles including Agent,
Modality, Action, Theme,
Condition, Goal, Instrument,

and Fit-criteria.

Enhanced PROMISE

corpus

thematic roles

ontology
Extracted

thematic roles

Implementation

of our thematic

roles extractor

Output from our system

Figure 3: Phases of our Methodology

31

4.1.1 Ontology Building Phase

Research question #Q1: Can the NFR types and the requirements main

thematic roles be modeled through an ontology, in order to use it in the

quality assurance process?

Requirement #1.0: Building an NFR and Requirements thematic roles On-

tology: To build corpora with annotated NFRs and requirement thematic

roles, an ontology has to be created. We can then use the annotations

of the developed corpora to populate this ontology with instances (individ-

uals). We base our NFR ontology on the work by Kassab [Kas09]; How-

ever, due to sparseness in our corpus we create an adapted version of the

ontology. In addition, to support automatic detection of non-testable re-

quirements, it is necessary to design a fit-criteria and requirement phrase

ontology and link it to the NFR one.

4.1.2 Corpus Annotation Phase

Research question #Q2: Can we create corpora for the NFR types and

the requirements main thematic roles in order to use them in a quality

assurance text mining application?

Requirement #2.1: NFR Corpus. In order to be able to develop and evalu-

ate automated requirements analysis tools, we need a gold standard cor-

pus. This gold standard corpus will provide fine-grained annotations of the

requirements. In addition, an ontological classification of different NFR

types, such as constraint, security, usability, maintainability is needed.

Since no such corpus existed, we developed a new corpus, based on the

NFR ontology.

Requirement #2.2: Requirements thematic roles Corpus. To build a qual-

ity assurance framework, we need to have an annotated corpus with the

main requirement thematic roles, such as Agent, Modality, Action, Theme,

Condition, Goal, and Instrument.

32

4.1.3 NFR Classification Phase

Research question #Q3.1: Can we build an application to classify the

different types of NFRs?

Requirement #3.1: NFR Classification. The NFR quality assurance appli-

cation has to classify requirements according to the different NFR types

defined in the ontology. To be able to ignore sentences that do not con-

tain any requirement, the classifier additionally has a special class called

‘non-requirement’ (NR). The classifier’s output is then consumed in the

subsequent quality assurance phases.

4.1.4 Requirements Thematic Roles Extraction Phase

Research question #Q4.1: Can we build an application to extract the

main requirements thematic roles from a SRS document, based on the

developed ontology?

Requirement #4.1: Requirements Thematic Roles Extraction. Our applica-

tion has to extract the possible thematic roles that exist in requirement

sentences, such as, agent, modality, action, theme, condition, goal, and

instrument. Additionally, it has to identify the fit-criteria, including num-

bers, as well as units of time, distance, display, and connection speed.

4.1.5 Non-Testability Detection Phase

Research question #Q5.1: Can we build an application to extract non-

testable NFR sentences?

Requirement #5.1: Non-Testability Detection in NFR. The tool has to identify

non-testable NFR sentences, based on the existence of fit-criteria.

33

Figure 4: High-Level System Design

4.2 System Overview

Based on the above requirements analysis, we can now develop the sys-

tem’s design. Our approach contains three layers, as presented in Fig-

ure 4:

1. The Data Layer, which contains:

• The conceptualization of the NFRs, modeled using the Web On-

tology Language (OWL) [Mv04]. We designed an adapted version

of the ontology presented in [Kas09], containing two extensions,

requirements thematic roles and fit-criteria, as well as their rela-

tions to the NFR types ontology [Kas09].

• Two manually annotated gold standard corpora:

34

– A ‘SRS Concordia’ corpus, which is used for the NFR classifier.

It contains six SRS documents, including 234 NFRs and 787

FRs.

– New annotations added to the PROMISE corpus such as agent,

action, theme, condition, and instrument. The corpus is used

for the thematic roles extractor. It includes 15 SRS docu-

ments, 326 NFRs and 358 FRs. This new annotated corpus

name forms our“Enhanced PROMISE corpus”.

2. The NFR Pre-processing Layer, which contains:

• An automatic requirements classification system, based on sup-

port vector machines (SVMs) [ROW13], which can automatically

categorize requirements sentences into different NFR ontology

classes.

• A rule-based text mining system that automatically identifies re-

quirements thematic roles in sentences.

3. The Quality Assurance Layer, which contains:

• The automatic non-testability detection, which is based on a

generic approach for building a quality assurance model. In this

thesis, we used a rule-based approach for non-testability detec-

tion. Statistical methods can also be used to do the same task.

In the following sections, the system layers will be described in more detail.

4.3 Data Layer

In this section, the requirements ontology, which is the basic component

of the data layer, is introduced. The corpora that are dependent on the

designed requirements ontology are detailed in Chapter 6.

In our approach, NFRs are classified based on a requirements ontology,

which is modeled using the Web Ontology Language (OWL) [Mv04]. This

allow us to populate the sentences to the ontology, and query it using

35

SPARQL [SPA08] (SPARQL Protocol and RDF Query Language). Our con-

ceptualization is an adapted version of the one developed in [Kas09], as

shown in Figure 5. This is done by limiting the major classes and con-

cepts to those that frequently appear in requirements documents. Most

of the concept definitions are based on the ISO25010 [ISO10] standard;

with some additional sources for further refinements, as indicated in the

background Section 2.1.3. This ontology contains several views:

1. The NFR view, which is concerned with the different types of NFRs

and divided into sub-categories;

2. The thematic role view, which represents the relations between the

requirements thematic roles;

3. The fit-criteria view, which represents a measurement model for NFR

fit-criteria.

4.3.1 The NFRs View

Figure 5 illustrates the semantic structure of the different types of NFRs.

Table 2 shows the class definitions, together with examples from our SRS

Concordia corpus. This corpus is used for automatic ontology classifica-

tion.

4.3.2 Thematic Roles View

Figure 6 illustrates the semantic structure of requirement thematic roles.

Definitions of the main concepts are detailed in Table 5.

4.3.3 Fit-Criteria View

This ontology is designed to connect the different NFRs, such as Perfor-

mance, with concrete measurement units suitable within a fit-criterion.

Figure 7 illustrates the main concepts of different NFRs and their relations

with fit-criteria and units. The main concepts are:

36

Figure 5: Requirements Ontology (excerpt)

Figure 6: RE Ontology (Thematic Role View)

37

Table 5: Thematic Roles in SRS Documents
Concept Description Example

Agent This concept represents the system, part of

the system, or stakeholders

The sys-

tem, The

website

Modality This concept is the auxiliary verbs; includ-

ing “must” for mandatory, “shall” and “will”

for required and “may” for optional

shall,

must

Action This concept is a verb or VG that represents

the action from the agent

display,

extract

Theme This concept contains the description of the

thing that the agent acts on; it can be part

of the system or external, such as a stake-

holders

the

screen

Condition This concept represents the condition on

the action of the agent. Most of the fit-

criteria are located in the condition phrase.

every 60

seconds

Goal This concept represents the reason behind

an action

in order

to load

the data

Instrument This concept represents the instrument

used to perform an action

using IE6

NFR: This class has nine subclasses of the different types of NFRs, as

indicated in Section 4.3.1.

Fit-criteria: This concept has two subclasses, Unit and Quantity.

Quantity: This subclass contains the quantity appearing before a unit.

Unit: This subclass has nine subclasses with the different types of unit

categories, including Time, Percentage, Limit, Connection speed, Fre-

quency, Distance, Currency, and Display, as shown in Table 6. Each

fit criterion can include units.

38

Figure 7: RE Ontology (NFR-Fit Criteria View)

Table 7 presents the statistics of the fit criteria occurrence for each

NFR in the Enhanced PROMISE corpus. This was used to build the re-

lationships between the measurements and the NFRs in the ontology, as

illustrated in same table. It can be seen that specific NFR subclasses are

correlated with concrete fit-criteria classes.

4.4 NFR Preprocessing Layer

In this section, the NFR classifier and SRS thematic roles extractor compo-

nents are presented.

4.4.1 Automatic Classification of Requirements

We describe our automatic sentence-based classifier for requirements doc-

uments. A custom text mining application detects candidate sentences

and classifies them using a machine learning algorithm. We trained our

system both on the PROMISE and Concordia corpora. The application is di-

vided into four steps, as shown in Figure 8. Documents are pre-processed

for the classification, using existing tokenization, sentence splitting, and

39

Table 6: Fit-Criteria Concepts Description
Concept Description Example

Time The time units 5 second, one

day, 8 AM

Percentage The percentage of the measured

object

90% of the

users

Limit The measured entities that do not

belong to the other fit-criteria

5 movies

Connection

speed

The data transfer connection

speed

15 mbps

Frequency The occurrence number of events

per time interval

2 times per day

Distance The distance between two objects 1.4 miles

Display The display measures 32 inch screen

Table 7: Analysis of the Fit-Criteria on the Enhanced PROMISE Corpus
Class F PE US A SE LF SC L O FT MN PO Total

Time 3 49 20 13 3 1 6 5 8 108

Percentage 1 7 17 11 7 3 1 4 2 3 56

Limit 4 2 3 1 1 12 2 25

Cn. speed 2 10 1 13

Frequency 2 1 3

Distance 2 2 4

Currency 1 1

Display 3 2 5

Total 12 60 42 25 20 7 21 0 13 2 11 0 215

Total Req. 271 76 99 29 97 51 29 15 86 13 29 1 796

Percentage 5 79 42 86 21 14 72 0 15 15 38 0 27

token stemming components (cf. Section 2.3.2). For the last step, we de-

signed a machine learning-based FR/NFR classifier for SRS documents.

The goal of this machine learning module is to classify input sentences

40

Figure 8: NFR Classifier Design

into four major categories, with eight classes: FR (Functional Require-

ments), Design Constraints, NR (Not a Requirement) and several types of

NFRs (security, efficiency, reliability, functionality, usability and maintain-

ability).

Example input sentences for each type are shown in Table 8.

Table 8: NFR Classifier Example Input Sentences
Class Example

FR The ASPERA-3 data set shall be stored on a local

SwRI archive

NFR The APAF ground data system shall have built-in

error handling

NR Section 4 contains general information to aid in

the understanding of this specification

In our experiments, Support Vector Machines (SVM) with a third order

polynomial kernel provided the best performance. We tried other machine

learning algorithms including K-Nearest Neighbour (KNN), and Perceptron

Algorithm with Uneven Margins (PAUM) [LZH+02] beside the SVM. The fea-

tures used for training are the unigram of the sentences’ tokens, using

their stem. Instead of a multi-classification, we perform a binary classifi-

cation for each type of FR/NFR. This is because some sentences contain

two or more types of requirements. E.g., “Web-based displays of the most

current ASPERA-3 data shall be provided for public view” is annotated as

both a FR and design constraint.

41

Figure 9: Text Mining System Design for Analyzing NL Requirements State-

ments

4.4.2 Thematic Roles Extractor

In this section, our goal is to define a method for labeling requirements

statements into thematic roles. The main thematic roles are Agent, Ac-

tion, Condition, Instrument and Theme. We defined the requirement the-

matic roles according to the semantic roles labeling that described before

in 2.3.2. We designed a generic component that can then be used in an

automatic quality assurance (QA) process. One of the important aspects

for requirements QA is to ensure whether NFRs are testable or not.

Figure 9 shows our high-level system design. Sentences are prepro-

cessed, using standard tokenization, sentence splitting, POS tagging, and

stemming. Then, sentences are chunked for noun and verb phrases in

order to identify the agents, instruments and actions. Measurements and

their quantities are extracted through dictionary-based lookups, in order

to extract the fit-criteria and their measures. Finally, transducer-based

rules analyze the thematic roles based on the ontology classes and report

non-testable NFRs, i.e., statements lacking a (compatible) fit-criterion.

The number of dictionary lists, which are used in the thematic roles

extractor, are listed below:

Shall: lists 51 terms with all possible combinations, as shown in Figure 10,

such as, shall, must be able to, or should be able to easily;

Shall allow: lists 15 terms of the shall allow combinations presented in

Figure 10, such as, shall allow, must prevent, or must provide the

ability to;

Condition: lists conditional phrases at the beginning of a requirement,

such as, if, when, once, or as long as;

42

Figure 10: Auxiliary Verbs Structure

Figure 11: Thematic Role Output Example

Limit: lists 28 terms conditions can start with, such as, a maximum of,

more than, either, or without.

Detailed descriptions of the dictionary lists are provided in Appendix B.

The transducer-based rules that are used to extract the thematic roles

can be described as follows:

Thematic Role Extraction Rules

Based on the syntactic information and the semantic dictionary labels, we

designed a number of rules to extract the different types of thematic roles,

as listed in Table 9.

Figure 11 shows example of thematic roles extractor output.

43

Table 9: Patterns for Detecting the Different Thematic Roles in the Require-

ments
Class Pattern

Agent Match noun phrases (NPs), using the MuNPEx

chunker, that come before a “Modality” phrase, as

well as NPs that come after a “shall allow” phrase

Action Match a verb group, using the ANNIE [ea11] VP

Chunker, that comes after a “Modality” phrase

Theme Match NPs that come after the action phrase

Condition Match a condition statement before the agent in the

beginning of the sentence or within the sentence

Goal Match a verb group coming after phrases in order to,

to, or for

Instrument Match NPs coming after phrases using or via

Fit-Criteria Extraction Rules

The rules for detecting the different types of fit-criteria, based on patterns

developed after a corpus analysis, are shown in Table 10.

4.5 Quality Assurance Layer

Our non-testability detector is introduced as an example of a requirements

quality assurance application. Other quality assurance components could

be build based on the data and preprocessing layers described in Sec-

tions 4.3 and 4.4.

Non-Testability Detector In this Section, the design of the non-testability

detector is introduced. In Figure 12, an example of the system’s output an-

notation is shown.

The sentence “The application shall be user-friendly.” is not testable

as it does not contain fit-criteria. On the other hand, the sentence “A new

administrator shall be able to modify a student record within 30 minutes

44

Table 10: Patterns of Different Types of Fit-criteria
Class Pattern

Time (Number + Adjective + Time Unit) or (Number +

Time Unit)

Percentage number + %

Limit (Number + Adjective + Noun) or (Number +

Noun)

Connection speed (Number + Adjective + Connection Unit) or

(Number + Connection Unit)

Frequency Number + times per time

Distance (Number + Adjective + Distance Unit) or (Num-

ber + Distance Unit)

Display (Number + X + Number + X + Number) or (Num-

ber + X + Number)

Figure 12: Non-Testability Detector Example

of their first attempt at using the application.” is testable, as it contains a

fit-criteria.

45

Non-testability rule-based system

The Non-testability rule-based system decides the non-testability of a re-

quirement, based on the fit-criteria’s existence in the NFRs. For the non-

testability rule-based system, we are using the fit-criteria thematic role

only, but we could use the thematic roles in more quality assurance ap-

plications. For example, we can analyze the action role in the sentences

for passive voice defects, such as “be validated”. We can also analyze the

agent roles in the system and report inconsistencies, such as “student

management system”, and “user application”. We can populate the on-

tology with the thematic roles individuals, and apply a set of rules using

SPARQL query language to highlight potential contradictions between two

sentences.

Non-testability Statistical System

In addition, we developed a statistical model using a SVM with a polyno-

mial kernel. We trained our system on the Enhanced PROMISE corpus

that contains 797 sentences. The Enhanced PROMISE corpus will be de-

scribed in Section 6.1.1. Documents are pre-processed to be prepared for

the classification, using tokenization, sentence splitting and token stem-

mer. We built a machine learning-based non-testability classifier for SRS

documents. The goal of this module is to classify input sentences into two

categories: testable sentences, such as “The system shall refresh the dis-

play every 60 seconds”, and non-testable sentences, such as “The system

shall allow a user to define the time segments”. In our experiments, a SVM

with a first order polynomial kernel is used. The features that are used for

training are the unigram of the sentences’ tokens, using its stem.

4.6 Summary

In this chapter, we have presented the design decisions for the main compo-

nents to develop a non-testability quality assurance system. Each system

46

Table 11: System Requirements vs. Design
System Requirements Design

Requirement #1.0: Building an

NFR and Requirements thematic

roles Ontology

Section 4.3.1 (The NFRs View),

Section 4.3.2 (Thematic Roles

View), and Section 4.3.3 (Fit-

Criteria View)

Requirement #2.1: NFR Corpus Section 6.1.2 SRS Concordia Cor-

pus

Requirement #2.2: Requirements

thematic roles Corpus

Section 6.1.1 Enhanced PROMISE

Corpus

Requirement #3.1: NFR Classifica-

tion

Section 4.4.1 (Automatic Classifi-

cation of Requirements)

Requirement #4.1: Requirements

Thematic Roles Extraction

Section 4.4.2 (Thematic Roles Ex-

tractor)

Requirement #5.1: Non-

Testability Detection in NFR

Section 4.5 (Quality Assurance

Layer)

requirement presented in Section 4.1 is mapped to a component in our de-

sign. We have presented the data layer that includes the ontology design in

Section 4.3, which meets the Requirement #1.1. The second layer consists

of a machine learning NFR classifier, and the rule based thematic roles

extractor, which meet the Requirement #3.1 and Requirement #4.1, re-

spectively. Finally, we presented the non-testability detector, which meets

the Requirement #5.1. Table 11 list all the system requirements presented

in Section 4.1, and link it to the design sections.

In Chapter 5, we will discuss the implementation tools and the imple-

mentation details for the proposed design.

47

Chapter 5

Implementation

Be the measure great or small. . .

let it be honest in every part.

John Bright

This chapter details the steps taken during the implementation process

of the solution described in Chapter 4. The main implementation tools,

GATE and Protégé, will be described in the first section. In the second

section, our implementation for the system design is presented.

5.1 Implementation Tools

In this section, we will introduce the implementation tools GATE for text

engineering, and Protégé for ontology building:

5.1.1 GATE

GATE [ea11] is a “General Architecture for Text Engineering”. It is an open

source framework, developed since 1995 at Sheffield university with the

goal to help developers, students, users, educators, and scientists to solve

text processing problems. GATE is a Java based software, providing a

user interface tool, called GATE Developer, and a set of libraries exposed

by an Application Programming Interface (API), called GATE Embedded, as

shown in Figure 13.

48

Figure 13: GATE Architecture Overview [ea11]

GATE Main Characteristics

1. GATE is a component-based architecture, as shown in Figure 13,

where data and application are separated. It has a large set of plu-

gins and a capability to develop customized plugins in a standard

interface. GATE has four main types of components:

• Language Resources (LR): a set of entities to be processed, such

as documents, corpora, annotation schemas, and ontologies.

• Processing Resources (PR): a set of tools and plugins that run a

certain text analysis function, such as parsers and tokenizers.

• Applications: consist of a pipeline of PRs, to be executed on the

LRs.

• Data Store: a place to store the processed LRs.

2. The components, or plugins, are called CREOLE, which stands for “A

Collection of REusable Objects for Language Engineering”. CREOLEs

consist of Java JAR files, plus configuration files, and are managed by

49

the CREOLE Plugin Manager. It is the base for developing customized

PRs.

3. GATE LRs can contain documents of different format types, such as,

xml, pdf, rtf, or html.

4. ANNIE: One of the main and essential GATE plugins, stands for “A

Nearly-New Information Extraction system”. It implements many tasks

such as tokenization, POS tagging, verb phrase chunking, and so on.

5. GATE has a rule engine called JAPE. JAPE stands for “Java Anno-

tation Patterns Engine”. It is a finite-state transducer, but executed

over GATE annotated documents. It provides the user with ability to

create grammar rules, where each rule contains a set of patterns.

6. A machine learning plugin provides the capability to perform three

tasks, namely text classification, chunk recognition, and relation ex-

traction. It supports many algorithms, such as SVM, which we use

for our NFR classifier. In addition, the Perceptron Algorithm with Un-

even Margins (PAUM), Naive Bayes, KNN and the C4.5 decision tree

are supported. XML configuration files are used to define an algo-

rithm and its parameters.

7. GATE facilitates the manual annotation process using a web-based

platform, called GATE Teamware. GATE can also generate corpus

statistics, and support evaluation using standard metrics, such as

cross-fold validation.

5.1.2 Protégé

Protégé is a free, open source ontology editor for intelligent applications.

It supports different formats, such as RDF/XML, Turtle, OWL/XML, OBO,

and others. Protégé has been developed by Stanford University in collabo-

ration with the University of Manchester.

50

Figure 14: NFR Ontology

5.2 System Implementation

The NFR ontology, NFR classifier, ontology population, thematic roles ex-

tractor, and non-testability labeler implementation details are described in

this section.

5.2.1 NFR Ontology

Our NFR ontology is designed with Protégé. It contains two main classes:

requirements and requirement thematic roles. The requirement class con-

tains the different types of NFRs, as described in Section 4.3.1, Figure 5.

The requirement thematic roles ontology contains the main roles of a re-

quirements sentence, including the fit-criteria as described in Figure 6.

The ontology also contains the relation between NFR and their fit-criteria,

as shown in Figure 14.

51

Figure 15: NFR classifier pipeline

5.2.2 NFR Classifier

Our NFR Classifier design is described in Section 4.4.1. In this section,

we will introduce the implementation details. Preprocessing is performed

by a pipeline implemented using GATE [ea11]. It extracts features from

the documents, which are then fed into a machine learning component.

This pipeline contains PRs, in particular the ANNIE components [ea11]

and a machine learning PR. To obtain the features for machine learning,

documents are pre-processed by using the ANNIE English Tokenizer PR,

the ANNIE Sentence Splitter, and the Snowball stemmer, as shown in Fig-

ure 15.

Support Vector Machine Classifier

To perform a machine learning task in GATE, we use the batch learn-

ing Processing Resource (PR). The configuration parameters for the batch

learning PR are specified in an external XML file, which contains the con-

figuration parameters of the PR and the linguistic data parameters. The

directory that contains the XML configuration file has a subdirectory called

‘savedFiles’. This subdirectory contains the resultant NLP model files and

a log file with the evaluation results. Only a few parameters are set as ini-

tialization outside the XML configuration file, as shown in Figure 16. The

batch learning PR supports different modes, such as:

52

Figure 16: Batch Learning PR

1. Training mode, which aims to create training data from a provided

corpus;

2. Application mode, which aims to apply the trained models on unseen

data; and

3. Evaluation mode, which aims to evaluate the algorithm on the pro-

vided corpus, using the configuration file to specify the evaluation

type, such as k-fold or hold-out test.

Here, a support vector machine (SVM) is used with a third-order poly-

nomial kernel, as defined in the parameter d shown in the configuration

file:
1 <ENGINE nickname="SVM" implementationName="SVMLibSvmJava"

2 options=" -c 1 -t 0 -d 3 -m 40 -tau 0.3 "/>

Moreover, the configuration file contains the evaluation method: Six-

fold cross validation is used on the NFR classifier, as we have six docu-

ments in our corpus:
1 <!−− Evaluation : how to s p l i t the corpus into tes t and learn? −−>
2 <EVALUATION method="kfold" runs="6"/>

In addition, the configuration file contains the features used to train

the model, which in our case is a unigram of the sentences’ tokens, using

their stem:

53

Figure 17: NFR Classifier Output Annotations

1 <NGRAM>

2 <NAME>Sent1gram</NAME>

3 <NUMBER>1</NUMBER>

4 <CONSNUM>1</CONSNUM>

5 <CONS−1>

6 <TYPE>Token</ TYPE>

7 <FEATURE>stem</FEATURE>

8 </CONS−1>

9 </NGRAM>

Finally, the configuration file contains the target class, such as a func-

tional requirement in this example:

1 <ATTRIBUTE>

2 <NAME>Class</NAME>

3 <SEMTYPE>NOMINAL</SEMTYPE>

4 <TYPE>Sentence</ TYPE>

5 <FEATURE>functional requirement</FEATURE>

6 <POSITION>0</POSITION>

7 <CLASS/>

8 </ ATTRIBUTE>

The complete configuration file is contained in Appendix A.

Examples for the NFR classifier output are shown in Figure 17.

5.2.3 Ontology Population

We use the OwlExporter [WKR10] component to populate the extracted

functional and non-functional requirements into our requirements ontol-

ogy. OwlExporter is a GATE plug-in used to export the document annota-

tions to individuals in a Web Ontology Language (OWL) model as shown

54

Figure 18: Individuals Populated into the Ontology for Security NFR using

OwlExporter

Figure 19: SPARQL Query for all Security NFR Sentences in the Ontology

using Protégé

in Figure 18 We convert the NFR classifier output annotations format to

the OwlExporter input annotations format using JAPE rules. The input

annotations for OwlExporter are then mapped to the ontology classes. The

implementation for these JAPE rules is provided in Appendix D

SPARQL [SPA08] (SPARQL Protocol and RDF Query Language) is a pow-

erful standard query language for ontologies and RDF databases. We use

the SPARQL query module in Protégé 3.4.8 to query the populated ontol-

ogy. An example of a simple retrieval of all security sentences from the

ontology is shown in Figure 19.

5.2.4 Requirement Analysis ReqAnalysis

Sections 4.4.2, and 4.5 shown the design for the thematic roles extraction,

fit criteria detection, and non-testability detection phases. In this section,

we will describe the implementation for the three of them.

In Figure 20, the ReqAnalysis pipeline that is used for requirements the-

matic roles extraction, fit criteria detection, and non-testability detection

is shown. The thematic roles classes and their definitions are detailed in

Table 5. We use a mix of ANNIE, Concordia Semantic Software Lab, and

55

Figure 20: Requirement Thematic Roles Extractor Pipeline

our own custom components to build this application. The following steps

are performed in the pipeline:

1. ANNIE Document Reset is used to reset a corpus to its original state.

2. ANNIE Tokeniser is used to split a text into very basic units, such as

numbers and words.

3. ANNIE Gazetteer is a name entity recognizer, which is used to anno-

tate words or sequences of words, based on predefined lists, such as

abbreviations, countries, and days.

4. ANNIE Sentence Splitter is used to split the text into sentences, which

in our case are the requirements statements. The Sentence Splitter

is using a Gazetteer to distinguish between the full stop at the end of

the sentence and an abbreviation.

5. ANNIE POS tagger is a modified version of the Brill tagger [Hep00].

56

6. Multilingual Noun Phrase Extractor (MuNPEx) is a Processing Re-

source (PR) developed by Concordia’s Semantic Software Lab. It is

a noun phrase chunker. This component and ANNIE NE transducer

are used to extract the theme class in our application.

7. ANNIE VP Chunker is used to extract verb groups, such as is investi-

gating, to investigate, investigated, is going to investigate. It is used to

extract the action class in our application.

8. GATE Morphological analyser is used to extract the root and affix for

each token.

9. NP Lemma Transducer is part of the Multilingual Noun Phrase Extrac-

tor (MuNPEx) PR. It depends on the GATE morphological analyser and

it is used to extract lemmas.

10. Number Tagger is used to annotate numbers. It has two features: the

first feature “Type”, which identifies whether a number is a word or

a numeral. The second feature, “Value”, stores the exact value as a

double variable of the annotated number in a text.

11. Measurements Tagger is a parser used to recognize and annotate

spans of text as being a measurement. It is also used to normal-

ize the measurement value units. Number and measurement taggers

are used to extract the fit-criteria.

12. ReqAnaGazat is a set of Gazetteers used to extract the modality and

to help the main JAPE rules to extract requirement thematic roles.

The complete Gazetteers are in Appendix B.

13. ReqAnalysis is a set of JAPE rules used to extract the main require-

ment thematic roles listed in Table 5. The rules are listed in Table 9.

Examples for the thematic roles rules is shown in Figure 21. The

full implementation code is listed in Appendix C. It also contains the

non-testability detection application.

For example, the non-testability detection JAPE file contains two rules.

The first rule, as shown below, means that if the NFR sentence contains

57

Figure 21: Thematic Roles Rules Example

Figure 22: Thematic Roles, Fit-Criteria, and Non-Testability Annotations

a fit-criteria, then mark this sentence as a testable NFR. Another rule

to mark the sentence as a non-testable NFR if there is no fit-criteria, as

shown in Appendix C.

1 Rule : ru le1

2 (

3 ({NFRSentence contains F i t C r i t e r i a }) : testYES

4)

5 :ann

6 testYES . Requirement = {Testable = "YES"}

Examples for the thematic roles, fit-criteria, and non-testability annota-

tions are shown in Figure 22.

58

5.3 Summary

In this chapter, we introduced briefly the implementation tools. We dis-

cussed the implementation of our system. Our pipeline is assembled us-

ing existing ANNIE PRs, as well as PRs developed by us, such as the Re-

qAnaGazat and ReqAnalysis. In Figures 15 and 20, we show the NFR clas-

sifier and the non-testability quality assurance system pipelines loaded

within GATE Developer, respectively.

In Chapter 6, we discuss the Enhanced PROMISE and Concordia cor-

pora. In addition, we present the system evaluation.

59

Chapter 6

Corpora and Evaluation

Never promise more than you can

perform.

Publilius Syrus

In this chapter, we describe two SRS corpora. These corpora are used

to classify the different types of NFR, to extract the requirements thematic

roles, and to automatically detect non-testable NFR sentences. Afterwards,

we detail the evaluation of our proposed system based on our corpora.

6.1 NFR Corpora

In this section, we will introduce the corpora we use in our evaluation.

The Enhanced PROMISE, and SRS Concordia corpora will be discussed in

detail. Details on the annotation process, statistics, and a discussion are

provided for both corpora.

6.1.1 Enhanced PROMISE Corpus

The PROMISE corpus [PRO] consists of 15 SRS documents. It was devel-

oped based on term projects by Master students at DePaul University. The

corpus’ specifications contain 326 NFRs and 358 FRs. The NFRs types

60

Table 12: NFR Classes within the Enhanced PROMISE Corpus
Doc. A LF L M O P SC SE US NFR FR Total

1 1 1 0 0 0 2 0 1 3 8 20 28

2 1 2 0 0 0 3 1 3 5 15 11 26

3 1 0 0 0 6 1 3 6 4 21 47 68

4 0 1 3 0 6 2 0 6 4 21 25 47

5 2 3 3 0 10 4 3 7 5 37 36 73

6 1 2 0 3 15 1 4 5 13 44 26 70

7 0 0 1 0 3 2 0 2 0 8 15 23

8 5 6 3 2 9 17 4 15 10 71 20 91

9 1 0 0 1 2 4 0 0 0 8 16 24

10 1 7 0 0 0 4 0 1 2 15 38 53

11 1 2 0 1 0 1 0 3 2 10 22 32

12 1 2 0 3 2 5 1 3 3 20 13 33

13 1 4 0 2 2 0 2 2 6 19 3 22

14 1 3 0 2 3 1 0 2 4 16 51 67

15 1 2 0 2 3 1 0 2 1 12 15 27

sent. 18 35 10 16 61 48 18 58 62 326 358 684

include availability (A), look-and-feel (LF), legal (L), maintainability (M), op-

erational (O), performance (P), scalability (SC), security (SE), and usability

(US). Table 12 presents the number of sentences in each NFR class.

Thematic Roles Annotation

In order to develop and evaluate automated requirements analysis tools,

annotating a requirement corpus, with an ontological representation of

different requirement thematic roles is required. Since no such corpus

existed, we annotated the PROMISE [PRO] corpus based on the developed

requirement thematic roles ontology presented in Section 4.3.2.

Figure 24 shows examples for these different patterns. An index repre-

sents the different types, such as pattern 1111000, where each bit repre-

sents whether the class is present in the sentence or not: in this example,

61

Figure 23: Manual Annotation Process Example for the Enhanced

PROMISE Corpus

the statement contains Agent, Modality, Action, and Theme, but not Condi-

tion, Goal or Instrument.

The corpus was annotated using the GATE Developer GUI as shown in

Figure 23.

The annotation was done by one annotator. Table 13 shows the total

number of annotations for different classes such as agent, modality (mod.),

action, theme, condition (con.), goal, and instrument (ins.). Moreover, it

represents the numbers of all the requirements sentences patterns that

exist in the corpus.

During a manual corpus analysis, we determined the following details

62

Table 13: Corpus Patterns Statistics of the Enhanced PROMISE Corpus.
S Pattern Agent Mod. Action Theme Cond. Goal Inst. Total

1 1111100 X X X X X 268

2 1110100 X X X X 139

3 1111000 X X X X 265

4 1110000 X X X 13

5 1110010 X X X X 14

6 1111001 X X X X X 19

7 1111010 X X X X X 34

8 1111101 X X X X X X 6

9 1011000 X X X 5

10 1011100 X X X X 2

11 1110101 X X X X X 4

12 1110001 X X X X 7

13 1111110 X X X X X X 7

14 1100000 X X 1

15 1110110 X X X X X 9

16 1111011 X X X X X X 1

Tot. 798 787 792 606 435 65 38 798

about the description of NFRs:

1. The different types of Agents usually depend on the type of a require-

ment:

(a) Requirements describing a system usually start with an agent,

likethe system, the product, the name of the system, or a subsys-

tem, such as report, data, file, interface, server. Example: “The

system shall refresh the display every 60 second.”

(b) Requirements describing how stakeholders interact with a sys-

tem usually start with an agent, like the user, realtor, customer,

administrator. Example: “The user shall select to view the pre-

ferred repair facility ratings.”

63

(c) Requirements describing a process or scenario usually contain

conditions, either in the beginning or in the last phrase of the

sentence. Example: “When a ship is sunk, the product shall simu-

late the sound of a sinking ship.”

(d) Requirements describing the user interface and the application

screens of a system usually start with an agent, like The user

interface, the look and feel of the system, The table side of the

display. Example: “The user interface shall have standard menus

buttons for navigation.”

(e) Quality requirements start with a statement, such as The re-

sponse time. Example: “The response time of schedule generation

shall take no longer than 30 seconds.”

(f) Requirements describing technical specifications usually start

with an agent, like database, media players. Example: “The

Statement Database provides the transaction details to the Dis-

putes System.”

2. The different patterns for actions are:

(a) verb: such as “display”.

(b) Be + passive verb: such as “be restored”.

(c) Be + Adjective: such as “be available”, “be consistent”.

(d) Verb + ing: “handling”, “processing”. Here, quality assurance

can be applied on the action concept for ambiguity by detecting

passive verbs.

3. Conditions in SRS statements appear in two forms::

(a) Quantity conditions, which usually start with, e.g., “a maximum

of”, “more than”, “up to”, followed by the quantity, such as time or

performance. Quality assurance can be applied on the conditions

for testability;

(b) If/when condition, which sometimes appears in the beginning of

a sentence before the agent, such as: “If projected, the data must

be readable.”

64

4. Goals usually start with “for”, “in order to”, or “to”, such as in “to

maintain the flow of the game” or “for navigation”.

5. The Instrument class usually starts with “by”, “using”, “via”, or “with”,

such as in “via the Administration section” or “used by POS terminals”.

ModalityAgent Action Theme Instrument Condition

Administrator shall be able to activate a pre-paid card via the Administration section in under 5 seconds.

The website shall be attractive to all audiences.

ModalityAgent Action Theme

 The server will support a maximum of 1 000 simultaneous users.

ModalityAgent Action Condition

 The user shall search for the preferred repair facility using vehicle location and radius in miles.

ModalityAgent Action Theme Instrument

the system shall refresh the display every 60 second.

ModalityAgent action Condition

1111101

1111000

1110100

1111001

1111100 Theme

Figure 24: Examples of Different Types of Syntactic Forms Present in the

Enhanced PROMISE Corpus

6.1.2 SRS Concordia Corpus

In order to develop and evaluate automated requirements analysis tools,

a gold standard requirement corpus, with an ontological representation of

different NFR types is annotated. The corpus represents software projects

from different problem domains. The documents are written by students

and software professionals. The documents were selected for the following

reasons:

1. Availability of requirements in three different formats suitable to our

experiment (SRS, supplementary specifications, use case model).

65

Table 14: SRS Concordia Corpus: SRS Documents and their Source for

the SRS Concordia Corpus
Doc. # Doc. Name Type Year Owner # Sent.

1 Online shopping

centre

SRS 2009 Indian Institute

of Information

Technology

107

2 Student Manage-

ment System

SRS 2005 University of

Portsmouth

174

3 Hospital Patient SRS 2002 University of Cal-

gary

259

4 Mars Express

Processing and

Archiving Facil-

ity

SRS 2001 Swedish Insti-

tute of Space

Physics

237

5 Electronic Exam-

ination Manage-

ment

Suppl. spec. 2009 Concordia Uni-

versity

255

6 Student Manage-

ment System

Use case 2007 Concordia Uni-

versity

2032

Total 3064

2. High quality of the requirement documents.

3. Project domains differ considerably.

The source documents of our corpus are listed in Table 14.

Manual Annotation

Our manual SRS corpus annotation process was implemented based on

GATE Teamware.1 This is a web-based platform for managing collabora-

tive annotation. The annotation task was carried out by four annotators

in order to guarantee the reliability of the annotations. The first step was

1GATE Teamware, http://gate.ac.uk/teamware/

66

http://gate.ac.uk/teamware/

to pre-process each document, by automatically splitting it into sentences.

Each document is assigned to several annotators, who then examined each

sentence and selected the corresponding type of software requirement. An-

notators are free to choose any number of requirements for each sentence,

including zero. Figure 25 shows an example of this annotation process for

one sentence.

Figure 25: Manual Annotation Process Example for SRS Concordia Corpus

67

Table 15: Numbers of Annotation Classes Sentences per each Document

(NR: Not Requirement, FR: Functional Requirement, CO: Constraint, US: Usability/Utility, SE: Security, EF: Ef-

ficiency, FU: Functionality, RE: Reliability)

Doc. NR FR CO US SE EF FU RE Total

1 59 17 26 7 1 1 0 1 112

2 114 32 20 7 10 1 1 2 187

3 180 54 14 6 8 4 1 1 268

4 191 19 21 0 2 3 13 5 254

5 213 23 13 8 2 5 1 0 265

6 1365 642 16 0 34 0 0 0 2057

Total 2122 787 110 28 57 14 16 9 3140

Corpus Statistics

The annotation classes of the SRS Concordia corpus are divided into four

main categories: (i) Functional Requirements (FR); (ii) External and Inter-

nal Quality: (Accessibility, Accuracy, Configurability, Dependability, Effi-

ciency, Functionality, Maintainability, Portability, Reliability, Security and

Usability/Utility); (iii) Constraints; and (iv) other NFR as shown in the on-

tology design in Section 4.3.1.

Cohen’s Kappa

The agreement between the annotators in our corpus is measured for each

pair as shown in Table 16. The overall Cohen’s Kappa average is 60%,

which indicates that the quality of corpus is high and not ambiguous

among all annotators.

Gold Standard

Once the annotators had completed their task, their results were used to

create a gold standard for each document. The results of all the annota-

tors for all sentences are compared where they agreed on the annotation

and retain their choice for the gold standard. For all sentences where

68

Table 16: Cohen’s Kappa between each Pair of Annotators
Doc 1,2 1,3 1,4 2,3 2,4 3,4 Avg.

1 0.75 0.79 0.9 0.7 0.72 0.79 0.78

2 0.74 0.73 0.88 0.68 0.78 0.82 0.77

3 0.64 0.52 0.62 0.67 0.67 0.56 0.61

4 0.73 0.7 N/A 0.74 N/A N/A 0.72

5 0.27 0.36 N/A 0.36 N/A N/A 0.33

6 0.7 0.27 N/A 0.21 N/A N/A 0.39

Average 0.60

they disagreed, the gold standard annotation was obtained through group

discussions.

Concordia Test Set

We used the Enhanced PROMISE corpus for developing the rules of our

system. We annotated another small set to perform the testing. This test

set is extracted from the SRS Concordia Corpus described in our previous

work [ROW13]. We have chosen 87 NFRs sentences from the SRS Concor-

dia corpus and annotated it by two different annotators. A session was

held to discuss the differences and propose the final annotation.

The NFR sentences in the SRS Concordia corpus are 224 sentences.

The duplicate sentences are excluded, so we have 197 sentences. We re-

moved the incomplete sentences such as “works for medium size informa-

tion databases”, “Mysql for database”, and “multiple user interface”. Some

sentences are incomplete as they are part of items or lists. The final test

set is 87 NFRs.

6.2 System Evaluation

Using the corpora described in Section 6.1, we now present the evalua-

tion of the NFR classifier, thematic roles extractor, and the non-testability

detector.

69

6.2.1 NFR Classifier

The ML classifier is evaluated using 6-fold cross validation with the metrics

precision, recall and F-measure [FBY92], defined as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

,

F1-measure =
2 × Precision × Recall

Precision + Recall
,

where TP (true positive) is the number of correctly classified requirements,

FP (false positive) the number of requirements incorrectly classified and

FN (false negative) the number of requirements incorrectly not classified.

Why SVM?

As mentioned in Section 4.4.1, Support Vector Machines (SVMs) provided

the best performance in our experiments. We tested other machine learn-

ing algorithms, including K-Nearest Neighbour (KNN), Naive Bayes, and

Perceptron Algorithm with Uneven Margins (PAUM) [LZH+02], besides SVM.

In the system development initial stages, we performed an experiment on

three documents from the SRS Concordia corpus, with a total of 703 FRs,

53 NFRs, and 1769 NRs. The results show an average F1 measure of

76% for SVM, compared to 74% for PAUM, and 71% for KNN, as shown in

Table 17.

Results on the SRS Concordia Corpus

The results obtained on the SRS Concordia corpus are summarized in

Table 18. The overall weighted average F1 measure is 84.96%.

Analysis and Discussion

To analyze the classification results, we computed the confusion matrices

[Faw04], which presents the false positives and false negatives of the clas-

sifier outcome. Table 19 illustrates the confusion matrices for the seven

classifiers. For example, the confusion matrix of the Functional Require-

ment (FR) Classifier shows that 76 sentences are classified as false positive,

70

Table 17: SVM Results Compared to other Machine Learning Algorithms
Classifier Class Precision Recall F-Measure

SVM FR 0.74 0.77 0.75

NFR 0.58 0.69 0.61

NR 0.95 0.92 0.94

Avg 0.76 0.80 0.76

PAUM FR 0.78 0.78 0.77

NFR 0.50 0.59 0.52

NR 0.92 0.94 0.93

Avg 0.73 0.77 0.74

KNN FR 0.74 0.65 0.69

NFR 0.53 0.59 0.53

NR 0.89 0.96 0.92

Avg 0.72 0.73 0.71

Naive Bayes FR 0 0 0

NFR 0 0 0

NR 0.80 0.68 0.72

Avg 0.80 0.52 0.62

and 4 sentences as false negative. The true positive and true negative re-

sults are located in the diagonal.

By analyzing the confusion matrices and the evaluation results, the

results should be improved for the FR classifier in false positives, and con-

straint classifier in false negatives. For improving some of the categories,

it will be necessary to increase the amount of training data, especially in

the reliability, efficiency and functionality classes.

Comparison between our work and other published work based on the

PROMISE corpus

We applied our NFR classifier algorithm on the PROMISE corpus using

Weka [HFH+09], in order to evaluate its improvement over previously pub-

lished results. Three related work are described in Section 3.2. Hussain

71

Table 18: Results for the SVM Classifiers on the SRS Concordia Corpus
Class # Precision Recall F-Measure

FR 787 0.82 0.82 0.82

Constraint 110 0.91 0.91 0.91

Security 57 0.97 0.97 0.97

Usability/Utility 28 0.97 0.97 0.97

Efficiency 14 0.98 0.98 0.98

Functionality 16 0.98 0.98 0.98

Reliability 9 0.99 0.99 0.99

Weighted Average 1021 0.84 0.84 0.84

et al. [HKO08] designed their algorithm to classify for only two classes

(FR, and NFR). Otherwise, our NFR algorithm classify for different types

of NFRs. Casamayor et al. [CGC09] proposed a recommender system us-

ing a semi-supervised learning technique. Otherwise, our NFR classifier is

a supervised learning technique. Table 20 compares the performance of

our SVM classifier (column SVM) with the approach described by Cleland-

Huang et al. in [CHSZS07] (column ‘Weighted Indicator’). As can be seen

from the table, the precision is roughly comparable, but our approach has

significantly higher recall.

6.2.2 Thematic Roles Extractor

The system is evaluated with the metrics precision (P), recall (R), and F-

measure [ea11] as defined above. The results in Table 21 summarize the

evaluation on the training corpus and the test corpus described in Sec-

tion 6.1.2.

The overall weighted average F1 measure from the testing set is 72%.

The system produces good results when it is near to the Modality class,

which produce the best result, 95% F-Measure. Agent and Action classes

are annotated with 75% and 73%, respectively, as they depend on the

Modality class. Goal is annotated with 13% F-Measure, as it is typically

located in the last part of a sentence, where analysis errors can compound.

72

Table 19: Confusion Matrices
FR

Yes No

Yes 774 4

No 76 2210

Constraint

Yes No

Yes 97 13

No 1 2954

Security

Yes No

Yes 56 2

No 9 2998

Usability

Yes No

Yes 21 7

No 0 3037

Efficiency

Yes No

Yes 9 5

No 0 3051

Functionality

Yes No

Yes 5 11

No 0 3049

Reliability

Yes No

Yes 9 0

No 0 3056

6.2.3 Non-Testability Detector

The non-testability detector is evaluated with the metrics precision, recall

and F-measure. The system produces excellent results, which are 86%

for the training set and 80% for testing set for the rule-based system. We

also compared it with a statistical model described in Section 4.5 using

SVM that produces 80% after preprocessing, containing tokenization and

Snowball-based stemming, as presented in Table 22,

The automatic sentence splitter has some limitations. For example, it

generates 26 sentences more than the manual annotation. The confusion

matrices summarize the quality of the non-testability detector, as shown

in Table 23.

The training Enhanced PROMISE corpus was developed by master stu-

dents in one university, which may be too limited to represent a global

73

Table 20: Comparison between SVM and Indicator Classifiers on the

PROMISE Corpus
SVM Weighted Indicator [CHSZS07]

Class Prec. Recall F-Meas. Prec. Recall F-Meas.

AV 0.93 0.66 0.77 0.88 0.11 0.19

LE 0.80 0.61 0.69 0.70 0.16 0.26

LF 0.64 0.63 0.64 0.51 0.11 0.19

MA 0.77 0.41 0.53 0.88 0.10 0.19

OP 0.64 0.66 0.65 0.72 0.11 0.19

PE 0.84 0.70 0.76 0.62 0.27 0.37

SC 0.66 0.38 0.48 0.72 0.11 0.19

SE 0.83 0.77 0.80 0.80 0.18 0.29

US 0.79 0.62 0.70 0.98 0.14 0.25

Avg. 0.77 0.60 0.67 0.76 0.14 0.23

Table 21: Thematic Role Evaluation Results

Corpus

Enhanced PROMISE Training corpus Concordia Test corpus

Class # P R F-1 # P R F-1

Modality 798 0.97 0.98 0.98 82 0.96 0.94 0.95

Action 809 0.97 0.83 0.89 89 0.88 0.63 0.73

Agent 799 0.93 0.90 0.92 87 0.81 0.69 0.75

Theme 622 0.70 0.76 0.73 79 0.80 0.56 0.66

Condition 458 0.82 0.45 0.58 34 0.50 0.15 0.23

Goal 61 0.51 0.30 0.37 9 0.17 0.11 0.13

Instrument 31 0.43 0.39 0.41 0 0 1 0

Average 797 0.88 0.81 0.84 87 0.83 0.64 0.72

NFRs non-testability detection. Therefore, our test corpus documents are

completely drawn from different domains. In the future, further annota-

tion is required to improve the recall of the system.

The initial results for the machine learning approach using SVM shows

74

Table 22: Evaluation of the Automatic Non-Testability Detector on the

Enhanced PROMISE Corpus
Class # Precision Recall F-Measure

Rule-Based Training (Enhanced PROMISE) 196 0.86 0.85 0.86

Rule-Based Testing (SRS Concordia) 20 0.79 0.80 0.80

SVM 196 0.80 0.81 0.80

Table 23: Non-Testability Detector: Confusion Matrices
Rule-based

Yes No

Yes 117 65

No 44 570

SVM

Yes No

Yes 91 92

No 57 577

that the F1 measure is 80.6%.

6.3 Summary

In this chapter, we described the Concordia NFR gold standard corpus, its

statistics, and its manual annotation process. We also presented the En-

hanced PROMISE corpus, annotated for requirement thematic roles. The

NFR classifier was evaluated on the SRS Concordia corpus, resulting in

an F1 measure of 84.96%. The rule-based thematic roles extractor leads

to an F1 measure of 82%. Finally, our rule-based non-testability detector

system produces excellent F1 results of 86%. Chapter 7 will conclude the

thesis and briefly discuss possible future work.

75

Chapter 7

Conclusions and Future Work

The best way to predict the future is to

create it.

Peter Drucker

In this chapter, we provide a summary and a conclusion of our research

work. We will also suggest some research directions to be undertaken in

the near future.

We developed a novel, manually annotated (gold standard) corpus for

sentence-based classification of requirements. In particular, it focuses on

non-functional requirements (NFRs).

We developed a new classification algorithm for the automatic catego-

rization of requirements in software specifications. In this work, we fo-

cused on NFRs classification. The results of this work will be of interest to

researchers as well as practitioners from industry, who are interested in

estimating the effort for building requirements in general and improving

software quality in particular, and use measurement data in requirements

engineering.

The ontological foundation of our work allows to automatically trans-

form software requirements documents into a semantic representation,

which can then be further processed in order to (i) estimate the cost of the

software system and (ii) measure the quality of the written requirements.

We developed an automatic non-testability detector system to help and

assist the analyst to write clear, testable, and measurable requirements, as

76

testable requirements reduce the ambiguity and increase the understand-

ability. This accordingly helps the testers to write the system test cases

and also improve the requirements and testing traceability.

All developed resources described here, including the ontology, corpus

annotations, and NLP pipeline, are available as open source software.1

In future work, our goal is to address existing mis-classifications by

developing additional syntactic and semantic features for the classifiers.

Additionally, we aim to apply quality assurance methods by applying fur-

ther reasoning on the populated ontology.

A semantic framework was developed for NFR quality assurance, by

presenting the conceptualization of requirements statements at the micro

level. Testability is analyzed as one NFR quality attribute using an auto-

mated, rule-based system. In future work, we plan to add additional QA

criteria, such as contradiction, redundant, and ambiguity.

The developed system will be available to project stakeholders as part

of our ReqWiki2 semantic collaborative requirements engineering platform.

It is known that providing NLP support can significantly enhance the qual-

ity of a developed specification [SAW13]. The additional QA support devel-

oped here is highly relevant for both researchers and industry practitioners

concerned with software measurement data, effort estimation, and overall

project quality.

The long-term vision of this work is to create quality assurance appli-

cations for different types of defects and errors, in order to decrease the

probability of software project failures.

1http://www.semanticsoftware.info/non-testable-nfr-detector
2ReqWiki, http://www.semanticsoftware.info/reqwiki

77

http://www.semanticsoftware.info/non-testable-nfr-detector
http://www.semanticsoftware.info/reqwiki

Bibliography

[ABSDL07] Taiseera Hazeem Al Balushi, Pedro R. Falcone Sampaio, Di-

vyesh Dabhi, and Pericles Loucopoulos. ElicitO: a quality

ontology-guided NFR elicitation tool. In Proceedings of the

13th International Working Conference on Requirements Engi-

neering: foundation for software quality, REFSQ’07, pages 306–

319, Berlin, Heidelberg, 2007. Springer-Verlag.

[AO98] Douglas E. Appelt and Boyan Onyshkevych. The Common Pat-

tern Specification Language. In Proceedings of a Workshop

on Held at Baltimore, Maryland, TIPSTER ’98, pages 23–30,

Stroudsburg, PA, USA, 1998. Association for Computational

Linguistics.

[BDMV10] Francesca Bonin, Felice Dell’Orletta, Simonetta Montemagni,

and Giulia Venturi. A Contrastive Approach to Multi-word

Extraction from Domain-specific Corpora. In Nicoletta Cal-

zolari (Conference Chair), Khalid Choukri, Bente Maegaard,

Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and

Daniel Tapias, editors, Proceedings of the Seventh International

Conference on Language Resources and Evaluation (LREC’10),

Valletta, Malta, May 2010. European Language Resources As-

sociation (ELRA).

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik.

A Training Algorithm for Optimal Margin Classifiers. In Pro-

ceedings of the Fifth Annual Workshop on Computational Learn-

ing Theory, COLT ’92, pages 144–152, New York, NY, USA,

78

1992. ACM.

[BSdPL03] K.K. Breitman and J.C. Sampaio do Prado Leite. Ontology

as a requirements engineering product. In Proceedings of the

11th IEEE International Requirements Engineering Conference,

pages 309–319, Sept 2003.

[CA07] B. H C Cheng and J.M. Atlee. Research Directions in Require-

ments Engineering. In Future of Software Engineering, 2007.

FOSE ’07, pages 285–303, May 2007.

[CBC12] Verónica Castaneda, Luciana C. Ballejos, and Maria Laura Cal-

iusco. Improving the Quality of Software Requirements Spec-

ifications with Semantic Web Technologies. In Proceedings of

the Workshop em Engenharia de Requisitos (WER’12), 2012.

[CBCG10] Veronica Castañeda, Luciana Ballejos, Ma. Laura Caliusco,

and Ma. Rosa Galli. The Use of Ontologies in Requirements En-

gineering. Global Journal of Researches In Engineering, 10(6),

2010.

[CGC09] Agustin Casamayor, Daniela Godoy, and Marcelo Campo.

Semi-Supervised Classification of Non-Functional Require-

ments: An Empirical Analysis. Inteligencia Artificial, Revista

Iberoamericana de Inteligencia Artificial, pages 35–45, 2009.

[CGC12] Agustin Casamayor, Daniela Godoy, and Marcelo Campo. Min-

ing Textual Requirements to Assist Architectural Software De-

sign: A State of the Art Review. Artificial Intelligence Review,

38(3):173–191, October 2012.

[CHSZS06] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Pe-

ter Solc. The Detection and Classification of Non-Functional

requirements with Application to Early Aspects. In Proceed-

ings of 14th IEEE International Conference on Requirements En-

gineering, pages 39–48, Minneapolis/St. Paul, MN, 2006.

79

[CHSZS07] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Pe-

ter Solc. Automated Classification of Non-Functional Require-

ments. Requirements Engineering, 12:103–120, 2007.

[CNYM00] Lawrence Chung, Brian A. Nixon, Eric Yu, and John My-

lopoulos. Non-Functional Requirements in Software Engineer-

ing. Kluwer Academic Publishers, Boston/Dordrecht/London,

2000.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-Vector Net-

works. In Machine Learning, pages 273–297, 1995.

[DDCPT10] Mauro Dragoni, Célia Da Costa Pereira, and Andrea G.B. Tet-

tamanzi. An Ontological Representation of Documents and

Queries for Information Retrieval Systems. In Nicolás Garcia-

Pedrajas, Francisco Herrera, Colin Fyfe, José Manuel Benı́tez,

and Moonis Ali, editors, Trends in Applied Intelligent Systems,

volume 6097 of Lecture Notes in Computer Science, pages 555–

564. Springer Berlin Heidelberg, 2010.

[Dev02] Vladan Devedzić. Understanding Ontological Engineering.

Commun. ACM, 45(4):136–144, April 2002.

[DS06] Glen Dobson and Peter Sawyer. Revisiting Ontology-Based Re-

quirements Engineering in the age of the Semantic Web. In:

Dependable Requirements Engineering of Computerised Sys-

tems at NPPS, 2006.

[ea11] Hamish Cunningham et al. Text Processing with GATE (Version

6). University of Sheffield, Department of Computer Science,

2011.

[Faw04] Tom Fawcett. ROC Graphs: Notes and Practical Consider-

ations for Researchers. Technical report, HP Laboratories,

2004.

80

[FBY92] William B. Frakes and Ricardo Baeza-Yates. Information Re-

trieval: Data Structures and Algorithms. Prentice Hall, facsim-

ile edition, 1992.

[FdSG14] Alessio Ferrari, Felice dell’Orletta, GiorgioOronzo Spagnolo,

and Stefania Gnesi. Measuring and Improving the Complete-

ness of Natural Language Requirements. In Camille Salinesi

and Inge van de Weerd, editors, Requirements Engineering:

Foundation for Software Quality (REFSQ), volume 8396 of Lec-

ture Notes in Computer Science, pages 23–38. Springer Interna-

tional Publishing, 2014.

[FFGL01] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. An Automatic

Quality Evaluation for Natural Language Requirements. In Pro-

ceedings of the Seventh International Workshop on RE: Founda-

tion for Software Quality (REFSQ’2001), pages 4–5, 2001.

[Fil68] Charles J. Fillmore. The Case for Case. In Emmon Bach and

Robert T. Harms, editors, Universals in Linguistic Theory. Holt,

Rinehart and Winston, New York, 1968.

[Fin94] A. Finkelstein. Requirements engineering: a review and re-

search agenda. In Software Engineering Conference, First Asia-

Pacific, pages 10–19, Dec 1994.

[Fir03] D.G. Firesmith. Common Concepts Underlying Safety, Security,

and Survivability Engineering. Technical note. Carnegie Mellon

University, Software Engineering Institute, 2003.

[FMK+11] Stefan Farfeleder, Thomas Moser, Andreas Krall, Tor Stålhane,

Inah Omoronyia, and Herbert Zojer. Ontology-Driven Guid-

ance for Requirements Elicitation. In Grigoris Antoniou,

Marko Grobelnik, Elena Paslaru Bontas Simperl, Bijan Par-

sia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Z. Pan,

editors, ESWC (2), volume 6644 of Lecture Notes in Computer

Science, pages 212–226. Springer, 2011.

81

[Fon07] Frederico Fonseca. The double role of ontologies in informa-

tion science research. Journal of the American Society for Infor-

mation Science and Technology, 58(6):786–793, 2007.

[GCSY08] G. Gokyer, S. Cetin, C. Sener, and M.T. Yondem. Non-

functional Requirements to Architectural Concerns: ML and

NLP at Crossroads. In Software Engineering Advances, 2008.

ICSEA ’08. The Third International Conference on, pages 400–

406, Oct 2008.

[Gli07] M. Glinz. On Non-Functional Requirements. Requirements

Engineering, IEEE International Conference on, pages 21–26,

October 2007.

[Gru65] Jeffrey S. Gruber. Studies in Lexical Relations. PhD thesis,

MIT, Cambridge, MA, 1965.

[Hep00] Mark Hepple. Independence and Commitment: Assumptions

for Rapid Training and Execution of Rule-based POS Taggers.

In Proceedings of the 38th Annual Meeting on Association for

Computational Linguistics, ACL ’00, pages 278–277, Strouds-

burg, PA, USA, 2000. Association for Computational Linguis-

tics.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, and Ian H. Witten. The WEKA data min-

ing software: an update. pages 10–18, New York, NY, USA,

November 2009. ACM.

[HKO08] Ishrar Hussain, Leila Kosseim, and Olga Ormandjieva. Using

Linguistic Knowledge to Classify Non-functional Requirements

in SRS documents. In Epaminondas Kapetanios, Vijayan Sug-

umaran, and Myra Spiliopoulou, editors, Natural Language

and Information Systems, volume 5039 of Lecture Notes in Com-

puter Science, pages 287–298. Springer Berlin / Heidelberg,

2008.

82

[HM01] Volker Haarslev and Ralf Möller. RACER System Description.

In Proceedings of the First International Joint Conference on Au-

tomated Reasoning, IJCAR ’01, pages 701–706, London, UK,

2001. Springer-Verlag.

[HOK07] I. Hussain, O. Ormandjieva, and L. Kosseim. Automatic Qual-

ity Assessment of SRS Text by Means of a Decision-Tree-Based

Text Classifier. In Proceedings of the Seventh International Con-

ference on Quality Software (QSIC ’07), pages 209–218, Oct

2007.

[ISO10] ISO/IEC. ISO/IEC 25010:2011 - Systems and software en-

gineering - Systems and software Quality Requirements and

Evaluation (SQuaRE) - System and software quality models.

Technical report, 2010.

[Jac72] Ray Jackendoff. Semantic Interpretation in Generative Gram-

mar. MIT Press, Cambridge, MA, 1972.

[JKCW08] Tian Jingbai, He Keqing, Wang Chong, and Liu Wei. A Context

Awareness Non-functional Requirements Metamodel Based on

Domain Ontology. In Proceedings of the IEEE International

Workshop on Semantic Computing and Systems, WSCS ’08,

pages 1–7, Washington, DC, USA, 2008. IEEE Computer So-

ciety.

[JM09] Daniel Jurafsky and James H. Martin. Speech and Language

Processing (2Nd Edition). Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 2009.

[Kas09] Mohamad Kassab. Non-Functional Requirements: Modeling

and Assessment. VDM Verlag, 2009.

[Lid01] E. D. Liddy. Natural Language Processing. In Encyclopedia of Li-

brary and Information Science. NY. Marcel Decker, Inc., 2001.

83

[LMP04] Mich Luisa, Franch Mariangela, and Inverardi Pierluigi. Mar-

ket Research for Requirements Analysis Using Linguistic Tools.

Requir. Eng., 9(1):40–56, February 2004.

[LW03] Dean Leffingwell and Don Widrig. Managing software require-

ments: a unified approach. Addison-Wesley Longman Publish-

ing Co. Inc., Boston, MA, USA, 2003.

[LZH+02] Yaoyong Li, Hugo Zaragoza, Ralf Herbrich, John Shawe-Taylor,

and Jaz S. Kandola. The Perceptron Algorithm with Uneven

Margins. In Proceedings of the Nineteenth International Con-

ference on Machine Learning, ICML ’02, pages 379–386, San

Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[MBK91] Y.S. Maarek, D.M. Berry, and G.E Kaiser. An information

retrieval approach for automatically constructing software li-

braries. Transactions on Software Engineering, 17(8):800–813,

1991.

[MFI04] Luisa Mich, Mariangela Franch, and Pier Luigi Novi Inver-

ardi. Market research for requirements analysis using linguis-

tic tools. Requirements Engineering, 9:40–56, 2004.

[Mil95] George A. Miller. WordNet: A Lexical Database for English.

Communications of The ACM, 38:39–41, 1995.

[Mit97] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc.,

New York, NY, USA, 1 edition, 1997.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich

Schütze. Introduction to Information Retrieval. Cambridge Uni-

versity Press, New York, NY, USA, 2008.

[Mv04] Deborah L. McGuinness and Frank van Harmelen. OWL

Web Ontology Language Overview. http://www.w3.org/TR/

owl-features/, February 2004.

84

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

[MWHB11] Thomas Moser, Dietmar Winkler, Matthias Heindl, and Ste-

fan Biffl. Automating the Detection of Complex Semantic Con-

flicts between Software Requirements(An empirical study on

requirements conflict analysis with semantic technology). In

SEKE, pages 729–735. Knowledge Systems Institute Graduate

School, 2011.

[OD08] Martin J. O’Connor and Amar K. Das. SQWRL: A Query

Language for OWL. In Rinke Hoekstra and Peter F. Patel-

Schneider, editors, OWLED, volume 529 of CEUR Workshop

Proceedings. CEUR-WS.org, 2008.

[OHK07] Olga Ormandjieva, Ishrar Hussain, and Leila Kosseim. To-

ward a Text Classification System for the Quality Assessment

of Software Requirements Written in Natural Language. In

Fourth International Workshop on Software Quality Assurance:

In Conjunction with the 6th ESEC/FSE Joint Meeting, SOQUA

’07, pages 39–45, New York, NY, USA, 2007. ACM.

[PA09] Shari Lawrence Pfleeger and Joanne M. Atlee. Student Study

Guide for Software Engineering: Theory and Practice. Prentice

Hall Press, Upper Saddle River, NJ, USA, 4th edition, 2009.

[PKKS00] S Park, H Kim, Y Ko, and J Seo. Implementation of an effi-

cient requirements-analysis supporting system using similar-

ity measure techniques. Information and Software Technology,

42(6):429 – 438, 2000.

[Pow07] David M. W. Powers. Evaluation: From Precision, Recall and

F-Factor to ROC, Informedness, Markedness & Correlation.

Technical Report SIE-07-001, School of Informatics and En-

gineering, Flinders University, Adelaide, Australia, 2007.

[Pre98] IEEE Computer Society Press. IEEE guide to software require-

ment specification, standard 830-1998. 1998.

85

[PRO] PROMISE Software Engineering Repository. https://code.

google.com/p/promisedata/wiki/nfr.

[ROW13] Abderahman Rashwan, Olga Ormandjieva, and René Witte.

Ontology-Based Classification of Non-Functional Require-

ments in Software Specifications: A new Corpus and SVM-

Based Classifier. In The 37th Annual International Computer

Software & Applications Conference (COMPSAC 2013), page

381–386, Kyoto, Japan, July 2013. IEEE.

[RR06] Suzanne Robertson and James Robertson. Mastering the Re-

quirements Process (2nd Edition). Addison-Wesley Professional,

2006.

[RSH09] Chris Rupp, Matthias Simon, and Florian Hocker. Re-

quirements Engineering und Management. HMD Praxis der

Wirtschaftsinformatik, 46(3):94–103, 2009.

[SAW13] Bahar Sateli, Elian Angius, and René Witte. The ReqWiki

Approach for Collaborative Software Requirements Engineer-

ing with Integrated Text Analysis Support. In The 37th An-

nual International Computer Software & Applications Confer-

ence (COMPSAC 2013), page 405–414, Kyoto, Japan, July

2013. IEEE.

[Sim13] Phil Simon. Too big to ignore: the business case for big data.

Wiley and SAS Business Series. Wiley, New Delhi, 2013.

[SM86] Gerard Salton and Michael J. McGill. Introduction to Modern

Information Retrieval. McGraw-Hill, Inc., New York, NY, USA,

1986.

[Som06] Ian Sommerville. Software Engineering: (Update) (8th Edition)

(International Computer Science). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2006.

86

https://code.google.com/p/promisedata/wiki/nfr
https://code.google.com/p/promisedata/wiki/nfr

[SPA08] SPARQL query language for RDF. Technical report, World

Wide Web Consortium http://www.w3.org/TR/rdf-sparql-

query/, January 2008.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic

Reasoner: System Description, booktitle = Proceedings of the

Third International Joint Conference on Automated Reasoning.

IJCAR’06, pages 292–297, Berlin, Heidelberg, 2006. Springer-

Verlag.

[TM00] Kristina Toutanova and Christopher D. Manning. Enriching

the Knowledge Sources Used in a Maximum Entropy Part-of-

speech Tagger. In Proceedings of the 2000 Joint SIGDAT Con-

ference on Empirical Methods in Natural Language Processing

and Very Large Corpora: Held in Conjunction with the 38th An-

nual Meeting of the Association for Computational Linguistics -

Volume 13, EMNLP ’00, pages 63–70, Stroudsburg, PA, USA,

2000. Association for Computational Linguistics.

[UBN11] Ashfa Umber, Imran Sarwar Bajwa, and M. Asif Naeem. NL-

Based Automated Software Requirements Elicitation and Spec-

ification. In Ajith Abraham, Jaime Lloret Mauri, John F. Bu-

ford, Junichi Suzuki, and Sabu M. Thampi, editors, ACC (2),

volume 191 of Communications in Computer and Information

Science, pages 30–39. Springer, 2011.

[van09] Axel van Lamsweerde. Requirements Engineering: From Sys-

tem Goals to UML Models to Software Specifications. Wiley,

2009.

[WKR10] René Witte, Ninus Khamis, and Juergen Rilling. Flexible Ontol-

ogy Population from Text: The OwlExporter. In The Seventh In-

ternational Conference on Language Resources and Evaluation

(LREC 2010), pages 3845–3850, Valletta, Malta, May 19–21

2010. ELRA.

87

Appendix A

NFR Classifier Configuration

Listing A.1: SVM Configuration File
1 <?xml version="1.0"?>

2 <ML−CONFIG>

3 <VERBOSITY leve l="0"/>

4 <SURROUND value="false"/>

5

6 <I S−LABEL−UPDATABLE value="true"/>

7 <I S−NLPFEATURELIST−UPDATABLE value="true"/>

8

9 <PARAMETER name="thresholdProbabilityEntity" value="0.2"/>

10 <PARAMETER name="thresholdProbabilityBoundary" value="0.42"/>

11 <PARAMETER name="thresholdProbabilityClassification" value="0.4"/>

12

13 <mul t iC las s i f icat ion2B inary method="one-vs-others"/>

14

15 <!−− Evaluation : how to s p l i t the corpus into tes t and learn? −−>
16 <EVALUATION method="kfold" runs="6"/>

17

18 <FILTERING rat io="0.0" di s="near"/>

19

20 <ENGINE nickname="SVM" implementationName="SVMLibSvmJava"

21 options=" -c 1 -t 0 -d 3 -m 40 -tau 0.3 "/>

22 <!−−
23

24 <ENGINE nickname="KNN" implementationName="KNNWeka" options = "-k 1"/>

25 <ENGINE nickname="C45" implementationName="C4.5Weka"/>

26

27 <ENGINE nickname="SVM" implementationName="PAUM" options=" -p 50 -n 5 -optB 0.0

"/>

28 <ENGINE nickname="NB" implementationName="NaiveBayesWeka"/> −−>
29

30 <DATASET>

31 <INSTANCE−TYPE>Sentence</INSTANCE−TYPE>

88

32 <NGRAM>

33 <NAME>Sent1gram</NAME>

34 <NUMBER>1</NUMBER>

35 <CONSNUM>1</CONSNUM>

36 <CONS−1>

37 <TYPE>Token</ TYPE>

38 <FEATURE>stem</FEATURE>

39 </CONS−1>

40 </NGRAM>

41

42 <ATTRIBUTE>

43 <NAME>Class</NAME>

44 <SEMTYPE>NOMINAL</SEMTYPE>

45 <TYPE>Sentence</ TYPE>

46 <FEATURE>functional requirement</FEATURE>

47 <POSITION>0</POSITION>

48 <CLASS/>

49 </ ATTRIBUTE>

50

51

52

53

54 </DATASET>

55

56 </ML−CONFIG>

57

89

Appendix B

Gazetteer Lists

B.1 Modality

Listing B.1: Shall.lst
1 are able to

2 can

3 can only

4 cannot

5 have the a b i l i t y to

6 i s expected to

7 i s not expected to

8 may

9 must

10 must be able to

11 must ensure that

12 s h a l l

13 s h a l l able to

14 s h a l l accurately

15 s h a l l allow to

16 s h a l l ask the user to

17 s h a l l automatically

18 s h a l l be able

19 s h a l l be able to

20 s h a l l be able to continue to

21 s h a l l be able to success fu l l y

22 s h a l l be available f o r
23 s h a l l be capable of

24 s h a l l be easy to

25 s h a l l be expected to

26 s h a l l be i n t u i t i v e to

27 s h a l l continue to

28 s h a l l eas i l y

29 s h a l l ensure that

90

30 s h a l l ensure that i t can only

31 s h a l l have the a b i l i t y to

32 s h a l l not

33 s h a l l not be able to

34 s h a l l only

35 s h a l l success fu l l y be able to use the system to

36 s h e l l be able to

37 should

38 should be able to

39 should be able to eas i l y

40 should be able to success fu l l y use the system to

41 should be poss ib le to

42 should not

43 should only

44 should only have to

45 should / should not

46 w i l l

47 w i l l be able to

48 w i l l be able to success fu l l y

49 w i l l be used to

50 w i l l need to

51 w i l l no longer be able to

52 w i l l not be able to

Listing B.2: Shallallow.lst

1 System must provide the a b i l i t y to

2 does not allow

3 must allow

4 must fu r the r allow

5 must prevent

6 must prompt

7 must provide

8 s h a l l allow

9 s h a l l help

10 s h a l l l e t

11 s h a l l make

12 s h a l l prevent

13 s h a l l provide

14 s h a l l reta in

15 w i l l allow

16 w i l l provide

Listing B.3: Ability.lst

1 the a b i l i t y to

2 with the a b i l i t y to

91

B.2 Quantification

Listing B.4: Quantification.lst
1 after

2 after

3 after the f i r s t

4 after which

5 at least

6 between

7 during the f i r s t

8 every

9 every

10 l e s s than

11 maximum of

12 maximum response time of

13 minimum of

14 minimum response time of

15 more than

16 no la te r

17 no longer than

18 no more than

19 not be more than

20 not exceed

21 over

22 under

23 up to

24 with

25 with in

26 with in the

B.3 Condition and Limit

Listing B.5: Condition.lst
1 As long as

2 I f

3 Once

4 When

5 i f
6 once

7 when

Listing B.6: Conjunction.lst
1 and

2 but

92

3 f o r
4 nor

5 not

6 or

7 so

8 yet

Listing B.7: Limit.lst
1 a maximum of

2 at most

3 based on

4 before

5 between

6 during

7 ei ther

8 even

9 every

10 i f
11 minimum of

12 more than

13 no la te r

14 no longer

15 no more than

16 once

17 that

18 that are

19 the minimum

20 up to

21 via

22 when

23 whenever

24 which

25 while
26 with

27 with in

28 without

Listing B.8: NFR.lst
1 GUI

2 I n t e g r i t y

3 Measure

4 O r i g i n a l i t y

5 Primary Actor i s authenticated

6 Qual i f icat ion

7 achieve

8 appropriate

9 as poss ib le

10 available

11 benf i t s

93

12 concurrent

13 c r i t i c a l

14 design

15 designed

16 eas i l y

17 effect

18 e f f i c i e n t

19 e f f i c i e n t l y

20 enough

21 heavi ly

22 i s sue

23 maximum

24 minimizing

25 quickly

26 response time

27 reuse

28 s implest

29 user f r i e n d l y

30 user interface

31 validate

94

Appendix C

JAPE Rules for Requirement

Thematic Roles Extractor

C.1 Modality

Listing C.1: Modality.jape
1 Phase : Modality

2 Input : Lookup

3 Options : control = applet

4

5 Rule : ru le2

6 (

7 {Lookup . minorType == sha l l 1 }
8)

9 :ann

10 −−>
11 :ann . Modality = {type = "Modality" , s t r i n g = : ann@string , minor = "Modality"}
12

13

14 Rule : ru le3

15 (

16 {Lookup . minorType == sha l la l low}
17)

18 :ann

19 −−>
20 :ann . Modality = {type = "Modality" , s t r i n g = : ann@string , minor = "ModalityAllow"}

C.2 Agent

95

Listing C.2: Agent.jape

1 Phase : Agent

2 Input : Modality NP Token

3 Options : control = applet

4

5

6 Rule : ru le1

7 (

8 (({NP}) ({Token . s t r i n g == and} | {Token . s t r i n g == of }) ({NP})) : Agent

9 {Modality . minor == Modality}
10)

11 :ann

12 −−>
13 : Agent . Agent = {type = "Agent" , s t r i n g = : Agent@string}
14

15

16

17 Rule : ru le2

18 (

19 ({NP}) : Agent

20 {Modality . minor == Modality}
21)

22 :ann

23 −−>
24 : Agent . Agent = {type = "Agent" , s t r i n g = : Agent@string}
25

26

27

28

29 Rule : ru le3

30 (

31 {Modality . minor == ModalityAllow}
32 (({NP}) ({Token . s t r i n g == and} | {Token . s t r i n g == of }) ({NP})) : Agent

33

34)

35 :ann

36 −−>
37 : Agent . Agent = {type = "Agent" , s t r i n g = : Agent@string}
38

39 Rule : ru le4

40 (

41 {Modality . minor == ModalityAllow}
42 ({NP}) : Agent

43

44)

45 :ann

46 −−>
47 : Agent . Agent = {type = "Agent" , s t r i n g = : Agent@string}
48

96

C.3 Action

Listing C.3: Action.jape
1 Phase : action

2 Input : Modality Token Someone Agent

3 Options : control = f i r s t

4

5 Rule : ru le2

6 (

7 ({Modality . minor == ModalityAllow}{Agent}) ({Token . s t r i n g == to })?

8 ({Token . category == VB} | {Token . category == VBP} | {Token . category == VBG}) : action

9)

10 :ann

11 −−>
12 : action . Action = {type = "Action" , s t r i n g = : action@str ing}
13

14

15

16 Rule : ru le1

17 (

18 {Modality}
19 (({ Token . s t r i n g == allow }|{ Token . s t r i n g == prevent} | {Token . s t r i n g == not i f y } | {Token .

s t r i n g == help}) ({Someone}) ({Token . s t r i n g == to }|{ Token . s t r i n g == from}|{ Token .

s t r i n g == of }))?

20

21 (

22 {Token . s t r i n g == be}{Token . category == VB}{Token . category == IN}
23 | {Token . s t r i n g == be}{Token . category == VBP}{Token . category == IN}
24 | {Token . s t r i n g == be}{Token . category == VBN}{Token . category == IN}
25 | {Token . s t r i n g == be}{Token . category == JJ}{Token . category == IN}
26 | {Token . s t r i n g == be}{Token . category == VB}{Token . category == TO}
27 | {Token . s t r i n g == be}{Token . category == VBP}{Token . category == TO}
28 | {Token . s t r i n g == be}{Token . category == VBN}{Token . category == TO}
29 | {Token . s t r i n g == be}{Token . category == JJ}{Token . category == TO}
30

31 | {Token . s t r i n g == be}{Token . category == JJ}
32 | {Token . s t r i n g == be}{Token . category == RB}
33 | {Token . s t r i n g == be}{Token . category == VBN}
34 | {Token . s t r i n g == be}{Token . category == VB}
35

36 | {Token . category == VB, Token . s t r i n g != be}{Token . category == IN}
37 | {Token . category == VBP}{Token . category == IN}
38 | {Token . category == VB, Token . s t r i n g != be}{Token . category == TO}
39 | {Token . category == VBP}{Token . category == TO}
40

41 | {Token . category == RB}{Token . category == VB}
42 | {Token . category == RB}{Token . category == VBP}
43 | {Token . category == RB}{Token . category == VBG}
44

97

45 | {Token . category == VB, Token . s t r i n g != allow , Token . s t r i n g != prevent , Token . s t r i n g

!= not i f y , Token . s t r i n g != help , Token . s t r i n g != be}
46 | {Token . category == VBP}
47 | {Token . category == VBG}
48 | {Token . category == VB}
49) : action

50

51)

52 :ann

53 −−>
54 : action . Action = {type = "Action" , s t r i n g = : action@str ing}
55

56

57

58

59

C.4 Theme

Listing C.4: Theme.jape
1 Phase : Theme

2 Input : NP Action Token

3 Options : control = f i r s t

4

5 Rule : ru le1

6 (

7 {Action}
8 ({Token}) [0 ,3]

9 ({NP}) : Theme

10)

11 :ann

12 −−>
13 : Theme.Theme = {type = "Theme" , s t r i n g = : Theme@string}
14

C.5 Fit-Criteria

Listing C.5: Quantification.jape
1 Phase : Quantif ication

2 Input : NP Lookup Measurement Token Percent Number

3 Options : control = applet

4

98

5 Rule : ru le1

6 (

7 ({Lookup . majorType == Quantif ication })?

8 (({Measurement}) |
9 ({Token . kind == number}{Token . category == JJ}{Token . category == NNS}) |

10 ({Token . kind == number}{Token . category == NNS}) |
11 ({Number} {Token . category == NNS}))

12)

13 :Quan

14 −−>
15 :Quan. Quantif ication = {type = "Quantification" , s t r i n g = : Quan@string , majorType="units"}
16

17 Rule : ru le2

18 (

19 ({Token . kind == number}{Token . s t r i n g == x}{Token . kind == number}{Token . s t r i n g == x}{
Token . kind == number}) |

20 ({Token . kind == number}{Token . s t r i n g == x}{Token . kind == number})

21)

22 : screen

23 −−>
24 : screen . Quantif ication = {type = "Quantification" , s t r i n g = : screen@string , majorType="

Screen"}
25

26

27 Rule : ru le3

28 (

29 {NP}({Token . s t r i n g == "."}({Token . kind == number} | {Token . kind == x} | {Token .

kind == X})) [1 ,4]

30)

31 : Product

32 −−>
33 : Product . Quantif ication = {type = "Quantification" , s t r i n g = : Product@string , majorType="

Product"}
34

35 Rule : ru le4

36 (

37 ({Token . s t r i n g == between}{Measurement}{Token . s t r i n g == and}{Measurement}) |
38 ({Token . s t r i n g == between}{NP}{Token . s t r i n g == and}{NP}) |
39 ({Token . s t r i n g == between}{Token . kind == number}{Token . s t r i n g == and}{Token . kind

== number})

40)

41 :between

42 −−>
43 :between. Quantif ication = {type = "Quantification" , s t r i n g = : between@string , majorType="

between"}
44

45 Rule : ru le5

46 (

47 {Percent}
48)

49 : percent

99

50 −−>
51 : percent . Quantif ication = {type = "Quantification" , s t r i n g = : percent@string , majorType="

Percent"}
52

53

C.6 Condition

Listing C.6: Condition.jape
1 Phase : Condition

2 Input : Lookup Agent NP Token Theme Action Quantif ication Modality

3 Options : control = f i r s t

4

5 Rule : ru le1

6 (

7 ({Lookup . majorType == condition }) : l e f t

8 ({Token}) [1 ,9]

9 ({Agent}) : r i g h t

10)

11 :ann

12 −−>
13 {
14 Node s t a r t = ((AnnotationSet) bindings . get ("left")) . f i r s tNode () ;

15 Node end = ((AnnotationSet) bindings . get ("right")) . f i r s tNode () ;

16

17 FeatureMap features = Factory . newFeatureMap() ;

18 features . put ("type" , "Condition") ;

19 outputAS .add(s ta r t , end, "Condition" , features) ;

20 }
21

22 Rule : ru le2

23 (

24 ({Modality })

25 ({Action})?

26 ({Theme})?

27 ({Token}) [0 ,5]

28

29 ({Quantif ication }) : l e f t

30 ({Token}) [1 ,9]

31 ({Token . kind == punctuation}) : r i g h t

32

33)

34 :ann

35 −−>
36 {
37 Node s t a r t = ((AnnotationSet) bindings . get ("left")) . f i r s tNode () ;

38 Node end = ((AnnotationSet) bindings . get ("right")) . f i r s tNode () ;

100

39

40 FeatureMap features = Factory . newFeatureMap() ;

41 features . put ("type" , "Condition") ;

42 outputAS .add(s ta r t , end, "Condition" , features) ;

43 }
44

45

46 Rule : ru le3

47 (

48 ({Modality })

49 ({Action})?

50 ({Theme})?

51 ({Token}) [0 ,5]

52 ({Lookup . majorType == l i m i t }) : l e f t

53 ({Token}) [1 ,9]

54 ({Token . kind == punctuation}) : r i g h t

55)

56 :ann

57 −−>
58 {
59 Node s t a r t = ((AnnotationSet) bindings . get ("left")) . f i r s tNode () ;

60 Node end = ((AnnotationSet) bindings . get ("right")) . f i r s tNode () ;

61

62 FeatureMap features = Factory . newFeatureMap() ;

63 features . put ("type" , "Condition") ;

64 outputAS .add(s ta r t , end, "Condition" , features) ;

65 }

C.7 Instrument

Listing C.7: Instrument.jape
1 Phase : Instrument

2 Input : NP ThingToBeProcessed Token Action

3 Options : control = a l l

4

5 Rule : ru le4

6 (

7 (({Token . s t r i n g == using} |{ Token . s t r i n g == via})

8 ({NP}{Lookup . majorType == conjunction}{NP} | {NP})) : Instrument

9

10)

11 :ann

12 −−>
13 : Instrument . Instrument = {type = "Instrument" , s t r i n g = : Instrument@str ing}
14

101

Listing C.8: How.jape
1 Phase : how

2 Input : NP ThingToBeProcessed Token VG

3 Options : control = a l l

4

5 Rule : ru le4

6 (

7 {ThingToBeProcessed}
8 {Token . s t r i n g == by}
9

10 {VG}({NP}) :how

11

12)

13 :ann

14 −−>
15 :how.How = {type = "How" , s t r i n g = : how@string}
16

C.8 Goal

Listing C.9: Goal.jape
1 Phase : Goal

2 Input : NP Theme Token VG Action Condition Sentence

3 Options : control = applet

4

5 Rule : ru le4

6 (

7 ({Action})

8 ({Theme})?

9 ({Condition })?

10 ({Token}) [0 ,3]

11 (

12 ((({ Token . s t r i n g == in }{Token . s t r i n g == order}{Token . s t r i n g == to }) | ({ Token . s t r i n g == to

}) ({Token . category == VB} | ({ Token . s t r i n g == f o r }) | {VG} |{ Token . category == VBP} |
{Token . category == VBN} | {Token . category == JJ }))

13 ({Token}) [0 ,8]

14) : Goal

15

16 {Sentence}) : sent

17)

18 :ann

19 −−>
20 : Goal . Goal = {type = "Goal" , s t r i n g = : Goal@string}
21

102

C.9 Non-Testability Detection

Listing C.10: Testable.jape
1 Phase : Testable

2 Input : Sentence Quantif ication

3 Options : control = f i r s t

4

5 Rule : ru le1

6 (

7 ({Sentence contains Quantif ication }) : testYES

8)

9 :ann

10 −−>
11 : testYES . Requirement = { T e s t a b i l i t y = "YES"}
12

13

14

15 Rule : ru le2

16 (

17 ({Sentence}) : testNO

18)

19 :ann

20 −−>
21 : testNO . Requirement = { T e s t a b i l i t y = "NO"}

103

Appendix D

OwlExporter

1 /∗
2 OwlExporter −− ht tp : //www. semanticsoftware . in fo / owlexporter

3

4 T h i s f i l e i s part of the OwlExporter architecture .

5

6 Copyright (C) 2009 , 2010 Semantic Software Lab , ht tp : //www. semanticsoftware . in fo

7 Rene Witte

8 Ninus Khamis

9

10 The OwlExporter architecture i s free software: you can

11 r e d i s t r i b u t e and/ or modify i t under the terms of the GNU Affero General

12 Publ ic License as published by the Free Software Foundation , e i ther

13 vers ion 3 of the License , or (at your option) any la te r vers ion .

14

15 T h i s program i s d i s t r ibuted in the hope that i t w i l l be useful ,

16 but WITHOUT ANY WARRANTY; without even the implied warranty of

17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the

18 GNU Affero General Publ ic License fo r more deta i l s .

19

20 You should have received a copy of the GNU Affero General Publ ic License

21 along with t h i s program . I f not , see <ht tp : //www. gnu . org/ l icenses /> .

22 ∗/
23

24 Phase: mention map domain entities

25 Input : Document Sentence

26 Options: control = a l l debug = true

27

28 Rule: mention map domain entities

29 (

30 {Sentence}
31)

32 :ann

33 −−>
34 {

104

35 t r y {
36 AnnotationSet as = (gate . AnnotationSet) bindings . get ("ann") ;

37 Annotation ann = (gate . Annotation) as . i t e r a t o r () . next () ;

38 FeatureMap features = ann . getFeatures () ;

39 S t r i n g in = doc. getContent () . getContent (ann . getStartNode () . getOffset () ,

ann . getEndNode() . getOffset ()) . toS t r ing () ;

40

41 i f (ann . getFeatures () . get ("functional_requirement") . toS t r ing () .

compareToIgnoreCase("yes") == 0) {
42 // features . put ("className" , "FunctionalRequirement") ;

43 features . put ("className" , "Person") ;

44 features . put ("instanceName" , i n) ;

45 features . put ("representationId" , ann . getId ()) ;

46 features . put ("corefChain" , n u l l) ;

47 features . put ("kind" , "Class") ;

48 // outputAS .add(as . f i r s tNode () , as . lastNode () , "OwlExportClassDomain"

, features) ;

49 }
50 i f (ann . getFeatures () . get ("constraint") . toS t r ing () . compareToIgnoreCase("yes

") == 0) {
51 features . put ("className" , "OperatingConstraint") ;

52 features . put ("instanceName" , i n) ;

53 features . put ("representationId" , ann . getId ()) ;

54 features . put ("corefChain" , n u l l) ;

55 features . put ("kind" , "Class") ;

56 // outputAS .add(as . f i r s tNode () , as . lastNode () , "OwlExportClassDomain"

, features) ;

57 }
58 i f (ann . getFeatures () . get ("maintainability") . toS t r ing () . compareToIgnoreCase

("yes") == 0) {
59 features . put ("className" , "Maintainability") ;

60 features . put ("instanceName" , i n) ;

61 features . put ("representationId" , ann . getId ()) ;

62 features . put ("corefChain" , n u l l) ;

63 features . put ("kind" , "Class") ;

64 // outputAS .add(as . f i r s tNode () , as . lastNode () , "OwlExportClassDomain"

, features) ;

65 }
66 i f (ann . getFeatures () . get ("reliability") . toS t r ing () . compareToIgnoreCase("

yes") == 0) {
67 features . put ("className" , "Reliability") ;

68 features . put ("instanceName" , i n) ;

69 features . put ("representationId" , ann . getId ()) ;

70 features . put ("corefChain" , n u l l) ;

71 features . put ("kind" , "Class") ;

72 // outputAS .add(as . f i r s tNode () , as . lastNode () , "OwlExportClassDomain"

, features) ;

73 }
74 i f (ann . getFeatures () . get ("security") . toS t r ing () . compareToIgnoreCase("yes")

== 0) {
75 features . put ("className" , "Security") ;

105

76 features . put ("instanceName" , i n) ;

77 features . put ("representationId" , ann . getId ()) ;

78 features . put ("corefChain" , n u l l) ;

79 features . put ("kind" , "Class") ;

80 // outputAS .add(as . f i r s tNode () , as . lastNode () , "OwlExportClassDomain"

, features) ;

81 }
82 i f (ann . getFeatures () . get ("usability/utility") . toS t r ing () .

compareToIgnoreCase("yes") == 0) {
83 features . put ("className" , "Usability") ;

84 features . put ("instanceName" , i n) ;

85 features . put ("representationId" , ann . getId ()) ;

86 features . put ("corefChain" , n u l l) ;

87 features . put ("kind" , "Class") ;

88 // outputAS .add(as . f i r s tNode () , as . lastNode () , "OwlExportClassDomain"

, features) ;

89 }
90 i f (ann . getFeatures () . get ("functionality") . toS t r ing () . compareToIgnoreCase("

yes") == 0) {
91 features . put ("className" , "Functionality") ;

92 features . put ("instanceName" , i n) ;

93 features . put ("representationId" , ann . getId ()) ;

94 features . put ("corefChain" , n u l l) ;

95 features . put ("kind" , "Class") ;

96 // outputAS .add(as . f i r s tNode () , as . lastNode () , "OwlExportClassDomain"

, features) ;

97 }
98 i f (ann . getFeatures () . get ("efficiency") . toS t r ing () . compareToIgnoreCase("yes

") == 0) {
99 features . put ("className" , "Efficiency") ;

100 features . put ("instanceName" , i n) ;

101 features . put ("representationId" , ann . getId ()) ;

102 features . put ("corefChain" , n u l l) ;

103 features . put ("kind" , "Class") ;

104 // outputAS .add(as . f i r s tNode () , as . lastNode () , "OwlExportClassDomain"

, features) ;

105 }
106 }
107 catch(Exception e){
108 e. printStackTrace () ;

109 }
110 }

106

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem Statement
	Research Goals and Objectives
	Outline

	Background
	Software Engineering Concepts
	Requirements Engineering
	Software Requirement Specifications
	Non-Functional Requirements

	Requirements Quality Assurance
	Semantic Computing Concepts
	Knowledge Representation using Ontologies
	Natural Language Processing
	Machine Learning

	Summary

	Literature Review
	NLP-based Requirements Engineering
	NFR Classification
	Requirement Quality Assurance
	Semantic Analysis of RE Statements
	Discussion

	System Design
	Methodology
	Ontology Building Phase
	Corpus Annotation Phase
	NFR Classification Phase
	Requirements Thematic Roles Extraction Phase
	Non-Testability Detection Phase

	System Overview
	Data Layer
	The NFRs View
	Thematic Roles View
	Fit-Criteria View

	NFR Preprocessing Layer
	Automatic Classification of Requirements
	Thematic Roles Extractor

	Quality Assurance Layer
	Summary

	Implementation
	Implementation Tools
	GATE
	Protégé

	System Implementation
	NFR Ontology
	NFR Classifier
	Ontology Population
	Requirement Analysis ReqAnalysis

	Summary

	Corpora and Evaluation
	NFR Corpora
	Enhanced PROMISE Corpus
	SRS Concordia Corpus

	System Evaluation
	NFR Classifier
	Thematic Roles Extractor
	Non-Testability Detector

	Summary

	Conclusions and Future Work
	Bibliography
	NFR Classifier Configuration
	Gazetteer Lists
	Modality
	Quantification
	Condition and Limit

	JAPE Rules for Requirement Thematic Roles Extractor
	Modality
	Agent
	Action
	Theme
	Fit-Criteria
	Condition
	Instrument
	Goal
	Non-Testability Detection

	OwlExporter

