
APPLICATION OF CRYPTANALYSIS METHODS TO

SOME SYMMETRIC KEY PRIMITIVES

ANAHID KHAJOOEIZADEH

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

APRIL 2015

c© ANAHID KHAJOOEIZADEH, 2015

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair

______________________________________ Examiner

______________________________________ Examiner

______________________________________ Supervisor

Approved by __
Chair of Department or Graduate Program Director

__
Dean of Faculty

Date __

Anahid Khajooeizadeh

APPLICATION OF CRYPTANALYSIS METHODS TO SOME SYMMETRIC KEY PRIMITIVES

Master of Applied Science

Dr. Ben Hamza

Dr. Bentahar

Dr. Tarek Zayed

Dr. Amr Youssef

May 15, 2015

ABSTRACT

Application of cryptanalysis methods to some symmetric key primitives

Anahid Khajooeizadeh

Block ciphers and hash functions are important cryptographic primitives that are used to

secure the exchange of critical information. With the continuous increase in computational

power available to attackers, information security systems including their underlying prim-

itives need continuous improvements. Various cryptanalysis methods are used to examine

the strength and weakness of hash functions and block ciphers.

In this work, we study the Lesamnta-512 and DHA-256 hash functions and the LAC

authenticated encryption scheme. In particular, we study the resistance of the underlying

block cipher of the Lesamnta-512 hash function against impossible differential attacks and

the resistance of the DHA-256 compression function against collision attacks. We also

study MAC forgery attacks against LAC. Throughout our analysis, we use different auto-

mated methods to facilitate our analysis. For the cryptanalysis of Lesamnta-512, two au-

tomated methods are studied for finding an impossible differential path with the maximum

length. Using the obtained impossible differential path, impossible differential cryptanal-

ysis of Lesamnta-512 is performed for 16 rounds. For the DHA-256 hash function, we

used an algebraic method to find collisions for its 17-step reduced compression function

iii

by deriving difference equations for each step and then solving them when the conditions

for collisions are imposed on these equations. For LAC, the differential behavior of the

different operations of the cipher is represented into a set of linear equations. Then, a

Mixed Integer Linear Programming (MILP) approach is used to find a high probability

characteristic. This characteristic is then used to perform a forgery attack on LAC.

iv

Acknowledgments

I would never have been able to finish this work without the guidance of my thesis advisor.

I would like to express my deepest gratitude to him for his excellent guidance, caring,

patience, and providing me with an excellent atmosphere for doing research.

I would also like to thank my parents, my sister and my brother. They were always

supporting me and encouraging me with their best wishes. It was under their watchful eye

that I gained so much drive and an ability to tackle challenges head on.

I would like to thank my love and best friend for his faith in me and allowing me to be

as ambitious as I wanted. He always gives me the energy and confidence to work harder.

He was always there cheering me up and stood by me through the good times and bad.

I would also like to thank my colleagues for sharing their experiences in this field and

practical issues beyond the textbooks with patience.

My research would not have been possible without these helps.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Thesis Organization . 5

2 Related Work and Background 6

2.1 Properties of Cryptographic Hash Functions 6

2.1.1 Introduction . 6

2.2 The Birthday Paradigm . 9

2.3 Cryptographic Properties of Authenticated Encryption Schemes 10

2.3.1 Security Requirements for Authenticated Encryption Schemes . . . 14

2.4 Differential Cryptanalysis . 15

2.4.1 Introduction . 15

vi

2.4.2 Basic Attack . 15

2.4.3 Impossible Differential Cryptanalysis 17

3 Attacks on Lesamnta-512 and DHA-256 18

3.1 Impossible Differential Cryptanalysis of Lesamnta-512 18

3.1.1 Lesamnta-512 Preliminaries . 19

3.1.2 Methods for Finding Impossible Differential Paths with Maximum

Length . 24

3.1.3 Application of the Unified Method to Lesamnta-512 38

3.1.4 The Impossible Differential Attack 41

3.2 Collision on Step-reduced DHA-256 Hash Function 44

3.2.1 DHA-256 Preliminaries . 46

3.2.2 Description of DHA-256 . 46

3.2.3 The General Idea of Creating the Collisions 47

3.2.4 Deriving the Equations for the Collision Conditions 49

4 Cryptanalysis of the LAC Authenticated Encryption Cipher 54

4.1 LAC Authenticated Encryption Cipher Specification 56

4.1.1 LBlock-s Specification . 57

4.1.2 The Key Scheduling Procedure in LAC and LBlock-s 59

4.1.3 Specification of E, G and G-leak Functions 59

4.1.4 Encryption and Decryption Procedures 60

4.2 Finding Differential Paths with Minimum Number of Active S-boxes 62

vii

4.2.1 Mixed Integer Linear Programming 62

4.3 Converting the Differential Behaviors of LAC Operations into Linear Equa-

tions . 63

4.3.1 The Exclusive-or Operation Conversion 64

4.3.2 The Linear Operation Conversion 65

4.4 Differential Cryptanalysis of LAC Authenticated Encryption Cipher Using

the MILP Algorithm . 67

4.4.1 Finding the Minimum Number of Active S-boxes 70

4.5 Choosing the Candidate Truncated Characteristics 74

4.6 Finding the Differential of the highest Probability 75

4.7 Results . 76

5 Conclusions and Future Work 78

Bibliography 80

viii

List of Figures

1 The internal block cipher structure of the Lesamnta-512 compression function 21

2 One round of the Feistel Structure . 26

3 DHA-256 hash function structure . 48

4 The encryption and authentication process of LAC authenticated encryp-

tion cipher . 57

5 One round of LBlock-s cipher with its round function subkey addition, con-

fusion and diffusion layers . 58

6 Differential propagation for the first step of LAC in initialization of the

linear equations . 71

ix

List of Tables

1 Multiplication between the difference vector entry αi and the matrix entry
Ei (where k ∈ {0, 1, 1∗, 2∗, t} and t ≥ 2) [18]. 28

2 Relation of addition and XOR where k ∈ {0, 1, 1∗, 2∗, t} and t ≥ 2, t′

≥ 2 and Δ is the corresponding difference for k. The ? mark denotes the
differences which we do not know their value [18]. 28

3 Differences corresponding to the entries m ∈ u and their corresponding
entry sets m̄ [18]. 29

4 The impossible differential path found in the forward direction using the
Unified method. Each branch in each round has either zero, non-zero fixed
(li), non-zero non-fixed (mi) or other varied (ri) difference. 40

5 The impossible differential path found in the backward direction. Each
branch in each round has either zero, non-zero fixed (li), non-zero non-
fixed (mi) or other varied (ri) difference. 40

6 The differential path derived for DHA-256. 49

7 The DHA-256 17 Step Collision found. In this table in each row, the mes-
sage and hash vector starts from the left and finishes at the end of the second
line. 53

8 Input output pairs for the S-box used in LAC 58

9 The result characteristics with the minimum number of active S-boxes and
the highest probability corresponding to the input and output difference
values for the full 16 round of LAC authenticated encryption cipher 76

x

Chapter 1

Introduction

1.1 Motivation

With the heavy reliance of our society on computers and the rising popularity of the Inter-

net, the importance of data validation and authentication is on the rise. Cryptographic hash

functions play a great role in securing modern information and computing systems. They

are used as building blocks to achieve data integrity, authentication and non-repudiation as

part of the digital signature schemes, message authentication codes and many other secu-

rity schemes. On one hand, the steady increase in computational power allows us to deploy

hash functions, among other cryptographic primitives, in many security applications. On

the other hand, it also allows hackers to brute force weaker primitives and practically ex-

ecute complex cryptanalytic techniques that were thought of as impractical in the past. In

2005, two commonly used hash functions were attacked successfully. Wang et al. released

details on how to break the widely used MD5 hash function and presented examples for

1

colliding messages [29]. Afterwards, a theoretical attack was presented on SHA-1. This

attack can find colliding pairs with complexity much less than predicted by its designed

security parameters [28]. As a result, a continuous, and indeed challenging, development

of hash functions is required in order to design more secure hash functions and be able to

compute more precise security bounds. On November 2007, the National Institute of Stan-

dards and Technology (NIST) announced the SHA-3 competition in order to select a new

hash function standard that addresses the issues in SHA-1 and MD5 [12]. DHA (Double

Hash Algorithm)-256 hash function is one of the early designs introduced to strengthen

the SHA-2 hash function. There are two main differences introduced in DHA compared to

SHA-2. First, the message expansion formula is different and it has been changed in a way

to use the nearest previous messages in its iterations rather than the far steps. This helps

the message expansion to use more messages from previous steps and therefore makes the

search for collisions harder. Lesamnta is another new family of hash functions submitted

to the NIST SHA-3 competition. The Lesamnta hash function family includes four al-

gorithms: Lesamnta-224/256/384/512. For each algorithm, the Merkle-Damgard domain

extension with an output function is adopted [9]. Since the inner functions of Lesamnta are

similar to the Advanced Encryption Standard (AES) [10], many optimized software and

hardware implementation techniques for AES are also applicable to Lesamnta.

Poor composition of encryption schemes and authentication codes (MAC) can lead to

dramatic security failure of the underlying security systems even when each of these prim-

itives is secure by itself [3], [19], [27], [17]. Authenticated encryption schemes are prim-

itives which simultaneously provide confidentiality, integrity, and authenticity assurances

2

on the data; decryption is combined in single step with integrity validation. These attributes

are provided under a single, easy to use interface. Some applications require us to be able to

securely use encryption schemes and authentication schemes together and provide authen-

ticity and confidentiality for both secret and non-secret data (commonly referred to as the

associated data). Thus authenticated encryption schemes with associated data were intro-

duced to fulfil this requirement [26]. Based on the importance of the composition modes on

the security of the information systems and renewed interest in the design and cryptanalysis

of secure authenticated encryption schemes after the breaches on their plain combination,

NIST funded the CAESAR competition (Competition for Authenticated Encryption: Se-

curity, Applicability, and Robustness) to specifically provide the security community with

candidates for dedicated authenticated encryption primitives.

The LAC lightweight authentication encryption scheme is one of the candidates submit-

ted to the CAESAR competition. The structure of LAC is based on ALE [7]. The primitive

used in LAC as the back-end block cipher is a modified version of LBlock, called LBlock-s

which is another lightweight block cipher.

In this thesis we study the three above mentioned cryptographic functions and schemes

(Lesamnta-512, DHA-256 and LAC) and investigate three attacks on them. More precisely,

• We present some cryptanalytic results on DHA-256 and Lesamnta-512. In particu-

lar, we study the resistance of the underlying block cipher of the Lesamnta-512 hash

function against impossible differential attacks, the resistance of DHA-256 compres-

sion function against collision attacks, and we study MAC forgery attacks against

3

LAC. Throughout our analysis, we use different semi-automated methods to facil-

itate our analysis. For the cryptanalysis of Lesamnta-512, two automated methods

are studied for finding an impossible differential path with the maximum length. Us-

ing the obtained impossible differential path, impossible differential cryptanalysis of

Lesamnta-512 is performed for 16 rounds.

• We study forgery attacks on LAC. In particular, the differential behaviour of the dif-

ferent operations of the cipher is represented into a set of linear equations. Then,

a Mixed Integer Linear Programming (MILP) approach is used to find a high prob-

ability differential path. This path is then utilized to perform a forgery attack on

LAC.

1.2 Contributions

Our contributions can be summarized as follows:

• We thoroughly study the Lesamnta-512 hash function and its underlying block ci-

pher. Automated methods for finding the long impossible differential paths (the Ma-

trix method and the Unified method) are studied. Based on our analysis, the Unified

method turns out to be more suitable for application on Lesamnta-512. Using this

method, a 16 round impossible differential path is found for the Lesamnta-512 block

cipher.

• We present an algebraic attack to find collisions on reduced round version of the

DHA-256 compression function.

4

• We present a forgery attack on the LAC authenticated encryption scheme. The attack

was found by utilizing a Mixed Integer Linear programming approach to find a hight

probability characteristic, and then we search for a high probability differential that

follows the same set of active S-boxes within the found characteristic.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In the next section, we present related work

and some background that is required to understand the work presented throughout the

thesis. In Chapter 3, Lesamnta-512 is studied where automated methods are used in order

to find impossible differential paths with maximum length. Also, an algebraic attack to find

collisions for a reduced round version of the DHA-256 compression function is presented.

In Chapter 4, we present our forgery attack on the LAC authenticated encryption scheme.

Finally, in Chapter 5 we present our conclusion and some possible future work directions.

5

Chapter 2

Related Work and Background

In this chapter, we briefly review some related work and provide background knowledge

required to understand the work done in this thesis. First, we briefly review the security

properties of cryptographic hash functions and authenticated encryption schemes. Then we

provide background on differential cryptanalysis in general and impossible differential in

particular. Finally, some automated methods that proved to be useful in the cryptanalysis

of symmetric key primitives are described.

2.1 Properties of Cryptographic Hash Functions

2.1.1 Introduction

Hash functions are powerful tools in the design of techniques for protecting the authenticity

of information. Typically, hash functions map larger domains to smaller ranges, referred to

as digital fingerprints. This domain should be small enough in order to be able to efficiently

6

store it. In cryptography, hash functions are also used in authentication schemes where a

hash function is combined with a secret key to form an authentication code (MAC). In Mes-

sage Authentication Codes, the secret key is used in the compression process. Therefore it

can be used to achieve data integrity (e.g., to ensure that the data has not been changed by

an intruder or by a virus), and message authentication at the same time. The security of a

MAC is dependent on the cryptographic strength of the underlying hash function and also

on the size of its hash output and key. Additionally, hash functions are used in message

fingerprinting, i.e., the hash value is used as the digital fingerprint of the message hashed

since there is a low probability that two different messages hash to the same value. In case

an intruder finds such messages, a collision is found and the hash function is broken. An-

other use of hash functions is in detecting any data corruptions in the received ciphertext.

This is useful in verifying the integrity of files or messages and identifying them reliably.

Hash functions are also widely used in digital signature schemes where a user attaches a

code to their message as a signature. This is achieved by hashing the message and encrypt-

ing the produced hash with the user private key. Therefore the message can be verified

and undeniable, i.e., the user who signed the message cannot deny this action. Also, hash

functions are used in password verification schemes where it is not secure to save all the

users’ password or sensitive information in cleartext. This is achieved by storing the pass-

words’ hash values instead and comparing the hash values in the verification process. In

some proof-of-work systems, hash functions are used to verify that a work has been done

by the user [13]. Other usages of hash functions are in pseudo random number generations

and deriving keys from another key or password. For a cryptographic hash function, it is

7

assumed that the description of h must be publicly known and should not require any secret

information for its operation. It is also assumed that the argument X can be of any arbitrary

length and the result h(X) has a fixed length of z bits. Furthermore, cryptographic hash

functions should satisfy the following properties [24]:

• H is a hash function with z-bit output (z is a positive integer) if H is a deterministic

function that takes an arbitrary length input and outputs a binary string of length z,

i.e., H : {0, 1}∗ → {0, 1}z.

• A hash function H is pre-image resistant (one-way) if, for a random string h, it is

infeasible for an attacker, having h, to find m such that H(m) = h.

• A hash function H is second-preimage resistant if it is infeasible for an attacker

having a random string m to find m′ �= m such that H(m) = H(m′).

• A hash function H is collision resistant if it is infeasible for an attacker to find m′ �=

m such that H(m) = H(m′).

• The hash function must be collision resistant: this means that it is “hard” to find two

distinct messages that hash to the same result.

Degree of Difficulty

If H maps the input vector A to output vector B then there are 2z possible values for B

considering that H has z-bits as output. The complexity of attacks is based on the number

8

of the hash function computations required to success. The complexities of generic pre-

image, second pre-image, and collision attacks are as follows:

• Pre-image attack. In this attack, the attacker must find a message that produces a

given a hash. Assuming the attacker uses an exhaustive search to find this message,

the attack would have a complexity of 2z.

• Second pre-image attack. The attacker must find another message that has the same

hash value as a given message. Assuming the attacker uses an exhaustive search to

find this message, the attack would have a complexity of 2z.

• Collision attack. The adversary must find any two messages with the same hash

value. Based on the birthday paradigm, the complexity of the collision finding attack

is 2z/2.

2.2 The Birthday Paradigm

The birthday paradigm [24] states that in a random group of 23 people, the probability of

finding two that share the same birthday is about 50%. In what follows, we sketch a simple

proof for this paradigm. The chance that two people share the same birthday is 1/365. The

probability that two have different birthdays is 1−1/365 = 364/365. Having z people, we

conclude that we have z(z − 1)/2 pair of people. Therefore, the probability that all these

pairs have different birthdays is (364/365)z(z−1)/2. The probability of finding at least one

9

pair that shares a birthday is given by

1− (364/365)z(z−1)/2 (1)

For z = 1.2
√
365 (253 pairs), Eq. 1 evaluates to 50%. This can be used for the hash

function attack as well in order to find two messages hashing to the same value. Having

a hash function H with z-bit output, then the complexity of finding collisions under this

attack would be z = 1.2
√
2z.

2.3 Cryptographic Properties of Authenticated Encryp-

tion Schemes

An important challenge in secure communication is preventing an unauthorized user from

modifying the data going through the channel. Cryptography can be used to solve this

problem. Generally, the authentication problem is different from the privacy problem, i.e.,

preventing an unauthorized user from extracting information from a communication chan-

nel. For entity authentication, it is important to identify the source and/or destination of a

communication. Authenticated Encryption schemes are cryptographic primitives that are

useful when confidentiality, integrity and origin authenticity of the data are required at the

same time. Data integrity is not achieved with encryption only. Therefore, another authen-

tication scheme is required to verify that the message has not been modified by an attacker

using a code specific to the original user. This code is called a Message Authentication

10

Code (MAC). There are several cryptographic properties we would like to achieve in au-

thentication encryption schemes. One property is indistinguishability. Assuming that the

attacker has two messages and an encryption of one of them. If the attacker is not able

to distinguish between them then the indistinguishability goal is met in that scheme. The

weakest scenario is indistinguishability under chosen plaintext attack, called IND-CPA [4].

In this scenario the attacker has access to the scheme and therefore is able to encrypt, i.e.,

query this scheme with any two pairs of messages (m0,m1) and receive their encrypted

value. The attacker wins if she is able to guess which one of the messages the encrypted

value belongs to.

A stronger scenario is indistinguishability under chosen ciphertext attack, called IND-

CCA [4]. It is also assumed that the attacker has repeated access to the encryption and

decryption schemes. The attacker encrypts two messages (m0,m1) and receives an en-

crypted value. Then the attacker chooses a random ciphertext and guesses its correspond-

ing plaintext value. The attacker wins if she is able to guess which one of the messages the

encrypted value belongs to.

The two other security notions are integrity of plaintexts (INT-PTXT) and integrity of

ciphertexts (INT-CTXT) [4]. In INT-PTXT, it should be computationally infeasible to find

a ciphertext that when decrypted generates a plaintext that the sender has not encrypted.

However, in INT-CTXT it should be computationally infeasible to find a ciphertext that has

not been generated by the sender. INT-CTXT security implies INT-PTXT security.

There are three approaches to authenticated encryption: Encrypt-then-MAC (EtM) (en-

crypt first and then use the authentication key to compute the calculate the ciphertext tag),

11

Encrypt-and-MAC (E&M) (encrypt message and generate tag from the original plaintext)

and MAC-then-Encrypt (MtE) (first the tag is calculated and both the message and tag are

encrypted). In [19], it is shown that EtM is the secure approach compared to MtE and

E&M.

There are some downsides to all these approaches. First, instead of one single block,

two schemes are being used for authentication and encryption. Therefore not only this

will have more complexity but also two different keys are required, one for each scheme

meaning that the processing at the end user will be increased and this slows down the

process. Additionally, just attaching and combining an encryption and an authentication

scheme together will not necessarily provide a secure authenticated encryption scheme

even if each scheme is proven to be secure [4] [19].

For these reasons, researchers are trying to design AE schemes that is not only efficient

and secure but also uses the same key for both encryption and authentication. In order to do

so, one approach is to introduce new modes of operation. These modes are designed using

a block cipher and based on the assumption that the underlying block cipher is secure, i.e.,

it cannot be distinguished from a random permutation. For example, some ISO standard

modes are Galois/Counter Mode (GCM) of operation, Counter with CBC-MAC (CCM)

and Offset Codebook Mode (OCB) [2]. Another approach is to use a stream cipher and use

a key for encryption and another for authentication, which can be generated by dividing the

keystream into two parts [23].

The renewed interest in design and cryptanalysis of secure authenticated encryption

12

schemes, especially after the breaches caused by the use of their plain combination moti-

vated NIST to fund the CAESAR competition (Competition for Authenticated Encryption:

Security, Applicability, and Robustness) to specifically provide dedicated authenticated en-

cryption schemes.

Generally, algorithms providing confidentiality and authenticity can be divided into two

categories: authenticated encryption (AE) and authenticated encryption with associated

data (AEAD). Each encrypts and authenticates plaintext data (in addition to authenticated-

only data), which produces ciphertext with an authentication code. In the AEAD modes,

separate data is authenticated, known as associated authenticated data or AAD. The associ-

ated authenticated data is only authenticated and not encrypted so it can be communicated

unencrypted in cleartext. AEAD schemes are useful in applications where some informa-

tion need to be authenticated but cannot be encrypted encrypted (the associated data in the

AEAD mode). For instance the routing information in a packet should not be encrypted.

However, it is vital to authenticate this information. On the other hand, the payload should

be both encrypted and authenticated. Therefore the associated data would be the routing

information in this mode. The second property of these schemes is that they should be able

to process the data even without knowing the overall length of it. Another desirable prop-

erty is parallelization, which allows the processing of different message blocks in a parallel

manner.

The process for an authenticated encryption scheme can be summarized in the follow-

ing:

• Encryption:

13

– Input: The plaintext message M of arbitrary but usually limited length, a secret

key K, a public message number (PMN) which is a publicly random number

nonce and an optional associated data AD.

– Output: A corresponding ciphertext C of the same length as the plaintext along

with a fixed-length authentication tag T is generated.

• Decryption and Verification:

– Input: The ciphertext C, the same secret key K, the same random nonce PMN

that is used in the encryption process, the associated data AD if used in the

encryption and the authentication tag T .

– Output: Either the corresponding plaintext M or invalid (⊥) if the computed

authentication tag T ′ does not match the received one.

2.3.1 Security Requirements for Authenticated Encryption Schemes

An AEAD scheme should meet the following security requirements:

• Key Recovery: It should be infeasible to find the private key by any technique other

than exhaustive search.

• Forgery Attack: It must be computationally infeasible to forge a valid tag for a chosen

message if the private key is unknown. We call the attack an existential forgery attack

if the attacker has chosen the plaintext and we call it a universal forgery attack if the

message is given to the attacker.

14

• State Recovery: It should be computationally infeasible to recover the internal state

of the AEAD primitive without knowledge of its key.

• Indistinguishability: It should be infeasible to distinguish the AEAD or AE primitive

from a random function.

2.4 Differential Cryptanalysis

2.4.1 Introduction

In differential cryptanalysis, the general approach is to analyze the effect of modifying

specific bits in two plaintext pairs on the differences in the resulting output ciphertext pairs.

This process is performed on a set of plaintext and ciphertext pairs that have the same

difference among each other. This is useful since we can compute the probabilities for each

possible key and consequently find the most probable one. In this work, the exclusive-or

operation (XOR) is used to calculate the difference between any two pairs. In the following

sections we explain the basic ideas behind this attack in more details.

2.4.2 Basic Attack

We consider that our encryption system has the input (plaintext), P = [P1, P2, ..., Pn],

and output (ciphertext), C = [C1, C2, ..., Cn]. For two plaintext pairs P ′ and P ′′, and

their corresponding ciphertext pairs C′ and C ′′, the plaintext difference will be ΔP =

[ΔP1,ΔP2, ...,ΔPn] = P ′⊕P ′′. Our goal is to find the plaintext and ciphertext differences

15

that occur with high probability. This means that we are searching for a particular path

(called a differential path) where a specific plaintext pair difference ΔP results in a specific

ΔC with a high probability. The differential probability is determined by the differential

distribution table of the underlying S-boxes as well as the number of active S-boxes. Let ns

denote the number of bits of the S-box input, we will have a 2nS×2nS matrix where the rows

denote all possible input differences, the columns denote all possible output differences of

the S-box and the cells denote the number of times that the corresponding input difference

to an S-box will give the corresponding output difference. This table is called the difference

distribution table and it shows the probability that a specific input difference to the S-box

will result in a specific output difference. By propagating the plaintext pair difference

forward in the encryption system and choosing the most probable input-output difference

pairs, we can get a path that holds with a high probability and its differences in each round.

Therefore we now have the input difference to the last round of the encryption system and

also its output difference for the most probable differential path. In order to find the key,

the attacker chooses the plaintext pairs such that they have the difference ΔP . Then, for all

possible key values of the last subround, the attacker propagates from ΔC backwards and

checks if the input difference to the last round is equal to the one for the most probable path.

If it is equal then the counter for this key is incremented. Once all possible key values for

the chosen set of plaintext and ciphertext pairs have been tested, the key with the highest

counter value is chosen as the correct key. The impossible differential attack utilizes the

probabilities in a different manner. In the following section, the impossible differential

attack which is used in this work is explained in detail.

16

2.4.3 Impossible Differential Cryptanalysis

The impossible differential attack was first used in [5] to break the IDEA and Khufu block

ciphers reduced to four and a half rounds and the Skipjack block cipher reduced to thirty-

one out of thirty-two rounds. In this approach, instead of searching for the most probable

paths in the cipher, we look for the paths whose probability of occurrence is exactly zero.

These paths consist of the differences of two pairs of plaintexts, the difference of their in-

ternal values and their corresponding ciphertexts differences. We call a path an impossible

differential path if the probability of its occurrence is zero. Thus while in the differen-

tial cryptanalysis [6] the differential characteristic (path) with the highest probability is

exploited, in the impossible differential cryptanalysis [11] the approach is to look for the

differential with zero probability, i.e., for plaintext/cipher differences that can never occur

together. Since the correct key can never decrypt a ciphertext pair to that input difference,

this information can be used to find the key. Therefore first an impossible differential path

is found from ΔA to ΔB. A trial key that leads to contradictions is eliminated from the list

of correct keys. By iterating over all possible last round key values and decrypting the ci-

phertext in the impossible differential path using that key, we can get the middle difference.

Now if by encrypting the plaintext pairs driven from the impossible differential path using

a trial key we get a contradicting difference in the middle, then we can omit this trial key

since the probability that the path holds true for a correct key is zero. This way wrong keys

are eliminated and once all possible key values for the chosen paths have been processed,

we are left with a small candidate list of correct keys which has the correct key in it and

sometimes left with a single correct key if adequate chosen pairs are used.

17

Chapter 3

Attacks on Lesamnta-512 and DHA-256

In this chapter, an impossible differential attack is applied to the underlying block cipher

of the Lesamnta-512 hash function. We also provide a practical free-start collision for the

DHA-256 compression function reduced to 17 steps using the algebraic approach proposed

in [25].

3.1 Impossible Differential Cryptanalysis of Lesamnta-512

In this section, an impossible differential attack against the underlying block cipher of

Lesamnta-512 hash function is presented. Two automated methods, namely, the Unified

method [22] and the Matrix [18] method, were proposed in order to find impossible differ-

ential paths. These methods are first studied and analyzed for discovering the longest im-

possible differential path for our attack. The two techniques are compared in terms of their

suitability for targeted block cipher structure. The results are then utilized to construct and

18

perform an impossible differential attack against Lesamnta-512. In the automated methods,

the goal is to find the longest impossible differential path in a Block Cipher. This path is

demonstrated in the form of (α0, ..., αn−1) �→ (β0, ..., βn−1), i.e., the probability that the

input difference (α0, ..., αn−1) leads to the output difference (β0, ..., βn−1) after r rounds is

exactly zero. In these vectors, n denote the total number of sub-blocks of the considered

block cipher and each element of the vector is its corresponding difference. A sub-block

is defined as the group of bits that undergoes the same operations in the round function.

Both the Matrix method [18] and the Unified method [22]. These techniques are automated

methods that can be used to find the longest impossible differential path for any block

cipher. In the following sections, first a background on the impossible differential crypt-

analysis on Lesamnta-512 is given. Afterwards, the Matrix and the Unified methods are

explained and then compared in terms of their performance and results. Based on the com-

parison results, the Unified method is determined as the suitable method for finding paths

for the Lesamnta-512 block cipher. This method is modified and applied to Lesamnta-512

in order to perform an impossible differential cryptanalysis on it. Afterwards, the analysis

of the impossible differential attack is given and finally this chapter is concluded.

3.1.1 Lesamnta-512 Preliminaries

In this work, we use the impossible differential attack to recover the key of the underly-

ing block cipher of Lesamnta-512 hash function after the change in its round constants

introduced to avoid the previous attacks performed on it [15].

The following notations will be used throughout this chapter: We denote the input

19

difference by α and the output difference after r-rounds is written as αr. The ith sub-

block of α (respectively αr) is denoted by αi (respectively αi
r). The input difference

vector corresponding to α (respectively αr) is denoted by �α = (α0, ..., αn−1) (respectively

�αr = (αr
0, ..., α

r
n−1)). The ith entry of �α (respectively �αr) is denoted by αi (respectively

αi
r). In the decryption analysis we use the notations β, βi, βr, �β = (β0, ..., βn−1), βi, �βr

and βi
r instead of α, αi, αr, �α , αi, �αr and αi

r in the same order. Note that α = α0, �α =

�α0, β = β0 and �β = �β0. Finding the longest impossible differential is the major step in

attacking ciphers using impossible differential cryptanalysis.

Specfications of the Lesamnta-512 Block Cipher

The Lesamnta hash function family is categorized into three types based on their block sizes

and data words used in their initial and the internal values [14]. These new family of hash

functions have a narrow-pipe Merkle-Damgård structure and their algorithms are named

Lesamnta-224 (256 bit block size), Lesamnta-256 (256 bit block size), Lesamnta-384 (512

bit block size and message digest size of 384 bits), and Lesamnta-512. Our focus in this

work is Lesamnta-512 which has a block size of 512 bits long, a word size of 64 bits long

and a message digest size of 512 bits long. Also, in this work the analysis is performed

on the new version of Lesamnta-512 after introducing the change in its round constants.

One of the main design criteria used in Lesamnta-512 has been its provable security using

the Matyas-Meyer-Oseas (MMO) mode assuming that the underlying block cipher acts as

an ideal primitive. Find a differential characteristic or impossible differential characteristic

for the underlying cipher would imply that it is not ideal and renders the security proof for

the hash function invalid. The Lesamnta-512 compression function consists of an internal

20

�

�������	

Figure 1: The internal block cipher structure of the Lesamnta-512 compression function

block cipher which is a generalized Feistel structure with 4 branches and has 32 rounds.

Each branch is 128 bits long and the user key is 512 bits. The internal block cipher is

utilized in the Matyas-Meyer-Oseas mode. Fig. 1 shows one round of the internal block ci-

pher of Lesamnta-512. In the following section, the key scheduling algorithm is explained.

The Key Scheduling Algorithm of the Lesamnta-512 Block Cipher

The key scheduling algorithm for Lesamnta-512 block cipher is shown in Algorithm 1. In

this algorithm, the input is the variable "chain" which is the 8 word input (each 64 bits).

Nrcomp512 is the number of rounds of the block cipher which, for Lesamnta-512, is equal

to 32 rounds. The variable K is a Nrcomp512 × 2 matrix with its rows being the round

number and the columns being the first and second half of the round sub-key, i.e., the 128

bit subkey for round r will be the concatenation of K[r][0] and K[r][1]. In each round,

a round constant C[round] (128-bit words) which is two 64 bits is added to chain[4] and

chain[5]. C[round] is given by:

C[round] = 00000000000000XY 00000000000000ZW (2)

21

where XY is 2r + 1 (in hex), and ZW is 2r for round r (in hex). The SubWords512, Key-

Linear512, ByteTranspose512 and WordRotation512 functions used in the key scheduling

algorithm are described below.

The SubWords512() function performs substitution in which it takes the input (128 bit in

Lesamnta-512) and passes it from the Lesamnta-512 S-box and outputs the result. The

KeyLinear512, ByteTranspose512 and WordRotation512 functions perform a permutation

on their inputs. The input to KeyLinear512 and ByteTranspose512 are 16 bytes and for

WordRotation512, the input is 8 words (each 64 bits). The specification of the permutation

for KeyLinear512 function is shown in Eq. 4 and for ByteTranspose512, it is given by Eq.

3. Finally, WordRotation512 performs the permutation x′
i mod 8 = xi on the input xi

where 0 ≤ i ≤ 7.

Algorithm 1 The Key Scheduling Algorithm of Lesamnta-512

1: procedure KS(WORD chain[8], WORD K[Nrcomp512][2])
2: word t[2];
3: for (round = 0 to Nrcomp512 − 1){
4: t[0] = chain[4] + C[round][0];
5: t[1] = chain[5] + C[round][1];
6:
7: SubWords512(t);
8: KeyLinear512(t);
9:

10: ByteTranspose512(t);
11: chain[6] = chain[6] + t[0];
12: chain[7] = chain[7] + t[1];
13:
14: WordRotation512(chain);
15:
16: K[round][0] = chain[2];
17: K[round][1] = chain[3];
18: }

22

a′0 = a8, a′1 = a9, a′2 = a10, a′3 = a11,

a′4 = a4, a′5 = a5, a′6 = a6, a′7 = a7,

a′8 = a0, a′9 = a1, a′10 = a2, a′11 = a3,

a′12 = a12, a′13 = a13, a′14 = a14, a
′
15 = a15.

(3)

The KeyLinear512 permutation function equation is shown below. In this equation the

multiplications are performed over GF (28) field and 0 ≤ i ≤ 7.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a′i

a′i+1

a′i+2

a′i+3

a′i+4

a′i+5

a′i+6

a′i+7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01 01 02 0a 09 08 01 04

04 01 01 02 0a 09 08 01

01 04 01 01 02 0a 09 08

08 01 04 01 01 02 0a 09

0a 09 08 01 04 01 01 02

02 0a 09 08 01 04 01 01

01 02 0a 09 08 01 04 01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai

ai+1

ai+2

ai+3

ai+4

ai+5

ai+6

ai+7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

23

3.1.2 Methods for Finding Impossible Differential Paths with Maxi-

mum Length

3.1.2.1 The Matrix Method

In this section we describe the Matrix method introduced in [18]. This method is used to

find the best impossible differential path in the terms of the path length for block ciphers

based on the condition that the round function of the block cipher is a bijective function.

The Encryption and Decryption Characteristic Matrices

In this technique, two matrices are used in order to represent the encryption and decryption

operations of a single round of the block cipher. One matrix is the encryption character-

istic matrix, denoted as E, and the other is the decryption characteristic matrix, denoted

as D. The dimension of these matrices is n × n. The rows of these matrices denote the

input differences corresponding to each sub-block which are a total of n sub-blocks and the

columns denote the output differences corresponding to each sub-block (a total of n), for

one single round of the block cipher.

Constructing the E Characteristics Matrix

The following principles are used in constructing the encryption characteristic matrix. The

round function is denoted as F and its inverse is denoted as F−1. The encryption charac-

teristic matrix is constructed based on the following steps [18]:

1. If βj is affected by αi, i.e., βj = αi ⊕ b where ⊕ is a modular addition and b is a

24

constant value, the entry E(i, j) is set to 1.

2. If βj is affected by F (αi) or F−1(αi), the entry E(i, j) is set to 1F .

3. If βj is not affected by αj , the entry E(i, j) is set to 0.

Constructing the D Characteristics Matrix

The following principles are used in constructing the decryption characteristic matrix [18]:

1. If αj is affected by βi, the entry D(i, j) is set to 1.

2. If αj is affected by F (βi) or F−1(βi), the entry D(i, j) is set to 1F .

3. If αj is not affected by βj , the entry D(i, j) is set to 0.

An example for the E and D matrices corresponding to the basic Feistel structure is shown

in Fig. 2.

E =

⎡
⎢⎢⎣

1F 1

1 0

⎤
⎥⎥⎦ and D =

⎡
⎢⎢⎣

0 1

1 1F

⎤
⎥⎥⎦ (5)

Definition 1 Property one matrix: The E and D matrices are called property-one matrices

if and only if the total number of 1 entries in each column is at most one. This automated

technique requires both E and D to be property-one matrices.

The Matrix Technique Process

In the first step we should analyze the propagation of the input differences through the block

25

�

�� �

�� �

�

Figure 2: One round of the Feistel Structure

cipher after various rounds. We perform this analysis using the E and D characteristic

matrices. However, first we categorize the values that the entries of both the input and

output difference vectors can take. In this technique, the elements of the input and output

difference vectors are not set to a specific input differences, i.e., all the differences that are

useful in determining the best impossible differential path are considered. Therefore, for a

given input difference, the possible output difference of each sub-block can belong to one

of the following categories:

1. A zero difference (denoted as 0).

2. A non-zero non-fixed difference (denoted as 1 and δ).

3. A non-zero fixed difference (denoted as 1∗ and γ).

4. Exclusive-or (XOR) of a non-zero fixed difference and a non-zero non-fixed dif-

ference (denoted as 2∗ and γ ⊕ δ).

5. A non-fixed difference (denoted as t where t ≥ 2).

26

In all the categories of differences above, a fixed difference is a difference that has not

been affected by any round function F and a non-fixed difference represents a difference

that has been affected by at least one round function F .

Now let us consider all possible values for the entries of the difference vectors �α and

�β. The difference values of the initial input vector α0 can only have fixed values since its

sub-blocks are not affected by any round function F or F−1. Therefore, we can conclude

that the possible values of its elements can only be 0 or 1∗. For the encryption process, we

need to know the output difference values of the difference vector �α after r rounds, that is

�αr. Equivalently, it would mean that �αr is the propagation of �α after the effect of the E

matrix in r rounds. Similarly by using �β, �βr and the matrix D instead of �α , �αr and the

matrix E, we can calculate �βr in the decryption process. Therefore, the values of the vector

�αr in terms of the vector �α can be computed as follows:

�αr = ((((�α · E) · E) · · ·) · E) = ((((�α1 · E) · E) · · ·) · E) = · · · = �αr−1 · E) (6)

In order to calculate �αr using Eq. 6, we need to define the multiplication of �α and the char-

acteristic matrix E. Eq. 7 defines this multiplication where r ≥ 0. Also the multiplication

ai.Ei,j is defined in Table 1 and the addition of ai.Ei,j and ai′ .Ei′,j is defined in Table 2.

�α · E = (αi)1×n · (Ei,j)n×n = (σiαi · Ei,j)1×n (7)

27

αi.Ei Meaning
k.0 = 0 The output difference of the jth sub-block not affected by the input difference αi.
k.1 = k The output difference of the jth sub-block affected by the input difference αi.
0.1F = 0 For a zero difference, the output difference after F is also zero.
1∗.1F = 1 For a difference γ the output difference after F is δ.
1.1F = 1 For a difference δ,the output difference after F is δ′.
2∗.1F = 2 For a difference γ ⊕ δ, the output difference after F is t.
t.1F = t For a difference t, the output difference after F is also t.

Table 1: Multiplication between the difference vector entry αi and the matrix entry Ei

(where k ∈ {0, 1, 1∗, 2∗, t} and t ≥ 2) [18].

Addition Exclusive-or
k.0 = 0 The output of the jth sub-block is not affected by the input αi.
0 + k = k 0 ⊕ Δ = Δ
1 + 1 = 2 δ ⊕ δ′ = ?
1 + 1∗ = 2∗ δ ⊕ γ = δ ⊕ γ
1 + 2∗ = 3 δ ⊕ (δ′ ⊕ γ) = ?

1 + t = 1 + t δ ⊕ ? = ?
1∗ + t = 1 + t γ ⊕ ? = ?
2∗ + t = 2 + t (γ ⊕ δ) ⊕ ? = ?
t+ t′ = t+ t′ ? ⊕ ? = ?

Table 2: Relation of addition and XOR where k ∈ {0, 1, 1∗, 2∗, t} and t ≥ 2, t′ ≥ 2 and Δ
is the corresponding difference for k. The ? mark denotes the differences which we do not
know their value [18].

�βj can be calculated in the same manner as �αi using the vector �β and the characteristic

matrix D.

The difference t ≥ 2 is not useful in finding the differential path since these differences

are non-fixed differences and so they can be 0 or any other non-zero value. Therefore, these

differences in the difference vector do not provide us with any additional information on

its value and are rendered useless. The useful values for the differences will be put in the

set u. In this case, u = {0, 1, 1∗, 2∗} since we excluded the value t. For each m ∈ u, an

auxiliary set m̄ is defined and used in finding the best impossible differential path in terms

of the path length. This set is shown in Table 3. Let �αr
i ∈ 2∗ and �βr′

i ∈ 2̄∗. Using the sets u

28

m Differences m̄ Differences
0 0 0̄ = {1, 1∗} δ or γ.
1 δ 1̄ = {0} 0.
1∗ γ 1̄∗ = {0, 1∗, 2∗} 0 γ′ �= γ or γ ⊕ δ.
2∗ γ ⊕ δ 2̄∗ = {1∗} γ.

Table 3: Differences corresponding to the entries m ∈ u and their corresponding entry sets
m̄ [18].

and m̄, there will be an r + r′ round impossible differential path from α to β. We further

explain the process of finding an impossible differential path with the maximum length in

the following section.

Calculating the Longest Impossible Differential Path

Let M denote the length of the longest impossible differential path for the target block

cipher.

Definition 2 Given an input difference vector �α, an entry m ∈ u and the set m̄, we define

and calculate the following variables in the encryption process.

MEi(�α,m) ≡ maxr{r|αi
r = m},

MEi(�α, m̄) ≡ maxl∈m̄{MEi(�α, l)},

MEi(m) ≡ maxᾱ�=0{MEi(�α,m)},

MEi(m̄) ≡ maxᾱ�=0{MEi(�α, m̄)}.

(8)

The same definition applies to the decryption process but the vector �β and the characteristic

matrix D will be used instead of the vector �α and the characteristic matrix E, respectively.

29

M(�α, �β) are defined as follows:

M(�α, �β) ≡ maxi,m{MEi(�α,m) +MDi(�β, m̄)} = maxi,m{MEi(�α, m̄) +MDi(�β,m)}

(9)

When the round function of a cipher is bijective and the encryption and decryption charac-

teristic matrices E and D are both one-property matrices, M can be calculated as follows:

M = max
�α�=0,�β �=0

M(�α, �β) = max
i,m

{MEi(m) +MDi(m̄)} = max
i,m

{MEi(m̄) +MDi(m)}

(10)

The algorithm used to calculate M using Eq. 10 is explained in the following section.

Algorithm to Compute M

This algorithm is proposed to calculate the length M assuming that the block cipher round

function is a bijective function and the encryption and decryption characteristic matrices

are one-property matrices. The algorithm consists of the following five steps:

1. Form the encryption characteristic matrix E.

2. Compute the values of MEi(m).

3. Form the decryption characteristic matrix D.

30

4. Compute the values of MDi(m̄).

5. Output the length M by applying MEi(m) and MDi(m̄) into Eq. 10.

In the first step, two variables ei,j and ẽi,j are used to represent the entries of Ei,j . The value

of ei,j is set to zero if Ei,j = 0 and set ei,j is set to 1 if Ei,j = 1 or if Ei,j = 1F . Additionally,

we set ẽi,j = 0 if Ei,j = 1 and set ẽi,j = 1 if Ei,j = 0 or if Ei,j = 1F .

In the second step, in order to represent the ith entry of the difference vector �αr, a new

variable ar,i is defined and is assigned the integer value of the ith entry of �αr without the ∗

symbol.

Similarly, the variable âr,i is introduced and is set to 0 if the entry does not have the ∗

symbol. Otherwise it is set to −1.

Complexity of the algorithm

In this algorithm, steps 2 and 4 dominate the running time in which the algorithm iterates

over all possible input differences of the vectors �α and �β. Note that in these steps the num-

ber of the sub-blocks and the possible values for each sub-block determine the number of

the iteration itself. Therefore we have 2n iterations to compute MEi(m) and similarly 2n

iterations to compute MDi(m). Thus, the time complexity of the algorithm is bounded by

O(2n).

Another method used to find the longest impossible differential path is the Unified method

introduced [22]. This method provides us with longer paths than the ones derived with

the Matrix method. However, some restrictions do apply as the complexity of the Unified

31

method will be high for block ciphers with more sub-blocks as compared to the Matrix

method. Further comparison is performed in the following sections. Considering that

Lesamnta-512 has four sub-blocks and based on the comparison results explained further,

it is concluded that the Unified method can be a good candidate method for finding the

longest impossible differential path for Lesamnta-512. In the section below the Unified

method is explained.

3.1.2.2 The Unified Method

The Unified impossible differential path finding method [22] (UID-method) also tries to

find the longest impossible differential path for block cipher structures in an automatic

manner. Luo et al. [22] explain how this technique finds paths longer than the ones found

by the previous technique.

It is assumed that the round function of the block cipher is a bijective function. The

possible values for the difference vector are categorized in a different approach than that

of the Matrix method. The possible values for the input and output difference vector are

categorized as follows in the Unified method:

1. A zero difference (denoted by 0).

2. A non-zero fixed difference (denoted as li).

3. A non-zero varied difference (can be any value except zero and is denoted as mi).

4. A varied difference (can be any value and is denoted as ri).

32

Definition 3 Two differences vectors �α = (α0, α1, · · · , αn−1) and �β = (β0, β1, · · · , βn−1)

are inconsistent if there exists a subset I ∈ {0, 1, ..., n − 1} such that the XOR of the

differences in the subset are always unequal, i.e., ⊕i∈Iαi �= ⊕i∈Iβi.

For example, if �α = (l1⊕m1, 0) and �β = (l1, 0) where l1 is a non-zero fixed difference

and m1 is a non-zero varied difference, then �α and �β are inconsistent since l1 ⊕m1 cannot

be equal to l1 in any condition. After i rounds in the encryption process we can compute

�αi and after j rounds in the decryption process we can compute �βj . If �αi and �βj are

inconsistent then we can conclude that an impossible differential path of length i+ j exists.

In this technique we define three types of transformations:

1. Zero transformation denoted as 0: If the input difference is x ∈ {0, li,mi, ri} and

the output difference is 0.

2. Identical transformation denoted as 1: If the input difference is x ∈ {0, li,mi, ri}

and the output difference is x.

3. Non-linear bijective transformation denoted as F .

Transformation F can occur in the different scenarios illustrated below:

- If the input difference is 0 and also the output difference is 0.

- If the input difference is a non-zero fixed difference li and also the output difference

is a new non-zero varied difference mj .

- If the input difference is a non-zero varied difference mi and also the output differ-

ence is a new non-zero varied difference mj .

33

- Otherwise, the output difference will be a new varied difference rj , i.e., it can be any

value.

The construction of the encryption characteristic matrix E and decryption characteristic

matrix D is same as the Matrix method. However, the Unified method can be used even for

the block ciphers that their E and D characteristic matrices do not satisfy the one-property.

In this technique, a new concept about E and D is introduced. This concept can be well

illustrated with an example. Suppose (β1, β2) = (F (α1 ⊕ α2), F (α1 ⊕ α2) ⊕ α2). Then

the encryption function can be divided into two functions. The first function is (z1, z2) =

(α1⊕α2, α2) and the second function is (β1, β2) = (F (z1), F (z1)⊕ z2). Consequently, the

characteristic matrix is given by

E1.E2 =

⎡
⎢⎢⎣

1 0

1 1

⎤
⎥⎥⎦ .

⎡
⎢⎢⎣

1F 1F

0 1

⎤
⎥⎥⎦ (11)

where E1 and E2 are the encryption characteristic matrices for the first and second func-

tion, respectively.

Searching for the Longest Impossible Differential Path in the Unified Method

In this section, the algorithm and the steps used to calculate the longest impossible dif-

ferential path using the Unified method are explained. This algorithm iterates over all the

possible combinations of the input and output difference vectors and then iterates over all

the possible combinations of the number of rounds to find the longest path using Definition

3.

34

The input to this algorithm is the n× n encryption characteristic matrix E, the decryption

characteristic matrix D and an integer which is the round number which starts with r = 0.

The output to this algorithm is the computation result of the longest impossible differential

path Δin �→ Δout. The algorithm performs the following steps in order to find the longest

impossible differential path:

step 1. For a difference vector pair (�α, �β), find the maximum integer m = i + j

such that �αi = ((((�α.E).E)...).E) (this multiplication is performed i times) and

�βj = ((((�β.D).D)...).D) (this multiplication is performed j times) are inconsistent.

If r ≤ m, let r ← m and (Δin,Δout) ← (�α, �β).

step 2. Repeat step 1 until all the possible input and output difference vectors (�α, �β)

are enumerated.

step 3. Return Δin �→ Δout.

Complexity of the Algorithm

Step 1 dominates the running time of the algorithm, in which it iterates over all the pos-

sible input and output differences of the difference vectors �α and �β. The number of the

sub-blocks and the possible values for each sub-block determine the total number of these

iterations. Assume we have n sub-blocks and each sub-block can take values 0 or li where

i ∈ {1, 2, · · · , n} then we can conclude that the time bound of the algorithm will be

O(((n+ 1)n − 1)2) = O(n2n).

35

Analysis and Comparison of the Two Methods

The algorithms mentioned in section 3.1.2 are used to evaluate the immunity of block ci-

phers against impossible differential cryptanalysis by trying to find the longest impossible

differential trail. In this section we compare between these two methods.

Both methods eliminate the difficulties and errors resulting from manual analysis by

using a completely automated technique. Since in the Matrix method the encryption and

decryption characteristic matrices must have one-property, this method cannot be applied

to block ciphers that do not satisfy this property. However, this condition does not need to

be satisfied in the Unified method for finding the longest impossible differential trail, i.e.,

the Unified technique can find the longest impossible differential path even if the D and E

characteristic matrices do not satisfy the one-property.

The Unified method can find trails longer than the Matrix method for the same block

cipher given as their inputs. This occurs for two reasons. First, the Matrix method cannot

determine some kinds of inconsistency. As a result, some longer impossible differentials

cannot be found (the tool using the Unified method mentioned in Section 3.1.2 has found

trails longer than the ones found by the tool using the Matrix method). Definition 3 on

inconsistency used in the UID method is more categorized than the one used in the tool

using the Matrix method meaning that in the Unified method, the non-zero differences

assigned to each sub-block are categorized in more categories. As a result, for the same

block cipher, it finds impossible differential trails longer than the one found by the other

tool. Secondly, in the Matrix method, the differences used at the beginning are either zero

(0) or nonzero fixed differences (1∗). Therefore, in this method, it is considered that all the

36

non-zero differences are equal. Consequently, some longer paths may not be found.

Another consideration is that in both the Matrix method and the Unified method we do

not take the detailed structure of the block ciphers round function into account. Conse-

quently, this will lead to losing some trails that may be longer than the ones found by these

tools. Additionally, the sub-block length is another factor that the Matrix method does not

use, i.e., the number of the bits in each sub-block does not alter the results for the same

block cipher. This may lead to losing some information about the differences that can be

helpful in finding a longer impossible differential path. The same consideration is valid

for the Unified method except for the fact that the differentiation in the non-zero difference

assignment to each sub-block helps in utilizing some information for the sub-block length.

As mentioned in section 3.1.2, the time complexity of the impossible differential path

algorithm for the Matrix method is O(2n). Therefore, for any block cipher of n sub-blocks

where n ≤ 32 we will be able to find the best impossible differential trail using this tech-

nique. On the other hand, the time complexity for the longest impossible differential path

algorithm in the Unified method is O(n2n). This time complexity makes this technique

not suitable for block ciphers having more than 8 sub-blocks such as advanced encryption

standard (AES) cipher which has 16 sub-blocks.

All these limitations mentioned for the Matrix method restricts this method to be a

generic technique but results in a lower time complexity than the Unified method. Addi-

tionally any tool using the Unified method is not generic in the sense of the time complexity.

This time complexity will make this method impractical for many ciphers that have sub-

blocks greater than 8. However, in our case, the number of sub-blocks is relatively small.

37

Therefore the Unified method will be the suitable automated tool since it provides us with

a longer impossible differential path than those found by the the Matrix method and is also

practical in terms of its time complexity [22]. Therefore for Lesamnta-512 with less than

16 sub-blocks we use the Unified method to reach longer paths than the Matrix method.

3.1.3 Application of the Unified Method to Lesamnta-512

The Lesamnta hash function, introduced by Hirose et al. in 2009 [14] was submitted to the

NIST cryptographic competition for hash algorithms. The internal block-cipher utilized in

the Lesamnta-512 compression function is a generalized Feistel structure with 4 branches

and has 32 rounds. Each branch is 128 bits and the user key is 512 bits. The detailed

description is provided in section 3.1.1 and the structure is shown in Fig. 1. Bouillaguet

et al. proposed a full round distinguisher for the underlying block cipher in [8]. As a re-

sult, in [16] the authors have performed a security analysis of the compression function of

Lesamnta and the impact of it on full Lesamnta and proposed a change in the round con-

stants to avoid the attack proposed by Bouillaguet et al.. It is concluded that a change in

the round constants is required in order for Lesamnta to be secure against first and second

pre-image resistance and collision resistance attacks. Lesamnta is of interest since it has

efficient implementations and one of the main focuses in its design has been provable secu-

rity by using Matyas-Meyer-Oseas (MMO) mode with the assumption that the underlying

block cipher is acting as an ideal primitive. In this work, we use the impossible differential

attack to recover the Lesamnta block cipher key. We have exploited the impossible differ-

ential behavior of Lesamnta-512 block cipher reduced to 16 rounds in order to derive its

38

key.

Using the Unified method, a 15 round impossible differential path is found and then is used

as a distinguisher from a random permutation. The encryption characteristic matrix E and

the decryption characteristic matrix D for the round Function of Lesamnta-512 are given

as:

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

1F 0 0 1

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 1F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The 15 round impossible differential path found using the Unified method is from (0, 0, 0, l1)

to (0, 0, l1, 0). The forward path driven from this input difference vector is shown in Table 4

and the backward path is shown in Table 5 driven from the output difference vector. These

two paths have inconsistency in the round they meet. In these impossible paths li denotes a

non-zero fixed difference where li �= li′ and mi is a non-zero non-fixed difference, i.e., it is

an output of a bijective function or key addition where mi �= mi′, and finally ri is a zero or

any difference where ri �= ri′. In all these notations, i is just a unique index for the different

variables. In the following section, the Lesamnta family block ciphers specification is ex-

plained before illustrating the impossible differential attack on Lesamnta-512 block cipher.

39

Round number First branch Second branch Third branch Fourth branch
1 0 0 0 l1
2 l1 0 0 0
3 0 l1 0 0
4 0 0 l1 0
5 m39 0 0 l1
6 l1 m39 0 0
7 0 l1 m39 0

Table 4: The impossible differential path found in the forward direction using the Unified
method. Each branch in each round has either zero, non-zero fixed (li), non-zero non-fixed
(mi) or other varied (ri) difference.

Round number First branch Second branch Third branch Fourth branch
7 m56 l1 +m58 m52 + r97 m54 + r98
8 m54 m56 l1 +m58 m52 + r97
9 m52 m54 m56 l1 +m58

10 l1 m52 m54 m56

11 0 l1 m52 m54

12 0 0 l1 m52

13 0 0 0 l1
14 l1 0 0 0
15 0 l1 0 0
16 0 0 l1 0

Table 5: The impossible differential path found in the backward direction. Each branch in
each round has either zero, non-zero fixed (li), non-zero non-fixed (mi) or other varied (ri)
difference.

40

3.1.4 The Impossible Differential Attack

The first goal in using the impossible differential path derived from the Unified method is

to calculate the number of structures needed in order to make sure all wrong keys are elim-

inated and therefore we are left with only one correct sub-key. Starting with 2s structures ,

we set the expected value for the wrong keys left to be approximately 2−14. First we find all

the possible plaintexts that will have the input and output impossible differential differences

(0, 0, 0, a) and (0, 0, a, 0), respectively. The output difference at round seventeen can only

be resulted from a difference at step 18 where only the first and last two words have differ-

ences. Therefore, we have 23×128 possible values for the first three words of the impossible

differentials and 2128 values for each pair in the last word. We conclude that all possible

plaintexts with this input difference (output difference in step 17) are 25×128 and the portion

of these pairs that also hold in the output difference are 25×128 × 2−2×128 = 23×128. So all

these 23×128 pairs will definitely remove all the wrong keys since these are all the possible

pairs that hold in the impossible differential path and we know that the probability of this

paths occurrence is exactly zero. Considering our input difference, we have 2255 pairs for

each structure since the input difference is of the form (0, 0, 0, a) and for each 2128 values

in each pair we choose two of them each time and the total number of pairs per structure

would be Np =
(
2128

2

)
= (2128)×(2128−1)

2
= 2255.

As we concluded all 23×128 pairs will definitely remove all the keys. Therefore, by each

structure we can be assured that one wrong key will be removed (based on the number

of pairs per structure). Let P (T) denote the probability that a structure would remove a

specific key. Therefore, it is inferred that P (T) = 1
2128

= 2−128. Now let P (F) denote

41

the probability that a structure does not remove a wrong key. Then we can deduce that

P (F) = 1− P (T) = 1− 2−128.

Therefore, each plaintext pair that holds the output difference will not remove the wrong

key with a probability of P (F) = 1 − 2−128. We have 2s such structures and for each we

have Np = 2255 plaintext pairs and 2−256 portion of these plaintext pairs will hold true in

the output difference. Therefore we have a total of Nt = 2s × 2255 × 2−256 = 2s−1 of such

plaintext pairs. Let P (St) denote the probability that none of the structures remove a wrong

key. Based on P (F) and Nt we conclude that the probability that none of the structures re-

move a wrong key will be P (St) = P (F)Nt = (1− 2−128)
2s×2255×2−256

= (1− 2−128)
2s−1

since for each possible plaintext pair filtered according to the output difference, there is a

probability of P (F) that none of their structures remove a wrong key from the list of all

possible key values.

Let Nw denote the number of wrong keys left in the list of all possible values of the sub-

key. We have 2128 values for the last round sub-key and therefore based on the probability

P (St) we can calculate the expectation of the number of wrong keys left (Exp{Nw}) as

2128 × (1− 2−128)
2s−1

since we have 2128 possible values for each sub-key to guess and

for each of these keys we have a probability P (St) = (1− 2−128)
2s−1

that none of the

structures will remove this key.

As stated in the attack, we need the expectation of the number of wrong keys left to

be equal to 2−14 in order to assure that an adequate number of structures and accordingly

plaintexts have been passed and tried. By solving this equation we find the number of

structures to be 2134. Now that we know the adequate number of structures in order to be

42

able to find the correct key, we can apply the impossible differential cryptanalysis.

We Start with 2134 structures each consisting of Np = 2255 plaintext pairs per structure.

We pass a total of 2255×2134 plaintext pairs and filter out the pairs that hold true in the output

difference of (b, 0, 0, a) in round eighteen since the output difference at round seventeen

being (0, 0, a, 0) can only be resulted from a difference at step eighteen where only the

first and last two words have differences. We can do this step by using the corresponding

ciphertexts and looking up at their differences. Next, for each possible value of the last

round sub-key and for each of these plaintext pairs, we collect the corresponding ciphertext

using the guessed key and compute the difference of round seventeen by decrypting the

values in round eighteen. If the values match the impossible difference, then we are assured

that the guessed key is the wrong key and should be eliminated from the list. Otherwise, we

move to the next guessed key value and repeat these steps. Therefore, the data complexity

of our attack is about 2134 × 2255 = 2389. In order to find the key, we must have all the 8

words (64 bits each) denoted as chain[i]r in a specific round r for 1 ≤ i ≤ 8. However,

using the algorithm for finding the corresponding sub-key, the second and the third words

(chain[2] and chain[3]) are known in each rounds sub-key. If we use the algorithm for

rounds 13 to 17, chain[2]r and chain[3]r are found for 13 ≤ r ≤ 17. The objective is

to find the 512 bit key given the sub-keys for rounds 13 to 17. We note that due to the

word rotation step in the key scheduling algorithm, chain[2]13 ‖ chain[3]13 are equal to

chain[4]14 ‖ chain[5]14. Therefore, in round 14 we have chain[i]14 for 2 ≤ i ≤ 5. Let

us denote chain[6]14 ‖ chain[7]14 as the unknown variable X . As a result, in round 15,

chain[6]15 and chain[7]15 are evaluated as a function of X . In this round chain[i]15 is

43

known for 2 ≤ i ≤ 7 up to an unknown parameter X . Also in the next round, again

because of the word rotation, all the known values are shifted to the right and by adding

the new sub-key values found by the algorithm, chain[i]16 are known for 0 ≤ i ≤ 7

except for X . The only remaining unknown parameter to find is the parameter X . Note

that in round 17, chain[6]15 and chain[7]15 are now shifted to chain[2]17 and chain[3]17.

As a result, X can be found. According to the key schedule algorithm five sub-keys are

required in order to obtain the 512 bit user key and therefore the data complexity would

be 5 × 2389, the memory complexity would be 5 × 2128 and the time complexity would be

2261 × 5 encryptions based on the pairs that have the desired difference in steps 17 to 18

(2389× 2−256). For each of these pairs the encryptions are performed for all possible values

of subkeys, i.e. 2128. Therefore the total number of encryptions for finding a subkey would

be 2389×2−256×2128 = 2261. These encryptions should be performed for 5 subkeys to find

the user key(therefore, 5 rounds).

The pseudo code for finding all words in step 16 is given in Algorithm 2:

3.2 Collision on Step-reduced DHA-256 Hash Function

In 2012, Keccak was announced as the winner of the NIST hash function competition.

However, it has been noted that SHA-2 can be a better alternative than Keccak in terms

of widely use of general CPUs based on eBASH project (ECRYPT Benchmarking of All

Submitted Hashes). Therefore new hash functions following the SHA-2 design strategy are

still attractive for software applications. Double Hash Algorithm (DHA)-256 hash function

44

Algorithm 2 Finding key given sub-keys of rounds 13 ≤ i ≤ 17

1: procedure FINDING THE X VARIABLE

2: t ← chain[2]13 ‖ chain[3]13

3: t ← SubWords512(t)
4: t ← KeyLinear512(t)
5: t ← ByteTranspos512(t)
6: X ← (

chain[2]17 ‖ chain[3]17
)− t

7: procedure FINDING THE KEY

8: chain[0]16 ‖ chain[1]16 ← Bit Operation
(
chain[2]13 and chain[3]13

)
+X

9: chain[4]16 ‖ chain[5]16 ← chain[2]15 ‖ chain[3]15

10: chain[6]16 ‖ chain[7]16 ← Bit Operation
(
chain[2]14 ‖ chain[3]14

)
+

chain[0]16 ‖ chain[1]16

11: procedure BIT OPERATION(INPUT : chain[2]13 ‖ chain[3]13, OUTPUT : t)
12: t ← chain[2]13 ‖ chain[3]13

13: t ← SubWords512(t)
14: t ← KeyLinear512(t)
15: t ← ByteTranspos512(t)

is one of the early designs introduced to strengthen the SHA-2 hash function. There are two

main differences introduced compared to SHA-2. First, the message expansion formula is

different and it has been changed in a way to use the nearest previous messages in its

iterations rather than the far steps. This allows the message expansion to use more messages

from previous steps and therefore makes the search for collisions harder. Initially, IAIK

Krypto Group analyzed DHA-256 hash function and found a differential pattern which

holds with a probability 2−63, which is higher than assumed by the designers. Previous

attacks on DHA-256 are pseudo-preimage and preimage on 35 step reduced DHA-256 [31].

However, the complexity is 2240. In [20] a 9-step collision on DHA-256 is introduced with

the complexity of 2−36.

45

3.2.1 DHA-256 Preliminaries

In this work, using an algebraic method [25], a 17 step free-start collision is found on DHA-

256 compression function. In particular, first an initial differential is derived in accordance

with the message expansion and then a system of equations is determined based on the

initial difference. By limiting the different conditions on the system of equations based

on the initial differential table, the answers to the system are inferred and therefore the

register values (chaining variables) are derived and a free-start collision is found. Hence,

the problem of finding collisions is reduced to solving the system of equations and checking

if there exists any answers for the message and register values that fit the conditions of our

initial differential pattern instead of searching for all their possible values randomly.

3.2.2 Description of DHA-256

The DHA-256 hash function has message length of 512 bits and output length of 256 bits.

There are 64 steps of operation. Messages are expanded for all the steps based on the

message expansion algorithm in Eq. 13 and 14. For 0 ≤ i ≤ 15, we have:

Wi = mi (13)

for i > 15 we have:

Wi = σ1(Wi−1) +Wi−9 + σ2(Wi−15) +Wi−16 (14)

46

As seen in Fig. 3, in every internal state of DHA-256 compression function, we have 32-bit

registers A, B, C, D, E, F, G and H which are called the chaining values. At the first step,

these values are initialized with a fixed value and are updated for each step based on Eq.

15:

Ai+1 = Bi,

Bi+1 = S1(Ci),

Ci+1 = Di,

Di+1 = Ei + SS2(Hi) + g(Fi, Gi, Hi) +Wi +Ki,

Ei+1 = Fi,

Fi+1 = S2(Gi),

Gi+1 = Hi,

Hi+1 = Ai + SS1(Di) + f(Bi, Ci, Di) +Wi +Ki.

(15)

Throughout this work, ΔSS1(Di) and ΔSS2(Hi) are calculated as follows:

ΔSS1(Di) = SS1(Di
′)− SS1(Di)

ΔSS2(Hi) = SS2(Hi
′)− SS2(Hi)

(16)

3.2.3 The General Idea of Creating the Collisions

In this section, the technique to find the collisions is explained. First a differential path

is derived. However, the message differences are not fixed and we assume that they take

the value δi and then later on we try to find this value such that our differential path holds

47

A
i

B
i

C
i

D
i

E
i

F
i

H
i

G
i

A
i+1

B
i+1

C
i+1

D
i+1

E
i+1

F
i+1

H
i+1

G
i+1

SS
1

SS
2

gf

<<< S
2

<<< S
1

WiWi

Ki Ki

Figure 3: DHA-256 hash function structure

for all the step conditions. There are two prominent factors to consider for deriving this

differential path. First, the message differences, δi’s are introduced in order to cancel out

some propagated differences. Hence, we need to assure there exists a value δi in step i such

that the conditions for step i holds. Second, we need to consider the message expansion of

the DHA hash function to assure the message differences introduced will not be used twice

or more in our collision. Otherwise, this difference will be propagated again to further

steps and the collision cannot occur. Assuming a difference is produced at step i of the

hash function, we are going to create a differential path such that after some rounds of

propagation, the register and the message differentials become zero. The path derived as

shown in Table 6. As shown in the table, after the fourth step, all the differences in the

registers and the message difference have been zero. Now our goal is to find values for δ1

and δ2 such that this differential path holds.

48

Step ΔA ΔB ΔC ΔD ΔE ΔF ΔG ΔH ΔW
i 0 0 0 0 0 0 0 0 1

i+1 0 0 0 1 0 0 0 1 δ1
i+2 0 0 1 0 0 0 1 0 0
i+3 0 1 0 0 0 1 0 0 0
i+4 1 0 0 0 1 0 0 0 δ2
i+5 0 0 0 0 0 0 0 0 0

Table 6: The differential path derived for DHA-256.

3.2.4 Deriving the Equations for the Collision Conditions

In this section, difference equations are derived for each step and then the conditions are

achieved based on them.

Equations and Conditions for Step i+ 1

In this step of the hash function, considering Table 6, we have ΔAi = 0, ΔEi = 0 and

ΔWi = 1. We also know that we require ΔDi+1 and ΔHi+1 to be one since we want the

message difference introduced in step i to propagate. Based on Eq. 15, we have:

Wi = Di+1 − Ei − SS2(Hi)− g(Fi, Gi, Hi)−Wi −Ki (17)

Therefore, for the differences we have:

1 = 1−ΔSS2(Hi)−Δg(Fi, Gi, Hi) (18)

Similarly based on Eq. 15 we have:

Wi = Hi+1 − Ai − SS1(Di)− f(Bi, Ci, Di)−Ki (19)

49

and we deduct:

1 = 1−ΔSS1(Di)−Δf(Bi, Ci, Di) (20)

Since Δf(0, 0, 0) and Δg(0, 0, 0) are zeroes, then as we assume that ΔWi will be one.

Equations and Conditions for Step i+ 2

We want ΔHi+2 and ΔDi+2 to be zero. Therefore, based on Eq. 17 and 19 we have:

ΔWi+1 = −ΔSS1(Di+1)−Δf i+1(0, 0, 1) (21)

ΔWi+1 = −ΔSS2(Hi+1)−Δgi+1(0, 0, 1) (22)

In this equation, first notice that both ΔHi+1 and ΔDi+1 are set to 1 and they are being

rotated to different bit locations by functions SS1(x) and SS2(x). Therefore, we need to

find values of Hi+1 and H ′
i+1 such that when their values are shifted, they remain the same.

This way we are sure that their propagation in the bits would affect the solution of our

system of equations. The only two values that have this property are:

Di+1 = 0 D′
i+1 = −1 (23)

Hi+1 = 0 H ′
i+1 = −1 (24)

We have fixed some of the register values at this point. Additionally note that it is required

50

that:

Δf i+1(0, 0, 1) = Δgi+1(0, 0, 1) (25)

We are going to consider this condition while choosing the register values. Eq. 25 holds

with probability 1
2
.

Equations and Conditions for Step i+ 3

Here, both ΔEi+2 and ΔAi+2 are zeroes. Besides, we know that we want the message

to have no difference at this step. Hence, One may write:

ΔWi+2 = −Δf i+2(0, 1, 0), (26)

ΔWi+2 = −Δgi+2(0, 1, 0)

Considering the fact that both ΔHi+3 and ΔDi+3 should be zero in order for the equations

to hold, it can be inferred that:

−Δf i+2(0, 1, 0) = 0,

−Δgi+2(0, 1, 0) = 0

(27)

Now we can fix some register values to assure this equation will hold. From Eq. 27, we

infer that Bi+2 = Ci+2 and also from the second term, we have Fi+2 = Hi+2. Notice that

this equalities can be propagated throughout the compression function. For instance, from

Eq. 15 and by noting that Bi+2 = Ci+2, we can infer that Bi+2 = Ci+2 = Ai+1 as well.

51

Equations and Conditions for Step i+ 4

Based on the differential path, all differences ΔEi+3, ΔAi+3, ΔHi+4 and ΔDi+4 are

zero. Knowing that we want ΔWi+3 to be zero, we can write:

ΔWi+3 = −Δf i+3(1, 0, 0),

ΔWi+3 = −Δgi+3(1, 0, 0)

(28)

For Eq. 28 to hold, we infer Ci+3 = Di+3. We also need Gi+3 = Hi+3 so that the conditions

for the second term of Eq. 28 are met.

Equations and Conditions for Step i+ 5

In this step, it is required that all registers differences are zeroes, otherwise, we do not

have a collision. Additionally ΔEi+4 and ΔAi+4 are both one. Therefore, based on Eq. 17

one can infer:

ΔWi+4 = −1 (29)

We need to check this result with Eq. 19 as well to make sure there are no conflicts. Note

that using this equation we get the same result. Finally, from Eq. 21 and 29 we infer the

values for δ1 and δ2, respectively, as follows:

δ1 = −ΔSS1(Di+1)−Δf i+1(0, 0, 1),

δ2 = −1

(30)

Based on the DHA-256 hash function message expansion, assuming we start the differential

52

M0
00000000 164A245D 00000000 C6A93DA7 00000000 00000000 00000000 00000000

00000000 00000000 BD75D069 00000000 8EC8BB70 00000000 4A3F0433 00000000

M ′
0

00000000 164A245D 00000000 C6A93DA6 00000000 00000000 00000000 00000000
00000000 00000000 BD75D06A 00000000 8EC8BB6F 00000000 4A3F0433 00000000

H
FFFFFFFF FFFFFFFF FFFFFFFF 00000000
FFFFFFFF FFFFFFFF 00000000 FFFFFFFF

Table 7: The DHA-256 17 Step Collision found. In this table in each row, the message and
hash vector starts from the left and finishes at the end of the second line.

path in Table 6 from step 5, we note that each message will be used only once until step 17

and hence we have a collision on step 17. The results are shown in Table 7.

53

Chapter 4

Cryptanalysis of the LAC Authenticated

Encryption Cipher

LAC was introduced in the CAESAR competition as a lightweight authenticated encryp-

tion cipher. The structure of LAC is based on ALE [7] and the primitive used in it as the

back-end block cipher is a modified version of LBlock [30] called LBlock-s which is an-

other lightweight cipher. In [7], the authors show that the probability of any characteristic

is bounded by 2−70 at most since the input-output difference transforms for the S-box have

probability bounded by 2−2 and the minimum number of active S-boxes for differential

paths is 35. However, the ciphers resistance against differential cryptanalysis can be at risk

if there exists many characteristics with high probability for some chosen candidate differ-

ential paths, i.e., the security bound is decreased in this case and the cipher can become

vulnerable to differential cryptanalysis. In this work, we present a cryptanalytic attack on

the LAC authenticated encryption cipher by using this information to find characteristics

54

with high probabilities for some candidate paths having the minimum number of active

S-boxes. In order to achieve this, truncated differentials with the highest probability are

derived. The minimum number of active S-boxes for each differential path is derived by

converting the LAC function operations into linear equations to represent their differential

behavior and then using a Mixed Integer Linear programming (MILP) approach to bound

the number of active S-boxes. Finally a collection of characteristics are selected based on

their input and output difference Hamming weights, minimum number of active S-boxes

for that path and their corresponding truncated differential probabilities. These are used to

find the exact differentials which enables one to compare the lower bounds on the proba-

bility of the differentials. The differential paths found can be used in to launch a forgery

attack on LAC. Given the authenticated encryption (C, T), and a message M , the goal of

our attack is to forge a valid ciphertext (C ′, T) by using the differential characteristic that

hold with a high probability. Since the new ciphertext is valid, it can be decrypted to a

message M ′. Based on our experimental results, the probability of finding such ciphertext

is higher than the claimed value of 2−70, leading to security concerns for LAC. The main

objective of the following sections is to find the paths with highest probability. In Section

4.7, characteristic paths with probability of ≈ 2−61.51 are found. The LAC authenticated

encryption cipher is explained in section 4.1. Afterwards, we show how the differential

behavior of the LAC authentication encryption operations are transformed into linear equa-

tions using the MILP algorithm and then we show how they are used to find the minimum

number of active S-boxes in section 4.2.

55

4.1 LAC Authenticated Encryption Cipher Specification

LAC is a lightweight authenticated encryption cipher and is one of the candidates in the

CAESAR competition. It uses a structure similar to ALE and one of its primitive blocks is

a modified version of the LBlock cipher, called the LBlock-s function. The master key, K,

in the encryption and authentication algorithm is 80 bits long and the authentication tag τ

size in the output is 64 bits. At most 240 bits of data can be authenticated and/or encrypted

by using a master key with the same value. LAC has a nonce-respecting structure where

a 64 bit public message number PMN is used as nonce to encrypt the message data m

into the ciphertext c. The message m and its corresponding ciphertext c have the same

length. PMN is only used once for each master key in the encryption process. Finally an

associated data α is used in LAC with a variable length. The same variables are used in

the decryption process using the ciphertext c as the input and the message m as the output.

For authentication, the message m is returned only if the tag τ is correct and a special

symbol denoting the failure of authentication is sent otherwise. Four underlying blocks

are used for LAC encryption and authentication. These are the key scheduling algorithm

KS, a full 32 rounds LBlock-s E, a 16 round LBlock-s G and a 16 round LBlock-s G-leak

with 48 bits of leaked data state. All these blocks use LBlock-s as their basic function. In

the following sections, first LBlock-s is explained and then these functions are illustrated.

The encryption and authentication procedure for LAC authenticated encryption cipher is

depicted in Fig. 4. In the following section we explain the LBlock-s cipher specification

used as the underlying block for LAC.

56

� ���

����

���

����

���

���

�

��������	
�� ��

��
�

� �

�

�

	

�

	

�

��

���

	�
���

�

��

	�
���

�

�

�

Figure 4: The encryption and authentication process of LAC authenticated encryption ci-
pher

4.1.1 LBlock-s Specification

LBlock-s is a modified version of the LBlock lightweight block cipher with a variant of

Feistel structure, 32 full rounds and a 64 bit data state as an input. The modifications are

performed so that the implementation cost are reduced. Therefore, all rounds are identical

in LBlock-s and there is no need to discard the switch operation in the last round of en-

cryption since no decryption of this function is needed in LAC. This leads to a less cost

of hardware control. Moreover, as opposed to LBlock which has 10 different S-boxes,

LBlock-s has one 4-bit S-box. Another difference is the number of left bit shifts performed

on the master key. In LBlock this number is 29 shifts which would be more costly to imple-

ment on 8 bit platforms whereas in LBlock-s, it is 24 bits which also improves the diffusion

effect. The round function for LBlock-s has three steps: subkey addition, confusion func-

tion S and diffusion function P . In each round of LBlock-s, the 64 bit data state or input in

57

��	
 ��	�

�� ��	

��	

��
�

�

Figure 5: One round of LBlock-s cipher with its round function subkey addition, confusion
and diffusion layers

i 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(i) E 9 F 0 D 4 A B 1 2 8 3 7 6 C 5

Table 8: Input output pairs for the S-box used in LAC

round i is divided into two parts, Xi−1 and Xi−2, and the round function is performed on

these data states to get the data states Xi and Xi−1 for the next round i+ 1 for 2 ≤ i ≤ 33.

Therefore, X33||X32 would be the output after full 32 rounds for the input X1||X0 where

a||b denotes the concatenation of the two binary strings, a and b. In the subkey addition

step, each round subkey which is derived from the key scheduling algorithm explained in

section 4.1.2 is XORed with half of the data state. The 4-bit S-boxes are used in the con-

fusion step to provide data confusion by adding a non-linear layer. These parallel S-boxes

are all identical in LBlock-s and the input-output pairs are shown in Table 8. Finally, a

permutation is performed on eight nibbles in the diffusion step. Fig. 5 shows one round

of LBlock-s and the details of the round function. Therefore, the round function can be

described by Eq. 31 where 2 ≤ i ≤ 33.

58

Xi = P (S(Xi−1 ⊕Ki−1))⊕ (Xi−2 <<< 8) (31)

4.1.2 The Key Scheduling Procedure in LAC and LBlock-s

For each round i, the leftmost 32 bits of the master key K are used as the subkey for that

round, subkeyi. The master key K is an 80 bit data, denoted [k79k78...k1k0]. Then the

master key K is updated for the next round subkey using the following procedures:

K <<< 24, where <<< denotes left bit shift with rotation.

[k55k54k53k52] = s[k79k78k77k76]⊕ [k55k54k53k52]

[k31k30k29k28] = s[k75k74k73k72]⊕ [k31k30k29k28]

[k67k66k65k64] = [k71k70k69k68]⊕ [k67k66k65k64]

[k51k50k49k48] = [k11k10k9k8]⊕ [k51k50k49k48]

[k54k53k52k51k50] = [k54k53k52k51k50]⊕ [i]2

The round subkey subkeyi+1 is the leftmost 32 bits of the current master key K, where [i]2

is the binary form of the round number i.

4.1.3 Specification of E, G and G-leak Functions

The E function used in the LAC authenticated encryption cipher is a full 32 round LBlock-

s with X33||X32 acting as its output. However, the G function is a round reduced version of

LBlock-s with 16 rounds of iteration in both the encryption procedure and the key schedul-

ing algorithm. Therefore, the round equation for the G function would be as in Eq. 31

but with the condition that 2 ≤ i ≤ 17 with X17||X16 as the output. Finally the G-leak

59

function is a 16 round LBlock-s with additional 48 bits of leaked internal data state. To

derive these leaked bits, first, 9 rounds of LBlock-s is performed to get X9 from 2 ≤ i ≤ 9.

The higher 24 bits of X9 are saved as X9
∗ which is X9[31, 30, · · · , 8] in bits. Then the next

8 rounds are performed from 10 ≤ i ≤ 17 in order to obtain X17. Similarly, the higher

24 bits of X17 are saved as X17
∗ which is X17[31, 30, · · · , 8]. Eventually, X9

∗||X17
∗ is

saved as the leak bits as one output of this function where the data state X17||X16 acts as

the other output. The key scheduling algorithm is also modified for the G-leak function.

After deriving the subkeys for round numbers 2 to 16, using the same algorithm in KS

function, another final round of key scheduling is performed from steps 1 to 7 but with

the round constant i = 0x15. In the following section, the encryption procedure in LAC

authenticated encryption cipher is explained.

4.1.4 Encryption and Decryption Procedures

The first step in the encryption process in LAC authenticated encryption cipher is the mes-

sage padding. In this step, first the smallest number x of zeros is appended to the message m

where len is the message length and the condition (x+ len+40) mod 48 = 0; 0 ≤ x ≤ 48

is met. Then the message length len coded on 40 bits is appended such that the length of

the padded message is a multiple of 48 bits. Finally the padded message result is divided

into t 48-bit blocks denoted as M = m1||m2|| · · · ||mt−1||mt. Similarly, using the same

steps, the associated data α is padded and is divided into r blocks, each having 48 bits.

These blocks are denoted as A = a1||a2||...||ar−1||ar. The second step in the encryption

process is the initialization, in which both the initial key state and the data state for LAC

60

are computed. As shown in Fig. 4, the public message number PMN (64 bits) and the

master key K (80 bits) are given as the input to the E function and its 64 bit output is en-

crypted one more time using the master key K. An internal 128 bits key denoted as Ukey

is constructed using the two 64-bit outputs in this step. The lower 80 least significant bits

of the Ukey LSB are given as the initial key state to the KS functions and the higher 80

most significant bits of the Ukey MSB are given as the initial data state. Note that this

initial data state is encrypted with 0 before being the input for the G functions. The third

step in the encryption procedure is to process the associated data. In the first r rounds of

LAC, the key state and the data state are given as the input to the G function and the lower

48 bits of output (internal data state) is added (exclusive-ored) to the first block (48 bits) of

the associated data. The fourth step in the encryption process is processing the message.

The output after the rth round along with the corresponding key state is used as the input

to the G-leak function which gives two outputs. One is the leaked bits and the other is the

internal data state. The internal data state is added to the lower 48 bits of the internal state

to provide the input for the next G-leak function. The leaked bits which are the higher 24

bits of output after 8 rounds and the higher 24 bits of output after 16 rounds are added to

the corresponding 48 message block denoted as mi in order to compute the corresponding

ciphertext block denoted as ci in Fig. 4. The last step in the encryption process is final-

ization. The authentication tag for the message and the associated data τ is produced by

encrypting the final data state using the master key K in function E. The decryption process

is performed similarly with the exception that the ciphertext c = c1|| · · · ||ct is given as the

input instead of the message m. Also the tag received will be compared to the tag computed

61

and, if not the same, an authentication failure symbol will be sent otherwise the decrypted

message will be sent.

4.2 Finding Differential Paths with Minimum Number of

Active S-boxes

In order to find the minimum number of active S-boxes, we need to solve an optimization

problem by using the mixed integer linear programming technique explained in this section.

Then the minimum number is used to find the candidate differential paths.

4.2.1 Mixed Integer Linear Programming

In order to compute the security bounds for the LAC authenticated encryption cipher

against differential cryptanalysis (i.e., to analyze how plaintext differences propagate in

ciphertext differences), a mixed integer linear programming method (MILP) is used in this

work. First, we derive linear equations representing the differential behavior of the op-

erations of the LAC authenticated encryption cipher given its structure as the input. The

goal in linear programming (LP) is to optimize an objective function (also linear) having

some conditions on the initial variables called the decision variables. We denote the lin-

ear objective function and decision variables as f(x1, x2, ..., xv−1, xv) and xi, respectively,

where 1 ≤ i ≤ v and v denotes the total number of variables. The optimization in here

is performed with the objective of minimizing the number of active S-boxes. We can use

62

this bound to find an upper bound for the probability of the best characteristic and there-

fore the best differential using the maximum differential probability (MDP) of the S-boxes.

Therefore, when these equations, which define the differential behavior of each of the LAC

authenticated encryption ciphers operations, are given as input to an MILP solver, we can

get the minimum number of active S-boxes for LAC as the output. In this work the Ip-

solver [1] has been used for solving the optimization problem. For candidate differential

paths, the minimum number of active S-boxes for full 16 rounds of LAC authenticated

encryption cipher has been calculated. Note that the decision variables xi can have fixed

integer values as conditions. The term MILP is used when some of the decision variables

should be integer values and ILP term or pure linear programming is used when all of them

should have integer values. In the following section, we demonstrate how MILP can be

used to derive the minimum number of active S-boxes for a specific differential path.

4.3 Converting the Differential Behaviors of LAC Opera-

tions into Linear Equations

In this section we explain how the minimum number of active S-boxes is calculated using

the MILP technique. First, the linear equations representing the differential behavior of

the operations of the LAC authenticated encryption cipher are derived knowing that the G

function in LAC is constructed using exclusive-or, rotational nibble shifts, confusion layers

(S-box operations) and permutation layers. We denote the total number of input vector

nibbles as nb. In the following section, we explain how the differential behavior of each of

63

these operations are converted into linear equations for the LAC authenticated encryption

cipher. In order to do so, we use truncated differences as the input difference vector, i.e.,

having the difference vector x = (x0, x1, · · · , xnb), then xi = 0 only if the corresponding

nibble has the difference 0 as well. Otherwise the difference is one. Therefore, it is assumed

that each nibble in the G function input can be either 0 or 1, i.e., each nibble has either a

zero difference or a non-zero difference. These differences are called truncated differences.

After deriving the linear equations for the G block of LAC authenticated encryption cipher,

the objective function is determined; the objective function here would be the number of

active S-boxes which is the summation of all the variables in equations that are given as

an input to the confusion layer of the G function. Finally, to assure that the optimized

result found from solving the equations does not contain the case where all the variables

are zero and therefore the minimum number of active S-boxes is zero, we add an additional

constraint that at least one S-box is active. We can achieve this by adding the constraint

that the summation of all variables given as input to the confusion layer should be greater

than or equal to one.

4.3.1 The Exclusive-or Operation Conversion

Let us assume the input difference vector entering the exclusive-or operation is [x1
xor, x2

xor]

and its corresponding output is xout
xor. In this operation, the minimum number of input and

output bytes that have differences is 2. We denote this number as the differential branch

number. Note that the case where the input and output differences are all zero is not consid-

ered in finding this minimum. Therefore a dummy variable dxor is defined to demonstrate

64

the differential branch number in the final linear equations corresponding to exclusive-or

operation. The only case where this dummy variable dxor is zero is when all variables

x1
xor, x2

xor and xout
xor are zero. The linear equations for the connection between input

and output difference vector in exclusive-or operation are given by Eq. 32 where all these

variables are binary variables.

x1
xor + x2

xor + xout
xor ≥ 2dxor,

dxor ≥ x1
xor,

dxor ≥ x2
xor,

dxor ≥ xout
xor.

(32)

4.3.2 The Linear Operation Conversion

A linear operation is any operation that upon reception of an input vector [xl
1, x

l
2, · · · , xl

nb−1

, xl
nb], transforms it linearly to an output vector [xl

out1, x
l
out2, · · · , xl

outn−1, x
l
outn]. Similar

to the exclusive-or operation, the differential branch number B and the dummy variable dl

are used to demonstrate the connection between the differential input and output vectors.

Likewise, only if all the variables xl
1, x

l
2, · · · , xl

nb, xl
out1, x

l
out2, · · · ,

xl
outn−1 and xl

outn are zero, then the dummy variable dl would be zero. Otherwise, it will

be one. The linear equations corresponding to the linear transformation operation are given

65

by Eq. 33.

xl
1 + xl

2 + · · ·+ xl
nb+

xl
out1 + xl

out2 + · · ·+ xl
outn ≥ Bdl,

dl ≥ xl
1,

dl ≥ xl
2,

. . .

dl ≥ xl
nb,

dl ≥ xl
out1,

dl ≥ xl
out2,

. . .

dl ≥ xl
outn.

(33)

Note that finding the optimized result of the derived linear equations, we can restrict all

dummy variables and input or output variables to be binary. In that case we need integer

linear programming to find the optimized result. In the following section, we illustrate

the construction of the MILP problem for the LAC authenticated encryption cipher, the

calculation of the minimum number of active S-boxes for our differential path and how the

differential cryptanalysis is performed using this technique.

66

4.4 Differential Cryptanalysis of LAC Authenticated En-

cryption Cipher Using the MILP Algorithm

In this section, we show how to construct the linear equations for the differential behavior

of the LAC authenticated encryption cipher and then use these equations to find the mini-

mum number of active S-boxes for several candidate differential paths. The variables used

in the equations are in the form of mixed-integer equations, i.e., the decision variables are

integer values. Therefore, this problem is an MILP problem and we use IPsolver to find

the optimized result of the derived linear equations. The result of this step would be the

minimization of the objective function which is the minimum number of active S-boxes

for the given differential input vector to the specific output vector in the differential path

for the 16 round LAC authenticated encryption cipher. This is used to perform differential

cryptanalysis on the LAC authenticated encryption cipher by finding an actual characteris-

tic with that given number of active S-boxes. Note that the S-box will output a non zero

output difference only if the input difference is a non zero value. Therefore, we can map

any active difference in the input to the output and keep the rest as a zero difference. The

G function in LAC has one exclusive-or operation with inputs other than the subkey vari-

ables. Here we demonstrate the propagation of the difference vectors in LAC by forming

the linear equations corresponding to these operations starting from the first round as an

example. As depicted in Fig. 6, we denote the variables in the input difference vector by

the binary values x0 to x15. Therefore, the initial left side input difference vector would

be [x0, x1 · · · , x6, x7] and similarly the initial right side input difference vector would be

67

[x8, x9, · · · , x14, x15]. The left side vector will be the next round right side vector and

therefore the variables x0 to x7 will be on the right side for the next round. However, in

order to construct next round left side vector, these variables should pass by the S-boxes.

Since the S-box is bijective, it will transform any non-zero difference to another non-zero

difference and hence every difference in the S-box input will be passed to the output and

any zero difference will not. Next, these differences will be permuted and we apply these

permutations in the S-box output as shown in Fig. 6. This vector will be used as one of

the inputs for the exclusive-or operation of LAC authenticated encryption cipher which we

will use in defining the linear equations. The right side vector corresponding to the vari-

ables x8 to x15 will be shifted 8 bits to the left with rotation and the resulting vector is

the second input to the exclusive-or operation of the LAC authenticated encryption cipher.

Therefore the two vectors given as input to the exclusive-or operation in the first round of

LAC are [x1, x3, x0, x2, x5, x7, x4, x6] and [x10, x11, x12, x13, x14, x15, x8, x9] corresponding

to the permutation output and 8 bit left rotation shift, respectively. We now define new

binary variables x16 to x23 to denote the output corresponding to the input vectors for the

exclusive-or operation. Note that these variables will be the left side vector for the next

round since they are the result of the exclusive-or operation. By defining another new

dummy variable, d0, we can write down the linear equations for this round and for input

68

variables x1 and x10 as follow:

x1 + x10 + x16 ≥ 2d0,

d0 ≥ x1,

d0 ≥ x10,

d0 ≥ x16.

(34)

Similarly, considering the other exclusive-or operations in this round for other variables,

we can get 8 × 4 = 32 equations for the first round since we get 4 equations for each

exclusive-or operation and we have eight nibbles for the inputs to the exclusive-or opera-

tion. Therefore, for the new variables x17, x18, x19, x20, x21, x22 and x23, similar equations

with dummy variables d1, d2, d3, d4, d5, d6, d7 are written and a system of 32 equations are

used to describe all the operation for each round of the G function for LAC. This set of

equations is given in the following form for round r = 0:

xk[i] + xm[i] + xn[i] ≥ 2di,

di ≥ xk[i],

di ≥ xm[i],

di ≥ xn[i].

(35)

for i = 0, . . . , 7 where arrays k = [1, 3, 0, 2, 5, 7, 4, 6], m = [10, 11, 12, 13, 14, 15, 8, 9] and

n = [16, 17, 18, 19, 20, 21, 22, 23]. As shown in Fig. 6, after one round, the propagated

differences will be [x16, x17, x18, x19, x20, x21, x22, x23] and [x0, x1, · · · , x6, x7] for the left

69

side and right side, respectively. The same process can be performed on every round of

the LAC authenticated encryption cipher and therefore the whole structures differential

behavior can be written as a system of linear equations with new defined binary variables.

The overall set of conditions for rounds r = 1, . . . , 15 can be written as:

xk[i]+8+8r + xm[i]−16+8r + xn[i]+8r ≥ 2di,

di+8r ≥ xk[i]+8+8r,

di+8r ≥ xm[i]−16+8r,

di+8r ≥ xn[i]+8r.

(36)

for i = 0, . . . , 7 where arrays k = [1, 3, 0, 2, 5, 7, 4, 6], m = [10, 11, 12, 13, 14, 15, 8, 9] and

n = [16, 17, 18, 19, 20, 21, 22, 23]. This, along with Eq. (35), give a set of 16×8×4 = 512

linear equations. In the following section, we describe how these linear equations are used

in order to find the minimum number of active S-boxes for several candidate differential

paths.

4.4.1 Finding the Minimum Number of Active S-boxes

In order to determine the minimum number of active S-boxes, we need to consider the

variables in our linear inequalities that are given as input to the S-boxes in each round of

the G function since these are the variables that determine if an S-box is active or not.

For example, in round one, we can see that the variables x0, x1, · · · , x6, x7 represent the

S-box inputs so that these are the variables in the equations that should be considered in

70

� � � � � � � � � � �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� � �

�����
�

�
� � � � � � � �

� � � � � � � �

� � � � � � � �

Figure 6: Differential propagation for the first step of LAC in initialization of the linear
equations

our optimization problem. Note that we need to have an additional linear equation for the

summation of these variables to be greater than or equal to one since we do not want the

result where there is no active S-box. We denote the set of 8 variables determining the

S-box inputs in round i as the set Li and since the G function has 16 rounds, then we can

conclude that 1 ≤ i ≤ 16. Therefore, the sets for the LAC authenticated encryption cipher

can be described as in Eq. 38. The number of active S-boxes kN for a total of N rounds of

the G function is given using Eq. 37, where IN =
N⋃
i=1

Li.

kN =
∑
i∈IN

xi (37)

Our objective would be to optimize, i.e., minimize, kN . Having 32 linear equations in each

round plus one additional equation for the S-box constraint for N rounds, we have a system

of 32N +1 linear equations with binary variables (an ILP program). In this work, IPSolver

is used for optimizing the equations according to the objective function. The minimum

71

number of active S-boxes for different candidate differential paths is compared and the

results are shown in Table 9. In the following sections, we explain how these candidate

paths were chosen for our experiment.

72

L0 = 0, 1, 2, 3, 4, 5, 6, 7,

L1 = 16, 17, 18, 19, 20, 21, 22, 23,

L2 = 24, 25, 26, 27, 28, 29, 30, 31,

L3 = 32, 33, 34, 35, 36, 37, 38, 39,

L4 = 40, 41, 42, 43, 44, 45, 46, 47,

L5 = 48, 49, 50, 51, 52, 53, 54, 55,

L6 = 56, 57, 58, 59, 60, 61, 62, 63,

L7 = 64, 65, 66, 67, 68, 69, 70, 71,

L8 = 72, 73, 74, 75, 76, 77, 78, 79,

L9 = 80, 81, 82, 83, 84, 85, 86, 87,

L10 = 88, 89, 90, 91, 92, 93, 94, 95,

L11 = 96, 97, 98, 99, 100, 101, 102, 103,

L12 = 104, 105, 106, 107, 108, 109, 110, 111,

L13 = 112, 113, 114, 115, 116, 117, 118, 119,

L14 = 120, 121, 122, 123, 124, 125, 126, 127,

L15 = 128, 129, 130, 131, 132, 133, 134, 135,

L16 = 136, 137, 138, 139, 140, 141, 142, 143.

(38)

73

4.5 Choosing the Candidate Truncated Characteristics

To choose the candidate truncated characteristics, the following steps have been taken.

First, we generate a matrix of the probabilities of all the possible truncated differentials

of LAC over one round assuming its F-function is a random permutation. In truncated

differentials, each nibble is either active (set to 1) or inactive (set to 0). Therefore, the size

of this matrix is 216 × 216. Then using MATLAB, we raised this matrix to the power of 16

so that we have the probabilities of the truncated differentials over 16 rounds. Afterwards,

as LAC does not permit the manipulation of its whole 16-nibbles internal state, i.e., just 12

nibbles. We focused our attention on a truncated matrix of size 212 × 212. In this truncated

matrix, we searched for the entry that has the maximum probability corresponding to all

possible input and output Hamming weights. Hence, after this step we ended up with

12 × 12 patterns corresponding to all the possible input and output Hamming weights

and the maximum probability corresponding to each pattern. Using the MILP technique,

we found the truncated characteristic corresponding to each of these 144 patterns and the

number of active S-boxes for each truncated characteristic. The list of patterns was shorten

by setting the number of active S-boxes to be 35, i.e., the minimum number of active S-

boxes in 16 rounds. From the truncated difference matrix, we know if each nibble is active

or not for the input pattern and the output pattern only and we do not know how this input

difference pattern was propagated to reach the corresponding output difference pattern.

This is what is called a differential, i.e., just the input difference and the output difference

after some specific rounds. In a characteristic, we have the intermediate difference patterns

74

as well and that is what we get from the MILP and IP Solver. Then for this short list of

truncated characteristics, we find the corresponding differential with the highest probability

as explained in the next section.

4.6 Finding the Differential of the highest Probability

In this section, we explain the algorithm of turning the truncated characteristics we obtained

in the previous section into differentials with specific input and output difference values. To

speed up the algorithm, we restrict the number of active nibbles in each round. In particular,

we restrict the input to have 3 active nibbles at most, the intermediate rounds to have 6

active nibbles in total and the number of active nibbles that pass by an S-box is limited to

3 out of these 6 active nibbles in each round. For a given truncated characteristic D, we

have so many possibilities for the differences at the input, intermediate rounds and output.

For a specific input/output difference pair, we consider all the possible differences in the

intermediate round following our truncated characteristic D. This determines a group of

characteristics that contribute to the same differential. Computing the sum of probabilities

of those characteristics give a more accurate lower bound of the differential probability. We

used the algorithm proposed in [21]. We denote a version of D with only i rounds as Di.

To compute P (D : α −→ β) for a given (α, β), we first compute the P (Di : α −→ x)

for all the differences x following D1. Then P (Di : α −→ x) is iteratively built for all x

75

Truncated Truncated Probabilityof Numberof input output Probability
Input Output Truncated Active difference difference of

Difference Difference Differential Sboxes value value Differential

[0000000000001101] [0000011000001100] 2.75E − 15 35 [0000000000007604] [0000044000002400] 2−61.73

[0000000000001101] [0000111000001100] 4.12E − 14 35 [0000000000007604] [0000442000004200] 2−61.83

[0000101000000001] [0000101100000000] 1.83E − 16 35 [0000404000000004] [0000706400000000] 2−61.51

Table 9: The result characteristics with the minimum number of active S-boxes and the
highest probability corresponding to the input and output difference values for the full 16
round of LAC authenticated encryption cipher

following Di using the results from Di−1:

P (Di : α −→ x) =
∑
x′

P (Di−1 : α −→ x′)× P (x′ ←→ x) (39)

The results are presented in the following section.

4.7 Results

In this section, the result for each candidate truncated characteristic is shown in Table 9

in terms of the minimum number of active S-boxes and the probability of the truncated

differential derived from the truncated difference table matrix. In this table, the probability

of truncated differential is the probability from the truncated difference table matrix. The

minimum number of active S-boxes corresponding to the truncated input difference and

the truncated output difference is shown for the full 16 rounds of LAC, and probability

of differential is the differential with the highest probability for the input difference and

output difference, and finally the input and output difference values are the differentials

determining the exact value of the nibbles.

Each digit in the truncated input difference shows whether that nibble is active or not.

As an example [0000000000101101] means the nibbles 10, 12, 13 and 15 are active in the

76

input and the other nibbles are inactive. Note that the right most nibble stands for the

15th nibble and the leftmost nibble is the 0th nibble in this representation. Similarly in the

input and output representation, each digit shows the value for that nibble. As an example

[0000000000007604] means that the 15th nibble has a difference of value 4. The 13th nibble

has a difference of value 6 and the 12th nibble has a difference of value 7. From the above

results, one conclude that the underlying block cipher makes LAC susceptible to forgery

attacks where forged messages can be produced by utilizing the found differentials which

hold with relatively high probability than what is claimed by the cipher designers.

77

Chapter 5

Conclusions and Future Work

Block ciphers, hash functions and authenticated encryption schemes are important sym-

metric key primitives that are used as building blocks in many security applications. This

thesis focused on the cryptanalysis of some of these primitives including the Lesamnta-512

and DHA-256 hash functions, and the LAC authenticated encryption schemes.

In particular, we investigated the resistance of the Lesamnta-512 underlying block ci-

pher against impossible differential attacks and studied the resistance of the DHA-256 com-

pression function against collision attacks. Furthermore, we studied the resistance of LAC

against forgery attacks that utilize high probability differentials in its underlying block ci-

pher.

We can further continue the current work in the following directions:

1. In this work, we only considered the underlying block cipher of Lesamnta-512. For

future research, the implications of the developed key recovery techniques can be

extended to Lesamnta when used in the secret key set-up to construct different MAC

78

schemes.

2. One can study how to improve the results provided in this thesis, for example by ex-

tending the number of attacked rounds or improving the complexity of the presented

attacks.

3. The impossible differential cryptanalysis applied to Lesamnta-512 can be performed

on other hash functions to investigate the security margin of their underlying block

ciphers.

4. The so-called automated techniques that were used throughout the thesis still require

a lot of manual expert intervention in order to be applied to a specific block cipher

or hash function. Further automation of these techniques is a very interesting and

challenging research project that can have a large impact on the analysis and design

of symmetric key systems.

5. The automated methods that were used throughout the thesis have the limitations

that they cannot be applied to many ciphers because of their inherent computational

complexity. Improving the computational efficiency of these automated cryptanalysis

methods and developing new ones is another interesting research direction.

79

Bibliography

[1] lp-solve 5.5.2.0 Documentation, http://web.mit.edu/lpsolve/doc/.

[2] ISO/IEC 19772:2009. Information Technology - Security techniques Authenticated

Encryption. 2009.

[3] M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: prov-

ably fixing the SSH binary packet protocol. In Proceedings of the 9th ACM conference

on Computer and communications security, pages 1–11. ACM, 2002.

[4] M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-

tions and analysis of the generic composition paradigm. In Advances in Cryptology-

ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 531–

545. Springer-Verlag, 2000.

[5] E. Biham, A. Biryukov, and A. Shamir. Miss in the middle attacks on IDEA and

Khufu. In Fast Software Encryption (1999). Lecture Notes in Computer Science,

pages 124–138. Springer-Verlag, 1999.

80

[6] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. Jour-

nal of Cryptology, 4(1):3–72, 1991.

[7] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser. ALE: AES-

based lightweight authenticated encryption. In Fast Software Encryption (2013). Lec-

ture Notes in Computer Science. Springer-Verlag, 2013.

[8] C. Bouillaguet, O. Dunkelman, G. Leurent, and P. Fouque. G.: Another look at the

complementation property. In Fast Software Encryption (2010). Lecture Notes in

Computer Science. Springer-Verlag, 2010.

[9] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damgård revisited: How to

construct a hash function. In CRYPTO (2005), Lecture Notes in Computer Science,

volume 3621, pages 430–448. Springer-Verlag, 2005.

[10] J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced encryption

standard. Springer-Verlag, 2002.

[11] A. Biryukov E. Biham and and A. Shamir. Cryptanalysis of Skipjack reduced to 31

rounds using impossible differentials. In Advances in Cryptology-Eurocrypt’99, J.

Stern, Ed., LNCS 1592,, pages 12–23. Springer-Verlag, 1999.

[12] D. Gligoroski, R. Ødegard, M. Mihova, S. Knapskog, A. Drápal, V. Klima,

J. Amundse, and M. El-Hadedy. Cryptographic hash function Edon-R’. http:

//csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html, 2009.

81

[13] R. Grinberg. Bitcoin: an innovative alternative digital currency. Hastings Science &

Technology Law Journal, 4:159, 2012.

[14] S. Hirose, H. Kuwakado, and H. Yoshida. SHA-3 proposal: Lesamnta. http://csrc.

nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html, 2008.

[15] S. Hirose, H. Kuwakado, and H. Yoshida. A minor change to Lesamnta-change of

round constants-. www.hitachi.com/rd/yrl/crypto/lesamnta/, 2009.

[16] S. Hirose, H. Kuwakado, and H. Yoshida. Security analysis of the compression func-

tion of Lesamnta and its impact. http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/

documents/LESAMNTA_Comments.pdf, 2009.

[17] C. Jutla. Encryption modes with almost free message integrity. In Advances in

Cryptology-EUROCRYPT 2001, B. Pfitzmann (ed.), LNCS 2045, pages 529–544.

Springer-Verlag, 2001.

[18] J. Kim, S. Hong, and J. Lim. Impossible differential cryptanalysis using matrix

method. Discrete Mathematics, 310(5):988–1002, 2010.

[19] H. Krawczyk. The order of encryption and authentication for protecting communi-

cations (or: How secure is SSL?). In Advances in Cryptology-CRYPTO’01, volume

2139 of Lecture Notes in Computer Science, pages 310–331. Springer-Verlag, 2001.

[20] J. Lee, D. Chang, H. Kim, E. Lee, D. Hong, J. Sung, S. Hong, and S. Lee. A new 256-

bit hash function DHA-256: Enhancing the security of SHA-256. In Cryptographic

Hash Workshop hosted by NIST, 2005.

82

[21] G. Leurent. Differential Forgery Attack against LAC. https://hal.inria.fr/

hal-01017048, July 2014.

[22] Y. Luo, X. Lai, Z. Wu, and G. Gong. A unified method for finding impossible differ-

entials of block cipher structures. Information Sciences, 263:211–220, 2014.

[23] Martin M. gren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new

version of Grain-128 with optional authentication. International Journal of Wireless

and Mobile Computing, 5(1):48–59, 2011.

[24] Alfred J Menezes, Paul C V. Oorschot, and Scott A Vanstone. Handbook of applied

cryptography. CRC press, 1996.

[25] Ivica Nikoli and Alex Biryukov. Collisions for step-reduced SHA-256. In Fast Soft-

ware Encryption, pages 1–15. Springer-Verlag, 2008.

[26] P. Rogaway. Authenticated-encryption with associated-data. In Proceedings of the

9th CCS, pages 98–107. ACM, 2002.

[27] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of

operation for efficient authenticated encryption. ACM Transactions on Information

and System Security (TISSEC), 6(3):365–403, 2003.

[28] X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. In Advances in

Cryptology–CRYPTO 2005, pages 17–36. Springer-Verlag, 2005.

[29] X. Wang and H. Yu. How to break MD5 and other hash functions. In Advances in

Cryptology–EUROCRYPT 2005, pages 19–35. Springer-Verlag, 2005.

83

[30] Wenling Wu, Lei Zhang, editors J. Lopez, and G. Tsudik. LBlock: a lightweight

block cipher. In Applied Cryptography and Network Security, volume 6715, pages

327–344. Springer-Verlag, 2011.

[31] J. Zhong and X. Lai. Preimage attack on reduced DHA-256. Journal of Information

Science and Engineering, 27(4):1315–1327, 2011.

84

