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Abstract - Whether territoriality regulates population size depends on the flexibility of territory 18 

size, but few studies have quantified territory size over a broad range of densities.  While 19 

juvenile salmonids in streams exhibit density-dependent mortality and emigration, consistent 20 

with space limitation, there has been relatively little study of how territory size and individual 21 

growth rate change over a broad range of densities, particularly in field experiments. 22 

Consequently, we manipulated the density (range=0.25–8·m-2) of young-of-the-year (YOY) 23 

Atlantic salmon (Salmo salar) in mesh enclosures erected in a natural stream to test whether: (1) 24 

territory size is fixed, decreases continuously, or decreases toward an asymptotic minimum size 25 

as density increases; and (2) individual growth rate decreases as a negative power curve with 26 

density as in observational field studies. Territory size decreased with increasing density, 27 

consistent with an asymptotic minimum size of about 0.13m2 for a 5-cm fish. Individual growth 28 

rate also decreased with density, although the magnitude of decrease was steeper than in 29 

observational studies. Our results suggest a limit to how small territories can be compressed, 30 

which will set the upper limit to the local density in a habitat. The density-dependent changes in 31 

territory size and individual growth rate will both play a role in the regulation of stream salmonid 32 

populations.  33 

 34 

Keywords: enclosures, intraspecific competition, population regulation, space limitation, stream 35 

salmonids 36 

 37 

 38 

 39 
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Introduction 41 

 42 

Ever since the application of optimality thinking, behavioural ecologists have typically taken a 43 

focal-resident approach (sensu Adams 2001) to predict the effects of environmental change on 44 

territory size (e.g. Hixon 1980; Schoener 1983). This approach has focussed on non-contiguous 45 

territories, with an emphasis on the flexibility of territory size in the face of changes in food 46 

abundance and intruder pressure (Dill et al. 1981; Grant 1997; Adams 2001). By contrast, 47 

population ecologists have tended to focus on how contiguous territories affect the ability of 48 

individuals to settle in habitat patches (e.g. Fretwell & Lucas 1969; Rodenhouse et al. 1997). 49 

Classic examples of territoriality limiting local density include coral reef fishes (e.g. Robertson 50 

1995; Turgeon & Kramer 2012) and breeding birds (Krebs 1971; Newton 1998).  51 

The role that territorial behaviour plays in the regulation of population size will depend 52 

on how territory size responds to population density. If territory size is fixed and inflexible, then 53 

it will set an upper limit to the number of settlers in a particular habitat (Rodenhouse et al. 1997; 54 

Adams 2001). At the other extreme, if territory size decreases inversely with population density, 55 

such that the number of settlers subdivide the available habitat, then territoriality may play no 56 

role in limiting local population density (Fretwell & Lucas 1969; Maynard Smith 1974). 57 

Intermediate between these two extremes is Huxley’s (1934) elastic disc model; territory size 58 

initially decreases as density increases, but can only be compressed until a minimum territory 59 

size is reached. This asymptotic minimum territory size will set the maximum number of settlers 60 

in any particular habitat patch (Maynard Smith 1974). 61 

 Juvenile salmonids in streams have been a popular model system for investigating the 62 

role that territorial behaviour plays in population regulation (Grant & Kramer 1990; Titus 1990; 63 

Elliott 1994). While territory size decreases with population density in most studies (e.g. Slaney 64 
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& Northcote 1974; Dill et al. 1981; Keeley 2000; Imre et al. 2002), few studies have observed 65 

territory size over a broad enough range of densities to test among the three competing 66 

hypotheses described above. A notable exception, however, manipulated the density of juvenile 67 

rainbow trout from 1.85 to14.8·m-2 to provide support for the elastic disc model (Wood et al. 68 

2012). While the asymptotic minimum territory size of about 0.2m2 was consistent with field 69 

observations, Wood et al.’s (2012) study used hatchery-reared fish feeding on artificial food in 70 

laboratory stream channels. Hence, an experiment in more natural conditions is needed to verify 71 

the generality of their findings.  72 

 Stream salmonid populations have also produced considerable evidence of density-73 

dependent survival (Elliott 1994; Einum & Nislow 2005) and emigration (Grant & Kramer 1990; 74 

Einum et al. 2006). Surprisingly, however, evidence of the density-dependent growth rate of 75 

individual fish has been equivocal, despite juveniles defending territories almost exclusively for 76 

feeding purposes (Keeley & Grant 1995), and territory size decreasing with increasing density 77 

(see above). While there is abundant evidence of an inverse relationship between size at age of 78 

young-of-the-year (YOY) salmonids and density (Jenkins et al. 1999; Imre et al. 2005; Grant & 79 

Imre 2005), inferring cause and effect from observational field studies can be problematic (see 80 

Ward et al. 2007; Imre et al. 2010). The few experimental studies have produced both strong 81 

evidence for (Jenkins et al. 1999; Einum et al. 2006) and against (Einum et al. 2006; Kaspersson 82 

et al. 2013) density-dependent individual growth rate. Hence, an experimental test of density-83 

dependent growth in relatively natural conditions is needed, particularly for YOY Atlantic 84 

salmon, which have contributed considerable observational evidence consistent with density-85 

dependent growth (e.g. Imre et al. 2005, 2010).  86 
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Our purpose was to determine the effects of a broad range of population densities on the 87 

territory size and individual growth rate of YOY Atlantic salmon in conditions that were as 88 

natural as possible. In particular, we tested the predictions that: (1) territory size decreased with 89 

increasing density towards an asymptotic minimum territory size as observed in the laboratory 90 

by Wood et al. (2012); and (2) individual growth rate decreased with density in a manner 91 

consistent with the negative power curve described by Imre et al. (2005, 2010) in an 92 

observational study of the same population of fish. To simulate natural conditions, we 93 

manipulated the density of wild salmon in mesh enclosures erected in their home stream with a 94 

natural substrate and food supply.  95 

 96 

Material and methods 97 

 98 

 Data on YOY Atlantic salmon were collected during July and August of 2009–2011 in 99 

Catamaran Brook, a third-order tributary of the Little Southwest Miramichi River in central New 100 

Brunswick, Canada. The adult Atlantic salmon spawn in late October and November, with YOY 101 

salmon emerging from the gravel to start foraging in mid-June at about 26 mm in length (Randall 102 

1982).  103 

 Enclosures (see below) were erected in the 2-km section upstream from the mouth of 104 

Catamaran Brook in sites containing suitable habitat for YOY Atlantic salmon (see Girard et al. 105 

2004). Each enclosure was at least 2m downstream of its upstream neighbour and was staggered 106 

along the stream width, so that upstream enclosures did not block the flow to downstream 107 

enclosures. Enclosures, purchased from Les Industries Fipec Inc., Grande-Rivière, Québec, 108 

Canada, were made of nylon mesh (stretched mesh = 5 mm). The mesh size was selected to be 109 

Page 5 of 27

Ecology of Freshwater Fish

Ecology of Freshwater Fish



For Peer Review
 O

nly

6 

 

large enough to allow drifting invertebrates to enter the enclosure (see Keeley & Grant 1997), 110 

but small enough to keep YOY salmon inside. Enclosures were filled with a natural substrate of 111 

gravel (diameter = 2–16mm) that was collected from the river bed. Built-up debris was removed 112 

daily from the front of each enclosure. The gravel substrate was overlaid by a 5 x 3 grid of 113 

marked cobbles (diameter = 64-256mm). 114 

In 2009-10, we used eight enclosures measuring 4x1x1m (lxwxh), with a mesh top to 115 

keep out aerial predators. One, two, four or eight fish were placed in each enclosure to create 116 

densities of 0.25, 0.5, 1.0 and 2.0 YOY·m-2. This range of density was selected to be low enough 117 

to detect density-dependent growth; Imre et al. (2010) observed summer densities between 0.03 118 

and 3.4 YOY·m-2 in Catamaran Brook. A total of 33 trials were completed, 19 in 2009 and 14 in 119 

2010: 9 trials at 0.25 YOY·m-2 and 8 trials each at 0.5, 1 and 2 YOY·m-2. Because weather 120 

conditions limited visibility during some snorkelling surveys, behavioural data were collected for 121 

only 28 trials (14 in each year), with 7 replicates at each density.   122 

Based on the results of Wood et al. (2012), the densities used in 2009-10 were likely too 123 

low to detect an asymptotic minimum territory size. To increase the upper range of density of 124 

fish in enclosures, we used three enclosure sizes in 2011: 1, 2 and 4m2. We had planned to add 4 125 

or 8 fish to each enclosure, with two replicates of each combination for a total of 12 trials, to 126 

create a range of densities from 1-8 fish·m-2. We completed 12 trials as planned with two 127 

exceptions: only one replicate of 8 fish in a 4m2 enclosure was completed due to fish mortality 128 

and one trial of 2 fish in a 2m2 enclosure was completed due to a counting error. The 12 trials in 129 

2011 were completed between 8-24 July.  130 

 We collected YOY Atlantic salmon from habitats in Catamaran Brook upstream of the 131 

location of the enclosures using aquarium dipnets while snorkelling. Fish were tagged by a 132 
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subcutaneous injection of visual implant elastomers along the dorsal and/or caudal fins to allow 133 

for individual identification (Steingrímsson & Grant 2003). Upon initial capture, each individual 134 

was measured for mass to the nearest 0.01g (mean ± SD = 0.75±0.25, N = 45 enclosures). Fish 135 

were then released into the enclosures for the 7 days of the trial period. On days five and six, 136 

territory observations were performed by a snorkeler observing fish from beside the enclosure 137 

between 1000 and 1700 hours. Each fish was monitored over a 15 minute period; the location of 138 

each foraging station was mapped, switches between stations were noted and the direction (1-12 139 

o’clock, 12 = upstream) and the distance (in body lengths) of foraging attempts and aggressive 140 

acts initiated from each station were recorded on water-resistant plastic sheets. Foraging stations 141 

were defined as locations where a fish held its position against the current for at least five 142 

seconds; most individuals had multiple foraging stations as described in Steingrímsson & Grant 143 

(2008).  144 

Mapping individual movements was facilitated by the grid of marked cobbles that acted 145 

as a Cartesian coordinate system within the stream channels. Using these measurements, a digital 146 

map was created of each stream channel and the space-use patterns of each fish using ArcView 147 

GIS version 3.2 in conjunction with the Animal Movement extension (Hooge & Eichenlaub 148 

2000). The x-y coordinate for each foraging and aggressive event was calculated based on the 149 

vector (i.e. direction and distance) of each act, and the coordinate of the station from which it 150 

was initiated. To estimate territory size, the MCP method was applied to the coordinates of all 151 

foraging attempts, aggressive interactions, and stations after removing spatial outliers (5%) via 152 

the harmonic mean method (MCP95%) (Schoener 1981; Hooge & Eichenlaub 2000). When only 153 

one fish was present in an enclosure, territory size was based only on foraging data. Because 154 
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foraging attempts are more frequent than aggressive interactions, territory size based only on 155 

foraging data are very similar to those based only on aggressive data (Keeley & Grant 1995). 156 

On the last day of the trial (day seven) all fish were removed from the enclosure and were 157 

weighed and measured. Specific growth rate (SGR) was calculated for each fish using the 158 

following formula: SGR = (logeMFinal - logeMInitial)/t (where M = mass, and t is the duration of the 159 

trial in days; Ricker 1975). All fish were released in the area of initial collection. 160 

   161 

Statistical analysis 162 

We used an information theoretic approach (Burnham et al. 2010) using Akaike’s 163 

information criteria adjusted for small sample sizes (AICc) to identify the models that best 164 

explained variation in the two key dependent variables: territory size and SGR. In addition to the 165 

main effect of population density, we included year of study to capture any annual variation in 166 

abiotic or biotic variables, and initial body mass of the fish. The latter was included because 167 

territory size typically increases with body size (Keeley & Grant 1995), and growth rate 168 

decreases with body size of young-of-the-year salmon (Steingrímsson & Grant 2003). Once the 169 

best model was identified, we used general linear models to describe the quantitative 170 

relationships (SPSS Inc., Version 19, Chicago IL, USA).  171 

 172 

Results 173 

 174 

To test the prediction that territory size decreased with increasing population density, we 175 

first compared models including the variables density, body mass and year of study. One model 176 

emerged that best explained the variation in territory size: a single-factor model including 177 
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density (Table 1). Territory size decreased with increasing population density (Linear regression: 178 

F1,38 = 16.67, P < 0.001, r
2 = 0.305; Fig. 1).  179 

To compare our data to those of Wood et al. (2012; see their Fig. 3a), we first translated 180 

out territory area data, using the line of best fit in Fig. 1, to territory radii assuming that 181 

territories were circular in shape  (see Keeley & Grant 1995). On an arithmetic scale, territory 182 

radius decreased with increasing density as a negative power curve (Fig. 2). The territory sizes 183 

observed in our study were smaller than those for rainbow trout in a laboratory stream channel 184 

(Wood et al. 2012), but there was no significant difference at densities greater than 4·m-2, based 185 

on the confidence intervals around the data of Wood et al. (2012). Furthermore, both curves 186 

appeared to be approaching an asymptotic minimum territory radius of about 20 cm at a 187 

population density between 8 and 16 YOY·m-2.  188 

To test the prediction that individual growth rate decreased with increasing population 189 

density, we first compared models with the variables density, body mass and year of study. One 190 

model emerged that best explained the variation in SGR: a three-factor model including all 191 

variables (Table 1b). When included in a general linear model, SGR decreased with increasing 192 

density (F1,40 = 21.86,  P< 0.001), increasing initial body mass (F1,40 = 10.74, P = 0.002), and 193 

differed among years (F2,40 = 4.06, P = 0.025); this model (SGR = 0.061-0.27log10density – 194 

0.037 initial body mass – effect of year; -0.009 for 2009, -0.017 for 2010, 0 for 2011) explained 195 

73.4% of the variation in SGR. To visualize the effect of density on SGR, we plotted SGR vs. 196 

density (Fig. 3; Linear regression: F1,43 = 3.35, P = 0.074, r
2 = 0.072) and SGR vs. density while 197 

controlling for the effect of body mass (Fig. 4; Linear regression: F1,43 = 17.35, P < 0.001, r
2 = 198 

0.288).  199 
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To compare the pattern of density-dependent growth in our experiment with the observed 200 

patterns of density-dependent size at age in wild fish in the same stream (Imre et al. 2005, 2010), 201 

we used the data in Fig. 3 and the line of best fit in Fig. 1a of Imre et al. (2010) to predict SGR as 202 

a function of density. Fish length in their study was translated to body mass using the following 203 

equation: log10 body mass (g) = 3.143*log10fork length (cm) – 2.101 (Istvan Imre, unpublished 204 

data). SGR was then calculated assuming that YOY salmon emerge on 16-Jun at an average 205 

body mass of 0.19g (Randall 1982), and cease growing on 5-Sep (Girard et al. 2004).  206 

On an arithmetic scale, SGR for both data sets followed a negative power curve with 207 

increasing density (Fig. 5). While the slope of our data seemed steeper than that of Imre et al. 208 

(2010), the error bars around our data indicated no strong differences in SGR between the data 209 

sets.  210 

 To test for the effect of territory size on SGR, we analyzed the data at the individual level 211 

rather than at the enclosure level. The best model predicting the growth rate of individual fish 212 

included three variables: year of study, log10 territory area, and log10 density (data not shown). 213 

When these three variables were included in a general linear model, SGR decreased with density 214 

(F1,121 = 20.98, P < 0.001), increased with territory area (F1,121 = 5.67, P = 0.019), and differed 215 

between years (F2,121 = 26.33, P < 0.001). 216 

 217 

Discussion 218 

Our experiment in near natural conditions supported Wood et al.’s (2012) suggestion of 219 

an asymptotic minimum territory size. The minimum territory size of 0.13-0.2m2 compares 220 

favourably with a territory size of 0.31m2 for Atlantic salmon of a similar size within high-221 

density territorial mosaics in the wild (Keeley & Grant 1995). When taken together with Wood et 222 
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al. (2012), our results provide strong support for Huxley’s (1934) elastic disc model of 223 

territoriality;  territories can only be compressed so far, and will likely set a maximum density 224 

for a particular habitat type, leading to the regulation of population size.  225 

The territory sizes in our study were smaller than those observed by Wood et al. (2012), 226 

particularly at lower densities. These differences may have been due to the food delivery system 227 

in their stream channels; food always arrived from a single upstream source. Such a spatially 228 

predictable (Grand & Grant 1994) and temporally dispersed (Bryant & Grant 1995) resource is 229 

highly defendable, leading to a despotic social system (Grand & Grant 1994) with only one or 230 

two individuals defending large territories at low densities (Wood et al. 2012). By contrast, the 231 

natural food supply in our enclosures lessened this upstream-downstream effect, leading to a less 232 

despotic social system (Lindeman 2010).  233 

To minimize the need for large numbers of fish, the two highest densities in our 234 

experiment were created by using enclosures of 1 and 2m2. While it is possible that the small size 235 

of these enclosures constrained the movement of fish, we think this possibility is unlikely. The 236 

average territory size of fish at these densities was only 8-10% of the size of the enclosure (see 237 

Fig. 1), suggesting that the small territories were caused by the density of fish rather than the 238 

total amount of space available. Furthermore, fish defended multiple central place territories in 239 

the enclosures (Lindeman 2010), much like unrestrained fish in the wild. However, the territory 240 

sizes in our enclosures were smaller, on average, than the 0.92m2 observed by Steingrímsson & 241 

Grant (2008) for wild fish at an average density of 0.63·m-2. If our enclosures had any 242 

constraining effect on the movement of fish, it was most likely at our lowest densities, where the 243 

average territory size was about 20% of the 4m2 enclosure size. Such an effect would tend to 244 

decrease the slope of the line in Figure 3, but would not affect the minimum territory size.  245 
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Our field experiment provided strong evidence of the density-dependent growth rate of 246 

individual fish. These results are important for three reasons. First, previous studies on the same 247 

population have provided observational evidence of density-dependent size-at-age at the end of 248 

the growing season (Imre et al. 2005, 2010). While density-dependent growth rate is the most 249 

likely explanation for those data, other explanations are possible (Ward et al. 2007). Second, 250 

relatively few studies have provided strong experimental evidence of density-dependent growth, 251 

many of which were conducted in stream channel experiments (Fraser 1969; Keeley 2000) or 252 

with hatchery-reared fish (e.g. Hume & Parkinson 1987; Whalen & LaBar 1994). Hence, there is 253 

even less experimental evidence of density-dependent growth using wild fish in field conditions 254 

(Jenkins et al. 1999; Kaspersson et al. 2013). Third, while many experiments increase the density 255 

of fish to demonstrate density-dependent responses (LeCren 1973; Keeley 2000), few studies 256 

reduce the natural density of fish (but see Kaspersson et al. 2013). By contrast, we manipulated 257 

densities from 0.25-8·m2 to bracket the natural density of fish of about 1·m2 at the small spatial 258 

scale of our experiments (see Grant et al. 1998). 259 

In addition to the effect of density, the growth rate of individual fish decreased with body 260 

mass and differed among years. While the body mass effect may have been related to allometric 261 

growth (Elliott 1994), the simplest explanation is that the abundance of drifting invertebrates 262 

decreases over the summer growing season in Catamaran Brook (Keeley & Grant 1997; 263 

Steingrímsson & Grant 1999). The differences among years are beyond the scope of this study. 264 

However, the low growth rates in 2010 coincided with extremely low water levels 265 

(http://www.wsc.ec.gc.ca/applications/H2O/HydromatD-eng.cfm ) and water temperatures that 266 

occasionally approached 30°C (CM Desjardins, unpublished data).  267 
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The slope of the density-dependent response in our results appeared to be much steeper 268 

than in Imre et al.’s (2010) field data (Fig. 5). Two explanations seem possible. First, we 269 

measured growth rate over a one week period, whereas Imre et al. (2010) measured body size at 270 

the end of an 11.5 week growing season. The shorter the time scale of the measurement, the 271 

greater is the potential variability in growth rate. For example, 20 of 160 fish in our enclosures 272 

had negative growth over one week. Over a complete growing season, these individuals would 273 

either die, and not appear in Imre et al.’s (2010) data set, or accumulate some positive growth 274 

during other weeks of the season. Similarly, the highest average growth of any enclosure was 275 

0.067, which if maintained over an entire growing season, would have resulted in fish of 15 cm 276 

in length, longer than any YOY ever observed in Catamaran Brook (Imre et al. 2005, 2010). 277 

Clearly, the range of short-term growth rates observed in our experiment cannot be maintained 278 

over an entire summer.  279 

Secondly, we randomly assigned densities to locations in our experiment, whereas wild 280 

fish choose their locations. YOY salmon are relatively sedentary in Catamaran Brook 281 

(Steingrímsson & Grant 2003), as in other populations (Einum & Nislow 2005). This lack of 282 

mobility means they cannot achieve an ideal free distribution over larger spatial scales, and 283 

exhibit density-dependent growth between sites that are about 100m apart (Imre et al. 2005; 284 

Einum et al. 2006). However, they can achieve an ideal free distribution over smaller spatial 285 

scales, so that intrinsically better sites have higher densities (Girard et al. 2004). Hence, there 286 

will be a positive correlation between habitat quality and density at some spatial scales (Folt et 287 

al. 1998), which will weaken any density-dependent relationships in observational data sets.   288 

Our data indicate that density-dependent population regulation can act on YOY salmon in 289 

at least two ways. The asymptotic minimum territory size of 0.13-2 m2 suggests that only so 290 
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many territories can be supported by a particular habitat. In addition, the decrease in individual 291 

growth rate as density increases can increase the over-winter mortality of fish, increase the 292 

susceptibility of fish to gape-limited predators, and increase the number of seasons spent in 293 

freshwater before smolting (Hutchings & Jones 1998). Neither mechanism acted in isolation in 294 

our experiment. After controlling for density, fish with larger territories grew faster. This result 295 

suggests that there is interference competition within some enclosures at some densities; i.e. fish 296 

that establish large territories may affect the ability of others to establish an equally large 297 

territory. However, the large variation in territory size and growth rate at the lowest density was 298 

not due to interference, because only one fish was in each enclosure. These differences must 299 

have been due to intrinsic differences between the quality of foraging territories or fish. The 300 

positive correlation that occurs between density and drift abundance at small spatial scales 301 

(Girard et al. 2004) will help reduce this variation in unrestrained fish. It is likely that both 302 

interference and exploitation competition are acting at the range of densities observed in our 303 

experiment and in the field. Determining exactly which mechanism is at work will require clever 304 

field experiments (e.g. Kaspersson et al. 2013).  305 

Our results help bridge the gap between the behavioural ecologist’s view of flexible 306 

territories predicted by optimal territory size models, and the population ecologist’s view of fixed 307 

territories limiting density. While the elastic disc model is initially consistent with optimal 308 

territory size models, territories can only be compressed so far. This minimum territory size 309 

limits the maximum density of individuals that can settle in any given habitat patch.  310 

 311 
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Table 1. Model selection using Akaike’s information criterion for small sample sizes (AICc) to 

assess variation in (a) log10territory size (n=40) and (b) specific growth rate (n=45) in relation to 

log10density, year, and initial body mass for young-of-the-year Atlantic salmon. 

 

Model        AICc  ∆i 

a) Territory size 

Density      35.974  0.000 

Density + Year     38.952  2.978 

Density + Year + Mass    41.400  5.426 

Year       42.163  6.189 

Mass       44.229  8.255 

Intercept      48.180           12.206 

b) Specific growth rate 

Density + Year + Mass    -257.051 0.000 

Density + Mass     -253.947 3.104 

Density + Year + Mass + Density*Year  -253.051 4.000 

Density + Year     -249.023 8.028 

Mass       -241.105 15.946 

Year + Mass      -240.107 16.944 

Density      -235.649 21.402 

Intercept      -234.570 22.481 

Year       -233.976 23.075 
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Figure legends 439 

 440 

Fig. 1. Mean territory size of young-of-year (YOY) Atlantic salmon in 40 enclosures in relation 441 

to the density of fish. The solid line represents the least squares regression: log10territory area=-442 

0.547*log10density – 0.466.  443 

Fig. 2. Territory radius of YOY Atlantic salmon based on data in Fig. 1 (solid line) versus 444 

rainbow trout in stream channels (dashed line; from Wood et al. 2012). Bars represent 95% 445 

confidence intervals.  446 

Fig. 3. Mean specific growth rate (proportion per day) of YOY Atlantic salmon in 45 enclosures 447 

in relation to the density of fish. The solid line represents the least squares regression: 448 

SGR=0.025 – 0.011*log10 density. 449 

Fig. 4. Mean specific growth rate (proportion per day) of YOY Atlantic salmon in 45 enclosures 450 

in relation to the density of fish after controlling for the effect of the initial mass of the fish. The 451 

solid line is the least squares regression.  452 

Fig. 5. Mean specific growth rate (proportion per day) of YOY Atlantic salmon in relation to 453 

population density based on the line of best fit from Fig. 3 (dotted line) and data in Imre et al. 454 

(2010; solid line). Bars represent 1 SE. 455 
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