

Model Based Test Generation and Optimization

Mohamed Mussa A. Mussa

A Thesis

In the Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

June 2015

© Mohamed Mussa A. Mussa, 2015

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Mohamed Mussa A. Mussa

Entitled:

Doctor of Philosophy (Electrical and Computer Engineering)

Signed by the final examining committee:

Chair

Dr. R. Dssouli

External Examiner

Dr. H. Sahraoui

External to Program

Dr. J. Rilling

Examiner

Dr. O. Ait Mohamed

Examiner
Dr. A. Hamou-Lhadj

Thesis Supervisor

Dr. F. Khendek

Approved by:

Dr. A.R. Sebak, Graduate Program Director

June 4, 2015 Dr. A. Asif, Dean

Faculty of Engineering & Computer Science

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

and submitted in partial fulfillment of the requirements for the degree of

Model Based Test Generation and Optimization

iii

Abstract

Model Based Test Generation and Optimization

Mohamed Mussa A. Mussa, Ph.D.

Concordia University, 2015

Software testing is an essential activity in the software engineering process. It is used to

enhance the quality of the software products throughout the software development process. It

inspects different aspects of the software quality such as correctness, performance and usability.

Furthermore, software testing consumes about 50% of the software development efforts. Software

products go through several testing levels. The main ones are unit-level testing, component-level

testing, integration-level testing, system-level testing and acceptance-level testing. Each testing

level involves a sequence of tasks such as planning, modeling, execution and evaluation.

Plenty of systematic test generation approaches have been developed using different languages

and notations. The majority of these approaches target a specific testing-level. However, only little

effort has been directed toward systematic transition among testing-levels. Considering the

incompatibility between these approaches, tailored compatibility-tools are required between the

testing levels. Furthermore, several test models are usually generated to evaluate the

implementation at each testing level. Unfortunately, there is redundancy among these models.

Efficient reuse of these test models represents a significant challenge. On the other hand, the

growing attention to the model driven methodologies bonds the development and the testing

activities. However, research is still required to link the testing levels.

In this PhD thesis, we propose a model based testing framework that enables reusability and

collaboration across the testing levels. In this framework, we propose test generation and test

optimization approaches that at each level consider artifacts generated in preceding testing levels.

More precisely, we propose an approach for the generation of integration test models starting from

component test models, and another approach for the optimization of the acceptance test model

using the integration test models. To conduct our research in rigorous settings, we base our

framework on standard notations that are widely adopted for software development and testing,

iv

namely Unified Modeling Language (UML). In our first approach, component test cases are

examined to locate and select the ones that include an interaction among the integrated

components. The selected test cases are merged to generate integration test cases, which tackles

the theoretical research issue of merging test cases. Furthermore, the generated test cases are

mapped against each other to remove potential redundancies. For the second approach, acceptance

test optimization, integration test models are compared to the acceptance test model in order to

remove test cases that have already been exercised during the integration-level testing. However,

not all integration test cases are suitable for the comparison. Integration test cases have to be

examined to ensure that they do not include test stubs for system components.

We have developed two approaches and implemented the corresponding prototypes in order

to demonstrate the effectiveness of our work. The first prototype implements the integration test

generation approach. It accepts component test models and generates integration test models. The

second prototype implements the acceptance test optimization approach. It accepts integration test

models along with the acceptance test model and generates an optimized acceptance test model.

v

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor F. Khendek for his

continued support, guidance, encouragement and constructive criticism. I would like to send great

thanks to Professor Reinhard Gotzhein, in Germany, for his fruitful discussion and insightful

advice. I would also like to thank all my friends at Concordia University and in my country who

encouraged me.

During my PhD study, I passed through, and am still going through the hardest period in my

life with mixed emotions of happiness and sorrow. I am glad we were able to get rid of our dictator

in Libya. I am very grateful for the heroes who sacrificed their lives to bring us hope. Yet, negative

impacts come along with the change. The unjustified suspension of my Libyan scholarship placed

a heavy burden on my shoulders, since it made it harder for me to support my family. Losing

beloved ones and worrying about the ones who are in danger has a deep impact on my life, family

and my productivity. At the end, one has to face reality and keep going. Thanks to all martyrs and

living heroes.

Words fall short when I attempt to express my love and gratitude to my parents, Zayinap and

Mussa. This work would have never been completed without their love, encouragement and moral

support. I would like to thank my wife and children for their understanding, encouragement and

sacrifices to complete my study. I would like to thank my brothers and sisters for their support and

prayers.

I would like to extend my thanks to the examining committee for their support during different

stages of my PhD study and for their efforts in the evaluation process.

Finally, I would like to acknowledge the financial support of my country, Libyan-North

America Program, the Natural Sciences and Engineering Research Council (NSERC) of Canada

through Dr. F. Khendek’s Discovery Grant and Concordia University.

vi

Table of Contents

List of Figures ... ix

List of Tables .. xii

List of Definitions .. xiii

List of Algorithms .. xiv

List of Abbreviations .. xv

Chapter 1 Introduction... 1

1.1 Thesis Motivations .. 1

1.2 Contributions .. 3

1.3 Thesis Organization .. 4

Chapter 2 Background and Literature Review ... 6

2.1 Software Testing ... 6

2.2 Model-Driven Engineering - MDE ... 9

2.3 The Unified Modeling Language - UML ... 10

2.3.1 UML Testing Profile - UTP ... 11

2.4 Literature Review ... 14

2.4.1 Model Based Testing ... 15

2.4.2 Model Comparison and Merging ... 18

2.4.3 Test-Suite Reduction ... 20

Chapter 3 Model Based Testing Framework ... 21

3.1 Framework .. 21

3.2 Test Generation ... 22

3.3 Test Optimization ... 24

3.4 Test Model Definition ... 25

3.5 Conclusion .. 29

Chapter 4 Integration Test Generation .. 30

4.1 Introduction and Overview ... 30

4.2 Integration Test Generation Approach ... 33

4.2.1 Test Object Identification .. 35

vii

4.2.2 Component Test Case Selection .. 40

4.2.3 Test Model Generation .. 44

4.2.4 Test Case Redundancy Removal ... 50

4.2.5 Selective vs Cumulative Integration .. 52

4.3 Conclusion .. 61

Chapter 5 Acceptance Test optimization .. 62

5.1 Introduction and Overview ... 62

5.2 Integration Test Case Selection .. 64

5.3 Mapping Acceptance Test Cases to Integration Test Cases 70

5.4 Conclusion .. 76

Chapter 6 Implementation & Case Study .. 77

6.1 Development Tools ... 77

6.1.1 Transformation Tool .. 78

6.1.2 Modelling Tool .. 79

6.1.3 UML Testing Profile ... 80

6.2 Test Model Settings .. 80

6.3 TestGenO: The Test Generation and Optimization Tool ... 82

6.3.1 Integration Test Model Generator ... 82

6.3.2 Acceptance Test Model Optimizer .. 87

6.4 Library System - Case Study .. 88

6.4.1 Integration Test Generation ... 88

6.4.2 Acceptance Test Optimization ... 96

6.5 Discussion ... 100

Chapter 7 Conclusion and Future work ... 102

7.1 Conclusion .. 102

7.2 Future Work .. 103

7.3 Publications from the Thesis .. 104

References .. 105

Appendix A Properties of the Integration Test Generation Approach 114

A.1. System Specification .. 114

A.2. Commutativity Property ... 117

viii

A.3. Associativity Property .. 119

Appendix B Case Study: Specifications .. 122

B.1. System Specification .. 122

B.2. Component Test Models ... 122

B.3. Acceptance Test Model .. 129

Appendix C Case Study: Integration Test Generation ... 131

C.1. First Integration Order .. 131

C.1.1. First Iteration: LibrarianTM+MemberTM... 131

C.1.2. Second Iteration: (LibrarianTM+MemberTM)+MediaTM 134

C.1.3. Third Iteration: ((LibrarianTM+MemberTM)+MediaTM)+BookingTM 140

C.2. Second Integration Order .. 149

C.2.1. First Iteration: LibrarianTM+MediaTM .. 149

C.2.2. Second Iteration: (LibrarianTM+MediaTM)+BookingTM 153

C.2.3. Third Iteration: ((LibrarianTM+MediaTM)+BookingTM)+MemberTM 156

ix

List of Figures

Figure 1. W-model .. 7

Figure 2. Basic MDA process ... 10

Figure 3. UML diagrams... 12

Figure 4. UTP test model .. 13

Figure 5. UML/UTP W-model [5] .. 15

Figure 6. Model based testing framework .. 22

Figure 7. The MBT framework included in the w-model ... 23

Figure 8. MBT process ... 24

Figure 9. Test generation approach ... 25

Figure 10. Test model (M) .. 28

Figure 11. Component interfaces .. 31

Figure 12. Overlapping test cases ... 33

Figure 13. Integration test generation approach ... 34

Figure 14. The different processes of the integration test generation approach 35

Figure 15. Identification process: phase I ... 37

Figure 16. Compare test behaviors ... 39

Figure 17. Selection patterns... 41

Figure 18. EDT Construction (1/2) ... 43

Figure 19. EDT Construction (2/2) ... 44

Figure 20. Interaction detection using EDT .. 45

Figure 21. Generated test model ... 46

Figure 22. Integration strategy .. 53

Figure 23. Cumulative & selective integration ... 53

Figure 24. The order of the test generation processes .. 54

Figure 25. System specification .. 55

Figure 26. Component test cases .. 56

Figure 27. Selective integration: iteration 1 generated test cases ... 56

Figure 28. Selective integration: iteration 2 generated test cases ... 57

x

Figure 29. Cumulative integration: iteration 1 generated test cases ... 58

Figure 30. Cumulative integration: iteration 2 generated test cases (1/2) 59

Figure 31. Cumulative integration: iteration 2 generated test cases (2/2) 60

Figure 32. The optimization approach .. 64

Figure 33. The selection process ... 65

Figure 34. System specification .. 66

Figure 35. Integration test cases: first iteration ... 68

Figure 36. Integration test cases: second iteration .. 69

Figure 37. Testing levels with different views of the IUT .. 71

Figure 38. Scattered events ... 72

Figure 39. Acceptance test cases .. 74

Figure 40. Structure of ATL module .. 79

Figure 41. Test model settings .. 80

Figure 42. The architecture of the tool: TestGenO ... 82

Figure 43. The integration test generation prototype .. 83

Figure 44. The generation package ... 83

Figure 45. The UMLParser package ... 84

Figure 46. The test model package ... 85

Figure 47. The math & utilities package ... 86

Figure 48. Packages of test optimization tool ... 87

Figure 49. Optimization package .. 88

Figure 50. Generated integration test model (IntLibMemTM) .. 89

Figure 51. Generated integration test model (IntLibMemMedTM) ... 90

Figure 52. Generated integration test model (IntLibMemMedBkgTM) 91

Figure 53. Generated integration test model (IntLibMedTM) ... 92

Figure 54. Generated test model (IntLibMedBkgTM) ... 92

Figure 55. Generated test model (IntLibMedBkgMemTM) ... 93

Figure 56. General system architecture .. 116

Figure 57. Library system architecture ... 122

Figure 58. Librarian test model (LibrarianTM) .. 124

Figure 59. Member test model (MemberTM) ... 125

xi

Figure 60. Media test model (MediaTM) .. 127

Figure 61. Booking test model (BookingTM) ... 128

Figure 62. Acceptance test model (AcceptanceTM) ... 130

Figure 63. EDTs for Librarian Member integration ... 132

Figure 64. Generated integration test model (IntLibMemTM) .. 135

Figure 65. Intermediate generated test model (IntLibMemMedTM) 138

Figure 66. Generated integration test model (IntLibMemMedTM) ... 140

Figure 67. Intermediate generated test model (IntLibMemMedBkgTM) 144

Figure 68. Generated integration test model (IntLibMemMedBkgTM) 148

Figure 69. EDTs for Librarian Media integration ... 150

Figure 70. Generated integration test model (IntLibMedTM) ... 152

Figure 71. Generated test model (IntLibMedBkgTM) ... 156

Figure 72. Intermediate generated test model (IntLibMedBkgMemTM) 161

Figure 73. Intermediate generated test model (IntLibMedBkgMemTM) 164

Figure 74. Generated test model (IntLibMedBkgMemTM) ... 164

xii

List of Tables

Table 1. Comparing test objects.. 38

Table 2. Mapping test behavior to test structure ... 47

Table 3. Selective Integration: selected test cases in iteration 1 ... 55

Table 4. Selective integration: selected test cases in iteration 2 ... 57

Table 5. The results of the mapping process ... 75

Table 6. Development tools .. 78

Table 7. Summary of the first integration order ... 94

Table 8. Summary of the second integration order ... 95

Table 9. Selection summary of first integration order .. 96

Table 10. Mapping results of first integration order ... 97

Table 11. Selection summary of the second integration order.. 98

Table 12. Mapping results of the second integration order .. 99

Table 13. Test generation results .. 100

Table 14. Test optimization results ... 101

xiii

List of Definitions

Definition 1. (Test Model) .. 26

Definition 2. (Test Package) ... 26

Definition 3. (Test Case) ... 26

Definition 4. (Event) ... 27

Definition 5. (Event Matching) ... 39

Definition 6. (Shared Events) ... 48

Definition 7. (Merging Test Cases) .. 48

Definition 8. (Integration test case inclusion) ... 51

Definition 9. (Selection condition) ... 65

Definition 10. (Test case Inclusion) .. 73

Definition 11. (Test Case Equivalence) .. 114

xiv

List of Algorithms

Algorithm 1. The selection algorithm ... 66

Algorithm 2. The mapping algorithm ... 72

xv

List of Abbreviations

ATC Abstract Test Cases

BPEL Business Process Execution Language

CBSD Component-Based Software Development

CTM Component Test Model

CUT Component Under Test

DSLs Domain Specific Languages

EATs Executable Acceptance Test cases

FSMs Finite State Machines

HLAT High-Level Acceptance Test

IUT Implementation Under Test

JUnit Java Unit testing framework

MDA Model-Driven Architecture

MDE Model Driven Engineering

MSCs Message Sequence Charts

OCL Object Constraint Language

OMG Object Management Group

PIM Platform-Independent Model

PSM Platform-Specific Model

PUT Process Under Test

SDL Specification and Description Language

SPL Software Product Lines

SUT System Under Test

SysML Systems Modeling Language

TDD Test Driven Development

TTCN-3 Testing and Test Control Notation version 3

U2TMP UML 2.0 Testing and Monitoring Profile

UML Unified Modeling Language

UTP UML Testing Profile

xvi

UUID Universal Unique IDentifier

Z Z notation

1

Chapter 1

Introduction

1.1 Thesis Motivations

Software products are present in all aspects of our life. They control our vehicles, communications,

house appliances, etc. They coexist in complex platforms, which are composed of hardware,

operating systems, middleware and other software products, and collaborate together to serve our

needs. However, the success of developing such software products depends on the principles of

the software engineering. Software engineering is the use of systematic and disciplined

processes/models for the development, the use and the maintenance of software products [1].

Known software processes include waterfall, spiral, w-model, prototyping, extreme programming

and unified process. Software processes define the steps, activities and tools for the development

of quality software products. In a software process, a software product progresses through several

stages, from requirement, specification, design, implementation, testing, deployment to

maintenance. In general, a software product is composed of several components that may be

decomposed further to smaller units. Components are often handled, designed, implemented and

tested independently. Components are then integrated, in iterations, to build sub-systems and

ultimately build the complete software product. However, software development is an error-prone

process [2]. Hence, software products have to be searched for defects that are introduced at

different stages of the software process. This activity is referred to as the software testing.

Software testing consists of testing mechanisms, models and methods throughout the software

process to detect software defects. Software products need to be continuously tested for their

internal interoperability [1]. Accordingly, software products are tested during each stage of the

software development process. The effort used for software testing is significant in terms of time

and cost [3-5]. Software testing is composed of several levels that run in parallel with the software

development process. The main levels are:

1. The unit-level testing

2. The component-level testing

2

3. The integration-level testing

4. The system-level testing

5. The acceptance- level testing

During the software development process, there is almost a complete separation between the

development activity and the testing activity. Different tools and languages are used in each

activity. Even within the software testing, different expertise is required for every testing level [4,

6, 7]. All these diversities make collaboration among stakeholders a challenging task.

Many software testing approaches have been proposed; they are developed to target different

software domains such as information systems, real-time systems, embedded systems, and

telecommunication. In practice, the majority of software testing approaches target a specific

software testing level in a specific software domain. The lack of clear and systematic interactions

among the software testing levels is a noteworthy problem in the software testing [4].

Software products should be exhaustively tested to improve their quality. However, exhaustive

testing is an impractical task. The number of the tests increases proportionally with the size and

complexity of the software products. Different techniques, such as test coverage [4, 8, 9], have

been proposed to minimize the number of tests. However, the scope of such techniques is the

reduction of the number of tests within the same testing level. The reduction of tests across the

software testing levels has not been considered.

For decades, graphical models were used as passive assets, for documentation and

communication purposes, in software engineering. Nowadays, graphical models are an essential

part of the software development process, thanks to the model driven engineering (MDE) [10, 11].

MDE was introduced to handle the complexity of software products by increasing the level of

abstraction. It enhances the software productivity by enabling the use of models described at a

high-level of abstraction and enabling automatic transformations of such models to produce an

executable code or model [12, 13]. The introduction of the model based testing (MBT) [14, 15] is

an important progress in the software testing. Different modeling languages and notations have

been proposed and used. While the existence of such diversity by itself is a healthy attribute, it

weakens the collaboration within the software testing. Furthermore, the development of such MBT

approaches is still targeting specific software testing levels, which keeps the collaboration problem

across different software testing levels open.

3

Unified Modelling Language (UML) [16] is a widely accepted modelling notation in the

software domain. However, it has no support for testing concepts. Recently, the Object

Management Group (OMG) [17] standardized a UML Testing Profile (UTP) [18]. The profile was

developed by a consortium of different institutes: academia, tool vendors and clients. It enables

test concepts in UML models in order to create precise UML test models. The profile is a promising

step toward using the same language among the software testing community. The literature shows

an increase focus on UTP based approaches. Many approaches have been proposed based on UTP

[19, 20, 23, 25, 58, 70, 93]. However, researchers are still focusing on the development of software

testing approaches for specific software testing levels [19-25].

Software reusability improves the software development process by reducing the development

time and lowering the cost. For decades, software reusability has been applied in several forms

such as Component-Based Software Development (CBSD) [26], libraries and design patterns [27-

29]. On the other hand, test models have been reused across test projects. However, systematic

reuse of test models across different software testing levels is a challenging task [4].

1.2 Contributions

In this thesis, we propose a model based testing framework to enable collaboration, reusability and

optimization across different software testing levels. The test models in the framework are based

on a widely recognized modeling language, namely UML and its profile UTP. While our

methodology is applicable for all well-formed test models, we express it using UTP test models.

Using UTP test models has the following advantages:

1. UML is a widely recognized standard language in the software development domain.

Using the same development language for testing enhances the collaboration and

communication among the stakeholders.

2. UTP test models can be systematically transformed to a test execution code for a well-

known test execution environment such as JUnit [30] and ITCN-3 [21, 31, 32]. It simplifies

the transition among the testing tasks: design, implementation and execution.

3. There has been a lot of work for formalizing UML sequence diagrams and its ancestor

Message Sequence Charts (MSCs) [33-35]. Deriving processes based on formal notations

strengthen the approach.

4

The framework is composed of two approaches: the test generation approach and the test

optimization approach. The test generation approach generates test models for the target software

testing level by reusing component test models. It links software testing levels through the reuse

of test models to generate subsequent test models. In this dissertation, we discuss the generation

of integration test models from component test models. The approach enables test model

reusability across different software testing levels. Furthermore, we have investigated the merging

of test cases. While there is adequate research activities toward merging architectural models, rare

research activities are devoted toward merging behavioral models. Test models are finite models.

Hence, we developed a merging process that is specific to the software testing.

The test optimization approach optimizes test models by relating them to test models that have

been already executed in the preceding software testing levels. It enhances test execution and

improves the software testing. The approach links software testing levels by relating test models

of different levels in order to eliminate redundancy of test executions across different software

testing levels. In this dissertation, we discuss the optimization of acceptance test models by relating

them to integration test models. Furthermore, we developed a model comparison process that is

specific to the software testing. Finally, we have implemented prototypes of the two approaches

to demonstrate the effectiveness of our framework.

1.3 Thesis Organization

The rest of this PhD thesis is structured as follows: In Chapter 2, we introduce the software testing

and give a brief description of the modelling methodology. We conclude the chapter by surveying

the literature and discuss the related work. In Chapter 3, we introduce our model based testing

framework, and present a formal definition for the test model. In Chapter 4, we present the test

generation approach, and discuss the generation of integration test models from component test

models. In Chapter 5, we present the test optimization approach, and discuss the optimization of

the acceptance test model using integration test models. In Chapter 6, we discuss the

implementation of the two approaches, test generation and test optimization, followed by a case

study to demonstrate the effectiveness of our framework. In Chapter 7, we summarize our

contributions and discuss potential future work. Three appendices are attached at the end of the

dissertation. In the first appendix, we investigate the commutative and associative properties of

our integration test generation approach. The second appendix presents the system specification

5

of our case study. We discuss the generation of the integration test models for the case study in

more details in the last appendix.

6

Chapter 2

Background and Literature Review

In this chapter, we introduce briefly the essential knowledge that we use in this thesis. We discuss

the main concepts of software testing in the first section. Next, we briefly introduce the model-

based development methodology. Following that, the unified modeling language and its testing

profile are discussed. The rest of the chapter is devoted to the literature review, which is spread

across three subsections where we discuss model-based testing, model comparison and test-suite

reduction, respectively.

2.1 Software Testing

Software testing is an integral part of the software development process. Development processes,

such as waterfall, spiral and v-model, describe the software testing as an individual stage in the

development process. In practice, software testing goes in parallel with the development activity.

The w-model addresses explicitly the relation between the development and testing activities as

shown in Figure 1. The software testing starts during the early stages of the software development

process. The software testing consists of several tasks: planning, design, execution and evaluation.

The first two tasks, planning and design, are performed in parallel to the software specification

and design; while the other two tasks, execution and evaluation, are performed in parallel to the

software implementation and maintenance. Real disasters, such as the European space shuttle

Ariane 5, could be avoided if adequate robust testing was adopted [36].

There are two types of tests: black-box and white-box testing. Black-box testing, or functional

testing, considers the implementation under test (IUT) as a black box and exercises tests through

the external interfaces of the IUT. Test designers do not require a detailed knowledge of the IUT's

internal design. On the other hand, white-box testing, structural testing requires a good knowledge

of the IUT's integral design. It inspects the internal functionality and variables of the IUT. Access

to internal variables and blocks is required. This kind of testing is usually performed by the

software developers.

7

Figure 1. W-model

In order to test the implementation, one or more test models should be built. Test models describe

the expected behavior of the implementation under test. Typically, test models are composed of

two parts: structural and behavioral. The structural part defines the required test objects to execute

the test and defines their relationships. The most important test objects are the IUT and the test

control. The IUT is the software product under investigation; it can be a small piece of code, such

as a method or a class, an individual system component or a complete system. The test control

runs test scenarios and provides verdicts. The behavioral part defines the test cases, which will be

exercised on the implementation. Each test case specifies a test scenario. A test scenario represents

a set of steps with higher probability of finding defects that are not already detected. These steps

can be a normal execution trace of the IUT or an invalid execution trace, called fuzz testing [37].

Test cases are accompanied by test stimuli. A test stimulus is composed of a set of inputs and

expected results. The specification of test cases is usually extracted from the user requirements or

the system design. There are several languages available to build test models, such as SDL [38],

UML, and Z [39].

Software products are composed of several components. Components are developed first, and

then integrated to build the targeted product. Different integration strategies can be adopted:

bottom-up, top-down, bing-bang and ad-hoc. Components are integrated incrementally, in a certain

Implementation Changes

Requirements

Definition

Functional

System

Design

Technical

System

Design

Component

Specification
Debugging

Debugging

Debugging

Debugging

Preparation of

Acceptance-level

Testing

Preparation of

System-level

Testing

Preparation of

Integration-level

Testing

Preparation of

Component-level

Testing

Acceptance

Testing

System

Testing

Integration

Testing

Component

Testing

8

order, to build intermediate sub-systems and eventually build the target product. There are many

research activities based on choosing the optimum integration order [40-42]. To detect defects on

early software stages, software testing consists of several stages/levels: unit-level, component-

level, integration-level, system-level and acceptance-level testing. Unit-level testing is applied to

small pieces of software such as classes and methods. It is performed frequently by the developers

using white-box testing. Component-level testing is the first testing stage to be applied individually

on the software’s components. Component-level testing is performed when a component is fully

implemented. This test examines the intended component’s functionality. A test model is

developed for each component. An intensive research has been done on this stage, and many

testing approaches and tools were developed. A test environment is built for every test model. Test

stubs and/or drivers are built to emulate the behavior of missing services and/or components during

the test execution. Components, which have passed the Component-level testing, are forwarded to

the integration-level testing. Integration-level testing investigates the compatibility,

interoperability and consistency among the integrated components. It is conducted during the

assembly of the software architecture to uncover defects associated with interfacing [43].

Components are combined to build sub-systems and then tested to see if they integrated properly.

Components are added incrementally to the sub-systems, and then additional tests are applied on

the lately built sub-systems. In case of test failure, the interfaces between the added component

and the sub-system are debugged to detect errors and repair them. Tests are carried-out by testers

using black-box testing. A test model is developed for each integration increment. A test

environment is built for every test model; stubs are built to emulate the behavior of unavailable

components during the test execution. System-level testing is performed to evaluate the system’s

conformance to the design. It is performed on complete systems before the deployment stage.

Testers perform such test using black-box testing. A test model is usually generated systematically

from the design model. A test environment is built for the test model to emulate required services

that are not available during test execution. In most cases, system-level testing requires the

construction of the system state-space. This construction is unpractical for testing complex

systems. It leads to a well-known problem: state-space explosion [44]. Acceptance-level testing

examines the final product against the requirements specification. It is the final stage in the

software testing. The main source for building the acceptance test model is the user requirements.

9

A test model is developed by testers using black-box testing. The software product is often ready

for deployment after successfully passing these testing levels.

2.2 Model-Driven Engineering - MDE

The cost of software testing rises up with the increase of system complexity. Fortunately, enhanced

techniques of software development and testing have been introduced to meet today’s

requirements: system complexity, high quality and demand of change. Modeling languages have

been introduced to build software artifacts. Graphical models are easier to understand and

communicate than lines of code. Models have been used in the software testing for a long time,

even before the introduction of the term Model-Driven Engineering; model notation like Finite

State Machines (FSMs) [45] was proposed in 1956 to generate test artifacts [4]. Nowadays, model-

driven engineering methodology has been widely adopted to develop software artifacts.

 MDE paradigm aims at increasing the level of abstraction in the early stages of the software

development process and eliminates barriers between modeling (documentation) and

implementation (code). MDE separates the application logic from its specific-domain’s details.

Models are built at high-level of abstraction to provide a clear view for stakeholders and overcome

system complexity. These models focus on the system functionality and are free from

implementation details. The software development process starts with creating high-level models

to simplify the system’s complexity. Then, models are incrementally enriched with more details

throughout the software development process to reach the implementation. Models become an

implementation asset in addition to the documentation role. The well-known initiative is the

Model-Driven Architecture (MDA) [46] adopted by Object Management Group. Figure 2 depicts

a simplified MDA process. The process starts by developing an abstract design model, named

Platform-Independent Model (PIM). The system functionality is specified in a model without any

implementation related information. The PIM along with transformation rules are submitted to a

transformation engine to generate a more detailed design model, named Platform-Specific Model

(PSM). The transformation engine plays a role similar to traditional compilers. The transformation

rules guide the engine during the mapping of PIM elements to PSM elements. This transformation

can be more complicated and requires the generation of intermediate models before generating the

PSM. Finally, The PSM is transformed to code. The figure shows a simple transformation

relationship, one-to-one. In practice, this relationship can be many-to-one or one-to-many [12, 47,

10

48]. A many-to-one relationship can be presented by aspect-oriented programming where different

aspects are modeled separately then merged at the PSM stage or the code stage. A one-to-many

relationship can be presented by software systems composed of several parts that need to be

distributed on different platforms.

Figure 2. Basic MDA process

MDA promises full automation of the development process from specification to code. It appears

that MDA has optioned-out software testing since early high-level models became essential assets

in the development process and automation controls the transformation process. This assumption

may be partially true for the long run. However, practice contradicts this assumption. Manual

intervention is still required for the time being [49]. PIMs are developed by humans who can

misinterpret the user specifications. Generated models are sometimes manually tailored for

performance purpose or insufficiency of the transformation engine/rules. Furthermore, the MDA

specification permits plugging-in code, built by traditional languages, into the transformation

engine to facilitate the transformation process [12, 50]. Transformation rules are developed

manually, which is an error-prone task. In addition to traditional testing, a new testing field was

introduced to test the mapping process, called Model Transformation Testing [51, 52]. Hence,

software testing is still required in the MDE paradigm and the consideration of model-based testing

techniques grows up in the software testing. On the other hand, model-based testing has been used

for a long time in the software testing, especially in the telecommunication domain [4]. Test

models are built manually or generated systematically from the development models. They are

transformed to concrete test models and enriched with test oracles in order to be transformed to

executable test code. The test code is eventually exercised on the implementation and provides the

verdicts. We devote a complete section for MBT.

2.3 The Unified Modeling Language - UML

UML is a widely accepted modeling language. It was standardized by the Object Management

Group. It provides the stakeholders with visual representation of the system’s aspects with

PIM PSM code transform

rules

transform

rules

11

different views. UML is used to specify, construct, document, and visualize the system’s models

during the software engineering process [53]. UML provides a high-level of abstraction by

omitting implementation details that are not necessary for a certain design stage. UML consists of

a wide range of diagrams that reflect different views of the system. These diagrams are categorized

into two groups: structural and behavioral, as shown in Figure 3. The structural diagrams describe

the static architecture of entities in a system, while the behavioral diagrams illustrate the dynamic

activities of objects in a system. Four types of UML diagrams are used in this work: Package

Diagram, Class Diagram, Composite Structure Diagram, and Sequence Diagram. UML package

diagram describes a system with a high-level of abstraction. It describes the system in terms of its

composed components and shows their relationships. UML class diagram defines the internal

structure of the components. It clarifies the services provided by these components in terms of

methods and regulates the relationships among them. UML composite structure diagram provides

a snapshot of the communication among components during a run-time. UML sequence diagram

describes the behavior of the objects during the partial/full lifetime of the system. Furthermore,

UML offers extension mechanisms, such as tagged values, stereotypes, and constraints. These

extensions can be grouped in packages to create UML profiles, which provide flexibility of

applying these extensions to the UML models. A profile represents a certain aspect of the system,

such as security, or extends UML to define domain specific languages (DSLs), such as SysML

[54]. In 2007, OMG introduced a UML profile for facilitating testing aspects in UML, called UTP.

UTP extends UML to support testing activities and artifacts by introducing test concepts, such as

data representation, time concepts and evaluation mechanisms.

2.3.1 UML Testing Profile - UTP

UML testing profile extends UML to support testing activities and artifacts by introducing

concepts, such as data representation, time concepts and evaluation mechanisms. UTP defines

several test concepts to enable the building of precise test models in a systematic manner [5]. A

UTP test model may consist of several diagrams as shown in Figure 4. The most significant ones

are the test architecture diagram, the test package diagram, the test configuration diagram and the

test case diagram. In this section, we briefly introduce these diagrams; for more information with

walk-through scenarios, one can read Baker's book [5].

12

Figure 3. UML diagrams

The test architecture provides a high-level specification of the test model, as illustrated in Figure

4.a. The UML package diagram is used to describe the test architecture. The test architecture

describes the relation between the test package, discussed in the next paragraph, and other

packages that are required to realize the test. A mandatory package is the System Under Test

(SUT). Optionally, test stubs and/or real packages may be imported to specify some environment

functionalities, such as operating system APIs, which are required to execute the test.

A test package, as shown in Figure 4.b, defines the specification of the test objects and their

relationships. UML class diagrams are used to describe the test package. Two test objects are

mandatory: the test control and SUT. Optional test objects are test stubs and system environment.

Test objects are represented by UML classes. These classes are identified by special stereotypes

defined in UTP. Test controls are associated by UTP stereotype TestContext; test cases are defined

as operations in the test control class. Test controls are responsible for executing test cases and

provide verdicts. The system under test is associated by UTP stereotype SUT. Test stubs and

system environment are associated by UTP stereotype TestComponent.

UML

Structural Behavioral

Component

Diagram

Deployment

Diagram

Profile

Diagram

Package

Diagram

Class

Diagram

Object

Diagram

Composite

Structure

Diagram

State Machine

Diagram

Sequence

Diagram

Communication

Diagram

Activity

Diagram

Use Case

Diagram

Interaction

Diagram

Interaction

Overview

Diagram

Timing

Diagram

13

Figure 4. UTP test model

In addition to test objects, abstract test stimulus can be defined in the test package through three

mechanisms: UTP data pool, UTP data selector and UTP data partition. UTP data pool works as a

container/database to the test stimuli. It is defined as UML class in the test package with UTP

stereotype DataPool. UTP data selector facilitates the implementation of different data selection

strategies [18]. It is defined as UML operation in UTP data pool or UTP data partition and tagged

with UTP stereotype DataSelector. UTP data partition allows the classification of data to subsets.

It is known as an equivalent class in the software testing [43, 8]. It is defined as UML class with

UTP stereotype DataPartition. UTP data partitions must be associated to UTP data pools or other

UTP data partitions, which allows the existence of hierarchy in the data classification.

A test configuration, as shown in Figure 4.c, defines the test setup. It describes relationships

among instances of the test objects. The UML composite diagram of the test control class is used

for the test configuration. Different test configuration diagrams may be built to represent different

14

test setups. Each test case, or set of test cases, is associated with a specific test configuration

diagram.

The abovementioned UTP diagrams define the test structure; test behavior is defined through

a set of test cases. Behavioral UML diagrams, sequence, activity and state machine, are used to

express test cases; the test case shown in Figure 4.d is specified in UML sequence diagram. Test

cases should be linked to their corresponding operations in the test control's operation

compartment. UTP concepts are used to enrich these diagrams with the necessary test

specification. There is one limitation in the current UTP specification, UTP 1.2, that the UTP

metamodel does not include the test behavior; it is left out for future releases. Hence, test

developers have to look around through UML metamodel to identify association among test

objects in the test structure and their counterpart instances in the test behavior.

In addition to the aforementioned concepts, other concepts can be used to model precise test

specifications. For example, testers can use time concepts to define a shared time zone among a

group of test components, use data concepts to define wild cards for ignoring unimportant data in

the test model, or use test arbiters to evaluate the test case verdict. A UTP test model can be mapped

to test execution environments such as JUnit or TTCN-3 to execute the test cases and analyze the

results [18]. The UTP specification provides mapping rules to the two test execution environments.

Hence, the software development process can be handled exclusively using UML/UTP models.

Figure 5 shows a UML and UTP centric software development process proposed by Baker et al.

[5]. Using a widely accepted modeling language, UML, throughout the software development

process enables robust collaboration among the software stakeholders.

2.4 Literature Review

In this section, we review related work. While our work is mainly devoted toward the domain of

model based testing, we have also touched upon the domain of model comparison and merging.

Furthermore, we have also considered test-suite reduction techniques to distinguish our

optimization approach from them. Therefore, we structure related work into three subsections, one

for each research topic. The first subsection presents related work in model based testing. The

second subsection presents related work in model comparison and merging. The third and last

subsection presents test-suite reduction and some approaches in this research topic.

15

2.4.1 Model Based Testing

Model based testing refers to the use of models defined in software constructs to build test models

and drive the software testing [4]. The use of models in software testing goes back to the mid of

the 20th century but recently it got a growing attention in the software development domain [4].

While a piece of code can be considered as a model, our focus is on graphical models that have

formal or semi-formal specifications. The literature shows a diversity of MBT techniques based

on several factors such as modeling notations, dependency on the development models, and degree

of automation [4, 9, 55-56]. Our objective is to link different testing levels with enabled reusability

and optimization. To the best of our knowledge, there is no existing systematic framework that

links different testing levels with enabled reusability and optimization. In the rest of this

subsection, we discuss standalone MBT techniques. First, we present MBT techniques based on

UML notation; then, we present MBT techniques based on UTP, and we conclude by presenting

MBTs based on non-UML notations such as FSMs.

Figure 5. UML/UTP W-model [5]

2.4.1.1 MBT Approaches Using UML Models

Model-based testing approaches based on UML have been proposed for different testing levels;

see for instance [20, 25, 57-61]. Moreover, several domains have been targeted including

automotive, health, and telecommunications [23, 57, 62]. However, most of these studies focus on

one stage of the software testing, mainly unit-level or system-level testing.

UML

UML

UML

UML Debugging

Debugging

Debugging

Debugging UTP

UTP

UTP

UTP

TTCN-3

TTCN-3

JUnit and

TTCN-3

JUnit and

TTCN-3

Implementation Changes

16

The closest work to our test generation approach was proposed by Le [63]. Le proposes a

composition approach based on UML 1.x collaboration diagrams. Component test models are

developed manually. The test model is composed of two test objects: the component under test

(CUT) and the test control. The test control controls and performs the test suite, and simulates all

necessary stubs and drivers. The author demonstrates the reusability of the component test models

to build integration test models through introducing adaptors between the component test models.

In this approach, the role of the test control becomes more complex since it is composed of the test

management and the required stubs and drivers. Granularity is a significant characteristic in

software engineering. Separating the test management from the test stubs improves the reusability

and simplifies the test implementation. Real entities of test stubs may already exist; utilizing them

provides testing results that are more accurate. The approach deals with the external interfaces of

the two composed components. However, the author does not address the interconnection between

the two composed components nor the synchronization between events of test behavior.

Furthermore, the test case selection is not clear, since not the entire unit test cases are suitable for

the integration-level testing.

Machado et al. [64] present a UML based approach for integration-level testing using Object

Constraint Language (OCL) [65]. The authors illustrate a complete testing approach for

integration-level testing. The component specification is described in UML class diagram and

sequence diagram with OCL constraints. UML use case diagrams are used to describe the

components’ services (interfaces). To generate interaction test cases, a set of UML communication

diagrams are created based on use case scenarios. However, the authors did not mention the

synchronization of the events in the generated communication diagrams since there is no event

ordering in the UML use case diagram. This order can be extracted from the provided sequence

diagrams, but sequence diagrams may cover partial views of the integrated components and require

a merging technique to get the global picture.

El-Attar and Miller [66] propose a framework for generating acceptance test cases from UML

use case diagrams and robustness diagrams [67]. The system requirements are described using

UML use case diagrams and the domain model diagram. The framework goes through three

phases. In the first phase, high-level acceptance tests (HLATs) are generated for each UML use

case. The UML use case along with the related domain model is inspected to generate these

HLATs. HLATs are composed of semi-narrative text in use case syntax. In the second phase, a

17

robustness diagram is created for every HLAT. The generation of robustness diagrams may require

the update of the domain model diagram with missing objects and attributes. In the third phase,

executable acceptance test cases (EATs) are generated from HLATs, UML use case diagram,

domain diagram, and robustness diagrams. The Fit (Framework for Integrated Test) [68] format is

proposed for EATs. A tool was developed to implement this approach. This approach applies MBT

and Fit methodologies. However, the first two phases are carried manually since informal artifacts,

UML use case (text part) and HLAT, are manipulated during these phases.

2.4.1.2 MBT Approaches Using UTP Models

Several MBT techniques based on UTP have been proposed. We discuss some of them in this

paragraph. Busch et al. [22] present an MDA approach for generating test models from design

models. PIMs are transformed into platform independent test models (PITs). Platform specific test

models (PSTs) are generated either from platform specific models (PSMs) or from platform

independent test models (PITs). Both PIT and PST are based on UTP. PST models are submitted

to a test execution environment, TTCN-3, for evaluation. The approach focuses only on the

system-level testing, while our generation approach focuses on the integration-level testing.

Lamancha et al. [20] propose an MDA approach to generate UTP models from the system

design models. UTP models are built from UML use cases and sequence diagrams. UML design

model is transformed to UTP model. However, this approach targets only system-level testing.

Liang and Xu [19] present Test Driven Development (TDD) [69] for component integration

based on UML 2.0 Testing and Monitoring Profile (U2TMP) [19], which is a proposed extension

to UTP to enable monitoring. The generated test cases are used to build a glue code between the

integrated components. However, integration test cases are created manually, and there is no

utilization of component test cases.

Yuan et al. present an automatic approach in [70] to generate test cases of a given business

process of a web service. BPEL (Business Process Execution Language) [71] and UML activity

diagrams are used to define the Process Under Test (PUT). The UTP and the TTCN-3 concepts

are used to construct the test cases. The generated test model can be tailored to target any of the

following test types: unit testing, component testing or system testing. The approach applies two

automatic transformations to generate an executable test case set. The first transformation is used

to build the Abstract Test Cases (ATC) from two models: the PUT model and the test case model.

The test case model is based on UTP framework and TTCN-3 key concepts. The second

18

transformation is applied on the ATC to generate executable test case scripts, which are executed

in the TTCN-3 environment. The authors’ approach presents a practical application of the UTP

framework.

Baker and Jervis [21] present an approach that is similar to the previous one (i.e., relies on the

UTP standard). In addition to generating test cases for validating the implementation, they provide

a mechanism to validate the design model at early stages of the software development cycle.

Timing and concurrency have also been handled by their approach. The approach has been

successfully applied in many projects.

2.4.1.3 MBT Using Non-UML notations

Testing approaches based on FSMs are frequently used, such as in [72-75]. The component

specification is given as an FSM. FSM models of the composed components are merged to create

a global behavior model. Test cases are generated from the global model. However, the

construction of the global behavior may lead to the well know problem of state space explosion

[44]. New methods for avoiding this state space explosion and reducing the final number of test

cases, such as C-Method [74], have been proposed.

Haugset and Hanssen [76] propose an acceptance test generation approach. The approach

generates acceptance test cases based on Fit in agile processes. Fit shifts the acceptance testing to

the customer side. Test cases are created for each story card. Customers build a table with the

system inputs and the expected output for each story card. Developers, on their site, write a small

code, called fixture, to link the table with the system. Fit tools execute the test suite and report the

results. The major drawback of this initiative is the customer experience and applicability for

complex systems.

2.4.2 Model Comparison and Merging

Model comparison and merging has been an essential part of the software development for decades

[77, 78]. The first launch for such approaches targeted textual files to identify similarities and

differences between two files. Mature tools are available to handle software versioning and clone-

detection. With the introduction of model driven engineering, new approaches are required to

manage graphical models since old approaches are line oriented and cannot deal with hierarchy

and model semantics [79, 80]. Different approaches have been proposed to handle graphical

models [79, 80]. Some are domain specific or modeling notation specific while others are more

19

general and domain independent [80]. These approaches target different aspects of the software

development lifecycle: Version Control Systems (VCS) [81], Model Cloning [78, 82], and Model

Transformation Testing [51, 52]. They target a variety of model types: structural, behavioral and

data-flow. For UML models, the research is devoted more on structural diagrams [83-85],

particularly the class diagram, than on behavioral diagrams [86, 87]. As far as we know, there is

no model comparison in the software testing. In model comparison, approaches are developed

based on one characteristic: the assumption that the compared models have evolved from the same

source model/fragment; it is usually called the base model. The approaches have been classified

into two categories according to the information required to manage the comparison: three-way

comparison and two-way comparison [77]. Three-way comparison techniques require the

existence of a base model in addition to the two models. Two-way comparison techniques compare

two models without external references; however, they are also based on the assumption of the

existence of the base model. Furthermore, different measurements are used to evaluate the

similarity factor between the elements of the compared models. While there is no formal

classification of such measurements, we can list four of them that are recognized by published

surveys in this field: unique identifiers, names, features and size. Approaches using the first

measurement are language specific; they require that each element has a static Universal Unique

Identifier (UUID). The second measurement uses element’s names for comparison. Störrle [82]

shows the effectiveness of such an approach on UML models. The third measurement enhances

the second measurement by using the attributes of the elements in additional to their names. The

last measurement uses the size of elements to compare large models.

The closest approach to our work is proposed by Liu et al. [87]. Their work was on model-

cloning using UML sequence diagrams. The approach converts the sequence diagrams into an

array. This array is represented as a suffix tree. Duplication is detected by traversing the tree and

applying the longest common prefix algorithm. Our approach is different in two aspects. First, this

approach handles only synchronous messages, while ours handles asynchronous messages as well.

More importantly, this approach is restricted to contiguous behavior. It handles adjacent events. In

our domain, the shared test events could be scattered across different test objects and could be split

by un-matched test events.

Hélouët et al. [88, 89] propose a merging approach for MSC specifications. The approach

covers both basic MSC (bMSC) and high MSC (HMSC). The approach merges all scenarios to

20

build the global behavior of the system. It solves the non-local choice by creating a new object,

called controller, which controls the merged scenario. The controller broadcasts a sensing message

to ask all objects about the path they are willing to take. The chosen path of the first object to

answer to the message will be taken, and the controller broadcasts his decision in order to be

followed by all other objects. Our approach is different. We merge only two scenarios at a time

and only a subset of given scenarios, which capture interactions between the integrated parties, are

merged. Furthermore, bMSCs are integrated according to their relation in the corresponding

HMSC specification: sequence, alternative, parallel, etc. Consequently, the integration may

produce a non-local choice. However, our approach applies only merge composition. More

importantly, we do not change the behavior of the given test specifications.

In this research, model comparison is used for the test generation approach and the test

optimization approach, while model merging is used for test generation approach. However, we

cannot assume that test models evolved from the same base model since they are often built

independently.

2.4.3 Test-Suite Reduction

The execution of test models is time consuming. Test models generally consist of a large number

of test cases. The reduction of such tests improves the software testing. There are ongoing research

activities toward the reduction of tests [90, 91]. The effort of such research focuses on the reduction

of test models from within the model itself. Additional data is required to describe each test case

according to certain criterion such as test objectives and test coverage. Approaches analyze such

data to detect shared criterion among test cases, e.g.: test cases that have the same coverage. Then

approaches remove duplicated test cases, which share the same criteria.

Tallam et al. [92] propose a test-suite reduction approach. The approach requires a set of test

cases and a set of test requirements. Each test case covers a set of test requirements. This

information is provided as input in a table. The approach uses the table to select the minimum set

of test cases that covers all the test requirements. This approach can be used as a first step in our

approach to select the set of acceptance test cases that covers all the test requirements, if provided,

before comparing them to integration test cases.

21

Chapter 3

Model Based Testing Framework

In this chapter, we present a model based testing framework for linking different testing levels.

We discuss the necessity of such a framework and the modifications required on the traditional

development lifecycle.

3.1 Framework

Software testing approaches have been proposed in standalone fashion for several years. Even with

the introduction of model driven engineering, approaches are developed to target a specific testing

level. In this dissertation, we present a model based testing framework linking testing levels for

enabling reusability and optimization. While the framework can be applied on any well-formed

test models, UTP test models are used in this dissertation. Figure 6 depicts the framework. The

framework consists of two approaches: a test generation approach and a test optimization

approach. The framework enables the reuse of test models to generate subsequent test models. The

generation approach is used to link

 The component-level testing to the integration-level testing and

 The component-level testing to the system-level testing.

In this work, we focus on the generation of integration test models from component test

models. In this thesis, a component is defined as a self-coherent piece of software that provides

one or more services, and can interact with other components. Furthermore, the framework enables

the optimization of test models by mapping them to the previously executed test models. The

optimization approach is used to link

 the integration-level testing to the system-level testing,

 the integration-level testing to the acceptance-level testing and

 the system-level testing to the acceptance-level testing

We will briefly discuss these approaches in the following two sections and develop them in

the following chapters.

22

Figure 6. Model based testing framework

The framework conforms to the software development process as illustrated clearly in the w-model

shown in Figure 7. The links that are caused by the generation approach are indicated by black

solid arrows, while the links that are caused by the optimization approach are indicated by black

dotted arrows. However, some changes have to be adopted. For the generation approach, the

framework requires modification of the software testing by reordering the preparation sequence

during the design stage. The traditional software testing begins by the preparation of the acceptance

test model, then the system test model, then the integration test models, and finally the component

test models as specified clearly in the w-model, as shown in Figure 1. In our work, the preparation

of the acceptance test model is still at the head of the software testing. However, the preparation

order of the rest of the test models is reversed: component, integration then system test model.

Engineers begin by developing the component test models. There are many systematic MBT

approaches for generating component test models based on UTP from the design models [19, 20,

23, 25, 58, 70, 93]; we have discussed some of them in Section 2.4.1. Next, integration test models

and system test model are automatically generated from the component test models. For the

optimization, no change is required in the software testing since the execution of the integration

testing precedes the execution of the system-level and the acceptance-level testing.

3.2 Test Generation

Software reuse is a mature discipline in software engineering [29, 94-96]. Enormous research

activities focus on software reuse; CBSD [97, 98] and Software Product Lines (SPL) [99] are well

known practices of software reuse. However, the literature of software reuse does not provide any

evidence of systematic reuse for test generation. To the best of our knowledge, there is no

systematic test generation approach that relates and links the testing levels. Furthermore,

generation of integration test models from component test models is a research challenge as it has

been stated by Bertolino [4]: "What remains an open evergreen problem is the theoretical side of

Component-

level testing

Integration-

level testing

System-level

testing

Acceptance-

level testing

Optimization Reusability

23

component-based testing: how can we infer interesting properties of an assembled system, starting

from the results of testing the components in isolation?"

Figure 7. The MBT framework included in the w-model

In the literature, model based testing techniques follow the process described in Figure 8. In

general, test models are generated from the design specification and transformed to test code,

which is eventually exercised on the implementation. The process would work perfectly on

component-level and system-level, but not during integration-level. Systems, nowadays, are very

complex and the policy of divide and conquer is still applicable. To overcome this complexity,

systems are divided into components, which are divided into small fragments, units and classes.

The implementation starts by developing the small fragments, which are integrated to build

components. In their turn, components are integrated to build the complete system. In parallel to

that, component test models are generated from component design models; integration test models

are generated from sub-system design models, and a system test model is generated from a system

design model. From software testing perspective, generating integration test models from sub-

system design models will check the functionality of the corresponding sub-systems. It should be

called sub-system-level testing rather than integration testing. Integration-level testing focuses on

checking the compatibility and inter-connectivity between the integrated components. Generating

Requirements

Definition

Functional

System

Design

Technical

System

Design

Component

Specification
Debugging

Debugging

Debugging

Debugging

Preparation of

Acceptance-level

Testing

Preparation of

Component-level

Testing

Acceptance

Testing

System

Testing

Integration

Testing

Component

Testing

Implementation Changes

Generation Optimization

Preparation of

Integration-level

Testing

Preparation of

System-level

Testing

24

integration test models, in a systematic way, from sub-system design models is more complex and

requires extra information. Engineers must specify explicitly in the design model the newly

integrated component and its interfaces during each integration iteration. This can be accomplished

by tailoring the design model and adding special tags or stereotypes, or providing a separate model

with the required information linked to the design model. Hence, the integration test, by using such

technique, is shifted from black-box testing to gray-box testing which is impractical.

Figure 8. MBT process

We propose a test generation approach that enables reusability across the testing levels. Our

approach reuses the component test models to generate the integration test models as well as the

system test model. Figure 9 illustrates the test generation in our framework. The approach starts

by generating the first integration test model, ITM1, from the component test models, CTM1 and

CTM2, of the integrated software components. The integration test model is exercised on the

integrated components. Upon a successful test result, the current integration test model, ITM1, is

integrated with the component test models, CTM3, of the next available component to generate a

new integration test model, ITM2. This process is repeated until all components are integrated and

tested successfully. Finally, the system test model is generated by integrating the component test

models. We discuss the integration test generation in more details in Chapter 4. The system test

generation is left-out for future work.

3.3 Test Optimization

The software testing is time consuming. The size of test models is generally large for complex

systems. The number of test cases grows rapidly by time due to software modifications; new test

Design Model Code Transformation

Test Model Code Transformation

G
en

eratio
n

ex
er

ci
se

 o
n

25

cases are added after every software fix or upgrade request. The need for test optimization triggered

a research field in the software testing known as Test-Suite Reduction [90, 91]. Researchers, in

this field, work on reducing the number of test cases in the test model by removing redundant test

cases. Redundancy is calculated based on different aspects such as test coverage and test

requirement. However, they do not take into account the optimization of test cases across the

software testing. In this dissertation, we propose a complement approach that optimizes test models

across testing levels. More specifically, we focus on optimizing test models across integration,

system and acceptance testing. Here, we are targeting acceptance testing performed on the

development site (alpha testing), not the one performed on the user site (beta testing).

Figure 9. Test generation approach

Large numbers of test cases are generated and exercised during each testing level. These test cases

are used to check the functionality of the system and discover bugs. Each test case is meant to

examine a specific behavior or service of the system. Our goal is to prevent the execution of test

cases that have been already executed on the system during previous testing levels. Hence, we aim

to reduce the number of test cases in the test suite. The optimization of the acceptance test model

using the system test model is understandable since both test models are applied on complete

systems. However, the optimization of the acceptance test model and the system test model using

the integration test models is more difficult since integration test models are applied on incomplete

systems. We elaborate more on the later optimization approach in Chapter 5.

3.4 Test Model Definition

We conclude this chapter by introducing definitions that are used later for our approaches.

CTM1

CTM2

generate ITM1

CTM3

generate ITMn-1

CTMn

generate STM

CTM: component test model ITM: integration test model STM: system test model

26

Definition 1. (Test Model)

A test model is represented as a double

 M = (P, T),

Where

 P is the test package

 T is a set of test cases

Definition 2. (Test Package)

A test package is expressed as a tuple

 P = (tcn, tcm, sut),

Where

 tcn is the test control

tcm is a set of test components that are required to realize the test execution (test stubs)

 sut is a set of components under test

Definition 3. (Test Case)

A test case is expressed as a tuple

 t = (I, E, R),

Where

 I is a set of instances

 E is a set of events (defined further in Definition 4)

 R  (E x E): is a partial order reflecting the transitive closure of the order relation between

events on the same axis and the sending and receiving events of the same message

We classify events into three categories: message events, time events and miscellaneous

events. Message events, the sending event and receiving event, represent the two ends of messages

exchanged between two instances referred to as the sender and the receiver, respectively. In this

dissertation, messages are instances of an execution trace. Hence, they are unique throughout a

single system execution. Time events represent events related to timers. Each timer is associated

with one instance. We classify the rest of event types, such as instance termination and UTP

verdict, into the third category. Notice that the association between events and instances is part of

the event definition in this work.

27

Definition 4. (Event)

We have three different kinds of events; hence, there are three definitions:

1. A message event Emsg is a tuple (ty, nm, owner, msg, oIns), where

(a) ty  {send, receive}

(b) nm is the event name

(c) owner is the instance where the event belongs to. owner = (nm, st), where

(i) nm is the instance name

(ii) st is the UTP stereotype of the instance

(d) msg is the message the event is related to

(e) oIns is the other instance related to msg, oIns = (nm, st), where

(i) nm is the instance name

(ii) st is the UTP stereotype of the instance

2. A time related event Etime is a tuple (ty, nm, tm, owner, pd), where

(a) ty  { timeOutMessage, startTimerAction, stopTimerAction, readTimerAction,

timerRunningAction }

(b) nm is the event name

(c) tm is the timer name

(d) owner is the instance where the event belongs to, owner = (nm, st), where

(i) nm is the instance name

(ii) st is the UTP stereotype of the instance

(e) pd is the timer value

3. A miscellaneous event Emisc is a tuple (ty, nm, v, owner), where

(a) ty  {Action, Terminate, UTPverdict}

(b) nm is the event name

(c) v is the value associated with the event. This value can be pass, fail, inconclusive, error in case ty =

UTPverdict.

(d) owner is the instance where the event belongs to, owner = (nm, st), where

(i) nm is the instance name

(ii) st is the UTP stereotype of the instance

We use the test model specified in Figure 10 to illustrate our definitions. The test model is

composed of a test package, p, that represents the test architecture and two test cases, t1 and t2,

that represent the test behavior. To distinguish between the sending and receiving events of the

28

same message, we suffix the message name with the first letter of the corresponding action. We

define this test model, M, as follows:

M = (P, T)

P = (TC, , {CUT})

T = { t1, t2 }

t1 = ({tc,cut}, {m1s, m2r, m3s, m4r, ver, m1r, m2s, m3r, m4s}, {(m1s,m2r),(m2r,m3s),

(m3s,m4r),(m4r,ver),(m2s,m3r),(m3r,m4s),(m1s,m1r),(m2s,m2r),(m3s,m3r),(m4s,m4r),(m1s,m3s),(m

2r,m4r),(m2r,m3r),(m3s,ver),(m2s,m4s),(m3r,m4r),(m2s,m3s),

(m3s,m4s),(m4s,ver),(m1s,m4r),(m1s,m3r),(m2r,ver),(m2r,m4s),(m2s,m4r), (m3r,ver),(m1s,ver),

(m1s,m4s),(m2s,ver)})

tc = ("tc", TestContext)

cut = ("cut", SUT)

m1s = (send, "m1s", tc, m1, cut)

m2r = (receive, " m2r", tc, m2, cut)

m3s = (send, "m3s", tc, m3, cut)

m4r = (receive, "m4r", tc, m4, cut)

ver = (UTPverdict, "ver", "pass", tc)

m1r = (receive, "m1r", cut, m1, tc)

m2s = (send, "m2s", cut, m2, tc)

m3r = (receive, "m3r", cut, m3, tc)

m4s = (send, "m4s", cut, m4, tc)

Figure 10. Test model (M)

t2 = ({tc,cut}, {m5s, m6r, m7r, ver, m5r, m6s, m7s}, {(m5s,m6r),(m5s,m7r),(m6r,ver),

(m7r,ver),(m5r,m7s),(m5s,m5r),(m6s,m6r),(m7s,m7r),(m5s,ver),(m5r,m7r),(m5s,m7s),

(m6s,ver),(m7s,ver),(m5r,ver)})

tc = ("tc", TestContext)

cut = ("cut", SUT)

m5s = (send, "m5s", tc, m5, cut)

«TestContext»

tc

«SUT»

cut

m1

m2

m3

m4

«Verdict»

pass

t1: test case 1

«TestContext»

tc

«SUT»

cut

m5

m6

m7

«Verdict»

pass

t2: test case 2

alt

«TestContext»

TC

«TestCase» t1(): Verdict;

«TestCase» t2(): Verdict;

«SUT»

CUT

p: test package

29

m6r = (receive, "m6r", tc, m6, cut)

m7r = (receive, "m7r", tc, m7, cut)

ver = (UTPverdict, "ver", "pass", tc)

m5r = (receive, "m5r", cut, m5, tc)

m6s = (send, "m6s", cut, m6, tc)

m7s = (send, "m7s", cut, m7, tc)

3.5 Conclusion

The main characteristics that differentiate our framework from existing work are reusability,

optimization and smooth transition among the testing levels. We are linking testing levels by

relating test models from one testing level to test models of preceding testing levels. Test models

are reused to construct the subsequent test models. Acceptance test cases are reduced to improve

the software testing. A standard modeling language, UML, is utilized throughout our framework.

30

Chapter 4

Integration Test Generation

This chapter presents the integration-test generation approach. We discuss the generation of

integration test models form component test models. The chapter is organized into three sections.

We introduce the overall test generation approach in the first section and discuss decisions made

during the development of our approach. In the second section, we discuss the integration test

generation approach and the four processes that compose the approach: the identification process

in Section 4.2.1, the selection process in Section 4.2.2, the generation process in Section 4.2.3 and

the redundancy removal process in Section 4.2.4. In the Subsection 4.2.5, we discuss different

strategies that have been used to carry on previously integrated test models. Finally, we conclude

the chapter in Section 4.3.

4.1 Introduction and Overview

Test models are composed of a set of test cases, and these test cases capture the test behavior that

is exercised on the targeted implementation. Test behavior in general reflects the behavior of the

implementation under test. We believe that the collective test behavior of all component test

models capture the system behavior. In practice, some research activities migrate system behavior

across different development stages using test cases since test cases are finite and precise

comparing to the system design models [6]. Component testing is a black-box testing; tests are

exercised on components through their interfaces. These interfaces can be internal, to

communicate with components, or external, to communicate with the system environment, as

shown in Figure 11.a. During the component-level testing, several test cases are specified for the

same interface; each test case is included in a different test model and corresponds to a different

component, which uses this interface. While these test cases use the same interface, the

specification may be different since it is taken from different views. In other words, while these

test cases have different syntax, they describe the same system behavior. We illustrate this point

using the example shown in Figure 11.b. The two components, C1 and C2, exchange messages

31

through the internal interface. Let us assume that the test models of the two components include a

test case that covers this interface.

Figure 11. Component interfaces

The test case of the first component, C1, specifies the interface as follows:

 Component C1 as CUT,

 Component C2 as test stub,

 Messages x and a as inputs and

 Messages y and b as expected outputs.

On the other hand, the test case of the second component, C2, specifies the interface as follows:

 Component C2 as CUT,

 Component C1 as test stub,

 Messages y and b as inputs and

 Messages x and a as expected outputs.

As a result, we have two different test specification of the same system behavior. Hence, we

conclude that test cases of different component test models may overlap. In our research, we focus

on component interfaces to generate the subsequent test models.

Prior to introducing the generation approach, we have to emphasize on the

characteristics/quality of the component test model. In order to generate test models from

component test models, the component test cases must be well-formed and capture the following

characteristics. In addition to testing the internal functionality of the components, component test

models should include test cases that completely cover all the interfaces of the targeted component.

C1

C3 C4

C2

C2

internal

interfaces

external interfaces

(a) Interfaces of system components

C1 C2

(b) Different views of the same interface

x, a y, b

r t

z

32

Every test case should cover complete services, which are provided by the corresponding

component. Furthermore, there should be a consistency among the specifications of the component

test models since they describe different components of the same system. The names of the

components, interfaces and messages should be consistent among the test models.

Integration testing examines the consistency, interconnectivity and compatibility among the

integrated components. Hence, performing integration testing on independent unrelated

components is irrelevant. Applying appropriate integration strategy and order increase the

efficiency of the integration testing. To generate integration test cases from component test cases,

we need to search for component test cases that examine the same services on the same interfaces

that connect the integrated components. This search has to be performed on the two component

test models related to the integrated components. By examining these test cases, we may reveal an

overlapping between their specifications from which we could generate integration test cases. To

illustrate our point, we use test cases in Figure 12; the specification is based on the architecture in

Figure 11.b. There are two services available on the internal interface between the two

components, C1 and C2. The components exchange messages x and y to perform the first service,

and exchange messages a and b to perform the second service. Assume we have one test case from

C1 test model as shown in Figure 12.a and two test cases from C2 test model as shown in Figure

12.b & 12.c that examine the internal interface between C1 and C2. According to our required

characteristics, there should be another test case in C1 test model that covers the second service,

but we omitted it just for simplicity. By comparing the specification of C1 test case to the

specification of C2 test cases, one can see that there is a shared behavior, exchanging y and x,

described in C1 test case 1, Figure 12.a, and C2 test case 2, Figure 12.c. Here, we do not count the

test verdict, PASS, because it is not a system behavior but a test property. Hence, the specifications

of the two test cases are overlapping. The specifications of the two test cases can be merged to

produce an integration test case as shown in Figure 12.d.

System integration is an iterative process. Components are integrated into system context in

incremental manner. During each iteration, test models are exercised on the integrated components

to examine the consistency and interoperability among them. We support the integration of one

component at a time; hence, the approach supports the most known software integration strategies,

top-down, bottom-up and ad-hoc. Engineers can take different orders to integrate the system

components. There are research activities that investigate the selection of the optimum integration

33

order [40-42]. The integration order may separate adjacent components that have direct

interactions. This issue may lead to the loss of integration information that is carried by the

component test models. To accommodate different integration orders, we carry on component test

models to the subsequent integrations as they may be used to generate additional integration test

cases. We elaborate more on this issue in Section 4.2.5. In this case, our approach produces

consistent results regardless of the integration order that would be taken. In Appendix A, we

discuss the impact of selecting different integration strategies on the results of our generation

approach.

Figure 12. Overlapping test cases

4.2 Integration Test Generation Approach

The approach goes through an iterative process to generate integration test models corresponding

to the development integration stages as described in Figure 13. In the first iteration, the approach

begins by considering component test models of the first two components to be integrated to build

a sub-system. The two component test models are examined and used to generate the integration

test model. The test cases of the generated test model have to reflect interactions between the

integrated components. The integration of the two components builds a sub-system that is

eventually integrated with a third component of the system. In the second iteration, the former

«TestContext»

TC1

«SUT»

C1

r

y

x

w

«Verdict»

PASS

(a) Component C1: test case 1

«TestContext»

TC2

«SUT»

C2

t

a

b

v

«Verdict»

PASS

(b) Component C2: test case 1

«TestContext»

TC2

«SUT»

C2

y

x

«Verdict»

PASS

(c) Component C2: test case 2

«TestContext»

TCi

«SUT»

C1

r y

x
w

«Verdict»

PASS

«SUT»

C2

(d) Generated integration test case

34

integration test model is used to generate the current integration test model along with the

component test model of the third component. The component test models of the first two

components are also examined to extract test cases that capture interactions with the third

component and have not been carried on by the first integration test model. This process is repeated

for the subsequent iterations to generate the subsequent integration test models until the integration

of the component test model of the last component.

Figure 13. Integration test generation approach

The generation approach depends on the quality of the component test models. As an input to our

framework, component test models can be systematically generated by several techniques such as

[19, 20, 23, 25, 58, 70, 93]. Component test models can be created by the same engineer or different

engineers. They can be created on the same development site or on different development sites as

in CBSD. Software cloning may be applied to parts of the component test models. In this work,

we make no assumption about the creation of component test models; we treat each component

test model as original work. However, we require some consistency among the component test

models of the same system. The name convention of components, interfaces and messages should

be consistent throughout the software testing. Furthermore, test cases of a component test model

should completely cover the interfaces of that component. While our methodology can be applied

on any well-formed test model, we developed our approach based on the UTP test model. The test

architecture should be specified using UML class diagram and the test behavior should be specified

using UML sequence diagram, which has been formally investigated [33-35].

Component test models have to be mapped against each other in order to extract integration

test specification from them. There is a lot of work on comparing UML class diagrams, but rare

First component

or

former integration

test model

Component 2..n

test model

Test

generation

approach

Current

integration

test model

for the next integration iteration

35

work is devoted toward comparing UML sequence diagrams [87]. However, these techniques

assume the evolving of the compared models from the same source. In our research, we assume

that models are different and we need to look for similarities among them. Similarities can be

captured from the existence of shared interfaces among the compared components, that is why we

insisted on covering all interfaces of each component in the component-level testing. Excluding

implementation under test, a test object can embed the behavior of several real entities. These real

entities can be a system environment and/or system components that are not realized during the

test execution. Therefore, we need to analyze these test objects prior to model comparison in order

to compare each test object to its corresponding ones on the other test model whether they have a

standalone specification or their specification is embedded in other test objects. Moreover, during

the comparison, test behavior may overlap among different test cases of the compared test models.

In this case, we need to merge this behavior to build an integration test behavior. Furthermore,

redundancy may be found among the generated test cases. Test cases represent viewpoints of parts

of the system behavior. Different component test models can capture the same viewpoint in their

test cases. The generation of integration test cases from these component test models may produce

redundant test cases. Thus, we need to compare the generated test cases against each other to

remove any redundancy that may exist. In conclusion, we split our generation approach to four

processes, as shown in Figure 14, to handle these issues. We devote a separate subsection to

elaborate more on each process.

Figure 14. The different processes of the integration test generation approach

4.2.1 Test Object Identification

In order to generate integration test models from component test models, there should be a shared

specification between the two component test models that reflects interactions between the

corresponding system components. The shared specification belongs to certain test objects that are

specified on both test models. Hence, we need to identify these test objects and this behavior prior

to the generation of the integration test model. In general, test models are composed of a test

architecture and a set of test cases. The test architecture describes test objects, which participate in

the targeted test, and the relation among them. The test cases describe the test behavior of these

Identification

Process

Selection

Process

Generation

Process

Redundancy

Process

36

test objects to examine a specific implementation behavior. To compare test models, we have to

compare the behavior of each test object to the corresponding test object on the other test model.

This task is not a straightforward operation since test objects may play a simple or a complex role

in the test scenarios. Three kinds of test objects can be specified in test models: test control, test

stub and IUT. The main role of the test control is to drive the tests specified in the test cases and

to provide test verdicts. There is usually one test control per a test model. However, a test control

can play an optional role by emulating system entities or a system environment that is not realized

during the test execution. The optional role makes us uncertain about the real identity of the test

control; it can be just the main role or a complex role with embedded behavior of other entities.

Hence, we need to analyze the behavior of the test controls to identify their actual roles. On the

other hand, test stubs are dummy objects that emulate a system environment or system entities that

are not realized during the test execution. Test stubs are optional, and they are typically embedded

in the test control. A test stub can emulate one or more of the actual entities. Hence, we need to

analyze the behavior of test stubs too. The third test object is implementation under test. It

represents different parts of the system depending on the testing level; it can be a system under

test, a component under test, etc. However, we are confident that this is the only test object that

represents a unique real entity. The first two test objects can represent a single or multiple real

entities. In well-formed test models, entities are represented by one test object in each test model.

Accordingly, to identify unknown test objects in one component test model, we have to compare

them to known test objects of other component test models of the same system. We take into

account that these test models may be generated by different testers. Table 1 summarizes the

applied comparison pattern among the test objects. While we do compare test controls to each

other in test case comparison, which is discussed on a subsequent section, we do not compare them

for test object identification. Even when part of the behavior of two test controls is matched, we

cannot conclude that these test controls emulate a system entity or system environment; the

matched behavior could be a behavior to control the test, i.e.: test setup. The identification process

goes through two phases. We analyze the test structure in the first phase and the test behavior in

the second phase.

4.2.1.1 Phase I of the Identification Process

In the first phase, the process uses the specification of the test architecture of the two test models

to identify test objects as illustrated in Figure 15.a. The process compares test objects of the two

37

test structures using the comparison pattern in Table 1 and matches similar ones. Different methods

can be adopted to measure the similarity among test objects. UML stereotypes can be used to

define the identity of test objects. In this method, test objects are enriched with UML stereotypes

that define the entities, which they represent. Suppose that we have test objects that emulate three

real entities, say x, y and z, then we add three UML stereotypes, «x», «y» and «z» respectively, to

the test specifications of the corresponding test objects. In this case, the process compares the UML

stereotypes of test objects of the two test architectures and identifies similar test objects. The

identification process is simple and fast. In addition, this method may eliminate the second phase

of the identification process. However, this method requires additional information to be inserted

to the component test models. We left-out this setup since one of our research objectives is to

follow the standards and bring collaboration among software stakeholders. This method is not a

standard methodology and may not be agreed upon by all stakeholders.

Figure 15. Identification process: phase I

Another method depends on the consistency of name convention among test models [82]. Test

objects of component test models should be named according to their corresponding system

components. Given that we are designing test models of the same system, names of the system

«TestContext»

TC1

«SUT»

CUT1

p1: test package 1

«TestComponent»

COMP1

«TestContext»

TC2

«SUT»

CUT2

p2: test package 2

«TestComponent»

COMP2

«TestComponent»

COMP1

b) Compare two test packages

IUT

Test

control

 Test stub

IUT

Test

control

 Test stub

Test architecture 1 Test architecture 2

a) Compare test architectures

38

components should be adopted to their corresponding test objects. We adopted this method since

it does not impose any extra design regulation on the test models and gives more flexibility to the

designer. We illustrate this method using the example given in Figure 15.b. In this example, we

compare two test architectures, p1 and p2. The process identifies the shared test object Comp1. Test

object Comp2 is unidentified in this phase; it could be emulated by the test control TC1 or just

required for the second test model. In this phase, we can identify test objects that correspond to

single real entities. For test objects that emulate several real entities, we need to proceed to the

next phase.

Table 1. Comparing test objects

Test objects to

be identified

Test objects to be compared to

Test control Test stub IUT

Test control   

Test stub   

4.2.1.2 Phase II of the Identification Process

In the second phase, we try to identify shared test objects that have not been identified during the

first phase using the test behavior. Test behavior is the largest portion of test models. It is composed

of a set of test cases and each test case is composed of a set of instances of test objects with a finite

behavior. The process locates the instances of unidentified test objects in one test model and

compares their behavior to the behavior of the instances in the other test model as illustrated in

Figure 16. Three cases are excluded in this comparison. In the first case, there is no comparison

between the two test controls since both of them are unknown. In the second case, we do not

compare instances of unidentified test object to instances of test objects, which are already

specified in the same test case. In the third case, we do not compare unknown instances to instances

of test objects that represent test stubs of the IUT of the first test model. The results of comparing

any two instances may produce:

 No match,

 Partial match or

 Full match.

39

In the latter two cases, we can conclude that the test object related to the instance of the second

test model emulates exclusively or partially the test object of the first test model regardless of their

names.

Figure 16. Compare test behaviors

To compare the behavior of two instances, we compare the events located on the lifelines of these

two instances. The behavior of two instances may be shared if there are similar events located on

both lifelines. Hence, we have to derive our definition of event similarity across two lifelines. We

compare events of the same kind according to our classification in Definition 4. The easiest method

is to compare event names. Störrle [82] shows the effectiveness of such an approach on UML

models. This may be applicable in other fields such as clone-detection, but it may not work well

in our case. While we strongly recommend the usage of a consistent naming convention, at least

across the same project, test developers may use different naming conventions for different test

models. Moreover, modeling tools may generate the same names for different events of different

models. Furthermore, test stubs can be embedded in the test control; in this case, name matching

is irrelevant. Hence, we use event attributes to define event matching Matchmsg, Matchtime and

Matchmisc for the case of Emsg, Etime and Emisc, respectively.

Definition 5. (Event Matching)

Let e1 and e2 be two events of the same kind from two different instances, then e1 and e2 match

(and noted e1 = e2) if and only if:

Test model 1

?

?

?
?

t1 t2 t3

t1 t3
t1 t2

t2 t1
t1 t3

represented

by

represents

are compared to

Test model 2

40

1. Matchmsg(e1, e2) = { e1  Emsg, e2  Emsg | (e1.ty = e2.ty)  (e1.msg = e2.msg)  ((e1.nm =

e2.nm)  (((e1.owner.nm = e2.owner.nm)  (e1.owner.st ≠ SUT)  (e2.owner.st ≠ SUT) 

((e1.oIns.nm = e2.oIns.nm)  (e1.oIns.st ≠ SUT)  (e2.oIns.st ≠ SUT)) } .

2. Matchime(e1, e2) = { e1  Etime, e2  Etime | (e1.ty = e2.ty)  (e1.tm = e2.tm)  (e1.pd =

e2.pd)  ((e1.nm = e2.nm)  (e1.owner.nm = e2.owner.nm)  (e1.owner.st ≠ SUT) 

(e2.owner.st ≠ SUT)) } .

3. Matchmisc(e1, e2) = { e1  Emisc, e2  Emisc | (e1.ty = e2.ty)  (e1.v = e2.v)  ((e1.nm =

e2.nm)  (e1.owner.nm = e2.owner.nm)  (e1.owner.st ≠ SUT)  (e2.owner.st ≠ SUT)) }.

To proceed to the next process, the identification process should detect at least one test object

that is specified in both test models. We call such test objects shared test objects. The existence of

shared test objects reflects high probability of the existence of interactions among the integrated

components. In case of no shared test objects found, we conclude that there is no interaction

specified between the given test models and we stop the generation process for the current

integration iteration. We believe that this issue can happen due to the use of an incorrect integration

strategy when the two components do not have direct interface between them, or it could happen

due to under-specified test models when test models do not cover all component interfaces. The

tester should fix this issue to proceed with the generation.

4.2.2 Component Test Case Selection

The selection process searches the test cases of the given test models to locate interactions between

the integrated system components. These interactions usually occur through the behavior of the

shared test objects, which have been identified by the previous process. The interactions, between

the integrated system components, can be direct or indirect through test stubs of other system

components that have not been integrated. The existence of such interactions among test cases

permits us to select them to be reused to generate integration test cases. In this process, we are

looking for two patterns: single test cases or two complement test cases.

4.2.2.1 First Selection Pattern: Complete Integration Test Cases

For the first pattern, we search for individual test cases in both test models that contain an

implicit/explicit emulation of the system component of the other test model. We call test cases of

such pattern complete integration test cases. Test cases t1 and t3 in Figure 17 present explicit and

41

implicit emulation of this pattern respectively. In test case t1, a test stub of the system component

COMP4 is specified, which is identified during phase I of the identification process. In test case t2,

there is no explicit presentation of the system component COMP3 but the test control TC4 is

embedded with the behavior of the system component COMP3. Phase II of the identification

process detects such behavior by comparing test cases t2 and t3. While both system components

are specified in the test cases, we have to examine their behavior to ensure the existence of an

interaction between the integrated system components. There must be at least one message

exchanged directly/indirectly between the two system components. The two components have a

direct interaction by exchanging messages (m2, m3) in the test case t1, and they also have indirect

interactions by exchanging messages (m7, m8) and (m9, m10) through COMP5 in the test case t3. We

discuss our interaction-detection technique in the subsequent subsection, 4.2.2.3.

Figure 17. Selection patterns

«TestContext»

TC3

«TestComponent»

COMP4

«SUT»

COMP3

«TestComponent»

COMP5

«TestContext»

tc3

«TestComponent»

comp4

m1
m2

m3
m4

«Verdict»

pass

t1: test case 1

«SUT»

comp3

Test model 1

«TestContext»

tc3

«TestComponent»

comp5

m5

m8

m10

«Verdict»

pass

t2: test case 2

«SUT»

comp3

m9

m7

«TestContext»

TC4

«SUT»

COMP4

«TestComponent»

COMP5

Test model 2

m10

«TestContext»

tc4

«TestComponent»

comp5

m5

m7
m8

m11

«Verdict»

pass

t3: test case 1

«SUT»

comp4

m9

m6

42

4.2.2.2 Second Selection Pattern: Complement Integration Test Cases

The second pattern involves two test cases, one test case from each test model. The two test cases

must share at least one test object in their specifications. We call such pairs of test cases

complement integration test cases. This pattern can be illustrated by test cases t2 and t3 in Figure

17. The test object COMP5 is specified in the two test cases. To select such test cases for generating

integration test cases, we apply the interaction-detection technique discussed in Subsection 4.2.2.3.

The two components have indirect interactions by exchanging messages (m7, m8) and (m9, m10)

through COMP5.

4.2.2.3 Event Dependency Tree (EDT)

The main objective of the integration testing is to check the inter-connectivity among the integrated

components. In order to select component test cases for generating integration test cases, we have

to guarantee that such component test cases specify interactions between the integrated system

components. To prove the existence of such an interaction, we have to examine the execution

traces specified by the participated test cases. We have developed an interaction detection

technique by building what we called the Event Dependency Tree. The Event Dependency Tree

presents the dependency order among the events of the participated test cases, as illustrated in

Figure 18. Each node represents an event and each edge represents an order relation between the

linked events. For readability reasons, we construct the event name from the message name

followed by the first letter of the event type, e.g.: m1s is the sending event of message m1. The UTP

verdict is given by ver. The construction of the EDT goes through two or three steps depending on

the participating test cases, one or two test cases respectively.

In the first step, we create the nodes from the events set E in Definition 3 for each test case.

Figure 18.a illustrates step 1 for the test case t1 in Figure 17. In the second step, we create the edges

using the relation R in Definition 3. Figure 18.b illustrates step 2 for the test case t1 in Figure 17,

while Figure 19.a illustrates step 2 for test cases t2 and t3 in Figure 17. The EDT construction is

completed for the first selection pattern, complete integration test cases. However, we perform

step 3 when there are two participating test cases, selected in the second selection pattern. In this

step, we use Definition 5, for event similarity, and the results of the identification process to link

the two test cases. We remove the duplication of similar nodes and redirect edges of the deleted

nodes to their corresponding node if they do not already exist. To illustrate, step 3 is applied on

the two graphs in Figure 19.a to produce the final EDT in Figure 19.b. In this example, the events

43

of test case t2 are completely captured in test case t3. Two edges, (m5s, m7s) and (m10r, ver), are

redirected. These edges are related to the emulation of the test control tc3 in t2 to the system

component comp4 in t3. The two pairs of relation exist implicitly in t3.

Figure 18. EDT Construction (1/2)

The EDT is used to detect interactions between the integrated components. We traverse the EDT

to locate a node for a sending event of one of the integrated components. From that node, we search

the branched paths for a reception event of the other integrated component. On the discovery of

such a path between a sending and a receiving event, we stop the detection process and confirm

the existence of an interaction among the integrated components in this test scenario. The test cases

are selected to generate integration test cases, which will be covered in the following section. In

the case of search failure, we resume our search for another sending event for one of the integrated

components and perform the same process. The test cases are excluded from the selection if there

is no path between any pair of sending and receiving events corresponding to the integrated

components. Test cases may be reused again with different test cases to detect such interactions.

Figure 20 illustrates the detection method using EDTs shown in Figure 18.b and Figure 19.b. There

are two interactions in both EDTs. However, we are satisfied with just one interaction. In Figure

m1s

m2s

m3s

m4s

m1r

m2r

m3r

m4r

(a) Step 1

ver

(b) Step 2 (one test case)

m1s

m2s

m3s

m4s

m1r

m2r

m3r

m4r

ver

44

20.a, the detection method will always detect the first interaction (m2s, m2r) since both interactions

are on the same path, and as you may have noticed the interaction is direct. However, the detection

method for the EDT in Figure 20.b depends on the logic of the search method for selecting one of

the two interactions since they reside on two different paths. The first interaction is reached through

two paths: (m5s, m7s) and (m5s, m6s, m6r, m7s), and the second interaction is reached through one

path: (m5s, m6s, m8r, m9s). As you may have noticed, the two interactions are indirect and go through

component comp5.

Figure 19. EDT Construction (2/2)

4.2.3 Test Model Generation

The process generates the integration test model in two stages. In the first stage, it generates the

test behavior, and it generates the test architecture in the second stage.

m5s

m7s

m10s

m8s

m5r

m7r

m10r

m9r

(a) Step 2 (two test cases)

ver

m8r

m9s

m5s

m7s

m10s

m8s

m5r

m7r

m10r

m9r

ver

m8r

m9s

m6s

m6r

m11s

m11r

(b) Step 3 (two test cases)

m5s

m7s

m10s

m8s

m5r

m7r

m10r

m9r

ver

m8r

m9s

m6s

m6r

m11s

m11r

45

4.2.3.1 Stage I of the Test Generation

The test behavior is generated from the selected test cases by the selection process. We can classify

the selected test cases into two groups: complete integration test cases and complement integration

test cases. The complete integration test cases are self-contained component test cases that include

the integrated components in their specification. One of the integrated components is specified as

a test stub. The process generates integration test cases from such component test cases by

replacing the instances of the test stubs with the instances of their corresponding system

components. In this group, the test behavior is not modified.

Figure 20. Interaction detection using EDT

Figure 21.a is an example of generated integration test case from component test case t1 shown in

Figure 17. In the second group, the complement integration test cases are pairs of component test

m1s

m2s

m3s

m4s

m1r

m2r

m3r

m4r

(a) EDT of t1

ver

starting

nodes

detection

nodes

(b) EDT of t2 and t3

m5s

m7s

m10s

m8s

m5r

m7r

m10r

m9r

ver

m8r

m9s

m6s

m6r

m11s

m11r

46

cases. Each pair is composed of two test cases, one from each test model. The test scenario of the

two test cases represents an integration test scenario. Thus, the process merges the two component

test cases to generate an integration test case. This step brings up the theoretical issue of merging

test cases, which we discuss in the following subsection. We assume that the given test cases are

completely different. The process searches the two test cases for shared elements. Test cases are

specified using UML sequence diagram. The process focuses on particular elements of the UML

sequence diagram that are related to our domain. The most important elements are lifelines,

messages and end_messages. Furthermore, test cases are finite models, which makes them

manageable.

Figure 21. Generated test model

The process uses Definition 5 to detect a similar test behavior. The events of the two test controls

are combined to build the behavior of the integration test control. Events, which are partially

emulated by the test control or test stubs, are moved to their corresponding system component

when they are added to the test case. We have at the same time to maintain the specification of

both test cases; e.g.: if one test case specifies n instances of an entity and the other test case

specifies m instances of the same entity, then the approach merges min(n, m) instances that have

shared behavior. The test case in Figure 21.b is generated from the merging of the two component

test cases, t2 and t3, in Figure 17.

«TestContext»

tci

«SUT»

comp4

m1
m2

m3 m4

«Verdict»

pass

(a) Test case 1

«SUT»

comp3

m10

«TestContext»

tci

«TestComponent»

comp5

m5

m7 m8

m11

«Verdict»

pass

(b) Test case 2

«SUT»

comp4

m9

m6

«SUT»

comp3

«TestContext»

TCi

«SUT»

COMP4

«SUT»

COMP3

«TestComponent»

COMP5

(c) Test package

47

4.2.3.2 Stage II of the Test Generation

Upon the completion of generating the test behavior, the process builds the test architecture. The

test architecture is created from the specification of the test behavior. The given test architectures

of the component test models are used to relate test objects to their external models, if found. We

focus on the UTP test package in this dissertation. Table 2 summarizes the important mapping

elements to generate test architecture from test behavior. The process traverses the generated test

cases. It goes through the elements of each test case, and creates the equivalent elements in the test

architecture. Internal references between elements of the test behavior and the corresponding

elements of the test architecture are built. After that, the process compares the generated test

objects, UML classes, to their corresponding test objects in the given component test cases. In case

any test object has a reference to an external model, the process updates the corresponding

generated test object with the same reference. The most important test object is the SUT, which is

always externally referenced. Finally, the process plugs a reference to the UTP to enable its

stereotypes in the generated test model.

Table 2. Mapping test behavior to test structure

Test Behavior Test Architecture

UML Lifeline UML Class

UML Message UML Association

UML Sequence Diagram UML Operation

4.2.3.3 Merging Test Cases

A test case captures only a portion of the IUT behavior, with a partial view. Some insignificant

details may be omitted when designing test cases. Integrating two partial views and ordering the

events is a challenging problem as discussed thoroughly in [88, 89, 100]. Different integration

operators were proposed such as alternative, parallel, sequential and merging operator; and several

approaches presented to integrate various behavioral models [77, 80, 88]. In this work, we are

interested in the merging operator. We generate integration test cases by merging component test

cases that share test objects. We call such component test cases complement integration test cases.

Definitions 3 to 5 are used to derive our merging expression. Furthermore, the process generates

the behavior of the integration test control by merging the behavior of the two component test

controls; we name it tci. In order to merge the two test cases, we have to identify the shared events,

48

which are located on the shared test objects' lifelines. The process uses such shared events as

coordinate points in the merging process.

Definition 6. (Shared Events)

Let E1 and E2 be two sets of events of the two component test cases. Using Definition 5, the shared

events are defined as

 se = {(e1,e2): e1  E1 and e2  E2 | e1 = e2 }

Definition 7. (Merging Test Cases)

Let t1 = (I1 , E1 , R1) and t2 = (I2 , E2 , R2) be component test cases and se12 be the corresponding

shared events. Then, the generated integration test case is produced by

 t12 = t1 + t2

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

Where

g(i) : {i: i  I,  i if i.st = TestContext , then i = tci }. The function transforms component

test controls to the integration test control.

f(e) : {e: e  E and (e1, e2)  se, if e = e1 then e = e2 }. The function replaces the first

element of a pair in the shared events to the second element so that the approach

eliminates the duplication of identical events. In other words, it relocates emulated

events to their corresponding real components.

To illustrate our merging expression, we use the given component test cases t2 and t3 shown

in Figure 17. Events are named by their corresponding messages suffixed with the first letter of

the event type. UTP verdicts are named ver. Using Definition 3, we can express the two test cases

as

t2 = ({tc3,comp5,comp3}, {m5s,m7s,m10r,ver,m5r,m7r,m8s,m9r,m10s,m8r,m9s}, {(m5s,m7s),

(m7s,m10r),(m10r,ver),(m5r,m7r),(m7r,m8s),(m8s,m9r),(m9r,m10s),(m8r,m9s),(m5s,m5r),

(m7s,m7r),(m8s,m8r),(m9s,m9r),(m10s,m10r),(m5s,m10r),(m5s,m7r),(m7s,ver),(m5r,m8s),

(m7r,m9r),(m7r,m8r),(m8s,m10s),(m9r,m10r),(m8r,m9r),(m7s,m8s),(m8s,m9s),(m9s,m10s),

(m10s,ver),(m5s,ver),(m5s,m8s),(m5r,m9r),(m5r,m8r),(m7r,m10s),(m7r,m9s),(m8s,m10r),(m9r,ver),

(m8r,m10s),(m7s,m9r),(m7s,m8r),(m9s,m10r),(m5s,m9r),(m5s,m8r),(m5r,m10s),(m5r,m9s),

(m7r,m10r),(m8s,ver),(m8r,m10r),(m7s,m10s),(m7s,m9s),(m9s,ver),(m5s,m10s),(m5s,m9s),

(m5r,m10r),(m7r,ver),(m8r,ver),(m5r,ver) })

49

t3 = ({tc4,comp4,comp5}, {m5s,m6s,m8r,m9s,m11r,ver,m6r,m7s,m10r,m11s,m5r,m7r, m8s,m9r,m10s}, {

(m5s,m6s),(m6s,m8r),(m8r,m9s),(m9s,m11r),(m11r,ver),(m6r,m7s),(m7s,m10r),(m10r,m11s),

(m5r,m7r),(m7r,m8s),(m8s,m9r),(m9r,m10s),(m5s,m8r),(m6s,m9s),(m8r,m11r),(m9s,ver),

(m6r,m10r),(m7s,m11s),(m5r,m8s),(m7r,m9r),(m8s,m10s),(m5s,m9s),(m6s,m11r),(m8r,ver),

(m6r,m11s),(m5r,m9r), (m7r,m10s), (m5s,m11r),(m6s,ver),(m5r,m10s),(m5s,ver) })

The generated integration test control is named tci. The shared events relation is constructed

using Definition 6

se = {(m5s,m5s),(m5r,m5r),(m7s,m7s),(m7r,m7r),(m8s,m8s),(m8r,m8r),(m9s,m9s),(m9r,m9r),

(m10s,m10s),(m10r,m10r),(ver,ver)}

The order of the events in each pair is very important if their owned instances are different:

test control events are always put as the first element of the pair (domain) and SUT events are

always put as the second element of the pair (range). By this arrangement, the process relocates

emulated events to their corresponding test objects. The next step it to apply the transformation

functions, g() and f().

g(I2) = {tci,comp5,comp3}

g(I3) = {tci,comp4,comp5}

f(E2) = {m5s,m7s,m10r,ver,m5r,m7r,m8s,m9r,m10s,m8r,m9s}

f(E3) = {m5s,m6s,m8r,m9s,m11r,ver,m6r,m7s,m10r,m11s,m5r,m7r,m8s,m9r,m10s}

f(R2) = { (m5s,m7s),(m7s,m10r),(m10r,ver),(m5r,m7r),(m7r,m8s),(m8s,m9r),

(m9r,m10s),(m8r,m9s),(m5s,m5r),(m7s,m7r),(m8s,m8r),(m9s,m9r),(m10s,m10r),

(m5s,m10r),(m5s,m7r),(m7s,ver),(m5r,m8s),(m7r,m9r),(m7r,m8r),(m8s,m10s),

(m9r,m10r),(m8r,m9r),(m7s,m8s),(m8s,m9s),(m9s,m10s),(m10s,ver),(m5s,ver),

(m5s,m8s),(m5r,m9r),(m5r,m8r),(m7r,m10s),(m7r,m9s),(m8s,m10r),(m9r,ver),

(m8r,m10s),(m7s,m9r),(m7s,m8r),(m9s,m10r),(m5s,m9r),(m5s,m8r),(m5r,m10s),

(m5r,m9s),(m7r,m10r),(m8s,ver),(m8r,m10r),(m7s,m10s),(m7s,m9s),(m9s,ver), (m5s,m10s),

(m5s,m9s),(m5r,m10r),(m7r,ver),(m8r,ver), (m5r,ver) }

f(R3) = {(m5s,m6s),(m6s,m8r),(m8r,m9s),(m9s,m11r),(m11r,ver),(m6r,m7s),

(m7s,m10r),(m10r,m11s),(m5r,m7r),(m7r,m8s),(m8s,m9r),(m9r,m10s),(m5s,m8r),

(m6s,m9s),(m8r,m11r),(m9s,ver),(m6r,m10r),(m7s,m11s),(m5r,m8s),(m7r,m9r),

(m8s,m10s),(m5s,m9s),(m6s,m11r),(m8r,ver),(m6r,m11s),(m5r,m9r),(m7r,m10s),

(m5s,m11r),(m6s,ver),(m5r,m10s),(m5s,ver) }

We have underlined the transformed events. The final step is to apply the union operator on

the transformed sets and relations to generate the integration test case that is equivalent to the one

shown in Figure 21.b.

50

t23 = t2 + t3 = ({tci,comp3,comp4,comp5}, {m5r,m5s,m6r,m6s,m7r,m7s,m8r,m8s,m9r,

m9s,m10r,m10s,m11r,m11s,ver}, { (m5s,m7s),(m7s,m10r),(m10r,ver),(m5r,m7r),

(m7r,m8s),(m8s,m9r),(m9r,m10s),(m8r,m9s),(m5s,m5r),(m7s,m7r),(m8s,m8r),

(m9s,m9r),(m10s,m10r),(m5s,m10r),(m5s,m7r),(m7s,ver),(m5r,m8s),(m7r,m9r),

(m7r,m8r),(m8s,m10s),(m9r,m10r),(m8r,m9r),(m7s,m8s),(m8s,m9s),(m9s,m10s),

(m10s,ver),(m5s,ver),(m5s,m8s),(m5r,m9r),(m5r,m8r),(m7r,m10s),(m7r,m9s),

(m8s,m10r),(m9r,ver),(m8r,m10s),(m7s,m9r),(m7s,m8r),(m9s,m10r),(m5s,m9r),

(m5s,m8r),(m5r,m10s),(m5r,m9s),(m7r,m10r),(m8s,ver),(m8r,m10r),(m7s,m10s),

(m7s,m9s),(m9s,ver),(m5s,m10s),(m5s,m9s),(m5r,m10r),(m7r,ver),(m8r,ver),

(m5r,ver),(m5s,m6s),(m6s,m8r),(m9s,m11r),(m11r,ver),(m6r,m7s),(m10r,m11s),

(m6s,m9s),(m8r,m11r),(m6r,m10r),(m7s,m11s),(m6s,m11r),(m6r,m11s),

(m5s,m11r),(m6s,ver),(m5s,m11s),(m8s,m11r),(m10s,m11s),(m7r,m11r),

(m9r,m11s),(m5r,m11r),(m8s,m11s),(m7s,m11r),(m9s,m11s),(m7r,m11s),

(m8r,m11s),(m5r,m11s),(m6s,m9r),(m6s,m10s),(m6s,m10r),(m6r,m7r),(m6r,ver),

(m6r,m8s),(m6r,m9r),(m6r,m8r),(m6r,m10s), (m6r,m9s),(m6s,m11s),(m6r,m11r) })

4.2.3.3.1 Validating the Merging Process

The merging process relocates events from the lifeline of one instance to the lifeline of another

instance. In order to validate the correctness of the implementation of such a process, the behavior

of the generated test case should be identical to the overall behavior of the input test cases. We

propose an on-the-fly validation method based on the EDT. To apply this method, we have to save

the EDT, which has been constructed in the selection process. In this method, we construct an EDT

for the generated test case then compare it to the previous one. We have to consider the shared test

objects that were recognized during the identification process since some events of the first EDT

are associated to deleted instances. The two EDTs should be identical; otherwise, the

implementation of the merging process should be inspected to fix detected bugs.

4.2.4 Test Case Redundancy Removal

The generation approach is applied on different test models during every integration iteration as

discussed in Section 4.1. First, the approach takes the component test model of the currently

integrated component and the latest generated integration test model to generate an integration test

model for the current integration iteration. Then, it takes the same component test model with one

of the carried-on component test models from previous iterations to generate additional integration

test cases, and so on. The number of the carried-on component test models, n, at iteration r can be

calculated using the following equation:

51

n = r for r > 1.

Hence, the approach is executed r+1 times at iteration r. The approach generates a set of

integration test cases at each execution. There may be a redundancy among these sets of test cases.

Therefore, we should investigate such sets to remove any redundancy. The redundancy process

maps the currently generated test cases to the existing test cases. Test cases, whose specifications

are completely included in the specifications of existing test cases, are removed. Using Definition

3, we define our test case inclusion.

Definition 8. (Integration test case inclusion)

Let T1 = (I1, E1, R1) be an integration test case and T2 = (I2, E2, R2) be another integration test

case, then T1  T2 if and only if the following conditions are satisfied:

1. 𝐼1 ⊆ 𝐼2

2. 𝐸1 ⊆ 𝐸2

3. 𝑅1 ⊆ 𝑅2

The first condition states that the instances specified in the first test case must be all specified

in the second test case. The second condition states that the events specified in the first test case

must be all specified in the second test case. The third condition checks that the order relation

among the events of the first test case is respected in the second test case specification. The first

test case, T1, is removed from the generated test model only if the three conditions are satisfied.

Furthermore, redundancy could be produced within a single execution. This kind of

redundancy is caused by the selection of the same test cases twice by the selection process. The

selection process searches for two patterns of interaction between the integrated components as

discussed in Section 4.2.2. The same component test case could be selected twice, once for each

pattern. For the first pattern, an integration test case is generated by updating the component test

case, while the component test case is combined with another component test case to generate an

integration test case in the second pattern. Hence, the generated test case of the first pattern is

identical or included in the generated test case of the second pattern. For example, the component

test case t3, Figure 17, can be selected twice. It can be selected for the first pattern since the test

control emulated the CUT comp3. The integration test case is generated by adding an instance for

the second CUT comp3 and relocating the events m8r and m9s from the test control to the CUT

comp3. The generation of the other test case is illustrated with more details in Sections 4.2.2 & 4.2.3

52

and shown in Figure 21. Consequently, the two generated test cases are identical. This kind of

redundancy can be avoided by detecting it during the selection process and removing such test

cases from the selection list of the first pattern.

4.2.5 Selective vs Cumulative Integration

During the development of the generation approach, we studied the effect of the integration

strategy on our approach. System components are integrated using different strategies; some of

them are well-known, such as top-down, bottom-up, big-bang and ad-hoc. The generated test

models for the same set of system components should not depend on their integration strategy. In

other words, if we have three components, A, B and C, then the generated test model should be

consistent regardless of the different integration strategies that may be taken: (A+B)+C, (A+C)+B

or (B+C)+A. Of course, the intermediate test models would be different since the integrated

components are different: (A+B), (A+C) or (B+C). However, due to the sequential execution of

the integration process, important test information may be lost, which leads to the production of

incomplete test models. To explain, let us take the system shown in Figure 22 and integrate its

components using the following integration strategy: ((A+B) + C) + D. Let us focus on the

interface between A and D. In each integration iteration, the generation approach goes through a

refinement process, which refines the component test models by focusing on certain interfaces that

link the integrated component to the sub-system. In the first iteration, the approach focuses on

interface AB and ignores the others. Therefore, the generated integration test model (A+B) would

carry test information regarding AB; it may carry extra information regarding AD and/or BC but it

highly depends on the given test cases. In the second iteration, the approach should examine the

interface BC using the component test model of component C and the previously generated

integration test model (A+B). Nevertheless, the lastly generated test model (A+B) may not carry

any information regarding the interface BC. The approach focuses on the test cases that specify

interactions through the interface BC. Hence, there may be no integration test model for this

iteration. In the last iteration ((A+B)+C)+D, there is high probability of losing all information

about the interface AD in the lastly generated test model ((A+B)+C). The approach may find test

cases that cover the interface DC since the component C was the last to be integrated. However,

test cases covering interface AD may be excluded during the previous iterations. Consequently,

the integration testing is finished without examining the interface AD. Hence, we have to find a

way to carry the information of component test models to the subsequent integration iterations.

53

Figure 22. Integration strategy

We worked on two techniques, as shown in Figure 23, to carry test information of component test

models to subsequent integration iterations: selective and cumulative. The two techniques apply

the same set of the generation processes that we have discussed but differ in the order of applying

these processes as shown in Figure 24.

Figure 23. Cumulative & selective integration

The selective technique carries the component test models along with the generated integration

test model to the subsequent integration iterations. The technique does not change the order of the

processes of the approach. In each iteration, the approach is applied several times to generate the

current integration test model. First, it uses the former integration test model, which is generated

in the previous iteration, and the component test model of the currently integrated system

component to generate the integration test model for the current iteration. Next, it uses the carried-

on component test models of previously integrated components and the component test model of

the currently integrated component to generate additional test cases. The generated integration test

A

B

C

D

AB

ABC

ABCD

Integration strategy

A B

D C

System

1st round 2nd round 3rd round

cumulative

integration

selective

integration A

B

AB

A B

C

ABC

D

ABCD

A B

C

integration

iterations

A

B C

AB

AB`

D

ABC

ABC`

ABCD

ABCD`

54

model and the component test models of the integrated components, including the currently

integrated component, are carried to the subsequent integration iteration.

Figure 24. The order of the test generation processes

In the cumulative technique, we reorder the middle generation processes, the selection and the

generation, of our generation approach to generate test cases, then to select the ones that involve

interactions between the integrated components as shown in Figure 24. The approach generates

test cases from the given component test cases without any restriction or filtration. The generated

test cases are produced by merging the test cases of the two test models; i.e.: if we have m test

cases in one test model and n test cases in the second test model then we generate (m × n) test

cases. Some of the generated test cases do not reflect any interactions between the integrated

components. Furthermore, the approach may merge test cases that do not have any shared

behavior. The generated test cases are submitted to the selection process to select integration test

cases that reflect interactions between the integrated components; these integration test cases are

exercised on the integrated system. The complete set of generated test cases is carried-on to the

next integration iteration. In this technique, we have reserved the complete information carried by

the component test models in one test model.

We applied both techniques on our case studies. Subsequently, we observed that the

cumulative integration may generate invalid integration test cases. The invalid test cases are

generated from merging component test cases that do not hold interactions between the integrated

components during previous integration iterations and are carried on to the current integration

iteration. We illustrate this issue by applying the two techniques on the system specified in Figure

25. The system is composed of three components, C1, C2 and C3, and provides three services, A,

Identification

Process

Selection

Process

Generation

Process

Redundancy

Process

Identification

Process

Generation

Process

Selection

Process

Redundancy

Process

Cumulative integration

Selective integration

55

B and C. Messages are named after their corresponding system services. In this example, we focus

on the test behavior and omit the test architecture. The test behavior is given in Figure 26 for the

three components. In the following subsections, we apply the two techniques on the system

components using the same integration strategy (C1 + C2) + C3.

Figure 25. System specification

4.2.5.1 Selective Integration

In the first iteration of the selective integration, the approach examines the two sets of component

test cases and selects the ones that capture interactions between the two CUTs, C1 and C2. The

results of this process are presented in Table 3. The approach selects the two component test cases

that need to be merged to generate two integration test cases.

Table 3. Selective Integration: selected test cases in iteration 1

 C1 test cases C2 test cases Exchanged messages

1 C1_testCase1 C2_testCase1 A2, A3

2 C1_testCase2 C2_testCase2 B2, B4

56

Figure 26. Component test cases

Figure 27 presents the generated integration test cases in iteration 1.

Figure 27. Selective integration: iteration 1 generated test cases

In the second iteration, the generated test cases are examined against the component test cases of

the component C3. In addition, the approach examines the component test cases of the component

C3 against the component test cases of the integrated components of the sub-system, C1 and C2.

57

Test cases, which include interactions between C3 and the sub-system, are selected. Table 4 shows

the selected test cases from the test models. The approach selected one test case from the generated

test cases to be merged with the first C3 component test case, and selected one component test

case from the C1 test model to be merged with the second C3 test case.

Table 4. Selective integration: selected test cases in iteration 2

 C1C2 test cases C3 test cases Exchanged messages

1 MergeC1t2C2t2 C3_testCase1 B3, B5

2 C1_testCase3 C3_testCase2 C2, C3

Figure 28 presents the generated integration test cases on iteration 2.

Figure 28. Selective integration: iteration 2 generated test cases

4.2.5.2 Cumulative Integration

In the first iteration, the approach merges the three component test cases of C1 test model with the

two component test cases of the C2 test model. Figure 29 presents the generated test cases. Next,

the approach examines the generated test cases for the existence of interactions between the two

CUTs, C1 and C2. Two test cases, MergeC1t1C2t1 and MergeC1t2C2t2, are selected from the

generated test cases to be exercised on the sub-system in this integration iteration. For the second

iteration, the six generated test cases are forwarded to be merged with the component test cases of

C3 test cases.

In the second iteration, the approach merges the generated test cases with the component test

cases of component C3. Figures 30-31 present the generated test cases. After that, the approach

examines the generated test cases for the existence of interactions between the CUTs, (C1 or C2)

and C3. In this iteration, the approach selects four test cases out of twelve test cases to be exercised

58

on the system: MergeC1t2C2t1C3t1, MergeC1t2C2t2C3t1, MergeC1t3C2t2C3t2 and

MergeC1t3C2t1C3t2.

Figure 29. Cumulative integration: iteration 1 generated test cases

59

Figure 30. Cumulative integration: iteration 2 generated test cases (1/2)

60

Figure 31. Cumulative integration: iteration 2 generated test cases (2/2)

4.2.5.3 Discussion

Let us study the results of the two techniques. The first remark is that the selective technique covers

the three system services A, B and C in three test cases: MergeC1t1C1t1, MergeC1t2C2t2C3t1 and

MergeC1t3C3t2 respectively; while the cumulative technique covers only two system services A

and B in two test cases: MergeC1t1C1t1 and MergeC1t2C2t2C3t1 respectively. The second remark

61

is that the two techniques have the same set of test cases during the first iteration, MergeC1t1C1t1

and MergeC1t2C2t2. However, quantity wise, the cumulative technique generated three times

more test cases than the selective technique. The final remark is that the second iteration of the

cumulative technique selected and generated invalid test cases: MergeC1t2C2t1C3t1,

MergeC1t3C2t1C3t2 and MergeC1t3C2t2C3t2. Let us take test case MergeC1t2C2t1C3t1 to

clarify our argument. We can see that while the system is completely constructed, the test control

TCi is still emulating an integrated component, C1, by sending message A2 and receiving message

A3. This behavior is incorrect for the following aspects. The first aspect, we are exercising part of

a system service on the complete system, which may produce invalid results, as we will explain in

the third aspect. The second aspect concerns the testability issue, which is a recognized problem

in software testing, especially in embedded systems testing. Since the system is already integrated

and the interfaces among the integrated components have been joined, the problem is if we can

reach an individual component in order to control it by the test. As a last aspect, suppose that the

interfaces of C2 are reachable, so if we had exercised the test case and the test control sent message

A2, according to the specification, component C2 would reply to the test control by sending

message A3. However, component C1 will receive message A3 too since it is connected to that

interface. What is going to be the reaction of C1? The system specification in Figure 25 and the

specification of the test cases are silent on this situation. That means the reaction of C1 will be

interpreted as an invalid behavior and the test case will fail. Therefore, we ignored the cumulative

technique and we adopted the selective technique for generating test models.

4.3 Conclusion

In this chapter, we presented a test generation approach. The proposed approach closes the gap

among the testing levels. More precisely, it connects the component-level testing to the integration-

level testing and the system-level testing. The approach also enables reusability across the software

testing. It reuses the test models of the component-level testing to generate the test model of the

subsequent testing levels. In this dissertation, we developed a test generation approach for the

generation of the integration test models from the component test models. Several issues have been

tackled in this research: test object identification, test case selection, test case merging and test

case comparison. A prototype has been implemented and demonstrated in Chapter 6.

62

Chapter 5

Acceptance Test optimization

We discuss the optimization approach in this chapter. An acceptance test optimization approach is

investigated throughout the chapter. The chapter is composed of three sections. We provide an

overview of the optimization approach in the first section. The second section covers the selection

of integration test cases that need to be mapped to the acceptance test cases. In the last section, we

discuss the mapping of test cases to detect and remove redundant ones.

5.1 Introduction and Overview

The optimization approach maps test cases of the targeted testing level to test cases of previously

performed testing levels. The mapping technique is based on the comparison of the semantics of

the involved test cases. Techniques for comparing textual and graphical models are available and

known as Model Comparison [52, 79]. These techniques are used by different methodologies such

as Model-Cloning, Version Control Systems and Model-Transformation Testing. Furthermore,

they are classified into two categories depending on the required information for the comparison:

three-way comparison and two-way comparison [77]. Three-way comparison techniques require

the existence of a base model in addition to the two models to be compared. Each model is

compared separately to the base model. The differences in each model, from the base model, are

identified and marked with one of the three flags: added, deleted or modified. Two-way

comparison techniques compare two models without external references. One characteristic is

common among all techniques in both categories that the compared models are evolved from the

same source model. In this research, we assume that test models are built independently and that

they are different. However, we also assume that part of these models may overlap since they

describe the same system from different perspectives. Our idea is similar to the panorama

technique in photography, where photos are taken independently, and then integrated to build the

panorama, the big picture. Different methods are used to calculate the similarities and differences

among the mapped models such as

63

 Universal unique identifier (UUID): several modeling notations, including UML, assign

unique identifiers to every created element in the model. These identifiers do not change

once assigned. Some model comparison techniques use these identifiers to determine the

similarities among the elements of the compared models. The two compared models have

to be evolved from the same source. This method is not applicable to our domain since

test models are created independently.

 Name convention: element’s names are used to calculate the differences and similarities.

Even though names are the most targeted attributes for changes in a distributed

development environment, studies show the effectiveness of such methods [82]. While we

request the consistency and the use of name convention among system components,

interfaces and messages, we believe it is impractical to impose name convention in low-

level elements such as message events.

 Element properties: In addition to the element name, model elements have several

attributes that can be used in the comparison. However, these attributes differ from one

element type to another. For example, UML classes have properties and operations, UML

properties have type and multiplicity, and UML operations have passing parameters and

return parameters. The use of all of the element’s properties will increase the accuracy.

However, it will hamper the performance and the computation speed. A wise selection of

such properties is recommended.

In our approach, we use a mix of name convention and element properties methods to calculate

the similarities and differences. We focus on software testing. Hence, our comparison approach is

domain specific. Hence, we have selected certain element properties to calculate the similarities

and differences among the test models. These element properties are related to the variables that

are defined in the expressions of Definitions 1-4.

We propose an approach that optimizes the acceptance test model by relating it to the

integration test models. We aim to reduce the acceptance test execution time by reducing the

number of acceptance test cases. This can be achieved by eliminating acceptance test cases that

have already been exercised on the system during integration-level testing. The approach maps the

acceptance test cases to the integration test cases and excludes the ones that have already been

exercised during the integration-level testing. However, Integration test cases are mostly applied

on sub-systems. Usually, they emulate some of the system components that have not yet been

64

integrated. Hence, they do not match with the acceptance and system test cases. However, there

are two situations where the integration test cases are suitable to substitute acceptance and system

test cases. The first situation includes test cases applied on the last stage of the integration-level

testing. These test cases are exercises during the integration of the last component to the sub-

system to build complete system. Therefore, the test cases are applied on complete systems. The

second situation includes integration test models applied on sub-systems that fulfil the

requirements of some of the system functionalities. Hence, test cases of such test models that

examine these functionalities are actually applied on complete sub-systems. In other words, the

test cases do not emulate system components.

The approach is composed of two processes: the selection process and the mapping process as

shown in Figure 32. We present each process in the following sections. The approach can be

applied to optimize the system test model in the same context without any modification.

Figure 32. The optimization approach

5.2 Integration Test Case Selection

Integration testing is an iterative process. System components are sequentially integrated to build

the complete system. An integration test model is developed and exercised during the integration

of each component to check the compatibility among the integrated components. The development

of integration test models usually includes the creation or use of test stubs of system components

that have not been integrated yet to the system. The use of such test stubs in the integration test

models disqualifies them from being compared to the acceptance test model. The acceptance test

model must be exercised on the complete system without any emulation of any part of the system.

Therefore, integration test models have to be free of any emulation of system components in order

to be qualified for the comparison against the acceptance test model. We have to examine the given

integration test models for the use of test stubs of system components. The test stubs may be

Integration

test cases

Acceptance

test cases

Selection

process

Selected

test cases

Mapping

process

Optimized

acceptance

test cases

65

specified in some test cases and not specified in other test cases of the same test model. To improve

the accuracy of our approach, our examination will be on the level of the test cases instead of the

level of the test model. The last integration test model is applied on the complete system when

integrating the last system component to the sub-system. Hence, the test cases of the last

integration test model are qualified to be mapped to the acceptance test cases. For the rest of the

integration test models, we compare the behavior of their test stubs and test controls to the behavior

of the CUTs of the subsequent integration test models as shown in Figure 33. More specifically,

the approach compares the behavior of the test stubs and/or controls of each test case in a test

model to the behavior of the CUTs of each test case in the subsequent test models. The selection

algorithm is listed in Algorithm 1.

Figure 33. The selection process

The selection process selects the test cases that do not include test stubs of system components in

their specifications. To formulate our selection condition, we use Definition 3 and Definition 5 to

define the selection condition as follows:

Definition 9. (Selection condition)

Let Tkh = (Ikh, Ekh, Rkh) be the integration test case h at the integration iteration k and Tij = (Iij, Eij,

Rij) be the integration test case j at integration iteration i, where i > k, then Tkh does not use a test

stub for the CUT of Tij if and only if the following condition is satisfied:

 𝑆𝑒𝑙𝑘ℎ =
∀(𝑒𝑗 , 𝑒ℎ). 𝑒𝑗 ∈ 𝐸𝑖𝑗 , 𝑒ℎ ∈ 𝐸𝑘ℎ| (𝑒𝑗 ≠ 𝑒ℎ) ∨

((𝑒𝑗 = 𝑒ℎ) ∧ (𝑒𝑗 . 𝑜𝑤𝑛𝑒𝑟. 𝑠𝑡 ≠ 𝑆𝑈𝑇))

ITM1

ITMn-2

ITMn-1

ITMn

66

Algorithm 1. The selection algorithm

1 read integration test models: TM[1..n]

2 initialize the set of selected test cases: SelectionSet = {}

3 for k = 1 to n-1 do

4 traverse through test cases of TM[k]: T[h=1..m]

5 isSelected = true

6 for i = k+1 to n do

7 traverse through test cases of TM[i]: T[j=1..w]

8 evaluate Selkh

9 isSelected = Selkh

10 if isSelected = false then

11 exit

12 endif

13 endfor

14 if isSelected = true then

15 SelectionSet.add(TM[k].T[h])

16 endif

17 endfor

The selection process stops the comparison as soon as the condition is no longer satisfied, i.e.: it

returns false. Consequently, the corresponding test case is excluded from the selection. We

illustrate the selection process using the system shown in Figure 34. The system is composed of

three components: C1, C2 and C3, and it provides two services: A and B. Service A is handled by

components C1 and C2, and service B is managed by the three components. To distinguish between

the two services, we have suffixed the names of the system messages with their corresponding

services. To build the system, we integrate the components C1 and C2 to build an intermediate

sub-system; then we integrate the component C3 to the sub-system to build the complete system.

Consequently, we have to examine the integration twice, i.e.: two integration test iterations.

 Figure 34. System specification

C1 C2 C3

A1, B1

A4, B6

A3,

B5

A2,

B2
B4 B3

67

In the first integration test iteration, we apply the integration test cases shown in Figure 35 on the

integrated components to examine the connectivity between the two components C1 and C2. Using

Definitions 3-4, we can express the given test cases as follows:

tcase11 = ({TC1, C1, C2}, {ek1,ek2,ek3,ek4,ek5,ek6,ek7,ek8,ek9}, {(ek1,ek2), (ek2,ek3), (ek4,ek5), (ek5,ek6), (ek6,ek7),

(ek8,ek9), (ek1,ek4), (ek5,ek8), (ek9,ek6), (ek7,ek2), (ek1,ek3), (ek4,ek6), (ek4,ek8), (ek5,ek7), (ek6,ek2), (ek8,ek6),

(ek1,ek5), (ek5,ek9), (ek9,ek7), (ek7,ek3), (ek4,ek7), (ek4,ek9), (ek5,ek2), (ek6,ek3), (ek8,ek7), (ek1,ek6), (ek1,ek8),

(ek9,ek2), (ek4,ek2), (ek5,ek3), (ek8,ek2), (ek1,ek7), (ek1,ek9), (ek9,ek3), (ek4,ek3), (ek8,ek3)})

TC1 = {“TC1”,TestContext}

C1 ={“C1”,SUT}

C2 ={“C2”,SUT}

ek1 = (send, “ek1”, TC1, A1, C1)

ek2 = (receive, “ek2”, TC1, A4, C1)

ek3 = (UTPverdict, “ek3”, “pass”, TC1)

ek4 = (receive, “ek4”, C1, A1, TC1)

ek5 = (send, “ek5”, C1, A2, C2)

ek6 = (receive, “ek6”, C1, A3, C2)

ek7 = (send, “ek7”, C1, A4, TC1)

ek8 = (receive, “ek8”, C2, A2, C1)

ek9 = (send, “ek9”, C2, A3, C1)

tcase12 = ({TC1, C1, C2}, {ek11,ek12,ek13,ek14,ek15,ek16,ek17,ek18,ek19,ek20,ek21,ek22,ek23}, {(ek11,ek12), (ek12,ek13),

(ek13,ek14), (ek14,ek15), (ek16,ek17), (ek17,ek18), (ek18,ek19), (ek20,ek21), (ek21,ek22), (ek22,ek23), (ek11,ek16), (ek17,ek20),

(ek21,ek12), (ek13,ek22), (ek23,ek18), (ek19,ek14)

,(ek11,ek13),(ek12,ek14),(ek12,ek22),(ek13,ek15),(ek16,ek18),(ek16,ek20),(ek17,ek19),(ek18,ek14),

(ek20,ek22),(ek20,ek12),(ek21,ek23),(ek22,ek18),(ek11,ek17),(ek17,ek21),(ek21,ek13),(ek13,ek23),

(ek23,ek19),(ek19,ek15),(ek11,ek14),(ek11,ek22),(ek12,ek15),(ek12,ek23),(ek16,ek19),(ek16,ek21),

(ek17,ek14),(ek18,ek15),(ek20,ek23),(ek20,ek13),(ek21,ek18),(ek22,ek19),(ek11,ek18),(ek11,ek20),

(ek17,ek22),(ek17,ek12),(ek21,ek14),(ek13,ek18),(ek23,ek14),(ek11,ek15),(ek11,ek23),(ek12,ek18),

(ek16,ek14),(ek16,ek22),(ek16,ek12),(ek17,ek15),(ek20,ek18),(ek20,ek14),(ek21,ek19),(ek22,ek14),

(ek11,ek19),(ek11,ek21),(ek17,ek23),(ek17,ek13),(ek21,ek15),(ek13,ek19),(ek23,ek15),(ek12,ek19),

(ek16,ek15),(ek16,ek23),(ek16,ek13),(ek20,ek19),(ek20,ek15),(ek22,ek15)})

TC1 = {“TC1”,TestContext}

C1 ={“C1”,SUT}

C2 ={“C2”,SUT}

ek11 = (send, “ek11”, TC1, B1, C1)

ek12 = (receive, “ek12”, TC1, B3, C2)

ek13 = (send, “ek13”, TC1, B4, C2)

ek14 = (receive, “ek14”, TC1, B6, C1)

68

ek15 = (UTPverdict, “ek15”, “pass”, TC1)

ek16 = (receive, “ek16”, C1, B1, TC1)

ek17 = (send, “ek17”, C1, B2, C2)

ek18 = (receive, “ek18”, C1, B5, C2)

ek19 = (send, “ek19”, C1, B6, TC1)

ek20 = (receive, “ek20”, C2, B2, C1)

ek21 = (send, “ek21”, C2, B3, TC1)

ek22 = (receive, “ek22”, C2, B4, TC1)

ek22 = (send, “ek23”, C2, B5, C1)

Figure 35. Integration test cases: first iteration

«TestContext»

TC1

A1

«SUT»

C1

«SUT»

C2

A2

A3

A4

ek1

ek2

ek4

ek5

ek6

ek7

ek8

ek9

«Verdict»

pass

tcase11

ek3

«TestContext»

TC1

B1

«SUT»

C1

«SUT»

C2

B2

B5

B6

ek11

ek14

ek16

ek17

ek18

ek19

ek20

ek23

«Verdict»

pass

tcase12

B3
ek12 ek21

B4
ek13 ek22

ek15

69

In the second integration test iteration, we apply the integration test cases shown in Figure 36 on

the integrated components to examine the connectivity between the sub-system SbSys, which is

composed of the integrated components C1 and C2, and the component C3. Using Definitions 3-

4, we can express the given test cases as follows:

tcase21 = ({TC2, SbSys, C3}, {ei1,ei2,ei3,ei4,ei5,ei6,ei7,ei8,ei9}, {(ei1,ei2), (ei2,ei3), (ei4,ei5), (ei5,ei6),

(ei6,ei7), (ei8,ei9), (ei1,ei4), (ei5,ei8), (ei9,ei6), (ei7,ei2), (ei1,ei3), (ei4,ei6), (ei4,ei8), (ei5,ei7),

(ei6,ei2), (ei8,ei6), (ei1,ei5), (ei5,ei9), (ei9,ei7), (ei7,ei3), (ei4,ei7), (ei4,ei9), (ei5,ei2), (ei6,ei3),

(ei8,ei7), (ei1,ei6), (ei1,ei8), (ei9,ei2), (ei4,ei2), (ei5,ei3), (ei8,ei2), (ei1,ei7), (ei1,ei9), (ei9,ei3),

(ei4,ei3), (ei8,ei3)})

TC2 = {“TC2”,TestContext}

SbSys ={“ SbSys”,SUT}

C3 ={“C3”,SUT}

ei1 = (send, “ei1”, TC2, B1, SbSys)

ei2 = (receive, “ei2”, TC2, B6, SbSys)

ei3 = (UTPverdict, “ei3”, “pass”, TC2)

ei4 = (receive, “ei4”, SbSys, B1, TC2)

ei5 = (send, “ei5”, SbSys, B3, C3)

ei6 = (receive, “ei6”, SbSys, B4, C3)

ei7 = (send, “ei7”, SbSys, B6, TC2)

ei8 = (receive, “ei8”, C3, B3, SbSys)

ei9 = (send, “ei9”, C3, B4, SbSys)

Figure 36. Integration test cases: second iteration

We submit the three integration test cases: tcase11, tcase12 and tcase21, to the selection process

to select the qualified ones to be compared to acceptance test cases. Since the integration test case

«TestContext»

TC2

B1

«SUT»

SbSys

«SUT»

C3

B3

B4

B6

ei1

ei2

ei4

ei5

ei6

ei7

ei8

ei9

«Verdict»

pass

tcase21

ei3

70

tcase21 was applied on the complete system during the final integration iteration, the selection

process selects it to be forwarded to the mapping process. However, the selection process examines

the other two test cases by relating them to the test case tcase21 using the selection condition in

Definition 9. We need to check if one of them emulates the system component C3. The test case

tcase11 passes the examinations since it has a different set of events and the term (ej ≠ eh) of the

selection condition is always fail. However, the test case tcase12 fails the examination because of

two pairs of events that unsatisfied the selection condition: (ei8, ek12) and (ei9, ek13).

𝑆𝑒𝑙𝑘ℎ = (𝑒𝑖8 ≠ 𝑒𝑘12) ∨ ((𝑒𝑖8 = 𝑒𝑘12) ∧ (𝑒𝑖8. 𝑜𝑤𝑛𝑒𝑟. 𝑠𝑡 ≠ 𝑆𝑈𝑇))
𝑦𝑖𝑒𝑙𝑑𝑠
→ 𝑓𝑎𝑙𝑠𝑒

𝑆𝑒𝑙𝑘ℎ = (𝑒𝑖9 ≠ 𝑒𝑘13) ∨ ((𝑒𝑖9 = 𝑒𝑘13) ∧ (𝑒𝑖9. 𝑜𝑤𝑛𝑒𝑟. 𝑠𝑡 ≠ 𝑆𝑈𝑇))
𝑦𝑖𝑒𝑙𝑑𝑠
→ 𝑓𝑎𝑙𝑠𝑒

The selection process requires only one pair to exclude the test case tcase12. So, let us discuss

the first pair. The two events match according to the event matching expression defined in

Definition 5, i.e.: the term (ei8 ≠ ek12) fails and the term (ei8 = ek12) passes. Hence, we focus on the

second part of the selection expression, i.e.: (ei8.owner.st ≠ SUT). The event ei8 is owned by the

CUT C3, which falsifies the last portion of the second part ((ei8 = ek12) and (ej.owner.st ≠ SUT)).

That means the test control TC1 is emulating the system component C3 during the execution of

the test case tcase12. Consequently, the whole expression fails and the test case tcase12 is

excluded. At the end of the selection process, two test cases tcase11 and tcase21 are qualified to

be mapped to the acceptance test cases and are forwarded to the mapping process, which we cover

in the following section.

The results of the selection process depend on the integration order. The usage of test stubs of

system components depends on the integration order. We may not require any test stubs when we

choose the right integration order. There is a lot of research work being done on the selection of

the right integration order [40-42].

5.3 Mapping Acceptance Test Cases to Integration Test Cases

The mapping process compares the acceptance test cases against the selected integration test cases.

The process removes acceptance test cases from the test model if their specifications are included

in the specification of the selected integration test cases. The inclusion expression in Definition 8

cannot be used in this process because it examines the instances of both test cases. However, the

acceptance-level testing has a different perspective of the system than the integration-level testing

71

as shown in Figure 37. In the acceptance-level testing, we see the system as a solid block and we

examine it through its external interfaces, while in the integration-level testing, we see fragments

of the system, and we examine it through its external interfaces as well as through the internal

interfaces of the currently integrated component. Consequently, the generated test cases are

different with respect to the test objects described in each testing level. The mapping algorithm is

listed in Algorithm 2.

Figure 37. Testing levels with different views of the IUT

Furthermore, we have to take into account that the events specified on a lifeline of a test object

in an acceptance test case may be distributed over several lifelines in the mapped integration test

case as shown in Figure 38. Acceptance test cases are usually composed of two test objects, the

test control (TCa) and the system under test (Sys), while integration test cases are composed of at

least three test objects: the test control (TCi), the CUT and the sub-system (SbSys). Hence, the

behavior of the two test objects, TCa and Sys, in the acceptance test cases is distributed over three

test objects, TCi, CUT and SbSys, in the integration test cases.

C5

C6 C7

C8 C9

Sub-system
(Integrated components)

Component to be integrated

Other system components
(to be integrated later)

IUT

Complete system
(one block) IUT

Acceptance-level testing

Integration-level testing

72

Algorithm 2. The mapping algorithm

1 read acceptance test cases: TCa[1..n]

2 read selected integration test cases: TCi[1..m]
3 for i = 1 to n do
4 for j = 1 to m do
5 isContained = true;

6 isContained = isContained AND (TCa[i].E  TCi[j].E)

7 isContained = isContained AND (TCa[i].R  TCi[j].R)

8 if isContained = true then

9 remove TCa[i]
10 exit interior for loop "for j = ..."
11 endif
12 endfor
13 endfor

Moreover, integration test cases may have extra behaviors that reflect internal interactions between

the CUT and SbSys. In other words, we should not expect the acceptance test case to be a complete

fragment/block within the integration test case. To illustrate that, let us consider the test cases

shown in Figure 38. Using Definition 3, the two test cases can be expressed as follow:

Ta = ({TCa, Sys}, {e1,e2,e9,e10}, {(e1,e10), (e2,e9), (e1,e2), (e9,e10), (e2,e10), (e1,e9)})

Ti = ({TCi, CUT, SbSys}, {e1,e2,e3,e4,e5,e6,e7,e8,e9,e10}, {(e1,e10), (e2,e3), (e3,e6), (e6,e7), (e4,e5),

(e5,e8), (e8,e9), (e1,e2), (e3,e4), (e5,e6), (e7,e8), (e9,e10), (e2,e6), (e2,e4), (e3,e7), (e6,e8), (e4,e8), (e4,e6),

(e5,e9), (e8,e10), (e1,e3), (e3,e5), (e5,e7), (e7,e9), (e2,e7), (e2,e5), (e3,e8), (e6,e9), (e4,e9), (e4,e7), (e5,e10),

(e1,e6), (e1,e4), (e7,e10), (e2,e8), (e3,e9), (e6,e10), (e4,e10), (e1,e7), (e1,e5), (e2,e9), (e3,e10), (e1,e8), (e2,e10),

(e1,e9)})

Figure 38. Scattered events

In this example, we can compare the behavior of the test controls, TCa and TCi, as a block since

they have identical set of events, (e1, e10). However, the behavior, (e2, e9), of the system Sys is

distributed between two test objects. The event e2 belongs to the integrated component CUT while

msg1

msg5

Acceptance test case (Ta)

e1 e2

e9 e10

«TestContext»

TCa

«SUT»

Sys

msg1

msg5

msg2

msg3

msg4

 Integration test case (Ti)

e3 e4

e5 e6

e7 e8

e10

e1
e2

e9

«TestContext»

TCi

«SUT»

CUT

«SUT»

SbSys

73

event e9 belongs to the sub-system SbSys. Furthermore, the behavior of the integration test case

(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10) contains internal events (e3, e4, e5, e6, e7, e8) that are not specified

in the acceptance test case and divide the behavior of the acceptance test case (e1, e2, e9, e10) into

two fragments. The first fragment consists of e1 and e2, and the second fragment consists of e9 and

e10. Therefore, the mapping process requires the transition closure of the event relation of the test

cases to overcome this issue.

As we have abovementioned, the inclusion expression in Definition 8 is valid only for

comparing test cases at the same level. It cannot be used to compare integration test cases from

different integration iterations. Hence, we drive a new inclusion expression that does not depend

on the instances of the test cases.

Definition 10. (Test case Inclusion)

Let Ta = {Ia, Ea, Ra} be an acceptance test case and Ti = {Ii, Ei, Ri} be an integration test case, then

the acceptance test is included in the integration test case if and only if the following conditions

are satisfied:

 (1) 𝐸𝑎  𝐸𝑖

 (2) 𝑅𝑎  𝑅𝑖

The first condition states that the events specified in the acceptance test case are all specified

in the integration test case. The second condition checks that all the order relations among the

events of the acceptance test case are respected in the integration test case specification. This

comparison is possible as test cases have finite behaviors.

We continue to use the system specification shown in Figure 34 to illustrate our mapping

process. The integration test cases are given in Figures 35-36; and the selection process selected

two out of three to be mapped to the acceptance test cases. The acceptance test cases are presented

in Figure 39. Using Definitions 3-4, we can express the given acceptance test cases as follows:

tcaseA1 = ({TCa, Sys}, {e1,e2,e3,e4,e5}, {(e1,e2), (e2,e3), (e4,e5), (e1,e4), (e5,e2) , (e1,e3), (e4,e2),

(e1,e5), (e5,e3), (e4,e3)})

TCa = {“TCa”,TestContext}

Sys ={“Sys”,SUT}

e1 = (send, “e1”, TCa, A1, Sys)

e2 = (receive, “e2”, TCa, A4, Sys)

74

e3 = (UTPverdict, “e3”, “pass”, TCa)

e4 = (receive, “e4”, Sys, A1, TCa)

e5 = (send, “e5”, Sys, A4, TCa)

Figure 39. Acceptance test cases

tcaseA2 = ({TCa, Sys}, {e11,e12,e13,e14,e15}, {(e11,e12), (e12,e13), (e14,e15), (e11,e14), (e15,e12),

(e11,e13), (e14,e12), (e11,e15), (e15,e13), (e14,e13)})

TCa = {“TCa”,TestContext}

Sys ={“Sys”,SUT}

e11 = (send, “e11”, TCa, B1, Sys)

e12 = (receive, “e12”, TCa, B6, Sys)

e13 = (UTPverdict, “e13”, “pass”, TCa)

e14 = (receive, “e14”, Sys, B1, TCa)

e15 = (send, “e15”, Sys, B6, TCa)

tcaseA3 = ({TCa, Sys}, {e21,e22,e23,e24,e25,e26,e27,e28,e29}, {(e21,e22), (e22,e23), (e23,e24),

(e24,e25), (e26,e27), (e27,e28), (e28,e29), (e21,e26), (e27,e22), (e23,e28), (e29,e24), , (e21,e23),

(e22,e24), (e22,e28), (e23,e25), (e26,e28), (e26,e22), (e27,e29), (e28,e24), (e21,e27), (e27,e23),

(e23,e29), (e29,e25), (e21,e24), (e21,e28), (e22,e25), (e22,e29), (e26,e29), (e26,e23), (e27,e24),

(e28,e25), (e21,e25), (e21,e29), (e26,e24), (e27,e25), (e26,e25)})

TCa = {“TCa”,TestContext}

Sys ={“Sys”,SUT}

e21 = (send, “e21”, TCa, A1, Sys)

«TestContext»

TCa

A1

«SUT»

Sys

A4

e1

e2

e4

e5

«Verdict»

pass

tcaseA1

e3

«TestContext»

TCa

B1

«SUT»

Sys

B6

e11

e12

e14

e15

«Verdict»

pass

tcaseA2

e13

«TestContext»

TCa

A1

«SUT»

Sys

A4

e21

e22

e26

e27

«Verdict»

pass

tcaseA3

e25

B1

B6

e23

e24

e28

e29

75

e22 = (receive, “e22”, TCa, A4, Sys)

e23 = (send, “e23”, TCa, B1, Sys)

e24 = (receive, “e24”, TCa, B6, Sys)

e25 = (UTPverdict, “e25”, “pass”, TCa)

e26 = (receive, “e26”, Sys, A1, TCa)

e27 = (send, “e27”, Sys, A4, TCa)

e28 = (receive, “e28”, Sys, B1, TCa)

e29 = (send, “e29”, Sys, B6, TCa)

The mapping process compares the acceptance test cases to the selected integration test cases using

the inclusion expression Definition 10. Table 5 summarizes the outcome of the mapping process.

Two acceptance test cases, tcaseA1 and tcaseA2, are excluded since they are included in the

selected integration test cases. The third acceptance test case, tcaseA3, does not satisfy the

inclusion conditions. Hence, it can be transformed to a test execution code and exercised on the

system. The mapping process stops the test case comparison as soon as the acceptance test case

satisfies the two inclusion conditions. It also moves to the next integration test case if the first

condition is unsatisfied. Furthermore, the acceptance test model has been optimized by 60%; two

test cases out of three test cases had been excluded

Table 5. The results of the mapping process

Acceptance

test cases

Integration

test cases

First condition

Ea  Ei

First condition

Ra  Ri

Action

tcaseA1 tcase11 satisfied satisfied excluded

tcaseA1 tcase21

tcaseA2 tcase11 unsatisfied

tcaseA2 tcase21 satisfied satisfied excluded

tcaseA3 tcase11 unsatisfied

tcaseA3 tcase21 unsatisfied exercised

76

5.4 Conclusion

Test-Suite Reduction is an active research activity in the software testing. It aims to reduce the

testing cost by reducing the time of the test execution [91]. The number of generated test cases is

typically large for complex systems [91], as it increases rapidly as new features and/or updates are

added to the system. However, most research activities focus on the reduction of the size of the

test models by mapping test cases of the same test model against each other. Instead, we propose

a test optimization framework that relates test cases across different testing levels: integration-

level, system-level and acceptance-level testing. It maps the generated test cases to previously

executed test cases and removes the redundant ones.

In this dissertation, we developed an acceptance test optimization approach. The approach

optimizes the acceptance test model using the integration test models. In this approach, we

investigate the given integration test cases to select the ones that are suitable to be mapped to the

acceptance test cases. We have implemented a prototype demonstrated in Chapter 6.

77

Chapter 6

Implementation & Case Study

In this chapter, we present the implementation of the two approaches discussed in the previous

chapters. We developed two prototypes to demonstrate the effectiveness of our framework. The

two prototypes are integrated in one application/tool since they serve the same framework and

share some of the implemented packages as explained in Section 6.3. This chapter is composed of

four sections. In the first section, we discuss the development tools used to build the toll and the

UTP test models. In Section 6.2, we point out some principles that should be followed to construct

acceptable test models for the current release of the tool. We present the implemented application

in Section 6.3; the test generation prototype is presented in Section 6.3.1and the test optimization

prototype is presented in Section 6.3.2. Section 6.4 covers a case study to demonstrate the use of

our application and discuss its results.

6.1 Development Tools

In order to develop our prototypes, we searched for two kinds of development tools: modelling

tools and transformation tools. The transformation tool is required to build our prototypes. The

modelling tool is required to build sample test models that can be used to examine our prototypes

and build our case studies. During our review of such tools, we passed by a plenty of commercial

and open source tools. Since we are building prototypes, we decided to use open source tools.

Table 6 lists some of the development tools, which we have investigated. We used Atlas

Transformation Language (ATL) [101] and Java for the transformation tool, Papyrus and Eclipse

UML-Editor for the modelling tool based on the following selection criteria:

 Transformation Tools

 Mature

 Open source

 Compliance with OMG QVT

 Modelling Tools

78

 Mature

 Open source

 Compliance with UML XMI

 Support UML profiles

Table 6. Development tools

Kind Name Description

Transformation mediniQVT Commercial [102]

Transformation ATL Open source under the Eclipse project [101]

Transformation QVT Operational Open source under the Eclipse project [103]

Transformation QVTd Open source under the Eclipse project [104]

Transformation ModTransf V3 Under development [105]

Modelling
Eclipse UML

Editor

Open source under the Eclipse project. Embedded in the

Eclipse Modeling Tools [106]

Modelling UMLet
Open source under the Eclipse project. Plug-in tool. Need

to be installed from Eclipse Market Place [107]

Modelling Papyrus Open source under the Eclipse project [108]

Modelling Visual Paradigm Commercial [109]

Modelling Modelio Open source [110]

In the following sub-subsections, we present a brief introduction about the selected development

tools.

6.1.1 Transformation Tool

ATL is developed to answer the OMG’s “QVT Request for Proposal”. The language supports

model transformation for MOF’s [111] and Ecore’s [112] metamodels. The language is composed

of declarative and imperative languages. It supports multi-input/multi-output models. The ATL

language is a modular language. The ATL module consists of four sections as shown in Figure 40;

two sections are mandatory, header and rules, and two sections are optional, import and helpers.

The header section defines the module name, the input models and the output models. The import

section allows the developer to import ATL libraries. ATL libraries define ATL helpers and enable

reusability across ATL modules. The helpers section defines ATL expressions that can be called

79

several times from the rules section. Each helper has a context related to the input models. Helpers

without a context are module helpers and they are evaluated once at the initialization of the module;

that means the helper returns the same value during the same execution. The rules section defines

the transformation from the input model(s) to the output model(s). The transformation rules, for a

specific model type, have to be associated to one ATL module, which is contained in a single file.

There are two types of rules. The declarative rules, which are mandatory, have three constructs:

matched, lazy and called rules. The imperative rules use the query construct. Since our approaches

rely heavily on the analysis of the input models, we faced some difficulties with the

implementation using ATL rules. For example, we were stuck when we found that there is no exit

command from the loop, similar to break in Java, in the ATL imperative language. Our approaches

iterate through the test cases searching for key criterion and should exit as soon as such criterion

is satisfied. These difficulties lead us to depend more on Java. While the OMG QVT specification

allows the execution of add-on scripts of different languages, say Java, ATL does not implement

such a feature. It is not mentioned in the online documentation, and we did not get an answer about

this issue at the ATL community forum. However, there is ATL APIs to be accessed from Java.

Hence, we depend heavily on Java for developing our prototypes. Furthermore, we used the

Eclipse UML2 project to access the test models.

Figure 40. Structure of ATL module

6.1.2 Modelling Tool

Papyrus is a graphical editor for UML2. It is an add-on project in Eclipse modelling framework.

The project intends to fully implement the OMG’s UML specification. The project supports the

construction of UML diagrams, SysML diagrams and UML profiles. Models are stored in two

Header section

[Import section]

[Helpers section]

Rules section

80

files: one file for the serialized UML and the second file for the graphical representation. The

project accepts external XMI profiles. Hence, the serialized version of the OMG’s UTP

specification is used to build our test models. The current limitation of Papyrus is the inability to

generate diagrams from serialized UML that are created by other tools. There is an ongoing work

for implementing such feature but it is still immature. Hence, we use the Eclipse embedded UML

editor to view such models in a tree-like syntax. We use this editor to view the output of our

approaches. In this document, diagrams are created manually from the serialized UML files of the

generated test models.

6.1.3 UML Testing Profile

Currently, we are using OMG’s UTP specification version 1.1. The UTP specification covers only

the test architecture. The test behavior is still left out for later releases except for the definition of

the test case stereotype for UML sequence diagrams. Hence, we have to depend on the UML

specification to link between the test structure and the test behavior of any test model, which we

describe in the next section.

6.2 Test Model Settings

In order to apply our tools on the test models, there must be a clear relation between the test

behavior and its corresponding test architecture. Instances in test cases must refer to test objects

specified in the test architecture. In our framework, test cases are specified using UML sequence

diagrams and test architectures are specified using UML class diagrams. Since the test behavior is

not enriched with UTP stereotypes, we have to depend on the UML specifications to link elements

in the sequence diagrams to their corresponding elements in the class diagrams. The current

implementation requires the following compliance in the test model as illustrated in Figure 41:

Figure 41. Test model settings

«TestContext»

TC

COMP «SUT» cut: COMP
import

«TestCase» oper(): Verdict

«TestCase»

tcase

Represents

Method

Specification

tc comp

m
1

m
2

81

1. Test package:

a. There must be only one test control.

b. Test Control:

 It must be stereotyped with UTP TestContext.

 The test cases must be defined as operations and stereotyped with UTP

TestCase. The method attribute of each operation must be linked to the

corresponding test case.

 Operations are typed with UTP Verdict.

 Instances, UML lifelines, can be linked only to UML ConnectableElements,

properties or association ends, and cannot be linked directly to UML Classifiers,

classes. Hence, associations should be explicitly specified among test objects, test

objects defined as properties in the test control or exact names donated for the

instances.

2. Test cases:

 Each active test case must be stereotyped with UTP TestCase.

 They should be linked to their corresponding operation through the specification

attribute.

 Instances/Lifelines:

 Each instance must be linked to its corresponding test object using the

represents attribute, or must have the same name as its corresponding test

object in the test package

 The instances of the test control can be named after the corresponding test

object in the test package, or named by the self-keyword as specified in the

UML specification.

 Messages: message names are unique across the test models since test cases

represent execution traces. If the same message name is used by the same test

object in two or more test cases that means we are specifying the same instance of

that message.

82

6.3 TestGenO: The Test Generation and Optimization Tool

The tool integrates the two prototypes in one application. It is composed of four components as

shown in Figure 42: user interface, test generation engine, test optimization engine and common

packages. The user interface is responsible for handling the user interactions. The test generation

engine implements the processes of the integration test generation approach. The test optimization

engine implements the processes of the acceptance test optimization approach. The common

package implements common libraries that are used by the two engines. We describe the two

prototypes in the following subsections.

Figure 42. The architecture of the tool: TestGenO

6.3.1 Integration Test Model Generator

The prototype accepts multiple test models but it handles two test models at a time. It examines

the test models and generates the integration test model, except if there is no interaction between

the two SUTs. In that case, it sends a warning message to the user. Furthermore, the tool provides

a dialog box to handle test models expressed in mathematical forms.

6.3.1.1 Architecture of the test generation prototype

The prototype is composed of five packages: Main, TMGen, UMLParser, UTPModel, and

MathUtilities. The Main package, Figure 43, contains the user interface, and handles the user

interactions and file I/O operations. It is the starting point of the application and manages the other

packages. This package is part of the tool’s user interface.

User Interface

Test Generation

Engine

Test Optimization

Engine

Common Packages

83

Figure 43. The integration test generation prototype

The TMGen package, Figure 44, implements the test generation approach discussed in Chapter 4.

It represents the tool’s test generation engine. It composes of the four processes: identification,

selection, generation and optimization, as well as the essential methods required by these processes

such as the event dependency tree (EDT).

Figure 44. The generation package

84

The UMLParser package, Figure 45, is responsible for reading, validating and writing UML

models. The input UML models have to be in XMI format. The package reads the input model to

create an internal test model, UTPModel, and validates the structure of the test model as follows:

 It must have one UTP test package.

 It must have one UTP test context.

 There must be at least one SUT.

 There must be at least one test case.

 Instances must be linked to test objects in the test package. It can be by name or through

the UML Represents attribute.

The package is also responsible for writing the internal test models into serialized UML

models. This package is part of the tool’s common packages.

Figure 45. The UMLParser package

The UTPModel package, Figure 46, implements the structure of the test model. It is used by the

processes in the TMGen to examine the input test models and to generate the integration test

model. This package is part of the tool’s common packages.

85

Figure 46. The test model package

The last package MathUtilities, Figure 47, implements essential structures and methods that are

required by the other packages. Moreover, the package consists of the implementation of the

mathematical representation of our generation approach. This package is part of the tool’s common

packages.

86

Figure 47. The math & utilities package

6.3.1.2 Limitations of the test generation prototype

The current release implements the essential functionality of the test generation approach. We list

here the limitation of the prototype that needs to be implemented to increase the maturity of the

tool:

 The prototype does not support UML combined fragments operators except for the

sequential and the alternative operators.

 The current release does not support synchronous messages.

87

6.3.2 Acceptance Test Model Optimizer

The prototype takes multiple test models. Beside the acceptance test model, it accepts all

corresponding integration test models. The user must select the generation order of the given

integration test models. The prototype examines the integration test cases of the integration test

models to select the ones that are suitable to be compared to the acceptance test cases.

Subsequently, the prototype maps the acceptance test cases against the selected test cases and

eliminates the redundant ones.

6.3.2.1 Architecture of the test optimization prototype

The implementation is composed of five packages: TMain, Optimization, UMLParser, UTPModel,

and MathUtilities. The latter three packages are shared with the prototype of the integration test

model generator with an upgrade to the MathUtilities package to handle the selection and inclusion

methods. The TMain package, Figure 48, consists of the user interface and the file I/O

management. It provides a dialog to order the given integration test models according to the

corresponding integration strategy. This package is part of the tool’s user interface.

Figure 48. Packages of test optimization tool

The optimization package, Figure 49, implements the selection process and the optimization

process as discussed in Chapter 5. This package represents the tool’s test optimization engine.

88

Figure 49. Optimization package

The other three packages were presented in the previous section.

6.3.2.2 Limitations of the test optimization prototype

The prototype implements the essential functionality of the test optimization approach. However,

it has the following limitations:

 The prototype does not support UML combined fragments operators except for the

sequential and the alternative operators.

 The current release does not support synchronous messages.

6.4 Library System - Case Study

We demonstrate our tool using the library system specified in Appendix B. The system is

composed of four components to provide users with essential library services. These services are

covered by test cases that have been designed to build component test models as well as the

acceptance test model. In this case study, we apply our tool on these test models to generate

integration test models. Furthermore, we map the generated test models to the given acceptance

test model to reduce the test suite.

We present the given test models in Appendix B. Component test models are described in

Section B.2 and the acceptance test model is described in Section B.3. We discuss the results of

the test generation in Section 6.4.1. In Section 6.4.2, we discuss the results of the test optimization.

6.4.1 Integration Test Generation

In this section, we apply the tool on the component test models given in Section B.2. We use two

different integration orders to build the integration test models. In the first one, we integrate the

89

test models in the following integration order: ((LibrarianTM + MemberTM) + MediaTM) +

BookingTM. In the second one, we integrate the test models in the following integration order: ((

LibrarianTM + MediaTM) + BookingTM) + MemberTM. In this section, we focus on the last

integration iteration since the intermediate results of the two integration orders are different. A

complete generation with the intermediate results is presented in Appendix C.

6.4.1.1 Test Generation Using the First Integration Order

In the first integration order, we integrate the test models in the following integration order: ((

LibrarianTM + MemberTM) + MediaTM) + BookingTM. The integration goes through three

iterations. In the first iteration, we integrate the two component test models LibrarianTM and

MemberTM to generate the integration test model IntLibMemTM as shown in Figure 50.

Figure 50. Generated integration test model (IntLibMemTM)

90

In the second iteration, we integrate the integration test model IntLibMemTM and the component

test model MediaTM to generate the integration test model IntLibMemMedTM as shown in Figure

51.

Figure 51. Generated integration test model (IntLibMemMedTM)

In the last iteration, we integrate the integration test model IntLibMemMedTM and the component

test model BookingTM to generate the integration test model IntLibMemMedBkgTM as shown in

Figure 52.

6.4.1.2 Test Generation Using the Second Integration Order

In the second integration order, we integrate the test models in the following integration order: ((

LibrarianTM + MediaTM) + BookingTM) + MemberTM. The integration goes through three

iterations. In the first iteration, we integrate the two component test models LibrarianTM and

MediaTM to generate the integration test model IntLibMedTM as shown in Figure 53.

91

Figure 52. Generated integration test model (IntLibMemMedBkgTM)

In the second iteration, we integrate the integration test model IntLibMedTM and the component

test model BookingTM to generate the integration test model IntLibMedBkgTM as shown in Figure

54. In the third iteration, we integrate the integration test model IntLibMedBkgTM and the

component test model MemberTM to generate the integration test model IntLibMedBkgMemTM

as shown in Figure 55.

92

Figure 53. Generated integration test model (IntLibMedTM)

Figure 54. Generated test model (IntLibMedBkgTM)

93

Figure 55. Generated test model (IntLibMedBkgMemTM)

6.4.1.3 Discussion

The summaries of the two integration orders are listed in Table 7 and Table 8. In this section, we

discuss some issues that are related to the test generation. The first issue is that even though we

integrated the same set of components, the tool performed a different number of steps, 10 versus

12, depending on the integration strategy. However, this issue only affects the intermediate results;

it does not affect the generated test model. In this case study, the difference comes due to the

transition from the second iteration to the third, steps 5 to 6. In the first integration order, the tool

could not generate test cases from the previously generated integration test model,

IntLibMemMedTM. On the other hand, the tool uses the previously generated integration test

model, IntLibMedBkgTM, to generate two test cases: IntTCRsrvMedBkgMem and

94

IntTCRtrnMedBkgMem, in the second integration order. Therefore, we have two extra steps to

examine the generated test cases against the carried-on component test cases, steps 7 & 9.

Table 7. Summary of the first integration order

Iter
a

tio
n

T
est In

teg
.

Integrated Test Models Generated Test Model

1 1 1 LibrarianTM MemberTM

T = { IntTCAddMem, IntTCBrwMem }

P = (TCi, {}, {Librarian, Member})

IntLibMemTM = (P, T)

2

2

1 IntLibMemTM MediaTM

3 2 LibrarianTM MediaTM

T={IntTCAddMed, IntTCLibBrwMed}

P = (TCi, {}, {Librarian, Media})

IntLibMemMedTM = (P, T)

4

3

IntLibMemMedTM MemberTM

5 MediaTM MemberTM

T={ IntTCAddMed, IntTCLibBrwMed, IntTCBrwMemMed }

P = (TCi, {}, {Librarian, Media, Member })

IntLibMemMedTM = (P, T)

6

3

1 IntLibMemMedTM BookingTM

7 2 LibrarianTM BookingTM

8 3 MemberTM BookingTM

T={IntTCRsrvBkgMem, IntTCRtrnBkgMem }

P = (TCi, {}, {Booking, Member})

IntLibMemMedBkgTM = (P, T)

9
4

IntLibMemMedBkgTM MediaTM

T={IntTCRsrvBkgMemMed, IntTCRtrnBkgMemMed }

P = (TCi, {}, {Booking, Member, Media})

IntLibMemMedBkgTM = (P, T)

10 BookingTM MediaTM

The next issue is that the generated integration test models completely cover the interfaces and

services of the currently integrated component with the sub-system, steps 1, 5 and 10 in Table 7

and steps 1, 3 and 10 in Table 8. To illustrate, the generated test model IntLibMemMedTM, Table

7 step 5, is composed of three test cases: IntTCAddMed, IntTCLibBrwMed and

IntTCBrwMemMed. In this iteration, we are integrating the Media component to the sub-system

that is composed of Librarian and Member. The first two test cases cover the two services provided

through the interface between the Librarian and the Media, and the third test case covers the service

provided through the interface between the Member and the Media.

Saving test information is the next issue. We have delayed the integration of the Member,

which has interfaces with all other components, to the last iteration in the second integration order.

Successfully, the approach generated and updated test cases that cover the five services processed

by this component.

95

Table 8. Summary of the second integration order

Iter
a

tio
n

T
est In

te
g

.

Integrated Test Models Generated Test Model

1 1 1 LibrarianTM MediaTM

T = { IntTCAddMed, IntTCBrwMed }

P = (TCi, {}, {Librarian, Media})

IntLibMedTM = (P, T)

2

2

1 IntLibMedTM BookingTM

3 2 MediaTM BookingTM

T={IntTCRsrvMedia,IntTCRtrnMedia}

P = (TCi, {}, {Booking, Media})

IntLibMedBkgTM = (P, T)

4
3

IntLibMedBkgTM LibrarianTM

5 BookingTM LibrarianTM

6

3

1 IntLibMedBkgTM MemberTM

T={IntTCRsrvMedBkgMem, IntTCRtrnMedBkgMem }

P = (TCi, {}, {Booking, Media, Member})

IntLibMedBkgMemTM = (P, T)

7

2

IntLibMedBkgMemTM LibrarianTM

8 MemberTM LibrarianTM

T={IntTCRsrvMedBkgMem, IntTCRtrnMedBkgMem,

IntTCAddMem, IntTCBrwMem}

P = (TCi, {}, {Booking, Media, Member, Librarian})

IntLibMedBkgMemTM = (P, T)

9

3

IntLibMedBkgMemTM MediaTM

10 MemberTM MediaTM

T={IntTCRsrvMedBkgMem, IntTCRtrnMedBkgMem,

IntTCAddMem, IntTCBrwMem, IntTCBrwMemMed }

P = (TCi, {}, {Booking, Media, Member, Librarian})

IntLibMedBkgMemTM = (P, T)

11
4

IntLibMedBkgMemTM BookingTM

12 MemberTM BookingTM

The next issue is that the approach does not alter the behavior of the CUTs. The approach works

on the test controls and test stubs, and on restoring events that belongs to the CUTs.

The next issue is that some test integrations do not generate test behavior: e.g. Table 7 steps

2, 6 & 7. This issue depends on the integration strategy and the tool’s on-the-fly optimization. In

the implementation, we embedded the redundancy removal process within the generation process

to save memory space.

The last issue is that the tool produces complete sets of test cases that cover all specified

services in the two integration orders. These test cases are applied on different iterations but

without the use of implicit or explicit emulation of system components. Two test cases, step 3 in

Table 8, were generated when the test control emulates the component Member but they were

updated in the next iteration, step 10, when the real component was integrated.

96

6.4.2 Acceptance Test Optimization

In this section, we apply the tool on the acceptance test model, given in Section B.3, and the

generated integration test models from the previous section. We apply the tool twice since we have

two different sets of integration test models produced from two integration orders. In each

integration order, we have three integration test models corresponding to the three integration

iterations.

6.4.2.1 Test Optimization Using the Generated Integration Test Models in the First

Integration Order

Let us start by generating the test models of the first integration order. The tool examines the test

cases of the integration test models to select the ones that do not emulate system components.

Table 9 presents the summary of the selection process. Test cases of the last integration test model

IntLibMemMedBkgTM are automatically selected since they are applied on a complete system and

they should not require test stubs of system components. These test cases are mapped to the test

cases of preceding test models: IntLibMemTM, IntLibMemMedTM. Test cases of the first model

IntLibMemTM are also mapped to the test cases of the second test model IntLibMemMedTM in

order to examine if any test case emulates its CUT, Media.

Table 9. Selection summary of first integration order

Integration TM Mapped to Results

IntLibMemTM IntLibMemMedTM passed to the next mapping

IntLibMemTM IntLibMemMedBkgTM 2/2 test cases are selected

IntLibMemMedTM IntLibMemMedBkgTM 3/3 test cases are selected

IntLibMemMedBkgTM N/A 2/2 test cases are selected

All test cases of the three integration test models are selected to be mapped to the test cases of the

acceptance test model. Hence, the tool maps test cases of the acceptance test model to the selected

integration test cases. Each acceptance test case is mapped to seven integration test cases as shown

in Table 10. However, the mapping process, for any acceptance test case, terminates as soon as the

acceptance test case is included in the specification of the currently compared integration test case.

97

Table 10. Mapping results of first integration order

Acceptance test case
Integration

Result
Test Model Test Case

1 TestCaseAddMember IntLibMemTM IntTCAddMem Included

2 TestCaseAddMedia IntLibMemTM IntTCAddMem Passed

3 IntTCBrwMem Passed

4 IntLibMemMedTM IntTCAddMed Included

5 TestCaseBrowseMembers IntLibMemTM IntTCAddMem Passed

6 IntTCBrwMem Included

7 TestCaseLibrarianBrowseMedia IntLibMemTM IntTCAddMem Passed

8 IntTCBrwMem Passed

9 IntLibMemMedTM IntTCAddMed Passed

10 IntTCLibBrwMed Included

11 TestCaseMemberBrowseMedia IntLibMemTM IntTCAddMem Passed

12 IntTCBrwMem Passed

13 IntLibMemMedTM IntTCAddMed Passed

14 IntTCLibBrwMed Passed

15 IntTCBrwMemMed Included

16 TestCaseReserveMedia IntLibMemTM IntTCAddMem Passed

17 IntTCBrwMem Passed

18 IntLibMemMedTM IntTCAddMed Passed

19 IntTCLibBrwMed Passed

20 IntTCBrwMemMed Passed

21 IntLibMemMedBkgTM IntTCRsrvBkgMemMed Included

22 TestCaseReturnMedia IntLibMemTM IntTCAddMem Passed

23 IntTCBrwMem Passed

24 IntLibMemMedTM IntTCAddMed Passed

25 IntTCLibBrwMed Passed

26 IntTCBrwMemMed Passed

27 IntLibMemMedBkgTM IntTCRsrvBkgMemMed Passed

28 IntTCRtrnBkgMemMed Included

Consequently, the acceptance test case is removed from the acceptance test model. Acceptance

test cases that are not included in the seven integration test cases are kept in the acceptance test

model. Table 10 presents the summary of the mapping process. The complete set of test cases in

98

the acceptance test model is included in the selected test cases of the integration test models.

Hence, the acceptance testing, in this case study, is skipped. We refer that to the selection of the

same set of services on both integration and acceptance testing, which is not always the case in

most test projects.

6.4.2.2 Test Optimization Using the Generated Integration Test Models in the Second

Integration Order

Now, let us move to the generated test models of the second integration order. The tool examines

the test cases of the integration test models to select the ones that do not emulate system

components. Table 11 presents the summary of the selection process. Test cases of the last

integration test model IntLibMedBkgMemTM are automatically selected since they are applied on

a complete system and they should not require test stubs of system components. These test cases

are used, as a reference, to be mapped to the test cases of preceding test models: IntLibMedBkgTM,

IntLibMedTM. Test cases of the first model IntLibMedTM are also mapped to the test cases of the

second test model IntLibMedBkgTM in order to examine if a test case emulates its CUT, Booking.

Table 11. Selection summary of the second integration order

Integration TM Mapped to Results

IntLibMedTM IntLibMedBkgTM passed to the next mapping

IntLibMedTM IntLibMedBkgMemTM 2/2 test cases are selected

IntLibMedBkgTM IntLibMedBkgMemTM

0/2 test cases are selected. The test

control in both test cases emulates the

component Member

IntLibMedBkgMemTM N/A 5/5 test cases are selected

The two test cases of the second integration test model, IntLibMedBkgTM, are not selected since

they emulate the system component Member, which is integrated in the third iteration. The rest of

integration test cases are selected to be mapped to the test cases of the acceptance test model.

Hence, the tool maps test cases of the acceptance test model to the selected integration test cases.

Each acceptance test case is mapped to the seven selected test cases as shown in Table 12.

However, the mapping process, for any acceptance test case, terminates as soon as the acceptance

test case is included in the specification of the currently compared integration test case.

Consequently, the acceptance test case is removed from the acceptance test model. Acceptance

test cases that are not included in the seven selected test cases are left in the acceptance test model.

99

Table 12. Mapping results of the second integration order

Acceptance test case
Integration

Result
Test Model Test Case

1 TestCaseAddMember IntLibMedTM IntTCAddMed Passed

2 IntTCLibBrwMed Passed

3 IntLibMedBkgMemTM IntTCRsrvMedBkgMem Passed

4 IntTCRtrnMedBkgMem Passed

5 IntTCAddMem Included

6 TestCaseAddMedia IntLibMedTM IntTCAddMed Included

7 TestCaseBrowseMembers IntLibMedTM IntTCAddMed Passed

8 IntTCLibBrwMed Passed

9 IntLibMedBkgMemTM IntTCRsrvMedBkgMem Passed

10 IntTCRtrnMedBkgMem Passed

11 IntTCAddMem Passed

12 IntTCBrwMem Included

13 TestCaseLibrarianBrowseMedia IntLibMedTM IntTCAddMed Passed

14 IntTCLibBrwMed Included

15 TestCaseMemberBrowseMedia IntLibMedTM IntTCAddMed Passed

16 IntTCLibBrwMed Passed

17 IntLibMedBkgMemTM IntTCRsrvMedBkgMem Passed

18 IntTCRtrnMedBkgMem Passed

19 IntTCAddMem Passed

20 IntTCBrwMem Passed

21 IntTCBrwMemMed Included

22 TestCaseReserveMedia IntLibMedTM IntTCAddMed Passed

23 IntTCLibBrwMed Passed

24 IntLibMedBkgMemTM IntTCRsrvMedBkgMem Included

25 TestCaseReturnMedia IntLibMedTM IntTCAddMed Passed

26 IntTCLibBrwMed Passed

27 IntLibMedBkgMemTM IntTCRsrvMedBkgMem Passed

28 IntTCRtrnMedBkgMem Included

Table 12 presents the summary of the mapping process. The complete set of test cases in the

acceptance test model is included in the selected test cases from the given test models. Hence, the

acceptance testing, in this case study, is skipped. We associate that to the selection of the same set

100

of services on both integration and acceptance testing, which is not always the case in most test

projects.

6.5 Discussion

The tool generated integration test models, which cover all of the system services, for both

integration orders. It also optimized the acceptance test model by removing test cases that

exercised during the integration testing without emulation of system components. These results

are similar to what we had experienced with other handcrafted case studies during our research.

The results of the test generation are summarized in Table 13. The tool integrated four test models

through three iterations. The tool generated the same test behavior in both integration orders. The

generated test cases cover the seven specified services. That means, we covered 100% of the

specified system functionality. Two test cases have been repeated in the second integration order

since they emulated a system component in the second iteration.

Table 13. Test generation results

Iteration
Integrated

Components

1st Integration Order

Generated Test Cases

2nd Integration Order

Generated Test Cases

1 2 2 2

2 3 3 2

3 4 2 5

Total 7 7 + 2

The results of test optimization are summarized in Table 14. The tools selected the seven test cases

that do not emulate system components, and excluded the two test cases of the second integration

order that emulate a system component. Furthermore, the complete acceptance test cases are

removed since they matched the selected test cases. Hence, engineers do not need to execute the

given acceptance test model during the acceptance-level testing for this particular case study.

This case study is used to demonstrate the functionalities of our tool. Further experiments

using industrial case studies should be performed with our tool. While we presented sequentially

the processes of the two approaches, we had merged some processes in our implementation. First,

the identification process and the selection process of the test generation approach are executed

101

together on the given test models since the detection of shared test objects in specific test cases

elected such test cases to be selected too. Second, the generation process and the optimization

process of the test generation approach are also combined to operate at the same time on the given

test cases. This combination should prevent the construction of redundant test cases. Finally, the

selection process of the optimization approach is embedded in the generation approach to detect

immediately test cases that emulate CUTs.

Table 14. Test optimization results

1st Integration Order

Test Cases

2nd Integration Order

Test Cases

Integration Test Models 7 9

Selected Test Cases 7 7

Acceptance Test Model 7 7

Excluded Test Cases 7 7

Optimized Acceptance Test Model 0 0

102

Chapter 7

Conclusion and Future work

7.1 Conclusion

Software testing is a critical activity in the software development process. In this dissertation, we

proposed a model based testing framework that relates and links different software testing levels

with enabled collaboration, automation, reusability and optimization. Two approaches have been

proposed in this framework: test generation and test optimization. In order to apply these

approaches, component test cases must be well-formed and must cover all component interfaces

and services.

To conduct our research in a rigorous manner, we used UML sequence diagrams, which have

been formally investigated [33-35], to build our test behavior. Test models are specified using

UML Testing Profile, which enables systematic transformation of the test models into test code

that is exercised on the IUT using well-known test execution environments, such as JUnit and

TTCN-3. Using standard notations enhances the collaboration and bridges the gap between the

development and testing activity. In contrary to the general software research stream, our research

is dedicated to bridge the gap between the software testing levels.

The framework enables reusability across the software testing levels. Test models are

systematically generated from preceding test models. We discussed the test generation approach

through the generation of integration test models from component test models. We defined a test

case merging operator to integrate component test cases that have a shared behavior. We have

implemented a prototype and demonstrated it on a case study.

Our framework also enables systematic test optimization across the software testing levels.

Test models are related to preceding test models to remove the ones that have already been

exercised. Test optimization reduces the size of the test models, shortens the test’s execution time

and reduces the cost of the software testing. We proposed an acceptance test optimization approach

that optimizes the acceptance test model by relating it to the integration test models. This approach

103

can be applied to the system test model without any modification. A prototype has been

implemented and demonstrated on a case study.

7.2 Future Work

The goal of this research is to contribute toward the reusability and optimization across the

software testing levels in the software process. Several issues remain open. In this subsection, we

point to several of these issues:

o Test model:

 We have worked on a subset of the proposed UTP test model. We focused on the

main parts of the UTP model: test package and test cases. The UTP test package

defines the test structure in details. Test cases specify the test behavior. We have

left-out two parts of the UTP model: test configuration and test architecture. UTP

test configurations work as test case setups and define the initial number of

instances of test objects and their connections at the start of a test case. UTP test

architecture describes the test package at high-level of abstractions. Our approach

can be extended to include such parts.

o Test generation approach:

 We discussed the outlines of the generation of the system test model from the

component test models. Further investigation is required. We believe that it can be

embedded into our approach to generate both integration and system test models at

the same time. During each integration iteration, the system test model is enriched

with test cases, and at the final iteration, the system test model will be fully

constructed.

o Test optimization approach:

 We believe that the optimization of the acceptance test model by relating it to the

system test model is simpler than relating it to the integration test models. The two

testing levels, system and acceptance, work on complete systems. The test models

have similar test architecture: test control and SUT. Further investigations for

optimizing acceptance test models using system test models can be undertaken.

104

7.3 Publications from the Thesis

The following research papers have been generated from this thesis.

[1] Mussa, M., Khendek, F.: "Towards a Model Based Approach for Integration Testing". In Ober,

I., Ober, I. (eds.) SDL 2011: Integrating System and Software Modeling, LNCS 7083, pp.

106-121, Springer Berlin Heidelberg, 2012.

[2] Mussa, M., Khendek, F.: "Identification and Selection of Interaction Test Scenarios for

Integration Testing". In Haugen, Ø., Reed, R., Gotzhein, R. (eds.) SAM2012: System

Analysis and Modeling: Theory and Practice, LNCS 7744, pp. 16-33, Springer Berlin

Heidelberg, 2013.

[3] Mussa, M., Khendek, F.: "Merging Test Models". In 2013 18th International Conference on

Engineering of Complex Computer Systems (ICECCS). pp. 167-170, IEEE, 2013.

[4] Mussa, M., Khendek, F.: "Acceptance test optimization". In Amyot, D., Fonseca, P., Casas, i.,

Mussbacher, G. (eds.) System Analysis and Modeling: Models and Reusability, SAM2014.

LNCS 8769, pp. 158-173. Springer International Publishing, 2014.

105

References

[1] Schmidt, R.: Software Engineering: Architecture-Driven Software Development. Elsevier,

Amsterdam, 2013.

[2] Tretmans, J., Brinksma, E.: “TorX: Automated Model Based Testing”. In Hartman, A.,

Dussa-Zieger, K. (eds.) First European Conference on Model-Driven Software Engineering.

pp. 13. Imbuss, Möhrendorf, Germany, 2003.

[3] Myers, G. J., Sandler, C., Badgett, T.: The Art of Software Testing. John Wiley & Sons,

Hoboken, N.J., 2012.

[4] Bertolino, A.: “Software Testing Research: Achievements, Challenges, Dreams”. In 2007

Future of Software Engineering. pp. 85-103. IEEE Computer Society, Washington, DC,

USA, 2007.

[5] Baker, P., Dai, Z. R., Grabowski, J., Haugen, Ø., Schieferdecker, I., Williams, C.: Model-

Driven Testing : Using the UML Testing Profile. Springer Berlin Heidelberg, 2008.

[6] Aichernig, B. K., Lorber, F., Tiran, S.: “Integrating Model-Based Testing and Analysis Tools

Via Test Case Exchange”. In Theoretical Aspects of Software Engineering (TASE), 2012

Sixth International Symposium on. pp. 119-126. IEEE, 2012.

[7] Grossmann, J., Fey, I., Krupp, A., Conrad, M., Wewetzer, C., Mueller, W.: "TestML - A test

exchange language for model-based testing of embedded software". In Broy, M., Krüger, I.,

Meisinger, M. (eds.) Model-Driven Development of Reliable Automotive Services. pp. 98-

117. Springer Berlin / Heidelberg, 2008.

[8] Ammann, P., Offutt, J.,: Introduction to Software Testing. Cambridge University Press, New

York, 2008.

[9] Shirole, M., Kumar, R.: "UML behavioral model based test case generation: A survey".

SIGSOFT Softw.Eng.Notes, vol. 38, pp. 1-13, july 2013.

[10] Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: “Empirical Assessment of

MDE in Industry”. In Proceeding of the 33rd International Conference on Software

Engineering. pp. 471-480. ACM, New York, NY, USA, 2011.

[11] Schmidt, D. C.: "Guest editor's introduction: Model-driven engineering," Computer, vol. 39,

pp. 25-31, February, 2006.

[12] Mellor, S. J.: MDA Distilled: Principles of Model-Driven Architecture. Addison-Wesley,

Boston, 2004.

106

[13] Mellor, S. J., Balcer, M. J.: Executable UML: A Foundation for Model-Driven Architecture.

Boston, 2002.

[14] Utting, M., Pretschner, A., Legeard, B.: "A taxonomy of model-based testing approaches".

Softw.Test.Verif.Reliab., vol. 22, pp. 297-312. Aug, 2012.

[15] Ulrich, A.: “Introducing model-based testing techniques in industrial projects”. Software

Engineering (Workshops). 2007. (Available:

http://subs.emis.de/LNI/Proceedings/Proceedings106/gi-proc-106-002.pdf, last accessed:

2014)

[16] OMG: Unified modeling language. 2014. (Available: http://www.uml.org, last accessed:

2014).

[17] OMG: Object management group. 2014. (Available: http://www.omg.org, last accessed:

2014).

[18] OMG: UML testing profile (UTP), version 1.2, (formal/2013-04-03). 2013. (Available:

http://www.omg.org/spec/UTP/1.2, last accessed: 2014).

[19] Liang, D., Xu, K.: “Test-Driven Component Integration with UML 2.0 Testing and

Monitoring Profile”. In 7th International Conference on Quality Software, QSIC 2007, pp.

32-39. IEEE Computer Society, Washington, DC, USA, 2007.

[20] Lamancha, B. P., Mateo, P. R., de Guzmán, I. R., Usaola, M. P., Velthius, M. P.: “Automated

Model-Based Testing using the UML Testing Profile and QVT”. In Proceedings of the 6th

International Workshop on Model-Driven Engineering, Verification and Validation. pp. 6:1-

6:10. ACM, New York, NY, USA, 2009.

[21] Baker, P., Jervis, C.: “Testing UML2.0 models using TTCN-3 and the UML2.0 testing

profile”. In Gaudin, E., Najm, E., Reed, R. (eds.) SDL 2007: Design for Dependable Systems.

pp. 86-100. Springer Berlin / Heidelberg, 2007.

[22] Busch, M., Chaparadza, R., Dai, Z. R., Hoffmann, A., Lacmene, L., Ngwangwen, T., Ndem,

G. C., Ogawa, H., Serbanescu, D., Schieferdecker, I., Zander-Nowicka, J.: “Model

Transformers for Test Generation from System Models”. In Proceedings of Conquest 2006,

10th International Conference on Quality Engineering in Software Technology, September

2006. pp. 1-16. Hanser Verlag, 2006.

[23] Pietsch, S., Stanca-Kaposta, B.: "Model-based testing with UTP and TTCN-3 and its

application to HL7," Testing Technologies IST GmbH, Conquest. Potsdam, Germany, 2008.

[24] Iyenghar, P.: "Test Framework Generation for Model-Based Testing in Embedded Systems".

In Software Engineering and Advanced Applications (SEAA), 2011 37th EUROMICRO

Conference on. pp. 267-274. IEEE, 2011.

http://subs.emis.de/LNI/Proceedings/Proceedings106/gi-proc-106-002.pdf
http://www.uml.org/
http://www.omg.org/
http://www.omg.org/spec/UTP/1.2;

107

[25] Iyenghar, P., Pulvermueller, E., Westerkamp, C.: "Towards Model-Based Test Automation

for Embedded Systems using UML and UTP". In Emerging Technologies Factory

Automation (ETFA), 2011 IEEE 16th Conference on. pp. 1-9. IEEE, 2011.

[26] Jingyue, Li, Slyngstad, O. P. N., Torchiano, M., Morisio, M., Bunse, C.: "A state-of-the-

practice survey of risk management in development with off-the-shelf software

components". Software Engineering, IEEE Transactions on, vol. 34, pp. 271-286, March,

2008.

[27] Budhija, N., Ahuja, S. P.: "Review of software reusability," In International Conference on

Computer Science and Information Technology (ICCSIT'2011). pp. 113-115. Pattaya Dec,

2011.

[28] Babu, G. N. K. S., Srivatsa, D. S. K.: "Analysis and measures of software reusability". In

IJRIC. pp. 41-46. 2009. (Available: http://www.ijric.org/volumes/Vol1/5Vol1.pdf, last

accessed: 2014).

[29] Biggerstaff, T. J., Perlis, A. J.: Software Reusability. ACM Press, New York, N.Y., 1989.

[30] JUnit. 2014. (Available: http://www.junit.org, last accessed: 2014).

[31] Willcock, C.: Introduction to TTCN-3. West Sussex, England; Hoboken, NJ, 2005.

[32] ETSI. Testing and test control notation, version 3 (TTCN-3). 2011. (Available:

http://www.ttcn-3.org, last accessed: 2014).

[33] ITU-T Recommendation: Z.120, "Message Sequence Charts (MSC)". Geneva, Switzerland,

1999.

[34] Lund, M., Stølen, K.: "A fully general operational semantics for UML 2.0 sequence

diagrams with potential and mandatory choice". In Misra, J., Nipkow, T., Sekerinski, E.

(eds.) FM 2006: Formal Methods. pp. 380-395. Springer Berlin Heidelberg, 2006.

[35] Xiaoshan, Li, Zhiming, Liu, He, Jifeng: “A Formal Semantics of UML Sequence Diagram”.

In Proceedings of Software Engineering Conference. pp. 168-177. Australian, 2004.

[36] Jazequel, J. M., Meyer, B.: "Design by contract: The lessons of ariane," Computer, vol. 30,

pp. 129-130, Jan., 1997.

[37] Takanen, A., Demott, J. D., Miller, C.: "Fuzzing for Software Security Testing and Quality

Assurance". Artech House, 2008.

[38] ITU-T Recommendation: Z.100, "specification and description language (SDL)". 2007.

(Available: http://www.itu.int/rec/T-REC-Z.100/en, last accessed: 2014).

[39] ISO: "ISO/IEC 13568 (2002), Information Technology -- Z Formal Specification Notation-

--Syntax, Type System and Semantics, ISO/IEC. First Edition." 2002.

http://www.ijric.org/volumes/Vol1/5Vol1.pdf
http://www.junit.org/
http://www.ttcn-3.org/
http://www.itu.int/rec/T-REC-Z.100/en

108

[40] Wang, Z., Li, B., Wang, L., Li, Q.: "A Brief Survey on Automatic Integration Test Order

Generation". In SEKE 2011 - Proceedings of the 23rd International Conference on Software

Engineering and Knowledge Engineering, July 7, 2011 - July 9. pp. 254-257. Knowledge

Systems Institute Graduate School, Miami, FL, United states, 2011.

[41] Abdurazik, A., Offutt, J.: "Using coupling-based weights for the class integration and test

order problem". The Computer Journal, vol. 52, pp. 557-570, Aug, 2009.

[42] Briand, L. C., Labiche, Y., Wang, Y.: "An investigation of graph-based class integration test

order strategies," IEEE Transactions on Software Engineering, vol. 29, pp. 594-607, 2003.

[43] Agarwal, B. B., Tayal, S. P., Gupta, M.: Software Engineering & Testing :An Introduction.

Jones and Bartlett Pub.. Sudbury, Mass., 2010.

[44] Valmari, A.: "The State Explosion Problem". In Advances in Petri Nets. pp. 429-528.

Spriner-Verlag, Berlin, Germany, 1998.

[45] Yuang, M. C.: "Survey of Protocol Verification Techniques Based on Finite State Machine

Models". In Proceedings of the Computer Networking Symposium. pp. 164-172. IEEE. 1988.

[46] OMG: OMG Model Driven Architecture (MDA). 2014. (Available:

http://www.omg.org/mda, last accessed: 2014).

[47] Mens, T., Van Gorp, P.: "A taxonomy of model transformation". Electronic Notes in

Theoretical Computer Science. vol. 152, pp. 125-142. Mar., 2006.

[48] Kurtev, I.: "State of the art of QVT: A model transformation language standard". In

Applications of graph transformations with industrial relevance. pp. 377-393. Springer

Berlin Heidelberg, 2008.

[49] Guldali, B., Mlynarski, M., Sancar, Y.: "Effort Comparison for Model-Based Testing

Scenarios". In Software Testing, Verification, and Validation Workshops (ICSTW), 2010

Third International Conference on. pp. 28-36. IEEE. 2010.

[50] Kleppe, A. G., Warmer, J. B., Bast, W.: MDA Explained: The Model Driven Architecture:

Practice and Promise. Addison-Wesley, Boston, MA, 2003.

[51] Stephan, M., Cordy, J. R.: "Application of Model Comparison Techniques to Model

Transformation Testing". In 1st International Conference on Model-Driven Engineering and

Software Development, MODELSWARD 2013, February 19, 2013 - February 21. pp. 307-

311. INSTICC Press, Barcelona, Spain, 2013.

[52] Kolovos, D. S., Paige, R. F., Polack, F. A. C.: "Model Comparison: A Foundation for Model

Composition and Model Transformation Testing". In Proceedings of the 2006 International

Workshop on Global Integrated Model Management. pp. 13-20. ACM, New York, NY,

USA, 2006.

http://www.omg.org/mda

109

[53] OMG: Unified Modeling Language (UML), infrastructure specification, version 2.2,

(formal/2009-02-04). 2009. (Available: http://www.omg.org/spec/UML/2.2/Infrastructure,

last accessed: 2014).

[54] OMG: Systems Modeling Language (SysML). 2010. (Available: http://www.omgsysml.org,

last accessed: 2014).

[55] Rehman, M. J., Jabeen, F., Bertolino, A., Polini, A.: "Testing software components for

integration: A survey of issues and techniques". Software Testing Verification and

Reliability, vol. 17, pp. 95-133, 2007.

 [56] Dias-Neto, A. C., Travassos, G. H.: "Evaluation of {Model-Based} Testing Techniques

Selection Approaches: An External Replication". In Empirical Software Engineering and

Measurement, 2009. ESEM 2009. 3rd International Symposium on. pp. 269-278. IEEE

Computer Society, 2009.

[57] Vidal, J., de Lamotte, F., Gogniat, G., Soulard, P., Diguet, J. P.: "A Co-Design Approach for

Embedded System Modeling and Code Generation with UML and MARTE". In 2009

Design, Automation & Test in Europe Conference & Exhibition (DATE'09). pp. 6. IEEE,

Piscataway, NJ, USA, 2009.

[58] Krishnan, P., Pari-Salas, P.: "Model-Based Testing and the UML Testing Profile". Semantics

and Algebraic Specification, pp. 315-328. Springer Berlin Heidelberg, 2009.

[59] Hou, X., Wang, Y., Zheng, H., & Tang, G.: "Integration Testing System Scenarios

Generation Based on UML". In Computer, Mechatronics, Control and Electronic

Engineering (CMCE), 2010 International Conference on. Vol. 1, pp. 271-273. IEEE, 2010.

[60] Cherif, S., Quadri, I. R., Meftali, S., Dekeyser, J. L.: "Modeling Reconfigurable Systems-

on-Chips with UML MARTE Profile: An Exploratory Analysis". In 2010 13th Euromicro

Conference on Digital System Design: Architectures, Methods and Tools (DSD). pp. 706-

713. IEEE Computer Society, Los Alamitos, CA, USA, 2010.

[61] Faria, J. P., Paiva, A. C. R., Yang, Z.: "Test Generation from UML Sequence Diagrams". In

Quality of Information and Communications Technology (QUATIC), 2012 Eighth

International Conference on the. pp. 245-250. IEEE, 2012.

[62] Douglass, B. P.: Real Time UML Workshop for Embedded Systems. Elsevier, Burlington,

MA, 2007.

[63] Le, H.: "A Collaboration-Based Testing Model for Composite Components". In Software

Engineering and Service Science (ICSESS), 2011 IEEE 2nd International Conference on.

pp. 610-613. Institute of Electrical and Electronics Engineers (IEEE), Beijing, China, 2011.

[64] Machado, P. D. L., Figueiredo, J. C. A., Lima, E. F. A., Barbosa, A. E. V., Lima, H. S.:

"Component-Based Integration Testing from UML Interaction Diagrams". In Systems, Man

and Cybernetics, 2007. ISIC. IEEE International Conference on. pp. 2679-2686. IEEE

Computer Society, Montréal, Canada, 2007.

http://www.omg.org/spec/UML/2.2/Infrastructure
http://www.omgsysml.org/

110

[65] OMG: Object Constraint Language (OCL), version 2.2, (formal/2010-02-01). 2010.

(Available: http://www.omg.org/spec/OCL, last accessed: 2014).

[66] El-Attar, M., Miller, J.: "Developing comprehensive acceptance tests from use cases and

robustness diagrams". Requirements Engineering, vol. 15, pp. 285-306, 2010.

[67] Rosenberg, D., Scott, K.: Use Case Driven Object Modeling with UML: A Practical

Approach. Addison-Wesley, Indianapolis, IN, USA, 1999.

[68] Fit: Framework for integrated test. 2014. (Available: http://fit.c2.com, last accessed: 2014).

[69] Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, 2002.

[70] Yuan, Q., Wu, J., Liu, C., Zhang, L.: "A Model Driven Approach Toward Business Process

Test Case Generation". In Web Site Evolution, 2008. WSE 2008. 10th International

Symposium on. pp. 41. IEEE. Beijing, China, 2008.

[71] Juric, M. B., Mathew, B., Sarang, P. G.: Business Process Execution Language for Web

Services: An Architect and Developer's Guide to Orchestrating Web Services using

BPEL4WS. Packt Publishing Ltd, 2006.

[72] El-Fakih, K., Petrenko, A., Yevtushenko, N.: "FSM test translation through context". In

Uyar, M., Duale, A., Fecko, M. (eds.) Testing of Communicating Systems. pp. 245-258.

Springer Berlin / Heidelberg, 2006.

[73] Berrada, I., Castanet, R., Félix, P.: "Testing communicating systems: A model, a

methodology, and a tool". In Khendek, F., Dssouli, R. (eds.) Testing of Communicating

Systems. pp. 111-128. Springer Berlin / Heidelberg, 2005.

[74] Gotzhein, R., Khendek, F.: "Compositional Testing of Communication Systems". In Uyar,

M.Ü., Duale, A.Y., Fecko, M.A. (eds.) The 18th IFIP International Conference on Testing

of Communicating Systems, TestCom 2006, may 16, 2006 - may 18. LNCS 3964, pp. 227-

244. Springer Verlag, New York, NY, United states, 2006.

[75] Xie, G., Dang, Z.: "Testing systems of concurrent black-boxes—An automata-theoretic and

decompositional approach". In Grieskamp, W., Weise, C. (eds.) Formal Approaches to

Software Testing. pp. 170-186. Springer Berlin / Heidelberg, 2006.

[76] Haugset, B., Hanssen, G. K.: "Automated Acceptance Testing: A Literature Review and an

Industrial Case Study". In Agile, 2008. AGILE '08. Conference. pp. 27-38. IEEE Computer

Society, Washington, DC, USA, 2008.

[77] Fortsch, S., Westfechtel, B.: "Differencing and Merging of Software Diagrams: State of the

Art and Challenges". In ICSOFT 2007 - International Conference on Software and Data

Technologies. pp. 90-99. INSTICC Press, 2007.

http://www.omg.org/spec/OCL
http://fit.c2.com/

111

[78] Roy, C. K., Cordy, J. R., Koschke, R.: "Comparison and evaluation of code clone detection

techniques and tools: A qualitative approach". Science of Computer Programming, vol. 74,

pp. 470-495. 2009.

[79] Stephan, M., Cordy, J. R.: "A Survey of Model Comparison Approaches and Applications".

In 1st International Conference on Model-Driven Engineering and Software Development,

MODELSWARD 2013, February 19, 2013 - February 21. pp. 265-277. INSTICC Press,

Barcelona, Spain, 2013.

[80] Mens, T.: "A state-of-the-art survey on software merging," IEEE Transactions on Software

Engineering, vol. 28, pp. 449-462. IEEE, 2002.

[81] Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M.: "An Introduction

to Model Versioning". In Proceedings of the 12th International Conference on Formal

Methods for the Design of Computer, Communication, and Software Systems: Formal

Methods for Model-Driven Engineering. pp. 336-398. Springer-Verlag, Berlin, Heidelberg,

2012.

[82] Störrle, H.: "Towards Clone Detection in UML Domain Models". In Proceedings of the

Fourth European Conference on Software Architecture: Companion Volume. pp. 285-293.

ACM, New York, NY, USA, 2010.

[83] Stephan, M., Cordy, J. R.: "A survey of methods and applications of model comparison".

Queen’s Univ., Tech.Rep, vol. 582, 2011.

[84] Xing, Z., Stroulia, E.: "UMLDiff: An Algorithm for Object-Oriented Design Differencing".

In Proceedings of the 20th IEEE/ACM International Conference on Automated Software

Engineering. pp. 54-65. ACM, New York, NY, USA, 2005.

[85] Maoz, S., Ringert, J. O., Rumpe, B.: "A Manifesto for Semantic Model Differencing". In

Proceedings of the 2010 International Conference on Models in Software Engineering. pp.

194-203. Springer-Verlag, Berlin, Heidelberg, 2011.

[86] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: "Matching and Merging

of Statecharts Specifications". In 29th International Conference on Software Engineering,

ICSE 2007. pp. 54-64. IEEE Computer Society, 2007.

[87] Liu, H., Niu, Z., Ma, Z., Shao, W.: "Suffix tree-based approach to detecting duplications in

sequence diagrams". IET Software, vol. 5, pp. 385-397. 2011.

[88] Klein, J., Caillaud, B., Hélouët, L.: "Merging Scenarios". In Proceedings of the Ninth

International Workshop on Formal Methods for Industrial Critical Systems (FMICS 2004),

June 25, 2003 - June 27. LNCS 133, pp. 193-215. Elsevier, Amsterdam, The Netherlands,

2005.

[89] Hélouët, L., Hénin, T., Chevrier, C.: "Automating Scenario Merging". In Gotzhein, R., Reed,

R. (eds.) System Analysis and Modeling: Language Profiles. LNCS 4320, pp. 64-81.

Springer Berlin Heidelberg, 2006.

112

[90] Yu, Y., Jones, J. A., Harrold, M. J.: "An Empirical Study of the Effects of Test-Suite

Reduction on Fault Localization". In Proceedings of the 30th International Conference on

Software Engineering. pp. 201-210. ACM, New York, NY, USA, 2008.

[91] Zhong, H., Zhang, L., Mei, H.: "An Experimental Comparison of Four Test Suite Reduction

Techniques". In Proceedings of the 28th International Conference on Software Engineering.

pp. 636-640. ACM, New York, NY, USA, 2006.

[92] Tallam, S., Gupta, N.: "A Concept Analysis Inspired Greedy Algorithm for Test Suite

Minimization". In Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering. pp. 35-42. ACM, New York, NY, USA, 2005.

[93] Chen, W., Ying, Q., Xue, Y., Zhao, C.: "Software testing process automation based on UTP

– a case study". In Li, M., Boehm, B., Osterweil, L. (eds.) Unifying the Software Process

Spectrum. pp. 222-234. Springer Berlin / Heidelberg, 2006.

[94] Shiva, S. G., Shala, L. A.: "Software Reuse: Research and Practice". In ITNG. pp. 603-609.

2007.

[95] Frakes, W., Terry, C.: "Software reuse: Metrics and models". ACM Comput.Surv., vol. 28,

pp. 415-435, June, 1996.

[96] Frakes, W. B., Kang, K.: "Software reuse research: Status and future," IEEE Trans. Software

Eng., vol. 31, pp. 529-536, 2005.

[97] Szyperski, C.: "Component Technology: What, Where, and how?". In Proceedings of the

25th International Conference on Software Engineering. pp. 684-693. IEEE Computer

Society, Washington, DC, USA, 2003.

[98] Gross, H.: Component-Based Software Testing with UML. Springer, Berlin, 2005.

[99] Lee, J., Kang, S., Lee, D.: "A Survey on Software Product Line Testing". In Proceedings of

the 16th International Software Product Line Conference - Volume 1. pp. 31-40. ACM, New

York, NY, USA, 2012.

[100] Khendek, F., Bochmann, G. V.: "Merging behavior specifications," Formal Methods Syst.

Des., vol. 6, pp. 259-293, 1995.

[101] ATL. 2014. (Available: http://www.eclipse.org/atl, last accessed: 2014).

[102] medini QVT, 2012. (Available: http://projects.ikv.de/qvt, last accessed: 2014).

[103] QVT Operational, 2014. (Available: http://projects.eclipse.org/projects/modeling.mmt.qvt-

oml, last accessed: 2014).

[104] QVTd, 2014. (Available: http://projects.eclipse.org/projects/modeling.mmt.qvtd, last

accessed: 2014).

http://www.eclipse.org/atl/
http://projects.ikv.de/qvt
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
http://projects.eclipse.org/projects/modeling.mmt.qvtd

113

[105] ModTransf V3, 2014. (Available: http://www.lifl.fr/~dumoulin/modTransf/, last accessed:

2014).

[106] Eclipse UML Editor, 2012. (Available: http://wiki.eclipse.org/MDT-UML2Tools, last

accessed: 2014).

[107] UMLet, 2014. (Available: http://marketplace.eclipse.org/content/umlet-uml-tool-fast-uml-

diagrams#.VFbzpfnF-So, last accessed: 2014).

[108] Papyrus, 2014. (Available: https://projects.eclipse.org/projects/modeling.mdt.papyrus, last

accessed: 2014).

[109] Visual Paradigm, 2014. (Available: http://www.visual-paradigm.com/features/uml-and-

sysml-modeling/, last accessed: 2014).

[110] Modelio, 2014. (Available: http://www.modelio.org/downloads/download-modelio.html,

last accessed: 2014).

 [111] OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation specification (QVT),

version 1.1. 2011. (Available: http://www.omg.org/spec/QVT, last accessed: 2014).

[112] Steinberg, D.: EMF :Eclipse Modeling Framework. Addison-Wesley, Upper Saddle River,

NJ, 2009.

http://www.lifl.fr/~dumoulin/modTransf/
http://marketplace.eclipse.org/content/umlet-uml-tool-fast-uml-diagrams#.VFbzpfnF-So
http://marketplace.eclipse.org/content/umlet-uml-tool-fast-uml-diagrams#.VFbzpfnF-So
https://projects.eclipse.org/projects/modeling.mdt.papyrus
http://www.visual-paradigm.com/features/uml-and-sysml-modeling/
http://www.visual-paradigm.com/features/uml-and-sysml-modeling/
http://www.modelio.org/downloads/download-modelio.html
http://www.omg.org/spec/QVT

114

Appendix A

Properties of the Integration Test Generation

Approach

System integration may take different strategies: top-down, bottom-up, ad-hoc and big-bang, and

different sequences/orders to integrate the system components. The generated test models for the

same set of system components should be equivalent regardless of the adopted integration strategy

and order. The intermediate results, at a given step, may not be equivalent since they integrate

different sets of components.

Test cases are equivalent when they specify the same behavior. We define the equivalence

between two test cases, t1 and t2 as follows:

Definition 11. (Test Case Equivalence)

Let t1 = (I1 , E1 , R1) and t2 = (I2 , E2 , R2) be two test cases, then t1 is equivalent to t2 if and

only if the following three conditions are satisfied:

1. I1 = I2

2. E1 = E2

3. R1 = R2

Therefore, the generated test cases are equivalent if and only if our approach has two

properties: commutativity and associativity. The integration expression, Definition 7, uses the

union operator and two special functions, f() and g(). In mathematics, the union operator has the

commutative and associative properties. Therefore, we need to investigate the commutative and

associative properties of our integration expression.

A.1. System Specification

Systems are composed of a set of components. Each component has internal and/or external

interfaces. Internal interfaces are used to communicate among the system components. External

interfaces are used to communicate with the system environment. The general system architecture

115

can be described as shown in Figure 56. A system with three components is adequate to investigate

the commutative and associative properties.

To simplify our investigation, we assume test cases consist of two instances only: CUT and

test control. The test control represents the behavior of the test environment in addition to

controlling the test execution. The test environment represents the system environment as well as

system components that are not yet realized during the test execution. We also assume, for

simplicity, that each component has one component test case.

The system is composed of three components, A, B and C, and each component has one

component test case: t1, t2 and t3 respectively. We assume there is an interaction between these

components, and the test cases capture these interactions. The events of each component are

organized into several sets to represent the corresponding component interfaces. Accordingly, sets

and relations for each test case are split into several subsets to indicate such organization. The

specification for each component test case is given as follows:

t1 = (I1 , E1 , R1)

 I1 = { tc1, a }

 E1 = e11 U e12 U e13, where

 e11 a set of events specified only in t1

 e12 a set of events specified in both t1 and t2

 e13 a set of events specified in both t1 and t3

 R1 = R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133, where

 R111  e11 x e11

 R112  e11 x e12

 R113  e11 x e13

 R121  e12 x e11

 R122  e12 x e12

 R123  e12 x e13

 R131  e13 x e11

 R132  e13 x e12

 R133  e13 x e13

t2 = (I2 , E2 , R2)

 I2 = { tc2, b }

 E2 = e21 U e22 U e23, where

 e21 a set of events specified in both t2 and t1

 e22 a set of events specified only in t2

116

 e23 a set of events specified in both t2 and t3

 R2 = R211 U R212 U R213 U R221 U R222 U R223 U R231 U R232 U R233, where

 R211  e21 x e21

 R212  e21 x e22

 R213  e21 x e23

 R221  e22 x e21

 R222  e22 x e22

 R223  e22 x e23

 R231  e23 x e21

 R232  e23 x e22

 R233  e23 x e23

Figure 56. General system architecture

t3 = (I3 , E3 , R3)

 I3 = { tc3, c }

 E3 = e31 U e32 U e33, where

 e31 a set of events specified in both t3 and t1

 e32 a set of events specified in both t3 and t2

 e33 a set of events specified only in t3

 R3 = R311 U R312 U R313 U R321 U R322 U R323 U R331 U R332 U R333, where

 R311  e31 x e31

 R312  e31 x e32

 R313  e31 x e33

A

B C

e11

e12

e21

e22 e23 e32

e13

e31

e33

R111

R112

R121
R113

R131

R122

R123

R132

R133

117

 R321  e32 x e31

 R322  e32 x e32

 R323  e32 x e33

 R331  e33 x e31

 R332  e33 x e32

 R333  e33 x e33

Please notice that

e12 = e21

e13 = e31

e23 = e32

R122 = R211

R133 = R311

R233 = R322

We have to bring to your attention that if there is no interaction between two components, then

their corresponding variables, sets and relations will be empty; for examples, suppose there is no

interaction between A and C then

e13 = {},

e31 = {},

R113 = {},

R123 = {},

R131 = {},

R132 = {},

R133 = {},

R311 = {},

R312 = {},

R313 = {},

R321 = {} and

R331 = {}

The approach creates the test control for the generated test model and builds its behavior by

merging the behavior of the test controls of the given test models, which we call tci.

A.2. Commutativity Property

To satisfy the commutative property of our approach for any two components, say A and B, we

should demonstrate that the integration of their component test cases, t1 and t2 respectively,

118

generates equivalent behaviors independent of the integration order: (A + B) or (B + A). That

means

t1 + t2 = t2 + t1 

By using Definition 3 and Definition 7, we get

(g(I1) U g(I2), f(E1) U f(E2), f(R1) U f(R2)) = (g(I2) U g(I1), f(E2) U f(E1), f(R2) U f(R1))

Hence, to validate eq. , we need to show that

g(I1) U g(I2) = g(I2) U g(I1) 

f(E1) U f(E2) = f(E2) U f(E1) 

f(R1) U f(R2) = f(R2) U f(R1) 

Let us evaluate the left side of eq.  first by substituting the values of I1 and I2 and using our

equivalent definition, Definition 11.

g(I1) U g(I2) = g({ tc1, a }) U g({ tc2, b })

Then, we apply the g() function

g(I1) U g(I2) = { tci, a } U { tci, b }

Then, we apply the union operator

g(I1) U g(I2) = { tci, a, b }

Next, we perform the same sequence on the right side of eq. 

g(I2) U g(I1) = g({ tc2, b }) U g({ tc1, a })

 = { tci, b } U { tci, a }

 = { tci, b, a }

The two sides are equivalent. Thus, we say eq.  holds to be correct. We are going to take the

same evaluation approach with eq. . First, we evaluate the left side of eq. .

f(E1) U f(E2) = f(e11 U e12 U e13) U f(e21 U e22 U e23)

Since e12 = e21, the f() function replaces e21 with e12

f(E1) U f(E2) = e11 U e12 U e13 U e12 U e22 U e23

 = e11 U e12 U e13 U e22 U e23

Then, we evaluate the right side of eq. .

f(E2) U f(E1) = f(e21 U e22 U e23) U f(e11 U e12 U e13)

Since e12 = e21, the f() function replaces e21 with e12

f(E2) U f(E1) = e12 U e22 U e23 U e11 U e12 U e13

 = e12 U e22 U e23 U e11 U e13

Hence, the two sides are equivalent, and this proves that eq.  holds true. The same evaluation

approach will be applied on eq. . We take the left side of the equation first.

119

f(R1) U f(R2) = f(R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133) U f(R211 U R212 U R213 U

R221 U R222 U R223 U R231 U R232 U R233)

Since R122 = R211, the f() function replaces R211 with R122

f(R1) U f(R2) = R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133 U R122 U R212 U R213 U R221 U

R222 U R223 U R231 U R232 U R233

 = R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133 U R212 U R213 U R221 U R222 U

R223 U R231 U R232 U R233

The next step is to evaluate the right side of eq. .

f(R2) U f(R1) = f(R211 U R212 U R213 U R221 U R222 U R223 U R231 U R232 U R233) U f(R111 U R112 U R113 U

R121 U R122 U R123 U R131 U R132 U R133)

 = R122 U R212 U R213 U R221 U R222 U R223 U R231 U R232 U R233 U R111 U R112 U R113 U R121

U R122 U R123 U R131 U R132 U R133

 = R122 U R212 U R213 U R221 U R222 U R223 U R231 U R232 U R233 U R111 U R112 U R113 U R121 U

R123 U R131 U R132 U R133

The results of both sides of  are equivalent. Since equations ,  and  are passed; then

equation  holds true too. Hence, the commutative property holds true in the integration approach.

A.3. Associativity Property

To satisfy the associative property of the integration approach for any three components, A, B and

C, we should demonstrate that the integration of their component test cases, t1, t2 and t3

respectively, generate the same behavior in any integration order. In other words, we should satisfy

the following expression.

t1 + (t2 + t3) = (t1 + t2) + t3 

By using Definition 3 and Definition 7, we can refactor eq.  as follows:

g(I1) U (g(I2) U g(I3)) = (g(I1) U g(I2)) U g(I3) 

 f(E1) U (f(E2) U f(E3)) = (f(E1) U f(E2)) U f(E3) 

f(R1) U (f(R2) U f(R3)) = (f(R1) U f(R2)) U f(R3) 

Hence, we have to prove the correctness of eq. ,  and , so eq.  will hold true. Let us

start by examining eq. . First, we evaluate the left side of the equation.

g(I1) U (g(I2) U g(I3)) = g({tc1, a}) U (g({tc2, b}) U g({tc3, c}))

Then, we apply g()

 = {tci, a} U ({tci, b} U {tci, c})

 = {tci, a} U {tci, b, c}

 = {tci, a, b, c}

Then, take the right side of eq. 

120

(g(I1) U g(I2)) U g(I3) = (g({tc1, a}) U g({tc2, b})) U g({tc3, c})

 = ({tci, a} U {tci, b}) U {tci, c}

 = {tci, a, b} U {tci, c}

 = {tci, a, b, c}

The two sides are equivalent. Thus, we can say eq.  is correct. We are going to take the same

evaluation approach with eq. . First, we evaluate the left side of eq. .

f(E1) U (f(E2) U f(E3)) = f(e11 U e12 U e13) U (f(e21 U e22 U e23) U f(e31 U e32 U e33))

Then, we apply f(), which replaces the following sets

e12 = e21,

e13 = e31 and

e23 = e32.

f(E1) U (f(E2) U f(E3)) = (e11 U e12 U e13) U ((e12 U e22 U e23) U (e13 U e23 U e33))

 = (e11 U e12 U e13) U (e12 U e22 U e23 U e13 U e33)

 = e11 U e12 U e13 U e22 U e23 U e33

Then, we evaluate the right side of eq. .

(f(E1) U f(E2)) U f(E3) = (f(e11 U e12 U e13) U f(e21 U e22 U e23)) U f(e31 U e32 U e33)

 = ((e11 U e12 U e13) U (e12 U e22 U e23)) U (e13 U e23 U e33)

 = (e11 U e12 U e13 U e22 U e23) U (e13 U e23 U e33)

 = e11 U e12 U e13 U e22 U e23 U e33

Therefore, the two sides are equivalent, and that proves that eq.  holds true. The same

evaluation approach will be applied on eq. . We take the left side of the equation first.

f(R1) U (f(R2) U f(R3)) = f(R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133) U (f(R211 U R212

U R213 U R221 U R222 U R223 U R231 U R232 U R233) U f(R311 U R312 U R313 U R321 U R322 U R323 U R331

U R332 U R333))

Then, we apply f(), which replaces the following relations

R122 = R211,

R133 = R311 and

R233 = R322

f(R1) U (f(R2) U f(R3)) = (R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133) U ((R122 U R212 U

R213 U R221 U R222 U R223 U R231 U R232 U R233) U (R133 U R312 U R313 U R321 U R233 U R323 U R331

U R332 U R333))

 = (R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133) U (R122 U R212 U R213 U R221 U

R222 U R223 U R231 U R232 U R233 U R133 U R312 U R313 U R321 U R323 U R331 U R332 U R333)

 = R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133 U R212 U R213 U R221 U R222 U

R223 U R231 U R232 U R233 U R312 U R313 U R321 U R323 U R331 U R332 U R333

The next step is to evaluate the right side of eq. .

121

(f(R1) U f(R2)) U f(R3) = (f(R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133) U f(R211 U R212

U R213 U R221 U R222 U R223 U R231 U R232 U R233)) U f(R311 U R312 U R313 U R321 U R322 U R323

U R331 U R332 U R333)

Then, we apply f()

= ((R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133) U (R122 U R212 U R213 U R221

U R222 U R223 U R231 U R232 U R233)) U (R133 U R312 U R313 U R321 U R233 U R323 U R331 U R332 U

R333)

= (R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133 U R212 U R213 U R221 U R222 U

R223 U R231 U R232 U R233) U (R133 U R312 U R313 U R321 U R233 U R323 U R331 U R332 U R333)

= R111 U R112 U R113 U R121 U R122 U R123 U R131 U R132 U R133 U R212 U R213 U R221 U R222 U

R223 U R231 U R232 U R233 U R312 U R313 U R321 U R323 U R331 U R332 U R333

The results of both sides of  are equivalent. Since equations ,  and  are passed; then

equation  holds true too. Hence, the associative property holds true for the integration approach.

122

Appendix B

Case Study: Specifications

We built the specification of a simple library system to demonstrate our framework. The system

architecture is described in Section B.1. Component test models are described in Section B.2. The

acceptance test model is described in Section B.3.

B.1. System Specification

The system is composed of four components: Librarian, Member, Media and Booking as shown

in Figure 57. The Librarian component provides the necessary services for the librarians, while

the Member component provides the necessary services for the subscribers. The Media component

manages the records of different media that hold in the library such as books, DVDs, maps, etc.

The Booking component manages the reservation of the library media by subscribers.

Figure 57. Library system architecture

B.2. Component Test Models

Four component test models are developed. They cover the basic services provided by the library

system, which are:

 For the librarians

123

1 Add new media

2 Add new member

3 Browse media

4 Browse members

 For the subscribers

1 Browse media

2 Reserve media

3 Return media

The Librarian test model is illustrated in Figure 58. Using Definitions 1-4, we express the

given test model as

LibrarianTM = (P, T)

P = (tcn, tcm, sut)

 tcn = LibTstCntrl

 tcm = { }

 sut = { Librarian }

T = { TestCaseAddMedia, TestCaseAddMember, TestCaseBrowseMedia, TestCaseBrowseMembers }

TestCaseAddMedia = ({libTstCntrl, librarian}, {e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11, e12,e13}, {(e1,e2),

(e2,e3), (e3,e4), (e4,e7), (e2,e5), (e5,e6), (e6,e7), (e8,e9), (e9,e10), (e10,e11), (e9,e12), (e12,e13),

(e1,e8), (e9,e2), (e3,e10), (e11,e4), (e5,e12), (e13,e6), (e1,e3), (e1,e5), (e2,e4), (e2,e10), (e3,e7),

(e2,e6), (e2,e12), (e5,e7), (e8,e10), (e8,e12), (e8,e2), (e9,e11), (e10,e4), (e9,e13), (e12,e6), (e1,e9),

(e9,e3), (e9,e5), (e3,e11), (e11,e7), (e5,e13), (e13,e7), (e1,e4), (e1,e10), (e1,e6), (e1,e12), (e2,e7),

(e2,e11), (e2,e13), (e8,e11), (e8,e13), (e8,e3), (e8,e5), (e9,e4), (e10,e7), (e9,e6), (e12,e7), (e1,e7),

(e1,e11), (e1,e13), (e8,e4), (e8,e6), (e9,e7), (e8,e7)})

TestCaseAddMember = ({libTstCntrl, librarian}, {e14,e15,e16,e17,e18,e19,e20,e21,

e22,e23,e24,e25,e26}, {(e14,e15), (e15,e16), (e16,e17), (e17,e20), (e15,e18), (e18,e19), (e19,e20),

(e21,e22), (e22,e23), (e23,e24), (e22,e25), (e25,e26), (e14,e21), (e22,e15), (e16,e23), (e24,e17),

(e18,e25), (e26,e19), (e14,e16), (e14,e18), (e15,e17), (e15,e23), (e16,e20), (e15,e19), (e15,e25),

(e18,e20), (e21,e23), (e21,e25), (e21,e15), (e22,e24), (e23,e17), (e22,e26), (e25,e19), (e14,e22),

(e22,e16), (e22,e18), (e16,e24), (e24,e20), (e18,e26), (e26,e20), (e14,e17), (e14,e23), (e14,e19),

(e14,e25), (e15,e20), (e15,e24), (e15,e26), (e21,e24), (e21,e26), (e21,e16), (e21,e18), (e22,e17),

(e23,e20), (e22,e19), (e25,e20), (e14,e20), (e14,e24), (e14,e26), (e21,e17), (e21,e19), (e22,e20),

(e21,e20)})

124

Figure 58. Librarian test model (LibrarianTM)

TestCaseBrowseMedia = ({libTstCntrl, librarian}, {e27,e28,e29,e30,e31,e32,e33,e34, e35}, {(e27,e28),

(e28,e29), (e29,e30), (e30,e31), (e32,e33), (e33,e34), (e34,e35), (e27,e32), (e33,e28), (e29,e34),

(e35,e30), (e27,e29), (e28,e30), (e28,e34), (e29,e31), (e32,e34), (e32,e28), (e33,e35), (e34,e30),

(e27,e33), (e33,e29), (e29,e35), (e35,e31), (e27,e30), (e27,e34), (e28,e31), (e28,e35), (e32,e35),

(e32,e29), (e33,e30), (e34,e31), (e27,e31), (e27,e35), (e32,e30), (e33,e31), (e32,e31)})

TestCaseBrowseMembers = ({libTstCntrl, librarian}, {e36,e37,e38,e39,e40,e41, e42,e43,e44}, {(e36,e37),

(e37,e38), (e38,e39), (e39,e40), (e41,e42), (e42,e43), (e43,e44), (e36,e41), (e42,e37), (e38,e43),

(e44,e39), (e36,e38), (e37,e39), (e37,e43), (e38,e40), (e41,e43), (e41,e37), (e42,e44), (e43,e39),

(e36,e42), (e42,e38), (e38,e44), (e44,e40), (e36,e39), (e36,e43), (e37,e40), (e37,e44), (e41,e44),

(e41,e38), (e42,e39), (e43,e40), (e36,e40), (e36,e44), (e41,e39), (e42,e40), (e41,e40)})

The Member test model is illustrated in Figure 59. Using Definitions 1-4, we express the given

test model as

125

Figure 59. Member test model (MemberTM)

MemberTM = (P, T)

P = (tcn, tcm, sut)

 tcn = MemTstCntrl

 tcm = { }

 sut = { Member }

T = { TestCaseAddMember, TestCaseBrowseMembers, TestCaseBrowseMedia, TestCaseRsrvMedia,

TestCaseRtrnMedia}

126

TestCaseAddMember = ({memTstCntrl, member}, {e51,e52,e53,e54,e55,e56,e57}, {(e51,e52), (e51,e53),

(e52,e54), (e53,e54), (e55,e56), (e55,e57), (e51,e55), (e56,e52), (e57,e53), (e51,e54), (e55,e52),

(e55,e53), (e51,e56), (e51,e57), (e56,e54), (e57,e54), (e55,e54)})

TestCaseBrowseMembers = ({memTstCntrl, member}, {e58,e59,e60,e61,e62}, {(e58,e59), (e59,e60),

(e61,e62), (e58,e61), (e62,e59), (e58,e60), (e61,e59), (e58,e62), (e62,e60), (e61,e60)})

TestCaseBrowseMedia = ({memTstCntrl, member}, {e63,e64,e65,e66,e67,e68,e69, e70,e71}, {(e63,e64),

(e64,e65), (e65,e66), (e66,e67), (e68,e69), (e69,e70), (e70,e71), (e63,e68), (e69,e64), (e65,e70),

(e71,e66), (e63,e65), (e64,e66), (e64,e70), (e65,e67), (e68,e70), (e68,e64), (e69,e71), (e70,e66),

(e63,e69), (e69,e65), (e65,e71), (e71,e67), (e63,e66), (e63,e70), (e64,e67), (e64,e71), (e68,e71),

(e68,e65), (e69,e66), (e70,e67), (e63,e67), (e63,e71), (e68,e66), (e69,e67), (e68,e67)})

TestCaseRsrvMedia = ({memTstCntrl, member}, {e72,e73,e74,e75,e76,e77,e78,

e79,e80,e81,e82,e83,e84}, {(e72,e73), (e73,e74), (e74,e75), (e75,e78), (e73,e76), (e76,e77),

(e77,e78), (e79,e80), (e80,e81), (e81,e82), (e80,e83), (e83,e84), (e72,e79), (e80,e73), (e74,e81),

(e82,e75), (e76,e83), (e84,e77), (e72,e74), (e72,e76), (e73,e75), (e73,e81), (e74,e78), (e73,e77),

(e73,e83), (e76,e78), (e79,e81), (e79,e83), (e79,e73), (e80,e82), (e81,e75), (e80,e84), (e83,e77),

(e72,e80), (e80,e74), (e80,e76), (e74,e82), (e82,e78), (e76,e84), (e84,e78), (e72,e75), (e72,e81),

(e72,e77), (e72,e83), (e73,e78), (e73,e82), (e73,e84), (e79,e82), (e79,e84), (e79,e74), (e79,e76),

(e80,e75), (e81,e78), (e80,e77), (e83,e78), (e72,e78), (e72,e82), (e72,e84), (e79,e75), (e79,e77),

(e80,e78), (e79,e78)})

TestCaseRtrnMedia = ({memTstCntrl, member}, {e85,e86,e87,e88,e89,e90,e91, e92,e93}, {(e85,e86),

(e86,e87), (e87,e88), (e88,e89), (e90,e91), (e91,e92), (e92,e93), (e85,e90), (e91,e86), (e87,e92),

(e93,e88), (e85,e87), (e86,e88), (e86,e92), (e87,e89), (e90,e92), (e90,e86), (e91,e93), (e92,e88),

(e85,e91), (e91,e87), (e87,e93), (e93,e89), (e85,e88), (e85,e92), (e86,e89), (e86,e93), (e90,e93),

(e90,e87), (e91,e88), (e92,e89), (e85,e89), (e85,e93), (e90,e88), (e91,e89), (e90,e89)})

The Media test model is illustrated in Figure 60. Using Definitions 1-4, we express the given test

model as

MediaTM = (P, T)

P = (tcn, tcm, sut)

 tcn = MedTstCntrl

 tcm = { }

 sut = { Media }

T = { TestCaseAddMedia, TestCaseLibBrowseMedia, TestCaseMemBrowseMedia, TestCaseRsrvMedia,

TestCaseRtrnMedia}

TestCaseAddMedia = ({medTstCntrl, media}, {e101,e102,e103,e104,e105,e106, e107}, {(e101,e102),

(e101,e103), (e102,e104), (e103,e104), (e105,e106), (e105,e107), (e101,e105), (e106,e102),

127

(e107,e103), (e101,e104), (e105,e102), (e105,e103), (e101,e106), (e101,e107), (e106,e104),

(e107,e104), (e105,e104)})

TestCaseLibBrowseMedia = ({medTstCntrl, media}, {e108,e109,e110,e111,e112}, {(e108,e109),

(e109,e110), (e111,e112), (e108,e111), (e112,e109), (e108,e110), (e111,e109), (e108,e112),

(e112,e110), (e111,e110)})

TestCaseMemBrowseMedia = ({medTstCntrl, media}, {e113,e114,e115,e116,e117}, {(e113,e114),

(e114,e115), (e116,e117), (e113,e116), (e117,e114), (e113,e115), (e116,e114), (e113,e117),

(e117,e115), (e116,e115)})

TestCaseRsrvMedia = ({medTstCntrl, media}, {e118,e119,e120,e121,e122,e123, e124}, {(e118,e119),

(e119,e121), (e118,e120), (e120,e121), (e122,e123), (e122,e124), (e118,e122), (e123,e119),

(e124,e120), (e118,e121), (e122,e119), (e122,e120), (e118,e123), (e118,e124), (e123,e121),

(e124,e121), (e122,e121)})

TestCaseRtrnMedia = ({medTstCntrl, media}, {e125,e126,e127,e128,e129}, {(e125,e126), (e126,e127),

(e128,e129), (e125,e128), (e129,e126), (e125,e127), (e128,e126), (e125,e129), (e129,e127),

(e128,e127)})

Figure 60. Media test model (MediaTM)

128

The Booking test model is illustrated in Figure 61. Using Definitions 1-4, we express the given

test model as

Figure 61. Booking test model (BookingTM)

BookingTM = (P, T)

P = (tcn, tcm, sut)

 tcn = BookTstCntrl

 tcm = { }

 sut = { Booking }

T = { TestCaseRsrvMedia, TestCaseRtrnMedia }

TestCaseRsrvMedia = ({bookTstCntrl, booking}, {e160,e161,e162,e163,e164,e165,

e166,e167,e168,e169,e170,e171,e172}, {(e160,e161), (e161,e162), (e162,e163), (e163,e166),

(e161,e164), (e164,e165), (e165,e166), (e167,e168), (e168,e169), (e169,e170), (e168,e171),

(e171,e172), (e160,e167), (e168,e161), (e162,e169), (e170,e163), (e164,e171), (e172,e165),

(e160,e162), (e160,e164), (e161,e163), (e161,e169), (e162,e166), (e161,e165), (e161,e171),

(e164,e166), (e167,e169), (e167,e171), (e167,e161), (e168,e170), (e169,e163), (e168,e172),

(e171,e165), (e160,e168), (e168,e162), (e168,e164), (e162,e170), (e170,e166), (e164,e172),

(e172,e166), (e160,e163), (e160,e169), (e160,e165), (e160,e171), (e161,e166), (e161,e170),

(e161,e172), (e167,e170), (e167,e172), (e167,e162), (e167,e164), (e168,e163), (e169,e166),

(e168,e165), (e171,e166), (e160,e166), (e160,e170), (e160,e172), (e167,e163), (e167,e165),

(e168,e166), (e167,e166)})

TestCaseRtrnMedia = ({bookTstCntrl, booking}, {e151,e152,e153,e154,e155,e156, e157,e158,e159},

{(e151,e152), (e152,e153), (e153,e154), (e154,e155), (e156,e157), (e157,e158), (e158,e159),

(e151,e156), (e157,e152), (e153,e158), (e159,e154), (e151,e153), (e152,e154), (e152,e158),

(e153,e155), (e156,e158), (e156,e152), (e157,e159), (e158,e154), (e151,e157), (e157,e153),

(e153,e159), (e159,e155), (e151,e154), (e151,e158), (e152,e155), (e152,e159), (e156,e159),

129

(e156,e153), (e157,e154), (e158,e155), (e151,e155), (e151,e159), (e156,e154), (e157,e155),

(e156,e155)})

B.3. Acceptance Test Model

We have developed test cases that cover the same services targeted in the component testing,

Section B.2. The acceptance test model is illustrated in Figure 62. Using Definitions 1-4, we

express the given test model as

AcceptanceTM = (P, T)

P = (tcn, tcm, sut)

 tcn = AccSysTstCntrl

 tcm = { }

 sut = { LibrarySystem }

T = { TestCaseAddMember, TestCaseAddMedia, TestCaseBrowseMembers,

TestCaseLibrarianBrowseMedia, TestCaseMemberBrowseMedia, TestCaseReserveMedia,

TestCaseReturnMedia}

TestCaseAddMember = ({accSysTstCntrl, librarySystem }, {e218,e219,e220,e221, e222,e223,e224},

{(e218,e219), (e219,e221), (e218,e220), (e220,e221), (e222,e223), (e222,e224), (e218,e222),

(e223,e219), (e224,e220), (e218,e221), (e222,e219), (e222,e220), (e218,e223), (e218,e224),

(e223,e221), (e224,e221), (e222,e221)})

TestCaseAddMedia = ({accSysTstCntrl, librarySystem }, {e211,e212,e213,e214, e215,e216,e217},

{(e211,e212), (e212,e214), (e211,e213), (e213,e214), (e215,e216), (e215,e217), (e211,e215),

(e216,e212), (e217,e213), (e211,e214), (e215,e212), (e215,e213), (e211,e216), (e211,e217),

(e216,e214), (e217,e214), (e215,e214)})

TestCaseBrowseMembers = ({accSysTstCntrl, librarySystem }, {e201,e202,e203, e204,e205},

{(e201,e202), (e202,e203), (e204,e205), (e201,e204), (e205,e202), (e201,e203), (e204,e202),

(e201,e205), (e205,e203), (e204,e203)})

TestCaseLibrarianBrowseMedia = ({accSysTstCntrl, librarySystem }, {e206,e207, e208,e209,e210},

{(e206,e207), (e207,e208), (e209,e210), (e206,e209), (e210,e207), (e206,e208), (e209,e207),

(e206,e210), (e210,e208), (e209,e208)})

TestCaseMemberBrowseMedia = ({accSysTstCntrl, librarySystem }, {e225,e226, e227,e228,e229},

{(e225,e226), (e226,e227), (e228,e229), (e225,e228), (e229,e226), (e225,e227), (e228,e226),

(e225,e229), (e229,e227), (e228,e227)})

TestCaseReserveMedia = ({accSysTstCntrl, librarySystem }, {e230,e231,e232,e233, e234,e235,e236},

{(e230,e231), (e231,e233), (e230,e232), (e232,e233), (e234,e235), (e234,e236), (e230,e234),

(e235,e231), (e236,e232), (e230,e233), (e234,e231), (e234,e232), (e230,e235), (e230,e236),

(e235,e233), (e236,e233), (e234,e233)})

130

TestCaseReturnMedia = ({accSysTstCntrl, librarySystem }, {e237,e238,e239, e240,e241}, {(e237,e238),

(e238,e239), (e240,e241), (e237,e240), (e241,e238), (e237,e239), (e240,e238), (e237,e241),

(e241,e239), (e240,e239)})

Figure 62. Acceptance test model (AcceptanceTM)

131

Appendix C

Case Study: Integration Test Generation

In this subsection, we apply the tool, Section 6.3, on the component test models given in

Section B.2. We use two different integration orders to build the integration test models. In the

first, we integrate the test models in the following integration order: ((LibrarianTM + MemberTM

) + MediaTM) + BookingTM. In the second, we integrate the test models in the following

integration order: ((LibrarianTM + MediaTM) + BookingTM) + MemberTM. In the second

integration, we integrate the MemberTM at the last iteration, while it has interfaces with the other

components, to demonstrate the recovery of the test behavior of such interfaces through the

carried-on component test cases.

C.1. First Integration Order

We generate integration test models by integrating the component test models in the following

order: ((LibrarianTM + MemberTM) + MediaTM) + BookingTM. The integration goes through

three iterations: (LibrarianTM + MemberTM), ((LibrarianTM + MemberTM) + MediaTM) then

((LibrarianTM + MemberTM) + MediaTM) + BookingTM.

C.1.1. First Iteration: LibrarianTM+MemberTM

In the first iteration, we integrate component test models of Librarian and Member to generate the

first integration test model; let us call it IntLibMemTM. The tool starts by applying the

identification process on the given test models. In the second phase of the identification process,

the tool detects that the test control LibTstCntrl emulates the CUT Member through the following

events: (e15,e55), (e16,e56), (e18,e57), (e37,e61) and (e38,e62). It also detects that the test control

MemTstCntrl emulates the CUT Librarian through the following events: (e51,e22), (e52,e23),

(e53,e25), (e58,e42) and (e59,e43). In the selection process, the tool selects four test cases as

complete integration test cases: LibrarianTM:TestCaseAddMember,

LibrarianTM:TestCaseBrowseMembers, MemberTM:TestCaseAddMember and

MemberTM:TestCaseBrowseMembers. Next, the tool builds EDTs for the test cases to detect

complement integration test cases. Figure 63 shows only two EDTs for test cases that have

132

integration interactions. Hence, we have two pairs of complement integration test cases:

(LibrarianTM:TestCaseAddMember, MemberTM:TestCaseAddMember) and

(LibrarianTM:TestCaseBrowseMembers, MemberTM:TestCaseBrowseMembers). The tool

excludes the complete integration test cases since they are involved in the complement integration

test cases. The next step is to generate the test behavior from the given complement integration

test cases by merging each pair to generate integration test cases. To merge the first pair, the tool

creates the shared events set, Definition 6, using the event matching expression, Definition 5, and

creates the integration test control TCi.

se = { (e51,e22), (e52,e23), (e53,e25), (e15,e55), (e16,e56), (e18,e57), (e54, e20) }

Then, the tool generates the first integration test case by applying Definition 7:

IntTCAddMem = t1 + t2

 = LibrarianTM:TestCaseAddMember + MemberTM:TestCaseAddMember

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({libTstCntrl, librarian}) U g({memTstCntrl, member}) = {tci, librarian} U {tci,

member} = {librarian, member, tci}

f(E1) U f(E2) = f({e14,e15,e16,e17,e18,e19,e20,e21,e22,e23,e24,e25,e26}) U

f({e51,e52,e53,e54,e55,e56,e57}) = {e14,e55,e56,e17,e57,e19,e20,e21,e22,e23, e24,e25,e26} U

{e22,e23,e25,e20,e55,e56,e57} = {e14,e17,e19,e20,e21,e22,e23, e24,e25,e26,e55,e56,e57}

Figure 63. EDTs for Librarian Member integration

(b) TestCaseAddMember

e14

e22

e57

e17

e21

e19

e20

e55

e56

e25

e24 e26

e23

Interaction

between

CUTs

(a) BrowseMembers

e36

e42

e62

e41

e39

e40

e61

e44

e43

133

f(R1) U f(R2) = f({(e14,e15), (e15,e16), (e16,e17), (e17,e20), (e15,e18), (e18,e19), (e19,e20), (e21,e22),

(e22,e23), (e23,e24), (e22,e25), (e25,e26), (e14,e21), (e22,e15), (e16,e23), (e24,e17), (e18,e25),

(e26,e19), (e14,e16), (e14,e18), (e15,e17), (e15,e23), (e16,e20), (e15,e19), (e15,e25), (e18,e20),

(e21,e23), (e21,e25), (e21,e15), (e22,e24), (e23,e17), (e22,e26), (e25,e19), (e14,e22), (e22,e16),

(e22,e18), (e16,e24), (e24,e20), (e18,e26), (e26,e20), (e14,e17), (e14,e23), (e14,e19), (e14,e25),

(e15,e20), (e15,e24), (e15,e26), (e21,e24), (e21,e26), (e21,e16), (e21,e18), (e22,e17), (e23,e20),

(e22,e19), (e25,e20), (e14,e20), (e14,e24), (e14,e26), (e21,e17), (e21,e19), (e22,e20), (e21,e20)}) U

f({(e51,e52), (e51,e53), (e52,e54), (e53,e54), (e55,e56), (e55,e57), (e51,e55), (e56,e52), (e57,e53),

(e51,e54), (e55,e52), (e55,e53), (e51,e56), (e51,e57), (e56,e54), (e57,e54), (e55,e54)}) = {(e14,e55),

(e55,e56), (e56,e17), (e17,e20), (e55,e57), (e57,e19), (e19,e20), (e21,e22), (e22,e23), (e23,e24),

(e22,e25), (e25,e26), (e14,e21), (e22,e55), (e56,e23), (e24,e17), (e57,e25), (e26,e19), (e14,e56),

(e14,e57), (e55,e17), (e55,e23), (e56,e20), (e55,e19), (e55,e25), (e57,e20), (e21,e23), (e21,e25),

(e21,e55), (e22,e24), (e23,e17), (e22,e26), (e25,e19), (e14,e22), (e22,e56), (e22,e57), (e56,e24),

(e24,e20), (e57,e26), (e26,e20), (e14,e17), (e14,e23), (e14,e19), (e14,e25), (e55,e20), (e55,e24),

(e55,e26), (e21,e24), (e21,e26), (e21,e56), (e21,e57), (e22,e17), (e23,e20), (e22,e19), (e25,e20),

(e14,e20), (e14,e24), (e14,e26), (e21,e17), (e21,e19), (e22,e20), (e21,e20)} U {(e22,e23), (e22,e25),

(e23,e20), (e25,e20), (e55,e56), (e55,e57), (e22,e55), (e56,e23), (e57,e25), (e22,e20), (e55,e23),

(e55,e25), (e22,e56), (e22,e57), (e56,e20), (e57,e20), (e55,e20)} = { (e14, e55), (e55, e56), (e56, e17),

(e17, e20), (e55, e57), (e57, e19), (e19, e20), (e21, e22), (e22, e23), (e23, e24), (e22, e25), (e25, e26),

(e14, e21), (e22, e55), (e56, e23), (e24, e17), (e57, e25), (e26, e19), (e14, e56), (e14, e57), (e55, e17),

(e55, e23), (e56, e20), (e55, e19), (e55, e25), (e57, e20), (e21, e23), (e21, e25), (e21, e55), (e22, e24),

(e23, e17), (e22, e26), (e25, e19), (e14, e22), (e22, e56), (e22, e57), (e56, e24), (e24, e20), (e57, e26),

(e26, e20), (e14, e17), (e14, e23), (e14, e19), (e14, e25), (e55, e20), (e55, e24), (e55, e26), (e21, e24),

(e21, e26), (e21, e56), (e21, e57), (e22, e17), (e23, e20), (e22, e19), (e25, e20), (e14, e20), (e14, e24),

(e14, e26), (e21, e17), (e21, e19), (e22, e20), (e21, e20), (e14, e55) }

Next, the tool generates the second integration test case by merging the second pair. The tool

starts by creating the shared events set.

se = { (e37,e61), (e38,e62), (e58,e42), (e59,e43), (e60,e40) }

Then, the tool generates the second integration test case by applying Definition 7:

IntTCBrwMem = t1 + t2

 = LibrarianTM:TestCaseBrowseMembers + MemberTM:TestCaseBrowseMembers

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({libTstCntrl, librarian}) U g({memTstCntrl, member}) = { tci, librarian } U { tci,

member } = { librarian, member, tci }

f(E1) U f(E2) = f({e36,e37,e38,e39,e40,e41,e42,e43,e44}) U f({e58,e59,e60,e61, e62}) =

{e36,e61,e62,e39,e40,e41,e42,e43,e44} U {e42,e43,e40,e61,e62} = {e36,

e39,e40,e41,e42,e43,e44,e61,e62}

134

f(R1) U f(R2) = f({ (e36,e37), (e37,e38), (e38,e39), (e39,e40), (e41,e42), (e42,e43), (e43,e44), (e36,e41),

(e42,e37), (e38,e43), (e44,e39), (e36,e38), (e37,e39), (e37,e43), (e38,e40), (e41,e43), (e41,e37),

(e42,e44), (e43,e39), (e36,e42), (e42,e38), (e38,e44), (e44,e40), (e36,e39), (e36,e43), (e37,e40),

(e37,e44), (e41,e44), (e41,e38), (e42,e39), (e43,e40), (e36,e40), (e36,e44), (e41,e39), (e42,e40),

(e41,e40) }) U f({ (e58,e59), (e59,e60), (e61,e62), (e58,e61), (e62,e59), (e58,e60), (e61,e59),

(e58,e62), (e62,e60), (e61,e60) }) = {(e36,e61), (e61,e62), (e62,e39), (e39,e40), (e41,e42), (e42,e43),

(e43,e44), (e36,e41), (e42,e61), (e62,e43), (e44,e39), (e36,e62), (e61,e39), (e61,e43), (e62,e40),

(e41,e43), (e41,e61), (e42,e44), (e43,e39), (e36,e42), (e42,e62), (e62,e44), (e44,e40), (e36,e39),

(e36,e43), (e61,e40), (e61,e44), (e41,e44), (e41,e62), (e42,e39), (e43,e40), (e36,e40), (e36,e44),

(e41,e39), (e42,e40), (e41,e40) } U { (e42,e43), (e43,e40), (e61,e62), (e42,e61), (e62,e43), (e42,e40),

(e61,e43), (e42,e62), (e62,e40), (e61,e40) } = { (e36, e61), (e61, e62), (e62, e39), (e39, e40), (e41,

e42), (e42, e43), (e43, e44), (e36, e41), (e42, e61), (e62, e43), (e44, e39), (e36, e62), (e61, e39), (e61,

e43), (e62, e40), (e41, e43), (e41, e61), (e42, e44), (e43, e39), (e36, e42), (e42, e62), (e62, e44), (e44,

e40), (e36, e39), (e36, e43), (e61, e40), (e61, e44), (e41, e44), (e41, e62), (e42, e39), (e43, e40), (e36,

e40), (e36, e44), (e41, e39), (e42, e40), (e41, e40), (e36, e61) }

After generating the test behavior, the tool generates the test structure as follows:

T = { IntTCAddMem, IntTCBrwMem }

P = (TCi, {}, {Librarian, Member})

IntLibMemTM = (P, T)

The generated integration test model IntLibMemTM, shown in Figure 64, is exercised on the

sub-system, and upon successful testing results, we move to the next integration iteration.

C.1.2. Second Iteration: (LibrarianTM+MemberTM)+MediaTM

In the second integration iteration, the tool generates the second integration test model, let us say

IntLibMemMedTM, to examine the integration of ((Librarian + Member) + Media. The tool

performs three test integrations. In the first test integration, the tool integrates the previously

generated test model IntLibMemTM and the component test model MediaTM. The tool starts by

applying on the given test models the identification process, which does not detect any shared test

objects between the two test models. Hence, the tool stops the current test integration and proceeds

to the next test integration.

135

Figure 64. Generated integration test model (IntLibMemTM)

In the second test integration, the tool integrates the component test model MediaTM and

LibrarianTM. The identification process detects that the test control LibTstCntrl emulates the CUT

Media through the following events: (e2,e105), (e3,e107), (e5,e106), (e28,e111) and (e29,e112),

and the test control MedTstCntrl emulates the CUT Librarian through the following events:

(e101,e9), (e102,e12), (e103,e10), (e108,e33) and (e109,e34). The selection process selects four

test cases as complete integration test cases: MediaTM:TestCaseAddMedia,

MediaTM:TestCaseLibBrowseMedia, LibrarianTM:TestCaseAddMedia and

LibrarianTM:TestCaseBrowseMedia. It also creates the EDTs and selects two pairs as

complement integration test cases: (MediaTM:TestCaseAddMedia,

LibrarianTM:TestCaseAddMedia) and (MediaTM:TestCaseLibBrowseMedia,

LibrarianTM:TestCaseBrowseMedia). The tool excludes the complete integration test cases since

they are included in the second list. The next step is that the tool generates the first integration test

136

case by merging the first pair of complement integration test cases. It examines the two test cases

to create the shared events set.

se = { (e2,e105), (e3,e107), (e4,e106), (e101,e9), (e102,e12), (e103,e10), (e104,e7) }

Following that, the tool merges the two test cases

IntTCAddMed = t1 + t2

 = MediaTM:TestCaseAddMedia + LibrarianTM:TestCaseAddMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({medTstCntrl, media}) U g({libTstCntrl, librarian}) = {tci, media} U {tci, librarian}

= {librarian, media, tci}

f(E1) U f(E2) = f({e101,e102,e103,e104,e105,e106,e107}) U f({e1,e2,e3,e4,e5,e6,e7,

e8,e9,e10,e11,e12,e13}) = {e9,e12,e10,e7,e105,e106,e107} U {e1,e105,e107,e4,

e106,e6,e7,e8,e9,e10,e11,e12,e13} = {e1,e10,e105,e106,e107,e11,e12,e13,e4,e6, e7,e8,e9}

f(R1) U f(R2) = f({(e101,e102), (e101,e103), (e102,e104), (e103,e104), (e105,e106), (e105,e107),

(e101,e105), (e106,e102), (e107,e103), (e101,e104), (e105,e102), (e105,e103), (e101,e106),

(e101,e107), (e106,e104), (e107,e104), (e105,e104)}) U f({(e1,e2), (e2,e3), (e3,e4), (e4,e7), (e2,e5),

(e5,e6), (e6,e7), (e8,e9), (e9,e10), (e10,e11), (e9,e12), (e12,e13), (e1,e8), (e9,e2), (e3,e10), (e11,e4),

(e5,e12), (e13,e6), (e1,e3), (e1,e5), (e2,e4), (e2,e10), (e3,e7), (e2,e6), (e2,e12), (e5,e7), (e8,e10),

(e8,e12), (e8,e2), (e9,e11), (e10,e4), (e9,e13), (e12,e6), (e1,e9), (e9,e3), (e9,e5), (e3,e11), (e11,e7),

(e5,e13), (e13,e7), (e1,e4), (e1,e10), (e1,e6), (e1,e12), (e2,e7), (e2,e11), (e2,e13), (e8,e11), (e8,e13),

(e8,e3), (e8,e5), (e9,e4), (e10,e7), (e9,e6), (e12,e7), (e1,e7), (e1,e11), (e1,e13), (e8,e4), (e8,e6),

(e9,e7), (e8,e7)}) = {(e9,e12), (e9,e10), (e12,e7), (e10,e7), (e105,e106), (e105,e107), (e9,e105),

(e106,e12), (e107,e10), (e9,e7), (e105,e12), (e105,e10), (e9,e106), (e9,e107), (e106,e7), (e107,e7),

(e105,e7)} U {(e1,e105), (e105,e107), (e107,e4), (e4,e7), (e105,e106), (e106,e6), (e6,e7), (e8,e9),

(e9,e10), (e10,e11), (e9,e12), (e12,e13), (e1,e8), (e9,e105), (e107,e10), (e11,e4), (e106,e12), (e13,e6),

(e1,e107), (e1,e106), (e105,e4), (e105,e10), (e107,e7), (e105,e6), (e105,e12), (e106,e7), (e8,e10),

(e8,e12), (e8,e105), (e9,e11), (e10,e4), (e9,e13), (e12,e6), (e1,e9), (e9,e107), (e9,e106), (e107,e11),

(e11,e7), (e106,e13), (e13,e7), (e1,e4), (e1,e10), (e1,e6), (e1,e12), (e105,e7), (e105,e11), (e105,e13),

(e8,e11), (e8,e13), (e8,e107), (e8,e106), (e9,e4), (e10,e7), (e9,e6), (e12,e7), (e1,e7), (e1,e11),

(e1,e13), (e8,e4), (e8,e6), (e9,e7), (e8,e7)} = { (e33, e34), (e34, e31), (e111, e112), (e33, e111), (e112,

e34), (e33, e31), (e111, e34), (e33, e112), (e112, e31), (e111, e31), (e27, e111), (e112, e30), (e30,

e31), (e32, e33), (e34, e35), (e27, e32), (e35, e30), (e27, e112), (e111, e30), (e32, e34), (e32, e111),

(e33, e35), (e34, e30), (e27, e33), (e112, e35), (e35, e31), (e27, e30), (e27, e34), (e111, e35), (e32,

e35), (e32, e112), (e33, e30), (e27, e31), (e27, e35), (e32, e30), (e32, e31), (e33, e34), (e32, e34),

(e27, e34) }

Next, the tool generates the second integration test case by merging the second pair of

complement integration test cases. It examines the two test cases to create the shared events set.

137

se = { (e28,e111), (e29,e112), (e108,e33), (e109,e34), (e110,e31) }

Following that, the tool merges the two test cases

IntTCLibBrwMed = t1 + t2

 = MediaTM:TestCaseLibBrowseMedia, LibrarianTM:TestCaseBrowseMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({medTstCntrl, media}) U g({libTstCntrl, librarian}) = {tci, media} U {tci, librarian}

= {librarian, media, tci}

f(E1) U f(E2) = f({e108,e109,e110,e111,e112}) U f({e27,e28,e29,e30,e31,e32,e33, e34,e35}) =

{e33,e34,e31,e111,e112} U {e27,e111,e112,e30,e31,e32,e33,e34,e35} =

{e111,e112,e27,e30,e31,e32,e33,e34,e35}

f(R1) U f(R2) = f({(e108,e109), (e109,e110), (e111,e112), (e108,e111), (e112,e109), (e108,e110),

(e111,e109), (e108,e112), (e112,e110), (e111,e110)}) U f({(e27,e28), (e28,e29), (e29,e30), (e30,e31),

(e32,e33), (e33,e34), (e34,e35), (e27,e32), (e33,e28), (e29,e34), (e35,e30), (e27,e29), (e28,e30),

(e28,e34), (e29,e31), (e32,e34), (e32,e28), (e33,e35), (e34,e30), (e27,e33), (e33,e29), (e29,e35),

(e35,e31), (e27,e30), (e27,e34), (e28,e31), (e28,e35), (e32,e35), (e32,e29), (e33,e30), (e34,e31),

(e27,e31), (e27,e35), (e32,e30), (e33,e31), (e32,e31)}) = {(e33,e34), (e34,e31), (e111,e112),

(e33,e111), (e112,e34), (e33,e31), (e111,e34), (e33,e112), (e112,e31), (e111,e31)} U {(e27,e111),

(e111,e112), (e112,e30), (e30,e31), (e32,e33), (e33,e34), (e34,e35), (e27,e32), (e33,e111),

(e112,e34), (e35,e30), (e27,e112), (e111,e30), (e111,e34), (e112,e31), (e32,e34), (e32,e111),

(e33,e35), (e34,e30), (e27,e33), (e33,e112), (e112,e35), (e35,e31), (e27,e30), (e27,e34), (e111,e31),

(e111,e35), (e32,e35), (e32,e112), (e33,e30), (e34,e31), (e27,e31), (e27,e35), (e32,e30), (e33,e31),

(e32,e31)} = {(e33,e34), (e34,e31), (e111,e112), (e33,e111), (e112,e34), (e33,e31), (e111,e34),

(e33,e112), (e112,e31), (e111,e31), (e27,e111), (e112,e30), (e30,e31), (e32,e33), (e34,e35),

(e27,e32), (e35,e30), (e27,e112), (e111,e30), (e32,e34), (e32,e111), (e33,e35), (e34,e30), (e27,e33),

(e112,e35), (e35,e31), (e27,e30), (e27,e34), (e111,e35), (e32,e35), (e32,e112), (e33,e30), (e27,e31),

(e27,e35), (e32,e30), (e32,e31)}

After generating the test behavior, the tool generates the test structure as follows:

T = { IntTCAddMed, IntTCLibBrwMed }

P = (TCi, {}, {Librarian, Media})

IntLibMemMedTM = (P, T)

The intermediate generated integration test model IntLibMemMedTM, from the second test

integration, is shown in Figure 65. Following that, the tool proceeds to the next test integration.

In the third test integration, the tool examines the test cases of MemberTM against the currently

generated test cases of IntLibMemMedTM and the test cases of MediaTM. The identification

process does not detect shared test objects between MemberTM and IntLibMemMedTM, but it

detects shared test objects between MemberTM and MediaTM. It detects that the test control

138

MedTstCntrl emulates the CUT Member through the following events: (e113,e69) and (e114,e70),

and the test control MemTstCntrl emulates the CUT Media through the following events:

(e64,e116) and (e65,e117). The selection process selects two test cases as complete integration

test cases: MediaTM:TestCaseMemBrowseMedia and MemberTM:TestCaseBrowseMedia. It also

creates the EDTs and selects one pair as complement integration test cases:

(MediaTM:TestCaseMemBrowseMedia, MemberTM:TestCaseBrowseMedia). The tool excludes

the complete integration test cases since they are included in the second list.

Figure 65. Intermediate generated test model (IntLibMemMedTM)

In the next step, the tool generates the third integration test case by merging the pair of complement

integration test cases. It examines the two test cases to create the shared events set.

se = { (e113,e69), (e114,e70), (e64,e116), (e65,e117), (e115,e67) }

Following that, the tool merges the two test cases

IntTCBrwMemMed = t1 + t2

139

 = MediaTM:TestCaseMemBrowseMedia + MemberTM:TestCaseBrowseMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({medTstCntrl, media}) U g({memTstCntrl, member}) = {tci, media} U {tci, member}

= {media, member, tci}

f(E1) U f(E2) = f({e113,e114,e115,e116,e117}) U f({e63,e64,e65,e66,e67,e68,e69, e70,e71}) =

{e69,e70,e67,e116,e117} U {e63,e116,e117,e66,e67,e68,e69, e70,e71} =

{e116,e117,e63,e66,e67,e68,e69,e70,e71}

f(R1) U f(R2) = f({(e113,e114), (e114,e115), (e116,e117), (e113,e116), (e117,e114), (e113,e115),

(e116,e114), (e113,e117), (e117,e115), (e116,e115)}) U f({(e63,e64), (e64,e65), (e65,e66), (e66,e67),

(e68,e69), (e69,e70), (e70,e71), (e63,e68), (e69,e64), (e65,e70), (e71,e66), (e63,e65), (e64,e66),

(e64,e70), (e65,e67), (e68,e70), (e68,e64), (e69,e71), (e70,e66), (e63,e69), (e69,e65), (e65,e71),

(e71,e67), (e63,e66), (e63,e70), (e64,e67), (e64,e71), (e68,e71), (e68,e65), (e69,e66), (e70,e67),

(e63,e67), (e63,e71), (e68,e66), (e69,e67), (e68,e67)}) = {(e69,e70), (e70,e67), (e116,e117),

(e69,e116), (e117,e70), (e69,e67), (e116,e70), (e69,e117), (e117,e67), (e116,e67)} U {(e63,e116),

(e116,e117), (e117,e66), (e66,e67), (e68,e69), (e69,e70), (e70,e71), (e63,e68), (e69,e116),

(e117,e70), (e71,e66), (e63,e117), (e116,e66), (e116,e70), (e117,e67), (e68,e70), (e68,e116),

(e69,e71), (e70,e66), (e63,e69), (e69,e117), (e117,e71), (e71,e67), (e63,e66), (e63,e70), (e116,e67),

(e116,e71), (e68,e71), (e68,e117), (e69,e66), (e70,e67), (e63,e67), (e63,e71), (e68,e66), (e69,e67),

(e68,e67)} = { (e69, e70), (e70, e67), (e116, e117), (e69, e116), (e117, e70), (e69, e67), (e116, e70),

(e69, e117), (e117, e67), (e116, e67), (e63, e116), (e117, e66), (e66, e67), (e68, e69), (e70, e71), (e63,

e68), (e71, e66), (e63, e117), (e116, e66), (e68, e70), (e68, e116), (e69, e71), (e70, e66), (e63, e69),

(e117, e71), (e71, e67), (e63, e66), (e63, e70), (e116, e71), (e68, e71), (e68, e117), (e69, e66), (e63,

e67), (e63, e71), (e68, e66), (e68, e67), (e69, e70), (e68, e70), (e63, e70) }

After generating the test case, the tool updates the test structure as follows:

T = { IntTCAddMed, IntTCLibBrwMed, IntTCBrwMemMed }

P = (TCi, {}, {Librarian, Media, Member })

IntLibMemMedTM = (P, T)

The generated integration test model IntLibMemMedTM, for the second integration iteration,

is shown in Figure 66. The test model is exercised on the integrated sub-system and upon a

successful test, we move to the third and last integration iteration.

140

Figure 66. Generated integration test model (IntLibMemMedTM)

C.1.3. Third Iteration: ((LibrarianTM+MemberTM)+MediaTM)+BookingTM

In the third integration iteration, the tool generates the third integration test model, let us call it

IntLibMemMedBkgTM, to examine the integration of (((Librarian + Member) + Media) +

Booking). The tool performs four test integrations. In the first test integration, the tool integrates

the previously generated test model IntLibMemMedTM and the component test model BookingTM.

The tool begins by applying on the given test models the identification process, which does not

detect any shared test objects between the two test models. Hence, the tool stops the test integration

and proceeds to the next test integration. In the second test integration, the tool integrates the

component test model BookingTM and LibrarianTM. The identification process does not detect

any shared test objects between the two test models. Hence, the tool stops the test integration and

proceeds to the next test integration.

In the third test integration, the tool integrates the component test model BookingTM and

MemberTM. The identification process detects that the test control BookTstCntrl emulates the CUT

Member through the following events: (e151,e91), (e154,e92), (e160,e80), (e163,e81) and

(e165,e83), and the test control MemTstCntrl emulates the CUT Booking through the following

events: (e73,e167), (e74,e170), (e76,e172), (e86,e156) and (e87,e159). The selection process

selects four test cases as complete integration test cases: BookingTM:TestCaseRsrvMedia,

141

BookingTM:TestCaseRtrnMedia, MemberTM:TestCaseRsrvMedia and

MemberTM:TestCaseRtrnMedia. It also creates the EDTs and selects two pairs as complement

integration test cases: (BookingTM:TestCaseRsrvMedia, MemberTM:TestCaseRsrvMedia) and

(BookingTM:TestCaseRtrnMedia, MemberTM:TestCaseRtrnMedia). The tool excludes the

complete integration test cases since they are included in the second list. For the next step, the tool

generates the first integration test case by merging the first pair of complement integration test

cases. It examines the two test cases to create the shared events set.

se = {(e160,e80), (e163,e81), (e165,e83), (e73,e167), (e74,e170), (e76,e172), (e166,e78)}

Following that, the tool merges the two test cases

IntTCRsrvBkgMem = t1 + t2

 = BookingTM:TestCaseRsrvMedia + MemberTM:TestCaseRsrvMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({bookTstCntrl, booking}) U g({memTstCntrl, member}) = {tci, booking} U {tci,

member} = {booking, member, tci}

f(E1) U f(E2) = f({e160,e161,e162,e163,e164,e165,e166,e167,e168,e169,e170, e171,e172}) U

f({e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84}) = {e80,

e161,e162,e81,e164,e83,e78,e167,e168,e169,e170,e171,e172} U {e72,e167,e170,

e75,e172,e77,e78,e79,e80,e81,e82,e83,e84} = {e161,e162,e164,e167,e168,e169,

e170,e171,e172,e72,e75,e77,e78,e79,e80,e81,e82,e83,e84}

f(R1) U f(R2) = f({(e160,e161), (e161,e162), (e162,e163), (e163,e166), (e161,e164), (e164,e165),

(e165,e166), (e167,e168), (e168,e169), (e169,e170), (e168,e171), (e171,e172), (e160,e167),

(e168,e161), (e162,e169), (e170,e163), (e164,e171), (e172,e165), (e160,e162), (e160,e164),

(e161,e163), (e161,e169), (e162,e166), (e161,e165), (e161,e171), (e164,e166), (e167,e169),

(e167,e171), (e167,e161), (e168,e170), (e169,e163), (e168,e172), (e171,e165), (e160,e168),

(e168,e162), (e168,e164), (e162,e170), (e170,e166), (e164,e172), (e172,e166), (e160,e163),

(e160,e169), (e160,e165), (e160,e171), (e161,e166), (e161,e170), (e161,e172), (e167,e170),

(e167,e172), (e167,e162), (e167,e164), (e168,e163), (e169,e166), (e168,e165), (e171,e166),

(e160,e166), (e160,e170), (e160,e172), (e167,e163), (e167,e165), (e168,e166), (e167,e166)}) U

f({(e72,e73), (e73,e74), (e74,e75), (e75,e78), (e73,e76), (e76,e77), (e77,e78), (e79,e80), (e80,e81),

(e81,e82), (e80,e83), (e83,e84), (e72,e79), (e80,e73), (e74,e81), (e82,e75), (e76,e83), (e84,e77),

(e72,e74), (e72,e76), (e73,e75), (e73,e81), (e74,e78), (e73,e77), (e73,e83), (e76,e78), (e79,e81),

(e79,e83), (e79,e73), (e80,e82), (e81,e75), (e80,e84), (e83,e77), (e72,e80), (e80,e74), (e80,e76),

(e74,e82), (e82,e78), (e76,e84), (e84,e78), (e72,e75), (e72,e81), (e72,e77), (e72,e83), (e73,e78),

(e73,e82), (e73,e84), (e79,e82), (e79,e84), (e79,e74), (e79,e76), (e80,e75), (e81,e78), (e80,e77),

(e83,e78), (e72,e78), (e72,e82), (e72,e84), (e79,e75), (e79,e77), (e80,e78), (e79,e78)}) = { (e80,e161),

(e161,e162), (e162,e81), (e81,e78), (e161,e164), (e164,e83), (e83,e78), (e167,e168), (e168,e169),

142

(e169,e170), (e168,e171), (e171,e172), (e80,e167), (e168,e161), (e162,e169), (e170,e81),

(e164,e171), (e172,e83), (e80,e162), (e80,e164), (e161,e81), (e161,e169), (e162,e78), (e161,e83),

(e161,e171), (e164,e78), (e167,e169), (e167,e171), (e167,e161), (e168,e170), (e169,e81),

(e168,e172), (e171,e83), (e80,e168), (e168,e162), (e168,e164), (e162,e170), (e170,e78), (e164,e172),

(e172,e78), (e80,e81), (e80,e169), (e80,e83), (e80,e171), (e161,e78), (e161,e170), (e161,e172),

(e167,e170), (e167,e172), (e167,e162), (e167,e164), (e168,e81), (e169,e78), (e168,e83), (e171,e78),

(e80,e78), (e80,e170), (e80,e172), (e167,e81), (e167,e83), (e168,e78), (e167,e78)} U { (e72,e167),

(e167,e170), (e170,e75), (e75,e78), (e167,e172), (e172,e77), (e77,e78), (e79,e80), (e80,e81),

(e81,e82), (e80,e83), (e83,e84), (e72,e79), (e80,e167), (e170,e81), (e82,e75), (e172,e83), (e84,e77),

(e72,e170), (e72,e172), (e167,e75), (e167,e81), (e170,e78), (e167,e77), (e167,e83), (e172,e78),

(e79,e81), (e79,e83), (e79,e167), (e80,e82), (e81,e75), (e80,e84), (e83,e77), (e72,e80), (e80,e170),

(e80,e172), (e170,e82), (e82,e78), (e172,e84), (e84,e78), (e72,e75), (e72,e81), (e72,e77), (e72,e83),

(e167,e78), (e167,e82), (e167,e84), (e79,e82), (e79,e84), (e79,e170), (e79,e172), (e80,e75),

(e81,e78), (e80,e77), (e83,e78), (e72,e78), (e72,e82), (e72,e84), (e79,e75), (e79,e77), (e80,e78),

(e79,e78)} = { (e80, e161), (e161, e162), (e162, e81), (e81, e78), (e161, e164), (e164, e83), (e83, e78),

(e167, e168), (e168, e169), (e169, e170), (e168, e171), (e171, e172), (e80, e167), (e168, e161), (e162,

e169), (e170, e81), (e164, e171), (e172, e83), (e80, e162), (e80, e164), (e161, e81), (e161, e169),

(e162, e78), (e161, e83), (e161, e171), (e164, e78), (e167, e169), (e167, e171), (e167, e161), (e168,

e170), (e169, e81), (e168, e172), (e171, e83), (e80, e168), (e168, e162), (e168, e164), (e162, e170),

(e170, e78), (e164, e172), (e172, e78), (e80, e81), (e80, e169), (e80, e83), (e80, e171), (e161, e78),

(e161, e170), (e161, e172), (e167, e170), (e167, e172), (e167, e162), (e167, e164), (e168, e81), (e169,

e78), (e168, e83), (e171, e78), (e80, e78), (e80, e170), (e80, e172), (e167, e81), (e167, e83), (e168,

e78), (e167, e78), (e72, e167), (e170, e75), (e75, e78), (e172, e77), (e77, e78), (e79, e80), (e81, e82),

(e83, e84), (e72, e79), (e82, e75), (e84, e77), (e72, e170), (e72, e172), (e167, e75), (e167, e77), (e79,

e81), (e79, e83), (e79, e167), (e80, e82), (e81, e75), (e80, e84), (e83, e77), (e72, e80), (e170, e82),

(e82, e78), (e172, e84), (e84, e78), (e72, e75), (e72, e81), (e72, e77), (e72, e83), (e167, e82), (e167,

e84), (e79, e82), (e79, e84), (e79, e170), (e79, e172), (e80, e75), (e80, e77), (e72, e78), (e72, e82),

(e72, e84), (e79, e75), (e79, e77), (e79, e78), (e162, e82), (e162, e75), (e164, e84), (e164, e77), (e169,

e75), (e169, e82), (e171, e77), (e171, e84), (e80, e161), (e161, e82), (e161, e75), (e161, e84), (e161,

e77), (e168, e75), (e168, e82), (e168, e77), (e168, e84), (e72, e168), (e72, e169), (e72, e171), (e72,

e161), (e72, e162), (e72, e164), (e79, e161), (e79, e162), (e79, e164), (e79, e168), (e79, e169), (e79,

e171), (e79, e161), (e72, e161) }

Next, the tool generates the second integration test case by merging the second pair of

complement integration test cases. It examines the two test cases to create the shared events set.

se = { (e151,e91), (e154,e92), (e86,e156), (e87,e159), (e155,e89) }

Following that, the tool merges the two test cases

IntTCRtrnBkgMem = t1 + t2

143

 = BookingTM:TestCaseRtrnMedia + MemberTM:TestCaseRtrnMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({bookTstCntrl, booking}) U g({memTstCntrl, member}) = {tci, booking} U {tci,

member} = {booking, member, tci}

f(E1) U f(E2) = f({e151,e152,e153,e154,e155,e156,e157,e158,e159}) U f({e85,e86,

e87,e88,e89,e90,e91,e92,e93}) = {e91,e152,e153,e92,e89,e156,e157,e158,e159} U

{e85,e156,e159,e88,e89,e90,e91,e92,e93} = {e152,e153,e156,e157,e158,e159,

e85,e88,e89,e90,e91,e92,e93}

f(R1) U f(R2) = f({(e151,e152), (e152,e153), (e153,e154), (e154,e155), (e156,e157), (e157,e158),

(e158,e159), (e151,e156), (e157,e152), (e153,e158), (e159,e154), (e151,e153), (e152,e154),

(e152,e158), (e153,e155), (e156,e158), (e156,e152), (e157,e159), (e158,e154), (e151,e157),

(e157,e153), (e153,e159), (e159,e155), (e151,e154), (e151,e158), (e152,e155), (e152,e159),

(e156,e159), (e156,e153), (e157,e154), (e158,e155), (e151,e155), (e151,e159), (e156,e154),

(e157,e155), (e156,e155)}) U f({(e85,e86), (e86,e87), (e87,e88), (e88,e89), (e90,e91), (e91,e92),

(e92,e93), (e85,e90), (e91,e86), (e87,e92), (e93,e88), (e85,e87), (e86,e88), (e86,e92), (e87,e89),

(e90,e92), (e90,e86), (e91,e93), (e92,e88), (e85,e91), (e91,e87), (e87,e93), (e93,e89), (e85,e88),

(e85,e92), (e86,e89), (e86,e93), (e90,e93), (e90,e87), (e91,e88), (e92,e89), (e85,e89), (e85,e93),

(e90,e88), (e91,e89), (e90,e89)}) = {(e91,e152), (e152,e153), (e153,e92), (e92,e89), (e156,e157),

(e157,e158), (e158,e159), (e91,e156), (e157,e152), (e153,e158), (e159,e92), (e91,e153), (e152,e92),

(e152,e158), (e153,e89), (e156,e158), (e156,e152), (e157,e159), (e158,e92), (e91,e157), (e157,e153),

(e153,e159), (e159,e89), (e91,e92), (e91,e158), (e152,e89), (e152,e159), (e156,e159), (e156,e153),

(e157,e92), (e158,e89), (e91,e89), (e91,e159), (e156,e92), (e157,e89), (e156,e89)} U {(e85,e156),

(e156,e159), (e159,e88), (e88,e89), (e90,e91), (e91,e92), (e92,e93), (e85,e90), (e91,e156),

(e159,e92), (e93,e88), (e85,e159), (e156,e88), (e156,e92), (e159,e89), (e90,e92), (e90,e156),

(e91,e93), (e92,e88), (e85,e91), (e91,e159), (e159,e93), (e93,e89), (e85,e88), (e85,e92), (e156,e89),

(e156,e93), (e90,e93), (e90,e159), (e91,e88), (e92,e89), (e85,e89), (e85,e93), (e90,e88), (e91,e89),

(e90,e89)} = { (e91, e152), (e152, e153), (e153, e92), (e92, e89), (e156, e157), (e157, e158), (e158,

e159), (e91, e156), (e157, e152), (e153, e158), (e159, e92), (e91, e153), (e152, e92), (e152, e158),

(e153, e89), (e156, e158), (e156, e152), (e157, e159), (e158, e92), (e91, e157), (e157, e153), (e153,

e159), (e159, e89), (e91, e92), (e91, e158), (e152, e89), (e152, e159), (e156, e159), (e156, e153),

(e157, e92), (e158, e89), (e91, e89), (e91, e159), (e156, e92), (e157, e89), (e156, e89), (e85, e156),

(e159, e88), (e88, e89), (e90, e91), (e92, e93), (e85, e90), (e93, e88), (e85, e159), (e156, e88), (e90,

e92), (e90, e156), (e91, e93), (e92, e88), (e85, e91), (e159, e93), (e93, e89), (e85, e88), (e85, e92),

(e156, e93), (e90, e93), (e90, e159), (e91, e88), (e85, e89), (e85, e93), (e90, e88), (e90, e89), (e153,

e93), (e153, e88), (e158, e88), (e158, e93), (e91, e152), (e152, e93), (e152, e88), (e157, e88), (e157,

e93), (e85, e157), (e85, e158), (e85, e152), (e85, e153), (e90, e152), (e90, e153), (e90, e157), (e90,

e158), (e90, e152), (e85, e152) }

144

After generating the test behavior, the tool generates the test structure as follows:

T = { IntTCRsrvBkgMem, IntTCRtrnBkgMem }

P = (TCi, {}, {Booking, Member})

IntLibMemMedBkgTM = (P, T)

The intermediate generated integration test model IntLibMemMedBkgTM is shown in Figure

67. Next, we move to the fourth test integration.

In the fourth test integration, the tool integrates the component test model MediaTM to

IntLibMemMedBkgTM and BookingTM. Test cases of MediaTM, which are integrated with

IntLibMemMedBkgTM, are not used to integrate with BookingTM test cases. The identification

process detects that the test control TCi emulates the CUT Media through the following events:

(e161,e122), (e162,e123), (e164,e124), (e152,e128) and (e153,e129), and the test control

MedTstCntrl emulates the CUT Booking through the following events: (e118,e168), (e119,e169),

(e120,e171), (e125,e157) and (e126,e158). The selection process selects four test cases as

complete integration test cases: MediaTM:TestCaseRsrvMedia, MediaTM:TestCaseRtrnMedia,

IntLibMemMedBkgTM:IntTCRsrvBkgMem and IntLibMemMedBkgTM:IntTCRtrnBkgMem. It

also creates the EDTs and selects two pairs as complement integration test cases:

(MediaTM:TestCaseRsrvMedia, IntLibMemMedBkgTM:IntTCRsrvBkgMem) and

(MediaTM:TestCaseRtrnMedia, IntLibMemMedBkgTM:IntTCRtrnBkgMem). The tool excludes

the complete integration test cases since they are included in the second pattern.

Figure 67. Intermediate generated test model (IntLibMemMedBkgTM)

145

For the next step, the tool generates the third integration test case by merging the first pair of

complement integration test cases. It examines the two test cases to create the shared events set.

se = {(e161,e122), (e162,e123), (e164,e124), (e118,e168), (e119,e169), (e120,e171), (e121,e78)}

Following that, the tool merges the two test cases

IntTCRsrvBkgMemMed = t1 + t2

 = MediaTM:TestCaseRsrvMedia + IntLibMemMedBkgTM:IntTCRsrvBkgMem

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({medTstCntrl, media}) U g({booking, member, tci}) = {TCi, media} U {booking,

member, TCi} = {booking, media, member, TCi}

f(E1) U f(E2) = f({e118,e119,e120,e121,e122,e123,e124}) U f({e161,e162,e164,

e167,e168,e169,e170,e171,e172,e72,e75,e77,e78,e79,e80,e81,e82,e83,e84}) =

{e168,e169,e171,e78,e122,e123,e124} U {e122,e123,e124,e167,e168,e169,e170,

e171,e172,e72,e75,e77,e78,e79,e80,e81,e82,e83,e84} = {e122,e123,e124,e167,

e168,e169,e170,e171,e172,e72,e75,e77,e78,e79,e80,e81,e82,e83,e84}

f(R1) U f(R2) = f({(e118,e119), (e119,e121), (e118,e120), (e120,e121), (e122,e123), (e122,e124),

(e118,e122), (e123,e119), (e124,e120), (e118,e121), (e122,e119), (e122,e120), (e118,e123),

(e118,e124), (e123,e121), (e124,e121), (e122,e121)}) U f({(e80,e161), (e161,e162), (e162,e81),

(e81,e78), (e161,e164), (e164,e83), (e83,e78), (e167,e168), (e168,e169), (e169,e170), (e168,e171),

(e171,e172), (e80,e167), (e168,e161), (e162,e169), (e170,e81), (e164,e171), (e172,e83), (e80,e162),

(e80,e164), (e161,e81), (e161,e169), (e162,e78), (e161,e83), (e161,e171), (e164,e78), (e167,e169),

(e167,e171), (e167,e161), (e168,e170), (e169,e81), (e168,e172), (e171,e83), (e80,e168), (e168,e162),

(e168,e164), (e162,e170), (e170,e78), (e164,e172), (e172,e78), (e80,e81), (e80,e169), (e80,e83),

(e80,e171), (e161,e78), (e161,e170), (e161,e172), (e167,e170), (e167,e172), (e167,e162),

(e167,e164), (e168,e81), (e169,e78), (e168,e83), (e171,e78), (e80,e78), (e80,e170), (e80,e172),

(e167,e81), (e167,e83), (e168,e78), (e167,e78), (e72,e167), (e170,e75), (e75,e78), (e172,e77),

(e77,e78), (e79,e80), (e81,e82), (e83,e84), (e72,e79), (e82,e75), (e84,e77), (e72,e170), (e72,e172),

(e167,e75), (e167,e77), (e79,e81), (e79,e83), (e79,e167), (e80,e82), (e81,e75), (e80,e84), (e83,e77),

(e72,e80), (e170,e82), (e82,e78), (e172,e84), (e84,e78), (e72,e75), (e72,e81), (e72,e77), (e72,e83),

(e167,e82), (e167,e84), (e79,e82), (e79,e84), (e79,e170), (e79,e172), (e80,e75), (e80,e77), (e72,e78),

(e72,e82), (e72,e84), (e79,e75), (e79,e77), (e79,e78), (e162,e82), (e162,e75), (e164,e84), (e164,e77),

(e169,e75), (e169,e82), (e171,e77), (e171,e84), (e80,e161), (e161,e82), (e161,e75), (e161,e84),

(e161,e77), (e168,e75), (e168,e82), (e168,e77), (e168,e84), (e72,e168), (e72,e169), (e72,e171),

(e72,e161), (e72,e162), (e72,e164), (e79,e161), (e79,e162), (e79,e164), (e79,e168), (e79,e169),

(e79,e171), (e79,e161), (e72,e161)}) = {(e168,e169), (e169,e78), (e168,e171), (e171,e78),

(e122,e123), (e122,e124), (e168,e122), (e123,e169), (e124,e171), (e168,e78), (e122,e169),

(e122,e171), (e168,e123), (e168,e124), (e123,e78), (e124,e78), (e122,e78)} U {(e80,e122),

(e122,e123), (e123,e81), (e81,e78), (e122,e124), (e124,e83), (e83,e78), (e167,e168), (e168,e169),

146

(e169,e170), (e168,e171), (e171,e172), (e80,e167), (e168,e122), (e123,e169), (e170,e81),

(e124,e171), (e172,e83), (e80,e123), (e80,e124), (e122,e81), (e122,e169), (e123,e78), (e122,e83),

(e122,e171), (e124,e78), (e167,e169), (e167,e171), (e167,e122), (e168,e170), (e169,e81),

(e168,e172), (e171,e83), (e80,e168), (e168,e123), (e168,e124), (e123,e170), (e170,e78), (e124,e172),

(e172,e78), (e80,e81), (e80,e169), (e80,e83), (e80,e171), (e122,e78), (e122,e170), (e122,e172),

(e167,e170), (e167,e172), (e167,e123), (e167,e124), (e168,e81), (e169,e78), (e168,e83), (e171,e78),

(e80,e78), (e80,e170), (e80,e172), (e167,e81), (e167,e83), (e168,e78), (e167,e78), (e72,e167),

(e170,e75), (e75,e78), (e172,e77), (e77,e78), (e79,e80), (e81,e82), (e83,e84), (e72,e79), (e82,e75),

(e84,e77), (e72,e170), (e72,e172), (e167,e75), (e167,e77), (e79,e81), (e79,e83), (e79,e167),

(e80,e82), (e81,e75), (e80,e84), (e83,e77), (e72,e80), (e170,e82), (e82,e78), (e172,e84), (e84,e78),

(e72,e75), (e72,e81), (e72,e77), (e72,e83), (e167,e82), (e167,e84), (e79,e82), (e79,e84), (e79,e170),

(e79,e172), (e80,e75), (e80,e77), (e72,e78), (e72,e82), (e72,e84), (e79,e75), (e79,e77), (e79,e78),

(e123,e82), (e123,e75), (e124,e84), (e124,e77), (e169,e75), (e169,e82), (e171,e77), (e171,e84),

(e80,e122), (e122,e82), (e122,e75), (e122,e84), (e122,e77), (e168,e75), (e168,e82), (e168,e77),

(e168,e84), (e72,e168), (e72,e169), (e72,e171), (e72,e122), (e72,e123), (e72,e124), (e79,e122),

(e79,e123), (e79,e124), (e79,e168), (e79,e169), (e79,e171), (e79,e122), (e72,e122)} = {(e168,e169),

(e169,e78), (e168,e171), (e171,e78), (e122,e123), (e122,e124), (e168,e122), (e123,e169),

(e124,e171), (e168,e78), (e122,e169), (e122,e171), (e168,e123), (e168,e124), (e123,e78), (e124,e78),

(e122,e78), (e80,e122), (e123,e81), (e81,e78), (e124,e83), (e83,e78), (e167,e168), (e169,e170),

(e171,e172), (e80,e167), (e170,e81), (e172,e83), (e80,e123), (e80,e124), (e122,e81), (e122,e83),

(e167,e169), (e167,e171), (e167,e122), (e168,e170), (e169,e81), (e168,e172), (e171,e83), (e80,e168),

(e123,e170), (e170,e78), (e124,e172), (e172,e78), (e80,e81), (e80,e169), (e80,e83), (e80,e171),

(e122,e170), (e122,e172), (e167,e170), (e167,e172), (e167,e123), (e167,e124), (e168,e81),

(e168,e83), (e80,e78), (e80,e170), (e80,e172), (e167,e81), (e167,e83), (e167,e78), (e72,e167),

(e170,e75), (e75,e78), (e172,e77), (e77,e78), (e79,e80), (e81,e82), (e83,e84), (e72,e79), (e82,e75),

(e84,e77), (e72,e170), (e72,e172), (e167,e75), (e167,e77), (e79,e81), (e79,e83), (e79,e167),

(e80,e82), (e81,e75), (e80,e84), (e83,e77), (e72,e80), (e170,e82), (e82,e78), (e172,e84), (e84,e78),

(e72,e75), (e72,e81), (e72,e77), (e72,e83), (e167,e82), (e167,e84), (e79,e82), (e79,e84), (e79,e170),

(e79,e172), (e80,e75), (e80,e77), (e72,e78), (e72,e82), (e72,e84), (e79,e75), (e79,e77), (e79,e78),

(e123,e82), (e123,e75), (e124,e84), (e124,e77), (e169,e75), (e169,e82), (e171,e77), (e171,e84),

(e122,e82), (e122,e75), (e122,e84), (e122,e77), (e168,e75), (e168,e82), (e168,e77), (e168,e84),

(e72,e168), (e72,e169), (e72,e171), (e72,e122), (e72,e123), (e72,e124), (e79,e122), (e79,e123),

(e79,e124), (e79,e168), (e79,e169), (e79,e171)}

Next, the tool generates the fourth integration test case by merging the second pair of

complement integration test cases. It examines the two test cases to create the shared events set.

se = { (e152,e128), (e153,e129), (e125,e157), (e126,e158), (e89,e127) }

Following that, the tool merges the two test cases

147

IntTCRtrnBkgMemMed = t1 + t2

 = MediaTM:TestCaseRtrnMedia + IntLibMemMedBkgTM:IntTCRtrnBkgMem

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({medTstCntrl, media}) U g({booking, member, tci}) = {TCi, media} U {booking,

member, TCi} = {booking, media, member, TCi}

f(E1) U f(E2) = f({e125,e126,e127,e128,e129}) U f({e152,e153,e156,e157,e158,

e159,e85,e88,e89,e90,e91,e92,e93}) = {e157,e158,e127,e128,e129} U {e128,

e129,e156,e157,e158,e159,e85,e88,e127,e90,e91,e92,e93} = {e127,e128,e129,

e156,e157,e158,e159,e85,e88,e90,e91,e92,e93}

f(R1) U f(R2) = f({(e125,e126), (e126,e127), (e128,e129), (e125,e128), (e129,e126), (e125,e127),

(e128,e126), (e125,e129), (e129,e127), (e128,e127)}) U f({(e91,e152), (e152,e153), (e153,e92),

(e92,e89), (e156,e157), (e157,e158), (e158,e159), (e91,e156), (e157,e152), (e153,e158), (e159,e92),

(e91,e153), (e152,e92), (e152,e158), (e153,e89), (e156,e158), (e156,e152), (e157,e159), (e158,e92),

(e91,e157), (e157,e153), (e153,e159), (e159,e89), (e91,e92), (e91,e158), (e152,e89), (e152,e159),

(e156,e159), (e156,e153), (e157,e92), (e158,e89), (e91,e89), (e91,e159), (e156,e92), (e157,e89),

(e156,e89), (e85,e156), (e159,e88), (e88,e89), (e90,e91), (e92,e93), (e85,e90), (e93,e88), (e85,e159),

(e156,e88), (e90,e92), (e90,e156), (e91,e93), (e92,e88), (e85,e91), (e159,e93), (e93,e89), (e85,e88),

(e85,e92), (e156,e93), (e90,e93), (e90,e159), (e91,e88), (e85,e89), (e85,e93), (e90,e88), (e90,e89),

(e153,e93), (e153,e88), (e158,e88), (e158,e93), (e91,e152), (e152,e93), (e152,e88), (e157,e88),

(e157,e93), (e85,e157), (e85,e158), (e85,e152), (e85,e153), (e90,e152), (e90,e153), (e90,e157),

(e90,e158), (e90,e152), (e85,e152)}) = {(e157,e158), (e158,e127), (e128,e129), (e157,e128),

(e129,e158), (e157,e127), (e128,e158), (e157,e129), (e129,e127), (e128,e127)} U {(e91,e128),

(e128,e129), (e129,e92), (e92,e127), (e156,e157), (e157,e158), (e158,e159), (e91,e156), (e157,e128),

(e129,e158), (e159,e92), (e91,e129), (e128,e92), (e128,e158), (e129,e127), (e156,e158), (e156,e128),

(e157,e159), (e158,e92), (e91,e157), (e157,e129), (e129,e159), (e159,e127), (e91,e92), (e91,e158),

(e128,e127), (e128,e159), (e156,e159), (e156,e129), (e157,e92), (e158,e127), (e91,e127), (e91,e159),

(e156,e92), (e157,e127), (e156,e127), (e85,e156), (e159,e88), (e88,e127), (e90,e91), (e92,e93),

(e85,e90), (e93,e88), (e85,e159), (e156,e88), (e90,e92), (e90,e156), (e91,e93), (e92,e88), (e85,e91),

(e159,e93), (e93,e127), (e85,e88), (e85,e92), (e156,e93), (e90,e93), (e90,e159), (e91,e88),

(e85,e127), (e85,e93), (e90,e88), (e90,e127), (e129,e93), (e129,e88), (e158,e88), (e158,e93),

(e91,e128), (e128,e93), (e128,e88), (e157,e88), (e157,e93), (e85,e157), (e85,e158), (e85,e128),

(e85,e129), (e90,e128), (e90,e129), (e90,e157), (e90,e158), (e90,e128), (e85,e128)} = {(e157,e158),

(e158,e127), (e128,e129), (e157,e128), (e129,e158), (e157,e127), (e128,e158), (e157,e129),

(e129,e127), (e128,e127), (e91,e128), (e129,e92), (e92,e127), (e156,e157), (e158,e159), (e91,e156),

(e159,e92), (e91,e129), (e128,e92), (e156,e158), (e156,e128), (e157,e159), (e158,e92), (e91,e157),

(e129,e159), (e159,e127), (e91,e92), (e91,e158), (e128,e159), (e156,e159), (e156,e129), (e157,e92),

(e91,e127), (e91,e159), (e156,e92), (e156,e127), (e85,e156), (e159,e88), (e88,e127), (e90,e91),

148

(e92,e93), (e85,e90), (e93,e88), (e85,e159), (e156,e88), (e90,e92), (e90,e156), (e91,e93), (e92,e88),

(e85,e91), (e159,e93), (e93,e127), (e85,e88), (e85,e92), (e156,e93), (e90,e93), (e90,e159), (e91,e88),

(e85,e127), (e85,e93), (e90,e88), (e90,e127), (e129,e93), (e129,e88), (e158,e88), (e158,e93),

(e128,e93), (e128,e88), (e157,e88), (e157,e93), (e85,e157), (e85,e158), (e85,e128), (e85,e129),

(e90,e128), (e90,e129), (e90,e157), (e90,e158)}

After generating the test behavior, the tool updates the test structure as follows:

T = { IntTCRsrvBkgMemMed, IntTCRtrnBkgMemMed }

P = (TCi, {}, {Booking, Member, Media})

IntLibMemMedBkgTM = (P, T)

 Figure 68 shows the generated integration test model for the third integration iteration.

Figure 68. Generated integration test model (IntLibMemMedBkgTM)

149

C.2. Second Integration Order

We generate integration test models by integrating the component test models in the following

order: ((LibrarianTM + MediaTM) + BookingTM) + MemberTM. The integration goes through

three iterations as follows:

1. (LibrarianTM + MediaTM),

2. ((LibrarianTM + MediaTM) + BookingTM) then

3. ((LibrarianTM + MediaTM) + BookingTM) + MemberTM

C.2.1. First Iteration: LibrarianTM+MediaTM

In the first iteration, we integrate component test models of Librarian and Media to generate the

first integration test model; let us call it IntLibMedTM. The identification process does not detect

shared test objects in the first phase. In the second phase of the identification process, the tool

detects that the test control LibTstCntrl emulates the CUT Media through the following events:

(e2,e105), (e3,e107), (e5,e106), (e28,e111) and (e29,e112). It also detects that the test control

MedTstCntrl emulates the CUT Librarian through the following events: (e108,e33), (e109,e34),

(e101,e9), (e102,e12) and (e103,e10). In the selection process, the tool selects four test cases as

complete integration test cases: LibrarianTM:TestCaseAddMedia,

LibrarianTM:TestCaseBrowseMedia, MediaTM:TestCaseAddMedia and

MediaTM:TestCaseLibBrowseMedia. Next, the tool builds EDTs for the test cases to detect

complement integration test cases. Figure 69 shows two EDTs for test cases that have integration

interactions. Hence, we have two pairs of complement integration test cases:

(LibrarianTM:TestCaseAddMedia, MediaTM:TestCaseAddMedia) and

(LibrarianTM:TestCaseBrowseMedia, MediaTM:TestCaseLibBrowseMedia). The tool excludes

the complete integration test cases since they are involved in the complement integration test cases.

The next step is to generate the test behavior from the given complement integration test cases by

merging each pair to generate an integration test case. To merge the first pair, the tool creates the

integration test control TCi and creates the shared events set, Definition 6, using the event matching

expression, Definition 5.

se = { (e2,e105), (e3,e107), (e5,e106), (e101,e9), (e102,e12), (e103,e10), (e104, e7) }

150

Figure 69. EDTs for Librarian Media integration

Then, the tool generates the first integration test case by applying Definition 7:

IntTCAddMed = t1 + t2

 = LibrarianTM:TestCaseAddMedia + MediaTM:TestCaseAddMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({libTstCntrl, librarian}) U g({medTstCntrl, media}) = {tci, librarian} U {tci, media}

= {librarian, media, tci}

f(E1) U f(E2) = f({e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13}) U f({e101,e102,

e103,e104,e105,e106,e107}) = {e1,e105,e107,e4,e106,e6,e7,e8,e9,e10,e11,e12, e13} U

{e9,e12,e10,e7,e105,e106,e107} = {e1,e10,e105,e106,e107,e11,e12,e13, e4,e6,e7,e8,e9}

f(R1) U f(R2) = f({(e1,e2), (e2,e3), (e3,e4), (e4,e7), (e2,e5), (e5,e6), (e6,e7), (e8,e9), (e9,e10), (e10,e11),

(e9,e12), (e12,e13), (e1,e8), (e9,e2), (e3,e10), (e11,e4), (e5,e12), (e13,e6), (e1,e3), (e1,e5), (e2,e4),

(e2,e10), (e3,e7), (e2,e6), (e2,e12), (e5,e7), (e8,e10), (e8,e12), (e8,e2), (e9,e11), (e10,e4), (e9,e13),

(e12,e6), (e1,e9), (e9,e3), (e9,e5), (e3,e11), (e11,e7), (e5,e13), (e13,e7), (e1,e4), (e1,e10), (e1,e6),

(e1,e12), (e2,e7), (e2,e11), (e2,e13), (e8,e11), (e8,e13), (e8,e3), (e8,e5), (e9,e4), (e10,e7), (e9,e6),

(e12,e7), (e1,e7), (e1,e11), (e1,e13), (e8,e4), (e8,e6), (e9,e7), (e8,e7)}) U f({(e101,e102), (e101,e103),

(e102,e104), (e103,e104), (e105,e106), (e105,e107), (e101,e105), (e106,e102), (e107,e103),

(b) AddMedia

e1

e9

e106

e4

e8

e6

e7

e105

e107

e12

e11 e13

e10

Interaction

between

CUTs

(a) BrowseMedia

e27

e33

e112

e32

e30

e31

e111

e35

e34

151

(e101,e104), (e105,e102), (e105,e103), (e101,e106), (e101,e107), (e106,e104), (e107,e104),

(e105,e104)}) = {(e1,e105), (e105,e107), (e107,e4), (e4,e7), (e105,e106), (e106,e6), (e6,e7), (e8,e9),

(e9,e10), (e10,e11), (e9,e12), (e12,e13), (e1,e8), (e9,e105), (e107,e10), (e11,e4), (e106,e12), (e13,e6),

(e1,e107), (e1,e106), (e105,e4), (e105,e10), (e107,e7), (e105,e6), (e105,e12), (e106,e7), (e8,e10),

(e8,e12), (e8,e105), (e9,e11), (e10,e4), (e9,e13), (e12,e6), (e1,e9), (e9,e107), (e9,e106), (e107,e11),

(e11,e7), (e106,e13), (e13,e7), (e1,e4), (e1,e10), (e1,e6), (e1,e12), (e105,e7), (e105,e11), (e105,e13),

(e8,e11), (e8,e13), (e8,e107), (e8,e106), (e9,e4), (e10,e7), (e9,e6), (e12,e7), (e1,e7), (e1,e11),

(e1,e13), (e8,e4), (e8,e6), (e9,e7), (e8,e7)} U {(e9,e12), (e9,e10), (e12,e7), (e10,e7), (e105,e106),

(e105,e107), (e9,e105), (e106,e12), (e107,e10), (e9,e7), (e105,e12), (e105,e10), (e9,e106), (e9,e107),

(e106,e7), (e107,e7), (e105,e7)} = {(e1,e105), (e105,e107), (e107,e4), (e4,e7), (e105,e106), (e106,e6),

(e6,e7), (e8,e9), (e9,e10), (e10,e11), (e9,e12), (e12,e13), (e1,e8), (e9,e105), (e107,e10), (e11,e4),

(e106,e12), (e13,e6), (e1,e107), (e1,e106), (e105,e4), (e105,e10), (e107,e7), (e105,e6), (e105,e12),

(e106,e7), (e8,e10), (e8,e12), (e8,e105), (e9,e11), (e10,e4), (e9,e13), (e12,e6), (e1,e9), (e9,e107),

(e9,e106), (e107,e11), (e11,e7), (e106,e13), (e13,e7), (e1,e4), (e1,e10), (e1,e6), (e1,e12), (e105,e7),

(e105,e11), (e105,e13), (e8,e11), (e8,e13), (e8,e107), (e8,e106), (e9,e4), (e10,e7), (e9,e6), (e12,e7),

(e1,e7), (e1,e11), (e1,e13), (e8,e4), (e8,e6), (e9,e7), (e8,e7)}

After that, the tool generates the second integration test case by merging the second pair. The

tool starts by creating the shared events set.

se = { (e28,e111), (e29,e112), (e108,e33), (e109,e34), (e110,e31) }

Then, the tool generates the second integration test case by applying Definition 7:

IntTCBrwMed = t1 + t2

 = LibrarianTM:TestCaseBrowseMedia + MediaTM:TestCaseLibBrowseMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({libTstCntrl, librarian}) U g({medTstCntrl, media}) = {tci, librarian} U {tci, media}

= {librarian, media, tci}

f(E1) U f(E2) = f({e27,e28,e29,e30,e31,e32,e33,e34,e35}) U f({e108,e109,e110, e111,e112}) =

{e27,e111,e112,e30,e31,e32,e33,e34,e35} U {e33,e34,e31,e111, e112} =

{e111,e112,e27,e30,e31,e32,e33,e34,e35}

f(R1) U f(R2) = f({(e27,e28), (e28,e29), (e29,e30), (e30,e31), (e32,e33), (e33,e34), (e34,e35), (e27,e32),

(e33,e28), (e29,e34), (e35,e30), (e27,e29), (e28,e30), (e28,e34), (e29,e31), (e32,e34), (e32,e28),

(e33,e35), (e34,e30), (e27,e33), (e33,e29), (e29,e35), (e35,e31), (e27,e30), (e27,e34), (e28,e31),

(e28,e35), (e32,e35), (e32,e29), (e33,e30), (e34,e31), (e27,e31), (e27,e35), (e32,e30), (e33,e31),

(e32,e31)}) U f({(e108,e109), (e109,e110), (e111,e112), (e108,e111), (e112,e109), (e108,e110),

(e111,e109), (e108,e112), (e112,e110), (e111,e110)}) = {(e27,e111), (e111,e112), (e112,e30),

(e30,e31), (e32,e33), (e33,e34), (e34,e35), (e27,e32), (e33,e111), (e112,e34), (e35,e30), (e27,e112),

(e111,e30), (e111,e34), (e112,e31), (e32,e34), (e32,e111), (e33,e35), (e34,e30), (e27,e33),

(e33,e112), (e112,e35), (e35,e31), (e27,e30), (e27,e34), (e111,e31), (e111,e35), (e32,e35),

152

(e32,e112), (e33,e30), (e34,e31), (e27,e31), (e27,e35), (e32,e30), (e33,e31), (e32,e31)} U {(e33,e34),

(e34,e31), (e111,e112), (e33,e111), (e112,e34), (e33,e31), (e111,e34), (e33,e112), (e112,e31),

(e111,e31)} = {(e27,e111), (e111,e112), (e112,e30), (e30,e31), (e32,e33), (e33,e34), (e34,e35),

(e27,e32), (e33,e111), (e112,e34), (e35,e30), (e27,e112), (e111,e30), (e111,e34), (e112,e31),

(e32,e34), (e32,e111), (e33,e35), (e34,e30), (e27,e33), (e33,e112), (e112,e35), (e35,e31), (e27,e30),

(e27,e34), (e111,e31), (e111,e35), (e32,e35), (e32,e112), (e33,e30), (e34,e31), (e27,e31), (e27,e35),

(e32,e30), (e33,e31), (e32,e31)}

After generating the test behavior, the tool generates the test structure as follows:

T = { IntTCAddMed, IntTCBrwMed }

P = (TCi, {}, {Librarian, Media})

IntLibMedTM = (P, T)

The generated integration test model IntLibMedTM, shown in Figure 70, is exercised on the

sub-system, and upon a successful test, we move to the next integration iteration.

Figure 70. Generated integration test model (IntLibMedTM)

153

C.2.2. Second Iteration: (LibrarianTM+MediaTM)+BookingTM

In the second integration iteration, the tool generates the second integration test model, let us call

it IntLibMedBkgTM, to examine the integration of ((Librarian + Media) + Booking. The tool

performs three test integrations. In the first test integration, the tool integrates the previously

generated test model IntLibMedTM and the component test model BookingTM. The tool starts by

applying on the given test models the identification process, which does not detect any shared test

objects between the two test models. Hence, the tool stops the current test integration and proceeds

to the next test integration. In the second test integration, the tool integrates the component test

model BookingTM and MediaTM. The identification process detects that the test control

BookLibTstCntrl emulates the CUT Media through the following events: (e152,e128),

(e153,e129), (e161,e122), (e162,e123) and (e164,e124), and the test control MedTstCntrl emulates

the CUT Booking through the following events: (e118,e168), (e119,e169), (e120,e171),

(e125,e157) and (e126,e158). The selection process selects four test cases as complete integration

test cases: MediaTM:TestCaseRsrvMedia, MediaTM:TestCaseRtrnMedia,

BookingTM:TestCaseRtrnMedia and BookingTM:TestCaseRsrvMedia. It also creates the EDTs

and selects two pairs as complement integration test cases: (BookingTM:TestCaseRsrvMedia,

MediaTM:TestCaseRsrvMedia) and (BookingTM:TestCaseRtrnMedia,

MediaTM:TestCaseRtrnMedia). The tool excludes the complete integration test cases since they

are included in the second list. The next step is that the tool generates the first integration test case

by merging the first pair of complement integration test cases. It examines the two test cases to

create the shared events set.

se = { (e161,e122), (e162,e123), (e164,e124), (e118,e168), (e119,e169), (e120,e171), (e166,e121) }

Following that, the tool merges the two test cases

IntTCRsrvMedia = t1 + t2

 = BookingTM:TestCaseRsrvMedia + MediaTM:TestCaseRsrvMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({bookTstCntrl, booking}) U g({medTstCntrl, media}) = {tci, booking} U {tci, media}

= {booking, media, tci}

f(E1) U f(E2) = f({e160,e161,e162,e163,e164,e165,e166,e167,e168,e169,e170,e171, e172}) U

f({e118,e119,e120,e121,e122,e123,e124}) = {e160,e122,e123,e163,

e124,e165,e121,e167,e168,e169,e170,e171,e172} U {e168,e169,e171,e121,e122, e123,e124} =

{e121,e122,e123,e124,e160,e163,e165,e167,e168,e169,e170,e171, e172}

154

f(R1) U f(R2) = f({(e160,e161), (e161,e162), (e162,e163), (e163,e166), (e161,e164), (e164,e165),

(e165,e166), (e167,e168), (e168,e169), (e169,e170), (e168,e171), (e171,e172), (e160,e167),

(e168,e161), (e162,e169), (e170,e163), (e164,e171), (e172,e165), (e160,e162), (e160,e164),

(e161,e163), (e161,e169), (e162,e166), (e161,e165), (e161,e171), (e164,e166), (e167,e169),

(e167,e171), (e167,e161), (e168,e170), (e169,e163), (e168,e172), (e171,e165), (e160,e168),

(e168,e162), (e168,e164), (e162,e170), (e170,e166), (e164,e172), (e172,e166), (e160,e163),

(e160,e169), (e160,e165), (e160,e171), (e161,e166), (e161,e170), (e161,e172), (e167,e170),

(e167,e172), (e167,e162), (e167,e164), (e168,e163), (e169,e166), (e168,e165), (e171,e166),

(e160,e166), (e160,e170), (e160,e172), (e167,e163), (e167,e165), (e168,e166), (e167,e166)}) U

f({(e118,e119), (e119,e121), (e118,e120), (e120,e121), (e122,e123), (e122,e124), (e118,e122),

(e123,e119), (e124,e120), (e118,e121), (e122,e119), (e122,e120), (e118,e123), (e118,e124),

(e123,e121), (e124,e121), (e122,e121)}) = {(e160,e122), (e122,e123), (e123,e163), (e163,e121),

(e122,e124), (e124,e165), (e165,e121), (e167,e168), (e168,e169), (e169,e170), (e168,e171),

(e171,e172), (e160,e167), (e168,e122), (e123,e169), (e170,e163), (e124,e171), (e172,e165),

(e160,e123), (e160,e124), (e122,e163), (e122,e169), (e123,e121), (e122,e165), (e122,e171),

(e124,e121), (e167,e169), (e167,e171), (e167,e122), (e168,e170), (e169,e163), (e168,e172),

(e171,e165), (e160,e168), (e168,e123), (e168,e124), (e123,e170), (e170,e121), (e124,e172),

(e172,e121), (e160,e163), (e160,e169), (e160,e165), (e160,e171), (e122,e121), (e122,e170),

(e122,e172), (e167,e170), (e167,e172), (e167,e123), (e167,e124), (e168,e163), (e169,e121),

(e168,e165), (e171,e121), (e160,e121), (e160,e170), (e160,e172), (e167,e163), (e167,e165),

(e168,e121), (e167,e121)} U {(e168,e169), (e169,e121), (e168,e171), (e171,e121), (e122,e123),

(e122,e124), (e168,e122), (e123,e169), (e124,e171), (e168,e121), (e122,e169), (e122,e171),

(e168,e123), (e168,e124), (e123,e121), (e124,e121), (e122,e121)} = {(e160,e122), (e122,e123),

(e123,e163), (e163,e121), (e122,e124), (e124,e165), (e165,e121), (e167,e168), (e168,e169),

(e169,e170), (e168,e171), (e171,e172), (e160,e167), (e168,e122), (e123,e169), (e170,e163),

(e124,e171), (e172,e165), (e160,e123), (e160,e124), (e122,e163), (e122,e169), (e123,e121),

(e122,e165), (e122,e171), (e124,e121), (e167,e169), (e167,e171), (e167,e122), (e168,e170),

(e169,e163), (e168,e172), (e171,e165), (e160,e168), (e168,e123), (e168,e124), (e123,e170),

(e170,e121), (e124,e172), (e172,e121), (e160,e163), (e160,e169), (e160,e165), (e160,e171),

(e122,e121), (e122,e170), (e122,e172), (e167,e170), (e167,e172), (e167,e123), (e167,e124),

(e168,e163), (e169,e121), (e168,e165), (e171,e121), (e160,e121), (e160,e170), (e160,e172),

(e167,e163), (e167,e165), (e168,e121), (e167,e121)}

Next, the tool generates the second integration test case by merging the second pair of

complement integration test cases. It examines the two test cases to create the shared events set.

se = { (e152,e128), (e153,e129), (e125,e157), (e126,e158), (e155,e127) }

Following that, the tool merges the two test cases

IntTCRtrnMedia = t1 + t2

155

 = BookingTM:TestCaseRtrnMedia + MediaTM:TestCaseRtrnMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({bookTstCntrl, booking}) U g({medTstCntrl, media}) = {tci, booking} U {tci, media}

= {booking, media, tci}

f(E1) U f(E2) = f({e151,e152,e153,e154,e155,e156,e157,e158,e159}) U f({e125, e126,e127,e128,e129})

= {e151,e128,e129,e154,e127,e156,e157,e158,e159} U {e157,e158,e127,e128,e129} =

{e127,e128,e129,e151,e154,e156,e157,e158,e159}

f(R1) U f(R2) = f({(e151,e152), (e152,e153), (e153,e154), (e154,e155), (e156,e157), (e157,e158),

(e158,e159), (e151,e156), (e157,e152), (e153,e158), (e159,e154), (e151,e153), (e152,e154),

(e152,e158), (e153,e155), (e156,e158), (e156,e152), (e157,e159), (e158,e154), (e151,e157),

(e157,e153), (e153,e159), (e159,e155), (e151,e154), (e151,e158), (e152,e155), (e152,e159),

(e156,e159), (e156,e153), (e157,e154), (e158,e155), (e151,e155), (e151,e159), (e156,e154),

(e157,e155), (e156,e155)}) U f({(e125,e126), (e126,e127), (e128,e129), (e125,e128), (e129,e126),

(e125,e127), (e128,e126), (e125,e129), (e129,e127), (e128,e127)}) = {(e151,e128), (e128,e129),

(e129,e154), (e154,e127), (e156,e157), (e157,e158), (e158,e159), (e151,e156), (e157,e128),

(e129,e158), (e159,e154), (e151,e129), (e128,e154), (e128,e158), (e129,e127), (e156,e158),

(e156,e128), (e157,e159), (e158,e154), (e151,e157), (e157,e129), (e129,e159), (e159,e127),

(e151,e154), (e151,e158), (e128,e127), (e128,e159), (e156,e159), (e156,e129), (e157,e154),

(e158,e127), (e151,e127), (e151,e159), (e156,e154), (e157,e127), (e156,e127)} U {(e157,e158),

(e158,e127), (e128,e129), (e157,e128), (e129,e158), (e157,e127), (e128,e158), (e157,e129),

(e129,e127), (e128,e127)} = {(e151,e128), (e128,e129), (e129,e154), (e154,e127), (e156,e157),

(e157,e158), (e158,e159), (e151,e156), (e157,e128), (e129,e158), (e159,e154), (e151,e129),

(e128,e154), (e128,e158), (e129,e127), (e156,e158), (e156,e128), (e157,e159), (e158,e154),

(e151,e157), (e157,e129), (e129,e159), (e159,e127), (e151,e154), (e151,e158), (e128,e127),

(e128,e159), (e156,e159), (e156,e129), (e157,e154), (e158,e127), (e151,e127), (e151,e159),

(e156,e154), (e157,e127), (e156,e127)}

Following the generation of the test behavior, the tool generates the test structure as follows:

T = { IntTCRsrvMedia, IntTCRtrnMedia }

P = (TCi, {}, {Booking, Media})

IntLibMedBkgTM = (P, T)

The intermediate generated integration test model IntLibMedBkgTM, from the second test

integration, is shown in Figure 71. Following that, the tool proceeds to the next test integration.

In the third test integration, the tool examines the test cases of LibrarianTM against the

currently generated test cases of IntLibMedBkgTM and the test cases of BookingTM.

LibrarianTM’s test cases that are integrated with IntLibMedBkgTM’s test cases are not examined

against the test cases of BookingTM. The identification process does not detect shared test objects

156

between LibrarianTM and IntLibMedBkgTM nor between LibrarianTM and BookingTM. Hence,

the intermediate generated test model is the final generated integration test model

IntLibMedBkgTM for the second integration iteration as shown in Figure 71. The test model is

exercised on the integrated sub-system, and upon successful test results, we move to the third and

last integration iteration.

C.2.3. Third Iteration: ((LibrarianTM+MediaTM)+BookingTM)+MemberTM

In the third integration iteration, the tool generates the third integration test model, let us call it

IntLibMedBkgMemTM, to examine the integration of (((Librarian + Media) + Booking) +

Member). The tool performs four test model integrations.

Figure 71. Generated test model (IntLibMedBkgTM)

In the first test integration, the tool integrates the previously generated test model

IntLibMedBkgTM and the component test model MemberTM. The tool begins by applying the

identification process on the given test models. The identification process detects that the test

control TCi emulates the CUT Member through the following events: (e151,e91), (e154,e92),

(e160,e80), (e163,e81) and (e165,e83), and the test control MemTstCntrl emulates the CUT

Booking through the following events: (e73,e167), (e74,e170), (e76,e172), (e86,e156) and

(e87,e159). The selection process selects four test cases as complete integration test cases:

IntLibMedBkgTM:TestCaseRsrvMedia, IntLibMedBkgTM:TestCaseRtrnMedia,

MemberTM:TestCaseRsrvMedia and MemberTM:TestCaseRtrnMedia. It also creates the EDTs

157

and selects two pairs as complement integration test cases:

(IntLibMedBkgTM:TestCaseRsrvMedia, MemberTM:TestCaseRsrvMedia) and

(IntLibMedBkgTM:TestCaseRtrnMedia, MemberTM:TestCaseRtrnMedia). The tool excludes the

complete integration test cases since they are included in the second list. For the next step, the tool

generates the first integration test case by merging the first pair of complement integration test

cases. It examines the two test cases to create the shared events set.

se = {(e160,e80), (e163,e81), (e165,e83), (e73,e167), (e74,e170), (e76,e172), (e121,e78)}

Following that, the tool merges the two test cases

IntTCRsrvMedBkgMem = t1 + t2

 = IntLibMedBkgTM:TestCaseRsrvMedia + MemberTM:TestCaseRsrvMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({booking, media, tci}) U g({memTstCntrl, member}) = {booking, media, tci} U {tci,

member} = {booking, media, member, tci}

f(E1) U f(E2) = f({e121,e122,e123,e124,e160,e163,e165,e167,e168,e169,e170,e171, e172}) U

f({e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84}) = {e78,e122,

e123,e124,e80,e81,e83,e167,e168,e169,e170,e171,e172} U {e72,e167,e170,e75,

e172,e77,e78,e79,e80,e81,e82,e83,e84}

f(R1) U f(R2) = f({(e160,e122); (e122,e123); (e123,e163); (e163,e121); (e122,e124); (e124,e165);

(e165,e121); (e167,e168); (e168,e169); (e169,e170); (e168,e171); (e171,e172); (e160,e167);

(e168,e122); (e123,e169); (e170,e163); (e124,e171); (e172,e165); (e160,e123); (e160,e124);

(e122,e163); (e122,e169); (e123,e121); (e122,e165); (e122,e171); (e124,e121); (e167,e169);

(e167,e171); (e167,e122); (e168,e170); (e169,e163); (e168,e172); (e171,e165); (e160,e168);

(e168,e123); (e168,e124); (e123,e170); (e170,e121); (e124,e172); (e172,e121); (e160,e163);

(e160,e169); (e160,e165); (e160,e171); (e122,e121); (e122,e170); (e122,e172); (e167,e170);

(e167,e172); (e167,e123); (e167,e124); (e168,e163); (e169,e121); (e168,e165); (e171,e121);

(e160,e121); (e160,e170); (e160,e172); (e167,e163); (e167,e165); (e168,e121); (e167,e121)}) U

f({(e72,e73); (e73,e74); (e74,e75); (e75,e78); (e73,e76); (e76,e77); (e77,e78); (e79,e80); (e80,e81);

(e81,e82); (e80,e83); (e83,e84); (e72,e79); (e80,e73); (e74,e81); (e82,e75); (e76,e83); (e84,e77);

(e72,e74); (e72,e76); (e73,e75); (e73,e81); (e74,e78); (e73,e77); (e73,e83); (e76,e78); (e79,e81);

(e79,e83); (e79,e73); (e80,e82); (e81,e75); (e80,e84); (e83,e77); (e72,e80); (e80,e74); (e80,e76);

(e74,e82); (e82,e78); (e76,e84); (e84,e78); (e72,e75); (e72,e81); (e72,e77); (e72,e83); (e73,e78);

(e73,e82); (e73,e84); (e79,e82); (e79,e84); (e79,e74); (e79,e76); (e80,e75); (e81,e78); (e80,e77);

(e83,e78); (e72,e78); (e72,e82); (e72,e84); (e79,e75); (e79,e77); (e80,e78); (e79,e78)}) =

{(e80,e122); (e122,e123); (e123,e81); (e81,e78); (e122,e124); (e124,e83); (e83,e78); (e167,e168);

(e168,e169); (e169,e170); (e168,e171); (e171,e172); (e80,e167); (e168,e122); (e123,e169);

(e170,e81); (e124,e171); (e172,e83); (e80,e123); (e80,e124); (e122,e81); (e122,e169); (e123,e78);

158

(e122,e83); (e122,e171); (e124,e78); (e167,e169); (e167,e171); (e167,e122); (e168,e170);

(e169,e81); (e168,e172); (e171,e83); (e80,e168); (e168,e123); (e168,e124); (e123,e170); (e170,e78);

(e124,e172); (e172,e78); (e80,e81); (e80,e169); (e80,e83); (e80,e171); (e122,e78); (e122,e170);

(e122,e172); (e167,e170); (e167,e172); (e167,e123); (e167,e124); (e168,e81); (e169,e78);

(e168,e83); (e171,e78); (e80,e78); (e80,e170); (e80,e172); (e167,e81); (e167,e83); (e168,e78);

(e167,e78)} U {(e72,e167); (e167,e170); (e170,e75); (e75,e78); (e167,e172); (e172,e77); (e77,e78);

(e79,e80); (e80,e81); (e81,e82); (e80,e83); (e83,e84); (e72,e79); (e80,e167); (e170,e81); (e82,e75);

(e172,e83); (e84,e77); (e72,e170); (e72,e172); (e167,e75); (e167,e81); (e170,e78); (e167,e77);

(e167,e83); (e172,e78); (e79,e81); (e79,e83); (e79,e167); (e80,e82); (e81,e75); (e80,e84); (e83,e77);

(e72,e80); (e80,e170); (e80,e172); (e170,e82); (e82,e78); (e172,e84); (e84,e78); (e72,e75);

(e72,e81); (e72,e77); (e72,e83); (e167,e78); (e167,e82); (e167,e84); (e79,e82); (e79,e84);

(e79,e170); (e79,e172); (e80,e75); (e81,e78); (e80,e77); (e83,e78); (e72,e78); (e72,e82); (e72,e84);

(e79,e75); (e79,e77); (e80,e78); (e79,e78)} = {(e80,e122); (e122,e123); (e123,e81); (e81,e78);

(e122,e124); (e124,e83); (e83,e78); (e167,e168); (e168,e169); (e169,e170); (e168,e171);

(e171,e172); (e80,e167); (e168,e122); (e123,e169); (e170,e81); (e124,e171); (e172,e83); (e80,e123);

(e80,e124); (e122,e81); (e122,e169); (e123,e78); (e122,e83); (e122,e171); (e124,e78); (e167,e169);

(e167,e171); (e167,e122); (e168,e170); (e169,e81); (e168,e172); (e171,e83); (e80,e168);

(e168,e123); (e168,e124); (e123,e170); (e170,e78); (e124,e172); (e172,e78); (e80,e81); (e80,e169);

(e80,e83); (e80,e171); (e122,e78); (e122,e170); (e122,e172); (e167,e170); (e167,e172); (e167,e123);

(e167,e124); (e168,e81); (e169,e78); (e168,e83); (e171,e78); (e80,e78); (e80,e170); (e80,e172);

(e167,e81); (e167,e83); (e168,e78); (e167,e78); (e72,e167); (e170,e75); (e75,e78); (e172,e77);

(e77,e78); (e79,e80); (e81,e82); (e83,e84); (e72,e79); (e82,e75); (e84,e77); (e72,e170); (e72,e172);

(e167,e75); (e167,e77); (e79,e81); (e79,e83); (e79,e167); (e80,e82); (e81,e75); (e80,e84); (e83,e77);

(e72,e80); (e170,e82); (e82,e78); (e172,e84); (e84,e78); (e72,e75); (e72,e81); (e72,e77); (e72,e83);

(e167,e82); (e167,e84); (e79,e82); (e79,e84); (e79,e170); (e79,e172); (e80,e75); (e80,e77);

(e72,e78); (e72,e82); (e72,e84); (e79,e75); (e79,e77); (e79,e78); (e123,e82); (e123,e75); (e124,e84);

(e124,e77); (e169,e75); (e169,e82); (e171,e77); (e171,e84); (e122,e82); (e122,e75); (e122,e84);

(e122,e77); (e168,e75); (e168,e82); (e168,e77); (e168,e84); (e72,e168); (e72,e169); (e72,e171);

(e72,e122); (e72,e123); (e72,e124); (e79,e122); (e79,e123); (e79,e124); (e79,e168); (e79,e169);

(e79,e171)}

Next, the tool generates the second integration test case by merging the second pair of

complement integration test cases. It examines the two test cases to create the shared events set.

se = { (e151,e91), (e154,e92), (e86,e156), (e87,e159), (e127,e89) }

Following that, the tool merges the two test cases

IntTCRtrnMedBkgMem = t1 + t2

 = IntLibMedBkgTM:TestCaseRtrnMedia + MemberTM:TestCaseRtrnMedia

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

159

g(I1) U g(I2) = g(= {booking, media, tci}) U g({memTstCntrl, member}) = {booking, media, tci} U {tci,

member} = {booking, media, member, tci}

f(E1) U f(E2) = f({e127,e128,e129,e151,e154,e156,e157,e158,e159}) U f({e85,e86,

e87,e88,e89,e90,e91,e92,e93}) = {e89,e128,e129,e91,e92,e156,e157,e158,e159} U

{e85,e156,e159,e88,e89,e90,e91,e92,e93} = {e128,e129,e156,e157,e158,e159,

e85,e88,e89,e90,e91,e92,e93}

f(R1) U f(R2) = f({(e151,e128), (e128,e129), (e129,e154), (e154,e127), (e156,e157), (e157,e158),

(e158,e159), (e151,e156), (e157,e128), (e129,e158), (e159,e154), (e151,e129), (e128,e154),

(e128,e158), (e129,e127), (e156,e158), (e156,e128), (e157,e159), (e158,e154), (e151,e157),

(e157,e129), (e129,e159), (e159,e127), (e151,e154), (e151,e158), (e128,e127), (e128,e159),

(e156,e159), (e156,e129), (e157,e154), (e158,e127), (e151,e127), (e151,e159), (e156,e154),

(e157,e127), (e156,e127)}) U f({(e85,e86), (e86,e87), (e87,e88), (e88,e89), (e90,e91), (e91,e92),

(e92,e93), (e85,e90), (e91,e86), (e87,e92), (e93,e88), (e85,e87), (e86,e88), (e86,e92), (e87,e89),

(e90,e92), (e90,e86), (e91,e93), (e92,e88), (e85,e91), (e91,e87), (e87,e93), (e93,e89), (e85,e88),

(e85,e92), (e86,e89), (e86,e93), (e90,e93), (e90,e87), (e91,e88), (e92,e89), (e85,e89), (e85,e93),

(e90,e88), (e91,e89), (e90,e89)}) = {(e91,e128), (e128,e129), (e129,e92), (e92,e89), (e156,e157),

(e157,e158), (e158,e159), (e91,e156), (e157,e128), (e129,e158), (e159,e92), (e91,e129), (e128,e92),

(e128,e158), (e129,e89), (e156,e158), (e156,e128), (e157,e159), (e158,e92), (e91,e157), (e157,e129),

(e129,e159), (e159,e89), (e91,e92), (e91,e158), (e128,e89), (e128,e159), (e156,e159), (e156,e129),

(e157,e92), (e158,e89), (e91,e89), (e91,e159), (e156,e92), (e157,e89), (e156,e89)} U {(e85,e156),

(e156,e159), (e159,e88), (e88,e89), (e90,e91), (e91,e92), (e92,e93), (e85,e90), (e91,e156),

(e159,e92), (e93,e88), (e85,e159), (e156,e88), (e156,e92), (e159,e89), (e90,e92), (e90,e156),

(e91,e93), (e92,e88), (e85,e91), (e91,e159), (e159,e93), (e93,e89), (e85,e88), (e85,e92), (e156,e89),

(e156,e93), (e90,e93), (e90,e159), (e91,e88), (e92,e89), (e85,e89), (e85,e93), (e90,e88), (e91,e89),

(e90,e89)} = {(e91,e128), (e128,e129), (e129,e92), (e92,e89), (e156,e157), (e157,e158), (e158,e159),

(e91,e156), (e157,e128), (e129,e158), (e159,e92), (e91,e129), (e128,e92), (e128,e158), (e129,e89),

(e156,e158), (e156,e128), (e157,e159), (e158,e92), (e91,e157), (e157,e129), (e129,e159), (e159,e89),

(e91,e92), (e91,e158), (e128,e89), (e128,e159), (e156,e159), (e156,e129), (e157,e92), (e158,e89),

(e91,e89), (e91,e159), (e156,e92), (e157,e89), (e156,e89), (e85,e156), (e159,e88), (e88,e89),

(e90,e91), (e92,e93), (e85,e90), (e93,e88), (e85,e159), (e156,e88), (e90,e92), (e90,e156), (e91,e93),

(e92,e88), (e85,e91), (e159,e93), (e93,e89), (e85,e88), (e85,e92), (e156,e93), (e90,e93), (e90,e159),

(e91,e88), (e85,e89), (e85,e93), (e90,e88), (e90,e89), (e129,e93), (e129,e88), (e158,e88), (e158,e93),

(e128,e93), (e128,e88), (e157,e88), (e157,e93), (e85,e157), (e85,e158), (e85,e128), (e85,e129),

(e90,e128), (e90,e129), (e90,e157), (e90,e158)}

After generating the test behavior, the tool generates the test structure as follows:

T = { IntTCRsrvMedBkgMem, IntTCRtrnMedBkgMem }

P = (TCi, {}, {Booking, Media, Member})

160

IntLibMedBkgMemTM = (P, T)

The intermediate generated integration test model IntLibMedBkgMemTM is shown in Figure

72. After that, we examine the carried-on component test models: LibrarianTM, BookingTM and

MediaTM, against the intermediate generated test model IntLibMedBkgMemTM and the currently

integrated component test model MemberTM to generate additional test cases. Hence, we move to

the second test integration. In the second test integration, the tool integrates the component test

model LibrarianTM to IntLibMedBkgMemTM and MemberTM. The identification process does

not detect shared test objects between LibrarianTM and IntLibMedBkgMemTM, but it detects

shared test objects between LibrarianTM and MemberTM. The tool detects that the test control

LibTstCntrl emulates the CUT Member through the following events: (e15,e55), (e16,e56),

(e18,e57), (e37,e61) and (e38,e62). It also detects that the test control MemTstCntrl emulates the

CUT Librarian through the following events: (e51,e22), (e52,e23), (e53,e25), (e58,e42) and

(e59,e43). In the selection process, the tool selects four test cases as complete integration test cases:

LibrarianTM:TestCaseAddMember, LibrarianTM:TestCaseBrowseMembers,

MemberTM:TestCaseAddMember and MemberTM:TestCaseBrowseMembers. Next, the tool

builds EDTs for the test cases to detect complement integration test cases. The tool selects two

pairs of complement integration test cases: (LibrarianTM:TestCaseAddMember,

MemberTM:TestCaseAddMember) and (LibrarianTM:TestCaseBrowseMembers,

MemberTM:TestCaseBrowseMembers). The tool excludes the complete integration test cases

since they are involved in the complement integration test cases. The next step is to generate the

third integration test cases by merging the first pair; the tool creates the integration test control TCi

and creates the shared events set, Definition 6, using the event matching expression, Definition 5.

se = { (e15,e55), (e16,e56), (e18,e57), (e51,e22), (e52,e23), (e53,e25), (e54, e20) }

Then, the tool generates the first integration test case by applying Definition 7:

IntTCAddMem = t1 + t2

 = LibrarianTM:TestCaseAddMember + MemberTM:TestCaseAddMember

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

161

Figure 72. Intermediate generated test model (IntLibMedBkgMemTM)

g(I1) U g(I2) = g({libTstCntrl, librarian}) U g({memTstCntrl, member}) = {tci, librarian} U {tci,

member} = {librarian, member, tci}

f(E1) U f(E2) = f({e14,e15,e16,e17,e18,e19,e20,e21,e22,e23,e24,e25,e26}) U

f({e51,e52,e53,e54,e55,e56,e57}) = {e14,e55,e56,e17,e57,e19,e20,e21,e22,e23, e24,e25,e26} U

{e22,e23,e25,e20,e55,e56,e57} = {e14,e17,e19,e20,e21,e22,e23, e24,e25,e26,e55,e56,e57}

f(R1) U f(R2) = f({(e14,e15), (e15,e16), (e16,e17), (e17,e20), (e15,e18), (e18,e19), (e19,e20), (e21,e22),

(e22,e23), (e23,e24), (e22,e25), (e25,e26), (e14,e21), (e22,e15), (e16,e23), (e24,e17), (e18,e25),

(e26,e19), (e14,e16), (e14,e18), (e15,e17), (e15,e23), (e16,e20), (e15,e19), (e15,e25), (e18,e20),

(e21,e23), (e21,e25), (e21,e15), (e22,e24), (e23,e17), (e22,e26), (e25,e19), (e14,e22), (e22,e16),

(e22,e18), (e16,e24), (e24,e20), (e18,e26), (e26,e20), (e14,e17), (e14,e23), (e14,e19), (e14,e25),

(e15,e20), (e15,e24), (e15,e26), (e21,e24), (e21,e26), (e21,e16), (e21,e18), (e22,e17), (e23,e20),

(e22,e19), (e25,e20), (e14,e20), (e14,e24), (e14,e26), (e21,e17), (e21,e19), (e22,e20), (e21,e20)}) U

f({(e51,e52), (e51,e53), (e52,e54), (e53,e54), (e55,e56), (e55,e57), (e51,e55), (e56,e52), (e57,e53),

(e51,e54), (e55,e52), (e55,e53), (e51,e56), (e51,e57), (e56,e54), (e57,e54), (e55,e54)}) = {(e14,e55),

(e55,e56), (e56,e17), (e17,e20), (e55,e57), (e57,e19), (e19,e20), (e21,e22), (e22,e23), (e23,e24),

162

(e22,e25), (e25,e26), (e14,e21), (e22,e55), (e56,e23), (e24,e17), (e57,e25), (e26,e19), (e14,e56),

(e14,e57), (e55,e17), (e55,e23), (e56,e20), (e55,e19), (e55,e25), (e57,e20), (e21,e23), (e21,e25),

(e21,e55), (e22,e24), (e23,e17), (e22,e26), (e25,e19), (e14,e22), (e22,e56), (e22,e57), (e56,e24),

(e24,e20), (e57,e26), (e26,e20), (e14,e17), (e14,e23), (e14,e19), (e14,e25), (e55,e20), (e55,e24),

(e55,e26), (e21,e24), (e21,e26), (e21,e56), (e21,e57), (e22,e17), (e23,e20), (e22,e19), (e25,e20),

(e14,e20), (e14,e24), (e14,e26), (e21,e17), (e21,e19), (e22,e20), (e21,e20)} U {(e22,e23), (e22,e25),

(e23,e20), (e25,e20), (e55,e56), (e55,e57), (e22,e55), (e56,e23), (e57,e25), (e22,e20), (e55,e23),

(e55,e25), (e22,e56), (e22,e57), (e56,e20), (e57,e20), (e55,e20)} = { (e14, e55), (e55, e56), (e56, e17),

(e17, e20), (e55, e57), (e57, e19), (e19, e20), (e21, e22), (e22, e23), (e23, e24), (e22, e25), (e25, e26),

(e14, e21), (e22, e55), (e56, e23), (e24, e17), (e57, e25), (e26, e19), (e14, e56), (e14, e57), (e55, e17),

(e55, e23), (e56, e20), (e55, e19), (e55, e25), (e57, e20), (e21, e23), (e21, e25), (e21, e55), (e22, e24),

(e23, e17), (e22, e26), (e25, e19), (e14, e22), (e22, e56), (e22, e57), (e56, e24), (e24, e20), (e57, e26),

(e26, e20), (e14, e17), (e14, e23), (e14, e19), (e14, e25), (e55, e20), (e55, e24), (e55, e26), (e21, e24),

(e21, e26), (e21, e56), (e21, e57), (e22, e17), (e23, e20), (e22, e19), (e25, e20), (e14, e20), (e14, e24),

(e14, e26), (e21, e17), (e21, e19), (e22, e20), (e21, e20) }

Next, the tool generates the fourth integration test case by merging the second pair. The tool

starts by creating the shared events set.

se = { (e37,e61), (e38,e62), (e58,e42), (e59,e43), (e60,e40) }

Then, the tool generates the second integration test case by applying Definition 7:

IntTCBrwMem = t1 + t2

 = LibrarianTM:TestCaseBrowseMembers + MemberTM:TestCaseBrowseMembers

 = (g(I1) U g(I2) , f(E1) U f(E2), f(R1) U f(R2))

g(I1) U g(I2) = g({libTstCntrl, librarian}) U g({memTstCntrl, member}) = { tci, librarian } U { tci,

member } = { librarian, member, tci }

f(E1) U f(E2) = f({e36,e37,e38,e39,e40,e41,e42,e43,e44}) U f({e58,e59,e60,e61, e62}) =

{e36,e61,e62,e39,e40,e41,e42,e43,e44} U {e42,e43,e40,e61,e62} = {e36,

e39,e40,e41,e42,e43,e44,e61,e62}

f(R1) U f(R2) = f({ (e36,e37), (e37,e38), (e38,e39), (e39,e40), (e41,e42), (e42,e43), (e43,e44), (e36,e41),

(e42,e37), (e38,e43), (e44,e39), (e36,e38), (e37,e39), (e37,e43), (e38,e40), (e41,e43), (e41,e37),

(e42,e44), (e43,e39), (e36,e42), (e42,e38), (e38,e44), (e44,e40), (e36,e39), (e36,e43), (e37,e40),

(e37,e44), (e41,e44), (e41,e38), (e42,e39), (e43,e40), (e36,e40), (e36,e44), (e41,e39), (e42,e40),

(e41,e40) }) U f({ (e58,e59), (e59,e60), (e61,e62), (e58,e61), (e62,e59), (e58,e60), (e61,e59),

(e58,e62), (e62,e60), (e61,e60) }) = {(e36,e61), (e61,e62), (e62,e39), (e39,e40), (e41,e42), (e42,e43),

(e43,e44), (e36,e41), (e42,e61), (e62,e43), (e44,e39), (e36,e62), (e61,e39), (e61,e43), (e62,e40),

(e41,e43), (e41,e61), (e42,e44), (e43,e39), (e36,e42), (e42,e62), (e62,e44), (e44,e40), (e36,e39),

(e36,e43), (e61,e40), (e61,e44), (e41,e44), (e41,e62), (e42,e39), (e43,e40), (e36,e40), (e36,e44),

(e41,e39), (e42,e40), (e41,e40) } U { (e42,e43), (e43,e40), (e61,e62), (e42,e61), (e62,e43), (e42,e40),

163

(e61,e43), (e42,e62), (e62,e40), (e61,e40) } = { (e36, e61), (e61, e62), (e62, e39), (e39, e40), (e41,

e42), (e42, e43), (e43, e44), (e36, e41), (e42, e61), (e62, e43), (e44, e39), (e36, e62), (e61, e39), (e61,

e43), (e62, e40), (e41, e43), (e41, e61), (e42, e44), (e43, e39), (e36, e42), (e42, e62), (e62, e44), (e44,

e40), (e36, e39), (e36, e43), (e61, e40), (e61, e44), (e41, e44), (e41, e62), (e42, e39), (e43, e40), (e36,

e40), (e36, e44), (e41, e39), (e42, e40), (e41, e40) }

After generating the test behavior, the tool updates the test structure as follows:

T = {IntTCRsrvMedBkgMem, IntTCRtrnMedBkgMem, IntTCAddMem, IntTCBrwMem}

P = (TCi, {}, {Booking, Media, Member, Librarian})

IntLibMedBkgMemTM = (P, T)

The intermediate generated integration test model IntLibMedBkgMemTM is shown in Figure

73. Next, we move to the next test integration. In the third test integration, the tool integrates the

component test model MediaTM to IntLibMedBkgMemTM and MemberTM. Test cases of

MediaTM, which are integrated with IntLibMedBkgMemTM, are not used to integrate with

MemberTM test cases. The identification process detects shared test objects between MediaTM

and IntLibMedBkgMemTM. The CUT Media is defined in both test packages. The test control

medTstCntrl emulates the CUT Booking. However, the tool does not generate/update any test cases

since the generated test cases include the test cases of the MediaTM. Next, the identification

process detects shared test objects between MediaTM and MemberTM. This integration have been

discussed in Section C.1.2 and the generated test case IntTCBrwMemMed is shown in Figure 66.

The tool updates the test architecture. Consequently, the intermediate generated test model would

be shown in Figure 74. Next, we move to the next test integration.

T = { IntTCRsrvMedBkgMem, IntTCRtrnMedBkgMem, IntTCAddMem, IntTCBrwMem,

IntTCBrwMemMed }

P = (TCi, {}, {Booking, Media, Member, Librarian})

IntLibMedBkgMemTM = (P, T)

In the fourth test integration, the tool integrates the component test model BookingTM to

IntLibMedBkgMemTM and MemberTM. Test cases of BookingTM that are integrated with

IntLibMedBkgMemTM are not used in the integration with MemberTM.

The tool detects shared test objects between BookingTM to IntLibMedBkgMemTM. The CUT

Booking is specified in both test models and the test control bookTstControl emulates the CUT

Member through the following events: (e160,e80), (e163,e81), (e165,e83), (e151,e91) and

(e154,e92), and emulates the CUT Media through the following events: (e161,e122), (e162,e123),

(e164,e124), (e152,e128) and (e153,e129). However, the tool does not generate/upgrade any test

164

cases since the test cases of BookingTM are already included in the generated test cases. Therefore,

the generated integration test model is not modified. It remains the same as shown in Figure 74.

Figure 73. Intermediate generated test model (IntLibMedBkgMemTM)

Figure 74. Generated test model (IntLibMedBkgMemTM)

	List of Figures
	List of Tables
	List of Definitions
	List of Algorithms
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Thesis Motivations
	1.2 Contributions
	1.3 Thesis Organization

	Chapter 2 Background and Literature Review
	2.1 Software Testing
	2.2 Model-Driven Engineering - MDE
	2.3 The Unified Modeling Language - UML
	2.3.1 UML Testing Profile - UTP

	2.4 Literature Review
	2.4.1 Model Based Testing
	2.4.1.1 MBT Approaches Using UML Models
	2.4.1.2 MBT Approaches Using UTP Models
	2.4.1.3 MBT Using Non-UML notations

	2.4.2 Model Comparison and Merging
	2.4.3 Test-Suite Reduction

	Chapter 3 Model Based Testing Framework
	3.1 Framework
	3.2 Test Generation
	3.3 Test Optimization
	3.4 Test Model Definition
	3.5 Conclusion

	Chapter 4 Integration Test Generation
	4.1 Introduction and Overview
	4.2 Integration Test Generation Approach
	4.2.1 Test Object Identification
	4.2.1.1 Phase I of the Identification Process
	4.2.1.2 Phase II of the Identification Process

	4.2.2 Component Test Case Selection
	4.2.2.1 First Selection Pattern: Complete Integration Test Cases
	4.2.2.2 Second Selection Pattern: Complement Integration Test Cases
	4.2.2.3 Event Dependency Tree (EDT)

	4.2.3 Test Model Generation
	4.2.3.1 Stage I of the Test Generation
	4.2.3.2 Stage II of the Test Generation
	4.2.3.3 Merging Test Cases
	4.2.3.3.1 Validating the Merging Process

	4.2.4 Test Case Redundancy Removal
	4.2.5 Selective vs Cumulative Integration
	4.2.5.1 Selective Integration
	4.2.5.2 Cumulative Integration
	4.2.5.3 Discussion

	4.3 Conclusion

	Chapter 5 Acceptance Test optimization
	5.1 Introduction and Overview
	5.2 Integration Test Case Selection
	5.3 Mapping Acceptance Test Cases to Integration Test Cases
	5.4 Conclusion

	Chapter 6 Implementation & Case Study
	6.1 Development Tools
	6.1.1 Transformation Tool
	6.1.2 Modelling Tool
	6.1.3 UML Testing Profile

	6.2 Test Model Settings
	6.3 TestGenO: The Test Generation and Optimization Tool
	6.3.1 Integration Test Model Generator
	6.3.1.1 Architecture of the test generation prototype
	6.3.1.2 Limitations of the test generation prototype

	6.3.2 Acceptance Test Model Optimizer
	6.3.2.1 Architecture of the test optimization prototype
	6.3.2.2 Limitations of the test optimization prototype

	6.4 Library System - Case Study
	6.4.1 Integration Test Generation
	6.4.1.1 Test Generation Using the First Integration Order
	6.4.1.2 Test Generation Using the Second Integration Order
	6.4.1.3 Discussion

	6.4.2 Acceptance Test Optimization
	6.4.2.1 Test Optimization Using the Generated Integration Test Models in the First Integration Order
	6.4.2.2 Test Optimization Using the Generated Integration Test Models in the Second Integration Order

	6.5 Discussion

	Chapter 7 Conclusion and Future work
	7.1 Conclusion
	7.2 Future Work
	7.3 Publications from the Thesis

	References
	Appendix A Properties of the Integration Test Generation Approach
	A.1. System Specification
	A.2. Commutativity Property
	A.3. Associativity Property

	Appendix B Case Study: Specifications
	B.1. System Specification
	B.2. Component Test Models
	B.3. Acceptance Test Model

	Appendix C Case Study: Integration Test Generation
	C.1. First Integration Order
	C.1.1. First Iteration: LibrarianTM+MemberTM
	C.1.2. Second Iteration: (LibrarianTM+MemberTM)+MediaTM
	C.1.3. Third Iteration: ((LibrarianTM+MemberTM)+MediaTM)+BookingTM

	C.2. Second Integration Order
	C.2.1. First Iteration: LibrarianTM+MediaTM
	C.2.2. Second Iteration: (LibrarianTM+MediaTM)+BookingTM
	C.2.3. Third Iteration: ((LibrarianTM+MediaTM)+BookingTM)+MemberTM

