
 

 

 

Development of Polylactide-based 

Reduction-responsive Degradable Nanomaterials 

for Multifunctional Biomedical Applications 

 

 

Na Re Ko 

 

 

A Thesis 

In the Department 

of 

Chemistry and Biochemistry 

 

 

Presented in Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy in Chemistry at 

Concordia University 

Montréal, Quebec, Canada 

 

 

 

July 2015 

©  Na Re Ko, 2015 



 

CONCORDIA UNIVERSITY 

SCHOOL OF GRADUATE STUDIES 

 

This is to certify that the thesis prepared 

By: Na Re Ko  

 
Entitled: Development of polylactide-based reduction-responsive degradable 

nanomaterials for multifunctional biomedical applications 

 

and submitted  in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Chemistry 

complies with the regulations of the University and meets the accepted standards 
with respect to originality and quality. 

 
Signed by the final examining committee: 

 
  Chair 
 
 
 

External Examiner 
Dr. Ashok Kakkar 

 

External to Program 
Dr. Christopher Brett 

 

Examiner 
Dr. Christopher J. Wilds 

 

Examiner 
Dr. Pat Forgione 

 

Thesis Supervisor 

Dr. John Oh 

Approved by 

 

     Chair of Department or Graduate Program Director 
 
 
                       2015 

              Dean of Faculty



 

iii 

Abstract 

 

Development of Polylactide-based Reduction-responsive Degradable 

Nanomaterials for Multifunctional Biomedical Applications 

 

Na Re Ko, Ph. D. 

Concordia University, 2015 

 

Polylactide (PLA)-based nanomaterials have been extensively explored in biomedical 

applications due to their biocompatibility and biodegradability. However, PLA has two main 

limitations: hydrophobicity and slow degradation rate. My Ph.D. research focuses on the 

exploration of potential approaches to circumvent these challenges by synthesis of PLA-based 

amphiphilic block copolymers (ABPs) with stimuli-responsive degradation (SRD) and these 

ABPs are used to fabricate novel PLA-based nanomaterials. 

SRD is highly desirable in the design of multi-functional polymer-based drug delivery 

systems. SRD involves the incorporation of dynamic covalent bonds into nanomaterials that can 

be cleaved in response to external stimuli such as light, ultrasound, low pH, and enzymes. This 

process leads to chemical or physical changes of nanomaterials to enhance the release of 

therapeutics or tune the morphologies. Reduction-responsive degradation uses disulfide-thiol 

chemistry. Disulfide linkages are cleaved either in response to a reductive environment or a 

disulfide-thiol exchange reaction in the presence of thiols. Using this unique system, PLA-based 

nanomaterials with disulfide linkages can be developed for tumor-targeting drug delivery. 

Amphiphilic micellar aggregates have attracted much interest as a promising candidate 

for effective polymeric drug delivery. Micelles are formed through aqueous self-assembly of 

ABPs consisting of both hydrophilic and hydrophobic blocks. Hydrophobic cores encapsulate 

hydrophobic therapeutics and the surrounding hydrophilic coronas enhance colloidal stability. 

Adjusting this unique structure of ABP is a promising strategy for circumventing the 

hydrophobicity of PLA. Uniformed micelles in the nanoscale size range can prolong the blood 
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residence and minimize side effects, and possess multiple cargos into a single vehicle, allowing 

multi-functional drug delivery. 

In this thesis, several reduction-responsive degradable PLA-based ABPs have been 

reported. They were further used to fabricate various nanomaterials including micellar drug 

carriers; polyplexes; and nanofibers. These ABPs were synthesized by a combination method of 

ring opening polymerization and atom transfer radical polymerization. Due to their amphiphilic 

nature, ABPs can be self-assembled to form the micellar platforms possessing hydrophobic 

therapeutics in the core, which is surrounded with hydrophilic coronas. ABPs with positively 

charged hydrophilic blocks enable the formation of cationic micellar aggregates. These cationic 

micelles have subsequently been used as dual delivery carriers of drugs and genes. Furthermore, 

incorporating dual-located disulfide linkages at both the hydrophobic PLA core and the interface 

leads to a synergistically enhanced release of encapsulated drugs in cellular environments. 

Moreover, PLA nanofibers were fabricated via air-spinning technique of high-molecular weight 

PLAs. Their hydrophobic surface was modified with hydrophilic polymers via facile surface-

initiated ATRP. The resulting surface-modified PLA fibers exhibit enhanced hydrophilicity and 

thermal stability, as well as tunable surface properties upon the cleavage of disulfide linkages. 

Under a reductive environment, these novel PLA-based nanomaterials are rapidly degraded upon 

the cleavage of disulfides, leading to controlled release of drugs and genes, as well as change of 

surface properties. These results suggest the disulfide-labeled PLA-based nanomaterials offer 

great potential and versatility in biomedical applications. 
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Chapter 1 Introduction 

1.1 Brief overview of the research 

My Ph.D. research is aimed at exploring stimuli-responsive degradation (SRD), 

particularly reduction-responsive degradation, to develop a variety of novel disulfide-labeled 

polylactide (PLA)-based amphiphilic block copolymers (ABPs) and their nanomaterials, 

including self-assembled micelles, polyplexes, and nanofibers for biomedical applications. Ring 

opening polymerization (ROP) and atom transfer radical polymerization (ATRP) have been 

mainly used to synthesize well-defined PLA-based ABPs. They have subsequently been used as 

building blocks for fabricating micellar aggregates through aqueous self-assembly and 

nanofibers via the air-spinning method. Under a reductive environment, PLA-based 

nanomaterials degraded upon the cleavage of disulfide linkages, exhibiting the rapid release of 

anticancer drugs and genes, as well as tuning the surface properties. Furthermore, the proposed 

PLA-based micellar aggregates were evaluated for their prospective intracellular drug delivery 

applications through in vitro cell experiments. 

1.2 Polylactide (PLA) as a promising material 

Polylactide (PLA), polycaprolactone (PCL), and polyglycolide (PGA) are a class of 

hydroxyalkanoic acid-based aliphatic polyesters. In particular, PLA and its copolymers are 

commonly used in biomedical applications due to their great biocompatibility.
[1]

 PLA is 

biodegraded in vivo by a simple hydrolysis of the ester linkage to the corresponding water-

soluble oligomers and lactic acid monomers.
[2]

 In mammalian physiology, lactic acid is naturally 

produced as a by-product of anaerobic respiration (a form of respiration using electron acceptors 

other than oxygen). It is then metabolized into carbon dioxide and water.
[3]

 In addition, PLA is 

renewable and FDA-approved for clinical uses.
[4]

 These unique properties make PLA-based 

materials useful for extensive applications in biomedical fields, including sutures, bone fixation 

implants, drug delivery carriers, and stents.
[5]

 

The main application of PLA and its copolymer is in a drug delivery system. Due to the 

good biocompatibility and biodegradability of PLAs, many studies have made progress in the 

development of PLA-based drug delivery carriers. Such polymeric drug delivery systems 
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(PDDS) are ideal candidates for the transportation of therapeutics to target sites, which helps 

improve therapeutic efficacy by minimizing undesired side effects that commonly occur with 

small drugs.
[6]

 During blood circulation, small therapeutics with a molecular weight less than 45 

kDa (or diameter <5nm) are rapidly cleared through renal clearance (kidney filtration).
[7]

 Small 

drugs can also be accumulated in normal tissues, causing harmful side effects.
[8]

 In addition, 

most hydrophobic drugs are easily recognized by specific proteins (called opsonins) and cleared 

by the mononuclear phagocytic system (MPS), known as the reticuloendothelial system (RES).
[9]

 

For these reasons, high doses or frequent administrations of small therapeutics are required to 

achieve the desired therapeutic efficacy. PDDS have been extensively explored in the field of 

pharmaceutical science and nanotechnology.
[10]

 To achieve targeted therapeutic potential and 

minimize side-effects common to small drugs, polymeric drug carriers must be designed 

considering several important properties:
[11]

 I) appropriate particle size (50 - 150 nm) with 

uniform size distribution to minimize undesired clearance by kidney, liver, and spleen;
[12]

 II) 

biocompatibility for prolonged blood circulation;
[13]

 III) controlled rapid drug release at the 

target site;
[14]

 and IV) biodegradability to avoid polymeric residue remaining after drug 

release.
[15]

 Considering the versatile advantages of PDDS, the development of PLA-based drug 

carriers has been extensively explored in the form of pellets, microcapsules, and 

nanoparticles.
[16]

 PLA-based nanoparticles are increasingly the subject of investigation for 

effective delivery with sustained release of therapeutics,
[17]

 peptides or proteins,
[18]

 and nucleic 

acids (RNA or DNA).
[19]

 

1.3 Challenges of PLA applications in the use of biomedical fields 

For successful biomedical applications, PLA has two obvious drawbacks to be addressed: 

hydrophobicity and slow degradation (Table 1.1).
[20]

 PLA is hydrophobic due to the presence of 

methyl groups on the backbone. Hydrophobic PLA can produce inflammation through immune 

system recognition of host tissue.
[21]

 In addition, PLA-based drug carriers can induce delayed 

diffusion of therapeutics due to the hydrophobic interaction between PLA and therapeutics, 

leading to a low drug efficacy.
[22]

 One of the most promising strategies for overcoming the 

hydrophobicity of PLA is an introduction of hydrophilic polymers including poly(meth)acrylates, 

polypeptides, and polysaccharides.
[23]

 This strategy can facilitate the development of PLA-based 

ABPs and their self-assembled micellar aggregates consisting of hydrophobic PLA cores 
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surrounded with hydrophilic coronas. These micellar platforms have been mainly used as 

effective drug carriers and they will be reviewed in section 1.6.
[24]

 

 

Table 1.1. Advantages and disadvantages of PLA for biomedical applications. 

 

 

PLA 

 

 

 

Advantages Applications 

Biocompatibility Sutures 

Biodegradability Bone fixation implants 

Renewable source Drug delivery carriers 

FDA-approval Tissue engineering 

Disadvantages Solutions 

Hydrophobicity Amphiphilic block copolymer 

Slow degradation rate Stimuli-responsive degradation 

 

Another critical challenge associated with the successful application of PLA is its slow 

degradation rate. PLA can be naturally degraded via hydrolysis under acidic conditions or 

enzymatic reactions with lipase PL
[25]

 or proteinase K.
[26]

 However, this process sometimes takes 

a few years for PLA to be completely resorbed in vivo
[27]

 and such a slow degradation impedes 

the use of PLA alone in biomedical applications.
[28]

 One of the promising approaches for 

circumventing the slow degradation of PLA involves the introduction of SRD in the design of 

PLA-based nanomaterials. SRD uses the dynamic covalent bonds that can be cleaved in response 

to external stimuli such as light, ultrasound, and enzyme, as well as low pH and reduction 

reactions. Using the unique disulfide-thiol chemistry as an initial thought, the OH research group 

at Concordia University has extensively explored the synthesis of reduction-responsive PLA-

based block copolymers (BCPs) and their nanostructured materials.
[29]

 Based on these 

demonstrated experiments, my Ph.D. research has focused on the development of novel 

disulfide-labeled PLA-based nanomaterials. 
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1.4 Stimuli-Responsive Degradation (SRD) 

SRD is a promising strategy that involves the introduction of dynamic covalent bonds 

into the design of nanomaterials.
[30]

 In response to external stimuli, the covalent bonds are 

cleaved, causing destabilization or morphological change of nanomaterials,
[31]

 thus leading to 

controlled release of therapeutics to desired sites.
[32]

 As illustrated in Figure 1.1, the SRD can be 

classified into three categories: physical stimuli, including light and ultrasound; chemical stimuli, 

including pH and reductive reaction; and biological stimuli, such as enzymes.
[33]

  

Physical Chemical

Biological

 Enzyme

 Light

 Ultrasound

 pH

 ReductionStimuli-

Responsive

Degradation

 

Figure 1.1. Three categories of stimuli-responsive degradation system. 

 

Light-responsive degradation uses the incorporation of photo-sensitive linkages, such as 

2-diazo-1,2-napthoquinone (coumarin dimers) and o-nitrobenzyl derivatives.
[34]

 The cleavage of 

pendant photo-sensitive linkages changes the hydrophobic-hydrophilic balance of the 

copolymers, which causes the destabilization of drug carriers (Figure 1.2).
[35]
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Figure 1.2. Illustration of light- responsive degradable coumarin and o-nitrobenzyl moieties. 

 

An ultrasound-responsive degradation system uses an ultrasound contrast agent (called 

microbubble) which is filled with heavy gases like sulphur hexafluoride, perfluoropropane, 

perfluorohexane, and nitrogen.
[36]

 The core of the microbubble is designed to strongly reflect 

ultrasound and temperature, and the shell is typically composed of either a lipid or protein linked 

with drugs.
[37]

 The ultrasound wave is not much absorbed by water or tissue, and its tissue 

penetration depth can be easily controlled by tuning wave frequency and exposure time.
[38]

 When 

the microbubbles are exposed to high frequency ultrasound, they are destroyed and release 

therapeutics by cavitation, when the gas inside the microbubble core becomes highly 

compressed,
[39]

 or hyperthermia, when the temperature of the target site increases.
[40]

 

Biologically-responsive degradation uses specific enzymes, such as proteases, 

phospholipases, or glycosidases, which are only found in tumor tissues or inflammation 

tissues.
[41]

 The enzymatic activity associated with particular tissues increases the concentration of 

the enzyme and numerous diseases can be detected by enzyme dysregulation, which involves 
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poor modulation of enzyme.
[42]

 These features can promote the use of enzymes as effective 

biological triggers with high selectivity in the development of tumor-targeting drug delivery 

nanocarriers.
[43]

  

A pH-responsive degradation system uses acid-labile linkages like acetal, orthoester, 

imine, hydrazone, and oxime.
[13, 44]

 Compared to a physiological condition (pH = 7.2–7.4), most 

tumor tissues are slightly acidic, including pH = 6.5–7.2 in extracellular fluids, pH = 5–6.5 in 

endosomes, and pH = 4.5–5 in lysosomes.
[45]

 When these nanomaterials are exposed to an acidic 

environment, the acid-labile linkages are cleaved, and pH-responsive nanocarriers are rapidly 

degraded, leading to enhanced release of encapsulated therapeutics.
[46]

 

1.4.1 Reduction-responsive degradation system 

A typical reduction-responsive degradation system uses unique disulfide-thiol chemistry. 

Disulfide linkages are cleaved either in response to a reductive environment or a disulfide-thiol 

exchange reaction in the presence of thiols. Glutathione (GSH) is a naturally occurring 

isotripeptide, consisting of glycine, glutamic acid, and cysteine. GSH is also highly sensitive for 

cell functionality and viability.
[47]

 It is found at higher level concentrations in intracellular 

environments (2-10 mM) than in extracellular environments (<20 μM).
[48]

 Further, GSH is 7-10 

times more common in cancer cells than in normal cells.
[49]

 This significant variation in GSH 

levels has promoted the development of GSH-triggered tumor-targeting drug delivery 

systems.
[50]

 Upon the cleavage of disulfides in response to GSH, reduction-responsive drug 

carriers are rapidly destabilized and release anti-cancer therapeutics.
[51]

  

1.5 Various reduction-responsive drug delivery platforms 

A variety of polymeric drug delivery carriers exhibiting reduction-responsive degradation 

and drug release have been explored. Typical examples include polymer-drug conjugates, 

dendrimers, crosslinked nanogels, and amphiphilic micelles (Figure 1.3).
[52]
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Figure 1.3. Different types of reduction-responsive drug carriers; (a) polymer-drug conjugates, (b) 

dendrimers, (c) nanogels, and (d) micelles. 

 

A polymer-drug conjugate (also called as polymeric prodrug) is a nanosized hybrid drug 

carrier that consists of therapeutics covalently bound to a polymer chain (Figure 1.3a).
[11]

 

Generally, biodegradable and biocompatible water-soluble polymers are used as building blocks 

of polymer-drug conjugates.
[53]

 Disulfide linkages are located between drugs and the polymer 

backbone, so the linked drugs can be released upon the cleavage of disulfides. Su et al. reported 

the synthesis and release kinetic of doxorubicin (DOX) anticancer drug conjugated chitosan 

oligosaccharide copolymer via disulfide linkage.
[54]

 In vitro cell experiments showed a time-

dependent release of DOX from the conjugates in response to the reducing agent, DL-

dithiothreitol (DTT). After internalization into human breast cancer cells, DOX was rapidly 

released upon the cleavage of the disulfide bonds mediated by an abundance of GSH. 

A dendrimer is a three-dimensional spherical symmetric macromolecule that contains a 

central core and hyperbranched polymeric chains, displaying a dense shell structure (Figure 1.3b). 

[55]
 It has terminal functional groups and interior void spaces, and therefore allows not only 

covalent bond with drugs but the physical entrapment of therapeutics through non-covalent 

interactions.
[56]

 Lim et al. synthesized disulfide labeled poly(monochlorotriazine) dendrimer 

conjugated with the anti-cancer drug, paclitaxel.
[57]

 The conjugates were further modified with 

polyethylene glycol (PEG) to enhance the hydrophilic properties of the conjugates. In vivo 

cytotoxicity studies showed enhanced toxicity of PC-3 cells (human prostate cancer cells) in the 

presence of the DTT reducing agent. 

A nanogel is a cross-linked network of polymer chains confined in nanometer-size,
[58]

 

and therapeutics can be encapsulated inside these nanogel networks (Figure 1.3c).
[59]

 Under a 
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reductive environment, the entrapped therapeutics can be rapidly released from nanogels through 

diffusion,
[60]

 swelling,
[61]

 or degradation processes.
[62]

 The synthesis of reduction-responsive 

DOX-loaded PEG nanogels via crosslinking of disulfide-labeled PEG polymers was reported.
[63]

 

In the presence of 5 mM GSH, these nanogels were rapidly dissociated upon the cleavage of 

disulfides, exhibiting enhanced release of entrapped DOX over time. 

1.6 Amphiphilic micellar drug carriers 

Amphiphilic micelles can be prepared through self-assembly of ABPs in aqueous 

solution. ABPs consist of both hydrophilic and hydrophobic blocks, which are covalently 

attached. They possess important properties for effective drug delivery approaches.
[64]

 First, 

amphiphilic micelles consist of a hydrophobic core, enabling the encapsulation of hydrophobic 

therapeutics, surrounded with hydrophilic coronas, enhancing colloidal stability (Figure 1.3d).
[65]

 

Second, they are designed with the size ranging of 50 - 150 nm in diameter with uniform size 

distribution, minimizing side effects common to small drugs.
[7a, 66]

 Third, they can encapsulate 

multiple cargos such as diagnosis and imaging agents or other therapeutics together with drugs 

into a single vehicle.
[67]

 Finally, they can be bioconjugated with specific proteins to promote 

active targeting, capable of enhancing selective delivery of the drug to target tissues by receptor-

mediated endocytosis.[68] 

1.6.1 Various approaches in the design of reduction-responsive degradable micelles 

Numerous strategies to synthesize novel reduction-responsive ABPs and their 

nanometerials have been reported for tumor-targeting drug delivery. These degradable ABPs can 

be characterized with different numbers and locations of disulfide cleavable linkages (Figure 

1.4).
[30b]

 Depending on the location of disulfide linkages, micelles can have cleavable linkages 

either in their micellar cores (Figure 1.4a-c) or at interfaces between micelle cores and coronas 

(Figure 1.4d). Recently, multi-cleavable reduction-responsive micelles with disulfides at both the 

core and the interfaces have been reported (Figure 1.4e).
[29d, 69]
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Figure 1.4. Schematic illustration of various strategies to synthesize reduction-responsive degradable 

amphiphilic micelles. 

 

Mono-cleavable micelles (Figure 1.4a) consist of amphiphilic triblock copolymers with a 

single disulfide linkage in the middle of the triblock copolymer (hydrophilic-hydrophobic-ss-

hydrophobic-hydrophilic blocks). Upon the cleavage of the disulfide bond under a reductive 

environment, their molecular weight can be halved from the original triblock copolymers, 

leading to a change in micellar morphologies and sizes in aqueous solution. However, degraded 

polymers still retain their amphiphilic nature (hydrophobic-hydrophilic-SH) and thus form 

smaller-sized micelles. Since these small micelles can re-encapsulate therapeutics, mono-

cleavable micelles exhibit a slow release of drugs and low drug efficacy. Several mono-cleavable 

micellar drug carriers with disulfides in the cores were reported, including poly(oligo(propylene 

oxide) monononylphenyl ether acrylate)-poly(oligo(ethylene oxide) monomethyl ether 

methacrylate) amphiphilic micelles,
[70]

 hydrophobic PLA-based ABP micelles consisting of 

hydrophilic POEOMA
[71]

 or PEG blocks.
[29c]
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Pendent-cleavable micelles (Figure 1.4b) involve the synthesis and aqueous self-

assembly of degradable ABPs with disulfide cleavable linkages positioned in the side chain of 

hydrophobic blocks. Upon the cleavage of pendant disulfide linkages in the hydrophobic cores, 

micelles change their polarity from hydrophobic to hydrophilic, leading to the destabilization of 

micelles.
[72]

 Various pendent-cleavable ABPs have been designed based on disulfide-labeled 

hydrophobic monomers such as pendant disulfide-labeled methacrylate monomer (HMssEt),
[73]

 

2-((2-hydroxyethyl)disulfanyl)ethyl methacrylate monomer,
[74]

 pyridyl disulfide-based 

methacrylate monomer (2-pyridyldisulfide ethylmethacrylate),
[75]

 and pyridyl disulfide-

functionalized cyclic carbonate monomer.
[76]

 

Backbone-cleavable micelles (Figure 1.4c) can be formed by self-assembly of ABPs with 

disulfide linkages regularly located on hydrophobic backbones. The cleavage of disulfide 

linkages in the micellar cores causes disintegration of the micelles due to the loss of colloidal 

stability in aqueous solution. Several ABPs consisting of a disulfide-labeled polyester backbone 

synthesized by polycondensation of 3,3′-dithiodipropionic acid and various diols with or without 

disulfide have been reported.
[64, 77]

 

1.6.2 Sheddable micellar drug carriers 

Unlike other core-cleavable micelles described above (mono-, pendant-, and backbone-

cleavable micelles) that have disulfide bonds located in the micellar cores, sheddable type 

micelles have disulfides at interfaces between the hydrophobic core and hydrophilic coronas 

(Figure 1.4d). These micelles consist of ABPs with disulfides at the junction of hydrophobic and 

hydrophilic blocks.
[78]

 The location of disulfides positioned at interfaces of sheddable micelles 

offers facile access of hydrophilic GSH.
[29b, 79]

 Sun et al. reported disulfide-linked sheddable 

PEG-PCL micelles, encapsulating DOX as a model anticancer drug.
[80]

 Compared with the 

reduction-insensitive control (PEG-b-PCL micelles with no disulfides), reduction-responsive 

PEG-ss-PCL micelles showed higher anticancer efficacy. Similarly, Wang et al. introduced 

disulfide-bridged PCL-poly(ethyl ethylene phosphate) (PEEP) micelles.
[81]

 Compared with 

reduction-irresponsive micelles (PCL-b-PEEP with no disulfides), these sheddable PCL-ss-PEEP 

micelles exhibited rapid intracellular release and enhanced accumulation of drugs in cancer cells 

under a reductive environment. These experiments clearly indicate the great potential of 

reduction-responsive sheddable micelles as tumor-targeting drug carriers, and numerous papers 
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have demonstrated various applications for thiol-responsive sheddable micelles. Wen et al. 

reported a new sheddable micelle composed of a PEG shell and a poly(ε-benzyloxycarbonyl-L-

lysine) core.
[82]

 Upon exposure to GSH reducing agent, reductive cleavage of the disulfides 

initiates micellar rearrangement associated with the rapid release of the encapsulated DOX. Li et 

al. designed reduction-responsive hyaluronic acid-deoxycholic acid amphiphilic micelles as anti-

cancer drug carriers.
[83]

 They exhibit excellent GSH-sensitive drug-releasing capacities for 

paclitaxel, a model hydrophobic anticancer drug. Sun et al. fabricated reduction-degradable 

sheddable micelles based on polyamide amine-PEG ABPs with disulfides.
[84]

 Through aqueous 

self-assembly, these ABPs form the sheddable micelles, bearing disulfides at micellar interfaces. 

These micelles exhibit colloidal stability in a physiological condition and quickly disassemble 

under a reductive environment due to the cleavage of the disulfide linkages, releasing the 

encapsulated DOX. 

1.6.3 Multi-cleavable micelles 

Recently, multiple stimuli-responsive degradable nanomaterials with more than two 

stimuli-responsive cleavable linkages have been developed.
[85]

 Compared with conventional 

single stimulus-responsive degradable micelles, these novel systems exhibited dual- or triple- 

responses for release of drugs. However, the cleavage linkages are located at only one position 

(either the core or the interface) in the micellar drug carriers. To achieve more efficient 

therapeutic efficacy, the OH research group at Concordia University has explored a new dual-

location of single stimulus strategy to develop multi-cleavable micelles with disulfide linkages at 

dual locations (Figure 1.4e). Upon the cleavage of dual-located disulfides in response to a GSH 

trigger, this new system accelerates the destabilization of nanocarriers, thus synergistically 

enhancing the release of therapeutics. As a proof-of-concept, a novel design of micellar 

nanocarriers with disulfide linkages at both the hydrophobic core and the interface has been 

developed (Figure 1.5).
[69a]

 These micelles are formed from multi-cleavable ABPs consisting of a 

hydrophobic PHMssEt block and a hydrophilic polyethylene oxide (PEO) block. Disulfide 

linkages are located at the block junction and side chains of hydrophobic blocks, thus forming 

PEO-ss-PHMssEt ABPs. Under a reductive environment, disulfides present at the interface and 

hydrophobic core are rapidly cleaved and generate a water-soluble PEO segment (PEO-SH) and 

short hydrophobic chains (PHM-SH and HS-Et), leading to destabilization of the micelle. In 
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vitro cellular experiments exhibit accelerated release of encapsulated DOX upon cell 

internalization in response to a high concentration of intracellular GSH in HeLa cancer cells. 

 

DOX

Self-

assembly Degradation

GSH

or 

DTT

DOX-loaded micelles

 

Figure 1.5. Design, aqueous micellization, and degradation of PEO-ss-PHMssEt ABPs having disulfide 

linkages located in both hydrophobic core and interface between core/corona.
[69a]

  

 

1.7 Thesis organization 

This thesis consists of seven chapters, namely the general introduction, principles of 

synthesis and characterization, four research projects, and the conclusion. Figure 1.6 illustrates a 

summary of overall approaches in my Ph.D. research. 

 



13 

Mn > 70 kg/mol

PLA-based reduction-responsive nanomaterials

Mn ≈ 10 kg/mol

s
s

s
s

s
s

s
s

s
s

Ch 6) PLA nanofiber

Ch 4) Dual delivery vehicle

(PLA-ss-cationic block)

Ch 5) Multi-cleavable micelle

(hydrophilic-ss-PLA-ss-hydrophilic)

PLA-ss-Br  
macroinitiator

Ch 3) PLA-based BCPs

(PLA-ss-PATRPs)

ssPLA-ss-Br  
macroinitiator

ss
ss

ss
ss

ss

 

Figure 1.6. A summary of overall projects of reduction-responsive PLA-based nanomaterials in my Ph.D. 

research. 

 

Chapter 2 describes the principles of synthesis and characterization of PLA-based ABPs 

and their nanomaterials.  

Chapter 3 describes the development of various PLA-based BCPs with disulfide linkages 

at block junctions (PLA-ss-PATRPs). The ROP of D,L-lactide (D,L-LA) for the synthesis of 

novel disulfide-labeled PLAs was established in the presence of a newly synthesized double-

headed initiator. The effects of the amount of tin catalyst and polymerization time were 

investigated on the control of ROP. Using these well-defined PLAs as a macroinitiator, a series 

of ATRP with various monomers, including methacrylates, acrylates, and aromatic monomers, 

were synthesized. These well-controlled PLA-ss-PATRPs were further characterized for the 

thermal properties and thiol-responsive degradation upon the cleavage of their disulfide linkages.  

Chapter 4 describes the novel PLA-based polyplexes for dual delivery of drugs and genes. 

As a part of further works from Chapter 3, the hydrophilic block of PLA-based ABPs was 
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replaced with a positively charged hydrophilic polymer, resulting in cationic ABPs with a 

disulfide linkage at the block junctions. By aqueous self-assembly, hydrophobic cores 

encapsulate therapeutics, and cationic coronas interact with negatively-charged oligonucleotides 

through electrostatic interactions. In a reductive environment, the cleavage of disulfides at 

micellar interfaces enabled the enhanced release of both encapsulated drugs and oligonucleotides. 

In collaboration with Dr. Wilds’ group at Concordia University, this project offers effective 

nanocarriers for dual chemotherapy and gene therapy. 

Chapter 5 describes reduction-responsive multi-cleavable PLA-based micellar drug 

carriers. PLA-based triblock copolymers with a single disulfide in the middle of hydrophobic 

PLA and two disulfides at block junctions form the self-assembled micelles with disulfides 

positioned in both the core and the interface. The dual-located disulfide linkages were cleaved in 

response to GSH, resulting in a synergistically enhanced release of encapsulated anticancer drugs.  

Chapter 6 describes the surface-modified PLA-nanofibers for tissue engineering 

applications. In collaboration with Dr. Laroche’s group at Université Laval, high molecular 

weight PLAs with disulfide linkages and bromine functional groups can be used for the 

fabrication of nanofibers via air-spinning method. The hydrophobic surface of PLA-nanofibers 

was modified via surface-initiated ATRP with hydrophilic polymers, and the resulting surface-

modified PLA fibers exhibit enhanced hydrophilicity and thermal stability. In response to a 

reductive environment, disulfide linkages on the surface of PLA fibers were cleaved, thus tuning 

the surface properties. 

Finally, Chapter 7 summarizes the principal observations and conclusions with future 

perspectives that can be further explored. 
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Chapter 2 

Principles of experimental methods and techniques 

2.1 Polymer synthesis 

2.1.1 Ring opening polymerization (ROP) 

Polylactide (PLA) can be synthesized by two techniques: polycondensation of lactic acid and 

ROP of lactide (LA).
[86]

 Polycondensation of lactic acid produces water as a by-product during 

polymerization (Scheme 2.1). Since a trace amount of water causes depolymerization of PLA via 

hydrolysis, the polymerization requires the removal of water by using organic solvent under 

extreme conditions (high temperature >180 °C, low pressure <5 mmHg).
[87]

 Although 

polymerization can be accelerated by the addition of acidic catalysts such as boric or sulfuric 

acid, side reactions including hydrolysis can also occur due to the presence of catalysts at 

temperatures above 120 °C.
[88]

 

 

catalyst

Lactic acid PLA
 

Scheme 2.1. Direct polycondensation of lactic acid. 

 

ROP is the most common polymerization method to synthesize linear polymer chains 

from cyclic ester monomers such as lactones, anhydrides, and carbonates.
[89]

 PLA with narrow 

molecular weight distribution is generally synthesized by ROP of LA initiated by hydroxyl- or 

amine-containing initiators. Scheme 2.2 shows the coordination-insertion mechanism of ROP in 

the presence of hydroxyl-functionalized initiator.
[90]

 The hydroxyl initiator first forms the 

complex with a metal catalyst and this initiator/catalyst complex is coordinated with LA 

monomer, leading to the insertion of LA into the metal-oxygen bond by a rearrangement of 
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electrons.
[86]

 Tin(II) 2-ethylhexanoate (Sn(Oct)2) is the commonly used catalyst in the PLA 

synthesis due to its low toxicity, good solubility, high catalytic activity, and FDA approval as a 

food additive.
[91]

 For biomedical uses, however, the residue of tin must be removed as it becomes 

toxic Sn(IV) by oxidation. Note that the permitted level of tin for commercial uses is 20 – 50 

ppm.
[92]

 In this thesis, Sn(Oct)2 was used to synthesize well-controlled PLAs. They were then 

further used as macroinitiators for the synthesis of various PLA-based (amphiphilic) block 

copolymers and used as effective building blocks for fabrication of various nanomaterials.  

Initiator

Lactide

Catalyst

 

Scheme 2.2. Coordination-insertion mechanism for PLA chain growth. 

 

Scheme 2.3 shows three stereoisomeric forms of LA monomers: D-LA, L-LA, and D,L-

LA. ROP of these isomers yields three different PLAs, which exhibit different physical, thermal, 

and mechanical properties, as well as degradation kinetics.
[93]

 Isotatic poly(D-LA) (PDLA) and 

poly(L-LA) (PLLA) synthesized from D-LA and L-LA are semi-crystalline, exhibiting high 

melting point (~180 °C) and glass transition temperature (55-80 °C), as well as increased 

mechanical strength.
[94]

 Despite their excellent physical-mechanical properties, such semi-

crystalline polymers are not suitable for biomedical applications due to high crystallinity and 

relatively longer degradation time.
[95]

 On the other hand, poly(D,L-LA) (PDLLA) synthesized 

from D,L-LA is atactic and amorphous; thus they have relatively lower mechanical strength and 

shorter degradation kinetics, compared with PDLA and PLLA.
[96]
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(isotactic)

PDLA

D-LA

PLLA PDLLA

(atactic-random)

D,L-LAL-LA

 

Scheme 2.3. Three different stereoisomers of LA and their corresponding PLAs. 

2.1.2 Atom transfer radical polymerization (ATRP) for block copolymer synthesis 

Free radical polymerization (FRP) is a conventional chain-growth polymerization that 

utilize reactive radical species.
[97]

 The mechanism of FRP consists of initiation, propagation, and 

termination (Figure 2.1). The common radical initiators including azo and peroxide compounds 

are decomposed by several mechanisms to generate radicals called primary radicals.
[98]

 These 

species are reactive to break carbon-carbon double bonds of monomers, allowing for the growth 

of polymeric chains through propagation. Because of high flux of radicals during FRP, the chains 

are subjected to irreversible termination or chain transfer, resulting in the formation of dead 

polymers with broad molecular weight distribution.
[99]
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Figure 2.1. General  mechanism of FRP.
[100]

 

 

ATRP is one of the most successful controlled radical polymerization (CRP) 

techniques,
[101]

 along with reversible addition-fragmentation chain transfer polymerization 

(RAFT)
[102]

 and nitroxide-mediated polymerizations (NMP).
[103]

 The ATRP allows the synthesis 

of well-controlled (co)polymers with predetermined molecular weight and narrow molecular 

weight distribution. This technique also allows for the synthesis of well-defined block 

copolymers with various architectures, such as linear, hyper branched, star, graft, and brushes. 

In the mechanism as illustrated in Figure 2.2, ATRP utilizes equilibrium between 

dormant species and active species. The dormant species (R-X) react with a transition metal 

complex in a lower oxidation state (Mt
n
/L) with the rate constant of activation (kact). This 

activation process generates polymer radicals (R•) and transition metal complexes in the higher 

oxidation state (X-Mt
n+1

/L) as deactivators. The formed radicals are involved in the propagation 

with the rate constant of propagation (kp). Alternatively, they react with deactivators (X-Mt
n+1

/L) 

to regenerate the dorman species and the activators. This deactivation process characterized with 

the rate constant of deactivation (kdeact). The equilibrium between activation and deactivation is 

preferred to dormant species (kdeact >> kact). In this way, the concentration of radicals can be 

minimized and thus the probability toward irreversible termination expressed with the rate 

constant of termination (kt) can be suppressed. Consequently, such reversible deactivation allows 

the control of polymerization, yielding well-defined polymers with low polydispersity.
[101]
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Figure 2.2. ATRP mechanism.
[104]

 

 

2.2 Polymer characterization 

2.2.1 Gel Permeation Chromatography (GPC) 

Determination of molecular weight and molecular weight distribution of polymers is 

important to characterize the features of polymers, which significantly affect their properties 

such as viscosity, mechanical strength, and toughness.
[105]

 Molecular weight is defined as 

weight-average molecular weight (Mw) and the number-average molecular weight (Mn). Mw is 

determined by the weight fraction of polymer samples. As seen in Figure 2.3a, the mass of the 

polymer is the probability factor in the calculation so that Mw is correlated to polymer properties 

that depends on polymer chain length such as melting viscosity.
[106]

 Mn is determined by the 

number fraction of polymer chains. As shown in Figure 2.3b, Mn is calculated by dividing the 

total polymer weight by the total number of polymer molecules. Molecular weight distribution 

(known as the polydispersity index, PDI) is determined by the ratio of Mw to Mn (Mw/Mn) 

(Figure 2.3c). The Mw/Mn is close to 1.0 for monodispersed polymers, while it becomes larger as 

the polymer distribution broadens. 
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 Ni: the number of polymers

 Mi: the molecular weight of each polymer 

(a) (b) (c)

 

Figure 2.3. Formula of Mw (a), Mn (b), and PDI (c). 

 

GPC, a type of size exclusion chromatography (SEC), is a commonly-used separation 

technique that allows the determination of relative molecular weight and molecular weight 

distribution of polymer samples by differences in effective molecular size in solution.
[107]

 A 

polymer sample dissolved in an organic solvent is injected into a solvent stream which then 

flows through separation columns. By entropic effect, most polymer chains are folded to form 

random coils in the solution called hydrodynamic volumes, which are correlated with their chain 

lengths. In general, shorter chain polymer has smaller hydrodynamic volume and longer chain 

polymer has larger hydrodynamic volume and this relationship is used as a basis of sample 

separation in GPC. GPC columns are packed with highly cross-linked polymeric beads with 

various sizes of pores. For example, cross-linked poly(styrene-co-divinyl benzene) beads have 

pore sizes ranging between 5-10
5
 nm. As illustrated in Figure 2.4, small molecular weight 

polymers pass through most of the pores in the beads and have relatively longer flow-path 

through column, thus they elute later. In contrast, larger molecular weight polymers are excluded 

from all the bead pores and have shorter flow-path, thus they elute earlier. The retention time of 

each polymer sample is analyzed using a calibration curve of typical calibration standards having 

pre-determined molecular weight such as poly(methyl methacrylate) (PMMA) and polystyrene 

(PSt). 
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Figure 2.4. Illustration of principles of size exclusion chromatography for the separation of polymers 

through the GPC column. 

 

2.2.2 Differential scanning calorimetry (DSC) 

DSC is one of the techniques used to measure thermal transitions of polymers, such as 

heats of fusion, melting points, glass transitions, and specific heat capacities.
[108]

 When polymer 

samples are heated or cooled under a given constant pressure, the heat flow (the flow of energy 

into or out of the sample) occurs. Typically, the dried sample is hermetically sealed into a small 

aluminum pan and loaded at the top of the temperature sensor of DSC with a reference (an empty 

aluminum pan). As the temperature of both pans is increased, the energy absorbed or released by 

the sample is recorded and compared with the signal from the corresponding reference. When the 

sample reaches to a phase transition point as temperature increases, the additional energy from 

the heater is delivered to the temperature sensor beneath the sample pan. When the transition is 

completed, the sample absorbs the additional heat again so that no energy is supplied to the 

sensor. On the other hand, the reference is empty so the recorded temperature keeps increasing 
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constantly as the heat is supplied. Based on this mechanism, the thermal behavior of the sample 

is monitored by comparing these two signals. The integral under this signal gives the total 

enthalpy change (∆H) and the calculation n of sample heat capacity is shown in Figure 

2.5.
[109]

 The unit of the heat flow is mW = mJ/s, which means the flow of energy in unit time.
[110]

 

(sample) – (reference)

: total enthalpy change

: heat capacity change

 

Figure 2.5. Calculation of the heat flow over time of DSC.
[110]

 

 

2.2.3 Thermal Gravimetric Analysis (TGA) 

TGA scans the mass change (gain or loss) of a sample as a function of temperature or as 

time in the isothermal condition. When high temperature is applied, polymers become softer and 

melt which they are then degraded in three ways: side-group elimination, random chain scission, 

or depolymerisation. The side-group elimination takes place in two steps. First, the side groups 

attached to a polymer backbone are eliminated to produce an unstable polyene. Due to its weaker 

bond, the side groups are then removed from the main chain under high temperature before the 

backbone is broken into smaller pieces. For example, HCl can be eliminated from the polyvinyl 

chloride (PVC) under 100 °C. Random scission produces radicals, which attack polymer chains 

randomly to break down to smaller species than monomers. Such reactive species also can attack 

other polymer chains leading to cross-linked polymers or termination. Depolymerisation is a free 

radical mechanism that the end of polymer chain initiates and the polymer loses monomer units 

one by one. Typically, this mechanism is common for polymethacrylate and polystyrene. TGA is 

generally used to determine the thermal/oxidative stabilities, decomposition kinetics, and 

estimation of life times of polymer samples.
[111]

 TGA also enables the characterization of the 

compositional analysis of multi-component polymer blends.
[112]

 When TGA heats the sample and 

then holds it under isothermal conditions, the instrument detects a significant weight loss. If the 

sample polymer contains different segments having specific thermal stabilities, it is available to 
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quantitatively analyze the certain copolymers. Indeed, thermogravimetric curves are varied 

depending on monomer compositions of copolymers. In this thesis, TGA was used to identify 

polymer components using such unique decomposition patterns of monomers. 

2.3 Characterization of amphiphilic micelles 

2.3.1 Critical micellar concentration (CMC) 

CMC is the concentration of polymers when micelles start to form. In general, the 

aqueous micellization of small surfactant molecules and well-defined ABPs obeys the closed 

association model for micellization.
[113]

 The close association model is based on a dynamic 

equilibrium between the monomers and the molecules associated in an aggregate. Below CMC, 

polymers exists as single chains in aqueous solution, while at the CMC, physical properties of 

solution such as solubilisation, turbidity, surface tension, and electrical conductivity significantly 

changes.
[114]

 CMC can be determined by fluorescence spectroscopy using Nile Red (NR) 

fluorescence dye. NR is highly fluorescent in hydrophobic environments (such as organic 

solvents and micellar cores) and nonfluorescent in aqueous solution.
[115]

 NR generally 

absorbs(excites) at 485 nm and emits at 525 nm; however, its fluorescence can vary depending 

on the solvent used.
[116]

 Due to high sensitivity, NR undergoes a large solvatochromic shift 

(change color of a chemical substance by a change of solvent polarity) in the fluorescence 

spectra, and therefore it can be used as a polarity probe for the CMC determination of PLA-

ABPs. NR is entrapped in the hydrophobic PLA core via self-assembly and upon the cleavage of 

disulfides in the micelles, NR are released from the micelles, leading to the quenching of 

fluorescence.
[117]

 Thus, NR serves as an excellent fluorescent hydrophobic probe. 

2.3.2 Dynamic light scattering (DLS) 

The size of self-assembled micellar aggregates can be determined by DLS. In aqueous 

solution, the micelles undergo Brownian motion, the random motion of particles driven by 

collision with water molecules. Through the Brownian motion, the translational diffusion 

coefficient (D) is proportional to the particle size, solution viscosity, and temperature. When the 

laser is applied on the micelles, light is scattered from the particle and DLS measures the light 

intensity fluctuations. Under the same condition of temperature and viscosity, the small particle 
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moves faster than the large particles, resulting in rapid fluctuation. The hydrodynamic diameter 

(d(H)) of the particles is calculated from the translational diffusion coefficient by using the 

Stokes-Einstein equation; 

: hydrodynamic diameter

 D: translational diffusion coefficient

 k: Boltzmann’s constant

 T: absolute temperature

: viscosity
 

 

2.3.3 Transmission electron microscopy (TEM) 

TEM is a common technique capable of imaging dried particle morphology at a high 

resolution. When electrons are emitted by a source with high energy levels and focused on a 

specimen, they can interact with the specimen as it passes through.
[118]

 Since a TEM image is 

obtained from the electrons that have transmitted the specimen, a thin specimen is required (the 

thickness of sample <100nm).
[119]

 In this thesis, carbon-coated copper grids having 400 mesh 

were used as TEM substrates. For sample preparation, micellar dispersions were dropped onto 

the grids and air-dried at room temperature. Due to the hydrophobic surface of the copper grids, 

hydrophilic coronas of micelles may shrink upon drying on the grids,
[120]

 and therefore, the 

average diameter of hydrophobic micellar cores can be analyzed. 

2.3.4 In vitro cell toxicity using MTT assay 

MTT (3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay is commonly 

used to determine cytotoxicity of polymeric nanomaterials due to its simple process, safety, and 

high reproducibility. Yellow MTT is reduced to a purple formazan by mitochondrial succinate 

dehydrogenase in the living cells (Figure 2.6). Consequently, the cell viability can be determined 

by quantification of formazan in the cells. Formazan is insoluble in water and forms purple 

solution in an organic solvent (eg. dimethyl sulfoxide). The number of living cells can be directly 
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quantified by measuring intensity of this colored formazan solution at a certain wavelength 

(usually between 500 and 600 nm).
[121]

 

 

Viable cell

Mitochondria

Yellow MTT
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Figure 2.6. MTT mechanism by mitochondrial reduction. 
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Chapter 3 

Synthesis and thiol-responsive degradation of polylactide-based 

block copolymers having disulfide junctions using ATRP and ROP 

 

Reduction-responsive 

degradation

PLA-ss-Br

HO-ss-iBuBr

PLA-ss-PMMA-PS triblock copolymer

PLA-ss-Pst

PLA-ss-PtBA

PLA-ss-PMethacrylate

ROP

ATRP
PLA-SH  +  PATRP-SH

 

 

A new method to synthesize a variety of well-controlled polylactide (PLA)-based block 

copolymers having disulfide linkages at block junctions (PLA-ss-PATRPs) was investigated. 

The method employs a combination of ring opening polymerization (ROP) and atom transfer 

radical polymerization (ATRP) that initiates the synthesis of a new disulfide-labeled double-head 

initiator having both terminal OH and Br groups (HO-ss-iBuBr). The amount of tin catalyst and 

polymerization time significantly influenced the control of ROP initiated with HO-ss-iBuBr. A 

series of ATRP of various methacrylates as well as acrylate and styrene in the presence of the 

resulting PLA-ss-Br macroinitiators proceeded in a living manner. These well-controlled PLA-

ss-PATRPs were further characterized for the thermal properties using differential scanning 

calorimetry (DSC) and thiol-responsive degradation upon the cleavage of disulfide linkages. 

 

This chapter is reproduced the article published in Journal of Polymer Science Part A: 

Polymer Chemistry, 2013, 51(14), 3071-3080 with permission from the publisher. 
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3.1 Introduction 

In recent years, BCP micelles with stimuli-responsive properties have been extensively 

explored as effective building blocks in constructing smart and complex nanostructured materials 

for multifunctional applications.
[122]

 In particular, degradation in response to external stimuli 

(named stimuli-responsive degradation, SRD) enables not only enhancing the release of 

encapsulated biomolecules
[123]

 but also tuning the morphologies of self-assembled 

nanostructures.
[124]

 These BCP nanomaterials are generally designed to incorporate cleavable 

linkages into block copolymers. They then degrade in response to external triggers such as low 

pH, light, or ultrasound, as well as reductive, oxidative, or enzymatic reactions, causing the 

nanomaterials to dissociate or disintegrate.
[125]

  

Disulfide-thiol degradation has been utilized for the development of novel self-assembled 

micellar aggregates as enhanced/controlled delivery nanocarriers. This degradation platform is 

facilitated with the unique properties of disulfide linkages being cleaved to the corresponding 

thiols in response to reductive reactions either in the presence of reducing agents or thiol-

disulfide exchange reaction.
[126]

 Several approaches have been proposed to incorporate disulfide 

linkages into micellar nanocarrier cores as pendent side chains,
[127]

 main chains of hydrophobic 

blocks,
[64, 128]

 or in-situ crosslinks.
[129]

 A recent approach involves the synthesis of sheddable 

BCPs having disulfide linkages at junctions of hydrophobic and hydrophilic blocks. These BCPs 

self-assemble in aqueous solution to form sheddable micelles with disulfides positioned at the 

interfaces of hydrophobic cores surrounded with hydrophilic coronas. Upon the cleavage of 

disulfides by reductive reactions, hydrophilic coronas are shed from hydrophobic cores, 

enhancing the release of encapsulated drugs and genes.
[130]

 This approach has also been explored 

to develop highly-ordered nanoporous films of sheddable BCPs with photo-cleavable
[131]

 and 

acid-labile linkages.
[132]

 Several methods to prepare sheddable BCPs with disulfide junctions 

have been proposed, including coupling reaction of hydrophilic and hydrophobic polymers 

bearing terminal reactive groups
[80, 133]

 and immobilization of initiating species on hydrophilic 

poly(ethylene oxide) (PEO).
[134]

 Despite these advances, several drawbacks include the 

requirement for extra purification steps to remove excess homopolymers or the difficulties to 

introduce functional groups into the hydrophilic PEO block for further bioconjugation.   
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We have recently developed a new method that centers on the synthesis of a new 

disulfide-labeled double-head initiator having both terminal hydroxyl (-OH) and bromo (-Br) 

groups (HO-ss-iBuBr).
[135]

 The initiator enables to proceed both ROP
[136]

 and ATRP.
[137]

 As a 

proof-of-concept approach, the method has utilized to synthesize sheddable micelles of 

biodegradable PLA-based BCPs with hydrophilic POEOMA (PLA-ss-POEOMA); POEOMA 

coronas were escaped from PLA cores by the cleavage of disulfide linkages at block junctions in 

response to thiols. Furthermore, the method has several features; they include no requirements 

for the removal of homopolymers and facile incorporation of functional groups through 

copolymerization with functional monomers during the ATRP.  

In this chapter, we further investigated the applicability of the versatile method to 

synthesize a variety of well-controlled PLA-based BCPs having disulfide linkages at block 

junctions (PLA-ss-PATRPs) (Scheme 3.1). ROP of LA in the presence of HO-ss-iBuBr was 

systematically explored to better understand the important parameters that significantly influence 

the control of ROP: amount of tin catalyst and polymerization time. In the presence of well-

defined PLA-ss-Br, the kinetics for ATRP of a broad range of methacrylates as well as t-butyl 

acrylate and styrene was examined using GPC and 
1
H-NMR. For the well-defined PLA-ss-

PATRPs, the thermal properties and thiol-responsive degradation upon the cleavage of disulfide 

linkages were studied.  
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Scheme 3.1. Synthesis of PLA-ss-Br macroinitiator by ROP and a variety of well-controlled PLA-ss-

PATRPs by ATRP. 

 

3.2 Experimental section 

3.2.1 Materials 

2-Hydroxyethyl disulfide (ss-DOH), -bromoisobutyryl bromide (Br-iBuBr), 

triethylamine (Et3N), 3,6-dimethyl-1,4-dioxane-2,5-dione (DL-lactide, LA), tin(II) 2-

ethylhexanoate (Sn(Oct)2, 95%), copper(I) bromide (CuBr, >99.99%), and N,N,N′,N′′,N′′-

pentamethyldiethylenetriamine (PMDETA, >98%) from Aldrich and DL-dithiothreitol (DTT, 

99%) from Acros Organics were purchased and used as received. Oligo(ethylene glycol) 

monomethyl ether methacrylate with MW = 475 g/mol and pendent EO units DP  7 

(OEOMA475), OEOMA with MW = 300 g/mol and pendent EO units DP  5 (OEOMA300), 

methyl methacrylate (MMA), t-butyl acrylate (tBA), and styrene (St) from Aldrich were purified 

by passing it through a column filled with basic alumina to remove the inhibitors. 
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Dehydroabietic ethyl methacrylate (DAEMA) was synthesized and purified by Dr. Kejian as 

described in our previous paper.
[138]

 

3.2.2 Instrumentation 

1
H-NMR spectra were recorded using a 500 MHz Varian spectrometer. The CDCl3 

singlet at 7.26 ppm and DMSO-d6 multiplet at 2.5 ppm were selected as the reference standards. 

Spectral features are tabulated in the following order: chemical shift (ppm); multiplicity (s - 

singlet, d - doublet, t - triplet, m - complex multiplet); number of protons; position of protons. 

Molecular weight and molecular weight distribution were determined by GPC with a Viscotek 

VE1122 pump and a refractive index (RI) detector. Two PolyAnalytik columns (PAS-103L and 

106L, designed to determine molecular weight up to 2,000,000 g/mol) were used with THF as an 

eluent at 30 C at a flow rate of 1 mL/min. Linear polystyrene (PSt) and poly(methyl 

methacrylate) (PMMA) standards from Fluka were used for calibration. Aliquots of polymer 

samples were dissolved in THF and the clear solutions were filtered using a 0.25 m PTFE filter 

to remove any THF-insoluble species. A drop of anisole was added as a flow rate marker. 

Monomer conversion was determined using GPC for OEOMA and DAEMA as well as 
1
H-NMR 

and gas chromatography (GC) for MMA, St, and tBA. GC experiments were carried on an 

Agilent 6890N GC equipped with a flame ionization detector and a capillary column 

(ValboBond VB-Wax, 30 m x 0.5 mm x 1.0 m, Valco Instruments Ltd.). The initial temperature 

was 60 °C (2 min hold) and the final temperature of 180 °C (2 min hold) was reached at a 

heating rate of 20 °C/min. Thermal properties including Tg of PLA-ss-Br and PLA-ss-PATRPs 

were measured with a TA Instruments DSC Q10 differential scanning calorimeter over a 

temperature range of -75 to 200 C at a heating rate of 10 C/min (cycles: heating from 25 to 200 

C (1
st
 run), cooling to -75 C, heating to 200 C (2

nd
 run), and cooling to 25 C). The Tg values 

were determined from the 2
nd

 heating run. 

3.2.3 Synthesis of 2-hydroxyethyl-2-(bromoisobutyryl)ethyl disulfide (HO-ss-iBuBr) 

Br-iBuBr (9.84 g, 43.0 mmol) dissolved in THF (50 mL) was added drop-wise at 0 C 

over 20 min to a solution consisting of ss-DOH (6.31 g, 40.9 mol), Et3N (6.84 ml, 49.1 mmol), 

and THF (150 mL) purged with dry nitrogen for 15 min. The resulting mixture was stirred for 14 

hrs at room temperature. White solids (Et3N-HCl adducts) formed during the reaction were 
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removed by vacuum filtration. Filtrates were concentrated by a rotary evaporation and washed 

with aqueous acidic and basic solutions three times. The residue was extracted with ethyl acetate 

(50 ml) three times, and then dried with anhydrous Na2SO4. Solvents were removed by rotary 

evaporation and the product was purified by silica column chromatography with a mixture of 

ethyl acetate/hexane (3/7 v/v). The product was collected as the second of the total two bands off 

a silica gel column. The product was isolated by evaporation of solvents and further dried in a 

vacuum oven at room temperature for 12 hrs to form yellow oily residue. Yield = 6.05 g (49%). 

Rf = 0.32 on silica (3/7 ethyl acetate/hexane). 
1
H-NMR (CDCl3, ppm) 4.45 (t, 2H, -CH2OC(O)-), 

3.9 (t, 2H, HO-CH2-), 3.0 (t, 2H, -SS-CH2-CH2OC(O)-), 2.9 (t, 2H, HOCH2-CH2-SS-), 1.95 (s, 

6H, -C(CH3)2Br). 
13

C-NMR (CDCl3, ppm) 30.4, 36.2, 41.0, 55.5, 59.9, 63.4, 171.2. Mass 

calculated for C8H19BrNaO3S2: 324.59382. Found: 324.95491.  

3.2.4 Synthesis of PLA-ss-Br 

A series of ROP of LA was conducted in the presence of HO-ss-iBuBr and Sn(Oct)2 in 

toluene at 120 C. The detailed procedure for PLA-2 with [LA]o/[HO-ss-iBuBr]o/[Sn(Oct)2]o = 

70/1/0.05 is as follows; HO-ss-iBuBr (300.3 mg, 0.99 mmol), LA (10.0 g, 69.4 mmol), Sn(Oct)2 

(20.1 mg, 0.05 mmol), and toluene (6 mL) were added to a 25 mL Schlenk flask. The resulting 

mixture was deoxygenated by three freeze-pump-thaw cycles. The reaction flask was filled with 

nitrogen, thawed, and then immersed in an oil bath preheated to 120 °C to start the 

polymerization. After 3 hrs, the polymerization was stopped by cooling down to room 

temperature. The resulting homopolymers were precipitated from MeOH (note that LA is 

dissolved in MeOH). They were then isolated by vacuum filtration and further dried in a vacuum 

oven at room temperature overnight, resulting in white solids.  

3.2.5 Synthesis of PLA-ss-PATRPs with disulfide junctions 

A standard procedure for normal ATRP catalyzed with CuBr/PMDETA complex was 

carried out under various conditions to synthesize various PLA-ss-PATRPs. As an example, a 

detailed procedure for the synthesis of PLA-ss-PMMA is as follows; the dried, purified PLA-2 

(1.0 g, 0.07 mmol), MMA (0.34 g, 3.4 mmol), PMDETA (7.0 L, 0.03 mmol), and THF (0.42 

mL) were added to a 10 mL Schlenk flask. The resulting mixture was deoxygenated by three 

freeze-pump-thaw cycles. The reaction flask was filled with nitrogen and CuBr (4.8 mg, 0.03 
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mmol) was then added to the frozen solution. The flask was sealed, purged with vacuum and 

backfilled with nitrogen once. The mixture was thawed and the flask was then immersed in an oil 

bath preheated to 47 °C to start the polymerization. Aliquots were withdrawn at different time 

intervals to analyze molecular weight by GPC and conversion by 
1
H-NMR or GC. The 

polymerization was stopped by cooling and exposing the reaction mixture to air.  

For the synthesis of other PLA-ss-polymethacrylates, similar conditions with 

CuBr/PMDETA at 47 °C were applied. For the synthesis of PLA-ss-PtBA, the purified PLA-2 

(0.5 g, 0.04 mmol), tBA (0.25 g, 1.93 mmol), PMDETA (4.0 L, 0.02 mmol), and CuBr (2.8 mg, 

0.02 mmol) were used at 65 C in THF (0.3 mL). For the synthesis of PLA-ss-PSt, the purified 

PLA-2 (1.0 g, 0.08 mmol), St (0.42 g, 4.03 mmol), PMDETA (8.4 L, 0.04 mmol), and CuBr 

(5.8 mg, 0.04 mmol) were mixed with anisole (0.53 mL) at 120 C.  

The resulting PLA-ss-PATRPs were purified by the removal of residual copper species 

and unreacted monomers as follows; As-prepared green polymer solutions were passed through a 

column filled with basic aluminum oxide with THF as an eluent to remove copper species. The 

polymer solution was concentrated by rotary evaporation, and then precipitated from a large 

volume of hexane for most PLA-ss-PATRPs and MeOH for PLA-ss-PtBA. The precipitated 

polymers were filtered by vacuum filtration and residual solvent was further removed using a 

vacuum oven at room temperature overnight.  

3.2.6 Synthesis of PLA-ss-PMMA-b-PSt triblock copolymer 

Well-defined PLA-ss-PMMA-Br was prepared and purified as described above. For the 

consecutive ATRP of St, the dried, purified PLA-ss-PMMA-Br (0.4 g, 0.03 mmol), St (0.13 g, 

1.29 mmol), PMDETA (2.7 L, 0.013 mmol), and anisole (0.17 mL) were added to a 10 mL 

Schlenk flask. The resulting mixture was deoxygenated by three freeze-pump-thaw cycles. The 

reaction flask was filled with nitrogen and CuBr (1.8 mg, 0.013 mmol) was then added to the 

frozen solution. The flask was sealed, purged with vacuum and backfilled with nitrogen once. 

The mixture was thawed and the flask was then immersed in an oil bath preheated to 120 °C to 

start the polymerization. The polymerization was stopped after 3 hrs by cooling and exposing the 

reaction mixture to air.  
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3.2.7 Thiol-responsive degradation of PLA-ss-PATRPs in DMF 

An aliquot of PLA-ss-PATRPs (50 mg) dissolved in DMF (10 mL) was mixed with a 

stock solution of DTT in DMF under magnetic stirring. The amount of DTT was defined to be 5 

mole equivalents to disulfides of polymers. Aliquots of the mixtures were analyzed using GPC at 

given time intervals. 

3.3 Results and Discussion 

3.3.1 Synthesis of PLA-ss-Br 

HO-ss-iBuBr, a double-head initiator labeled with a disulfide having terminal OH and Br 

groups, was synthesized previously by a carbodiimide coupling reaction of ss-DOH with 2- 

bromoisobutyric acid in the presence of dicyclohexyl carbodiimide.
[135]

 In the experiments, a 

new procedure with the use of Br-iBuBr and Et3N as a base resulted in a higher yield (49%). 

In the presence of HO-ss-iBuBr, a series of ROP of LA catalyzed with Sn(Oct)2 in 

toluene at 120 C was carried out under various conditions. With the mole ratio of [LA]0/[HO-ss-

iBuBr]0 = 70/1, several parameters including amount of Sn(Oct)2 and polymerization time were 

varied to examine their effect on the course of ROP of LA. After purification by precipitation 

from MeOH, the purified PLA-ss-Br homopolymers were characterized using 
1
H-NMR for 

degree of polymerization (DP) and by GPC calibrated with PSt standards for molecular weight 

and molecular weight distribution. Figure 3.1 shows an example of 
1
H-NMR spectrum of PLA-

ss-Br. A multiplet appeared at 5.2 ppm corresponds to methine protons in PLA and a singlet at 

1.9 ppm corresponds to six methyl protons. From the integral ratio of the peaks [(b/2)/(h/6)], the 

DP of PLA-ss-Br was determined to be 75. The results are summarized in Table 3.1.  
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Figure 3.1. 
1
H-NMR spectrum of PLA-ss-Br (PLA-2) in DMSO-d6. 

 

Table 3.1. Characteristics of a series of PLA-ss-Br homopolymers prepared by ROP of LA in toluene at 

120 C under different conditions.
a
 

PLA 

[Sn(Oct)2]o 

/[HO-ss-

iBuBr]o 

Time 

(hrs) 
DP

b
 

Mn,theo
b
 

(g/mol) 

Mn
c
 

(g/mol) 
Mw/Mn

c
 HMS

d
 (%) 

1 0.14 3 89 12,700 12,800 1.15 25.1 

2 0.05 3 75 10,000 10,800 1.08 6.9 

3 0.03 3 65 9,200 9,400 1.06 6.3 

4 0.03 4 72 10,900 10,400 1.11 11.3 

5 0.03 6 74 11,000 10,700 1.14 14.7 

a. [LA]0/[HO-ss-iBuBr]0 = 70/1; LA/toluene = 1.9/1 wt/wt. 

b. Determined by 
1
H-NMR. 

c. Determined by GPC calibrated with PSt standards. 

d. Calculated by peak analysis using deconvolution method of GPC traces. 
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First, the amount of Sn(Oct)2 defined as the mole ratio of [Sn(Oct)2]0/[HO-ss-iBuBr]0 

was varied. With a larger amount of Sn(Oct)2 as the ratio of 0.14/1, PLA-1 had the DP = 89 by 

1
H-NMR and Mn = 12,800 g/mol with Mw/Mn = 1.15 by GPC. When the [Sn(Oct)2]0/[HO-ss-

iBuBr]0 decreased to 0.05 and further 0.03, the DP of PLA decreased to 75 (PLA-2) and to 

further 65 (PLA-3). These results are consistent with the results that the polymerization rate was 

enhanced with an increasing amount of Sn(Oct)2 up to [Sn(Oct)2]0/[initiator]0 < 1.
[139]

 However, 

the GPC trace of PLA-1 exhibits bimodal distribution with a high molecular weight shoulder 

(HMS) (Figure 3.2a). From the peak analysis using deconvolution method, the high molecular 

weight species was estimated to be 25%. When the [Sn(Oct)2]0/[HO-ss-iBuBr]0 decreased to 0.05, 

high molecular weight species significantly reduced to <7%. Next, the polymerization time 

increased from 3 to 6 hrs. The DP determined by 
1
H-NMR increased from 65 to 74 (PLA-5) as 

well as the high molecular weight species increased from 6.3 to 14.7% (Figure 3.2b). The 

occurrence of the HMS is possibly attributed to unexpected side reactions. Overall, the ROP of 

LA under the conditions proceeded in a living character, yielding PLA-ss-Br polymers having 

narrow molecular weight distributions with Mw/Mn < 1.15. For further chain extension of PLA-

ss-Br using ATRP, the recipe of PLA-2 was used to synthesize PLA-ss-Br precursors. 
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Figure 3.2. GPC traces of PLA-ss-Br prepared by ROP with various [Sn(Oct)2]0/[HO-ss-iBuBr]0 for 3 h 

(a) and polymerization time with [Sn(Oct)2]0/[HO-ss-iBuBr]0 = 0.03/1 (b). 
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3.3.2 Synthesis of various PLA-ss-PATRPs with disulfide junctions 

A series of PLA-based BCPs with varying (co)polymers were synthesized by a normal 

ATRP catalyzed with CuBr/ligand complex in the presence of PLA-ss-Br macroinitiator (PLA-2, 

Table 3.1) in organic solvents. The monomers used here include various methacrylates including 

OEOMA300, OEOMA475, MMA, and a rosin-derived DAEMA, as well as tBA and St. The 

results are summarized in Table 3.2. 

 

Table 3.2. Characteristics of a series of PLA-ss-PATRPs prepared by ATRP in the presence of PLA-ss-

Br.
a
 

PLA-ss-PATRPs Solvent 
Temp 

(°C) 

Time 

(hrs) 
Conv

a
 

Mn,theo
b 

(g/mol) 

Mn
c
 

(g/mol) 
Mw/Mn

c
 

PLA-ss-POEOMA475 THF 47 1.5 0.92 32,700 18,300 1.15 

PLA-ss-POEOMA300 THF 47 1.5 0.91 24,400 16,400 1.28 

PLA-ss-PMMA THF 47 1.5 0.93 19,500 15,300 1.22 

PLA-ss-PDAEMA THF 47 2.0 0.67 26,300 15,300 1.21 

PLA-ss-PSt Anisole 120 2.0 0.66 15,900 12,700 1.22 

PLA-ss-PtBA THF 65 5.0 0.93 19,000 16,400 1.20 

PLA-ss-PMMA-PSt Anisole 120 3.0 0.55 18,300 15,400 1.23 

a. Determined by GPC for OEOMA and DAEMA,
 1
H-NMR for MMA and St, and GC for tBA. 

b. Determined by 
1
H-NMR. 

c. Determined by GPC calibrated with PMMA standards, except for PLAss-PSt, PLA-ss-PtBA, and PLA-

ss-PDAEMA using PSt standards. 

 

The normal ATRP of methacrylates in the presence of CuBr/PMDETA complex was first 

examined in THF at 47 C. As seen in Figure 3.3a, the ATRP of four methacrylates shows first-

order kinetics, indicating a constant concentration of active centers during the polymerization. 

For OEOMA monomers and MMA, the polymerization rate was fast; monomer conversion 

reached 90% in 1.5 hrs. For the reproducible ATRP of DAEMA, however, the rate was relatively 
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slower; the conversion reached 67% in 2 hrs. The slow polymerization of DAEMA in the 

presence of even more active CuBr/Me6TREN complex was described in our previous 

report.
[138a]

 Compared to other methacrylates, such a slower polymerization of DAEMA is 

plausibly because of its bulky side chains. For all methacrylate polymerizations, molecular 

weight increased linearly with conversion and molecular weight distribution was as low as 

Mw/Mn < 1.25 (Figure 3.3b). Figure 3.4 shows the typical NMR signals at 3.3 ppm (singlet) 

corresponding to pendent methoxy protons for PLA-ss-POEOMAs, at 3.5 ppm (singlet) 

corresponding to methoxy protons for PLA-ss-PMMA, and at 6.7-7.1 ppm corresponding to 

aromatic protons for PLA-ss-PDAEMA. The GPC and 
1
H-NMR results suggest that the normal 

ATRP of methacrylates in the presence of PLA-ss-Br proceeded in a living fashion, yielding 

well-controlled PLA-ss-polymethacrylates with Mw/Mn < 1.25 up to 90% conversion. 
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Figure 3.3 For ATRP of methacrylates including OEOMA300, OEOMA475, MMA, and DAEMA in the 

presence of PLA-ss-Br in THF at 47 C, first-order kinetic plots over time (a) and evolution of molecular 

weight and molecular weight distribution over conversion (b). Conditions: [methacrylate]0/[PLA-ss-

Br]0/[CuBr/PMDETA]0 = 50/1/0.5; methacrylate/THF = 1.5/1 wt/wt. The solid lines in (a) and (b) are 

linear fits. 
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Figure 3.4. 
1
H-NMR spectra of PLA-ss-polymethacrylates including POEOMA300 (a), PMMA (b), and 

PDAEMA (c) in CDCl3. 

 

ATRP of St in the presence of PLA-ss-Br and CuBr/PMDETA complex was carried out 

in anisole at 120 C. High temperature was required, because the polymerization of St is 

generally slow than that of methacrylates. As seen in Figure 3.5a, monomer conversion increased 

with time, reaching >60% in 2 hrs. The polymerization proceeded in a living character; first-

order kinetics, linear increase in molecular weight over conversion, and narrow molecular weight 

distribution as low as Mw/Mn < 1.25 (Figure 3.5b). However, molecular weights determined by 

GPC calibrated with PSt standards were much smaller than theoretically estimated ones; the 

difference is presumably attributed to the different hydrodynamic volume of PLA-ss-PSt BCPs 

from PSt homopolymers. 
1
H-NMR spectrum shows peaks at 6.3 – 7.2 ppm corresponding to 

aromatic protons in phenyl rings of PSt blocks, confirming the successful synthesis of well-

controlled PLA-ss-PSt by chain extension of PLA-ss-Br with PSt by the ATRP (Figure 3.6).  
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Figure 3.5. First-order kinetic plot (a) and evolution of molecular weight and molecular weight 

distribution with conversion (b) for ATRP of St in the presence of PLA-ss-Br in anisole at 120 C. 

Conditions: [St]0/[PLA-ss-Br]0/[CuBr/PMDETA]0 = 50/1/0.5; St/anisole = 0.8/1 wt/wt. The solid line is a 

linear fit in a) and the theoretically predicted molecular weight over conversion in (b).  
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Figure 3.6. 
1
H-NMR spectrum of PLA-ss-PSt in CDCl3.  

 

ATRP of tBA in the presence of PLA-ss-Br and CuBr/PMDETA complex was carried 

out in THF at 65 C. Using GC, monomer conversion was determined to be 93% after 5 hrs. The 

evolution of GPC trace to high molecular weight region, with Mn = 16,400 g/mol and Mw/Mn = 

1.20 (Figure 3.7) and 
1
H-NMR results (Figure 3.8) suggest the successful synthesis of well-

controlled PLA-ss-PtBA. 
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Figure 3.7. GPC traces of PLA-ss-PtBA, compared with PLA-ss-Br precursor. 
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Figure 3.8. 
1
H-NMR spectrum of PLA-ss-PtBA in CDCl3.  
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With the success in ATRP of MMA and St, a consecutive ATRP of MMA and St was 

conducted to synthesize a triblock copolymer of PLA-ss-PMMA-b-PSt. In the presence of PLA-

ss-Br with Mn = 9,600 g/mol and Mw/Mn = 1.22, ATRP of MMA was carried out at 47 C in 

THF for 25min. After purification, ATRP of St was carried out in the presence of PLA-ss-

PMMA-Br as a macroinitiator at 120 C in anisole for 3 hrs. The GPC and GC results indicate 

the evolution of GPC trace to high molecular weight region, with Mn = 11,800 g/mol and Mw/Mn 

= 1.2 at conversion = 0.60 for PLA-ss-PMMA-Br and Mn = 15,400 g/mol and Mw/Mn = 1.23 at 

conversion = 0.55 for PLA-ss-PMMA-b-PSt (Figure 3.9). 
1
H-NMR spectrum shows a typical 

peak at 3.6 ppm corresponding to methoxy protons in PMMA block and peaks at 6.3 – 7.2 ppm 

corresponding to aromatic protons of PSt blocks, suggesting the successful synthesis of well-

controlled PLA-ss-PMMA-b-PSt triblock copolymer (Figure 3.10).  
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Figure 3.9. GPC traces of PLA-ss-Br, PLA-ss-PMMA-Br, and PLA-ss-PMMA-b-PSt. 
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Figure 3.10. 
1
H-NMR spectrum of PLA-ss-PMMA-b-PSt in CDCl3. x denotes a trace of THF. 

 

3.3.3 Thermal analysis of PLA-ss-PATRPs using DSC 

DSC was used to characterize thermal properties and glass transition temperature (Tg) of 

selected PLA-ss-PATRPs. Figure 3.11 shows the DSC diagrams of PLA-ss-Br, PLA-ss-PMMA, 

PLA-ss-PSt, and PLA-ss-PDAEMA. PLA-ss-Br homopolymer had a strong glass transition at Tg 

= 38.8 °C with no melting transition, suggesting that PLA-ss-Br is amorphous. PLA-ss-PMMA 

BCP exhibits only one Tg which appeared at 53.7 °C, suggesting that the amorphous PLA block 

is miscible with the PMMA block. This result is consistent with that reported for miscible blends 

of amorphous PLA with PMMA homopolymers.
[140]

 PLA-ss-PSt block copolymer also exhibits 

only one glass transition at Tg = 46.5 C. However, several reports describe immiscible 

homopolymer blends of amorphous PLA and PSt that exhibit two glass transitions in the DSC 

diagrams. In addition, the transition of PSt is relatively weak compared with that of PLA; thus, 

only one glass transition corresponding to PLA is detected for immiscible blends of PLA/PSt 

containing less than 25 wt % of PSt.
[141]

 In our experiment, PLA-ss-PSt BCP contains <22 wt % 

of PSt block, suggesting that PLA block is not miscible with PSt block, although PLA-ss-PSt has 

only one glass transition. For PLA-ss-PDAEMA, two Tg values appeared at 48.6 and 86.7 C. 
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The Tg = 48.6 C corresponding to PLA block is higher than PLA-ss-Br (38.9 C) and the Tg = 

86.7 C to PDAEMA block is lower than reported value (>90 C)
[138a]

 of PDAEMA 

homopolymer. 
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Figure 3.11. DSC diagrams of PLA-ss-Br (a), PLA-ss-PMMA (b), PLA-ss-PSt (c), and PLA-ss-

PDAEMA (d).  

 

3.3.4 Reductive degradation of PLA-ss-PATRPs 

The resulting PLA-ss-PATRPs contain disulfide linkages at block junctions that can be 

cleaved in response to thiols through thiol-disulfide exchange reaction (Scheme 3.2). In the 

experiments, GPC was used to follow the degradation of PLA-ss-PATRPs in the presence of 

DTT in DMF at room temperature. PLA-ss-PMMA was first examined with different amounts of 

DTT, which is defined as the mole equivalent ratio of DTT/disulfide = 5/1. As seen in Figure 

3.12a, molecular weight decreased from Mn = 15,100 to 11,200 g/mol in the presence of 1 mole 

equivalent DTT and further decreased to 9,100 g/mol with 5 mole equivalent DTT. This result 

suggests that the cleavage of disulfide linkages is enhanced with an increasing amount of 
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reducing agents.
[142]

 Similar result was observed for PLA-ss-PDAEMA whose molecular weight 

decreased from Mn = 16,300 g/mol to 9,400 g/mol in the presence of 5 mole equivalent DTT 

(Figure 3.12b). 

 

PLA-SH PATRP-SH
DMF

DTT
 

Scheme 3.2. Thiol-responsive cleavage of disulfide linkages at block junction in the presence of DTT. 
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Figure 3.12. Overlaid GPC traces before and 15 hrs after being mixed with DTT for PLA-ss-PMMA (a), 

PLA-ss-PDAEMA (b), PLA-ss-POEOMA300 (c), and PLA-ss-PSt (d) in DMF. Note that molecular 

weights of BCPs used for degradation experiments were determined after purification. 

 

An interesting result is observed when PLA-ss-POEOMA300 was mixed with 5 mole 

equivalent DTT. As seen in Figure 3.12c, the GPC trace was shifted to lower molecular weight 

region and the molecular weight decreased from Mn = 16,600 g/mol to 11,700 g/mol. Different 

from the above two BPCs, the GPC trace of the degraded polymers shows bimodal distribution. 

Peak analysis using a deconvolution method suggests 42% low molecular weight species 

presumably corresponding to the cleaved PLA block and 58% high molecular weight species 

corresponding to the cleaved POEOMA300 block (Figure 3.13a). This analysis is consistent with 

the theoretically calculated Mn,theo = 10,800 g/mol for PLA block and 8,700 g/mol for 

POEOMA300 block (DP = 29), suggesting 55 wt% PLA block in PLA-ss-POEOMA300 at 
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conversion = 0.55. However, the GPC peak for the cleaved POEOMA300 is positioned in higher 

molecular weight region than that for the cleaved PLA block. This is presumably due to the 

larger hydrodynamic volume of POEOMA300 than PLA in THF. For PLA-ss-PSt with Mn = 

14,400 g/mol in the presence of DTT, the GPC trace of degraded products is also bimodal 

(Figure 3.12d). The low molecular weight species could be attributed to the presence of cleaved 

PSt. Based on estimated Mn,theo = 4,000 g/mol for PSt block (DP = 39) and 12,400 g/mol for PLA 

block, PSt block can be estimated to be 24 wt% (Figure 3.13b). 
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Figure 3.13. Peak analysis by deconvolution method for GPC trace of PLA-ss-POEOAM300 (a) and 

PLA-ss-PSt (b). 
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3.4 Conclusion 

A new method employing a combined ROP and ATRP was further examined to 

synthesize various PLA-ss-PATRPs having disulfides at block junctions. ROP of LA was well-

controlled with narrow molecular weight distribution of PLA-ss-Br (Mw/Mn < 1.15). With an 

increasing amount of Sn(Oct)2 and polymerization time, the amount of high molecular weight 

species yielded by side coupling reactions increased. ATRP of methacrylates, tBA, and St 

proceeded in a living manner with first-order kinetics, linear increase in molecular weight over 

conversion, and low Mw/Mn < 1.2, yielding well-controlled PLA-ss-PATRPs, confirmed by 
1
H-

NMR and GPC. Thermal analysis results suggest that PLA block is miscible with PMMA, 

exhibiting one Tg, while it is phase-separated from PDAEMA. In the response to DTT, PLA-ss-

PATRPs degraded to the corresponding thiols including PLA-SH and PATRP-SH upon the 

cleavage of disulfide junctions. It is anticipated that these significant results can be utilized for 

further development of multifunctional nanomaterials as micelles and as films with stimuli-

responsive degradation. 
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Chapter 4 

Reductively-sheddable cationic nanocarriers 

for dual chemotherapy and gene therapy with enhanced release 

 

DOX

-ss-

GSH

ss
ss

s
s

self-

assembly

DOX-loaded 

micelles/ssDNA polyplexes

0 5 10 15 20

0

20

40

60

80

100

 

D
o

x
 r

e
le

a
s

e
 %

Time (hrs)

No GSH 0.0E+00

2.0E+02

4.0E+02

6.0E+02

8.0E+02

1.0E+03

naked

DNA (-)

0.5 1.0 4.0 8.0

N/P ratio

C
P

S
/m

g
 p

ro
te

in

GSH

ss
ss

s
s

PLA-ss-cPDMA

 

 

The development of a versatile strategy to synthesize cationic nanocarriers capable of co-

delivery and enhanced release of drugs and oligonucleotides is promising for synergic dual 

chemotherapy and gene therapy. Chapter 4 reports a novel cationic amphiphilic diblock 

copolymer having a single reduction-responsive disulfide linkage at a junction between a FDA-

approved polylactide (PLA) block and a cationic methacrylate block (C-ssABP). The 

amphiphilic design of the C-ssABP enables the formation of cationic micellar aggregates 

possessing hydrophobic PLA cores, encapsulating anticancer drugs; cationic coronas, ensuring 
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complementary complexation with negatively-charged oligonucleotides through electrostatic 

interactions; and disulfides at interfaces, leading to enhanced release of both encapsulated drugs 

and complexed oligonucleotides. The reduction-responsive intracellular trafficking results from 

flow cytometry, confocal laser scanning microscopy, and cell viability, as well as in vitro gene 

transfection assay suggest that C-ssABP offers versatility as an effective nanocarrier platform for 

dual chemotherapy and gene therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is reproduced the article published in Colloids and Surfaces B: Biointerfaces, 

2015, 126, 178-187 with permission from the publisher. 
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4.1 Introduction 

ABP-based self-assembled micelles have been extensively explored as effective 

candidates of polymer-based nanocarriers in pharmaceutical science.
[143]

 Well-designed ABP-

based micelles consist of hydrophobic cores enabling encapsulation of hydrophobic therapeutics 

to deliver targeted sites. PLA and its copolymers have been considered as effective building 

blocks in constructing hydrophobic cores. This is due to their unique features being 

biocompatible, FDA-approved for clinical use, and biodegradable by enzymatic reaction or 

hydrolysis under physiological conditions.
[136, 144]

 To promote their applicability toward 

biomedical applications, an introduction of dynamic covalent linkages, particularly disulfide 

linkages, into PLA-based ABPs and their self-assembled structures has been proposed.
[29a, 69b, 76, 

145]
 The reductive cleavage of the disulfide linkages caused the disintegration of PLA-based 

nanocarriers, exhibiting the enhanced release of encapsulated anticancer drugs. Furthermore, 

hydrophobic PLA cores are engineered with hydrophilic surfaces to minimize opsonisation, 

leading to prolonged circulation in the blood.
[146]

 Typical hydrophilic polymers that have been 

used include PEG
[147]

 and polymethacrylates.
[148]

 Besides these neutral sheaths, ionic shells can 

also be appealing because therapeutic biomolecules having relatively high molecular weight such 

as nucleic acids, proteins, and polysaccharides are ionic compounds (either cationic or 

anionic).
[149]

 In particular, nanocarriers with positive charges (cationic nanocarriers) facilitate the 

delivery of anionic nucleic acids (DNA, RNA, and chemically modified oligonucleotides) 

though electrostatic interactions.
[150]

  

Gene therapy including gene silencing mostly utilizes nonviral vectors based on positively-

charged cationic polymers that grant nucleic acids with protection against enzymatic degradation. 

They form polyplexes with negatively-charged phosphate groups of nucleic acids through ionic 

complexation. After internalization inside targeted cells, the nucleic acids can escape from 

endosomes and transfer to the nuclei; such endosomal escape that leads to effective gene 

transfection is facilitated by proton-sponge or pH buffering effect inside endosomes (called 

endosomal escape).
[151]

 Of several cationic polymers that have been extensively explored as gene 

carriers, poly(N,N-dimethylaminoethyl methacrylate) (PDMA) has shown its relatively lower 

cytotoxicity driven by tertiary amine.
[152]

 The quaternized PDMA (cPDMA) can imbibe nucleic 

acids with protection against enzymatic degradation as they form polyplexes through ionic 



 

54 

complexation with negatively charged phosphate groups of nucleic acids. Further, the PDMA 

block is easily incorporated into the block copolymers through various controlled radical 

polymerization methods as well as converted to the corresponding quaternized cationic block. In 

order to enhance nucleic acid transfection for the success of nucleic acid-based therapies, 

disulfide reduction chemistry has been explored. Two typical approaches based on the location 

of disulfide linkages in cationic (co)polymers include reduction-responsive main-chain 

degradation and PEG deshedding. For the reduction-responsive main-chain degradation, 

disulfides are formulated in polycation backbones. This approach enhances endosomal escape 

inside cells while minimizing cytotoxicity as well as increasing transfection efficiency.
[153]

 For 

the reduction-responsive PEG deshedding, disulfides are positioned at block junctions between 

polycation backbones and PEG blocks. This approach is desired to circumvent what is known as 

PEG dilemma, thus enhancing both circulation time in the blood and transfection efficiency.
[154]

  

Herein, we report on novel PLA-based cationic micelles self-assembled from cationic PLA-

ss-cPDMA ABP (C-ssABP) for development of reduction-responsive co-delivery and enhanced 

intracellular release of encapsulated drugs in hydrophobic PLA cores and oligonucleotides in 

cationic coronas (Scheme 4.1). The cationic ABP was synthesized by a combination of ROP, 

ATRP, and post-functionalization through quaternization. The single disulfide linkages are 

positioned at block junctions in C-ssABP; thus self-assembled micelles had the disulfides located 

at interfaces between PLA cores/drugs and cPDMA coronas/DNA. Different from the 

conventional methods previously mentioned to circumvent the PEG dilemma, here the reductive 

cleavage of the interfacial disulfide linkages resulted in shedding cPDMA coronas, causing the 

destabilization of the integrity of micellar aggregates, thus leading to both enhanced release of 

drugs and prompted endosomal escape of oligonucleotides. Intracellular release of encapsulated 

DOX and DNA transfection were confirmed by in vitro results from FC, CLSM, and cell 

viability assay as well as gene transfection assay. 
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Scheme 4.1. Preparation of cationic C-ss-ABP (PLA-ss-cPDMA) diblock copolymer, and its self-

assembled doxorubicin-loaded micelles/ssDNA polyplexes for reduction-responsive co-delivery with 

enhanced release of of drugs and genes. 

 

4.2 Experimental section 

4.2.1 Materials 

3,6-Dimethyl-1,4-dioxane-2,5-dione (DL-lactide, LA), tin(II) 2-ethylhexanoate (Sn(Oct)2, 

95%), copper(I) bromide (CuBr, >99.99%), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine 

(PMDETA, >98%), iodomethane (MeI), L-glutathione reduced (GSH), and doxorubicin 

hydrochloride (DOX, -NH3
+
Cl

-
 salt form, >98%) from Aldrich, DL-dithiothreitol (DTT, 99%) 

from Acros Organics, and 5’-O-dimethoxytrityl-2-deoxyribonucleoside-3-O-(β-cyanoethyl-

N,N-diisopropyl)phosphoramidites and protected 2-deoxyribonucleoside- CPG from Glen 
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Research (Sterling, Virginia) were purchased and used as received. N,N-dimethylaminoethyl 

methacrylate (DMA, >98%) purchased from Aldrich was purified by passing it through a column 

filled with basic alumina to remove the inhibitors. HO-ss-iBuBr was synthesized according to 

our previous publication.
[155]

 

4.2.2 Instrumentation and analysis 

1
H-NMR spectra were recorded using a 500 MHz Varian spectrometer. The CDCl3 

singlet at 7.26 ppm, DMSO-d6 multiplet at 2.5 ppm, and DMF-d7 singlet at 8.03 ppm were 

selected as the reference standards. Molecular weight and molecular weight distribution were 

determined by GPC. An Agilent GPC was equipped with a 1260 Infinity Isocratic Pump and a RI 

detector. Two Agilent PLgel mixed-C and mixed-D columns were used with DMF containing 

0.1 mol% LiBr at 50 °C at a flow rate of 1.0 mL/min. Linear poly(methyl methacrylate) 

standards from Fluka were used for calibration. Aliquots of polymer samples were dissolved in 

DMF/LiBr. The clear solutions were filtered using a 0.25 m PTFE filter to remove any solvent-

insoluble species. A drop of anisole was added as a flow rate marker. Monomer conversion was 

determined using 
1
H-NMR.  

4.2.2.1 Dynamic light scattering (DLS) 

The size of micelles in hydrodynamic diameter by volume was measured by DLS at a 

fixed scattering angle of 175° at 25 °C with a Malvern Instruments Nano S ZEN1600 equipped 

with a 633 nm He-Ne gas laser. UV/Vis spectra were recorded on an Agilent Cary 60 UV/Vis 

spectrometer using a 1 cm wide quartz cuvette.  

4.2.2.2 Transmission Electron Microscope (TEM) images 

TEM images were taken using a Philips Tecnai 12 TEM, operated at 120 kV and 

equipped with a thermionic LaB6 filament. An AMT V601 DVC camera with point to point 

resolution and line resolution of 0.34 nm and 0.20 nm respectively was used to capture images at 

2048 by 2048 pixels. To prepare specimens, the micellar dispersions were dropped onto copper 

TEM grids (400 mesh, carbon coated), blotted and then allowed to air dry at room temperature. 



 

57 

4.2.3 Synthesis of ssDNA 

ssDNA were assembled using an Applied Biosystems Model 3400 synthesizer on a 1 

µmole scale employing standard β-cyanoethylphosphoramidite cycles supplied by the 

manufacturer. The oligomer-derivatized CPG beads were transferred from the reaction column to 

screw cap microfuge tubes fitted with teflon lined caps and the oligomer released from the 

support and protecting groups removed by treatment with a mixture of concentrated ammonium 

hydroxide/EtOH (0.3/0.1 v/v) for 4 hrs at 55 ºC. The crude oligonucleotide were transferred and 

concentrated in a speedvac concentrator followed by purification from pre-terminated products 

by strong anion exchange HPLC using a Dionex DNAPAC PA-100 column (0.4 cm x 25 cm) 

purchased from Dionex Corp, (Sunnyvale, CA) with a linear gradient of 0–50% buffer B over 30 

min (buffer A: 100 mM Tris HCl, pH 7.5, 10% acetonitrile and buffer B: 100 mM Tris HCl, pH 

7.5, 10% acetonitrile, 1 M NaCl) at 40 °C. The column was monitored at 260 nm for analytical 

runs or 280 nm for preparative runs. The purified oligomer was desalted using C-18 SEP PAK 

cartridges (Waters Inc.) and quantified using a Varian CARY Model 3E spectrophotometer.  

4.2.4 Synthesis of PLA-ss-Br using ROP 

HO-ss-iBuBr (300.3 mg, 0.99 mmol), LA (10.0 g, 69.4 mmol), Sn(Oct)2 (20.1 mg, 0.05 

mmol), and toluene (6 mL) were added to a 25 mL Schlenk flask. The resulting mixture was 

deoxygenated four times by freeze-pump-thaw cycles. The reaction flask was filled with nitrogen, 

thawed, and then immersed in an oil bath preheated to 120 C to start the polymerization. After 

2.5 hrs, the polymerization was stopped by cooling down to room temperature. The resulting 

PLA homopolymers were precipitated from MeOH and dried in a vacuum oven at room 

temperature for >12 hrs.  

4.2.5 Synthesis of PLA-ss-PDMA (ssABP) using ATRP 

The purified, dried PLA-ss-Br (1.0 g, 87 μmol), DMA (0.68 g, 4.34 mmol), PMDETA 

(9.05 μL, 0.04 mmol), and THF (1.07 mL) were added to a 10 ml Schlenk flask. The resulting 

mixture was deoxygenated three times by freeze-pump-thaw cycles. The reaction flask was filled 

with nitrogen and CuBr (6.2 mg, 0.04 mmol) was then added to the frozen solution. The flask 

was closed, evacuated, and backfilled with nitrogen two times. The mixture was thawed and the 

flask was then immersed in an oil bath preheated to 47 C to start the polymerization. The 
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polymerization was stopped by cooling down and exposing the reaction mixture to air. For 

purification, as-prepared green polymer solutions were passed through a column filled with basic 

aluminum oxide with THF as an eluent to remove copper species. The polymer solution was 

concentrated by rotary evaporation and precipitated from hexane (500 ml) under stirring for 12 

hrs. The precipitates were filtered by vacuum filtration and residual solvents were further 

removed in a vacuum oven at room temperature for 12 hrs.  

4.2.6 Quaternization of ssABP to synthesize C-ssABP 

The purified, dried ssABP (0.9 g, 51 μmol) was dissolved in THF (10 mL) and stirred for 10 min 

at room temperature. After drop-wise addition of MeI (0.3 g, 2.1 mmole), the resulting mixture 

was stirred for 14 hrs. The formed yellow solids were isolated by vacuum filtration and further 

dried in a vacuum oven at room temperature for 12 hrs. 

4.2.7 Reductive cleavage of disulfide linkages of ssABP in DMF 

An aliquot of dried, purified ssABP (50 mg) was mixed with DTT (2.1 mg, 13.4 μmol) in DMF 

(10 mL) under stirring at room temperature. After 20 hrs, aliquots were taken to analyze 

molecular weight distribution of degraded products using GPC.  

4.2.8 Aqueous micellization of C-ssABP using a dialysis method 

A solution of aliquot of the purified, dried C-ssABP (10.3 mg) in DMF (4 mL) was mixed with 

water (6 mL). The resulting mixture was stirred for 2 hrs, and then dialyzed in a dialysis tubing 

(MWCO = 12,000 g/mol) against water for 3 days to remove DMF. The outer water (800 mL) 

was changed once a day, yielding colloidally-stable micellar aggregates in aqueous solution at 

0.7 mg/mL concentration. 

4.2.9 Reductive-destabilization of aqueous C-ssABP micelles 

Aliquots of aqueous micellar dispersion (0.74 mg/mL, 2 mL) were mixed with GSH (6.1 

mg, 20 μmol, 10 mM) under stirring. After 19 hrs, aliquots were taken to analyze their size 

distributions using DLS. 
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4.2.10 Gel electrophoresis 

Aliquots of ssDNA (20 pmol) were labelled with 
32

P at 5-OH with gamma 
32

P ATP and 

PNK. Labelled ssDNA (10 pmol) were mixed with unlabelled ssDNA (3990 pmol), and then 

mixture was dried to adjust the concentration to be 4000 pmol. The resulting mixture was then 

re-suspended in water to give a total of 40 L. A series of C-ssABP/ssDNA polyplexes were 

prepared at N/P ratios of 0, 0.1, 0.5, 1, 2, 4, 8, and 16. Electrophoretic gel mobility assays was 

used to study the binding isotherm of ssDNA to cationic micelles. All samples were run on a 1% 

agarose gel for 30 min at 100 V and binding was monitored using a phosphorimager. The final 

concentration of ssDNA per well was 100 pmol. 

4.2.11 Preparation and characterization of C-ssABP/ssDNA polyplexes 

An aqueous stock solution of sterile ssDNA was prepared. To prepare a series of aqueous 

polyplexes at various ratios of ssDNA to C-ssABP, the different volumes of the aqueous C-

ssABP stock solution were mixed with the equal volume of the aqueous ssDNA stock solution. 

The resulting mixtures were vortexed for 20 sec, and then incubated at room temperature for 30 

min prior to use. They were characterized for size by DLS and zeta potential using a Brookhaven 

ZetaPlus in phosphate buffered saline (PBS) solution at pH 7.3. 

4.2.12 Preparation of DOX-loaded micelles 

Similar to the procedure for aqueous micellization, water (10 mL) was added drop-wise 

to an organic solution consisting of the purified, dried C-ssABP (20 mg), DOX (2 mg), and Et3N 

(1.44 μL, 3 molar equivalents to DOX) in DMF (2 mL). The resulting dispersion was dialyzed 

over water (800 mL) for 19 hrs, yielding DOX-loaded micellar dispersion at 1.9 mg/mL. To 

determine a loading level of DOX, aliquots of the DOX-loaded micellar dispersion (1 mL) were 

dried using rotary evaporator. Residues were dissolved in DMF (3 mL) to form clear solutions. 

Their UV/Vis spectra were recorded, and DOX loading was calculated by the weight ratio of 

loaded DOX to dried polymers. To prepare DOX-loaded polyplexes, DOX-loaded micelles were 

mixed with ssDNA in PBS and vortexed for 30 min at room temperature. 
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4.2.13 GSH-triggered release of DOX from DOX-loaded micelles 

An aliquot of DOX-loaded micellar dispersion (3 mL, 1.9 mg/mL) was transferred into a 

dialysis tubing (MWCO = 3,500 g/mol) and immersed in aqueous PBS (50 mL) as a control and 

10 mM aqueous GSH buffered with PBS under stirring. The absorbance of DOX in outer water 

(50 mL) was recorded at 2 min interval using a UV/Vis spectrometer equipped with an external 

probe at  = 497 nm. For quantitative analysis, DOX (74.3 μg, equivalent to DOX encapsulated 

in 3 mL DOX-loaded micelles) was dissolved in 10 mM aqueous GSH buffered with PBS (50 

mL) and its UV/Vis spectrum was recorded. 

4.2.14 Cell culture 

HeLa cancer cells were cultured in DMEM (Dulbecco’s modified Eagle’s medium) 

containing 10% FBS (fetal bovine serum) and 1% antibiotics (50 units/mL penicillin and 50 

units/mL streptomycin) at 37 C in a humidified atmosphere containing 5% CO2. 

4.2.15 Cell viability using MTT assay 

HeLa cells were plated at 5 x 10
5
 cells per well into a 96-well plate and incubated for 24 

hrs in DMEM (100 µL) containing 10 % FBS and 1 % antibiotics. They were then incubated 

with various concentrations of micellar dispersions of C-ssABP for 48 hrs. Blank controls 

without micelles (cells only) were run simultaneously as control. Cell viability was measured 

using CellTiter 96 Non-Radioactive Cell Proliferation Assay kit (MTT, Promega) according to 

the manufacturer’s protocol. Briefly, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) solutions (15 µL) was added into each well. After 4 hrs incubation, the medium 

containing unreacted MTT was carefully removed. DMSO (100 L) was added into each well in 

order to dissolve the formed formazan blue crystals, and then the absorbance at  = 570 nm was 

recorded using Powerwave HT Microplate Reader (Bio-Tek). Each concentration was 12-

replicated. Cell viability was calculated as the percent ratio of absorbance of mixtures with 

micelles to control (cells only). A similar procedure was used for cell viability of polyplexes and 

DOX-loaded micelles. 
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4.2.16 Flow cytometry (FC) 

HeLa cells were plated at 2×10
5
 cells/ well into a 6-well plate and incubated hrs in 

DMEM (2 mL) at 37 C. After 24 hrs, cells were treated with DOX-loaded micelles (116 L for 

DOX = 2.3 g/mL) and DOX-loaded polyplexes (200 L for DOX = 2.3 g/mL)at 37 C for 10 

hrs. After culture medium was removed, cells were washed with PBS buffer three times and then 

treated with trypsin. The suspended cells were diluted in DMEM (500 L) for flow cytometry 

measurements. Resulting data was analyzed by means of a BD FACSCANTO II flow cytometer 

and BD FACSDiva software. 

4.2.17 Confocal laser scanning microscopy (CLSM) 

HeLa cells plated at 2×10
5
 cells/ well into a 6-well plate and incubated for 24 hrs in 

DMEM (2 mL) were treated with DOX-loaded micelles and DOX-loaded polyplexes (DOX = 

2.3 g/mL) at 37 C for 10 hrs. After culture medium was removed, cells were washed with PBS 

buffer three times. After the removal of supernatants, the cells were fixed with cold methanol (-

20 C) for 20 min at 4 C. The slides were rinsed with PBS buffer for five times and TBST (tris-

buffered saline Tween-20) for three times. Cells were stained with 2-(4-amidinophenyl)-1H-

indole-6-carboxamidine (DAPI). The fluorescence images were obtained using a LSM 510 

Meta/Axiovert 200 (Carl Zeiss, Jena, Germany). 

4.2.18 In vitro gene transfection assay 

The luciferase gene reporter assay was used to evaluate the efficiency of C-

ssABP/ssDNA complexes to induce gene expression in HeLa cells. For transfection, HeLa cells 

were placed at 5x10
5
 cells per well into a 6-well plate and incubated in DMEM (1 mL) 

supplemented with 10% FBS and 1% penicillin–streptomycin for 18 hrs prior to transfection. 

After old media were replaced with fresh ones, aliquots of C-ssABP/ssDNA polyplexes at 

various N/P ratios (0.5, 1, 4, 8, containing 2.5 μg DNA/well) were added to each well and 

incubated for 4 hrs at 37 °C. After the culture media being replaced with fresh ones (1 mL), the 

cells were incubated for another 48 hrs. The culture medium was removed and then the cells 

were washed with PBS (1 mL) twice. Cell lysis buffer (1 mL, Pierce, Rockford, IL) was then 

added to each well to lyse the cells. The cell plate was shaked at a moderate speed for 15 min. 

Lysed cells (20 μL) were transferred to 96-well plate and mixed with 1X D-luciferin solution (50 
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μL, Pierce, Rockford, IL) for luciferase expression on a Wallac Victor 1420 multilabel counter 

(Perkin-Elmer Life Sciences, Boston, Mass.). For the determination of protein level, BCA assay 

with lysate cells was performed according to the manufacturer’s protocol (Pierce® BCA Assay 

Kit). Transfection of each polyplex was tested four times, and the results are given as mean ± SD 

of counts per second (CPS) normalized to protein concentration according to the BCA assay. 

 

4.3 Results and Discussion 

4.3.1 Synthesis of C-ssABP 

Figure 4.1a illustrates our approach to synthesize well-controlled C-ssABP having single 

disulfide linkages at the junctions of a hydrophobic PLA block and a cationic cPDMA block. 

Figure 4.1b shows 
1
H -NMR spectra. 
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Figure 4.1. Synthetic route to cationic C-ssABP by a combination of ROP, ATRP, and quaternization (a) 

and 
1
H-NMR spectra of PLA-ss-Br, ssABP, and C-ssABP in DMF-d6 (b). 
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The first step is the synthesis of well-controlled PLA-ss-Br homopolymers with narrow 

molecular weight distribution by ROP of LA catalyzed with Sn(Oct)2 in the presence of HO-ss-

iBuBr in toluene at 120 C. The conditions include [LA]0/[HO-ss-iBuBr]0/[Sn(Oct)2]0 = 

70/1/0.05 with LA/toluene = 1.9/1 wt/wt. The detailed procedure was described in our previous 

report.
[155]

 The resulting PLA-ss-Br homopolymer had the number average molecular weight, Mn 

= 12,900 g/mol and Mw/Mn = 1.09 by GPC (Figure 4.2) as well as the DP of PLA = 70 from the 

integral ratio of the peaks [(b/2)/(c/6)] by 
1
H-NMR. The second step is the synthesis of ssABP by 

conventional ATRP of DMA. The ATRP was conducted in the presence of PLA-ss-Br 

macroinitiator and catalyzed with CuBr/PMDETA active complex in THF at 47 C under 

[DMA]0/[ PLA-ss-Br]0/[CuBr/PMDETA]0 = 50/1/0.5; DMA/THF = 0.8/1 wt/wt. After 

purification, GPC results indicate Mn = 16,700 g/mol and Mw/Mn = 1.13 (Figure 4.2). The 
1
H-

NMR spectrum shows two peaks at 4.2 ppm (d) and 2.6 ppm (e) corresponding to four 

methylene protons in pendant chains of DMA as well as a broad singlet at 2.3 ppm (f) 

corresponding to six methyl protons in t-amine groups. From the integral ratio of the peaks 

[(d/2)/(b/2)] and the DP of PLA = 70, the DP of PDMA block was determined to be 45. The third 

step is the quaternization of ssABPs with excess MeI in THF to C-ssABPs. The yellow solids 

formed were characterized by 
1
H-NMR. The peaks at 4.6 (d) and 4.3 ppm (e) corresponding to 

four methylene protons in side chains of cPDMA blocks as well as the peak at 3.6 ppm (f) to 

nine methyl protons are clearly shifted as a result of quaternization. These results suggest the 

successful synthesis of well-defined cationic C-ssABP. Note that a few reports describe the 

synthesis of C-ssABP with no SRD concept.
[156]
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Figure 4.2. GPC traces of PLA-ss-Br and ssABP. Conditions for ATRP: [DMA]0/[PLA-ss-

Br]0/[CuBr/PMDETA]0 = 50/1/0.5; DMA/THF = 0.8/1wt/wt. 

 

4.3.2 Aqueous assembly and disassembly of C-ssABP 

The C-ssABP is amphiphilic and thus self-assembles to form cationic micellar aggregates 

consisting of hydrophobic PLA cores surrounded with cationic coronas. To prepare aqueous 

micellar aggregates through a dialysis method, a mixture of C-ssABP dissolved in DMF was 

dialyzed over fresh water for 3 days. The resulting micellar aggregates at 0.7 mg/mL were 

characterized for the size and morphology using DLS and TEM. As seen in Figure 4.3a (left), the 

DLS results indicate the monomodal distribution of micelles with an average diameter = 91.0 ± 

6.0 nm on average from five freshly-prepared samples. TEM images show spherical micelles 

with a diameter to be 21.7 ± 4.4 nm, which is smaller by 70 nm than that determined by DLS. 

Since the smaller micelle size determined by TEM than by DLS is attributed to the dehydrated 

state of the micelles,
[157]

 these results suggest that the micelles possess relatively long coronas. 
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Figure 4.3. DLS diagrams and TEM images (insets) of C-ssABP micelles at 0.7 mg/mL before (left) and 

after (right) treatment with 10 mM GSH (a) and schematic illustration of reductive cleavage of disulfide 

linkages at block junctions of C-ssABP (b). 

 

The C-ssABP is designed to have a disulfide linkage at block junction; thus its self-

assembled micellar aggregates contain disulfide linkages positioned at interfaces between cores 

and cationic coronas. In response to reductive reactions, the size distribution became bimodal 

with the occurrence of large aggregates (diameter >250 nm) (Figure 4.3a (right)). This size 

change is attributed to the destabilization of micelles upon the cleavage of disulfide linkages at 

interfaces, as suggested from other sheddable micelles.
[80, 130b, 133c, 154b]

 Such reduction-responsive 

cleavage of disulfide linkages at block junctions in the presence of excess DTT generates the 

corresponding thiols including PLA-SH and HS-cPDMA (Figure 4.3b).  

4.3.3 C-ssABP/DNA complexation and characterization 

The cationic coronas of C-ssABP micelles enable the electrostatic interactions with 

anionic phosphates of DNA molecules, leading to the formation of polyplexes. ssDNA with a 

sequence of 5-GAT CAC TGA CTA CGC TAC-3 was synthesized by Dr. Anne Noronha and 
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further used as a model oligonucleotide for complexation with cationic micelles. A series of 

polyplexes were prepared by mixing C-ssABP micelles with ssDNA at different ratios of N/P 

(amine/phosphate) of 0-16. Note that larger N/P ratio has more cationic micelles. First, agarose 

gel electrophoresis (conducted by Jack Cheong) was used to further examine polymer-DNA 

complexation. As shown in Figure 4.4a, an increasing amount of amine groups in the complex 

intensified the interactions of cationic coronas with phosphate groups of ssDNA. Compared with 

the ssDNA only (as denoted to N/P ratio = 0/1), a significant complexation of cationic micelles 

with ssDNA occurred at the N/P ratio of 2/1-4/1. Similar results are observed for other cationic 

vectors.
[158]
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Figure 4.4. Electrophoretic mobility and binding efficiency of 
32

P-labelled ssDNA (a) and evolution of -

potential and diameter by volume% (b) in polyplexes formed by C-ssABP micelles at different N/P ratios 

of 0.5/1 – 16/1. 

 

Further, the C-ssABP/ssDNA polyplexes were characterized for surface charge using -

potential measurements and size using DLS (Figure 4.4b). -potential was -28 mV for naked 

ssDNA, which is attributed to anionic phosphates. With an increasing N/P ratio (i.e. amount of 

cationic micelles), -potential increased to positive values; which is presumably due to the 
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increase of cationic charges in the C-ssABP/DNA complexes. More interestingly, -potential 

sharply jumped from negative to positive  = +25 mV at the N/P ratio = 2/1, crossing  = 0 mV 

(neutral surface) between the N/P ratio = 1/1-2/1. Similar trend is observed for the evolution of 

size over the increasing N/P ratio. These results are similar to the gel electrophoresis above, 

indicating the formation of stable C-ssABP/ssDNA complexes starting from the N/P ratio = 2/1. 

4.3.4 In vitro cytotoxicity using MTT assay 

The viability of HeLa cells in the presence of cationic micelles of C-ssABP and their 

polyplexes with ssDNA at N/P ratio = 4/1 was evaluated using a MTT colorimetric assay. Figure 

4.5 shows that HeLa cell viability was >75% up to 200 g/mL for both cationic micelles and 

polyplexes. When their concentrations increased to 400 µg/mL, HeLa cell viability decreased 

gradually to <60%. The decrease in HeLa viability is explained by high concentration of cationic 

charges of C-ssABP and their polyplexes which were exposed to the cells. Interestingly, HeLa 

viability is not significantly different in the presence of micelles and their polyplexes. 
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Figure 4.5. Viability of HeLa cells incubated for 48 hrs determined by MTT assay. Data are presented as 

the average ± SD (n = 12). 
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4.3.5 Loading and GSH-triggered release of DOX from DOX-loaded micelles 

To assess the cationic C-ssABP micelles as a tumor-targeting drug delivery nanocarrier 

exhibiting enhanced reduction-responsive drug release, DOX was encapsulated in hydrophobic 

PLA cores using the dialysis method. Free DOX and DMF were removed by intensive dialysis 

over PBS for >19 hrs, yielding DOX-loaded micelles at 1.9 mg/mL. Figure 4.6 shows a typical 

UV/Vis spectrum of DOX-loaded micelles in DMF. Using the Beer-Lambert equation with the 

absorbance at max = 480 nm and the extinction coefficient () = 11,700 M
-1

 cm
-1 

in DMF 

reported in our previous publication,
[72]

 the loading level of DOX was determined to be 1.3%. 
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Figure 4.6. A typical UV/Vis spectrum of DOX-loaded C-ssABP in DMF. 

 

The release of DOX from DOX-loaded micelles upon the cleavage of disulfide linkages at 

micellar interfaces was investigated. An aliquot of DOX-loaded micellar dispersion in dialysis 

tubing was placed in 10 mM aqueous GSH solution buffered with PBS and aqueous PBS as a 

control (Figure 4.7). In the absence of GSH, no significant release of DOX was observed because 

DOX is presumably confined in small micellar cores. In the presence of 10 mM GSH, however, 

DOX-loaded micelles degrade to the corresponding thiols (PLA-SH and HS-cPDMA), causing 
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the enhanced release of encapsulated DOX to aqueous solution. In fact, >80% DOX was released 

from the micelles within 10 hrs. Similar release profile of DOX from other sheddable micelles 

consisting of diblock copolymers with disulfides at block junctions in the presence of GSH is 

reported.
[80, 130b, 154b]
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Figure 4.7. Release of DOX from DOX-loaded micelles in 10 mM aqueous GSH solution buffered with 

PBS, and aqueous PBS as a control. Inset: digital images of DOX-loaded micellar dispersion before and 

after GSH-triggered release of DOX. 

 

4.3.6 Antitumor activity and intracellular trafficking 

Given these promising results, the C-ssABP micelles were evaluated as effective intracellular 

drug delivery nanocarriers. The viability of HeLa cells incubated with DOX-loaded C-ssABP 

micelles was also examined. As seen in Figure 4.5, the viability significantly decreased with an 

increasing amount of DOX encapsulated in cationic micelles. Compared to empty micelles and 

polyplexes with no DOX, DOX-loaded micelles exhibited great inhibition of cell proliferation. In 

addition, the HeLa viability in the presence of DOX-loaded micelles appears to be competitive to 
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that with free DOX reported elsewhere.
[72, 159]

 For example, the concentration of DOX at which 

the HeLa viability is 50% is 0.8-1.6 µg/mL for free DOX and DOX-loaded C-ssABP micelles. 

Further, intracellular trafficking of DOX from DOX-loaded micelles were examined using flow 

cytometry and CLSM. Figure 4.8a shows the flow cytometric histogram of HeLa cells incubated 

with DOX-loaded micelles and DOX-loaded polyplexes. Compared with HeLa cells only as a 

control, their histograms presented a noticeable shift in the direction of high fluorescence 

intensity. No significant difference between DOX-loaded micelles and DOX-loaded polyplexes 

is observed. Figure 4.8b shows CLSM images of HeLa cells incubated with DOX-loaded 

micelles and DOX-loaded polyplexes for 10 hrs. HeLa nuclei were stained with DAPI. 

Obviously, HeLa cells incubated with both DOX-loaded micelles and DOX-loaded polyplexes 

displayed strong DOX fluorescence in their nuclei. These results from both flow cytometry and 

CLSM confirm that DOX-loaded C-ssABP micelles and polyplexes are able to deliver and 

release DOX into the nuclei of cancer cells. 
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Figure 4.8. Flow cytometric histograms of HeLa cells only and incubated with DOX-loaded micelles and 

DOX-loaded polyplexes of C-ssABP for 10 hrs (a) and CLSM images (scale bar = 20µm) of HeLa cells 

only (left), incubated with DOX-loaded micelles (center), and DOX-loaded polyplexes (right) for 10 hrs 

(b). 
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4.3.7 In vitro gene transfection activity 

In vitro gene transfection efficiency of C-ssABP/ssDNA complexes was evaluated using 

luciferase as a reporter gene in HeLa cells. Figure 4.9 shows the transfection efficiency of 

polyplexes at different N/P ratio from 0 (ssDNA only) to 8. Free DNA did not mediate 

significant luciferase expression, while transfection efficiency of polyplexes increased with an 

increasing amount of cationic micelles and reached a plateau at N/P ratio = 4. These results 

illustrate the N/P-dependent gene silencing activity of the polyplexes as previously observed for 

other polyplex formulations.
[160]
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Figure 4.9. Luciferase expression in HeLa cells incubated with C-ssABP/ssDNA polyplexes at different 

N/P ratios, compared with naked DNA as negative control. Transgene expression was evaluated as counts 

per second per mg of protein. Data are shown as mean ± SD (n = 4; Student’s t-test, *p < 0.001); NS-not 

significant. 
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4.4 Conclusion 

Well-defined cationic C-ssABP was synthesized by a combination of ROP, ATRP, and 

followed by quaternization of pendant N,N-dimethylamino groups. The C-ssABP self-assembled 

to form aqueous micelles with diameter of 90 nm having disulfides at interfaces of hydrophobic 

PLA cores and cationic coronas. The positively-charged coronas were electrostatically interacted 

with negatively-charged ssDNA to form C-ssABP micelles/ssDNA polyplexes at the optimal 

N/P ratio = 2/1-4/1, confirmed by agarose gel electrophoresis and zeta potential measurements. 

MTT assay revealed >70% cell viability up to 200 g/mL for both cationic micelles and 

polyplexes. Further, hydrophobic PLA cores enabled the encapsulation of anticancer drugs for 

targeted drug delivery. Reductive cleavage of disulfide linkages at interfaces resulted in the 

disassembly of cationic micelles and DOX-loaded micelles as well as polyplexes, leading to 

controlled/enhanced release of both anticancer therapeutics and oligonucleotides in cancer cells. 

The results from cell viability, flow cytometry, and CLSM as well as in vitro gene transfection 

assay suggest that the new C-ssABP possesses a great potential as an effective ABP-nanocarrier 

platform for co-delivery of drugs and oligonucleotides.  
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Chapter 5 

Glutathione-triggered disassembly of dual disulfide located 

degradable nanocarriers of polylactide-based block copolymers 

for rapid drug release 
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Reduction-responsive degradation based on disulfide-thiol chemistry is highly desirable 

in the development of self-assembled block copolymer nanocarriers for multifunctional polymer-

based drug delivery applications. Most conventional approaches involve the incorporation of 

disulfide linkages at a single location. Chapter 5 reports a new dual disulfide located degradable 

polylactide (PLA)-based block copolymer (DL-ssABP) synthesized by a combination method of 
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ring opening polymerization, facile coupling reactions, and controlled radical polymerization. 

The amphiphilic design of the DL-ssABP enables the formation of self-assembled micelles 

having disulfides positioned in both the hydrophobic PLA core and the core/corona interface. 

The reductive response to glutathione as a cellular trigger results in the cleavage of disulfide 

linkages at the interface shedding hydrophilic coronas as well as the PLA core causing 

disintegration of PLA cores. Such dual disulfide degradation process leads to a synergistically 

enhanced release of encapsulated anticancer drugs in cellular environments. These results, 

combined with flow cytometry and confocal laser scanning microscopy (CLSM) as well as cell 

viability measurements, suggest that DL-ssABP offers versatility in tumor-targeting 

controlled/enhanced drug delivery applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is reproduced the article published in Biomacromolecules, 2014, 15(8), 
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5.1 Introduction 

Polymer-based drug delivery systems, particularly self-assembled micelles based on 

block copolymers have drawn a significant attention as promising candidates for tumor-targeting 

drug delivery applications.
[143]

 Well-defined micellar nanocarriers having optimal sizes (50 - 150 

nm in diameter) can minimize renal clearance by kidney filtration as well as prevent their 

extravasation into healthy cells that is common to small drugs. The nanocarriers formulated with 

hydrophilic neutral surface coatings exhibit a prolonged blood circulation.
[12, 161]

 Tumors are 

characterized with rapidly-grown vasculatures with irregularly-aligned endothelial cells which 

facilitates extravasation (enhanced permeation) of drug-carrying micelles into tumors. 

Furthermore, their insufficient lymphatic drainage allows for these micelles to be retained inside 

solid tumors (retention). This process is known as the enhanced permeation and retention (EPR) 

effect (or passive targeting).
[162]

 These features offer micellar nanocarriers to minimize undesired 

side effects and maximize drug efficacy. After internalized into cancer cells through endocytosis, 

nanocarriers undergo sustainable release of anticancer drugs inside cells.
[163]

  

A classical model of drug release involves a diffusion-controlled mechanism which 

requires overcoming hydrophobic-hydrophobic interactions between drug molecules and 

micellar core-forming polymers. It is a facile mechanism, whereas it is uncontrolled and 

slow.
[164]

 One of the promising methods is the incorporation of dynamic covalent bonds (i.e. 

cleavable linkages) in the design and development of block copolymers and their nanostructures. 

When needed, the cleavable linkages are cleaved in response to external stimuli, causing 

degradation or destabilization of the micelles. This stimuli-responsive degradation (SRD) can 

enhance the release of encapsulated drugs as well as facilitate the removal of empty vehicles 

after drug release.
[165]

 Several stimuli-responsive cleavable linkages have been explored, 

including acid-labile,
[166]

 photo-cleavable groups,
[131c, 167]

 and polypeptides.
[168]

 In particular, 

disulfides are cleaved to the corresponding thiols in response to reductive reactions.
[126b, 169]

 In 

biological systems, glutathione (GSH, a tripeptide containing cysteine having a pendant thiol) is 

found at millimolar concentrations (2-10 mM) in intracellular compartments, while its 

concentration is much smaller in extracellular milieu (<20 µM).
[170]

 Such large redox potential 

between intracellular and extracellular compartments as well as enhanced concentration in 

cancer cells renders GSH as an effective cellular trigger that can cleave disulfide linkages in 
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micellar nanocarriers through disulfide-thiol exchange reactions.
[171]

 Due to such unique features, 

block copolymer based micelle exhibiting redox-responsive degradation system has been 

considered as a promising platform for tumor-targeting drug delivery applications.
[172]

   

Several approaches have been reported for the synthesis of disulfide-containing block 

copolymers and their self-assembled nanostructures. Most approaches involve the incorporation 

of different densities of disulfide linkages positioned at a single location, either in backbone of 

the polymer chains as single
[128b, 145, 173]

 and multiple groups,
[64, 85c, 128a, 174]

 as pendant chains,
[72, 

127, 175]
  as crosslinkers,

[129b, 129d, 159, 176]
 or at block junctions.

[29a, 133b, 133c, 134a, 154b, 176d, 177]
 A new 

multi-location SRD strategy has recently been explored to develop effective reduction-

responsive nanocarriers.
[178]

 They possess disulfide linkages in dual locations, namely in the 

micellar core, the interlayered corona, and the interface between hydrophobic core and corona. 

The preliminary results suggest that this strategy enables the accelerated release of encapsulated 

anticancer drugs in response to reductive reductions at both sites.
[69a, 179]

  

In this chapter, we have explored the promising multi-location SRD strategy to develop 

novel dual-located disulfide degradable polylactide (PLA)-based block copolymers (DL-ssABPs) 

and their self-assembled micelles as effective intracellular drug delivery nanocarriers exhibiting 

rapid reduction-responsive drug release. Compared to conventional hydrophobic 

polymethacrylate-containing pendant disulfide linkages,
[69a]

 PLA is a typical class of aliphatic 

polyesters and is biocompatible, biodegradable by hydrolysis and enzymatic reactions, and FDA-

approved for clinical use.
[136, 180]

 As illustrated in Scheme 5.1, the DL-ssABP triblock copolymer 

consists of a hydrophobic central PLA block and two hydrophilic polymethacrylate blocks 

containing pendant oligo(ethylene oxide) (POEOMA). This copolymer has a single disulfide 

bond in the middle of the hydrophobic block and two disulfide linkages at block junctions, 

resulting POEOMA-ss-(PLA-ss-PLA)-ss-POEOMA triblock copolymer. The DL-ssABP self-

assembled to form colloidally-stable micelles having disulfides located at both the hydrophobic 

PLA core and the PLA/POEOMA interface. These disulfide linkages were cleaved in response to 

GSH (a cellular trigger), shedding the POEOMA coronas from the PLA cores as well as causing 

disintegration of the PLA cores. The degradation of DL-ssABP micelles enabled the enhanced 

release of encapsulated anticancer drugs. The results from flow cytometry and confocal laser 

scanning microscopy (CLSM) measurements as well as cell viability measurements indicate that 
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rapid DOX release from DOX-loaded micelles triggered by higher intracellular GSH 

concentration resulted in enhanced inhibition of the cellular proliferation after cell internalization. 

 

 

Scheme 5.1. Preparation and illustration of a dual location disulfide degradable DL-ssABP [POEOMA-

ss-(PLA-ss-PLA)-ss-POEOMA] triblock copolymer, and its self-assembled doxorubicin-loaded micelles 

as effective intracellular drug delivery nanocarriers. 

 

5.2 Experimental section 

5.2.1 Materials 

3,6-Dimethyl-1,4-dioxane-2,5-dione (DL-lactide, LA), 2-hydroxyethyl disulfide (ss-

DOH), tin(II) 2-ethylhexanoate (Sn(Oct)2, 95%), succinic anhydride (SA, 99%), triethylamine 



 

81 

(Et3N), N,N′-dicyclohexylcarbodiimide (DCC), 4-(N,N-dimethylamino)pyridine (DMAP), 

copper(I) bromide (CuBr, >99.99%), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA, 

>98%), glutathione (GSH, a reduced form), Nile Red (NR), and doxorubicin hydrochloride 

(DOX, -NH3
+
Cl

-
 forms, >98%) from Aldrich and DL-dithiothreitol (DTT, 99%) from Acros 

Organics were purchased and used as received. Oligo(ethylene oxide) monomethyl ether 

methacrylate (OEOMA) with MW = 300 g/mol and pendent EO units ≈5 was purchased from 

Aldrich and was purified by passing through a column filled with basic alumina to remove the 

inhibitors. 2-Hydroxyethyl-2-(bromoisobutyryl)ethyl disulfide (HO-ss-iBuBr) was synthesized 

according to our previous publication.
[155]

  

5.2.2 Instrumentation 

1
H-NMR spectra were recorded using a 500 MHz Varian spectrometer. The CDCl3 

singlet at 7.26 ppm was selected as the reference standard. Molecular weight and molecular 

weight distribution were determined by gel permeation chromatography (GPC). An Agilent GPC 

was equipped with a 1260 Infinity Isocratic Pump and a RI detector. Two Agilent PLgel mixed-

C and mixed-D columns were used with DMF containing 0.1 mol% LiBr at 50 °C at a flow rate 

of 1.0 mL/min. Linear poly(methyl methacrylate) standards from Fluka were used for 

calibration. Aliquots of the polymer samples were dissolved in DMF/LiBr. The clear solutions 

were filtered using a 0.25 m PTFE filter to remove any solvent-insoluble species. A drop of 

anisole was added as a flow rate marker. Carboxylation, esterification, and monomer conversion 

were determined using 
1
H-NMR. The size of micelles in hydrodynamic diameter by volume was 

measured by dynamic light scattering (DLS) at a fixed scattering angle of 175° at 25 °C with a 

Malvern Instruments Nano S ZEN1600 equipped with a 633 nm He-Ne gas laser. Fluorescence 

spectra on a Varian Cary Eclipse Fluorescence spectrometer and UV/Vis spectra on an Agilent 

Cary 60 UV/Vis spectrometer were recorded using a 1 cm wide quartz cuvette. 

5.2.2.1 Transmission Electron Microscopy (TEM). 

TEM images were obtained using a Philips Tecnai 12 TEM, operated at 120 kV and 

equipped with a thermionic LaB6 filament. An AMT V601 DVC camera with point to point 

resolution and line resolution of 0.34 nm and 0.20 nm respectively was used to capture images at 
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2048 by 2048 pixels. To prepare specimens, the micellar dispersions were dropped onto copper 

TEM grids (400 mesh, carbon coated), blotted and then allowed to air dry at room temperature. 

5.2.3 Synthesis of ss(PLA-OH)2 

ss-DOH (0.11 g, 0.69 mmol), LA (10.0 g, 69.4 mmol), Sn(Oct)2 (19.7 mg, 0.05 mmol), 

and toluene (6.7 mL) were added to a 10 mL Schlenk flask. The resulting mixture was 

deoxygenated by four freeze-pump-thaw cycles. The reaction flask was filled with nitrogen, 

thawed, and then immersed in an oil bath preheated at 120 °C to start the polymerization. After 

2.5 hrs, the polymerization was stopped and cooled to room temperature. The resulting 

homopolymers were precipitated from cold MeOH (note that LA is soluble in MeOH). They 

were then isolated by vacuum filtration and further dried in a vacuum oven at room temperature 

overnight, resulting in white solid. Molecular weight (GPC-DMF/LiBr): Mn = 20,400 g/mol and 

Mw/Mn = 1.10. 

5.2.4 Carboxylation to ss(PLA-COOH)2 

A clear solution consisting of the purified, dried ss(PLA-OH)2 (2.5 g, 0.17 mmol) and 

Et3N (1.04 g, 8.53 mmol) in anhydrous tetrahydrofuran (THF, 40 mL) was mixed with a solution 

of succinic anhydride (0.85 g, 8.53 mmol) in THF (10 mL) at 0 °C and then kept at room 

temperature for 12 hrs. The reaction mixture was filtered to remove the white solids that formed, 

and then the resulting homopolymers were purified by precipitation from 0.1 M aqueous HCl 

solution.  

5.2.5 Esterification to ss(PLA-ss-Br)2.  

A mixture of ss(PLA-COOH)2 (1.0 g, 71.9 μmol), HO-ss-iBuBr (65 mg, 0.22 mmol), 

DMAP (8.79 mg, 71.9 μmol), and dichloromethane (DCM, 9 mL) was mixed with a solution of 

DCC (0.16 g, 0.79 mmol) in DCM (1 mL) and stirred at room temperature for 12 hrs. The N,N-

dicyclohexylurea (DCU) that formed as a by-product was removed by vacuum filtration. Solvent 

was evaporated and the product was purified by precipitation from cold MeOH. The resulting 

white solids were dried in a vacuum oven at 35 °C for 15 hrs. 
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5.2.6 Synthesis of DL-ssABP. 

ss(PLA-ss-Br)2 (0.5 g, 0.036 mmol), OEOMA (0.22 g, 0.73 mmol), PMDETA (3.8 μL, 

0.03 mmol), and THF (0.69 mL) were added to a 10 mL Schlenk flask. The resulting mixture 

was deoxygenated by three freeze-pump thaw cycles. The reaction flask was filled with nitrogen 

and CuBr (2.6 mg, 0.02 mmol) was added to the frozen solution. The flask was sealed, purged 

with vacuum and backfilled with nitrogen once. The mixture was thawed and the flask was then 

immersed in an oil bath preheated to 47 °C to start the polymerization. After 2 hrs, the 

polymerization was stopped by cooling and exposing the reaction mixture to air. 

For purification, the as-prepared polymer solution was diluted with THF and passed 

through a basic alumina column to remove residual copper species. The solvent was removed 

under rotary evaporation at room temperature, and the polymer was isolated by precipitation 

from hexane, then dried under vacuum at room temperature for 15 hrs. 

5.2.7 Reductive cleavage of disulfide linkages of DL-ssABP in DMF. 

An aliquot of the dried, purified DL-ssABP (50 mg) was mixed with DTT (2.1 mg, 13.4 

μmol) in DMF (10 mL) under stirring at room temperature. Aliquots were taken periodically to 

analyze molecular weight distribution of degraded products using GPC. 

5.2.8 Aqueous micellization of DL-ssABP using solvent evaporation method.  

Water (10 mL) was added drop-wise to a solution consisting of the purified, dried DL-

ssABP (12.5 mg) dissolved in THF (1 mL). The resulting dispersion was stirred at room 

temperature for 24 hrs to form colloidally-stable micellar aggregates in aqueous solution at 1.2 

mg/mL. 

5.2.9 Determination of critical micellar concentration (CMC) using a Nile Red (NR) probe. 

A stock solution of Nile Red (NR) in THF at 1 mg/mL and a stock solution of DL-ssABP 

in THF at 1 mg/mL were prepared. Water (10 mL) was added drop-wise into a series of mixtures 

consisting of the same amount of the stock solution of NR (0.5 mL, 0.5 mg NR) and various 

amounts of the stock solution of DL-ssABP in 20 mL vials. The resulting dispersions were 

stirred for 24 hrs to evaporate THF. The dispersions were then filtered using 0.45 μm PES filters 

to remove excess NR. A series of NR-loaded micelles at various concentrations of DL-ssABP 
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ranging from 5x10
-6

 to 0.4 mg/mL were formed. Their fluorescence spectra were recorded at λmax 

= 600 nm. 

5.2.10 Reductive-destabilization of aqueous DL-ssABP micelles.  

Aliquots of aqueous micellar dispersion (1.2 mg/mL, 2 mL) were mixed with 10 mM 

GSH (6.1 mg, 20 μmol) under stirring. Aliquots were taken periodically to follow a change in 

size distribution by DLS. 

5.2.11 Preparation of DOX-loaded micelles. 

Water (10 mL) was drop-wise added to a solution consisting of the purified, dried DL-

ssABP (20 mg), DOX (2 mg), and Et3N (1.44 μL, 3 molar equivalents to DOX) in DMF (2 mL). 

The resulting dispersion was transferred into a dialysis tubing (MWCO = 3,500 g/mol) and 

dialyzed over water (800 mL) for 48 hrs, yielding DOX-loaded micelles in water at 1.1 mg/mL. 

To determine the loading level of DOX, aliquots of the DOX-loaded micellar dispersion (1 mL) 

were mixed with DMF (5 mL) and their UV/Vis spectra were recorded at λex = 480 nm. DOX 

loading was calculated by the weight ratio of loaded DOX to dried polymers. 

5.2.12 GSH-triggered release of DOX from aqueous DOX-loaded micelles. 

An aliquot of DOX-loaded micellar dispersion (3 mL, 1.1 mg/mL) was transferred into a 

dialysis tubing (MWCO = 12,000 g/mol) and immersed in aqueous PBS solution (50 mL) as a 

control and 10 mM aqueous GSH buffered with PBS solution under stirring. The absorbance of 

DOX in outer water (50 mL) was recorded at 2 min interval using a UV/Vis spectrometer 

equipped with an external probe at  = 497 nm. For quantitative analysis, DOX (38.9 μg, 

equivalent to DOX encapsulated in 3 mL DOX-loaded micelles) was dissolved in 10 mM 

aqueous GSH buffered with PBS solution (50 mL) and its UV/Vis spectrum was recorded. 

5.2.13 Cell culture.  

HeLa cancer cells were cultured in DMEM (Dulbecco’s modified Eagle’s medium) 

containing 10% FBS (fetal bovine serum) and 1% antibiotics (50 units/mL penicillin and 50 

units/mL streptomycin) at 37 C in a humidified atmosphere containing 5% CO2. 
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5.2.14 Flow cytometry.  

HeLa cells were plated at 5×10
5
 cells/ well into a 6-well plate and incubated in DMEM (2 

mL) at 37 C. After 24 hrs, cells were treated with DOX-loaded DL-ssABP micelles (223.9 L, 

DOX = 2.2 g/mL) at 37 C for 16 hrs. After the culture medium was removed, the cells were 

washed with PBS solution and treated with trypsin. The cells were suspended in DMEM (500 

L) for flow cytometry measurements. Data analysis was performed by means of a BD 

FACSCANTO II flow cytometer and BD FACSDiva software. 

5.2.15 Confocal laser scanning microscopy (CLSM).  

HeLa cells plated at 2×10
5
 cells/ well into a 6-well plate and incubated for 24 hrs in 

DMEM (2 mL) were treated with DOX-loaded micelles (DOX = 2.2 g/mL) at 37 C for 16 hrs. 

After culture medium was removed, cells were washed with PBS buffer three times. After the 

removal of supernatants, the cells were fixed with cold methanol (-20 C) for 20 min at 4 C. 

The slides were rinsed five times with PBS solution and three times with TBST (tris-buffered 

saline Tween-20). Cells were stained with 2-(4-amidinophenyl)-1H-indole-6-carboxamidine 

(DAPI). The fluorescence images were obtained using a LSM 510 Meta/Axiovert 200 (Carl 

Zeiss, Jena, Germany).  

5.2.16 Cell viability using MTT assay.  

HeLa cells were plated at 5 x 10
5
 cells per well into a 96-well plate and incubated for 24 

hrs in DMEM (100 µL) containing 10 % FBS and 1 % antibiotics. Then, they were incubated 

with various concentrations of empty (DOX-free), free DOX, and DOX-loaded micelles of DL-

ssABP for 48 hrs. Blank controls without micelles (cells only) were run simultaneously as 

control. Cell viability was measured using CellTiter 96 Non-Radioactive Cell Proliferation Assay 

kit (MTT, Promega) according to the manufacturer’s protocol. Briefly, 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) solutions (15 µL) was added into each well. After 4 

hrs incubation, the medium containing unreacted MTT was carefully removed. DMSO (100 L) 

was added into each well in order to dissolve the formed formazan purple crystals, and then the 

absorbance at  = 570 nm was recorded using Powerwave HT Microplate Reader (Bio-Tek). 

Each concentration was 12-replicated. Cell viability was calculated as the percent ratio of 

absorbance of mixtures with micelles to control (cells only). 
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5.3 Results and Discussion 

5.3.1 Synthesis and reduction-responsive degradation of DL-ssABP.  

Scheme 5.2 illustrates our approach to synthesize POEOMA-ss-PLA-ss-PLA-ss-POEOMA 

having disulfide linkages positioned both in the middle of triblock copolymer and at the block 

junctions. 
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Scheme 5.2. Synthesis of a reduction-responsive dual location disulfide degradable DL-ssABP triblock 

copolymer by a combination of ring opening polymerization, coupling reactions, and atom transfer radical 

polymerization. 

 

The first step is the synthesis of well-controlled ss(PLA-OH)2 by ring opening 

polymerization (ROP) of LA initiated with ss-DOH at 120 °C in toluene. The detailed procedure 

is described in our previous report.
[145]

 Here, the resulting ss(PLA-OH)2 had a number average 
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molecular weight, Mn = 20,400 g/mol with Mw/Mn = 1.10 determined by gel permeation 

chromatography (GPC) (Figure 5.1) and a degree of polymerization (DP) = 94 determined by 

1
H-NMR (Figure 5.2a). The second step is the carboxylation of ss(PLA-OH)2 with excess SA in 

anhydrous THF, converting the ss(PLA-OH)2 to ss(PLA-COOH)2. 
1
H-NMR was used to follow 

the reaction conversion. As seen in Figure 5.2b, the multiplet at 4.3-4.4 ppm (e) corresponding to 

terminal methine protons in the backbone of PLA chains disappeared, while the peaks at 2.6-2.8 

ppm (f, g), corresponding to methylene protons of succinic moiety, appeared as a consequence of 

the carboxylation. From the integral ratio of peaks [(b/2)/{(f+g)/4}], the conversion was 

calculated to be >95%. The third step is the esterification of the purified, dried ss(PLA-COOH)2 

by a facile carbodiimide coupling reaction with a double-head initiator (HO-ss-iBuBr), yielding a 

brominated ss(PLA-ss-Br)2. As seen in Figure 5.2c, a singlet at 1.95 ppm (l) corresponding to six 

methyl protons in terminal iBuBr moieties appeared as a result of the successful bromination. 

From the integral ratio of peaks [(b/2)/(l/6)], the conversion was also calculated to be >98%. 
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Figure 5.1. GPC traces of DL-ssABP, compared with ss(PLA-OH)2 precursor. 
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Figure 5.2. 
1
H-NMR spectra of ss(PLA-OH)2 (a), ss(PLA-COOH)2 (b), and ss(PLA-ss-Br)2 (c) in CDCl3. 

 

The last step is the chain extension of ss(PLA-ss-Br)2 with water-soluble POEOMA using 

atom transfer radical polymerization (ATRP).
[137]

 The ATRP conditions include 

[OEOMA]0/[ss(PLA-ss-Br)2]0/[CuBr/PMDETA]0 = 20/1/0.5 in THF at 47 °C. After 2 hrs, 

conversion from OEOMA to POEOMA was determined to be 60 % using 
1
H-NMR. The 

resulting DL-ssABP triblock copolymer had Mn =26,400 g/mol with Mw/Mn = 1.13 by GPC 

(Figure 5.1). 
1
H-NMR indicates the DP of POEOMA block = 12 calculated from the integral 

ratio of the peaks [(b/2)/(p/3)] (Figure 5.3). These results suggest the successful synthesis of 



 

89 

well-defined POEOMA6-ss-(PLA47-ss-PLA47)-ss-POEOMA6 triblock copolymers with disulfide 

linkages in the middle of the hydrophobic block and at block junctions. 
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Figure 5.3. 
1
H-NMR spectrum of DL-ssABP in CDCl3. Conditions for ATRP: [OEOMA]0/[ss(PLA-ss-

Br)2]0/[CuBr/PMDETA]0 = 20/1/0.5; OEOMA/THF = 0.4/1 wt/wt in THF at 47 °C.
 

 

The resulting DL-ssABP contains a single disulfide linkage in the middle of the triblock 

copolymer and two disulfides at block junctions. Figure 5.4a illustrates the reduction-responsive 

cleavage of the three disulfide linkages in DL-ssABP to the corresponding thiols; HS-PLA-SH 

and POEOMA-SH. Aliquots of DL-ssABP were mixed with DTT (5 mole equivalent to 

disulfides) in DMF as a homogeneous solution under stirring and GPC was used to follow the 

cleavage of the disulfide linkages. As seen in Figure 5.4b, the GPC trace of DL-ssABP is shifted 

to low molecular weight region following treatment with DTT. Molecular weight decreased with 

incubation time and reached a plateau after 2 hrs, as a result of the cleavage of disulfide linkages 

at dual locations (Figure 5.5). 
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Figure 5.4. Reduction-responsive cleavage of disulfides of DL-ssABP in the presence of DTT (a) and 

GPC trace of degraded DL-ssABP after treatment with DTT in DMF, compared with DL-ssABP and HS-

PLA-SH (b). Note that HS-PLA-SH is a degraded product of ss(PLA-ss-Br)2 upon reductive cleavage of 

the disulfide linkages in DMF containing excess DTT for 2 hrs. 
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Figure 5.5. Evolution of molecular weights of DL-ssABP mixed with DTT (5 mole equivalents to 

disulfide linkages) over incubation time. 

 

5.3.2 Aqueous micellization and disassembly of DL-ssABP.  

The resulting DL-ssABP is amphiphilic, consisting of a hydrophobic PLA middle block 

and hydrophilic POEOMA blocks. Its CMC was first determined using fluorescence 

spectroscopy with a NR probe.
[181]

 A series of mixtures consisting of the same amount of NR in 

various concentration of DL-ssABP ranging from 5x10
-6

 to 0.4 mg/mL in aqueous solution were 

prepared. After the removal of THF by evaporation and excess NR by filtration (0.45 m PES 

filter), their fluorescence spectra were recorded (Figure 5.6a). The method is based on the fact 

that the fluorescence intensity of NR increases when more NR is entrapped in hydrophobic PLA 

core, while it decreases in water due to low solubility of NR in water. From the linear regressions 

of fluorescence intensity at max = 600 nm, the CMC of DL-ssABP was determined to be 43 

μg/mL (Figure 5.6b). 
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Figure 5.6. Overlaid fluorescence spectra of Nile Red at various concentrations of DL-ssABP (a) and 

evolution of fluorescence intensity at 600 nm over concentrations of DL-ssABP to determine CMC (b). 

 

At concentrations above the CMC, DL-ssABP self-assembles through aqueous 

micellization to form micellar aggregates consisting of hydrophobic PLA cores surrounded with 

hydrophilic POEOMA coronas. For example, aqueous self-assembled aggregates were prepared 

using a solvent evaporation method at a concentration of 1.2 mg/mL and their size and 

morphology were examined using DLS and TEM. DLS results indicate a hydrodynamic diameter 

of 55 nm with a monomodal size distribution (Figure 5.7a). TEM images indicate an average 

diameter of 30.4 ± 6.5 nm with relative broad size distribution (Figure 5.7b), which is smaller 

than the size determined by DLS. The difference in micelle sizes between DLS and TEM can be 

attributed to the dehydrated state of the micelles.
[157]

 

The self-assembled DL-ssABP micelles are composed of disulfide linkages in the dual 

locations positioned in the PLA cores and PLA/POEOMA interfaces. These disulfide linkages 

can be cleaved in response to reductive reactions, causing destabilization (or disassembly) of 

micelles. As seen in Figure 5.7c and 5.7d, both DLS and TEM results indicate the increase in 

micelle size with multimodal distribution in the presence of 10 mM GSH (a cellular reducing 

agent) after 20 hrs. The occurrence of aggregation is attributed to both hydrophobicity of cleaved 

HS-PLA-SH chains and amphiphilicity of cleaved POEOMA-SH chains generated upon the 

cleavage of disulfide linkages in the dual locations. Similar results about the occurrence of 
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aggregation in the presence of reducing agents have been reported for polyester-based block 

copolymer micelles having multiple disulfide linkages positioned in the main chains.
[174a]
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Figure 5.7. DLS diagrams (a, c) and TEM images (b, d) of DL-ssABP micelles before (a, b) and after (c, 

d) treatment with 10 mM GSH at 1.2 mg/mL. 

 

5.3.3 Loading and GSH-triggered DOX release. 

The resulting DL-ssABP based micelles were evaluated for enhanced release of 

encapsulated anticancer drugs in the presence of GSH. To prepare DOX-loaded micelles using a 

dialysis method, an aliquot of DOX (NH3
+
Cl

-
 forms) was pretreated with Et3N (3 mole 

equivalents) in DMF for deprotonation in order to increase its solubility in the hydrophobic 

micellar core. The organic mixture was transferred into a dialysis tubing and then dialyzed in 

water over two days to remove DMF and free (not encapsulated) DOX. Using UV/Vis 

spectroscopy with the pre-determined extinction coefficient of DOX = 12,400 M
-1

cm
-1

 in a 

mixture of water/DMF = 1/5 v/v at  = 497 nm,
[179]

 the loading level of DOX was determined to 

be 2.2 ± 0.5 wt% at the initial ratio of DOX/polymer = 1/10 wt/wt.  
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Next, GSH-responsive release of DOX from DOX-loaded micelles was examined in the 

absence (control) and presence of 10 mM GSH in PBS solution. DOX can diffuse through the 

dialysis tubing after GSH-triggered release from DOX-loaded micelles. Its UV absorbance 

corresponding to accumulation of released DOX in the outer solution was monitored over time 

using a UV spectrometer equipped with an external probe at  = 497 nm. As compared in Figure 

5.8, the DOX release from DL-ssABP micelles was faster in the presence of 10 mM GSH than 

without GSH. For example, within 5 hrs, the release reached >80 % in the presence of 10 mM 

GSH, while <20% in the absence of GSH. Further, the apparent diffusion coefficient of DOX 

from DL-ssABP micelles was calculated to be 1.89/h within 30 min, which is much larger than 

0.17/h, showing an early burst release of encapsulated DOX (around 60 %) in the presence of 

GSH. The enhanced and early burst release is presumably attributed to the reductive cleavage of 

disulfide linkages in dual locations as at both the micellar cores and the interfaces. In comparison 

to monocleavable micelles having single disulfides in the middle of triblock copolymers, the 

model release kinetics of our system is significantly more rapid.
[128b, 128e, 145]
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Figure 5.8. Enhanced release of DOX from DOX-loaded DL-ssABP micelles in the absence (control) and 

presence of 10 mM GSH. The apparent diffusion coefficients of DOX released from DOX-loaded 

micelles are calculated from the slopes obtained by fitting the data to a linear regression. 
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5.3.4 Intracellular release and antitumor activity. 

Given a promising result, the DL-ssABP-based micelles were evaluated as effective 

intracellular drug delivery nanocarriers. Intracellular trafficking of DOX from DOX-loaded DL-

ssABP micelles were examined using flow cytometry and CLSM. Figure 5.9a shows the flow 

cytometric histogram of HeLa cells incubated with DOX-loaded micelles and free DOX. Note 

that the amount of free DOX was designed to be the same as that encapsulated in DOX-loaded 

micelles. Compared with HeLa cells only as a control, their histograms presented a noticeable 

shift in the direction of high fluorescence intensity. Figure 5.9b shows CLSM images of HeLa 

cells with and without DOX-loaded micelles and free DOX for 16 hrs. HeLa nuclei were stained 

with DAPI. Obviously, HeLa cells incubated with DOX-loaded DL-ssABP micelles displayed 

strong DOX fluorescence in their nuclei. These results from both flow cytometry and CLSM 

confirm that DOX-loaded DL-ssABP micelles are able to delivery and release DOX into the 

nuclei of cancer cells. Compared to the images from free DOX which is brighter, the images 

from DOX-loaded micelles suggest that GSH-responsive DOX release may delay an access to 

targeted nuclei. In biological systems, cellular GSH-OEt can penetrate cellular membranes and 

rapidly reach a high intracellular concentration of GSH.
[182]

 Several reports investigated that the 

pre-treatment of cancer cells with GSH-OEt enhance cellular GSH levels. In other words, 

compared with no pre-treatment, the intracellular DOX release results suggest that DOX could 

be released from DOX-loaded micelles after uptake.
[72, 128a, 134a, 176d]
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Figure 5.9. Flow cytometric histograms (a) and CLSM images (b) of HeLa cells only (A) and incubated 

with DOX-loaded DL-ssABP micelles (B), and free DOX (C) for 16 hrs. Scale bar = 20 μm. 
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In vitro cytotoxicity of DOX-free (empty) and DOX-loaded micelles based on DL-ssABP 

was compared with free DOX as a control using a MTT colorimetric assay. As seen in Figure 

5.10a, empty micelles exhibited >90 % of HeLa cell viability, suggesting non-cytotoxicity of 

DL-ssABP micelles at concentrations up to 500 μg/mL. In the presence of DOX-loaded micelles, 

however, the HeLa cell viability decreased with an increasing concentration of DOX-

encapsulated micelles (Figure 5.10b). For example, the viability was <50% at 1.4 µg/mL, which 

is competitive or lower than the reported other block copolymer-based nanocarriers to HeLa 

cells.
[128a, 133c, 159]

 It further decreased to <5% at 15 µg/mL.
[183]

 This decrease in HeLa cell 

viability suggests the inhibition of cellular proliferation due to the effective and rapid release of 

DOX from DL-ssABP platform. This is a consequence from the degradation of dual-located 

disulfide linkages in response to intracellular GSH inside cancer cells. Compared with DOX-

loaded micelles, the HeLa cell viability in the presence of free DOX is lower at the same 

concentrations. These results are consistent with those obtained from flow cytometry and CLSM 

described above. 

 

0 100 200 300 400 500 600
0

20

40

60

80

100

120

 

 

H
e
L

a
 C

e
ll

 V
ia

b
il

it
y
 (

%
)

empty DL-ssABP (μg/mL)

0

20

40

60

80

100

120

0 1.4 14.9

H
e

L
a

 C
e

ll
 V

ia
b

il
it

y
 (

%
)

DOX (μg/mL)

DOX-loaded DL-ssABP

Free DOX

a) b)

 

Figure 5.10. Viability of HeLa cells incubated with different amounts of empty (Dox-free) micelles (a) 

and free DOX and DOX-loaded micelles (b) for 48 hrs determined by MTT assay. Data are presented as 

the average ± standard deviation (n = 12). 
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5.4 Conclusion   

Novel PLA-based DL-ssABPs having both a single disulfide in the middle of  hydrophobic 

PLA block and two disulfides at PLA/hydrophilic POEOMA block junctions were synthesized 

by a combination method of well-defined organic and polymeric syntheses including ROP, facile 

coupling reactions, and ATRP. The DL-ssABP and its precursors prepared in each synthetic step, 

as well as the degraded products generated by the cleavage of the disulfides positioned in dual 

locations were well-characterized their molecular composition by 
1
H-NMR and molecular 

weights by GPC. Above the CMC, 43 µg/mol, the DL-ssABP self-assembled to form colloidally-

stable micellar aggregates having disulfides in dual locations; in the hydrophobic core and at the 

PLA/POEOMA interface. After the cleavage of dual-located disulfide linkages in response to 

GSH cellular trigger, sheddable POEOMA coronas were released from the PLA core as well as 

disintegrated the hydrophobic PLA core, causing destabilization of the micelles. Such a 

disassembly enabled the early burst and then a sustained enhanced release of encapsulated 

anticancer drugs. These results, combined with the intracellular release of anticancer drugs 

confirmed by CLSM, flow cytometry, and MTT viability, suggest that the dual-located location 

disulfide degradation strategy accelerated the release of encapsulated model drugs from the 

micelles. 
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Chapter 6 

Air-spun PLA nanofibers modified with reductively-sheddable 

hydrophilic surfaces for vascular tissue engineering 

: synthesis and surface modification 
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Polylactide is a class of promising biomaterials that hold a great promise for various 

biological and biomedical applications, particularly, vascular tissue engineering as fibrous mesh 

to coat inside vascular prosthesis. However, their hydrophobic surface to non-specific 

interactions and limited ability to further modification are challenging. Chapter 6 reports the 

development of new air-spun PLA nanofibers modified with hydrophilic surfaces exhibiting 

reduction response. Surface-initiated atom transfer radical polymerization allows for grafting 

pendant oligo(ethylene oxide)-containing polymethacrylate (POEOMA) from PLA air-spun 

fibers labeled with disulfide linkages. The resulting POEOMA-g-PLA fibers exhibit enhanced 
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thermal stability and improved surface properties, as well as thiol-responsive shedding of 

hydrophilic POEOMA by the cleavage of disulfide linkages in response to reductive reactions, 

thus tuning the surface properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is reproduced the article published in Macromolecular rapid 

communications, 2014, 35(4), 447-453 with permission from the publisher. 
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6.1 Introduction 

Polylactide (PLA), along with polycaprolactone and polyglycolide, is a class of 

hydrophobic aliphatic polyesters based on hydroxyalkanoic acids.
[136, 180b]

 These polyesters are 

biocompatible, biodegradable by enzymatic reactions or hydrolysis in physiological conditions, 

and used in FDA-approved medical devices. They also exhibit low immunogenicity and good 

mechanical properties. Being facilitated with these biological properties, PLA and their 

copolymers are processed to various formats;
[146a]

 a promising format is nanofibers fabricated by 

electrospinning or air-spinning, efficient processing methods to manufacture long fiber structures. 

Air-spinning is an alternative process to classical electrospinning, based on stretching of polymer 

solutions with a high speed air flow. These fibrous materials possess large surface areas, high 

porosity, and interconnected network structures. These unique properties have promoted the use 

of PLA-fibers as useful biomaterials as sutures, implants for bone fixation,
[144a]

 drug delivery 

vehicles,
[184]

 and tissue engineering scaffolds.
[185]

 Recently, air-spun PLA-fibers have found their 

applications as biomaterials to coat luminal wall of commercial vascular grafts in vascular 

surgery.  

Vascular grafts are used to replace, bypass, or maintain function of damaged, occluded or 

diseased blood vessels in small, medium and large diameter. Poly(ethylene terephthalate) (PET) 

is one of the commercially-available materials for textile vascular prostheses. PET is usually 

coated with proteins such as gelatin or collagen to prevent blood loss through prosthesis wall.
[186]

 

A drawback for the impregnation of proteins involves a dramatic decrease in patency rate with 

smaller diameters.
[187]

 The use of PLA-based nanofibrous mesh enable to circumvent the 

problem as well as promote good endothelial cell proliferation in monolayers on the PLA-fiber 

mesh.
[188]

 Despite these advances, however, several challenges for the use of conventional PLA-

fiber mesh to be addressed remain. One challenge is their hydrophobic surface causing non-

specific interactions with proteins in the blood. Another challenge involves their limited ability 

to further conjugation or modification of their surfaces due to their lack of functionalities. 

Surface modification of PLA nanofibrous materials with chemical functions, desirably 

hydrophilicity, or biomolecules could strongly enhance their applicability toward the successful 

vascular tissue engineering applications. 
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Several approaches to surface modification of nanofibrous materials have been reported. 

Click-type orthogonal reactions have been used for enhanced specific protein adhesion
[189]

 and 

anti-fouling properties.
[190]

 Surface-initiated (SI) atom transfer radical polymerization 

(ATRP)
[137a]

 has also been explored. The SI-ATRP technique allowed for adjusting the surface 

properties of fibrous materials of polystyrene, PET, PLA, and cellulose. This “grafting from” 

method was conducted directly from bromine-terminated polystyrene fibers in aqueous 

solution.
[191]

 However, for most of the fibrous materials, post-immobilization of small molecular 

weight ATRP initiating species into as-synthesized fibers through either physical absorption
[192]

 

or covalent attachment is required prior to SI-ATRP.
[193]

 

Stimuli-responsive degradation (SRD) is a dynamic and powerful platform that involves 

the cleavage of covalent bonds in response to external stimuli.
[123a, 125b]

 Particularly, disulfides 

are cleaved to the corresponding thiols in response to reductive reactions,
[126a]

 enabling enhanced 

release,
[172b]

 changing morphologies,
[124a]

 or tuning lower critical solution temperature.
[194]

 This 

unique disulfide-thiol chemistry has been explored to develop a variety of reductively-responsive 

degradable nanomaterials desirable for various biomedical applications. Typical examples 

include self-assembled micellar nanocarriers,
[195]

 nanocapsules,
[196]

  nanogels,
[197]

 hydrogels,
[198]

  

and bioconjugates.
[199]

   Further, PLA fibers modified with sheddable hydrophilic polymers that 

can undergo reductively-responsive cleavage would be interesting as smart coating materials in 

constructing PET-based vascular prostheses with tunable surfaces of hydrophobicity and 

hydrophilicity. 

Herein, we report new air-spun PLA nanofibers whose surfaces are modified with 

reductively-sheddable hydrophilic surfaces as versatile coating biomaterials for vascular surgery. 

Scheme 6.1 illustrates our approach to synthesis and surface modification of reductive-

responsive PLA fibers labeled with disulfide linkages. High molecular weight PLA-ss-Br 

homopolymers were first synthesized by ring opening polymerization (ROP) in the presence of a 

double-head initiator labeled with a disulfide (HO-ss-iBuBr) and then processed to PLA-ss-Br 

fibers by air-spinning. As a proof-of-concept approach, pendant oligo(ethylene glycol)-

containing polymethacrylate (POEOMA) was targeted to modify the surfaces of air-spun PLA 

fibers using a direct SI-ATRP to be hydrophilic. POEOMA is an analog of poly(ethylene oxide) 

(PEO); PEO is biocompatible material that has been FDA-approved for clinical use, has low 

toxicity, and prevents nonspecific protein adsorption.
[200]

 The successful grafting of POEOMA 
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from PLA fibers enabled improved thermal stability and surface properties. Further, the 

reductive cleavage of disulfide linages resulted in shedding hydrophilic POEOMA from 

POEOMA-g-PLA fibers, adjusting their surface properties. 
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Scheme 6.1. Illustration of our approach to synthesize reductively-sheddable POEOMA-g-PLA fibers 

based on PLA-ss-POEOMA block copolymers having disulfides at block junctions using surface-initiated 

atom transfer radical polymerization of OEOMA in the presence of PLA-ss-Br fibrous macroinitiators 

and their degradation in response to reductive reactions. 

 

6.2 Experimental section 

6.2.1 Materials 

3,6-Dimethyl-1,4-dioxane-2,5-dione (DL-lactide, LA), tin(II) 2-ethylhexanoate (Sn(Oct)2, 

95%), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA, >98%), copper(I) bromide 
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(CuBr, >99.99%), and poly(ethylene oxide monomethyl ether) (PEOH) with MW = 2,000 g/mol 

from Aldrich and DL-dithiothreitol (DTT, 99%) from Acros Organics were purchased and used 

as received. Oligo(ethylene glycol) monomethyl ether methacrylate (OEOMA) with MW = 300 

g/mol (#EO units  5) for OEOMA300 and MW = 950 g/mol (#EO units  23) for OEOMA950 

were purchased from Aldrich and purified by passing them through a column filled with basic 

alumina to remove the inhibitors. 2-Hydroxyethyl-2-(bromoisobutyryl)ethyl disulfide (HO-ss-

iBuBr) was synthesized as described elsewhere.
[29a]

 Tris(2-pyridylmethyl)amine (TPMA) was 

synthesized according to literature procedure.
[201]

 

6.2.2 Instrumentation and analysis  

1
H-NMR spectra were recorded using a 500 MHz Varian spectrometer. The CDCl3 

singlet at 7.26 ppm was selected as the reference standard. Molecular weight and molecular 

weight distribution were determined by gel permeation chromatography (GPC) with an Agilent 

1260 Infinity Isocratic Pump and a refractive index (RI) detector. Two Agilent columns (PLgel 

mixed-D and mixed-C) were used with DMF containing 0.1 mol% LiBr at 50 °C at a flow rate of 

1.0 mL/min. Linear polystyrene (PSt) standards were used for calibration. Aliquots of polymer 

samples were dissolved in DMF/LiBr and the clear solutions were filtered using a 0.25 m PTFE 

filter to remove any THF-insoluble species. A drop of anisole was added as a flow rate marker. 

6.2.2.1 Scanning Electron Microscopy (SEM) 

Nanofiber samples were gold-coated and observed with a scanning electron microscope. 

Nanofiber images were taken using either an EVO
®
 50 (Carl Zeiss, Göttingen, Germany) 

equipped with an Everhart-Thornley secondary electron detector at a 10kV accelerating voltage 

or a Jeol JSM32CF (Soquelec, Montréal, QC, Canada) at a 15kV accelerating voltage. Each 

image was analyzed with image treatment software (Image J, National Institutes of Health, 

Bethesda, Maryland, USA). Diameters of fibers were measured on images at 10000x 

magnification. A total of approximately 150 fibers were randomly selected for each sample. 

6.2.2.2 Thermogravimetric analysis (TGA) 

TGA measurements were carried out using a TA instruments Q50 analyzer. Typically, 

aliquots of dried PLA-ss-Br, POEOMA-g-PLA fibers, and PEOH as a control (5-10 mg) were 
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placed in a platinum pan inside a programmable furnace. The sample was heated from 25 to 

500 °C at a heating rate of 10 °C/min under nitrogen flow. Mass loss was then calculated. 

6.2.2.3 Water contact angle measurements. 

Contact angles on PLA and POEOMA-g-PLA fibrous meshes were measured by sessile 

drop contact angles of water droplets (1 μL) using a home-made instrument. Drop-shape images 

were recorded at 10 x magnification using a digital camera (Evolution VF cooled monochrome 

cooled camera, Media Cybernetics Inc.). ImageJ with Marco Brugnara’s contact angle plugin 

was used to determine the contact angle. 

6.2.3 Synthesis of well-controlled PLA-ss-Br homopolymers by ROP 

A series of ROP of LA was conducted in the presence of HO-ss-iBuBr and Sn(Oct)2 in 

toluene at 120 C under various conditions. A typical procedure to synthesize high molecular 

weight PLA-9 under the initial mole ratio of [LA]0/[ HO-ss-iBuBr]0/[Sn(Oct)2]0 = 2000/1/0.14 

(Table 6.1) is as follows; HO-ss-iBuBr (10.5 mg, 30 µmol), LA (10 g, 69.4 mmol), Sn(Oct)2 (2 

mg, 4.9 µmol), and toluene (6 mL) were added to a 25 mL Schlenk flask. The resulting mixture 

was deoxygenated by three freeze-pump-thaw cycles. The reaction flask was filled with nitrogen, 

thawed, and then immersed in an oil bath preheated to 120 °C to start the polymerization. After 

22 hrs, the polymerization was stopped by cooling down to room temperature. The resulting 

homopolymer was then precipitated from MeOH for 12 hrs, isolated by vacuum filtration, and 

washed with MeOH several times. Well controlled PLA-ss-Br was then dried in a vacuum oven 

at 50 °C overnight, resulting in white solids: molecular weight data, Mn = 75,600 g/mol and 

Mw/Mn = 1.13. 
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Table 6.1. Characteristics and molecular weight data of PLA-ss-Br homopolymers synthesized by ROP 

of LA in the presence of HO-ss-iBu  

Entry [LA]0/[OH-ss-Br]0 
[Sn(Oct)2]0/ 

[OH-ss-iBuBr]0 

Time 

(hrs) 

Mn 

(g/mol) 
Mw/Mn HMS (%) 

PLA-1 70 0.07 2 27,600 1.06 16 

PLA-2 500 0.07 3 37,800 1.04 5 

PLA-3 500 0.07 16 57,900 1.07 31 

PLA-4 500 0.07 30 67,100 1.09 27 

PLA-5 1,000 0.14 4 25,900 1.03 5 

PLA-6 1,000 0.14 5 35,000 1.06 10 

PLA-7 1,000 0.14 42 77,700 1.21 41 

PLA-8 1,000 0.20 18 72,000 1.18 38 

PLA-9 2,000 0.14 22 75,600 1.13 15 

 

6.2.4 Preparation of air-spun PLA-ss-Br nanofibers.  

The purified, dried PLA-ss-Br homopolymers were dissolved in chloroform (99.8%, 

Laboratoire Mat, Québec, QC, Canada). The resulting clear solutions were then injected into an 

air-spinning device set with the previously optimized parameters of air pressure = 5 MPa, flow 

rate = 10 mL/hr, needle diameter = 0.25 mm. 

6.2.5 Synthesis of PLA-ss-POEOMA BCPs in THF by ATRP.  

The dried, purified PLA fibers (0.28 g), OEOMA300 (0.41 g, 1.38 mmol), PMDETA (2.9 

L, 14 µmol), and THF (2.6 mL) were mixed in a 10 mL Schlenk flask. The resulting mixture 

was deoxygenated by three freeze-pump-thaw cycles. The reaction flask was filled with nitrogen 

and CuBr (2.0 mg, 14 µmol) was then added to the frozen solution. The flask was sealed, purged 

with vacuum and backfilled with nitrogen. The mixture was thawed and then the flask was 

immersed in an oil bath preheated to 47 °C to start the polymerization. The polymerization was 

stopped at 6 hrs by exposing the reaction contents to air.  

For the synthesis of PLA-ss-POEOMA950, a similar procedure with the use of the 

purified PLA-fibers (0.21 g), OEOMA950 (1.0 g, 1.04 mmol), PMDETA (2.2 L, 10 µmol), 

CuBr (1.5 mg, 10 µmol), and THF (2.1 mL) was applied. To purify the resulting polymers, as-

synthesized polymer solution was diluted in THF and then passed through a basic aluminum 
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oxide column filled to remove residual copper species. The polymer solutions were precipitated 

from hexane and residual solvent was further removed using a vacuum oven at 50 °C overnight. 

6.2.6 Synthesis of POEOMA-g-PLA fibers using surface-initiated ATRP. 

A mixture consisting of an aliquot of PLA fibrous mesh (0.21 g), OEOMA950 (0.97 g, 

1.0 mmol), TPMA (3 mg, 10 µmol), and water (1.6 mL) in a 10 mL Schlenk flask was 

deoxygenated by three freeze-pump-thaw cycles. The reaction flask was filled with nitrogen and 

CuBr (1.5 mg, 10 µmol) was then added to the frozen solution. The flask was sealed, purged 

with vacuum and backfilled with nitrogen. The mixture was thawed and then the flask was 

immersed in an oil bath preheated to 30 °C to start the polymerization. The polymerization was 

stopped at 2 hrs by exposing the reaction contents to air. To purify the resulting product fibers by 

removal of residual copper species and unreacted monomers, the as-synthesized mixtures were 

placed in a dialysis tubing with MWCO = 12,000 g/mol and dialyzed over water (500 mL) for 

over 2 days. The resulting fibers were then dried in a vacuum oven at 50 °C overnight. 

6.2.7 DTT-responsive cleavage of disulfide linkages of PLA-ss-POEOMA in DMF.  

Aliquots of the purified, dried BCP-1 or BCP-3/fibers (10 mg) were dissolved in DMF 

(10 mL) to form clear solutions at 1 mg/mL. They were then mixed with 10 mM DTT under 

stirring for 5 days. The resulting mixtures were analyzed using GPC.  

6.2.8 DTT-responsive cleavage of disulfide linkages of POEOMA-g-PLA fibers in aqueous 

solution.  

Aliquots of the purified, dried BCP-3/fibers (10 mg) were immersed in 10 mM aqueous 

DTT solution (10 mL) and water (10 mL) as a control for 5 days without stirring. Note that 

fibrous mesh were destroyed with even mild stirring. The resulting fibers were washed with 

water three times, and then dried in a vacuum oven at 50 °C for 2 days. They were then analyzed 

using 
1
H-NMR and contact angle measurements. 
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6.3 Results and Discussion 

6.3.1 Synthesis of a series of PLA-ss-Br homopolymers 

The synthesis of HO-ss-iBuBr double-head initiator for both ROP and ATRP is described 

in our previous publication.
[29a]

 In the presence of HO-ss-iBuBr, a series of ROP of D,L-lactide 

(LA) mediated with tin(II) 2-ethylhexanonate (Sn(Oct)2) in toluene at 120 C was conducted. 

The results are summarized in Table 6.1, where the samples are denoted as PLA-x (x: serial 

number). First, ROP with the targeting degree of polymerization (DP) = 70 defined as the initial 

mole ratio of [LA]0/[HO-ss-iBuBr]0 = 70/1 yielded PLA-ss-Br homopolymer (PLA-1) with 

relatively low molecular weight, the number average molecular weight (Mn) = 27.6 kg/mol and 

narrow molecular weight distribution, Mw/Mn = 1.06. As seen in Figure 6.1, gel permeation 

chromatography (GPC) trace shows a shoulder in high molecular weight region. Peak analysis 

using a deconvolution method suggests the content of high molecular weight species (HMS) to 

be 16%. The formation of HMS could be attributed to undesirable side reactions.
[155]

 In an effort 

to synthesis of high molecular weight PLA-ss-Br with less HMS content, the important 

parameters such as targeting DP and [Sn(Oct)2]0/[HO-ss-iBuBr]0 ratio were varied. When the 

targeting DP increased to 500 and 1000, relatively high molecular weight PLA-ss-Br 

homopolymers with Mn = 65 – 75 kg/mol were obtained with longer polymerization time. 

However, the undesirable HMS content also increased up to 41%. When the amount of Sn(Oct)2 

increased, polymerization was fast and the HMS contents also increased (PLA-7 and PLA-8 with 

targeting DP = 1000) (Figure 6.2). Further increase in targeting DP = 2000 with 

[Sn(Oct)2]0/[HO-ss-iBuBr]0 = 0.14/1 yielded high molecular weight PLA-9 with Mn = 75.6 

kg/mol and HMS = 15%. These results suggest that the balance of targeting DP, polymerization 

time, and Sn(Oct)2 content is required for the synthesis of high molecular weight PLA-ss-Br with 

less HMS content. 
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Figure 6.1. GPC traces of PLA-1 (Mn = 27.6 kg/mol), PLA-6 (Mn = 35.0 kg/mol), and PLA-9 (Mn = 

75.6 kg/mol). 
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Figure 6.2. Evolution of molecular weights and HMS contents over polymerization time for ROP of LA 

with targeting DP = 500 and 1000, as summarized in Table 6.1. 
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6.3.2 Fabrication of air-spun PLA-ss-Br nanofibers.  

Next, air-spinning of the PLA-ss-Br homopolymers dissolved in chloroform was 

examined. Chloroform is a good solvent to use with PLA as it is volatile which is advantageous 

for spinning purposes. Three homopolymers with different molecular weights, but HMS content 

< 20%, were selected: PLA-1 (Mn = 27.6 kg/mol), PLA-6 (Mn = 35 kg/mol), and PLA-9 (Mn = 

75.6 kg/mol) (see their GPC traces in Figure 6.1). PLA-1 and PLA-6 with relatively low 

molecular weights (Mn < 40 kg/mol) were not well air-spun, even at as high as 70% 

concentration. Scanning electron microscopy (SEM) images in Figure 6.3 show the presence of 

some fibers, but mostly large spheres. Such poor spinninability could be attributed to relatively 

low molecular weight PLAs, and thus lower solution viscosities even at higher concentrations. 

Promisingly, PLA-9 with Mn > 70 kg/mol was fabricated through entanglement of PLA chains to 

fibrous woven at 30% concentration (Figure 6.4a,c). The average diameter was estimated to be 

495 ± 240 nm from approximately 150 fibers (Figure 6.9). 

100 µm100 µm

10 µm10 µm

a b

c d

 

Figure 6.3. SEM images of low molecular weight PLA-1 (Mn = 27.6 kg/mol) (a, c) and PLA-6 (Mn = 

35.0 kg/mol) (b, d) at lower (a, b) and higher (c, d) magnititudes. 
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Figure 6.4. SEM images of PLA-9 fibers (Mn = 75.6 kg/mol) (a, c) and POEOMA-g-PLA BCP-3/fibers 

(b, d) with lower (a, b) and higher (c, d) magnititudes. 

 

6.3.3 SI-ATRP of PLA-ss-Br fibers 

The resulting PLA-ss-Br fibers consist of terminal Br groups. In the presence of PLA-ss-

Br fibers, SI-ATRP of OEOMA was investigated to synthesize POEOMA grafted from PLA 

fibers (POEOMA-g-PLA fibers) based on PLA-ss-POEOMA block copolymers (BCPs) 

consisting of disulfide linkages at the junctions of PLA and POEOMA blocks. Table 6.2 

summarizes the results. To see the availability of terminal Br groups in PLA-ss-Br homopolymer 

fibers, their chain extension was first examined with OEOMA300 with MW = 300 g/mol (BCP-

1) and OEOMA950 with MW = 950 g/mol (BCP-2) in homogeneous solution. Aliquots of the 

dried fibers, OEOMA, and CuBr complex were dissolved in tetrahydrofuran under direct ATRP 

conditions for 2 hrs. Conversion was determined to be 0.14 for BCP-1 and 0.07 for BCP-2. After 

purification, their 
1
H-NMR spectra show typical peaks at 5.0-5.2 ppm (a) corresponding to 
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methine protons in PLA and 0.9-1.0 ppm (b) to backbone methyl protons in POEOMA (Figure 

6.5b for BCP-1 and Figure 6.6 for BCP-2). From the integral ratio of these peaks [(b/3)/(a/2)], 

the weight ratio of POEOMA/PLA in BCPs was calculated to be 0.22/1 for BCP-1 and 0.42/1 for 

BCP-2. These values are close to those calculated using the wt ratio of OEOMA/PLA from the 

recipe and the determined conversion (Table 6.2). GPC traces of the purified BCPs evolved to 

higher molecular weight region. For example, Mn increased from 71.4 kg/mol to 82.0 kg/mol for 

BCP-1 (Figure 6.7). These 
1
H-NMR and GPC results indicate the successful synthesis of PLA-

ss-POEOMA BCPs in homogeneous solutions, confirming the presence of terminal Br groups in 

PLA-ss-Br homopolymer fibers. 

 

Table 6.2. Characteristics and molecular weight data of PLA-ss-POEOMA BCPs synthesized by chain 

extension of PLA-ss-Br fibers with POEOMA under normal ATRP conditions. 

Entry  BCP-1 BCP-2 BCP-3/fibers 

 PLA fiber (mg)  276 208 198 

 OEOMA/PLA (wt/wt)  1.5/1 4.8/1 4.8/1 

 OEOMA [M]  0.53 0.50 0.60 

 CuBr [mM]  5.3 5.0 6.3 

 OEOMA monomer  OEOMA300 OEOMA950 OEOMA950 

 Solvent  THF THF water 

 Time (hrs)  6 2 2 

 Conv 
a)

 0.14 0.06 NA 

 POEOMA/PLA (wt/wt),theo 
b)

  0.21/1 0.35/1 NA 

 POEOMA/PLA (wt/wt) 
c)
 0.22/1 0.42/1 0.13/1 

 Mn (g/mol) 
d)

 82,000 77,200 67,200 

 Mw/Mn 
d)

 1.11 1.14 1.13 

 

a) Determined by 
1
H-NMR. 

b) Estimated by OEOMA/PLA wt ratio x conversion 

c) Determined by 
1
H-NMR with molecular weight of LA and OEOMA 

d) Derermined by GPC with DMF as an eluent. 
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Figure 6.5. 
1
H-NMR spectra of PLA-9 (A), BCP-1 (B), and BCP-3/fibers (C) in CDCl3. 
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Figure 6.6. 
1
H-NMR spectrum of PLA-ss-POEOMA BCP-2 in CDCl3. 
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Figure 6.7. GPC traces of PLA-ss-Br fibers and PLA-ss-POEOMA300 (BCP-1) in DMF. 
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Considering these promising results, grafting POEOMA from PLA-ss-Br fibers through 

SI-ATRP in aqueous solution was next examined. Solubility test reveals that PLA fibers 

remained intact in aqueous solution of OEOMA950, while they were dissolved in aqueous 

solution of OEOMA300 even at room temperature. Consequently, PLA fibrous mesh was soaked 

in a solution consisting of OEOMA950, Cu complex, and water for 2 hrs. SI-ATRP was then 

conducted for 2 hrs at 30 C, below the melting point of amorphous PLA (39 C). The resulting 

products were purified by extensive dialysis using a dialysis tubing (MWCO = 12 kg/mol) to 

completely remove unreacted OEOMA950 monomers. 
1
H-NMR spectrum shows the typical 

peaks (b) at 0.9-1.0 ppm for POEOMA and 5.0-5.2 ppm (a) for PLA (Figure 6.5c). The wt ratio 

of POEOMA/PLA was calculated to be 0.13/1 (Table 6.2). Further, the GPC trace of the purified 

BCP slightly evolved to higher molecular weight region (Figure 6.8). These results suggest the 

successful grafting POEOMA from PLA fibers, yielding POEOMA-g-PLA fibers (BCP-3/fibers) 

based on PLA-ss-POEOMA BCPs. 
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Figure 6.8. GPC traces of PLA-ss-Br fibers and POEOMA-g-PLA fibers based on PLA-ss-POEOMA950 

(BCP-3/fibers) in DMF. 
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Further, the effect of the grafted POEOMA chains was evaluated on fibrous 

morphologies by SEM, thermal properties using thermogravimetric analysis (TGA), surface 

properties using contact angle measurements. SEM images show a relatively dense fibrous form 

(Figure 6.4b,d). The average diameter of the POEOMA-g-PLA fibers was estimated to be 620 ± 

220 nm, larger than pristine PLA fibers by approximately 122 nm (Figure 6.9).  

 

PLA-ss-POEOMA fibers

 

Figure 6.9. Size distribution in diameter of nanofibers of PLA-ss-Br and POEOMA-g-PLA fibers. 

 

Figure 6.10 shows TGA data of the weight loss of BCP-3/fibers, compared with PLA-9 

fibers and PEO homopolymers as controls, upon heating. For BCP-3/fibers, the major weight 

loss started at 236 C. This temperature is lower than that (315 C) for PEO homopolymers, but 

higher than that (215 C) by 20 C for PLA fibers. This result suggests that the tethered 

POEOMA enhances thermal stability of PLA fibers.  
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Figure 6.10. TGA diagrams of PLA-ss-Br fibers, BCP-3/fibers, and PEOH with MW = 2,000 g/mol for 

comparison. Am arrow indicates a temperature where the major weight loss starts. 

 

Figure 6.11 shows the results of contact angle measurements with snapshots of water 

drops on PLA fibrous mesh before and after surface modification with POEOMA. On 

POEOMA-g-PLA fibers, water drops were immediately absorbed into fibers within 1.5 sec, 

resulting in sharp decrease in contact angle (Figure 6.11a). The disappearance of a water drop on 

BCP fibers was snapshotted in Figure 6.11b. On hydrophobic PLA homopolymer fibers, 

however, water drops stayed with a contact angle at 120.5  over time (Figure 6.11c). This result 

suggests that the tethered hydrophilic POEOMA increases wettability of hydrophobic PLA fibers, 

allowing an instantaneous penetration of water, whereas the pristine PLA fibers offered a 

significant barrier to it. Similar results are reported for other fibrous materials with different 

chemical structures.
[189, 192]
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Figure 6.11. Evolution of contact angle on PLA fibers, POEOMA-g-PLA fibers before and after 

treatment with DTT (a), and snapshots of water droplets on POEOMA-g-PLA fibers after SI-ATRP (b) 

and PLA-ss-Br fibers in the prisitine state (c). Inset of (a): evolution of contact angle on PLA fibers and 

POEOMA-g-PLA fibers before DTT treatment. 

 

6.3.4 Reductive degradation of POEOMA-g-PLA fibers 

The POEOMA-g-PLA fibers based on PLA-ss-POEOMA BCPs contain disulfides at 

block junctions. These disulfide linkages could be cleaved in the presence of DTT, a reducing 

agent, to the corresponding thiols including POEOMA-SH and PLA-SH as linear polymers or 

fibers (Scheme 6.1). GPC results indicate the decrease in molecular weight of PLA-3/fibers from 
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Mn = 71.8 kg/mol to Mn = 67.0 kg/mol in homogeneous DMF solution with excess DTT (Figure 

6.12).
 1

H-NMR was also used to examine the disulfide cleavage in aqueous solution where BCP-

3/fibers exist as meshes. In the presence of excess DTT, the typical peaks at 0.9-1.0 ppm 

corresponding to backbone methyl protons in POEOMA completely disappeared, while being 

retained in the absence of DTT (Figure 6.13). These GPC and NMR results suggest the 

significant cleavage of disulfide linkages in reducing environments. Such cleavage could result 

in shedding POEOMA-SH from POEOMA-g-PLA fibers, thus changing the surface polarity of 

PLA fibers. As seen in Figure 6.11a, water contact angle on the resulting PLA-SH fibers slowly 

decreased. After 80 sec, water droplet was completely absorbed in the fibers. Such slow decrease 

is attributed to the surface of the resulting PLA-SH fibers to be less hydrophilic than POEOMA-

g-PLA fibers, but more hydrophilic than pristine PLA fibers. 

 

10
4

10
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10
6

Molecular Weight (g/mol)

BCP-3/fibers

Mn = 71.8 kg/mol 

Mw/Mn = 1.14

Degraded BCP-3

Mn = 67.0 kg/mol 

Mw/Mn = 1.05

 

Figure 6.12. Reductive degradation of POEOMA-g-PLA fibers in DMF homogeneous solution 

monitored by GPC traces. 
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Figure 6.13. 
1
H-NMR spectra of BCP-3/fibers in the absence (A) and presence (B) of excess DTT in 

water, compared with the spectrum of pristine PLA-ss-Br fibers (C) in CDCl3. 

 

6.4 Conclusion 

A new class of air-spun PLA nanofibers modified with thiol-responsive sheddable 

POEOMA was synthesized by a combination of ROP, air-spinning, and SI-ATRP techniques. 

High molecular weight PLA-ss-Br with less HMS contents (<15%) ensured good spinability, 

yielding PLA fibers functionalized with terminal Br groups at interfaces. SI-ATRP allowed for 

the modification of the PLA fibers with tethered hydrophilic POEOMA blocks. The resulting 

POEOMA-g-PLA fibers with hydrophilic surfaces exhibit improved thermal stability and surface 

properties such as water content and wetting behavior, confirmed by SEM, TGA, and contact 

angle measurements. Moreover, shedding hydrophilic POEOMA from POEOMA-g-PLA fibers 

by the cleavage of disulfide linkages in response to reductive reactions enabled tuning the 

surface properties. Toward vascular tissue engineering, the controlled and enhanced release of 

therapeutics upon the cleavage of disulfide linkages in response to reductive reactions
[80]

 of the 

new POEOMA-g-PLA fibrous mesh as well as by varying hydrophobicity driven by their 

nanostructures fabricated on PET films
[202]

 is currently under investigation. 
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Chapter 7 Summary and recommendations for future work 

7.1 Summary of thesis  

The main focus of my Ph.D. research was to understand SRD, especially reduction-

responsive system, and design a variety of new PLA-based nanomaterials in biomedical 

applications. Disulfide-labeled PLA-based ABPs were synthesized via ROP and ATRP in the 

presence of HO-ss-iBuBr initiator and they have subsequently been used as building blocks for 

the fabrication of self-assembled micellar drug carriers; polyplexes for delivery of drugs and 

genes; and surface-modified air-spun nanofibers. Upon the cleavage of disulfide linkages under a 

reductive environment, PLA-based nanomaterials degraded, exhibiting the rapid release of 

anticancer drugs and genes, as well as tuning the surface properties. The obtained results suggest 

that these novel reduction-responsive PLA-based nanomaterials possess great potentials as 

effective platforms for multi-functional drug delivery and tissue engineering applications in 

biomedical fields. 

Chapter 3 describes well-established method to synthesize novel disulfide-labeled PLA-

based BCPs. A series of PLAs with narrow molecular weight distribution were synthesized by 

ROP of D,L-LA initiated with double headed HO-ss-iBuBr initiator in a well-controlled manner. 

The synthetic condition was optimized by adjusting the amount of the Sn(Oct)2 catalyst and the 

polymerization time to reduce the high molecular weight species (HMS), by-products yielded by 

side coupling reactions. The results confirmed that the amount of HMS increased in proportion 

to the amount of catalyst and the polymerization time. Using the resulting PLAs as the 

macroinitiators, various PLA-based BCPs (PLA-ss-PATRPs) were synthesized via ATRP with 

various monomers including methacrylates, acrylates, and aromatic monomers. These well-

controlled syntheses proceeded in a controlled manner low molecular weight distribution 

(Mw/Mn < 1.2), analyzed by 
1
H-NMR and GPC. In the presence of the reducing agent DTT, the 

PLA-ss-PATRPs degraded to the corresponding thiols, including PLA-SH and PATRP-SH, upon 

the cleavage of disulfide at block junctions. These significant results were used for the 

development of multifunctional nanomaterials as micelles and as fibers with reduction-

responsive degradation. 
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Chapter 4 of this thesis describes PLA-based polyplexes for dual delivery of drugs and 

genes. This work expands upon the well-established synthetic method of PLA-based BCPs basic 

described in Chapter 3 by incorporating positively-charged PDMA as the hydrophilic block 

constituting the cationic amphiphilic micellar aggregates. Such cationic micelles enabled 

electrostatic interaction with negatively-charged ssDNA to form C-ssABP micelles and ssDNA 

polyplexes with a diameter of 90 nm, as well as encapsulation of anticancer drugs in the 

hydrophobic PLA cores. The optimal ratio of C-ssABP (cationic micelle) and ssDNA (N/P ratio) 

= 2/1-4/1 was confirmed by agarose gel electrophoresis and zeta potential measurements. From a 

biological perspective, both cationic micelles and polyplexes exhibit good cell viability up to 200 

g/mL. The GSH-responsive cleavage of disulfide linkages at micelle interfaces resulted in 

shedding cationic coronas, leading to the controlled release of both anticancer therapeutics and 

oligonucleotides in cancer cells. The in vitro results from CLSM, FC, and gene transfection 

assay show that the new C-ssABP possesses great potential as an effective nanocarrier for dual 

chemotherapy and gene therapy. 

Chapter 5 focuses the effects of the number and location of disulfide linkages on the 

PLA-based ABPs. The novel PLA-based triblock copolymer with a single disulfide in the middle 

of hydrophobic PLA block and two disulfides at PLA/hydrophilic POEOMA block junctions was 

synthesized. In aqueous solution, these amphiphilic triblock copolymers self-assembled to form 

multi-cleavable micellar aggregates with disulfides at dual locations, the hydrophobic core and 

the micellar interface. To evaluate their enhanced degradation rate and rapid drug release, mono-

cleavable micelles with disulfides only at the micellar cores were also prepared as a reference. 

After the cleavage of dual-located disulfide linkages in response to a GSH cellular trigger, multi-

cleavable micelles exhibited faster destabilization than a mono-cleavable system, leading to the 

synergistically enhanced release of encapsulated anticancer drugs. These results suggest that the 

thiol-responsive, dual-located degradation strategy accelerated the release of encapsulated model 

drugs from the micelles. 

Chapter 6 describes the synthesis of high molecular weight PLAs (Mn >70 kg/mol) with a 

terminal Br functional group and single disulfide linkages for the fabrication of fibrous 

nanomaterial. Novel PLA nanofibers with ≈ 495 nm in diameter were fabricated via air-spinning 

process. These fibrous materials possess large surface area, high porosity, and interconnected 

network structure. The resulting PLA fibers were then modified via SI-ATRP with hydrophilic 



 

123 

POEOMA blocks. The surface modified POEOMA-g-PLA fibers exhibited improved thermal 

stability and water wetting behavior. Moreover, the reduction-responsive degradation to 

sheddable hydrophilic POEOMA from POEOMA-g-PLA fibers enabled the tuning of surface 

properties. For vascular tissue engineering, this new POEOMA-g-PLA fibrous mesh can be used 

for the controlled and enhanced release of therapeutics, as well as varying hydrophobicity driven 

by their nanostructures fabricated on polyethylene terephthalate (PET) films. 

7.2 Future work 

The current design of dual delivery carriers as described in Chapter 2 shows that the 

electrostatically interacted nucleic acids are exposed to the aqueous environment, which may 

reduce the stability of gene delivery carriers, causing a loss of nucleic acids before they reach the 

target site. To circumvent this weakness, PEG-shielding on the surface of micellar nanocarriers 

was proposed as a promising approach. PEG is a biocompatible hydrophilic polymer, and 

coating the surface of nanocarriers with PEG can prevent the opsonisation process, prolonging 

circulation time in the body (referred to as “stealth” systems). Several PEG-coated gene delivery 

carriers based on amphiphilic micelles were reported.
[203]

 These core-shell structured micellar 

gene carriers exhibit improved colloidal stability and cytotoxicity. Therefore, future work on this 

project should include the modification of the surface of dual-delivery carriers with hydrophilic 

PEG coronas. In support of the well-established synthetic technique presented in Chapter 3, 

PEG-labeled PLA-based cationic triblock copolymers can be synthesized. In aqueous solution, 

these ABPs can form the PEG-shielded micellar nanocarriers consisting of a hydrophobic PLA 

core that encapsulate drugs and a hydrophilic cationic poly(N,N-dimethylaminoethyl 

methacrylate) layer. 

Chapter 6 describes the air-spun PLA nanofibers and their surface modification with 

hydrophilic POEOMA via ATRP method. This current approach, however, is very limited to 

specific hydrophilic monomers demonstrating poor-miscibility with PLA-nanofibers. Typical 

hydrophilic monomers with low molecular weight such as POEOMA 300 and PEG can conduct 

a relatively high monomer conversion. However, they can dissolve PLA-nanofibers during 

polymerization, destroying fibrous structure. Compared with low molecular weight monomers, 

POEOMA 950 is suitable for surface-initiated grafting of PLA-nanofibers due to its relatively 

high-molecular weight and poor-miscibility with PLA, but this approach results in very low 
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monomer conversion (<0.5). To overcome these drawbacks, fabrication of PLA-nanofibers using 

PLA-based ABPs may be useful. Well-defined PLA-based ABPs consisting of a high molecular 

weight of the PLA block and hydrophilic block can be synthesized and used for the fabrication of 

hybrid nanofibers via the air-spinning method. Several research studies have reported the 

fabrication of nanofibers using a mechanically blended hydrophobic PLA polymer and 

hydrophilic polymers;
[204]

 however, there are no reports that propose a fabrication strategy of 

nanofibers using PLA-based ABPs.  

Furthermore, the drug can be embedded inside the nanofibers so that these surface-

modified nanofibers possessing therapeutics may be adapted to multi-functional biomedical 

applications. A nanofibrous carrier for drug delivery applications has attracted much interest but 

very limited studies were reported. As a proof of concept approach, several studies have been 

demonstrated based on the biodegradable nanofibers including poly(lactide-co-glycolide),
[205]

 

poly(ethylene-co-vinyl acetate),
[206]

 poly(ethylene-co-vinyl alcohol),
[207]

 PDLLA,
[208]

 PLLA,
[209]

 

and their blends.
[210]

 So it is desirable to embed therapeutics inside the surface-modified 

nanofibers for both applications of drug delivery and vascular tissue engineering. 
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