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ABSTRACT

Models for Efficient Automated Site Data Acquisition

Accurate and timely data acquisition for tracking and progress reporting is essential for efficient
management and successful project delivery. Considerable research work has been conducted to
develop methods utilizing automated site data acquisition for tracking and progress reporting.
However, these developments are challenged by: the dynamic and noisy nature of construction
jobsites; the indoor localization accuracy; and the data processing and extraction of actionable
information. Limited research work attempted to study and develop customized design of wireless
sensor networks to meet the above challenges and overcome limitations of utilizing off-the-shelf

technologies.

The objective of this research is to study, design, configure and develop fully customized
automated site data acquisition models, with a special focus on near real-time automated tracking
and control of construction operations embracing cutting edge innovations in wireless and remote
sensing technologies. In this context, wireless and remote sensing technologies are integrated in
two customized prototypes to monitor and collect data from construction jobsites. This data 1s then
processed and mined to generate meaningful and actionable information. The developed
prototypes are expected to have wider scope of applications in construction management, such as
improving construction safety, monitoring the condition of civil infrastructure and reducing energy

consumption in buildings.

Two families of prototypes were developed in this research; Sensor Aided GPS (SA-GPS)
prototype, which is designed and developed for tracking outdoor construction operations such as

earthmoving; and Self-Calibrated Wireless Sensor Network (SC-WSN), which is designed for



indoor localization and tracking of construction resources (labor, materials and equipment). These
prototypes along with their hardware and software are encapsulated in a computational framework.
The framework houses a set of algorithms coded in C# to enable efficient data processing and
fusion that support tracking and progress reporting. Both the hardware prototypes and software
algorithms were progressively tested, evaluated and re-designed using Rapid Prototyping
approach. The validation process of the developed prototypes encompasses three steps; (1)
simulation to validate the prototypes’ design virtually using MATLAB, (2) laboratory experiments
to evaluate prototypes’ functionality in real time, and (3) testing on scaled case studies after fine-

tuning the prototype design based on the results obtained from the first two steps.

The SA-GPS prototype consists of a microcontroller equipped with GPS module as well as a
number of sensors such as accelerometer, barometric pressure sensor, Bluetooth proximity and
strain gauges. The results of testing the developed SA-GPS prototype on scaled construction
jobsite indicated that it was capable of estimating project progress within 3% mean absolute
percentage error and 1% standard deviation on 16 trials, in comparison to the standalone GPS
which had approximately 12% mean absolute percentage error and 2% standard deviation. The
SC-WSN prototype incorporates two main features. The first is the use of the Kalman filtering and
smoothing for the RSSI signal to provide more stable and predictable signal for estimating the
distance between a reader and a tag. The second is the use of a developed dynamic path-loss model
which continually optimizes its parameters to cope with the dynamically changing construction
environment using Particle Swarm Optimization (PSO) algorithm. The laboratory testing indicated
the improvement in location estimation, where the produced location estimates using SC_WSN
had an average error of 0.66m in comparison to 1.67m using the raw RSSI signal. Also the results

indicated 60% accuracy improvement in estimating locations using the developed dynamic model.

il



The developed prototypes are not only expected to reduce the risk of project cost and duration
overruns by timely and early detection of deviations from project plan, but also enables project
managers to observe and oversee their project’s status in near real-time. It is expected that the
accuracy of the developed hardware, can be achieved on large-scale real construction projects.
This is attributed to the fact that the developed prototype does not require any scalable
improvements on its hardware technology, nor does it require any additional computational

changes to its developed algorithms and software.

il
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Chapter 1 : INTRODUCTION

1.1 General

Timely and accurate data acquisition is essential for any effective project tracking and control
system. Based on current practice in construction projects, two methods are commonly used for
data acquisition: manual and semi-automated methods. These methods can be untimely, subjective
and expensive. Considerable research work has been conducted to develop methods utilizing
automated site data acquisition for tracking and progress reporting. However, these developments
are challenged by: the dynamic and noisy nature of construction jobsites; the indoor localization
accuracy; and the data processing, including extraction of actionable Information. Limited research
work attempted to study and develop customized design of wireless sensor networks to meet the

above challenges and overcome limitations of related off-the-shelf technologies.

In 2014, over than 1000 construction management professionals and practitioners from the USA
and Canada, participated in a survey of IT technologies used to support construction project
collaboration (JBKnowledge, 2014). The results indicated that 75% of survey respondents use a
manual or spreadsheet process to collect and transfer data from construction jobsites as shown in
Figure 1-1. Only 19.3% used a dedicated IT solution, most of them use mobile apps for
smartphones or tablets that track one aspect of field operations, such as time entry, plan viewing,

crew alert and GPS location.
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Figure 1-1: Data Collection on Construction Jobsites (JBKnowledge, 2014)

1.2 Problem Statement

Efficient management of construction operations relies on accurate and timely monitoring,
tracking and reporting of onsite progress. There is considerable need to improve current practice
and to advance research in automated site data acquisition to address this challenge. The limitations
of the state of the art in automated site data acquisition articulate the problem in this field. These
limitations in relation to this research are clustered in four main areas: outdoor tracking, indoor

localization, data organization and processing, and hardware customizations.

For outdoor tracking applications, GPS and radio frequency identification (RFID) technologies
had been utilized for tracking of earthmoving operations (Alshibani & Moselhi, 2010; Hildreth,
Vorster, & Martinez, 2005; Montaser & Moselhi, 2012b; Navon & Shpatnitsky, 2005;

Vahdatikhaki & Hammad, 2014). However, these methods suffer from the following limitations:

e Utilizing GPS data (location, speed, and distance) as the only source of information, might
not be able to capture the big picture of the earthmoving operation nor accurately

distinguish between productive, idle and out of service times.



Utilization of fixed RFID readers at gates of loading and dumping sites is cumbersome in
linear projects such as road and highway construction.

GPS and RFID data cannot confirm whether the truck is actually fully loaded.

The accuracy of these systems can be impacted with low GPS accuracy at urban

construction jobsites.

For indoor localization applications, researchers experimented with multiple wireless

technologies, such as radio frequency identification (RFID), ultra wideband (UWB) and wireless

local area network (WLAN) (Ergen & Akinci, 2007; H. M. Khoury & Kamat, 2009; Montaser &

Moselhi, 2014; Saiedeh Navabzadeh Razavi, 2010; Rueppel & Stuebbe, 2008; Soltani, Motamedi,

& Hammad, 2013; Teizer, Lao, & Sofer, 2007). Several challenges with indoor localization had

been identified:

Passive RFID tags suffer from their short read range, which entails the deployment of a
large number of tags and hence additional cost (N. Li & Becerik-Gerber, 2011).

Ultra wideband (UWB) commercially available hardware is very costly and the
deployment requires installation of fiber optic cables for timing synchronization (Aryan et
al., 2011).

Wireless local area network (WLAN) accuracy had been reported by researchers to be low;
approximately 4-7 m with 97% confidence (Bahl & Padmanabhan, 2000; Deasy &
Scanlon, 2004; Elnahrawy, Xiaoyan, & Martin, 2004; H. Khoury & Kamat, 2007; H. M.
Khoury & Kamat, 2009; Woo et al., 2011).

Utilization of static path-loss models to estimate distances between readers and tags, is not

practical for dynamic and continually changing construction environment.



As to data organization and processing, various data sources are utilized to capture a complete
picture of the on-going construction operations, and to extract actionable information. The
utilization of multiple sources of data provides a large amount of data (Soibelman, Wu, Caldas,
Brilakis, & Lin, 2008). However, processing and reducing data to actionable information and
fusing the data from different sources remains as obstacles to achieving a practical automated

progress tracking in near real-time.

For the hardware customization, most of previous research work focused on the use of off-the-
shelf data acquisition technologies. Such use of one size fits all may not be efficient and incapable

of addressing the targeted needs.

This research is motivated to utilize emerging advances in mobile computing, wireless
communication and remote sensing technologies, to design and develop fully customized and cost

effective automated site data acquisition tools addressing the above stated challenges.

1.3 Research Objectives

To address the challenges highlighted above, this research aims to study, design, configure and
develop fully customized automated site data acquisition solutions, with a special focus on
automated tracking and control of construction projects embracing cutting edge innovations in
wireless and remote sensing technologies. This is to be achieved through the following sub-

objectives:

1- Study previous research efforts made in the area of automated site data acquisition and
identify gaps and limitations of these efforts, and the challenges in the use of related off-
the-shelf technologies. Explore and experiment with wireless sensor networks (WSN) and

internet of things (IoT) for possible use in this field.



2- Design and configure prototypes for outdoor construction progress tracking and control
with a special focus on earthmoving operations, along with productivity assessment and
analysis algorithms.

3- Select most suitable wireless technology for indoor localization and best RSSI smoothing
algorithm, along with the development of a dynamic path-loss model to improve the indoor
localization accuracy.

4- Develop self-adaptive algorithm for forecasting project cost at completion, and an
algorithm for automated generation of as-built schedules.

5- Test and validate functions of the developed prototypes using MATLAB simulation and

experiments in laboratory and outdoors environments.

1.4 Research Methodology

Figure 1-2 illustrates the methodology to achieve the objective of this research. The methodology
is summarized in four stages: analysis stage, conceptual design stage, detailed design and
experimental validation stage, conclusion and documentation stage. The analysis stage began with
a problem statement and the definition of the objectives. Then, it focuses on performing a

comprehensive state of the art review on the following domains:

e Current practices in project tracking and control.
e Automated data acquisition technologies and techniques.
e Emerging new technologies for automated site data acquisition.

e Data fusion models.

The conceptual design of the framework was developed embracing flexibility and adaptability. It

encapsulates customized hardware prototypes and software algorithms for tracking and progress



reporting of construction operations. Simulation and laboratory experiments are utilized to test,

evaluate and re-design prototypes and algorithms using Rapid Prototyping approach.
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Figure 1-2: Research Methodology




1.5 Thesis Organization

This thesis consists of six chapters and seven appendices. Chapter 2 presents the literature review
Summary of the limitations and gaps in previous research is presented at the end of that chapter.
Chapter 3 presents the research vision, along with the conceptual design of the developed
framework. An overview of developed framework is introduced, describing its main hardware
prototypes and software algorithms. Chapter 4 presents a detailed design, testing and validation of
the developed sensor aided GPS prototype (SA-GPS) for outdoor tracking of construction
operations. Chapter 5 presents detailed design, testing and validation of Self-Calibrated Wireless
Sensor Network (SC-WSN) for indoor localization. Chapter 6 highlights contributions and

limitations of the developments made in the thesis along with suggested future research work.



Chapter 2 : LITERATURE REVIEW

2.1 General

This Chapter provides a literature review on current practices in data collection and
analysis using EV tool for track and control construction projects. It also presents an overview of
previous research efforts on automated data acquisition technologies and their implementation in
the construction industry. A state of the art review for emerging new technologies such as wireless
sensor networks (WSN) and data fusion models and their applications in construction
management. Furthermore, indoor localization techniques are described and their applicability on
construction jobsites. Finally, the identified gaps and limitations are outlined. Figure 2-1 illustrates

the structure of this chapter.
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Figure 2-1: Chapter 2 Structure

2.2 Current Practices in Project Tracking and Control

Traditionally, Earned Value Management (EVM) is conducted, integrating time and cost to

measure the performance of a project by comparing its planned performance to the actual work



performed on construction jobsites. EVM works by comparing three curves to display and evaluate
the project performance. These curves typically have S shape, and they namely are: Budget Cost
for Work Scheduled (BCWS), Actual Cost for Work Performed (ACWP), and Budget Cost for
Work Performed (BCWP), as shown in Figure 2-2 (J. Li, 2004). The curve representing the base
line planned project is the BCWS curve. The actual expenditure to date is represented through the
ACWP curve. The third and final curve is the BCWP; it represents the budgeted cost of the work
that is performed to date, which is the actual value earned for the project.

Accumulated Earned-value Chart
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Figure 2-2: Earned Value Method (J. L1, 2004)

The main challenge in applying EV is the calculation of the Budget Cost for Work Performed
(BCWP). Current practices utilize manual and semi-automated method for site data collection,
then the data is analyzed to estimate the percentage of actual work completed. Project controllers

also utilize templates to measure percentage complete of various construction tasks and/or process
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on jobsites. Templates are developed to represent a set of control points and earning percentages
for each process as shown in Table 2-1 (Moselhi, 1993). However, manual and semi-automated
data collection and analysis approaches are subjective, expensive and time consuming. Studies
estimated that field supervisory personnel spend between 30-50% of their time on construction
sites recording and analyzing field data (McCullouch, 1997) and 2% of the work on construction
sites is devoted to manual tracking and recording of progress data (Cheok et al., 2000). Such
practice leads to ineffective project management and creates the need for automated solutions that

are accurate, efficient, timely and autonomous with minimal user intervention (Sacks et al., 2005).

Table 2-1: Earned Value Template (Moselhi, 1993)

Task \ Work Content \ Cumulative % Earned

Earthworks
01 Excavation 50
02 Backfill 60
03 Compact 90
04 Fine grade 95
05 Hand over 100

Foundations
01 Building 5
02 Formwork 50
03 Rebar and embedment 80
04 Pour 87
05 Strip cure and grout 95
06 Hand over 100

Forecasting is a frequent task performed by project managers from start to completion of their
projects. Accurate forecasts enable project management teams to early estimate potential impacts
on cost and/or schedule, and hence provide a room to take timely and necessary corrective actions.
Several forecasting methods for project cost and duration at completion were introduced. These
methods can be categorized as detailed estimates of remaining work, index-based, stochastic,

regression-based, and artificial intelligence methods. Detailed cost estimation method is used to
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estimate the cost of the remaining work, and hence forecast the project cost at completion. The
accuracy of this method is very high, however, it requires substantial effort for detailed quantity

takeoffs of remaining work items and estimating their costs.

As for the index-based forecasting methods, different equations working under different
assumptions have been utilized to forecast project cost and duration at completion, as shown from
Equations (2-1) till (2-5) (Hassanien, 2002; J. Li et al., 2006; Moselhi et sl., 2004). However, such
method suffers from its general assumption that either the performance efficiency achieved up to
the reporting date remains unchanged throughout the rest of the project, or that the performance
will be as planned beyond the reporting date (Alshibani, 1999; Christensen, 1993; Fleming &
Koppelman, 2000; Moselhi, 2011; Zwikael et al., 2000). Better forecasts can be achieved by
removing specific time periods during which exceptional conditions are known to have prevailed

and are not likely to be repeated beyond the reporting date (Hassanein & Moselhi, 2003).

BAC

EAC = = @2-1)

= % (2-2)
EAC = CPB;I:EPI (2_3)
D= CPiI()SPI (2-4)
EAC = ACWP (to date) + SACECWS(o date) 2-5)

index

Where: BAC i1s Budget at Completion, D is duration at completion, and PD is planned duration.

For the stochastic techniques, the variability in the cost of individual activities within Work
Breakdown Structure (WBS) is expressed in terms of stochastic S curves, which were utilized to

provide probability distributions of forecasted cost at completion (Acebes et al., 2014; Alshibani
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& Moselhi, 2012; Barraza et al., 2004; Caron et al., 2013). However, these stochastic methods are
more suitable when historical data of similar projects are available and when the duration of the
project is relatively long to establish distributions of the activities and their respective remaining

work.

As for regression based methods, the relationship between the actual cost and time is modelled to
predict the project's Estimate-At-Completion (EAC) (Aliverdi et al., 2013; Narbaev & De Marco,
2014). However, for short term forecasting or with a limited number of observations, regression
analysis is impractical. Also the performance of such models depends mainly on the availability

of historical data of similar projects, and the correlation between the data used in the analysis.

For artificial intelligence methods, fuzzy logic and artificial neural networks (ANN) were utilized
to forecast project cost and duration at completion under uncertainty (Iranmanesh & Mokhtari,
2008; J. Li et al., 2006; Naeni et al., 2011). However, the utilization of fuzzy logic requires an
expert’s knowledge to express the relationship between the linguistic terms and fuzzy numbers.

Also, the application of ANN requires a large historical data for training and testing of the network.

A recent study explored previous research works for forecasting cost at completion in both
construction and other industries, revealed that the construction industry has difficulties in
adequately importing advanced tools, and highlighted the need for future research emphasizing the
adoption of methods from other experienced fields to reflect more reliable and consistent cost

forecasting capabilities (Narbaev & Marco, 2011).

2.3 Automated Data Acquisition

Previous research work on automated data acquisition in construction operations can be grouped

in five main categories: Automated identification technologies; Outdoor localization and tracking;
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Indoor localization and tracking; Mobile computing; 3D Imaging and Photogrammetry; and
Visualization and Building Information Modeling. Each of these categories is explained in details

in the following sections highlighting their advantage and limitations.

2.3.1 Automated Identification

Barcodes and Radio Frequency Identification (RFID) are used for tracking progress of structural
steel erection (Cheng & Chen, 2002), on-site data collection and information sharing between
project participants (Tserng et al., 2005), and tracking of material delivery (Akinci et al., 2002;
Jaselskis et al., 1995; Lee et al., 2008; Montaser, 2013; Song et al., 2006). However, these
technologies suffer from their limited read range, where barcodes read range is about few inches
and passive RFID read range is (3-5) meters. Also the cost of RFID readers is quite high where
the reader costs around $1500. Furthermore, the manual scanning and data analysis process is time

consuming.

2.3.2 Outdoor Localization and Tracking
Global positioning system (GPS), radio frequency identification (RFID), ultra-wideband (UWB),
attitude and heading reference system (AHRS), and vision based technologies have been utilized

for progress tracking of outdoor construction operations.

Standalone GPS technology was utilized to track earthmoving operations (Alshibani & Moselhi,
2007; Hildreth et al., 2005; Montaser et al., 2012; Navon & Shpatnitsky, 2005), and tracking the
position of pipe spools on a construction project (Caldas et al., 2006). However, there are a number
of shortcomings associated with the usage of standalone GPS. The acquired data are limited to
time and location, which sometimes makes it difficult to distinguish between productive and idle
times. Also, these records do not provide enough to estimate the quantities of the excavated soil

or confirm that the trucks are fully loaded.
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As for Passive RFID, fixed readers installed at the entrance gates of loading and dumping sites
were utilized for progress tracking of earthmoving operations, by recording the entrance and exit
of RFID tags attached to dump trucks (Montaser & Moselhi, 2012b). However, passive RFID has
a limited read range of 3 to 5 meters, which is not suitable for implementation in mega earthmoving
operations or linear projects such as road and highway construction, where there is no entrance
gates to the cut or fill locations, and equipment many entries the jobsite from several directions
without detection. Furthermore, RFID alone cannot detect the truck load, and in that study, the

dump truck was always assumed to be fully loaded.

For UWB, a combination of UWB integrated with AHRS was used to collect and process
earthmoving equipment data, and update corresponding discrete event earthmoving simulation
model (Akhavian & Behzadan, 2013). However, the utilization of UWB for location tracking
specially on hauling routes is not applicable for real road construction projects due to the limited
range of the UWB (100-200 m) (Teizer et al., 2007). Also, the results in this study shown several
errors regarding the loader ideal time and the operation total cost (Ibrahim & Moselhi, 2014c). A
novel framework for near real-time simulation of earthmoving operations based on the application
of UWB and/or GPS tracking technologies was developed encompassing a rule set to capture
details of truck and excavator operations (Vahdatikhaki & Hammad, 2014). However, their
prototype required some manual data handling and processing for inputting real time location

system (RTLS) files and averaging data over time.

As for computer vision—based methods, several studies have used video processing, including
object tracking (Brilakis et al., 2011; Kim et al., 2011; Park et al., 2011; Golparvar-Fard et al.,
2013) and object recognition (Chi & Caldas, 2011; Jog et al., 2011; Azar et al., 2013; Azar &

McCabe, 2012). However, computer vision methods can fail under certain conditions, particularly
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in visually noisy images common to construction sites. Also, these methods are limited to the use

of one camera, which is not adequate to cover large construction jobsites.

2.3.3 Indoor Tracking and Localization
In the construction management domain, several researchers have investigated indoor localization
using a wide range of technologies, which can be divided into three main categories as shown in

Figure 2-3: (1) wave propagation based; (2) image based; and (3) motion based.
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Figure 2-3: Indoor Localization Technologies

For wave propagation based technologies, propagation models are utilized to estimate the distance
between a transmitter unit and a receiver unit. Researchers experimented with multiple wireless
technologies specially radio frequency identification (RFID), ultra wideband (UWB), wireless

local area network (WLAN). Each technology has its own inherited advantage and disadvantage
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with relative to accuracy, cost, coverage range, deployment requirements and scalability (Mahalik,
2007). RFID had been used for object tracking without localization (Goodrum, McLaren, &
Durfee, 2006; Jaselskis et al., 1995) and tracking with localization (Ergen & Akinci, 2007;
Montaser & Moselhi, 2014). N. Li & Becerik-Gerber (2011) reported that passive RFID tags are
a cost effective solution for indoor localization, however, they suffer from their short read range,
which entails the deployment of a large number of tags and hence requires additional cost.
Research studies utilizing ultra wideband (UWB) had reported higher localization accuracy of
approximately < 1m (H. M. Khoury & Kamat, 2009; Rueppel & Stuebbe, 2008; Teizer et al.,
2007), however the measurement accuracy is highly dependent upon the line of sight of the point
to be located (Aryan et al., 2011). Furthermore, cost of commercially available hardware is very
high. WLAN is an attractive solution for indoor localization due to its existing universal
infrastructure availability (Mazuelas et al., 2009). However, several researchers have reported its
low accuracy to be approximately 4—7 m with 97% confidence (Bahl & Padmanabhan, 2000;
Deasy & Scanlon, 2004; Elnahrawy et al., 2004; H. Khoury & Kamat, 2007; H. M. Khoury &
Kamat, 2009; Woo et al., 2011). W. Jang & Skibniewski (2007) implemented combined radio
frequency and ultrasound architecture using ZigBee wireless sensor modules for indoor position
estimation. However, traditional ultrasound positioning is limited by line of sight, which is
challenging in complicated construction environments (Shen et al., 2008). Combinations of RFID
and ZigBee based sensor networks had been experimented by researchers for materials tracking
and supply chain management (Cho, Kwon, Shin, Chin, & Kim, 2011; Shin, Park, & Kwon, 2007).
In these studies, RFID tags were used for identification of construction materials, and ZigBee

communication was used for wireless data transfer. While, wireless sensor network (WSN) was
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only used in these studies for data transfer, they confirmed the positive contribution of WSN on

communication and network flexibility.

Shahi et al. (2013) developed a 3D marking method using UWB positioning system to track the
progress of both structural and non-structural activities on construction projects. The developed
method is able to quantify the progress of the activities that are not directly associated with the
addition or removal of physical entities on a site, such as the welding or inspection of pipe-spools.
This method also addresses another shortcoming of existing object-based models with respect to
detecting progress for situations where the as-built location is different than the as-planned
location. Therefore, the 3D marking approach can be used as a progress data source in progress
tracking models, providing a unique dimension of site information that has not been incorporated
in the previous attempts at automating construction progress tracking. However, the utilization of
UWB has a main limitation due to wiring, calibration, and security, as explained in detail in (Aryan

etal., 2011).

Montaser & Moselhi (2014) presented a detailed methodology on utilizing a low cost location
identification and material tracking for indoor construction using a two-step algorithm. Their
proposed method utilizes UHF passive RFID technology for capturing spatial data in an indoor
environment. In this study, the work-active area is divided into exclusive zones, and each zone is
spatially covered with a number of passive RFID tags. The user and material locations are
estimated using two different RFID methods (triangulation and proximity) based on RSSI signal
measurement. A specially designed relational database was used to store and organize RFID
captured signals. The methodology was experimented on a construction facility in Montreal and a
lab environment. The results were compared with 5 different test beds in different construction

time intervals and 1 test bed in a lab environment. The results showed a mean error of 1.0 m and
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1.9 m for user location identification and material tracking using the triangulation method,
respectively. The results showed a mean error of 1.9 m and 2.6 m for user location identification
and material tracking using the proximity method, respectively. The main limitations of the
developed methodology are the need to generate a path-loss model for each type of tag used in
case of using the triangulation method, the variability associated with deployment of tags, the
uncontrolled influence of noisy signals and potential interference from equipment and/or vehicles

located between the tags and between tags and the mobile reader.

Soltani et al. (2013) investigated the usage of active RFID technology for the localization of
movable objects (e.g. components, equipment, and tools) equipped with RFID tags using handheld
readers by extending a Cluster-based Movable Tag Localization (CMTL) technique which uses a
k-Nearest Neighbor (k-NN) algorithm. CMTL uses a multidimensional clustering technique that
considers the signal pattern similarity between the target and reference tags together with the
spatial distribution of reference tags for detecting the region where the target tag is located. The
proposed method uses artificial neural networks (ANNs) for positioning the target tag, as opposed
to empirical weighted averaging formulas used in similar k-NN based methods. The proposed
method adapts its performance to the environment and reduces the deployment cost of dense
RFID-tagged environment, while achieving high accuracy by adding virtual tags (VRTs). The
developed method was tested during the operational phase of a facility using 20 target tags, the
localization results were compared to the LANDMARC and CMTL methods. The average errors
considering only centered tags inside each room, which are surrounded by four tags were 1.55 m,
0.77 m, and 0.38 m for LANDMARC, CMTL, and CMTL+, respectively. However, the developed
method showed an improvement of 38% compared to LANDMARC, and 7% compared to CMTL

considering all the tags. The developed method utilizes irregular bilinear interpolation algorithm
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to simulate the RSSI for the grid of VRTs surrounded by real reference tags. The basic principle
of the bilinear interpolation is that the 2-D interpolation is broken down into three 1-D
interpolations. While the algorithm accounts for nonlinearity in 2D space, it assumes that the RSSI
distribution is linear in 1D space. Moreover, ANN is applied as an alternative method for
positioning, where RSSIs are processed and then summarized into dissimilarity indicators (j3
values). However, it is assumed that the target tags are stationary for the period of the training the

ANN after each data collection step and localization.

Li et al. (2015) proposed the development and application of a real time locating system (RTLS)
based on the chirp spread spectrum (CSS) technique, which is described in this paper for tracking
the real time position of workers on construction sites. Experiments and tests were carried out both
on- and off-site to verify the accuracy of static and dynamic targets by the system, indicating an
average error of within 1m. Due to the limitations of the construction site involved, the developed
system was only verified in one wing of a public residential construction project in Hong Kong for

a short duration.

The second category of localization technology is image based localization, which utilizes image
matching and computer vision techniques for determining user's location. Image matching detects
distinguish visual patterns and characteristics in an indoor environment with images in a database
(Ferdaus, Vardy, Mann, & Gosine, 2008). However, image matching approach has low accuracy
such as room level accuracy, and it suffers from occlusions and changes in environments.
Computer vision-based localization methods utilize sensors, such as laser scanners and video
cameras for data acquisition and high processing power to process the data, and are mostly suitable

for robot navigation (Taneja et al., 2012).
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The third category of localization is Motion based technologies, which utilizes acceleration and

heading measurements to determine an object's location relative to its last know location. This

approach utilizes sensors, such as an accelerometer to measure acceleration in three dimensional

spaces, a gyroscope to calculate the heading and a dead reckoning algorithm to fuse acceleration,

and heading direction (Ibrahim & Moselhi, 2015b; Randell, Djiallis, & Muller, 2003). Unlike radio

frequency localization, motion sensing technology is independent of any infrastructure (Gelb,

1974). However, the motion sensing does not provide high location accuracies, but the accuracy

can be improved by smart algorithms, which able to correct drift errors (Glanzer, Bernoulli,

Wiessflecker, & Walder, 2009).

A summary of localization technologies, advantages and disadvantages of the above mentioned

technologies is presented in Table 2-2.

Table 2-2: Summary of Localization Technologies

Category | Technology Advantages Disadvantages Accuracy
Low power requirements | Only works with line of sight | Down to a
Low circuitry costs Blocked by common few
Infrared Higher security materials centimeters
Portable Short range
High noise immunity Light and weather sensitive
Low data transmission rate
Usage of readily Coarse localization Down to a
deployed infrastructure, Requires an offline phase few meters
WLAN reduced cost S-ensitive to inte.rference,
Wave signal propagation effects,
and dynamic environmental
Based
changes
Low tag cost Limited localization accuracy | Down to a
RFID Active 'tags are more Limited range with passive few meters
expensive and require a tags
battery High reader cost
High data transmission Dedicated transmitter-receiver | Down to a
rate infrastructure few
UWB Capability for expansion | Require time synchronization | centimeters

in the number of devices
used simultaneously

between nodes
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Extremely high Require external Down to a
localization accuracies synchronization few
Affected by ambient noise. centimeters
Accuracy affected by
propagation issues and
Ultrasound NLOS.
Speed of sound variations,
dependent on temperature and
other environmental
conditions
Hardware needed is Coarse accuracy Down to a
becoming cheaper with Susceptible to occlusions and | few meters
off-the shelve changes in indoor
Computer components environments.
Image vision Very cqmputationally
based expensive and memory
consuming.
Cumulative error built-up
Data sources are already | Complete prior knowledge of | Down to a
Image ilable in securit the fixed geometrical few meters
matching avatlable Y &
System cameras structure
Self-containment Drift inherent to sensors. Dependent
Resilience to Relative localization on
Motion Inertial environmental Require initialization and recalibration
based Navigation conditions. calibration

Continuous update of
location estimates

Three main location estimation techniques had been utilized in literature to locate an object using

radio frequency (RF): Trilateration, Scene Analysis and Proximity.

Trilateration is based on geometric properties, where the object's position is determined by

measuring its distance from several reference points (Gongalo & Helena, 2009). Trilateration

method determines the position of a tag or reader using distance estimated at three reference points.

Consider a tag positioning problem in a 2-D space as an example. Figure 2-4 shows how the tag

position can be estimated using the trilateration method, where the range of the unknown tag to

reference points (reader antennas) Pi(x1, y1), P2(x2, y2), and P3(x3, y3) are estimated as di, d2 and

ds respectively.
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Figure 2-4: Tag Positioning using Trilateration

The location of the unknown tag, denoted as (X, y), can be determined by solving the following

three equations
(x—x)*+(—y)?=d}, i=123. (2-6)

As a result, the coordinate of the unknown tag is obtained as

(y = —L(diyixd)0aye)+(d5-ys —a3) s =ya) +(d5 ~y5—x3) (1 =ya)
2 X1 (V2—Y3)+x2(V3—y1)+x3(V1—Y2)
(2-7)
y=— 1 -y -x])(x2—x3)+(d5 —y3 —x3) (x3—x1)+(d§ —¥5 —x3) (x1—x2)
2 Y1 (x2—x3)+y2(x3—x1)+y3(x1—%x2)

As for scene analysis technique, which estimates the object's location using a pre-defined data set
of observations about the surrounding scene. Such method requires offline training phase and data
storage to maintain pre-defined observation data, which is not practical for dynamic environments
such as construction jobsites (Fu & Retscher, 2009; Woo et al., 2011). In this technique, the
location of the object is computed using features of a “scene” constituted of the electromagnetic
signal characteristics map defined by the attenuation of a transmitted signal from multiple locations
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in the “field of view” for the scene. Therefore, there is an “RF signature” unique to a given location
and combination of receivers (Bulusu, Heidemann, & Estrin, 2000; Hightower & Borriello, 2001).
The major disadvantage of this technique is the extensive effort required to generate the signal
signature database and reconstruct an entirely new database due to significant changes in the
environment which typically occur on a large industrial construction project. Thus, this approach
requires a fixed reader grid, a static signal transmission degradation map, and much recalibration

when the transmission space changes.

For the proximity method, object’s distance to reference points is not actually measured, but only
its presence within a certain range is determined (Aryan et al., 2011). Therefore, proximity
algorithm is simple to apply, but has a coarse localization accuracy (N. Li & Becerik-Gerber,
2011). The proximity technique determines whether an object is near one or more known locations,
by monitoring physical phenomena with limited range, such as physical contact and
communication connectivity to the scanner or access points in a wireless cellular network. The
method of constraints, accumulation arrays, Dempster-Shafer theory, and fuzzy logic are some of
the approaches that can be used individually or in combination of proximity based localization
models (Caron et al., 2007). A crude variation on this approach is the center of gravity (COG)
analysis, where the COG of the RSSI readings of a tag is used to estimate its location. In
LANDMARC, the concept of reference tags is introduced, which can provide reference locations.
The known locations of the nearest neighboring reference tags and nearness to the tracking tag are
used in computing the tracking tag’s location. The algorithm has the following advantages. First,
the algorithm uses tags instead of more readers, which greatly reduces the cost of the system.
Second, the reference tags and target tags are in the same environment, and the effect of

environmental factors can be effectively off-settled. However, the algorithm has the following
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drawbacks. First, it does not work well in a closed area with severe radio signal multipath effects.
Second, to further improve the localization accuracy, more reference tags are needed, which is
costly and may cause RF interference phenomenon. The virtual reference tags were used to achieve
a higher accuracy. These tags are virtually distributed linearly between real reference tags, which
increase the density of the reference tag grids. The locations of the virtual reference tags are known
and recorded, and their signal strength is estimated by linear interpolation of that of the real tags
next to them. The sensing area is divided into small regions, and each reader maintains its own

proximity map. As a result, the most probable location can be estimated.

2.3.4 Mobile Computing

Previous studies of mobile computing for construction demonstrated that mobile computing
technologies have great potential to significantly improve various construction activities, including
material tracking, safety management, defect management, and progress monitoring. The potential
improvement is largely attributed to the enhanced mobility of computing devices, which allows
users in any location to access and share important construction project information in an efficient
manner. The recent advent of smart phones strengthens the trend of high mobility. The advantages
of using mobile computing devices in the construction industry have been well described (Baldwin
et al., 1994; Fayek et al., 1998; Kimoto et al., 2005; McCullouch, 1997; Saidi et al., 2002). Mobile
computing devices have been used in the construction industry for a number of applications such
as: (1) to develop a field inspection support system for civil systems inspections (Sunkpho &
Garrett, 2003); (2) to develop a pen-based computer field application of an automated bridge
inspection system (Elzarka & Bell, 1997); (3) to provide collaborative and information sharing
platforms (Kim et al., 2013; Pena-Mora & Dwivedi, 2002); (4) to use mobile computers to capture

data for piling works (Ward et al., 2003), and (5) to use PDAs in construction supply chain
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management systems (Tserng et al., 2005). Montaser & Moselhi (2012a) presented an automated
methodology utilizing BIM 4D modeling and tablet PC for progress reporting in construction
jobsites as shown Figure 2-5. The tablet PC was used to collect the as built progress data using
RFID data, barcode data, images, notes, sounds and video clips. The collected data is then used to
update project status on the 4D model, which is subsequently used for comparison with the as

planned conditions.

Barcode Roader  RFID Roador Wircless
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2. Pawer Switch

b Camera Butlon
(Videos & images)

RFID Readar Button

Barcode Roader Button

As Planned (4D .

Figure 2-5: Tablet PC and BIM (Montaser & Moselhi, 2012a)

2.3.5 3D Imaging and Photogrammetry

3D imaging is used for a range of applications such as the creation of accurate as-built models,
and the rapid surveying of highways and mines. Laser Detection and Ranging (LADAR) is a 3D
laser scanner that is mainly used for spatial measurement. Other applications include surveying,
earthmoving operations, monitoring the progress of concrete casting, highway alignment, paving
operations and construction quality control (Lytle, 2011). Bosche et al. (2008) developed a method
of inferring the presence of model objects in range images. Their approach focused on the
comparison of a 3D image of a construction scene with a simulated scan of a 4D building model
using similar scan parameters. The approach was successfully demonstrated in a steel construction

project, as shown in Figure 2-6. Turkan et al. (2013) presented a system integrating 3D object
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recognition technology and schedule information into a combined 4D object-based construction
progress tracking system. During the construction of a reinforced concrete structure, they

performed and extensive field study to investigate the performance of the system.

Photogrammetry is the extraction of the geometrical properties of an object from photographic
images (Styliadis, 2007). The value of photo images is that they can obtain information about
texture and color, which is an advantage to Photogrammetry over laser scanning (Zhu, German, &
Brilakis, 2010). Fard & Pefia-Mora (2007) developed a methodology for construction progress
monitoring that leverages the large number of photographs that are already taken on construction
sites for production documentation. By analyzing imagery taken daily, a time-based visualization
can be generated which compares the 4D as-built data with the 4D as-planned data within a

common user interface.

Photogrammetry and 3D scanning was integrated to track changes for work accomplished.
Integrating 3D imaging and Photogrammetry mitigates the limitations associated with each of
them individually, such as the number of scans required and the time needed for each scan to
produce satisfactory results during the 3D modeling process (El-Omari, 2008; Moselhi & El-
Omari, 2007). Khosrowpoura et al. (2014) presented a new method for activity analysis of
construction workers using inexpensive Microsoft Kinect RGB-D sensors. The developed method
has an average accuracy of 76% and a maximum accuracy of 92% in activity analysis for interior
operations. However, the sensor is affected by direct sunlight, and the sensor coverage is limited
to 5 m, and hence multiple sensors are needed to cover several work areas but interferences need
to be managed. Furthermore, occlusions and tool-interactions affect the accuracy of detecting body

postures.
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Figure 2-6: 3D Scan and 3D Model Object Recognition (Bosche et al., 2008)

2.3.6 Visualization and Building Information Modeling (BIM)

The National BIM Standard defines a Building Information Model (BIM) as a digital
representation of the physical and functional characteristics of a facility (Eastman et al., 2008).
BIM is a shared knowledge resource for information about a facility that forms a reliable basis for
decisions during its life cycle, which is defined as existing from the earliest conception to
demolition. A basic premise of a BIM is a collaboration among different stakeholders at different
phases in the life cycle of a facility, which involves the insertion, extraction, updating or
modification of information in the BIM to support and reflect the roles of that stakeholder. One of
the advantages of a BIM over a 3D AutoCAD format is that the objects in the BIM are parametric,
are linked to each other, and contain a variety of attributes. This long-term advantage of the BIM
may justify the permanent attachment of sensors, such as RFID tags, to a number of key

components (Motamedi & Hammad, 2009). The permanent RFID tags can be used for material
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tracking at the manufacturing and delivery stages (Razavi et al., 2008), for progress tracking during

the construction stage, and for maintenance during the entire life cycle of the component.

4D BIM is a visual representation that combines an object oriented 3D BIM model with time. 4D
BIM is information visualization that is easier to understand than traditional methods. 4D BIM
models are a form of visual representation of a project that also takes into consideration the
temporal aspect of how project teams plan to actually build a project, according to construction
schedules (Hartmann et al., 2008). 4D BIM could be used strategically by on-site management for
progress visualization and presentation, locating equipment such as material hoists, checking
access/openings for equipment, storage visualization and the utilization and estimation of
quantities. Moreover, 4D BIM can assist site personnel in brainstorming sessions and discussions
about access, storage and sequencing of works (Chau et al., 2005). Better visualization facilitates
team collaboration in removing logical errors in construction operations. Owners of the
constructed facilities may have little experience in construction projects, and are often unable to
truly participate in the construction plan development process unless a simple method of
visualization and communication is made available to them (Kang et al., 2007). Montaser &
Moselhi (2012a) presented an automated methodology utilizing BIM 4D modeling and tablet PC
for progress reporting in construction jobsites as shown in Figure 2-7. The method integrates the
project schedule and BIM, a 4D model is generated to simulate a planned construction sequence.
A tablet PC is used to collect the as built progress data using RFID data, barcode data, images,
notes, sounds and video clips. The collected data is then used to update project status on the 4D
model, which is subsequently used for comparison with the as planned conditions. An example
project was considered to apply to the proposed methodology on a construction jobsite of research

laboratory building in the west end of Montreal.
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Figure 2-7: Four Dimensional Model (Montaser & Moselhi, 2012a)

2.4 Emerging Technologies

Recent advancement in computing and information technologies has presented tremendous
opportunities for better automation in the construction industry. These technologies present
advanced methodologies in data acquisition, capable of gathering on-site data wirelessly in near
real-time. Wireless sensor networks (WSN) and Internet of Things (IoT) have many potential
applications in construction project management, such as building automation, project tracking
and control, job site safety, and civil infrastructure monitoring. WSN is equipped with a number
of sensors and communication devices, which provide the capability to automate and integrate
multiple data sources. WSN (hardware and software) configuration is highly dependable on their

potential application objectives and required performance.

The idea of the internet of things (IoT) was developed in parallel to WSNs. The term internet of

things was devised by Kevin Ashton in 1999 and refers to uniquely identify objects and their virtual
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representations in an “internet-like” structure. The Internet of Things (IoT) refers to machine-to-
machine (M2M) technology enabled by network connectivity and cloud infrastructure, to reliably
transform data into useful information. The value of IoT isn’t only gathering data, but also its
ability to make better decisions. The potential for IoT applications in a wide range of industries
has grown massively in the last couple of years due to the declining cost of sensors, connectivity,
and data processing power, which is making the return on investment for IoT projects become

more appealing.

2.4.1 Wireless Sensor Networks (WSN)

A WSN can generally be described as a network of nodes that cooperatively sense and may control
the environment, enabling interaction between persons or computers and the surrounding
environment. The development of WSNs was inspired by military applications, notably
surveillance in conflict zones. Today, they consist of distributed independent devices that use
sensors to monitor the physical conditions with their applications extended to industrial

infrastructure, automation, health, traffic, and many consumer areas.

Research on WSNs dates back to the early 1980s, when the United States Defense Advanced
Research Projects Agency (DARPA) carried out the distributed sensor networks (DSNs) program
for the US military. Even though early researchers on sensor networks had the vision of a DSN in
mind, the technology was not quite ready. More specifically, the sensors were rather large, and the
number of potential applications was thus limited. Furthermore, the earliest DSNs were not tightly

associated with wireless connectivity.

Recent advances in computing, communication and micro-electromechanical technology has
resulted in a significant shift in WSN research and brought it closer to the original vision. The new

wave of research on WSNs started around 1998 and has been attracting more and more attention
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and international involvement. The new wave of sensor network research puts its focus on
networking technology and networked information processing suitable for highly dynamic ad hoc
environments and resource-constrained sensor nodes. Furthermore, the sensor nodes have been
much smaller in size and much cheaper in price, and thus many new civilian applications of sensor
networks such as environmental monitoring, vehicular sensor network and body sensor networks

have emerged.

WSNs nowadays usually include sensor nodes, actuator nodes, gateways and clients. A large
number of sensor nodes deployed randomly inside of or near the monitoring area (sensor field),
form networks through self-organization. Sensor nodes monitor the collected data to transmit along
to other sensor nodes by hopping. During the process of transmission, monitored data may be
handled by multiple nodes to get to the gateway node after multi-hop routing, and finally reach the

management node through the internet or satellite as shown in Figure 2-8.

Figure 2-8: Wireless Sensor Networks

The sensor node is one of the main parts of a WSN. The hardware of a sensor node generally

includes four parts: the power and power management module, a sensor, a microcontroller, and a
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wireless transceiver. The power module offers the reliable power needed for the system. The sensor
is the bond of a WSN node which can obtain the environmental and equipment status. A sensor is
in charge of collecting and transforming the signals, such as acceleration, vibration and position,
into electrical signals and then transferring them to the microcontroller. The microcontroller
receives the data from the sensor and processes the data accordingly. The Wireless Transceiver
(RF module) then transfers the data, so that the physical realization of communication can be

achieved.

Generally, a WSN consists of a number of sensor network nodes and a gateway for the connection
to the internet as shown in Figure 2-8. The general deployment process of a WSN is as follows:
firstly, the sensor network nodes broadcast their status to the surroundings and receive status from
other nodes to detect each other. Secondly, the sensor network nodes are organized into a
connected network, according to a certain topology (linear, star, tree, mesh, etc.). In order to
expand the coverage of a network, the sensor network uses multi-hop transmission mode. That is
to say the sensor network nodes are both transmitter and receiver. The first sensor network node,
the source node, sends data to a nearby node for data transmission to the gateway. The nearby node
forwards the data to one of its nearby nodes that are on the path towards the gateway. The

forwarding is repeated until the data arrives at the gateway, the destination.

Data aggregation is the process of integrating multiple copies of information into one copy, which
is effective and able to meet user needs in middle sensor nodes. The introduction of data
aggregation benefits both saving energy and obtaining accurate information. The energy consumed
in transmitting data is much greater than that in processing data in sensor networks. Therefore,
with the node’s local computing and storage capacity, data aggregating operations are made to

remove large quantities of redundant information, so as to minimize the amount of transmission
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and save energy. In the complex network environment, it is difficult to ensure the accuracy of the
information obtained only by collecting few samples of data from the distributed sensor nodes. As
a result, monitoring the data of the same object requires the collaborative work of multiple sensors
which effectively improves the accuracy and the reliability of the information obtained. The

performance of the data aggregation protocol is closely related to the network topology.

A number of research efforts have investigated the use of WSNs for building management
(Grindvoll et al., 2012; Huang et al., 2008; Jang et al., 2008; Kintner-Meyer, 2005; Osterlind et
al., 2007). The application of WSNs has been extended to building automation (Feng et al., 2008;

Huang et al., 2011; Huang et al., 2008; Malatras et al., 2008).

Also, some research efforts have investigated the use of WSNs for infrastructure monitoring.
Sadeghioon et al. (2014) developed a methodology for leak detection in water pipelines using
wireless smart sensor networks. Their developed method is able to monitor the condition, in
particular the pressure and hence leaks, of buried water pipelines. This method allows easy
installation of the sensor nodes on the pipes without jeopardizing the pipes’ structural integrity.
Their advantage over other commonly used leak detection methods is that they have a degree of
redundancy as individual faulty nodes do not render the whole system obsolete and allow for

continuous monitoring without operator intervention.

Jang & Skibniewski (2007) implemented a tracking architecture using wireless sensor modules by
combining radio frequency signals and Ultrasound; the results showed accurate position
estimations with enhanced network flexibility. However, traditional ultrasound positioning has
some disadvantages, including line-of-sight transmission, multipath, high cost and power
consumption, which may hinder the possible applications in complicated construction

environments (Shen et al., 2008). Various combinations of RFID and Zigbee-based sensor
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networks have also been applied for materials tracking and supply chain management (Cho et al.,
2011; Shin et al.,, 2007). These studies confirmed that WSN can improve the wireless
communication and network flexibility, but their primary use was only data transmission, and not
positioning. Shen & Lu (2012) investigated the application of ZigBee-based WSN for indoor
positioning and tracking of construction resources. Real-time positions of the mobile nodes were
determined by applying the RSSI method and the trilateration algorithm. However the RSSI values
were susceptible to application environments, which presented difficulties and challenges to
implementation of such positioning methodologies in complicated and dynamic settings in

construction.

2.4.2 Data Fusion Models in Construction

Data fusion refers to the combining of information from multiple sources in order to improve the
quality of information obtained separately from each source. It is utilized to make inference
decisions about the state of a construction project based on data from different sources. For
informed decisions and objective assessments of progress at a construction site, data from a
number of sources must be combined because not all of the necessary information can be captured

using a single data source.

In recent years, a number of studies have considered multi-sensor data fusion models in order to
capture a more complete picture of the progress of a project by using information acquired from
GPS, RFID, and other sources of information for tracking and locating construction materials
(Cheng & Chen, 2002; Ergen & Akinci, 2007; Moon & Yang, 2009; Razavi, 2010; Song et al.,
2006). With the development of all of these technologies, a large amount of data can be collected
from construction sites both semi-automatic and semi continuous. However, challenges related to

the processing and reduction of data to produce meaningful conclusions and the fusing of data
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from a variety of sources remain obstacles to the achievement of a practical and comprehensive

automated progress-tracking solution for construction sites.

Studies of data fusion for the particular application of automated progress tracking in construction
projects have focused primarily on automated object-recognition models (Cheng et al., 2012;
Golparvar-Fard et al., 2013; Y. Turkan et al., 2013) and on automated object-tracking models
(Khaleghi et al., 2013; Shahandashti et al., 2011). These object-based models have shown
promising results for projects in which progress is tracked in terms of a bulk quantity of materials
or objects, such as steel-framed building construction, where the progress of the building project
is reported in tons of steel installed; in such a context, recognition of the number of objects that
have been installed provides an adequate level of detail for that type of progress tracking. However,
many activities on construction projects, entail specific elements (welding, inspection, etc.) that
are not associated directly with the movement or addition of a physical entity at the site and

therefore cannot be tracked effectively using object based models.

Shahi et al. (2014) and Shahi (2012) presented an activity-based data fusion model, which
incorporated an Ultra Wide Band (UWB) positioning system to track activities in a construction
project. A field experimentation, study on an industrial-type building construction project was
conducted to validate the model presented in this research. The scope of the experimental program
was limited to ductwork, HVAC, and piping activities on the project. It was noted that the number
of changes occurring during construction may be significantly higher for piping and industrial
projects in comparison to steel or concrete building construction. The significance of the design
change variability is that although automated object recognition and material or asset tracking

algorithms that use the 3D CAD or BIM model as a-priori information may be accurate for concrete
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or steel structures, they may be ineffective in tracking the progress of piping and many other

mechanical and electrical services found throughout most projects.

2.5 Summary and Identified Limitations

The literature was reviewed in areas pertinent to automated data acquisition technologies, indoor

localization and data visualization. The literature review was conducted with prime focus on the

impact of those areas on the development of efficient automated site data acquisition models. The

following gaps and limitations are identified accordingly:

While a significant number of researchers have investigated the field of automated site data
acquisition, in all cases the focus has been on using off-the-shelf technologies. Off-the-shelf
technologies are produced to meet the perceived needs of a particular market or application.
Where their generic features are designed as a one size fits all, which may not form a perfect
fit for complex applications such as construction operations.

Although WSN technologies promise a great potential for applications in construction, little
research has been pursued to develop customized and flexible automated site data acquisition
models for tracking and progress reporting on construction operations.

Outdoor automated progress tracking and reporting methods which are limited to only one
source of data such as GPS or RFID. Might not be able to capture a complete picture of the on-
going construction operations.

Standalone GPS and RFID based earthmoving tracking methods have a main underlying
assumption that the hauling units are loaded to their full capacity, which is not a valid
assumption in many cases, especially in a situation where a carry back is building up on the
truck bed as shown in Figure 2-9, decreasing the carrying capacity of the truck and wasting a

considerable amount of fuel.
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Figure 2-9: Truck Carry back Buildup

e Standalone GPS tracking methods accuracy might be impacted with the limited GPS accuracy
in urban construction jobsites due to limited satellite reception as shown Figure 2-10, or even

complete failure to report the progress in case of GPS hardware malfunction.
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Figure 2-10: GPS Accuracy in Urban Locations (Courtesy of Agi.org)

e Standalone GPS data alone is not enough to distinguish between different modes of operations
of construction equipment, for example, it might not be possible to distinguish between trucks
queuing for loading or the loading activity itself in a situation similar to the setting shown in

Figure 2-11.
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Figure 2-11: Truck Loading Queue

Several heavy construction equipment such as excavators, stay stationary for long durations
while executing their work. Location sensing alone cannot give a direct indication whether
they are operational or ideal. Detection of equipment interaction and poses is essential to
identify the various modes of operations of such equipment. Real-time measurement of
durations spent by each equipment with respect to their mode of operation enables contractors
to optimize their operation and fleet configuration in real-time to maximize their profit.
Expensive technology such as On Board Instrumentation System (OBIS) and its black box
format, prevents users from accessing its respective algorithms and modifying it as they see
fit. Also, these systems store data in propriety data formats, and the stored data is often difficult
to access without using the vendor specific software.

In the literature, there is a lack of data fusion algorithms for near real-time productivity
analysis.

Automated progress tracking and reporting described in literature lacked the collection of
contextual data such as weather conditions. This type of data is important for realistic
productivity analysis and it enables better estimates on future jobs.

Several researchers studied the utilization of various technologies for indoor localization,

especially radio frequency and wireless protocols. While each technology has its own
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advantage and disadvantage, there is no experimental analysis studies to guide the selection of
best performing wireless protocols indoor.

Received signal strength (RSSI) is affected by the several interferences such as multi path and
shadow fading interference, which causes fluctuations in the measured RSSI signals. In
literature moving average filter is commonly used to remove noise from measured RSSI,
however, it has several limitations such as time lag and the removal of important features of
the original signals. There are no experimental studies to compare the performance of different
filtering techniques for RSSI, and their effect on the localization accuracy.

The fundamental key for reliable and accurate indoor location estimation is path-loss models,
which are used to convert measured received signal strength (RSSI) into the corresponding
distances. Researchers commonly conduct laboratory experiments in an offline phase to
construct static path-loss models. Using a static path loss model might be valid for a constant
environment, where minimal changes in the physical layout of the building. However, in the
presence of moving resources, metallic objects and structural barriers, static path-loss models
produce poor distance estimates. In order to alleviate such impact, smart and adaptive path-
loss models are required to cope with the fast-changing construction jobsites environment.
Indoor location estimation in two dimensional spaces is not practical for multiple floor jobsites.
There is a need for three dimensional indoor localization systems for accurate tracking of

resources on high rise building projects.
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Chapter 3 : PROPOSED FRAMEWORK

3.1 General

The aim of this chapter is to provide a comprehensive overview of the developed framework with
a special focus on automated tracking and progress reporting of construction operations. The
research vision and approach are presented; highlighting the main concepts of rapid prototyping,
objective driven design and modular configuration. Figure 3-1 depicts the main sections of this

chapter.

Chapter 3

3.1 | 3.2 N 3.3 34
General Research Vision and Approach Automated Framework Summary

Data Management
Scheme

—  Rapid Prototyping —

Framework Input/

— Objective Driven Design g tput Interface

— Modular Configuration —Framework Structure

Figure 3-1: Chapter 3 Overview

3.2 Research Vision and Approach

While a number of researchers have conducted in-depth studies in the field of automated site data

acquisition, in most cases, the focus has been on utilizing off-the-shelf systems. The vision for this
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research was formed based on the identified knowledge gaps and current practice limitations

described in section 2.5. This vision can be summarized as follows:

Fundamental experimental studies with various sensors and wireless protocols in
laboratory and outdoor environments to test, validate and assist in the design of automated
site data acquisition prototypes.

Design of adaptable, flexible and cost effective automated site data acquisition prototypes
integrating various sensor technologies to address limitations of off-the-shelf technologies.
Study and experiment with various RSSI filtering techniques to assist in the selection of
the best RSSI filter to improve indoor localization accuracy.

Design and validate a self-calibrating and dynamic path-loss model to cope with

continuous changes in the construction environment.

This research vision was guided by three main principles:

3.2.1

Rapid prototyping to speed up the development and enable continuous improvement in the
design.

Objective driven design to ensure a structured mechanism for setting the design objectives
and the performance measures of the prototype.

Modular configuration to provide the flexibility for customized project configuration and

enables re-usability of hardware components in order to cut the development cost.

Rapid Prototyping Approach

The use of the rapid prototyping technique in mobile wireless systems differs from the traditional

technique used in mechanical engineering, in this context, rapid prototyping is mainly associated

with the experimental implementations and development of hardware and software prototypes. In
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this research, rapid prototyping is utilized to allow development of prototypes in lab and/or
simulation virtual environment. The hardware functions are tested and validated using simulation
and lab experiments. In this way, an economy of time and material are obtained. It is fundamental
that the design of the hardware prototype architecture to be flexible for necessary modifications
required for system optimization. The choice of the Arduino UNO microcontroller board for
developing prototypes in this research is based on two main factors. First, its low cost (about $25)
combined with its great processing capacity, operating at 16 MHz clock frequency and executing
up to 16 million instructions per second (MIPS). Which makes the prototype sufficiently efficient
for implementations of complex software algorithms required for on-site data acquisition. An

overview of the Arduino UNO characterizes and size is shown in Figure 3-2 and Table 3-1.

Figure 3-2: Arduino UNO Microcontroller Board

Table 3-1: Arduino UNO Microcontroller Characteristics

Microcontroller ATmega328
Operating Voltage 5V

Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6

Flash Memory 32 KB (ATmega328)

Clock Speed 16 MHz

Length 68.6 mm

Width 53.4 mm

Weight 25¢g
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Second, Virtual Breadboard Emulation Package for Arduino hardware enables virtual utilization
and designing of Arduino UNO microcontroller in real time with Hardware-In-Loop (HIL)
techniques. The HIL technique is commonly used by the aerospace industry for real time
simulation and development of embedded mobile robotic controllers (Ledin, 2001). The Virtual
Breadboard package is able to emulate program runs on the board, which listens to commands
arriving via serial port, executes the commands, and, if needed, returns a result. Also, SIMULINK®
and MATLAB® support running program algorithms on Arduino for control system and robotics
applications and then simulate to verify that your algorithms work during simulation as shown in

Figure 3-3.
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Figure 3-3: Simulink® Support for Arduino

3.2.2 Objective Driven Design

The initial step of developing a prototype is to identify the requirements and objectives governing
the system operation. An objective driven development approach forms system goals based on
initial functional directives, and then elaborates and refines these objectives until they have been
broken down into functions that can be achieved by single modules, forming the requirements
specifications. By ensuring that the requirements specifications achieve all high-level objectives,
this approach provides a precise criterion for sufficient completeness of requirements specification

(Lamsweerde, 2001).
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The initial list of objectives is generally a high-level abstract description of the prototype target
application. The developer then identifies sub-objectives, considering how each objective can be
achieved. This results in a hierarchy of goals, which are then regrouped by similarity to produce
system’s functionalities. Sequence of steps is then formed to further refine the objectives, each
step is either an action or an event. Every step lists data inputs and outputs, as well as data
processing algorithms involved, and interfaces between the prototype and surrounding
environment. When designing wireless sensor network prototypes for applications in automated
site data acquisition, two major classes of design objectives must be considered; network

architecture and application requirements (Ibrahim & Moselhi, 2014e).

The network architecture requirements contain the physical and logical organization of the
network as well as the density of the sensor nodes. In general, the objective of sensor networks is
to efficiently cover the deployment area. The logical and hierarchical organization of the network
also impacts energy consumption and the selection of communication protocols. In addition, based
on topology requirements, sensor networks can have a distributed organization or a clustered
organization, where selected nodes can handle data forwarding. The network architecture
requirements for construction applications can be determined by answering the following

questions:

e What type of network topology best fits the application? (One-to-one, one-to-many,
many-to-one or many-to-many?)

e How will the monitoring network work? (Master—slave, point-to-point, point-to-
multipoint or peer-to-peer?)

e What are the worst case ambient conditions in the coverage area?
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e Are there any known potential interference problems due to physical obstructions, RF

interference?

The application requirements identify the information to be collected and processed by the sensor
network. This data should be classified and quantified based on the type of the data and the required
sensors for collecting such data. These classifications can be achieved by a comprehensive analysis
of the targeted application. Based on the application requirements, configurations of individual
sensor nodes can be identified which enables the selection of the sensors and communication

protocols. The following questions can help to determine these configurations:

e What is the Quality of Service requirements of the application? (Does it require real-
time monitoring or delay tolerant monitoring?)

¢ Does the system continuously poll for the information (periodic monitoring) or is it
generated by exception (event-based monitoring)?

e What is the type of the data, i.e., location, proximity, tilt, height, etc.?

As a result of answering the above mentioned questions, the design objectives can be determined
by the network topology, architecture and application requirements comprehensively. Full
consideration of different sensor network options and how they will fit the targeted application is

critical for a successful development.

3.2.3 Modular Configuration

Designing and configuring a WSN prototype to work seamlessly for various applications with little
user intervention is not a simple task. In fact, it is difficult to design a platform that can satisfy a
wide range of applications without sacrificing performance. The user has to reprogram the

microcontroller to read a specific digital or analog port connected to a sensing element.
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Reprogramming the sensor platform's microcontroller to use a given sensor element could involve
a very daunting sequence of tasks including learning the embedded operating system, MCU

architecture, middleware, application support layer, etc. (Kouche, Hassanein, & Obaia, 2014).

The target users of the prototypes developed in this research are the construction project
management community, and therefore we cannot assume that the users of such systems have a
strong background in electrical engineering. Therefore, it is desirable to limit the input sensors to
a predefined set of simple "plug and play" modules. The software interfaces should also share this
characteristic of simplicity while maintaining flexibility. The user should not be required to learn
a new programming language in order to use the system. The cost of the platform must also be

sufficiently cost-effective to justify its use.

The vision of this research is to develop a modular hardware design to make the rapid prototyping,
easier, as well as to allow for quicker redesign and the ability to reuse some of the hardware
modules. Such approach enables redesign the prototype to adapt to different applications with
relative ease. The main features of these modules are low cost, small size, and easy adaptation to
different applications. The modular platform used in this research consists of three-layer as shown
in Figure 3-4. This modular platform is divided into three functional layers: processing,

communication, and sensing.

/ Sensing

4 # Communication

/' Processing

Figure 3-4: Modular Configuration
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This modular design enables its users to simply plug a sensing module and the on-board software

auto detect the hardware module and enables its software configuration and algorithms.

3.3 Automated Framework

The developed framework for automated project tracking and progress reporting encompasses two
types of data acquisition prototypes as shown in Figure 3-5. The first prototype is Sensor Aided
GPS (SA-GPS), which is designed for tracking outdoor activities such as earthmoving operations.
This prototype consists of a microcontroller equipped with GPS module as well as a number of
sensors such as accelerometer, barometric pressure sensor, Bluetooth proximity and strain gauges.
This configuration is able to overcome standalone GPS limitations through data fusion of sensor
data with the GPS data, which in turn enhances progress assessment and productivity analysis. The
detailed description of the SA-GPS prototype developments for this prototype is presented in
chapter 4. The second prototype is Self-Calibrated Wireless Sensor Network (SC-WSN), which is
designed for indoor localization and tracking of construction resources (labor, materials and
equipment). This prototype is able to enhance the indoor localization accuracy by consistently
adapting its parameters to cope with the changing construction environment. The detailed
description of the SC-WSN prototype developments is presented in chapter 5. Contextual data are
collected with respect to weather conditions using a cluster of sensors integrated into a weather

station. The details of the weather station components are presented in Appendix A.

The data acquisition prototypes collect the on-site progress data and send it to the progress
measurement and productivity analysis algorithms. The captured data is utilized to estimate the
actual progress, which is then compared to the as-planned baseline progress, using earned value

analysis (EVA) to measure the project’s performance. The productivity analysis is responsible for
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analyzing the measured productivity and the contextual data to identify any bottlenecks. Then, the

progress reports are generated and the project cost and duration at completion are forecasted.

Automated Site Data
Acquisition Models

Sensor Aided GPS

Progress Measurement

Progress Reporting

Self-Calibrated WSN

J

Contextual Data

Figure 3-5: Proposed Framework Conceptual Design

3.3.1 Data Management Scheme

In automated site data acquisition methods such as those cited in literature, data collection schemes
commonly use sensors or readers to relay raw data to a mobile computing unit. Such raw data have
little value in themselves and need to be processed to extract meaningful information. The data
collection scheme adopted in these methods suffers from a high volume of data traffic toward the

sink node, which creates a bottleneck and results in long processing times (Figure 3-6).

We propose a scheme that supports localized cooperation of sensor nodes to perform complicated
tasks, and in-network data processing to transform raw data into high level useful and actionable
information. Toward this direction, data aggregation and processing, rendering its value for near
real-time application. In the developed framework, sensory data are collected, aggregated, and

interpreted at the sensor node level. This decreases post-processing time and user intervention
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required for data analysis. The proposed scheme is composed of a gateway node and multiple
sensor nodes. The gateway node, which acts as an interface to the system, has sufficient computing
power, essential energy and memory. The sensor nodes, on the other hand, are resource constrained
devices, running on batteries and performing actual data acquisition. The sensor nodes are
organized into a tree that routes data directly to the gateway node, as shown in Figure 3-6. Such a

tree configuration facilitates data aggregation and reduces data routing.

. Sensor
W Node
Processor
Node

e |
e Gateway T
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Dﬂ- _Database/'
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Typical

Figure 3-6: Data Management Schemes

3.3.2 Framework Input/output Interface

The developed framework had two main inputs: 3D Building information model, and resource
loaded schedule as shown in Figure 3-7. In this research, Autodesk Navisworks with Timeliner is
utilized to create the 4D model. The Autodesk process of creating the 4D model consists of three

steps:

e Add the project 3D model to the Navisworks project file.
e Add the project schedule using the Navisworks Timeline module.

e Link the 3D objects to the schedule activities.
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Figure 3-7: Developed Framework In/Out Interface

Autodesk BIM 360™ Field is a field management software for 2D and 3D environments that
combines mobile technologies (iPad) at the construction site with cloud-based collaboration and
reporting. BIM 360 Field™ enables remote access to project information by field personnel,
helping to improve quality, safety, and commissioning for construction projects. Although BIM
360 Field™ offers some integrated reporting capabilities, they do not fully address the needs of
automated progress reporting. It requires field personnel to manually enter information regarding
the on-going construction operations. To overcome this limitation, this research utilizes BIM 360
Field API to provide inputs for the proposed automated tracking and progress reporting
framework. In this context, BIM 360 Field API is used to exchange 4D model and construction
site data through the Autodesk 360 cloud services.
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3.3.3

Framework Structure

The developed tracking and progress reporting framework consists of six main modules as shown

in Figure 3-8:

Automated site data acquisition module, which is responsible for site data collection
utilizing the two developed automated data acquisition prototypes. These prototypes are
especially designed for tracking construction activities using low cost open source
microcontrollers and a number of sensors (Ibrahim & Moselhi, 2013a). A detailed
description of the developed prototypes is presented in chapters 4 and 5.

Input data module, which is responsible for extracting the planned activities and their
planned information such as: work zones, start dates, end dates, durations, planned
quantities, man-hours, resources, and productivity. Work zones are created based on layout
points created at the design and planning phases, where fixed points are marked on objects
in 3D model using Autodesk Revit®. Then contractors at the execution phase can also
create points on almost any object and export point locations to automated site data
acquisition using Autodesk Points Layout® software. Project plan data along with
quantities are extracted from the 4D model using the BIM 360 Field API and fed
automatically to the database. A brief description of C# code utilized for connecting to the
BIM 360 Field API and extracting the data is presented in Appendix B.

Database module, which is responsible for storing processed data in a relational SQL®
database. The upper level of the database represents a project entity connected to activity
entity through one to many relationship. An activity entity represents the project scope of
work on time phase. Then a many to one relationship is used to link an object entity to an

activity entity. The object entity includes geometrical properties of this object such as
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length, surface area and volume based on its activity units of measurement. Also an activity
entity, is linked with a one to many relationship to resources entity, where each resource
has a unique id that is used for tracking of this resource during the execution of the project.
This id is the MAC address of the attached tag on the resource. The details of the database

are presented in Appendix C.
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Figure 3-8: Proposed Automated Progress Tracking Framework

e Progress assessment module, which is responsible for comparing the actual progress
gathered from the on-site data after applying the data fusion algorithms with the planned
baseline progress. The module utilizes the earned value management (EVM) and progress

templates for measuring the project performance. The module updates the baseline
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schedule with the actual progress to generate automatically as-built schedules (Ibrahim,
Germain, Guevremont, Forcier, & Moselhi, 2013). The details of the developed as-built
schedule generation algorithm is presented in Appendix D.

Productivity analysis module, which is responsible for comparing actual and planned
productivity. It also associates any deviation in productivity with the weather and operating
condition existed on the site and captured using the on-site data acquisition. The
productivity deviation indices can be used for identifying bottlenecks and provides better
forecasting of project duration or for future estimates. The productivity analysis module
was designed for analyzing only earthmoving operation in this research. The details of the
developed productivity analysis algorithm is presented in chapter 4.

Forecasting module, which is responsible for forecasting the at-completion project cost and
duration using the newly developed self-adaptive forecasting technique (Ibrahim &
Moselhi, 2013b). It takes into account any productivity deviation encountered on site and
measured by the productivity analysis module. The module produces periodical progress
reports according to the period specified by the user. The self-adaptive forecasting is
applied to earthmoving productivity estimates in chapter 4 and the developed algorithm is

described in details in Appendix E.

3.4 Summary

This chapter presented the research vision and an overview of the developed framework. The

framework embraced integration and automation; utilizing wireless sensor network prototypes.

The rapid prototyping approach is used for the development of the WSN prototypes. The

developed framework input/output interface described in details showing the main inputs and

outputs of the developed framework, along with its six modules.
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Chapter 4 : SENSOR-AIDED GPS PROTOTYPE

4.1 General

The aim of this chapter is to describe the detailed development, testing and validation of sensor

aided GPS prototypes for automated tracking and progress reporting of construction operations in

outdoor environment. Figure 4-1 depicts the main sections of this chapter.
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Figure 4-1: Chapter 4 Overview

The developed prototype is designed with a special focus on earthmoving operation, however, it

can be easily reconfigured for other outdoor construction operations such as concreting, steel

structure, building envelopes, and landscape ...etc.

In order to follow the rapid prototyping and objective driven design principles described in chapter

3, prototypes design objectives and performance measures are defined in the following sections.

4.2 Design Objectives

The main design objectives for the SA-GPS prototype are:

e To design prototypes for tracking earthmoving operation with a focus on improve the

accuracy and robustness.
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e To implement effective algorithms for data aggregation and processing to support near
real-time progress tracking.

e The prototype must be able to work autonomously with minimal user intervention.

e Extraction of timely and accurate actionable information and maximizing the useful
utilization of collected data, to support near real-time productivity analysis.

e The prototype must be scalable for application on real construction jobsites.

4.3 Performance Measures

The prototype development process requires a methodical and iterative approach through all levels
of data collection and analysis. The five main performance measurement are explained as

following:

e Accuracy: The main performance measure in comparing the developed prototype to
traditional methods is the productivity measurement accuracy. The higher the accuracy, the
better the system; however, there is often a trade-off between accuracy and other
characteristics such as cost. The accuracy is measured as the average error in the
productivity estimates.

e Latency: The prototype latency is attributed to hardware, computing, and human
intervention/efforts during data transfer and processing. The proposed prototype is
designed to measure the productivity in near real-time, which requires fast and efficient
data processing with minimal human intervention.

e Scalability: The proposed prototype is required to be deployed to any project size without

any need for further adjustment or development.
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e Robustness: The prototype robustness is defined by its ability to function normally even
when some signals are not available. The proposed prototype is designed to have multiple
data sources from different sensors and be able to function even if some sensor data is
missing or corrupted.

e Cost: The proposed prototype must be cost effective with respect to traditional methods.

4.4 Experimental Study

To design prototypes for the data acquisition models, an experimental study was conducted in
laboratory and outdoor environments, to explore and test the suitability of various sensors, and
wireless protocols for the intended application. A university lab kit was purchased from Libelium®
(Spain). This kit included 7 microcontrollers, 18 sensors and 7 wireless communication modules.

This experimental study investigated the functionality, accuracy, robustness and range of various

components of the kit.

4.4.1 GPS Sensor
The GPS functionality is tested for the logging and reporting capabilities of accurate location for
the outdoor environment. The prototype was programmed to report several parameters as shown

in Figure 4-2:

e Date and Time

e Latitude, longitude in millionths of a degree and elevation in meters
e Course in degrees and speed in Km/hr.

e Number of locked satellites and age of fix in milliseconds.

e Distance between last logged coordinates in meters.

e Horizontal dilution of precision in 100ths.
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Figure 4-2: GPS Tracking and Logging Field Test

DOP is an indicator of three dimensional positioning accuracy as consequence of relative position
of GPS satellites with respect to a GPS receiver. Table 4-1 shows the range of values for the
dilution of precision for the GPS and their meaning in respect to the location measurement. The
DOP of the tested GPS module ranged from 2.4 to 0.7, where better DOP was achieved after

locking on 7 to 10 satellites as shown in Figure 4-3.
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Table 4-1: Dilution of Precision Values

DOP Value Rating Description
Less than 1 Ideal This is the hlghegt conﬁdenge level tp be used fqr applications
demanding the highest possible precision at all times.
Positional measurements are considered accurate enough to
1-2 Excellent .\ ..
meet all but the most sensitive applications.
7.5 Good Positional measurements could be used to make reliable in-
route navigation.
Positional measurements could be used for calculations, but
5-10 Moderate . ) .
more open view of the sky is required.
. Represents a low confidence level. Very rough estimate of the
10-20 Fair .
current location.
Greater than 20 | Poor ﬁ]te :21;: level, measurements are inaccurate by as much as 300

HDOP

12

N - W |

«——Number of Satellites

Figure 4-3: Measured DOP and Number of Satellites

4.4.2 3 Axel Accelerometer Sensor
The 3D accelerometer had been tested for the detection of aggressive driver behavior, and the
detection of dump action of hauling trucks. The aggressive driver behavior was tested on a truck

during a road test. 50 accelerations and braking runs were performed, of which 12 harsh
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accelerations and 12 harsh brakes. The algorithm was able to detect 10 of the harsh acceleration
and 11 of the harsh brakes, with a detection percentage of 83.33% and 91.67% respectively. The
higher detection accuracy in braking is due to the surge measured in x axis acceleration because
the accelerometer experiences a force pushing it to the front. This surge is significant even when
the brake is applied at low speed. Figure 4-4 illustrates a sample of the level of accelerations

measured during the test.

75“;‘1 {m/s) —Speed (m/s)

—Acceleration (m/s2) —Acceleration [m/s2)

Lf.iHarsh |\
Acceleration |

7 Normal |
Acceleration

Figure 4-4: Truck Operator Behavior Monitoring Field Test using SA-GPS

The dump action of hauling truck was simulated to calculate the tilt angle of the truck bed as shown
in Figure 4-5. The accelerometer measures the projection of the gravity vector on the sensing axis.
The amplitude of the sensed acceleration changes as the sin of the angle a between the sensitive

axis and the horizontal plane.

A = g X sin(a) (4-1)

The raw accelerometer signal was noisy and needed to be filtered. A moving average filter was
applied to the signal, where the window for the filter was varied from 0.1 to 2 seconds. It was

found out that a 1 Second filter removed the noise while keeping acceptable lag time.
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Figure 4-5: Accelerometer Installed on Hauling Truck

The test was conducted using the setup indicated in Figure 4-6. The sensor was attached to a flat
piece of cardboard, and placed flat on the floor. The test starts by recording the readings of the
accelerometer in the flat position, and then the cardboard is lifted from one end for a tilt angle of

approximately 45° degrees.

ADXL 355
Accelerometer q
Piece of Cardboard

Figure 4-6: ADXL355 Accelerometer Test Setup

The measured acceleration by the ADXL355 accelerometer in the X-axis is plotted against time as

indicated in
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Figure 4-7. The blue curve is the calculated tilt angle. A 1 second filter was applied to the
calculated angle value to smooth the readings and enable true detection as shown by the red curve.

The results indicate that the average measured angle is 39.80° degrees.
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Figure 4-7: Accelerometer Test Results

4.4.3 Bluetooth Proximity

Bluetooth is used to detect equipment proximity to each other, therefore a test was conducted to
measure the average proximity detection time. Where, 860 data sets were collected in outdoor
environments with line of sight and non-line of sight, Figure 4-8 illustrates the histogram for the

proximity detection time in seconds. The average detection time was found to be 10.52 seconds.

Histogram of Detection time (Seconds)
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Figure 4-8: Bluetooth Proximity Detection Time
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The cumulative distribution function of the Bluetooth detection time illustrated in Figure 4-9

shows that with a 95% confidence level, the detection time is 14.16 seconds.

Empirical CDF of Detection time (Seconds)
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Figure 4-9: Bluetooth Proximity Detection Time CDF

In the context of detecting moving objects, it is important to calculate the maximum object speed.
Figure 4-10 illustrates the moving object speed verses the detection time window, given a range
of 100 m for the detection. It is possible to detect moving with an average speed up to 25 Km/hr

within a 14.16 seconds window.
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Figure 4-10: Moving Object Speed Vs Bluetooth Detection Time
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4.4.4 Barometric Pressure Sensor

The BMP180 barometric pressure sensor was tested to evaluate its performance for detecting
change in elevation. The test setup shown in Figure 4-11 was utilized by placing the barometric
pressure sensor in position 1 for 30 seconds, and then placing it in position 2 for another 30

seconds.

@ Lower Position
@ Upper Position

0.75m

Barometric
Pressure

Sensor
BMP180 (1]

Figure 4-11: Barometric Pressure Sensor Test Setup

A 1 second moving average filter was utilized to smooth and remove noise from the sensor raw
measurement as shown in Figure 4-12. While the actual elevation difference between position 1
and 2 1s 0.75 m, the calculated elevation from measured barometric pressure values, was 0.60 m,
which yield a 20% error as shown in Figure 4-12. However, in the context of the proposed

application, this accuracy is adequate enough for the designed purposes.
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Figure 4-12: Barometric Pressure Sensor Test Results
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The barometric pressure sensor was also tested for elevation estimation in the EV-building at
Concordia University. The sensor was carried during travelling in the elevator as indicated in
Figure 4-13. The elevation was calculated from the barometric pressure data using the following

equation:

1

Elevation (m) = 44330 % | 1 — (Pi)ﬁ (4-2)

0

Where P is the measured pressure in hPa and Py is the atmospheric pressure at sea level
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Figure 4-13: Barometric Pressure Test in Elevator
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4.4.5 Wireless Protocols

In order to experiment and investigate indoor propagation of different wireless networks, 21
experiments are conducted and 1752 data sets are recorded for more than 876 minutes (grand total
of all experiments). All these experiments are performed in different scenarios either in terms of
number of nodes, distance between the nodes, line of sight and finally, in terms of topology i.e.

straight-line/grid as shown in Figure 4-14.

T | -

(a) (b)

b0
L

Figure 4-14: Straight Line (a) and Grid (b) deployment

A Waspmote platform is used to build the mobile nodes for the experimentations, which includes
a microcontroller operating at 14MHz, 128K of memory, a wireless transceiver interface socket,
and a USB interface for device programming and logging. Each device operates on rechargeable
batteries. Its wireless interface socket is compatible with different communication protocols
(WLAN, Bluetooth, Zigbee and Synapse SNAP) and frequencies (2.4GHz, 868MHz, 900MHz) as

shown in Figure 4-15.

Figure 4-15: Waspmote platform mobile nodes

66



Four wireless technologies are used in the experiments, in particular, Wireless Local Area
Networks (WLAN), Bluetooth, Zigbee and Synapse SNAP. Their technical details with respect to
frequency, output power, range, sensitivity and cost are summarized in Table 4-2. All experiments
are summarized in Table 4-3. The setup for straight line experiments is shown in Figure 4. The
path is 20 m long, straight track with 20 waypoints with a distance of 1 m between two consecutive
waypoints. Two stationary sensor nodes are placed next to the track at 0 m and 21 m. Each
experiment is repeated for each of the four wireless networks (WLAN, Bluetooth, Zigbee and
Synapse SNAP). The setup for grid setting experiments is shown in figure 5. The grid size changes
from 3m x 3m to 6m x 6m, with a distance of 1 m between two consecutive nodes. One stationary
sensor node is placed next to the grid at 1 m and center of the grid. Each experiment is repeated

for each of the four wireless protocols (WLAN, Bluetooth, Zigbee and Synapse SNAP).

Table 4-2: Wireless protocols hardware

\NVeltr;loe:ls( Bluetooth Zigbee WLAN Synapse
Hardware Module g{’gﬂ% )N etwork | v hee 802.15.4 g{’gﬁ% getwork RF300
Frequency 2.4 GHz 2.4 GHz 2.4 GHz 915MHz
Data Rate Kbps 3x1024 250 921 150
Power dBm 15 0 10 20
Range m 100 90 75 250
Sensitivity dBm -80 -92 -83 -99

Tx current mA 65 35 120 85

Rx current mA 35 50 38 18.5
Cost $24.95 $31.95 $39.95 $28.95

RSSI of data packets received by the mobile node is measured using a program written using C++
and installed on the fixed node. In this program, a stationary node sends a PING packet to the
mobile node and the mobile node responds with another data packet that contains the RSSI value

with which the PING packet was received. The two stationary nodes send PING packets in a strict
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round-robin fashion to avoid packet collisions. Each node sends 3 packets per second, which

results in 3 RSSI samples per second per link.
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Figure 4-17: Experimental setup for grid setting
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Table 4-3: Experiments Scenarios
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Figure 4-18: RSSI measurement program interface
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The collected data was averaged and presented in Figure 4-19, which clearly show that the received
signal strength at each point is declining as expected. Even though, the declining rate is
inconsistent with all wireless technologies. For example the node at 4 meters receives a weaker
signal on the incoming packets with Bluetooth and WLAN than the node at 5 meters. Also the
node at 7 meters receives a weaker signal on the incoming packets with Zigbee than the node at 8
meters. In all measurements Synapse hardware showed more consistency in returning RSSI values

in declining order.

0
-10 _—4=Zigbee
--®-- Bluetooth
-20
—a—Synapse
-30
i WLAN
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o
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Distance (m)

Figure 4-19: RSSI measurement straight line formation

A major source of error when measuring RSSI is due to multipath effects caused by objects in the
environment. In the office environment, where the tests were performed, the radio environment is
likely to change between every measurement point as the room contains quite many things that
could cause multipath effects. Multipath in indoor environment is caused by multiple signal
reflections from walls, ceilings and other objects as shown in Figure 4-20. This directly affects the
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measured RSSI. Any type of reflected signal that can be additive or destructive to the original

signal is identified as multipath interference.

o —J—
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ﬁ‘m""“--..____

-"q"‘-"-

Figure 4-20: Multipath interference

As the signal strikes an objective, it can react in several ways, creating a reflection, scattering,
refraction, diffraction or all of the above. Reflection is simply when the signal is reflected back
towards the transmitter. Scattering occurs when the signal is scattered back towards the transmitter
into multiple new signals. Refraction occurs when the signal is bent as it passes through an object
and Diffraction happens when the signal changes direction as it passes around an object. RF signal
strength is reduced as it passes through various materials. This effect is referred to as Attenuation.
As more Attenuation is applied to a signal, its effective range will be reduced. The amount of

Attenuation will vary greatly based on the composition of the material the RF signal is passing

through.
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Figure 4-21: Attenuation interference
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Using frequencies below 900 MHz can significantly improve connectivity in an indoor
environment as shown in Figure 4-21. Low frequencies also exhibit more uniform signal

propagation, which simplifies the network design and deployment problems.

Each antenna has its own radiation pattern that is not uniform. The measured RSSI value is
impacted by the antenna orientation of the transmitting and receiving nodes. To quantify the
antenna orientation impact, the average RSSI is measured at 24 different degrees with a fixed
receiver node and a rotating transmitter node at a 1m distance in a relatively obstacle-free
environment (No obstacles making reflections within three meters). As shown in Figure 4-22(a),
the radiation pattern of the antenna is asymmetrical and suffers from distortion with difference in
the measured RSSI. One of the main factors that cause the antenna orientation phenomenon is the
magnetic field of the antenna, which is distorted by the interference from nearby devices.
Figure 4-22(b) illustrates the coverage range, which is calculated based on the radiation pattern.

Synapse has shown a wider and higher coverage range than the other three wireless technologies.

The results of the above experiments were scored on a level from 1 to 4, where 4 is the best and 1
is the worst performance in each criteria as shown in Table 4-4. The Synapse protocol has the

highest total score.

Table 4-4: Wireless Protocols Test Summary

Bluetooth | Zigbee | WLAN | Synapse
RSSI Vs Distance 2 4 1 4
Range 2 3 2 4
Attenuation 2 4 2 4
Cost 4 2 1 3
Total Score 10 13 6 15
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Figure 4-22: Antenna orientation and range
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4.5 Prototype Design

The SA-GPS prototype consists of mobile units installed on equipment and gateway fixed unit
installed on construction jobsite, the conceptual deployment of the developed prototype is shown
in Figure 4-23. The mobile units collect data from each piece of equipment, and then data is sent
to the gateway fixed unit. The gateway fixed unit performs data pre-processing and fusion then
upload the data to a remote database server, where the final data processing and storage takes

place.

Fixed Unit

Excavator #1

Figure 4-23: Conceptual deployment of Sensor Aided GPS Prototype

The rapid prototyping approach was utilized to realize the design for the SA-GPS, where a basic
version of the prototype was configured, assembled and tested. From a data acquisition
perspective, the SA-GPS prototype consists of three main entities, namely; data sources, network
infrastructure, and data sinks. Data Acquisition Sources are sensors, which generates data
regarding the construction operations. These sensors are directly integrated to collect various types
of information about construction equipment utilization, and interactions, which requires several
levels of configuration and automation. Wireless network infrastructure to provide end-to-end data
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routing and transfer. The function and performance of the network infrastructure are a crucial key
for real-time application. Therefore, it was very important to efficiently configure and test its
operation in lab experiments and outdoor environment. Data Acquisition Sinks are entities for data
aggregation, processing and fusing. They interact with the network infrastructure to extract

actionable information from raw data for later processing and analysis.

The required data acquisition entities for the developed prototype are illustrated in Figure 4-24.

The developed prototype integrates redundant data sources to enhance its overall robustness.
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Figure 4-24: Proposed SA-GPS Entities

Selecting the sensor type depends on the hosting earthmoving equipment, data to be collected and
the physical pose or movement of equipment that need to be captured. Table 4-5, illustrates sensor

configurations for some of the most common heavy equipment used in earthmoving operations.
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Equipment positions are captured by the GPS modules, excavator and loader boom swing angle is

sensed by accelerometer, excavator and loader bucket height is sensed by the barometric pressure

sensor, truck bed tilt angle is sensed by accelerometer, and truck load weight is measured by strain

gauges.

Table 4-5: Sensors Configuration for Earthmoving Equipment

Equipment Type Sensor Measured data
Tilt-sensing of truck bed.
Three-axis accelerometer Dynamic acceleration resulting from
Hauling Truck motion, shock, or vibration

Strain gauges

Truck load weight

Piezoelectric sensor

Truck bed vibration

Loader / Excavator

Three-axis accelerometer

Bucket tilt /boom swing

Barometric pressure sensor

Bucket vertical movement

Doger Three-axis accelerometer Blade tilt
(Two Sensors) Ripper tilt
Scraper Limit Switches (Three) Status of apron, bucket and gate

(open/close)

The fixed gateway unit is a Meshlium, which is a Linux router which contain 5 different radio

interfaces: Wi-Fi, Synapse SNAP, 3G/GPRS, Bluetooth and ZigBee. The gateway has a S00MHz

(x86) processor with 256MB RAM, and it has three data storage options including 160GB internal

storage as shown in Figure 4-25. It can be powered by solar and/or battery. The gateway is enclosed

in an aluminum IP65 casing, which allows placing in harsh outdoor construction environments.
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Figure 4-25: Meshlium Gateway



The proposed communication scheme for the SA-GPS prototype is depicted in Figure 4-26, where
Synapse SNAP communication protocol is used to transfer the data between the mobile nodes and
the fixed gateway node after pre-data fusion and processing. In order to get the big picture of the
construction operation, data is post processed on the gateway node, by aggregating data from
various mobile nodes and perform data fusion. Finally information gained from the data fusion is

transfer using wireless LAN to server based database through the internet cloud.

Mobile Node 1 Mobile Node 2 Mobile Node 3
GPS Gps - GPS

BT —— BT =
| Pre-Data . | Pre-Data I Pre-Data
Fusion ; Fusion Fusion

ACC — ACC

Synapse Synapse

SNAP SNAP
Synapse Synapse Synapse
SNAP SNAP SNAP

Fixed Gateway Node

Data Routing Data Aggregation Post-Data Fusion
\

Wireless/
LAN

Server Based Processing

Productivity Progress
Data Input Analysis Estimation
Algorithm Algorithm

Wireless/
LAN

Autodesk 360 & man

Figure 4-26: Prototype Communication Configuration
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4.6 Hardware Assembly and Configuration

Three prototypes were developed: a loader mobile unit, an excavator mobile unit, and a truck
mobile unit. The developed mobile unit prototype consists of a microcontroller with data logger,
Bluetooth module, GPS module, Synapse RF module and a power supply. The block diagram of
the mobile unit is shown in Figure 4-27 and Figure 4-28. The description of each hardware

component is explained as follows:

e Arduino UNO microcontroller, which is based on the ATmega328, it has 14 digital
input/outputs and 6 analog inputs. It is reasonably priced (about $25.00), and the development
software is open source.

e Roving Networks (RN-41) module is a Class 1 Bluetooth Module with a range of up to 100 m.

e SkyTraq (Venus638FLPx) GPS module is a high performance, low cost, single chip GPS
receiver with low power consumption, high sensitivity, and a low time-to-first-fix.

e Adafruit Industries (DS1307) data logger, which has a real-time clock with backup battery for

up to seven years of timekeeping. It can fit any SD/MMC storage up to 32 GB.

Sensors

Selected

RF y
Module [

Logger
Memory

Microcontroller

Figure 4-27: Mobile Unit Block Diagram and Hardware Prototype
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Figure 4-29: SA-GPS Loader/Excavator Prototype Wiring Diagram
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The wiring diagram presented in Figure 4-29 depicts the assembly of the SA-GPS prototype for
loader / excavator type of equipment. In the Loaded/Excavator prototype three-axis accelerometer
from Analog Devices (ADXL335) is integrated to measure tilt and swing of the loader bucket and
the excavator arm. Also, another prototype for hauling trucks was developed as shown in

Figure 4-30
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Load Weight Module
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% #

------

Arduino UNO
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Figure 4-30: SA-GPS Hauling Truck Prototype Wiring Diagram

4.7 Prototype Software/ Algorithm

Four software algorithms are developed on the mobile nodes microcontrollers, namely:

localization algorithm, proximity detection, payload volume estimation and data fusion algorithm.
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4.7.1 Localization Algorithm

The localization algorithm is responsible for identifying the work zone for construction equipment
based on the GPS data. Two localization algorithms are developed in this research: Finely
algorithm, and fuzzy c-mean (FCM) algorithm. If the boundaries for the cut and fill locations are
known, Finley algorithm is utilized. The steps of Finley (2007) algorithm are illustrated in

Figure 4-31 and Figure 4-32.

Figure 4-31: Finely (2007) Method for Solving Point in Polygon Problem
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Figure 4-32: Point in Polygon Algorithm Flowchart
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If the boundaries of the cut and fill locations are dynamically changing as the case in highway
construction, fuzzy C-mean clustering algorithm is utilized to cluster GPS data to identify locations
where loading equipment and spreading equipment spend more time, which in-turn dynamically
identifies the cut and fill locations. In case of malfunctioning sensor on loading equipment, truck
data are also clustered with respect to their location and speed to extract the correct locations. A
sample of GPS data for a dump truck was clustered using FCM algorithm and two clusters were

identified as shown in Figure 4-33.
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Figure 4-33: FCM Localization Algorithm

4.7.2 Proximity Identification Algorithm
Equipment proximity identification algorithm is responsible to discover equipment and reference
areas such as entrances and exits of jobsites. Continues Bluetooth radio scanning is utilized for the

proximity detection as shown in Figure 4-34. The discovered equipment type is identified by cross
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matching their media access control (MAC) address against a pre-defined list stored on the
microcontroller’s SD memory card. The pre-defined list is generated by the planning algorithm
from the planned resources. The maximum proximity detection range is 100m, however, it can be
adjusted using software parameters, which in turn control the power of RF transmitter on seven
levels from - 20 to 12 dBm. This range is adjusted based on the size of the jobsite; a small size will

require a lower setting for proximity detection.
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Figure 4-34: Equipment Proximity State Diagram

4.7.3 Hauling Volume Algorithm

Hauling volume calculation algorithm utilizes the methodology presented by (Yang et al., 2008),
which estimates truck's payload weight from readings of four strain gages mounted on truck's
suspension leaf springs. This feature enables improved progress tracking accuracy using the
estimated quantities of soil excavated, also it enables alarming equipment's operator for any
overloading conditions, and hence protects the contractor from possible extra costs for fuel, tires
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and mechanical failures. The weight at each suspension is calculated based on voltage signals of
strain gages. The total payload of the vehicle is obtained by summing load readings in all
suspensions; but resultant error can be very high. To reduce that error, a Kalman filter is used to
account for nonlinearity in measurement. Once the payload is measured the volume of the payload
can be estimated based on the excavated soil properties. The truck suspensions are denoted as Left-
Front (LF), Left-Rear (LR), Right-Front (RF), and Right-Rear (RR), respectively. In Figure 4-35,

the cross mark denotes the center of gravity of the payload with a value represented by W.

L1 L2

D

%
e

L4

L3

Figure 4-35: Schematics Diagram for Truck Payload

The measured strain gauge voltage is converted to weight, and hence the load applied to each

suspension is calculated, then the gross payload W is calculated using Eq. (4-3).

PLF+PRF+PLR+PRR=W (4-3)

Where: W is the gross payload weight in Kg, Prr , Prr, PLr, Prr are the measured weight

in Kg at the left front, right front, left rear and right rear truck suspensions respectively.

The Payload volume is calculated from the measured load weight using Eq. (4-4).
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V _ (Wgross_Wtruck bed)

X Swell factor (4-4)

Psoil
Where:
Woross 18 the gross payload weight in Kg.,
Wiruek bed 18 the weight of the truck bed in Kg., and
Psoil 18 the soil density in Kg/m3.

After calculating the load volume, a Kalman filter is applied to the measurement to reduce the

error in the measurement. The Kalman filter is modeled as following:
Vi = K Zi + (1 = KV (4-5)
Where:
V,is the current volume measurement,
K} 1s Kalman gain, and
Vi—1is the previous volume measurement.

4.7.4 Data Fusion Algorithm

Accurate identification of equipment modes of operations is crucial for realistic productivity
estimates of ongoing earthmoving operations. Observing trends and patterns in the sensor data
enables better identification of equipment modes of operations. However, these data are collected
from multiple sources, which are heterogeneous and diverse in nature, content and format.
Therefore, data fusion algorithms are required to stitch these data together and extract information
pertinent to equipment modes of operation, and hence enable better estimation of activities start,
finish, durations and resource utilization.
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Typical earthmoving hauling equipment (dump truck) has seven modes of operation: queuing for
loading, loading, travelling, queuing for dumping, dumping, returning and out-of-service. These
modes are repeated regularly by a truck in earthmoving operation. The developed data fusion
algorithm provides joint assessment of the data captured by the seven sensors integrated in the SA-
GPS prototype as shown in Figure 4-36 (Ibrahim & Moselhi, 2014b). This is carried out by the 14
if-then rules shown in Figure 4-37 and listed in Appendix G. The sensor raw data is aggregated,
filtered and transformed into logical levels. The logical representation of collected sensors data is
passed onto the reasoning engine which performs logical reasoning against the pre-set modes of

operations.
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Figure 4-36: Hauling Truck Modes of Operations (Ibrahim & Moselhi, 2014b)

For example, a dump truck is identified as being loaded if it is in the cut area, its speed is below

zero speed, it is in proximity to a loader, the loader is busy by detecting its boom angle and bucket
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height, and its load weight is increasing. Similarly, if the truck is travelling with speed higher than

zero speed and its load weight is near maximum, then it can be identified as hauling task.
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Figure 4-37: Hauling Truck's Modes of Operation Reasoning Engine
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Such algorithm does not require pre-existing large-scale dataset, however, its main drawback is its

inability to represent uncertainty, but this can be alleviated by integrating fuzzy logics into the

logical approaches. Table 4-6 lists the seven modes of operation and the sensors readings during

these modes.

Table 4-6: Haul Truck Modes of Operation

Mode of Location Speed Load | Proximity | Tilt Angle Previous
Operation Weight State
Load Queue Loading =0 ~ Trucks =0 Return
Area
Load Loading =0 ++ Loader =0 Return or Q.
Area Loading
Travel Road >0 > () Non 0 Loading
Dump Queue | Dump Area =0 >0 Trucks =0 Travel
Dump Dump Area 0 -- Spotter >0 Travel or Q.
Dump
Return Road >0 ~0 Non =0 Dump
Service Service Area =0 Any Any 0 Any

An effort was made to enhance the robustness of the developed prototype and to provide fault

tolerance, a fuzzy rule based reasoning engine was developed in MATLAB and converted to C++

to be loaded on the microcontroller. The developed fuzzy reasoning algorithm consists of the

following steps:

e Fuzzification on-sensor node of both the sensor raw values and their differential variations

using membership functions.

e For simplicity triangle membership functions were utilized.

e The fuzzified values are broadcasted to the gateway node.

e The gateway node merges the single nodes fuzzy values into a multi node fuzzy rules.

These rules have the following structure:
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IF (Ti=Loading) or (Lj=Busy Loading T;) Then (T; = Loading)
Where: Tj is Truck number i, and L; is Loader number j.

Figure 4-38 illustrated the fuzzy reasoning engine for a hauling truck node. Such distributed

reasoning scheme increase the degree of reliability and robustness of the developed prototype in

case of a failure in one of the sensors or even the whole node.
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Figure 4-38: Hauling Truck Fuzzy Reasoning Engine
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4.8 Framework Implementation

To link the developed SA-GPS with the automated framework described in chapter 3, three

algorithms were developed: planning algorithm, progress estimation and forecasting algorithm,

and productivity analysis algorithm as shown in Figure 4-39 (Ibrahim & Moselhi, 2014a). Their

respective input and output is briefly summarized in Table 4-7, detailed description of these

algorithms is presented subsequently.

) 3D Model

Inputs

,—For Each

4D

Planned
Schedule

te—No

SA-GPS Prototype

|
|« Location (GPS)

|« Equipment Proximity (RF}
|« Sensors (3D ACC + Strain
| Gauge + Barometer)

: + Weather Data
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Weather conditions

Are
Predecessors
Completed?

Yes_y| Planned Data

Planning Algorithm

Extraction

Schedule Update

L_Planned Progress——— 1 »|

:’ogress ' Estimation of ]
eports Actual Progress
Output i

Figure 4-39: SA-GPS Software/Algorithms
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Table 4-7: Developed Software Algorithms (Input / Output)

Algorithm Input Output
Planned Activities
Planning Planned Locations
Algorithm 4D Model Planned Resour.ce's
Planned Productivity
Planned Quantities
Equipment Modes of Operations Actual Productivity
Productivity Actual Durations Bottlenecks
Analysis Actual Excavated Soil Quantities Aggressive Operator Flags
Weather conditions Weather Impact Flags
Progress Curregllt Un(ilergomg Actlwty
Estimation and anne Quanqtl? 5 Real-Time Progress Reports
Forecasting Actual Producfcwlty
Actual Durations

4.8.1 Planning Algorithm

The purpose of this algorithm is to extract input data from the 4-D model and save it in the
framework database as outlined in chapter 3. This 4-D model is developed by integrating resource-
loaded project schedule and the 3D terrain model of the earthmoving project (Shah et al., 2008).
With these inputs, project's resources and their interaction onsite are effectively tracked with
respect to their locations. The 4-D model houses necessary inputs for effective project control such

as planned activities (start dates, finish dates, durations, and job logic), their physical locations,

their planned resources (materials, labor, equipment) and planned quantities (cut, fill).

The planning algorithm depicted in Figure 4-40 identifies pending activities based on scheduled
dates and job logic. Then extracts from the 4-D model the assigned resources for each pending

activity, its planned work zone (location), and its planned quantities of cut and/or fill. The work

zone is defined by a set of points, which serves as boundaries for equipment tracking.
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For Each Activity in Schedule
Do

IF The Predecessors
Completed?

Yes

Y

Add Activity to List of Pending
Activities

:

Get Planned:
- Location
= Duration
- Resources
= Quantities
- Productivity
-% Completed

:

MNext Activity

Figure 4-40: Planning Algorithms Flowchart

4.8.2 Productivity Analysis Algorithm

the fleet using Eq. (4-6).

This Algorithm is responsible for calculating actual productivity of the earthmoving operation
being considered and analyzing the productivity with respect to the contextual data to identify
potential bottlenecks in the site operations. Productivity calculation is based on actual measured
cycle times and actual estimates of excavated soil volumes, to calculate productivity per

equipment. Overall productivity is calculated by summing the productivity of individual trucks in
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Overall Productivity = Y., Truck Productivity; (4-6)
Where:
Truck Productivity; is truck i productivity in m>/hr, and n is the number of trucks.

The truck productivity is calculated using Eq. (4-7).

Soil Volume (m3)x load factor
Total Cycle time (hr)

Truck Productivity = (4-7)

Where:

Total cycle time = sum of loading, travel, dumping, returning and service time

Load factor = factor for converting soil material to a compact state

The American Society for Testing and Materials (ASTM) standard practice for Job Productivity
Measurement (ASTM E2691-09) provides a metric for measuring productivity differential. The

Productivity differential can be calculated using Eq. (4-8):

(Average Productivity—Current Productivity)

Productivity Dif ferential = (4-8)

Average Productivity

The data required to create a baseline for average productivity can be drawn from company’s past
practice or industry standards (ASTM E2691-09). JPM measures productivity changes, trends and
anomalies and it can be considered as an early warning signal for construction productivity (ASTM
E2691-09) problems. Five signals are proposed in the standard to represent anomalies and
deviations from the reference point: Trends, shifts in the mean, extreme points, saw tooth pattern
and missing data. For instance, if 6 or more consecutive points (productivity differentials) show
an increasing or decreasing trend, the signal is representing “Trends” (ASTM E2691-09) as shown

in Figure 4-41.
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The developed SA-GPS prototype is able to provide the necessary information for automated
earthmoving productivity assessment for the different scenarios. Table 4-8 depicts 21 different
scenario, where SA-GPS data are proposed to identify bottlenecks and problems in earthmoving
productivity. The potential of using SA-GPS in automated productivity assessment is supported

with the multisensory data capture technologies integrated in the hardware developed, as well as

Productivity Differential
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Figure 4-41: Example of Productivity Differential (Shahandashti et al., 2010)

the data fusion algorithm described above.

Table 4-8: Scenarios for Automated Productivity Assessment using SA-GPS

NO Scenario Required information Sensor data
1 Adverse loading e Increase in the average e Proximity Detection (Bluetooth)
site condition duration that a truck spends in | e Truck Speed (GPS)
the earthmoving site e Location (GPS)
e Exclude the waiting times and
loading times
2 Adverse access e Increase in the average e Proximity Detection (Bluetooth)
road condition duration that a truck spends on | e Truck Speed (GPS)
access road e [ocation (GPS)
3 Changing soil type | e Soil percent swell e Load Weight (Strain gauge)
e Soil Density e Number of Buckets (Altimeter)
e [oading time e [oading Time (Bluetooth+GPS)
4 Excavator e Increase in the average hauler | e Proximity Detection (Bluetooth)
breakdown queue time in loading e Truck Speed (GPS)
e Excavator in service area
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e Location (GPS)
e [oad Weight (Strain gauge)
e Number of Buckets (Altimeter)
5 Depth of cut is Change in the number of ¢ Proximity Detection (Bluetooth)
changing passes to fill the bucket e Truck Speed (GPS)
Change in the number of e Location (GPS)
passes to fill the truck e Load Weight (Strain gauge)
Change in the average loading | e Number of Buckets (Altimeter)
time
6 Over time Labor hours related to e Proximity Detection (Bluetooth)
workers who work overtime e Time (GPS)
Labor hours related to
workers who do not work
overtime
7 Day and night shift Day-shift expended labor e Proximity Detection (Bluetooth)
hours e Time (GPS)
Night-shift expended labor
hours
Day-shift percent complete
Night-shift percent complete
8 One-way Duration that a hauler waits to | e Proximity Detection (Bluetooth)
hauli d enter the hauling road e Truck Speed (GPS)
auting roa e [ocation (GPS)
9 Heavy traffic in Increase in the average e Hauling Time (Bluetooth+GPS)
hauling road duration that a hauler e Truck Speed (GPS)
spends in hauling road e Truck Engine Idle
(Accelerometer)
e [ ocation (GPS)
10 Changing dumping Hauling distance e Distance (GPS)
location e Hauling Time (Bluetooth+GPS)
e Truck Speed (GPS)
e [ ocation (GPS)
11 | Adverse weather Temperature e Weather measurement station
conditions Humidity
Precipitation
12 | Truck breakdown Increase in the average e Loader Idle Time (Bluetooth,
loading unit idle time GPS, Altimeter)
Truck in service area e Location (GPS)
e [ocation + Speed + Load weight
13 | Adverse dump site Increase in the average e Proximity Detection (Bluetooth)
condition duration that a truck spends in | e Dump Time (Accelerometer)
the dump site e Truck Speed (GPS)
Exclude the actual dumping e Location (GPS)
times
14 | Excessive Increase in the average e Loader Idle Time (Bluetooth,

Excavator Idle

loading unit idle time

GPS, Altimeter)
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15

Excessive Hauler

Increase in the average hauler e Proximity Detection (Bluetooth)
Idle unit idle time e Truck Speed (GPS)
e Location (GPS)
e [oad Weight (Strain gauge)
e Number of Buckets (Altimeter)
16 | Aggressive Hauler Harsh braking e Acceleration and Swing
operator Harsh acceleration (Accelerometer)
17 | Hauler over Payload exceed maximum e [oad Weight (Strain gauge)
loading payload
18 | Bucket Not Full Increased number of buckets e Load Weight (Strain gauge)
to load e Number of Buckets (Altimeter)
19 Low Dump Angle Increase in the average dump e Dump Time (Accelerometer)
time e Truck bed tilt angle
(Accelerometer)
20 | Sticky material Increase in average load e Load Weight (Strain gauge)
weight while truck returning e Number of Buckets (Altimeter)
Decreased number of buckets
to load
21 Excavator Time between excavator e [ocation (GPS)
repositions movements e Arm Swing (Accelerometer)

Equipment operators are usually under a great deal of pressure to achieve target production rates.
While the operator may push the equipment to the maximum to achieve the requested production,
it is beneficial to the contractor to monitor the operator behavior for equipment abuse. Speeding is
a huge factor in high fuel consumption. The developed SA-GPS prototype allows monitoring of
the operator and equipment to flag and report any undesirable behavior. Alerts are triggered for
excessive speeding, harsh breaking and excessive idling. A three axial accelerometer is used for
detecting aggressive driver behavior such as sudden acceleration and breaking. Measured
acceleration in x-axis and y-axis reflects the driver’s direct control of the vehicle while accelerating
or applying the brakes. The margin for safe acceleration and brake is +0.3g, while harsh
acceleration and brake can reach +0.5g (Fazeen et al., 2012). The algorithm shown in Figure 4-42

utilizes these limits to flag aggressive driving behavior.
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following steps:

‘ Read GPS Speed Fi

) 4

Delta Speed = Speed,-speed,.,

k4

‘ Read Acceleration in x and Y ‘

Aggressive Driving

Delta Speed >0
and
| Acceleration| > 0.3

Flag Harsh Acceleration }¢Yes

Delta Speed <0
and
|Acceleration| > 0.3

|
|
|
|
|
|
|
|
|
| No
|
I
|
|
|
|
|
|
|

Figure 4-42: SA-GPS Operator Behavior Detection Flowchart

4.8.3 Progress Estimation and Forecasting Algorithm
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This algorithm is responsible for estimating and forecasting project’s progress and generating
automated progress reports. The percentage completed of each activity is calculated based on the
measured actual quantities of work completed on each activity. Then the percentage completed is
used to calculate the budgeted cost of work performed (BCWP), which is rolled up to the project
level. The Earned value analysis is performed to calculate both cost performance index and
schedule performance index. The progress is forecasted based on the self-adaptive forecasting
method of (Ibrahim & Moselhi, 2013b), which enhances forecasting accuracy through continues
iteration to reduce the forecasting error. This method is based on the principles of iterated multi-

step forecasting method. The proposed method forecasts the final cost of a project according to the



At time period t, the forecasting factor (6t) is calculated from the actual productivity, and the

planned productivity,

Actual Productivityg

8t=

(4-9)

Planned Productivity;’

Then, the estimated productivity for the next period t+1 is forecasted using the previously

calculated forecasting factor at time period t.

Estimated Productivity,,; = §&; X Planned Productivity,,, (4-10)

At time period t+1, the forecasting factor (8.,4) is calculated,

Actual Productivity¢yq

= 4-11
Ber1 Planned Productivityy;, ’ ( )

The forecast error correction factor (€q44) is calculated by dividing the estimated productivity by

the actual productivity,

Actual Productivity¢4q

€ = 4-12
t+1 Estimated Productivityi;,’ ( )

Then, the estimated productivity for the next period t+2 is forecasted based on the forecasting

factor and the forecast error correction factor,

Estimated Productivity,;, = (8;4+1 X €+1) X Planned Productivity,,, (4-13)

The total project duration is forecasted based on estimated productivity,

. . 1P1 d - 1 leted
Total Duration = Duration to data + ( , TotalP e _Qty Actual Completed Qty ) (4-14)
Estimated Productivityi;, XxNumber of work hrs per day.
The total project cost (EAC,) is forecasted from the total project budget (BAC),
_ Total Planned Qty —Actual Completed Qty) )
EACt - ACt + (BAC X ( Total Planned Qty ) (4 15)
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The above steps are repeated for the following time periods as shown in Figure 4-43.

( Start

_Actual Productivity,
" Planned Productivity,

t

Estimated Productivity,;; = &, x Planned Productivity; ;1

»  Fort=0ton-2 periods

5 Actual Productivity,
"1™ Planned Productivity,
A
Actual Productivity, 4
£ =
1 ™ Estimated Productivity,,

Estimated Productivity, ;3 = (841 X g¢41) X Planned Productivity; ,,

A

Total Planned Qty — Actual Completed Qty
Estimated Productivity, , X Number of work hrs per day

Total Duration = Duration to data + (

Total Planned Qty

EAG, = AC, + (BAC x (Tmalp lanned Qty — Actual Completed Q )

Project completed

Yes

End

Figure 4-43: Self-Adaptive Forecasting Algorithm (Ibrahim & Moselhi, 2013b)
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4.9 Prototype Laboratory Validation

Laboratory experiments were conducted to test the developed SA-GPS prototype latency and

energy consumption.

4.9.1 Prototype Latency Test

Latency is the measure of time delay between the sending and receiving of a message. Data latency
is very critical especially for real time tracking and control applications. Therefore it was necessary
to measure the latency of the developed prototype. The test-bed consisted of one gateway and five

SA-GPS mobile nodes as shown in Figure 4-44.

SA-GPS SA-GPS

SA-GPS
\:: 1 SA-GPS
= N 4
Remote \
Database \§ SNAP Communication
SA-GPS
5

Gateway

Figure 4-44: Latency Test-bed

The gateway is used for initiating the latency measurements, retrieving the measured times and
storing these locally, then send these data over WLAN to server based database for processing.
The gateway performs a double task, first, receiving and sending packets from/to the mobile node

and second, communicating data through WLAN. Latency is measured in terms of the round trip
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time (RTT) measured from the start of data transmission from the gateway node, traveling to a
destination node where it is then echoed back and returned to the gateway as shown in Figure 4-45.
The RTT is measured by adding a start-time timestamp in the data packet when the packet is
leaving the gateway, and later adding an end-time timestamp and a delta-time indicator (delta-time
= end-time — start-time) in the same data packet when it returns back to the gateway. This
measurement identify the in-network latency. The data size was varied from 1 to 8000 bytes. The
8kb size was validated by experiments to be the largest size of data to be transferred from the

mobile unit to the gateway at any time. Each test was repeated for 100 runs then results were

averaged and summarized in Table 4-9.

Start_Time
TX -

Gateway SA-GPS
RX:
End_Time

RTT = End_Time - Start_Time
Figure 4-45: RTT Measurement

Table 4-9: SA-GPS Latency Test Results

Data Bytes | Average Latency (ms) | Maximum Latency (ms)
1 4.05 15.60
2 4.07 16.30
12 4.09 18.70
30 4.67 21.10
62 8.19 24.20
71 8.64 32.40

128 13.63 46.80
500 45.05 56.80
1000 87.72 93.60
2000 172.07 187.20
4000 344.04 358.80
8000 683.99 686.40
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4.9.2 Prototype Energy Consumption Test

Measuring the energy consumption of the developed SA-GPS prototype was very important to
validate the possibility to power the prototype from backup battery in case of failure in the external
power supply. The energy consumption was measured as j/hr to accomplish the complete
performance of the developed prototype. The measurement were performed in the lab over 8 hours
period, where the values obtained averaged over that period. The energy consumption was
measured per each application component: Data Sensing, Data Recording, Data Processing, and
Data Transmission. The results summary presented in Table 4-10 indicated that, data transmission
is the highest energy consuming application component with 38.40% of the total consumption.
Data sensing came in the second place with 28.61%. The total power for the prototype can be

supplied from 2xAA batteries for almost 8.4 hours. Keeping the data transmission to minimum is

essential to improve the developed prototype energy performance.

Table 4-10: SA-GPS Energy Consumption Test Results

Application Component | Energy Usage (j/hr) | Energy Consumption
Percentage

Data Sensing 752.33 28.61%

Data Processing 630.00 23.96%
Data Recording 237.60 9.04%
Data Transmission 1,009.80 38.40%

Total 2,629.73 100.00%

Expected Lifetime on 8.40
2XAA (hours)
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4.10 Prototype Validation / Case Study

The developed prototype was tested on a scaled case study, where remotely controlled scaled
equipment (1:50) were used for a dirt road construction project as shown in Figure 4-46. The
purpose of this case study was to validate results obtained in laboratory experiments and measure
the prototype accuracy. In this project, several scenarios were simulated to test the performance of
the developed prototype in estimating the project progress and in identifying productivity

bottlenecks.

(a) (b)

Figure 4-46: SA-GPS Prototype Mounted on Scaled Equipment

In this case study, a simple 10 m length and 1 m wide dirt road was constructed. The utilized
construction equipment fleet composed of a dozer, excavator, wheeled loader, two trucks, and
roller. Seven main activities were performed during the construction of this project, namely,
excavate, load, haul, dump, return, spread and compact. A team of 8 personnel executed this
project controlling the scaled equipment. The total quantity of the excavation was 2.9 m> and the
total quantity of fill was 1.37 m>. The project was completed in 15 hours with a total cost of
$5382.15 (estimated based on hourly rate). The road design is shown in Figure 4-47, where the

quantity of earthwork was calculated assuming typical trapezoidal sections at 1 m intervals along
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the road profile. A video camera was used to record the actual construction progress in order to

compare it with the results obtained from the SA-GPS prototype.

Load

08 0-+09 0+10

(a) 3D Road Profile (b) Video Recording of Construction

Figure 4-47: Case Study Jobsite

The project plan was to cut 2.805 m3 of dry sand and back filling of 1.37 m3. However the actual

total volume of soil in cut locations was 2.9 m3 due to the unstable sandy soil in the cut areas.

4.10.1 Results

In order to benchmark the accuracy of the developed prototype, the performance of developed
prototype is compared to standalone GPS method developed by Montaser et al (2012). The project
progress was also calculated manually with the aid of video camera recording and actual
measurements of cut and fill quantities. Figure 4-48 illustrated the project progress using both
methods. The results presented in Table 4-11 show that the standalone GPS method estimated the
progress of earthwork with an average absolute percentage error of 12.26%, and the developed
SA-GPS prototype estimated the project progress with an average absolute percentage error of
2.88%. The project duration was forecasted at T=9 h using both methods as shown in Table 4-12.

The forecasted project duration and cost using the standalone GPS method were 13.7 h and
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$4,915.70, respectively, with error of 8.66%. On the other hand, the forecasted project duration
and cost using the developed framework where 15.7 h and $5,633.32, respectively, with error of

4.66%.

Project Progress

120%
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T 60% [2334%..4

40%
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Time (hr)

— #@ —Planned - % —Actual —a—GPS —e— SA-GPS

Figure 4-48: Project Progress Tracking

Table 4-11: Project Progress Comparison

Time | Planned | Actual | Measurement Estimation Error Absolute % Error
(h) Qty Qty Qty (m3)
m3 m3 GPS | SA-GPS GPS SA-GPS GPS SA-GPS

0.216 | 0.182 | 0.197 | 0.178 8.31% -2.41% 8.31% 2.41%

0.432 | 0.368 | 0.403 | 0.342 9.50% -7.06% 9.50% 7.06%

0.647 | 0.544 | 0.606 | 0.511 11.30% | -6.17% 11.30% 6.17%

0.863 | 0.738 | 0.823 | 0.690 11.54% | -6.46% 11.54% 6.46%

1.079 | 0904 | 1.003 | 0.872 10.92% | -3.57% 10.92% 3.57%

1.295 1.101 | 1.228 | 1.043 11.58% | -5.21% 11.58% 5.21%

1.511 1.281 | 1.444 | 1.231 12.68% | -3.92% 12.68% 3.92%

1.726 1.450 | 1.642 | 1.425 13.23% | -1.76% 13.23% 1.76%

1.942 1.636 | 1.850 | 1.599 13.06% | -2.27% 13.06% 2.27%

10 2.158 1.827 [2.069 | 1.822 13.21% | -0.31% 13.21% 0.31%

11 2.374 | 2.020 | 2.299 | 2.008 13.84% | -0.56% 13.84% 0.56%

12 2.590 | 2.210 | 2.513 | 2.226 13.71% | 0.71% 13.71% 0.71%

13 2.805 | 2.428 | 2.758 | 2.435 13.60% | 0.32% 13.60% 0.32%

O |0 |QA|N| N[ [WIN|—

14 2,626 | 2987 | 2.654 | 13.76% | 1.07% 13.76% 1.07%
15 2900 |3.295| 2.940 | 13.62% | 1.38% 13.62% 1.38%
Average 12.26% | -2.41% 12.26% 2.88%
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Table 4-12: Project Estimate at Completion and Duration Forecasting

T=9h GPS SA-GPS | Planned | Actual
Progress to date (m3) 1.850 1.599 1.942 1.636
Percentage Complete 64.35% 57% 69.23% | 58.32%
Forecasted Project duration (h) 13.7 15.7 13 15
Forecasted Cost $4,915.70 | $5,633.32 | $4664.53 | $5382.15
Forecast Error -8.66% 4.66%

The productivity estimation using both methods was also evaluated in this case study. Table 4-13

illustrated the results of the productivity comparison, where the average actual productivity

measured using manual method was lower by 10.41% than the planned productivity as shown in

Figure 4-49. The estimated average productivity using the GPS was higher than the average actual

productivity by 13.62%, while the estimated average productivity using SA-GPS was only 1.38%

higher than the average actual productivity. The productivity estimation using GPS had 13.65%

mean absolute percentage error in comparison to 8.27% using SA-GPS prototype.

Table 4-13: Hourly Productivity Comparison

Time Planned Actual Productivity Error Absolute %Error
(h) | Productivity | Productivity | GPS | SA-GPS GPS SA-GPS GPS | SA-GPS
m3/hr m3/hr m3/hr | m3/hr
1 0.216 0.182 0.197 0.178 8.31% -2.41% 8.31% 2.41%
2 0.216 0.186 0.206 0.164 10.66% -11.61% 10.66% | 11.61%
3 0.216 0.177 0.203 0.169 15.07% -4.31% 15.07% 4.31%
4 0.216 0.194 0.217 0.180 12.20% -7.27% 12.20% 7.27%
5 0.216 0.166 0.180 0.182 8.19% 9.23% 8.19% 9.23%
6 0.216 0.196 0.225 0.171 14.62% -12.77% 14.62% | 12.77%
7 0.216 0.181 0.216 0.188 19.37% 3.96% 19.37% 3.96%
8 0.216 0.169 0.198 0.194 17.37% 14.60% 17.37% | 14.60%
9 0.216 0.186 0.208 0.175 11.77% -6.22% 11.77% 6.22%
10 0.216 0.191 0.219 0.222 14.50% 16.44% 14.50% | 16.44%
11 0.216 0.192 0.230 0.186 19.85% -2.92% 19.85% 2.92%
12 0.216 0.191 0.214 0.218 12.27% 14.12% 12.27% | 14.12%
13 0.216 0.217 0.245 0.210 12.53% -3.58% 12.53% 3.58%
14 0.198 0.230 0.219 15.68% 10.25% 15.68% | 10.25%
15 0.274 0.308 0.286 12.30% 4.32% 12.30% 4.32%
Average 13.65% 1.46% 13.65% 8.27%

106




Productivity
0.350 : : : : : : :
0300 f---oooo-- booooooes boomoooos booooooees fommmooes drommnees dommeees S A
0.250 p--------- R R i H— A y T
.- _ 1 1 y 1 1

. 0.200 |---- = A EEEEEEE

£ X X f i

m\ : I ¥ 1 1 :

0150 foonooe e e R M
0.100 | --------- booneeeees bomeeeees boommeeee fomeeees fmmmmeees drmmeeeees A
0.050 p--------- pom-oese- pomssmsee- Temsssese- R jromemeee- Tmmmmese- HE—
0.000 : : : : : : '

0 2 4 6 8 10 12 14 16
Time (hr)
- ® -Planned - x -Actual —a—GPS —e—SA-GPS

Figure 4-49: Project Hourly Productivity

Another Important performance measure is the differential productivity, which enables detection
of trends and patterns in operations on-site. Table 4-14 and Figure 4-50 depict the actual
differential productivity encountered on site, and the estimates using both methods. The actual
average differential productivity was -10.41%, and it reflected the learning curve of the crew
utilizing the remote controlled equipment, where the differential productivity started to trend up
around T=9 and all the way to the end of the project duration. The SA-GPS had better estimate of
the average differential productivity as -9.18%, while the standalone GPS estimate was way off

with an average value of 1.79%.
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Table 4-14: Differential Productivity Comparison

Time | Planned Actual Productivity Differential Productivity

(h) | Productivity | Productivity GPS SA-GPS Actual GPS SA-GPS
m3/hr m3/hr m3/hr m3/hr

1 0.216 0.182 0.197 0.178 -15.70% | -8.70% | -17.73%
2 0.216 0.186 0.206 0.164 -13.92% | -4.74% | -23.91%
3 0.216 0.177 0.203 0.169 -18.10% | -5.77% | -21.64%
4 0.216 0.194 0.217 0.180 -10.24% | 0.71% | -16.76%
5 0.216 0.166 0.180 0.182 -22.93% | -16.63% | -15.82%
6 0.216 0.196 0.225 0.171 -9.09% | 4.21% | -20.69%
7 0.216 0.181 0.216 0.188 -16.22% | 0.01% | -12.90%
8 0.216 0.169 0.198 0.194 21.72% | -8.13% | -10.30%
9 0.216 0.186 0.208 0.175 -13.74% | -3.59% | -19.10%
10 0.216 0.191 0.219 0.222 -11.50% | 1.34% | 3.05%
11 0.216 0.192 0.230 0.186 -11.01% | 6.65% | -13.61%
12 0.216 0.191 0.214 0.218 -11.68% | -0.85% | 0.79%
13 0.216 0.217 0.245 0.210 0.76% | 13.39% | -2.84%
14 0.216 0.198 0.230 0.219 -8.04% | 6.38% 1.39%
15 0.216 0.274 0.308 0.286 26.97% | 42.58% | 32.45%
Average -1041% | 1.79% | -9.18%
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Figure 4-50: Project Differential Productivity

108




Equipment utilization was calculated using SA-GPS, the loader utilization was 29%, where the

trucks utilization was 99% as shown in Figure 4-51.
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Figure 4-51: Equipment Utilization

In order to validate the functionality of the developed productivity analysis algorithm. Simulated
scenarios are used to test the capabilities of the developed algorithm in identifications of
bottlenecks in the earthmoving operations. The algorithm use IF-Then rules to check for conditions

listed in table Table 4-8. For example, the rule to check for changing soil conditions is:

If

{(Loading Time > Average Loading Time) and (Number of Buckets > Average
Number of Buckets) and (Load Weight > Average Load Weight)}

Or

{(Loading Time < Average Loading Time) and (Number of Buckets < Average
Number of Buckets) and (Load Weight < Average Load Weight)}

Then (Soil type is changing)
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A scenario for a change in soil conditions was simulated by adding some rocks to the sandy soil.
The loading time started to increase and the number of buckets required to fill the truck was

increased from 5 to 6. A flag for changing soil was identified at cycle 16 as shown in Figure 4-52.
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Figure 4-52: Changing Soil Conditions Scenario

Another scenario was test, a truck out of service on the road, which in turn cause excessive loader

1dle time. The rule to check for truck out of service conditions is:

If

{(Loader Idle Time > Average Loader Idle Time) and (Truck; Cycle Time > Average
Trucks Cycle Time)}

Then (Potential Truck; Out of Service)
This scenario was simulated by taking one truck out of service between times (12,770 to 13,770)

and (26,360 to 27,360). The loader idle time started to increase and a flag was raised by the

algorithm as shown in Figure 4-53.
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Figure 4-53: Truck Out of Service Scenario

4.10.2 Discussion of Results

The cumulative probability functions (CDF) of a system’s estimation error is used to measure its
precision. To compare the developed SA-GPS prototype with the standalone GPS method with
respect to accuracies and precision, the technique whose CDF graph reaches high probability
values faster is more preferable, because its estimation error is more concentrated in small values.
With 95% confidence, the developed SA-GPS has a progress estimation accuracy of 93.36%, while

the standalone GPS has a progress estimation accuracy of 85.05% as shown in Figure 4-54.

The lower accuracy of the standalone GPS method is attributed to its complete reliance on only
one source of data, which is used to detect equipment location onsite. Then an algorithm correlates
that location to activities (load, haul, dump and return) being executed, to identify their parameters
such as start, finish and durations. It also assumes that hauling units are loaded to their full capacity.
Although that GPS accuracy is independent of scale of jobsite, location detection accuracy is

directly proportional to size and scale of jobsite. So given the small size of the jobsite considered
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in this case study, the location detection accuracy is lower compared to that expected on larger

real-size jobsites.
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Figure 4-54: Progress Estimation Errors CDF

Contrary to the standalone GPS method, the accuracy of the developed SA-GPS prototype is not
size or scale dependent of the construction operation being monitored. The prototype is designed
and configured to detect equipment physical movement and their inter-action which also is
independent of size and scale. The results showed that using multiple sensors in addition to GPS,
augments its capabilities. The improved accuracy can be attributed to the whole cluster of sensors
and the reasoning engine used to fuse sensors data as described earlier in the productivity

assessment module.
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The improved progress estimation of the developed prototype not only reduces the risk of project
cost and duration overruns, but also enables project managers to observe and oversee their project’s
status in real-time with the support of intuitive and timely progress reports. It is expected that the
accuracy of the developed prototype can be achieved on large-scale road and highway construction
projects. This is attributed to the fact that the developed prototype does not require any scalable
improvements on the hardware technology used, nor does it require any additional computational
changes in the developed software. The performance of the developed SA-GPS prototype was
measured against the five performance measures described in section 4.3. Table 4-15 summaries

the performance measures for the SA-GPS:

Table 4-15: SA-GPS Performance Measures

Performance Measure Value
Accuracy 93.36%
Precision 95%
Latency Less than 700 milliseconds
Scalability Up to 15,000 nodes can be connected at one time
Robustness It is able to perform if sensor data is noisy, corrupted or missing
Cost $100-150 (depends on number of sensors)

The developed prototype is able to capture real-time operating information such as equipment idle
and out of service times, along with operator driving behavior and weather conditions, which
facilitates operations optimization and potentially reduce their costs. The developed prototype
paves the road to a wide range of applications in construction such as progress tracking, jobsite

safety and security enhancement, productivity assessment and facilities management.

4.11 Summary

This chapter described the development of the SA-GPS prototype for outdoor automated data

acquisition on construction jobsites. The developed prototype was designed with a special focus
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on automated tracking and control of earthmoving operations in near real time. The developments

made in this chapter is contributing to the body of knowledge in:

e Experimental investigation to assist designing flexible and customized automated data
acquisition prototypes utilizing latest innovations in sensory and wireless technologies.

e Testing and selecting wireless protocols, sensors for efficient coverage, data capturing and
communication

e Design, configure, test and validate the developed prototype to address limitations in
current practice in automated site data acquisition and off-the-shelf technologies.

e Design data fusion algorithm for timely extraction of actionable information in support of
near real-time productivity analysis for earthmoving operations.

e Validation of concurrent design and testing of the developments made for automated site
data acquisition using rapid prototyping techniques.

e Development of efficient data management scheme that utilizes integrated on-sensor node
data processing and in-network data processing to transform raw data into high level useful
and actionable information. In this context, data aggregation and processing render much
faster near real-time progress measurements.

e Development of fuzzy reasoning data fusion and knowledge extraction algorithm to

provide a higher level of system redundancy in case of sensors malfunctions.
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Chapter 5 : SELF-CALIBRATED WSN PROTOTYPE

5.1 General

The aim of this chapter is to describe the study made leading to the development of Self-Calibrated

Wireless Sensor Network (SC-WSN) for indoor tracking and progress reporting of construction

operations, with a focus on improving the localization accuracy. Figure 5-1 depicts the main

sections of this chapter.
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Figure 5-1: Chapter 5 Overview

5.2 Design Objectives

The main design objectives for the SC-WSN prototype are:

e Select best filtering technique for RSSI for indoors localization.
e Improve indoor localization accuracy.

e Design a dynamic and adaptable path-loss model.

5.10
Summary

e Test and validate the prototype design using simulation and laboratory testing.
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5.3 Performance Measures
The performance measures are similar to those utilized in chapter 4, with a focus on the localization
accuracy. The Euclidean distance is used to measure the localization error. The average distance

error is adopted as the performance metric, which is calculated using equation (5-1):

E(distance error) = E(\/ (x —x')2 + (y — y")?) (5-1)

5.4 Prototype Design

Similar to the iterative process of rapid prototyping design presented in chapters 3 and 4, a similar
approach was utilized. The SC-WSN prototype is designed to address the limitations highlighted
in chapter 3. The developed prototype consists of fixed readers, gateway and mobile tags as shown
in Figure 5-2. This prototype is based on radio frequency technology, and its hardware components
are selected to satisfy the performance matrices (accuracy, precision, robustness and cost). Tags
are the mobile units, which will be carried by or mounted on tracked resources (labor, material and

equipment).

> Internet
Cloud
AN
Reader 1 ﬁ Reader 3
~

o

Database
Server

Reader 2

Gateway

Figure 5-2: Indoor Positioning prototype Components

Readers are the fixed units, which are mounted at key locations on a construction site to provide

appropriate RF coverage. Each reader has a unique ID, and a predefined location. A reader is
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continually scanning for nearby tags, once a tag is detected; it measures its signal strength. Then
the microcontroller converts the measured signal strength to distance according to a predefined RF
propagation model. It transmits the distance value with the reader coordinates (x,y) back to the tag.
Once it receives three readings from three different readers, a 2D trilateration is applied to calculate
the tag location in 2D, then it adds the third dimension (elevation) from the reading of its pressure
sensor. Finally the tag transmits its ID, and location to the nearest gateway. Gateways are fixed
units with higher processing and storage capabilities. A gateway consists of a microcontroller with
RF transceiver, a wireless LAN communication module, a real time clock, a data logger and a
power supply. The gateway collects the data from the tags and readers, then performs pre-data
processing. Locations are recorded with time stamp on the gateway internal storage and
transmitted periodically to a cloud based algorithm for linking with BIM and post processing. In
order to increase accuracy without placing more readers, the model employs the idea of having
extra fixed location reference tags to help location calibration. These reference tags serve as

reference points in the system as shown in Figure 5-3.

Reader 2 Reference Reader 3

ll Tag3 Il

Reference
Tag 2

* Reference -

Reader 1 Tag 1l
Figure 5-3: Reference Tags for Self Calibration
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A two stage process is implemented in this prototype, prediction stage and calibration stage as
shown in Figure 5-4. Each reader measures the signal strength (RSSI) from nearby tags and filter
it to remove uncorrelated noise. The prediction stage is initiated by converting the filtered RSSI to
its corresponding distance using the dynamic path-loss model. The initial settings for the signal
propagation model parameters are calculated using indoor experimentations as explained by
(Ibrahim & Moselhi, 2014d). Once three distances from three readers for a given tag are available,
its location is estimated using the LSE trilateration algorithm. The localization accuracy is
continually monitored by measuring the errors in location estimation generated based on a number
of reference tags. These reference tags are deployed on site at pre-defined locations. When the
system accuracy is degraded due to on-site interferences, a system calibration request is initialized.
The user can define the accuracy limits to initiate the calibration requests. The calibration stage
utilizes a particle swarm optimization (PSO) to find the best values for the path-loss model
parameters which maximize the system localization accuracy. Finally, at the end of the calibration

stage, the dynamic path-loss model is updated with a new set of optimized parameters.

Update Model Request of System
Parameters

Propagation Model Parameters Calibration

Optimization using PSO
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Figure 5-4: Developed Localization Prototype Overview
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Several researchers have used different wireless technologies at 2.4 GHz and RF lower frequency
bands (433 MHz - 928 MHz) in indoor localization research. When choosing a frequency band for
an indoor positioning system; key criteria are power management, network reliability, and network
density. Many researchers are tempted to choose the 2.4 GHz band because it is the most globally
accepted. However, its popularity carries increasing demand on the band, which results in
deteriorating performance and requires complicated RF protocols to overcome interference.
(Ibrahim & Moselhi, 2014d) indicated that when considering several factors such as coverage
range, data transfer rate and radio interference, the 900 MHz frequency band is consider the best

trade-off between all these factors (considering equal weights) as shown in Figure 5-5.

900 MHz has a much longer wavelength, which provides greater physical barrier penetration and
is far less popular, which makes the frequency range less crowded. Because of these two factors,
given enough transmit power and receptor sensitivity, it is considered the best alternative for

indoor localization.
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Figure 5-5: Operating Frequency Vs Performance

Three major hardware components are used to build the prototype: microcontroller, RF module
and Barometric pressure sensor. Waspmote microcontroller is used which is a more advanced

microcontroller than the Arduino Uno used in the SA-GPS as shown in Figure 5-6. It is a 32 bit
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microcontroller with 128 Kb of flash memory, which enables executing advanced optimization
algorithms. It can be programmed using C++, and it has an Open Source API to program using

high level functions without having to deal with hardware-specific commands.

Figure 5-6: Waspmote Microcontroller

Synapse SNAP radio frequency module RF300 is used based on the experimental study presented
in chapter 4. BMP180 barometric pressure sensor as explained in chapter 4, is used for elevation

measurement identical to that used in chapter 4.

5.5 Hardware Assembly and Configuration

Considering the function and design objectives, the prototype is designed to be consisted of three
main parts: the tag, the reader and the gateway. Each of them encompass hardware components
and firmware scripts. The firmware scripts are programmed to set the main parameters required
for the prototype and to control hardware functions. The tag is equipped with the Synapse
RF300PC engine and the BMP180 pressure sensor. The communication between the BMP180 and
RF300PC is established through Inter-Integrated Circuit (I2C) communication. The required
minimum power is 2.5V. So the tag will be powered by a Li-lon Rechargeable Coin Cell batteries
(PD3555) to keep the tag small as shown in Figure 5-7.
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Figure 5-7: Tag Wiring Diagram

Tag’s firmware consists of two main scripts. The first script performs a multicast function to
surrounding readers. The multicast function pings the nearby readers and passes the tag MAC
address to the readers to perform the RSSI measurement as shown in Figure 5-8. The second script
performs the localization when three distance are received from surrounding readers, and it
measures the barometric pressure then converts into corresponding altitude. Finally, it transmits

the 3D location of the tag to the nearest gateway as shown in Figure 5-9.
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Figure 5-8: Tag Multicast Script Flowchart
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Figure 5-9: Tag Localization Script Flowchart

The reader is equipped with the Synapse RF300PC engine and powered by a 3 V DC 400 mA
Power Adapter. The RF module has Omni directional antenna for extended range. Similar to the
tag wiring setup, (-) on the DC plug goes to the pin 24 on the module and (+) goes to pin 21 on the
module, as shown in Figure 5-10. The reader listens to ping requests from tags. Once a request is
received the reader records the RSSI of the transmitted packet, then it is filtered and converted to
its corresponding distance. The reader then sends the distance with the reader coordinates back to

the tag as shown in Figure 5-11.
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Figure 5-10: Reader Wiring Diagram
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Figure 5-11: Reader Script Flowchart

The Gateway node is used to collect data from the readers, and tags; then transmit the data to the
cloud based database for post-processing. The Gateway node also responsible for monitoring the
system performance and auto calibrating the system when the localization accuracy is low as
shown in Figure 5-12. It consists of a Waspmote microcontroller, Synapse RF300 module, RN-

171 WLAN module and 2GB SD card as shown in Figure 5-13.
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5.6 RSSI De-Noising Filter

Theoretical laws of electromagnetic wave propagation describe propagation losses when waves
are travelling in ideal free-space situations, which become very challenging when applied to actual
indoor localization situations. These challenges arise from the lack of prediction methods for actual
propagation losses on complex and dynamic jobsites. In ideal free-space situations,
electromagnetic waves travel or propagate in direct rays from transmitter to receiver. However in
actual situations, waves pounce as they are reflected and scattered from surrounding environment
such as floor, ceiling, walls and various objects. Which in turn cause multipath waves, which can
be either constructive or destructive, resulting in a positive or a negative effect on the received
signal strength. Such interference is more complicated in complex and dynamic environments such
as construction jobsites, where losses are continually changing. Theoretically, RSSI is inversely
proportional to the distance between a transmitter and a receiver. However, interferences such as
multipath and shadow fading affects RSSI as shown in Figure 5-14. It is obvious that the RSSI
heavily depends on surrounding environment. The comparison between electromagnetic signal
propagation in free-space (Anechoic chamber) and corridor environments shows the multipath

effect, where the electromagnetic signal is pouncing in a random manner.
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Figure 5-14: Signal Propagation in Different Environments (Rensfelt, 2012)
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From the collected RSSI data as explained in details in chapter 4, it was clear that RSSI is affected
by the periodic/random changes in the physical properties of the surrounding environment or even
a group of people passing around the transmitter or receiver as shown in Figure 5-15. Such
variations in the RSSI readings (even when the node is at standstill) produce huge errors in the
estimate distance. A simple moving average could be used to filter out small oscillations in the
RSSI, however further investigation is required to select the best filtering and smoothing method.
The following section will present a deep analysis for selecting the most effective filtering scheme

for the localization problem.
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Figure 5-15: Real-Time RSSI VS Moving Average Filtered RSSI

RSSI measurements presented chapter 4 can be unreliable for localization due to the noise
interference. Signal de-noising is required to generate a signal which is representative of the
original RSSI but less noisy and suppresses interferences caused by surrounding environment

(Ibrahim & Moselhi, 2015a). The goal of a filter is to reduce noise while maintaining the shape
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and height of waveform peaks. Moving average filter is the most common filter used for RSSI (eg.
(Montaser & Moselhi, 2014)), however it has several limitations that are explained in detailed in
the following section. It was important to investigate different filtering techniques in order to
choose the best filtering technique for RSSI with a focus on indoor localization application. Three
main filters are considered in this study: Moving Average filter, Savitzky-Golay filter, and Kalman

filter.

5.6.1 Moving Average Filter

The moving average is the most common filter in digital signal processing, mainly because it is
easy to understand and use. It is optimal for reducing random noise while retaining a sharp
amplitude response. However, it has a major limitation due to its inability to separate band
frequencies. The moving average operates by averaging a number of points from the input signal

to produce each point in the output signal. In equation form, this is written:
. 1 om=1vr: | s
V(D) = X7 X (I + ) (5-2)

Where X(i1)) is the input signal, Y (i) is the output signal, and m is the number of points in the

average.

5.6.2 Savitzky-Golay Filter

Savitzky and Golay (1964) presented an algorithm for data smoothing using least squares fit of a
small set of consecutive data points to a polynomial and then calculates central point of the fitted
polynomial curve as the new smoothed data point. The main advantage of this filter is its ability
to keep features of the original data distribution such as relative maxima and minima which are

often flattened by other smoothing techniques such as moving average (Hassanpour, 2008; Luo,
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Ying, & Bai, 2005; Savitzky & Golay, 1964). The mathematical formula for Savitzky-Golay

algorithm is given by the following equation:

— z:-lflz—’l’l.‘ql)(k+l

¥, = St (5-3)

Where Yk is the smoothed data point, Xk.n --- Xk+n are the original data points, (2n+1) is the window
width for the filter, and A; are the convolution integers which depends on the filter width and the
polynomial degree. Typical sets of convolution integers for “quadratic smooth” are shown in the

Table 5-1.

Table 5-1: Convolution Integers for “Quadratic Smooth”

Filter width (2n+1)
1 11 9 7 5
-5 -36
-4 9 -21
-3 44 14 -2
-2 69 39 3 -3
-1 84 54 6 12
0 89 59 7 17
1 84 54 6 12
2 69 39 3 -3
3 44 14 -2
4 9 -21
5 -36

The performance of Savitzky-Golay filter is usually better than the standard averaging filters. It is

able to preserve the signal’s high frequency, however it is not effective in rejecting noise.

Kalman filter was first introduced in 1960 to present a solution for discrete data linear filtering
problem (Kalman, 1960). Since then, extensive research and applications had been proposed

particularly in the areas of robotics and navigation. The key advantage of the Kalman filter is its
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simple computational algorithm, adaptive recursive nature, and its status as the optimal estimator

for one-dimensional linear systems with Gaussian error statistics (Anderson & Moore, 2012).

5.6.3 Kalman Filter

Kalman filter estimation process is based on a feedback loop control system. Which first estimates
the process's state at a point in time and then obtains feedback of measurements. This feedback
measurement is used to adjust the model parameters for next estimate. The model assumes that the

state of a system at a time t evolved from the prior state at time t-1 according to the equation:

Xt = AtXt—l + Btut_l + Wt (5-4)

where X is the process state vector at time t, A is the state transition matrix which is applied to
the previous state X:.1, u; is the control input vector, B is the control-input model which is applied
to the control vector u;, and wy is the process noise which is assumed to be drawn from a zero mean

multivariate normal distribution with covariance Q:.

At time t a measurement Z; of the true state X is calculated according to

Zt = HtXt + Ut (5—5)

Where H: is the measurement model for mapping true state space into measurement space and vt
is the measurement noise which is assumed to be zero mean Gaussian white noise with covariance

R:.

The Kalman filter recursive estimator model as shown in Figure 5-16 has two phases, the
prediction phase, which estimates the priori process state at next observation time, and the
correction phase, which incorporates a new measurement into the a priori estimate to obtain an

improved a posterior estimate.
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Prediction Phase

i1} Estimate process state ahead
Xk_ = A Xk—'l + B U —1

{2) Project the error covariance ah ead

Py =AP,_, AT +Q

|

Y

Correction Phase

{1} Compute the Kalman gain
Ki =P H'(HP H" +R)™!
{2) Update estimate with measurement Z,
X, = X7 + K (Z, — HXD)
{3} Update the arror covariance

P = (I — KxH)P

Initial estimates for X,_, and P,

Figure 5-16: Kalman Filter Recursive Estimator Model

In the context of RSSI de-noising, a simplified version of the above equations will be used. It will

be assumed that the process is governed by a linear equation:

Xk = Xk—l + Wp

With a measurement equation:

Zk=Xk+vk

And Hence the Kalman filter prediction phase equation can be rewritten as:

X = X
Py =P, +0Q
And the measurement update equations are:

Py

Ky =P (P +R) ' = iR

XAk :)?k_ +Kk(Zk _X]:)
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P =(1-K)P (5-12)

It is assumed that the process has a very small variance Q=1e7 (for filter tuning flexibility). The
initial seed for the filter, Xi.1 will be assumed to be zero. Similarly the initial value for Px.1, which
is called Py will be any value but not equal to zero. The measurement variance R will be initially

assumed very large number in order to express the uncertainty in the measurement accuracy.

5.7 Filters Performance Comparison Study

To compare the performance of the above mentioned three filters, they were applied to the
collected RSSI raw data. The goal of this comparison is to determine which filtering algorithm is
preferable for improving indoor localization accuracy. The performance of these filter was
measured based on local and global measures. The local measures consists of four matrices: (1)
comparison between the original signal and filtered signal in terms of shape and height of
waveform peaks, (2) mean and standard deviation, (3) Signal-to-Noise Ratio (SNR), and (4)
Correlation coefficient (R) between original and filtered signals. The global measure is the

absolute distance estimation error.
The three filters settings were selected to make closest possible performance as following:

e Moving average filter with 9 observations window.
e Savitzky-Golary filter with 9 observations window.

e Kalman filter with process error equal 1e”; and measurement error equal 0.15.
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5.7.1 MATLAB Simulation

In order to generate RSSI signals in MATLAB, the collected RSSI data in chapter 4 was plotted
versus the distance as shown in Figure 5-17, then the RSSI average and standard deviation were
calculated as shown in Figure 5-18 and Figure 5-19. Two equation were generated using regression

to represent the RSSI mean and standard deviation with respect to distance:

RSSlyyerage = —7.635In(distance) — 40.635 (5-33)

RSSIstaper = 0.5658 In(distance) + 4.0113 (5-34)
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Figure 5-17: Raw RSSI Vs Distance

RSSI Average

-30
0 1 2 3 4 5 6 7

-35

-40

y =-7.635In(x) - 40.635

-45 R?=0.6596

dBm

: N

-55

-60
Distance (m)

——Raw RSSI -+ Log. (Raw RSSI)

Figure 5-18: Raw RSSI Average
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Figure 5-19: Raw RSSI Standard Deviation

The two generated equations (5-33) and (5-34) are used to build the path loss model and generate
RSSI signals in the simulator. The second step of the simulator test is to validate the RSSI filtering
techniques, where the moving average filtering was compared to Savitzky-Golary filter and
Kalman filtering technique. The distance estimation errors were calculated using each filter and

presented in the following figures.
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Figure 5-20: RSSI Signal Filtering at Distance 5 m
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Figure 5-21: Absolute Distance Estimation Error at 5 m
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Figure 5-22: RSSI Signal Filtering at Distance 10 m
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Figure 5-23: Absolute Distance Estimation Error at 10 m
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Figure 5-24: RSSI Signal Filtering at Distance 15 m
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Figure 5-26: RSSI Signal Filtering at Distance 20 m
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Figure 5-28: Mean Absolute Distance Estimation

The results indicated the low mean absolute distance estimation error using the Kalman filter in

comparison to the moving average and Savitzky-Golay filters.
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5.7.2 Laboratory Experiments

Figure 5-29 present the original RSSI signal and the signal after applying the three filters. By

comparing original and filtered signals, it is obvious that moving average filter did not remove

coherent noise from the original signal. For example noise in time interval between the samples

5498 to 5766 as shown in Figure 5-30.
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Figure 5-29: Raw RSSI Vs Filtered RSSI

The Kalman filter performed better in clearing the original signal from the underlying noise, while

providing fast convergence for on-line estimations. The filter perfectly removed most of
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uncorrelated noise (such as small variations and narrow spikes) and reduced

bias components.

Meanwhile, the Savitzky-Golary resulted in a significantly worse performance. The smoothing

effects of the moving average and Savitzky-Golay filters is less aggressive than the Kalman filter

and the distortion is comparatively limited. However, it should be stressed that both the first

mentioned filters are providing signal smoothing with only cosmetic value.
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Figure 5-30: Coherent Noise in Raw RSSI Vs Filtered RSSI

In order to establish the validity of the above results, it is important to quantify the uncertainty in

filter performance. Statistical uncertainties in the measured signal should be reduced by filtering
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out uncorrelated noise from measured signal. Figure 5-31 compares the original signal probability

distribution and the filtered signals distribution at different distances.
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Figure 5-31: Original and Filtered Signals Probability Distribution at Different Distances
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Given that all filters has the same number of observation samples, a smaller standard deviation of
the filter output, means better filter performance. The Kalman filter reduced variance in the filtered
signal, which in turn enhanced the confidence and lowered the uncertainty in the RSSI value at all

distances as shown in Table 5-2, Figure 5-32 and Figure 5-33.

Table 5-2: Filtered Signals Statistics

distance Raw RSSI MAV Savitzky-Golay Kalman

Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev
-35.29 4.35 -35.30 4.05 -35.30 4.10 -35.74 3.31
-44.90 6.40 -44.91 6.04 -44.90 6.12 -45.22 4.21
-54.52 7.71 -54.51 6.60 -54.52 6.79 -53.96 4.49
-53.01 5.75 -53.02 5.17 -53.02 5.30 -52.97 2.67
-50.74 6.92 -50.73 6.65 -50.74 6.73 -50.50 3.82
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Figure 5-32: Filtered Signals Standard Deviation
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Figure 5-33: Filtered Signals Average
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Signal-to-noise ratio (SNR) is a measure used in electromagnetic engineering to estimate the level
of a measured signal to the level of background noise. The higher the SNR indicates more signal
than noise. Several calculation methods can be used for calculating SNR. In this research the SNR

is calculated as the ratio of mean to standard deviation of the RSSI signal

SNR =& (5-13)

(o2

Where p is the signal mean and o is the standard deviation of the signal.

The raw RSSI signal had an average SNR of 7.75 dB, after applying the filters to the RSSI; the
Kalman filter has an average SNR of 13.33 dB. In comparison to the moving average and Savitzky-

Golay, which had an average SNR of 8.46 and 8.30 dB respectively as shown in Figure 5-34.

The final test for the applied filters is the coefficient of correlation (R), which reflects the degree
of linear relationship between two sets of data. It has a value between -1 and +1. A value of +1
means that there is a perfect positive linear relationship between the two data sets. A value of -1
means that there is a perfect negative linear relationship, and a value of 0 means there is no linear

relationship at all between the data sets. The R is calculated as follows:

s x(mYy(n)

R =
J (Sn=3 x2(n) SPZh 2 (n))

(5-14)

Where X(n) and Y(n) refer to the filtered signal and reference signal respectively.

Table 5-3, presents the calculated R for each filter. All filters show good performance with respect

to correlation to the original signal, with a slight better performance for Savitzky-Golay filter.

Table 5-3: Filters Coefficient of Correlation (R)

Moving Average | Savitzky-Golay | Kalman Filter
Coefficient of Correlation (R) | 0.997 +0.001 0.999 + 0.001 0.996 + 0.002
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In conclusion of the above mentioned results, it is clear that the Kalman filter outperformed other
filters in removing the noise, and provided an output filtered signal with less variations. The result
obtained using Kalman filter is less noisy, consistent and reliable compared with the other filters

presented above.

5.8 Prototype Software/Algorithms

The developed SC-WSN is composed of two stages, prediction stage and calibration stage as
shown in Figure 5-35. Each reader measures the signal strength (RSSI) from nearby tags and filter
it to remove uncorrelated noise. Then the filtered RSSI data is converted to its corresponding
distance using a newly developed dynamic path-loss model, and forwarded to the tag again for
location calculation. Based on three distances from three readers for a given tag, its location is
estimated using the LSE trilateration algorithm (Karl & Willig, 2007). The localization accuracy
is continually monitored by measuring the errors in location estimation generated based on a

number of reference tags. These reference tags are installed on site at pre-defined locations. When
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the system accuracy is degraded due to on-site interferences, a system calibration request is
initialized. The threshold of an acceptable error was set to 20% in this research, which defines the
accuracy limits to initiate the calibration requests. Finally, at the end of the calibration stage, the

dynamic signal propagation model is updated with new set of optimized parameters.
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Figure 5-35: Developed SC-WSN Localization Overview

5.8.1 Dynamic Path-Loss Model

Free-space path-loss models are not suitable for indoor localization in real world environment due
to the presence of shadow fading and multipath effects. It is important to investigate signal
propagation in real situations in order to design a more realistic path-loss model which is able to
handle uncertainties and noise in RSSI measurements. In the following section, real signal
propagation scenarios are analyzed in order to provide solutions for indoor localization in

construction jobsites environment.

Both theoretical and measurement based propagation models indicate that average received signal

power decreases logarithmically with distance. Empirical models help in reducing computational
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complexity as well as increasing the accuracy of the predictions. The empirical model used in this
study is Log-distance Path Loss Model. The path loss PL (d) for a transmitter and a receiver with

distance d is:

PL(d) (di)n (5-15)
PL(dB) = PL(d,) + 10 n In (di) + o2 (5-16)

Where n is the path loss exponent which indicates the rate at which path loss increases with
distance d. The reference distance (do) is determined from measurements at 1 meter distance from

the transmitter. 6° is the shadowing variance in mdB.

The value of n depends on the specific propagation environment, i.€., type of construction material,
architecture, location within building. Table 5-4 lists typical path loss exponents obtained in

various radio environments (Rappaport, 1996).

Table 5-4: Path Loss Exponents for Different Environments (Rappaport, 1996)

Environment Path Loss Exponent, n
Free Space 2
Urban area cellular radio 2.7t03.5
Shadowed urban cellular radio 3to5
In building line-of sight 1.6to 1.8
Obstructed in buildings 4t0 6
Obstructed in factories 2to3
Given that do = 1 m, Equation (5-16) can be simplified as:
PL(dB) = A+ B In(d) (5-17)
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Where A & B are the parameters for the signal propagation model. In this research, the signal
propagation model parameters (A&B) are estimated using lab experiments, then automatically

adjusted on-site using the Particle Swarm Optimization.

The Kalman filtered signal collected in laboratory experiments were used to generate the RSSI
propagation model, which is used for distance estimation and hence location estimation.
Figure 5-36 illustrates the Kalman filtered RSSI with respect to the actual distance between the
transmitter and receiver nodes. Least square method is used to fit this relation in exponential

equation format:

d= (5 (5-18)

Where A & B are constant confidents and d is the distance between the transmitter and receiver

nodes. From the Figure 5-36, the distance can be estimated as:

RSSIfiltered +38.909
e ( —8.989 )

d= (5-19)
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Figure 5-36: Kalman Filtered RSSI Vs Actual Distance between Tx And Rx Nodes
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5.8.2 Positioning Algorithm
The multilateration (Karl & Willig, 2007) algorithm is applied, where the position of an object
(tag) is calculated based on its estimated distances from fixed location devices (readers) (Stiiber &

Caffrey, 1999). When three readers are used, it is called trilateration, as shown in Figure 5-37.

Figure 5-37: Localization using Trilateration

The intersection of the three circles gives an exact solution for the tag’s location under ideal free
space signal propagation (no fading or shadowing effect). However, in real environment, the three
circles might not even intersect due to errors in distance estimates by RSSI path-loss model.
(Stiiber & Caffrey, 1999) presented an optimal localization using least square estimation (LSE) as

shown in Figure 5-38.

Figure 5-38: Localization using Least Square Estimation Trilateration
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Given the readers coordinates as following: A(xi, yi1), B(X2, y2), and C(x3, y3); and their
corresponding distances to the tag are di, d», and ds; the three circles equations can be formatted

as following:

(01 —x)* 4+ (y1 —y)* = df (5-20)
(x, —x)* + (y, — y)* = dj (5-21)
(x3 —x)*+ (y3 —y)* =d3 (5-22)

Where x and y are the coordinates for the tag location.

Using the LSE method the tag coordinates can be calculated using the following equation:
X3—X1 Y3~ V1][¥] _
2les—%n 3o —yally]=

5.8.3  Self-Calibration Algorithm

(d% —d3) — (xf —x3) — (v7 —y3)

5-23
(@2 — d2) — (o3 — x2) — (3 — y2) (5-23)

In order to improve the positioning accuracy in indoor location algorithm based on RSSI, the
developed prototype monitors the indoor propagation conditions and adapts its parameters when
necessary (Ibrahim & Moselhi, 2015c). Static lognormal path-loss models are commonly utilized,
where their parameters are calculated during an offline measurement phase before the deployment
(Razavi & Moselhi, 2012). A disadvantage of this approach is its inability to adapt to different

environments.

The developed self-calibration algorithm relies on periodic calculation of reference tags locations
and computation of system accuracy, and then find near optimum value for the path-loss model

parameter in order to minimize the Mean Absolute location error.

Z = min (% Zﬁlldactuali - dmeasuredl-|) (5-24)
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This objective function is non-linear which does not allow for an exact solution. Evolutionary
optimization methods such as Genetic Algorithm (GA) or Particle Swarm Optimization (PSO) can
be used to solve these kind of problems. PSO has the same effectiveness (finding the true global
optimal solution) as the GA but with significantly better computational efficiency (Hassan,
Cohanim, de Weck, & Venter, 2005). The computational efficiency of the selected optimization
algorithm is very important for the developed method due to the limited computational resources

of the microcontroller (memory and speed). Therefore it was used in the developed prototype.

In the context of path-loss model optimization, each particle consists of two members: the
coefficient A and B of the path loss model as shown in Figure 5-39. In this problem space, each
particle keeps track of its A and B values, which are associated with the best solution (fitness) it
has achieved so far. This value is called pBest. When a particle takes all the population as its
topological neighbors, the best value is a global best and is called gBest. The developed PSO

algorithm for optimizing the solution is formulated with the following procedures:

e Step 1: Measure the RSSIs between the reference nodes and readers.
e Step 2: Generate a random population of N particles, a random initial set of velocities,
pBest and gBest. Each particle has 2 dimensions which are A and B.

e Step 3: For each particle of the population, compute d from Equation (5-18):

(RSSI—A)
B

(5-25)

Ameasureda = €

e Step 4: Determine the fitness function, which is the Mean Absolute distance error for m

readings collected from readers:

(RSSI—A)
B

|derr0r| = |dactual - dmeasuredl = dactual —e (5'26)
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1 om

(RSSIL-—A)
|derror| = m &i=1

B (5-27)

dactuali —e

Step 5: Repeat steps 4 and 5 for all the N particles in the population.

Step 6: Compare each particle’s fitness with its pBest. If it is better, then its value and pBest
are updated. The best fitness value among the pBest is used as the gBest.

Step 7: Let ¢l and c2 be two constants. Set the member velocity v of each particle as

follows:
Vialk +1) = wa(k) + c1A1. (pBest; — A;(k)) + c;45. (gBest, — A;(k))  (5-28)
vip(k+1) = w; (k) + c121. (pBest; — B;j(k)) + c;2,.(gBestg — B;(k)) (5-29)

wherei=1,2,.....,N. via , vi represents the velocity of the i particle for A and B, and w

is the inertia weight that controls the exploration of local and global search space. A and
A2 are random numbers between 0 and 1. The constants ¢ and c2 are also known as the
acceleration constants. They are the cognition and social components respectively that
determine the speed a particle would accelerate towards the pBest and the gBest. In this

research, the inertia weight is varied linearly according to the following equation:

W= Wy, — —max_Cmin o (5-30)

kmax

Where k is the current iteration number and kmax 1s the maximum iteration number.

Step 8: The particle position is modified by adding the new velocity to the existing particle

position as follows:
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Bi(k+1) = Bi(k) + v;p(k +1) (5-32)

e Step 9: If the number of the iteration is less than the maximum number of iterations and
the stopping criterion is not met, repeat step 3. Otherwise, proceed to step 10.

e Step 10: The resulting gBest gives the near optimum coefficient A, B.

v
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Figure 5-39: Path Loss Model Parameters Optimization using PSO
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5.9 Prototype Validation

The validation of this prototype was conducted in two phases. Phase one, MATLAB simulation.
The prototype design was fine-tuned based on simulation results. Then, phase two, where
laboratory experiments for the final design of the prototype were conducted to validate simulation

results.

5.9.1 Phase One: MATLAB Simulator Testing

MATLAB simulator is programmed to mimic the indoor localization in lab environment according
to the collected data in phase one. Three simulation tests were performed. First, localization using
raw RSSI signal, this simulation is intended to calculate the expected localization accuracy using
the raw RSSI signal. Second, localization with Kalman filtered RSSI signal, the purpose of this
simulation is to calculate expected localization accuracy using the Kalman filtered RSSI signal in
order to evaluate it is applicability. Third, the self-calibration algorithm using PSO is tested to
validate its capability in reducing the localization error when the environment changes or the signal
interference increases.

The localization with raw RSSI signal was tested by generating 100 random tags in a space 20 m
x 20 m, with 3 readers. The RSSI was generated using equations (5-33) and (5-34). The localization
error was measured as the Euclidian distance between the actual tag location and the estimated tag

location using the following equation:

Locationg,yor = /(X — a)? + (Y — b)? (5-35)

Where: (X, Y) is the actual tag location, and (a, b) is the estimated tag location.
The mean location error was 2.547 meters and a standard deviation of 1.841 meter. Figure 5-40

illustrated the actual tags location verses the estimated tags location using raw RSSI. The
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cumulative distribution function of the localization error in Figure 5-41 illustrates 5.574 m error

with 95% confidence.
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Figure 5-40: Localization using Raw RSSI
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Figure 5-41: Localization Error CDF using Raw RSSI
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It is clear from the above figures that the Kalman filter is outperforming the commonly used
moving average filter in de-noising the RSSI, where it provide very stable signal that can be used
in distance estimation with higher accuracy.

The distance was ranged from 1 to 100 meter and the mean Kalman filtered RSSI signal was
calculated and plotted against the distance as shown in Figure 5-42. Regression was used to derive

the equation for the path loss model as following:

RSSIgiiterea = —7.935 In(distance) — 38.57 (5-36)
Kalman Filtered RSSI
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Figure 5-42: Kalman Filtered RSSI Signal Vs Distance

The third step is to test the localization accuracy using the Kalman filtered RSSI. 100 random tags
were generated in a space 20 m x 20 m, with 3 readers. The RSSI was generated using equations
(5-33) and (5-34). The localization error was calculated using Equation (5-35) and the tag’s
distances from readers were estimated using the Kalman filtered RSSI path-loss model Equation
(5-36). Figure 5-43 illustrated the actual tags location verses the estimated tags location using
Kalman filtered RSSI, where the mean location estimation error was 0.4406 meter and standard
deviation of 0.3354 meter.
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Figure 5-43: Localization using Kalman Filtered RSSI

The cumulative distribution function of the localization error in Figure 5-44 shows 0.992 m error

with 95% confidence.
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Figure 5-44: Localization Error CDF using Kalman Filtered RSSI
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In order to show the improvement from using the Kalman filtered RSSI in comparison to raw
RSSI, the two error CDF were compared in Figure 5-45. The Kalman filtered RSSI technique has

better performance than the commonly used moving average method.
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Figure 5-45: Localization Error CDF Comparison

The final step of the simulator test is to validate the Self-Calibration algorithm described in section
5.4.5. In order to simulate a change in the surrounding environment (interference), the standard
deviation for the raw RSSI is increased to reflect higher noise in the system, and hence introduce
higher noise in the location estimation. The following equation was used to reflect the higher noise

in the environment:

RSSIsiaper = 0.5658 In(distance) + 6.0113 (5-37)

100 random tags were generated in a space 20 m x 20 m, with 3 readers. The RSSI was generated
using equations (5-33) and (5-37). The localization error was calculated using Equation (5-35) and
the tag’s distances from readers were estimated using the Kalman filtered RSSI path loss model

Equation (5-36). Figure 5-46 illustrated the actual tags location verses the estimated tags location
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using Kalman filtered RSSI, where the mean location estimation error was 3.368 meter and
standard deviation of 1.359 meter. The cumulative distribution function of the localization error in

Figure 5-47 shows 5.604 m error with 95% confidence.
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Figure 5-46: Localization using Kalman Filtered RSSI in High Noise Environment

Empirical CDF of Kalman Filter with High noise

Normal

10 Mean 3.368
095 | StDev 1.359
N 100

08

o
o

Probability
o
S

02

00

5.604

0 1 2 3 4 5 6 7
Kalman Filter with High noise

Figure 5-47: Localization Error CDF using Kalman Filtered RSSI in High Noise Environment
157



The Particle Swarm Optimization algorithm was applied to the noisy data to optimize the
propagation model parameters. The A and B parameters were optimized after 39 iterations as
shown in Figure 5-48. The path-loss after optimization is:

RSSlpsp = —37.6061 — 7.9361 In(d) (5-38)

Tag’s actual location is plotted verses the estimated tag’s location after the optimization as shown
in Figure 5-49, where the mean location error was 0.837 meter and standard deviation of 0.639

meter as shown in Figure 5-50.
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Figure 5-48: Objective Function Optimization
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Figure 5-49: Localization using Kalman Filtered RSSI after Optimization
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Figure 5-50: Localization Error CDF using Kalman Filtered RSSI after Optimization
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The comparison between the localization error before and after the optimization illustrated in
Figure 5-51 and Table 5-5 shows that the self-calibration algorithm is able to improve the

localization accuracy and cope with changes in the surrounding environment.
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Figure 5-51: Localization Error CDF Comparison Before and After Optimization

Table 5-5: Mean Localization Errors before and after Optimization

Before Optimization | After Optimization
Location Estimation Error (m) 3.368 0.837
Standard Deviation 1.359 0.639

5.9.2 Phase Two: Laboratory Experiments

To validate the results obtained by simulation and to test the overall performance of the developed
prototype, several experiments were conducted in Concordia University Construction Automation
Lab, apartment building, underground parking and warehouse environment. Table 5-6 shows the

characteristics of each experiment, including the total number of data sets collected, date, location,
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total surface area and number of tags used in each experiment. The location’s error is calculated
as the distance in meters between the estimated and actual locations using Equation (5-35).

Table 5-6: Experiments Characteristics

Experiment Exp. 1 Exp. 2 Exp. 3 Exp. 4
Date 01/12/2014 05/12/2014 08/12/2014 18/12/2014
Location 'Lab qurtrpent Underg'round quehouse
Environment Building Parking Environment
No of data sets 130 105 86 94
Surface Area (m2) 15 42 140 92
No of Deployed Tags 21 15 36 27
No of Readers 3 3 6 5
Area per tag m2 1.40 2.80 3.89 341

A grid formation test bed was utilized as shown in Figure 5-52, where readers are installed at the

corners of the area, then tags where placed one meter apart in the grid formation.
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Figure 5-52: Sample of the Grid Formations used in Experiments

Figure 5-53 shows graphical display of a sample for actual verses estimated locations of tags using
both raw RSSI and Kalman filtered RSSI signals. The yellow triangles represent the actual
locations, the black crosses represent the calculated locations using raw RSSI and the red circles
represent the calculated location using Kalman filtered RSSI method. The results show higher

uncertainty and variances in location estimation using raw RSSI, which can be identified from the
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scattered nature of the calculated location. On the other hand, the locations estimated using the
proposed filtered RSSI indicated higher certainty and less variances in the estimated locations.
Such higher certainty is translated into less location estimation errors as shown in Figure 5-54,

where the mean location error using raw RSSI and Kalman filtered RSSI method were 1.67 and

0.66 meters, respectively.
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Figure 5-53: Graphical Representation of Actual vs Estimated Tag’s Locations (Exp. 1)

A comparison between the histogram for the localization errors using raw RSSI and Kalman
filtered RSSI, presented in Figure 5-54, shows that the location error using raw RSSI has a mean
value of 1.673 m and standard deviation of 1.765 m (for 415 data sets). The developed Kalman
Filtered RSSI method had a mean error of 0.66 m and standard deviation of 0.58 m.
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Figure 5-54: Location Errors Histograms (Exp. 1)

For validating the self-calibration algorithm, experiments were conducted using a grid formation
test bed, where readers are installed at the corners of the area, then tags were placed one meter
apart in grid formation as shown in Figure 5-55a. This test setup is repeated after adding physical
obstacles in the surrounding environment (as shown in Figure 5-55b) to simulate the change in the
environment and test how the proposed method self-calibrates its model to account for
interferences caused by the surrounding environment. Experiments were conducted in a laboratory
environment at Concordia University Construction Automation Lab. A total of 1062 data sets were
collected covering 15 m2 of surface area. The test bed had 17 mobile tags, 4 reference tags and 3
fixed readers, with an average density of one reader per 5 m2 and one reference tag per 3.75 m2.
In the first experimental step the setup in Figure 5-55 was used and dynamic signal propagation
model, which has been initialized with initial values based on experimental measurements (A= -
38.57 and B=-7.935) and tags’ distances from the fixed readers were estimated accordingly. The

system localization accuracy was measured at 87%.
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Figure 5-55: Grid Formation Test Bed (Exp. 1)

After adding physical obstacles as shown in Figure 5-55, the system location accuracy fall below

80% and the distance error were increased. Figure 5-56 shows a graphical display of the actual

locations verses the estimated tag’s locations after adding the obstacles, the orange triangles

represent the actual tag’s locations, and the black crosses represent the calculated tag’s location.
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Figure 5-56: Actual vs Estimated Tag’s Locations before Calibration Stage (Exp. 1)

The calibration stage was initiated based on encountering low system accuracy. Each reader signal

propagation model is optimized using PSO algorithm and the RSSI from reference tags, the

enhancement in the location estimation is clearly identified in Figure 5-57, which shows a

graphical display of actual tag’s locations verses the estimated tag’s location after calibration.
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Figure 5-57: Actual vs Estimated Tag’s Locations after Calibration Stage (Exp. 1)

Figure 5-58 shows the CDF of estimated distance errors for reader 1 before and after the calibration
stage, where the mean error in the distance shows a decreasing trend. The mean absolute
percentage error before calibration was 37.69%, while it was 14.96% after calibration. The SC-

WSN method decreased the mean absolute percentage error by 60%.
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Figure 5-58: CDF of Estimated Distance Errors for Reader 1 before and after Calibration (Exp.1)
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5.9.3 Discussion of Results

The cumulative probability density functions (CDF) of the distance error are usually used for
measuring the precision of a system. To compare two positioning techniques with respect to
accuracies and precision, the technique whose CDF graph reaches high probability values faster is
more preferable, because its distance error is more concentrated in small values. In order to
compare the proposed localization technique to those developed by others, the distance error CDF
of the proposed technique is compared to the CDF graph for the system developed by Montaser
and Moselhi (2014). The proposed Kalman filtered RSSI localization technique has a location
precision of 90% within 1.16 m (the CDF of distance error of 1.16 m is 0.9) and 80% within 0.85
m, while the raw RSSI localization technique has a location precision of 90% within 3.70m and

80% within 2.60m as shown in Figure 5-59.
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Figure 5-59: Proposed Localization Error CDF vs Montaser and Moselhi (2014)

Moreover, the system developed by Montaser and Moselhi (2014) has a location precision of 90%
within 1.60m and 80% within 1.40m as shown in Figure 5-59. The developed localization yields
68.6% and 27.5% enhancement over that based on unfiltered RSSI and that of Montaser (2014),
respectively. In addition, the computational time required for that of Montaser (2014) is three times

the time required for the proposed method due to the three location reading required in Montaser
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(2014), which presents higher advantage for the proposed method in real time localization
applications.

To evaluate the performance of proposed method, several indoor experiments were conducted in
different environments; lab environment, apartment building, indoor parking and warehouse
environment. The proposed method produced location estimates with an average error of 0.66m in
comparison with 1.67m using the raw RSSI signal. And with a likelihood of 80% the localization
error of the proposed method is 0.85m in comparison to 2.60m using the raw RSSI signal.
Moreover the performance of the proposed method was compared to previously developed system
(Montaser and Moselhi 2014) using the cumulative distribution function (CDF) of the localization
error. It was found that the proposed method has 27.5% less location absolute error than their
method with a likelihood of 90%. The developed method would potentially improve indoor
localization applications in construction such as automated project control and jobsite safety. The
summary of the results obtained in this study are presented in Table 5-7.

Table 5-7: Localization Errors Summary

Raw Signal Localization | Montaser and Moselhi 2014 | SC-WSN
(Exp.1) (Exp.1)
Mean Absolute Error 1.67 1.01 0.66
Standard Deviation 1.77 0.67 0.58
90 %Percentile 3.70 1.80 1.16
80% Percentile 2.60 1.60 0.85

5.10 Summary

Despite recent advances in wireless sensor technologies, mobile computing, and tracking
techniques, indoor localization remains a technically challenging problem. Modeling indoor radio
frequency signal propagation is not a simple task, especially in harsh and dynamic environments

such as construction jobsites. This research presented an efficient localization prototype utilizing
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low cost radio frequency hardware modules for indoor localization based on RSSI signal
smoothing and filtering. The proposed signal smoothing technique, which utilizes Kalman filter,
not only increases the certainty in the estimated locations, but also enhanced the localization
accuracy by over 68.6% of that based on the use of unfiltered RSSI. Such enhancement can be
attributed to the filtering of the uncorrelated signal noise.

To evaluate the performance of proposed method, several indoor experiments were conducted in
lab environment. The proposed method produced location estimates with an average error of 0.66m
in comparison to 1.67m using unfiltered RSSI signals. And with a likelihood of 80% the
localization error of the proposed method is 0.85m in comparison to 2.60m using unfiltered RSSI
signals. Moreover the performance of the proposed method was also compared to that previously
developed by Montaser and Moselhi (2014) using the cumulative distribution function (CDF) of
localization errors. It was found that the proposed method outperformed their method by 27.5%
with a likelihood of 90%. The developed method is expected to improve indoor localization
applications in construction such as automated project control and onsite safety.

This paper presented a newly developed method for indoor localization on dynamic construction
jobsites utilizing a self-calibrated wireless sensor network (SC-WSN). The developed SC-WSN
hardware consists of fixed gateway unites mounted at predefined locations, reference tags and
mobile tags mounted on tracked objects. The developed method consists of a prediction stage and
calibration stage. The prediction stage estimates the tag’s location based on its measured signal
strength (RSSI), which in turn is converted to the corresponding distance from fixed readers by a
dynamic signal propagation model. The calibration stage is executed whenever the system
accuracy falls below 80%, where the dynamic propagation model parameters are optimized to

minimize the distance estimation errors of the reference tags. A particle swarm optimization (PSO)
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algorithm is used to find a near optimum solution for this non-linear problem. The PSO is not only
able to find a solution effectively, but also has significantly better computational efficiency.
Experimental results illustrated the significant accuracy improvement in estimating locations on
construction jobsites, where the mean absolute percentage error before calibration was 37.69%
while it was 14.96% after calibration. The SC-WSN method decreased the mean absolute

percentage error by 60%.
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Chapter 6 : CONCLUSIONS AND FUTURE WORK

6.1 Summary and Conclusions

This research aimed to study, design, configure and develop fully customized automated site data
acquisition models, with a special focus on improving the accuracy of automated tracking and
control of construction operations. A framework for automated progress tracking and control was
developed encompassing two newly developed prototypes. The first is sensor aided GPS (SA-
GPS) for tracking of outdoor construction operations and the second is self-calibrated wireless

sensor Network (SC-WSN) for indoor localization.

Rapid prototyping technique was used as a vehicle for the hardware and software development in
the two prototypes. The utilization of rapid prototyping in this research, allowed for faster
development using virtual simulation environment and laboratory experiments. The hardware
functions were tested and validated using simulation and lab experiments, then the prototype
design was fine-tuned based on the results from these experiments. In this way, an economy of
time and material are obtained. A modular hardware designing and configuring approach was
utilized to allow for speedy redesign, increased ability to reuse some of the hardware modules and

hence cut the development cost.

The SA-GPS prototype was designed with a special focus on earthmoving operations. This
prototype consists of a microcontroller equipped with GPS module as well as a number of sensors
such as accelerometer, barometric pressure sensor, Bluetooth proximity and strain gauges. The
developed prototype is able to overcome standalone GPS limitations through data fusion of sensor

data with GPS data, which enhances the progress assessment and productivity analysis. A fuzzy
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reasoning rule-based engine is designed to fuse data from various sensors to provide a
comprehensive status of ongoing construction operations. A productivity analysis algorithm is
developed to flag early operational bottlenecks, which provides project management personnel
with a room to take necessary corrective actions in a timely manner. The SA-GPS prototype
performance was compared to the standalone GPS through a case study. The results indicate
superiority of the developed prototype over the standalone GPS, with mean absolute percentage
error being 3% compared to 12% for the two methods respectively. The second prototype is the
self-calibrated wireless sensor network (SC-WSN), which is designed for indoor localization and
tracking of construction resources (labor, materials and equipment) inside buildings. This
prototype enhanced the indoor localization accuracy by consistently adapting its parameters to
cope with the changing construction environment. The SC-WSN prototype utilized a Kalman filter
to filter and smooth the RSSI signal, which not only increased the certainty in the estimated
location, but also reduced the localization error by 68.4% in comparison to that resulting from
using the raw RSSI. Such enhancement can be attributed to the filtering of the uncorrelated white

signal noise which enhanced the signal to noise ratio (SNR) by 72%.

The performance of the developed SC-WSN was compared to the system of previously developed
by Montaser and Moselhi (2014) using the cumulative distribution function (CDF) of the
localization error. The average absolute localization error dropped by 33%. The self-calibration
feature was also tested on noisy simulated environment to measure the percentage of location
improvement before and after the calibration. Accuracy improved by approximately 60% was

achieved.
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The captured data of the two prototypes is used to estimate the actual progress and hence enabled

accurate and timely earned value analysis (EVA)

6.2 Research Contributions

The contributions of this research are expected to circumvent a number of limitations and
challenges associated with current practice in tracking and progress reporting, and in existing

automated site data acquisition methods. Specifically, the research contributions are:

e Design and conduct of a fundamental experimental investigation for design of customized
automated data acquisition prototypes for efficient tracking and control of construction
projects utilizing latest innovations in sensory and wireless technologies.

e Validation of concurrent design and testing of the developments made for automated site
data acquisition using rapid prototyping techniques.

e Development of efficient data management scheme that utilizes integrated on-sensor node
data processing and in-network data processing to transform raw data into high level useful
and actionable information. In this context, data aggregation and processing render much
faster near real-time progress measurements.

e Utilization of low-cost microcontrollers, sensors and wireless modules to design fully
customized and flexible automated data acquisition prototypes for applications in
construction. The adopted flexibility is expected to facilitate a wider scope of applications
in construction safety, condition monitoring of civil infrastructure and energy management
in built facilities.

e Development of fuzzy reasoning data fusion and knowledge extraction algorithm to

provide a higher level of system redundancy in case of sensors malfunctions.
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Development of SA-GPS prototype to improve the accuracy of estimating earthmoving
progress and related productivity in comparison to standalone GPS use.

Development of SC-WSN to improve indoor localization accuracy while dynamically
adapting its parameters to cope with the noisy, dynamic and continually changing
construction environment. As well the utilization of Kalman filter to remove white

uncorrelated noise from the RSSI.

6.3 Limitations

The following are the limitations of the developments made in this research:

The developed prototypes were validated using simulation and laboratory experiments and
not applied to real construction projects. The developed SA-GPS prototype was designed
for earthmoving operations and not generic for outdoor construction. It, however, can be
easily configured for applications such as concreting and landscape.

The link between BIM 360 Field and the developed framework was proved in concept by
only developing the necessary functions for importing and exporting data. A web-based
software development with user graphical interface is needed.

The self-calibrating algorithm was tested only on the Synapse SNAP wireless protocol.

Further testing on other protocols and network configurations is needed.

6.4 Future Work

The following are some recommendations for future work areas:

Development of a web-based software to link BIM 360 Field to the developed framework,

and experiment with the self-calibrating algorithm on other wireless technologies.

173



Deployment of the developed prototypes on a real construction projects to assess their

performance in real construction environment.

Expand on the productivity analysis algorithm to include more types of construction

operations.
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Appendix A: Weather Station

The Libelium weather station can monitor 6 parameters related to the weather, such as ambient
temperature and humidity, atmospheric pressure, precipitation and wind speed and direction. The
kit comprises of 6 sensors: temperature sensor, humidity sensor, barometric pressure sensor, wind

gauge, anemometer and wind vane, as shown in figure (A-1).

Figure A-1: Libelium Weather Station

Example of data collected with the weather station is shown in Figure (A-2).
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Figure A-2: Sample Weather Data
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Appendix B: BIM360 FIELD API CODE

Code Snippet for connecting to the BIM360 server

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using Autodesk.BIM360Field.APIService;

using Autodesk.BIM360Field.APIService.Models;
using Autodesk.BIM360Field.APIService.Support;

namespace APIExample

{
class APIExample
{
static void Main(string[] args)
{
string username = "m omariCencs.concordia.ca";
string password = "password";
string server = "https://api.velasystems.com";

switch (args.Length)
{
case
case
Console.WriteLine("You must specify a username, password
and optionally the server to connect to");
Console.WritelLine(string.Format ("APIExample.exe {0} {1}
{2}", username, password, server));
Environment.Exit (1) ;

break;

case
username = args[0];
password = args[l];
break;

case
username = args[0];
password = args[l];
server = args[?];
break;

}

Console.WritelLine(string.Format ("Connecting to BIM 360 Field APT
service on {0} as {1}", server, username));

try
{

API api = new API(server);
api.authenticate (username, password) ;

Console.WritelLine ("Authenticated successfully. Retrieving
project list.\n\n");
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List<Project> projects = api.getProjects()

Console.WriteLine("Project ID\t\t\t\tProject Name");

Console.WriteLine("-———————- \t\e\e\t-———————-———- ")
foreach (Project project in projects)
{

Console.WritelLine(string.Format ("{O0}\t{1}",
project.project id, project.name));

}

Console.WritelLine ("Retrieving list of Checklists for first
project\n\n") ;

api.DefaultProject = projects[0];

List<Checklist> checklists = api.getChecklists(null, null,
0, 10000); // Defaults to 25

Console.WritelLine(string.Format ("The project {0} has {1}
checklist(s)", api.DefaultProject.name, checklists.Count));

if (checklists.Count > 0)

{
Console.WriteLine("Checklist ID\t\t\t\tName") ;
Console.WriteLine("-—————————- \t\t\e\t-——---");

foreach (Checklist checklist in checklists)
{
Console.WriteLine(string.Format ("{O0}\t{1}",
checklist.id, checklist.name));

}

Console.WriteLine ("\n\n") ;

Checklist firstChecklist =
api.getChecklist(checklists[0].id);

Console.WriteLine(string.Format ("The checklist with ID
{0} has {1} sections. Please inspect this object to see what else is
available!"™, firstChecklist.id, firstChecklist.sections.Count))

}
}
catch (BIM360FieldAPIException ex)
{

Console.Writeline(string.Format ("API service threw an
exception: {0} {1}", ex.Code, ex.Message));
}
catch (UnauthorizedAccessException ua)
{
Console.WriteLine("Failed to authenticate with the supplied
credentials.");
}
}

191




Code Snippet for extracting 4D model information

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.Services;

using System.IO;

using System.Text;

namespace DataExtraction

{
public partial class project : System.Web.UI.Page
{
protected void Page Load(object sender, EventArgs e)
{

BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI (Request) ;

// If no logged on, Jjust redirect to the home page
if ('apiObj.userLoggedIn)
{
string redirURL = BIM360WebServiceAPI.GetBaseURL() +
"/default.aspx";
Response.Redirect (redirURL) ;

}
// Get the Project ID from the URL.. if not wvalid, just display
message
string projectID = Request.Params["id"];
if (projectID == "")
{
this.page header.InnerHtml = "<hl>Invalid Project ID</b>: [" +
projectID + "]</hl1>";
return;
}
project info response vl tProj = apiObj.getProjectInfo(projectID);
if (tProj '= null)
{
string tHead = "<hl>Project: " +
HttpUtility.UrlDecode (tProj.project name) + " [ID=" + projectID + "]</hl>";
this.page header.InnerHtml = tHead;
string tHead2 = "<b>Project Created: </b>" + tProj.created date + "
<b>Roster Count: </b>" + tProj.project roster.Count();
tHead2 += " <a class=\"roster 1link\" id=\"roster link\"
href=\"Jjavascript:void();\" onClick=\"viewProjectRoster ('" + projectID +

") s\">(View Roster)</a>";
this.page sub header.InnerHtml = tHead2;
}
else
{
this.page header.InnerHtml = "<hl>Project: [ID=" + projectID +
"}</hl>";
}
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string tJs = "";
tJS += "<script>";
tJS 4= "loadProjectTree (\"" + projectID + "\");";
tJS += "</script>";
this.page contents.InnerHtml = tJS;
}

[WebMethod]

static public string ajax GetProjectTree()

{
string buildHTML = "";
HttpRequest aRequest = HttpContext.Current.Request;
BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI (aRequest) ;

// If no logged on, just redirect to the home page
if ('apiObj.userLoggedIn)

{
return "[]|";
}
// Get the ID
string projectID = aRequest.Params["id"];
HttpContext.Current.Response.ContentType = "application/Jjson;

charset=UTF-8;";

// Build project list...
buildHTML += apiObj.getProjectTreeView (projectID);
return buildHTML;

}

[WebMethod]
static public string ajax GetModelInfo ()

{
string buildHTML = "";

HttpRequest aRequest = HttpContext.Current.Request;
BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI (aRequest) ;

// If no logged on, Jjust redirect to the home page
if ('apiObj.userLoggedIn)
{

return "<b>Unauthorized: Please login to continue</b>";

}

// Get the ID
string modelID = aRequest.Params["id"];

// Get the model info...

model info response vl tModel = apiObj.getModelInfo(modellID) ;
if (tModel == null)

{

return "<b>Model Not Found</b>";

}

buildHTML += "<center>";

PbuildHTML += "<table width=500 style=\"border: lpx solid #CCCCCC;\">";

buildHTML += "<tr bgcolor=\"#CCCCCC\">";
buildHTML += "<td><b>Attribute</b></td>";
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buildHTML += "<td><b>Value</b></td>";

buildHTML += "</tr>";

buildHTML += addRow ("company id", tModel.company id);

buildHTML += addRow("project id", tModel.project id);

buildHTML += addRow ("model name", tModel.model name) ;

buildHTML += addRow ("model id", tModel.model id);

buildHTML += addRow("model version'", tModel.model version.ToString());

buildHTML += addRow("model version id", tModel.model version id);

buildHTML += addRow("is merged model',
tModel.is merged model.ToString());

buildHTML += addRow("action id", tModel.action id);

buildHTML += addRow("created by", tModel.created by);

buildHTML += addRow("created date", tModel.created date);

buildHTML += addRow("modified by", tModel.modified by);

buildHTML += addRow ("modified date", tModel.modified date);

buildHTML += addRow ("parent folder id", tModel.parent folder id);

buildHTML += addRow("file parsed status",
tModel.file parsed status.ToString()):

// Build the URL to view the model

string timestamp =
BIM360WebServiceAPI.getUNIXEpochTimestamp () .ToString() ;

string tURL = "";

tURL += BIM36OSDKDeveloperConfig.GLUE_VIEWER_BASE_URL;

// Add gquestion mark if needed
if (tURL.Substring(tURL.Length - 1) != "?2")
{
tURL += "2";
}

// Parameters for viewer 2

tURL += "<br/>api key=" +
BIM360SDKDeveloperConfig.BIM360GLUESDK API KEY;

tURL 4= "<br/>gamp;timestamp=" + timestamp;

tURL += "<br/>&amp;sig=" +
BIM360WebServiceAPI.generateAPISignature (timestamp) ;

tURL += "<br/>&company id=" +
BIM360SDKDeveloperConfig.BIM360GLUESDK COMPANY ID;

tURL += "<br/>&amp;auth token=" + apiObj.auth token;

tURL += "<br/>&runner=embedded/#" +
BIM360SDKDeveloperConfig.BIM360GLUESDK COMPANY ID

+ "/action™ 4+ "/" + tModel.action id;

buildHTML 4= addRow("View URL", tURL);

buildHTML 4= "</table>";
return buildHTML;
}

static string addRow(string aField, string aVal)
{
string rHTML = "";
rHTML += "<tr style=\"border-bottom: lpx solid #CCCCCC\">";
rHTML += "<td style=\"border-right: 1lpx solid #CCCCCC\">";
rHTML += "<b>" 4 aField + "</b>";
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rHTML += "</td>";

rHTML += "<td>";

rHTML += aVal;

rHTML 4= "</td>";
rHTML 4= "</tr>";
return rHTML;

}
[WebMethod]
static public string ajax GetProjectRoster()
{
string buildHTML = "";
HttpRequest aRequest = HttpContext.Current.Request;
BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI (aRequest) ;
// If no logged on, Jjust redirect to the home page
if ('apiObj.userLoggedIn)
{
return "<b>Unauthorized: Please login to continue</b>";
}
// Get the ID
string projectID = aRequest.Params["1id"];
// Get the model info...
project info response vl tProj = apiObj.getProjectInfo(projectID);
if ((tProj == null) || (tProj.project roster == null))
{
return "<b>Roster Not Found</b>";
}
buildHTML += "<center>";
buildHTML += "<table width=500 style=\"border: lpx solid #CCCCCC;\">";
buildHTML += "<tr bgcolor=\"#CCCCCC\">";
buildHTML += "<td><b>Login Name</b></td>";
buildHTML += "<td><b>Date Added</b></td>";
buildHTML += "</tr>";
foreach (user info response vl tUser in tProj.project roster)
{
buildHTML += addRow (tUser.login name, tUser.created date);
}
buildHTML 4= "</table>";
return buildHTML;
}
[WebMethod]
static public string ajax GetModelViews ()
{

string buildHTML = "";
HttpRequest aRequest = HttpContext.Current.Request;
BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI (aRequest) ;

// If no logged on, just redirect to the home page
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if ('apiObj.userLoggedIn)
{

return "<b>Unauthorized: Please login to continue</b>";

}

// Get the ID
string modelID = aRequest.Params["id"];

// Get the model info...
model info response vl tModel = apiObj.getModelInfo(modellID) ;

if (tModel == null)
{
return "<b>Model Not Found</b>";
}
if (tModel.view tree == null)
{

return "<div class=\"message notice\" style=\"margin: Opx 16px 6px
16px; \"><b>This model does not contain any Views.</b></div>";

}

buildHTML += "<center>";

buildHTML += "<table width=500 style=\"border: lpx solid #CCCCCC;\">";
buildHTML += "<tr bgcolor=\"#CCCCCC\">";

buildHTML 4= "<td><b>Name</b></td>";

buildHTML 4= "<td><b>Create Date</b></td>";

buildHTML += "<td><b>Creator</b></td>";

buildHTML += "</tr>";

foreach (model view node tView in tModel.view tree)

{
if (tView.type !'= "VIEW")
{
continue;
}

buildHTML += "<tr style=\"border-bottom: lpx solid #CCCCCC\">";
buildHTML += "<td style=\"border-right: lpx solid #CCCCCC\">";

// Build the URL to view the model

string timestamp =
BIM360WebServiceAPI.getUNIXEpochTimestamp () .ToString() ;

string tURL = "";

tURL += BIM36OSDKDevelOperConfig.GLUE_VIEWER_BASE_URL;

// Add question mark if needed
if (tURL.Substring(tURL.Length - 1) != "?2")

{
tURL += "2";

}

// Set parameters for viewer 2

tURL += "api key=" +
BIM360SDKDeveloperConfig.BIM360GLUESDK API KEY;
tURL += "&gtimestamp=" + timestamp;
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tURL 4= "ssig=" +
BIM360WebServiceAPI.generateAPISignature (timestamp) ;

tURL += "&company id=" +
BIM360SDKDeveloperConfig.BIM360GLUESDK COMPANY ID;

tURL += "sauth token=" + apiObj.auth token;

tURL += "&runner=embedded/#" +
BIM360SDKDeveloperConfig.BIM360GLUESDK COMPANY ID

+ "/action"™ 4+ "/" + tView.action id;

buildHTML += "<a href=\"javascript:void (0) ;\"
onClick=\"loadModel ("" 4+ tURL + "'");\">";

buildHTML += HttpUtility.UrlDecode (tView.name) ;

buildHTML += "</a>";

PuildHTML 4= "</td>";

buildHTML += "<td style=\"border-right: 1lpx solid #CCCCCC\">";
buildHTML += tView.created date;
buildHTML += "</td>";

buildHTML += "<td>";
buildHTML += tView.created by;
buildHTML += "</td>";
buildHTML += "</tr>";
}

buildHTML 4= "</table>";
return buildHTML;
}

[WebMethod]

static public string ajax GetModelMarkups ()

{
string buildHTML = "";
HttpRequest aRequest = HttpContext.Current.Request;
BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI (aRequest) ;

// If no logged on, Jjust redirect to the home page
if ('apiObj.userLoggedIn)
{

return "<b>Unauthorized: Please login to continue</b>";

}

// Get the ID
string modelID = aRequest.Params["id"];

// Get the model info...
model markup[] tMarkups = apiObj.getAllModelMarkups (modellID) ;
if (tMarkups == null)
{
return "<div class=\"message notice\" style=\"margin: Opx 1l6px 6px
16px; \"><b>This model does not contain any Markups.</b></div>";

}

buildHTML += "<center>";
buildHTML += "<table width=500 style=\"border: lpx solid #CCCCCC;\">";
DuildHTML += "<tr bgcolor=\"#CCCCCC\">";
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buildHTML += "<td><b>Name</b></td>";
buildHTML += "<td><b>Create Date</b></td>";
buildHTML += "<td><b>Creator</b></td>";
buildHTML += "</tr>";

// Show the markups
foreach (model markup aMarkup in tMarkups)

{
buildHTML += "<tr style=\"border-bottom: 1lpx solid #CCCCCC\">";

buildHTML += "<td style=\"border-right: lpx solid #CCCCCC\">";

// Build the URL to view the model

string timestamp =
BIM360WebServiceAPI.getUNIXEpochTimestamp () .ToString() ;

string tURL = "";

tURL += BIM36OSDKDeveloperConfig.GLUE_VIEWER_BASE_URL;

// Add question mark if needed
if (tURL.Substring(tURL.Length - 1) != "?2")
{
LURL += "2";
}

// Set parameters for viewer 2

tURL += "api key=" + BIM360SDKDeveloperConfig.BIM360GLUESDK API KEY;

tURL += "&timestamp=" + timestamp;

tURL += "&sig=" +
BIM360WebServiceAPI.generateAPISignature (timestamp) ;

tURL += "&company id=" +
BIM360SDKDeveloperConfig.BIM360GLUESDK COMPANY ID;

tURL += "&auth token=" 4+ apiObj.auth token;

tURL += "&runner=embedded/#" +
BIM360SDKDeveloperConfig.BIM360GLUESDK COMPANY ID

+ "/action™ 4+ "/" 4 aMarkup.action id;

buildHTML += "<a href=\"javascript:void(0);\" onClick=\"loadModel ('"
+ tURL + "");\">";

buildHTML += HttpUtility.UrlDecode (aMarkup.name) ;

buildHTML += "</a>";

PUuildHTML += "</td>";

buildHTML += "<td style=\"border-right: 1lpx solid #CCCCCC\">";
buildHTML += aMarkup.created date;
buildHTML += "</td>";

buildHTML += "<td>";
buildHTML += aMarkup.created by;
buildHTML += "</td>";
buildHTML += "</tr>";
}
buildHTML += "</table>";
return buildHTML;

198




Project

-Project ID
-Description
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-Location
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-Duration
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-Fill Locations

Appendix C: DATABASE STRUCTURE
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Appendix D: AS-BUILT SCHEDULES GENERATION

The as-built schedules generation algorithm was developed in collaboration with a major utility
company in Quebec (Ibrahim et al., 2013). This appendix describe in details the automated
generation of as-built schedules. The work on sites was monitored daily with the inspectors and
using the iPad portable computers. These electronic inspection reports are collected and stored in
a SQL database. The goal of this project is to develop a program that able to link the progress data
from SQL database with the Primavera project as planned and generate the as built schedule. Two
major developments were achieved in this project. First, a revised version of the SQL database
was produced. Second, a computer program tool for generating the as built schedule was
developed. In order to establish the link between the inspection reports database and the primavera
schedule, two new fields were added to the SQL database. The two new fields were the activity

identification as per the primavera schedule, and The work breakdown structure code based on the

primavera schedule.

The new added fields facilitated the linking and the data exchange between the SQL database and
the primavera schedule. The addition of these fields is done automatically by the developed

software, using the following SQL queries:

if not exists (select column name from HQ2.INFORMATION SCHEMA.COLUMNS
where table name = 'tbl Rapport Journalier' and column name = 'WBS')
alter table [HQ].[dbo].[tbl Rapport Journalier] add WBS varchar (50)

if not exists (select column name from HQ2.INFORMATION SCHEMA.COLUMNS
where table name = 'tbl Rapport Journalier' and column name = 'ACT ID')
alter table [HQ].[dbo].[tbl Rapport Journalier] add ACT_ ID varchar (50)
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Each inspection report in the database includes the following information:

e Type of the report (NoRapport),
e Location of the work (NoLocalisation) , and

e Task description (NoActivite).

These three pieces of information were used to execute a three-phase scanning algorithm as shown

in Figure D-1.

Start J

k.

Extract WBS form
Primavera Schedule

k.
For each Activity in
Primavera Schedule Do

>

¥
Three-phase Scan
for
NoRappaort,
Nelocalisation and
NoActivite

kL

Update ACT_ID & WBS
Fields

End of Activate
Reached

Figure D-1: Database Update Algorithm Flowchart
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The Update of the database Fields is executed by the SQL query:

UPDATE HQ.dbo.tbl Rapport Journalier

SET tbl Rapport Journalier.WBS = '1LS.6.6802.1200.211",
tbl Rapport Journalier.ACT ID = 'D180'

WHERE NoActivite='E356F399-7AE0-445B-8143-CDD1CFB66018"'
and NoLocalisation='D4705505-2BFD-43B6-ADB6-7FAC46FB11EC'
and NoRapport='2BCOF785-13B0-4557-9425-7D29BD4B667C"'

The Automated schedule generation is based on the actual data stored in the SQL database. After
implementing the linking fields in the database as explained in the previous section, the process of

extracting the actual data from the database is initiated.

The extracted data are:

e The Actual start and finish dates for the activities.
e The Actual assigned resources for each activity.
e The Actual labor and equipment working hours.

e The Actual placed concrete quantities.

The data extraction algorithm based on aggregation process, which is applied on the records in the
database. As the database is a relational database, the required data is extracted by joining multiple

tables using SQL queries.

Actual labor resources assignments query:

select tbl Rapport Journalier.ACT ID, tbl Code Main Oeuvre.CorpsMetier,

min (tbl Rapport Journalier.DateRapport) as Actual start,

max (tbl Rapport Journalier.DateRapport) as Actual Finish,

sum (tbl Main Oeuvre.Nombre * tbl Main Oeuvre.NbreHreRegulier +

tbl Main Oeuvre.Nombre * tbl Main Oeuvre.NbreHreSup * 1.5) as Total ManHrs
from HQ.dbo.tbl Rapport Journalier

left join HQ.dbo.tbl Activite on

tbl Rapport Journalier.NoActivite=tbl Activite.NoActivite

left join HQ.dbo.tbl Main Oeuvre on

tbl Rapport Journalier.NoFormulaire=tbl Main Oeuvre.NoFormulaire
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left join HQ.dbo.tbl Code Main Oeuvre on tbl Main Oeuvre.NoCodeMainOeuvre =
tbl Code Main Oeuvre.NoCodeMainOeuvre

where (tbl Rapport Journalier.ACT ID Is Not NULL) And

(tbl Code Main Oeuvre.CorpsMetier Is Not NULL)

group by tbl Rapport Journalier.ACT ID, tbl Code Main Oeuvre.CorpsMetier
order by tbl Rapport Journalier.ACT ID

Actual equipment resources assignments query:

select tbl Rapport Journalier.ACT ID, tbl Code Equipement. [Description],
min (tbl Rapport Journalier.DateRapport) as Actual start,

max (tbl Rapport Journalier.DateRapport) as Actual Finish,

sum (HreTravaille) as Total ManHrs from HQ2.dbo.tbl Rapport Journalier
left join HQZ2.dbo.tbl Equipement on tbl Rapport Journalier.NoFormulaire =
tbl Equipement.NoFormulaire

left join HQZ2.dbo.tbl Code Equipement on

tbl Equipement.NoCodeEquipement=tbl Code Equipement.NoCodeEquipement

left join HQ2.dbo.tbl Type Equipement on

tbl Code Equipement.NoTypeEquipement=tbl Type Equipement.NoTypeEquipement
where (tbl Rapport Journalier.ACT ID Is Not NULL) And

(tbl Code Equipement. [Description] Is Not NULL)

group by tbl Rapport Journalier.ACT ID, tbl Code Equipement. [Description],
tbl Code Equipement.NoEquipement

order by tbl Rapport Journalier.ACT ID

Actual Placed Concrete Quantities Query:

select ACT_ID, 'Beton' as Resource ,MIN(tbl Rapport Journalier.DateRapport)
as Actual Start ,MAX(tbl Rapport Journalier.DateRapport) as Actual Finish
,SUM(tbl Beton Place.Quantite) as Total Qty

from HQ2.dbo.tbl Rapport Journalier

left join HQ2.dbo.tbl Beton on

tbl Rapport Journalier.NoFormulaire=tbl Beton.NoFormulaire

left join HQ2.dbo.tbl Beton Place on

tbl Beton.NoBeton=tbl Beton Place.NoBeton

where tbl Beton Place.Quantite > 0

group by ACT ID

Actual Activity Start and Finish Dates Query:

select tbl Rapport Journalier.ACT ID,

max (tbl Rapport Journalier.DateRapport) as Actual Finish,
min (tbl Rapport Journalier.DateRapport) as Actual Start
from HQ2.dbo.tbl Rapport Journalier

where tbl Rapport Journalier.ACT ID Is Not NULL

group by tbl Rapport Journalier.ACT ID

order by tbl Rapport Journalier.ACT ID

The resources Cross check algorithm is responsible for identifying any mismatch between the
allocated resources to the planned schedule and the actual resources utilized in the actual inspection

reports. If the resources were not assigned in the planned schedule, the algorithm generates a list
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of the new resources, and creates them in order to assign them in the as-built schedule as per the

actual data. The actual resources list is extracted from the database using the following queries:

Select tbl Code Main Oeuvre.CorpsMetier

from HQ2.dbo.tbl Rapport Journalier

left join HQ2.dbo.tbl Main Oeuvre on

tbl Rapport Journalier.NoFormulaire=tbl Main Oeuvre.NoFormulaire

left join HQ2.dbo.tbl Code Main Oeuvre on tbl Main Oeuvre.NoCodeMainOeuvre =
tbl Code Main Oeuvre.NoCodeMainOeuvre

where ACT ID Is Not null and tbl Code Main Oeuvre.CorpsMetier is not null
group by tbl Code Main Oeuvre.CorpsMetier

select tbl Code Equipement.Description

from HQ2.dbo.tbl Rapport Journalier

left join HQZ2.dbo.tbl Equipement on tbl Rapport Journalier.NoFormulaire =
tbl Equipement.NoFormulaire

left join HQ2.dbo.tbl Code Equipement on tbl Equipement.NoCodeEquipement =
tbl Code Equipement.NoCodeEquipement

left join HQ2.dbo.tbl Type Equipement on

tbl Code Equipement.NoTypeEquipement = tbl Type Equipement.NoTypeEquipement
where ACT ID Is Not null and tbl Code Equipement.Description is not null
group by tbl Code Equipement.Description

The as-built schedule is then generated according to the actual data from the inspection reports in
the SQL database. The schedule generation algorithm update the planned schedule with the actual

progress from the extracted data in the previous section as illustrated in Figure D-2.

The software was developed in Microsoft Visual Basic.net environment. The developed tool
generates the as-built schedule in primavera .Xer format. The Program requires two main inputs:

as Planned Schedule in Primavera .xer format, and site inspection reports database (SQL format).
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For each resource assignment in the database

k4

Check if this resource assignment
exist in the planned schedule

Create This resource Assignment

Y

Update The Actual Data
- Actual Start,
- Actual Finish,
- Actual Resource Hrs

Reached End of Records?

Yes

.

Foll Up all Dates to Activity level
Auto Calculate the Activity Totals

End

Figure D-2: As-built Schedule Generation Algorithm
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Appendix E: SELF-ADAPTIVE FORECASTING

Adaptive filtering is a technique, which had been widely used in telecommunications to forecast
and to build mathematical models of unknown dynamic systems, where the parameters of the filter
are updated continuously to achieve better estimates for output signals. Figure (E-1) depicts the
general filter setup with its inputs and outputs. The filter self-leaning process is defined by
adjusting the filter parameters to reduce the error between the output signal y(t) and the estimated
signal Y’(t). As the input data x(t) and output data y(t) changes, the filter adapts to the new values
by generating a new values for its parameters. As a result, when the estimation error e(t) become
smaller, the adaptive filter output converges to the unknown system performance. A one-step look
ahead forecast is estimated based on the weighted sum of past observations. In general terms, this

approach is represented as:
Vi = 2iswixg (E-1)

Where Y’w1 is the forecast at the end of period t + 1; wi, the weight assigned to observation i; xi,

the i observed value, and n, the number of periods.

Estimated Signal __
Y'it)

| Adaptive Filter

t "4
Parameter Estimation Error ¥
Adjustment e(t)

Input Signal Qutput Signal
pu‘ t's » Unknown System DI - £

Figure E-1: Self-Adaptive Filtering General Model
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The forecasting process starts by obtaining a series of n past observations of the variable to be
forecasted. Then, an initial value for each of the weights is assumed to be equal, and a forecast,
Y ’t+1, is made using Equation (E-1). The forecasted value is compared later (at the next reporting
period) with the actual value recorded at that time period, and hence the forecast error is computed
to adjust the weights subsequently and hence reduce the error of the next forecast. This process is
repeated for each of the following time intervals. This technique is reliable in forecasting even in
situations where relatively small amount of data is available. The fundamentals of adaptive
filtering are not only technically sound, but also can be explained in an intuitively appealing
manner to management. The original work on adaptive filters is attributed to (Pertuz, 1968;

Widrow, 1966).

The self-adaptive filtering, explained in the previous section, is utilized in the developed
forecasting method using periodic actual and planned costs data as inputs for the iterative self-
learning process. The block diagram presented in Figure (E-2) illustrates the developed self-

adaptive cost forecasting method.

Project ACt1 ta
Cost Control PV,

FVy -

Compute
Error

AC

Figure E-2: Developed Self-Adaptive Filtering Cost Forecasting Method

In this method, a one-step-ahead cost forecast is calculated as weighted sum of the n most recent
observations values, using the following equation:
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FVe = ¥isowi (K X o5 X PV + kg X B; X FVi_y) (E-2)

Where FV. is the forecasted cost of work performed at the end of period t, W; is the weight for the
i forecast, kqi and kpi are adjustment coefficients for the i forecast, a; is the forecasting factor at
the i™ previous observation, B; is the forecasted cost correction factor for the i™ forecast and PV

is Planned Cost of work scheduled for periods t to t-n.

Figure (E-3) to Figure (E-6) illustrate the developed iterative mechanism for calculating the
weights and coefficients for the developed self-adaptive filter form the last n observations. The
sequence of the developed iterative mechanism shown in Figure (E-3), is explained in the

following four steps:

Step 1: The process start at the end of reporting period t-1, by computing a forecast factor a for
each past observation as shown in Figure (E-3), and forecasting the actual cost at the following

time step t using n equal weights.

Figure E-3: Step 1 of the Iterative Mechanism
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At the end of time period t-1 calculate the forecasting factor:

_ AC¢—q

W = (E-3)

Where ACi1 = Actual cost of work performed in period (t-1); PVi; = Planned cost of work
scheduled for periods t-1 to t-n; n = number of previous observation used in the forecast; i =1 to

n, and o; = the forecast factor at the i™ previous observation.

Calculate the forecasted cost at end of period t (next observation):
Fi = PV, X g (E-4)
FVi =Xy wi X F (E-5)

Where PV, = planned cost of work scheduled for next period; ai= the forecast factor at the i
previous observation; F; = the i forecasted cost of work performed based on the i observation;
W; = the weight for the i Forecast (equal to 1/n for the first cycle), and FV, = forecasted cost of

work performed in period t.

Step 2: At the end of reporting period t, and after the actual cost become know, the relative weights
for next forecast are calculated based on previous forecast error as shown in Figure (E-4). The key
to the adaptive filtering effectiveness is the rule to adapt the weights at the end of each cycle based

on the measured error in the forecasted value.

By definition, the error as the difference between the actual cost and the forecasted cost, the
weights are calculated as the reciprocal of the forecast error divided by the sum of the reciprocals

of all forecast errors.
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e = |AC; — Fl (E-6)

Wi = - T (E-7)

Where AC; = actual cost of work performed in period t, and e; = i forecast error at period t.

'
Cost §
7 /
:ﬁ f/ e = |AC, —F|
7/ :
. . w, = 5L wherei-itor
"/ s
/:/4' :
— st
Time

Figure E-4: Step 2 of the Iterative Mechanism

Step 3: The forecasted cost FV+1 using Equation (2) is a function of planned value PV, during the
next time period and the forecasted cost F; at the end of current time period. Therefor two
adjustment coefficients kq and kg are calculated to add more weight on the closest value of the F;
and PV with respect to the AC. The Accounting Cost Variance (ACV) and the forecast error (FE)

are used to calculate the two adjustment coefficients k, and kg as shown in Figure (E-5).

These two coefficients are calculated by:

_ |AC¢—Fj|
kai

= (ACPVi+IAC—FiD (E-8)
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_ |AC¢—PV¢|
(IAC¢—PV¢|+|AC—F;])

Kg; (E-9)

'
Cost §
o FV.'//&"_
.ﬁt:/ Ay =2, -
/'/"' FE, = AC, - F,
B |FE
./' ka1 = ATV + FED
2 AV
. ' (1ACV] + |FE)
= -
Tima
i

Figure E-5: Step 3 of the Iterative Mechanism

For example, considering a project at the end of period 4 has its ACs equals to $900.00, its
budgeted cost of work scheduled PV4 equals $380.00, its predicted cost Fi using the data of the
first period at this reporting date equals $1,300.00. Therefore, coefficient Ky can be calculated as
= 1$900.00-$1300.00|/ (]$900.00-$380.00| + |$900.00-$1300.00|) = 0.43. coefficient Kg; can be
calculated as = [$900.00-$380.00}/(/$900.00-$380.00] + [$900.00-$1300.00|) = 0.57, which means
that the next period forecast will yields an adjusted forecast 43% on the next planned value and

57% based on actual cost of last period.

Step 4: In order to account for a situation when the underlying trend in project performance is
changing over time, a correction factor f is calculated to periodically compensate for cost variances
due to unusual events in a reporting period which is not likely to happen in another period as shown

in Figure (E-6). This forecast correction factor is calculated by:
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Bi=—" (E-10)

Then the forecasting factor for next period is recalculated:

@ = Pv‘f;l (E-11)
The forecasted cost for period t+1 is calculated as:

Fi = kgi X o X PV g + kgi X B X FV; (E-12)

FVpq = S0, w; X F (E-13)

Where PVi:1 = Planned cost of work scheduled at next period; Wi = the weight for the i Forecast

from step 2, and FV+1 = Forecasted cost at next period.

Cost § 22
o FV. PV
= -/ & =5

AC,
:AC/ Il

//. Fi = kg X a; % PVq + kg % By % FV,

: 4 Ve = y y % F where | =1 107
/'/ ,Z,‘w % T 1
{;::/ EAC, —B-‘\C+F‘u’,.;.— PViys
Tima

Figure E-6: Step 4 of the Iterative Mechanism

Finally the Project Cost at Completion is then forecasted by:

EACt == BAC + FVt+1 - PVt+1 (E'14)
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Where BAC = Planned budget at completion; FVi+1 = Forecasted cost at the end of next period,;
PVi1 = Planned cost of work scheduled in next period, and EAC; = Estimate at completion at the

end of period t. Steps from 2 to 4 are repeated until the end of the project.

Overall, the suitability of the self-adaptive filtering method for project cost forecasting is validated
using twelve projects of different type, size and performance. The proposed method was able to
forecast the project cost at-completion and at intermediate periods with higher accuracy than
methods based on index (EVM) and regression. The enhanced accuracy can be attributed to
iterative nature of the proposed method, which calibrates the forecasting factor based on actual
and future planned costs. As a result, the methodology developed in this paper contributes to the

forecasting techniques used for project control body-of-knowledge.

The proposed method is a simple and accurate, and can be easily integrated in any cost control
system. Unlike the index based methods of EVM, the proposed method does not require the
collection of periodical progress data (EV and % complete), which in turn saves substantial effort
for project management personnel. Also, it can effectively be applied to short-duration project
because it only require as little as one data point to forecast project's cost with acceptable accuracy.
The proposed method, however requires the availability of project's planned cost data, and accurate

actual cost accounting updates.
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Appendix F: MATLAB SIMULATION CODE

% Localization Raw RSSI
%****************************

x limit=[-20,20];
y limit=[-20,201;
num_points= ;

p=zeros (num points,?2);

estimated p=zeros(num points,?);
d=zeros (num points,3);
rssi=zeros(num points,3);
estimated d=zeros(num points,3);
d_error=zeros(num points,3);
loc_error=zeros (num_points);
rl=[-10,-10];

r2=[-10,101;

r3=[10,10];

error _distance = 0;

error loc= 0;

for i=l:num points
p(i,l)=(x_limit(l)+abs(x limit(?)-x limit(1))*rand()):
p(i,2)=(y limit(l)+abs(y limit(2)-y limit(1))*rand()):
d(i,1)= sgqrt(((p(i,1)-r1 (1)) *2)+((p(i,2)-rl(2))"2));
d(i,?2)=sqrt(((p(i,1)-r2(1))*2)+((p(i,2)-r2(2))*2));
d(i,3)=sqrt(((p(i,1)-r3(1))*2)+((p(i,2)-r3(2))*2));
end

se = RandStream('mt19937ar','Seed',1);
RandStream.setGlobalStream(se) ;

for i=l:num points
for j=1:
e = - *log(d(i,j))+ ;
rssi _error = e*rand(l, )
rssi(i,j)= - *log(d(i,3))- +mean (rssi_error);
estimated d(i,j) = exp((rssi(i,j)+ )/ - )
end
end
for i=l:num points

va=((estimated d(i,2)*2-estimated d(i,3)*2)-(r2(1)*2-r3(1)*2)-(r2(2)*2-
r3(2)*2))/2;

vb=((estimated d(i,2)*2-estimated d(i,1)*2)-(r2(1)*2-x1(1)*2)-(r2(2)* 2~
rl(2)*2))/2;

estimated p(i,2)=(vb*(r3(L)-r2(l))-va*(rl(l)-r2(1l)))/((x1(2)-
r2(2))*(r3(1)-r2(1)) - (r3(2)-r2(2))*(r1(1)-r2(1)));

estimated p(i,l)=(va-estimated p(i,2)*(r3(2)-r2(2)))/(r3(1)-r2(1));

end
for i=l:num points
for j=1:
d error(i,j)=abs(d(i,j)-estimated d(i,3))
error distance=d error(i,j)+error distance;
end
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loc_error(i)=sqgrt((p(i,l)-estimated p(i, 1)) *2+(p(i,2)~-
estimated p(i,2))*2);

error loc=loc_error(i)+error loc;
end

error distance = error distance/(num points*3)
error loc= error loc/num points

figure

plot(p(:,1),p(:,2),'0")

hold;

plot(estimated p(:,1) ,estimated p(:,2), 'k+")

plot(rl(l),rl(2),"'r*")

plot(r2(1l),r2(2),"'r*")

plot(r3(Ll),r3(2),'c*")

legend('Actual Tag Location','Estimated Tag Location','Reader Location'):;
xlabel ('X (m)') % x-axis label

ylabel ('Y (m)') % y-axis label

% RSSI Filtering
R R I S Sh b S dh b b dh S b S Sb b dh I b db S b

o°

m= ;
rssi=zeros (m) ;
x=zeros (m) ;

d=15;
E = - *log(d)+ ;
PL = - *log(d) - ;
R= ;
x1=0;
for i=1:m
rssi(i)= PL+E*rand();
pl=p+Q;
y=rssi (i)
k=pl/ (pl+R) ;
x(1)=x1+k* (y-x1);
p=(1-k)*pl;
x1=x (1) ;
end
window size = 9;
simple = tsmovavg(rssi,'s',window size,l);

j =linspace(0,m,m) ;
figure
plot(j,rssi(:,1),'b.");

axis ([0 m min(rssi(:,1))-1 max(rssi(:,1))+1]1);

%axis ([0 m =54 -497]);
hold on
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plot(3,x(:,1),"'r");
plot(j,simple(:,1),"'k");

legend('Raw RSSI','Kalman Filter', 'MVA');
xlabel ('Sample') % x-axis label
ylabel ('dBm') % y-axis label

% Localization Kalman Filtered RSSI
%***********************************
x limit=[-20,20];

y_limit=[-20,20];

num_points= ;

p=zeros (num points,?2);

estimated p=zeros(num points,?);
d=zeros (num points,3);
rssi=zeros(num points,3);

estimated d=zeros(num points,3);

d error=zeros (num points,3);
loc_error=zeros (num points);

rl:[_ r = ];

r2=[— ’ ]r
r3=[10,101;

error _distance = 0;
error loc= 0;

P rssi=zeros( 1)
x=zeros ( 1)

R= ;

0= ;

x1=0;

pp= ;

temp d=zeros( P 1)
k=0

for i=l:num points

p(i,1)=(x_ limit(l)+abs(x limit(2)-x limit (1)) *rand()):;

p(i,2)=(y limit(l)+abs(y limit(2)-y limit (1)) *rand()):;

d(i,1)= sqrt(((p(i,1)-r1(1))*2)+((p(i,2)-r1(2))*2));

d(i,2)=sart (((p(i,1)-r2(1))*2)+((p(i,2)-r2(2))*2));

d(i,3)=sart (((p(i,1)-r3(1))*2)+((p(1,2)-r3(2))*2));
end

se = RandStream('mt19937ar','Seed',1);
RandStream.setGlobalStream(se) ;

for i=l:num points
for j=1:

dl=d(i,3);

E = - *log(dl)+ ;

PL = - *log(dl) - ;

for n=
P rssi(n,1l)= PL+E*rand();
pl=pp+Q;

y=P rssi(n,l);
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k=pl/ (pl+R);
x(n,1)=x1+k* (y-x1);
pp=(1-k)*pl;
x1l=x(n,1);

temp_d(n,1) = exp((x(n,1)+ ) /- )
end
x1=0;
pp= ’

rssi(i,j)= mean(P rssi);
estimated d(i,j) = mean(temp d);
end
end

for i=l:num points

va=((estimated d(i,2)*2-estimated d(i,3)*2)-(r2(1)*2-r3(1)*2)-(r2(2)*2-
r3(2)*2))/2;

vb=((estimated d(i,2)*2-estimated d(i,1)*2)-(r2(1)*2-x1(1)*2)-(r2(2)* 2~
rl(2)*2))/2;

estimated p(i,2)=(vb*(r3(1)-r2(l))-va*(rl(1)-r2(1)))/((x1(2)-
r2(2))*(r3(1)-r2(1)) - (r3(2)-r2(2))*(r1(1)-xr2(1)));

estimated p(i,l)=(va-estimated p(i,2)*(r3(2)-r2(2)))/(r3(1l)-r2(1));

end

for i=l:num points

for j=1:
d error(i,j)=abs(d(i,j)-estimated d(i,3))

error distance=d error(i,j)+error distance;

end

loc _error(i)=sgrt((p(i,l)-estimated p(i,1))*2+(p(i,2)-
estimated p(i,2))*2);

error loc=loc_error(i)+error loc;
end

error distance = error distance/(num points*3)
error loc= error loc/num points

figure

plot(p(:,1),p(:,2),"'0")

hold;

plot(estimated p(:,1),estimated p(:,2),"k+")

plot(rl(l),rl(2),"'c*")

plot(r2(l),r2(2),"'c*")

plot(r3(1l),r3(2),"'c*")

legend('Actual Tag Location','Estimated Tag Location', 'Reader Location');
xlabel ('X (m) ") x—axls label

ylabel ('Y (m)') % y-axis label

)

o

m
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% Localization Kalman Filtered RSSI High Noise Environment
%************************************************************
x limit=[-20,20];

y limit=[-20,20];

num_points= ;

p=zeros (num _points,?);

estimated p=zeros(num points,?2);

d=zeros(num points,3);

rssi=zeros(num points,3);

estimated d=zeros(num points,3);

d _error=zeros (num points,3);

loc_error=zeros(num points);

r1=[-10,-101;

r2=[-10,101;

r3=[10,101;
error_distance = 0;
error loc= 0;

P rssi=zeros( , 1)
x=zeros ( , 1)

R= ;

o= ;

x1=0;

pp= ;

temp d=zeros ( , L)
k=0,

for i=l:num points

p(i,l)=(x_limit(l)+abs(x limit(?)-x limit(1))*rand()):

p(i,2)=(y limit(l)+abs(y limit(2)-y limit (1)) *rand()):;

d(i,1)= saqrt(((p(i,1)-r1(1))*2)+((p(i,2)-r1(2))*2));

d(i,?)=sart (((p(i,1)-r2(1))*2)+((p(1,2)-r2(2))"2));

d(i,3)=sart (((p(i,1)-r3(1))*2)+((p(1,2)-r3(2))"2));
end

se = RandStream('mt19937ar','Seed',1);
RandStream.setGlobalStream(se) ;

for i=l:num points
for j=1:

dl=d(i,3);

E = - *log(dl)+ ;

PL = - *log(dl) - ;

for n=
P rssi(n,l)= PL+E*rand() ;
pl=pp+Q;

y=P rssi(n,l);
k=pl/ (pl4R);
x(n,1)=x1+k* (y-x1);
pp=(l-k)*pl;
xl=x(n,1);

tempid(n, ) = eXP((X(n/ )+ )/_ );
end
x1=0;
pp= 2

rssi(i,j)= mean(P_rssi);
estimated d(i,j) = mean(temp d);
end

218




end

for i=l:num points

va=((estzmated_d(i, )*2-estimated d(i,3)*2)-(r2(L)*2-r3(1)*2)-(r2(2)*2-
r3(2)*2))/2;

vb=((estimated d(i,2)*2-estimated d(i,1)*2)-(r2(1)*2-r1(1)*2)-(r2(2)*2-
rl(2)*2))/2;

estimated p(i,2)=(vb*(r3(1)-r2(l))-va*(rl(1)-r2(1)))/((x1(2)-
r2(2))*(r3(1) -2 (1)) =(r3(2)-r2(2))*(r1(1)-xr2(1)));
estimated p(i,l)=(va-estimated p(i,2)*(r3(2)-r2(2)))/(r3(1l)-r2(1));

end

for i=l:num points

for j=1:
d error(i,j)=abs(d(i,j)-estimated d(i,3))

error distance=d error(i,j)+error distance;

end

loc_error(i)=sqgrt((p(i,1l)-estimated p(i, 1)) *2+(p(i,2)~-
estimated p(i,2))*2);

error loc=loc_error(i)+error loc;
end

error distance = error distance/(num points*3)
error loc= error loc/num points

figure

plot(p(:,1),p(:,2),'0")

hold;

plot(estimated p(:,1),estimated p(:,2),"'k+")

plot(rl(l),rl(2),"'c*")

plot(rz2(1l),r2(2),'c*")

plot(r3(1l),r3(2),'c*")

legend('Actual Tag Location','Estimated Tag Location','Reader Location');
xlabel ('X (m)') % x—axis label

ylabel ('Y (m)'") % y-axis label

% Self-Calibrating Path-Loss
%****************************
population size= ;

k max= ;

opt error=zeros(k max,1);

temp error=zeros(population size,l);

W _max= ;
w_min= ;
cl=>;
c2=2;

old gen=zeros (population size,b);
bBest=zeros (population size,b);

a max = =-30;
a min = -46;

b max = - ;
b min =- ;
va=0;
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vb=0;
intial bBest = ;
gBest=zeros(1,5);

%intialize population

rand genl=randn(population size,l);

rand gen2=randn(population size,l);

old gen(l,1)= a min+(abs(a max-a min))*rand genl(l,1);
old gen(l,2)= b min+(abs(b max-b min))*rand gen2(l,1)
old gen(l,3)= va;

old gen(l,4)= vb;

old gen(l,5)= find error(p,old gen(l,1),0ld gen(l,2));

’

gBest (1,1)=0ld gen(l,
gBest (1,2)=0ld gen(l,
gBest (1,3)=0ld gen(l,
gBest (1,4)=0ld gen(l,
gBest (1,5)=0ld gen(l,

~.

~. o N

~— N N e
~

~.

for i=Y:population size

old gen(i,l)= a min+(abs(a max-a min))*rand genl(i,1);
old gen(i,2)= b min+(abs(b_max-b min))*rand gen2(i,l);
old gen(i,3)= va;
old gen(i,4)= vb;
old gen(i,5)= find error(p,old gen(i,l),old gen(i,2));

if old gen(i,5)< gBest(l,5)
gBest(l,1)=0ld gen(i,1);
gBest (1 ,2)=0ld gen(i,?);
gBest (1,3)=0ld gen(i,3);
gBest (1 ,4)=0ld gen(i,4);
gBest (1 ,5)=0ld gen(i,5);
end

end
bBest=o0ld gen;
for k=1:k max
w= w_max-((w_max-w_min)*(k/k _max)) ;

for i=l:population size

va=w*old gen(i,3)+cl*rand* (bBest(i,1)-
old gen(i,l))+c2*rand*(gBest(l,1)-old gen(i,1));

vb=w*old gen(i,4)+cl*rand* (bBest(1l,2)-
old gen(i,2))+c2*rand* (gBest(1,2)-o0ld gen(i,2));

old gen(i,l)=o0ld gen(i,1)+va;

old gen(i,2)=o0ld gen(i,2)+vb;

old gen(i,3)= va;

old gen(i,4)= vb;

old gen(i,5)= find error(p,old gen(i,l),old gen(i,2));

if old gen(i,5)< gBest(l,5)

gBest (1l ,1)=0ld gen(i,1);
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gBest (1,2)=0ld gen(i,
gBest (1,3)=o0ld gen(i,
gBest (1,4)=o0ld gen(i,
gBest (1,5)=o0ld gen(i,

~.

o N

~.

~ N N
~

end

if old gen(i,5)< bBest(i,
bBest (i, 1)=o0ld gen(i,
bBest (i,2)=o0ld gen(i,
bBest (i,3)=o0ld gen(i,
bBest (i,4)=0ld gen(i,
bBest (i,5)=0ld gen(i,

o N

~.

~.

~— N N N N
~

~.

end
end

stemp error=old gen(:,5);
opt_error(k,l)=gBest(l,5);

end

% PSO fitness function
%****************************

function location error= find error(ref points,par A,par B)

num_points=length(ref points);
rssi=zeros(num points,3);

P rssi=zeros( , 1)

estimated d=zeros(num points,3);
estimated p=zeros(num points,?);
loc_error=zeros (num points);
x=zeros ( , 1)

R= ;

o= ;

x1=0;

pp= ;

temp d=zeros( , 1)

k=0;

]f1=[— r = ];

]f2=[— ’ ];
r3=[10,10];
d=zeros (num points,3);
location error=0;

for i=l:num points
d(i,1)= sqgrt(((ref points(i,l)-rl(1l))*2)+((ref points(i,2)-rl(2))
d(i,2)=sgrt(((ref points(i,l)-r2(1))*2)+((ref points(i,?)-r2(2))*
d(i,3)=sgrt(((ref points(i,1)-r3(1))*2)+((ref points(i,?)-r3(2))*
end

se = RandStream('mt19937ar','Seed',1);
RandStream.setGlobalStream(se) ;
for i=l:num points
for =
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dl=d(i,Jj);

E = - *log(dl)+ ;
PL = - *log(dl) - ;
for n=
P rssi(n,l)= PL+E*rand();
pl=pp+Q;

y=P rssi(n,1l);
k=p1/ (pl+R) ;
x(n,1)=x1+k* (y-x1);
pp=(1-k)*pl;
x1l=x(n,1);
temp_d(n,1) = exp((x(n,l)-par_A)/par_B);
end
x1=0;
pp= ;
rssi(i,j)= mean(P_rssi);
estimated d(i,]j) = mean(temp d);
end
end
for i=l:num points
va=((estimated d(i,2)*2-estimated d(i,3)"*2)-(r2(1)*2-r3(1)*2)~-
(r2(2)*2-r3(2)*2))/2;
vb=((estimated d(i,2)*2-estimated d(i,1)*2)-(r2(1)*2-xl1(1)*2)~-
(r2(2)*2-r1(2)*2))/2;
estimated p(i,2)=(vb*(r3(1)-r2(l))-va*(rl(1)-r2(1)))/((x1(2)-
r2(2))*(r3(1)-r2(1)) = (r3(2)-r2(2)) *(r1(1)-xr2(1)));
estimated p(i,l)=(va-estimated p(i,2)*(r3(2)-r2(2)))/(r3(1)-r2(1));
end
for i=l:num points
loc _error(i)=sqgrt((ref points(i,l)-
estimated p(i,1))*2+(ref points(i,?)-estimated p(i,2))*2);
location error=loc error(i)+location error;
end

location error= location error/num points;

end
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Queue Load:

Load:

entry /

do/

exit /

entry /

do/

exit /

Appendix G: IF-Then Rules

if ((Return finshed) and (Truck in proximity) and (Location = Cut) and (Truck
speed = 0) and (Truck weight =0))
{

Queue Loading Start = True

Start Counting Queue Loading Duration

if ((Queue Loading Start) and (Location = Cut) and (Loader in proximity) and
(Truck speed =0)

{
Queue Loading Finished = True

if ((Queue Loading finished or Return finshed) and (Loader in proximity) and
(Loader cycles are detected) and (Location = Cut) and (Truck speed = 0) and
(Truck weight increasing))

{
Loading Start = True

Start Counting Loading Duration

if ((Loading Start) and (Location = Road) and (No Entities in proximity) and

(Truck speed >0)

{
Loading Finished = True
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Travel:

entry /

do/

exit /

Queue Dump:

entry /

do/

exit /

if (Loading Finished) and (Location = Road) and (Truck speed > 0) and (Truck
weight >0))
{

Travel Start = True

Start Counting Travel Duration

if (Travel Start) and (Location = Fill) and  (Truck or Spotter in proximity) and
(Truck speed=0)
{

Travel Finished = True

if (Travel Finshed) and (Location =Fill) and (Truck speed = 0) and (Truck weight
>0)) and (Truck in Proximity) and (Tilt angle =0)
{

Queue Dump Start = True

Start Counting Queue Dump Duration

if (Queue Dump Start) and (Tilt angle >0) and (Location = Fill) and (Truck
weight>0)

{

Queue Dump Finished = True
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Dump:
entry /

do/

exit /

Return:

entry /

do/

exit /

if (Travel Finshed or Dump Queue Finished) and (Location =Fill) and (Truck
speed = 0) and (Truck weight >0)) and (Spotter in Proximity) and (Tilt angle
>0)

{

Dump Start = True

Start Counting Dump Duration

if (Dump Start) and (Tilt angle =0) and (Location = Fill) and (Truck weight=0)

{
Dump Finished = True

if (Dump Finished) and (Location = Road) and (Truck speed > 0) and (Truck
weight >0))
{

Return Start = True

Start Counting Return Duration

if (Return Start) and (Location = Cut) and (Truck or Loader in proximity) and
(Truck speed=0)
{

Return Finished = True
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Out of Service:

entry /
if ((Location = Service or Any) and (Truck speed = 0) and (Time since last state >
Average Cycle Time)
{
Service Start = True
}

do/  Start Counting Service Duration

exit /
if (State changed)

{

Service Finished = True

226



Appendix H: SOURCE CODE

SA-GPS Code Snippet for Arduino Uno

#include <SD.h>

#include <SoftwareSerial.h>

#include <TinyGPS.h>

// Include the Wire library for I2C access.
#include <Wire.h>

// Include the Electronics BMP180 library.
#include <BMP180.h>

// Store an instance of the BMP180 sensor.

BMP180 barometer;

// Store the current sea level pressure at your location in Pascals.
float sealevelPressure = 101325;

TinyGPS gps;
SoftwareSerial ss(6,5);
bool firstData = false;
float flatl, flonl;
const int chipSelect = 10;
const int writelLED = 3;
const int removeLED = 4;
const int startLogPin = 2;
int logState = 0;

void setup()
{

ss.begin(38400);

pinMode (chipSelect, OUTPUT) ;
pinMode (writeLED, OUTPUT) ;
pinMode (removelED, OUTPUT) ;
pinMode (startLogPin, INPUT) ;

// We start the I2C on the Arduino for communication with the BMP180 sensor.
Wire.begin() ;
// We create an instance of our BMP180 sensor.
barometer = BMP180() ;
if (barometer.EnsureConnected())
{
// When we have connected, we reset the device to ensure a clean start.
barometer.SoftReset () ;
// Now we initialize the sensor and pull the calibration data.
barometer.Initialize(); }
else
{
Serial.println("Could not connect to BMP180.");
digitalWrite (indicatorLed, LOW); // Set our LED.
}

digitalWrite(writeLED, LOW) ;
digitalWrite (removelLED, LOW) ;

String headerStr = "Date;Time;Lat;Long;Alt;Course; Speed; Sat;Age;Distance;Prec";
// see if the card is present and can be initialized:
if (!SD.begin(chipSelect)) {
//Serial.println("Card failed, or not present");
// don't do anything more:
return;
}
//Serial.println("card initialized.");
if (SD.exists("datalog.csv'")){
SD.remove ("datalog.csv'");

}
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Serial.begin(115200);
File dataFile = SD.open("datalog.csv'", O _CREAT | O WRITE);
digitalWrite(writeLED, HIGH) ;
if (datafFile) {
dataFile.print (headerStr);
dataFile.println();
dataFile.close()
digitalWrite(writeLED, LOW) ;
}
// if the file isn't open, pop up an error:
else {
Serial.println("error opening datalog.csv'");

}
}

String printDigits(int digits){
// utility function for digital clock display: prints preceding colon and leading 0
String str;
if (digits < 10)
str = "0" + String(digits);
else
str = String(digits);
return str;
//Serial.print ('0");
//Serial.print(digits);

void loop()

{
logState = digitalRead(startLogPin) ;
if (logState == HIGH)
{

SD.begin(chipSelect) ;
digitalWrite (removelED,LOW) ;
bool newData = false;

for (unsigned long start = millis(); millis()-start <1000;)
{
while (ss.available())
{
char ¢ = ss.read();
if (gps.encode(c))
{
newData = true;
if (!firstData)
{
unsigned long fix age;
gps.f get position(&flatl, &flonl, &fix age);
Serial.println("Intial Data');
Serial.print("Lat = "); Serial.println(flatl);
Serial.print("Long = "); Serial.println(flonl);
Serial.println();
}

firstData = true;

}

if (newData)
{
float flat2, flon2, falt, fc, fkmph, distance;
unsigned long fix age, prec;
unsigned short sat;
int year;
byte month, day, hour, minute, second, hundredths;
String timeStr, dateStr;
if (barometer.IsConnected)

{

228




// Retrive the current pressure in Pascals.

long currentPressure = barometer.GetPressure();

// Retrive the current altitude (in meters).

float altitude = barometer.GetAltitude (sealevelPressure);

}

gps.crack datetime(&year, &month, &day, &hour, &minute, &second, &hundredths, &fix age);
timeStr = printDigits((int)hour) + ":" + printDigits((int)minute) + ":" +
printDigits((int) second) ;
dateStr = printDigits((int)day) + "/" + printDigits((int)month) + "/" +
printDigits (year) ;
gps.f get position(&flat2, &flon2, &fix age);
falt = gps.f altitude(); // +/- altitude in meters
fc = gps.f course(); // course in degrees
fkmph = gps.f speed kmph(); // speed in km/hr
sat = gps.satellites();
distance = gps.distance between (flatl, flonl, flat2, flon2);
prec = gps.hdop() ;

Serial.print("Date = "); Serial.println(dateStr);
Serial.print("Time = "); Serial.println(timeStr);
Serial.print("Lat = "); Serial.println(flat2,6);
Serial.print("Long = "); Serial.println(flon2,0);
Serial.print("Alt = "); Serial.println(falt);
Serial.print("Course = "); Serial.println(fc);
Serial.print("Speed = "); Serial.println(fkmph) ;
Serial.print("Sat = "); Serial.println(sat);
Serial.print("Age = "); Serial.println(fix age);
Serial.print("Distance = "); Serial.println(distance);
Serial.print("Prec = "); Serial.println(prec);
Serial.print("Pressure = "); Serial.println(currentPressure,?);
Serial.print("Altitude = "); Serial.println(altitude,?4);

Serial.println();

File dataFile = SD.open("datalog.csv", O CREAT | O APPEND | O WRITE) ;

if (datafFile) {
digitalWrite(writeLED, HIGH) ;
//dataString = flat & ";" & flon & ";" & gps.satellites() & ";" & gps.hdop();
dataFile.print(dateStr); dataFile.print(";");
dataFile.print(timeStr); dataFile.print(";");
dataFile.print(flat2,6); dataFile.print(";");
dataFile.print(flon2,6); dataFile.print(";");
dataFile.print(falt,?); dataFile.print(";");
dataFile.print(fc,2); dataFile.print(";");
dataFile.print (fkmph,2); dataFile.print(";");
dataFile.print(sat); dataFile.print(";");
dataFile.print (fix age); dataFile.print(";");
dataFile.print(distance,?); dataFile.print(";");
dataFile.print(prec); dataFile.print(";");
dataFile.print (currentPressure,4); dataFile.print(";");
dataFile.print(altitude,4); dataFile.print(";");
dataFile.println();
dataFile.flush();
dataFile.close();
digitalWrite(writeLED, LOW) ;

}

else {
Serial.println("error opening datalog.csv'");
digitalWrite (removelED,HIGH) ;
digitalWrite (writeLED,HIGH) ;
return;

}

flatl = flat2;

flonl = flon2;

}
}
else
digitalWrite (removelED,HIGH) ;
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SC-WSN (Tag) Code Snippet

# Use Synapse Pin definitions
from synapse.nvparams import *
from synapse.switchboard import *
from synapse.platforms import *

BMP180_ADDRESS = 0x77
sealevelPressure = 101325
numRegs = 0x34

def intialize():

#Set transmit power level
txPwr (17)

#Disable UART O
initUart (0, 0)
flowControl (0, False)

#Disable UART 1
initUart (1, 0)
flowControl (1, False)

#Set all GPIOs to inputs with pullup to cut down on
setPinDir (0, 0)
setPinPullup (0, 1)

setPinDir (1, 0)
setPinPullup(l, 1)

setPinDir (2, 0)
setPinPullup(2, 1)

setPinDir (3, 0)
setPinPullup (3, 1)

setPinDir (4, 0)
setPinPullup(4, 1)

setPinDir (5, 0)
setPinPullup(5, 1)

setPinDir (6, 0)
setPinPullup (6, 1)

setPinDir (7, 0)
setPinPullup(7, 1)
setPinDir (8, 0)
setPinPullup(8, 1)

setPinDir (9, 0)
setPinPullup (9, 1)

current use
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setPinDir (10, 0)
setPinPullup (10, 1)

setPinDir (11, 0)
setPinPullup (11, 1)

setPinDir (12, 0)
setPinPullup (12, 1)

setPinDir (13, 0)
setPinPullup (13, 1)

setPinDir (14, 0)
setPinPullup (14, 1)

setPinDir (15, 0)
setPinPullup (15, 1)

setPinDir (16, 0)
setPinPullup(l6, 1)

setPinDir (17, 0)
setPinPullup (17, 1)

setPinDir (18, 0)
setPinPullup (18, 1)

#Disconnect and do not use UARTs
crossConnect (DS _NULL, DS PACKET SERIAL)

#Turn off node relaying packets for others
saveNvParam(NV_MESH OVERRIDE ID, 1)

def poll():

#init I2C

i2cInit (True)

#Read pressure value

cmd = chr( BMP180 ADDRESS | 1 )

result = i2cRead(cmd, numRegs, 1 , False)
#Calculate altitude

altitude = 44330*%(1-(result/sealevelPressure)?(0.19029496))
#Send Ping broadcast

mcastRpc(l, 1, "tag ping", localAddr(), altitude)
#Go back to sleep

sleep (0, 10)

#Install event handlers
snappyGen.setHook (SnapConstants.HOOK STARTUP, intialize)
snappyGen.setHook (SnapConstants.HOOK 100MS, poll)
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