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Abstract  

Similarity Search and Analysis Techniques for Uncertain Time Series Data 

Mahsa Orang, Ph.D. 

Concordia University, 2015 

Emerging applications, such as wireless sensor networks and location-based services, require the 

ability to analyze large quantities of uncertain time series, where the exact value at each 

timestamp is unavailable or unknown. Traditional similarity search techniques used for standard 

time series are not always effective for uncertain time series data analysis. This motivates our 

work in this dissertation. We investigate new, efficient solution techniques for similarity search 

and analysis of both uncertain time series models, i.e., PDF-based uncertain time series (having 

probability density function) and multiset-based uncertain time series (having multiset of 

observed values) in general, as well as correlation queries in particular. In our research, we first 

formalize the notion of normalization. This notion is used to introduce the idea of correlation for 

uncertain time series data. We model uncertain correlation as a random variable that is a basis to 

develop techniques for similarity search and analysis of uncertain time series. We consider a class 

of probabilistic, threshold-based correlation queries over such data. Moreover, we propose a few 

query optimization and query quality improvement techniques. Finally, we demonstrate 

experimentally how the proposed techniques can improve similarity search in uncertain time 

series. We believe that our results provide a theoretical baseline for uncertain time series 

management and analysis tools that will be required to support many existing and emerging 

applications.  
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Chapter 1 : Introduction 

Some existing and emerging applications such as location-based services and wireless sensor 

networks generate and process uncertain time series, where the exact value at each timestamp is 

unavailable or unknown. The sources of uncertainty in time series are various and include the 

following: 

1. Limitations of data collection equipment and techniques, and measurement errors: e.g., errors 

in sensor network readings or delays in data transmission to the server due to limited network 

bandwidth or limited battery power of devices [CER11, CHE03, TRA10]. For example, the 

positions of moving objects can be tracked using the Global Position System, and updated 

periodically. However, the exact positions of these objects at different times are uncertain, and 

are represented as a spatial range at each timestamp. 

2. Privacy concerns: Privacy-preserving methods [AGG08] perturb data in applications such as 

location-based services [CHE04] and medical data analysis [LIA08]. For example, in the latter, 

to protect the privacy of patients, medical information is usually represented as an interval to 

anonymize it. 

3. Forecasting techniques: For example, in mobile applications, future incoming data is unknown 

but predicted with some error [AGG09].  

4. Multiple readings for a measured attribute: For instance, different sensors may read different 

temperatures for a specific area [ASF09]. 
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Research in uncertain time series data analysis is relatively new and focused mostly on 

modeling and similarity search problems [ASF09, DAL12, DALX14, LIA08, RAJ15, SAR10, 

YEH09]. For the modeling problem, there are two approaches. In the first approach, each 

timestamp of an uncertain time series is represented as a random variable with a probability 

density function (PDF) [LIA08, SAR10, YEH09]. In the second approach, each timestamp is 

represented as a multiset of values with no assumption made or known about the underlying PDF 

of the data [ASF09, DALX14]. We refer to these two modeling approaches as PDF-based and 

multiset-based, respectively. 

Figure 1 shows examples of the two modeling approaches.  Figure 1 (a) shows a multiset-based 

uncertain time series, in which we have a multiset of observed values at each timestamp, and have 

no knowledge of the underlying PDF, dictating the distribution of the observed values. Moreover, 

the exact value measured may or may not be among these observed values. 

 

Figure 1. Modeling approaches for uncertain time series data. 

a) Multiset-based uncertain time series 

b) PDF-based uncertain time series 
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Figure 1 (b) illustrates a PDF-based uncertain time series where, at each timestamp, there is a 

random variable with known mean (shown by a circle), standard deviation (shown by an interval), 

and PDF. For example, at timestamp 2, the random variable’s mean is 2 and its standard deviation 

is 1. Now suppose that this random variable follows a normal distribution. In normal distribution, 

about 99.7% of the values are within three standard deviations [ROS09], which means the 

(unknown) exact value in this timestamp can vary between -1 and 5. One of the main problems in 

dealing with uncertain time series is similarity search. Given a dataset D of uncertain time series 

and an uncertain time series Q as a query, the aim is to search for uncertain time series X in D that 

is similar to Q, based on the notion of similarity defined. In our research, we study similarity 

search techniques for both PDF-based and multiset-based models.  

 Motivation 1.1.

Existing applications, such as wireless sensor networks and location-based services, require 

the ability to analyze large quantities of uncertain time series. Traditional techniques are now 

inadequate as they were developed for standard time series, which are sequences of real numbers; 

new concepts and techniques are to be devised and developed for management of uncertain time 

series to deal with the uncertainty inherent in such data. The research on uncertain time series is 

new and there is no solution for some of the similarity search topics including correlation. In this 

work, we will address correlation analysis for uncertain time series.  

Correlation analysis techniques have been developed for standard time series data in different 

application areas such as finance, social sciences, and engineering [NGU08, SHA04, ZHA07]. 

These techniques look for relationships between standard time series. Similar correlation analysis 

techniques are required for uncertain time series data in applications such as the following:   

1. Feature selection: To apply machine learning techniques to uncertain time series 

efficiently, feature selection is a crucial preprocessing step, which can result in a 
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significantly reduced learning time. Correlation indicates the degree of dependency of a 

feature on other features. Using this information, redundant features can be identified and 

removed from the feature set [Hal00, WAN05]. 

2. Data analysis: Correlation can be used to analyze uncertain time series by looking for 

relationships among different uncertain time series. For example, suppose that in a network 

application, sensors are used to record the temperature of different locations. One may 

want to know which locations have similar temperature in a specific time frame (e.g. 

during a month). For this, the daily temperature of different locations can be modeled as an 

uncertain time series and searched for locations for which the temperature time series are 

highly correlated. This information can be used to analyze the relationships between 

temperature and climate [ASF09]. As another example in biological sequence data, 

correlations among microarray time series, which are known to be uncertain data [CHE06], 

are used to identify potential regulatory relationships among genes [RAZ13]. 

3. Prediction: As correlation can be used to identify the relationships among different 

uncertain time series, this information can reveal the effect that changes in the values of an 

uncertain time series may have on values of another uncertain time series.  

4. Pattern matching: Correlation analysis could help identify similar patterns, moreover, the 

user may be interested in finding uncertain time series which are not highly correlated, 

e.g., in the medical domain looking for abnormalities in a test result. 

 

Traditional correlation analysis techniques, such as the Pearson correlation [SHA04], are not 

adequate for uncertain time series data analysis, because they were developed for standard time 

series. This is illustrated in the following example. Let 𝑥 =< 0,0,0,0,0.01 >  and 𝑦 =<

1,1,1,1,1.01 > be two standard time series, which we perturb to obtain the uncertain time series X 

and Y shown in Figure 2 (we use upper case letters for random variables and lower case for values 
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that are real numbers). In Figure 2, the interval at each timestamp indicates the standard deviation 

of the uncertain value at that timestamp (PDF-based model). Suppose that we are looking for 

uncertain time series in a given dataset D which are “highly” correlated to X with correlation 

coefficients more than 0.9. Since the Pearson correlation between x and y is 1, we expect Y to be 

the answer. However, the Pearson correlation between X and Y, treated as standard time series, is 

0.5, and hence Y would not be considered as a so “highly” correlated uncertain time series to X. 

The observations above motivate this research for the development of new concepts and 

techniques to capture correlations for uncertain time series. 

 Challenges 1.2.

The following are the challenges researchers faced in the development of the similarity search 

techniques for uncertain time series. 

 Modeling Approaches 1.2.1.

The first challenge is the representation model of uncertain time series data, which could be 

PDF-based or multiset-based. Each of which requires its own particular solutions. For example, 

consider the traditional range query, 𝐸𝑢𝑐𝑙(𝑥, 𝑦) ≤ 𝑑, where we are looking for standard time 

 

Figure 2. Uncertain time series examples. 
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series x the Euclidean distance of which to a given time series y is at most d. However, in the 

context of uncertain time series, this simple query has been addressed in different ways based on 

different modeling approaches [ASF09, YEH09, WU12].  

 Probabilistic Similarity Search 1.2.2.

In search problems over uncertain data [ASF09, CHE03, CHE04, YEH12, DAL14], desired 

analysis solutions would be probabilistic, i.e., a probability is calculated and assigned to each 

query result. Similarity search in uncertain time series data can be very challenging due to its 

probabilistic nature. 

 Multiset-based Similarity Search 1.2.3.

Similarity search over multiset-based uncertain time series has been challenging for excess 

computational cost due to the high dimensionality of uncertain time series data and multiplicity of 

values at each timestamp. One way to address this problem is to truncate the input uncertain time 

series to a much shorter length, for instance, 6 timestamps as considered in [DAL12], which 

limits its applications. 

 Thesis Contributions 1.3.

This thesis presents suitable concepts and techniques for uncertain time series correlation 

analysis, and addresses the above challenges. The contributions are as follows: 

 Normalization and correlation for uncertain time series: We first formalize the 

notion of normalization for uncertain time series and then introduce the notion of 

correlation for uncertain time series. Moreover, to address the second challenge 

(Section 1.2.2), we introduce a family of probabilistic, threshold-based correlation 

queries over such data and propose a probabilistic approach as our similarity search. 

Probabilistic threshold-based correlation queries consist of a dataset D, an uncertain 



7 

 

time series query Q, a correlation threshold c, and a probability threshold p. Given an 

uncertain time series Q, the goal is to search for every uncertain time series X in D 

such that its correlation with Q is not less than c with probability at least p. 

 

 Correlation analysis techniques for both models: To address the first challenge 

(Section 1.2.1), we propose suitable concepts and techniques for uncertain time series 

correlation analysis for both PDF-based and multiset-based models. For each case, 

we formulate correlation for uncertain time series as a random variable and develop 

techniques to determine the underlying probability density function. We conducted 

numerous experiments to evaluate the performance of the proposed techniques under 

different configurations using real-life datasets. Our numerous experiments indicate 

that, unlike in the case of standard time series, there is a trade-off between false 

alarms and hit ratios, which can be controlled by the probability threshold provided 

by users. Our results also offer users a guideline for choosing proper threshold 

values.  

 

 Query optimization for multiset-based similarity search: To make multiset-based 

similarity search feasible, i.e., the third challenge (Section 1.2.3), we propose two 

query optimization methods to speed up the search process. The first one is a 

probabilistic pruning to cut down the number of candidate results. This includes a 

Boolean representation technique for uncertain time series. In this representation, 

each observed value is replaced with a single bit. In addition to saving memory, this 

enjoys fast bit operations. Using this method, we introduce uncertain Boolean 

correlation together with an effective probabilistic pruning strategy. Second, we 

propose a sampling-based heuristic method that approximates the distribution of 
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uncertain correlation effectively and reduces the computation time significantly. Our 

experimental results indicate effectiveness of the proposed techniques.  

 

 Quality improvement of similarity search: We also study the impact of preprocessing 

techniques on performance and effectiveness of the similarity measures for uncertain 

time series. Some existing works on uncertain time series use the same similarity 

measures developed for standard time series, which we refer to as traditional 

similarity measures. More recently, a number of new similarity measures have been 

proposed for uncertain time series, which we refer to as uncertain similarity 

measures. However, these new measures have been shown to be less effective than 

the traditional ones. In this work, we show that the performance of uncertain 

similarity measures can be improved through preprocessing techniques. We establish 

this through extensive experiments using the UCR benchmark data. Our results 

indicate that the uncertain similarity measures together with preprocessing 

outperform the traditional similarity measures.  

We believe the proposed ideas and solutions provide a guideline for uncertain time series data 

analysis and lend themselves to powerful tools for uncertain time series analysis and search tasks. 

 Thesis Organization 1.4.

The rest of this thesis is organized as follows: Chapter 2  reviews work related to uncertain 

time series similarity search. In Chapter 3, the notion of uncertain normalization and correlation is 

presented and probabilistic correlation queries are introduced. Chapter 4 provides an overview of 

the setup for our experiments. Chapter 5 discusses the similarity search for PDF-based and 

multiset-based uncertain time series. Chapter 6 introduces query optimization techniques 

including probabilistic pruning and sampling-based heuristic methods. Chapter 7 discusses how 
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preprocessing methods on uncertain time series improves the performance of existing similarity 

measures. Finally, Chapter 8 concludes the dissertation and presents the possible future work.  
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Chapter 2 :  Background and Related Work 

For similarity search on standard time series data, which is a sequence of real numbers, 

efficient algorithms have been developed [AGG15, FRA15, GON15, SAK15, SHA04, KAD08, 

TAR14], in which, given a time series q and a set D of such time series, the goal is to identify 

time series in D that are “similar” to q. For this, a similarity measure is defined that captures the 

notion of similarity. For standard time series, there are well-known and well-defined similarity 

measures [WAN13], e.g., Euclidian distance [AGG15], dynamic time warping (DTW) [TAR14], 

Pearson correlation coefficient [NGU08]. The traditional similarity measures however are 

inadequate for uncertain time series [SAR10], and new suitable similarity measures are required 

to be developed. This has been the subject of recent research, which resulted in solution proposals 

that take into account different models and assumptions about the available information. In what 

follows, first we provide a background and review of the literature on modeling, and then we 

introduce our classification of similarity measures on uncertain time series.  

 Modeling 2.1.

An uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 > is a sequence of random variables with some 

“statistical information” representing the uncertainty level of some real number, the exact value 

of which is unknown or unavailable. In the current literature, we identify two models for 

representing uncertain time series, PDF-based and multiset-based models, which are explained in 

the following sections. 

 PDF-based Model 2.1.1.

In this model, each element at each timestamp is represented as a random variable [LIA08, 

SAR10, YEH09, WU12]. To be more precise, given an uncertain time series, 𝑋 =< 𝑋1, … , 𝑋𝑛 >, 

each element 𝑋𝑖  (1 ≤ 𝑖 ≤ 𝑛) can be considered as 𝑋𝑖 = 𝑥𝑖 + 𝐸𝑥𝑖, where 𝑥𝑖 is the “exact” value of 
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the data that is unknown, and 𝐸𝑥𝑖 is a random variable representing the error. Although in existing 

proposals for PDF-based uncertain time series, the random variables of different timestamps are 

assumed to be independent [SAR10, YEH09, WU12], there are different assumptions about the 

available information on random variables at different timestamps. Examples of such information 

include the probability distribution function [SAR10], the unknown but identical probability 

distribution function with known expected value and variance [YEH09], or an observed value 

[WU12].  

 Multiset-based Model  2.1.2.

In this model, at each timestamp, there is a multiset of observed values. For uncertain time 

series  𝑋 =< 𝑋1, … , 𝑋𝑛 > , each element 𝑋𝑖  is represented as the multiset ⟦𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑁𝑋𝑖
⟧ 

where each 𝑥𝑖,𝑗 
  (1 ≤ 𝑗 ≤ 𝑁𝑋𝑖) is an observed value at timestamp i, and 𝑁𝑋𝑖 denotes the number 

of observed values at this timestamp. The exact value may or may not be present in the multiset, 

and thus the multiset can be thought of as a realization of the unknown random variable 𝑋𝑖. Note 

that we use double square brackets ⟦… ⟧ to represent multisets.  

In the current literature, there are also other definitions for the cases when there are multiple 

values at each timestamp. In [ASF09], it is assumed that there is a set (not multiset) of observed 

values at each timestamp. In [DALY14], the authors define uncertain time series at each 

timestamp as a set of observed values, each associated with an existential probability. Moreover, 

if the sum of the probabilities at each timestamp is 1, the exact value exists. In [DALX14], an 

uncertain time series is defined as a set of standard time series. This definition captures the 

dependencies between observed values. In the next section, we study the relationship between 

PDF-based and multiset-based uncertain time series analytically. 
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 Relationship between PDF-based and Multiset-based Models 2.1.3.

As discussed in Section 2.1, in the PDF-based model, there are different assumptions about 

the available information on random variables at different timestamps. However, in the multiset-

based model, the only available information is a multiset of observed values at each timestamp. 

Now the question is: can we convert one model to another model? The answer depends on the 

amount of information available at each timestamp, explained as follows.  

When the number of observed values at each timestamp is “large” enough, a multiset-based 

uncertain time series can be converted to a PDF-based uncertain time series. In other words, using 

a large number of observed values, we can estimate the PDF of the underlying random variable. 

The higher the number of observed values, the lower the amount of information lost in this 

conversion process. 

A PDF-based uncertain time series cannot always be converted to a multiset-based uncertain 

time series by generating observed values using the given PDF at each timestamp. First, as 

discussed in Section 2.1, the PDFs of random variables at different timestamps are not always 

available. Moreover, even if we know the PDF type (e.g., normal, exponential), we may not have 

exact values for the parameters of the PDF (e.g., the expected value). We study different cases for 

a given PDF-based uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 >  in the following. Note that each 

 𝑋𝑖  (1 ≤ 𝑖 ≤ 𝑛) can be written as 𝑋𝑖 = 𝑥𝑖 + 𝐸𝑥𝑖 , where 𝑥𝑖 is the exact value that is unknown and 

𝐸𝑥𝑖 is a random variable denoting the error. 

Case 1- 𝑬(𝑿𝒊) is known: If we know the exact value for both 𝐸(𝑋𝑖) and 𝐸(𝐸𝑥𝑖), we can simply 

calculate 𝑥𝑖, which is the exact value of the data, and thus we would have the underlying 

certain standard time series. Thus, if we know the exact value for 𝐸(𝑋𝑖), to still have an 

uncertain model, 𝐸(𝐸𝑥𝑖)  should be unknown. In this case, if we know the PDFs of 

random variables at different timestamps, we can generate a multiset of observed values 
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and obtain a multiset-based uncertain time series. The higher the number of observed 

values, the lower the amount of information lost in this conversion process. 

Case 2- 𝑬(𝑿𝒊) is unknown: In this case, an observed value is used as an estimation for 𝐸(𝑋𝑖), 

and PDF-based uncertain time series cannot be converted to multiset-based uncertain 

time series. The reason is that if we use the PDF of 𝑋𝑖 to generate observed values, the 

average of these observed values would converge to 𝐸(𝑋𝑖), which itself is estimated by 

an observed value and therefore is not exact. In this way, the produced multiset-based 

uncertain time series would not represent the underlying PDF-based uncertain time series.  

In this section, we studied the relationship between PDF-based and multiset-based models. In 

general, these two models cannot be converted to each other, thus each model requires individual 

similarity search techniques. We next introduce a classification of existing similarity measures on 

uncertain time series. We will use the uncertain similarity measure for similarity measures on 

uncertain time series. 

 Classification of Uncertain Similarity Measures   2.2.

We classify existing similarity measures for uncertain time series into two, on the basis of the 

output they produce, as follows: 

1. Deterministic Similarity Measures: This class of similarity measures is very similar to 

the traditional similarity measures, and returns a real number as the similarity between 

two uncertain time series. 

2. Probabilistic Similarity Measures: This class returns a random variable associated with a 

PDF as the similarity between two uncertain time series. That is, a probabilistic similarity 

measure assigns a probability to each possible distance between the input pair of 

uncertain time series. 

The following sections describe these two classes in more detail.  
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 Deterministic Similarity Measures 2.3.

DUST [SAR10] is the only deterministic similarity measure devised for uncertain time series 

that returns a single real number as the distance between two PDF-based uncertain time series. 

Although the similarity measure in DUST is deterministic, it uses probability theory at the core to 

generalize the Euclidean and DTW distance measures for uncertain time series. The distance 

between uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 > and 𝑌 =< 𝑌1, … , 𝑌𝑛 > in DUST is defined as 

follows:  

 

𝐷𝑈𝑆𝑇(𝑋, 𝑌) = √∑𝑑𝑢𝑠𝑡(𝑋𝑖 , 𝑌𝑖)
2

𝑛

𝑖=1

 (1) 

where for each i (1 ≤ 𝑖 ≤ 𝑛): 

 
𝑑𝑢𝑠𝑡(𝑋𝑖 , 𝑌𝑖) = √− 𝑙𝑜𝑔(𝜑(|𝑋𝑖 − 𝑌𝑖|)) + 𝑙𝑜𝑔(𝜑(0)) (2) 

Here  𝜑(|𝑋𝑖 − 𝑌𝑖|)  is the probability 𝑝(𝑑𝑖𝑠𝑡(0, |𝑋𝑖 − 𝑌𝑖|) = 0) , that is, 𝜑(|𝑋𝑖 − 𝑌𝑖|)  is the 

probability that the exact values at timestamp i are equal, given the observed values at that 

timestamp. To calculate distance in DUST, we need to have the information about the probability 

distribution of error, and of the underlying certain time series, as well as an observed value at 

each timestamp. The Appendix presents our calculations of DUST distances for normal, 

exponential, and uniform error distributions. The calculations provide better insight about the 

DUST function and its use for different error distributions.    

 Probabilistic Similarity Measures 2.4.

The probabilistic similarity measures generalize the traditional measures for standard time 

series, and model them as random variables. Thus, unlike the traditional measures, using which 

we can find the exact similarity between two standard time series, the similarity between two 
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uncertain time series would be a random variable with a probability distribution function. This 

means assigning a probability to each possible distance between the two given uncertain time 

series. Consequently, queries that search for similarities in uncertain time series are also 

probabilistic (i.e., a probability is assigned to each query result). We will revisit those 

probabilistic queries in Section 2.5.  

To be able to use these similarity measures in search tasks, we need to know their PDFs. 

Finding PDFs in probabilistic similarity measures poses challenges for similarity search queries 

over uncertain time series, in particular when we are concerned with scalability, response time, 

and precision. The existing probabilistic similarity measures for uncertain time series generalize 

the Lp-norm, and DTW distance for standard time series. Correspondingly, we classify the 

probabilistic similarity measures into: (1) uncertain Lp-norm distance, and (2) uncertain DTW 

distance. Each class includes different approaches to model the corresponding uncertain similarity 

measure, based on different modeling and assumptions about the uncertain time series data dealt 

with. These measures are discussed in more detail as follows. 

 Uncertain Lp-norm Distance 2.4.1.

This uncertain similarity measure has been studied for both multiset-based and PDF-based 

models. This measure extends Lp-norm distance for standard time series, in which p is a positive 

integer. For multiset-based model, Aßfalg et al. [ASF09] assume that the only available 

information is a set of independent observed values at each timestamp; moreover, sets at different 

timestamps are independent as well. Using observed values, they find a multiset of all possible 

Lp-norm distances between the given uncertain time series X and Y, denoted by 𝑑𝑖𝑠𝑡𝐿𝑝
̃ (𝑋,𝑌). This 

multiset represents a realization of uncertain Lp-norm distance,  𝐿𝑝(𝑋, 𝑌) . To estimate the 

underlying cumulative distribution function (CDF) of the elements in the multiset  𝑑𝑖𝑠𝑡𝐿𝑝
̃ (𝑋,𝑌), 

Aßfalg et al. use the empirical distribution function of  𝐿𝑝(𝑋, 𝑌) defined as follows: 
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𝑃(𝐿𝑝(𝑋, 𝑌) ≤ 𝑑) =

∑ 1{𝑒 ≤ 𝑑}𝑒∈ 𝑑𝑖𝑠𝑡𝐿𝑝
̃ (𝑋,𝑌)

|𝑑𝑖𝑠𝑡𝐿𝑝
̃ (𝑋,𝑌)|

 (3) 

 

where 1{𝑒 ≤ 𝑑} is the indicator function, which is equal to 1 if 𝑒 ≤ 𝑑, and 0 otherwise. 

For the PDF-based model, there exist two approaches for calculating the uncertain Lp-norm 

distance for 𝑝 = 2 with different assumptions about the available information. Both assume that 

the random variables in the given uncertain time series are independent and identically distributed 

(i.i.d.). Yeh et al. [YEH09] propose an approach to processing similarity queries, which we 

simply refer to as PROUD. They assume that the expected values and variances of random 

variables at different timestamps of an uncertain time series are known, but their PDFs are 

unknown. They model uncertain Euclidean distance as a normal random variable, using the 

central limit theorem [ROS09]. The cumulative distribution of this random variable is defined as: 

𝑃(𝐸𝑢𝑐𝑙(𝑋, 𝑌)  ≤ 𝑑) =
1

2
(1 + 𝑒𝑟𝑓 (

𝑑 − 𝐸(𝐸𝑢𝑐𝑙(𝑋, 𝑌))

√2𝑉𝑎𝑟(𝐸𝑢𝑐𝑙(𝑋, 𝑌))
)) 

where 𝐸𝑢𝑐𝑙 is the squared Euclidean distance, and 𝐸(𝐸𝑢𝑐𝑙(𝑋, 𝑌)) and 𝑉𝑎𝑟(𝐸𝑢𝑐𝑙(𝑋, 𝑌)) are 

defined as follows: 

 
𝐸(𝐸𝑢𝑐𝑙(𝑋, 𝑌)) =∑((𝐸(𝑋𝑖) − 𝐸(𝑌𝑖))

2
+ 𝑉𝑎𝑟(𝑋𝑖) + 𝑉𝑎𝑟(𝑌𝑖))

𝑛

𝑖=1

 (4) 

𝑉𝑎𝑟(𝐸𝑢𝑐𝑙(𝑋, 𝑌)) = 4∑(𝐸(𝑋𝑖) − 𝐸(𝑌𝑖))
2
(𝑉𝑎𝑟(𝑋𝑖) + 𝑉𝑎𝑟(𝑌𝑖))

𝑛

𝑖=1

 

Wu et al. [WU12] also consider uncertain squared Euclidian distance (MISQ), which they 

assume to have an observed value for each random variable in the given uncertain time series. 

Using this information, they determine a lower bound for the exact squared Euclidean distance.  
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 Uncertain DTW Distance 2.4.2.

This measure has been formalized for multiset-based uncertain time series [ASF09]. The 

approach used to formalize this uncertain distance is similar to that used for multiset-based 

uncertain Lp-norm distance [ASF09] as follows. Given uncertain time series X and Y, this 

approach first finds the multiset of all possible DTW distances (i.e., 𝑑𝑖𝑠𝑡𝐷𝑇𝑊̃ (𝑋,𝑌)). Using this, 

the CDF of the uncertain DTW distance is then approximated using the following empirical 

distribution function of 𝐷𝑇𝑊(𝑋, 𝑌):  

𝑃(𝐷𝑇𝑊(𝑋, 𝑌) ≤ 𝑑) =
∑ 1{𝑒 ≤ 𝑑}𝑒∈ 𝑑𝑖𝑠𝑡𝐷𝑇𝑊̃ (𝑋,𝑌)

|𝑑𝑖𝑠𝑡𝐷𝑇𝑊̃ (𝑋,𝑌)|
 

Next, we study probabilistic similarity queries, which use these probabilistic similarity 

measures. 

 Probabilistic Similarity Queries 2.5.

Since the output of the probabilistic similarity measures is a random variable, these similarity 

measures cannot be used directly for similarity search tasks. This is one of the challenges in 

uncertain time series similarity search. Similarity queries over uncertain time series data are 

probabilistic, that is, a probability is assigned to the query result. In the related literature, so far, 

the processing of the following probabilistic queries has been addressed. 

1) Probabilistic Range Query: Given a set D of uncertain time series, an uncertain time 

series Q as a query reference, a distance threshold  𝑑 ∈ ℝ+ , and a probability 

threshold  𝑝 ∈ (0,1] , we are looking for uncertain time series X that satisfies the 

following: 

 𝑃(𝑑𝑖𝑠𝑡(𝑋, 𝑄) ≤ 𝑑) ≥ 𝑝 (5) 
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Aßfalg et al. [ASF09] propose this type of query for multiset-based uncertain time series 

where 𝑑𝑖𝑠𝑡 can be the 𝐿𝑝-norm or DTW distance. For PDF-based uncertain time series, 

Lian et al. [LIA08] and Yeh et al. [YEH09] propose this query where 𝑑𝑖𝑠𝑡 is the squared 

Euclidean distance. In this case, we refer to a probabilistic range query as a probabilistic 

threshold-based Euclidean (PTE) query. 

 

2) Probabilistic Ranked Range Query: Aßfalg et al. [ASF09] propose a ranking query for 

multiset-based uncertain time series. Given a set D of uncertain time series, an uncertain 

time series Q, and a distance threshold 𝑑 ∈ ℝ+, we are looking for an ordered list of 

uncertain time series (𝑋1, … , 𝑋𝑚) that satisfies: 

𝑃(𝑑𝑖𝑠𝑡(𝑋𝑖 , 𝑄) ≤ 𝑑) ≤ 𝑃(𝑑𝑖𝑠𝑡(𝑋𝑖+1, 𝑄) ≤ 𝑑), for  1 ≤ 𝑖 ≤ 𝑚  

       where 𝑑𝑖𝑠𝑡 can be the 𝐿𝑝-norm or DTW distance. 

 

3) Threshold Similarity Query: Wu et al. [WU12] propose another type of query that 

retrieves uncertain time series X from set D of uncertain time series such that 

𝑑𝑖𝑠𝑡(𝜇𝑄 , 𝜇𝑋) ≤  𝑑 with the confidence level of 1 − 𝛼, where Q, 𝜀, and 𝛼 are given by the 

user. Here  𝜇𝑄 and 𝜇𝑋 are the expected values of Q and X, respectively. 

 

4) Exact Match Query: This query is a special case of the threshold query [WU12] where 

𝑑 = 0. Given a set D of uncertain time series, uncertain time series Q, and confidence 

level 1 − 𝛼, the query returns uncertain time series X such that 𝑑𝑖𝑠𝑡(𝜇𝑄 , 𝜇𝑋) = 0 with 

confidence level 1 − 𝛼.  

 

The probabilistic queries above extend the range query for standard time series, and their 

processing poses challenges in some cases (explained in Section 1.2). Other important topics on 



19 

 

uncertain time series also have been studied, such as top-k nearest neighbor queries in multiset-

based uncertain time series [DALX14], uncertain sliding windows over multiset-based uncertain 

time series data streams [DALY14], and reduction techniques. We identify two types of reduction 

techniques for uncertain time series: approximation [ASF09] and dimensionality reduction 

techniques [YEH09, QIA09, ZHA10, XU09], where the former is normally applied at each 

timestamp and the latter is applied to the entire uncertain time series data. Dimensionality 

reduction techniques extend PLA (Piecewise Linear Approximation) [QIA09] and Haar wavelet 

[ZHA10] for uncertain time series data. 

 Uncertain Vectors and Uncertain Trajectories 2.6.

Uncertain time series data can also be viewed as n-dimensional uncertain vectors. Following 

this view, several similarity search techniques have been proposed for uncertain vectors [BER09, 

BOH06, KRI07, LJO07, TAO05] in applications such as biometric databases to identify 

individuals/objects according to features for which the exact values are unknown. As discussed 

by Aßfalg et al. [ASF09], the effective solutions proposed for uncertain vectors are not suitable 

for uncertain time series data. Other related research includes uncertain trajectories that may be 

considered as multidimensional uncertain time series data. Uncertain trajectories record, at each 

timestamp, the position of a given object [CHE04, EMR12, ZHA11]. Positions recorded at 

different timestamps are naturally correlated; this is different from the independence assumption 

often made for uncertain time series data. However, none of the related research on uncertain 

time series studied correlation analysis on such data. 

 Summary 2.7.

In this chapter, we reviewed the works on similarity search on uncertain time series. We also 

introduced a classification of existing uncertain similarity measures. This classification shows 

that in the current literature, different assumptions are imposed on uncertain time series resulting 
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in different similarity search approaches. For example, consider the traditional range query, 

𝐸𝑢𝑐𝑙(𝑥, 𝑞) ≤ 𝑑, where we are looking for standard time series x, the Euclidean distance of which 

to a given time series q is at most d. However, in the context of uncertain time series, this simple 

query has been addressed in different ways based on different assumptions and modeling 

techniques, including PROUD [YEH09] and Aßfalg’s method [ASF09]. Different applications 

consider different assumptions and have different similarity search queries. It is thus essential to 

investigate other types of similarity queries, including correlation queries over uncertain time series 

under different assumptions. Moreover, since the two models cannot be converted to each other, 

each model requires individual similarity search techniques. 
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Chapter 3 : Normalization and Correlation 

Formulations 

In this chapter, we formulate normalization for uncertain time series, referred to as uncertain 

normalization, and study its properties. Using uncertain normalization, we will introduce the 

notion of correlation between uncertain time series, referred to as uncertain correlation. 

 Normalization 3.1.

For standard time series, it is well known that normalization makes similarity measures 

invariant to scaling and shifting and hence it helps better capture the similarity [SHA04]. This is 

desirable for uncertain time series, and indeed this is the case for the normalization we will define 

in this section. To establish this, we performed a probabilistic first nearest neighbor (1NN) 

classification using the Euclidean distance. For each uncertain time series X in the training 

dataset, we find the probability that X is the nearest neighbor of the test uncertain time series (to 

 
 

 

Figure 3. 1NN classification error for normalized and non-normalized data. 
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be classified). Classes are determined based on the highest 1NN probability. We used 7 UCR 

datasets [KEO] and perturbed them to obtain uncertain data for this experiment. Figure 3 shows 

the results: the black bars indicate the classification error of non-normalized uncertain time series 

and the gray bars indicate that of normalized uncertain time series. As expected, we found that the 

error ratio of normalized data was lower than that of raw data.  

Our normalization technique extends the technique for standard time series. The normal form 

of a standard time series 𝑥 =< 𝑥1, … , 𝑥𝑛 > is defined as  𝑥 =< 𝑥1, … , 𝑥𝑛 >, in which for each 

timestamp i (1 ≤ 𝑖 ≤ 𝑛), we have: 

 
𝑥𝑖 =

𝑥𝑖 − �̅�

𝑠𝑥
 (6) 

Here �̅� and 𝑠𝑥 are sample mean and standard deviation of x, respectively, defined as follows: 

�̅� =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
,  𝑠𝑥 = √

∑ (𝑥𝑖 − �̅�)
2𝑛

𝑖=1

𝑛 − 1
 

Using this, we define the notion of uncertain normalization for both PDF-based and multiset-

based models in the following sections.  

 PDF-based Normalization 3.1.1.

In this section, we define the normal form of PDF-based uncertain time series. First, we 

define a general case and then a simplified case. We define the normal form of uncertain time 

series as follows. 

Definition 3.1. Normal form of uncertain time series- Given an uncertain time series 𝑋 =<

𝑋1, … , 𝑋𝑛 >, we define �̂� =< �̂�1, … , �̂�𝑛 > as its normal form, where for each i (1 ≤ 𝑖 ≤ 𝑛), 

we have: 
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�̂�𝑖 = 
𝑋𝑖 − �̅� 

𝑆𝑋
 

  in which �̅� and 𝑆𝑋 denote the sample mean and standard deviation of random variables at 

different timestamps in X, respectively. That is,  

�̅� =
∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
, 𝑆𝑋 = √

∑ (𝑋𝑖 − �̅�)
2𝑛

𝑖=1

𝑛 − 1
 

The following lemma highlights the properties of this definition for uncertain normalization. 

Lemma 1. Given any uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 >, its normal form has the following 

properties. 

a) �̅̂�  = 0 

b) 𝑆�̂� = 1 

Proof. The proof is very similar to the standard case [SHA04]. However, note that in this case, 

we are working with random variables that are functions from a set of possible outcomes 

to a set of real numbers, ℝ. Here the assumption is 𝑆𝑋 is not zero. The proof for part (a) is 

as follows: 

�̅̂� =
∑ �̂�𝑖
𝑛
𝑖=1

𝑛
=
1

𝑛
∑

𝑋𝑖 − �̅�

𝑆𝑋

𝑛

𝑖=1

=

1
𝑛
∑ 𝑋𝑖 − �̅�
𝑛
𝑖=1

𝑆𝑋
= 0 

To prove part (b), we have 
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∑�̂�𝑖
2

𝑛

𝑖=1

=∑(
𝑋𝑖 − �̅�

𝑆𝑋
)2

𝑛

𝑖=1

=∑( 
𝑋𝑖 − �̅�

√∑ (𝑋𝑖 − �̅�)
2𝑛

𝑖=1
𝑛 − 1

)2
𝑛

𝑖=1

= (𝑛 − 1)∑( 
𝑋𝑖 − �̅�

√∑ (𝑋𝑖 − �̅�)
2𝑛

𝑖=1

)2 = 𝑛 − 1

𝑛

𝑖=1

 

From this equation, we have: 

𝑆�̂� = √
∑ (�̂�𝑖 − 𝑎𝑣𝑔(�̂�))

2𝑛
𝑖=1

𝑛 − 1
= √

∑ �̂�𝑖
2𝑛

𝑖=1

𝑛 − 1
= 1∎ 

The immediate consequence of this lemma is that the normal form for uncertain time series is 

idempotence. That is, if we normalize the normal form of a given uncertain time series X, we 

would have the same result as the first application. Because using Lemma 1, we have:  

�̂̂�𝑖 =
�̂�𝑖 − �̅̂� 

𝑆�̂�
= �̂�𝑖 

In the following, we will propose another definition for the normal form of uncertain time 

series and will show how this definition can simplify the computation and preserve the properties 

of uncertain time series. 

Definition 3.2. PDF-based normal form- Given an uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 >, we 

define �̂� =< �̂�1, … , �̂�𝑛 > as its normal form, where for each timestamp i (1 ≤ 𝑖 ≤ 𝑛), we 

have: 

 
�̂�𝑖 = 

𝑋𝑖 − �̅� 

𝑆𝑋
 

(7) 
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in which �̅� and 𝑆𝑋 denote the sample mean and standard deviation of the expected values of 

the random variables at different timestamps in X, respectively. That is,  

�̅� =
∑ 𝐸(𝑋𝑖)
𝑛
𝑖=1

𝑛
  𝑎𝑛𝑑    𝑆𝑋 = √

∑ (𝐸(𝑋𝑖) − �̅�)
2𝑛

𝑖=1

𝑛 − 1
  

In other words, �̂� is obtained from X by shifting X by the average of the expected values and 

then scaling by the standard deviation of the expected values. The following lemma highlights the 

properties of this normal form. 

Lemma 2. Let 𝑋 =< 𝑋1, … , 𝑋𝑛 >  be an uncertain time series, and �̂� =< �̂�1, … , �̂�𝑛 >  be its 

normal form. Then the following statements hold: 

a) �̅̂� = 0 and 𝑆�̂� = 1. 

b) If 𝑋𝑖’s are independent random variables, so are �̂�𝑖’s.  

c) If 𝑋𝑖’s are identically distributed, so are �̂�𝑖’s. 

Proof. For part (a), �̅̂�  and 𝑆�̂� are the average and standard deviation of standard time series 

𝐸(�̂�) =< 𝐸(�̂�1),… , 𝐸(�̂�𝑛) > , respectively, which is the normal form of standard time 

series  𝐸(𝑋) =< 𝐸(𝑋1),… , 𝐸(𝑋𝑛) >. Moreover, for any standard time series, it is known that 

the average and standard deviation of its normal form are equal to 0 and 1, respectively 

[SHA04]. Parts (b) and (c) are immediate upon noting that at each timestamp i, �̂�𝑖 is a linear 

transformation of 𝑋𝑖. ∎ 

The immediate consequences of this lemma are as follows: 

1. Preserving temporal independence: Existing works assume that random variables at 
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different timestamps of uncertain time series are independent [SAR10, YEH09]. All those 

works can benefit from our normalization as a preprocessing step to better capture the 

similarity. 

2. Preserving identical distribution: Existing works, such as PROUD [YEH09], which 

assumes random variables are identically distributed, can also benefit from the proposed 

normalization.  

3. Easy calculation of PDFs of normal forms: If the 𝑋i′𝑠 in an uncertain time series X are 

continuous random variables, the PDF of �̂�𝑖  can be simply obtained as 𝑓�̂�𝑖(𝑥) =

𝑆𝑋𝑓𝑋𝑖(𝑆𝑋𝑥 + �̅�) [ROS09]. Moreover, it holds that: 

 
𝐸(�̂�𝑖) =

𝐸(𝑋𝑖) − �̅�

𝑆𝑋
, and (8) 

 
𝑉𝑎𝑟( �̂�𝑖 ) =

𝑉𝑎𝑟(𝑋𝑖)

𝑆𝑋
2  (9) 

4. Idempotence: The result of applying normalization on an uncertain time series X multiple times 

is the same as applying it once. This is because at timestamp 𝑖, we have: 

�̂̂�𝑖 =
�̂�𝑖 − �̅̂�

𝑆�̂�
 

and by Lemma 2, we obtain �̂̂�𝑖 = �̂�𝑖.  

Due to all these properties, in this thesis, we will use Definition 3.2 for the normal form of 

uncertain time series.  
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 Multiset-based Normalization 3.1.2.

Consider a multiset-based uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 >, where the only available 

information about each 𝑋𝑖  is a multiset of observed values,  𝑅𝑋𝑖 = ⟦𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑁𝑋𝑖
⟧ , 

considered as 𝑋𝑖 ’s realization. We use ⟦… ⟧  for multisets, and 𝑁𝑋𝑖  to denote the number of 

observed values for 𝑋𝑖 . Similar to the PDF-based model (Definition 3.2), we normalize a 

multiset-based uncertain time series X by shifting X by the average of means and then scaling the 

result by the standard deviation of means. Here, at each timestamp, the mean is approximated by 

the average of the observed values. We define the notion of normalization for multiset-based 

uncertain time series formally as follows. 

Definition 3.3. Multiset-based normal form- The normal form of a multiset-based uncertain time 

series 𝑋 =< 𝑋1, … , 𝑋𝑛 > with 𝑅𝑋𝑖 = ⟦𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑁𝑋𝑖
⟧ (1 ≤ 𝑖 ≤ 𝑛) is defined as uncertain 

time series �̂� =< �̂�1, … , �̂�𝑛 > with  𝑅�̂�𝑖 = ⟦𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑁𝑋𝑖
⟧ , where 

 
𝑥𝑖,𝑗 =

𝑥𝑖,𝑗 − �̅�

𝑆𝑋
 

 

(10) 

Here �̅� and 𝑆𝑋 are defined as follows: 

�̅� =
∑ 𝑚𝑋𝑖
𝑛
𝑖=1

𝑛
  𝑎𝑛𝑑  𝑆𝑋 = √

∑ (𝑚𝑋𝑖 − �̅�)
2𝑛

𝑖=1

𝑛 − 1
 

in which 𝑚𝑋𝑖  is the average of observed values at timestamp i, i.e., 𝑚𝑋𝑖 = ∑ 𝑥𝑖,𝑗
𝑁𝑋𝑖
𝑗=1

/𝑁𝑋𝑖.  

The elements of 𝑅�̂�𝑖 are actually a realization of random variable �̂�𝑖 defined in (7). Since each 

𝑥𝑖,𝑗 is a linear transformation of 𝑥𝑖,𝑗, the defined normalization preserves the independency of the 

observed values, between and within timestamps. Moreover, multiset-based normalization is 
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idempotent, because average and standard deviation of the normal form of a multiset-based 

uncertain time series are 0 and 1, respectively, as shown in the following lemma.   

Lemma 3. Let 𝑋 =< 𝑋1, … , 𝑋𝑛 >  be a multiset-based uncertain time series and �̂� =<

�̂�1, … , �̂�𝑛 > be its normal form. Then �̅̂� and 𝑆�̂� are equal to 0 and 1, respectively. 

Proof. For the average of all the observed values in �̂�, we have: 

�̅̂� =
1

𝑛
∑

∑ 𝑥𝑖,𝑗
𝑁𝑋𝑖
𝑗=1

𝑁𝑋𝑖

𝑛

𝑖=1

=
1

𝑛
∑

1

𝑁𝑋𝑖
∑

𝑥𝑖,𝑗 − �̅�

𝑆𝑋

𝑁𝑋𝑖

𝑗=1

𝑛

𝑖=1

=

1
𝑛
∑

∑ 𝑥𝑖,𝑗
𝑁𝑋𝑖
𝑗=1

𝑁𝑋𝑖

𝑛
𝑖=1 − �̅�

𝑆𝑋
= 0 

          To prove that 𝑆�̂� = 1, we first need to show that ∑ 𝑚�̂�𝑖
2𝑛

𝑖=1 = 𝑛 − 1, as follows: 

 

∑𝑚�̂�𝑖
2

𝑛

𝑖=1

=∑(

1
𝑁𝑋𝑖

∑ 𝑥𝑖,𝑗
𝑁𝑋𝑖
𝑗=1

− �̅�

𝑆𝑋
)

2
𝑛

𝑖=1

=∑
(𝑚𝑋𝑖 − �̅�)

2

𝑆𝑋
2

𝑛

𝑖=1

=∑
(𝑚𝑋𝑖 − �̅�)

2

∑ (𝑚𝑋𝑖 − �̅�)
2𝑛

𝑖=1

𝑛 − 1

𝑛

𝑖=1

= 𝑛 − 1 

(11) 

      Using (11), we have the following:  

𝑆�̂� = √
1

𝑛 − 1
∑(𝑚�̂�𝑖

− �̅̂�)
2

𝑛

𝑖=1

= √
1

𝑛 − 1
∑𝑚�̂�𝑖

2

𝑛

𝑖=1

= 1∎ 

 

 Now that we have a suitable definition for uncertain time series normalization, we can define the 

correlation between uncertain time series in the following section. 

 Uncertain Correlation and Probabilistic Queries 3.2.

In this section, we propose a formulation of the notion of correlation for uncertain time 

series. This is done by extending the well-known Pearson correlation coefficient [SHA04] used 
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for standard time series data, which is the dot product of the normal forms of the given two 

standard time series 𝑥 =< 𝑥1, … , 𝑥𝑛 > and 𝑦 =< 𝑦1, … , 𝑦𝑛 >, defined as follows:  

 
𝐶𝑜𝑟𝑟(𝑥, 𝑦) =

∑ 𝑥𝑖�̂�𝑖
𝑛
𝑖=1

𝑛 − 1
 

 

(12) 

where 𝑥𝑖 and �̂�𝑖 are the normal forms of 𝑥𝑖 and 𝑦𝑖, defined in (6). 

Unlike the correlation between standard time series that is denoted by a single value, the 

correlation between uncertain time series defined as follows is a random variable assessed by a 

PDF.  

Definition 3.4. Uncertain time series correlation- Given a pair of uncertain time series 

𝑋 =< 𝑋1, … , 𝑋𝑛 > and 𝑌 =< 𝑌1, … , 𝑌𝑛 >, their correlation is defined as: 

 
𝐶𝑜𝑟𝑟(𝑋, 𝑌) =

∑ �̂�𝑖�̂�𝑖
𝑛
𝑖=1

𝑛 − 1
 (13) 

where �̂�𝑖 and �̂�𝑖 are normal forms of 𝑋𝑖 and 𝑌𝑖, respectively, defined in (7). 

For convenience, we use uncertain correlation to refer to the correlation between uncertain 

time series. Having a random variable as uncertain correlation, we define probabilistic threshold-

based correlation queries, which extend the correlation range queries in the standard case. Instead 

of using the exact correlation between X and Y, we use the cumulative distribution function 

(CDF) of their correlation. 

Definition 3.5. Probabilistic threshold-based correlation (PTC) queries- Given a set D of 

uncertain time series, an uncertain time series Q as a query reference, a correlation 

threshold 𝑐 ∈ (0,1], and a probability threshold 𝑝 ∈ (0,1], PTC queries look for those 
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uncertain time series X in D such that X and Q are positively correlated with probability 

at least p, and correlation coefficient at least c. Formally, 

 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐) ≥ 𝑝  (14) 

The question that arises at this point is how to find the CDF of  𝐶𝑜𝑟𝑟(𝑋, 𝑄). The answer relies 

on the amount of available information about random variables at different timestamps. In this 

thesis, we investigate this in two cases:  

1. PDF-based uncertain time series: having PDF of each random variable at each timestamp.  

2. Multiset-based uncertain time series: having a multiset of independent observed values for 

each random variable. 

We study the processing of the PTC queries for these two cases. For both cases, we assume 

random variables at different timestamps are independent. Section  5.1 considers the PDF-based 

model and Section  5.2 considers the multiset-based model. The following section shows the 

relationship between existing work on uncertain time series and uncertain correlation.  

 Relationship between Correlation and Euclidian Distance 3.3.

Measures 

If we define the uncertain correlation as dot product of the normal form of uncertain time 

series as in Definition 3.2, and the uncertain Euclidean distance between uncertain time series 

𝑋 =< 𝑋1, … , 𝑋𝑛 >  and 𝑌 =< 𝑌1, … , 𝑌𝑛 >  as 𝐸𝑢𝑐𝑙(𝑋, 𝑌) = ∑ (𝑋𝑖 − 𝑌𝑖)
2𝑛

𝑖=1 , the uncertain 

correlation and Euclidean distance would have the following relationship. 

Lemma 4. Given two uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 > and 𝑌 =< 𝑌1, … , 𝑌𝑛 >, we have: 

𝐸𝑢𝑐𝑙(�̂�, �̂�) = 2(𝑛 − 1)(1 − 𝐶𝑜𝑟𝑟(𝑋, 𝑌)) 
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where  X and Y are normalized as in Definition 3.2. 

Proof. To prove this lemma, first we need to prove that for a given uncertain time series X, we 

have ∑ �̂�𝑖
2𝑛

𝑖=1 = 𝑛 − 1, as follows: 

∑�̂�𝑖
2

𝑛

𝑖=1

=∑(
𝑋𝑖 − �̅�

𝑆𝑋
)

2𝑛

𝑖=1

 = (𝑛 − 1)∑

(

  
𝑋𝑖 − �̅�

√∑ (𝑋𝑖 − �̅�)
2𝑛

𝑖=1 )

 

2

  = 𝑛 − 1

𝑛

𝑖=1

  

Using this, we would have:  

𝐸𝑢𝑐𝑙(�̂�, �̂�) =∑(�̂�𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

=∑�̂�𝑖
2 + �̂�𝑖

2 − 2�̂�𝑖�̂�𝑖

𝑛

𝑖=1

= 2(𝑛 − 1) − 2∑�̂�𝑖�̂�𝑖

𝑛

𝑖=1

=

= 2(𝑛 − 1)(1 − 𝐶𝑜𝑟𝑟(𝑋, 𝑌))∎ 

It is easy to see that this lemma holds even if one of the time series is standard. Using this 

lemma, we can prove that PTE queries (5) and PTC queries (Definition 3.5) can be converted to 

each other.  

Lemma 5. Given two uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 > and 𝑌 =< 𝑌1, … , 𝑌𝑛 >, we have: 

𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≥ 𝑐) = 𝑃(𝐸𝑢𝑐𝑙(�̂�, �̂�) ≤ 2(𝑛 − 1)(1 − 𝑐)) 

Proof. Using the previous lemma, we have: 

𝑃 (𝐸𝑢𝑐𝑙(�̂�, �̂�) ≤ 2(𝑛 − 1)(1 − 𝑐)) = 𝑃 (2(𝑛 − 1)(1 − 𝐶𝑜𝑟𝑟(𝑋, 𝑌)) ≤ 2(𝑛 − 1)(1 − 𝑐)) 

Using which, we obtain: 

𝑃 (𝐸𝑢𝑐𝑙(�̂�, �̂�) ≤ 2(𝑛 − 1)(1 − 𝑐)) = 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≥ 𝑐)∎ 
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This lemma indicates that if we first normalize uncertain time series data, the result of the 

PTC queries would be the same as that of the PTE queries. This shows that the uncertain 

correlation is a principal extension of the uncertain Euclidean distance. Another important result 

of this lemma is that since the correlation threshold, c, is between -1 and 1, the Euclidean distance 

threshold, 2(𝑛 − 1)(1 − 𝑐), would be between 0 and 4(𝑛 − 1). So the user can choose a distance 

threshold within this interval. On the other hand, when data is not normalized, the distance 

threshold could be any positive number and defining a proper distance threshold would be 

difficult, as it requires having a lot of information about the dataset in which we are searching. 

Now the question is: is there any relationship between the uncertain Euclidean distance and 

uncertain correlation defined in Definition 3.4? We will answer this question in Chapter 7 

 Summary 3.4.

In summary, our definition for the normal form of uncertain time series generalizes that of the 

standard time series in a way that the uncertain normalization preserves the properties of the 

standard normalization. Moreover, multiset-based normalization generalizes PDF-based 

normalization. Both multiset-based and PDF-based normalization preserve properties of 

underlying uncertain time series (i.e., temporal independence and identical distribution). Using 

uncertain normalization, we introduced the notion of uncertain correlation. Having a random 

variable as correlation between two uncertain time series motivated our definition of probabilistic 

threshold-based correlation queries. Probabilistic threshold-based correlation queries consist of an 

uncertain time series query Q, a correlation threshold c, and a probability threshold p. Given an 

uncertain time series Q, the goal is to search for uncertain time series with a high enough 

probability that their correlation with the given uncertain time series is within a given threshold. 

We also studied the relationship between uncertain correlation and uncertain Euclidean distance. 

This relationship also held for standard time series. This shows that probabilistic similarity 

measures build on traditional similarity measures in a disciplined way.  
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Chapter 4 : Experiments Setup 

This chapter explains the setup of our experiments to present experimental results for 

different problems studied in this research more clearly. The objectives of the experiments are to 

study the overall performance of the proposed techniques and to compare their performance with 

the existing techniques. The experiments data and setup parameters follow the ones used by 

Dallachiesa et al. [DAL12], Sarangi et al. [SAR10], Yeh et al. [YEH09], and Aßfalg et al. 

[ASF09]. For all the results, we report the average over 10 different random runs. The 

experiments were conducted on a typical desktop PC with a 2.66 GHz CPU and 4GB of RAM. 

All algorithms are implemented and run in MATLAB (2013a). 

 Experiments Objectives 4.1.

The objectives of the experiments are to answer the following research questions: 

 RQ1: What is the overall performance of the proposed solutions with regard to data and 

query parameters (defined Section  4.3)? 

 RQ2: Do the proposed solutions outperform the existing techniques (Section  4.4)? 

 RQ3: Do the techniques for the multiset-based model yield a good approximation for 

uncertain correlation PDF? 

To answer these research questions, we consider the following two measures as the ground 

truths: 

 Ground truth I: This is based on the result of the deterministic query defined in 

Section  4.4 on the dataset without uncertainty, with the same correlation threshold as the 

given probabilistic query. 

 Ground truth II: This assumes the underlying PDF of the observed values is known at 
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each timestamp, using which, we can calculate the PDF of uncertain correlation. 

We use ground truth I for evaluating RQ1 and RQ2, and ground truth II for RQ3. 

 Datasets 4.2.

Similar to prior works [ASF09, DAL12, SAR10, YEH09], to generate uncertain time series 

data used in our experiments, we take standard time series and perturb them using different error 

functions representing errors in the measurements. This data generation method allows us to use 

the original certain time series (with exact values) as the ground truth when evaluating the 

performance of the proposed solutions for uncertain data. The standard time series data includes 

the 20 datasets in the UCR benchmark data from real-life applications [KEO], namely, 50words, 

Adiac, Beef, CBF, Coffee, ECG200, Fish, FaceAll, FaceFour, Gun-Point, Lighting2, Lighting7, 

OSULeaf, OliveOil, SwedishLeaf, Synthetic-control, Trace, Two-Patterns, Wafer, and Yoga. 

 Performance Measures and Parameters 4.3.

We measure the performance using hit and false alarm ratios. Hit ratio (or recall) is defined 

as the number of correct results returned to the total number of correct results. The ground truth 

(i.e., correct results) is based on the result of the correlation queries 𝐶𝑜𝑟𝑟(𝑥, 𝑞) ≥ 𝑐 , on the 

dataset without uncertainty [YEH09]. False alarm ratio (or false discovery rate) is defined as the 

number of incorrect results to the total number of results returned. Another measure is 𝐹1 score 

defined as follows:  

𝐹1 = 2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) 

Recall is the hit ratio and precision is 1 minus the false alarm ratio. We repeat each experiment 

10 times and report their average as the experiment result.  
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In our experiments, we study the effect of different parameters on the performance of the 

proposed solutions. These parameters belong to two categories: data parameters and query 

parameters. Data parameters indicate characteristics of uncertain data while query parameters are 

threshold values in probabilistic or deterministic queries. 

 Data Parameters  4.3.1.

The uncertainty level in uncertain time series depends on two parameters: standard deviation and 

probability distribution of the random variable at each timestamp. Standard deviation in turn is 

based on standard deviation ratio and error rate, defined as follows. 

Standard Deviation Ratio (SDR): Standard deviation of random variable at each timestamp is 

𝜎 × 𝑟 [YEH09], where 𝜎 denotes the standard deviation of the original certain time series (used as 

the ground truth), and 𝑟 denotes the SDR, which reflects the uncertainty level in a given uncertain 

time series. The higher the SDR, the farther the uncertain value at each timestamp from the ground 

truth. As considered in earlier works [SAR10, YEH09], we use the following values for SDR: 

{0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 3, 4}.  

Error Rate: Error rate allows different timestamps in an uncertain time series to have different 

uncertainty levels. This helps emulate the effect of tapering measurement accuracy within an 

uncertain time series. For m% of the timestamps, we use 𝑟 as an SDR, and use 0.1 × 𝑟 for the rest.  

Following Sarangi et al. [SAR10], the value of  𝑟 considered in our work varied from 0.01 to 4, and 

the error rate m% was chosen as 10, 30, 50, and 100 percent. As is done in [DAL12] for the setup of 

multiset-based model, the error rate we consider in the experiments for multiset-based model is 

100%. 

Probability Distribution: In our work, we are also interested in studying the effect of 

probability distribution type on the proposed solutions, for which we consider normal, uniform, and 

exponential distributions.  
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 Query Parameters  4.3.2.

The PTC queries (defined in Section  3.2) have two parameters: 1) probability threshold and 2) 

correlation threshold. In our experiments, we study the effect of these two query parameters on 

the performance of the proposed techniques. For the probability threshold, we considered the 

values 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Since the PTC queries look for 

highly correlated uncertain time series, we used correlation thresholds from 0.4 to 0.9. 

 Previous Techniques  4.4.

As there is no previous work on correlation analysis for uncertain time series data, we can 

only compare our work with the deterministic solutions in which uncertain time series are treated 

as if they are (certain) standard time series [SAR10, YEH09]. In our experiments, we will 

compare the PTC queries with the following deterministic queries.  

Definition 4.1. Deterministic threshold-based correlation (DTC) queries- Given a set D of 

standard time series, a standard time series q as a query reference, and a correlation 

threshold c, DTC queries look for those standard time series x in D such that the Pearson 

correlation of x and q is at least c. Formally, 𝐶𝑜𝑟𝑟(𝑥, 𝑞) ≥ 𝑐 for 𝑐 ∈ (0,1]. 

The correlation threshold in the DTC queries is the same as the one in the PTC queries. To 

compare the DTC with the PTC queries for the PDF-based model, the standard time series x and 

q would be the sequence of expected values of random variables in the corresponding uncertain 

time series. To compare the DTC with the PTC queries for the multiset-based model, the value at 

each timestamp of standard time series x and q would be the average of the observed values at 

that timestamp. In our experiments, we refer to the DTC queries as the deterministic query and to 

the PTC queries as the probabilistic query. 
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Chapter 5 : Finding Correlation for PDF-based and 

Multiset-based Models 

In this chapter, we study the processing of the PTC queries for both PDF-based and multiset-

based uncertain time series in the following sections. 

 PDF-based Model 5.1.

Given a PDF-based uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 >, each  𝑋𝑖  (1 ≤ 𝑖 ≤ 𝑛)  can be 

written as 𝑋𝑖 = 𝑥𝑖 + 𝐸𝑥𝑖, where 𝑥𝑖 is the “exact” value which is unknown, and 𝐸𝑥𝑖 is a random 

variable denoting the error. Thus, the expected value of 𝑋𝑖 would be 𝐸(𝑋𝑖) = 𝑥𝑖 + 𝐸(𝐸𝑥𝑖). Since 

the exact value 𝑥𝑖 is unknown, 𝐸(𝑋𝑖) would be unknown as well even if the expected value of the 

error is known. We thus use an observed value as an estimate for 𝐸(𝑋𝑖). In our work, we assume 

for each random variable 𝑋𝑖 in X, we have its probability distribution type, its variance, and an 

observed value. 

To answer the PTC queries, defined in Section  3.2, for PDF-based uncertain time series, we 

need to find PDF of uncertain correlation 𝐶𝑜𝑟𝑟(𝑋, 𝑄) . Let 𝑋 =< 𝑋1, … , 𝑋𝑛 >  and  𝑄 =<

𝑄1, … , 𝑄𝑛 >  be two PDF-based uncertain time series, where 𝑋𝑖′𝑠  and 𝑄𝑖′𝑠  are independent 

continuous random variables. The correlation between X and Q is defined as follows: 

𝐶𝑜𝑟𝑟(𝑋, 𝑄) =
∑ �̂�𝑖�̂�𝑖
𝑛
𝑖=1

𝑛 − 1
 

 (𝑛 − 1)𝐶𝑜𝑟𝑟(𝑋, 𝑄) can be simply modeled as the sum of product of the random variables �̂�𝑖 

and �̂�𝑖  assessed with 𝑓�̂�𝑖(𝑦) and 𝑓�̂�𝑖
(𝑦), respectively. Since the normal form of each 𝑋𝑖 (7) is a 

linear transformation of 𝑋𝑖, the PDF of �̂�𝑖 (and similarly of  �̂�𝑖) can be calculated as 𝑓�̂�𝑖(𝑦) =



38 

 

𝑆𝑋𝑓𝑋𝑖(𝑆𝑋𝑦 + �̅�) [ROS09]. We then find the PDF of the product of �̂�𝑖 and �̂�𝑖, i.e.,  𝑍𝑖 = �̂�𝑖�̂�𝑖   for 

1 ≤ 𝑖 ≤ 𝑛, noting that according to Lemma 2, when 𝑋𝑖’s and 𝑄𝑖’s are assumed to be independent, 

so are �̂�𝑖’s and �̂�𝑖’s, and hence the PDF of their product [ROS09] is defined as:  

𝑓𝑍𝑖(𝑦) = ∫
1

|𝑡|
𝑓�̂�𝑖(𝑡)𝑓�̂�𝑖

(
𝑦

𝑡
) 𝑑𝑡

+∞

−∞

 

At this point, the problem is reduced to sum of n independent random variables, that is: 

 (𝑛 − 1)𝐶𝑜𝑟𝑟(𝑋, 𝑄) = 𝑍1 +⋯+ 𝑍𝑛 (15) 

which can be obtained iteratively as follows. We define 𝑌2 = 𝑍1 + 𝑍2 and compute its PDF as:  

𝑓𝑌2(𝑦) = ∫ 𝑓𝑍1(𝑦 − 𝑡)𝑓𝑍2(𝑡)
∞

−∞
𝑑𝑡  

We then compute PDF of  𝑌3 = 𝑌2 + 𝑍3, and so on. Finally, we can calculate the PDF of 

(𝑛 − 1)𝐶𝑜𝑟𝑟(𝑋, 𝑄)  (i.e., 𝑌𝑛 = 𝑌𝑛−1 + 𝑍𝑛)  and use it to find those uncertain time series that 

satisfy the PTC queries.  

Let us consider again the example in Figure 2 showing two PDF-based uncertain time series 

𝑋  and 𝑌 , but instead of using the deterministic approach discussed earlier, we now use our 

probabilistic approach. Consider the PTC query 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≥ 0.9) ≥ 0.5. By calculating the 

PDF of correlation between 𝑋 and Y, we find that  𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≥ 0.9) = 0.7. This shows that 𝑋 

and 𝑌 are highly correlated, and 𝑌 would be among the results, as expected.  

We should point out that even when one of the time series is standard, PDF of 𝐶𝑜𝑟𝑟(𝑋, 𝑄) in 

the PTC queries can still be found similarly using our approach. This provides more flexibility to 

the user to choose a query reference (e.g., Q in the PTC queries), which could be uncertain or 

standard time series. We next consider correlation of uncertain time series for a special case in which 

random variables are i.i.d, and show how this simplifies the processing of the PTC queries.   
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 Correlation with i.i.d. Distribution 5.1.1.

As a special case, suppose all random variables in the given uncertain time series 𝑋 and  𝑄 in 

the PTC queries are i.i.d. As shown in part (b) and (c) of Lemma 2, independence and identical 

distribution would be preserved under our normalization technique. Thus, we consider correlation 

between two uncertain time series 𝑋 and  𝑄 as sum of a sequence of i.i.d. random variables, i.e., 

𝐶𝑜𝑟𝑟(𝑋, 𝑄) = ∑ �̂�𝑖�̂�𝑖
𝑛
𝑖=1 (𝑛 − 1)⁄ . According to the central limit theorem [ROS09], as n 

increases, 𝐶𝑜𝑟𝑟(𝑋, 𝑄)  approaches normal distribution. The expected value and variance of 

𝐶𝑜𝑟𝑟(𝑋, 𝑄) are defined as follows: 

𝐸(𝐶𝑜𝑟𝑟(𝑋, 𝑄)) =
∑ 𝐸(�̂�𝑖)𝐸(�̂�𝑖)
𝑛
𝑖=1

𝑛 − 1
, and 

𝑉𝑎𝑟(𝐶𝑜𝑟𝑟(𝑋, 𝑄)) =
∑ (𝐸(�̂�𝑖)

2
𝑉𝑎𝑟( �̂�𝑖 ) + 𝐸(�̂�𝑖)

2
𝑉𝑎𝑟( �̂�𝑖 ) + 𝑉𝑎𝑟( �̂�𝑖  )𝑉𝑎𝑟( �̂�𝑖  ))

𝑛
𝑖=1

(𝑛 − 1)2
 

Moreover, given an uncertain time series X, 𝐸(�̂�𝑖) and 𝑉𝑎𝑟( �̂�𝑖 ) at each timestamp 𝑖  are 

defined as in (8) and (9).  Knowing that 𝐶𝑜𝑟𝑟(𝑋, 𝑄) has approximately normal distribution, we 

can easily answer the PTC queries. We next study the case that one of the input time series is 

standard. 

 Correlation between Uncertain and Standard Time Series  5.1.2.

In this section, we study the notion of correlation between a standard and an uncertain time 

series, and show how to find solutions for the proposed PTC queries. We consider a standard time 

series 𝑥 =< 𝑥1, … , 𝑥𝑛 >  as an uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 >  with  𝐸(𝑋𝑖) =

𝑥𝑖 and 𝑉𝑎𝑟(𝑋𝑖) = 0, for  1 ≤ 𝑖 ≤ 𝑛 and 𝑓𝑋𝑖(𝑦) = {
1,          𝑦 = 𝑥𝑖 
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.  

Suppose that one of the uncertain time series, e.g., Q, in PTC queries is a standard time series, 
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q. To find the PDF of the uncertain correlation in PTC queries, in (15),  𝑍𝑖(1 ≤ 𝑖 ≤ 𝑛) would be 

defined as �̂�𝑖�̂�𝑖, and hence the PDF of their product [ROS09] is defined as:  

𝑓𝑍𝑖(𝑦) =
1

|𝑞𝑖|
𝑓�̂�𝑖 (

𝑦

𝑞𝑖
) 

The rest would be similar to the general case. For the i.i.d. case, we just need to replace 𝐸(𝑄𝑖) 

and 𝑉𝑎𝑟(𝑄𝑖) by 𝑞𝑖  and 0, respectively. In addition, if both X and Q are standard time series, 

expected value and variance of their correlation would be their exact Pearson sample correlation 

coefficient and zero, respectively. This shows that their correlation would be a certain value. For a 

normal distribution with zero variance, the cumulative distribution function is the Heaviside step 

function
1
, that is: 

𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐 ) = {
1,       𝐶𝑜𝑟𝑟(𝑥, 𝑞) ≥ 𝑐
0,              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Based on this, we can find the results of the PTC queries. In fact, our approach can support 

both standard and uncertain time series. 

 Multiset-based Model 5.2.

Consider a multiset-based uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 >, where the only available 

information about each 𝑋𝑖  is a multiset of observed values 𝑅𝑋𝑖 = ⟦𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑁𝑋𝑖
⟧, considered 

as 𝑋𝑖’s realization. We use ⟦… ⟧ for multisets, and 𝑁𝑋𝑖 to denote the number of observed values 

for 𝑋𝑖 . Unlike correlation between standard time series which is a real numbers, correlation 

between multiset-based uncertain time series is a multiset of real numbers, defined by all the 

possible correlation coefficients between the two given uncertain time series. This multiset of 

                                                      
1
 http://en.wikipedia.org/wiki/Normal_distribution#Zero-variance_limit 
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values can then be used to determine an approximation of the probability distribution of uncertain 

correlation. 

Definition 5.1. Correlation multiset (CM)- For uncertain time series  𝑋 =< 𝑋1, … , 𝑋𝑛 > with 

𝑅𝑋𝑖 = ⟦𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑁𝑋𝑖
⟧ , let 𝑇𝑋  be the multiset of all possible time series obtained by 

taking one value from each timestamp, that is: 

 𝑇𝑋 = ⟦< 𝑥1,1, 𝑥2,1, … , 𝑥𝑛,1 >,… ,< 𝑥1,𝑁𝑋1
, … , 𝑥𝑛,𝑁𝑋𝑛 > ⟧ (16) 

 The correlation multiset between two multiset-based uncertain time series 𝑋 and 𝑌 is 

defined as follows:  

 𝐶𝑀(𝑋, 𝑌) = ⟦𝑐𝑜𝑟𝑟(𝑥, 𝑦): 𝑥 ∈ 𝑇𝑋 , 𝑦 ∈ 𝑇𝑌 ⟧ (17) 

     where corr(𝑥, 𝑦) =
∑ 𝑥𝑖�̂�𝑖
𝑛
𝑖=1

𝑛−1
 , and  𝑥𝑖 and �̂�𝑖 are normalized as in Definition  3.3.  

Correlation multiset (CM) provides an approximation of uncertain correlation probability 

distribution. In this way, we can approximate 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐) in the PTC queries. To estimate the 

true underlying CDF of the elements 𝑐𝑖 in 𝐶𝑀(𝑋, 𝑄) = ⟦𝑐1, … , 𝑐𝑀⟧, where 𝑀 = |𝐶𝑀(𝑋, 𝑄)|, we use 

the empirical distribution function [SHO09] of  𝐶𝑜𝑟𝑟(𝑋, 𝑄):  

𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≤ 𝑐) =
∑ 1{𝑐𝑖 ≤ 𝑐}
𝑀
𝑗=1

𝑀
 

where 1{𝑐𝑖 ≤ 𝑐} is the indicator function, which is equal to 1 if 𝑐𝑖 ≤ 𝑐, and equal to 0 otherwise. 

So the probability in the PTC queries is calculated as the fraction of correlation coefficients in 

𝐶𝑀(𝑋, 𝑄), greater than or equal to c. More precisely: 
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 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐)  =
|⟦𝑐𝑜𝑟𝑟(𝑥, 𝑞): 𝑥 ∈ 𝑇𝑋 , 𝑞 ∈ 𝑇𝑄 , 𝑐𝑜𝑟𝑟(𝑥, 𝑞) ≥ 𝑐⟧|

|𝐶𝑀(𝑋, 𝑄)|
 (18) 

By the strong law of large numbers [ROS09], this estimation converges to the true CDF as 

|𝐶𝑀(𝑋, 𝑄)| approaches infinity. Note that |𝐶𝑀(𝑋, 𝑄)| = ∏ 𝑁𝑋𝑖
𝑛
𝑖=1 ×∏ 𝑁𝑄𝑖

𝑛
𝑖=1  and is huge when 

dealing with high dimensional data and high number of observed values. This requires computing 

all the correlation coefficients in 𝐶𝑀(𝑋, 𝑄), which is infeasible unless improved. In this thesis, 

we will explain our solution to overcome this complexity by providing an approximation 

technique for uncertain time series together with a pruning, following by a sampling-based 

heuristic technique. In the next section, we will present the results of our performance evaluation.  

 Performance Evaluation Results 5.3.

In this section, we present our experimental results for both PDF-based and multiset-based 

models.  

 PDF-based Model 5.3.1.

In this section, we study the performance of the probabilistic query for PDF-based model 

using the setup described in Chapter 4.  For RQ1, defined in Section 4.1, the hit ratio and false 

alarm of the probabilistic query shown in Figure 4 and Figure 5, respectively, are for different 

error rates, SDRs and probability thresholds. We observe that for the SDRs higher than 0.1, the 

higher the error rate and the SDR, the lower the hit ratio. As discussed earlier, the expected value 

at each timestamp is estimated using an observed value. Moreover, recall that SDR and error rate 

specify uncertainty level in data, in that, the higher the uncertainty level, the farther the observed 

values from the exact values, and thus the lower the performance of the probabilistic query.   

It should also be noted that as the probability threshold decreases, the hit ratio (Figure 4) 

increases and the false alarm ratio (Figure 5) decreases, in particular for high SDR values. This is 
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due to the fact that as we decrease the probability threshold, the probabilistic query returns more 

candidate results, which makes it more probable to contain the correct results. While this also 

increases the number of false alarms. The ratio of false alarms we found for all the error rates is 

low (less than 0.06). 

For RQ2, defined in Section 4.1, similar to earlier studies [YEH09, SAR10], we compared the 

performance of the probabilistic query with the deterministic query (Section 4.4). Figure 6 

illustrates the hit ratio of the deterministic query for different error rates and SDRs. Since the 

false alarm ratio of the deterministic query was close to 0, we did not include the corresponding 

figure. As expected, the higher the SDR and the error rate, the lower the hit ratio. This is due to 

the fact that as uncertainty level increases, the uncertain observed value at each timestamp would 

be farther from the exact value. By comparing the deterministic and probabilistic queries, we 

observe that the probabilistic query has higher hit ratio than the deterministic query, in particular 

for high SDRs. 

Figure 7 shows the performance of the deterministic and probabilistic queries for the i.i.d. 

case. Since the error rate is 100% in this case (i.e., the highest uncertainty level), both queries 

have lower hit ratio than any other cases. Moreover, for high SDRs, neither one returns any result. 

However, compared to the deterministic query, the probabilistic query has higher hit ratios for the 

SDR values 0.5, 1, and 1.5.  
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a) error rate=10%            b) error rate=30%                                  c) error rate=50% 

Figure 4. Hit ratio of the probabilistic query using different error rates for Gun-Point dataset. 

 

a) error rate=10%              b) error rate=30%                                  c) error rate=50% 

Figure 5. False alarm ratio of the probabilistic query using different error rates for Gun-Point dataset. 

  

  

 

a) error rate=10%              b) error rate=30%                                  c) error rate=50% 

Figure 6. Hit ratio of the deterministic query using different error rates for Gun-Point dataset. 

 
 
 
 
 
 
 
 
 
 

 
 

a) Hit ratio of the deterministic approach    b) Hit ratio of the probabilistic approach     c) False alarm of the probabilistic approach 
 

Figure 7. Comparing the performance of the deterministic and probabilistic query for the i.i.d. case and Gun-

Point dataset. 
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In all these experiments, we observed that in presence of high uncertainty level, the 

probabilistic query can find more correlated uncertain time series than the deterministic query. 

Another advantage of the probabilistic query (over the deterministic one) is that it allows 

exploring and analyzing the data by controlling the trade-off between false alarm and hit ratio. In 

some applications, this trade-off is important; for some applications false alarms are unacceptable 

or costly, while for others, it is required to have high hit ratio [YEH09].    

We reported our findings for the Gun-Point dataset, when the error distribution was normal 

and correlation threshold was 0.5. We also studied the other five correlation thresholds from 0.4 

to 0.9, and considered exponential and uniform error distributions. Moreover, we studied the 

effect of query and data parameters on the other 19 datasets. In all these cases, we made a similar 

observation as reported in this section. The complete set of experiments and results are made 

available to reviewers [CORX]. 

5.3.1.1. Experimental Results Analysis 

For the i.i.d. case, we noted that deterministic and probabilistic queries have the same hit and 

false alarm ratios for probability threshold equal to 0.5. In this section, we will discuss its reason. 

Consider PDF-based uncertain time series,  𝑋 =< 𝑋1, … , 𝑋𝑛 >  and 𝑄 =< 𝑄1, … , 𝑄𝑛 > . As 

discussed earlier, we will use an observed value as an estimate for the expected value at each 

timestamp.  Thus, we would have:  

𝐸(𝐶𝑜𝑟𝑟(𝑋, 𝑄)) = 𝐶𝑜𝑟𝑟(𝐸(𝑋), 𝐸(𝑄)) 

Where 𝐸(𝑋)  is the expected value time series  𝐸(𝑋) =< 𝐸(𝑋1), … , 𝐸(𝑋𝑛) , and 𝐶𝑜𝑟𝑟  is 

defined as in (12). When probability threshold is set to 0.5, we would have: 
2
 

                                                      

2
 For normal random variable X, we have:  𝑃(𝑋 ≤ 𝑥) =

1

2
(1 + 𝑒𝑟𝑓 (

𝑥−𝐸(𝑋)

√2𝑉𝑎𝑟(𝑋)
)) 



46 

 

𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐) ≥ 0.5 ⇔ 𝑒𝑟𝑓

(

 
𝑐 − 𝐶𝑜𝑟𝑟(𝐸(𝑋), 𝐸(𝑄))

√2𝑉𝑎𝑟(𝐶𝑜𝑟𝑟(𝑋, 𝑄))
)

 ≤ 0 ⇔ 𝐶𝑜𝑟𝑟(𝐸(𝑋), 𝐸(𝑄)) ≥ 𝑐 

So X would be the candidate result of PTC queries if and only if X is the candidate result of 

DTC queries.  

 Multiset-based Model 5.3.2.

The first objective of the experiments is to study the performance of the proposed method 

with regard to various data parameters and query parameters (Section 4.3). As explained earlier, 

the exhaustive technique, which calculates all the correlation coefficients in (18), is infeasible 

since its time complexity is 𝑂(𝑁𝑛), where N is the number of observed values at each timestamp 

and n is the dimension (length) of the uncertain time series. Thus, to make the similarity search 

feasible in different settings, similar to [DAL12], we reduced and used the input data, obtained by 

truncating the dataset to 50 time series of dimension 6 with 3 observed values at each timestamp. 

For example, given a correlation threshold c, probability threshold p, and SDR r, we need to do 

over 26.5 million calculations (with 50 time series) in the exhaustive technique, and in total over 

15.7 billion calculations (with 9 SDR, 6 correlation thresholds, and 11 probability thresholds 

(Section 4.3)). This shows that even for small uncertain time series dataset, the exhaustive 

technique requires an excessive amount of processing time.  

Figure 8 illustrates the answer for RQ1 using the ground truth I. This figure shows the hit 

ratio and false alarm ratio of the exhaustive technique for different SDRs and probability 

thresholds for the Gun-Point dataset, normal distribution and correlation threshold 0.5. Generally, 

the hit ratio decreases and the false alarm ratio increases, as the SDR increases. Besides, the 

lower the probability threshold, the higher the hit ratio and false alarm ratio. This illustrates the 

role of the probability threshold in the trade-off between those measures.  
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Moreover, for RQ2, we compare the probabilistic query with the deterministic query 

(Section 4.4). Figure 9 shows the false alarm and hit ratio of the deterministic query. The higher 

the SDR, the lower the hit ratio, and the higher the false alarm ratio. Unlike the deterministic 

query, the hit ratio of the probabilistic query can be 1 or close to 1 even for high SDRs, by 

choosing a proper probability threshold. For example, consider the SDR 4. For this SDR, we 

found the false alarm ratios for both queries are to be very close to each other. However, the hit 

ratio of the deterministic query is about 0.4, which is low, and in the probabilistic query, if we 

 

Figure 8. Hit ratio and false alarm ratio of exhaustive technique using ground truth I for Gun-

Point dataset. 

 

Figure 9. Hit ratio and false alarm ratio of deterministic query using ground truth I for Gun-

Point dataset. 
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choose a low probability threshold, e.g., 0.3, the hit ratio would be close to 1. That is, with the 

same uncertainty level, the probabilistic query outperforms the deterministic query.  

Figure 10 illustrates the answer to RQ3 for Gun-Point dataset, normal distribution and 

correlation threshold 0.5. It shows that for the SDRs less than 1, our approximation for the 

probability distribution of uncertain correlation approaches the exact probability distribution. For 

higher SDRs, the lower the probability threshold, the higher the 𝐹1 score. For the cases where the 

𝐹1 score is 0, the ground truth did not return any result.  

This section reports our findings for Gun-Point dataset, when error distribution is normal and 

correlation threshold is 0.5. We also considered five correlation thresholds from 0.4 to 0.9, for 

exponential and uniform error distributions. Moreover, we studied the effect of all data and query 

parameters on the other 19 datasets in the benchmark data. In all the cases studied, we made a 

similar observation as reported in this section. The complete set of results is made available to 

reviewers in [CORX]. 

  

 

Figure 10. F1 score of exhaustive approach using ground truth II for Gun-Point dataset. 
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 Discussion 5.4.

This dissertation has proposed suitable concepts and techniques for uncertain time series 

correlation analysis. Different applications consider different assumptions and have different 

similarity search queries. It is thus essential to investigate other types of similarity queries over 

uncertain time series under different assumptions. In PTC queries, the user is interested in the 

uncertain time series, in a database, which are positively correlated with Q, and their correlation 

is no less than the given threshold c. We also refer to this query as PTC-1 query. Depending on 

the application, other possible types of correlation queries includes (for 𝑝 ∈ (0,1]): 

PTC-2.      𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≤ 𝑐) ≥ 𝑝, 𝑐 ∈ [−1,0) 

PTC-3.      𝑃(|𝐶𝑜𝑟𝑟(𝑋, 𝑄)| ≥ 𝑐) ≥ 𝑝, 𝑐 ∈ (0,1] 

In PTC-2, the user is looking for uncertain time series which are negatively correlated with Q, 

and their correlation is no more than the threshold c. In the last one, the user is interested in 

uncertain time series that are highly correlated with Q (positively or negatively), and the absolute 

correlation is no less than c. In addition, the user may be interested in finding uncertain time 

series which are not highly correlated to Q, e.g., in medical domain looking for some 

abnormalities in a test result. We could thus have the following forms of threshold-based 

correlation queries: 

PTC-4.    𝑃(0 ≤ 𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≤ 𝑐) ≥ 𝑝, 𝑐 ∈ [0,1) 

PTC-5.    𝑃(𝑐 ≤ 𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≤ 0) ≥ 𝑝, 𝑐 ∈ (−1,0] 

PTC-6.    𝑃(|𝐶𝑜𝑟𝑟(𝑋, 𝑄)| ≤ 𝑐) ≥ 𝑝, 𝑐 ∈ [0,1) 

Our solution techniques for the PDF-based model, and multiset-based technique can answer all 

the above queries, because they can either find uncertain correlation PDF or approximate it. For 

the i.i.d. case of PDF-based model, since the correlation random variable is distributed normally, 
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its absolute value has folded normal distribution
3
, and its cumulative distribution function is given 

by: 

𝐹|𝐶𝑜𝑟𝑟(𝑋,𝑄)|(𝑦; 𝜇, 𝜎) =
1

2
[erf (

𝑦 + 𝜇

√2𝜎
) + erf (

𝑦 − 𝜇

√2𝜎
)] 

For 𝑦 ≥ 0, where erf() is the error function, and 𝜇 and 𝜎 are the expected value and standard 

deviations of 𝐶𝑜𝑟𝑟(𝑋, 𝑄). Hence in this case, we can also answer the PTC-3 and PTC-6 queries.  

 Summary 5.5.

In this chapter, we presented our approach to process probabilistic threshold-based queries for 

both PDF-based and multiset-based models. For the former model we considered two cases; 

having different PDFs and identical PDFs at different timestamps. The results of our extensive 

experiments indicated that the probabilistic query, unlike the deterministic one, provides a trade-

off between false alarm and hit ratio of the results which can be controlled by the probability 

threshold given by users. However, the similarity search technique proposed for multiset-based 

model is infeasible for real size uncertain time series unless improved. In the next chapter, we 

will explain our solution to overcome this complexity by providing a pruning, and a sampling-

based heuristic technique. 

 

 

 

  

                                                      
3
 http://en.wikipedia.org/wiki/Folded_normal_distribution 

http://en.wikipedia.org/wiki/Folded_normal_distribution
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Chapter 6 : Query Optimization Techniques for 

Multiset-based Model 

This chapter explains our solution to overcome the complexity of multiset-based similarity 

search by providing an approximation technique for uncertain time series which considers a 

Boolean representation together with a pruning, following by a sampling-based heuristic 

technique. 

 Probabilistic Pruning 6.1.

In this section, we propose a probabilistic pruning technique which aims to cut down the 

number of candidates in a dataset of multiset-based uncertain time series. For this, we generalize 

the Boolean correlation proposed in [ZHA07] for standard time series. Given a standard time 

series 𝑥 =< 𝑥1, … , 𝑥𝑛 >, its Boolean representation is a Boolean series 𝑥𝐵 =< 𝑥1
𝐵, … , 𝑥𝑛

𝐵 >, in 

which  

𝑥𝑖
𝐵 = {

1,  𝑥𝑖
 > �̅�  

0,  𝑥𝑖
 ≤ �̅� 

 (1 ≤ 𝑖 ≤ 𝑛),where  �̅� =
∑  𝑥𝑖

 𝑛
𝑖=1

𝑛
 

Let x and y be standard time series and 𝑥𝐵 and 𝑦𝐵 be their Boolean representations. Then 

their Boolean correlation [ZHA07] is defined as: 

 

𝑐𝑜𝑟𝑟𝐵(𝑥𝐵, 𝑦𝐵) =
∑ ⇁ (𝑥𝑖

𝐵⨁𝑦𝑖
𝐵)𝑛

𝑖=1

𝑛
 (19) 

where ⨁ and ⇁ are the XOR and negation operations, respectively. 
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We extend the standard Boolean correlation to uncertain time series, which basically replaces 

each observed value in an uncertain time series with a single bit. This yields a compression ratio 

of 32:1 (considering 32 bits for each observed value), and also allows taking advantage of fast bit 

operations by CPU.  

Definition 6.1. Uncertain Boolean representation- Given an uncertain time series 𝑋 =<

𝑋1, … , 𝑋𝑛 > with 𝑅𝑋𝑖 = ⟦𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑁𝑋𝑖
⟧, we define its Boolean representation as 𝑋𝐵 =<

𝑋1
𝐵, … , 𝑋𝑛

𝐵 >, with 𝑅𝑋𝑖
𝐵 = ⟦𝑥𝑖,1

𝐵 , 𝑥𝑖,2
𝐵 , … , 𝑥𝑖,𝑁𝑋𝑖

𝐵 ⟧, in which 

 𝑥𝑖,𝑗
𝐵 = {

1,  𝑥𝑖,𝑗
 > �̅�  

0,  𝑥𝑖,𝑗
 ≤ �̅� 

, 𝑤ℎ𝑒𝑟𝑒  �̅� =
∑ (∑ 𝑥𝑖,𝑗

 𝑁𝑋𝑖
𝑗=1

𝑁𝑋𝑖⁄ )𝑛
𝑖=1

𝑛
  

In this representation, each observed value would be represented as 1 if it is above the 

average of all the observed values, and as 0 otherwise. For example, Figure 11 shows uncertain 

time series X and Y with 𝑛 = 3. For instance, consider X, its uncertain Boolean representation 

would be 𝑋𝐵 =< 𝑋1
𝐵, 𝑋2

𝐵 , 𝑋3
𝐵 >, with 𝑅𝑋1𝐵 =

⟦1,1⟧, 𝑅𝑋2𝐵 =
⟦0,0,0,0⟧ and 𝑅𝑋3𝐵 =

⟦1,1,1⟧. 

Using uncertain Boolean representation, we next present optimization techniques to speed up 

similarity search. The following example illustrates the idea behind this optimization. Again 

consider uncertain time series X and Y in Figure 11. To find the multiset   𝐶𝑀 (𝑋, 𝑌) 

 

Figure 11. Uncertain time series X and Y with 3 timestamps. 
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(Definition 5.1), we should find all the correlation coefficients between time series in  𝑇𝑋  and  𝑇𝑌  

defined in (16). Since the Pearson correlation detects linear dependencies between two time 

series, all the values in 𝐶𝑀(𝑋, 𝑌) would be a negative real number, thus, 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≥ 𝑐) = 0, 

𝑐 ∈ (0,1], and hence X would not be returned as a similar uncertain time series to 𝑌. Now the 

question is: can we prune X without having to calculate all the elements in 𝐶𝑀(𝑋, 𝑌)?   

We show that the answer is positive and develop such a pruning technique which uses 

uncertain Boolean representation. For this, we next define the notion of uncertain Boolean 

correlation in which the XOR and negation operations are extended for random variables.  

Definition 6.2. Uncertain Boolean correlation- Let 𝑋𝐵  and  𝑌𝐵  be uncertain Boolean 

representations of uncertain time series 𝑋 and 𝑌. Then their uncertain Boolean correlation is 

defined as:  

𝐶𝑜𝑟𝑟𝐵(𝑋𝐵, 𝑌𝐵) =
∑ ⇁ (𝑋𝑖

𝐵⨁𝑌𝑖
𝐵)𝑛

𝑖=1

𝑛
 

In the standard case, the Boolean correlation 𝑐𝑜𝑟𝑟𝐵(𝑥𝐵, 𝑦𝐵) (19) is a real number indicating 

the Boolean correlation between the Boolean series 𝑥𝐵  and 𝑦𝐵 . For uncertain time series, 

however, Boolean correlation is a random variable. The above definition is used to define 

probabilistic threshold-based Boolean correlation queries. 

Definition 6.3. Probabilistic threshold-based Boolean correlation (PTB) queries- Given an 

uncertain time series Q as a query reference, a Boolean threshold 𝛽 , and a probability 

threshold 𝑝𝐵, PTB queries return every uncertain time series X in D, such that X and Q are 

Boolean correlated with probability at least 𝑝𝐵 ∈ (0,1], and Boolean coefficient no less than 

𝛽 ∈ (0,1]. Formally,  
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𝑃(𝐶𝑜𝑟𝑟𝐵(𝑋𝐵 , 𝑄𝐵) ≥ 𝛽) ≥ 𝑝𝐵 

To find the answers to the PTB queries, we define Boolean correlation multiset. 

Definition 6.4. Boolean correlation multiset (BCM)- For an uncertain time series 𝑋, let 𝑋𝐵 be 

its uncertain Boolean representation, and 𝑇𝑋𝐵  be the multiset of all possible Boolean series 

obtained by taking a value from each timestamp of 𝑋𝐵, that is,  

𝑇𝑋𝐵 = ⟦< 𝑥1,1
𝐵 , 𝑥2,1

𝐵 , … , 𝑥𝑛,1
𝐵 >,… ,< 𝑥1,𝑁𝑋1

𝐵 , … , 𝑥𝑛,𝑁𝑋𝑛
𝐵 >⟧ 

We regard each Boolean series in 𝑇𝑋𝐵  as a trend of the corresponding time series in  𝑇𝑋  

(16). We define the Boolean correlation multiset between X and Y  as: 

𝐵𝐶𝑀(𝑋, 𝑌) = ⟦𝑐𝑜𝑟𝑟𝐵(𝑥𝐵 , 𝑦𝐵): 𝑥𝐵 ∈ 𝑇𝑋𝐵  , 𝑦
𝐵 ∈ 𝑇𝑌𝐵⟧ 

Here, 𝑐𝑜𝑟𝑟𝐵(𝑥𝐵 , 𝑦𝐵), defined in (19), is the percentage of the number of the timestamps with 

the same Boolean values and indicates the degree of the similarity between the two Boolean 

series. Using BCM, we can find the complementary CDF of uncertain Boolean correlation 

between X and Q in the PTB queries, as follows: 

 𝑃(𝐶𝑜𝑟𝑟𝐵(𝑋𝐵 , 𝑄𝐵) ≥ 𝛽) =
|⟦𝑐𝑜𝑟𝑟𝐵(𝑥

𝐵, 𝑞𝐵) ∈ 𝐵𝐶𝑀(𝑋, 𝑄): 𝑐𝑜𝑟𝑟𝐵(𝑥𝐵, 𝑞𝐵) ≥ 𝛽⟧|

|𝐵𝐶𝑀(𝑋, 𝑄)|
 

(20) 

where |𝐵𝐶𝑀(𝑋, 𝑄)| = |𝐶𝑀(𝑋, 𝑄)|, defined in Definition 5.1. 

For instance, for uncertain time series X and Y in Figure 11,  𝑇𝑋𝐵  includes 24 (2 × 4 × 3) 

Boolean series  < 1,0,1 >  and  𝑇𝑌𝐵 includes 18 (3 × 2 × 3 ) Boolean series < 0,1,0 > . The 

Boolean correlation between Boolean series in  𝑇𝑋𝐵  and the ones in  𝑇𝑌𝐵  is 0. Thus, the 

probability that X and Y are Boolean correlated is 0, i.e., 𝑃(𝐶𝑜𝑟𝑟𝐵(𝑋𝐵, 𝑌𝐵) ≥ 𝛽) = 0. Therefore, 
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the corresponding actual uncertain time series are not positively correlated and hence X  is pruned 

and not considered (considering Y as the query reference).  

To process the PTB queries 𝑃(𝐶𝑜𝑟𝑟𝐵(𝑋𝐵 , 𝑄𝐵) ≥ 𝛽) ≥ 𝑝𝐵, we calculate all possible Boolean 

correlation coefficients (20). We refer to this approach as multiset-based Boolean approach, since 

it uses the multiset of all possible Boolean correlation coefficients to find the final probability. As 

an alternative, to which we refer as PDF-based Boolean approach, to calculate this probability, 

we find PDF of random variable 𝐶𝑜𝑟𝑟𝐵(𝑋𝐵, 𝑄𝐵) using the following lemma.  

Lemma 6. Given two uncertain time series X and Y with n timestamps, 𝑛𝐶𝑜𝑟𝑟𝐵(𝑋𝐵, 𝑌𝐵) has 

Poisson Binomial distribution. 

Proof. First, all 𝑋𝑖
𝐵′s and 𝑌𝑖

𝐵′s (1 ≤ 𝑖 ≤ 𝑛) in uncertain Boolean representation of X and Y are 

Bernoulli random variables with success probabilities equal to 𝑝𝑖
𝑋 and 𝑝𝑖

𝑌, respectively, where 

𝑝𝑖
𝑋 is defined as:

𝑝𝑖
𝑋 = 𝑃(𝑋𝑖

𝐵 = 1) =
|⟦𝑥𝑖,𝑗: 𝑥𝑖,𝑗 > �̅�, 1 ≤ 𝑗 ≤ 𝑁𝑋𝑖  ⟧|

𝑁𝑋𝑖
  

in which �̅�  is defined in Definition 6.1. Random variable 𝐶𝑖
𝑋,𝑌 =⇁ (𝑋𝑖

𝐵⨁𝑌𝑖
𝐵)  is also a 

Bernoulli random variable, since the result of 𝐶𝑖
𝑋,𝑌

 is either 1 or 0, and its success probability 

would be: 

 𝑝𝑖
𝑋,𝑌 = 𝑃(𝐶𝑖

𝑋,𝑌 = 1) = 𝑃(𝑋𝑖
𝐵 = 1)𝑃(𝑌𝑖

𝐵 = 1) + 𝑃(𝑋𝑖
𝐵 = 0)𝑃(𝑌𝑖

𝐵 = 0) (21) 

Since all 𝐶𝑖
𝑋,𝑌

’s are Bernoulli random variables, and independent of each other, with 

different success probabilities, we conclude that 𝑛𝐶𝑜𝑟𝑟𝐵(𝑋𝐵, 𝑌𝐵) = ∑ 𝐶𝑖
𝑋,𝑌𝑛

𝑖=1  would have 

Poisson Binomial distribution [HON13]. ∎ 



56 

 

The PDF of the Poisson binomial distribution (for probability of w successes in n trials, 

where trial i has success probability 𝑝𝑖) is as follows: 

𝑃(𝑊 = 𝑤) = ∑ ∏𝑝𝑖
𝑖∈𝐴

  

 

𝐴∈𝑆𝑤

∏(1 − 𝑝𝑗)

𝑗∈𝐴𝑐

 

where 𝑆𝑤 is the set of all subsets of {1,2,… , 𝑛} of size 𝑤, and 𝐴𝑐 is the complement of the set A. 

Computing CDF of a Poisson binomial random variable could be prohibitively expensive, since 

𝑆𝑤  contains 𝑛!/(𝑛 − 𝑤)!𝑤! elements. Hong [HON13] proposed a simple method to derive an 

exact formula for CDF of Poisson binomial distribution, using the Fourier transform of the 

distribution characteristic function. The time to compute Hong’s function is generally negligible 

for small number of timestamps, i.e., 𝑛 < 500 [HON13]. Using this PDF-based Boolean 

approach, we can process the PTB queries 𝑃(𝐶𝑜𝑟𝑟𝐵(𝑋𝐵 , 𝑄𝐵) ≥ 𝛽) ≥ 𝑝𝐵 more efficiently. The 

following lemma shows that the probabilities obtained by both multiset-based (20) and PDF-

based (Lemma 6) Boolean approaches are equal. 

Lemma 7. Given uncertain time series X and Y with n timestamps, we have: 

|⟦𝑐𝑜𝑟𝑟𝐵(𝑥𝐵, 𝑦𝐵) : 𝑥
𝐵 ∈ 𝑇𝑋𝐵  , 𝑦

𝐵 ∈ 𝑇𝑌𝐵 , 𝑐𝑜𝑟𝑟
𝐵(𝑥𝐵, 𝑦𝐵) = 𝛽⟧|

|𝐵𝐶𝑀(𝑋, 𝑌)|

= ∑ ∏𝑝𝑖
𝑋,𝑌

𝑖∈𝐴

  

 

𝐴∈𝑆𝑤

∏(1− 𝑝𝑗
𝑋,𝑌)

𝑗∈𝐴𝑐

 

where 𝑤 = 𝑛𝛽 , 𝑆𝑤  is the set of all subsets of {1,2,… , 𝑛}  of size 𝑤 , and 𝑝𝑖
𝑋,𝑌 = 𝑃(𝑋𝑖

𝐵 =

1)𝑃(𝑌𝑖
𝐵 = 1) + 𝑃(𝑋𝑖

𝐵 = 0)𝑃(𝑌𝑖
𝐵 = 0). 

Proof. Let  𝑤 = 𝑛𝛽 and 𝑆𝑤 = {𝐴1, … , 𝐴𝑘} be the set of all subsets of {1,2,… , 𝑛} of size w. By 

Lemma 6, random variable 𝑛𝐶𝑜𝑟𝑟𝐵(𝑋𝐵, 𝑌𝐵) = ∑ 𝐶𝑖
𝑋,𝑌𝑛

𝑖=1  (here 𝐶𝑖
𝑋,𝑌 =⇁ (𝑋𝑖

𝐵⨁𝑌𝑖
𝐵) ) has 
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Poisson binomial distribution with the following PDF (for the probability of 𝑤 successes in n 

trials): 

𝑃 (∑𝐶𝑖
𝑋,𝑌

𝑛

𝑖=1

= 𝑤 ) = ∑ ∏𝑝𝑖
𝑋,𝑌

𝑖∈𝐴

  

  

𝐴∈ 𝑆𝑤 

∏(1− 𝑝𝑗
𝑋,𝑌)

𝑗∈𝐴𝑐

 

      where 𝐴𝑐 is the complement of set 𝐴 and  𝑝𝑖
𝑋,𝑌

 is defined in (21). For the proof, we need to 

introduce some notations. Given a Boolean series 𝑏 =< 𝑏1, … , 𝑏𝑛 >, its complement with 

respect to a given set 𝐴 ∈  𝑆𝑤 is denoted by b
A

. Here b and b
A
 have the same values at 𝑤 

timestamps chosen from A’s elements (and different values at other timestamps). For 

example, the Boolean series < 1, 1, 0 > and < 1, 0, 0 > are complement of each other with 

respect to the set {1,3}. Note that the Boolean correlation between b and b
A
 is equal to 𝑤/𝑛, 

i.e., 𝛽. Given a Boolean series b and an uncertain time series X, we also define an uncertain 

time series 𝑋(𝑏) in which at timestamp i, it includes those observed values of X whose 

Boolean representation is 𝑏𝑖, that is 𝑅𝑋𝑖(𝑏𝑖) = ⟦𝑥𝑖,𝑗: 𝑥𝑖,𝑗
𝐵 = 𝑏𝑖, 1 ≤ 𝑗 ≤ 𝑁𝑋𝑖⟧. Moreover, for a 

given b and 𝐴 ∈  𝑆𝑤 , every element in 𝐵𝐶𝑀(𝑋(𝑏), 𝑌(𝑏𝐴) ) is equal to 𝛽 . We use 𝐵𝑛  to 

denote the set of all Boolean series of length n. For example, 𝐵2 = {< 0,0 >,< 0,1 >,<

1,0 >,< 1,1 >}. Using these notations, we rewrite the numerator of the left hand side of the 

equation in Lemma 7 as follows:   

|⟦𝑐𝑜𝑟𝑟𝐵(𝑥𝐵, 𝑦𝐵) : 𝑥
𝐵 ∈ 𝑇𝑋𝐵  , 𝑦

𝐵 ∈ 𝑇𝑌𝐵 , 𝑐𝑜𝑟𝑟
𝐵(𝑥𝐵, 𝑦𝐵) = 𝛽⟧|

= ∑ ∑ |𝐵𝐶𝑀(𝑋(𝑏), 𝑌(𝑏𝐴) ) |

 

𝑏∈𝐵𝑛 

 

𝐴∈ 𝑆𝑤

 

Since the size of the multiset 𝐵𝐶𝑀(𝑋(𝑏), 𝑌(𝑏𝐴) ) is  ∏ |𝑋𝑖(𝑏𝑖)| × |𝑌𝑖(𝑏𝑖
𝐴)|𝑛

𝑖=1 , we have 

that: 
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 |⟦𝑐𝑜𝑟𝑟𝐵(𝑥𝐵, 𝑦𝐵) : 𝑥
𝐵 ∈ 𝑇𝑋𝐵  , 𝑦

𝐵 ∈ 𝑇𝑌𝐵 , 𝑐𝑜𝑟𝑟
𝐵(𝑥𝐵, 𝑦𝐵) = 𝛽⟧|

|𝐵𝐶𝑀(𝑋, 𝑌)|

=
∑ ∑ ∏ |𝑋𝑖(𝑏𝑖)| × |𝑌𝑖(𝑏𝑖

𝐴)|𝑛
𝑖=1

 
𝑏∈𝐵𝑛 

 
𝐴∈ 𝑆𝑤

∏ 𝑁𝑋𝑖
𝑛
𝑖=1 ∏ 𝑁𝑌𝑖

𝑛
𝑖=1

 

 

(22) 

On the other hand, we know that the set 𝐵𝑛 contains all possible Boolean series with 

length n. Besides, Boolean series 𝑏 and  𝑏𝐴 agree only on 𝑤 timestamps chosen from the 

elements in 𝐴. Thus, for a given set  𝐴 ∈  𝑆𝑤, we have: 

 ∑ ∏|𝑋𝑖(𝑏𝑖)| × |𝑌𝑖(𝑏𝑖
𝐴)|

𝑛

𝑖=1

 

𝑏∈𝐵𝑛 

=∏(|𝑋𝑖(0)| × |𝑌𝑖(0)| + |𝑋𝑖(1)| × |𝑌𝑖(1)|) 

𝑖∈𝐴

×∏(|𝑋𝑗(0)| × |𝑌𝑗(1)| + |𝑋𝑗(1)| × |𝑌𝑗(0)|)

𝑗∈𝐴𝑐

 

(23) 

     Moreover, according to (21), it holds that: 

𝑝𝑖
𝑋,𝑌 =

|𝑋𝑖(0)| × |𝑌𝑖(0)| + |𝑋𝑖(1)| × |𝑌𝑖(1)|

𝑁𝑋𝑖𝑁𝑌𝑖
 

1 − 𝑝𝑗
𝑋,𝑌 =

|𝑋𝑗(0)| × |𝑌𝑗(1)| + |𝑋𝑗(1)| × |𝑌𝑗(0)|

𝑁𝑋𝑗𝑁𝑌𝑗
 

   Finally, from equations (22) and (23), we obtain: 

|⟦𝑐𝑜𝑟𝑟𝐵(𝑥𝐵, 𝑦𝐵) : 𝑥
𝐵 ∈ 𝑇𝑋𝐵  , 𝑦

𝐵 ∈ 𝑇𝑌𝐵 , 𝑐𝑜𝑟𝑟
𝐵(𝑥𝐵, 𝑦𝐵) = 𝛽⟧|

|𝐵𝐶𝑀(𝑋, 𝑌)|

= ∑ ∏𝑝𝑖
𝑋,𝑌

𝑖∈𝐴

  

  

𝐴∈ 𝑆𝑤 

∏(1− 𝑝𝑗
𝑋,𝑌)

𝑗∈𝐴𝑐

 ∎ 
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This lemma provides a basis for our pruning technique. Given two uncertain time series X and 

Q, with Q as the query reference, we can process the PTB queries 𝑃(𝐶𝑜𝑟𝑟𝐵(𝑋𝐵 , 𝑄𝐵) ≥ 𝛽) ≥

𝑝𝐵 quickly using the Hong’s method [HON13]. If this probability is less than 𝑝𝐵, we can prune 

away X, and avoid as many useless computations as |𝐶𝑀(𝑋, 𝑄)|. Note that 𝑃(𝐶𝑜𝑟𝑟𝐵(𝑋𝐵
 
, 𝑄𝐵) ≥

𝛽) is the probability that at least as many as 𝑛𝛽 (𝛽 ∈ (0,1])  of n timestamps of X and Q have the 

same Boolean values. Uncertain time series that do not have Boolean correlation are less likely to 

be much positively correlated. Thus, by choosing a proper Boolean threshold, we can prune 

uncorrelated or negatively correlated uncertain time series. 

For the standard case, it is shown when the given standard time series have standard normal 

distribution, knowing the correlation threshold c, we can find the corresponding  𝛽  [ZHA07]. 

However, in general, there is no direct relationship between the two thresholds. For the uncertain 

case, the results of our experiments suggest a way to find a range for a proper Boolean threshold, 

using which the PTB queries can have high recall and precision which can be controlled by the 

probability thresholds picked.  

Another advantage of this solution is that for each uncertain time series X in the dataset, it 

replaces multiset of observed values at timestamp i with a single value 𝑃(𝑋𝑖
𝐵 = 1). This yields a 

compression ratio of  𝑁𝑋𝑖: 1 for timestamp i. However, if the number of observed values at each 

timestamp is less than 32 (considering 32 bits for each observed value), we can improve space 

utilization even more by storing the uncertain Boolean representation (Definition 6.1) of each 

uncertain time series X in the dataset and its average �̅� (to be able to calculate 𝑃(𝑋𝑖
𝐵 = 1)). This 

yields a compression ratio of 32: 1. 
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We remark that when the input time series is a standard one, we can still benefit from the 

proposed pruning technique. When both input time series are standard, the proposed uncertain 

Boolean correlation reduces to standard Boolean correlation [ZHA07].  

 Sampling-based Heuristic 6.2.

Given an uncertain time series Q, a set D of uncertain time series, a probability threshold p, 

and a correlation threshold c, we want to speed up the processing of the PTC queries 

𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐) ≥ 𝑝 for all X in D. For example, suppose that there are d uncertain time 

series in D, each uncertain time series X in D is n-dimensional, and there are N observed values at 

each timestamp. Then to process 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐) ≥ 𝑝, the number of pairwise correlation 

calculations would be  𝑑 × 𝑁2𝑛. Now consider just one uncertain time series in D, and suppose 

𝑁 = 2 (a very small number of observed values) and 𝑛 = 50 (a short uncertain time series). The 

number of required calculations to find the corresponding probability would be 2100, which is 

infeasible to do. Since time complexity of multiset-based similarity search is exponential in the 

dimension (length) of uncertain time series, and usually uncertain time series are high 

dimensional, reducing the number of observed values at each timestamp will not help much to 

reduce the processing time. 

We propose to use “Sampling” which selects a subset of samples from a statistical population 

to estimate the characteristics of the whole population. In our case, the population would be all 

the elements in 𝐶𝑀(𝑋, 𝑄) (Definition 5.1). However, we do not want to find all the elements in 

this multiset. As a matter of fact, we need a method to create a subset of independent samples 

from 𝐶𝑀(𝑋, 𝑄). Having a multiset as the correlation between two multiset-based uncertain time 

series means that the correlation random variable 𝐶𝑜𝑟𝑟(𝑋, 𝑄) is a discrete random variable equal 

to: 𝐶𝑜𝑟𝑟(𝑋, 𝑄) =
∑ �̂�𝑖�̂�𝑖
𝑛
𝑖=1

𝑛−1
= ∑ 𝑍𝑖

𝑛
𝑖=1 . To find the PDF of this discrete random variable, we first 
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obtain the PDF of  𝑍𝑖(1 ≤ 𝑖 ≤ 𝑛), which can be done using the multiset of all possible values for 

𝑍𝑖 expressed as:  

𝑅𝑍𝑖 = ⟦𝑥. 𝑞/(𝑛 − 1): 𝑥 ∈ 𝑅�̂�𝑖 , 𝑞 ∈ 𝑅�̂�𝑖⟧ = ⟦𝑧𝑖,1, … , 𝑧𝑖,𝑁𝑍𝑖
⟧ 

where 𝑁𝑍𝑖 = 𝑁𝑋𝑖𝑁𝑄𝑖. We then find the multiset of all possible values for 𝐶𝑜𝑟𝑟(𝑋, 𝑄) = ∑ 𝑍𝑖
𝑛
𝑖=1 , 

done recursively as:  

𝑌𝑖 = 𝑌𝑖−1 + 𝑍𝑖 , 𝑅𝑌𝑖 = ⟦𝑦 + 𝑧: 𝑦 ∈ 𝑅𝑌𝑖−1 , 𝑧 ∈ 𝑅𝑍𝑖⟧, 2 < 𝑖 ≤ 𝑛  

where 𝑌2 = 𝑍1 + 𝑍2 and ∑ 𝑍𝑖
𝑛
𝑖=1 = 𝑌𝑛. 

As mentioned earlier, we do not want to construct all the correlation coefficients. To select a 

subset of size S from 𝐶𝑀(𝑋, 𝑄), for each 𝑖 (1 ≤ 𝑖 ≤ 𝑛), we take a sample from the multiset 𝑅𝑍𝑖 

randomly and sum the n samples together. This process is repeated S times. Note that this is a 

sampling with replacement. Formally, 

𝑅𝑆 = ⟦𝑠1,𝑗 +⋯+ 𝑠𝑛,𝑗: 𝑠𝑖,𝑗 ∈ 𝑅𝑍𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑆⟧  

We remark that in our sampling technique, each sample in 𝑅𝑆 is the average of n samples 

taken randomly at each timestamp from the multiset obtained by multiplication of observed 

values at that timestamp. To determine the sampling size S, we use the Dvoretzky-Kiefer-

Wolfowitz inequality [DVO56, MAS90], which helps predict how close an empirical distribution 

function will be to the distribution function from which the samples are chosen. The empirical 

distribution function 𝐹𝑆  for S number of observed values 𝑥1, … , 𝑥𝑆  is defined as 𝐹𝑆(𝑥) =

∑ 1{𝑥𝑖 ≤ 𝑥}
𝑆
𝑖=1 ,  where 𝑥 ∈ ℝ  and 1 {𝑥𝑖 ≤ 𝑥}  is the indicator function. The Dvoretzky-Kiefer-

Wolfowitz inequality is defined as: 
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𝑃(𝑠𝑢𝑝𝑥∈ℝ |𝐹𝑆(𝑥) − 𝐹(𝑥)| > 𝜀) ≤ 2𝑒
−2𝑆𝜀2  , ∀𝜀 > 0 

where 𝑠𝑢𝑝(𝐶) is the supremum of the set C of distances. To determine the minimum sampling 

size S, we can rewrite this inequality as:  

 𝑆 ≥ 𝑙𝑛 (2/𝛼) /(2𝜀2) (24) 

 

where 𝜀  is half-width of the confidence interval and determines how close the empirical 

distribution function would be to the corresponding distribution function, and 1 − 𝛼  is the 

confidence level. For example, to estimate 𝐹(𝑥)  within 𝜀 = 0.01  with 95% confidence, the 

inequality yields a minimum sample size of 𝑆 = 18,445.  

If there are N observed values at each timestamp, the complexity of the sampling technique 

would be 𝑂(𝑛𝑁2), which shows significant improvement compared with 𝑂(𝑁𝑛) in the exhaustive 

technique. The practical advantage of the sampling technique is also shown by the experiments, 

while providing a good approximation for the distribution function of uncertain correlation. This 

technique can also be used for finding correlation between a standard time series and an uncertain 

time series. 

 Similar to PTC queries, processing PTE queries (defined in Section 2.5) for multiset-based 

uncertain time series has been challenging for excess computational cost. One way to address 

this, reported in [DAL12], is to truncate the input uncertain time series to much smaller length, 

e.g., 6 timestamps, which seems short and limits its applications. The proposed heuristic can also 

be adapted for processing PTE queries as follows. 

𝐸𝑢𝑐𝑙(𝑋, 𝑄) =∑(𝑋𝑖 − 𝑄𝑖)
2

𝑛

𝑖=1

=∑𝑍𝑖

𝑛

𝑖=1
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To find the PDF of this discrete random variable, we first obtain the PDF of  𝑍𝑖(1 ≤ 𝑖 ≤ 𝑛), 

which can be done using the multiset of all possible values for 𝑍𝑖 expressed as:  

𝑅𝑍𝑖 = ⟦(𝑥 − 𝑞)
2: 𝑥 ∈ 𝑅𝑋𝑖 , 𝑞 ∈ 𝑅𝑄𝑖⟧ = ⟦𝑧𝑖,1, … , 𝑧𝑖,𝑁𝑍𝑖

⟧ 

where 𝑁𝑍𝑖 = 𝑁𝑋𝑖𝑁𝑄𝑖 . The rest is similar to the sampling based heuristic defined for uncertain 

correlation. We next present similarity search techniques for multiset-based uncertain time series. 

 Similarity Search Techniques for Multiset-based Model  6.3.

In this section, we present the multistep algorithm for processing the PTC queries for the 

multiset-based model. Note that the proposed optimization techniques are independent of each 

other and can be used separately. Given a set D of uncertain time series and an uncertain time series 

Q, we are looking for every time series 𝑋  in D which is positively correlated with Q with a 

probability at least p and their correlation is no less than c. That is, 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐) ≥ 𝑝. For 

this, we use the probabilistic pruning introduced earlier in Section 6.1 to cut down the number of 

candidate uncertain time series in D. Using Lemma 6, we determine the probability 

 𝑃(𝐶𝑜𝑟𝑟𝐵(𝑋𝐵 , 𝑄𝐵) ≥ 𝛽). If this probability is less than the given probability threshold 𝑝𝐵 , we 

prune X; otherwise, we use the sampling-based heuristic (Section 6.2) to estimate the 

probability 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐). If this probability is at least  𝑝, we return X as a result. These steps 

are formally presented as an algorithm in Figure 12.  
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Algorithm 1: Finding uncertain time series satisfying the PTC queries  

Input: Set D of uncertain time series, uncertain time series query Q, probability threshold p, and 

correlation threshold c 

Output: uncertain time series X in D that are “highly” correlated to Q. 

Procedure: 

Find uncertain Boolean representation of Q 

for all  𝑋 ∈ 𝐷: 

      Find uncertain Boolean representation of X 

      if 𝑃 (𝐶𝑜𝑟𝑟𝐵  (𝑋𝐵, 𝑄𝐵  ) ≥ 𝛽) < 𝑝𝐵, then prune X 

      else 

          Use sampling-based heuristic to calculate  𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐) 

              if 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑄) ≥ 𝑐) ≥ 𝑝, then return X   

             end if 

      end else        

end for 

Figure 12. Similarity search for multiset-based model. 

 Experimental Results 6.4.

In this section, we study the results of our performance evaluation using the setup described 

in Chapter 4. 

 Probabilistic Pruning  6.4.1.

To measure the effectiveness of our probabilistic pruning, we calculate the hit ratio (recall) 

and precision (1-false alarm ratio) of the PTB queries (Definition 6.3) using ground truth I. Since 

the number of observed values did not have much effect on the results, we report the results for 

uncertain time series with 6 observed values at each timestamp. Figure 13 shows the hit ratio and 
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the precision of the PTB queries for correlation threshold 0.5 for different SDRs. In all the cases, 

when the Boolean threshold is less than 0.5, the PTB queries return every uncertain time series in 

the dataset, of which about 20% are correct (since the precision is around 0.2 and hit ratio is 1).  

For the SDR 0.01 (Figure 13 (a) and (b)), PTB queries start pruning for Boolean threshold 

higher than 0.5. In this case, the optimum Boolean threshold would be 0.8, since the hit ratio is 

close to 1 and the precision is around 0.9. This means for the Boolean threshold 0.8, the PTB 

queries prune most of the uncertain time series that are not correct results. In this case, probability 

threshold does not have any effect on the performance of probabilistic pruning, since the 

uncertainty level is very low and the probability that the given uncertain time series are Boolean 

correlated is very close to either 1 or 0.  

For the SDR equal to 1 (Figure 13 (c) and (d)), the PTB queries start pruning for Boolean 

threshold higher than 0.4. For the Boolean threshold 0.5, the hit ratio is 1, and the precision 

  

 

Figure 13. Hit ratio and precision of the probabilistic pruning using ground truth I for Trace dataset, 

number of observed values 6 and correlation threshold 0.5. 

 

 

f) Precision for SDR 4 d) Precision for SDR 1 b) Precision for SDR 0.01 

e) Hit ratio for SDR 4 c) Hit ratio for SDR 1 a) Hit ratio for SDR 0.01 
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increases as the probability threshold increases. But for the Boolean threshold 0.6, there is a trade 

of between hit ratio and precision. For higher Boolean thresholds, the PTB queries do not return 

any result. For the SDR 4 (Figure 13 (e) and (f)), the PTB queries prune uncertain time series 

properly only when the Boolean threshold is 0.5 and probability threshold is less than 0.6.   

We also studied the effect of the correlation threshold on the probabilistic pruning 

performance. Figure 14 shows the hit ratio and precision of the probabilistic pruning for 

correlation thresholds 0.3 and 0.7. Similar to the case for correlation threshold 0.5 (Figure 13 (c) 

and (d)), for Boolean threshold less than 0.5, the PTB queries do not prune any data. For Boolean 

threshold 0.5, the probabilistic pruning has hit ratio 1. Moreover, its precision increases as the 

probability threshold increases. For Boolean threshold 0.6, the higher the correlation threshold, 

the higher the hit ratio. Thus, for the correlation threshold 0.7, we can use Boolean threshold 0.6 

to prune more uncertain time series.  

Figure 13 and Figure 14 show that choosing proper Boolean and probability threshold 

depends on the uncertainty level and correlation threshold. Moreover, the results from all UCR 

 

Figure 14. Hit ratio and precision using ground truth I, for Trace dataset, number of observed 

values equal to 6, and SDR 1. 
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datasets show that these thresholds are also dataset-dependent. However, our observation on all 

the UCR datasets show we can find the range for proper Boolean thresholds as follows. We can 

choose a small portion of the dataset, e.g. 10%, and find the results of the PTB queries. The range 

would be all the Boolean thresholds for which the result includes some time series in the dataset 

but not all of them. In other words, the range would be Boolean thresholds which help 

probabilistic pruning to prune some but not all uncertain time series in the dataset. For example, 

for the Trace dataset, when correlation threshold is 0.7 (Figure 14 (b) and (d)), we found the 

proper Boolean threshold to be between 0.5 (for which probabilistic pruning starts pruning) and 

0.6 (which is the largest threshold for which probabilistic pruning does not prune all the uncertain 

time series in the dataset).  

Figure 15 (a) shows wall clock time of processing the PTC queries using both probabilistic 

pruning and sampling-based heuristic for 6 observed values, and SDR 1 with different Boolean 

and probability thresholds. The higher the probability and Boolean threshold, the lower the 

execution time. We also processed the PTC queries using only sampling-based heuristic in 72 

seconds wall clock time. Using this information, we measured the speed up factor for 

probabilistic pruning. The speed up factor is defined as the ratio between the execution time of 

the sampling-based heuristic without and with probabilistic pruning. Figure 15 (b) shows that the 

 

a) Execution time                            b) Speed up factor 

Figure 15. The execution time and speed up factor of the PTC queries using both probabilistic 

pruning and sampling-based heuristic for Trace dataset, number of observed values 6, and SDR 1. 
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speed up factor varies between 1 and 10. For example, according to Figure 13 (c) and (d), we now 

know the best thresholds for probabilistic pruning is 0.6 for the Boolean and 0.4 for the 

probability threshold. Using these thresholds, the speed up factor would be around 4. 

Figure 16 shows the wall clock time to process the PTC queries between two uncertain time 

series using sampling-based heuristic and to process the PTB queries between the same two 

uncertain time series. Here, we varied uncertain time series length from 200 to 1000. Figure 16 

shows that as the uncertain time series length grows, the execution time increases for both 

sampling-based heuristic and probabilistic pruning. However, the difference between the 

execution time of these two techniques is huge, and increases as the uncertain time series length 

increases. This difference also shows how much probabilistic pruning can save in the execution 

time. An additional remark is that varying the number of observed values had no effect on either 

techniques.  

In this section, we reported our findings for Trace dataset, when error distribution is normal. 

We also considered exponential and uniform error distributions. For the other 19 datasets, we also 

studied the effect of all the query and data parameters on probabilistic query. In all of the studied 

cases, we made a similar observation as reported in this section. The complete set of results is 

available online in [CORX] for review.  

 

Figure 16. The execution time for number of observed values 6, and SDR 1 with different lengths. 
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 Sampling-based Heuristic 6.4.2.

Following inequality (24), in order to determine the minimum sampling size, we consider 

ε = 0.01  with 99% confidence level in different settings. For the sampling-based heuristic, we 

also study the effect of the number of observed values, N, at different timestamps, varied from 2 

to 10, as done in [ASF09]. Figure 17 and Figure 18 show the answer to RQ1, and illustrate the 

effect of SDRs, the number of observed values (N), and the probability threshold on the hit ratio 

and false alarm ratio of the sampling-based heuristic. Only when N=2, we found the hit ratio to be 

less than other values of N in particular for high SDRs. The results indicate that in general, N does 

not have much effect on the performance of the sampling-based heuristic for SDRs less than 2. 

 

Figure 17. Hit ratio of sampling-based heuristic using ground truth I for Gun-Point dataset. 

 

Figure 18. False alarm ratio of sampling-based heuristic using ground truth I for Gun-Point 

dataset. 
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For higher SDRs, a higher N resulted in a higher hit ratio.  

We also compare the probabilistic and deterministic queries described as RQ2 in Section 4.1. 

Figure 19 shows the effect of the SDR and number of observed values, N, on the hit ratio of the 

deterministic query. Since the false alarm of this approach was close to 0, we did not include the 

corresponding figure. As can be seen, the performance of the deterministic query depends on N, 

especially for SDRs larger than 0.1. The higher the number N, the higher the hit ratio. This 

confirms the law of large numbers [ROS09], which asserts  the higher the number of observed 

values, the closer would become their average to the expected (i.e., exact) value.  

Comparing the results of Figure 17 with Figure 19, we note that the probabilistic query is 

more resilient to the uncertainty level, in particular when the SDR is greater than 1. The hit ratio 

of the deterministic query decreases significantly for the SDRs larger than 2. However, in the 

probabilistic query, even for high SDRs, we can have high hit ratios by choosing a proper 

probability threshold.  

We also study RQ3 for this set of evaluations, for varying number of observed values at each 

timestamp. Figure 20 illustrates the 𝐹1 score in the sampling-based heuristic for the ground truth 

II. For SDRs less than 1, the 𝐹1 score is 1 or close to 1. This means that our approximation for the 

probability distribution of uncertain correlation approaches the exact probability distribution. 

 

Figure 19. Hit ratio of the deterministic query using ground truth I for Gun-Point dataset. 
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However, for higher SDRs, the lower the probability threshold and the higher the number of 

observed values, the higher the 𝐹1 score.  

In this section, we reported our results for the Gun-Point dataset, for when the error 

distribution is normal and correlation threshold is 0.5. We also studied the other five correlation 

thresholds from 0.4 to 0.9, for exponential and uniform error distributions. In addition, we studied 

the effect of all these query and data parameters on the other 19 datasets. As the results and 

observations were similar to those reported here for the Gun-Point dataset, we do not report them 

in this paper, however, they are available online for review [CORX]. 

Another important issue is the effect of random selection on the sampling-based heuristic. 

Given an uncertain dataset D and an uncertain time series Q, to find the result of the PTC queries, 

we use the sampling-based heuristic technique 30 times. Thus, we would have 30 sets of results. 

We compare and measure the similarity between these sets using the Jaccard similarity 

coefficient [LEV71], defined as: 

 
𝐽(𝐴1, … , 𝐴𝑛) = | ⋂ 𝐴𝑖

1≤𝑖≤𝑛

| / |⋃ 𝐴𝑖
1≤𝑖≤𝑛

| (25) 

 

Figure 20. F1 Score of sampling-based heuristic using ground truth II for Gun-Point dataset. 
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where 0 ≤ 𝐽(𝐴1, … , 𝐴𝑛) ≤ 1. Absolute value signs are used to indicate number of elements. The 

higher the Jaccard coefficient, the more similar are the given sets. In our experiments, with 9 

SDRs, 6 probability and correlation thresholds, we have 324 different setups. For each setup, we 

measure the similarity between the 30 result sets using Jaccard similarity coefficient. In 90% of 

324 setups, the Jaccard coefficient is 1, i.e., all 30 result sets are identical. The rest has an average 

value of 0.97, and standard deviation of 0.03. This shows the random sampling selection in the 

sampling-based heuristic has no or negligible effect on the result of the PTC queries. This shows 

that the random sampling selection does not interfere with the outcome of the sampling-based 

heuristic, while it makes similarity search on multiset-based uncertain time series feasible.  

6.4.2.1. Multiset-based Euclidean Distance 

In this section, we present our performance evaluation results for multiset-based Euclidean 

distance for PTE queries defined in Section 2.5. Evaluations of uncertain Euclidean distance for 

PDF-based model, i.e., PROUD [YEH09] and uncertain correlation revealed existence of a trade-

off between hit ratio and false alarm ratio which could be controlled by a user defined probability 

threshold. However, for multiset-based Euclidean distance, there is no experimental evaluation on 

large uncertain time series, due to huge amount of required calculations. We will use the 

proposed sampling-based heuristic method to overcome this problem. 

 

Figure 21. F1 score of the multiset-based approach for the Gun-point dataset using ground truth 

I. 
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Figure 21 illustrates the impact of probability threshold, SDR, and number of observations on 

the 𝐹1 score of the multiset-based approach. Generally, the 𝐹1 score increases as the probability 

threshold decreases. For SDR higher than 1, the higher the number of observed values the higher 

the 𝐹1  score. Therefore, when the uncertainty level is high, we require more information on 

unknown values at each timestamp (i.e., more observed values) to have higher accuracy. On the 

other hand, for smaller SDR values, the number of observed values does not have much effect on 

the 𝐹1 score. Besides, the 𝐹1 score increases when SDR decreases, since the lower the SDR, the 

closer the observed values would be to the unknown true values.  

We also measured the hit ratio and false alarm for the multiset-based approach. Figure 22 

shows the effect of the probability threshold, the number of observed values, and SDR on the hit 

ratio and false alarm for the multiset-based approach. The lower the probability threshold, the 

higher the hit ratio and false alarm ratio. Thus, similar to probabilistic similarity measures, in the 

multiset-based approach, there is always a trade-off between hit ratio and false alarm ratio which 

a user may wish to control. 

Moreover, we observed that number of observed values does not have a significant effect on 

the hit ratio of the multiset-based approach for high probability thresholds. For small probability 

thresholds, the higher the number of observed values, the lower the hit ratio. Besides, as expected, 

the higher the SDR, the lower the hit ratio. 
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 Summary 6.5.

In this chapter, to speed-up processing queries over multiset-based model, we proposed a 

probabilistic pruning which cuts down the number of candidates in the dataset. This includes a 

Boolean representation technique for uncertain time series, in which, each observed value is 

replaced with a single bit. In addition to saving memory, this enjoys fast bit operations. 

Moreover, we introduced another representation which replaces a multiset of observed values at 

each timestamp with a single value that is the probability the Boolean representation at that 

timestamp is equal to one. Using this, we introduced uncertain Boolean correlation together with 

an effective probabilistic pruning strategy. The proposed solutions are also applicable in finding 

correlations between uncertain and standard time series. We conducted numerous experiments 

 

Figure 22. Hit ratio and false alarm ratio of the multiset-based approach for the Gun-point 

dataset using ground truth I. 



75 

 

using the UCR benchmark dataset [KEO]. The results show the effectiveness of the proposed 

pruning.  

We also introduced a sampling-based heuristic that approximates the distribution of uncertain 

correlation effectively and reduces the computation time significantly. This technique can also be 

adapted for processing PTE queries (defined in Section 2.5) over multiset-based uncertain time 

series. Note that the only solution suggested for this case in [DAL12] was to truncate the lengths 

of the uncertain time series to a small value, e.g., 6 timestamps. Thus our technique solves the 

problem of prohibitive similarity search for real-life size multiset-based data. Our experimental 

results also illustrate that while our sampling-based heuristic reduces the time complexity, it finds 

a good approximation for distribution of uncertain correlation. 
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Chapter 7 : Performance Improvement of Similarity 

Search  

As discussed in Chapter 2, a number of similarity measures have been proposed and used for 

uncertain time series to quantify similarities required in different analysis tasks [ASF09, DAL11, 

ORA12, ORA14, SAR10, YEH09, WU12]. Two approaches have been employed to develop 

similarity measures for uncertain time series. One approach considered “using” the similarity 

measures originally proposed for standard time series [DAL12, ORA14], which we refer to as 

traditional similarity measures. As for a second approach, a number of similarity measures have 

been proposed specifically for uncertain time series [ASF09, ORA12, SAR10, YEH09, WU12], 

and are obtained by “adapting” the traditional similarity measure. We refer to these as uncertain 

similarity measures. The difference between the traditional and uncertain similarity measures is 

in the information used to quantify the similarity. Traditional similarity measures use only a 

single uncertain value at each timestamp to represent the unknown exact value at that timestamp 

whereas uncertain similarity measures exploit more information including some statistical 

information that represents the uncertainty level at each timestamp. 

It has been shown that traditional similarity measures outperform uncertain similarity 

measures in general [DAL12, ORA14]. The reason we noted for the superiority of traditional 

similarity measures is that they use a preprocessing step. In fact, we found missing the 

corresponding preprocessing step for uncertain similarity measures rather surprising, which 

explains our motivation here to study the impact of preprocessing on performance of uncertain 

similarity measures. 
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Preprocessing uncertain values leads to improved estimates of the exact unknown values and 

similarity search [DAL12]. Hence, the result of traditional measures on preprocessed uncertain 

time series data is more accurate than non-preprocessed data. Figure 23 illustrates this point. The 

black dashed line demonstrates a normalized standard time series for the Gun-Point dataset 

[KEO] with the exact values. Suppose that this data is observed as an uncertain time series 

(shown by the gray line marked with stars). By applying the uncertain moving average filter 

[DAL12], the uncertain time series would become smoother (shown in red dotted line). However, 

this filter changes the scale of the data, resulting in values that are farther from the exact values 

when compared to the uncertain values in the gray data. To solve this problem, we apply 

normalization, yielding the uncertain time series shown as the blue dotted line, which provides a 

better approximation of the exact values. 

Since uncertain similarity measures also use uncertain values, e.g. the gray line in Figure 23, 

we expect the preprocessing of data to improve the quality of uncertain measures. In this paper 

 

Figure 23. The impact of different preprocessing techniques on uncertain time series. 
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we study the impact of preprocessing on uncertain similarity measures for two classes of 

problems (defined in Section  2.2): probabilistic measures including PROUD [YEH09] and 

uncertain correlation (defined in Section  5.1.1), and deterministic measures including the DUST 

proposal [SAR10]. We also compare uncertain similarity measures to traditional similarity 

measures with and without data preprocessing. 

In our study, we consider filtering and normalization as preprocessing techniques. For 

filtering, we consider the three methods discussed in [DAL12], which include simple moving 

average, uncertain moving average, and uncertain exponential moving average filters. These 

filters help smooth out fluctuations in uncertain time series data. For normalization, we consider 

two normalization methods for standard time series [SHA04] and for uncertain time series 

defined in Section 3.1.1. The aim of normalization methods is to transform all data in a dataset to 

the same baseline and scale. 

In our experimental evaluation of the proposed methods, we use the UCR benchmark [KEO]. 

Our findings are as follows: 

 We observe that the uncertain similarity measures can outperform the traditional similarity 

measures with and without data preprocessing. This indicates the effectiveness of uncertain 

similarity measures in practice. 

 

 Our results show that preprocessing is necessary for similarity search in uncertain time series. 

Moreover, our results indicate that simple and uncertain moving average filters improve the 

performance of the probabilistic measures more than uncertain exponential moving average 

filter. 
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 We propose an enhancement for the PROUD similarity measure [YEH09], which improves 

its performance with and without data preprocessing.  

These findings provide a better understanding of the proposed similarity measures, which in 

turn yield more effective techniques for analysis and mining uncertain time series [AGG13, 

BER13, JIA13, LIA09, MA11]. The rest of this chapter is organized as follows: Sections  7.1 

and  7.2 reviews work on similarity measures and preprocessing techniques for uncertain time 

series. Section  7.3 studies the effect of preprocessing techniques on probabilistic and 

deterministic similarity measures. The results of our experiments are presented in Section  7.4.  

 Uncertain Similarity Measures  7.1.

In this section, we review similarity measures for uncertain time series. As discussed in 

Section  2.2, existing similarity search methods for uncertain time series generalize the 

corresponding methods proposed for standard time series. They include the Euclidean distance 

[YEH09, SAR10] and the Pearson correlation coefficient that was introduced in this thesis. We 

classified similarity measures in Section  2.2 as probabilistic similarity measures and 

deterministic similarity measures. For the deterministic similarity measure, we study DUST 

[SAR10], and for the probabilistic similarity measures, we consider uncertain correlation 

(Section 5.1.1), which extends the Pearson correlation, and PROUD [YEH09] which extends the 

Euclidean distance for uncertain time series. 

 Preprocessing Techniques 7.2.

Data preprocessing is an important step in similarity search. As shown in [DAL12] and 

[ORA14], the preprocessing techniques can improve the performance of traditional similarity 

measures. In this paper, we stress the use of these techniques for uncertain similarity measures as 

well. Let us begin with an overview of the preprocessing techniques including moving average 

filters and normalization.   
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 Moving Average Filters 7.2.1.

In time series data, usually the values of adjacent timestamps are correlated. Using this as a 

basis, moving average filters smooth time series data by averaging adjacent values. There are 

different variations of moving average filters, including simple, uncertain, and uncertain 

exponential moving average filters [DAL12].  

For a given uncertain time series 𝑥 =< 𝑥1, … , 𝑥𝑛 >  in the form of a sequence of observed 

values, different variations of moving average are defined as follows. In these definitions, 𝑤 

determines the window length (which is equal to 2𝑤 + 1). For the simple moving average filter 

[DAL12], defined below, each value is substituted by average of 2𝑤 adjacent values.  

Definition 7.1. Simple moving average (MA)- Simple moving average returns times series 

𝑥𝑀𝐴 =< 𝑥1
𝑀𝐴, … , 𝑥𝑚

𝑀𝐴 > in which  

𝑥𝑖
𝑀𝐴 =

1

2𝑤 + 1
∑ 𝑥𝑘

𝑖+𝑤

𝑘=𝑖−𝑤
, 1 ≤  𝑖 ≤  𝑚 

The uncertain moving average filter [DAL12], on the other hand, is defined as a weighted 

average of adjacent values. The weight at each timestamp is defined using standard deviation 𝜎𝑖 

at that timestamp. The lower the standard deviation, the higher the weight of the value of that 

timestamp. 

Definition 7.2. Uncertain moving average (UMA)- Uncertain moving average returns times 

series 𝑥𝑈𝑀𝐴 =< 𝑥1
𝑈𝑀𝐴, … , 𝑥𝑚

𝑈𝑀𝐴 >  for which  

𝑥𝑖
𝑈𝑀𝐴 =

1

2𝑤 + 1
∑

𝑥𝑘
𝜎𝑘

𝑖+𝑤

𝑘=𝑖−𝑤
, 1 ≤  𝑖 ≤  𝑚 
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Finally, as defined below, for the uncertain exponential moving average [DAL12], weights 

decrease exponentially.  

Definition 7.3. Uncertain exponential moving average (UEMA)- Uncertain exponential 

moving average returns times series 𝑥𝑈𝐸𝑀𝐴 =< 𝑥1
𝑈𝐸𝑀𝐴, … , 𝑥𝑚

𝑈𝐸𝑀𝐴 >   where  

𝑥𝑖
𝑈𝐸𝑀𝐴 =

∑ 𝑥𝑘(𝑒
−𝜆|𝑘−𝑖|/𝜎𝑘

𝑖+𝑤
𝑘=𝑖−𝑤 )

∑ 𝑒−𝜆|𝑘−𝑖|𝑖+𝑤
𝑘=𝑖−𝑤

 

       where 𝜆 controls the exponential decreasing weight factor. 

We next review normalization as another important preprocessing technique. 

 Normalization 7.2.2.

As discussed in Chapter 3, normalization transforms all time series in a dataset to the same 

baseline and scale. This helps similarity measures better capture the similarity. The normal form 

of a given standard time series 𝑥 =< 𝑥1, … , 𝑥𝑛 > is defined as 𝑥 =< 𝑥1, … , 𝑥𝑛 > [SHA04], in 

which for each timestamp i (1 ≤ 𝑖 ≤ 𝑛), 𝑥𝑖 is defined as in (6). We introduced normalization for 

uncertain time series data, referred to as uncertain normalization, in Chapter 3. Given an 

uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 >, its normal form is defined as �̂� =< �̂�1, … , �̂�𝑛 >, where 

for each timestamp i (1 ≤ 𝑖 ≤ 𝑛), �̂�𝑖 is defined as in Definition 3.2. 

Normalization makes similarity measures invariant to scaling and shifting and hence helps 

better capture the similarity [ORA12, SHA04]. One of the situations in which we need 

normalization for uncertain time series is when applying weighted filtering techniques such as the 

uncertain moving average (Definition 7.2) or the uncertain exponential moving average filter 

(Definition 7.3) (as shown in Figure 23).  For example, suppose we want to find the Euclidean 

distance between uncertain time series 𝑥 =< 𝑥1, … , 𝑥𝑛 >  and 𝑦 =< 𝑦1, … , 𝑦𝑛 > , in which 
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standard deviations in all timestamps are equal to 𝜎.  By applying the uncertain moving average 

to x and y, with 𝑤 equal to 0 for simplicity, we obtain uncertain time series 𝑥𝑈𝑀𝐴 =
1

𝜎
𝑥 and 

𝑦𝑈𝑀𝐴 =
1

𝜎
𝑦, respectively. Calculating the Euclidean distance between these two filtered uncertain 

time series, we get:  

𝐸𝑢𝑐𝑙(𝑥𝑈𝑀𝐴, 𝑦𝑈𝑀𝐴) =
1

𝜎2
𝐸𝑢𝑐𝑙(𝑥, 𝑦) 

This means that the lower the standard deviation, the higher the Euclidean distance. This 

affects the performance of search process. To address this problem, we apply normalization. For 

example, by applying normalization to 𝑥𝑈𝑀𝐴, for each timestamp, we obtain: 

𝑥𝑈𝑀�̂�𝑖 =
𝑥𝑖
𝑈𝑀𝐴 −

1
𝑛
∑ 𝑥𝑗

𝑈𝑀𝐴𝑛
𝑗=1

√
1

(𝑛 − 1)
∑ (𝑥𝑘

𝑈𝑀𝐴 −
1
𝑛
∑ 𝑥𝑗

𝑈𝑀𝐴𝑛
𝑗=1 )2𝑛

𝑘=1

=

𝑥𝑖
𝜎 −

1
𝑛
∑

𝑥𝑗
𝜎

𝑛
𝑗=1

√
1

(𝑛 − 1)
∑ (

𝑥𝑘
𝜎
−
1
𝑛
∑

𝑥𝑗
𝜎

𝑛
𝑗=1 )2𝑛

𝑘=1

= 𝑥𝑖 

This shows that when we normalize 𝑥𝑈𝑀𝐴 , the result does not depend on the standard 

deviation anymore and thus the Euclidean distance between x and y would be invariant to scaling 

and shifting. In this example, we used 𝑤 = 0, however, in practice 𝑤 would be larger than zero. 

In this example, if we consider  𝑤 > 0 , 𝑥𝑈𝑀�̂�𝑖  would become equal to 𝑥𝑀�̂�𝑖  which is still 

independent of standard deviation. Thus, after applying some filtering techniques, data has to be 

normalized. However, normalization is independent of filtering and can be used to improve 

similarity search quality, even when the data is not filtered. In the next section, we study the 

effect of preprocessing techniques on uncertain similarity measures.  
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 Applying Preprocessing Techniques to Uncertain Similarity 7.3.

Measures 

In this section, we describe how to apply preprocessing techniques to uncertain similarity 

measures and why preprocessing techniques can be effective. These topics are discussed 

separately for the probabilistic and deterministic similarity measures in the following sections.    

 Probabilistic Similarity Measures 7.3.1.

In this section, we discuss how the preprocessing techniques can help probabilistic similarity 

measures to better capture similarity. Specifically, we study uncertain correlation (defined in 

Section  5.1.1) and PROUD [YEH09]. In both measures, an observed value at each timestamp is 

used as an estimate for the expected value of the random variable at that timestamp. Given an 

uncertain time series  𝑋 =< 𝑋1, … , 𝑋𝑛 >, each  𝑋𝑖  can be written as 𝑋𝑖 = 𝑥𝑖 + 𝐸𝑥𝑖 , where 𝑥𝑖  is 

the “exact” value which is unknown, and 𝐸𝑥𝑖 is a random variable denoting the error. Since the 

exact value 𝑥𝑖  is unknown, the expected value of 𝑋𝑖 , i.e., 𝐸(𝑋𝑖) = 𝑥𝑖 + 𝐸(𝐸𝑥𝑖) , would be 

unknown as well even if the expected value of the error were known. Thus, an observed value is 

used as an estimate for 𝐸(𝑋𝑖). The aim of applying preprocessing techniques to a given uncertain 

time series 𝑋 =< 𝑋1, … , 𝑋𝑛 > is to smooth the expected value time series 𝐸(𝑋) =<

𝐸(𝑋1),… , 𝐸(𝑋𝑛) > and make each 𝐸(𝑋𝑖)(1 ≤ 𝑖 ≤ 𝑛) closer to the unknown exact value.   

7.3.1.1. Uncertain Correlation 

We illustrate how preprocessing techniques can improve the performance of uncertain 

correlation using the following example. Suppose that for two standard time series x and y from 

the Gun-Point dataset [KEO], we have 𝐶𝑜𝑟𝑟(𝑥, 𝑦) ≥ 0.6. Now, suppose x and y are observed as 

uncertain time series X and Y. Since the Pearson correlation between their underlying standard 

time series is more than 0.6, we expect that X and Y satisfy the PTC query, 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≥

0.6) ≥ 0.8. The gray line in Figure 24 shows the complementary cumulative distribution function 



84 

 

of 𝐶𝑜𝑟𝑟(𝑋, 𝑌), which indicates that 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≥ 0.6) is around zero. If we compute this 

distribution function after applying a moving average filter to X and Y, we obtain the blue line in 

Figure 24. As can be seen, the probability 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≥ 0.6) is around 0.9, which indicates 

with high probability that the correlation between X and Y is more than 0.6, as expected. In this 

example, without filtering techniques, we could not determine the existing correlation between 

uncertain time series X and Y. However, using filtering, we were able to successfully quantify 

their actual correlation.    

7.3.1.2. PROUD 

In this section, we discuss the potential effects and challenges of the preprocessing techniques 

on the performance of PROUD [YEH09] using the following example. Suppose that for two 

standard time series x and y from the Gun-Point dataset [KEO], we have 𝐸𝑢𝑐𝑙(𝑥, 𝑦) ≤ 100. Now, 

we perturb x and y to get uncertain time series X and Y. Since the squared Euclidean distance 

between their underlying standard time series is less than 100, we expect that X and Y satisfy the 

PTE query 𝑃(𝐸𝑢𝑐𝑙(𝑋, 𝑌) ≤ 100) ≥ 0.8. The gray line in Figure 25 illustrates the cumulative 

distribution function of 𝐸𝑢𝑐𝑙(𝑋, 𝑌) which shows 𝑃(𝐸𝑢𝑐𝑙(𝑋, 𝑌) ≤ 100) = 0. Now we apply a 

moving average filter and normalization technique to X and Y and again compute the cumulative 

 

Figure 24. The impact of filtering on uncertain correlation. 
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distribution function of 𝐸𝑢𝑐𝑙(𝑋, 𝑌), which is shown by the yellow line. Surprisingly, we again 

observe 𝑃(𝐸𝑢𝑐𝑙(𝑋, 𝑌) ≤ 100) = 0, that is, the preprocessing techniques could not help PROUD 

to quantify the actual Euclidean distance between X and Y.  

We found that the underlying reason is the way PROUD calculates the expected value of the 

Euclidean distance between uncertain time series, i.e., 𝐸(𝐸𝑢𝑐𝑙(𝑋, 𝑌))  (4). To highlight the 

existing challenge in PROUD, we rewrite the equation (4) as follows:  

𝐸(𝐸𝑢𝑐𝑙(𝑋, 𝑌)) = 𝐸𝑢𝑐𝑙(𝐸(𝑋), 𝐸(𝑌)) +∑(𝑉𝑎𝑟(𝑋𝑖) + 𝑉𝑎𝑟(𝑌𝑖))

𝑛

𝑖=1

 

In which 𝐸(𝑋)  is the expected value time series 𝐸(𝑋) =< 𝐸(𝑋1),… , 𝐸(𝑋𝑛) > . In other 

words, the expected value of the squared Euclidean distance between two uncertain time series 

would be the sum of the squared Euclidean distance of expected value time series and all the 

variances of all the timestamps. Thus, the higher the variance, the farther the expected value of 

PROUD from the Euclidean distance between the expected value time series. For instance, in the 

example in Figure 25, the variance at each timestamp is equal to 1 for both X and Y and the length 

of X and Y is 150. Thus, we have: 

𝐸(𝐸𝑢𝑐𝑙(𝑋, 𝑌)) = 𝐸𝑢𝑐𝑙(𝐸(𝑋), 𝐸(𝑌)) + 300 

To solve this problem, we propose an enhanced version of PROUD in the following section.  

7.3.1.3. PROUDS 

In this section, we introduce PROUDS, an enhanced version of PROUD. PROUDS defines 

the squared Euclidean distance between uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 > and 𝑌 =<

𝑌1, … , 𝑌𝑛 >, as follows:  
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𝐸𝑢𝑐𝑙(𝑋, 𝑌) =∑(𝐸(𝑋𝑖)

2 + 𝐸(𝑌𝑖)
2 + 2𝑋𝑖𝑌𝑖)

𝑛

𝑖=1

 (26) 

Using this, if the random variables are i.i.d., according to the central limit theorem [ROS09], as 

n increases, 𝐸𝑢𝑐𝑙(𝑋, 𝑌)  approaches normal distribution. Moreover, 𝐸(𝐸𝑢𝑐𝑙(𝑋, 𝑌))  and 

𝑉𝑎𝑟(𝐸𝑢𝑐𝑙(𝑋, 𝑌)) are calculated as follows:  

𝐸(𝐸𝑢𝑐𝑙(𝑋, 𝑌)) =∑(𝐸(𝑋𝑖) − 𝐸(𝑌𝑖) )
2

𝑛

𝑖=1

, and 

𝑉𝑎𝑟(𝐸𝑢𝑐𝑙(𝑋, 𝑌)) = 4∑(𝐸(𝑋𝑖)
2𝑉𝑎𝑟( 𝑌𝑖 ) + 𝐸(𝑌𝑖 )

2𝑉𝑎𝑟( 𝑋𝑖  ) + 𝑉𝑎𝑟( 𝑋𝑖  )𝑉𝑎𝑟( 𝑌𝑖   ))

𝑛

𝑖=1

 

As can be seen, the expected value of the Euclidean distance is the Euclidean distance 

between the expected value time series, and the variances at different timestamps do not have any 

effect on it.  Let us consider again the example in Figure 25. We use PROUDS on filtered and 

normalized uncertain time series X and Y to find the cumulative distribution function of 

𝐸𝑢𝑐𝑙(𝑋, 𝑌), which is shown by the blue line in the figure. We can see that X and Y satisfy the 

 

Figure 25. The impact of filtering on PROUD and PROUDS . 
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PTE query 𝑃(𝐸𝑢𝑐𝑙(𝑋, 𝑌) ≤ 100) ≥ 0.8, as expected. Another advantage of PROUDS is captured 

in the following lemma. 

Lemma 8. Given uncertain time series X and Y with normal forms �̂� and �̂�, the following holds. 

𝐸𝑢𝑐𝑙(�̂�, �̂�) = 2(𝑛 − 1)(1 − 𝐶𝑜𝑟𝑟(𝑋, 𝑌)) 

     where 𝐸𝑢𝑐𝑙(�̂�, �̂�) is defined as in (26) and 𝐶𝑜𝑟𝑟(𝑋, 𝑌) is defined as in Definition 3.4. 

Proof.  To show this, first, we need to prove that ∑ 𝐸(�̂�𝑖)
2𝑛

𝑖=1 = 𝑛 − 1. From (8), we have: 

∑𝐸(�̂�𝑖)
2

𝑛

𝑖=1

=∑(
𝐸(𝑋𝑖) − �̅�

𝑆𝑋
)

2𝑛

𝑖=1

=
∑ (𝐸(𝑋𝑖) − �̅�)
𝑛
𝑖=1

2

∑ (𝐸(𝑋𝑖) − �̅�)
2𝑛

𝑖=1 (𝑛 − 1)⁄
= 𝑛 − 1 

     Using (26) and Definition  3.4, we obtain the relationship between PROUDS and uncertain 

correlation as follows: 

𝐸𝑢𝑐𝑙(�̂�, �̂�) =∑(𝐸(�̂�𝑖)
2
+ 𝐸(�̂�𝑖)

2
+ 2�̂�𝑖�̂�𝑖)

𝑛

𝑖=1

= 2(𝑛 − 1) + 2∑�̂�𝑖�̂�𝑖

𝑛

𝑖=1

= 2(𝑛 − 1)(1 − 𝐶𝑜𝑟𝑟(𝑋, 𝑌))∎ 

This shows that PROUDS extends the Euclidean distance for uncertain time series in a way that 

there is a linear relationship between the Euclidean distance for uncertain time series and 

uncertain correlation, similar to the standard case [SHA04]. Moreover, if the normal form of 

uncertain time series in the PTC queries is defined as in Section  3.2, and uncertain Euclidean 

distance in the PTE queries defined as in PROUDS, similar to Lemma 5, PTC and PTE queries 

can be converted to each other. Next, we study how preprocessing affects the performance of 

deterministic similarity measures.      
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 Deterministic Similarity Measures 7.3.2.

As discussed in Section 7.2.2, weighted filters change the scale of data, which decreases the 

performance of similarity measures. However, as shown in Figure 23 and Section 7.2.2, when we 

normalize the filtered data, the weights are distributed among the timestamps so that the 

timestamps with lower error standard deviation (uncertainty) become more important than the 

ones with higher error standard deviation in the similarity search, but this weight distribution will 

not affect the scale and baseline of the data anymore. Thus, similarity measures such as the 

Euclidean distance and Pearson correlation coefficient will be invariant to scaling and shifting. 

On the other hand, weighted similarity measures like DUST [SAR10] define weights for the 

similarity between uncertain time series at each timestamp. For example, suppose that using 

DUST, we want to find the similarity between uncertain time series 𝑋 and 𝑌 having the same 

standard deviation 𝜎𝑋 and 𝜎𝑌 at all timestamps, respectively. Suppose that the observed value at 

timestamp i of X (and Y) is represented as 𝑥𝑖 (and 𝑦𝑖), and the error at each timestamp has normal 

distribution. DUST distance between 𝑋 and 𝑌 is defined as follows (see the Appendix for more 

details): 

𝐷𝑈𝑆𝑇(𝑋, 𝑌)2 =
1

2(𝜎𝑋
2 +  𝜎𝑌

2)
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

This can be rewritten as:   

𝐷𝑈𝑆𝑇(𝑋, 𝑌)2 =
1

2(𝜎𝑋
2 +  𝜎𝑌

2)
𝐸𝑢𝑐𝑙(𝑥, 𝑦) 
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The weight 1 (2(𝜎𝑋
2 +  𝜎𝑌

2))⁄  changes the similarity between uncertain time series based on 

the standard deviations 𝜎𝑋  and 𝜎𝑌 . For example, we perturbed half of the Gun-Point testing 

dataset [KEO] with the standard deviation 0.1 and the other half with the standard deviation 1. 

We then preprocessed the data and searched for the 10 nearest neighbors of a given query chosen 

from training set of the dataset, perturbed with the standard deviation 0.1. Figure 26 shows the 

precision at 10 [MAN08] for this similarity search. This precision is defined as the percentage of 

correct answers in 10 returned answers. As can be seen in Figure 26, DUST could not find more 

than 3 correct answers even when using preprocessing techniques. This shows that due to the 

weight given to the similarity between uncertain time series at each timestamp, preprocessing 

techniques could not help DUST in the similarity search. However, preprocessing is effective for 

DUST when the standard deviations of uncertain time series are equal at each timestamp. For 

example, if in the example in Figure 26, all the time series in the dataset had the same standard 

deviation, DUST with normal error distribution would have the same Precision at 10 as the 

Euclidean distance (see the Appendix for more details).  

 

Figure 26. 10 nearest neighbor search using the Euclidean distance and DUST for normal error 

distribution. 
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 Experiments 7.4.

In this section, we report the setup of our study and our findings. The setup of our experiments 

follows the one discussed in  Chapter 4. We used 16 datasets from the UCR benchmark on real-

life applications [KEO], namely, 50words, Adiac, Beef, CBF, Coffee, ECG200, FISH, FaceFour, 

Gun-Point, Lighting2, Lighting7, OSULeaf, OliveOil, SwedishLeaf, Synthetic-control, and Trace. 

In our experiments, we studied the effects of different parameters including data parameters, 

query parameters and filtering parameters. Similar to [ORA14, SAR10], for data parameters, we 

varied SDR values from 0.01 to 4, and considered normal, uniform, and exponential error 

distributions. 

 For query parameters, we studied the effect of probability threshold and similarity threshold. 

For the probability threshold, we considered the values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 

0.9. In PTC queries, for similarity threshold, i.e., correlation threshold c, we considered 0.1 to 0.9. 

In PTE queries, the similarity threshold, i.e., Euclidean threshold d, was obtained from the 

relationship between the Euclidean distance and the Pearson correlation [SHA04], 𝑑 =

2(𝑛 − 1)(1 − 𝑐),  where n is the length of the time series. For the filtering parameters, in 

[DAL12], the effect of different window sizes 𝑤 and decreasing factors 𝜆 was studied. As in 

[DAL12], we chose 𝑤 = 2 and 𝜆 = 1 as the filtering parameters in our experiments. 

In the following, we report and analyze the result of our study on the performance of both 

deterministic and probabilistic similarity measures with and without preprocessing. Preprocessing 

always includes filtering and normalization.   

 Deterministic Similarity Measures 7.4.1.

We evaluated and compared the accuracy of the deterministic similarity measures that include 

DUST and the Euclidean distance on non-preprocessed and preprocessed data. We began our 

evaluation using the 1NN-classification with K-fold cross-validation, identified as the most 

suitable approach for evaluating the efficiency of similarity measures [DIN08]. Similar to 
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[ORA14] and [SAR10], for the first 80% of the timestamps, we used an SDR of 0.1r, for the next 

10%, we used an SDR of 0.5r, and for the remaining 10% we used r.  

Figure 27 shows the classification error for different UCR datasets for 𝑟 = 2 and error with 

normal distribution. When we applied the Euclidean distance and DUST on non-preprocessed 

data, in most cases, DUST had a lower classification error than the Euclidean distance. We made 

the same observation when the simple moving average was applied to the data. However, when 

uncertain time series are filtered using the uncertain moving average and uncertain exponential 

moving average, the difference between DUST and the Euclidean distance classification error 

was very small. This shows that the weighted filters helps the Euclidean distance achieve similar 

performance to a weighted similarity measure such as DUST. 

 

Figure 27. Effect of filtering on classification error of the Euclidean distance and DUST for r equal to 2 and 

normal distribution. 
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We also studied the other r values and errors with exponential distribution. In all these cases, 

we made a similar observation as reported in this section. However, for uniform distribution, in 

some cases, DUST cannot be evaluated since it approaches the logarithm of zero (see the 

Appendix for details). This problem has also been reported in [DAL12]. As in [DAL12], we 

added two tails to the uniform distribution to solve the problem, however, in most cases the 

DUST classification error was close to 1. The complete set of experiments and results are made 

available to reviewers [CORY]. In these experiments, we observed that in general DUST is either 

better (with no preprocessing or simple moving average filters) or similar to the Euclidean 

distance (with uncertain filters). 

 Probabilistic Similarity Measures 7.4.2.

In this section, we evaluate the performance of PTC and PTE queries with and without 

preprocessing. We will also compare these probabilistic queries with deterministic queries 

𝐶𝑜𝑟𝑟(𝑥, 𝑞) ≥ 𝑐 and 𝐸𝑢𝑐𝑙(𝑥, 𝑞) ≤ 𝑑. The threshold values in the deterministic queries are the 

same as the ones in the corresponding probabilistic queries. Moreover, the standard time series x 

and q would be the sequence of expected values of random variables in the corresponding 

uncertain time series. In all the probabilistic similarity measures, it is assumed that all random 

variables in the given time series are i.i.d., that is, all random variables have equal standard 

deviation. Note that in the experiments reported in [SAR10], it is observed that for the i.i.d. case, 

DUST shows similar performance to the Euclidean distance, so in this section, we only report the 

results for the Euclidean distance. 

Similar to [DAL12] and [ORA14], we measured the performance using 𝐹1  measure 

[MAN08], defined as in Section  4.3. The ground truth (i.e., correct results) is based on the result 

of the range query 𝐶𝑜𝑟𝑟(𝑥, 𝑞) ≥  𝑐  for correlation, and 𝐸𝑢𝑐𝑙(𝑥, 𝑞) ≤  𝑑  for the Euclidean 

distance on the dataset without uncertainty [ORA12, YEH09]. In the following section, we 

present our results, beginning with uncertain correlation. 



93 

 

7.4.2.1. Uncertain Correlation 

Figure 28 shows the 𝐹1 score for probabilistic correlation queries applied on filtered and non-

filtered data. Figure 28 (a) shows the 𝐹1 score of probabilistic queries without using any filtering 

method. In this case, probabilistic queries did not find any answer for the SDR values more than 

2. Recall that SDR specifies uncertainty level in data; the higher the uncertainty level, the farther 

the observed values (expected values) from the exact values, and thus the lower the performance of 

probabilistic queries.  Figure 28 (b) shows the 𝐹1 score for probabilistic queries when the data is 

filtered using the simple moving average. Comparing Figure 28 (a) and (b), we clearly note the 

 

 

Figure 28. F1 score for probabilistic correlation queries for correlation threshold 0.5, normal distribution, and 

Gun-Point dataset. 

 
 

 

a) Non-filtered b) Simple moving average 

c) Uncertain moving 

average 

d) Uncertain exponential moving 

average 
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positive effect of the moving average filter on the performance of probabilistic queries that can 

now find correlated uncertain time series for high SDRs.  

Figure 28 (c) and (d) show the 𝐹1  score of the probabilistic queries using the uncertain 

moving average and uncertain exponential moving average, respectively. In both cases, for low 

probability thresholds the 𝐹1 score is higher than Figure 28 (b). However, for high probability 

thresholds, Figure 28 (b) has a higher 𝐹1  score. For all the cases, the lower the probability 

threshold, the higher the 𝐹1 score. This is due to the fact that as we decrease the probability 

threshold, the probabilistic query returns more candidate results, which makes it more likely to 

contain the correct results. 

Table 1 shows the average of 𝐹1 scores for probabilistic queries for all 16 datasets used in our 

experiments, with and without filtering techniques including simple moving average (MA), 

uncertain moving average (UMA), and uncertain exponential moving average (UEMA). As can 

be seen from the table, for all but the Synthetic-control dataset, filtering techniques increase the 

𝐹1 score. For each filtering technique and each dataset, the table also records the improvement in 

percentage (in the parenthesis) defined as the 𝐹1 score of probabilistic queries using that filtering 

technique minus that of the probabilistic queries with no filtering over the 𝐹1  score of 

probabilistic queries with no filtering. For all the datasets, except the Synthetic-control, the 

improvement observed was in the range of 18% to 48%. Our results also indicate that simple and 

uncertain moving average filters improve the performance of the probabilistic similarity measures 

more than the uncertain exponential moving average filter does. 
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Figure 29 shows the 𝐹1 score of deterministic queries with and without using filtering. As 

expected, for the non-filtered case (Corr in the figure), the 𝐹1 score is lower than the other cases, 

and as SDR increases the 𝐹1 score decreases. Moreover, the 𝐹1 scores of deterministic queries 

with uncertain moving average (CorrUMA) and simple moving average (CorrMA) are the same. 

The reason is that the standard deviations of all timestamps are equal, and after normalization the 

standard deviations would be canceled and have no effect on the final result, as discussed in 

Section  7.2.2. Furthermore, Figure 29 shows that these filters improve the performance of 

deterministic queries more than uncertain exponential moving average filter (CorrUEMA) does. 

Table 1. Average of  𝑭𝟏 scores and improvement percentage for different UCR datasets for 

normal distribution. 

Dataset 
Filter 

None MA UMA UEMA 

50words 0.38 0.53 (+39%) 0.5 (+32%) 0.48 (+26%) 

Adiac 0.51 0.72 (+41%) 0.74 (+45%) 0.71 (+39%) 

Beef 0.49 0.69 (+41%) 0.69 (+41%) 0.62 (+27%) 

CBF 0.38 0.48 (+26%) 0.45 (+18%) 0.45 (+18%) 

Coffee 0.51 0.73 (+43%) 0.69 (+35%) 0.68 (+33%) 

ECG200 0.46 0.62 (+35%) 0.62 (+35%) 0.61 (+33%) 

FISH 0.5 0.71 (+42%) 0.74 (+48%) 0.69 (+38%) 

FaceFour 0.39 0.53 (+36%) 0.53 (+36%) 0.5 (+28%) 

Gun-Point 0.48 0.68 (+42%) 0.69 (+44%) 0.66 (+38%) 

Lighting2 0.31 0.42 (+35%) 0.43 (+39%) 0.41 (+32%) 

Lighting7 0.35 0.47 (+34%) 0.47 (34%) 0.45 (+29%) 

OSULeaf 0.34 0.47 (+38%) 0.46 (+35%) 0.43 (+26%) 

OliveOil 0.51 0.73 (+43%) 0.73 (+43%) 0.66 (+29%) 

Swedish 0.46 0.62 (+35%) 0.63 (+37%) 0.60 (+30%) 

Synthetic 0.33 0.33 (0%) 0.32  (-3%) 0.33   (0%) 

Trace 0.47 0.66 (+40%) 0.66 (+40%) 0.62 (+32%) 
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Now, let us compare probabilistic queries with deterministic ones. For the non-filtered case 

(Figure 28 (a) and Figure 29), we can see that both have the 𝐹1 score equal to zero for high SDRs. 

However, probabilistic queries can have higher 𝐹1  scores than deterministic ones, if a proper 

probability threshold is chosen. For example, for SDR=1, the 𝐹1 score of deterministic queries is 

around 0.2. However, the 𝐹1 score of probabilistic queries is near 0.7, when a small probability 

threshold is chosen. However, we note that using filtering methods, we can better differentiate 

between these two queries. We observe that probabilistic queries have higher 𝐹1  score than 

deterministic ones, in particular for high SDRs. In this section, we reported our results for the 

Gun-point dataset, normal distribution and correlation threshold 0.5. We made the same 

observations using the other 15 datasets, error distribution functions, and correlation thresholds. 

The complete set of experiments and results are made available to reviewers [CORY]. 

7.4.2.2. PROUD and PROUDS 

In this section, we evaluate the performance of PTE queries using PROUD and PROUDS 

with and without filtering. Moreover, we will compare the performance of deterministic and 

probabilistic queries. Figure 30 illustrates the 𝐹1 score of PROUD for different settings. In all 

 

Figure 29. F1 score of deterministic correlation queries. 
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these experiments, PROUD does not return any result for SDRs higher than 1. The reason for this 

is the way PROUD calculates the expected value of the distance, as discussed in Section  7.3.1.2. 

However, Figure 30 shows that uncertain and uncertain exponential moving average filters can 

increase the performance of PROUD.  

The results of our experiments indicate that the performance of PROUDS is identical to that 

of uncertain correlation shown in Figure 28, explained in the following section. Comparing 

Figure 30 and Figure 28 shows that PROUDS performs better than PROUD for the Gun-point 

dataset. For all the datasets, we observed that PROUDS achieved on average 64% improvement 

compared to PROUD, and in all the cases, PROUDS outperforms PROUD.  

 

 

 

Figure 30. F1 score for probabilistic queries using PROUD for normal distribution and the Gun-Point dataset. 

 
 

 

a) Non-filtered b) Simple moving average 

c) Uncertain moving average d) Uncertain exponential moving average  
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Similarly, the performance of deterministic queries 𝐸𝑢𝑐𝑙(𝑥, 𝑞) ≤  𝑑 is exactly the same as 

that of 𝐶𝑜𝑟𝑟(𝑥, 𝑞) ≥  𝑐 (Figure 29). By comparing Figure 30 and Figure 29, we can observe that 

deterministic queries have better performance than PROUD does. However, by comparing Figure 

28 and Figure 29, it can be seen that our proposed enhancement, i.e., PROUDS, outperforms 

deterministic queries. In this section, we reported our results for the Gun-point dataset and normal 

distribution function. For the other 15 datasets and distribution functions, we observed similar 

results.  The complete set of experiments and results are made available to reviewers [CORY]. 

Experimental Results Analysis 

Here, we discuss why the performance of PROUDS is similar to that of uncertain correlation. 

Since in PROUDS, the squared Euclidean distance between two uncertain time series is a normal 

random variable, we would have: 

𝑃 (𝐸𝑢𝑐𝑙(�̂�, �̂�) ≤ 2(𝑛 − 1)(1 − 𝑐)) =
1

2

(

 1+ erf

(

 
2(𝑛 − 1)(1 − 𝑐) − 𝐸 (𝐸𝑢𝑐𝑙(�̂�, �̂�))

√2𝑉𝑎𝑟 (𝐸𝑢𝑐𝑙(�̂�, �̂�))
)

 

)

  

Using Lemma 8, we obtain: 

𝐸 (𝐸𝑢𝑐𝑙(�̂�, �̂�)) = 2(𝑛 − 1)[1 − 𝐸(𝐶𝑜𝑟𝑟(𝑋, 𝑌))], and 

𝑉𝑎𝑟 (𝐸𝑢𝑐𝑙(�̂�, �̂�)) = 4(𝑛 − 1)2𝑉𝑎𝑟(𝐶𝑜𝑟𝑟(𝑋, 𝑌)) 

Using the above information, we can compute the following probability: 

𝑃 (𝐸𝑢𝑐𝑙(�̂�, �̂�) ≤ 2(𝑛 − 1)(1 − 𝑐))

=
1

2

(

 1+ erf

(

 
2(𝑛 − 1) [(1 − 𝑐) − [1 − 𝐸(𝐶𝑜𝑟𝑟(𝑋, 𝑌))]]

√8(𝑛 − 1)2𝑉𝑎𝑟(𝐶𝑜𝑟𝑟(𝑋, 𝑌))
)

 

)
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Since error function is an odd function
4
, we have:  

𝑃 (𝐸𝑢𝑐𝑙(�̂�, �̂�) ≤ 2(𝑛 − 1)(1 − 𝑐)) =
1

2

(

 1 − erf

(

 
𝑐 − 𝐸(𝐶𝑜𝑟𝑟(𝑋, 𝑌))

√2𝑉𝑎𝑟(𝐶𝑜𝑟𝑟(𝑋, 𝑌))
)

 

)

 

= 𝑃(𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≥ 𝑐) 

Thus PTE and PTC queries find the same results. 

 Summary 7.5.

Previous studies [DAL12, ORA14] compare the traditional similarity measures applied to 

filtered and normalized data to the uncertain similarity measures applied to non-preprocessed 

data. It is reported that the traditional measures outperform the uncertain similarity measures. In 

this chapter, we studied the effect of the preprocessing techniques on uncertain similarity 

measures and compared the measures in the same setting. We considered two settings: when data 

is not preprocessed and when it is filtered and normalized. In particular, we showed how 

preprocessing techniques improve the performance of uncertain similarity measures by using 

more information. We performed numerous experiments to evaluate the performance of measures 

with different parameters. We also improved the performance of the PROUD similarity measure 

and found a linear relationship between probabilistic similarity measures. We showed that 

probabilistic similarity measures outperform both traditional similarity measures and uncertain 

deterministic similarity measures with and without preprocessing. This shows the effectiveness 

and usefulness of probabilistic similarity measures in practice. 

                                                      
4
 Suppose that 𝑓(𝑥) is a real-valued function. 𝑓(𝑥) is an odd function if and only if  𝑓(−𝑥) = −𝑓(𝑥). 



100 

 

Chapter 8 : Conclusions and Future Work 

Due to the inherent nature of uncertain time series, a probabilistic approach has been 

considered key to process and analyze such data. In the probabilistic approach, probabilistic 

similarity measures are used to capture the similarity between uncertain time series. Unlike 

traditional similarity measures that consider only the expected value at each timestamp to 

quantify the similarity between uncertain time series, probabilistic similarity measures utilize all 

the available information, such as variance and probability distribution function of error. This 

information helps probabilistic measures to capture the similarity better than the traditional 

measures, in particular when there exists a high level of uncertainty. 

Moreover, probabilistic similarity measures provide the users with more information about 

the reliability of the result. Depending on the application, this allows the users to define a 

confidence level, i.e., probability threshold in probabilistic queries, in order to control and/or 

influence the performance of similarity search tasks. In other words, the advantage of 

probabilistic over deterministic approach is providing a flexible trade-off between hit ratio and 

false alarm ratio. Besides, it provides probabilistic information on similarity, which is important 

in some applications [DAL12]. 

In this work, we considered two models for uncertain time series data, PDF-based and 

multiset-based models, and studied the problem of correlation analysis techniques over such data. 

Although these two models are different and cannot be converted to each other, the proposed 

techniques for multiset-based model generalize from the ones for PDF-based model. Moreover, 
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the proposed techniques for both models can be reduced to the corresponding techniques 

developed for standard time series. The major contributions of this dissertation are as follows: 

 We formalized the notion of uncertain normalization which can be applied as a 

preprocessing step. Using this, we formulated correlation for uncertain time series data as a 

random variable [ORA12]. 

 For both PDF-based and multiset-based models, we developed probabilistic similarity 

search techniques that could find correlated or uncorrelated uncertain time series to the 

user input. The results of our numerous experiments using the UCR benchmark data 

illustrate that our probabilistic approach is more resilient to the uncertainty level than the 

deterministic one. The proposed solutions are also applicable in finding correlations 

between standard and standard/uncertain time series [ORA12, ORAY15]. 

 To speed up processing queries over the multiset-based model, we proposed two 

optimization techniques: probabilistic pruning and a sampling-based heuristic. Our 

experiments show that while our optimization techniques for multiset-based model reduce 

the computation time and spare utilization, they find a good approximation for uncertain 

correlation even when there are just a few observed values at each timestamp. This is 

important noting that, as discussed in [WU12], it is often impossible to have several 

observed values at each timestamp. The results of our experiments revealed significant 

improvement achieved by the proposed optimization techniques [ORAY15].  

 We studied the effect of preprocessing techniques on our proposed similarity search 

methods as well as on the existing one. Our experimental results showed how 

preprocessing techniques can result in improved performance of uncertain similarity 

measures. Moreover, the experiments show that probabilistic similarity measures 

outperform traditional similarity measures with/without preprocessing techniques [ORA14, 
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ORAX15]. 

Our results shed more light on the nature and challenges of similarity search for uncertain 

time series. More work is required for such results find their way into the development of 

effective tools and software packages for high performance uncertain time series analysis and 

mining, similar to the tools for the standard case. The next section discusses the possible future 

work. 

 Future Work 8.1.

We believe that the outcome of this dissertation provides the first step towards tools for 

similarity search and analysis of uncertain time series data. The following summarizes some of 

the problems that should be addressed as part of future work: 

 Extending Boolean representation to optimize probabilistic similarity search queries 

when the Euclidean distance is used as the similarity measure. 

 Prediction in uncertain time series. 

 Developing probabilistic pruning techniques to support other probabilistic correlation 

queries introduced in Section 5.4. The proposed probabilistic pruning is only applicable 

for the PTC-1 queries, since the pruning is based on Boolean correlation that can only 

find positively correlated time series.  

 Developing efficient correlation analysis techniques for streaming uncertain time series. 

 Reinvestigating uncertain representation of dimensionality reduction techniques for 

standard time series. For dimensionality reduction of PDF-based uncertain time series 

data, uncertain representation of the Haar wavelet transform [ZHA10] has been proposed, 

but other dimensionality reduction techniques have not been studied yet. 

 Indexing uncertain time series, which is a very challenging problem, because the 

uncertainty can decrease the usefulness of index structures. To the best of our knowledge, 
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there is no index structure designed especially for variable length queries (the length of the 

query reference can be different from the time series in the dataset) for uncertain time 

series data.  
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Appendix 

To have a better understanding of DUST, this section presents our calculation of DUST 

distances for different error distributions. Given uncertain time series 𝑋 =< 𝑋1, … , 𝑋𝑛 >  and 

𝑌 =< 𝑌1, … , 𝑌𝑛 >, we need the distribution of the underlying (certain) standard time series and 

distributions of the error functions at different timestamps in order to 

calculate  𝐷𝑈𝑆𝑇(𝑋, 𝑌) [SAR10]. Here, we consider uniform distribution for the underlying 

standard time series and calculate the DUST function for different error functions including 

normal, exponential, and uniform. DUST is defined as follows: 

𝐷𝑈𝑆𝑇(𝑋, 𝑌) = √∑𝑑𝑢𝑠𝑡(𝑋𝑖 , 𝑌𝑖)
2

𝑛

𝑖=1

 

where for each i (1 ≤ 𝑖 ≤ 𝑛): 

 𝑑𝑢𝑠𝑡(𝑋𝑖, 𝑌𝑖) = √− 𝑙𝑜𝑔(𝜑(|𝑋𝑖 − 𝑌𝑖|)) + 𝑙𝑜𝑔(𝜑(0))  

The constant 𝑙𝑜𝑔(𝜑(0)) is added to ensure  ∀𝑋 𝐷𝑈𝑆𝑇(𝑋, 𝑋) = 0. Now, we want to calculate 

𝜑 at each timestamp. Let 𝑥 denote the observed value at each timestamp and suppose 𝑥 = 𝑒(𝑥) +

𝑟(𝑥) were 𝑟(𝑥)  is the actual/exact value and 𝑒(𝑥) denotes the error. Then, 𝜑(|𝑥 − 𝑦|) would be 

calculated as follows: 

𝜑(|𝑥 − 𝑦|) = 𝑝(𝑑𝑖𝑠𝑡(0, |𝑥 − 𝑦|) = 0) = 𝑝(𝑟(𝑥) = 𝑟(𝑦)|𝑥, 𝑦)

= ∫𝑝(𝑟(𝑥) = 𝑧|𝑥)𝑝(𝑟(𝑦) = 𝑧|𝑦)

 

𝑧

𝑑𝑧 
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Using Bayes’ Theorem [ROS09], 𝜑(|𝑥 − 𝑦|)  would be equal to: 

𝜑(|𝑥 − 𝑦|) = ∫
𝑝(𝑥|𝑟(𝑥) = 𝑧)𝑝(𝑟(𝑥) = 𝑧)

∫ 𝑝(𝑥|𝑟(𝑥) = 𝑣)𝑝(𝑟(𝑥) = 𝑣)𝑑𝑣
 

𝑣

 

𝑧

×
𝑝(𝑦|𝑟(𝑦) = 𝑧)𝑝(𝑟(𝑦) = 𝑧)

∫ 𝑝(𝑦|𝑟(𝑦) = 𝑣)𝑝(𝑟(𝑦) = 𝑣)𝑑𝑣
 

𝑣

𝑑𝑧 =

=
∫ 𝑝(𝑥|𝑟(𝑥) = 𝑧)𝑝(𝑟(𝑥) = 𝑧)𝑝(𝑦|𝑟(𝑦) = 𝑧)𝑝(𝑟(𝑦) = 𝑧)𝑑𝑧
 

𝑧

∫ 𝑝(𝑥|𝑟(𝑥) = 𝑣)𝑝(𝑟(𝑥) = 𝑣)𝑑𝑣 ∫ 𝑝(𝑦|𝑟(𝑦) = 𝑣)𝑝(𝑟(𝑦) = 𝑣)𝑑𝑣
 

𝑣

 

𝑣

 

Note that 𝑝(𝑥|𝑟(𝑥) = 𝑣) is the PDF of the error function determined at 𝑥 − 𝑣, and we would 

have: 

𝜑(|𝑥 − 𝑦|) =
∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑧)𝑝(𝑟(𝑥) = 𝑧)𝑝(𝑒(𝑦) = 𝑦 − 𝑧)𝑝(𝑟(𝑦) = 𝑧)𝑑𝑧
 

𝑧

∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑣)𝑝(𝑟(𝑥) = 𝑣)𝑑𝑣 ∫ 𝑝(𝑒(𝑦) = 𝑦 − 𝑣)𝑝(𝑟(𝑦) = 𝑣)𝑑𝑣
 

𝑣

 

𝑣

 

Considering uniform distribution for the underlying standard time series, we would have: 

𝜑(|𝑥 − 𝑦|)

=
∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑧)𝑝(𝑟(𝑥) = 𝑧)𝑝(𝑒(𝑦) = 𝑦 − 𝑧)𝑝(𝑟(𝑦) = 𝑧)𝑑𝑧
∞

−∞

∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑣)𝑝(𝑟(𝑥) = 𝑣)𝑑𝑣. ∫ 𝑝(𝑒(𝑦) = 𝑦 − 𝑧)𝑝(𝑟(𝑦) = 𝑣)𝑑𝑣
∞

−∞

∞

−∞

=

1
𝑛2
∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑧)𝑝(𝑒(𝑦) = 𝑦 − 𝑧)𝑑𝑧
∞

−∞

1
𝑛2
∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑣)𝑑𝑣. ∫ 𝑝(𝑒(𝑦) = 𝑦 − 𝑧)𝑑𝑣

∞

−∞

∞

−∞

= ∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑧)𝑝(𝑒(𝑦) = 𝑦 − 𝑧)𝑑𝑧
∞

−∞

 

 

Using 𝜑(|𝑥 − 𝑦|), 𝑑𝑢𝑠𝑡(𝑥, 𝑦) can be computed. In the following, we will calculate 

𝑑𝑢𝑠𝑡(𝑥, 𝑦) for different error functions including normal, exponential and uniform. Using 

which, we can obtain 𝐷𝑈𝑆𝑇(𝑋, 𝑌). 
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Normal Distribution 

When the error distribution is normal, 𝜑(|𝑥 − 𝑦|) is calculated as follows: 

𝜑(|𝑥 − 𝑦|) = ∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑧)𝑝(𝑒(𝑦) = 𝑦 − 𝑧)𝑑𝑧
∞

−∞

= ∫
1

√2𝜋𝜎𝑥
2
𝑒
−
(𝑥−𝑧)2

2𝜎𝑥
2 1

√2𝜋𝜎𝑦
2

𝑒
−
(𝑦−𝑧)2

2𝜎𝑦
2
𝑑𝑧

∞

−∞

=
1

2𝜋𝜎𝑥𝜎𝑦
∫ 𝑒

−
(𝑥−𝑧)2

2𝜎𝑥
2 𝑒

−
(𝑦−𝑧)2

2𝜎𝑦
2
𝑑𝑧

∞

−∞

=
1

2𝜋𝜎𝑥𝜎𝑦
∫ 𝑒

−(
(𝑥−𝑧)2

2𝜎𝑥
2 +

(𝑦−𝑧)2

2𝜎𝑦
2 )
𝑑𝑧

∞

−∞

 

By replacing 𝑧 with 𝑧 + 𝑥, we would have:  

𝜑(|𝑥 − 𝑦|) =
1

2𝜋𝜎𝑥𝜎𝑦
∫ 𝑒

−(
𝑧2

2𝜎𝑥
2+
((𝑦−𝑥)−𝑧)2

2𝜎𝑦
2 )

𝑑𝑧
∞

−∞

=
1

2𝜋𝜎𝑥𝜎𝑦
∫ 𝑒

−(
𝑧2

2𝜎𝑥
2+
(𝑦−𝑥)2+𝑧2−2𝑧(𝑦−𝑥)

2𝜎𝑦
2 )

𝑑𝑧
∞

−∞

=
1

2𝜋𝜎𝑥𝜎𝑦
𝑒
−
(𝑦−𝑥)2

2𝜎𝑦
2
∫ 𝑒

−(
𝑧2

2𝜎𝑥
2+
𝑧2−2𝑧(𝑦−𝑥)

2𝜎𝑦
2 )

𝑑𝑧
∞

−∞

=
1

2𝜋𝜎𝑥𝜎𝑦
𝑒
−
(𝑦−𝑥)2

2𝜎𝑦
2
∫ 𝑒

−(𝑧2(
1

2𝜎𝑥
2+

1
2𝜎𝑦

2)−
𝑧(𝑦−𝑥)
𝜎𝑦

2 )
𝑑𝑧

∞

−∞

=
1

2𝜋𝜎𝑥𝜎𝑦
𝑒
−
(𝑦−𝑥)2

2𝜎𝑦
2
∫ 𝑒

𝑧
(𝑦−𝑥)
𝜎𝑦

2 −𝑧2(
1

2𝜎𝑥
2+

1
2𝜎𝑦

2)
𝑑𝑧

∞

−∞

 

For 𝑎 > 0, we know that
5
: 

∫ 𝑒−𝑎𝑧
2
𝑒−2𝑏𝑧𝑑𝑧

∞

−∞

= √
𝜋

𝑎
𝑒
𝑏2

𝑎 , (𝑎 > 0) 

By substituting a by (
1

2𝜎𝑥
2 +

1

2𝜎𝑦
2) and b by −

(𝑦−𝑥)

2𝜎𝑦
2 , we would have: 

                                                      
5
 http://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions 
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𝜑(|𝑥 − 𝑦|) =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒
−
(𝑦−𝑥)2

2𝜎𝑦
2 )
∫ 𝑒

𝑧
(𝑦−𝑥)
𝜎𝑦

2 −𝑧2(
1

2𝜎𝑥
2+

1
2𝜎𝑦

2)
𝑑𝑧

∞

−∞

=
1

2𝜋𝜎𝑥𝜎𝑦
𝑒
−
(𝑦−𝑥)2

2𝜎𝑦
2
√𝜋(

2𝜎𝑥
2𝜎𝑦

2

𝜎𝑦
2 + 𝜎𝑥

2)𝑒

(𝑦−𝑥)2

4𝜎𝑦
4

𝜎𝑦
2+𝜎𝑥

2

2𝜎𝑥
2𝜎𝑦

2

 

=

√𝜋 (
2𝜎𝑥

2𝜎𝑦
2

𝜎𝑦
2 + 𝜎𝑥

2)

2𝜋𝜎𝑥𝜎𝑦
𝑒
−
(𝑦−𝑥)2

2𝜎𝑦
2
𝑒

(𝑦−𝑥)2

4𝜎𝑦
4 .
2𝜎𝑥

2𝜎𝑦
2

𝜎𝑦
2+𝜎𝑥

2

 

=
1

√2𝜋(𝜎𝑦
2 + 𝜎𝑥

2)

𝑒

(𝑦−𝑥)2

2𝜎𝑦
2 (

−𝜎𝑦
2

𝜎𝑦
2+𝜎𝑥

2)
=

1

√2𝜋(𝜎𝑦
2 + 𝜎𝑥

2)

𝑒

−(𝑦−𝑥)2

2(𝜎𝑦
2+𝜎𝑥

2) 

Now let’s calculate dust function: 

𝑑𝑢𝑠𝑡(𝑥, 𝑦) = √log(𝜑(0)) − 𝑙𝑜𝑔(𝜑(|𝑥 − 𝑦|))

= √𝑙𝑜𝑔

(

 
1

√2𝜋(𝜎𝑦
2 + 𝜎𝑥

2)
)

 − 𝑙𝑜𝑔

(

 
1

√2𝜋(𝜎𝑦
2 + 𝜎𝑥

2)

𝑒

−(𝑦−𝑥)2

2(𝜎𝑦
2+𝜎𝑥

2)

)

 

= √𝑙𝑜𝑔

(

 
1

√2𝜋(𝜎𝑦
2 + 𝜎𝑥

2)
)

 − 𝑙𝑜𝑔

(

 
1

√2𝜋(𝜎𝑦
2 + 𝜎𝑥

2)
)

 − 𝑙𝑜𝑔 (𝑒

−(𝑦−𝑥)2

2(𝜎𝑦
2+𝜎𝑥

2)) =√−𝑙𝑜𝑔 (𝑒
−(𝑦−𝑥)2

2(𝜎𝑦
2+𝜎𝑥

2))

= √
|𝑥 − 𝑦|2

2(𝜎𝑦
2 + 𝜎𝑥

2)
=

|𝑥 − 𝑦|

√2(𝜎𝑦
2 + 𝜎𝑥

2)

 

Thus, DUST function for error with normal distribution is calculated as follows: 
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𝐷𝑈𝑆𝑇𝑁𝑜𝑟𝑚𝑎𝑙(𝑋, 𝑌) = √∑
(𝑥𝑖 − 𝑦𝑖)

2

2(𝜎𝑋𝑖
2 +  𝜎𝑌𝑖

2)

𝑛

𝑖=1

 

Exponential Distribution 

If the error follows an exponential distribution, 𝜑(|𝑥 − 𝑦|) is calculated as follows: 

𝜑(|𝑥 − 𝑦|) = ∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑧)𝑝(𝑒(𝑦) = 𝑦 − 𝑧)𝑑𝑧
∞

−∞

= ∫ 𝑓(𝑥 − 𝑧; 𝜆𝑥)𝑓(𝑦 − 𝑧; 𝜆𝑦)𝑑𝑧
∞

−∞

 

where 

𝑓(𝑥 − 𝑧; 𝜆𝑥)𝑓(𝑦 − 𝑧; 𝜆𝑦) = {
𝜆𝑥𝑒

−𝜆𝑥(𝑥−𝑧)𝜆𝑦𝑒
−𝜆𝑦(𝑦−𝑧)            𝑥 ≥ 𝑧, 𝑦 ≥ 𝑧

0                                                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Using this, 𝜑(|𝑥 − 𝑦|) would be calculated as follows: 

∫ 𝑓(𝑥 − 𝑧; 𝜆𝑥)𝑓(𝑦 − 𝑧; 𝜆𝑦)𝑑𝑧
∞

−∞

= ∫ 𝜆𝑥𝑒
−𝜆𝑥(𝑥−𝑧)𝜆𝑦𝑒

−𝜆𝑦(𝑦−𝑧)𝑑𝑧
𝑚𝑖𝑛 (𝑥,𝑦)

−∞

= 𝜆𝑥𝜆𝑦𝑒
−(𝜆𝑥𝑥+𝜆𝑦𝑦)∫ 𝑒(𝜆𝑥+𝜆𝑦)𝑧𝑑𝑧

𝑚𝑖𝑛 (𝑥,𝑦)

−∞

=
𝜆𝑥𝜆𝑦

(𝜆𝑥 + 𝜆𝑦)
𝑒−(𝜆𝑥𝑥+𝜆𝑦𝑦)𝑒(𝜆𝑥+𝜆𝑦)𝑧 |

𝑚𝑖𝑛 (𝑥, 𝑦)
−∞

=
𝜆𝑥𝜆𝑦

(𝜆𝑥 + 𝜆𝑦)
𝑒−(𝜆𝑥𝑥+𝜆𝑦𝑦)𝑒(𝜆𝑥+𝜆𝑦)𝑚𝑖𝑛 (𝑥,𝑦)

=
𝜆𝑥𝜆𝑦

(𝜆𝑥 + 𝜆𝑦)
𝑒(𝜆𝑥+𝜆𝑦)𝑚𝑖𝑛 (𝑥,𝑦)−(𝜆𝑥𝑥+𝜆𝑦𝑦) =

1

𝜎𝑥 + 𝜎𝑦
𝑒−|𝑥−𝑦| 𝜎max (𝑥,𝑦)⁄  

Note that in exponential distribution, we have =
1

𝜆
 . To find 𝑑𝑢𝑠𝑡(𝑥, 𝑦) , first we should 

calculate 𝑙𝑜𝑔(𝜑(|𝑥 − 𝑦|)): 
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𝑙𝑜𝑔(𝜑(|𝑥 − 𝑦|)) = 𝑙𝑜𝑔 (
1

𝜎𝑥 + 𝜎𝑦
𝑒−|𝑥−𝑦| 𝜎max (𝑥,𝑦)⁄  ) = 𝑙𝑜𝑔 (

1

𝜎𝑥 + 𝜎𝑦
) −

|𝑥 − 𝑦|

𝜎max (𝑥,𝑦)
 

Since we have 𝑙𝑜𝑔(𝜑(0)) = 𝑙𝑜𝑔 (
1

𝜎𝑥+𝜎𝑦
), we would have: 

𝑑𝑢𝑠𝑡(𝑥, 𝑦) = √
|𝑥 − 𝑦|

𝜎max (𝑥,𝑦)
 

Finally, DUST would be equal to: 

𝐷𝑈𝑆𝑇𝐸𝑥𝑝(𝑋, 𝑌) = √∑
|𝑥𝑖 − 𝑦𝑖|

𝜎𝑚𝑎𝑥 (𝑥𝑖,𝑦𝑖)

𝑛

𝑖=1

 

Uniform Distribution 

We want to find 𝜑(|𝑥 − 𝑦|) defined as follows: 

𝜑(|𝑥 − 𝑦|) = ∫ 𝑝(𝑒(𝑥) = 𝑥 − 𝑧)𝑝(𝑒(𝑦) = 𝑦 − 𝑧)𝑑𝑧
∞

−∞

 

If we suppose that errors have uniform distribution then we would have: 

𝑝(𝑒(𝑥) = 𝑥 − 𝑧) = {
1

𝑏 − 𝑎
      𝑎 ≤ 𝑥 − 𝑧 ≤ 𝑏

  0                        𝑂𝑊

= {
1

𝑏 − 𝑎
      𝑥 − 𝑎 ≥ 𝑧 ≥ 𝑥 − 𝑏

  0                        𝑂𝑊

 

𝑝(𝑒(𝑦) = 𝑦 − 𝑧) = {
1

𝑑 − 𝑐
      𝑐 ≤ 𝑦 − 𝑧 ≤ 𝑑

  0                        𝑂𝑊

= {
1

𝑑 − 𝑐
      𝑦 − 𝑐 ≥ 𝑧 ≥ 𝑦 − 𝑑

  0                        𝑂𝑊

 

Note that 𝜑(|𝑥 − 𝑦|)is not zero if [𝑥 − 𝑏, 𝑥 − 𝑎] ∩ [𝑦 − 𝑑, 𝑦 − 𝑐] ≠ 𝜙. 
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If we have[𝑥 − 𝑏, 𝑥 − 𝑎] ∩ [𝑦 − 𝑑, 𝑦 − 𝑐] ≠ 𝜙, the following cases can happen: 

1- If we have [𝑥 − 𝑏, 𝑥 − 𝑎] ⊆ [𝑦 − 𝑑, 𝑦 − 𝑐] 

𝜑(|𝑥 − 𝑦|) = ∫
1

(𝑏 − 𝑎)(𝑑 − 𝑐)
𝑑𝑧

𝑥−𝑎

𝑥−𝑏

=
𝑥 − 𝑎 − (𝑥 − 𝑏)

(𝑏 − 𝑎)(𝑑 − 𝑐)
=

𝑏 − 𝑎

(𝑏 − 𝑎)(𝑑 − 𝑐)
=

1

𝑑 − 𝑐
 

2- If we have [𝑦 − 𝑑, 𝑦 − 𝑐] ⊆ [𝑥 − 𝑏, 𝑥 − 𝑎] 

𝜑(|𝑥 − 𝑦|) = ∫
1

(𝑏 − 𝑎)(𝑑 − 𝑐)
𝑑𝑧

𝑦−𝑐

𝑦−𝑑

=
𝑦 − 𝑐 − (𝑦 − 𝑑)

(𝑏 − 𝑎)(𝑑 − 𝑐)
=

𝑑 − 𝑐

(𝑏 − 𝑎)(𝑑 − 𝑐)
=

1

𝑏 − 𝑎
 

3- If we have  𝑦 − 𝑑 <  𝑥 − 𝑏 <  𝑦 − 𝑐 < 𝑥 − 𝑎 then 

𝜑(|𝑥 − 𝑦|) = ∫
1

(𝑏 − 𝑎)(𝑑 − 𝑐)
𝑑𝑧

𝑦−𝑐

𝑥−𝑏

=
𝑦 − 𝑐 − (𝑥 − 𝑏)

(𝑏 − 𝑎)(𝑑 − 𝑐)
=
𝑦 − 𝑥 + 𝑏 − 𝑐

(𝑏 − 𝑎)(𝑑 − 𝑐)
 

4- If we have 𝑥 − 𝑏 <  𝑦 − 𝑑 < 𝑥 − 𝑎 < 𝑦 − 𝑐 then 

𝜑(|𝑥 − 𝑦|) = ∫
1

(𝑏 − 𝑎)(𝑑 − 𝑐)
𝑑𝑧

𝑥−𝑎

𝑦−𝑑

=
𝑥 − 𝑎 − (𝑦 − 𝑑)

(𝑏 − 𝑎)(𝑑 − 𝑐)
=
𝑥 − 𝑦 + 𝑑 − 𝑎

(𝑏 − 𝑎)(𝑑 − 𝑐)
 

Finally, we have: 

𝜑(|𝑥 − 𝑦|)

= {

   
𝑚𝑖𝑛(𝑥 − 𝑎, 𝑦 − 𝑐) − 𝑚𝑎𝑥(𝑥 − 𝑏, 𝑦 − 𝑑)

(𝑏 − 𝑎)(𝑑 − 𝑐)
,      [𝑥 − 𝑏, 𝑥 − 𝑎] ∩ [𝑦 − 𝑑, 𝑦 − 𝑐] ≠ 𝜙  

0                                                                                                                         𝑂𝑊

 

We know that 𝑑𝑢𝑠𝑡(𝑥, 𝑦) = √𝑙𝑜𝑔(𝜑(0)) − 𝑙𝑜𝑔(𝜑(|𝑥 − 𝑦|)). Thus, we would have: 
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𝑑𝑢𝑠𝑡(𝑥, 𝑦)

=

{
 
 

 
 

   

√𝑙𝑜𝑔(𝜑(0)) − 𝑙𝑜𝑔 (
𝑚𝑖𝑛(𝑥 − 𝑎, 𝑦 − 𝑐) − 𝑚𝑎𝑥(𝑥 − 𝑏, 𝑦 − 𝑑)

(𝑏 − 𝑎)(𝑑 − 𝑐)
) , [𝑥 − 𝑏, 𝑥 − 𝑎] ∩ [𝑦 − 𝑑, 𝑦 − 𝑐] ≠ 𝜙  

√𝑙𝑜𝑔(𝜑(0)) − 𝑙𝑜𝑔(0)   ,                                                                                                                                  𝑂𝑊

 

Using this, DUST can be calculated. To simplify, we suppose that  𝑎 = 𝑐, 𝑏 = 𝑑, and we 

would have: 

𝜑(|𝑥 − 𝑦|) = {

   
𝑏 − 𝑎 − |𝑥 − 𝑦|

(𝑏 − 𝑎)2
  ,                                                                0 ≤ |𝑥 − 𝑦| < 𝑏 − 𝑎  

0  ,                                                                                                          𝑂𝑊

 

dust would be calculated as follows: 

𝑑𝑢𝑠𝑡(𝑥, 𝑦) = √𝑙𝑜𝑔(𝜑(0)) − 𝑙𝑜𝑔(𝜑(|𝑥 − 𝑦|))

=

{
 
 

 
 
√𝑙𝑜𝑔 (

1

𝑏 − 𝑎
) − 𝑙𝑜𝑔 (

𝑏 − 𝑎 − |𝑦 − 𝑥|

(𝑏 − 𝑎)2
) ,      0 ≤ |𝑦 − 𝑥| < 𝑏 − 𝑎

√𝑙𝑜𝑔 (
1

𝑏 − 𝑎
) − 𝑙𝑜𝑔(0) ,                                                                    𝑂𝑊

                  

= {
√− 𝑙𝑜𝑔(𝑏 − 𝑎) − (𝑙𝑜𝑔(𝑏 − 𝑎 − |𝑦 − 𝑥|) − 𝑙𝑜𝑔 ((𝑏 − 𝑎)2)) , 0 < |𝑦 − 𝑥| < 𝑏 − 𝑎

√− 𝑙𝑜𝑔(𝑏 − 𝑎) − 𝑙𝑜𝑔(0) ,                                                                                                     𝑂𝑊
          

= {
√− 𝑙𝑜𝑔(𝑏 − 𝑎) − 𝑙𝑜𝑔(𝑏 − 𝑎 − |𝑦 − 𝑥|) + 2𝑙𝑜𝑔 (𝑏 − 𝑎) ,         0 < |𝑦 − 𝑥| < 𝑏 − 𝑎

√− 𝑙𝑜𝑔(𝑏 − 𝑎) − 𝑙𝑜𝑔(0) ,                                                                                                     𝑂𝑊
           

= {
√𝑙𝑜𝑔(𝑏 − 𝑎) − 𝑙𝑜𝑔(𝑏 − 𝑎 − |𝑦 − 𝑥|) ,          0 < |𝑦 − 𝑥| < 𝑏 − 𝑎 

√− 𝑙𝑜𝑔(𝑏 − 𝑎) − 𝑙𝑜𝑔(0) ,                                                                   𝑂𝑊
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  Note that in uniform distribution, we have 𝜎 =
𝑏−𝑎

2√3
 so 𝑏 − 𝑎 = 2√3𝜎. Thus, dust would be 

calculated as follows: 

𝑑𝑢𝑠𝑡(𝑥, 𝑦) =

{
 

 √𝑙𝑜𝑔(2√3𝜎) − 𝑙𝑜𝑔(2√3𝜎 − |𝑦 − 𝑥|) ,          0 < |𝑦 − 𝑥| < 2√3𝜎 

√– (𝑙𝑜𝑔(2√3𝜎) + 𝑙𝑜𝑔(0)) ,                                                              𝑂𝑊

       

Using this, we can calculate DUST as follows: 

𝐷𝑈𝑆𝑇(𝑋, 𝑌) = √∑𝑑𝑢𝑠𝑡(𝑋𝑖 , 𝑌𝑖)
2

𝑛

𝑖=1
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