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ABSTRACT

On lacunary polynomials
and a generalization of Schinzel’s conjecture

Daniele Dona

Some interesting questions can be posed regarding the maximum number of terms of a
polynomial when dealing with particular operations: for example, Rényi and Erdős asked
whether there is a bound on the number of terms of h(x) depending only on the number
of terms of h(x)2. In the last decade, positive answers have been found for very general
situations: a conjecture by Schinzel on the case of g(h(x)) having few terms for some complex
polynomial g has been proven in [8], and an even more general case where h(x) satisfies
F (x, h(x)) = 0 for some complex polynomial F in two variables has been proven in [2];
moreover, the bounds obtained are dependent very poorly on g and F .

We are exposing here the proof of Schinzel’s conjecture contained in [8] and of its afore-
mentioned generalized form contained in [2]; we also give explicit formulas and procedures
to calculate the bounds themselves, which were lacking in the original papers.
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Introduction

A lacunary polynomial (also called sparse polynomial or fewnomial) is a polynomial where
the number of its terms is considered fixed, while the degrees and coefficients of its terms
may vary. For example we can write f(x) = a1x

n1 + . . . + alx
nl for a lacunary polynomial

with at most l terms, with no control whatsoever on the actual value of the degrees ni and
the coefficients ai.

The focus on the number of terms of a polynomial rather than on the other data leads
to some interesting questions regarding in particular the behaviour of lacunary polynomials
under the operation of composition, or in even more general algebraic expressions. The first
conjecture that appeared in this direction was raised independently by Erdős and Rényi:
given a polynomial h(x), if its square h(x)2 has at most l terms then also h(x) has a
bounded number of terms dependent only on l [1]. This was proven by Schinzel [4] in the
more general case of h(x)d being lacunary: he then posed an even more general question,
in the case of g(h(x)) being lacunary where g is another non-constant polynomial; he also
stated that his method was not powerful enough to tackle this new problem, so we don’t
follow his procedure here.

Schinzel’s conjecture has then been solved by Zannier [8]: Zannier’s proof will be dis-
cussed in Chapter 1. Although it yields an explicit bound B(l) on the number of terms
of h(x) (when g(h(x)) has at most l non-constant terms), the author didn’t bother himself
with the actual calculation of this bound, observing only that it should be very large and
weaker than the one for the case h(x)d solved by Schinzel: in Chapter 3 we’ll calculate B(l)
following his method and discover that he was right in both cases.

Chapter 2 will treat an even more general case: given a polynomial F (x, y) with at
most l terms in x and monic of degree d in y, any h(x) such that F (x, h(x)) = 0 has
at most β(d, l) terms. This was solved by Fuchs, Mantova and Zannier [2] adapting the
proof contained in [8] to the new situation; as before, also in this case the bounds are
explicit but have not been actually calculated: this will be done again to a certain degree
in Chapter 3, again confirming the opinion of the authors who considered it to be a highly
iterated exponentiation.
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Chapter 1

Schinzel’s conjecture

1.1 Historical background

As said in the introduction, a lacunary polynomial is a polynomial where the number of its
terms is considered fixed, while the degrees and coefficients of its terms may vary. Kalmár,
Rédei and Rényi started considering the problem of lacunarity in the case of the square
of a polynomial, although formulating it the other way around. Call Q(k) the minimum
possible number of terms of the square of a polynomial with k terms: it has been proven by

them that lim infk→∞
Q(k)
k = 0 and Rényi [3] conjectured that limk→∞

Q(k)
k = 0, which was

proven two years later by Erdős [1]; these and other results were answering questions about
the dimension of Q(k) establishing upper limits to it, but in the same paper Erdős said that
Rényi told him to have also conjectured something in the other direction:

lim
k→∞

Q(k) = ∞

This last assertion means that, given any polynomial with a number of terms k big enough,
its square has to have a certain number Q(k) of terms that can be made as big as desired
if k is chosen appropriately; in other words this is equivalent to say that if the square of a
polynomial h(x) has a bounded number of terms then h(x) itself can’t have a number of
terms that is too big.

This issue was solved by Schinzel [4], who gave also an explicit bound in a broader case.
Consider a polynomial h(x) with k ≥ 2 terms and a positive integer d, then the number of
terms of h(x)d is at least:

d+ 1 +
ln
(

1 + ln(k−1)
d ln 4d−ln d

)

ln 2

This again can be read the other way around. Given any polynomial h(x) and positive
integer d, if h(x)d has at most l terms then there is an upper bound T (d, l) on the number
of terms of h(x) which is:

T (d, l) ≤ max{2, 1 + e(2
l−d−1

−1)(d ln 4d−ln d)} (1.1)

This result holds also for a somewhat generic field instead of just for C, making reasonable
assumptions about its characteristic; on the other hand, the method that Schinzel uses is
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in his own words insufficient to prove the more general case of what is called Schinzel’s
conjecture, i.e. the same question with the hypothesis that g(h(x)) has at most l terms for
a certain polynomial g. This is what Zannier proved in [8], and this is what we are going to
show in the following sections.

1.2 Introduction to the proof

We want to prove the following theorem ([8, Thm 1]):

Theorem 1.1. Take any three non-constant polynomials f, g, h ∈ C[x]: if f(x) = g(h(x))
and f has at most l non-constant terms, then h(x) has at most B(l) terms.

We observe that the bound B(l) is not only independent from the degrees and coeffi-
cients of the lacunary f(x) but is also independent from any datum whatsoever about the
polynomial g(x). The original conjecture formulated by Erdős and Rényi is the particular
case g(y) = y2 and the theorem proven by Schinzel is the case g(y) = yd.

We first say also that what Zannier proves is a dependence also on the degree d of the
polynomial g(x); he uses then another independent result (also by Zannier) to control d itself
([7, Thm 1]):

Proposition 1.2. Take any three non-constant polynomials f, g, h ∈ C[x]: if f(x) = g(h(x))
and f has at most l non-constant terms, then either h(x) is of the form axn+b or the bound
deg g ≤ 2l(l − 1) holds.

We now explain in a general way the strategy of the proof given in [8], before going into
more detail. First we give an intermediate result, from which Theorem 1.1 can be deduced
([8, Prop 2]):

Theorem 1.3. Take any three non-constant polynomials f, g, h ∈ C[x]: if f(x) = g(h(x))
and f has at most l non-constant terms, then h(x) can be written as the ratio of two poly-
nomials with at most B1(l) terms.

To prove Theorem 1.3 we work by induction on l. We consider the equation f = g(h)
from a purely formal point of view; the first thing is obtain the Puiseux expansion for h:

h = c−1f
1/d + c0 + c1f

−1/d + c2f
−2/d + . . . =

∞∑

i=−1

cif
−i/d (1.2)

and after a reparametrisation y = 1/x, using the multinomial theorem on the terms f−i/d

we can write h̃(y) = ynl/dh(1/y) as sum of terms in y with only non-negative exponents.
Therefore we must have a bound on these exponents:

(1 + i)
nl

d
+ h1n1 + h2n2 + . . . hlnl ≤ degy h̃ = degx h =

nl

d

and then a bound on i and hj (which means a bound on the number of terms); if we had
a condition of the form n1 ≥ εnl then this last bound would be independent from the
exponents nj and could be expressed only in terms of l, d and ε. This is clearly not always
the case, but we can use a trick to reconduct ourselves to this situation.
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We divide the exponents nj into two groups, the “small” ones (n1, . . . , np) and the
“large” ones (np+1, . . . , nl) in a suitable way. Doing this we can consider the small ones as
part of the coefficients and the large ones as satisfying the condition mentioned above: in
this way we have a control on the number of terms as explained before, with the downside
that now the coefficients are not anymore in C but in a function field K ⊇ C(x); at this
point though we can use the inductive hypothesis, as these new coefficients are algebraic
expressions containing a truncated f which will be a lacunary polynomial with at most p < l
terms.

This was the outline of the proof for Theorem 1.3: the reason why we have to use first
this form of the result, where we allow ratios of polynomials, is that in the last mentioned
step negative exponents might appear inside the coefficients containing the truncated f .
Notice that deducing Theorem 1.1 from Theorem 1.3 is not immediate, as shown by this
elementary example:

1− xn

1− x
= 1 + x+ x2 + . . .+ xn−1

where the ratio of two polynomials with two terms each can have an arbitrarily large number
of terms.

1.3 Proof of Theorem 1.3

Now we go into more details, keeping in mind the outline of the previous section.
As we said, we work by induction on l. Suppose l = 1, i.e. f(x) has only one non-

constant term: we can then subtract the eventual constant term from f and g without loss
of generality and therefore suppose g(h(x)) = a1x

n1 ; in this situation it’s obvious that g
can’t have two distinct roots, hence g(x) = b(x − ξ)d. Now h(x) = ξ + (a/b)1/dxn1/d is
the only possible solution: in fact if any other solution not of this form existed then by
Proposition 1.2 we would have deg g ≤ 0 which is absurd; so we obtain B1(1) = 2.

We suppose now that the theorem is proven for 1, . . . , l− 1. As we said, the first passage
is to obtain an expression of the form (1.2) starting from the formal equation f = g(h).
Let’s work concretely with an example to show the passages involved: suppose we have
f = h2 − h (with d = 2). We start finding a solution of the form h = cf1/2 + o(f1/2),
substituting inside we see pretty easily that we can take c = 1 in order to obtain the
cancellation of the highest powers of f in the expression; at this point we substitute inside
the original equation h = f1/2 + f1/2h′ (we precise that here h′ is not the derivative of h,
it’s just a new formal variable):

0 = h2 − h− f = (f1/2 + f1/2h′)2 − (f1/2 + f1/2h′)− f

= f1/2
(

f1/2h′2 + 2f1/2h′ − h′ − 1
)

thus obtaining a new equation f1/2h′2 + 2f1/2h′ − h′ − 1 = 0. Now we repeat the above
steps: we find a solution of the form h′ = cf−1/2 + o(f−1/2) to eliminate the highest powers
of f , we can choose c = 1

2 for this purpose, then we substitute h′ = 1
2f

−1/2+f−1/2h′′ (again,
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h′′ is not the derivative of h′):

0 = f1/2h′2 + 2f1/2h′ − h′ − 1

= f1/2

(
1

2
f−1/2 + f−1/2h′′

)2

+ 2f1/2

(
1

2
f−1/2 + f−1/2h′′

)

−

(
1

2
f−1/2 + f−1/2h′′

)

− 1

= f−1/2h′′2 + 2h′′ −
1

4
f−1/2

At this point going back to the original h we have already obtained a solution of the form
h = f1/2 + 1

2 + o(f−1/2); clearly we only need to go on with this process and we’ll obtain
an expression of the form (1.2) for h.

Now we have obtained an expansion of h as a formal series in f starting from the original
equation f = g(h). As anticipated, we operate the substitution y = 1/x, and we define:

h̃(y) := x−nl/dh(x) = ynl/dh(1/y)

f̃(y) :=
f(x)

alxnl
=: 1 + b1y

n1 + . . .+ bly
nl

In the first definition notice that degx h = degy h̃ = nl/d so that in fact h̃ is still a polynomial,

and it has also the same number of terms as h, so it will suffice to prove the thesis for h̃; in the
second definition notice that we have renominated both the coefficients and the exponents,
but it won’t matter (in accordance with the spirit of the theorem itself that doesn’t care
about the degrees of the terms of f).

At this point we introduce the (for the moment arbitrary) distinction between “small”
and “large” exponents nj . We fix an integer p between 0 and l − 1 and we define:

δp(y) := 1 + b1y
n1 + . . .+ bpy

np

obtaining therefore:

f̃(y) = δp(y)

(

1 +
bp+1

δp(y)
ynp+1 + . . .+

bl
δp(y)

ynl

)

f̃(y)s/d = δp(y)
s/d

(

1 +
bp+1

δp(y)
ynp+1 + . . .+

bl
δp(y)

ynl

)s/d

=
∑

hp+1,...,hl∈N

Cs,d,hp+1,...,hl
δp(y)

s
d
−hp+1−...−hlb

hp+1

p+1 . . . bhl

l yhp+1np+1+...+hlnl (1.3)

where the last passage uses the multinomial theorem. We substitute the definitions of h̃
and f̃ and the expression (1.3) inside (1.2); the result is that now h̃(y) is a sum of terms of
the form:

Cδp(y)
s
d
−hp+1−...−hly

1
d
(1−s)nl+hp+1np+1+...+hlnl (1.4)

Hence at this point we can collect all “too big” terms (with regards to the exponent of y)
in an error term and write:

h̃(y) = t1 + t2 + . . .+ tL +O(y2nl) (1.5)

where the ti are the terms (1.4) having exponent < 2nl for y.
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Now let’s stop for a moment and think about what we have obtained and what we still
have to find. The last equation is a good result but it has some issues that must be solved
in order to prove Theorem 1.3 as we would like to: the first problem is that the number of
terms L is bounded by something that depends not only on l (and possibly d) but also on
the ratio nl/np+1; we can say in fact that:

1− 2d ≤ s ≤ 1, 0 ≤ hi ≤
2nl

ni
,

L ≤ (2d+ 1)

(

1 +
2nl

ni

)l−p

≤ (2l − 1)2
(

1 +
2nl

np+1

)l

(1.6)

but for now we still have to show how to control nl/np+1 only in terms of l (this will obviously
have something to do with our choice of p). The other problem is that we have y also in
the coefficients δp, so it’s not obvious at all that we can just ignore the error term O(y2nl)
as the 2nl refers only to the exponent of y and nothing is known about the contribution of
the coefficient.

Let’s see how to solve these issues. In (1.5) we can suppose the ti to be linearly inde-
pendent by possibly substituting them with multiples; we can then distinguish two cases:
h̃, t1, . . . , tL being linearly dependent or independent over C.

In the first case what we basically obtain is the elimination of the error term in (1.5).

Also, all the terms ti where we have some δ
j/d
p not being a polynomial must cancel each

other out in the equation, thus leaving h̃ expressed as the sum of terms of the form:

Cηp(y)
1
e
(s−(hp+1+...+hl)d)y

1
d
(1−s)nl+hp+1np+1+...+hlnl (1.7)

where e is the smallest divisor of d such that ηp(y) = δp(y)
e/d is still a polynomial. At this

point though ηp(y)
d/e = δp(y) and the right hand side is a lacunary polynomial of p < l

non-constant terms, so by inductive hypothesis ηp(y) is ratio of polynomials with at most
B1(p) ≤ B1(l − 1) terms, and combining this with the information about the number of
terms ti we get a certain bound B2(l, nl/np+1).

In the second case we use the following lemma ([8, Prop 1]):

Lemma 1.4. Let K/C be a function field in one variable of genus g, let ϕ1, . . . , ϕn ∈ K be
linearly independent over C and let σ =

∑n
i=1 ϕi; take 0 ≤ r ≤ n and call S a finite set of

places of K containing all the poles of ϕ1, . . . , ϕn and all the zeros of ϕ1, . . . , ϕr. We have
then:

∑

v∈S

(

v(σ)−
n

min
i=1

v(ϕi)

)

≤

(
n

2

)

(#S + 2g− 2) +
n∑

i=r+1

degϕi

This lemma controls the valuation of the sum σ in terms of the valuations and the
degrees of its addenda (and of the data about the field, too). We use it in our situation in
the following way:

r = L, n = L+ 1, ϕi = −ti(1 ≤ i ≤ L), ϕL+1 = h̃

The set S containing the poles and zeros of the ti and the poles of h̃ has at most d(np + 2)
places, while 2g − 2 ≤ dnp; here we have that the sum σ is the error term in (1.5) with
v0(σ) ≥ 2nl, where v0 is a place above 0 and belongs to S. Using Lemma 1.4 we obtain:

2nl ≤

(
L+ 1

2

)

(d(np + 2) + dnp) + nl

7



and then:
nl/np ≤ 24l+5d3(nl/np+1)

2l ≤ 24(l+2)l3(l − 1)3(nl/np+1)
2l (1.8)

At this point we are done: in fact for each p (and each version of (1.5)) we either have a
bound B2(l, nl/np+1) or an estimate (1.8). Therefore we consider the biggest p such that the
first alternative occurs and we have the bound B2, but iterating (1.8) for the p′ between p+1
and l we can reconduct ourselves to nl/nl = 1 and get a bound B1(l) depending only on l;
if the first alternative never occurs then we can use (1.8) from nl/n1 to nl/nl = 1, and find
a bound B1(l) as described in the outline.

1.4 Proof of Theorem 1.1

Finally we can deduce Theorem 1.1 from Theorem 1.3. Suppose we have f(x) = g(h(x))
with h(x) not of the form axn + b (so that deg g ≤ 2l(l − 1) by Proposition 1.2); from the
previous result we have that h(x) is a ratio h1(x)/h2(x) of two polynomials with at most
B1(l) terms. We multiply f(x) − g(h(x)) = 0 by a suitable power of h2(x) so as to obtain
an equation in C[x]: now, since the whole left hand side must vanish, necessarily there must
be equalities involving the exponents of the resulting monomials, which give a linear system
of the exponents of f, h1, h2; since the number of monomials is bounded dependently only
on l, also the number of possible linear systems is bounded only in terms of l.

We solve the linear system, so that the exponents of f, h1, h2 are now combinations of
some variables uj : the number J of these variables and the resulting coefficients in the
combinations depend only on the linear system, therefore they’re all bounded by a certain
function of l only. At this point we consider f, h1, h2 in a different way, i.e. as functions
depending on the uj in the following way:

f(x) = F (xu1 , . . . , xuJ ), h1,2(x) = H1,2(x
u1 , . . . , xuJ )

where F,H1, H2 ∈ C[z±1
1 , . . . , z±1

J ]. The uj can be chosen arbitrarily in Z, so the equality
f = g(h1/h2) (which holds for every choice of the uj) gives in fact F = g(H1/H2); but then
H1/H2 must also be in C[z±1

1 , . . . , z±1
J ] as this is integrally closed. Moreover, its degree is

limited by the sum of the degrees of H1, H2, thus giving us a limitation on the number of
terms of H1/H2 which is bounded by (1 + 2degH1 + 2degH2)

J : all these can be bounded
by functions of l as they depend only on the linear system, so that we have finally the same
bound B(l) for the number of terms of h(x) too.
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Chapter 2

General case

2.1 Introduction to the proof

We want now to prove the more general theorem ([2, Thm 1.1]):

Theorem 2.1. Take any polynomial F (x, y) ∈ C[x, y] monic of degree d in y and having at
most l terms in x: if there is h(x) ∈ C[x] such that F (x, h(x)) = 0, then h(x) has at most
β(d, l) terms.

As we notice the dependence of the bound by d reappears, since Proposition 1.2 can’t be
applied in this situation, but β(d, l) is still independent from the degrees of the terms in x
and from any coefficient appearing in the polynomial F . Theorem 2.1 contains Theorem 1.1
as a special case, when F (x, y) = g(y)− f(x).

Again we make use of an intermediate result ([2, Prop 2.5]):

Theorem 2.2. Take any polynomial F (v1, . . . , vl, y) ∈ C[v1, . . . , vl, y] monic in y and of
degree at most d in each variable: if there is h(x) ∈ C[x] and there are n1, . . . , nl ∈ N such
that F (xn1 , . . . , xnl , h(x)) = 0, then h(x) can be written as the ratio of two polynomials with
at most β1(d, l) terms.

The technique used to prove Theorem 2.2 follows a very similar path to that used for
Theorem 1.3, although filled with many more annoying details. We divide the exponents nj

in “small” ones and “big” ones and we still obtain a Puiseux expansion for h as (1.2) (al-
though with a different procedure): notice that once this is done in a suitable way we are
approximately in the same situation as in the previous chapter, because while working with
the Puiseux expansion we didn’t use any information about its origin (i.e. the polyno-
mial g(x)) except for its degree d which appeared in fact in the expansion itself; therefore
a very similar reasoning can be used to treat the Puiseux expansion that we are going to
obtain from F (x, y).

As before, we write h as the sum of a certain (bounded) number of “small” terms with
coefficients in a function field K ⊇ C(x) and a “big” error term as in (1.5): Lemma 1.4 still
holds, so again we have either a bound like (1.8) that links np to np+1 or a bound coming
from the elimination of the big error term, the information about the number of the small
terms and the inductive hypothesis that provides a β1 depending on p < l. The annoying
details that render the proof of Theorem 2.2 more than just a mere rewriting of the previous
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one are concentrated mostly in the process of obtaining the Puiseux expansion; moreover,
we won’t be able to have nice terms of the form (1.4) where the δp(x) containing the small
exponents appears just as a power in the coefficients, but in general the dependence from δp
would be more complicated, leading to other technical difficulties.

We’ll focus on these two issues, observing that the rest of the proof will use the same
framework as in Theorem 1.3.

2.2 Theorem 2.2: Puiseux expansion

Let’s start with the Puiseux expansion. Remember that in the previous situation we were
constructing the expansion by requiring the cancellation of the highest powers and then
performing a change of variables at the end to obtain an error term that collects the terms
with high exponents (that would have been low exponents in the original variable): now
we use a more direct approach and require the elimination of the smallest powers from the
beginning.

Consider again a concrete example: suppose that F (x, y) = x2 + 2yx + y2 + y2x2 (we
always suppose for simplicity that x - F (x, y)). In Theorem 1.3 we always start with a
solution of the form h = cf1/d + o(f1/d), while in this situation we just require that there
will be some form of cancellation of the lowest terms, leaving freedom also in the choice of the
exponent. Let’s say we take y = −x+o(x), that leads to cancellations in the first three terms
of F ; the next step is to obtain a new expression with a new y′ and continue the expansion
of y term by term, and this will be done in two different ways according to the nature of the
solution chosen. If the solution y = cxe+o(xe) is such that the lowest terms of F (where the
cancellation occurs) are of the form sxt(y − cxe)u for suitable s, t, u, we follow the strategy
called (S1) in [2]: the next expression will be F (x, y) = F (x, cxe + y′); our example satisfies
this condition, as x2+2yx+y2 = (y+x)2, so to obtain the next term of the expansion we will
work with F (x,−x+ y′) = x4 − 2y′x3 + y′2 + y′2x2. If the condition is not satisfied then we
use the strategy (S2): the new expression will be then x−tF (x, cxe + xey′) with a suitable t
such that x does not divide everything; given for example F (x, y) = x2 + 3yx+ 2y2 + y2x2

we still have the possible solution y = −x + o(x) but we’ll have to adopt (S2) in this case,
giving us x−2F (x,−x+ xy′) = x2 − y− 2yx2 +2y2 + y2x2. Notice that (S2) is basically the
strategy always adopted in the analogous situation of Theorem 1.3.

The two strategies don’t produce different solutions, but only different ways of writing
the same solution. Considering the first example we made, using always (S1) or always (S2)
regardless of the aforementioned condition, choosing appropriately c and e at every step we
obtain the same result:

y(S1) = −x+ ix2 + x3 − ix4 − x5 + . . .

y(S2) = −x+ x(ix+ x(x+ x(−ix+ x(−x+ . . .))))

The same would happen using any random sequence of choices between (S1) and (S2),
altering only the placement of the parentheses but not the nature of the solution.

So why do we adopt such a technique to find the Puiseux expansion if it’s the same
in any case? The reason is in the behaviour of the error term in the more general case
when the number p of small exponents is positive, and then the field K of the coefficients
of the variable y is bigger than C. Consider a polynomial F (x, y) ∈ K[x, y] with K ⊇ C(x):
the variable x is present both in the expression F and its coefficients, so a way to find a
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Puiseux expansion is to consider formally F (z, y) ∈ K[z, y] with K ⊇ C(x), then extract
an expansion of y with respect to z and at the end substitute again z = x; this is what
happened in Theorem 1.3 where we treated δp as a coefficient disregarding the x hidden
inside it. Unfortunately the situation is not as nice as before: in fact δp(x)

sxt = O(xt)
for any s ∈ Z since δp(x) = 1 + b1x

n1 + . . . + bpx
np , but for a more arbitrary a(x) ∈ K

even if we have a(x)zt = O(zt) we don’t have also a(x)xt = O(xt); this means that even if
using the formal variable z we get a sufficiently big error term (with respect to z) it’s not
guaranteed that the error term remains big when seen with respect to x, leading ultimately
to the impossibility of using Lemma 1.4. The alternation between (S1) and (S2) becomes
useful for the following reason: it turns out that the final substitution z = x is relatively
painless when (S1) is used, while it’s possible to make it work in the (S2) case at the cost of a
modification of the meaning of “small” and “large” exponents; however, with the condition
provided, it is possible to prove that (S2) occurs only in a finite number of steps, thus saving
the whole argument.

We will be more explicit in the next chapter, where the details will be important to work
out the actual bound; for now we just expose things to have a better understanding of the
situation. Let F (z, y) be of the form:

F (z, y) =
d∑

i=0

yi
si∑

j=0

aijz
rij (2.1)

with aij ∈ K ⊇ C(x) coefficients collecting the small exponents (which we express by
bounding the height of the aij by a certain m) and with rij being the large exponents
(which we express by saying that the smallest of the nonzero rij is at least ε times the
biggest one, for a certain ε); then the following facts are true:

• (S2) is used at most d+ 1 times ([2, Prop 4.5]).

• Suppose we have an expansion:

y = c1z
e1 + c2z

e2 + . . .+ cjz
ej +O(zej+1)

obtained using at all steps always the strategy (S1), and suppose that m is small
enough, i.e. not comparable to the smallest nonzero rij ; then for F (x, y) we also have
an expansion:

y = c1x
e1 + c2x

e2 + . . .+ cjx
ej +O(xej−δj )

where δj is small, in the sense that it’s linearly bounded by m ([2, Prop 5.2]). Since we
always use (S1) it can be seen that the coefficients c1, . . . , cj still belong to K and their
height is still linearly bounded by m; also the exponents e1, . . . , ej are positive linear
combinations of the rij : these facts imply that we can continue the expansion without
changing the initial data m, ε that regulate the meaning of “small” and “large”, which
is why we consider (S1) to be the reasonable one between the two strategies and we
want to use it in all but finitely many steps.

• Suppose now that we are not in the nice situation described above: this means that
either we are starting already with (S2) or that the first term of the expansion is not
large enough; in fact previously e1 was a positive combination of the rij , which means
at least as big as the smallest of them (if nonzero): this is not always the case, and
the conditions above don’t take care of this situation.
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It’s at this point that the use of the less intuitive writing of the polynomial F (x, y)
as F (xn1 , . . . , xnl , y) becomes important. At the beginning clearly the idea is that
the ni (more precisely the “large” ones among the ni) and the rij are chosen to be
the same thing, which we express by the concept that every rij is ~ek · ~n for the vector
~n = (np+1, . . . , nl) and some ~ek = (0, . . . , 0, 1, 0, . . . , 0). However, we can change the
meaning of the ni in such a way that we still have rij = ~qk ·~n for some ~qk with bounded
integer values and at the same time satisfy the condition that the linear combinations
of the rij that will appear while working with the Puiseux expansion are at least ε|~n|∞
(which is the same nice condition that we had in the previous point); this operation
obviously comes at a certain cost: namely, some of the new ni may turn out to be
“small” in the new situation, which in general changes the value of p,m, ε.

With this technical condition fulfilled, we can use (S2) without much pain; if m is small
enough (in the sense already described in the previous case) we find an expansion:

y = cxe + xeO(xδ)

where δ is big (i.e. linearly bounded from below by ε|~n|∞), e is a rational combination
of the rij and c ∈ K with height bounded in terms of m ([2, Prop 5.3]). Notice
that this time the field K must be enlarged to K(c) at the next step but the genus
(fundamental datum when using Lemma 1.4) can still be controlled: the change of
the field is another good reason to use (S2) only finitely many times; also, even if the
expansion features rational exponents it’s easy to see that we can suppose them to be
integers: taking a new variable x′ with x′n = x for a suitable n does not change the
proof, since if h(xn) is the ratio of two polynomials with at most β terms then the
same can be said about h(x) (with the same β, [2, Lemma 2.8]).

Following the results above, we manage then to expand y in the polynomial F (x, y) as:

y =
∑

~q

c~qx
~q·~n + σ (2.2)

where σ can be taken big enough to use effectively Lemma 1.4; we find ourselves in the
same situation as in the proof of Theorem 1.3: {~q} is a bounded collection, the field K has
a well-bounded genus, the entries ni of ~n are considered large (i.e. ni ≥ ε|~n|∞ for a certain
independent ε).

2.3 Theorem 2.2: linear dependence

As said before, the other important issue that distinguishes Theorem 2.2 from Theorem 1.3
is the way the coefficients c~q in (2.2) depend on the small exponents ni: in (1.5) the terms ti
simply contained a rational power of δp(y) (the polynomial made of the small monomials),
but in this case it’s not as easy.

In the previous chapter we distinguished the two cases of h̃, t1, . . . , tL being linearly
dependent or independent, and we’re doing the same also here. If we suppose y, c~qx

~q·~n to be
independent we apply Lemma 1.4 obtaining an estimate of the type m ≥ ε′|~n|∞: this ideally
corresponds to the bound (1.8), as the indicator of “small” quantities (m here, np before) is
in both cases chained to the indicator of “large” quantities (ε|~n|∞ here, np+1 before); if we
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suppose them to be dependent we practically obtain the elimination of the σ in (2.2): this
is the case we examine now.

Let then h(x) be the sum of some c~qx
~q·~n (a subset of the terms in (2.2); also the c~q

now are possibly C-multiples of the previous ones). K is constructed using the c~q which are
coefficients of the Puiseux expansion, thus being algebraic expressions of the xni (the small
ones); now we repeat in a more general context what happened in Theorem 1.3.

Consider elements a~q ∈ C(v1, . . . , vp) which we think of as the c~q with vi instead of xni ;
the a~q will generate a field Kv ⊇ C(v1, . . . , vp) and given a primitive element b in it we can
write them as:

a~q =

e−1∑

j=0

C~qjb
j (2.3)

for some e and some C~qj ∈ C(v1, . . . , vp). We then take a valuation ring O ⊆ Kv and

the projection map π : O → C(x) defined in the intuitive way: we send vi to xni , so
that a~q becomes c~q and Kv becomes K. Take as an example the case of Theorem 1.3:
we have coefficients c~q of the form Cδp(x)

j/d and K generated by δp(x)
1/d over C(x), so

we consider a~q = C(1 + v1 + . . . + vp)
j/d and Kv generated by b = (1 + v1 + . . . + vp)

1/d

over C(v1, . . . , vp) (e indicates the same thing in both cases).
In this specific example everything works smoothly: writing h(x) as a combination

of π(a~q) and using (2.3) we have that all terms with j > 0 must cancel out, leaving us
only some C~qej = Cbej = Cηp(x)

j with C ∈ C; then the inductive hypothesis saves us and
gives the bound on the terms of the ratio that we were longing for. This is not in general the
case: in fact the C~qj could be outside O and then π(C~qj) could be not well-defined; or the
minimal polynomial for b could have coefficients outside O and then π(b) could in general
be not an algebraic function.

This problem though is easily avoidable: in fact this means that we can find a polynomial
at the denominator of the C~qj or of the coefficients of the minimal polynomial which goes
to 0 through π; but then this implies a relation between the exponents ni since at least two
different monomials must specialize to something with the same degree, thus giving us:

k1n1 + . . .+ kpnp = 0 (2.4)

for some suitably bounded integers ki. Thanks to this we can express n1 as combination
of n2, . . . , np (assuming for example k1 6= 0) and decrease the number of variables vi we’re
dealing with: again, the inductive hypothesis concludes the job.

When everything is already inside O we can follow the same path as in Theorem 1.3.
The rest of the proof of Theorem 2.2 is pretty much a rewriting of the previous one, and the
exact same procedure that proves Theorem 1.1 proves also Theorem 2.1.
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Chapter 3

Explicit bounds

3.1 Bound for Theorem 1.3

We provide now explicit values for the bounds in the various theorems we have encountered
before. We start with the bound for Theorem 1.3:

Proposition 3.1. Under the notation of Theorem 1.3 we have B1(l) ≤ 2(2l)
16(2l)l−1

for every
integer l ≥ 1.

Proof. We notice immediately that for l = 1 we retrieve the easy bound B1(1) = 2 ≤ 22
16

;
from now on we suppose l ≥ 2.

We re-examine now the proof of Theorem 1.3. We defined p as the number of “small”
non-constant terms in the polynomial f(x), and for each 0 ≤ p ≤ l − 1 we had only two
possibilities: either h̃(y) (which has the same number of terms as h(x)) can be written as
a ratio of two polynomials with at most B2(l, nl/np+1) terms, or we can control nl/np in
terms of l and nl/np+1.

Suppose that the first possibility is sometimes verified, and call p the biggest number for
which this happens: in this case we have the bound B2(l, nl/np+1), but at this point we can
express nl/np+1 in terms of l and nl/np+2, then again nl/np+2 in terms of l and nl/np+3

and so on until we reach nl/nl = 1; in this way we would have established an absolute
bound, depending only on l. Suppose instead that the first possibility never realizes: this
means that with a similar process as before it’s possible to control nl/n1 only in terms of
l; it’s then possible to find an upper bound to the number of terms using the fact that
εlnl ≤ n1 < n2 < . . . < nl, where εl depends only on l.

Let’s begin with the bound B2. We recall that in the considered situation h̃(y) is the
sum of terms of the following shape:

Cηp(y)
1
e
(s−(hp+1+...+hl)d)y

1
d
(1−s)nl+hp+1np+1+...+hlnl (3.1)

where we required that the exponent of y doesn’t exceed 2nl; the bound on the number L
of such terms is the one provided in (1.6). Also we know by inductive hypothesis that ηp(y)
can be written as ratio of two polynomials with at most B1(p) ≤ B1(l− 1) terms; finally its
exponent E has absolute value at most:

E ≤ d(2 + (l − p)2nl/np+1) ≤ 4l(l − 1)(1 + lnl/np+1)
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After bringing everything to common denominator we have L terms (3.1) each with at
most B1(l − 1)E+1 at the numerator and denominator, since the exponent of ηp(y) ranges
from 1 to −E; hence:

B2(l, nl/np+1) ≤ (2l − 1)2(1 + 2nl/np+1)
lB1(l − 1)4l(l−1)(1+lnl/np+1)+1 (3.2)

Now we estimate nl/np+1. It’s sufficient to iterate the estimate found in (1.8):

nl/np+1 ≤ 24(l+2)l3(l − 1)3(nl/np+2)
2l

≤
[

24(l+2)l3(l − 1)3
]1+2l+...+(2l)l−p−2

≤
[

24(l+2)l3(l − 1)3
]2(2l)l−2

(3.3)

Then we put this in (3.2). We work first with the exponent:

4l(l − 1)(1 + lnl/np+1) + 1 ≤ 4l(l − 1)

(

1 + l
[

24(l+2)l3(l − 1)3
]2(2l)l−2)

+ 1

≤ 8l3
[

24(l+2)l6
]2(2l)l−2

= 23+8(l+2)(2l)l−2

l3+12(2l)l−2

≤ 22
l+2ll−1

l2
l+2ll−2

=: K(l)

and then with the coefficient:

(2l − 1)2(1 + 2nl/np+1)
l ≤ (2l − 1)2

(

1 + 2
[

24(l+2)l3(l − 1)3
]2(2l)l−2)l

≤ 4l22l
[

24(l+2)l6
](2l)l−1

= 22+l+4(l+2)(2l)l−1

l2+6(2l)l−1

≤ 22
l+2ll l2

l+2ll−1

=: H(l)

thus obtaining B1(l) ≤ H(l)B1(l − 1)K(l).
We already observed at the beginning that the bound was verified for l = 1. Supposing

now the statement true for l − 1, we want then to prove:

H(l) · 2K(l)·(2l−2)16(2l−2)l−2

≤ 2(2l)
16(2l)l−1

(3.4)

We start working with the exponent on the left hand side:

K(l) · (2l − 2)16(2l−2)l−2

≤ 22
l+2ll−1

l2
l+2ll−2

(2l)16(2l)
l−2

= 28(2l)
l−1+16(2l)l−2

· l16(2l)
l−2+16(2l)l−2

≤ (2l)16(2l)
l−1

−16(2l)l−2

Using this in (3.4) and passing to the logarithm we find:

log2 H(l) + (2l)16(2l)
l−1

−16(2l)l−2

≤ 2l+2ll + 2l+2ll−1 log2 l + (2l)16(2l)
l−1

−16(2l)l−2

≤ 8(2l)l + (2l)16(2l)
l−1

−16(2l)l−2

≤

(
16(2l)l−2

(2l)16(2l)l−2 · 2l2 + 1

)

(2l)16(2l)
l−1

−16(2l)l−2

≤ (2l)2(2l)16(2l)
l−1

−16(2l)l−2

≤ (2l)16(2l)
l−1
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thus proving the bound we were looking for.
The case when the bound B2 never realizes for any p is easy now. In fact nl/n1 is

controlled with the same bound as in (3.3) and h̃(y) is the sum of γ0y
nl/d and some terms

with the exponent of y being h1n1 + . . . + hlnl ≤ nl/d ≤ nl; hence the number of terms is
bounded by:

1 +

(

1 +
[

24(l+2)l3(l − 1)3
]2(2l)l−2)l

which is in turn already smaller than H(l).

3.2 Bound for Theorem 1.1

The next bound the retrieve is the one in Theorem 1.1.

Proposition 3.2. Under the notation of Theorem 1.1 we have B(l) ≤ B1(l)
5B1(l)

2

for every
integer l ≥ 1, where B1(l) is the bound of Proposition 3.1.

Proof. Again, we re-examine the proof of Theorem 1.1. We write explicitly the equation
f(x)− g(h1(x)/h2(x)) = 0:

f(x) =

l∑

i=1

aix
mi , g(x) =

d∑

j=0

bjx
j , hr(x) =

B1(l)∑

k=1

crkx
nrk (r = 1, 2)

0 = h2(x)
d(f(x)− g(h1(x)/h2(x)))

=





B1(l)∑

k=1

c2kx
n2k





d(
l∑

i=1

aix
mi

)

−

d∑

j=0

bj





B1(l)∑

k=1

c1kx
n1k





j



B1(l)∑

k=1

c2kx
n2k





d−j

As we can observe, when we build the linear system of the exponents mi, n1k, n2k the coef-
ficients that appear are all bounded by d (≤ 2l(l − 1) by Proposition 1.2); also, if J is the
number of independent parametres for the solution of the system, then it is limited by the
total number of variables, i.e. J ≤ l + 2B1(l). Solving the linear system we find that the

coefficients v
(·)
j in the solution:

mi =

J∑

j=1

v
(i)
j uj , n1k =

J∑

j=1

v
(1k)
j uj , n2k =

J∑

j=1

v
(2k)
j uj

are determinants of square matrices of side l + 2B1(l) − J and entries bounded by d; this

technically does not catch all the solutions, because we need the v
(·)
j to be integer, but what

we have is sufficient as in the proof we need only to be able to choose the uj arbitrarily in Z.
A bound on these determinants is given then by (l+2B1(l)− J)!dl+2B1(l)−J , and we notice
that they are also the degrees of the monomials appearing in H1, H2, so that in the end:

B(l) ≤
(

1 + 4(l + 2B1(l)− J)!dl+2B1(l)−J
)J

≤
(

1 + 4(l + 2B1(l))!d
l+2B1(l)

)l+2B1(l)

≤ 4l+2B1(l)(l + 2B1(l))!
l+2B1(l)(2l2)(l+2B1(l))

2

≤ 2(l+2B1(l))
2+2(l+2B1(l))l2(l+2B1(l))

2

el+2B1(l)−(l+2B1(l))
2

(l + 2B1(l))
l+2B1(l)+(l+2B1(l))

2
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where the last inequality uses the fact that x! ≤ ex(x/e)x; also 2x
2+2xex−x2

< 1 when the

condition x ≥ 1 + 2 · 22
16

is satisfied, therefore we obtain:

B(l) ≤ l2(l+2B1(l))
2

(l + 2B1(l))
l+2B1(l)+(l+2B1(l))

2

≤ l18B1(l)
2

(3B1(l))
l+2B1(l)+l2+4lB1(l)34B1(l)

2

B1(l)
4B1(l)

2

≤ (l18312)B1(l)
2

B1(l)
8lB1(l)B1(l)

4B1(l)
2

We have also easily that 16l ≤ 324l36 ≤ B1(l), and this finally proves our thesis.

We can compare this bound with what Schinzel found in the special case of his conjecture.
The bound T (d, l) given in (1.1) (with the not very restrictive hypothesis that the maximum
is not achieved by 2) combined with the bound on d given by Proposition 1.2 (be careful
that l includes the constant term in the first case and it doesn’t in the second) gives us:

T (d, l) ≤ 1 + e(2
l−d−1

−1)(d ln 4d−ln d) ≤ e2
l−1d ln 4d = (4d)2

l−1d

≤ (8l(l + 1))2
ll(l+1) ≤ (4l)2

l+2l2

which, as Zannier thought, is a much stronger bound than B(l) in this particular situation.
We add that in fact an even stronger bound exists, proven by Schinzel and Zannier [5],

that reduces the double exponentiation of the original result by Schinzel to a single expo-
nentiation; with the conditions already mentioned above we get:

T (d, l) ≤ 1 + (4d)l−2 ≤ (4l)2(l−2)

3.3 Bound for Theorem 2.2: preliminary lemmas

These last sections deal with explicit bounds for the general case, examined in Chapter 2.
The discussion here follows closely the results and passages contained in [2], so in order
to thoroughly understand the whole argument it is advised to read it. Also, it has to be
understood that sometimes not optimal approximations have been made in order to simplify
the writing of some quantities: this has been done mostly to make possible to work with
expressions that so many times had to be nested one into the other.

We start with a series of preliminary lemmas that estimate other quantities used in the
main argument that were left mostly implicit in the original paper.

Lemma 3.3. C0(C) = C(C + 1)2.

Proof. In [2, Prop 5.1] we are considering a polynomial F (z, y) as in (2.1) where d, si ≤ C
and the height of the aij is bounded by Cm, and we want to find a bound h(F ) ≤ C0m; but
the height of F is trivially bounded by the sum of the heights of its coefficients, so:

h(F ) ≤
∑

i,j

h(aij) ≤ #{aij}i,jCm ≤ (C + 1)2Cm

thus giving our result.

Lemma 3.4. C1(C) = 2C2(C + 1)2.
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Proof. In [2, Prop 5.2] C1 is defined as 2CC0, so we use Lemma 3.3.

Lemma 3.5. C2(C) = C + C2(C + 1)2.

Proof. In [2, Prop 5.4] we are starting with F (z, y) as in (2.1) with bounds d, si ≤ C
and h(aij) ≤ Cm; we also suppose that we are using the step (S2) to pass to a new polyno-
mial Fnew(z, y):

Fnew(z, y) = z−tF (z, cze + zey) =
∑

i,j,k

aij

(
i

k

)

ckyi−kzrij+ei−t

where also h(c) ≤ C0m, and we are first looking for a bound C ′m on the height of the
coefficients of Fnew. This is easy to find:

h

(

aij

(
i

k

)

ck
)

≤ h(aij) + kh(c) ≤ Cm+ dC0m ≤ (C + C2(C + 1)2)m

and summing more of these terms together (to get the coefficients of Fnew) gives the same
bound, as height is in practice the degree with respect to x in this situation; therefore
C ′(C) = C+C2(C+1)2. The quantity C2 has the purpose of allowing to reconduct ourselves
to the original situation with the new polynomial Fnew: C2 is then defined as max{C2, C ′},
where C2 accounts for the other conditions that must be satisfied, involving for instance
the number of terms of Fnew and the degree of the extension K(c); hence looking at the
previous expression we clearly have C2 = C ′.

Lemma 3.6. ε1(C, ε) =
ε

C(C+2) .

Proof. By definition in [2, Prop 5.4].

Lemma 3.7. C3(C) = C2C3

.

Proof. In [2, Prop 5.6] we are starting with a q × q square matrix Q (q ≤ C) with rational
entries with height bounded by C (in the proposition we are considering the logarithmic
height, but in the rest of the paper the absolute height is implicitly used, so here the latter
is used): we are searching for a bound C3 on the height of det(Q) and of the entries of Q−1.
For the determinant we have:

HQ(det(Q)) = HQ

(
∑

σ

q
∏

i=1

Qiσ(i)

)

≤ q!Cq3 ≤ CC3+C

The entries of the adjoint matrix of Q are determinants of smaller (q− 1)× (q− 1) matrices
with the same entries as Q, so for the inverse matrix:

HQ((Q
−1)ij) ≤ HQ(det(Q))HQ(adj(Q)ij) ≤ CC3+CC(C−1)3+C−1 ≤ C2C3

the last inequality being true for all integers C ≥ 1.

Lemma 3.8. C4(C) = C4C3+1.

Proof. In [2, Cor 5.9] C4 is defined as CC3(1+C3): we can apply Lemma 3.7 to it with the

slight improvement 1 + C3 ≤ C2C3

which is true for every integer C ≥ 2 (we are going in
fact to work always with at least C ≥ 4).
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Lemma 3.9. ε2(C, ε) =
ε

C2C3+1
.

Proof. In [2, Cor 5.9] ε2 is defined as ε
CC3

, so we just apply Lemma 3.7.

Lemma 3.10. ε3(C, ε) =
ε3C+4

26C+7C6C+8 .

Proof. In [2, Lemma 5.11] ε3 is defined as:

ε3 =
ε

2C
(

L(L+1)n

n! + 1
)2 (

C L(L+1)n

n! + 2
)

with L = 4C2

ε + 1 and n ≤ C; everywhere in our discussion we’ll assume C ≥ 4 and ε ≤ 1,

as this is what we will always work with. Since L > C we have (L+1)n

n! ≤ (L+1)C

C! ; then we
observe that with our conditions we get:

C!(L− 1)C+1 − L(L+ 1)C >

(

C!−

(
3

2

)C+1
)

(L− 1)C+1 > (L− 1)C+1 > C!

so that L(L+1)C

C! +1 > (L−1)C+1, and consequently also L(L+1)C

C! + 2
C > (L−1)C+1. Hence:

ε3 ≥
ε

2C
(

L(L+1)C

C! + 1
)2 (

C L(L+1)C

C! + 2
) >

ε

2C(L− 1)2(C+1)C(L− 1)C+1

=
ε

2C2

(
4C2

ε

)−2(C+1)(
4C2

ε

)−(C+1)

=
ε3C+4

26C+7C6C+8

so we can give the last one as new definition of ε3.

Lemma 3.11. C5(C) = CC+4.

Proof. By definition in [2, Lemma 5.13].

Lemma 3.12. C6(C) = 2C2CC+2

.

Proof. In [2, Lemma 5.14] we are analyzing the situation of the linear dependence we dis-
cussed in Chapter 2. We are given elements a~q ∈ C(v1, . . . , vp) roots of monic polynomi-
als p~q(z) ∈ C(v1, . . . , vp)[z], a primitive element b of the field Kv generated by the a~q and
relations as in (2.3): we ask that the number of a~q is at most C + 1, that the degree in z
of the p~q is at most C and that the degree in each vi of all the coefficients of the p~q is at
most C; what we want is to find a bound C6 on the degree in each vi of all the C~qj and of
the coefficients of the minimal polynomial for b.

The latter bound has already been found in [2, Lemma 5.13] as C5, so we want C6 ≥ C5

(it will be easily satisfied anyway). Call bσ the conjugates of b in C(v1, . . . , vp) and call a~qσ
the conjugates of the a~q; we have:

a~qσ =

e−1∑

j=0

C~qjb
j
σ
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exactly as in (2.3). First of all, e = [Kv : C(v1, . . . , vp)] and Kv is generated by the (at most)
C + 1 elements a~q whose minimal polynomials have degree (at most) C, thus e ≤ CC+1;
also the height of the bσ are bounded by C3, being roots of the minimal polynomial of b;
(bjσ)j,σ is an invertible e × e square matrix, so each C~qj can be expressed as the sum of
e terms a~qσb

′
σj where the b′σj are entries of the inverse matrix. From all this, with respect

to each vi we obtain:

h(C~qj) ≤
∑

σ

h(a~qσ) + h(b′σj) ≤ e(C3 + 2e!(1 + C3 + 2C3 + . . .+ (e− 1)C3))

= e

(

C3 + 2e!

(

1 + C3 e(e− 1)

2

))

≤ eC3(1 + eee2) ≤ 2C3ee+3

≤ 2C3C(C+1)(CC+1+3) = 2CCC+2+CC+1+3C+6 ≤ 2C2CC+2

which satisfies also C6 ≥ C5.

Lemma 3.13. N1(C, p) = C3pCC+3

.

Proof. In [2, Prop 5.16] we are working in the linear dependence case, more specifically when
everything is inside O. We have a sum of at most C + 1 elements C~qj which we project
through the map π: each C~qj has degree at most C6 in each variable, thus being ratio of
polynomials with at most (C6 + 1)p terms (and the same will evidently be true after the
projection, since monomials go to monomials); using Lemma 3.12 we obtain then a bound N1

on the number of terms for the sum:

N1 ≤ (C + 1)(C6 + 1)p(C+1) = (C + 1)(2C2CC+2

+ 1)p(C+1) ≤ 3p(C+1)C2CC+2p(C+1)+1

≤ C2pCC+3+2pCC+2+pC+C+1 ≤ C3pCC+3

Lemma 3.14. C7(C) = CC5C2C+9

.

Proof. We say immediately that in [2, Prop 5.17] C7(C, p) is actually defined depending also
on p; in every application however we have the inequalities p ≤ l ≤ 2l ≤ C, therefore we can
express C7 as dependent only on C.

We are again in the situation of linear dependence, and C7 is defined to be the maximum
of three different bounds. The first is the bound C ′

7 in h(c~q) ≤ C ′
7np: we already know

that a~q has degree at most C3 in each variable, so after the substitutions vi 7→ xni the
height of c~q in x is at most pC3np; therefore C ′

7 = C4. To define the second and the third
bound, consider the minimal polynomial p∗ of b and two polynomials G1, G2 such that:

G1p
∗ +G2

∂p∗

∂z
= 1

then if G1 6∈ O or G2 6∈ O we get a linear relation (2.4) with |ki| ≤ C ′′
7 , while if G1, G2 ∈ O

we get a bound 2g− 2 ≤ C ′′′
7 np on the genus of K.

The degrees of p∗, ∂p∗

∂z in z and the degrees of their coefficients in each vi are all bounded
by C5 = CC+4: by Euclidean division G1, G2 have degree less than C5 in z and their
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coefficients have degree at most 2C5(C5 − 1) in each vi, so by [2, Prop 5.15] we have a
bound:

C ′′
7 = 2C6 (2C5(C5 − 1)) ≤ 2C6

(
2C2

5

)
= 2 · 2(2C2(C+4))2(2C

2(C+4))2C
2(C+4)+2

≤ C(2C+9)2(2C2(C+4))2C
2(C+4)+2

≤ C(2C2(C+4))2C
2(C+4)+3

≤ CC(2C+9)(2C2C+8+3)

= CC4C2C+9+18C2C+8+6C+27

≤ CC5C2C+9

where the last one holds because we will use C7 only with C ≥ C4(4) = 2514. For the last
bound we use Riemann-Hurwitz, so we need the ramification points which are the poles
of π(G1) and π(G2); since the degree of each coefficient in each vi is ≤ 2C5(C5 − 1) and
there are at most C5 coefficients, the poles of both functions after the projection π are at
most 4C2

5 (C5 − 1)pnp. Also, each ramification point has ramification degree bounded by C,
therefore using Riemann-Hurwitz:

C ′′′
7 ≤ 4C2

5 (C5 − 1)p(C − 1) ≤ 4C3(C+4)C2 = 4C3C+14

So in the end we get:

C7 = max

{

C ′
7, C

′′
7 ,

1

2
C ′′′

7 +
1

np

}

≤ max

{

C4, CC5C2C+9

, 2C3C+14 + 1

}

= CC5C2C+9

3.4 Bound for Theorem 2.2: bound expressions

Now that we have the previous lemmas we can proceed to the next step. The proof of
Theorem 2.2 contained in [2] makes use of a big intermediate proposition which contains
most of the hardcore job for finding explicit bounds: we are going now to analyze the
passages of this proposition in order to obtain bound expressions which depend on some
initial data that are easily provided in the proof of the main theorem.

Here is the proposition ([2, Prop 5.18]):

Proposition 3.15. Consider two real numbers C ≥ 1 and 0 < ε ≤ 1 and an integer m ≥ 0,
consider a function field K over C(x) with [K : C(x)] ≤ C and consider a height function h
and a valuation v on K such that h(x) = v(x) = 1. Take a polynomial P (x) (already a
Puiseux expansion):

P (x) = c0x
~k0·~n + c1x

~k1·~n + . . .+ csx
~ks·~n + x

~ks+1·~nξ

where the error term ξ is root of a φ(y) as follows:

φ(y) =
d∑

i=0

yi
si∑

j=0

aijx
~qij ·~n

and suppose the following conditions to be satisfied:

1. 0 = n0 < n1 ≤ . . . ≤ np ≤ . . . nl with 0 ≤ p < l, np+1 ≥ εnl and m = np, and
we have also ~n = (np+1, . . . , nl) (so the exponents n1, . . . , np are the “small” ones
and np+1, . . . , nl are the “large” ones);
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2. s, si, d ≤ C;

3. ci, aij ∈ K − {0} and h(ci), h(aij) ≤ Cm;

4. if p > 0 then the coefficients ci, aij are in the image of the map π : vi 7→ xni given
in the previous chapter, they’re roots of polynomials of degree ≤ C with coefficients of
degree ≤ C in each vi, and the field K is generated by them;

5. the genus g of K is at most Cm;

6. P (x) has degree at most C2nl;

7. ~ki, ~qij ∈ Zl−p, also HQ(~ki), HQ(~qij) ≤ C and ~qij 6= ~qik for every j 6= k: we also
define rij = ~qij · ~n and we call ~r the vector of all the nonzero rij;

8. v(ξ) > εnl;

9. there is an integer e ≤ d such that rej = 0 for some j: we suppose e to be the minimum
with this property.

Finally say that Theorem 2.2 is true for all integers < l. Then there are three num-
bers N2, C8, ε4 such that at least one of these three conclusions holds:

(C1) P (x) is ratio of two polynomials with at most N2 terms;

(C2) there are integers ki with |ki| ≤ C8, not all zero, such that k1n1 + . . .+ klnl = 0;

(C3) m = np ≥ ε4nl.

We now follow the proof of this proposition in all its steps, so that we will be able to
reconstruct at the end the three numbers. The proof is based on a double induction, on l−p
and on e.

Step 1: First, if (~qij − ~qik) · ~n = 0 for some j 6= k then we get (C2) with some |ki| ≤ 2C;
therefore C8 ≥ 2C. From now on we suppose that this does not happen.

Step 2: We reparametrize the components of ~n (thus changing the vectors ~ki, ~qij too,
while leaving untouched the scalar products) in such a way that a suitable class
of linear combinations of the rij are now “not too small”, i.e. at least ε|~n|∞
(up to a change of ε too): this procedure will not be described in detail here,
concentrating only on the results; we remind that the nice condition above is a
starting point for the use of the strategies (S1), (S2).

We obtain new large exponents n′
p+1, . . . , n

′
l and we call p′ the minimum such

that n′
p′+1 ≥ n′

l (in general p ≤ p′ < l) and m′ = max{m,n′
p′}; we can have two

possibilities: either the procedure is successful and our nice condition is satisfied
with C4 instead of C and ε2 instead of ε, or we get m′ ≥ ε2

4Cn′
l. In the latter

possibility we can substitute ε with ε2
4C and have again the same two possibilities

but with a smaller p′, until eventually we fall into the first possibility (again
with p′ ≥ p).

23



Step 3: If after having reached the first alternative in the previous step we still have p′ > p
we are reduced to conditions 1-8 of the proposition being satisfied (and also 9
after an irrelevant division) for l − p′ < l − p so we exit with N2, C8, ε4(l − p′)
or we have a condition n′

p′ ≥ ε4n
′
l; in the latter case we start again with p′ − 1

with Step 2 until repeating these two steps enough times we get p′ = p.

Let’s stop for a moment and find a bound for what we have obtained until now.
We have to decrease our p′ at most l − p − 1 times: every time we decrease we
can either have the substitution:

ε 7→
ε2
4C

=
ε

4C2C3+2

or the substitutions:

C 7→ C4 = C4C3+1

ε 7→ ε4(C4, ε2, l − p′) = ε4

(

C4C3+1,
ε

C2C3+1
, l − p′

)

and with the second there is also an exit case with N2, C8, ε4(C4, ε2, l − p′). If
we define ε4 in such a way that the second subsitution gives a smaller ε than
the first one (which will trivially be the case: as we can expect, N2 and C8 are
huge and ε4 is tiny), then we can suppose that the bounds when we finally arrive
to p′ = p are given by the repetition l − p− 1 times of the second substitution.

Hence at the end of Step 3 (when finally p′ = p) we are working with C ′ = Cl−p−1

and ε′ = El−p−1 where we are recursively defining:

C0 = C4C3+1 E0 =
ε

C2C3+1

Cn = C
4C3

n−1+1

n−1 En =
ε4(Cn−1, En−1, n = l − p′)

C
2C3

n−1+1

n−1

and the current bounds on the unknown quantities, given by the exit values
at the last step (which are obviously bigger than the ones from the previous
passages), are:

N2 ≥ N2(Cl−p−2, El−p−2, l − p− 1)

C8 ≥ C8(Cl−p−2, El−p−2, l − p− 1)

ε4 ≤ ε4(Cl−p−2, El−p−2, l − p− 1)

Step 4: At this point we really start expanding P (x) according to our strategies. We
begin supposing that we have to use (S2) (so that by the condition we gave in
this case we must have e > 1).

We expand ξ = c′xe + xeξ′: condition 4 is still satisfied with max{C ′, C3} = C ′

(since now the aij appear in the polynomial that has c′ as a root and they have
height ≤ C3) and for the new field K ′ = K(c′) either we have g

′ ≤ C7(C
3)n′

p

and so condition 5 or we reach (C2) with C7(C
3) (so C8 ≥ C7(C

3)). Finally we

have either (C3) with
ε′2
4C′

or (C3) with ε′2

8C′4 or all the conditions 1-9 satisfied

24



by the new extended expression with e′ < e; therefore we can work by induction
on e and say that using (S2) we have also these conditions:

C8 ≥ C ′′ = max{C7(C
3), C ′}

ε4 ≤ ε′′ = min

{
ε′

4C ′2C′3+2
,
ε′2

8C ′4

}

N2 ≥ N2(C
′′, ε′′, e− 1)

C8 ≥ C8(C
′′, ε′′, e− 1)

ε4 ≤ ε4(C
′′, ε′′, e− 1)

Step 5: Suppose now that we have to use the strategy (S1), i.e. we have an expansion
ξ = c′0x

e0 + c′1x
e1 + . . .+ c′jx

ej + ξ′. First we call jmax the maximum j that gives
such an expansion using (S1) for every term (it could be possible that jmax = ∞);
then we call jmin the minimum j such that we have:

v(ξ′) ≥

(

2C ′2 +
ε′

2

)

n′
l

We find that we can suppose jmin =
(

2C ′2 + ε′

2

)
l
ε′ or that n′

l ≤ l, so that

we can reduce ourselves to a smaller l: this gives us by induction on l other
bounds N2, C8, ε4(C

′, ε′, l − 1).

Now there are two possibilities: either jmin exists (which means that jmax is
bigger than the expression above given for jmin; this is always the case when we
have e = 1, since in this situation jmax = ∞) or it doesn’t (which means jmax

smaller than the same expression). Suppose that we are in the former case. First
we calculate the new condition 4 in this situation: c′0 is root again of a polynomial
with coefficients having at most degree C in each vi, so nothing changes for j = 0;
c′0 itself has height ≤ C3, so the coefficients of the new φ(x, c′0x

e0 + y′) have
height ≤ C3d, and the same can be said about the polynomial for c′1. Therefore

the height for the even newer φ is at most C(3d)2 and it’s easy to see by induction
that condition 4 is fulfilled with C(3d)j (calling j the expression for jmin); hence
we fall into one of the three conclusions given in the thesis:

N2 ≥ N1(C
(3d)j , p)

C8 ≥ 2C6(C
(3d)j )

ε4 ≥ ε′ε3(C
(3d)j , ε′)

Step 6: Suppose instead that there is no such jmin; this means that we arrive to jmax = j
expanding only with (S1) and that for the next step we are obliged to use (S2):
so we just need to find which new C satisfies conditions 1-9 and then we can
reapply the whole proposition from Step 1 without falling into (S1) anymore

(thus avoiding Steps 5-6). As aforementioned we have condition 4 with C(3d)j ;

condition 2 holds with j + C + 1, condition 3 with pC(3d)j+1

. The exponent e0
is always a difference rab − rcd, so the new exponents in the first new φ are of
the form:

e0k + ref = k(~qab − ~qcd) · ~n+ ~qef · ~n
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and condition 7 would be respected for C ′(2d+1) instead of C ′ (obviously k ≤ d);
iterating this process we get in the end condition 7 for C ′(2d+ 1)j+1, and using
it we also get condition 6 for l− p times the square root of the condition 7. The
maximum of all these is the bound for condition 3 (it’s easy to see it if we suppose
C ≥ (d + 1)2, which again will always be the case), therefore we are repeating

the proposition this time with ε′ instead of ε and with pC(3d)j+1

instead of C.

At this point we know that the strategy (S2) can be used at most e + 1 ≤ d + 1 times,
and that actually the possibility of e+ 1 can be realized only when (S2) is the starting step
([2, Prop 4.5]). Therefore we get at most a succession of steps like:

2d+2 steps
︷ ︸︸ ︷

(S2)(S1)(S2)(S1) . . . (S2)(S1)

Call then N
[A]
2 , C

[A]
8 , ε

[A]
4 the bounds coming from the first part of the procedure, before the

choice of the strategy (Steps 1-3), call C
[B]
8 , ε

[B]
4 the bounds coming from the choice of (S2)

(Step 4) and call N
[C]
2 , C

[C]
8 , ε

[C]
4 the bounds coming from the choice of (S1) (Steps 5-6); also

define:

θ1(C) = pC(3d)j+1

θ2(C) = C ′′

χ1(ε) = ε′ χ2(ε) = ε′′

so that θ1, χ1 tell us what to replace C, ε with after (S1) and θ2, χ2 after (S2). Then:

N
[A]
2 = N2(Cl−p−2, El−p−2, l − p− 1)

C
[A]
8 = max {2C,C8(Cl−p−2, El−p−2, l − p− 1)}

ε
[A]
4 = ε4(Cl−p−2, El−p−2, l − p− 1)

C
[B]
8 = C ′′

ε
[B]
4 = ε′′

N
[C]
2 = max

{

N2(C
′, ε′, l − 1), N1(C

(3d)j , p)
}

C
[C]
8 = max

{

C8(C
′, ε′, l − 1), 2C6(C

(3d)j )
}

ε
[C]
4 = min

{

ε4(C
′, ε′, l − 1), ε′ε3(C

(3d)j , ε′)
}

and the final bounds are coming from the [B] bounds at the (2d + 1)-th step and from the
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[A] and [C] bounds at the (2d+ 2)-th step:

N2 = max{N
[A]
2

(
(θ1θ2)

d+1(C), (χ1χ2)
d+1(ε)

)
,

N
[C]
2

(
(θ1θ2)

d+1(C), (χ1χ2)
d+1(ε)

)
}

C8 = max{C
[A]
8

(
(θ1θ2)

d+1(C), (χ1χ2)
d+1(ε)

)
,

C
[B]
8

(
θ2(θ1θ2)

d(C), χ2(χ1χ2)
d(ε)

)
,

C
[C]
8

(
(θ1θ2)

d+1(C), (χ1χ2)
d+1(ε)

)
}

ε4 = min{ε
[A]
4

(
(θ1θ2)

d+1(C), (χ1χ2)
d+1(ε)

)
,

ε
[B]
4

(
θ2(θ1θ2)

d(C), χ2(χ1χ2)
d(ε)

)
,

ε
[C]
4

(
(θ1θ2)

d+1(C), (χ1χ2)
d+1(ε)

)
}

Here we took some liberties in the notation for the sake of legibility. First of all, the internal
multiplications and powers are to be intended as compositions; moreover, the arguments of
these functions at every step of the composition are the values found at the previous step
(which is not trivial to specify, since in the case of χ1, χ2 the result depends on ε but also
on C). For example:

χ2(ε) := χ2(ε, C)

χ1χ2(ε) := χ1 (χ2(ε), θ2(C))

χ2χ1χ2(ε) := χ2 (χ1χ2(ε), θ1θ2(C))

and so on.

3.5 Bound for Theorem 2.2 and Theorem 2.1

With the expressions of the previous section it is finally possible to find the values of β1(d, l)
and β(d, l).

The base case l = 1 is easy and does not need the heavy machinery that we developed
in full generality. For l = 1 we have the equation F (xn1 , h(x)) = 0, therefore we can
expand h(x) as:

h(x) =

∞∑

i=0

cix
n1ei

Notice that we can suppose that the ei are actually integers, up to a change of variables
x 7→ xe that gets rid of the common denominator; at this point, since the degree of h(x) is
bounded by dn1, we have the condition ei ≤ d2 and then β(d, 1) = β1(d, 1) ≤ d2 + 1 (it’s
important to observe that the change of variables doesn’t affect this bound).

Then we work by induction on l: what we want is to work on the original equation
F (xn1 , . . . , xnl , h(x)) = 0 so that we will be able to apply Proposition 3.15. Firstly, we
already have all the conditions 2-7 and 9 satisfied with the choices:

φ(y) = F (xn1 , . . . , xnl , y), C = (d+ 1)l, ε = 1, p = 0, ξ = h(x), K = C(x).

Then we reparametrize (as in Step 2 of Proposition 3.15) in order to make condition 1
satisfied too: with this process we could get either m′ = n′

p′ ≥ ε2
4Cn′

l (since p = 0 implies

27



that m = 0) or we could have condition 1 with C4 instead of C and ε2 instead of ε; in
the former case we reobtain the same two possibilities with a lower p′ after substituting ε
with ε2

4C , and eventually we will get condition 1 after at most l − 1 iterations. Hence we
have satisfied conditions 1-7 and 9 with the values:

C = C4((d+ 1)l) = (d+ 1)4l(d+1)3l+l

ε = ε2

(
1

4(d+ 1)l
ε2

(
1

4(d+ 1)l
. . . ε2((d+ 1)l, 1) . . . , 1

)

, 1

)

=
1

(d+ 1)2l(d+1)3l+l
(
4(d+ 1)2l(d+1)3l+2l

)l−1
=

1

22l−2(d+ 1)2l2(d+1)3l+2l2−l

≥
1

22l(d+ 1)3l2(d+1)3l

Finally, to satisfy condition 8, we start using (S2) to expand h(x) (independently of whether
it should be used or not): every time either we obtain conditions 1-9 with C2 and ε1 or we

decrease the value of p′ with ε2
4C or ε2

8C4 ; again, the first possibility will be certainly obtained
after at most l− 1 iterations of the second alternative. Working out the math we see easily

that for the first iteration we would have ε2
4C ≤ ε2

8C4 while for all the following ones we would
have the inequality in the other direction; so at the end we are left with the values:

C = (d+ 1)4l(d+1)3l+l

(

1 + (d+ 1)4l(d+1)3l+l
(

1 + (d+ 1)4l(d+1)3l+l
)2
)

≤ 2(d+ 1)16l(d+1)3l+4l

ε−1 =
[

22l(d+ 1)3l
2(d+1)3l

]2l−2 [

4(d+ 1)(4l(d+1)3l+l)(2(d+1)12l(d+1)3l+3l+2)

]2l−2

·

·
[

8(d+ 1)16l(d+1)3l+4l
]2l−2

−1

(d+ 1)4l(d+1)3l+l
[

(d+ 1)4l(d+1)3l+l + 2
]

≤ 22
l−1(l+4)−2(d+ 1)2

l+2l(d+1)12l(d+1)3l+6l

≤ 22
l+1l(d+ 1)(d+1)12l(d+1)3l+9l

At this point it is possible to apply Proposition 3.15 with the values above, reaching one of
the three conclusions. If we reach (C1) we are done; if we reach (C2) then we can reduce to
the previous step by induction applying the following lemma ([2, Lemma 2.9]):

Lemma 3.16. Suppose that we have proven Theorem 2.2 for l − 1 and for every d, and
suppose that we have integers k1, . . . , kl (not all zero) with |ki| ≤ C and k1n1+. . .+klnl = 0.
Then h(x) can be written as the ratio of two polynomials with at most β1(2dC, l− 1) terms.

If we reach (C3), we substitute ε with the ε4 we obtained and reapply Proposition 3.15
with p− 1 instead of p; in the end when p = 0 it would be impossible to obtain (C3) again,
so at most we reach (C1) or (C2) in l − 1 steps. Therefore the bound β1 is:

β1(d, l) = max
{
N2(C, ε

l−1
4 (C, ε)), β1(2dC8(C, ε

l−1
4 (C, ε)), l − 1)

}

where C, ε are the ones given before and with εl−1
4 we mean the composition l − 1 times

of ε4, where in the argument we put every time the ε4 of the step before and always the
same C.
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The bound β is obtained in exactly the same way as the bound B in Proposition 3.2;
the condition 324l36 ≤ β1(d, l) is still easily satisfied for l > 1, hence:

β(d, 1) = β1(d, 1) = d2 + 1

β(d, l) = β1(d, l)
5β1(d,l)

2

(l > 1)
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Chapter 4

Further generalizations

We reserve this last brief chapter to some conclusive remarks about possible generalizations
of Theorem 2.1.

The first problem that comes to mind is likely whether the result holds for other fields
than C. Rényi [3] and Erdős [1] already asked questions in this direction: their papers deal
in fact with the cases Q and R rather than C, but their results are easily valid for C too;
in particular Rényi wondered if the function Q(k) defined in the first section had the same
value when working with rational, real or complex coefficients.

Also Schinzel [4] worked with more general fields than just C to find the bound T (d, l):
his results in practice hold for h(x) ∈ K[x] where K has either zero characteristic or charac-
teristic big enough to avoid nasty reductions of the degree of the monomials of h(x)d. As he
himself wrote though, his method is not generalizable even in the case of Schinzel’s conjec-
ture, as it relies on the behaviour of the polynomial xd−y in the field K considered. On the
other hand, the method used to prove Theorem 1.1 and Theorem 2.1 makes extensive use of
the properties of the complex field: to construct the Puiseux expansion, and in particular to
use the fact that there is a finite common denominator for all the exponents, we require to
be in an algebraically closed field of zero characteristic; moreover Lemma 1.4, which is the
heart of the second part of both proofs, requires a function field that is a finite extension
of C(x). However, Zannier [6] gave a similar result for general algebraically closed fields of
characteristic zero, so it could be possible with some carefulness to generalize Theorem 2.1
at least in this case.

Another direction that is worth exploring involves a generalization of the concept of
lacunary polynomial, which is also most likely the reason why people tackling this problem
started considering projections of F (v1, . . . , vl, y) through π : vi 7→ xni rather than the more
simple-looking F (x, y). We can consider in fact complex tori Gl

m and then restrictions of
regular functions to 1-parameter subgroups given by π : vi 7→ xni , or even to 1-parameter
cosets given by π : vi 7→ λix

ni : in this context a lacunary polynomial is simply such
restriction of a regular function; it could then be of interest to generalize the definition of
lacunary polynomial to the case of powers of algebraic varieties other than Gm: the authors
of [2] ask whether analogues of the various results here presented, from Schinzel’s result to
Theorem 1.1 to Theorem 2.1, can be found in this new situation, even with just an elliptic
curve instead of Gm. Here we limit ourselves to observe that the generalization described
before from C to a more generic K with K = K and char K = 0 is more natural from the
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viewpoint of algebraic geometry, thanks to the Lefschetz principle.
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