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ABSTRACT

Bridging Risk Measures and Classical Risk Processes

by Wenjun Jiang

The Cramér-Lundberg’s risk model has been studied for a long time. It describes the

basic risk process of an insurance company. Many interesting practical problems have

been solved with this model and under its simplifying assumptions. In particular, the

uncertainty of the risk process comes from several elements: the intensity parameter,

the claim severity and the premium rate. Establishing an efficient method to measure

the risk of such process is meaningful to insurance companies.

Although several methods have been proposed, none of these can fully reflect the

influence of each element of the risk process. In this thesis, we try to analyze this

risk from different perspectives. First, we analyze the survival probability for an

infinitesimal period, we derive a risk measure which only relies on the distribution of

the claim severity. A second way is to compare the adjustment coefficient graphically.

After that, we extend the method proposed by Loisel and Trufin (2014). And last,

inspired by the concept of the shareholders’ deficit, we construct a new risk measure

based on solvency criteria that include all the above risk elements.

In Chapter 5, we make use of the risk measures derived in this thesis to solve the

classical problem of optimal capital allocation. We see that the optimal allocation

strategy can be set out by use of the Lagrange method. Some recent findings on such

problems are also presented.
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Garrido for all his help and guidance throughout my Master’s degree. Thank you,

as well, to all the wonderful professors I had at Concordia University who helped me

to further my knowledge and passion in mathematics. I am so grateful to the finan-

cial support provided by Concordia University, with which I can initiate my study in

Canada and let me pursue my dream.

I would like to take this opportunity to thank my parents for their careful nurturing,

their support and encouragement are the motivations that made me move forward. I

also want to thank all my colleagues in the Department for their help through these

two years both in academy and in life.

iv



Contents

List of Figures vii

List of Symbols viii

1 Risk Theory and Its Development 1

1.1 Introduction to Cramér-Lundberg’s Model . . . . . . . . . . . . . . . 1

1.2 Extended Risk Theory Models . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Generalized Claim Counting Process . . . . . . . . . . . . . . 4

1.2.2 Surplus Process Perturbed by a Diffusion . . . . . . . . . . . . 9

1.2.3 Dependence Between Premium, Claims and Frequency . . . . 10

1.3 More Topics in Risk Theory . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Gerber-Shiu Function . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Distribution of The Time to Ruin . . . . . . . . . . . . . . . . 13

1.3.3 Deficit at Ruin . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.4 Distribution of the Time to Recovery . . . . . . . . . . . . . . 16

1.3.5 Maximal Severity of Ruin . . . . . . . . . . . . . . . . . . . . 17

1.3.6 Expected Area in the Red (EAR) . . . . . . . . . . . . . . . . 18

2 Basic Risk Measure Theory 22

2.1 Coherent Risk Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Tail Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Entropic Value at Risk . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 General Representation . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Distortion Risk Measure . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Proportional Hazards Transform . . . . . . . . . . . . . . . . . 31

v



2.2.2 Wang Transform . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.3 General Representation . . . . . . . . . . . . . . . . . . . . . . 34

3 Stochastic Order 38

3.1 First Order Stochastic Dominance . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Hazard Rate Order . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Mean Residual Life Order . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Harmonic Mean Residual Life Order . . . . . . . . . . . . . . 43

3.3 Convex Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Increasing Convex Order . . . . . . . . . . . . . . . . . . . . . 45

3.4 Other Stochastic Orders . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Risk Measure on Risk Processes 48

4.1 Risk Measures Derived From Risk Theory . . . . . . . . . . . . . . . 48

4.1.1 Risk Measures Based on the Premium Rate . . . . . . . . . . 48

4.1.2 Risk Measures Based on the Ruin Probability . . . . . . . . . 50

4.1.3 Risk Measures Based on the Ruin Probability and the Deficit

at Ruin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.4 Risk Measures Based on the EAR . . . . . . . . . . . . . . . . 53

4.2 Some New Measures on Risk Processes . . . . . . . . . . . . . . . . . 55

4.2.1 Risk Measures Based on the Safety Loading . . . . . . . . . . 56

4.2.2 Risk Measures Based on the Adjustment Coefficient . . . . . . 60

4.2.3 Generalized Risk Measures Based on the EAR . . . . . . . . . 67

4.2.4 Risk Measures Based on the Expected Loss Ratio . . . . . . . 72

5 Applications 77

5.1 Optimal Allocation Problem . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Capital Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 86

vi



List of Figures

1.1 The surplus process of the classical model . . . . . . . . . . . . . . . 3

1.2 Maximal deficit during the first period of deficit . . . . . . . . . . . . 17

1.3 Area in the red when the surplus falls below zero . . . . . . . . . . . 19

4.1 The area in the red during [0, T ] . . . . . . . . . . . . . . . . . . . . . 54

4.2 Adjustment coefficient of the classical model . . . . . . . . . . . . . . 62

vii



List of Symbols

u the initial capital of the surplus process.

c the premium rate of the surplus process.

θ the safety loading of the surplus process.

λ the intensity parameter of the counting process.

LM the maximal deficit or the maximum severity of ruin.

τ the moment of ruin.

R the adjustment coefficient or Lundberg coefficient.

DX the ladder height corresponds to the claim severity X.

L the sum of the ladder heights or the aggregate loss.

St the aggregate claims by the time t.

Rt the value of the risk process at time t.

Ut the value of the surplus process at time t.

Wt the Wiener process or standard Brownian motion.

Uτ− the value of the surplus process before ruin.

Uτ the deficit of the surplus process at ruin.

ψ(u) the ruin probability given the initial capital u.

ψ̃(s) the Laplace transform of the ψ(u).

φ(u) the survival probability given the initial capital u.

ϕ(u) the Gerber-Shiu function given the initial capital u.

ρ[X] the risk measure on single random variables.

ρ[Rt] the risk measure on risk processes.

IST,c(u) the area in the red for the surplus process u+ ct− St.

viii



Chapter 1

Risk Theory and Its Development

1.1 Introduction to Cramér-Lundberg’s Model

In actuarial science and applied probability, risk theory uses mathematical models

to describe the insurers’ vulnerability to insolvency or ruin. The key problem of

this theory is how to find the ruin probability, and analyze the distribution of the

aggregrate loss and the fluctations of the surplus process.

The basic insurance risk model goes back to the early works of Filip Lundberg.

He realized that Poisson processes are at the heart of non-life insurance models and

therefore restricted his analysis to the homogeneous Poisson process. Lundberg’s dis-

covery was later incorporated in the theory of stochastic processes by Harald Cramér

and his work laid the foundation of the classical risk theory model. The most basic

results in classical risk theory can be found in Klugman, Panjer and Willmot (2008),

Embrechts, Klüppelberg and Mikosch (1997) and Grandell (2001).

Definition 1.1.1 (Cramér-Lundberg Model)

The model established by Filip Lundberg and Harald Cramér makes the following un-

derling assumption:

(a) The claim sizes {xk}k∈N are positive i.i.d random variables having common

distribution F , finite mean µ = E[X1] and variance σ2 = V[X1] ≤ ∞.

(b) Claims occur following an homogeneous Poisson process (counting process)
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with intensity λ.

(c) The net premium rate includes a fixed positive safety loading: c = (1 + θ)λµ.

(d) The claim sizes and the Poisson process are independent.

Combining the assumptions above, one can write out the surplus model of an

insurance company: Ut = u + ct − St, where u is the initial capital and St is the

aggregate claims by time t: St =
∑N(t)

i=1 Xi. For convenience of later discussions, if

considering the surplus process only at the time of each claim, the surplus at nth

claim can be written as: Un = u − Zn, where Zn =
∑n

i=1 Yi, where Yi = Xi − c∆Ti

and ∆Ti is the waiting time between the (i − 1)th claim and the ith claim. There

are many questions raised by this model, the most interesting one is the estimation

of the ruin probability which is defined as follows:

Definition 1.1.2 (Ruin Moment)

(a) The moment of ruin over an infinite horizon is defined by

τ = inf{t : t ≥ 0, Ut < 0}. (1.1)

(b) The ruin probability with finite horizon:

ψ(u, T ) = P(τ ≤ T | U0 = u), 0 < T <∞, u > 0. (1.2)

Similarly, the ruin probability with infinite horizon is defined as: ψ(u) = P(τ <

∞ | U0 = u).

The problem introduced above with respect to the classical model, i.e. estima-

tion of the ruin probability, has been studied by many scholars and some efficient

techniques are proposed. Two popular methods deserve to be introduced here, since

later some core ideas for these two techniques will still be applied to solve similiar

problems, but in a more general case. One technique is by defining the ladder heights,

and by analyzing the distribution of the sum of these ladder heights.

Definition 1.1.3 (Ladder Height)

The ladder height is defined as magnitude of the loss D, given that there is a claim

incurs loss. Its density function is fD(x) = 1−F (x)
µ

where F (x) is the distribution

function for claim severities, and µ = E[x1].

2
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Figure 1.1: The surplus process of the classical model

In the classical model, usually reseachers are interested in the risk process Rt =

St − ct. It has independent and stationary increments, thus one can find that the

probability that a drop occurs is independent of the initial level. Further, it can be

verified that the occurrence of k drops is equivalent to the occurrence of k failures

and the success appears at the (k+1)th trial. Hence in the infinite horizon problem,

the probability that a total of k drops occur is P(N = k) = θ
1+θ

( 1
1+θ

)k, where 1
1+θ

is the probability for occurrence of one drop. Using L =
∑M

i=1Di to represent the

maximum loss in the infinite horizon problem, the ruin probability can be rewritten

as P(L > u). It is not difficult to evaluate this probability

P(L > u) = ψ(u) = 1−
∞
∑

n=0

θ

1 + θ
(

1

1 + θ
)nF

∗(n)
D (u), u > 0,

where F
∗(n)
D (x) = P(

∑n
i=1Di ≤ x) is the n-fold convolution of FD, and F

∗(0)
D (u) =

1{u>0}, F
∗(1)
D (u) = FD(u).

The second popular way is to condition on the first claim, then an integro-

differential equation about the survival probability φ(u) = 1− ψ(u) can be derived:

φ(u) =

∫ ∞

0

λe−λt
∫ u+ct

0

φ(u+ ct− x)dFX(x)dt, u ≥ 0. (1.3)

After some algebraic manipulations, one can get the following defective renewal e-

quation

φ(u) =
θ

1 + θ
+

1

1 + θ

∫ u

0

φ(u− x)dFD(x), u ≥ 0.

3



The survival probability in the defective renewal equation can be obtained by a

Laplace transform. Clearly, the ruin probability ψ(u) = 1 − φ(u) found from (1.1)

should be the same as that derived by the ladder height method.

Other results about the classical model are listed as follows.

Theorem 1.1.1 Consider the Cramér-Lundberg model with a positive safety loading,

if R is the smallest positive root of the equation

1 + (1 + θ)µr =MX(r), r < δX ,

where MX(r) is the moment generating function of the claims, δX is the convergence

radius of MX(r), then the following relations hold:

(a) (Lundberg’s inequality) For all u ≥ 0, ψ(u) ≤ e−Ru.

(b) (Cramér-Lundberg’s asymptotic approximation) When u → ∞, then ψ(u) ∼

Ce−Ru, where

C =
µθ

M ′
X(r)− µ(1 + θ)

.

(c) If the claims follow an exponential distribution with mean β, then the ruin

probability is

ψ(u) =
1

1 + θ
exp{−

θ

β(1 + θ)
u}, u ≥ 0.

The quantity R in the above theorem is called the adjustment coefficient (AC) or

Lundberg’s coefficient, and the corresponding equation is called Lundberg’s equation.

The adjustment coefficient will serve as a key quantity in the discussions later of this

thesis.

1.2 Extended Risk Theory Models

1.2.1 Generalized Claim Counting Process

The Cramér-Lundberg model is a very simple model in risk theory, and it imposes

several simplifying conditions. However, these conditions make the model deviate

substantially from reality in most cases. In recent years, many modifications have
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been made about the classical model, especially for the underling claim counting

process, to make it more realistic.

The renewal risk model was first introduced by Sparre Andersen (1957); he ex-

tended the classical model by allowing claim inter-arrival times to follow an arbitrary

distribution. His idea is inherited and further analyzed by Thorin (1974,1982), and

is fully illustrated in Grandell (1991). Both, Lundberg’s inequality and Cramér-

Lundberg’s asymptotic approximation for the ultimate ruin probability under this

case are derived and we will see later that these results are very similar to the classi-

cal ones.

There are two categories of renewal process which need introductions here, the

ordinary renewal process and the corresponding delayed renewal process. In order to

serve the discussion later, only definitions of these two renewal processes are given.

For the details, see Karlin and Taylor (1975).

Definition 1.2.1 (Renewal Process)

1. Ordinary renewal process: A sequence of i.i.d. random variables {X1, X2, . . . , },

where Xi is intepreted as the time interval between the (i − 1)th event and the ith

event.

2. Delayed renewal process: A sequence of random variables {Y1, X2, X3, . . . }, where

{Xi, i = 2, 3, . . . , } are i.i.d. random variables, Y1 follows a different distribution.

For the ordinary renewal process, a more technical method is used to derive the

upper bound of the ultimate ruin probability in Grandell (1991), that is the martingale

method. Suppose that {Zn}n=1.2.... follows a risk process under this case, where the

subscript indicates the occurrence of the nth claim, then the martingale is constructed

as follows.

Mu(n) =
e−r(u−Zn)

g(r)n
, g(r) = E[erZ1 ], r < δY , (1.4)

where δY is the convergence radius of the moment generating function. It is easy to

verify that the expression above defines a martingale with respect to the filtration

Fn = σ{Zk; k = 0, 1, 2, . . . , n}. Consider the stopping time Nu = min{n | Zn > u}

and an arbitrary positive integer n0 < ∞, combined with the optional stopping

5



theorem, one can get

e−ru =Mu(0) = E[Mu(n0 ∧Nu)] ≥ E[Mu(Nu) | Nu ≤ n0]P(Nu ≤ n0). (1.5)

Since u− ZNu
≤ 0 on {Nu ≤ ∞}, then

P(Nu ≤ n0) ≤
e−ru

E[Mu(Nu) | Nu ≤ n0]
≤

e−ru

E[g(r)−Nu | Nu ≤ n0]
≤ e−ru max

0≤n≤n0

g(r)n,

when n0 → ∞, the inequality becomes ψ(u) = P(n0 < ∞) ≤ e−ru supn≥0 g(r)
n. As

expected, the best choice for r here is the adjustment coefficient R, which satisfies

Lundberg’s equation for the renewal claim counting case. Hence, Lundberg’s inequal-

ity is obtained: ψ(u) ≤ e−Ru. The second important result is the Cramér-Lundberg

approximation for the ultimate ruin probability. It follows the same steps as for the

classical model, and the result can be obtained by use of the key renewal theorem.

For a detailed introduction about the renewal process, interested readers can refer to

Karlin and Taylor (1975) or Ross (2010).

For the delayed renewal process, there is a particular case which interests many

scholars – the stationary renewal process, in which the waiting time for the first claim

follows the equilibrium distribution G(y),

G(y) =
1

µ

∫ y

0

[

1− F (x)
]

dx, y ≥ 0, (1.6)

where F (x) is the distribution function for waiting time between successive claims.

The following theorem tells us that the equilibrium distribution of the initial waiting

time can be used to characterize the stationary renewal process.

Theorem 1.2.1 If a modified renewal process N(t) has the equilibrium distribution

as the first waiting time, and
∑

n is the total time spent for the occurrence of the nth

event, then this process has the following properties.

(a) E[N(t)] = t
µ
for all t > 0.

(b) P(Bt ≤ y) = 1
µ

∫ y

0
[1− F (x)]dx, where Bt =

∑

N(t)+1 −t is the residual time.

(c) N(t) has stationary increments.

Denoting by φ∗(u) the survival probability of the Sparre Andersen model with

stationary renewal claim counting process, condition on the first claim amount and

6



using the change of variable techniques, the defective renewal equation can be derived:

φ∗(u) =

∫ ∞

0

G(s)

∫ u+cs

0

φ(u+ cs− x)dF (x)ds,

⇒ φ∗(u) = φ∗(0) +
1

cµ

∫ u

0

φ(u− x)[1− F (x)]dx, u ≥ 0.

Using Lundberg’s inequality for the ordinary renewal case, one can get the upper

bound of the ultimate ruin probability for stationary renewal case.

ψ∗(u) ≤
1

cµ

∫ ∞

u

1− F (x)dx+
1

cµ

∫ u

0

e−R(u−x)(1− F (x))dx, (1.7)

≤
1

cµ

∫ ∞

0

e−R(u−x)(1− F (x))dx =
1

cµR
h(R)e−Ru, (1.8)

where h(r) = E[erx] − 1, and R is the Lundberg coefficient. This gives Lundberg’s

inequality for stationary renewal process.

Besides discussing the ruin probability for general renewal claim counting process-

es, some specific renewal processes are studied, and among these the Erlang process

attracts the most attention. Tijms (1994) shows how any positive continuous distri-

bution can be approximated by mixed Erlang distributions to any arbitrary level of

precision. Dickson (1997) studies a particular case, the Erlang(2) process, and gets

an explicit result for the ruin probability. In fact, Dickson improves the idea of eval-

uating the ruin probability for the Erlang(n) process, but it is a little bit complicated

because his approach relies heavily on the Laplace transform. It is time consuming if

one wants to recover the ultimate ruin probability from its Laplace transform since

it requires inverting the Laplace transform. A more convenient way is developed by

Dickson and Hipp (2001). They study the moments of the ruin time for the Erlang(2)

case, based on the analysis of the Gerber-Shiu function. Defining the “Dickson-Hipp”

operator, they solve the integro-differential equation for the ruin probability and illus-

trate the application of this method with mixed exponential claims. Their technique

is extended to the Erlang(n) process by Li and Garrido (2004), and more general

analysis for the structure of the Gerber-Shiu function is given for Erlang(n) claim

arrivals. Related topics such as the Gerber-Shiu function will be introduced later in

detail.
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A more general case is when claim arrivals follow a Cox process, which is initially

discussed in an actuarial context by Reinhard (1984). A deeper analysis is given by

Björk and Grandell (1988), their works are collected in Grandell (1991). A slight

generalization of the Cox process is now called the Markov-modulated model. In

Cox processes, the intensity parameter of the Poisson process in the ruin model is

controlled by an external Markovian environment, usually the state of the external

Markovian system is denoted by I(t). In Grandell (1991), the waiting time for the next

transition in the state process I(t) follows an exponential distribution with intensity

parameter η(x), given that I(t) = x, and the transition probability from state x

to a subset of the whole state space B is pL(x,B). If the state process satisfies

these conditions, then this state process is usually called a jump process or piecewise

Markov process. Under these assumptions, the ruin probability φx(u) for the Cox

claim counting process can be written in the integro-differential form, for u > 0,

cφ
′

x(u) = xφx(u) + η(x)φx(u)− x

∫ u

0

φx(u− z)dF (z)− η(x)

∫

S

pL(x, dy)φx(u), (1.9)

where the ruin probability φx(u) depends on the initial state of the external system.

The case of particular interest to researchers is when the jump process in the Cox

model is stationary. The characterization of the stationary jump process is given in

the next theorem.

Theorem 1.2.2 Let Y be a Markovian jump process. If the initial distribution qL of

the states satisfies

∫

B

qL(dy)η(y) =

∫

S

qL(dy)η(y)pL(y, B), (1.10)

then Y is a stationary jump process.

In Reinhard (1984), only the non-stationary discrete case is considered. A matrix

notation is used through his paper since the external Markov process is represented

by a finite transition matrix. Its element hij indicates the transition probability from

state i to state j in the external environment. By conditioning on the first jump

epoch, Reinhard derives the ordinary differential equation system for finite horizontal

8



ruin probability.

∂

∂t
φij(u, t)− ci

∂

∂u
Rij(u, t) =− (λi + ηi)Rij(u, t) + λi

∫ u

0

Rij(u− x, t)dFi(x)

+ ηi

∞
∑

k=1

hikRkj(u, t), u, t > 0,

where λi is the intensity parameter for the risk process when it is in the state i, and

ηi is the intensity parameter for the external Poisson process when its current state is

i. This integro-differential equation system can be solved following several steps that

will be frequently used in the next subsection. Taking a Laplace transform on both

sides of the equation and then isolating the transformed function, taking the inverse

Laplace transform is the last but also the most complicated step.

Let t → ∞, the function φij(u, t) converges to be the ruin probability over an

infinite horizon. Under simpler assumptions, as when the external environment only

has two states, the transition matrix is




0 1

1 0





and claim amount follows an exponential distribution, then the non-ruin probabilities

can be obtained.

1.2.2 Surplus Process Perturbed by a Diffusion

With the rapid expansion of the financial products offered on the markets, intensive

study has been conducted about the Brownian motion, which is the building block

of financial engineering. The close relation between the insurance industry and the

financial industry has lead to the evolution of the models used in both areas. Dufresne

and Gerber (1991) add a diffusion process to the classical risk model, and they define

the surplus process as

Ut = u+ ct+Wt −

N(t)
∑

i=1

Xi, t ≥ 0,

where {Wt} is a Wiener process. This diffusion process can be interpreted as a model

for additional uncertainty on the compound Poisson claims or on the premium income.
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To find out the exact expression for the ruin or survival probability, they use a special

method which decomposes the maximum aggregate loss into two parts, this allows

them to inherit the ladder height method from the classical model. Denote by L1 the

first drop incurred by the diffusion process and L2 the subsequent drop incurred by

the jump process (or claims). The expression for the survival probability under this

model is then similar to that for the classical one in (1.1):

φ(u) =
∞
∑

n=0

θ

1 + θ
(

1

1 + θ
)nG

∗(n+1)
1 ∗G

∗(n)
2 (u), u > 0,

where G1 is the cumulative distribution function of L1, and G2 is the cumulative

distribution function of L2. For consistencies in the notation, here G
∗(0)
2 (u) = 1{u>0},

G
∗(1)
2 (u) = G2(u) and G

∗(1)
1 (u) = G1(u).

Schmidli (1995) further studies the perturbed model. He first defines a new prob-

ability measure and verifies that under this new measure the stationary and indepen-

dent increments of the surplus process are preserved. The result he obtains is the

following asymptotic expressions for the ruin probability when the initial capital goes

to infinity.

P(τ <∞, Uτ = 0 | U0 = u) ∼ C(1)e−ru, C(1) =

∫∞
0
(1−G1(x))dx

∫∞
0
(1−H(x))dx

,

P(τ <∞, Uτ < 0 | U0 = u) ∼ C(2)e−ru, C(2) =

∫∞
0
(1−G2(x))e

−rxdx
∫∞
0
(1−H(x))dx

,

where H is the joint distribution of L1 + L2, the total drop at a single time.

1.2.3 Dependence Between Premium, Claims and Frequency

Besides considering more general claim counting processes, other authors relax the

independence assumption between the premium rates, the claim sizes and the under-

ling counting processes. Different dependence structures are imposed and added into

the model to make it more realistic. One instance is the time-dependent premium

risk model proposed by Asmussen (2000) in which premium rates are adjusted con-

tinuously based on the current insurer surplus level. Albrecher and Boxma (2004)

studies the generalization of the classical model in another dependence setting, where
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the distribution of the inter-arrival times depends on the previous claim size. They

derive an exact analytical expression for the Laplace transform of the ruin probability

function. Boudreault et al. (2006) considers a particular dependence structure and

derive the defective renewal equation satisfied by the expected discounted penalty

function.

Cai and Zhou (2009) use more general assumptions for a perturbed risk model

with dependence between premium rates and claim sizes,

c(x) =







c1, x ≤ b

c2, x > b
, σ(x) =







σ1, x ≤ b

σ2, x > b
,

Ut = Uτn + c(Xn)(t− τn) + σ(Xn)(Wt −Wτn), t > 0,

Uτn+1 = Uτn + c(Xn)Tn+1 −Xn+1 + σ(Xn)(Wτn+1 −Xτn),

where τn is the moment of occurrence of the nth claim, and Wt is the Wiener process.

In this model, Cai and Zhou assume that the premium rates depend on the previous

claims and the diffusion coefficient changes according to the changes in the premium

rates. Their assumptions are meaningful since in auto-insurance, premium rates are

usually adjusted after claims occur. To find out the survival probability for such a

model, they derive the following integro-differential equations for u > 0,

1

2
σ2
1φ

′′

1(u) + c1φ
′

1(u) = λφ1(u)− λ

∫ u

0

[

φ1(u− x)f1(x) + φ2(u− x)f2(x)
]

dx, (1.11)

1

2
σ2
2φ

′′

2(u) + c2φ
′

2(u) = λφ2(u)− λ

∫ u

0

[

φ1(u− x)f1(x) + φ2(u− x)f2(x)
]

dx. (1.12)

To find explicit expressions for φ1(u) and φ2(u), Laplace transform are again used

and the authors get two corresponding equations for the Laplace transforme of the

ruin probabilities. Later, they use Rouché’s theorem, combined with limit conditions,

to derive two equations which can be used to find out the boundary conditions φ
′

1(0)

and φ
′

2(0). Then the inverse Laplace transform can be used to evaluate the survival

probabilities φ1(u) and φ2(u). The techniques used in their paper are common to the

previous papers, which also shows the richness of the methods in risk theory, such as

the transform techniques and complex analysis.
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The ruin probability is a central quantity in risk theory research. Therefore it

is worth reviewing the details about ruin probabilities under different settings, since

these can serve as the most natural direct criteria to measure the risk of a risk process.

Through the comparison of the ruin probabilities, actuaries in insurance companies

can make better assessment of the initial capital or the premiums to cover the random

loss incurred by the paid claims.

1.3 More Topics in Risk Theory

1.3.1 Gerber-Shiu Function

With the increased attention put on risk theory, and its wide applications in both

the insurance industry and the financial industry, more interesting research tools are

found by scholars. Gerber and Shiu (1998) study the joint distribution of the time of

ruin τ , the surplus immediately before ruin Uτ− and the deficit at ruin Uτ . Including

the force of interest, they define the following expected penalty function given the

initial capital u. This function is also called Gerber-Shiu function in the actuarial

literature:

ϕ(u) = E[w(Uτ−, |Uτ |)e
−ξT1{τ<∞} | U0 = u], u ≥ 0,

where w(x, y) is interpreted as a penalty function. For the classical model, this

function has been deeply analyzed by Gerber and Shiu (1998). Their study shows

that this function satisfies a specific defective renewal equation: ϕ = ϕ ∗ g+h, where

ϕ ∗ g represents the convolution of ϕ and g, where g and h are two related functions.

The solution to this defective equation can be written as a Neumann series:

ϕ = h+ g ∗ h+ g ∗ g ∗ h+ . . . .

This function is widely used in current studies in risk theory, since it can help derive

several interesting results for risk processes. In the original paper of Gerber and Shi-

u (1998), many nice results are already given, such as an explicit ruin probabilitiew

when the initial capital is zero, and asymptotic formula for ruin probabilities when

12



the initial capital is very large. For arbitrary initial capital, the authors only con-

sider a particular case, where the claim amount distribution is exponential or mixed

exponential.

Dickson and Hipp (2001) consider the moments of the ruin time for Erlang(2)

claim arrivals, and they use a Gerber-Shiu function of the following form,

ϕ(u) = E[e−δτ1{τ<∞} | U0 = u], u ≥ 0,

By noting that

(−1)k
dk

dδk
ϕ(u)|δ=0 = E[τ k1{τ<∞} | U0 = u],

the moments of the time to ruin can be found. This method was extended to Erlang(n)

case by Li and Garrido (2004). In fact, by suitable selection of the penalty function

w(x, y), the Gerber-Shiu function can be used to evaluate different quantities in risk

theory. Since the distribution of time to ruin is very difficult to find, through compar-

ison of the moments of the ruin time, the risks of the risk processes can be compared;

this is considered in Kolkovska (2011) to be a risk measure. Later, it will be found

that to compare the risks of different risk processes, many quantities in risk theory

can be used as risk measures. However, these risk measures have different properties

and sometimes cannot show a precise overall comparison of the risks in different risk

processes.

1.3.2 Distribution of The Time to Ruin

The defective distribution of the time to ruin is defined as ψ(u, t) = P(τ ≤ t) where

τ is the ruin time, so the distribution of the time to ruin is in fact the finite horizon

ruin probability in (1.2). To get a proper distribution, one can divide ψ(u, t) by ψ(u),

then the corresponding ruin time is defined as τ ∗ , τ | τ <∞, and the distribution is

denoted by ψc(u, t) =
ψ(u,t)
ψ(u)

. The moments of the time to ruin have been found from

the Gerber-Shiu function by setting the penalty function w(Ut−, |Ut|) = 1, which in
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fact leads to the Laplace transform of the random variable τ with respect to δ:

ϕ(u) = E[e−δτ1{τ<∞} | U0 = u], (1.13)

=

∫ ∞

0

(e−δtψ(u, t))dt, (1.14)

= ψ(u)

∫ ∞

0

(e−δtψc(u, t))dt. (1.15)

It is of interest to recover the expression of ψ(u, t) for (1.2), or ∂
∂t
ψ(u, t).

Since the general Gerber-Shiu function satisfies the defective renewal equation

ϕ(u) =
1

1 + θ

∫ u

0

ϕ(u− x)dG(x) +
1

1 + θ
H(u), u ≥ 0, (1.16)

Willmot and Lin (1998) study its solution. Denoting the following compound geo-

metric distribution by K(u) = 1− K̄(u) by

K̄(u) =
∞
∑

n=1

θ

1 + θ
(

1

1 + θ
)nḠ∗(n)(u), u ≥ 0.

Willmot and Lin (1998) show that from renewal theory the solution of (1.11) can be

written as

ϕ(u) =
1

θ

∫ u

0

H(u− x)dK(x) +
1

1 + θ
H(u),

where the penalty function w(Uτ−, |Uτ |) = 1, the corresponding H(u) = Ḡ(u), and

ϕ(u) = K̄(u). This shows that the distribution of the time to ruin can be represented

as a compound geometric distribution.

There are helpful techniques to find the distribution of the time to ruin. Dick-

son and Waters (2002) apply numerical methods, especially the translated gamma

approximation, to find the distribution of the time to ruin. Garcia (2005) uses a com-

plex inversion formula, or inverse Laplace transform to find this distribution. From

his discussion it is easy to find the inverse Laplace transform with respect to δ, that

more work is required for the analysis of the residues of the different singularities of

eδsϕ(u). Dickson, Hughes and Zhang (2005) continue to use this method to recover

the distribution of the time to ruin, but they focus their work on the Sparre Andersen

process with Erlang arrivals and exponential claims.
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For the classical model, Dickson and Willmot (2005) initiate their study with

the compound geometric distribution derived from Willmot and Lin (1998). Howev-

er, without applying the inverse Laplace transformation directly, they apply a more

technical method which is innovative but somewhat time consuming. Their impor-

tant discovery is that ϕ(u) is the Laplace transform with respect to both δ and ρ,

the latter being the unique positive root of the generalized Lundberg equation. Then

Lagrange’s implicit function theorem comes into play, it helps recover the structure

of ψc(0, t), and derive a representation of ψ(u, t) with respect to ξ(u, t), the inverse

Laplace transform of ϕ(u) with respect to ρ. Their final work is to revert the long

representation form, term by term, by use of the comparison method. For details, see

Dickson and Willmot (2005).

1.3.3 Deficit at Ruin

The surplus before the ruin and the deficit at the ruin are two other interesting

quantities in the development of risk theory. If an insurance company does not

immediately stop running when the surplus drops to be negative, then the deficit at

the ruin is important to evaluate the duration of the negative surplus and indicates

how long it will take for an insurance company to recover. Hence, this quantity can

also partially reflect the risk of the surplus process because it can tell how severe a

brankruptcy the insurance company can recover from.

The details of how to calculate the exact distribution of the deficit at the ruin

G(u, y) is first given in Gerber, Goovaerts and Kass (1987). It is not difficult to find

out that the distribution G(u, y) satisfies a defective renewal equation:

G(u, y) =
λ

c

∫ u

0

G(u−x, y)
[

1−F (x)
]

dx+
λ

c

∫ u+y

u

[

1−F (x)
]

dx, u, y ≥ 0. (1.17)

The technique they use to solve for G(u, y) is again the Laplace transform and its

inverse. Later, a more efficient technique to find the distribution G(u, y) was given

by Lin and Willmot (1999). By full use of the results in Dufresne and Gerber (1988),

the distribution G(u, y) can be rewritten as

G(u, y) = ψ(u)−
1

θ

∫ u

0

F̄D(y + u− x)dφ(x). (1.18)
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The conditional distribution of the deficitGu(y) is discussed in detail byWillmot (2000).

Here, he points out the significant role that Erlang distributions plays in risk theory,

which is further discussed in Willmot and Woo (2007).

As mentioned in the Section 2.1, Tijms (1994) finds that an arbitrary positive

continuous distribution can be approximated to any level of precision by mixtures

of Erlang distributions, so it is reasonable to assume that the claims follow a mixed

Erlang distribution. Given that condition, the residual lifetime distribution, the com-

pound aggregate claims distribution, the conditional distribution of the deficit at ruin

and the infinite horizon ruin probability follow different mixed Erlang distributions,

but all with the same scale parameter. Also, Willmot and Woo (2007) show that many

well-known distributions can be expressed by mixed Erlang distributions. This is a

very important result, since it can simplify the analysis without considering the most

general case, and some nice analytical results can be derived under the assumption

that the claims follow a mixed Erlang distribution.

1.3.4 Distribution of the Time to Recovery

The assumption of a positive safety loading leads to a positive drift for the surplus

process, which indicates that the surplus will go to infinity with probability one. If

ruin occurs, and the insurance company can let the process continue, then theoret-

ically the surplus will only stay below the zero level temporarily. For convenience

in the subsequent discussion, we say that the company is in the red if its surplus is

negative. If the company can successfully refinance and operate when it is in the red,

then it can recover. The recovery time is defined as

τ ′ = inf
{

t
∣

∣ t > τ, Ut ≥ 0
}

, τ > 0,

where τ is the ruin time.

Naturally, the quantity τ ′ − τ can be treated as the time needed for the company

to recover, and this quantity is certainly closely related to the deficit at the ruin

Uτ , which in turn depends on the severity of a single claim, and the intensity of the

claim counting process. So this quantity is an important index to evaluate the risk of
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Figure 1.2: Maximal deficit during the first period of deficit

surplus process. The distribution of τ ′ − τ for the classical Cramér-Lundberg model

has been exhaustively studied by Eǵıdio dos Reis (1993). Inspired by the method used

in Gerber (1990), by regarding τ ′−τ as the time needed to pass the level |Uτ | from the

initial capital level U0 = 0, a martingale argument is smartly used by Eǵıdio dos Reis

to give the moment generating function of the time period τ ′ − τ . The expectation

and variance of τ ′ − τ can be derived from its moment generating function. Besides,

Eǵıdio dos Reis (1993) gives the moment generating function of the total duration

of a negative surplus. It is not difficult to see that the moment generating function

of τ ′ − τ is a function of the initial capital U0 = u and the negative root of the

generalized Lundberg equation. Thus, if the regulator wants to control the expected

time to recovery below some certain level A, then the needed initial capital can be

found from the expression E[τ ′ − τ | U0 = u] ≤ A.

1.3.5 Maximal Severity of Ruin

The previous section shows that if the insurance company stays in the red for some

time, but not very deeply, then there is still hope for the company to recover. However,

if the claims come too frequently or a large claim occurs, then it will push the company

to a worse situation, and it will no longer be able to borrow money to cover its heavy

liabilities. In such case there is no hope for the company to recover.
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The maximal severity of ruin is defined to measure the severity of a negative

surplus process of the classical compound Poisson model:

LM = max
τ≤t≤τ ′

|Ut|. (1.19)

This quantity has been fully studied by Picard (1994), the stationarity of the surplus

process is heavily used in his paper. The main results can be summarized by the

following theorem.

Theorem 1.3.1 For LM defined in (1.19), τ is the first time of ruin and τ ′ is the

first time for recovery, then

P(LM ≤ z | U0 = u, τ <∞) =
ψ(u)− ψ(u+ z)

ψ(u)(1− ψ(z))
, z ≥ 0, (1.20)

P(LM ≤ z | τ <∞, |Uτ | = y) =
1− ψ(z − y)

1− ψ(z)
, z ≥ y > 0. (1.21)

where ψ(u) is the ruin probability for the classical model with the initial capital u.

1.3.6 Expected Area in the Red (EAR)

Picard (1994) studies another quantity, which is called the cost of recovery in his

paper, or the expected area in the red in Loisel (2005),

I =

∫ τ ′

τ

|Ut|dt.

This quantity captures the main characteristics of the surplus process. If the cost

exceeds the deficit, then by utility theory there exists a convex function g that can

serve as the cost function

Ig =

∫ τ ′

τ

g(|Ut|)dt.

The tool Picard (1994) uses is to study Ig as a martingale, but in a complicated

way. To construct the martingale, he verifies the following theorem which connects

the function g to another function f .

Theorem 1.3.2 Let f and g be two real functions (g continuous and f in the class

C1) that are connected by the relation

g(x) = −λ− cf
′

(x) + λE
[

exp
{

f(x)− f(x−Xi)
}

]

, x ∈ R. (1.22)
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Figure 1.3: Area in the red when the surplus falls below zero

Thereby, for any a ∈ R, −f , −g and |e−ff
′

| admit an upper bound on (−∞, a]. If

selecting

Wt = exp
{

− f(Ut)−

∫ t

0

g
(

Us
)

ds
}

, t ≥ 0, (1.23)

then (Wt,Ft)t≥0 is a martingale.

To evaluate the expectation of Ig, specific conditions are imposed on the function

f , and the connection between the Ig and f is revealed in the next theorem.

Theorem 1.3.3 In addition to the foregoing hypotheses on f and g, suppose that

f(0) = 0 and f ≥ 0, g ≥ 0 on R, then

E

[

exp
{

∫ τ ′

τ

g(|Ut|)dt
} ∣

∣ τ <∞, Uτ

]

= exp
{

− f(|Uτ |)
}

. (1.24)

In order to use the equation (1.24), it is intuitive to choose the function g first

and use (1.22) to solve for function f . However, this is imposible, since no efficient

algorithm is proposed to solve the functional equation. So Picard (1994) selects the

function f first, and focuses his discussion on polynomial functions, that is f(x) =
∑n

i=1 bix
i. By selecting g(x) = 1, he derives the expectation of the time to recovery

given the deficit at ruin.

E[τ ′ − τ | τ <∞, |Uτ |] =
|Uτ |

c− λµ
, c > λµ.
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Taking expectation on both sides with respect to |Uτ |, the expectation of the time to

recovery coincides with the result given by Eǵıdio dos Reis (1993).

Loisel (2005) studies this topic from another angle, and discusses the differenti-

ation properties of the expected area in the red, and the differentation theorems he

obtains are useful. They help him complete the exploration of a new kind of risk

measure for surplus processes. In Loisel (2005), he first considers the simplest case:

E[IT (u)] = E

[

∫ T

0

1{Ut<0}|Ut|dt
]

. (1.25)

Later he generalizes his results to the more complicated case.

E[Ig,h(u)] = E

{

∫ T

0

[

1{Ut≥0}g(Ut)− 1{Ut<0}h(|Ut|)
]

dt
}

, (1.26)

where U0 = u is the initial capital. Denoting the time needed for recovery by τ(u, T ) =
∫ T

0
1{Ut<0}dt and the time spent in state zero by τ0(u, T ) =

∫ T

0
1{Ut=0}dt, then the

results in Loisel (2005) can be summarized in the following theorems.

Theorem 1.3.4 Assume that T ∈ R
+. Let (Ut)t∈[0,T ) be a stochastic process with

almost surely time-integrable sample path. Denote by τ(u, T ) the time needed for

recovery of the surplus process, by τ0(u, T ) the time spent in zero by the surplus

process., and let f(u) = E[IT (u)]. If E[τ0(u, T )] = 0, then f is differentiable at u, and

f ′(u) = −E[τ(u, T )].

For the average time needed to recover, the differentiation theorem is stated as

follows.

Theorem 1.3.5 Let Rt = ct − St, where St is a jump process satisfying hypothesis:

St has a finite expected number of nonegative jumps in every finite interval, and for

each t, the distribution of St is absolutely continuous. For example, St is a compound

Poisson process with a continuous jump size distribution. Consider T < ∞ and

define h by h(u) = E[τ(u, T )]. Then h is differentiable on R
+, and for u > 0,

h′(u) = −1
c
E[N0(u, T )], where N0(u, T ) = Card({t ∈ [0, T ], u+ ct− St = 0}).

We can see that the expected area in the red can reflect the risk of a surplus

process of an insurance company. It combines the severity of a single claim, the
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frequency of the claims and the premium rate, which are the main characteristics of

a surplus process. This means reflects that it can perhaps serve as a new kind of risk

measure. The detailed study of such a possible risk measure will be introduced in

Chapter 3.
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Chapter 2

Basic Risk Measure Theory

Risk measure theory is a broad topic. Although risk measures have been studied

for a long time, the theory is not fully mature. Mathematically, a risk measure is a

mapping from a class of random variables to the real line. Its properties, and how

to apply them in different contexts and make them consistent with the observations,

have recently received considerable attention in the financial and actuarial literature.

Usually, the requirements of the decision-makers determine the selection of the risk

measure. In this section, two main classes of risk measures will be introduced, the

relationship between them and more pure mathematical results will be studied.

2.1 Coherent Risk Measure

What is a good risk measure? That’s a frequently asked question. A lot of articles

prove that no risk measures can meet all the requirements of the market and the

decision-makers. Several risk measures are proposed in different contexts. Artzner et

al. (1999) first introduce the concept of “coherence” when they study market risks

and nonmarket risks. As usual, we denote by ρ[X] the risk of X, where X is the

random loss incurred by the claims or market changes.

Definition 2.1.1 (Coherent Risk Measure)

A risk measure ρ[X] is coherent when it is equipped with the following four basic

properties:
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1. Positive homogeneity: ρ[aX] = aρ[X] if a > 0.

2. Translation invariance: ρ[X + a] = ρ[X] + a.

3. Monotonicity: if P(X ≤ Y ) = 1, then ρ[X] ≤ ρ[Y ].

4. Subadditivity: ρ[X + Y ] ≤ ρ[X] + ρ[Y ].

There are practical intepretations for these four basic properties. Positive ho-

mogeneity is often associated with the independence of the monetary units used.

Translation invariance can be intepreted as follows: if there is a fixed loss a added

on a risky position, then the extra capital needed to make this position acceptable

should be a. Subadditivity indicates that a merger of risks does not create extra risk.

This is an essential property for a risk measure since later we can see it is closely

related to the portfolio optimization problem. These practical intepetations make co-

herent risk measures consistent with risk management on the market. Besides these

basic properties, Denuit et al. (2005) supplements more desirable properties which

are needed to make a risk measure as “good” as possible.

Property 2.1.1 (Supplements)

1. Non-excessive loading: ρ[X] ≤ max[X].

2. Non-negative loading: ρ[X] > E[X].

3. Continuity with respect to convergence in distribution: if limn→∞Xn =d X,

then limn→∞ ρ[Xn] = ρ[X].

The non-excessive loading indicates that the needed extra capital should not ex-

ceed the maximal loss of the risky position; the non-negative loading means the

needed extra capital should exceed the average loss, otherwise by the law of large

numbers ruin will occur. For the third supplementary property, we can find that for

two identically distributed random variables, their risks should be the same from the

mathematical viewpoint. This property is later called “law-invariant” property, and

is widely applied as the basic assumption for the risk measure. The law invariant

coherent risk measure is systematically studied by Kusuoka (2001).

In fact, from Rockafeller (1970), we know that the combination of the first and

fourth properties in the definition of coherent risk measures is equivalent to convexity.
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Then the natural extension of coherent risk measures are the convex risk measures,

which are systematically studied by Föllmer and Schied (2002).

Many coherent risk measures are being used in our daily life, both for theoretical

research and practical management. Acerbi (2002) points out that convex combi-

nations of these are still coherent, so infinitely many coherent risk measures can be

generated from known ones. Next, we are going to study several common coherent

risk measures.

2.1.1 Tail Value at Risk

To talk about the tail value-at-risk (TVaR), we need to study the value-at-risk (VaR)

first. In fact, VaR is the most direct risk measure which is the benchmark of today’s

financial world, since it tells people how much loss they can afford within a certain

period. The definition of VaR is very simple, which explains its wide recognition.

Definition 2.1.2 (Value at Risk)

Given a random variable X and a probability level α ∈ (0, 1), then V aRα[X] is defined

to be the α-percentile of the distribution of X:

V aRα[X] = F−1
X (α) = inf

t∈R
{t : F (t) ≥ α}. (2.1)

Even though VaR is easy to understand and widely used in real life, it is not a

coherent risk measure. Counter-examples are given in most introductory level text-

books. Dańıelsson et al. (2005) gives out some conditions to make the VaR risk

measure subadditive in the tail region, but for the discussion in this section, we skip

it and only put emphasis on the TVaR.

It is not hard to find that VaR can only reflect partial information of the random

variable X, it cannot tell the decision-makers how thick the tail is. TVaR offsets this

weakness of VaR by integrating losses in the tail.

Definition 2.1.3 (Tail Value at Risk)

Given a random variable X and a probability level α ∈ (0, 1), the TV aRα[X] is defined
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as:

TV aRα[X] =
1

1− α

∫ 1

α

V aRξ[X]dξ, (2.2)

provided the integral is finite.

There exists a risk measure which is very close to TVaR, called conditional tail

expectation (CTE). It represents the conditional expected loss if finite, when the loss

exceeds the given VaR value:

CTEα[X] = E

[

X | X > V aRα[X]
]

,

Acerbi and Tasche (2001) has shown that for discrete random variables, the CTE

measure is not coherent, counter examples are also given in their paper. However, for

continuous random variables, the CTE measure coincides with TVaR measure. More

precisely, in Denuit et al. (2005), the TV aRα and CTEα are written as:

TV aRα[X] = V aRα +
1

1− α
E

[

X − V aRα[X]
]

+
,

CTEα[X] = V aRα[X] +
1

1− FX(V aRα[X])
E

[

X − V aRα[X]
]

+
,

then the relationship between TVaR and CTE can easily be found out.

There are other representations of TVaR, the most important one is given by

Rockafeller and Uryasev (2000), and it is further studied and summarized by Pichler

(2013):

TV aRα[X] = inf
q∈R

{q +
1

1− α
E[X − q]+},

= sup{E[XZ] | 0 ≤ Z ≤
1

1− α
,E[Z] = 1},

= sup{EP̃ [X] | P̃ ∈ P}, P = {P̃ |
dP̃

dP
≤

1

1− α
}.

Now with the help of these representation forms, it is not difficult to verify the

basic properties for TVaR; see Denuit et al. (2005) for the details of the proof.

Theorem 2.1.1 The TVaR risk measure is coherent and satisfies all the supplemen-

tary properties.
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Besides being coherent, TVaR is in fact a particular case of distortion risk mea-

sures, which will be introduced in Section 2.2. However, for random variables with

heavy tailed distributions, TVaR cannot be used to compare risks since the integra-

tion over the tail part diverges. This problem will be reconsidered in the Section

2.1.3.

2.1.2 Entropic Value at Risk

Motivated by Chernoff (1952), Ahmadi-Javid (2012) proposes to use the least upper

bound of the VaR to serve as a new risk measure. The Chernoff inequality is given as

follows: suppose the moment generating function of X exists, then for any constant

a,

P(X ≥ a) ≤ e−zaMX(z), z > 0. (2.3)

By solving the equation e−zaMX(z) = α with respect to α ∈ (0, 1), one can obtain

aX(α, z) = z−1 ln(
MX(z)

α
). (2.4)

If such an a can be properly defined, then obviously P(X ≥ aX(α, z)) ≤ α. From

this inequality, we can easily find that, for any z > 0, aX(α, z) is an upper bound for

V aRα[X]. Naturally, the new risk measure can be defined as the least upper bound

for V aRα[X], which is exactly the definition of the entropic value-at-risk.

Definition 2.1.4 (Entropic Value at Risk)

Given that the moment generating function of X exists, the entropic value-at-risk

(EVaR) of X is defined to be

EV aRα[X] = inf
z>0

{aX(α, z)} = inf
z>0

{z−1 ln(
MX(z)

α
)}. (2.5)

Ahmadi-Javid (2012) proves that this risk measure is also a coherent risk mea-

sure. In fact, the first three properties are easy to verify for EVaR, but to prove its

subadditivity, we need the following lemma proved by Ahmadi-Javid (2012).

Lemma 2.1.1 Given that the moment generating functions of X and Y exist, for

t1, t2 > 0 and any α, λ ∈ (0, 1], the function Hα(X, t) = aX(α, t
−1) is convex in the
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sense that

Hα

(

λX + (1− λ)Y, λt1 + (1− λ)t2

)

≤ λHα(X, t1) + (1− λ)Hα(Y, t2). (2.6)

This lemma tells us that EVaR is a convex risk measure because it can be written

as EV aRα[X] = inft>0{Hα(X, t)}. It is not difficult to verify that EVaR is positive

homogeneous, if b > 0, then

EV aRα[bX] = inf
z>0

{z−1 ln(
MbX(z)

α
)}

= inf
z>0

{z−1 ln(
MX(bz)

α
)}

= b inf
z>0

{(bz)−1 ln(
MX(bz)

α
)}

= b EV aRα[X].

Once the positive homogeneity is verified, using the following theorem in Rockafeller

(1970), it is easy to show that the EVaR is a coherent risk measure.

Theorem 2.1.2 A positive homogeneous function f on R
n is convex if and only if

f(X + Y ) ≤ f(X) + f(Y )

for every X, Y ∈ R
n.

Different decision-makers have different attitudes towards risks, those who are risk

averse prefer using more conservative risk measurement tools. This section ends with

a comparison of the risk measures introduced above.

In comparing the VaR to TVaR, it is easy to see that TVaR is more conservative

than a VaR at the same confidence level α:

TV aRα[X] =
1

1− α

∫ 1

α

V aRξ[X]dξ ≥
1

1− α

∫ 1

α

V aRα[X]dξ = V aRα[X].

The following theorem from Ahmadi-Javid (2012) compares EVaR to a TVaR with

the same α.

Theorem 2.1.3 The EVaR is an upper bound for both VaR and TVaR with the same

confidence level α, i.e., if the moment generating funtion of X exists, then for every

α ∈ (0, 1],

TV aRα[X] ≤ EV aRα[X].
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Thus, EVaR is more conservative than VaR and TVaR, which suggests that a

financial or insurance company using EVaR will allocate more initial capital to hedge

the potential loss.

Related topics can be found in Föllmer and Knispel (2011), where they discuss a

coherent version of the entropic risk measure, which is a generalized version of EVaR.

Their method is quite theoretical and requires a deeper understanding of convex

and real analysis. Applications of EVaR can be found in Firouzi and Luong (2014),

where they use EVaR to solve a portfolio optimization problem, especially when the

underling distribution of asset returns is non-elliptical.

2.1.3 General Representation

Some particular risk measures are reviewed above. However, it is impossible to enu-

merate all risk measures and discuss their properties and specific applications. A

more effective approach is to explore a general representation of coherent risk mea-

sures. Studying the properties of the general form is more convenient and gives deeper

insight about the structure of the coherent risk measures.

In the seminal paper on coherent risk measures, Artzner et al. (1999) give out the

general form of these risk measures based on a discrete probability space.

Theorem 2.1.4 A risk measure ρ is coherent if and only if there exits a family P

of probability measures on the set of states, such that

ρ[X] = sup
{

EP[X]
∣

∣ P ∈ P
}

, (2.7)

provided the expectation EP[X] exists.

It is also very easy to prove that if a risk measure is defined as in (2.7), then

it satisfies the four basic properties for coherence. The two special coherent risk

measures introduced in previous sections, TVaR and EVaR, both can be expressed

in this form, the only difference is the underling space P of probability measures.

Delbaen (2002) later extended the result to a continuous probability space. His

paper discusses the characterization of coherent risk measures through Fatou’s prop-

erty. Föllmer and Schied (2001) discuss convex risk measures and give their general
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representation. Kusuoka (2001) studies law invariant coherent risk measures and gives

their general representation. Lastly, Frittelli and Gianin (2005) discuss law invariant

convex risk measures and provide a representation.

Artzner et al. (1999) call the elements in P scenarios, so from (2.7) we can

interpret the coherent risk measure as an expectation under the worst scenario.

It is easy to see that discussions on general representations are based on the

assumption that their expectations exist under different scenarios. If the random

variable X has a heavy-tail distribution, like Cauchy or Pareto distributions, then

coherent risk measures are not applicable. Some methods which do not rely on inte-

grals can partially solve this problem, at the cost of some desirable properties. Balbás,

Blanco and Garrido (2014) solve this problem by extending coherent risk measures,

such as TVaR, continuously to a larger space that contains some risks with infinite

expectations. This is a very efficient way of extending risk measures, since in practical

situations most risks will have finite expectations.

2.2 Distortion Risk Measure

There are two approaches to define a risk measure, and they are systemically discussed

by Denuit et al. (2006). The first one is the axiomatic approach: a set of reasonable

axioms for risk management are listed, then one tries to find risk measures that satisfy

these axioms. However, risk measures defined this way can be inappropriate if the

underling axioms do not agree with the situation at hand.

The second approach is to define a risk measure from the economic perspec-

tive. This is because economically, a risk measure should capture the preferences

of decision-makers. Utility theory plays a significant role in the development of eco-

nomics. The milestone of this theory is the expected utility theory proposed by von

Neumann and Morgenstern (1947). Many risk measures can be defined from expected

utility theory by the no difference principle.

Let us explore the effect of using utility theory on the final results. A person’s

preference should not change much on a fixed period, so the utility function u of
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this person can be regarded as deterministic. For a random variable X with some

economic interpretation, like asset returns, its expectation under a utility function is

E[u(x)] =

∫ ∞

−∞
u(x)dF (x) =

∫ 1

0

u(V aRξ[X])dξ.

By comparison with the expectation without utility E[X] =
∫ 1

0
V aRξ[X]dξ, we can

see that the utility function adjusts the values of the V aRξ[X] in this person’s pref-

erence. With the development of utility theory, many people started to criticize

expected utility theory, since many paradoxes have been found which violate its prin-

ciple. These paradoxes stimulated the development of other utility theories, many

alternative approaches have been proposed. Kahneman and Tversky (1979) establish

the prospect theory, which explores the certainty effect, the reflection effect and the

isolation effect in people’s choices. Quiggin (1982) proposes the anticipated theory,

in which he analyzes the effect on the decision brought by the distortion of people’s

subjective probabilities towards the random loss. His theory later developed to be

the dual theory of choice by Yaari (1987). Chateauneuf, Cohen and Meilijson (1997)

combine the ideas from previous theories, and their rank-dependent expected utility

theory can cover the explanation of the “irrational” phenomena in people’s choices.

The distortion risk measure inherits the ideas of Quiggin (1982) and Yaari (1987).

For convenience, we only talk about non-negative random variables in the first part

of this section. The expectation of such random variables X can be written as

E[X] =

∫ ∞

0

[

1− FX(y)
]

dy =

∫ ∞

0

F̄X(y)dy.

A distortion risk measure distorts the tail probabilities of this random variable, to

define a distorted expectation:

ρg[X] =

∫ ∞

0

g
(

1− FX(y)
)

dy =

∫ ∞

0

g
(

F̄X(y)
)

dy. (2.8)

Here, the function g is called the distortion operator. Furthermore, the distorted

30



expectation can be rewritten as:

ρg[X] =

∫ ∞

0

g(F̄X(y))dy

=

∫ ∞

0

∫ F̄X(y)

0

dg(p)dy

=

∫ 1

0

V aRp[X]dg(1− p), g(x) ≥ 0.

From this expression, we can see that the idea behind distorted risk measures agrees

with the theories proposed by Quiggin (1982) and Yaari (1987).

For an exhaustive discussion on distortion risk measures see Denuit et al. (2005).

The properties of this risk measure can be summarized as follows.

Theorem 2.2.1 The distortion risk measure defined by (2.8) is positively homoge-

neous, translation invariant, monotone and comonotonic additive. Further, this risk

measure is subadditive if, and only if, the distortion operator g is concave.

2.2.1 Proportional Hazards Transform

The proportional hazards (PH) transform was first proposed by Wang (1995) in order

to construct a new risk-adjusted premium principle. Since all the premium principles

can be regarded as risk measures in the insurance industry, for convenience we do not

distinguish between premium principles and risk measures in the following discussion.

The hazard rate function for a non-negative random variable X can be written as

µX(t) =
fX(t)

1− FX(t)
= −

d

dt
ln F̄X(t), t ≥ 0. (2.9)

Just as its name implies, the PH transform is multiplying the hazard rate function

µX(t) by a constant 1
α
, where α > 0. Through this way a new random variable Y ,

which is characterized by µY (t), can be generated:

µY (t) =
1

α
µX(t), t ≥ 0. (2.10)

One can find the survival function F̄Y (t) for the random variable Y by using the

equation (2.9):

µY (t) =
1

α
µX(t) ⇒ F̄Y (t) = F̄X(t)

1
α , α > 0. (2.11)

31



If the random variable X stands for the potential loss from a risky position,

then Y shares the same interpretation but with different tail probabilities. Since

0 ≤ F̄X(t) ≤ 1, then if α > 1, F̄Y (t) ≥ F̄X(t), which means that the decision-maker

puts more weight on the tail part. If 0 < α ≤ 1, then F̄Y (t) ≤ F̄X(t), which means

the decision-maker puts less weight on the tail part. The value of α determines the

attitude of the decision-maker to uncertainty.

Definition 2.2.1 (PH Transform)

For a risk X with survival function F̄X(t), Y is defined through the PH transform

with respect to X, and the risk-adjusted premium is defined as

ρα[X] = E[Y ] =

∫ ∞

0

F̄X(t)
1
αdt, α ≥ 0, (2.12)

where α is called the risk-averse index. When α = 1, ρα[X] = E[X] which is the net

expected loss.

The properties of this risk measure are easily established due to its simple form.

This risk measure has the non-excessive loading property. When α > 1, the PH

transform leads to a non-negative loading. Furthermore, it is positively homogeneous

and translation invariant. The proof of these properties can be found in Wang (1995).

Subadditivity can be obtained if extra conditions are added.

Theorem 2.2.2 For any two non-negative random variables X and Y , without as-

suming independence, the following inequality holds

ρα[X + Y ] ≤ ρα[X] + ρα[Y ], α ≥ 1. (2.13)

Proof. See Wang (1995).

A very important property which makes this risk measure different from coherent

risk measures is its layer additivity. Later we will see that this property can be

generalized to the additivity of the distortion risk measures for comonotonic risks.

Theorem 2.2.3 When a risk X is divided into layers {(xi, xi+1], i = 0, 1, . . . }: X =

1(0,x1] + 1(x1,x2] + . . . , where 0 = x0 < x1 < x2 < . . . , its risk-adjusted premium is the
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summation of the risk-adjusted premiums of all the layers:

ρα[X] =
∞
∑

i=0

ρα[1(xi,xi+1]]. (2.14)

Given last property of this risk measure deserves mention: that it preserves s-

tochastic order, which is denoted by ≤st. If X ≤st Y , this means F̄X(t) ≤ F̄Y (t),

then from the PH transform, it is easy to get the rank of the risk-adjusted premiums

for these two risks: ρα[X] ≤ ρα[Y ]. We will see that this property is satisfied by all

distortion risk measures, if the distortion operator g is monotonely increasing.

2.2.2 Wang Transform

From the above discussion of the PH transform, we can see in fact that it is char-

acterized by the distortion operator gα(x) = x
1
α . From the introduction we also see

that the distortion operator g determines the properties of this risk measure. In this

section, a new distortion operator studied by Wang (2000) will be introduced. The

corresponding transform g(F̄X(t)) is called Wang transform, and the risk measure

characterized by this transform has many good properties.

If the standard normal distribution function is denoted by u = Φ(x), then its

inverse function is x = Φ−1(u), and the corresponding density function is f(x) =

dΦ(x)
dx

= 1√
2π
e−

x2

2 . The Wang transform is characterized by the following distortion

operator:

g∗α(u) = Φ(Φ−1(u) + α), α ∈ (−∞,∞). (2.15)

Discussing the properties of the risk measure derived from the Wang transform is

equivalent to discussing the properties of the distortion operator.

In order to define a proper distribution after the transform, the necessary condition

for the distortion operator is that is should be monotone increasing. This is easily

verified for g∗α(u), since the first-order derivative of this function is:

g∗α
′

(u) =
f(x+ α)

f(x)
= e−αx−α

2

> 0.

For the boundary conditions, it is also easily verified that:

g∗α(0) = lim
u→0+

g∗α(u) = 0, g∗α(1) = lim
u→1−

g∗α(u) = 1.
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In order to let the risk measure defined from this distortion operator be subadditive,

the sufficient and necessary condition is that the operator g be concave. The proof of

this relationship can be found in Wang (2000) and Denuit et al. (2005). The Wang

transform is subadditive since the second-order derivative of gα(u) is:

g∗α
′′

(u) =
−αf(x+ α)

f(x)2
.

So if α > 0, g∗α
′′

(u) < 0, then the distortion operator g∗α meets all the requirements

for the desirable properties. Thus the properties of the risk measure derived from the

Wang transform can be summarized as follows.

Property 2.2.1 If a distortion risk measure is characterized by the Wang transform,

then it has the following properties:

1. Non-excessive loading: ρα[X] =
∫∞
0
gα(SX(t))dt ≤ max[X].

2. Translation invariance: ρα[X + a] = ρα[X] + a.

3. Non-negative loading: If α > 0, ρα[X] > E[X].

4. Positive homogeneity: ρα[bX] = bρα[X], if b > 0.

5. Comonotonic additivity: if X and Y are comonotonic risks, then ρα[X + Y ] =

ρα[X] + ρα[Y ].

6. Subadditivity: ρα[X + Y ] ≤ ρα[X] + ρα[Y ], if α > 0.

Comonotonic additivity is explained in more detail in the next section.

2.2.3 General Representation

In fact, the general representation of distortion risk measures is given at the beginning

of this chapter. However, that kind of representation is on the space of non-negative

random variables. A more general representation is given by Wang, Young and Panjer

(1997) based on the following four axioms:

Axiom 1: For a given market condition, the price of an insurance risk X depends

only on its distribution.

Axiom 2: For two risks X and Y , if X ≤ Y a.s, then ρ[X] ≤ ρ[Y ].

Axiom 3: If X and Y are comonotonic, then ρ[X + Y ] = ρ[X] + ρ[Y ].
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Axiom 4: For risk X and d ≥ 0, the risk measure ρ satisfies

lim
b→0+

ρ[(X − d)+] = ρ[X], lim
d→∞

ρ[min(X, d)] = ρ[X]. (2.16)

If a risk measure satisfies the four axioms above, then it can be represented by

the use of the Choquet integral, which is described in detail in Denneberg (1994). We

skip the proof provided by Wang, Young and Panjer (1997) and give a representation

for distortion risk measures for all real-valued risks:

ρg[X] =

∫ ∞

0

g[SX(t)]dt+

∫ 0

−∞

(

g[SX(t)]− 1
)

dt, (2.17)

where the distortion operator g is increasing with g(0) = 0 and g(1) = 1.

Here we see that comonotonic additivity is a special property for the distortion risk

measure. The comonotonicity is a very important concept which has been studied for

a long time in actuarial science. Next, we give its definition and some related results.

Definition 2.2.2 (Comonotonic Variables)

A subset S in R
n is said to be comonotonic if for (x1, x2, . . . , xn) ∈ S and (y1, y2, . . . , yn) ∈

S, xi ≤ yi for some i ∈ {1, 2, . . . , n} implies that xj ≤ yj for all j ∈ {1, 2, . . . , n}.

Definition 2.2.3 (Comonotonic Random Vector)

A R
n-valued random vector is comonotonic if it can be expressed as

(X1, X2, . . . , Xn) =d (F
−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)), (2.18)

where =d stands for the equality in distribution, FXi
(x) is the distribution function

for Xi and U is a uniformly distributed random variable on (0, 1).

Besides the definition given above, there is an equivalent condition to check

whether a random vector is comonotonic or not.

Definition 2.2.4 (Test for Comonotonicity)

A R
n-valued random vector is comonotonic if

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = min
i∈{1,...,n}

P(Xi ≤ xi). (2.19)
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The details of the discussion of the comontonicity can be found in Denneberg

(1994), Wang and Dhaene (1998) and Dhaene et al. (2006). A very important

application of comonotonicity is that it can be used to derive upper bounds for the

sum of random variables.

Theorem 2.2.4 Let U be a uniform (0, 1) random variable. For any random vector

(X1, X2, . . . , Xn) with marginal distributions FX1 , FX2 , . . . , FXn
, we have

X1 +X2 + · · ·+Xn ≤cx F
−1
X1

(U) + F−1
X2

(U) + · · ·+ F−1
Xn

(U). (2.20)

Proof. See Kass, Dhaene and Goovaerts (2000).

The inequality above is based on the convex order, which will be introduced in

the next chapter.

The VaR risk measure introduced at the beginning of this chapter is not coherent,

but it is a distortion risk measure. Its comonotonic additivity is easily verified; since

a representation of the distortion risk measure based on VaR is given above, then it

follows that VaR is a distortion risk measure, and hence is comonotonically additive.

A particular case is TVaR, it is not only a coherent risk measure, but also a

distortion risk measure. The distortion operator of TVaR can be found to be

gp(x) = min{
1

1− p
, 1}, p ∈ (0, 1), x ∈ [0, 1].

As discussed at the beginning of this chapter, there is no risk measure perfectly

consistent with all the observations, so distortion risk measures are “flawed” in some

sense. Balbás, Garrido and Mayoral (2009) use several examples to illustrate the

inconsistencies one can reach using VaR and TVaR. Their focus is on distortion risk

measures and they propose two new properties, completeness and adaptability, to help

make the distortion risk measure as rational as possible and eliminate inconsistencies.

We end this chapter by establishing a connection between the two classes of risk

measures discussed above. This connection was first explored by Pichler (2013). We

know that coherent risk measures can be represented as the optimal solution of a sce-

nario analysis. It is same for distortion risk measures. Pichler (2013) gives supremum
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and infimum representations for distortion risk measures, and most importantly, he

establishes the connection between distortion risk measures and law-invariant coher-

ent risk measures by use of a scenario analysis.

Theorem 2.2.5 If ρ[X] is a law-invariant coherent risk measure of risk X, and ρg[X]

is a distortion risk measure of risk X, then

ρ[X] = sup
g∈S

ρg[X], (2.21)

where S is the set of distortion operators, and is usually restricted on the space of

continuous and strictly increasing distortion operators.

Proof. See Pichler (2013).

The theorems and properties mentioned in this chapter are all based on theoretical

studies. For practical applications, Heyde et al. (2010) study an empirical risk mea-

sure, which explains how to use weighted combinations of real data to measure risks.

However, even though empirical representations of different risk measures are given

in their paper, the coefficients weighting the data are based on a high dimensional

supporting hyperplane. Additionally, the robustness of a risk measure is proposed

as another important property for external decision-makers, due to the difficulty to

frequently make substantial changes to reserve levels. Another contribution of Heyde

et al. (2010) is that they verify that the empirical representation of coherent risk mea-

sure is not robust, therefore a new risk measure is propsoed– conditional tail median,

which is easily verified to be robust.

37



Chapter 3

Stochastic Order

A stochastic order is defined to allow for the ordering of random variables in some

probabilistic sense. Traditionally, to rank two random variables, their associated

means were singled out for comparison. However, means of random variables are not

so informative as they can only reflect partial information about the distributions.

Therefore, other ways to rank the random variables that make a more comprehensive

use of the information were sought. This information cannot be obtained only from

tail values, the variance, the failure rate or other simple indexes. In this chapter,

we will review some basic stochastic orders which will serve to connect the partial

ordering between different processes and their corresponding risk measures.

3.1 First Order Stochastic Dominance

The concepts and the derivations on stochastic orders reviewed here can be found

in many introductory level textbooks, such as Denuit et al. (2005) and Shaked and

Shanthikumar (2007).

The first stochastic order we define is the most commonly used, it is called the

first order stochastic dominance, or sometimes just usual stochastic order.

Definition 3.1.1 (First Order Stochastic Dominance)

Let X and Y be two random variables, X is said to be smaller than Y in the sense
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of first order stochastic dominance X ≤st Y if

P(X > x) ≤ P(Y > x), x ∈ (−∞,∞). (3.1)

From above definition we can see that to rank two random variables using first

order stochastic dominance, we only need to compare their survival functions or tail

probabilities. There are different practical interpretations for first order stochastic

dominance: in reliability theory, if X ≤st Y , then Y is more reliable than X, but

in the risk measure theory, it means that Y is more dangerous than X. There is an

important equivalent condition to check whether X ≤st Y .

Theorem 3.1.1 X ≤st Y is true if, and only if, for any increasing function f ,

E[f(X)] ≤ E[f(Y )]. (3.2)

Proof. See Shaked and Shanthikumar (2007).

Some questions arise from the definition of first order stochastic dominance, such

as whether this order can be preserved under convolution? What conditions are need-

ed to rank two compound random variables with first order stochastic dominance?

These questions are very important in risk theory, and in our application to risk

measures. They are answered by the following theorem.

Theorem 3.1.2 (Closure Property)

1. If X ≤st Y , and g is any increasing function, then g(X) ≤st g(Y ).

2. If {X1, X2, . . . , Xm} and {Y1, Y2, . . . , Ym} are two sets of independent random

variables, and Xi ≤st Yi for each i ∈ {1, 2, . . . ,m}, then for any increasing function

φ : Rm → R,

φ(X1, X2, . . . , Xm) ≤st φ(Y1, Y2, . . . , Ym). (3.3)

Particularly, we can get the closure property of first order stochastic dominance under

convolutions:
∑m

i=1Xi ≤st

∑m
i=1 Yi.

3. If {X1, X2, . . . , Xm} and {Y1, Y2, . . . , Ym} are two sets of independent random

variables such that Xi ≤st Yi, and Xi
d
−→ X, Yi

d
−→ Y , for each i ∈ {1, 2, . . . ,m}, then

X ≤st Y .
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4. Let {Xi, i = 1, 2, . . . } and {Yi, i = 1, 2, . . . } be two sets of independent random

variables, and Xi ≤st Yi for each i ∈ {1, 2, . . . ,m}, if N and M are two other random

variables that satistfy N ≤st M , then

N
∑

i=1

Xi ≤st

M
∑

i=1

Yi. (3.4)

Proof. See Shaked and Shanthikumar (2007).

3.1.1 Hazard Rate Order

In reliability theory, a frequently asked question is how reliable a device is after being

used for several years. This question can be answered by evaluating its hazard rate

function, which is defined as follows:

Definition 3.1.2 If random variable X denotes the life time of a device, then its

hazard rate function is given by

r(t) = lim
∆t→0

P(t < X ≤ t+∆t | X > t)

∆t
=
fX(t)

F̄X(t)
, t ≥ 0, (3.5)

provided that F̄X(t) 6= 0.

From (3.5), we can see that the hazard rate function describes the failure intensity

of the device, which explains why it is also commonly called failure rate. Multiplying

both sides of (3.5) by dt, gives the failure probability within the next short period

(t, t+dt], after reaching age t. By comparing the hazard rate functions of two random

variables, we can see which one is more likely to fail at each time epoch. This order

is called the hazard rate order.

Definition 3.1.3 (Hazard Rate Oder)

If rX and rY stand for the hazard rate functions of random variables X and Y , then

X ≤hr Y means X is smaller than Y in the hazard rate order if

rX(t) ≤ rY (t), t ≥ 0. (3.6)
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The first order stochastic dominance and the hazard rate order are closely related

by use of the following expression:

rX(t) ≤ rY (t) ⇒
F̄Y (t)

F̄X(t)
is increasing in t

⇒ F̄X(t1)F̄Y (t2) ≥ F̄X(t2)F̄Y (t1), t1 ≤ t2.

Let t1 → −∞, then one gets F̄X(t2) ≤ F̄Y (t2), which is X ≤st Y . If the hazard rate

function rX(t) is increasing in t, then we say X is an increasing failure rate (IFR)

random variable. Similarly, we can define the decreasing failure rate (DFR) random

variable. Some closure properties and characterization theorems with respect to this

order are explored and the details are given in Denuit et al. (2005), or Shaked and

Shanthikumar (2007).

3.2 Mean Residual Life Order

The mean residual life function m(t) is another quantity which gives the information

about the tail of the distribution. It is defined as the conditional expectation of the

residual life given that the random variable reaches some age level.

Definition 3.2.1 (Mean Residual Life Function)

For random variable X, the mean residual life function mX is defined as

mX(t) = E(X − t | X > t), t ≥ 0, (3.7)

provided the expectation is finite.

Like the TVaR measure, the mean residual life function describes how thick the tail

ofX is. In the context of reliability theory, it represents the expected residual life for a

device, and largermX(t) values lead to more durable devices. But in the context of the

financial or insurance industry, if the random variable X stands for a potential loss,

then the mean residual function represents the expected excess potential losses, then

the larger mX(t) the more dangerous the position. The mean residual life function

is thus used to rank random variables, and this order is called the mean residual life

order.
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Definition 3.2.2 (Mean Residual Life Order)

Let X and Y be two random variables for which their mean residual life functions

mX and mY exist. If mX(t) ≤ mY (t) for all t ≥ 0, then X is smaller than Y in the

mean residual life order, which is denoted as X ≤mrl Y .

There are some equivalent conditions which can help more quickly find this order:

Theorem 3.2.1 Let X and Y be two random variables as in Definition 3.2.2., then

X ≤mrl Y if, and only if, the following ratio of the tail integrals

∫∞
t
F̄Y (u)du

∫∞
t
F̄X(u)du

=
E[(Y − t)+]

E[(X − t)+]
, t ≥ 0, (3.8)

increases in t over the set {t | t ≥ 0,
∫∞
t
F̄X(u)du > 0}.

Proof. Taking derivatives of (3.8) in t, then the mean residual order is obtained.

Naturally, the connection between this order of random variables and other orders

have been studied. Since the mean residual life function mX(t) can be written as

mX(t) =

∫ ∞

t

exp{−

∫ x

t

rX(u)du}dx, t ∈ support of X, (3.9)

where rX(u) is the hazard rate function. From (3.8), we can first explore the relations

between the mean residual life order and the hazard rate order.

Theorem 3.2.2 If X and Y are two random variables such that X ≤hr Y , then

X ≤mrl Y .

Proof. See Shaked and Shanthikumar (2007).

If the mean residual life function mX(t) for random variable X is increasing, then

X is said to be an increasing mean residual life (IMRL) random variable. The DMRL

random variable can be defined similarly. For details about the closure properties

of the IMRL and DMRL families of random variables, see Shaked and Shanthiku-

mar (2007).
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3.2.1 Harmonic Mean Residual Life Order

In Mathematics, the harmonic mean is one of several different kinds of averages. For

some real numbers x1, x2, . . . , xn, the harmonic mean is defined as

H(x1, x2, . . . , xn) =
n

∑n
i=1

1
xi

=
[ 1

n
(
n

∑

i=1

1

xi
)
]−1

.

Generalizing this idea gives what is the called harmonic mean residual life function

which will be reviewed in this section. For practical financial and insurance applica-

tions, in this section, we only talk about nonnegative random variables. The harmonic

mean residual life function for a nonnegative random variable X is defined as:

hX(t) =
[1

t

∫ t

0

1

m(u)
du

]−1

, t > 0, (3.10)

where mX(u) is the mean residual life function. By use of (3.9), we can introduce a

new order for nonnegative random variables, which is called harmonic mean residual

life order.

Definition 3.2.3 (Harmonic Mean Residual Life Order)

Let X and Y be two nonnegative random variables with harmonic mean residual life

functions hX(t) and hY (t), then X is smaller than Y in the harmonic mean residual

life order if

hX(t) ≤ hY (t), t > 0, (3.11)

and is denoted by X ≤hmrl Y .

From (3.9), we see that computing the harmonic mean residual life function can

be complicated. Thus, Shaked and Shanthikumar (2007) simplify the comparison by

use of the following relationship for t > 0:

[
1

t

∫ t

0

1

mX(u)
du]−1 ≤ [

1

t

∫ t

0

1

mY (u)
du]−1 ⇐⇒

∫∞
t
F̄X(u)du

E[X]
≤

∫∞
t
F̄Y (u)du

E[Y ]
. (3.12)

Furthermore, the integral
∫∞
t
F̄X(u)du can be rewritten as E[(X − t)+], then we can

get the following equivalent condition of the harmonic mean residual life order:

hX(t) ≤ hY (t) ⇐⇒
E[(X − t)+]

E[X]
≤

E[(Y − t)+]

E[Y ]
, t > 0. (3.13)
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We will see later that the truncated expectation E[(X − t)+] can be used to define a

new order between random variables.

We end this section by exploring the relationship between the harmonic mean

residual life order and the mean residual life order. In fact, from the harmonic mean

residual life function in (3.9), it is not difficult to get the following result.

Theorem 3.2.3 Let X and Y be two nonnegative variables, if X ≤mrl Y , then

X ≤hmrl Y .

3.3 Convex Order

By now, several stochastic orders have been introduced, which are based on the

comparison of the location and scale of the random variables. Starting from this

section, some other stochastic orders will be introduced, where the variability of the

random variables is compared.

The next stochastic order is worth studying and is frequently applied in actuarial

science; it is called the convex order. The definition is as follows.

Definition 3.3.1 (Convex Order)

Let X and Y be two random variables. X is smaller than Y in the convex order if

E[f(X)] ≤ E[f(Y )], f is any convex function, (3.14)

and is denoted by X ≤cx Y .

A rigorous definition of a convex function can be found in Rochafeller (1970), but

here for convenience, we can use the following inequality to characterize a convex

function:

f
(

λX + (1− λ)Y
)

≤ λf(X) + (1− λ)f(Y ), λ ∈ (0, 1). (3.15)

Particularly, if the function f is continuous, then its convexity can be checked by

its second-order derivative. From (3.13), we get the following information quickly if

X ≤cx Y : firstly, since f(x) = x and f(x) = −x are both convex functions, then we
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have that E[X] ≤ E[Y ] and E[−X] ≤ E[−Y ], which gives E[X] = E[Y ]. Secondly, if

we consider the function f(x) = x2, also a convex function, so combining E[X2] ≤

E[Y 2] with the previous results, one gets V[X] ≤ V[Y ]. From these information, we

can roughly compare the variability of X and Y .

However, it is impossible to check whether the inequality in (3.13) is true for all

convex functions, so some equivalent conditions are developed to compare two random

variables in the convex order. To get equivalent conditions, we need to consider some

other simpler stochastic orders.

3.3.1 Increasing Convex Order

The increasing convex order (X ≤icx Y ) is a special case of the convex order, with

an additional restriction, that is the functions inserted in the expectation should be

monotone increasing. This stochastic order has been proved to be equivalent with

the stop loss order, which is widely used in the actuarial literature.

Definition 3.3.2 (Stop Loss Order)

Let X and Y be two random variables, given that their first order moments exist, then

X is smaller than Y in the stop loss order if

E[(X − t)+] ≤ E[(Y − t)+], t ∈ R, (3.16)

and is denoted by X ≤sl Y .

The equivalence between these two stochastic orders can be verified as follows:

similarly to the “standard mechanic” proof in Roydan and Fitzpatrick (2010), any

Lebesgue integrable function can be approximated by a combination of simple func-

tions. Any increasing convex function can be approximated by a combination of

functions {fi(x) = (x − ti)+}i=1,2..., and the latter belongs to the class of increas-

ing convex functions. Then the equivalence between these two stochastic orders is

obvious:

X ≤icx Y ⇐⇒ X ≤sl Y. (3.17)
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Further, from the integral expression of E[(X − t)+] we have:

E[(X − t)+] =

∫ ∞

t

F̄X(u)du.

Hence it is easy to derive the relation between first order stochastic dominance and

the stop loss order:

X ≤st Y ⇒ X ≤sl Y. (3.18)

Besides first order stochastic dominance, the mean residual order can also imply the

stop loss order. Suppose X ≤mrl Y , then
∫∞
t
F̄X(u)du

F̄X(t)
≤

∫∞
t
F̄Y (u)du

F̄Y (t)
, t ≥ 0, (3.19)

provided that F̄X(t) 6= 0 and F̄Y (t) 6= 0. Let t → −∞, then one gets E[X] ≤ E[Y ].

Combining with Theorem 3.2.1., then

E[(Y − t)+]

E[(X − t)+]
≥

E[Y ]

E[X]
≥ 1 ⇒ E[(X − t)+] ≤ E[(Y − t)+], for all t. (3.20)

Now coming back to the discussion on the equivalent conditions for the convex

order, the approximation method again comes into play here. The “increasing part”

of any convex function can be approximated by a combination of functions {fi(x) =

(x− ti)+}i=1,2..., while the “decreasing part” can be approximated by a combination

of functions {fi(x) = (x − ti)+}i=1,2... and the function g(x) = −ax, where a > 0.

Thus, if X and Y are two random variables satisfying E[X] = E[Y ] and X ≤sl Y ,

then E[g(X)] = E[g(Y )] and E[(X − t)+] ≤ E[(Y − t)+], which results in X ≤cx Y .

To conclude, an equivalent condition to the convex order is:

X ≤cx Y ⇐⇒ X ≤sl Y with E[X] = E[Y ]. (3.21)

For more properties, such as closure properties, see Denuit et al. (2005) and Shaked

and Shanthikumar (2007).

3.4 Other Stochastic Orders

From the discussion in the Section 3.4, we find if two random variables X and Y have

different expectations, then comparing them through the convex order is invalid. To
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rank the variablity of different random variables without considering their locations,

some location-free stochastic orders are proposed, such as the dilation order.

Definition 3.4.1 (Dilation Order)

Let X and Y be two random variables with finite means. X is smaller than Y in the

sense of the dilation order if

X − E[X] ≤cx Y − E[Y ], (3.22)

and is denoted by X ≤dil Y .

From this definition, we see that the dilation order dose not depend on the location

of the random variables. A very important characterization theorem for this dilation

order is proposed by Fagiuloi et al. (1999):

Theorem 3.4.1 Let X and Y be two random variables with distributions FX and FY ,

and each with finite expectation, then X ≤dil Y if, and only if,

1

1− p

∫ 1

p

(F−1
X (u)− F−1

Y (u))du ≤

∫ 1

0

(F−1
X (u)− F−1

Y (u))du, p ∈ [0, 1). (3.23)

Proof. See Fagiuloi et al. (1999) or Shaked and Shanthikumar (2007).

Particularly, Belzunce et al. (1997) verify that, for nonnegative random variables

X and Y , X ≤dil Y implies X ≤icx Y . Since the claims are all nonnegative, if a risk

measure agrees with the dilation order, then it must agree with the stop loss order.

Another special stochastic order is called the Lorenz order, which is defined as

follows:

Definition 3.4.2 (Lorenz Order)

Let X and Y be two random variables, and X be smaller than Y in the sense of the

Lorenz order if
X

E[X]
≤cx

Y

E[Y ]
, (3.24)

and is denoted by X ≤Lorenz Y .

For more details about this stochastic order, see Lefèvre and Utev (2001) and

Kochar (2006).
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Chapter 4

Risk Measure on Risk Processes

4.1 Risk Measures Derived From Risk Theory

Most risk measures theories are intended for losses represented by random variables.

In this chapter, we consider the risk management problem for risk processes. Some

efficient methods have been proposed, but all capture only part of the properties of

the risk processes, rather than the overall characteristics.

4.1.1 Risk Measures Based on the Premium Rate

Dhaene et al. (2003) study a discrete surplus process

Ut = U(t− 1) + ct− St, t = 1, 2, . . . , (4.1)

and find that the initial capital is fixed then the premium rate (PR) can serve as a

kind of risk measure for the aggregate claims St. For convenience, we write St as S for

short in this subsection. In risk theory, the adjustment coefficient R is the smallest

positive root of the Lundberg’s equation eRc = E[eRS], if it exists, and then the

premium rate can be written as c = 1
R
lnE[eRS]. Lundberg’s inequality tells us that

ψ(u) ≤ e−Ru if R exists. Then if the regulator wants to control the ruin probability

at less than some fixed level, for example ε, then R can be selected suitably, as for
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instance R = 1
u
|ln ε|, such that the corresponding premium rate is:

ρPR(S) = c =
1

R
lnE[eRS]. (4.2)

This kind of risk measure coincides with the exponential premium formula which

provides a suitable intepretation. In this case, the adjustment coefficient R can be

treated as a risk-aversion parameter. The risk measure ρPR(S) is equipped with some

good properties that can be easily verified.

Theorem 4.1.1 If the risk measure for the aggregate claims is defined by (4.2), then

it has the following basic properties:

1. Additivity for independent risk processes: in the case where S and T are inde-

pendent aggregate claims, then ρPR(S + T ) = ρPR(S) + ρPR(T ).

2. Preservation of the convex order for aggregate claims: if S ≤cx T , then

ρPR(S) ≤ ρPR(T ).

3. ρPR is invariant for proportional changes in monetary units: ρPR(aS) =

aρPR(S) for constant a.

4. If (S∗, T ∗) are “more related” than (S, T ), then ρPR(S + T ) ≤ ρPR(S
∗ + T ∗),

with equality only if (S∗, T ∗) and (S, T ) have the same joint distribution.

A pair of random variables are defined to be “more related” than another with the

same marginal distributions if their joint probability is larger. Moreover, one can find

that when S and T are positively quadratic dependent, ρPR(S)+ρPR(T ) ≤ ρPR(S+T );

when S and T are negatively quadratic dependent, ρPR(S) + ρPR(T ) ≥ ρPR(S + T ).

Thereby, this risk measure is neither subadditive nor superadditive. To find the

definition of positive and negative quadratic dependence, see Dhaene et al. (2003).

However, if one wants to extend this risk measure to continuous surplus processes,

the time variable may make the expectation diverge. The treatment of heavy-tail

distributions is also needed to ensure that the adjustment coefficient is within the

convergence radius of the moment generating function.
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4.1.2 Risk Measures Based on the Ruin Probability

Trufin et al. (2011) improve the above method of Dhaene et al. (2003) and extend the

risk measure to the continuous case. They consider a VaR-type risk measure defined

as the smallest initial capital needed to ensure that the ruin probability is less than

a given level. The ruin probability in the classical model in Definition 1.1.1, is given

by:

ψ(u) = 1−
θ

1 + θ

∞
∑

n=0

( 1

1 + θ

)n

F
∗(n)
D (u), (4.3)

where D is the ladder height introduced in the first chapter, just before (1.1). The

VaR-type risk measure is expressed as the following:

ρε[X] = inf{v ≥ 0 | ψ(v) ≤ ε} = ψ−1(ε). (4.4)

For a better understanding this risk measure, Trufin et al. (2011) establish the con-

nection between the distribution of the aggregate loss L and (3.4) by the following

equation:

ρε[X] = F−1
L (1− ε) = inf{v | FL(v) ≥ 1− ε}. (4.5)

This kind of risk measure has an advantage over the previous one in Section 4.1.1: it

just needs to evaluate the ruin probability without finding the adjustment coefficient.

The latter can be a problem in some cases, as the adjustment coefficient does not

exist for some heavy-tail distributions. Embrechts et al. (1997) investigate further

the details of the ruin probability when the single claim severity follows a heavy-

tail distribution; they also derive a Cramér-Lundberg approximation for the ruin

probability when the initial capital approaches to infinity. Michel (1987) verifies that

if D and E are two ladder height variables with respect to two claim variables X and

Y , D ≤st E ⇒ ψX(u) ≥ ψY (u). Based on this result, the risk measure defined above

has the following good properties:

Theorem 4.1.2 If the risk measure for the surplus process is defined by (4.4), then

it has the following basic properties:

1. Positive homogeneity: ρε[aX] = aρε[X].

2. Preserves the stop-loss order of X and Y : if X ≤sl Y , then ρε[X] ≤ ρε[Y ].
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3. If Z is more positively dependent on X than Y in the sense that P(X ≤ x, Y ≤

y) ≤ P(X ≤ x, Z ≤ y), then ρε[X + Y ] ≤ ρε[X + Z].

4. Let Z is the mixture of X and Y such as FZ = p1FX + p2FY + p3FX+Y and

p1 + p2 + p3 = 1. If αZ ≤hmrl Y , where α = ρε[Y ]
ρε[X]+ρε[Y ]

, then ρε[Z] ≤ ρε[X] + ρε[Y ].

Trufin et al. (2011) further discuss the diversification effect of this kind of risk

measure under conditions of exchangeable risks, negative quadrant dependent risks

with equivalent sizes and risks that are members of scale family distributions. These

results can be applied in diversifying the risks of portfolios. However, from the analysis

done by Trufin et al. (2011), the intensity parameter of the counting process plays

no role in the risk measure, since the VaR-type measure completely relies on the

distribution of the aggregate loss L, and the latter only relies on the distribution of

the claim severity X.

4.1.3 Risk Measures Based on the Ruin Probability and the

Deficit at Ruin

Trufin and Mitric (2014) improve the VaR type method by including more information

into consideration. To better describe the influence of the severity of the claim causing

ruin, they add the expected deficit at ruin into the previous risk measure:

ξε[X] = ρε[X] + E
[

|Uτ |
∣

∣ τ <∞
]

. (4.6)

This change makes the new risk measure less static than ρε. Furthermore, the new

risk measure combines the consideration of the ultimate ruin probability and the

deficit at the time of ruin, which means the needed initial capital should guarantee

the company the ability to recover if ruin occurs. With some basic change of variable

techniques, Trufin and Mitric (2014) find the way to connect the aggregate loss and

this new risk measure:

ξε[X] = TV aR[L; 1− ε]− E[L], (4.7)

where L is the maximum aggregate loss defined in Chapter 1.
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To compare the risks of two different risk processes, Trufin and Mitric (2014)

derive several conditions after exploring the stochastic order of the claim severity

distributions. Skipping the details of the proof, the following theorem summarizes

the main results.

Theorem 4.1.3 If the risk measure is defined as in (4.6) or (4.7), then for the

comparison of different risk processes, the following relationships exist:

1. ξε[X] ≤ ξε[Y ] if and only if Lx ≤dil LY .

2. Let DX and DY are the corresponding ladder heights of claim severity X and

Y , if DX ≤dil D
Y , then ξε[X] ≤ ξε[Y ].

3. Let X and Y be IMRL, where IMRL means increasing mean residual life, then

this risk measure agrees with the mean residual life order, that is if X ≤mrl Y , then

ξε[X] ≤ ξε[Y ].

4. Let X be DMRL and Y be IMRL, then this risk measure agrees with the

harmonic mean residual life order, that is if X ≤hmrl Y , then ξε[X] ≤ ξε[Y ].

Besides discussing the order of the risk processes under different conditions, the

basic properties of this risk measure are given by Trufin and Mitric (2014). Except

for the translation invariance, the risk measure ξε[X] preserves the other properties

of ρε[X].

Theorem 4.1.4 The risk measure ξε[X] defined in (4.7) has the following basic prop-

erties:

1. ξε[X] is positively homogeneous: ξε[aX] = aξε[X].

2. Suppose X and Y are identically distributed, then ξε[X + Y ] ≤ ξε[X] + ξε[Y ] if

and only if LX+Y
2

≤dil LY .

3. ξε[X] satisfies the following inequality: ξε[X+a] ≤ (≥)ξε[X]+a for any positive

constant a which satisfies a ≥ (≤)V aR[X]
E[X]

− E[X].

For the diversification effect of this risk measure, Trufin and Mitric (2014) give out

similar results as those in Trufin et al. (2011). If there exists a specific dependence

structure between the claim variables X and Y , this risk measure will be subadditive.
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It simplifies the second result in the previous theorem, since we do not need to verify

the dilation order between LX+Y
2

and LY .

Theorem 4.1.5 (More about subadditivity) The risk measure ξε is subadditive if

there exists following dependence structure between the claim variables X and Y :

1. X and Y are exchangeable risks, that is P(X ≤ t1, Y ≤ t1) = P(X ≤ t2, Y ≤

t1).

2. X and Y are negatively quadrant dependent and identically distributed, that is

the inequality P(X ≤ t1, Y ≤ t2) ≤ P(X ≤ t1)P(Y ≤ t2) holds for all t1 and t2.

3. X = βV1 and Y = γV2, where V1 and V2 are identically distributed.

4.1.4 Risk Measures Based on the EAR

In the first chapter, many quantities are mentioned, some that can reflect the influence

of the claim severity and the intensity of the counting process, such as the expected

area in the red (EAR). Henceforth, Loisel and Trufin (2014) propose to use this

quantity as a new risk measure for the risk process. Similar to the methods used by

Trufin and Mitric (2014), this risk measure is based on the needed initial capital to

control the expected area in the red below a certain level.

Before presenting this risk measure of Loisel and Trufin (2014), we need to be clear

about the notation used in this section. Denoting the aggregate claims
∑N(t)

i=1 Xi by

St, the premium rate c and initial capital u, the area in red within the time period

[0, T ] is defined as:

IST,c(u) =

∫ T

0

|Ut|1{Ut<0}dt, u ≥ 0,

where ut = u+ ct−St, t ≥ 0 (see Figure 4.1). For the expected area in red, it is easy

to prove the following equation by use of Fubini’s theorem:

E
[

IST,c(u)
]

= E
[

∫ T

0

|Ut|1{Ut<0}dt
]

=

∫ T

0

E
[

|Ut|1{Ut<0}
]

dt

=

∫ T

0

E
[

(St − ct− u)+
]

dt.

(4.8)
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u

T

Figure 4.1: The area in the red during [0, T ]

Fixing the time period, then Loisel and Trufin (2014) define their new risk measure

as follows:

Definition 4.1.1 For a surplus process with aggregate claims St and the premium

rate c, the initial capital needed to control the expected area in the red within a given

time period [0, T ] below level A is:

ρTA,c[St] = inf{v ≥ 0 | E[IST,c(v)] ≤ A}. (4.9)

With this definition, we can easily see the advantage of using this risk measure.

Since the ruin probability within a finite time period is complicated to compute, no

explicit form with respect to it can be used easily to evaluate the risk. We will see here

that the infimum expression in (4.9) has many good properties, which are presented

in the following several theorems.

Theorem 4.1.6 Let St and S̃t be two different aggregate claim processes. If the

risk measure ρTA,c on the surplus process is defined as (4.9), then it has the following

properties:

1. The risk measure ρTA,c agrees with the stop-loss order, that is St ≤icx S̃t ⇒

ρTA,c[St] ≤ ρTA,c[S̃t].

2. The risk measure ρTA,c is monotone, that is P(St ≤ S̃t) = 1 for all t > 0 leads

to ρTA,c[St] ≤ ρTA,c[S̃t].
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3. The risk measure ρTA,c is translation invariant, that is ρTA,c[St+a] = ρTA,c[St]+a

for any constant a > 0.

4. The risk measure ρTA,c is positively homogeneous, that is ρTA,c[aSt] = aρTA
a
, c
a

[St]

for any constant a > 0.

5. The risk measure ρTA,c is subadditive, in the sense that the inequality ρTA,c[St +

S̃t] ≤ ρTβA,αc[St] + ρ
T
(1−β)A,(1−α)c[S̃t] holds true for all α, β ∈ (0, 1), whatever the depen-

dence structure between the aggregate claims St and S̃t.

As the risk measure ρTA,c satisfies the four basic properties of a coherent risk

measure first introduced in Artzner et al. (1999) (see Definition 2.1.1), one can say that

ρTA,c is coherent. However, when discussing positive homogeneity and subadditivity, we

can find risk measures based on different criteria, which makes “coherence” debatable.

In the next section, we will go back to the assumption of the classical model: c =

(1 + θ)λE[X] to discuss the properties of the risk measure for this case.

4.2 Some New Measures on Risk Processes

From the initial study in the previous section we see that, to compare the risks of

different risk processes, two basic approaches are usually applied. The first way is by

fixing the initial capital, then selecting the key quantity in the risk process which is

comparable and easy to deal with to serve as the risk measure. The second way is

to find out the necessary initial capital to control the adverse index, such as the ruin

probability, expected deficit or expected area in the red.

In this section, other new and useful comparable quantities are introduced to serve

as possible risk measures. The properties of these new risk measures are explored, to

see if these results agree with the analysis done before.
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4.2.1 Risk Measures Based on the Safety Loading

Under the original assumptions from the classical model, we can see that the premium

is proportional to the expectation of the aggregate claims:

c = (1 + θ)λE[X]. (4.10)

The classical model assumes that the safety loading is fixed and kept the same for

all the risk processes. On the other hand, from the discussion at the beginning of

this section, we see that fixing the initial capital, then the safety loading can serve

as another kind of risk measure. In selecting a certain criteria, we can make this

quantity comparable from one process to another. Intuitively, higher safety loadings

lead to more dangerous risk processes. Let us then further study the safety loading.

Adminstrators of insurance companies want to see high levels of the surplus pro-

cess. Mathematically, this could mean that at each time point, or during the follow-

ing very short time period (0,∆t], the cumulated premiums should exceed the claim

amounts, or at least, the probability of this event should be large. Then consider this

probability and make it greater than some given level:

P(Xλ∆t < c∆t) ≥ 1− ε, (4.11)

where X is the claim severity random variable, and λ∆t is the probability of occur-

rence of one claim. Since c = (1 + θ)λE[X], then the inequality above becomes

P(Xλ∆t < c∆t) ≥ 1− ε ⇒ P(Xλ∆t < (1 + θ)λE[X]∆t) ≥ 1− ε

⇒ P(X < (1 + θ)E[X]) ≥ 1− ε

⇒ (1 + θ)E[X] ≥ F−1
1−ε(X) = V aR1−ε(X)

⇒ θ ≥
V aR1−ε(X)

E[X]
− 1. (4.12)

From the expression above, we can define a proper risk measure based on the safety

loading.
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Definition 4.2.1 (Safety Loading) For the surplus process with a given initial capital

level, the safety loading can be defined as in (4.12) to control the probability in (4.11)

to be greater than α. This safety loading argument hence generates risk measure

ρ∗α[X] = inf
{

θ
∣

∣ θ ≥
V aRα(X)

E[X]
− 1

}

=
V aRα(X)

E[X]
− 1. (4.13)

To distinguish this risk measure and the VaR type risk measure in Trufin et

al. (2011), we use ρ∗α here.

Mostly, risk measures are defined over a finite or infinite horizon. Here, we recon-

sider the problem from an infinitesimal horizon for the practical convenience. With

the above definition, we can derive the properties of this new risk measure, starting

the discussion with coherence. In order to better explore the subadditivity, we first

introduce a concept.

Definition 4.2.2 A random vector (X, Y ) has regularly varying right tails with tail

index η if there is a function a(t) > 0 that is regularly varying at infinity with exponent

1
η
and a nonzero measure µ on (0,∞)2/{0} such that

tP
(

(X, Y ) ∈ a(t)
)

→ µ, (4.14)

as t→ ∞ vaguely in (0,∞)2/{0}.

Proposition 4.2.1 Provided the first moment of the claim severity distribution exists,

the risk measure based on the safety loading has the following properties:

1. If X
E[X]

≤st
Y

E[Y ]
, then ρ∗α[X] ≤ ρ∗α[Y ].

2. For any positive constant a, ρ∗α[aX] = ρ∗α[X].

3. For any positive constant a, ρ∗α[X + a] < ρ∗α[X].

4. If X and Y have jointly regularly varying non-degenerate tails with tail index

β > 1, then ρ∗α[X + Y ] ≤ ρ∗α[X] + ρ∗α[Y ] for large α.

Proof. 1. Since the definition of θ is equivalent to:

P(Xλ∆t < c∆t) ≥ α ⇒ P(X < (1 + θ)E[X]) ≥ α

⇒ P(
X − E[X]

E[X]
< θ) ≥ α

⇒ θ = V aRα(
X − E[X]

E[X]
),
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so if X
E[X]

≤st
Y

E[Y ]
, then X

E[X]
− 1 ≤st

Y
E[Y ]

− 1, which indicates that V aRα(
X−E[X]
E[X]

) ≤

V aRα(
Y−E[Y ]
E[Y ]

). Then the first statement is true.

2. It is easy to see that V aRα(aX)
E[aX]

− 1 = V aRα(X)
E[X]

− 1, so ρα[aX] = ρα[X]. This

property means that this risk measure is scale free. Moreover, similar to the risk

measure presented by Trufin et al. (2011), the intensity parameter does not play any

role here.

3. Since ρ∗α[X] = V aRα(X)
E[X]

− 1 = V aRα(X)−E[X]
E[X]

, then it is easy to find that

ρ∗α[X + a] =
V aRα(X + a)− E[X + a]

E[X + a]
=
V aRα(X)− E[X]

E[X] + a

<
V aRα(X)− E[X]

E[X]
= ρ∗α[X].

In fact, we can find an intepretation for the inequality above. Once there is a

fixed loss added to each claim, then the insurers will charge the insureds additional

fees (1 + θ)λa, that accounts for the uncertainty of the random claims. That is why

the risk is reduced in this case.

4. Based on the results of Dańıelsson et al. (2005), VaR has a diversification effect

in the tail region, when X and Y have jointly regularly varying non-degenerate tails

with tail index β > 1. So for large α, V aRα(X + Y ) ≤ V aRα(X) + V aRα(Y ). With

this inequality, it is easy to prove the next inequality:

ρ∗α[X + Y ] =
V aRα(X + Y )

E[X] + E[Y ]
− 1

≤
V aRα(X) + V aRα(Y )

E[X] + E[Y ]
− 1

=
E[X]

E[X] + E[Y ]
(
V aRα(X)

E[X]
− 1) +

E[Y ]

E[X] + E[Y ]
(
V aRα(Y )

E[Y ]
− 1)

≤
V aRα(X)

E[X]
− 1 +

V aRα(Y )

E[Y ]
− 1

= ρ∗α[X] + ρ∗α[Y ].

Sometimes, the claims follow a heavy-tail distribution, such as Pareto-type distri-

butions, which here always have the tail indexes that exceed 1. Then the regulators

want a high α to avoid insolvency. Therefore, the subadditivity of this risk measure

makes some sense for heavy-tail risks.
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In fact, the above property implies that the two risk processes must share the

same intensity parameter, which may not be practical. Next we see that even for the

most general case, subadditivity still holds. Consider two correlated aggregate claims

S
(1)
t =

∑N1(t)+N(t)
i=1 Xi and S

(2)
t =

∑N2(t)+N(t)
i=1 Yi, then the corresponding risk measure

or safety loading defined through (4.12) is

P(λ1X + λ2Y + λ(X + Y ) ≤ (1 + θ)((λ1 + λ)µ1 + (λ2 + λ)µ2)) ≥ α

⇒ θ ≥
V aRα((λ1 + λ)X + (λ2 + λ)Y )

(λ1 + λ)µ1 + (λ2 + λ)µ2

− 1,

where λ1, λ2 and λ are the intensity parameters for the counting processes N1(t),

N2(t) and N(t), while µ1 and µ2 are the expectations of X and Y . We see that if

the random variables X and Y meet the above conditions, then the risk measure for

S
(1)
t +S

(2)
t still satisfies subadditivity. The proof is similar to that of the last property.

The special case when the two risk processes share the same intensity parameter,

and their claim variables are comonotonic, then we get the following result.

Proposition 4.2.2 If X and Y are comonotonic, then the risk measure ρ∗α[X] is still

subadditive for large α.

Proof. If X and Y are co-monotonic, from the basic properties about VaR established

by Denuit et al. (2005), VaR is additive for co-monotonic risks. So when α is large

enough, V aRα(X) > E[X], V aRα(Y ) > E[Y ] and V aRα(X + Y ) > E[X + Y ].

Following the steps of the proof for Property 4 in the previous proposition, easily

shows that ρ∗α[X + Y ] ≤ ρ∗α[X] + ρ∗α[Y ].

Example 4.2.1 (Pareto claim severity) Suppose the claim severity follows the Pareto

distribution with parameters α and θ, then the corresponding quantile and expecta-

tion are

V aRp(X) = θ[(1− p)−
1
α − 1], (4.15)

E[X] =
θ

α− 1
, α > 1. (4.16)

Consider the rescaled random variable X
E[X]

, its distribution is still of Pareto type:

P(
X

E[X]
≤ x) = P(X ≤

θ

α− 1
x) = 1− (

α− 1

x+ α− 1
)α, x > 0.
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Therefore, by use of the risk measure defined in this section, we find that

ρ∗p[X] =
V aRp(X)

E[X]
− 1 = (α− 1)[(1− p)−

1
α − 1]− 1. (4.17)

If X and Y are two such random variables, and with scale parameters α1 and α2,

α1 ≤ α2, then
( α1 − 1

x+ α1 − 1

)α1

≤
( α2 − 1

x+ α2 − 1

)α2

,

which indicates that X
E[X]

≤st
Y

E[Y ]
. By simple computations of ρ∗p[X] and ρ∗p[Y ], we

see that ρ∗p[X] ≤ ρ∗p[Y ].

Additionally, from Dańıelsson et al. (2005), we know that the Pareto distribution

belongs to the class of regularly varying distributions with tail index α. If p ∈ (0, 1)

and p is very close to 1, the VaR measure is subadditive for Pareto type random

variables. Thus, the last property of the Proposition 4.2.1 holds true for the random

variables in the above example. For more details about the subadditivity of the VaR

measure, please refer to Dańıelsson et al. (2005).

4.2.2 Risk Measures Based on the Adjustment Coefficient

In the previous section, the risk measure defined by Dhaene et al. (2003) relies on the

Lundberg’s inequality ψ(u) ≤ e−Ru, where ψ(u) is the ruin probability (see Definition

1.1.2). Also, recall from the introduction of the first chapter, that in the classical

model, the Cramér-Lundberg’s approximation of terminal ruin probability when ini-

tial capital goes to infinity: ψ(u) ∼ Ce−Ru. These results show that larger adjustment

coefficients R lead to lower ruin probabilities. Thus the adjustment coefficient can

also serve as a new risk measure for risk processes. Hald and Schmidli (2004) use

the adjustment coefficient as a measure for the risk processes and discuss the optimal

strategy for proportional reinsurance in order to maximize the adjustment coefficient.

Motivated by their work, we define a new risk measure for risk processes on the basis

of adjustment coefficient.

The adjustment coefficient R is derived from the Lundberg fundamental equation.

Gerber and Shiu (1998) give a general form of this equation;

E[e−ξteR(St−ct)] = 1, (4.18)
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which is equivalent to the following equation:

E[eRSt ] = e(ξ+Rc)t. (4.19)

The left hand side expression of (4.18) is the moment generating function (mgf) of the

compound renewal processes; it is difficult to find out its general analytical expression.

There are many articles about finding the moments of the compound renewal process,

such as Léveillé and Garrido (2001a, 2001b), in which they discuss the first and second

moments of renewal sums with discounted claims. Jang (2004) uses the martingale

approach to find the mgf of renewal sums with discounted claims when the counting

process is Poisson and find the moments by differentiating the mgf and evaluating it

at the original point.

Léveillé, Garrido and Wang (2010) make a breakthrough in this problem. They

give integral equations of the moment generating function of renewal sums with dis-

counted claims:

MZ(t)(x) = F̄ (t) +

∫ t

0

MX(se
−ξv)MZ(t−v)(se

−ξv)dF (v), x > 0,

where t > 0, ξ ≥ 0 is the force of interest, and F̄ (t) = 1− F (t). Then they use it to

derive the analytical expression for the moment generating function recursively:

MZ(t)(x) =
∞
∑

n=0

Hn(t, s), x > 0, (4.20)

Hn(t, s) =

∫ t

0

MX(se
−ξv)Hn−1(t− v, se−ξv)dF (v), H0(t, s) = F̄ (t). (4.21)

It is difficult to initiate the study of the roots of (4.17) by using the expression above,

so in this thesis we only restrict our discussion to the context of the classical risk

model.

Since our discussion is based on the adjustment coefficient, first suppose that the

mgf for the severity distribution exists. When the force of interest ξ = 0, and the

underling counting process is Poisson, it easy to get the corresponding equation for

(4.17):

1 +
c

λ
r =MX(r), (4.22)
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Figure 4.2: Adjustment coefficient of the classical model

in whichMX(r) is the claim severity mgf, c is the premium rate and λ is the frequency

parameter of the Poisson process. Since the mgf of a nonnegative random variable

is always convex, and the right side of the equation (4.22) is a linear function, then

the moment generating function MX(r) will intersect with the linear function g(r) =

1 + c
λ
r at mostly two points. When taking r = 0, left side equals to right side in the

equation (4.22), so there is an unique positive root to (4.22), if r = R is within the

convergence radius of the moment generating function.

Definition 4.2.3 (Adjustment Coefficient) If the positive root of equation (4.22)

exists, then this root is the adjustment coefficient for the Lundberg equation, and the

risk measure for the whole risk process is defined as:

ρAC [Rt] = ρ
[

N(t)
∑

i=0

Xi − ct
]

= f(R), (4.23)

where

R = inf
{

r > 0
∣

∣ 1 +
c

λ
r =MX(r)

}

, (4.24)

and the function f is a decreasing function. From the analysis at the beginning of

this chapter, we have that more dangerous risk processes lead to smaller adjustment
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coefficients, explaining why a decreasing function is applied to the root in (4.23).

This way, if Rt is more dangerous, ρAC [Rt] is larger. In fact, to compare the risks

of different surplus processes is equivalent to compare the adjustment coefficients,

but the properties of this risk measure heavily rely on the choice of the function f .

Motivated by Lundberg’s inequality ψ(u) ≤ e−Ru ≤ ε, one can get the relationship

between the adjustment coefficient and the needed initial capital u ≥ − ln ε
R

, so one

suitable choice for f is reciprocal function f(R) = 1
R
. Here we relax the assumption

of the classical Cramér-Lundberg model that the premium rate is c = (1 + θ)λE[X],

since the equation (4.23) would be degenerate under this assumption.

This risk measure has several interesting properties, the first and also the most

important is that it can diversify risks for two different risk processes.

Proposition 4.2.3 If R
(1)
t and R

(2)
t are two classical Poisson risk processes, then the

risk measure defined by (4.23) satisfies the following inequality: ρAC [R
(1)
t + R

(2)
t ] ≤

ρAC [R
(1)
t ] + ρAC [R

(2)
t ].

Proof. Suppose that the risk processes R
(1)
t and R

(2)
t are defined as:

R
(1)
t =

N1(t)
∑

i=1

Xi − c1t, R
(2)
t =

N2(t)
∑

i=1

Yi − c2t,

1 +
c1
λ1
R =MX(R), (4.25)

1 +
c2
λ2
R =MX(R), (4.26)

where λ1 and λ2 are the corresponding intensity parameters of the counting processes

N1(t) and N2(t). Now let R1 be the positive root of equation (4.24) and R2 be

the positive root of equation (4.25), such that R1 ≤ R2. Then consider the process

R
(1)
t +R

(2)
t . Since N1(t) and N2(t) are two Poisson processes with parameters λ1 and

λ2, then N1(t)+N2(t) is still a Poisson process with parameter λ1+λ2, so R
(1)
t +R

(2)
t

can be treated as a new risk process:

R
(1)
t +R

(2)
t =

N3(t)
∑

i=1

Zi − c3t,
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where N3(t) is a Poisson process with parameter λ3 = λ1 + λ2, the premium rate

c3 = c1 + c2, and the density function for Zi is:

fZ(x) =
λ1

λ1 + λ2
fX(x) +

λ2
λ1 + λ2

fY (x), x ≥ 0.

It is easy to write out Lundberg’s equation about this new risk process:

1 +
c3
λ3
R =MZ(R), (4.27)

which is equivalent to:

1 +
c1 + c2
λ1 + λ2

R =
λ1

λ1 + λ2
MX(R) +

λ2
λ1 + λ2

MY (R). (4.28)

We can rearrange the order of the terms in the equation above and rewrite it as:

λ1
λ1 + λ2

(1 +
c1
λ1
R) +

λ2
λ1 + λ2

(1 +
c2
λ2
R) =

λ1
λ1 + λ2

MX(R) +
λ2

λ1 + λ2
MY (R). (4.29)

Suppose the positive root of (4.27) is R3, we can rank R1, R2 and R3 by comparing

equations (4.27), (4.25) and (4.26). Since R1 ≤ R2, then the following equality and

inequality hold:

1 +
c1
λ1
R1 =MX(R1), (4.30)

1 +
c2
λ2
R1 ≥MY (R1). (4.31)

Thus we can get the following inequality:

1 +
c3
λ3
R1 ≥MZ(R1). (4.32)

Furthermore, we can get a similar inequality substituting in R2:

1 +
c3
λ3
R2 ≤MZ(R2). (4.33)

Thereby R1 ≤ R3 ≤ R2, which is equivalent to 1
R1

≥ 1
R3

≥ 1
R2
, so we get ρAC [R

(1)
t ] ≥

ρAC [R
(3)
t ] ≥ ρAC [R

(2)
t ], then the following inequality holds:

ρAC [R
(3)
t ] = ρAC [R

(1)
t +R

(2)
t ] ≤ ρAC [R

(1)
t ] + ρAC [R

(2)
t ].
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Here it makes no sense to consider translation invariance since the initial capital

is not included into the definition. For positive homogeneity, we get the following

result.

Proposition 4.2.4 If Rt is a classical Poisson risk process with premium rate c and

frequency parameter λ, then the following equality is true for any constant a > 0 with

f(R) = 1
R
:

ρAC [aRt] = aρAC [Rt].

Proof. The risk process is Rt =
∑N(t)

i=1 Xi − ct, and N(t) is a Poisson process with

parameter λ, then the corresponding Lundberg equation is:

1 +
c

λ
R =MX(R). (4.34)

The Lundberg equation for the scaled risk process aRt =
∑N(t)

i=1 aXi − act is:

1 +
ac

λ
R = 1 +

c

λ
aR =MX(aR). (4.35)

Denoting the positive root of equation (4.34) by R1 and that of equation (4.35) by R2,

compare equations (4.34) and (4.35). Since the positive root of Lundberg’s equation

in the Poisson case is unique, it is easy to find that aR2 = R1. So the relationship

between ρAC [Rt] and ρAC [aRt] is:

ρAC [aRt] =
1

R2

= a
1

aR2

= a
1

R1

= aρAC [Rt].

For coherent risk measures or distortion risk measures, monotonicity is easily

verified since these measures are based on a single variable. However, now the risk

object is the whole risk process, and the uncertainty of the process not only comes

from the claim severity, but also from the underling counting process and the premium

principle. In order to compare the risks of two risk processes, a crude approach is

provided by the following theorem.

Proposition 4.2.5 Let R
(1)
t =

∑N1(t)
i=1 Xi − c1t and R

(2)
t =

∑N2(t)
i=1 Yi − c2t be two

classial Poisson risk processes, λ1 and λ2 are parameters for N1(t) and N2(t). If
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these two risk processes satisfy λ1
c1

≤ λ2
c2
, and their claim severities satisfy X ≤icx Y ,

then ρAC [R
(1)
t ] ≤ ρAC [R

(2)
t ].

Proof. For the risk processes R
(1)
t and R

(2)
t , their corresponding Lundberg equations

are:

1 +
c1
λ1
R =MX(R) ⇒

λ1
c1

+R =
λ1
c1
MX(R), (4.36)

1 +
c2
λ2
R =MY (R) ⇒

λ2
c2

+R =
λ2
c2
MY (R). (4.37)

The left hand side of the above equations is linear with the same slope but different

intercepts. The right hand side are two convex functions about R. For convenience

let m1(R) =
λ1
c1
MX(R) and m2(R) =

λ2
c2
MY (R); it is easy to see that m1(0) =

λ1
c1

and

m2(0) =
λ2
c2
. Since X ≤icx Y , the two following inequalities can be verified by using

the properties of increasing convex order:

0 <
λ1E[X]

c1
= m

′

1(0) ≤
λ2E[Y ]

c2
= m

′

2(0) < 1, (4.38)

λ1
c1
E[X2eRX ] = m

′′

1(R) ≤
λ2
c2
E[Y 2eRY ] = m

′′

2(R). (4.39)

If R1 is the positive root of equation (4.36) and R2 is the positive root of (4.37),

then combing the inequalities above we see that R1 ≥ R2, then ρAC [R
(1)
t ] ≤ ρAC [R

(2)
t ]

follows.

Example 4.2.2 (Exponential claim severity) If the claim severities are i.i.d. exponen-

tially distributed with mean 1
β
, then the corresponding moment generating function is

Mx(r) =
β
β−r for r < β, and then the smallest positive solution of Lundberg’s equation

is R = β − λ
c
. Clearly, when λ decreases, then the claims will occur less frequently,

and this will make the whole process less dangerous. If the premium rate c is higher,

then the safety loading is increased, which may decrease the risk of the whole process.

If instead the parameter β of the exponential distribution is increased, considering

the tail distribution of the exponential distribution F̄Xi
(x) = 1 − FXi

(x) = e−βix,

then:

X1 ≤st X2 ⇔ F̄X1(x) ≤ F̄X2(x), β1 ≥ β2, (4.40)
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which indicates that X2 is more dangerous than X1, so increasing the parameter of

exponential distribution is equivalent to decreasing the risk of the whole process. All

these operations will increase the adjustment coefficient, so the adjustment coefficient

can clearly be used to measure the risk of the risk processes.

4.2.3 Generalized Risk Measures Based on the EAR

In the previous section, we discuss a drawback in the proposal by Loisel and Trufin (2014).

The fixed premium rate makes this risk measure totally characterized by the aggre-

gate claim process rather than the risk process. In order to make the risk measure

more dynamic, in this section we generalize the method of Loisel and Trufin (2014)

under the classical assumption c = (1 + θ)λE[X], where X is the claim severity, λ is

the intensity of the Poisson counting process and θ is the safety loading.

Under these classical risk assumptions, a new risk measure is based on the following

definition of the expected area in the red.

Definition 4.2.4 Let a classical risk process be defined as Rt = St − (1 + θ)λµt,

where µ = E[X], and St is the aggregate claims. The expected area in red in the time

interval [0, T ] with initial capital u is given by

E[IRt

T (u)] = E

[

∫ T

0

[|Rt − u|1{Rt>u}]dt
]

. (4.41)

Using similar techniques as in Loisel and Trufin (2014), by Fubini’s theorem we

can rewrite (4.37) as follows:

E[IRt

T (u)] = E

[

∫ T

0

[|Rt − u|1{Rt>u}]dt
]

, (4.42)

=

∫ T

0

E[|Rt − u|1{Rt>u}]dt, (4.43)

=

∫ T

0

E[(St − (1 + θ)λµt− u)+]dt. (4.44)

Now, we can define a new risk measure based on the risk process Rt, which is similar

to the definition given by Loisel and Trufin (2014) for St.
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Definition 4.2.5 (Limited expected area) For a limited expected area A, the mini-

mum initial capital needed to control the expected area less than A within [0, T ] is

ρTA[Rt] = inf{v ≥ 0 | E[IRT (v)] ≤ A}. (4.45)

Now consider the effect of this small modification in the definition. In Loisel and

Trufin (2014), the risk measure ρTA,c agrees with the stop loss order of the aggregate

losses. The modified risk measure ρTA should obviously agree with the stop loss order

of the risk processes, which is

R
(1)
t ≤icx R

(2)
t . (4.46)

Under the stop loss order, one can get E[R
(1)
t ] ≤ E[R

(2)
t ], which is equivalent to

λ1µ1 ≥ λ2µ2. Moreover, once the inequality above is satisfied, we can focus on the

stochastic order of the aggregrate losses, and derive the following result.

Proposition 4.2.6 If E[S
(1)
t ] ≥ E[S

(2)
t ], the risk measure ρTA agrees with the dilation

order of the aggregate loss, that is S
(1)
t ≤dil S

(2)
t for all t ∈ (0, T ], then ρTA[R

(1)
t ] ≤

ρTA[R
(2)
t ].

Proof. The proof is similar to that given by Belzunce et al (1997). According to the

definition of the dilation order,

S
(1)
t ≤dil S

(2)
t ⇒ S

(1)
t − E[S

(1)
t ] ≤cx S

(2)
t − E[S

(1)
t ]. (4.47)

Since E[S
(1)
t ] ≥ E[S

(2)
t ], then one can get that

S
(1)
t ≤cx S

(2)
t + (E[S

(1)
t ]− E[S

(2)
t ]). (4.48)

Further, considering the positive safety loading θ gives

S
(1)
t ≤cx S

(2)
t + (1 + θ)(E[S

(1)
t ]− E[S

(2)
t ]), (4.49)

which is exactly

S
(1)
t − (1 + θ)E[S

(1)
t ] ≤cx S

(2)
t − (1 + θ)E[S

(2)
t ]. (4.50)

Consequently, R
(1)
t ≤icx R

(2)
t and the result ρTA[R

(1)] ≤ ρTA[R
(2)] follows.
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Next, consider the analysis in Loisel and Trufin (2014) of the properties of their

risk measure ρTA,c but for our modified risk measure ρTA. For convenience, we adopt

the notations used in Loisel and Trufin (2014), that is R + a = {Rt + a, t > 0} and

aR = {aRt, t > 0}.

Property 4.2.1 If a risk measure is defined for risk processes as in (4.45), then it

possesses the following properties:

1. Monotonicity: if P(R
(1)
t ≤ R

(2)
t ) = 1 for all t ∈ (0, T ], then ρTA[R

(1)
t ] ≤ ρTA[R

(2)
t ].

2. Translation invariance: for any positive constant a, ρTA[R
(1)
t +a] = ρTA[R

(1)
t ]+a.

3. Positive homogeneity: for any positive constant a, ρTA[aR
(1)
t ] = aρTA

a

[R
(1)
t ].

4. Subadditivity: for all β ∈ (0, 1), ρTA[R
(1)
t +R

(2)
t ] ≤ ρTβA[R

(1)
t ] + ρT(1−β)A[R

(2)
t ].

Proof. The proof is similar to that in Loisel and Trufin (2014). From the definition

of the risk measure ρTA, the first property is easily verified. To verify the second and

the third properties, it is sufficient to note that
∫ T

0

E[(aSt − a(1 + θ)λµt− u)+]dt = a

∫ T

0

E[(St − (1 + θ)λµt−
u

a
)+]dt,

∫ T

0

E[(St − (1 + θ)λµt+ a− u)+]dt = a

∫ T

0

E[(St − (1 + θ)λµt− (u− a)+]dt,

then by definition of ρTA, the second and the third properties can be derived.

For the last property, we need to use the following inequality,
∫ T

0

E[(S
(1)
t + S

(2)
t − (1 + θ)(λ1µ1 + λ2µ2)t− u)+]dt

≤

∫ T

0

E[(S
(1)
t − (1 + θ)λ1µ1t+ a− βu)+]dt

+

∫ T

0

E[(S
(2)
t − (1 + θ)λ2µ2t+ a− (1− β)u)+]dt, β ∈ (0, 1).

Then, for β ∈ (0, 1),

E[I
R

(1)
t +R

(2)
t

T (ρTβA[R
(1)
t ] + ρT(1−β)A[R

(2)
t ])] ≤ E[I

R
(1)
t

T (ρTβA[R
(1)
t ])] + E[I

R
(2)
t

T (ρT(1−β)A[R
(2)
t ])],

(4.51)

which implies ρTA[R
(1)
t + R

(2)
t ] ≤ ρTβA[R

(1)
t ] + ρT(1−β)A[R

(2)
t ] as needed. But one should

note that the risk measures on the right hand side are no longer based on the same

area A.
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To better understand the implementation of this risk measure, we study a specfic

example. First, it is necessary to introduce a theorem in Loisel and Trufin (2014),

which is derived from the differentation theorem introduced at the end of Chapter 1.

Theorem 4.2.1 For the compound Poisson model with a positive safety loading, the

expected area in red E[I∞,c(u)] and the ultimate ruin probability ψ(u) are linked by

the following equation:

d2

du2
E[I∞,c(u)] =

1

c

ψ(u)

1− ψ(0)
, u ≥ 0. (4.52)

Proof. See Loisel and Trufin (2014), mainly relies on the differentation theorem in-

troduced in Loisel (2005).

For the model discussed in this section, equation (4.52) should be modified to be

d2

du2
E[I∞(u)] =

1

(1 + θ)λµ

ψ(u)

1− ψ(0)
, u > 0. (4.53)

Example 4.2.3 Suppose that the claims severity follows an exponential distribution

with mean β. From the introduction in Chapter 1 we know that the ruin probability

has a closed form: ψ(u) = (1−βR)e−Ru, where R is Lundberg’s adjustment coefficient.

After some computations, we get R = θ
β(1+θ)

. Then by use of the differential equation

in (4.52), we get the following result:

E[I∞(u)] =
β(1 + θ)

λθ3
exp{−

θ

β(1 + θ)
u}, u > 0. (4.54)

Thereby, the risk measure ρ∞A (R
(1)
t ) can be written as ρ∞A (R

(1)
t ) = inf{u ≥ 0 | E[I∞(u)] ≤

A}, which is the following expression:

ρ∞A [R
(1)
t ] =











β(1 + θ)

θ
ln
β(1 + θ)

Aλθ3
, A <

β(1 + θ)

λθ3
,

0, A ≥
β(1 + θ)

λθ3
.

(4.55)

From (4.55), a basic analysis can be done: increasing intensity parameters λ lead

to smaller measures of risk; increasing the parameter β, or increasing the expectation

of the claim severity for this example, leads to a larger measure of risk.
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Trufin and Mitric (2014) combines the ruin probability and the expected deficit at

ruin to generate a new type of risk measure. Inspired by it, we argue that considering

only one criterion may not fully reflect the dangerousness of the risk processes. Take

the risk measure introduced in this section for example, if two risk processes have close

expected areas in red, then we say that these two risk processes are undistinguishable.

However, we know once the deficit reaches some level, the company may run out of

credit and the severe insolvency will lead the company to bankruptcy. Therefore, we

consider the combination of the expected area in red and the quantile of the maximal

severity of ruin (see definition in (1.17)) to define a new kind of risk measure.

Recall the distribution of the maximal severity of ruin in (1.18) given the initial

capital in Chapter 1, for convenience we continue the above example for further

illustration. The claim severity now follows a exponential distribution with mean β,

the ruin probability in this case is ψ(u) = (1 − βR)e−Ru. Thus, the distribution of

the maximal severity of ruin given the initial capital level is given by:

FLM
(z) =

ψ(u)− ψ(u+ z)

ψ(u)(1− ψ(z))
=

1− e−Rz

1− e−Rz + βRe−Rz
, z > 0. (4.56)

Surprisingly, we can find that the simplified expression above is not related with the

initial capital. Then the p−quantile of this distribution can be obtained:

V aRp(LM) =
β(1 + θ)

θ
ln

(1− p+ θ)

(1− p)(1 + θ)
. (4.57)

Finaly, we compute V aRp(LM) + ρ∞A (R
(1)
t ):

V aRp(LM) + ρ∞A [R
(1)
t ] =

β(1 + θ)

θ
ln
β(1 + θ

1−p)

Aλθ3
, A <

β(1 + θ)

λθ3
. (4.58)

The final expression of the new risk measure has a similar form to (4.55), which

indicates the same results can be obtained based on this new risk measure.

To evaluate the insolvency risk, the information needed by the adminstrators

differs from that of external regulators, i.e. the government. Thereby, different risk

measures can be constructed using the idea illustrated above.
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4.2.4 Risk Measures Based on the Expected Loss Ratio

From the analyses in Trufin et al. (2011) and Trufin and Mitric (2014), the risk

processes are evaluated through VaR or TVaR measures of the aggregate loss L =
∑M

i=1Di, which was introduced in the Section 1.1. The variable L represents the real

loss faced by the insurance company with regards to the insolvency. Hence, comparing

the risks of different risk processes is equivalent to comparing the variables L in the

sense of the stochastic order.

However, as seen in Chapter 1, under the assumptions of the classical risk model,

the distribution of the aggregate loss L does not depend on the intensity parameter

λ. This means that the risk of risk processes may not be distinguishable if their claim

severity follows the same distribution. In this section, we construct a risk measure

which takes into account the distribution of L and the intensity parameter λ.

Suppose that each shareholder of an insurance company only takes a limited li-

ability, that is, if the insurance company runs into a bankruptcy the shareholders

will not pay any losses which exceed the initial capital u. If L is the aggregate loss,

then (L − u)+ is the shareholders’ deficit or insurer’s default option. This quanti-

ty has been fully studied in recent years for the allocation problem. Sherris (2006)

studies how to distribute the expected shareholders’ deficit to each business line un-

der a complete market condition. Kim and Hardy (2009) studies how to establish a

new allocation principle on the basis of the expected shareholders’ deficit. Dhaene

et al. (2009) studies the effect of merging and diversifying the shareholders’ deficit

when some correlation orders are imposed. We will see in the next section that the

allocation problem based on our new risk measure, defined below, can be perfectly

solved by use of the unified principle proposed in Dhaene et al. (2010).

In fact, one could use directly the expected shareholders deficit (ESD) E[(L−u)+]

as a risk measure, but this measure does not depend on the intensity parameter either.

Since the solvency of an insurance company heavily depends on its premium principle,

we hence divide the expected shareholders’ deficit by the premium charged by the

insurance company. Under the assumptions of the classical model, the new quantity
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considered would be of the following loss ratio:

l(u) =
E[(L− u)+]

(1 + θ)λµ
, (4.59)

where µ = E[X] is the expectation of the claim severity. Here l(u) is a scaled expected

shareholders’ deficit, and we call it the expected loss ratio (ELR) in this section. We

can find that it is more likely that the insurance company will be able to repay its

liabilities with a smaller l(u). Thereby, l(u) reflects the solvency of an insurance

company.

To protect the shareholders’s and shareholders alike, the insurance company will

set sufficient reserves u in order to control l(u) and keep it under a certain level.

The needed reserve, or initial capital, based on this new criteria defines a new risk

measure, based on the risk process with the following expression,

ρELR[Rt] = inf{u | l(u) ≤ ε}, ε > 0. (4.60)

As usual, we now analyze the basic properties of this expected loss ratio from the

perspective of coherence. Consider two classical risk processes R
(1)
t =

∑N1(t)
i=1 Xi−(1+

θ)λ1µ1 and R
(2)
t =

∑N2(t)
i=1 Yi−(1+θ)λ2µ2, where {Xi}i=1,2,... are positive i.i.d. random

variables with distribution FX , and {Yi}i=1,2,... are positive i.i.d. random variables with

distribution FY .

Proposition 4.2.7 The risk measure defined by (4.59) has the following properties:

1. If λ1 ≥ λ2, X1 ≤cx Y1, then ρELR[R
(1)
t ] ≤ ρELR[R

(2)
t ].

2. For any positive constant a, ρELR(aR
(1)
t ) = aρELR[R

(1)
t ].

3. For any positive constant a, ρELR(R
(1)
t + a) = ρELR[R

(1)
t ] + a.

4. If R
(1)
t and R

(2)
t are indepedent, and Y ≤cx X, then ρELR[R

(1)
t + R

(2)
t ] ≤

ρELR[R
(1)
t ] + ρELR[R

(2)
t ].

Proof. 1. Using the results of Trufin et al. (2011), we can conclude that:

X ≤cx Y ⇒ DX ≤st D
Y ⇒ DX ≤sl D

Y ,

where DX and DY are corresponding ladder heights. Since the stop-loss order is

preserved under the compound sum, then L1 =
∑G1

i=1D
X
i ≤sl L2 =

∑G2

i=1D
Y
i , which
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leads to E[(L1 − u)+] ≤ E[(L2 − u)+]. The condition X ≤cx Y also implies that

E[X] = E[Y ]. Finally, since λ1 ≥ λ2, the first property is verified.

2. If the risk process is multiplied by a positive constant a, then the claim severity

will be aX1. The corresponding ladder height DX∗ follows the distribution

FDX∗(y) =

∫ y

0

1− FaX(x)

E[aX]
dx

=

∫ y

0

1− FX(x/a)

E[X]
d(x/a)

=

∫
y
a

0

1− FX(x)

E[X]
dx

= FaDX (y).

The derivation above shows that the L′ = aL. Therefore

ρELR[aR
(1)
t ] = inf

{

u |
E[(aL− u)+]

(1 + θ)λ1E[aX]
≤ ε

}

= inf
{

u |
E[(L− u

a
)+]

(1 + θ)λ1E[X]
≤ ε

}

= aρELR[R
(1)
t ].

3. Note that adding a positive constant a on the risk process defined above, implies

that the same constant gets added onto the aggregate loss L. Then the expected loss

ratio for translated process is

ρELR[R
(1)
t + a] = inf

{

u |
E[(L+ a− u)+]

(1 + θ)λ1E[X]

}

= inf
{

u |
E[(L+ (u− a))+]

(1 + θ)λ1E[X]

}

= a+ ρELR[R
(1)
t ].

4. If R
(1)
t and R

(2)
t are independent, then R

(3)
t = R

(1)
t + R

(2)
t will be a new risk

process with intensity parameter λ3 = λ1+λ2 and claims severity Z with the following

mixed distribution

FZ(x) =
λ1

λ1 + λ2
FX(x) +

λ2
λ1 + λ2

FY (x), x > 0.

Using the definition, one can find the distribution of the ladder height DZ :

FDZ (y) = αFDX (y) + (1− α)FDY (y), α =
λ1E[X]

λ1E[X] + λ2E[Y ]
.
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This means that the new ladder height DZ also follows a mixed distribution. Since

Y ≤cx X, then DY ≤st D
X , then it leads to

FDY (y) ≥ FDX (y) ⇒ FDZ (y) ≥ FDX (y) ⇒ DZ ≤st D
X .

The first order of dominance can be preserved under the compound sum, hence we

get the following ordering:

M3
∑

i=1

DZ
i ≤st

M3
∑

i=1

DX
i ≤cx

M1
∑

i=1

DX
i +

M2
∑

i=1

DY
i ,

where M1, M2 and M3 are i.i.d. geometric random variables. Therefore, the following

ordering obviously holds.

M3
∑

i=1

DZ
i ≤sl

M1
∑

i=1

DX
i +

M2
∑

i=1

DY
i ,

Let L3 =
∑M3

i=1D
Z
i , then

E[(L3 − (ρELR(R
(1)
t ) + ρELR(R

(2)
t ))+]

(1 + θ)(λ1E[X] + λ2E[Y ])
≤

E[(L1 + L2 − (ρELR(R
(1)
t ) + ρELR(R

(2)
t )))+]

(1 + θ)(λ1E[X] + λ2E[Y ])

≤
E[(L1 − ρELR(R

(1)
t ))+]

(1 + θ)(λ1E[X] + λ2E[Y ])
+

E[(L2 − ρELR(R
(2)
t ))+]

(1 + θ)(λ1E[X] + λ2E[Y ])

= α
E[(L1 − ρELR(R

(1)
t ))+]

(1 + θ)λ1E[X]
+ (1− α)

E[(L2 − ρELR(R
(2)
t ))+]

(1 + θ)λ2E[Y ]

≤ αε+ (1− α)ε = ε.

The inequality above implies that ρELR[R
(1)
t +R

(2)
t ] ≤ ρELR[R

(1)
t ] + ρELR[R

(2)
t ].

Finally, we give an illustrative example. First note that the expected shareholders

deficit E[(L− u)+] can be rewritten as:

E[(L− u)+] =

∫ ∞

u

ψ(x)dx, (4.61)

where ψ(x) is the ruin probability with initial capital x. For convenience, we again let

the claims severity follows the exponential distribution, because the ruin probability

of this case is available analytically.
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Example 4.2.4 If the claim severity Xi ∼ Exp( 1
β
), then the ruin probability ψ(x) is

given as

ψ(x) = (1− βR)e−Rx, x > 0,

where R is the adjustment coefficient. Hence

E[(L− u)+]

(1 + θ)λE[X]
=

∫∞
u
(1− βR)e−Rxdx

(1 + θ)λβ
=

(1− βR)e−Ru

(1 + θ)λβR
.

Thereby, the needed initial capital to control the expected loss ratio under level ε is

ρELR[Rt] = inf
{(1− βR)e−Ru

(1 + θ)λβR
≤ ε

}

=
1

R
ln

1− βR

(1 + θ)λβRε
.

Since the adjustment coefficient R = θ
β(1+θ)

under the assumptions of the classical

model, the final expression for the initial capital needed is

ρELR[Rt] =
β(1 + θ)

θ
ln

1

(1 + θ)θλε
.

Remark 4.2.1 If we let ε < 1
(1+θ)θλ

, then one can select A = β(1+θ)2ε
θ2

in (4.55), and

hence ρELR[Rt] = ρ∞A [Rt], which means that the ELR risk measure is equivalent to

the EAR risk measure in some special cases.
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Chapter 5

Applications

In this chapter, we apply the risk measures introduced in the Chapter 4 to solve

some insurance risk management problems. One is called the optimal allocation

problem, which is intensively studied in the financial and actuarial literature. It

contains two subproblems: the capital allocation problem and the risk allocation

problem. Another interesting problem is the optimal reinsurance problem, which is

more difficult to deal with, especially when multi-period decisions are involved. These

problems are all particular cases of the optimization problem, which means some well

known techniques can be applied.

5.1 Optimal Allocation Problem

The optimal allocation problem is always a central theme in applying a new risk

measure. Shareholders and investors are concerned with the risk of their capital

investment and the return it will generate. Usually, two subproblems are considered.

In the capital allocation problem, it is assumed that the total amount of the initial

capital is fixed, one needs to find a way to distribute this capital to the sub-lines of

business in order to minimize the sum of their risks. The other subproblem is called

the risk allocation problem, which is similar to the capital allocation problem, but

from a different point of view. Assuming the total risks are fixed, the question is how

to distribute them to the sublines of business in order to minimize the needed initial
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capital. Both problems have been discussed extensiely in recent years.

Many principles have been used to carry out solutions to the allocation problem.

Dhaene et al. (2010) summarize various allocation principles which are popular in

use, and find that they can be regarded as the proportional allocation principle below

with different risk measures:

Ki =
K

∑n
j=1 ρ[Xj]

ρ[Xi], i = 1, . . . , n, (5.1)

where K is the total initial capital, and ρ is the risk measure. For convenience,

denoting the sum of the risks as S =
∑n

i=1Xi, and the correspnding comonotonic sum

of the risks as Sc =
∑n

i=1 F
−1
Xi

(U), where U ∼ Unif(0, 1), the popular risk measures ρ

used in (5.1) can be summarized as follows:

Haircut allocation : ρ[Xi] = F−1
Xi

(p), p ∈ (0, 1),

Quantile allocation : ρ[Xi] = F−1
Xi

(FSc(K)),

Covariance allocation : ρ[Xi] = Cov[Xi, S],

CTE allocation : ρ[Xi] = E[Xi | S > F−1
S (p)], p ∈ (0, 1).

However, allocating capital based on the proportions in (5.1) is debated, since there

is no unique criterion. Therefore, Dhaene et al. (2010) propose the following criteri-

on: minimizing the distance between the uncertain claims and the allocated capitals

associated with the corresponding different business lines, given the total amount of

initial capital. The corresponding allocation problem is transformed into the following

optimization problem:

min
K1,...,Kn

n
∑

i=1

viE
[

ξiD̃
(Xi −Ki

vi

)]

, (5.2)

s.t
n

∑

i=1

Ki = K. (5.3)

In the optimization problem above, the vi are measures of exposure or business vol-

ume, the ξi are random variables with E[ξi] = 1, D̃ is the function that measures the

distance between the uncertain loss and the allocated capital in each business line.

Dhaene et al. (2010) solve problem (5.2) with the distance functions D̃(x) = x2 and
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D̃(x) = |x|. In their analysis, an important assumption is that the first two moments

of the claims severity be finite. Their approach can be used to solve the allocation

problem based on the aggregate loss L =
∑M

i=1Di.

Although many risk measures have been proposed for risk processes, for the op-

timal allocation problem, only those that are a function of the initial capital can be

applied. The risk measures based on other characteristic quantities of the risk pro-

cess, but not on the initial capital, cannot be applied to solve the above optimization

problems.

5.2 Capital Allocation

In this section, we first see an example from Dhaene et al. (2003). Later we apply

the same technique to study the optimal strategy for the allocation problem with

different risk measures. A nice result is derived when using the expected area in the

red.

Example 5.2.1 (Risk Measure Based on the Premium Rate)

The risk measure studied by Dhaene et al. (2003) introduced in Section 4.1.1

depends on the initial capital, since the adjustment coefficient is chosen as R = 1
u
|ln ε|.

With this risk measure applied to the aggregate loss, Dhaene et al. (2003) consider

the following allocation problem:

min
u1,...,un

n
∑

i=1

ui
|ln ε|

lnE
[

exp
( |ln ε|

ui
Xi

)]

, (5.4)

s.t
n

∑

i=1

ui = u. (5.5)

The solution is not difficult to derive. To show the allocation strategy, it is neces-

sary to introduce the exponential and the Esscher premium principles for Xi with

parameter |ln ε|
ui

:

Exponential premium : ρiexp(Xi) =
ui

|ln ε|
lnE

[

exp
( |ln ε|

ui
Xi

)]

, (5.6)

Esscher premium : ρiEss(Xi) =
E
[

Xie
(|ln ε|/ui)Xi

]

E
[

e(|ln ε|/ui)Xi

] (5.7)
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Using Lagrange multipliers, we can get the optimal allocation strategy: choosing ui

to be the solution of the following equation:

1

uj

[

ρjexp(Xj)− ρjEss(Xj)
]

=
1

u

n
∑

i=1

[

ρiexp(Xi)− ρiEss(Xi)
]

. (5.8)

The equation above is somewhat complicated to solve, thereby some approximation

techniques are proposed in Dhaene et al. (2003). Considering the cumulant generating

function K(t) = lnMX(t), and taking t = |ln ε|
ui

, we get

ρiexp(Xi) = K ′(t),

ρiEss(Xi) =
1

t
K(t).

Taylor’s expansion for the cumulant generating function K(t) is given by

K(t) = lnMX(t) = E[X]t+ V[X]
t2

2!
+O(t3). (5.9)

Henceforth, taking ε small enough, t = |ln ε|
ui

will also be very small, making the error

term negligible. Hence, the following equation can be regarded as the approximation

to (5.8):
uj
u

=
V[Xj]/(2uj)

∑n
i=1 V[Xi]/(2ui)

. (5.10)

With this approximation in (5.10), the optimal allocation strategy will be easily to

implement.

We see that, applying Lagrange multipliers is an efficient method to solve con-

strained optimization problems. Next, we consider another allocation problem but

use the expected area in the red as the risk measure.

Example 5.2.2 (Risk Measures Based on EAR)

For the risk measure based on the expected area in the red, the new optimal allocation

problem can be written in the following form:

min
u1,...,un

n
∑

i=1

E[I i∞(ui)], (5.11)

s.t
n

∑

i=1

ui = u. (5.12)
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In this problem E[I i∞(ui)] represents the expected area in the red for the ith business

line, or ith subcompany, given an initial capital ui. With the differentation theorems

derived in Loisel (2005), we still can use the Lagrange multiplier method to solve this

problem. Let fi(ui) = E[I i∞(ui)], then the augmented Lagrange function is

n
∑

i=1

fi(ui) + γ(
n

∑

i=1

ui − u). (5.13)

The necessary condition for reaching the optimal solution of this problem should be

f ′
i(ui) = −E[τi(ui)] = −γ, (5.14)

where E[τi(ui)], the expectation of the total time spent below zero, is defined in the

Section 1.3.6. This quantity is fully studied by Eǵıdio dos Reis (1993), which is

introduced in the Section 1.3.4. With the help of the moment generating function

derived by Eǵıdio dos Reis (1993), the expected duration E[τ̃ | U0] of the negative

surplus is

E[τ̃ | U0] = ψ(U0)(E[τ
′ − τ | U0] + E[τ̃ | U0 = 0]), (5.15)

where E[τ ′ − τ | U0] is the expected duration of the first recovery period, and Eǵıdio

dos Reis (1993) also gives out its expression:

E[τ ′ − τ | U0] =
E[|Uτ | | U0]

cφ(0)
. (5.16)

The expression for E[|Uτ | | U0], the expected deficit at ruin time τ , is given by Truffin

and Mitric (2014):

E[|Uτ | | U0 = u] =

∫ ∞

u

ψ(x)

ψ(u)
dx−

E[X2]

2θE[X]
. (5.17)

Combining all the equations above, we can get an explicit expression for E[τi(ui)]:

E[τi(ui)] = E[τ̃ | U0 = ui] (5.18)

= ψi(ui)
(

E[|Uτ | | U0]

cφi(0)
+ E[τ̃ | U0 = 0]

)

(5.19)

=
1

ciφi(0)

∫ ∞

ui

ψi(x)dx+ ψi(ui)
E[X2]

2ciφi(0)

( λi
ciφi(0)

−
1

θE[X]

)

(5.20)

=
1

ciφi(0)

∫ ∞

ui

ψi(x)dx. (5.21)
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Since the safety loading is the same for all the business lines, so φi(0) =
θ

1+θ
, which

makes (5.14) simplify to
1

ci

∫ ∞

ui

ψi(x)dx =
θ

1 + θ
γ. (5.22)

With the introduction of the aggregate loss L =
∑M

i=1Di, where Di is the ladder

height, Trufin and Mitric (2014) have shown that the integral in the equation above

can be rewritten as
∫ ∞

ui

ψi(x)dx = E
[

(Li − ui)+
]

, (5.23)

where Li is the aggregate loss for the ith business line. Then we find the optimal

allocation strategy, choosing {ui, i = 1, . . . , n} which satisfy the following equations:

1

ci
E
[

(Li − ui)+
]

= · · · =
1

cn
E
[

(Ln − un)+
]

, (5.24)

n
∑

i=1

ui = u. (5.25)

In reality, the decision-makers should care more about the aggregate loss Lj =
∑M

i=1Dji, because each ladder Dji represents the real loss the company suffers from

the jth business line. To avoid insolvency, each business line should have enough

reserves to offset Lj. This generates a new allocation problem, which is explained in

the next example.

Example 5.2.3 (Risk Measures based on the ESD)

Denoting the aggregate loss of the ith subcompany by Li, consider the following

problem:

min
u1,...,un

n
∑

i=1

E
[

(Li − ui)+
]

, (5.26)

s.t
n

∑

i=1

ui = u. (5.27)

From the introduction in Section 1.1, we know the aggregate loss Li follows a com-

pound geometric distribution. Some articles deal with this problem, with simpler loss

variables. The expectation E[(L−u)+] is deeply studied by Sherris (2006). Based on

this value, Kim and Hardy (2009) establish a new strategy for capital allocation.
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For the convenience of a later illustration, we now introduce the following new

notation:

F−1
X (p) = inf{x ∈ R | FX(x) ≥ p}, p ∈ [0, 1], (5.28)

F−1+
X (p) = sup{x ∈ R | FX(x) ≤ p}, p ∈ [0, 1], (5.29)

F−1
X,α(p) = αF−1

X (p) + (1− α)F−1+
X (p), p ∈ (0, 1) α ∈ [0, 1]. (5.30)

Dhaene et al. (2010) discuss this problem as a particular case of the optimization

problem (5.2)-(5.3), and get the following allocation strategy which can help solve

the problem in this example.

Theorem 5.2.1 Assuming that F−1+
Sc (0) < u < F−1

Sc (1), the optimal allocation prob-

lem

min
u1,...,un

n
∑

i=1

E
[

(Xi − ui)+
]

, s.t
n

∑

i=1

ui = u, (5.31)

has the following solution:

ui = F−1
Xi,α

(

FSc(u)
)

, i = 1, . . . , n, (5.32)

where Sc, the sum of the comonotonic risks, is defined after (5.1) and α is determined

by the following equation:

u = F−1
Sc,α

(

FSc(u)
)

. (5.33)

Proof. See Dhaene et al. (2010).

Replacing Xi by Li, if the condition F−1+
Sc (0) < u < F−1

Sc (1) still holds, then it

indicates that this theorem provides a allocation strategy for the problem in (5.26)-

(5.27).

The last example we study here is similar to Example 5.1.3, the difference being

that the objective function is now of the form (4.59). Dhaene et al. (2010) also provide

a strategy for this more general problem.

Example 5.2.4 (Risk Measure based on ELR)
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If the objective function is of the form (4.59), then we should consider the following

optimization problem:

min
u1,...,un

n
∑

i=1

E[(Li − ui)+]

(1 + θ)λiµi
, (5.34)

s.t
n

∑

i=1

ui = u. (5.35)

This problem is also a particular case of the problem (5.2)-(5.3). To avoid tedious

notation, we replace (1 + θ)λiµi by ci, which is the premium rate charged for the

ith line of business. Since now we have different weights 1
ci
in front of each expected

shareholders deficit E
[

(Li−u)+

]

, the method introduced in Dhaene et al. (2010) can

not be applied. We use Lanrange multipliers to see what strategy should it be, and

also if the explicit solution can be found.

Let gi(ui) =
E[(Li−ui)+]

ci
, the augmented function in this example is

n
∑

i=1

gi(ui) + γ(
n

∑

i=1

ui − u). (5.36)

Taking derivative of the function (5.36) with respect to each ui and γ, and equate the

derivatives with zeros, we can get the following equations:

FLi
(ui) = 1− ciγ, i = 1, 2, . . . , n, (5.37)

∑n
i=1 ui = u. (5.38)

To find each ui, the key point is to find suitable γ which satisfies equations (5.37)-

(5.38), which leads to the next equation about γ:

n
∑

i=1

F−1
Li

(1− ciγ) = u. (5.39)

Note that the left hand side of equation (5.39) is a decreasing function of γ, some

numerical methods can be applied here to find γ, like bisetion algorithm. Once γ is

found, each ui is determined by the equations in (5.37).
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Conclusion

This thesis studies various risk measures to be applied on the risk processes of in-

surance companies. The models and results derived in this thesis are based on the

assumptions of the Cramér-Lundberg classical risk model. In Chapter 1 we sum-

marize the results and recent developments in risk theory, to first better understand

the characteristics of risk processes, that can serve in risk management. A brief in-

troduction of the basic theory of risk measures is also given, which is later used to

establish the right criteria in evaluating and selecting the methods for our proposed

risk measures.

Risk measures based on risk processes are designed to evaluate the uncertainty

in the Cramér-Lundberg model. Chapter 2 lists the methods found in the literature

and analyze their strengths and weaknesses. None of these risk measures reflects the

influence of all the risk characteristics of risk processes. In Chapter 4 we propose

extensions by modifying the conditions in the definitions of these measures. At the

same time, we try to consider new ways to create risk measures, based on the other

risk characteristics such as safety loading, the adjustment coefficient and the expected

loss ratio. Some desirable properties of the classical risk measures are preserved and

simple examples are provided. Even though not all of our new risk measures can

capture the overall characteristics of the risk processes, easy implementation may

make them efficient from a practical viewpoint.

In the last chapter, we apply the risk measures proposed in Chapter 4 to solve the

optimal allocation problem. Some nice forms of the optimal strategy are obtained

which help reveal connections between different risk measures.

85



Bibliography

[1] Acerbi, C. (2002) Spectral measures of risk: a coherent representation of subjective

risk aversion. Journal of Banking & Finance, Vol. 2002(26): 1505-1518.

[2] Ahmadi-Javid, A. (2012) Entropic Value-at-Risk: a new coherent risk measure.

Journal of Optimization Theory and Applications, Vol. 2012(155): 1105-1123.

[3] Albrecher, H. and Boxma, O.J. (2004) A ruin model with dependence between

claim sizes and claim intervals. Insurance: Mathematics and Economics, Vol.

35(2): 245-254.

[4] Andersen, E.S. (1957) On the collective theory of risk in case of contagion between

claims. Bulletin of the Institute of Mathematics and its Applications, Vol. 12:

275-279.

[5] Artzner, P., Delbaen, F., Eber, J.M. and Heath, D. (1999) Coherent measures of

risk. Mathematical Finance, Vol. 9(3): 203-228.

[6] Asmussen, S. (2000) Ruin Probability. World Science, River Edge, N.J.

[7] Balbás, A., Garrido, J. and Mayoral, S. (2009) Properties of distortion risk mea-

sures. Methodology and Computing in Applied Probability, Vol. 11(3): 385-399.

[8] Balbás, A., Blanco, I. and Garrido J. (2014) Measuring risk when expected losses

are unbounded. Risks, Vol. 2014(4): 411-424.

[9] Belzunce, F., Pellerey, F., Ruiz, J.M. and Shaked, M. (1997) The dilation or-

der, the dispersion order, and orderings of residual lives. Statistics & Probability

Letters, Vol. 33(3): 263-275.

86



[10] Boudreault, M., Cossette, H., Landriault, D. and Marceau. E. (2006) On a risk

model with dependence between interclaim arrivals and claim sizes. Scandinavian

Actuarial Journal, Vol. 2006(5): 265-285.
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[69] Wang, S.S. (1995) Insurance pricing and increased limits ratemaking by propo-

tional hazards transforms. Insurance: Mathematics and Economics, Vol. 17(1):

43-54.

[70] Wang, S.S. (2000) A class of distortion operators for pricing financial and insur-

ance risks. Journal of Risk and Insurance, Vol. 67(1): 15-36.

[71] Wang, S.S. and Dhaene, J. (1998) Comonotonicity, correlation order and premi-

um principles. Insurance: Mathematics and Economics, Vol. 22(3): 235-242.

[72] Wang, S.S., Young, V.R. and Panjer, H.H. (1997) Axiomatic characterization of

insurance prices. Insurance: Mathematics and Economics, Vol. 21(2): 173-183.

[73] Willmot, G.E. and Lin, X.S. (1998) Exact and approximation properties of the

distribution of surplus before and after ruin. Insurance: Mathematics and Eco-

nomics, Vol. 23(1): 91-110.

[74] Willmot, G.E. (2000) On evaluation of the conditional distribution of the deficit

at the time of ruin. Scandinavian Actuarial Journal, Vol. 2000(1): 63-79.

[75] Willmot, G.E. and Woo, J.K. (2007) On the class of Erlang mixtures with risk

theoretic applications. North American Actuarial Journal, Vol. 11(2): 99-115.

[76] Yaari, M.E. (1987) The dual theory of choice under risk. Econometrica, Vol.

55(1): 95-115.

92



[77] Zhou, M. and Cai, J. (2009) A perturbed risk model with dependence between

premium rates and claim sizes. Insurance: Mathematics and Economics, Vol.

45(3): 382-392.

93


