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Abstract 

A Mixed Integer Programming Model for Production Planning in 

Labor Intensive Manufacturing Systems 

Ruoqi Wang 

 

The literature about labor intensive production planning addresses certain problems such as 

workforce sizing problems, workforce transfer problems and multi skill-level workforce 

utilization problems. Some of them considered quality related issues or workforce learning 

effects in modeling and solving these problems. In this thesis, a production planning model is 

developed for small to medium sized labor intensive production systems. It aims at deciding 

the optimal production plans for producing different types of products and assigning workers 

of different skill levels to production stations in the considered system. The main production 

planning model is formulated with the considerations of learning effect, quality issues, 

overtime work hours, and possible delays in product delivery. Numerical example problems 

based on practical cases are presented to illustrate the considered problems and the behavior of 

the developed model in solving these problems. The strength of the proposed model lies in the 

integration of some critical issues in a production system. A main advantage of using the 

approach developed in this thesis is to provide shop managers different options in deciding the 

number of production lines, overtime work time, on time or late product delivery, when the 

demand is seasonal and volatile. 
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Chapter 1  

Introduction 

 

1.1 Introduction of Production Methods 

Production planning is concerned with production and manufacturing processes in a 

company or industry, considering resource allocation such as human, material and machine 

capacity. For different production types or patterns, the method of production planning can be 

different. In general, mathematical models have been extensively used in production planning 

since it may give decision makers a chance to optimize his choices for obtaining better results. 

In general, there are three methods of production systems: job production, batch 

production and mass production. These production methods and their characteristics are briefly 

discussed below.  

Job production, or unit production, is a customer-oriented production method and can 

be classical craft production. It can be therefore labor intensive. Generally, compared with mass 

production, job production contains more actions at smaller scale. More specialized and skilled 

operators are typically used to perform these operations, because higher product flexibility is 

required in job production. Whether the jobs are small-scale and of low technology or complex 

requiring high technology, labor cost is the main part of the total production cost. Consequently, 

the key characteristics of job production are highly flexibility to produce customized products, 

requiring specialized labor skills and associated with high unit production cost.  

Batch production is a process to manufacture products in batches of different sizes, 

typically from several units to several hundred units per batch. The subsequent operations can 
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be undertaken after the previous operations finished. Batch production is probably the most 

common method for manufacturing. It is suitable for making seasonal products, products with 

unclear demand forecast and that may not be produced continuously. A typical example is 

bakery product in food processing industry. Some batch production systems may involve a 

single production line with several workers, each one having specialized jobs. 

Mass production system is usually used for high-volume production. The plant is often 

equipped with specialized and fast tools designed for manufacturing a single type of products. 

According to Sule (1994), mass production systems can be classified into two ways: an 

assembly line for producing discrete products, and the flow line used for continuous production 

process. In general, mass production is based on two principles, specialization of human labor 

and utilization of automated tools or equipment. Many important issues related to mass 

production systems, such as reducing production cost, improving product quality, and 

increasing system flexibility, have been studied by many researchers. In mass production 

systems involving manual operations, Taylor and Gilbreth (Mize, 1992) focused on organizing 

labor, controlling flow of work and handling the details since early 20th century. In the following 

decades, Henry Ford and his colleagues contributed to mechanizing their factory processes, 

minimizing worker movements and organizing production with job specialization (Mize, 1992). 

In a capital intensive production system, although the considered manufacturing 

processes may have high proportion of machinery comparing to the number of its employed 

workers, the majority of assembly operations may still be performed manually such as in typical 

apparel factories or in manufacturing facilities of certain aerospace products. In addition, since 

mass production systems have, in general, very limited flexibility, production lines combining 
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automatic and manual operations are widely used (ElMaraghy and Manns, 2007).  

  

1.2 Learning Process and Learning Curve Functions 

In production lines with manual operations, both skilled and unskilled workers are often 

employed. Their jobs need to be coordinated so that they can work efficiently and effectively. 

In such an environment, “learning” is required for both type of workers, especially for unskilled 

ones. “Learning curve” functions can be used to describe productivity progress of workers 

according to the accumulation of skills through their activities. 

 

1.2.1 Learning Curves 

Learning curve occurs when a worker is employed for a new job, he or she repeats the 

task in a series of trials and his/her knowledge improves over time. The concept of learning 

curve was first introduced in 1885 by Ebbinghaus, Ruger and Bussenius (1913) and the most 

widely used mathematical function was first given in Wright (1936) describing the effect of 

learning on production costs in aircraft industry. For predicting the costs and time in 

constructing ships and airplanes during World War II, learning curve began to receive more 

attention (Alchian, 1963). 

In addition to the log-linear model presented by Wright (1936), other versions of 

learning curves have been proposed for better description of learning processes in different 

production systems. For instance, Stanford-B model is considered as the best learning curve for 

certain manufacturing processes of Boeing 707 production. As discussed Plateau learning 
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curves are widely used in machine-intensive industries while DeJong model and S-model are 

also popularly used in other industries (Yelle, 1979). 

As an example, the log-linear learning curve function can be presented as n
aXY  , 

where Y  is the production time for the th
X  unit, a  is the production time for the first unit, and

n  is the learning index given by 2loglogbn  . b  is the learning rate as discussed later. 

A learning curve function, in general, may have two phases: the cognitive learning and 

the motor learning (Dar-el, Ayas and Gilad, 1995). According to these authors, at the beginning 

of the learning process, workers use both cognitive system and motor system to perform the 

tasks correctly, and motor learning becomes the dominant factor once they have enough 

experience on similar tasks. In general, the progress in the cognitive learning phase is faster 

than that in the motor learning phase (Jaber and Kher, 2002). If the task is simple, however, 

only the motor learning will dominate the learning process and the cognitive learning may not 

be recognizable. 

 

1.2.2 Learning Rate 

During the learning process, it is assumed that the production time and cost to 

manufacture each unit of products will decrease by a constant value. This is typically a 

percentage value or a “learning rate” (McDonald and Schrattenholzer, 2001), indicating the 

changes to occur comparing to those of producing the current products. In the log-linear 

learning curve function, b  represents the learning rate. 

According to Wright (1936), learning rate can be a constant number (i.e. 90%, 80%, 

70%, etc.). The learning processes with different learning rates can be illustrated using the 
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relationship between production time per unit and the cumulative number of units as shown in 

Figure 1.1. In this figure, all of the initial production time per unit is assumed to be one hour. 

 

 

 

 

 

  

 

 

 

Figure 1.1 Typical learning curve with different rate (Yelle, 1979) 

 

Generally, learning rate can be influenced by age, gender and experience of the 

operators as well by the type of operations and break period (Hancock, 1967). Learning rates 

for manual operators are usually from 80% to 90% (Yelle, 1979). Learning rate in machine 

intensive systems is generally smaller. Some historical data about learning rate of machine-

paced labor is presented in Table 1.1. 

Table 1.1 Learning Rate of System with Different Proportion of Labor (Yelle, 1979) 

Machine-Paced Labor 
(as a percent of total labor) Learning Rate Progress Ratio 

25% 80% 20% 

50% 85% 15% 

75% 90% 10% 
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1.2.3 Inaccuracies of Original Learning Curve 

There are two factors that may cause inaccuracies in the learning curve function 

originally proposed by Wright (1936). The first factor is that learning rate may change during 

the learning process (Jaber and Kher, 2002) and the second one is that forgetting was not 

considered while it happens when there are interruptions in manufacturing (Jaber and Bonney, 

1996). 

 

1.3 Product Quality 

Quality has been one of the most important issues in modern manufacturing systems. 

According to one of the widely accepted definitions, product quality is the ability that products 

should meet given requirements (Montgomery, 2007). In the 20th century, manufacturing 

industry extended the use of statistical quality control methods to improve product quality and 

to eliminate product defects. In the past several decades, statistical process control (SPC), Total 

Quality Management (TQM) and Six Sigma were notable approaches to quality control and 

improvement. Nowadays, the goals of higher product quality have largely been driven by 

customer concerns and preferences. 

The lack of quality affects a company in various ways. High proportion of defects will 

result in significant increase of direct cost because of waste of raw materials, labor and 

investment. In addition, defective products lead to low productivity. Most importantly, products 

with defects and defective products are not safe for customers to use. Costs for recalls and 

compensations are typically high. Companies always lose customers if the level of their product 
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quality is too low or unacceptable. 

 

1.4 Thesis Outline 

In this thesis, we study a production planning problem to allocate manual labor force 

considering learning processes and concern of quality issues. For solving this problem, we 

developed a mixed integer programming model, and several linear sub-models for different 

cases based on a small confectionary production facility. The outline of this thesis is presented 

as follows. 

This thesis has five chapters. The following Chapter Two presents a review of the 

literature mainly in manual production and some in automated production as well. Chapter 

Three provides the description of the considered problem and introduce the main model, as well 

as the revised models for different cases. Numerical examples are presented and solved in 

Chapter Four. Conclusions and future direction of research are introduced in the last Chapter 

Five. 
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Chapter 2 

Literature Review 

 

2.1 Introduction 

This thesis studies production planning problems related to production systems with manual 

operations, automated production lines, and production systems with mixed manual and 

automated production lines. In this chapter, we review research literature on the following 

topics. 

 Production system with manual operations 

 Automated production systems 

 Production system with manual and automated production lines 

 

2.2 Manual Production Line Analysis 

Production demand and availability of human resources play an important role in 

managing and optimizing a production system with manual production lines. Manual system 

production planning involves many aspects such as: human resource classification including 

temporary workers and permanent workers, transferring workers within and between 

production cells, employing skilled or unskilled workers, training unskilled workers, etc. In 

addition, a specific production system or process may require specially developed methods to 

solve these considered problems. 
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2.2.1 Workforce Size and Transfer 

Ighravwe and Oke (2014) proposed a mathematical model for workforce planning in a 

manual production system. Considering the number of available technicians, fixed routine 

maintenance time and budget constraint, they formulated a multi-objective optimization model 

to minimize the number of workers and to maximize productivity. In solving their model, the 

authors used factorial design to determine optimal values of system parameters. Two factors in 

the experimental design were occupied time and ratio of full time workers to part time workers. 

For each experiment, they used branch-and-bound to obtain the minimum number of 

maintenance personnel within regular work time, as well as appropriate ratio of full and part 

time workers. 

In addition to workforce sizing, issues related to manpower transfer should also be 

addressed. Süer and Dagli (2005) presented a simple optimization model for solving intra-cell 

manpower transfer problem. They developed a simple assignment model to obtain the best 

worker assignment based on the following considerations: producing one item requires certain 

operations in sequence, each operation requires different operation time, and several items can 

be on the waiting list. Depending on the results of worker assignment, the authors worked on 

rearranging items’ producing sequence to minimize workforce transfer and production 

makespan. Final results provided optimal makespan and identified process bottleneck. 

Although it focuses on intra-cell transfer, the model can be extended to a mixed production 

system with intra-cell and inter-cell transfers. 

Francas et al (2011) developed a mathematical model and used two parameters to 

present maximum amount of temporary workforce and the percentage of personnel transfer. By 
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adjusting these two parameters, one may decide when to have only temporary workers or only 

personnel transfer, as well as the optimal capacity and cost in a two-plant, two-product 

manufacturing system. Results indicated that utilization of personnel transfer can be impacted 

by collaborations of the two plants. In addition, comparing with employing permanent staffs, 

either of the labor flexibility instruments - using personnel transfer and using temporary 

workers - had a positive influence on increasing profit. The authors also pointed out that using 

temporary workers requires less investment, while personnel transfer is more efficient. They 

showed the necessity to use both instruments in the factory. Moreover, considering inter-plants 

activities, personnel transfer is a better choice in larger systems. 

Song and Huang (2008) considered workforce transfer issues in supply chain 

management. In developing a model to solve their problem, they assumed that employees may 

be transferred between departments at the beginning of each time period. In the considered 

problem, each department could be treated as a station in a production system, with some 

workers coming or leaving. The total number of employees in the system is a fixed number. 

Hiring and firing can only occur at the beginning and the end of the whole time horizon 

respectively. Incorporating constraints of turnover cost limit and capacity threshold, a multi-

time period optimization model was developed for workforce management. To solve large size 

problems, they used successive convex approximation. 

 

2.2.2 Workforce Cost 

Stewart et al (1994) proposed several mathematical models to minimize training cost 

and maximize worker flexibility. These models were presented separately for minimum training 
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cost, maximum worker flexibility, and minimum training time. The authors also proposed a 

multi-objective model for simultaneously minimizing cost and maximizing flexibility. Their 

standard constraint sets were human resource limit, machine quantity and capacity, as well as 

production requirement. In their research, staff training was divided into two levels, and persons 

completed both levels of training were considered as skilled workers. Time horizon was affected 

by worker’s skill levels. Furthermore, each machine required the workers to have a specific 

skill level. These models were developed aiming at solving large size problems.  

A more recent research on workforce assignment was proposed by Jennings and Shah 

(2014). They presented a non-linear programming model aiming at minimizing the sum of 

workforce cost, overtime cost and technology cost over multiple time periods. This model 

considers different supplier categories, workforce categories and technology types. The model 

constraints have those for capacity threshold, resource limit and learning rate. Model solutions 

are to decide workforce arrangement, production cost, processing time and wasting time. The 

cost function includes workforce cost, maintaining cost, service cost and customer cost. The 

authors also conducted uncertainty analysis considering that some of the model input was 

uncertain.  

In a production planning problem involving human operators, learning effects are 

usually incorporated into formulating the models to reflect the fact that entry-level workers are 

typically not as productive as skilled workers. In addition, learning procedure usually takes 

considerable amount of time. It is also of common understanding that higher skill-level workers 

have better learning skills than lower skill-level workers. On the other hand, lower skill-level 

workers may require further training if the tasks are more complex. Training is always 
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associated with cost. 

Some researchers investigated work-task assignment issues and proposed linear or 

nonlinear models to solve such problems. Examples can be found in Nembhard (2001), 

Corominas, Pastor and Rodriguez (2006), and Corominas, Olivella and Pastor (2010). 

Nembhard and Bentefouet (2012) discussed a work-task assignment problem considering labor 

learning and forgetting in a system with parallel production lines. To reduce computational time 

in obtaining optimal work schedule, the authors assumed that the number of workers was equal 

to the number of tasks and revised existing nonlinear models to build a linear model with 

multiple time periods. Furthermore, based on the linear model, they introduced an extra 

parameter representing learning and forgetting.  

In production planning and scheduling, earliness and tardiness penalty is another 

category of costs to be considered in modeling and problem solving. Especially in systems using 

just-in-time policy, earliness-tardiness cost can be expensive. Earliness may cause extra 

unprocessed parts and work-in-process storage, while tardiness leads to monetary penalties as 

well as customer complaints. 

Some of the basic single-machine scheduling models with earliness and tardiness are 

widely discussed in literature. For instance, Baker and Trietsch (2009) presented a mathematical 

model for solving such problems. 

Based on the basic scheduling model, Khoshjahan et al (2013) presented a similar model 

for production planning with limited resource capacity. They developed a solution method 

based on genetic algorithm (GA) and simulated annealing (SA) to solve the problem. They 

found that SA performs better than GA in obtaining optimal or near-optimal solutions, while 
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GA based search may reach a better near-optimal solution faster. 

Stratman et al (2004) studied a quality improvement problem in a system with assembly 

operations and quality assurance programs to minimize quality cost and labor cost with learning. 

In their model, a simple learning and forgetting function was introduced to estimate processing 

time and to calculate product defective rate. In solving the problem, the authors used 

experimental design with two factors: 1) diverse lot size and category combination; 2) location 

and proportion of permanent and temporary workers. Then simulation and ANOVA analysis 

were utilized to identify the impact of lot sizing and workforce assignment on optimal solution 

in solving a real case problem. 

Moore et al (2007) studied the problem on productivity of technical workers when they 

are reassigned to different tasks. Technicians with lower productivity tend to cause more 

defective products such as dropped-object products. The authors collected actual performance 

data of technicians and data from maintenance stations, analyzed their productivity to identify 

the values of the investigated key performance indices (KPI), then made recommendations for 

reducing quality related cost.  

 

2.3 Analysis of Automated Systems 

2.3.1 Machine Selection and Scheduling 

Subramaniam et al (2000) studied machine assignment problems and proposed three 

machine selection rules, lowest average cost (LAC), least average process time (LAP) and least 

aggregate cost and process time (LACP) for assigning appropriate machines to several 
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operations. The authors used experimental design to determine the best combinations of three 

factors: due date, the number of operating machine for one job, and machine breakdown, with 

each of them divided into two levels. Thus, eight experiments were conducted in total. 

Additionally, four dispatching rules – Random, FIFO, earliest due date, and shortest processing 

time – were applied to each experiment. The authors obtained improved results using numerical 

simulations for each experiment with selected rules.   

Cao et al (2005) proposed a method for parallel machine selecting and scheduling. The 

problem is to allocate N  jobs to K  machines with the condition that one machine can process 

just one job once. The objective function is to minimize holding cost and tardiness penalty cost. 

The developed integer programming model can be solved directly for small size problems and 

while for large practical problem the authors developed a heuristic solution method using Tabu 

Search.   

Yu et al (2014) studied a multi-machine scheduling problem to minimize total load on 

machines. The authors proposed four mathematical models. The first model is to solve the 

problem of unrelated parallel machines with non-decreasing processing time of jobs. The fourth 

model is also for unrelated machines with non-monotone processing time. These two models 

could be transformed to a regular assignment problem. The second model is to solve a problem 

with parallel identical machines with non-decreasing processing time based on machine balance 

principle. The third model is to solve a problem of parallel identical machine with non-

decreasing processing time and non-decreasing job position. The problem was solved using 

longest processing time first rule. 
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2.3.2 Machine Cost 

Gulledge and Khoshnevis (1987) presented a review paper on research related to 

production rate, learning curve and programming cost of automated manufacturing systems.  

The authors pointed out that learning curve does exist in manual production systems as well as 

in automated production systems. The authors also explained the concept of “experience curve” 

and its impact on productivity improvement. They proposed an economic planning model to 

maximize total output considering both production rate and learning curve cost in a made-to-

order production system. Dynamic programming or calculus of variations could be used to solve 

the developed model.  

Zhu and Heady (2000) investigated a multi-machine scheduling problem with 

earliness/tardiness. The problem to allocate N   jobs to a single machine with minimum 

earliness and tardiness cost ( N /1/ ET ) has been studied by many researchers, e.g., Coleman 

(1992) and Davis and Kanet (1993). Zhu and Heady presented an integer programming model 

for solving the same N / M / ET  problem. The integer programming model contained many 

binary integer variables and may take extensive computational time to solve large-size real 

problems. The authors suggested that practical constraints can be used to improve the original 

integer programming model as they may reduce the search space. The authors also suggested 

different solution approaches to solve the NP-hard problem such as Lagrangian relaxation, 

triangle inequality restriction, and approximate solution technique, etc.  

Ko et al (2010) considered a manufacturing system with non-identical parallel machines 

and used a dispatching rule based method to solve the planning problem considering product 

quality. The goal is to minimize tardiness cost. The dispatching rule is to use the information 
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including product deadline and quality data (such as Cpk) to calculate priority for the product 

and select the best combination of machine and job. The authors used simulation to study the 

system for different conditions such as high, low or mixed process capability. 

 

2.4 Systems with Mixed Manual and Automated Manufacturing Processes 

Literature on research concerning separated manual and automated production lines is 

abundant. On the other hand, research literature on manufacturing system optimization with 

mixed manual and automated operations or production lines is quite limited. We could not find 

relevant research in this area using quantitative methods or mathematical modeling. In this 

section, we discuss the research work using qualitative methods investigating such or similar 

systems involving manual and automated production operations.   

Khan and Day (2002) introduced a knowledge based design methodology for 

manufacturing system design. It is a procedure to design assembly lines with both manual and 

automated operations. The method can also be used in designing systems with single production 

line, multi-production lines and mixed-production lines. The methodology starts from selecting 

the assembly line based on operation time and demand volume. The second step is to decide 

the parallelism of the system and to allocate jobs based on cycle time. Finally they obtained the 

rearranged stations layout with improved efficiency.  

In addition to choosing proper lines, several researchers studied production flexibility 

including product mix, labor and machine flexibility. Some of them also presented research 

methods and results.  

Karuppan and Ganster (2004) conducted an empirical study to investigate the interactive 
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effects of labor and machine flexibility and product mix flexibility. The authors analyzed 

hundreds of samples from many production supervisors and operators. They proposed four 

indexes including range number (RN), range heterogeneity (RH), mobility (MOB) and 

uniformity (UN) to measure system flexibility.  

Karuppan (2008) conducted similar study on labor flexibility and product mix flexibility. 

The author conducted a hierarchical regression analysis on labor flexibility and product mix 

flexibility based on survey results from large number of questionnaires.  

 

2.5 Summary 

The literatures in this chapter covers optimization problems in a production system with 

manual or automated production lines. Most of these reviewed articles have the objective of 

minimizing cost or/and maximizing productivity. Some of them focus more on the solution 

methods rather than formulating the model. While in this thesis, we present an optimization 

model with certain types of cost. Workers’ learning curve and product defective rates are 

incorporated in our model formulation to make a better description of a manual production 

process. Although the mathematical models presented in several existing research articles may 

have some similarities to the optimization model presented in this thesis, our model is different 

in many different aspects. We aim at decreasing the total labor cost, overtime cost, delay penalty, 

fixed cost, and quality related cost. We can also obtain the improved workforce allocation and 

proper production schedule through this mathematic model. 

In the following chapter, the optimization model will be presented in detail. Some 

modifications and simplified models will follows the main model, with the numerical examples 
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for different production patterns presented in Chapter 4. Summary and conclusions are shown 

in the final chapter.  
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Chapter 3 

Optimization Model 

 

3.1 Introduction 

As mentioned in the previous chapter, the research conducted in this thesis is to study 

production planning problem with workforce assignment to generate optimized production 

schedules in small to medium sized production systems. The production planning problem may 

have uncertainties related to initial production rate or time, customer demand and labor cost. 

The mathematical programming model was developed based on the manufacturing processes 

in a small sized manufacturing system producing various confectionary products.  

In this chapter, we first present a mixed integer programming model to optimize the 

total cost in the production systems involving mainly manual workforce. The objective function 

of this mathematical model includes minimizing variable labor cost and fixed production line 

cost. Learning process of operators, workers efficiency functions, workforce capacity limits and 

product quality functions are considered as model constraints. The model was solved by 

CPLEX optimization software to obtain optimal solutions of the studied problems. The 

computational results allow us to compare different options such as overtime working, extra 

utilization of production lines and production delays, using skilled or unskilled workers leading 

to different product quantity and quality levels. 

The developed model will be further studied under different production conditions. 

Different versions of the model will be presented as revised or sub models. 
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3.2 Problem Description and Modelling  

3.2.1 Problem Description 

In small to medium sized manufacturing systems (for example, a confectionary 

production factory producing consumer chocolate candies), automated production lines and 

manual production lines may be used simultaneously. Automated lines or machines are 

responsible for producing regular products of larger batches. These lines or machines can be 

used for product molding, forming, assembling, packaging, etc. In manual production lines, 

human operators can perform all the above mentioned operations with some of them (such as 

forming) requiring the use of powered machines. 

In this study, we mainly focus on planning manual production lines. We have observed 

that productivity of a manual production line is affected, among other factors, significantly by 

worker effectiveness and efficiency. For example, in a chocolate production system, each 

chocolate can be produced very rapidly. However, if it is not handled well in various manual 

operations, a high percentage of formed chocolate products can be defective. They will be 

discarded or reworked with additional cost. Among other reasons, insufficient worker skill may 

cause poor product quality. Normally, skilled workers do a better job. Furthermore, workers 

with different skill levels may take different amount of time to complete the same job. The 

differences could be quite large up to 2 to 3 times. Undoubtedly, every operator needs to go 

through the process of learning, to certain extent.  

Demands for confectionary products such as consumer chocolate products are highly 

seasonal. The manufacturing company must plan advance for having the optimal manpower in 
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the system and preparing for high demand seasons every year, such as the Christmas-New Year 

and Valentine’s Day celebrations. 

 

3.2.2 Assumption 

Based on the description of the confectionary production planning problem in a small 

factory, the following assumptions were considered in formulating an optimization model for 

production planning in a system with mixed manual and machine operations. 

1. The model has multi time periods. Each time period can be a one week or a month, etc. 

2. Operators working in the production line may be unskilled workers or have different 

levels of working skills.  

3. Unskilled workers need to be trained and cause training cost. Training takes place while 

the workers are performing the jobs. The “on-the-job” training does not take extra 

resource and is a part of the learning process. 

4. All workers will pass through a learning process. The first time period (a week, for 

example) is the learning period. After this period, a worker is considered to have 

acquired sufficient skills for the job and is no longer an unskilled labor. 

5. Workers can be transferred from one work station to another in a production line. Since 

the types of jobs to perform at different stations are similar, the same skill level will be 

maintained if a worker is assigned to a different station. 

6. The basic learning curves are used in describing the learning and training processes in 

formulating the model. Varying learning rate and forgetting factor in the learning 

process are not considered. 
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7. All workers in one station perform the same type of job to produce the same category 

of products. 

8. The production line does not have work-in-process (WIP) inventory. 

 

3.2.3 Notations 

We present the following notations used in the model formulation to be presented and 

explained in the subsequent sections. 

 

Index sets 

 ,...,Ww 1  The category of workforce 

 ,...,Ss 1  The category of product 

 ,...,Ii 1  The station in one production line 

 ,...,Jj 1  Number of production line 

 ,...,Tt 1  Number of time periods 

 

Variables 

w

ijtX  Total number of level w workforce at station i of production line j during time period t 

w

ijtXH  Number of level w workforce hired for station i of production line j during time period 

t 

w

ijtXT  Number of level w workforce need to be trained at station i of production line j during           

time period t 

w

ijtXF  Number of level w workforce reduced from station i during time period t 
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s

jtWT  Working time hours for product s on production line j during time period t 

s

jtOT  Overtime hours for product s on production line j during time period t 






otherwise,1

operatingnot  is line production  theif,0
jK   

s
C  Real completion time for product s 

ws

ijtP  Output during learning process of product s made by level w new employee at station i 

of production line j during time period t  

s

jtD  Total output of product s on production line j during time period t 

 

Parameters 

w

tα  Regular weekly wage of a level w workers during time period t 

wȕ  Hiring cost of a level w workforce per week 

wȖ  Training cost of a level w workforce per week 

wį  Firing cost of a level w workforce per week 

wτ  Overtime cost of a level w workforce per hour 

sλ  Delay penalty of product s workforce per week 

s
d  Due date of product s 

sİ  Fixed cost of a production line based on different product s 

w
g  Learning index of level w workforce, 2log/log ww

bg   

w
b  Learning rate of level w workforce 

ws

ijty0  Initial production time per unit of new employed level w workforce for one part of 

product s at station i of production line j in time period t  

ws

ijty  Stable production time per unit of level w workforce for one part of product s at station 
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i of production line j in time period t 

jux  Upper bound of workforce amount of production line j 

jtut  Upper bound of overtime hours on production line j during time period t 

tub  Upper bound of total working time hours during time period t 

w
tr   The ratio of output during learning process to output after learning process of level w 

workforce 

sη  Customer demand for product s 

 

3.2.4 The Main Model 

The following model is a multi-period non-linear programming model consisting of 

learning curve functions and quality parameters to describe the small to medium scale 

production system. After we present the model, we will discuss certain other issues such as 

increasing the number of production lines, working overtime and late product deliveries during 

high seasons. 

The objective function is shown in Eq. (3.1) below. 

  
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      (3.1)    

The seven items of the objective functions represent variable production cost, labor 

force hiring cost, training cost, firing cost, fixed production cost, overtime cost and delay 
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penalty cost, respectively. In this model, the variable production cost can be different depending 

on the level of skills of the workers in different time period. Other costs are affected by worker 

skill levels. In the considered production system, workers are allowed to transfer among stations. 

Since transfer will not cause extra cost, we made subtractions of w

ijtXH  and w

ijtXF  in calculating 

the total cost. This feature will be elaborated by numerical examples in Section 4.3.  

The optimization of the above cost function is subject to certain constraint conditions 

related to the production system. These constraint functions are presented and explained below. 

Eqs. (3.2) to (3.10) below are constraint functions related to workforce capacity and connections 

of workforces with different levels of work skill.  

jiwtXHX
w

ijt

w

ijt ,,,1,                     (3.2) 

jiwtXF
w

ijt ,,,1,0                                                                                                            (3.3) 

  tjiwXFmXHm
w

ijt

w

ijt

w

ijt

w

ijt ,,,,01                                                                                   (3.4) 

tjiwXH
w

ijt ,,,,0                                                                                                                                            (3.5)  

tjiwXHXT
w

ijt

w

ijt ,,,2,                                                                                                             (3.6) 

tjiwXT
w

ijt ,,,1,0                                                                                                                 (3.7) 
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w
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w

ijt

w

tij

w

ijt ,,,2,1,                                                                                   (3.8) 

 
 


W

w

j

I

i

w

ijt tjuxX
1 1

,,                                                                                                                       (3.9) 

tjiwXFX
w

ijt

w

ijt ,,,,0                                                                                                                      (3.10) 

Constraint Eqs. (3.2) and (3.3) show that the total number of workers is equal to the 

number of new employees in the first time period and no one can be fired. Eq. (3.4) means that 

hiring and firing should not occur in one station at the same time. Eqs. (3.6) and (3.7) indicate 
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that unskilled workers require training. Eq. (3.8) shows the relationship between the number of 

workers at each station and the number of hired or fired workers at the same station. Eqs. (3.9) 

and (3.10) give the upper bounds of total number of workers and the number of workers who 

can be laid-off, respectively, during one time period.  

In addition to the above functions, 5 fixed production cost related functions are presents 

below.  
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The above 5 constraints ensure that the number of workers and output are zero if a 

production line is not operating. Learning curve functions used in this model are shown next. 
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P
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0                                                                          (3.16) 
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ijt ,,,,,0 
                                                                                                 (3.17) 

Eq. (3.16) calculates the output of the new employees during learning process. Eq. (3.17) 

is the learning curve function. In the following section, we explain these functions in detail. 

Finally, some restrictions for the total output and working time hours are presented below. 
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Eq. (3.18a) represents the total output produced by new employees during the first time 

period, and Eq. (3.19a) represents the total output produced by workers of all categories during 

the following time periods. Eqs. (3.18a) and (3.19a) are introduced to ensure that the final 

output is always less than the amount of items produced at any station during the same time 

period.  

In addition to the the previous computing method, we have another method as Eqs. 

(3.18b) and (3.19b). They indicate the total operating time of all types of products is less than 

specified working time. These output constraint functions are linear without working time 

variables. Thus, all the restrictions about working time hours can be removed as well. It will be 

elaborated in the Secion 3.4.3.  

These two calculating methods are suitable for two production modes. The difference 
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between these two methods is working time at each station. Same operating time at all stations 

of each production line is guaranteed by the first method. For example, if the computed working 

time is 15 hours, the working time at all stations are 15 hours. In contrast, for the second method, 

total operating time for one product can be different with each other among all the stations. For 

example, the working time at three stations may be 15 hours, 16 hours and 14 hours individually. 

 

3.3 Learning Curve and Output Functions 

The basic learning curve used in our model is Eq. (3.17). Stable production time per 

unit is equal to the initial production time multiplying the total output during the learning 

process with the power of learning index w
g . Eq. (3.16) calculates accumulative output of 

new employees and can be equal to 

w
g

s
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


1

1

0

)(
1                                                                                                               (3.23) 

In our calculation, the first time period is typically the learning period for new 

employees. The shapes of the hourly production rate curve and learning curve are shown as 

Figure 3.1 below. And the shape of accumulative output calculated by Eq. (3.23) is shown in 

following Figure 3.2. 

The curves presented in Figure 3.1 and 3.2 show 2 phases of production. The first phase 

is the one with learning and the second phase is the stable production. In the first phase, 

production time is relatively high. In the second phase, production time becomes stable. 

Therefore, the hourly output is increasing in first phase and becomes stable as well in the second 
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phase. 

 

Figure 3.1 Hourly output curve and learning curve 

  

 

Figure 3.2 Accumulative output curve 

 

3.4 Sub-Models for Different Situations 

Based on the main model developed in the previous section, we present several different 

versions of the formulated model for solving more specific problems of different cases. These 
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versions include those for single production line and for double production lines. They will be 

presented from simple to complex. As can be seen from the main model, some of the functions 

have nonlinear terms. We used an off-shelf software, CPLEX, to solve the developed model. 

The available version of the CPLEX software does not support nonlinear functions in the 

optimization model. Some of the simplified models presented below may be used without the 

original nonlinear terms, or with the original ones replaced by a simplified term. We believe 

that the reduced models still capture with close approximation the true features of the studied 

problem. 

 

3.4.1 Single Production Line with One Station 

We start from a production system of a single production line with one station. The 

production planning does not allow overtime or delay in product delivery. Both skilled and 

unskilled workers are employed to produce two types of products in a three-week time period. 

In the proposed main model, there are three non-linear functions: learning curve 

function, new employee’s accumulative output function during learning phase and the function 

to calculate the final product quantity. In solving this first sub-model, we removed the nonlinear 

learning curve function from main model. We calculate the production rate using Excel 

worksheet outside the model and used the Excel results as input data for the CPLEX program. 

The nonlinear function to calculate new employ output ws

ijtP can be approximated by a 

linear function as shown in Figure 3.2. The slope of the accumulated output line is regarded as 

a constant number. An additional parameter w
cn   representing for the considered constant 

number. 
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The final quantity of products to be produced is the multiplication of the work time and 

the number of workers to be employed with both being decision variables. In the first stage of 

using the main model to determine the optimal production plan, we assume that the work time 

is a fixed value hence this nonlinear term is reduced to a linear term. We conducted a series of 

experiments combining several representative work time and manpower values. This will be 

discussed in the next chapter in detail. 

Based on the above discussion, the simplified mathematical model is presented below. 
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Eq. (3.34) is the approximate learning phase output function for skilled and unskilled 

workers. The value of w
cn  will be explained in Chapter 4 with the presentation of numerical 

experiments.  

 

3.4.2 Single Production Line with 2 Stations 

The second sub-model is a production system of a single production line with two 

stations. The production planning does not allow overtime or delay in product delivery. Both 

skilled and unskilled workers are employed to produce two types of products in a three-week 

time period. 

For this case, the mathematical programming model is similar to that discussed in the 

previous section. Station index i is added in this model, and amount of w
cn can be different in 

this model. 

  

3.4.3 Single Production Line with 3 Stations 

This sub-model is a production system of a single production line with three stations. 

The production planning does not allow overtime or delay in product delivery. Both skilled and 

unskilled workers are employed to produce two types of products in a three-week time period. 
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If we use the second method of simplification with Eqs. (3.18b) and (3.19b), it means 

that during learning procedure, the new employees have stable, but lower productivity than that 

of experienced operators. Thus we may keep the other constraints such as limits of human 

resource, while transform the output constraint functions into another form. Eqs. (3.34) to (3.36) 

are replaced by two functions Eqs. (3.38) and (3.39).  
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3.4.4 Single Production Line Considering Product Quality Issues 

In this section, we consider the same production system of a single production line with 

3 stations as in the previous section. The production planning does not allow overtime or delay 

in product delivery. In addition, we consider that some of the products may not meet quality 

requirements due to various reasons such as unskilled workforce. Both skilled and unskilled 

workers are employed to produce two types of products in a three-week time period. 

The products of the producing line will be inspected by quality inspectors. 

Nonconforming products (with problems in packaging, weight, etc.) will be rejected. Based on 

the consideration, we revise Eqs. (3.38) and (3.39) and incorporate a defective rate in these 

functions, seeing Eqs. (3.40) and (3.41). 
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3.4.5 Double Production Lines with Fixed Cost 

More production lines may be required for a high season, so the sub-model in this 

section is built for calculating fixed cost. It focus on a production system of two production 

lines with three stations for each line. Only unskilled workers are employed to produce two 

types of products in a three-week time period. 

Considering the computational complexity, we temporarily disregard the workforce 

category index w. And we assume all new workers are unskilled workers requiring training. 

Both objective and constraints change slightly, so we present the whole sub-model below. The 

sample data, optimal solution and discussion will be presented in Chapter 4. 
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Subject to:  
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3.4.6 Double Production Lines with Overtime 

The sixth sub-model mainly focus on working overtime. It discusses a problem in a 

production system of two production lines with three stations for each line. Only unskilled 

workers are employed to produce two types of products in a three-week time period. The linear 

functions representing for output are presents as Eqs. (3.59) and (3.60) replacing Eqs. (3.54) 

and (3.55). Other two constraint functions represent limits of overtime. 
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Since it is an experiment for overtime, the constraint functions of fixed cost – Eqs. (3.43) 

to (3.47) - are disregarded. In addition to overtime cost in objective functions, the constraint 

functions for calculating output change slightly, as Eqs. (3.59) and (3.60). And Eq. (3.61) 

indicates the upper limit of overtime, with the same meaning as Eq. (3.22) in main model. In 

this example, we assume that single production line supports for working overtime, thus Eq. 

(3.62) is required.  

To ensure that linear functions are used in CPLEX, in the above functions, 
s

jtOT  

replacing s

jtOT   are used in the sub-model. 
s

jtOT   represents for all operators’ total overtime 

hours in a week. The overtime hours for each operator can be calculated based on optimal 

solution of overtime and workforce assignment, which will be elaborated in Chapter 4. Since 

s
jtOT  is the total overtime of all operators, the upper bound of overtime is the workforce amount 

in a whole production line multiplying original overtime hours a week s

jtOT .  

 

3.4.7 Double Production Lines with Overtime and Delay 

The seventh sub-model discusses a problem in a production system of two production 
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lines with three stations for each line. Only unskilled workers are employed to produce two 

types of products in a four-week time period. Both production lines support for overtime. 

Constraint functions are similar, while delay penalty of one week is sλ shown as the objective 

function of main model. The comparison of delay and overtime will be discussed in Section 4.7. 

 

3.5 Solution Method and Summary 

A mixed integer programming model and seven simplified sub-models are detailed in 

this section. We use CPLEX for calculating the optimal solutions. Consequently, we have seven 

CPLEX sub-models to investigate the production system in detail with the numerical 

experiments in the next chapter. 
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Chapter 4 

Numerical Example and Analysis 

 

In this chapter we present numerical examples to illustrate different versions of the 

mathematical model described in the previous chapter. CPLEX 12.5.1 was used for solving 

these problems. The CPLEX codes are presented in Appendix D to Appendix J at the end of 

this document.  

The data and information used in the examples are based on the production system in a 

confectionary production company in Montreal, Quebec. No real data are utilized directly due 

to confidentiality reasons. The computational results show the validity of our model and optimal 

solutions for potential practical applications.  

 

4.1 Single Production Line with Single Station 

4.1.1 Data for the Production System 

The production system has a single production line (J=1) with one station (I=1) and two 

labor levels (W=2) to produce two types of products (S=2) in a three week time period (T=3). 

Labor costs are given in Table 4.1 below.  

Table 4.1 Labor Cost [Example 1] 

Workforce 

category 

Hourly wage Hiring 
cost 

Training 
cost 

Firing 
cost Time period 

1 2 3 

1 12.5 13.75 13.75 50 10 60 

2 10 11 11 40 8 48 
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The unit of the labor cost is dollars per person. The hourly wage can be different for 

each time period. 

For the learning curve function
w

gws

ijt

ws

ijt

ws

ijt Pyy


 0  shown in Eq. (3.17), other 

researchers (Smunt and Morton, 1985, Smunt, 1999) have used the constants 200 units/hour or 

500 units/hour for ws

ijtP . Since in the considered production system, the output during first time 

period is similar to 500 units, we use 500 for ws

ijtP   in the original equation to simplify the 

expression of the learning curve. Then the learning curve function will be 
wgws

t

ws

t yy
 5000 . 

And we have the stable production rate as shown in Table 4.2 below. 

Table 4.2 Stable Production Rate and Demand [Example 1] 

Product 
category 

Workforce category Demand 1 2 

1 22 13 3000 

2 24 15 4000 

 

In addition, the single station can have a maximum of 5 workers working together. Since 

the tasks are not complex, the learning rates are set as 89% and 90% for the first and second 

level of workers, respectively.  

 

4.1.2 Simplified Output Curve and Value of the Additional Parameter 

After calculating with the data in the previous section, the new accumulative output 

curves are shown in Figure 4.1 and Figure 4.2 for skilled workers and unskilled workers, 

respectively. In these figures, the “original output curve” is based on the function in Eq. (3.23): 

w
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1 . The piecewise linear function presents similar shape of the original 
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output curve. The data used to plot the curves in these two figures are shown in Appendix A.  

 

Figure 4.1 Accumulative output curve and approximate piecewise curve for skilled 
worker 

 

Figure 4.2 Accumulative output curve and approximate piecewise curve for unskilled 
worker 
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From the discussion in Section 3.4.1, the linearized output function needs a new 

parameter w
cn to describe the slope of the first segment of the “piecewise linear curve”. For 

this example problem, its value is set at 21.0 units and 10.0 units for skilled and unskilled 

workers, respectively. 

 

4.1.3 Experiments and Optimal Solutions 

In solving this example problem, we allocate different working hours to each type 

products from 0 to 40 hours. Each computational instance has a 10 hours increment for 

producing one type of products and 10 hours decrease for the other. Thus there are 5 levels of 

changes for each time period and a total of 125 experiments were conducted for the considered 

3 time periods. Among these 125 instances, 74 instances have feasible solutions. Production 

hour allocations and optimal objective values of some of the feasible solutions are shown in 

Table 4.3. 

In Table 4.3, each instance contains two rows. The first row is working time hours for 

type 1 products and the second row is working time hours for type 2 products. For example, the 

result of Instance 4 is to allocate all production hours to produce type 2 products in the first and 

second time periods. In the third time period, 30 hours will be used to produce type 1 products 

and 10 hours are used to produce the second type of products.  
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Table 4.3 Working Time Assigned for the Two Products [Example 1] 

Instance Product t=1 t=2 t=3 
Optimal objective 

function value 

4 
1 0 0 30 6250 2 40 40 10 

5 
1 0 0 40 5550 2 40 40 0 

8 
1 0 10 20 7250 2 40 30 20 

9 
1 0 10 30 5778 2 40 30 10 

10 
1 0 10 40 5778 2 40 30 0 

12 
1 0 20 10 7750 2 40 20 30 

13 
1 0 20 20 5600 2 40 20 20 

 

Table 4.4 Optimal Working Time Allocation [Example 1] 

Instance Product t=1 t=2 t=3 
Optimal objective 

function value 

5 
1 0 0 40 

5550 

2 40 40 0 

38 
1 10 20 20 

2 30 20 20 

41 
1 10 30 10 

2 30 10 30 

78 
1 30 0 30 

2 10 40 10 

82 
1 30 10 20 

2 10 30 20 

115 
1 40 30 0 

2 0 10 40 

 

Table 4.5 Optimal Workforce Assignment [Example 1] 

Workforce 
category 

t=1 t=2 t=3 

1 3 3 4 

2 0 0 0 
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Results of the optimal solutions are presented in Table 4.4 and Table 4.5. In Table 4.4, 

six optimal solutions provide different working time allocations with the same objective 

function value of 5550 dollars. These solutions have the same workforce assignment as shown 

in Table 4.5. Only first level of workers are required in the production because of high 

productivity of the skilled workers.  

 

4.2 Single Production Line with Double Stations 

4.2.1 Data of Production System 

The second example is a production system of a single production line (J=1) with two 

stations (I=2) and two labor levels (W=2) to produce two types of products (S=2) in three weeks 

(T=3). Labor related costs are given in Table 4.6. Table 4.7 presents stable production rates and 

total demand from customers. The production line may have up to 10 workers in total. Other 

data are the same as those in the previous example. 

Table 4.6 Labor Cost [Example 2] 

Workforce 

category 

Hourly wage 
Hiring 
cost 

Training 
cost 

Firing 
cost Time period 

1 2 3 

1 12.5 13.75 13.75 50 10 60 

2 10 11 11 40 8 48 

 

Table 4.7 Stable Production Rate and Demand [Example 2] 

Product 
category 

Workforce category 

Demand 
1 2 

Station Station 

1 2 1 2 

1 29 19 15 13 2000 

2 29 26 15 18 2500 
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The data of the output functions can be found in Appendix B. In this example, w
cn were 

set to 17.0 units and 11.0 units for skilled and unskilled workers, respectively. The optimal 

solutions computed by CPLEX will be presented and discussed next. 

 

4.2.2 Experiments and Optimal Solution 

In each time period, we changed the working hours allocated to each type products from 

0 to 40 hours with 10 hours of increment for each experiment and kept the working time hours 

of all stations the same. Thus there are 5 levels for each time period, and 125 instances in total. 

Among these 125 instances, 104 instances are feasible. Some of the feasible examples are 

shown in Table 4.8 below. 

Table 4.8 Working Time Assigned for the Two Products [Example 2] 

Instance Product 
t=1 t=2 t=3 

Optimal objective 
function value 

Station Station Station 

1 2 1 2 1 2 

4 
1 0 0 0 0 30 30 8488 2 40 40 40 40 10 10 

5 
1 0 0 0 0 40 40 8176 2 40 40 40 40 0 0 

8 
1 0 0 10 10 20 20 9300 2 40 40 30 30 20 20 

9 
1 0 0 10 10 30 30 8278 2 40 40 30 30 10 10 

10 
1 0 0 10 10 40 40 7750 2 40 40 30 30 0 0 

12 
1 0 0 20 20 10 10 10518 2 40 40 20 20 30 30 

13 
1 0 0 20 20 20 20 8588 2 40 40 20 20 20 20 
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Table 4.9 Optimal Working Time Allocation [Example 2] 

Instance Product 
t=1 t=2 t=3 

Optimal objective 
function value 

Station Station Station 

1 2 1 2 1 2 

79 
1 30 30 0 0 30 30 7200 2 10 10 40 40 10 10 

 

Table 4.10 Optimal Workforce Assignment [Example 2] 

Workforce category 

t=1 t=2 t=3 

Station Station Station 

1 2 1 2 1 2 

1 2 2 2 2 2 3 

2 0 0 0 0 0 0 

 

Table 4.9 shows the optimal working schedule. For example, it shows in the first time 

period, 30 hours are assigned to both stations to produce type 1 products and 10 hours are 

assigned to produce type 2 products. In addition, based on the first two experiments and their 

solutions, we notice that more unskilled labors are employed if the difference of the production 

rates between the two levels of labors is close.  

 

4.3 Single Production Line with Three Stations 

4.3.1 Data for the Production System 

The third example is a single production line (J=1) with three stations (I=3) and two 

labor levels (W=2) to produce two types of products (S=2) in three weeks (T=3). Labor costs 

are given in Table 4.11. Table 4.12 presents stable production rates and total demand of 

customers. 
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Table 4.11 Labor Cost [Example 3] 

Workforce 

category 

Hourly wage Hiring 
cost 

Training 
cost 

Firing 
cost Time period 

1 2 3 

1 12.5 13.75 13.75 50 10 60 

2 10 11 11 40 8 48 

 

Table 4.12 Stable Production Rate and Demand [Example 3] 

Product 
category 

Workforce category 

Demand 
1 2 

Station Station 

1 2 3 1 2 3 

1 29 17 23 13 11 17 4000 

2 29 26 19 14 18 15 4500 

 

This production line can have a maximum of 15 workers. Furthermore, in this example 

problem, we set the upper limit of regular working time tub  to 40 hours.  

Based on the data in Table 4.12 and before solving the optimization model, we used 

Microsoft Excel to calculate w
tr  , the ratio of the output during learning to the output after 

learning. Figure 4.3 shows the accumulative output for both skilled and unskilled workers. And 

the output ratio w
tr is from 40% to 90% or higher depending on the cumulative working time 

hours during the learning phase. This is shown in Figure 4.4. The data to generate the curves in 

Figure 4.4 are presented in Appendix C.  
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Figure 4.3 Accumulative output curve for both skilled and unskilled workers 

 

 

Figure 4.4 Ratio of output w
tr for both skilled and unskilled workers 

 

When the working time is one hour in the learning phase, newly hired skilled workers 

can produce 8 units while unskilled workers produce 5 units as shown in Figure 4.3. After the 

learning phase, the experienced skilled workers can produce 18 units per hour while unskilled 
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workers produce 13 units. The ratio of output during learning is 40% for both levels of workers. 

When the working time is 40 hours in the learning phase, the ratio of output will reach up to 

94% and 83% for skilled and unskilled workers, respectively. Therefore, we may conduct two 

experiments using the lowest ratio and the highest ratio separately in determine the production 

planning solutions. This will be presented next in Section 4.3.2. 

 

4.3.2 Optimal Solution 

We first present the experiment with the lowest output ratio in the learning phase. The 

output ratio used in this first example is 40% of the regular output. After the problem is solved 

by CPLEX, the optimal objective function value (total cost) is 20400 dollars. The optimal 

solutions are presented in Tables 4.13 and 4.14. 

Table 4.13 Optimal Workforce Assignment with Lowest Output Ratio [Example 3] 

Workforce 
category 

t=1 t=2 t=3 

Station Station Station 

1 2 3 1 2 3 1 2 3 

1 3 5 4 3 4 5 4 4 5 

2 0 0 0 0 0 0 0 0 0 

 

Table 4.14 Output Results with Lowest Output Ratio [Example 3] 

Workforce 

category 

t=1 t=2 t=3 

Product Product Product 
1 2 1 2 1 2 

1 1386 0 1462 2006 1152 2494 

2 0 0 0 0 0 0 

 

The output results indicate that operators used all production time to produce the first 

type of products in the first time period. In the second time period, 1462 units of first type of 
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products and 2006 units of second type of products were produced, and one worker was 

transferred from the second station to the third station in this time period.  

From the output results in Table 4.14 and the production rate data shown in Table 4.12, 

we notice that the total production time for the first type of products in the first time period is 

about 48 hours for the first station. And they are 80 hours and 60 hours for the second and third 

stations, respectively. From the data shown in Table 4.13, one can easily find that the average 

production time per operator are 16 hours, 16 hours and 15 hours, respectively, at these three 

stations. This indicates that not all the workers at the third station are fully occupied in this time 

period. Since the output of type 2 products in the first time period is 0 units, the total production 

time of type 2 products is 0 hours as well. Other results of average production time (hours) per 

operator are shown in Table 4.15 below. 

Table 4.15 Optimal Working Time Allocation with Lowest Output Ratio [Example 3] 

Workforce 
category 

t=1 t=2 t=3 

Station Station Station 

1 2 3 1 2 3 1 2 3 

1 16 16 15 40 40 34 31 40 36 

2 0 0 0 0 0 0 0 0 0 

 

We also used the same sub-model to generate a new production plan example with a 

highest output ratio of 94% for skilled workers and 83% for unskilled workers. Other data are 

kept the same. The resulting objective function value is 16600 dollars. Other information and 

data from the optimal solution are presented in Tables 4.15 and 4.16. 
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Table 4.16 Optimal Workforce Assignment with Highest Output Ratio [Example 3] 

Workforce 
category 

t=1 t=2 t=3 

Station Station Station 

1 2 3 1 2 3 1 2 3 

1 2 4 3 3 3 4 3 4 4 

2 0 0 0 0 0 0 0 0 0 

 

Table 4.17 Output Results with Highest Output Ratio [Example 3] 

Workforce 

category 

t=1 t=2 t=3 

Product Product Product 
1 2 1 2 1 2 

1 2195 0 248 2818 1557 1682 

2 0 0 0 0 0 0 

 

As can be seen from Table 4.16, a total of 9 workers were employed at the 3 stations. 

One additional worker is hired in the second time period with one more added in the third time 

period. Production amounts in the 3 time periods also show the similar trend as can be seen 

from Table 4.17. Production time is different as shown in Table 4.18. 

 Table 4.18 Optimal Working Time Allocation with Highest Output Ratio [Example 3] 

Workforce 
category 

t=1 t=2 t=3 

Station Station Station 

1 2 3 1 2 3 1 2 3 

1 38 32 32 35 40 40 37 39 39 

2 0 0 0 0 0 0 0 0 0 

 

Since, in the second experiment, a higher output ratio during learning phase is used, less 

workforce is needed in this case. In both of the experiments in this section, no unskilled worker 

are employed.  
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4.4 Single Production Line Model with Quality Rate 

4.4.1 Data of Production System 

In this section, we consider an example problem with the same features and data used 

in Section 4.3. The main difference is that in this problem, we consider that the production 

process is subject to certain quality issues. We assume that some of the products will be rejected 

by inspection before they can be shipped to customer due to various quality related concerns 

such as packaging, sizes, appearances, etc. In the calculation, we consider used hypothetical 

quality conforming rates shown in Table 4.19. 

Table 4.19 Quality Rate [Example 4] 

Workforce 
category 

Product category 

1 2 

1 85% 80% 

2 70% 65% 

 

From practical experiences, in general, quality rate is related to worker category and 

product category. Skilled workers correspond to better quality rates and less defective products. 

 

4.4.2 Optimal Solution 

When the output ratio is 40%, the objective function value of the optimal solution is 

24250 dollars. This cost value is higher comparing to that in the previous example because 

some of the products do not meet quality requirement. Tables 4.20 to 4.22 present the main 

information of the optimal solutions.  
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Table 4.20 Optimal Workforce Assignment with Lowest Output Ratio [Example 4] 

Workforce 
category 

t=1 t=2 t=3 

Station Station Station 

1 2 3 1 2 3 1 2 3 

1 4 5 5 4 5 6 4 6 5 

2 0 0 0 0 0 0 0 0 0 

 

Table 4.21 Output Results with Lowest Output Ratio [Example 4] 

Workforce 

category 

t=1 t=2 t=3 

Product Product Product 
1 2 1 2 1 2 

1 715 671 985 2553 2300 1276 

2 0 0 0 0 0 0 

 

Table 4.22 Optimal Working Time Allocation with Lowest Output Ratio [Example 4] 

Workforce 
category 

t=1 t=2 t=3 

Station Station Station 

1 2 3 1 2 3 1 2 3 

1 15 16 16 38 38 36 37 37 40 

2 0 0 0 0 0 0 0 0 0 

 

Comparing with the workforce assignment in the previous section as shown in Table 

4.13, more operators are required in this example, because more products are produced. As 

shown in Table 4.20, 14 workers are employed in the first time period. In the second time period, 

one skilled worker is added to the third station. In the third time period, one skilled worker is 

transferred from the third station to the second station. The production line is operating at its 

full capacity. 

When the same problem was solved with a higher output ratio of 94% for skilled 

workers and 83% for unskilled workers, the objective function value will becomes 23700 

dollars. In addition, other solutions also changed. Some of the results of the new solutions are 
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shown in Tables 4.23 to 4.25. 

Table 4.23 Optimal Workforce Assignment with Highest Output Ratio [Example 4] 

Workforce 
category 

t=1 t=2 t=3 

Station Station Station 

1 2 3 1 2 3 1 2 3 

1 4 5 5 4 5 5 4 5 6 

2 0 0 0 0 0 0 0 0 0 

 

Table 4.24 Output Results with Highest Output Ratio [Example 4] 

Workforce 

category 

t=1 t=2 t=3 

Product Product Product 
1 2 1 2 1 2 

1 1397 1297 1470 1366 1133 1837 

2 0 0 0 0 0 0 

 

Table 4.25 Optimal Working Time Allocation with Highest Output Ratio [Example 4] 

Workforce 
category 

t=1 t=2 t=3 

Station Station Station 

1 2 3 1 2 3 1 2 3 

1 28 32 31 30 34 33 31 33 30 

2 0 0 0 0 0 0 0 0 0 

 

4.5 Double Production Lines with Fixed Cost 

4.5.1 Common Data of the Production System 

In this example, we consider a production system with two production lines (J=2), three stations 

(I=3) for each line and one level (W=1) of workers to produce two types of products (S=2) in 

three periods (T=3). Labor costs are given in Table 4.26. Table 4.27 presents stable production 

rates.  
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Table 4.26 Labor Cost [Example 5] 

Hourly wage Hiring cost Training cost Firing cost 

12.5 50 10 60 

 

Table 4.27 Stable Production Rate [Example 5] 

Product category 
Station 

1 2 3 

1 29 17 23 

2 29 26 19 

 

To find the optimal solution of this problem, we allow a maximum of 15 workers for 

each production line. We did not specify further restriction on the number of workers at each 

work station. We assume that the demand for the second type of products is 80% of that for the 

first type of products. The lowest output ratio, 40% for both skilled and unskilled worker, is 

used in this example. 

 

4.5.2 Optimal Solution without Fixed Cost 

Several experiments have been conducted with the total demand from 3000 units to 

11000 units. In the first set of experiments, we consider that the fixed cost is negligible as the 

equipment investment was made long time ago. The optimal solutions are presented in Table 

4.28. 
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Table 4.28 Optimal Objective Function Value and Workforce Assignment [Example 5] 

Demand for 
first type of 

product 
Line 

t=1 t=2 t=3 Optimal 
objective 

function value 

Station Station Station 

1 2 3 1 2 3 1 2 3 

3000 
1 0 0 0 0 0 0 0 0 0 12480 2 2 3 3 2 3 3 2 3 3 

5000 
1 2 3 3 3 4 4 3 4 4 20340 2 1 1 1 1 1 1 1 1 1 

7000 
1 2 3 3 2 3 3 2 3 3 28140 2 2 3 3 3 4 4 3 4 4 

9000 
1 3 4 4 3 5 4 3 5 4 35380 2 3 4 4 3 4 4 3 4 4 

11000 
1 3 5 4 4 5 5 4 5 6 43800 2 4 4 5 4 6 5 4 6 5 

 

As can be seen from Table 4.28, when demand is 3000 units, the optimal solution is 

operating one production line with 8 workers. When demand is 5000 units or higher, both 

production lines are used. However, in some cases such as when the demand for the first type 

of products is 5000 units, neither of the two lines operates at their full capacities. This 

phenomenon is also related to that we did not include the fixed equipment cost in the objective 

function in solving this set of example problems. 

 

4.5.3 Optimal Solution with Fixed Cost 

Several more experiments with fixed cost have been conducted with the total demand 

from 5000 units to 9000 units. Normally, fixed cost may be approximately 10% of sales profit. 

We assume that the profit to produce one product is one dollar. Since each unit contains 8 

products, the values of fixed costs are 80% of demand values. Different fixed cost values will 

be used in different experiment as shown in Table 4.29. Optimal objective function values are 

also presented in Table 4.29. 
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Table 4.29 Optimal Objective Function Value and Workforce Assignment [Example 5] 

Demand for 
first type of 

product 

Fixed 
cost Line 

t=1 t=2 t=3 Optimal 
objective 

function value 

Station Station Station 

1 2 3 1 2 3 1 2 3 

5000 4000 
1 3 4 4 4 5 5 4 5 5 23340 2 0 0 0 0 0 0 0 0 0 

7000 5600 
1 2 3 3 2 3 3 2 3 3 39340  2 2 3 3 3 4 4 3 4 4 

9000 7200 
1 3 4 4 3 5 4 3 5 4 49780 2 3 4 4 3 4 4 3 4 4 

 

 

As can be seen from Table 4.29, single production line is used when the demand for the 

first type of product is 5000 units. The production line is operated at nearly its full capacity. 

When customer demand is 7000 or 9000 units, the workforce and production line arrangement 

does not change. 

With further consideration, if fixed cost was included in the case with 5000 units 

demand in the previous Section 4.5.2, the optimal objective function value would reach up to 

28340 dollars, because fixed cost of 4000 dollars would be double added to the original 

objective function value of 20340 dollars.  

 

4.6 Double Production Lines with Overtime 

As discussed in Chapter 3, the company may use overtime, instead of hiring new 

workers, to temporarily increase its production capacity. Hourly overcome wage is typically 

higher than regular time wage. Other features of this problem are similar to those of the problem 

discussed in Section 4.5. 

In addition to the system features and basic data discussed in the precious section, we 
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consider that an operator may be allowed to work for a maximum of 10 hours of overtime in 

each time period, or 10jtut . As discussed before, we use $12.5/hour as regular time wage. In 

this set of experiments, we consider that overtime wage can be at 1.5, 1.6 or 3.0 times of the 

regular wage and calculate optimal solutions using the same model accordingly.  

These experiments were run with different values of customer demand from 3000 units 

to 15000 units in three time periods. Results of the optimal solutions corresponding to the above 

mentioned 1.5, 1.6 and 3.0 of overtime to regular time wage ratio are presented in Table 4.30, 

4.31 and 4.32, respectively. 

Table 4.30 Optimal Solutions with 1.5 of Overtime to Regular Wage Ratio [Example 6] 

Demand 
for first 
type of 
product 

Line 

t=1 t=2 t=3 
Optimal 
objective 
function 

value 

Station 

Overtime 

Station 

Overtime 

Station 

Overtime 

Product 
category 

Product 
category 

Product 
category 

1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 

3000 
1 1 1 1 0 7.3 

1 2 2 0 6.0 
2 2 2 10.0 0 9460 2 0 0 0 0 0 0 0 0 0 

5000 
1 2 3 2 8.5 0 

2 3 3 0 7.0 
2 3 3 7.5 0 15298.75 2 0 0 0 0 0 0 0 0 0 

7000 
1 2 4 4 6.0 0 

3 4 4 0 7.7 
3 4 4 7.7 0 20972.5 2 0 0 0 0 0 0 0 0 0 

9000 
1 3 5 5 6.8 0 

3 6 5 0 6.4 
4 5 5 8.2 0 26862.5 2 0 0 0 0 0 0 0 0 0 

11000 
1 4 5 5 7.0 0 

4 6 5 0 6.7 
4 6 5 6.7 0 34292.5 2 1 1 1 1 1 1 1 1 1 

13000 
1 5 5 5 6.8 0 

4 5 5 0 5.5 
4 5 5 5.3 0 41567.5 2 2 3 2 2 3 3 2 3 3 

15000 
1 4 5 5 4.6 0 

5 5 5 0 5.5 
5 5 5 5.5 0 48845 2 3 4 4 3 5 4 3 5 4 
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Table 4.31 Optimal Solutions with 1.6 of Overtime to Regular Wage Ratio [Example 6]  

Demand 
for first 
type of 
product 

Line 

t=1 t=2 t=3 
Optimal 
objective 
function 

value 

Station 

Overtime 

Station 

Overtime 

Station 

Overtime 

Product 
category 

Product 
category 

Product 
category 

1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 

3000 
1 1 1 1 0 10 

1 2 2 0 6.0 
2 2 2 8.7 0 9600 2 0 0 0 0 0 0 0 0 0 

5000 
1 2 3 3 6.4 0 

2 3 3 0 6.3 
2 3 3 6.3 0 15500 2 0 0 0 0 0 0 0 0 0 

7000 
1 2 4 4 5.8 0 

3 4 4 0 7.5 
3 4 4 8.2 0 21260 2 0 0 0 0 0 0 0 0 0 

9000 
1 3 5 5 6.5 0 

3 6 5 0 6.4 
4 5 5 8.6 0 27230 2 0 0 0 0 0 0 0 0 0 

11000 
1 4 5 5 7.0 0 

4 6 5 0 6.7 
4 6 5 6.6 0 34740 2 1 1 1 1 1 1 1 1 1 

13000 
1 4 6 5 5.4 0 

4 6 5 0 5.4 
4 6 5 5.2 0 42020 2 2 2 3 2 2 3 2 3 3 

15000 
1 4 5 5 4.5 0 

5 5 5 0 5.5 
5 5 5 5.5 0 49360 2 3 4 4 3 5 4 3 5 4 

 

Table 4.32 Optimal Solutions with 3.0 of Overtime to Regular Wage Ratio [Example 6] 

Demand 
for first 
type of 
product 

Line 

t=1 t=2 t=3 
Optimal 
objective 
function 

value 

Station 

Overtime 

Station 

Overtime 

Station 

Overtime 

Product 
category 

Product 
category 

Product 
category 

1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 

3000 
1 1 2 2 5.6 0 

1 2 2 0 6.0 
2 2 2 3.5 0 11322.5 2 0 0 0 0 0 0 0 0 0 

5000 
1 2 3 3 6.4 0 

2 3 3 0 6.3 
2 3 3 6.3 0 18142.5 2 0 0 0 0 0 0 0 0 0 

7000 
1 2 5 4 5.5 0 

3 4 4 0 6.6 
3 4 4 0 7.4 25195 2 0 0 0 0 0 0 0 0 0 

9000 
1 3 5 5 6.8 0 

4 5 5 0 8.3 
3 6 5 6.4 0 32375 2 0 0 0 0 0 0 0 0 0 

11000 
1 3 5 5 1.8 0 

3 5 5 0 4.3 
3 5 5 4.3 0 40397.5 2 2 3 2 2 3 3 2 3 3 

13000 
1 3 5 5 2.7 0 

3 5 5 0 3.6 
3 5 5 3.6 0 47612.5 2 3 4 4 3 5 4 3 5 4 

15000 
1 2 4 4 2.4 0 

4 5 6 0 4 
4 5 6 4 0 55550 2 4 6 5 4 6 5 4 6 5 
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Tables 4.30 to 4.32 provide optimal solutions of workforce allocation, overtime hours 

and objective function values for this example problem. Overtime shown in these tables is 

overtime hours for each worker. For example, in Table 4.30, when demand is 3000 units, single 

production line is used, 3 workers are employed in the first time period and all of them should 

work overtime for 7.3 hours. It also show that 2 more workers are added in the second time 

period and all 5 workers should work overtime for 6.0 hours. The optimal objective function 

value is 9460 dollars. 

In all experiments in this section, at least one production line operates at full capacity. 

Double production lines are used only if the demand is equal to or larger than 11000 units. We 

can also see from the optimal solutions that the overtime hours in all three time periods are 

similar. In each time period, only one type of products are produce during overtime. Comparing 

with the results in Section 4.5.2 (solutions without fixed cost), the objective function value of 

this model is lower, because less operators are used. It is more economical to extend working 

time hours than use extra production line or hire new employees. 

Also from Tables 4.30 and 4.32, it is obvious that hourly overtime wage affects 

workforce assignment. When overtime wage is higher, less overtime hours are allocated and 

vice versa. Whereas, if one production lines operates at its full capacity, such as the case when 

demand is 9000 units, the overtime and workforce assignment are almost the same for different 

overtime wages. Its optimal solutions are the same for without using the other production lines.  

 

4.7 Double Production Lines Allowing Delivery Delay 

In the example problems in this section, we assume that each operator is allowed to 
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work for a maximum of 5 hours of overtime on both production lines. That is, 5jtut  . We 

assume that overtime wage is $20/hours, 1.6 times of regular wage. Only one type of products 

will be produced in this example problem. We present the following results and compare the 

optimal solutions for the two cases that product delivery delay is allowed and that it is not 

allowed.  

Similar to the examples in the previous section, we consider that the customer demand 

is from 10000 units to 20000 units. Table 4.33 presents some results of the optimal solution 

when delay is not allowed. We re-calculated the same set of problems allowing product delivery 

to be delayed for one time period with delay penalty cost being $2000/period. Table 4.34 

presents the results of the optimal solutions when such delay is allowed. 

Table 4.33 Optimal Solutions without Delay [Example 7]  

Demand Line 

t=1 t=2 t=3 Optimal 
objective 
function 

value 

Station Overtime 
Station Overtime 

Station Overtime 
1 2 3 1 2 3 1 2 3 

10000 
1 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 20000 2 2 5 3 3.0 3 5 4 3.8 3 5 4 3.3 

12000 
1 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 23560 2 3 6 4 2.4 3 6 4 3.5 4 6 4 4.3 

14000 
1 2 4 3 2 2 4 3 3.3 2 4 3 3.3 28080 2 2 3 2 2.6 2 3 2 4.3 2 3 2 4.3 

16000 
1 2 4 3 3.1 3 5 3 4.0 3 5 4 3.8 31800 2 2 3 2 4.3 2 3 2 4.3 2 3 2 4.3 

18000 
1 2 3 2 2.4 2 3 2 4.3 2 3 2 4.3 35320 2 3 6 4 3.0 3 6 4 3.5 3 6 4 3.5 

20000 
1 2 4 3 1.9 2 4 3 3.3 3 4 3 4.3 39380 2 3 6 4 3.5 3 6 4 3.5 3 6 4 3.5 
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Table 4.34 Optimal Solution with One Time Period Delay [Example 7] 

Demand  Line 

t=1 t=2 t=3 t=4 Optimal 
objective 

function value 

Station Over 
time 

Station Over 
time 

Station Over 
time 

Station Over 
time 1 2 3 1 2 3 1 2 3 1 2 3 

10000 
1 2 3 2 2.3 2 4 3 1.6 2 4 3 3.3 2 4 3 3.3 21340 2 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 

12000 
1 2 3 2 2.7 2 4 3 3.2 3 5 3 3.8 3 5 4 3.8 24980 2 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 

14000 
1 2 4 3 2.4 3 5 3 4.1 3 5 4 3.8 3 6 4 3.5 28420 2 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 

16000 
1 3 5 4 3.0 3 6 4 3.5 3 6 4 3.5 3 6 4 3.5 31700 2 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 

18000 
1 0 0 0 0.0 0 0 0 0.0 1 1 1 5.0 1 1 1 5.0 36020 2 3 6 4 2.9 3 6 4 3.5 3 6 4 3.5 3 6 4 3.5 

20000 
1 3 6 4 3.5 3 6 4 3.5 3 6 4 3.5 3 6 4 3.5 39580 2 0 0 0 0.0 1 1 1 5.0 1 2 1 3.8 1 2 2 3.0 

 

As can be seen from Table 4.33, multiple production lines are utilized when customer 

demand is equal to or larger than 14000 units. From Table 4.34, when one time period delay is 

allowed, the production lines are less utilized when customer demand is 14000 units or 16000 

units. On the other hand, we can see that overtime is still used even when delay is allowed 

because overtime cost is less than delay penalty cost. 

To make a better comparison of optimal objective function values between Table 4.33 

and Table 4.34, Figure 4.5 is presented as follows. 
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Figure 4.5 Total cost comparison when delay is allowed or not allowed 

 

We can see from Figure 4.5, in most cases, the objective function values without delay 

penalty are smaller except that when demand is 16000 units. Further study on delay penalty is 

conducted and we have identified a critical value of the delay penalty cost as shown in Table 

4.35. In each case, if the delay penalty cost is lower than the critical value shown in this table, 

the total cost of production planning with one time period delay is lower. For instance, as the 

customer demand is 10000 units, if the delay penalty cost is smaller than $660/period, we may 

choose the planning with one time period delay in product delivery. 

Table 4.35 Critical Value of Delay Penalty [Example 7] 

Demand 10000 12000 14000 16000 18000 20000 

Delay penalty 
critical value 

660 580 1660 2100 1300 1800 
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4.8 Summary 

Seven numerical example problems based on a real production system are presented in 

this chapter. The observations from the results are reasonable from practical point of view. By 

comparing different production plans and cases, some useful insights on the production system 

can be obtained from the optimal solutions of these example problems.  
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Chapter 5 

Conclusion and Future Research 

 

In this thesis, we introduced a mixed integer programming model for production 

planning in a labor intensive production system in a small confectionary factory. In studying 

the system and developing the mathematical model, we considered several practical issues such 

as different levels of productivities and product quality issues related to the level of operator 

skills. We also considered different options to handle the variations of customer demand which 

is often seasonal and uncertain. These options include using additional production lines, 

allowing overtime working hours and delaying product delivery with penalty costs incurred. 

The developed model can be revised for solving production planning problems of similar labor 

intensive production systems. 

We further presented several revised models or sub-models based on the developed main 

model. They may have slightly different or revised constraint functions to reflect various 

practical considerations. Some of the sub-models can be solved to optimality with minimum 

computing effort for small size problems.  Using these sub-models, we solved a number of 

numerical example problems with different cases. Some of the example problems were solved 

to find the optimal workforce assignment and working time arrangement. Other example 

problem solutions include multi production lines, overtime working and delay penalty. These 

examples are more representative for production planning in high demand seasons.  

The original model has several nonlinear functions and containing certain specific 

nonlinear terms. One of the nonlinear functions can be replaced by a piece-wise linear function. 
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Most of the remaining non-linear terms can be linearized by adding additional variables and 

large number of linear constraint functions.  In this research, we used revised and simplified 

sub-models to find optimal or near optimal solutions of some of the simpler problems obtained 

from our on-site study in the factory.   

In summary, the main contributions made in this thesis research can be outlined below.  

 A mixed integer mathematical programming model was developed for labor intensive 

production planning with several practical features which have not been considered by 

other researchers 

 The model was solved for several practical cases and the solutions are satisfactory and 

can be adjusted for practical implementation. 

 The considered practical problems can be solved without extensive computing effort. 

In the future research in this direction, the further development of the main model should 

be conducted for efficient solution methods so that the entire model can be solved. In addition, 

modeling and solving the production planning problem considering the interactions between 

manual and automated production lines should be investigated. In addition, the feasibility, 

effectiveness and efficiencies of using such an integrated model to solving larger size problems 

should be studied. Finally, efficient heuristic solution methods should be developed for solving 

larger size problems. 
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Appendix A 

Output of Learning Phase in the First Sub-model 

Working Hours in 
Learning Phase 

Original Output Curve Piecewise Linear Curve 

w=1 (y0=0.123) w=2 (y0=0.200) w=1 w=2 

1 9.9772 5.4991 21 10 

2 22.9216 12.4596 42 20 

3 37.2868 20.1045 63 30 

4 52.6602 28.2307 84 40 

5 68.8295 36.7346 105 50 

6 85.6627 45.5522 126 60 

7 103.069 54.6395 147 70 

8 120.9814 63.9643 168 80 

9 139.3483 73.5017 189 90 

10 158.1287 83.2322 210 100 

11 177.2891 93.1397 231 110 

12 196.8014 103.2109 252 120 

13 216.6420 113.4344 273 130 

14 236.7905 123.8006 294 140 

15 257.2292 134.3010 315 150 

16 277.9423 144.9283 336 160 

17 298.9162 155.6759 357 170 

18 320.1383 166.5380 378 180 

19 341.5978 177.5092 399 190 

20 363.2844 188.5850 420 200 

21 385.1890 199.7609 441 210 

22 407.3033 211.0330 462 220 

23 429.6196 222.3978 483 230 

24 452.1309 233.8519 504 240 

25 474.8306 245.3923 525 250 

26 497.7127 257.0161 546 260 

27 520.7715 268.7206 567 270 

28 544.0018 280.5034 588 280 

29 567.3986 292.3623 609 290 

30 590.9574 304.2950 630 300 

31 614.6738 316.2995 651 310 

32 638.5438 328.3739 672 320 

33 662.5634 340.5165 693 330 

34 686.7290 352.7255 714 340 

35 711.0372 364.9993 735 350 

36 735.4848 377.3364 756 360 

37 760.0686 389.7353 777 370 

38 784.7856 402.1947 798 380 

39 809.6330 414.7133 819 390 

40 834.6083 427.2898 840 400 
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Appendix B 

Output of Learning Phase in the Second Sub-model 

Working Time in 
Learning Phase 

Original Output Curve Piecewise Linear Curve 

w=1 (y0=0.140) w=2 (y0=0.195) w=1 w=2 

1 8.2922 5.6658 17 11 

2 19.0506 12.8375 34 22 

3 30.9898 20.7142 51 33 

4 43.7669 29.0868 68 44 

5 57.2056 37.8486 85 55 

6 71.1960 46.9336 102 66 

7 85.6627 56.2965 119 77 

8 100.5501 65.9041 136 88 

9 115.8152 75.7307 153 99 

10 131.4240 85.7563 170 110 

11 147.3485 95.9642 187 121 

12 163.5656 106.3409 204 132 

13 180.0556 116.8744 221 143 

14 196.8014 127.5550 238 154 

15 213.7884 138.3738 255 165 

16 231.0035 149.3234 272 176 

17 248.4353 160.3969 289 187 

18 266.0735 171.5884 306 198 

19 283.9088 182.8923 323 209 

20 301.9330 194.3040 340 220 

21 320.1383 205.8188 357 231 

22 338.5180 217.4328 374 242 

23 357.0655 229.1422 391 253 

24 375.7751 240.9437 408 264 

25 394.6413 252.8340 425 275 

26 413.6591 264.8103 442 286 

27 432.8237 276.8697 459 297 

28 452.1309 289.0099 476 308 

29 471.5765 301.2284 493 319 

30 491.1567 313.5230 510 330 

31 510.8679 325.8915 527 341 

32 530.7066 338.3321 544 352 

33 550.6698 350.8429 561 363 

34 570.7544 363.4221 578 374 

35 590.9574 376.0682 595 385 

36 611.2763 388.7794 612 396 

37 631.7083 401.5543 629 407 

38 652.2512 414.3916 646 418 

39 672.9024 427.2898 663 429 

40 693.6598 440.2477 680 440 
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Appendix C 

Output in Learning Phase 

Working 
Time  

Productivity of First Type of Workers Productivity of Second Type of Workers 

Learning Phase Stable Ratio Learning Process Stable Ratio 

1 8.2922 20.03 41% 5.6658 ϭϯ.ϯϰ ϰϭ% 

2 19.0506 40.06 48% 12.8375 Ϯϲ.ϲϴ ϰϴ% 

3 30.9898 60.09 56% 20.7142 ϰϬ.ϬϮ ϱϮ% 

4 43.7669 80.12 60% 29.0868 ϱϯ.ϯϲ ϱϱ% 

5 57.2056 100.15 62% 37.8486 ϲϲ.ϳ ϱϳ% 

6 71.1960 120.18 65% 46.9336 ϴϬ.Ϭϰ ϱϵ% 

7 85.6627 140.21 67% 56.2965 ϵϯ.ϯϴ ϲϬ% 

8 100.5501 160.24 68% 65.9041 ϭϬϲ.ϳϮ ϲϮ% 

9 115.8152 180.27 70% 75.7307 ϭϮϬ.Ϭϲ ϲϯ% 

10 131.4240 200.30 72% 85.7563 ϭϯϯ.ϰ ϲϰ% 

11 147.3485 220.33 73% 95.9642 ϭϰϲ.ϳϰ ϲϱ% 

12 163.5656 240.36 74% 106.3409 ϭϲϬ.Ϭϴ ϲϲ% 

13 180.0556 260.39 75% 116.8744 ϭϳϯ.ϰϮ ϲϳ% 

14 196.8014 280.42 76% 127.5550 ϭϴϲ.ϳϲ ϲϴ% 

15 213.7884 300.45 78% 138.3738 ϮϬϬ.ϭ ϲϵ% 

16 231.0035 320.48 79% 149.3234 Ϯϭϯ.ϰϰ ϳϬ% 

17 248.4353 340.51 80% 160.3969 ϮϮϲ.ϳϴ ϳϭ% 

18 266.0735 360.54 80% 171.5884 ϮϰϬ.ϭϮ ϳϭ% 

19 283.9088 380.57 81% 182.8923 Ϯϱϯ.ϰϲ ϳϮ% 

20 301.9330 400.60 82% 194.3040 Ϯϲϲ.ϴ ϳϯ% 

21 320.1383 420.63 83% 205.8188 ϮϴϬ.ϭϰ ϳϯ% 

22 338.5180 440.66 84% 217.4328 Ϯϵϯ.ϰϴ ϳϰ% 

23 357.0655 460.69 84% 229.1422 ϯϬϲ.ϴϮ ϳϱ% 

24 375.7751 480.72 85% 240.9437 ϯϮϬ.ϭϲ ϳϱ% 

25 394.6413 500.75 86% 252.8340 ϯϯϯ.ϱ ϳϲ% 

26 413.6591 520.78 87% 264.8103 ϯϰϲ.ϴϰ ϳϲ% 

27 432.8237 540.81 87% 276.8697 ϯϲϬ.ϭϴ ϳϳ% 

28 452.1309 560.84 88% 289.0099 ϯϳϯ.ϱϮ ϳϳ% 

29 471.5765 580.87 88% 301.2284 ϯϴϲ.ϴϲ ϳϴ% 

30 491.1567 600.90 89% 313.5230 ϰϬϬ.Ϯ ϳϴ% 

31 510.8679 620.93 90% 325.8915 ϰϭϯ.ϱϰ ϳϵ% 

32 530.7066 640.96 90% 338.3321 ϰϮϲ.ϴϴ ϳϵ% 

33 550.6698 660.99 91% 350.8429 ϰϰϬ.ϮϮ ϴϬ% 

34 570.7544 681.02 91% 363.4221 ϰϱϯ.ϱϲ ϴϬ% 

35 590.9574 701.05 92% 376.0682 ϰϲϲ.ϵ ϴϭ% 

36 611.2763 721.08 92% 388.7794 ϰϴϬ.Ϯϰ ϴϭ% 

37 631.7083 741.11 93% 401.5543 ϰϵϯ.ϱϴ ϴϭ% 

38 652.2512 761.14 93% 414.3916 ϱϬϲ.ϵϮ ϴϮ% 

39 672.9024 781.17 94% 427.2898 ϱϮϬ.Ϯϲ ϴϮ% 

40 693.6598 801.20 94% 440.2477 ϱϯϯ.ϲ ϴϯ% 
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Appendix D 

Frist Sub-model in CPLEX 

/*define*/ 

 int w=2; 

 int s=2; 

 int t=3; 

 range W=1..w; 

 range W2=2..w; 

 range S=1..s; 

 range T=1..t; 

 range T2=2..t; 

  

/*parameters*/ 

 int alpha[W][T] = ...; 

 int beta[W] = ...; 

 int gamma[W] = ...; 

 int delta[W] = ...; 

 int eta[S] = ...; 

 float y[W][S]= ...; 

 int WT[S][T]=...; 

  

/*variables*/ 

 dvar int+ X[W][T]; 

 dvar int+ XT[W][T]; 

 dvar int+ XH[W][T]; 

 dvar int+ XF[W][T]; 

 dvar boolean m[W][T]; 

 dvar int+ Z1[W][T]; 

 dvar int Z2[W][T]; 

 dvar int M[W][T]; 

 dvar boolean a[W][T]; 

 dvar int+ P[W][S][T]; 

 dvar int+ D[S][T]; 

 

 

/*objective*/ 

 minimize  

           sum (w in W, t in T) X[w][t]*alpha[w][t] 

         + sum (w in W, t in T) Z1[w][t]*beta[w] 

         + sum (w in W, t in T) XT[w][t]*gamma[w] 

         - sum (w in W, t in T) Z2[w][t]*delta[w]; 

 

/*constraints*/ 
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 subject to 

 {  

  set1: 

    forall (w in W, t in T) 

      M[w][t] == XH[w][t]-XF[w][t];  

  set2: 

    forall (w in W, t in T) 

      M[w][t]/1000 <= a[w][t];   

    forall (w in W, t in T) 

      (M[w][t]/1000)+1 >= a[w][t];       

  set3: 

    forall (w in W, t in T) 

      M[w][t]-15*(1-a[w][t]) <= Z1[w][t];    

    forall (w in W, t in T) 

      Z1[w][t] <= M[w][t]+15*(1-a[w][t]);   

  set4: 

    forall (w in W, t in T) 

      0 <= Z1[w][t];     

    forall (w in W, t in T) 

      Z1[w][t] <= 15*a[w][t];      

  set5: 

    forall (w in W, t in T) 

      M[w][t]-15*a[w][t] <= Z2[w][t];     

    forall (w in W, t in T) 

      Z2[w][t] <= M[w][t]+15*a[w][t];  

  set6: 

    forall (w in W, t in T) 

      15*a[w][t]-15 <= Z2[w][t]; 

    forall (w in W, t in T) 

      Z2[w][t] <= 0;       

  set7: 

    forall (w in W) 

      X[w][1] == XH[w][1];     

  set8: 

    forall (w in W) 

      XF[w][1] == 0;      

  set9: 

    forall (w in W,  t in T) 

      XH[w][t] <= 5* m[w][t];  

  set10: 

    forall (w in W, t in T) 

      XF[w][t] <= 5* (1-m[w][t]);          

  set11: 

    forall (w in W, t in T2) 

      X[w][t] == X[w][t-1]+XH[w][t]-XF[w][t];       
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  set12: 

    forall (w in W2, t in T) 

      XT[w][t] == XH[w][t];    

  set13:   

    forall (t in T) 

      XT[1][t] == 0; 

  set14: 

    forall (t in T) 

      1 <= sum(w in W) X[w][t];  

  set15: 

    forall (t in T) 

      sum(w in W) X[w][t] <= 5;                 

  set16: 

    forall (w in W, t in T) 

      0 <= XF[w][t];    

  set17:  

    forall (w in W, t in T) 

      XF[w][t] <= X[w][t];  

  set18: 

    forall (w in W, t in T) 

      0<= XH[w][t]; 

  set19: 

    forall (s in S, t in T) 

      P[1][s][t] == 22*WT[s][t];    

  set20:  

    forall (w in W2, s in S, t in T) 

      P[2][s][t] == 10*WT[s][t];                  

  set21: 

    forall (s in S) 

      D[s][1] <= sum(w in W)XH[w][1]*P[w][s][1];       

  set22: 

    forall (s in S, t in T2) 

      D[s][t] <= sum(w in W)XH[w][t]*P[w][s][t]+sum(w in W)(X[w][t-1]            

                 XF[w][t])*WT[s][t]/y[w][s]; 

  Set23: 

    forall (s in S) 

      sum(t in T) D[s][t] >= eta[s];        

} 

 

/*************************************************************************/    

DATA: 
 

SheetConnection sheet("mastermodel.xlsx"); 

 

alpha from SheetRead(sheet,"Sheet1!B2:D3"); 
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beta from SheetRead(sheet,"Sheet1!B6:B7"); 

gamma from SheetRead(sheet,"Sheet1!B10:B11"); 

delta from SheetRead(sheet,"Sheet1!B14:B15"); 

eta from SheetRead(sheet,"Sheet1!B18:B19"); 

y from SheetRead(sheet,"Sheet1!H2:I3"); 

WT from SheetRead(sheet,"Sheet1!H6:J7");    
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Appendix E 

Second Sub-model in CPLEX 

/*define*/ 

 int w=2; 

 int s=2; 

 int i=2; 

 int t=3; 

 range W=1..w; 

 range W2=2..w; 

 range S=1..s; 

 range I=1..i; 

 range T=1..t; 

 range T2=2..t; 

 

/*parameters*/ 

 int alpha[W][T] = ...; 

 int beta[W] = ...; 

 int gamma[W] = ...; 

 int delta[W] = ...; 

 int eta[S] = ...; 

  

{int} worker =...; 

{int} order =...; 

{int} station =...; 

{int} time =...; 

 

/*variables*/ 

 dvar int+ X[W][I][T]; 

 dvar int+ XT[W][I][T]; 

 dvar int+ XH[W][I][T]; 

 dvar int+ XF[W][I][T]; 

 dvar boolean m[W][I][T]; 

 dvar int+ Z1[W][T]; 

 dvar int Z2[W][T]; 

 dvar int M[W][T]; 

 dvar boolean a[W][T]; 

 dvar int+ P[W][S][I][T]; 

 dvar int+ D[S][T]; 

 

float ywsi[worker][order][station]; 

tuple ywsiStruct { int worker; int order;int station; float ywsi;}; 

{ywsiStruct} ywsiData = ...; 
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execute 

{ 

   for (var y in ywsiData) 

      { 

         ywsi [y.worker][y.order][y.station] = y.ywsi; 

      } 

}  

 

int WTsit[order][station][time]; 

tuple WTsitStruct { int order; int station;int time; float WTsit;}; 

{WTsitStruct} WTsitData = ...; 

 

execute 

{ 

   for (var x in WTsitData) 

      { 

         WTsit[x.order][x.station][x.time] = x.WTsit; 

      } 

} 

 

/*objective*/ 

 minimize  

           sum (w in W, i in I, t in T) X[w][i][t]*alpha[w][t] 

         + sum (w in W, t in T) Z1[w][t]*beta[w] 

         + sum (w in W, i in I, t in T) XT[w][i][t]*gamma[w] 

         - sum (w in W, t in T) Z2[w][t]*delta[w]; 

 

/*constraints*/ 

 subject to 

 {  

  set1: 

    forall (w in W, t in T) 

      M[w][t] == sum (i in I) (XH[w][i][t]-XF[w][i][t]); 

  set2: 

    forall (w in W, t in T) 

      M[w][t]/1000 <= a[w][t];   

  set3: 

    forall (w in W, t in T) 

      (M[w][t]/1000)+1 >= a[w][t];       

  set4: 

    forall (w in W, t in T) 

      M[w][t]-15*(1-a[w][t]) <= Z1[w][t]; 

  set5:   

    forall (w in W, t in T) 

      Z1[w][t] <= M[w][t]+15*(1-a[w][t]);   
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  set6: 

    forall (w in W, t in T) 

      0 <= Z1[w][t];     

  set7:   

    forall (w in W, t in T) 

      Z1[w][t] <= 15*a[w][t];       

  set8: 

    forall (w in W, t in T) 

      M[w][t]-15*a[w][t] <= Z2[w][t];     

  set9:   

    forall (w in W, t in T) 

      Z2[w][t] <= M[w][t]+15*a[w][t];  

  set10: 

    forall (w in W, t in T) 

      15*a[w][t]-15 <= Z2[w][t];  

  set11:   

    forall (w in W, t in T) 

      Z2[w][t] <= 0;       

  set12: 

    forall (w in W, i in I) 

      X[w][i][1] == XH[w][i][1];     

  set13: 

    forall (w in W, i in I) 

      XF[w][i][1] == 0;   

  set14:    

    forall (w in W, i in I, t in T) 

      XH[w][i][t] <= 10* m[w][i][t];  

  set15:    

    forall (w in W, i in I, t in T) 

      XF[w][i][t] <= 10* (1-m[w][i][t]);        

  set16: 

    forall (w in W, i in I, t in T2) 

      X[w][i][t] == X[w][i][t-1]+XH[w][i][t]-XF[w][i][t];      

  set17: 

    forall (w in W2, i in I, t in T) 

      XT[w][i][t] == XH[w][i][t];    

  set18:   

    forall (i in I, t in T) 

      XT[1][i][t] == 0;    

  Set19: 

    forall (i in I, t in T) 

      1 <= sum(w in W) X[w][i][t];   

  set20: 

    forall (t in T) 

      sum(w in W, i in I) X[w][i][t] <= 10;      
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  set21: 

    forall (w in W, i in I, t in T) 

      0 <= XF[w][i][t];     

  set22:   

    forall (w in W, i in I, t in T) 

      XF[w][i][t] <= X[w][i][t];       

  set23: 

    forall (w in W, i in I, t in T) 

      XH[w][i][t] >=0; 

  Set24: 

    forall (s in S,  i in I, t in T) 

      P[1][s][i][t] == 17*WTsit[s][i][t];     

  Set25:   

    forall (s in S,  i in I, t in T) 

      P[2][s][i][t] == 10*WTsit[s][i][t];         

  set26: 

    forall (s in S, i in I) 

      D[s][1] <= sum(w in W)XH[w][i][1]*P[w][s][i][1];       

  set27: 

    forall (s in S, i in I, t in T2) 

      D[s][t] <= sum(w in W)XH[w][i][t]*P[w][s][i][t]+sum(w in W)(X[w][i][t-   

                 1]-XF[w][i][t])*WTsit[s][i][t]/ywsi[w][s][i];       

  set28: 

    forall (s in S) 

      sum(t in T) D[s][t] >= eta[s]; 

} 

 

/*************************************************************************/    

DATA: 
 

SheetConnection sheet("mastermodel.xlsx"); 

 

alpha from SheetRead(sheet,"Sheet1!B2:D3"); 

beta from SheetRead(sheet,"Sheet1!B6:B7"); 

gamma from SheetRead(sheet,"Sheet1!B10:B11"); 

delta from SheetRead(sheet,"Sheet1!B14:B15"); 

eta from SheetRead(sheet,"Sheet1!B22:B23"); 

 

worker from SheetRead(sheet,"Sheet1!F27:F28"); 

order from SheetRead(sheet,"Sheet1!F27:F28"); 

station from SheetRead(sheet,"Sheet1!F27:F28"); 

time from SheetRead(sheet,"Sheet1!F27:F29"); 

ywsiData from SheetRead(sheet,"Sheet1!A27:D34"); 

WTsitData from SheetRead(sheet,"Sheet1!H27:K38";    
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Appendix F 

Third Sub-model in CPLEX 

/*define*/ 

 int s=2; 

 int i=3; 

 int w=2; 

 int t=3; 

 

 range S=1..s; 

 range I=1..i; 

 range T=1..t; 

 range T2=2..t; 

 range W=1..w; 

 range W2=2..w; 

  

/*parameters*/ 

 int alpha[W][T] = ...; 

 int beta[W] = ...; 

 int gamma[W] = ...; 

 int delta[W] = ...; 

 int eta[S] = ...; 

 

{int} worker =...; 

{int} order =...; 

{int} station =...; 

 

/*variables*/ 

 dvar int+ X[W][I][T]; 

 dvar int+ XT[W][I][T]; 

 dvar int+ XH[W][I][T]; 

 dvar int+ XF[W][I][T]; 

 dvar boolean m[W][I][T]; 

 dvar int+ Z1[W][T]; 

 dvar int Z2[W][T]; 

 dvar int M[W][T]; 

 dvar boolean a[W][T]; 

 dvar int+ D[W][S][T]; 

 

float ywsi[worker][order][station]; 

tuple ywsiStruct { int worker; int order;int station; float ywsi;}; 

{ywsiStruct} ywsiData = ...; 

 

execute 
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{ 

   for (var y in ywsiData) 

      { 

         ywsi [y.worker][y.order][y.station] = y.ywsi; 

      } 

}  

 

/*objective*/ 

 minimize  

           sum (w in W, i in I, t in T) X[w][i][t]*alpha[w][t] 

         + sum (w in W, t in T) Z1[w][t]*beta[w] 

         + sum (w in W, i in I, t in T) XT[w][i][t]*gamma[w] 

         - sum (w in W, t in T) Z2[w][t]*delta[w];                       

 

/*constraints*/ 

 subject to 

 {        

  set1: 

    forall (w in W, t in T) 

      M[w][t] == sum (i in I) (XH[w][i][t]-XF[w][i][t]); 

  set2: 

    forall (w in W, t in T) 

      M[w][t]/1000 <= a[w][t];   

  set3: 

    forall (w in W, t in T) 

      (M[w][t]/1000)+1 >= a[w][t];       

  set4: 

    forall (w in W, t in T) 

      M[w][t]-15*(1-a[w][t]) <= Z1[w][t];   

  set5:   

    forall (w in W, t in T) 

      Z1[w][t] <= M[w][t]+15*(1-a[w][t]);   

  set6: 

    forall (w in W, t in T) 

      0 <= Z1[w][t];     

  set7:   

    forall (w in W, t in T) 

      Z1[w][t] <= 15*a[w][t];       

  set8: 

    forall (w in W, t in T) 

      M[w][t]-15*a[w][t] <= Z2[w][t];    

  set9:   

    forall (w in W, t in T) 

      Z2[w][t] <= M[w][t]+15*a[w][t];   

  set10: 
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    forall (w in W, t in T) 

      15*a[w][t]-15 <= Z2[w][t];   

  set11:   

    forall (w in W, t in T) 

      Z2[w][t] <= 0;       

  set12: 

    forall (w in W, i in I) 

      X[w][i][1] == XH[w][i][1];       

  set13: 

    forall (w in W, i in I) 

      XF[w][i][1] == 0; 

  set14:    

    forall (w in W, i in I, t in T) 

      XH[w][i][t] <= 15* m[w][i][t];  

  set15:    

    forall (w in W, i in I, t in T) 

      XF[w][i][t] <= 15* (1-m[w][i][t]);          

  set16: 

    forall (w in W, i in I, t in T2) 

      X[w][i][t] == X[w][i][t-1]+XH[w][i][t]-XF[w][i][t];       

  set17: 

    forall (w in W2, i in I, t in T) 

      XT[w][i][t] == XH[w][i][t];     

  set18:   

    forall (i in I, t in T) 

      XT[1][i][t] == 0;  

  Set19: 

    forall (t in T) 

      sum(w in W, i in I) X[w][i][t] <= 15;       

  set20: 

    forall (w in W, i in I, t in T) 

      0 <= XF[w][i][t];   

  set21: 

    forall (w in W, i in I, t in T) 

      XF[w][i][t] <= X[w][i][t];       

  set22: 

    forall (w in W, i in I, t in T) 

      XH[w][i][t] >=0;   

  set23a: 

forall (w in W, i in I) 

      sum(s in S)D[w][s][1]*ywsi[w][s][i] <= 16*XH[w][i][1];         

  set23b: 

    forall (i in I) 

      sum(s in S)D[1][s][1]*ywsi[1][s][i] <= 38*XH[1][i][1];   

    forall (i in I) 
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      sum(s in S)D[2][s][1]*ywsi[2][s][i] <= 32*XH[2][i][1];       

  set24a:   

    forall (w in W, i in I, t in T2) 

      sum(s in S)D[w][s][t]*ywsi[w][s][i] <= 40*(X[w][i][t-1]-XF[w][i][t])+ 

                                             16*XH[w][i][t];    

  set24b: 

    forall (w in W, i in I, t in T2) 

      sum(s in S)D[1][s][t]*ywsi[1][s][i] <= 40*(X[1][i][t-1]-XF[1][i][t])+  

                                             38*XH[1][i][t]; 

    forall (w in W, i in I, t in T2) 

      sum(s in S)D[2][s][t]*ywsi[2][s][i] <= 40*(X[2][i][t-1]-XF[2][i][t])+  

                                             32*XH[2][i][t]; 

  set25: 

    forall (s in S) 

      sum(w in W, t in T) D[w][s][t] >= eta[s];       

} 

    

/*************************************************************************/     

DATA: 
 

SheetConnection sheet("single line without learning curve.xlsx"); 

 

alpha from SheetRead(sheet,"Sheet1!B2:D3"); 

beta from SheetRead(sheet,"Sheet1!B6:B7"); 

gamma from SheetRead(sheet,"Sheet1!B10:B11"); 

delta from SheetRead(sheet,"Sheet1!B14:B15"); 

eta from SheetRead(sheet,"Sheet1!B22:B23"); 

 

worker from SheetRead(sheet,"Sheet1!F27:F28"); 

order from SheetRead(sheet,"Sheet1!F27:F28"); 

station from SheetRead(sheet,"Sheet1!F27:F29"); 

ywsiData from SheetRead(sheet,"Sheet1!A27:D38"); 
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Appendix G 

Fourth Sub-model in CPLEX 

/*define*/ 

 int s=2; 

 int i=3; 

 int w=2; 

 int t=3; 

 

 range S=1..s; 

 range I=1..i; 

 range T=1..t; 

 range T2=2..t; 

 range W=1..w; 

 range W2=2..w; 

  

/*parameters*/ 

 int alpha[W][T] = ...; 

 int beta[W] = ...; 

 int gamma[W] = ...; 

 int delta[W] = ...; 

 int eta[S] = ...; 

 

{int} worker =...; 

{int} order =...; 

{int} station =...; 

 

/*variables*/ 

 dvar int+ X[W][I][T]; 

 dvar int+ XT[W][I][T]; 

 dvar int+ XH[W][I][T]; 

 dvar int+ XF[W][I][T]; 

 dvar boolean m[W][I][T]; 

 dvar int+ Z1[W][T]; 

 dvar int Z2[W][T]; 

 dvar int M[W][T]; 

 dvar boolean a[W][T]; 

 dvar int+ D[W][S][T]; 

 

float ywsi[worker][order][station]; 

tuple ywsiStruct { int worker; int order;int station; float ywsi;}; 

{ywsiStruct} ywsiData = ...; 

 

execute 
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{ 

   for (var y in ywsiData) 

      { 

         ywsi [y.worker][y.order][y.station] = y.ywsi; 

      } 

}  

 

/*objective*/ 

 minimize  

           sum (w in W, i in I, t in T) X[w][i][t]*alpha[w][t] 

         + sum (w in W, t in T) Z1[w][t]*beta[w] 

         + sum (w in W, i in I, t in T) XT[w][i][t]*gamma[w] 

         - sum (w in W, t in T) Z2[w][t]*delta[w];                       

 

/*constraints*/ 

 subject to 

 {        

  set1: 

    forall (w in W, t in T) 

      M[w][t] == sum (i in I) (XH[w][i][t]-XF[w][i][t]);  

  set2: 

    forall (w in W, t in T) 

      M[w][t]/1000 <= a[w][t];   

  set3: 

    forall (w in W, t in T) 

      (M[w][t]/1000)+1 >= a[w][t];       

  set4: 

    forall (w in W, t in T) 

      M[w][t]-15*(1-a[w][t]) <= Z1[w][t];   

  set5:   

    forall (w in W, t in T) 

      Z1[w][t] <= M[w][t]+15*(1-a[w][t]);   

  set6: 

    forall (w in W, t in T) 

      0 <= Z1[w][t];     

  set7:   

    forall (w in W, t in T) 

      Z1[w][t] <= 15*a[w][t];       

  set8: 

    forall (w in W, t in T) 

      M[w][t]-15*a[w][t] <= Z2[w][t];     

  set9:   

    forall (w in W, t in T) 

      Z2[w][t] <= M[w][t]+15*a[w][t];  

  set10: 
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    forall (w in W, t in T) 

      15*a[w][t]-15 <= Z2[w][t];  

  set11:   

    forall (w in W, t in T) 

      Z2[w][t] <= 0; 

  set12: 

    forall (w in W, i in I) 

      X[w][i][1] == XH[w][i][1];       

  set13: 

    forall (w in W, i in I) 

      XF[w][i][1] == 0;   

  set14:    

    forall (w in W, i in I, t in T) 

      XH[w][i][t] <= 15* m[w][i][t];   

  set15:    

    forall (w in W, i in I, t in T) 

      XF[w][i][t] <= 15* (1-m[w][i][t]);          

  set16: 

    forall (w in W, i in I, t in T2) 

      X[w][i][t] == X[w][i][t-1]+XH[w][i][t]-XF[w][i][t];       

  set17: 

    forall (w in W2, i in I, t in T) 

      XT[w][i][t] == XH[w][i][t];     

  set18:   

    forall (i in I, t in T) 

      XT[1][i][t] == 0;   

  Set19: 

    forall (t in T) 

      sum(w in W, i in I) X[w][i][t] <= 15;       

  set20: 

    forall (w in W, i in I, t in T) 

      0 <= XF[w][i][t];   

  set21: 

    forall (w in W, i in I, t in T) 

      XF[w][i][t] <= X[w][i][t];       

  set22: 

    forall (w in W, i in I, t in T) 

      XH[w][i][t] >=0;   

  set23a: 

forall (w in W, i in I) 

      sum(s in S)D[w][s][1]*ywsi[w][s][i]/qr[s][w] <= 16*XH[w][i][1];         

  set23b: 

    forall (i in I) 

      sum(s in S)D[1][s][1]*ywsi[1][s][i]/qr[s][w] <= 38*XH[1][i][1];    

    forall (i in I) 
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      sum(s in S)D[2][s][1]*ywsi[2][s][i]/qr[s][w] <= 32*XH[2][i][1];       

  set24a:   

    forall (w in W, i in I, t in T2) 

      sum(s in S)D[w][s][t]*ywsi[w][s][i]/qr[s][w] <= 40*(X[w][i][t-1]- 

                 XF[w][i][t])+16*XH[w][i][t];    

  set24b: 

    forall (w in W, i in I, t in T2) 

      sum(s in S)D[1][s][t]*ywsi[1][s][i]/qr[s][w] <= 40*(X[1][i][t-1]- 

                 XF[1][i][t])+ 38*XH[1][i][t]; 

    forall (w in W, i in I, t in T2) 

      sum(s in S)D[2][s][t]*ywsi[2][s][i]/qr[s][w] <= 40*(X[2][i][t-1]- 

                 XF[2][i][t])+ 32*XH[2][i][t]; 

  set25: 

    forall (s in S) 

      sum(w in W, t in T) D[w][s][t] >= eta[s];       

} 

    

/*************************************************************************/     

DATA: 
 

SheetConnection sheet("single line without learning curve.xlsx"); 

 

alpha from SheetRead(sheet,"Sheet1!B2:D3"); 

beta from SheetRead(sheet,"Sheet1!B6:B7"); 

gamma from SheetRead(sheet,"Sheet1!B10:B11"); 

delta from SheetRead(sheet,"Sheet1!B14:B15"); 

eta from SheetRead(sheet,"Sheet1!B22:B23"); 

qr from SheetRead(sheet,"Sheet1!B18:C19"); 

 

worker from SheetRead(sheet,"Sheet1!F27:F28"); 

order from SheetRead(sheet,"Sheet1!F27:F28"); 

station from SheetRead(sheet,"Sheet1!F27:F29"); 

ywsiData from SheetRead(sheet,"Sheet1!A27:D38"); 
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Appendix H 

Fifth Sub-model in CPLEX 

/*define*/ 

 int s=2; 

 int i=3; 

 int j=2; 

 int t=3; 

 

 range S=1..s; 

 range I=1..i; 

 range T=1..t; 

 range T2=2..t; 

 range J=1..j; 

  

/*parameters*/ 

 int alpha = ...; 

 int beta = ...; 

 int gamma = ...; 

 int delta = ...; 

 int eta[S] = ...; 

 float y[S][I] = ...; 

 int epsilon = ...;                           

 

/*variables*/ 

 dvar int+ X[I][J][T]; 

 dvar int+ XT[I][J][T]; 

 dvar int+ XH[I][J][T]; 

 dvar int+ XF[I][J][T]; 

 dvar int+ Z1[T]; 

 dvar int Z2[T]; 

 dvar int M[T]; 

 dvar boolean a[T]; 

 dvar int+ D[S][J][T]; 

 dvar boolean k[J];                             

 

/*objective*/ 

 minimize  

           sum ( i in I, j in J, t in T) X[i][j][t]*alpha 

         + sum ( t in T) Z1[t]*beta 

         + sum ( i in I, j in J, t in T) XT[i][j][t]*gamma 

         - sum ( t in T) Z2[t]*delta 

         + sum (j in J) k[j]* epsilon;            
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/*constraints*/ 

 subject to 

 {                

  set1: 

    forall (t in T) 

      M[t] == sum (i in I, j in J) (XH[i][j][t]-XF[i][j][t]);   

  set2: 

    forall (t in T) 

      M[t]/100 <= a[t];   

  set3: 

    forall (t in T) 

      (M[t]/100)+1 >= a[t]; 

  set4: 

    forall ( t in T) 

      M[t]-25*(1-a[t]) <= Z1[t];   

  set5: 

    forall (t in T) 

      Z1[t] <= M[t]+25*(1-a[t]);   

  set6: 

    forall ( t in T) 

      0 <= Z1[t]; 

  set7: 

    forall ( t in T) 

      Z1[t] <= 25*a[t];       

  set8: 

    forall ( t in T) 

      M[t]-25*a[t] <= Z2[t]; 

  set9: 

    forall (t in T) 

      Z2[t] <= M[t]+25*a[t];   

  set10: 

    forall ( t in T) 

      25*a[t]-25 <= Z2[t]; 

  set11: 

    forall ( t in T) 

      Z2[t] <= 0; 

  set12: 

    forall (j in J, t in T) 

      15*k[j] >= sum (i in I) X[i][j][t]; 

    forall (j in J, t in T) 

      15*k[j] >= sum (i in I) XH[i][j][t]; 

    forall (j in J, t in T) 

      15*k[j] >= sum (i in I) XF[i][j][t]; 

    forall (j in J, t in T) 

      15*k[j] >= sum (i in I) XT[i][j][t]; 
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    forall (s in S, j in J, t in T) 

      eta[1]*k[j] >= D[s][j][t];                     

  set13: 

    forall (i in I, j in J) 

      X[i][j][1] == XH[i][j][1];       

  set14: 

    forall ( i in I, j in J) 

      XF[i][j][1] == 0;       

  set15: 

    forall (i in I, j in J, t in T2) 

      X[i][j][t] == X[i][j][t-1]+XH[i][j][t]-XF[i][j][t];       

  set16: 

    forall (i in I, j in J, t in T) 

      XT[i][j][t] == XH[i][j][t];              

  set17: 

    forall (t in T, j in J) 

      sum( i in I) X[i][j][t] <= 15;         

  set18: 

    forall (i in I, j in J, t in T) 

      0 <= XF[i][j][t];   

  set19: 

    forall (i in I, j in J, t in T) 

      XF[i][j][t] <= X[i][j][t];       

  set20: 

    forall ( i in I, j in J, t in T) 

      XH[i][j][t] >=0; 

  set21: 

    forall (i in I, j in J) 

      sum(s in S)(D[s][j][1]*y[s][i]) <= 16*XH[i][j][1];   

  set22: 

    forall (i in I, j in J, t in T2) 

      sum(s in S)(D[s][j][t]*y[s][i]) <= 40*(X[i][j][t-1]-XF[i][j][t])+   

                                         16*XH[i][j][t];  

  set23: 

    forall (s in S) 

      sum(j in J, t in T) D[s][j][t] >= eta[s];       

} 

 

/*************************************************************************/    

DATA: 
 

SheetConnection sheet("production line model2.xlsx"); 

 

alpha from SheetRead(sheet,"Sheet1!B2"); 

beta from SheetRead(sheet,"Sheet1!B6"); 
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gamma from SheetRead(sheet,"Sheet1!B10"); 

delta from SheetRead(sheet,"Sheet1!B14"); 

eta from SheetRead(sheet,"Sheet1!B22:B23"); 

y from SheetRead(sheet,"Sheet1!F27:H28"); 

epsilon from SheetRead(sheet,"Sheet1!E18");    
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Appendix I 

Sixth Sub-model in CPLEX 

/*define*/ 

 int s=2; 

 int i=3; 

 int j=2; 

 int t=3; 

 

 range S=1..s; 

 range I=1..i; 

 range T=1..t; 

 range T2=2..t; 

 range J=1..j; 

  

/*parameters*/ 

 int alpha = ...; 

 int beta = ...; 

 int gamma = ...; 

 int delta = ...; 

 int eta[S] = ...; 

 float tau =...; 

 int d[S] = ...; 

 int lambda[S] = ...; 

 int C[S] = ...; 

 float y[S][I] = ...; 

   

/*variables*/ 

 dvar int+ X[I][J][T]; 

 dvar int+ XT[I][J][T]; 

 dvar int+ XH[I][J][T]; 

 dvar int+ XF[I][J][T]; 

 dvar int+ Z1[T]; 

 dvar int Z2[T]; 

 dvar int M[T]; 

 dvar boolean a[T]; 

 dvar int A[S]; 

 dvar int Y[S]; 

 dvar boolean e[S]; 

 

 dvar int+ D[S][J][T]; 

 dvar int+ OT[S][J][T]; 

 

/*objective*/ 
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 minimize  

           sum ( i in I, j in J, t in T) X[i][j][t]*alpha 

         + sum ( t in T) Z1[t]*beta 

         + sum ( i in I, j in J, t in T) XT[i][j][t]*gamma 

         - sum ( t in T) Z2[t]*delta 

         + sum ( s in S, j in J, t in T) OT[s][j][t]*tau 

         + sum (s in S) Y[s]* lambda[s]; 

          

/*constraints*/ 

 subject to 

 {          

  set1: 

    forall (t in T) 

      M[t] == sum (i in I, j in J) (XH[i][j][t]-XF[i][j][t]); 

  set2: 

    forall (t in T) 

      M[t]/100 <= a[t];   

  set3: 

    forall (t in T) 

      (M[t]/100)+1 >= a[t];       

  set4: 

    forall ( t in T) 

      M[t]-25*(1-a[t]) <= Z1[t];   

  set5: 

    forall (t in T) 

      Z1[t] <= M[t]+25*(1-a[t]);   

  set6: 

    forall ( t in T) 

      0 <= Z1[t];     

    forall ( t in T) 

      Z1[t] <= 25*a[t];       

  set7: 

    forall ( t in T) 

      M[t]-25*a[t] <= Z2[t]; 

    forall (t in T) 

      Z2[t] <= M[t]+25*a[t];   

  set8: 

    forall ( t in T) 

      25*a[t]-25 <= Z2[t];    

    forall ( t in T) 

      Z2[t] <= 0;       

  set9: 

    forall (s in S) 

      A[s] == C[s]-d[s]; 

  set10: 
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    forall (s in S) 

      A[s]/1000 <= e[s];   

  set11: 

    forall (s in S) 

      (A[s]/1000)+1 >= e[s];       

  set12: 

    forall (s in S) 

      A[s]-10*(1-e[s]) <= Y[s];   

  set13: 

    forall (t in T) 

      Y[s] <= A[s]+10*(1-e[s]);   

  set14: 

    forall (s in S) 

      0 <= Y[s];   

  set15: 

    forall (t in T) 

      Y[s] <= 10*e[s];       

  set16: 

    forall (i in I, j in J) 

      X[i][j][1] == XH[i][j][1];       

  set17: 

    forall ( i in I, j in J) 

      XF[i][j][1] == 0;       

  set18: 

    forall (i in I, j in J, t in T2) 

      X[i][j][t] == X[i][j][t-1]+XH[i][j][t]-XF[i][j][t];       

  set19: 

    forall (i in I, j in J, t in T) 

      XT[i][j][t] == XH[i][j][t]; 

  set20: 

    forall (t in T, j in J) 

      sum( i in I) X[i][j][t] <= 15;         

  set21: 

    forall (i in I, j in J, t in T) 

      0 <= XF[i][j][t];   

  set22: 

    forall (i in I, j in J, t in T) 

      XF[i][j][t] <= X[i][j][t];       

  set23: 

    forall ( i in I, j in J, t in T) 

      XH[i][j][t] >=0;              

  set24: 

    forall (i in I, j in J) 

      sum(s in S)(D[s][j][1]*y[s][i]-OT[s][j][1]) <= 16*XH[i][j][1];   

  set25: 
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    forall (i in I, j in J, t in T2) 

      sum(s in S)(D[s][j][t]*y[s][i]-OT[s][j][t]) <= 40*(X[i][j][t-1]- 

                 XF[i][j][t])+16*XH[i][j][t]; 

  set26: 

    forall (s in S) 

      sum(j in J, t in T) D[s][j][t] >= eta[s];       

  set27: 

    forall (t in T) 

      sum (s in S) OT[s][2][t] == 0;     

  set28:   

    forall (i in I, t in T) 

      sum (s in S) OT[s][1][t] <=sum(i in I) X[i][1][t]*10;  

  } 

 

/*************************************************************************/    

DATA: 
 

SheetConnection sheet("production line model2.xlsx"); 

 

alpha from SheetRead(sheet,"Sheet1!B2"); 

beta from SheetRead(sheet,"Sheet1!B6"); 

gamma from SheetRead(sheet,"Sheet1!B10"); 

delta from SheetRead(sheet,"Sheet1!B14"); 

eta from SheetRead(sheet,"Sheet1!B22:B23"); 

tau from SheetRead(sheet,"Sheet1!E2"); 

d from SheetRead(sheet,"Sheet1!E6:E7"); 

lambda from SheetRead(sheet,"Sheet1!E10:E11"); 

C from SheetRead(sheet,"Sheet1!E14:E15"); 

y from SheetRead(sheet,"Sheet1!F27:H28"); 
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Appendix J 

Seventh Sub-model in CPLEX 

/*define*/ 

 int i=3; 

 int j=2; 

 int t=4; 

 range I=1..i; 

 range T=1..t; 

 range T2=2..t; 

 range J=1..j; 

  

/*parameter*/ 

 int alpha = ...; 

 int beta = ...; 

 int gamma = ...; 

 int delta = ...; 

 int eta = ...; 

 float tau =...; 

 int d = ...; 

 int lambda = ...; 

 int C = ...; 

 float y[I] = ...; 

 

/*variable*/ 

 dvar int+ X[I][J][T]; 

 dvar int+ XT[I][J][T]; 

 dvar int+ XH[I][J][T]; 

 dvar int+ XF[I][J][T]; 

 dvar int+ Z1[T]; 

 dvar int Z2[T]; 

 dvar int M[T]; 

 dvar boolean a[T]; 

 dvar int A; 

 dvar int Y; 

 dvar boolean e; 

 dvar int+ D[J][T]; 

 dvar int+ OT[J][T]; 

  

/*objective*/ 

 minimize  

           sum ( i in I, j in J, t in T) X[i][j][t]*alpha 

         + sum ( t in T) Z1[t]*beta 

         + sum ( i in I, j in J, t in T) XT[i][j][t]*gamma 
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         - sum ( t in T) Z2[t]*delta 

         + sum ( j in J, t in T) OT[j][t]*tau 

         + Y*lambda;   

 

/*constraints*/ 

 subject to 

 {   

  set1: 

    forall (t in T) 

      M[t] == sum (i in I, j in J) (XH[i][j][t]-XF[i][j][t]);   

  set2: 

    forall (t in T) 

      M[t]/100 <= a[t];   

  set3:  

    forall (t in T) 

      (M[t]/100)+1 >= a[t];       

  set4: 

    forall ( t in T) 

      M[t]-25*(1-a[t]) <= Z1[t];  

    forall (t in T) 

      Z1[t] <= M[t]+25*(1-a[t]);   

  set5: 

    forall ( t in T) 

      0 <= Z1[t]; 

  set6: 

    forall ( t in T) 

      Z1[t] <= 25*a[t];       

  set7: 

    forall ( t in T)   

      M[t]-25*a[t] <= Z2[t];     

  set8:   

    forall (t in T) 

      Z2[t] <= M[t]+25*a[t];   

  set9: 

    forall ( t in T) 

      25*a[t]-25 <= Z2[t];   

  set10: 

    forall ( t in T) 

      Z2[t] <= 0;       

  set11:    

      A == C-d;       

  set12:  

      A/1000 <= e;   

  set13: 

      (A/1000)+1 >= e;       
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  set14:    

      A-10*(1-e) <= Y; 

  set15: 

      Y <= A+10*(1-e);   

  set16: 

      0 <= Y; 

  set17: 

      Y <= 10*e;       

  set18: 

    forall (i in I, j in J) 

      X[i][j][1] == XH[i][j][1];       

  set19: 

    forall ( i in I, j in J) 

      XF[i][j][1] == 0; 

  set20: 

    forall (i in I, j in J, t in T2) 

      X[i][j][t] == X[i][j][t-1]+XH[i][j][t]-XF[i][j][t]; 

  set21: 

    forall (i in I, j in J, t in T) 

      XT[i][j][t] == XH[i][j][t]; 

  set22: 

    forall (t in T, j in J) 

      sum( i in I) X[i][j][t] <= 15; 

  set23: 

    forall (i in I, j in J, t in T) 

      0 <= XF[i][j][t]; 

  set24:   

    forall (i in I, j in J, t in T) 

      XF[i][j][t] <= X[i][j][t]; 

  set25: 

    forall ( i in I, j in J, t in T) 

      XH[i][j][t] >=0; 

  set26: 

    forall (i in I, j in J) 

      D[j][1]*y[i]-OT[j][1] <= 16*XH[i][j][1]; 

  set27:   

    forall (i in I, j in J, t in T2) 

      D[j][t]*y[i]-OT[j][t] <= 40*(X[i][j][t-1]-XF[i][j][t])+16*XH[i][j][t]; 

  set28: 

      sum(j in J, t in T) D[j][t] >= eta; 

  set29:   

    forall(i in I, j in J, t in T) 

      OT[j][t] <= sum (i in I) X[i][j][t]*5;                 

} 

 



ϭϬϭ 

 

 

/*************************************************************************/    

DATA: 
 

SheetConnection sheet("production line model3.xlsx"); 

 

alpha from SheetRead(sheet,"Sheet1!B2"); 

beta from SheetRead(sheet,"Sheet1!B6"); 

gamma from SheetRead(sheet,"Sheet1!B10"); 

delta from SheetRead(sheet,"Sheet1!B14"); 

tau from SheetRead(sheet,"Sheet1!E2"); 

eta from SheetRead(sheet,"Sheet1!B22"); 

d from SheetRead(sheet,"Sheet1!E6"); 

lambda from SheetRead(sheet,"Sheet1!E10"); 

C from SheetRead(sheet,"Sheet1!E14"); 

y from SheetRead(sheet,"Sheet1!F27:H27"); 

 


