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Abstract 

Mathematics for Engineers and Engineers’ Mathematics 

David Pearce 

 

This thesis is composed of two parts. In the first part, the mathematics that engineering students and 

mathematics students are to be taught and expected to learn is identified by means of an analysis of the 

content of the courses each group of students has to take, and of the types of tasks each group is given 

in the final examinations of these courses. The aim is to determine if there are any significant 

differences between the education of the two groups. 

In the second part, I demonstrate how professional engineers use mathematics to develop 

mathematical models that can be applied in solving tasks in their professional practice. Examples of 

mathematical models from the studies of statics, mechanics of materials, and structural analysis are 

presented, culminating in a discussion of the use of matrices in matrix structural analysis and the 

physical representation of eigenvectors and eigenvalues and what they mean to a structural engineer. 

The comparison, analyses, and demonstrations are performed from an anthropological point of view 

using the Anthropological Theory of the Didactic (ATD). From this perspective it will be shown that the 

similarities between the mathematical praxeologies of engineers and mathematicians are limited 

principally to the tasks and techniques, while the differences are found in the level of the technology 

and theory. 
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1 INTRODUCTION 

The purpose of this thesis is to compare the mathematics education of engineers with that of 

mathematicians, and to show how professional engineers use mathematics in practice. More specifically, 

in the first part of the thesis, the mathematics that engineering students and mathematics students are 

to be taught and expected to learn is identified by means of an analysis of the content of the courses 

each group of students has to take, and of the types of tasks each group is given in the final 

examinations of these courses. The aim is to determine if there are any significant differences between 

the education of the two groups. The second part of the thesis is a demonstration of how engineers use 

mathematics to develop mathematical models that can be applied in solving tasks in their professional 

practice, and how this application of mathematics differs from the interests of mathematicians. The 

comparison, analyses and demonstrations are performed from an anthropological point of view using 

the Anthropological Theory of the Didactic (ATD). 

Before proceeding, a brief word must be said about the term “engineer.” The engineering profession has 

a lengthy and rich history, and as a result the term “engineer” is very broad. The profession comprises 

many disciplines whose foundational principles vary. Engineering encompasses the fields of civil 

engineering, mechanical engineering, chemical engineering, electrical engineering, and materials 

engineering. Within the past forty or so years there has been the emergence of relatively new fields 

such as computer engineering and software engineering. Within each of these fields we can find 

multiple sub-disciplines. A civil engineer, for example, may work as a structural engineer, municipal 

engineer, hydraulic and hydrological engineer, environmental engineer, or transportation engineer. For 

reasons of brevity, this thesis will restrict the meaning of the term engineer to civil engineers, and, in 

particular cases, only structural engineers and concepts of structural engineering may be referenced. 
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This topic is of particular interest to me since I earned my bachelor’s degree in civil engineering, with a 

focus on structural engineering, from McGill University in 2003. After working as a project engineer for a 

private consulting firm, including three years as a professionally licensed engineer, I left the profession 

and returned to school in order to earn a graduate degree in mathematics education. I always had a 

particular fondness for mathematics, and enjoyed studying civil engineering due to its nature as an 

applied science involving plenty of mathematical formulae. 

Changing direction of study and profession required taking mathematics courses for “generalist” 

mathematicians (undergraduate and graduate mathematics students). As a student in these courses I 

had the feeling of entering a very different culture from the one I had experienced as an engineering 

student and as a practicing engineer. 

For example, engineers in practice will approximate the values of irrational numbers such as √  and π as 

1.414 and 3.14. Fewer or more decimal places may be used in the approximation depending on the 

context of the calculation they are being used for. It is also an accepted scientific practice to use 

numbers with an appropriate number of significant figures. Many of the numbers used in engineering 

calculations represent measurable quantities: in this case, numbers are accompanied by units. If a length 

is measured in millimeters with a ruler which has no finer unit than a millimetre, it would not make 

sense to say that the length is, say,  √    . For a mathematician, however, the number  √  

represents an abstract number, for example, a root of the equation          and saying that the 

roots of this equation are 12.73 and -12.73 would be considered a serious inaccuracy. Units and their 

conversions are not usually the mathematician’s concern. 

I also noticed differences in the things that pique a mathematician’s interest. While taking a course that 

involved second order logic, I noticed that mathematicians are mainly motivated by finding 

generalizations of mathematical properties and proving theorems. In a linear algebra course I was 
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impressed by the level of importance placed on proving theorems, not just as a detail in the course 

lectures, but as tasks given on assignments and exams as well. Revisiting such tasks that I had not 

encountered since my days as a CEGEP student gave me a new appreciation for them. In being able to 

prove a theorem one can better understand its meaning and its purpose, which will lead to correctly 

applying the theorem as well. 

I wished to see if more of these differences existed, and to understand their nature. This led me to 

identifying and collecting data about different institutions, namely the institutions of academic 

mathematics, mathematics courses in university programs for engineering and mathematics students, 

and the engineering profession itself. I then sought a theoretical framework that would help me to 

analyze and structure my observations of the data. The theoretical framework of the ATD models the 

mathematical knowledge of an institution in terms of units called praxeologies. Within an institution’s 

mathematical praxeology there is a block of practical knowledge that contains a task to accomplish and 

a technique to accomplish it. Every praxeology also has a theoretical block that contains two levels of 

discourse. The praxeology’s technology classifies the tasks into different types, describes the techniques 

for solving the types of tasks in more general terms, and justifies their use in performing the tasks, and 

there is also the theory which is a system of all formal arguments that justify the technology. This model, 

along the concept of institution, provides an appropriate framework for comparing the mathematical 

knowledge that engineering and mathematics students are expected to learn, and for demonstrating 

how mathematics is used in practice by professional engineers. 

The structure of the thesis is as follows. In chapter 2 I will discuss the theoretical framework of the ATD 

in more detail, defining the concepts of praxeology, institution, and didactic and institutional 

transposition of mathematical knowledge. The chapter concludes with a justification of the chosen 

framework. 
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In the literature review in chapter 3, I will present the findings of several research papers on the 

mathematics education and the use of the mathematics in the workplace of various vocations and 

trades, including engineering. In this chapter an important distinction will be made between 

mathematical applications and the process of mathematical modelling, and the role that each plays in an 

engineer’s education and practice. The concept of mathematics as a service subject is also addressed. 

Service mathematics courses teach mathematics to students whose main area of study is not academic 

mathematics itself. Engineering students fit this description. 

Chapter 4 is titled “Mathematics for engineers”, and it comprises an analysis of the mathematical tasks 

given to engineering students on the final exams of their required mathematics courses. These tasks are 

compared and contrasted with those given to mathematics students on final exams from comparable 

courses. Also included in the chapter is an institutional perspective on why engineers are required to 

learn the mathematics that they do. 

In chapter 5, “Engineers’ mathematics”, particular attention is paid to how engineers use mathematics 

to develop mathematical models. Examples of mathematical models from the fields of statics, 

mechanics of materials, and structural analysis are presented, and in the discussion of each I also 

mention aspects that would be of interest to a mathematician. A specific model called the direct 

stiffness matrix, and the physical representation of eigenvalues and eigenvectors of a matrix, is 

discussed at length. In this chapter I also present and analyze workplace documents prepared by a 

professional engineer in the design of a structure. 

At the outset of this project I had hoped to address a common concern among students in mathematics 

courses: “Why do we have to learn this?” The second part of this thesis is an attempt to answer this 

question by demonstrating how engineers use mathematics in models at the heart of their field. 
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Engineering students have to learn about eigenvalues because they can be used to solve important tasks 

in structural engineering. 

On a larger scale, mathematics education researchers are interested in how various tradespeople use 

mathematics because it helps to broaden our view of what mathematics is, and what it means to have 

mathematical knowledge. ATD is useful in understanding how mathematics is used in practice and 

structuring our descriptions of this practice. This thesis is my contribution to this understanding. 
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2 THEORETICAL FRAMEWORK 

The present chapter discusses the theoretical framework of this thesis, the Anthropological Theory of 

the Didactic (ATD) developed by Chevallard (1999). My principle sources of inspiration for choosing this 

framework are the works of Sierpinska et al. on sources of students’ frustration in pre-university level 

pre-requisite mathematics courses (Sierpinska, Bobos, & Knipping, 2008), as well as Hardy’s study on 

college students’ perceptions of institutional practices regarding limits of rational functions (Hardy, 

2009). In the following sections, I will discuss the basic concepts of the ATD – praxeology, institution, 

and didactic transposition – and then argue why this framework is suitable for the purposes of this study. 

2.1 PRAXEOLOGY 

The ATD is an epistemological framework in which the principal objects of study are institutionalized 

practices, and was developed as a means of describing the practice of teaching and learning 

mathematics (Chevallard, 1999). In this framework, the learning of mathematics is not something that 

occurs at an individual level, as in theories of cognition, but rather as a collective activity by the 

members of an institution. Furthermore, the mathematical knowledge itself is developed by institutions, 

not individuals. The concept of an institution is discussed is section 2.2. 

The cornerstone of the ATD is the notion that institutional knowledge can be organized into units called 

praxeologies. Each praxeology is composed of two blocks: a practical block, called the praxis, and a 

theoretical block, called the logos. 

In each praxeology, the practical block consists of a collection of tasks to be accomplished, and the 

techniques that are used to accomplish them. The praxis can be thought of as the “know how” portion 

of a praxeology; when given a mathematical task, knowing how to complete it is indicative of practical 

knowledge. 
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The theoretical block of the praxeology contains two levels of discourse: the technology and the theory. 

Technology classifies the tasks into different types, describes the techniques for solving the types of 

tasks in more general terms, and justifies their use in performing the tasks. Theory is a system of all 

formal arguments that justify the technology. Theory, in particular, provides the rationale underlying the 

classification of the tasks and techniques into particular types and makes explicit the assumptions and 

theoretical arguments that allow us to claim that the techniques “work”, going beyond the experience 

of seeing them work in particular cases. Thus, the logos can be thought of as the “knowledge” block of 

the praxeology; having completed a mathematical task with a technique, the theoretical block provides 

the justification for the use of that technique. 

In summary, the two blocks of a praxeology – [tasks & techniques] - [technology & theory] – suggest 

that the practices of mathematicians and engineers may differ not only in the types of tasks they 

perform, but in the nature of the theories they call upon to justify the techniques they use to accomplish 

those tasks. 

2.2 INSTITUTIONAL PERSPECTIVE 

While knowledge can be organized into praxeologies, the knowledge itself is created by human activity 

within institutions. This raises an important question: what is an institution? While the term is not 

explicitly defined in the ATD, the institutional perspective used by Sierpinska et al. (2008) remedies this 

by adopting a definition based on the work of Peters (1999) in the domain of Institutional Theory. 

According to Peters, there are four features that define an institution. As summarized in Sierpinska 

(2008) they are: 

1. An institution is a structural feature of a society. The structure may be formal, requiring a legal 

framework, or an informal network of organizations. 

2. An institution has some stability over time. 
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3. An institution constrains its participants through rules and norms. 

4. Members of an institution share certain values and goals, and give common meaning to the 

basic actions of the institution. 

The works of Hardy (2009), and, more recently, Castela (2015) further encapsulate these features by 

defining an institution as a stable social organization that offers a framework which allows repetitive 

interactions between individuals whose aim is to fulfill certain tasks. In the course of fulfilling its tasks, 

an institution takes purposeful collective action, subjecting its members to its expectations and 

regulating the members’ actions through the use of rules, norms, and strategies (which Castela calls 

“rituals”). 

Rules are understood as explicitly stated regulations that must be followed, as breaking them will invoke 

sanctions against a member of the institution. In a university mathematics class, or the research 

mathematicians’ community, a rule to be followed is that one must obey the axioms and theorems of 

mathematics. Not doing so results in mathematical contradiction and unfeasible results, or 

consequences such as the mathematics student failing an exam, or the research mathematician having 

his or her paper rejected in the review process. In engineering professional practice, an example of a 

rule that is enforced is the use of legally mandated design codes. The sanctions against professional 

engineers have a legal weight that those for mathematicians don’t: criminal charges may be laid against 

the engineer who doesn’t follow the appropriate design code. This is understandable, since not 

following the design code could result in the loss of lives. 

Norms, on the other hand, are accepted customs that don’t need to be explicitly stated, and not 

following them will not lead to sanctions. An example given in Hardy (2009) is a precept to use a certain 

technique to solve a type of limit task, common in college level calculus course: evaluating the limit of a 

function whose expression contains a radical in the denominator. The norm for solving such problems is 
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to multiply the numerator and the denominator of the rational function by the conjugate of the 

expression that contains the radical. An example of a norm from engineering is drawn from the field of 

statics, the mechanics of rigid bodies, which engineering students study in their first year of university, 

and whose principles are used extensively in practice. When a known force, P, is applied to a horizontal 

beam, as in Figure 1, the forces are created in the supports at either end of the beam. The magnitude of 

those reaction forces, RA and RB, can be found using the fundamentals of statics: the sum of all forces 

must be 0, and the sum of the moments1 of all forces about any point must also be 0. 

 

Figure 1 - Applied force and reaction forces on a beam (drawing is my own) 

While the sum of the moments could be evaluated at any arbitrary point along the length of the beam, 

or even at any arbitrary point in space, the accepted norm is to evaluate the sum of the moments 

around one of the beam’s endpoints. Evaluating the sum of the moments around point A, the moment 

of reaction force RA is 0 since its line of action passes through the point. Thus, in the equation for the 

sum of the moments, there will only be one unknown, the force RB. 

In the research of Sierpinska et al. and Hardy, the institutions of study were college level mathematics 

courses being offered as pre-requisites. In this thesis the institutions considered are those of academic 

mathematics, mathematics courses in university programs for engineering and mathematics students, 

and the engineering profession. 

                                                           
1
 The moment of a force is a measure of its ability to generate a rotation about a point. The magnitude of a 

moment is the product of the magnitude of the force and the distance from the force’s line of action to the point. 
A detailed explanation is offered in section 5.2.2. 
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2.3 DIDACTIC AND INSTITUTIONAL TRANSPOSITION 

The theoretical block of an institution’s praxeology preserves the institution’s activity as a practice and 

communicates it to others, so that they, too, can participate in it (Hardy, 2009, p. 344). In other words, 

the technology and theory not only serve to justify an institution’s tasks and techniques, but also makes 

them teachable and learnable to others either within the same institution or within another. When one 

institution imports the praxeology of another with didactic intentions, then the knowledge of the 

praxeology undergoes didactic transposition (Chevallard, 1985; Castela & Romo Vasquez, 2011). 

Consider the teaching of mathematics to engineering students. The mathematics that is taught 

originates in the institution of academic mathematics which, according to Castela (2015) has the status 

of the “reference point” for mathematical knowledge. However, the engineering students are not 

members of the institution of academic mathematics, but of the institution of mathematics courses in 

an engineering program. They are taught a certain didactic transposition of the academic mathematics. 

But engineers also use mathematics in the workplace. When using mathematics in their professional 

practice, engineers adapt (“transpose”) the praxeology of academic mathematics in order to use 

techniques and their associated technologies and theories in order to accomplish engineering tasks. But 

since the purpose isn’t didactic, the mathematical knowledge is said to undergo institutional 

transposition (Castela & Romo Vasquez, 2011). 

Referring again to Hardy (2009, p. 343), mathematical knowledge in an educational institution can take 

on different forms: 

1. Scholarly knowledge, which is the wealth of knowledge that is produced by the professionals of 

an institution. An example of mathematical scholarly knowledge is, for example, the theory of 

vector spaces over an arbitrary field. 
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2. Knowledge to be taught, which is found in the curriculum documents of a course that seeks to 

impart some of the scholarly knowledge. The syllabus of an undergraduate Linear Algebra 

course may contain only a selection of results of the theory of finite dimensional real vector 

spaces. 

3. Knowledge actually taught which can be found in a teacher’s lecture notes and the tasks that 

are prepared for the students. In the Linear Algebra course from the previous example, the 

teacher may choose to refer students to the textbook for the proofs of theorems and only 

illustrate the theorems on examples in class. 

4. Knowledge to be learned, which is interpreted by the students as the minimum amount of 

knowledge needed to complete the tasks. This knowledge can be deduced from assessment 

instruments such as assignments and exams. In the Linear Algebra course, it may sometimes be 

enough to know how to solve typical computational exercises to pass the course; reasoning 

based on the theorems introduced in the course to solve simple conceptual problems (e.g., of 

the “Show that…” type) is usually required to obtain a high grade. 

5. Knowledge actually learned which is reflected in the students’ responses to the assessments 

that they’ve been given. 

The first part of this thesis focuses on the mathematical knowledge that is to be taught and to be 

learned by both engineering and mathematics students. Course descriptions and syllabi are used to 

determine the knowledge to be taught, and final exams are used to determine the knowledge to be 

learned. 

2.4 VALIDATION OF THE CHOSEN FRAMEWORK 

The chosen framework encapsulates all of the elements that are necessary for describing and analyzing 

the mathematics that engineers are expected to learn in their education – what I call mathematics for 
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engineers (chapter 4) – and the mathematics used by engineers in their practice – referred to as 

engineer’s mathematics (chapter 5). The knowledge in the institutions of interest can be modelled by 

praxeologies; the mathematics courses in engineering programs and the engineering profession itself 

both meet the requirements of being classified as institutions, and the knowledge imparted in both of 

these institutions is a result of the transposition, both didactic and institutional, of knowledge produced 

in the institution of mathematics. 

The successful completion of a mathematics course in an engineering program requires that the 

students perform a number of mathematical tasks on assignments, tests, and exams. Each of these tasks 

can be accomplished using techniques that they are expected to learn. The technology and theories that 

justify the use of those techniques are found in the students’ textbooks and in the discourse of the 

lectures they attend. When it comes to the profession of engineering, even large projects such as the 

design of a multi-storey building can be broken down into a series of smaller design tasks (design of the 

foundations, design of the structural framework made up of beams and columns and their connections, 

design of the concrete slabs for the floors, etc.), each with their own techniques. In this case the 

technology and theories that describe and justify the techniques are not only their mathematical 

soundness, but take the form of legally mandated design codes and manuals that an engineer must use 

to perform these design tasks (e.g., the National Building Code of Canada, the Handbook of Steel 

Construction, the Concrete Design Handbook, etc., are documents that have all been certified by the 

Canadian Standards Association, CSA). The contents of these documents, which include the appropriate 

formulae for design and analysis, have been developed and refined through decades of engineering 

science research. 

Besides having knowledge that can be modelled by praxeologies, mathematics courses in engineering 

programs and the engineering profession itself both fit Peters’ (1999) description of an institution. 

Engineering mathematics courses are a structural feature of accredited engineering programs which are 
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entrenched in the higher education institution that they find themselves in. Since 1965 the accreditation 

of engineering programs has been overseen by the Canadian Engineering Accreditation Board (CEAB), 

though some programs pre-date its existence. For example, the Department of Civil Engineering and 

Applied Mechanics at McGill University was established in 1871, and the École Polytechnique, affiliated 

with Université de Montréal, opened its doors in 1873. The actions and behaviours of students in these 

programs are constrained by the rules, norms, and strategies put into place by the universities and the 

individual mathematics courses in the programs. Courses that teach pure mathematics must be taken as 

pre-requisites for several of the core engineering courses. Failure to pass a mathematics course can lead 

to sanctions that include academic probation or possibly expulsion from the program. All of the students 

in the engineering programs share a common goal and graduating and beginning their careers as 

engineers. But in order to undertake a career in that profession a minimum level of mathematical 

competence is required, not only at the behest of the university, but by the members of the profession 

as well. Thus, the mathematics courses are a welcome means to a desired end. 

For its part, the engineering profession also fits Peters’ (1999) description. The professional practice of 

all engineers is a formal structure of Canadian society. The practice is overseen by the constituent 

associations of Engineers Canada. The associations are the provincial and territorial engineering 

regulatory bodies that license professional engineers in their jurisdiction. In Quebec, the association is 

the Ordre des ingénieurs du Québec (OIQ), a professional order that was established by the Engineers 

Act of Quebec’s National Assembly in 1974. Only members of the OIQ are legally allowed to practice 

engineering and refer to themselves by the exclusive title of Engineer (Eng), or Ingénieur (ing.). In other 

provinces, the term Professional Engineer, abbreviated P.Eng., is used. This gives engineers the same 

status of a profession as doctors and lawyers. Furthermore, to ensure that its members respect the 

shared values of the institution, professional orders such as the OIQ have instituted rules that require 

their members to take part in a minimum number of hours of professional and educational development 
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activities each year, beyond the scope of their regular professional duties. Violating this rule leads to 

sanctions that include revocation of one’s professional license. The shared values in question are found 

in the sense of ethics that engineers uphold. According to the OIQ’s Code of Ethics, an engineer is 

required to respect, first and foremost, their obligations towards the safety of the general public. This 

primary value is also the result of engineers recognizing the effects of the profession’s past failures. 

Lastly, the mathematical knowledge that engineering students are expected to learn in their 

mathematics courses, and the knowledge that engineers use in their professional practice, are the result 

of transpositions, both didactic and institutional, as was discussed earlier. One question that this thesis 

will investigate is whether the mathematics that engineering students are expected to learn has been 

transposed in such a way that it is different from that which mathematics students are expected to learn. 

The key to answering this question may lie in the notion that engineering mathematics is applied 

mathematics (Blum & Niss, 1991), and relies heavily on the development and use of mathematical 

models. These concepts will be further explained in section 3.3.  
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3 LITERATURE REVIEW 

This chapter presents and discusses the findings of several research studies in mathematics education 

on the nature of the mathematical content in courses offered to students in different educational 

settings, including mathematics taught to engineering students, mathematics taught in vocational 

education, the teaching of mathematical applications and modelling, mathematics as a service subject, 

and mathematics as it is used in the workplace. The final section illustrates an example of the teaching 

and use of geometry, measurement, and error in measurement at vocational schools. 

The discussions in the sections that follow will be interspersed with comments that compare and 

contrast the findings in the literature with the educational and workplace mathematics of engineers 

based mainly on my experience. More detailed analysis of mathematics for engineering students and 

professional engineers will appear in chapters 4 and 5. 

3.1 MATHEMATICS EDUCATION FOR ENGINEERS 

The following section summarises the recent works of Castela and Romo-Vazquez and their studies in 

the mathematics education of engineering students at the Vocational Institute at the University of Evry 

in France (Castela, 2015; Castela & Romo Vasquez, 2011; Romo Vasquez & Castela, 2010). Using the 

framework of the ATD, they studied how mathematics is used by students in an engineering project 

design course, focusing on the use of Laplace transforms as a technique for completing the task of 

solving linear differential equations, and comparing how the technique is taught in mathematics 

textbooks with how it is taught in engineering textbooks. 

This study showed that engineering students select the techniques they need for their tasks based on 

practicality. The chosen techniques were never justified by a technology and theory that relied solely on 

mathematical concepts and definitions, but on whether the techniques allowed them to quickly obtain 
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the results of their calculations and whether or not the results made physical sense in the context of 

their design tasks. The students were allowed to use computer software for more difficult tasks, and 

while this allowed the students to explore some of the parameters of their designs, it had the effect of 

“black-boxing” the mathematics, making it less visible. But this did not seem important to the students. 

How the mathematics was validated was not as relevant as choosing the correct mathematical model 

and the values to input into that model. Ultimately the research found that the students’ work itself 

could not be reduced to mathematics alone, since their tasks also required knowledge of physical and 

engineering sciences. 

In the comparison of how Laplace transforms are taught in engineering and mathematics textbooks, it 

was noted that the technique taught in the engineering textbook was altered slightly from the 

traditional mathematical technique. The motivation behind the altered technique is that it results in 

functions whose arguments are formatted so that there is added value for the engineer. From the 

results of the transform, the engineer can determine properties of the function directly from its 

expression without having to do any algebraic manipulations or simplifications. Furthermore, while the 

mathematics textbooks focused on the comprehensive and accurate presentation of the technique 

using theorems and proofs, the engineering textbook gave a lower priority to proofs and instead 

correlated the technique with its use in a vocational context (Castela, 2015). 

In terms of the ATD framework, the engineering textbook appropriated the praxeology from academic 

mathematics and augmented the theoretical block with a new description of the Laplace transform 

technique, and new justifications that are based on the practicality of the technique’s application. If 

engineers’ mathematics is different from that of mathematicians, the difference is most likely found in 

the theoretical block of the praxeology, as engineers complement mathematical praxeology with 

elements of engineering knowledge. 
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3.2 MATHEMATICS IN VOCATIONAL EDUCATION 

A series of papers in Educational Studies in Mathematics (2014) explored the mathematics of specialized 

vocational disciplines, with the goal of characterizing and developing the vocational mathematical 

knowledge. The study examined the education of students who were learning to be electricians, 

practitioners in various pipe trades (welders & plumbers), laboratory technicians, and business school 

graduate students. 

The studies involving the electrician and pipe trade apprentices were done at vocational schools in 

western Canada, while the others took place at schools in various European countries. This would be the 

equivalent to technical programs at a Quebec CEGEP for skilled trade workers, a construction 

certification from the Régie de bâtiment du Québec (RBQ), or other vocational and/or continuing 

education institutions. It should be mentioned, however, that engineering education is not vocational. In 

order to obtain a degree in engineering, a student from Quebec is required to do a two-year pre-

university science program at CEGEP, followed by a three-year university education. As will be shown in 

chapter 4, mathematics courses are required in an engineer’s education. So while the studies presently 

discussed are not representative of an engineer’s situation, they can still offer insight into the 

transposition of academic mathematics for didactic purposes. 

The general findings in the papers of LaCroix (2014) and Roth (2014) are that the mathematics taught to 

future practitioners of various trades is directly shaped by the immediate and practical requirements of 

the workplace, where it’s more important to get the job done efficiently than to worry about theoretical 

rigour precision. The generalizations, formalities, and internal consistencies of academic mathematics 

are absent from the workplace. In the classroom, the instructors, who are themselves qualified and 

experienced tradespeople, are more concerned that their students get answers to problems that are 
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“close enough”, than they are with the methods that are used to find the answers. Essentially, the old 

adage of “time is money”, prevalent in the workplace, is applied to their school work as well. 

Electrician apprentices do learn the basic trigonometric functions (sine, cosine, tangent, and cotangent), 

in an effort to explain the demands of the electrical code, a legal document that is to be followed in 

doing electrical work. The code itself contains no mathematics, just general rules for the installation of 

electrical conduits. But, while the trigonometric functions justify the work methods that ensure the code 

is followed, on the job, trigonometry is replaced by “rules of thumb” that allow electrical conduits to be 

installed efficiently, cables passed through the conduits easily, and the tools and equipment of their 

trade to be used safely. Similarly, pipe trade apprentices who need to join two pipes at a specified angle 

eventually learn how to eyeball a fit that is “more or less” correct, without the rigorous use of 

trigonometry. This is in stark contrast to engineering design codes (for example: CSA-S6 – Canadian 

Highway Bridge Design Code; CSA-S16.1 – Limit States Design of Steel Structures; CSA-A23.3 – Design of 

Concrete Structures), which contain a multitude of mathematical formulae to be used in the design and 

analysis of steel and concrete structures. The mathematics found in these codes was developed and 

refined through extensive engineering research and testing of mathematical models. 

Further evidence that the “why” of mathematics is less relevant than the “how” of the workplace can be 

found in the interactions between the students and their instructors. In the pipe trade training course, 

the instructor announced to his students that they would not use all of the mathematics that they were 

taught. The electrician apprentices for their part claimed that they did not see or use any trigonometry 

during the job site training portion of their course, and questioned the pertinence of learning it, even 

though it is a requirement for earning their certification. It is mentioned that the instructors “colluded” 

with their students to learn the mathematics simply for the sake of obtaining certification (Roth, 2014). 
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Coben and Weeks (2014) argue that mathematics education can be made more authentic and more 

meaningful for all vocational trades by exposing the students to more appropriate and authentic tasks 

and problems in which the mathematics is present, but no more explicitly than they are in the workplace. 

In other words, the problems given to students in the electrical and pipe trades should be designed to 

show exactly how trigonometry is helpful in accomplishing a task such as offsetting an electrical conduit, 

and how the rules of thumb they will eventually use can be derived from these same mathematical 

functions. 

However, doing so doesn’t guarantee an improved mathematical understanding. Wake (2014) presents 

vignettes of research studies in which students were brought to various workplaces and exposed to 

practical uses of the mathematics they were learning. In one study, college students following a pre-

vocational engineering course visited the workplace of a practicing railway engineer. The railway 

engineer showed the students how to calculate the average downhill gradient (slope) of a railway track 

composed of three sections of track each with a different gradient. In discussions following the visit, it 

was revealed that the students believed that they could simply average the three values of slope, in the 

same way they had learned to find the average of a set of integers. The proper technique requires using 

the individual gradients to calculate the total change in elevation (rise or fall) of each of the three 

sections. The total change in elevation,   , is then divided by the total distance,   , along all three 

sections, and thus the average slope is found to be   
  

  
. The railway engineer who explained the 

technique to the students used the chart in Figure 2 to perform his calculations in his actual practice. 
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Figure 2 - Calculating the average gradient (slope) of a train track. (Wake, 2014) 

For each section of track, labelled in column 1 as sections X-A, A-B, and B-Y, the distance in yards 

(column 2) and the gradient (column 3) are used to calculate the rise (column 4) or fall (column 5), which 

is the change in elevation. The engineer then calculates the ratio of the net rise and fall, 3.73 yards, to 

the total distance, 1600 yards, to calculate the average gradient of
 

   
. For the engineer who showed the 

students this procedure, the technique had become automatic and could be performed without any 

explanation. Because of this the students were unable to understand how or why the technique worked. 

Wake suggests that the workplace mathematics was too “black-boxed”, made invisible by other aspects 

and practices of the workplace, and thus more difficult for the students to access. This confirms the 

findings of Castela and Romo Vazquez discussed in section 3.1. 

Some of these findings are contrary to my experiences as a civil engineer. In practice, trigonometry is 

used frequently in a number of contexts: calculating loads on a structure, evaluating the safety of a 

roadway’s curvature, determining the strength of the soil that a foundation will be built upon. Other 

mathematical tasks, such as solving differential equations, while used more infrequently in an office 

environment, are certainly necessary for deriving the formulas and creating the mathematical models 



21 
 

that are used in practice. For example, the different formulae for calculating the deformation of a beam 

under a given load can be obtained by solving the differential equation: 

   

   
 

    

  
 

The details of this equation are presented in section 5.2.4. For a beam with the applied load shown in 

Figure 3, solving the differential equation results in the following formula for maximum deformation, 

     , the amount that the centre of the beam will sag due to the effect of the applied load,  : 

       
   

    
 

 

Figure 3 - Simply supported beam with concentrated load at centre (drawing is my own) 

Furthermore, regarding the collusion between teachers and students in an effort to successfully pass the 

required courses (Roth, 2014), it has been my experience that the instructors in engineering education 

ensure that the required mathematics is well understood, and not simply glossed over for the sake of 

earning course credits. Perhaps this may highlight a difference between the institutions of vocational 

education and engineering education. 

Noss (2001) quotes practicing engineers who say that they use at most 2% of the mathematics that they 

learned in school. But among the colleagues of these engineers are those who work as engineering 

“specialists”, who use mathematics more frequently in their tasks. In my experience, engineers who 

claim to “use less” mathematics tend to be those who are responsible for project management as 

opposed to design and analysis, and spend less time working with mathematical models, and more time 
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managing budgets and schedules. And while their mathematical tasks may be less advanced than those 

of the specialists, a project manager must be able to communicate with and understand what their 

specialists tell them. Thus, the mathematics in an engineer’s education is not to be taken as lightly as it 

appears to be in some vocations. 

3.3 MATHEMATICAL APPLICATIONS AND MATHEMATICAL MODELLING 

Several papers in Applications and modelling in learning and teaching mathematics (Blum, Berry, Biehler, 

Huntley, Kaiser-Messmer, & Profke, 1989) discuss courses dedicated to the teaching of mathematical 

modelling in various countries including the UK, the United States, and Canada. These courses are 

offered to students of different disciplines and vocations including engineers, psychologists, 

mathematics teachers, and geologists. 

It is important to understand the difference between mathematical applications and mathematical 

models. A mathematical application is the use of mathematics, its concepts, its objects, and its rules, to 

solve a problem in which some aspect is based in the real world (Blum & Niss, 1991; Galbraith, Henn, & 

Niss, 2007). Applications are useful in order to show students how mathematics can be used to solve 

every-day or otherwise relevant tasks. A mathematical model, on the other hand, is a mapping that 

transfers the objects that we wish to study from the real world into objects in a mathematical domain. 

Mathematical models are idealized representations of the real world. The task of modelling involves 

creating or designing an appropriate mathematical description of an extra-mathematical situation or 

phenomenon. However, applications and models are not completely distinct; in every application of 

mathematics there is an underlying mathematical model with built-in assumptions that are either 

explicit or implicit. 

The following problem is an example of a mathematical application: 
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A rock is thrown from the edge of a cliff into the air. Its trajectory can be expressed by the 

function     , where   is the amount of time elapsed since the rock has been tossed, and      

the distance, in feet, of the rock from the ground at time  : 

                   

For what value of   is the height equal to 50 feet? 

This problem, which one could easily find in a pre-university level algebra course, is used to demonstrate 

an understanding of function notation and knowledge of techniques for solving quadratic equations (e.g., 

completing the square or using the quadratic formula). The function given in the problem is an example 

of a mathematical model. The quadratic function      is a mathematical object that represents the 

trajectory of real world object, a rock being thrown from a cliff. A modelling problem using the same real 

world situation would involve constructing the function      perhaps from some given data about the 

rock’s trajectory. The result of the modelling problem would be the function itself, as opposed to a 

numerical value resulting from solving an equation. 

For an example from civil engineering, consider the problem shown in Figure 4, which represents the 

real world situation of a crane lifting a mass of 2400 kg. 

 

Figure 4 - Statics problem: a crane lifting a mass (Beer & Johnston, 2007, p. 166) 



24 
 

The crane is connected to a vertical wall by supports located at points A and B. The engineer’s task 

consists of finding the magnitude and direction of the forces in two supports that keep the crane in 

place. The force at support B can be found by applying mathematics and using the following equation: 

                                                

With this equation solved, the horizontal component of the force in support A can be found by solving 

the equation: 

                    

Lastly, the vertical component of the force in support A is determined by solving the equation: 

                                

Each of these equations is an example of an application of mathematics, since the numerical values and 

the symbols for unknown values all represent real world quantities. The underlying mathematical model 

that leads to these equations is that of a fundamental physical principle called static equilibrium which 

states that the sum of all forces and moments acting on a body must be zero. This model is expressed 

symbolically as: 

∑     ∑    

This model was developed through a reformulation of Newton’s first law of motion. The concepts of 

force, moments, and static equilibrium are discussed in further detail in chapter 5, but are included here 

solely to highlight the difference between a mathematical application and the underlying mathematical 

model. 

Every mathematical model, including those used in engineering, is constructed with certain implicit or 

explicit assumptions about the physical objects it represents and the mathematical objects it uses to 
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represent them. In the example of the rock being thrown from the cliff, the model (the function     ) 

most likely assumes that the force of gravity acting on the rock is constant, and that the rock encounters 

no resistance from the wind. These assumptions aren’t explicitly stated in the application problem, but if 

one were tasked with creating the model, those assumptions would need to be made explicit. Another 

implicit assumption is the domain of the function     . Since the independent variable is the time 

elapsed since a certain moment, the values of   are restricted to non-negative real numbers. Similarly, 

the mathematical model for the principle of static equilibrium assumes that the objects upon which the 

forces are acting are rigid, i.e., they do not bend or twist. When an engineer uses the principles of statics 

to solve such problems, this assumption is entirely implicit, even though it is not a true representation of 

reality. 

In my experience as an engineering student, some early courses involved a combination of both 

application and modelling problems, particularly in courses that included laboratory sessions. In the 

laboratory, experiments were performed and data was analyzed in order to confirm the validity of 

established models. In more advanced courses, the textbooks and professors presented how certain 

models came to be developed; it was not up to the students to create the models as they were too 

complex. Once advanced models were learned and understood, application problems became more 

prominent, but the student had to determine which model was needed to solve the application problem. 

An important question asked by the authors of selected readings in Blum (1989) is whether the 

mathematics that is used in creating mathematical models should be taught before or after students 

learn to model mathematically. According to Bkouche (1989), one can learn how to model, for example, 

with vectors before being taught vector theory. Consider students learning how to represent physical 

forces being applied to objects and the resulting accelerations (based on Newton’s laws) with vector 

arrows, prior to learning the underlying mathematics of generalized vector spaces. The same could be 

imagined for learning and using rates of change of functions before learning the formal definition of the 
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derivative. The mathematical theory can be taught after the students have learned to build models, as a 

means of unifying various representations, and reinforcing their models. 

Alternatively to Bkouche’s (1989) perspective, a polytechnic in the UK offers a “first course in 

mathematical modelling”, which ensures that all of the necessary formal mathematics is taught to the 

students before they need to use it to create a mathematical model (Edwards & Hamson, 1989). Their 

philosophy is to learn the math before learning the model. The reasons for this method are that most 

situations that are modelled in this particular course have little to do with classical mechanics and 

physics, and that the mathematics is less inherent in the situations themselves. Examples of case studies 

include: 

 Hospital corridor: can a bed be moved around a right-angle bend in a corridor? 

 Order of play: how is a badminton match game order fixed when only 1 court is available? 

 On the buses: how do buses become congested despite timetabling on a typical city route? 

 Conifer trees: estimate the height against time as trees grow, allowing for seasonal growth. 

Attempting to build a model for a real world situation in which the mathematics is not apparent can be 

difficult if one’s knowledge of mathematical objects is limited. Learning about new mathematical objects 

can allow a student to see an otherwise benign real world situation with a new perspective (Edwards & 

Hamson, 1989). 

Teague (1989) expresses an interesting thought when comparing pure mathematics with applied 

mathematics. In his view, much of the mathematics taught in secondary school, such as simplifying 

expressions or solving equations, is analogous to simply practicing finger exercises when learning to play 

the piano. In order to “play the music” of real mathematics, which includes creating and using 

mathematical models, one must be able to perform these manipulations, but there is more to playing 

music than the finger exercises. 
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3.4 MATHEMATICS AS A SERVICE SUBJECT 

The concept of mathematics as a service subject contrasts with the literature on vocational mathematics 

education. Since engineering mathematics is not vocational mathematics, it more appropriately fits the 

definition of mathematics as a service subject, i.e., mathematics that is taught to students who are 

primarily engaged in studying other subjects. Engineers will use mathematics extensively in their work, 

but they will not be mathematicians. The rise of service mathematics was a response to a need. In the 

case of engineering, it is the need for engineering graduates to be mathematically competent (Howson, 

et al., 1988). 

For the universities and other institutions of learning there is also the need to ensure that all of the 

students entering their programs have a common level of knowledge. At both McGill University and 

Concordia University, engineering students who are originally from outside of Quebec are required to 

extend their program by one year. During their first year, these students take courses in the 

fundamentals of physics, chemistry, and mathematics, including pre-university linear algebra and 

calculus. The mathematics courses in this year of study are service courses, intended to bring these 

students to the same level of knowledge as those who will enter the engineering program from CEGEP 

the following year. 

The International Commission on Mathematical Instruction (ICMI) compiled selected papers on the 

teaching of mathematics as a service subject in an attempt to answer a few questions on the matter, 

including questions that are pertinent to this thesis, such as: 

 Who teaches service mathematics courses? 

 Are there differences in how service mathematics courses are taught and assessed, in 

comparison with mathematics courses for mathematicians? 

 Do the students encounter any obstacles in the form of language or symbolism? 
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Another issue of concern is determining which topics should be taught in a service mathematics course. 

Howson et al. (1988) present two points of view to help address this question. The first approach is to 

consider mathematics as a tool that students use to solve concrete problems drawn from their own 

discipline. Abstract mathematical notions that are not directly related to relevant applications should be 

discarded. Alternatively, though not completely dissimilar in approach, mathematics can be viewed as a 

language, and the students should know how to read it, and communicate with it. Since much of the 

literature in their discipline is written in the language of mathematics, knowing how to read it will allow 

the students to learn more about their own subjects on their own. 

The universities at Southampton (UK) and Orsay (Université Paris-Sud, France), for their part, have 

adopted similar attitudes. For these schools, service mathematics is meant to acquaint the students with 

the mathematical techniques that will be useful or essential in their core discipline courses. The teaching 

of service mathematics is meant to be done quickly, without the need to elaborate on the history or 

underlying theorems behind these techniques. In particular, they propose that engineers should be 

required to learn calculus, but not analysis. This is in fact presently the case for engineering students in 

Quebec. 

When it comes to determining who should teach the service mathematics courses (those who teach in 

the discipline itself, or mathematicians and mathematics teachers), the majority of contributors appear 

to favour those from outside of mathematics. Teachers from the service discipline are aware of the 

profession’s needs, and will also be able to properly structure the courses so that the mathematics that 

are needed can be taught immediately preceding a core course in which they will be needed. This can 

also provide uniformity in the use of language and symbolism between the mathematics and the core 

courses. Lastly, students in the service discipline will be more motivated, as they will feel more 

connected to a teacher from their field. A student from Cardiff (Wales, UK) offered the opinion that 

“engineering students should be taught by engineers, or at least by mathematicians who are based in 
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the engineering faculty. The biggest single problem is motivation, and this is best achieved if the 

teaching is done by engineers who are respected by the students as engineers and who can draw 

examples to illustrate the mathematics from their own work.” 

The argument is strengthened by mentioning the additional work that would be required of a 

mathematician to teach to non-mathematicians. They would have to learn the language and symbolism 

of the service discipline, adapt it to a mathematical framework, provide mathematical analysis and 

techniques, and translate it back into the students’ language. 

So one could ask, is it easier for an engineer to teach the fundamentals of the mathematics that they use, 

or for mathematicians to provide engineering context to the mathematics that they teach? 

In discussing how service mathematics courses should be taught, Howson (1988) states that there is 

nothing sacrosanct about the order in which mathematical topics are presented: fundamental concepts 

of a subject can be taught before showing students how to solve problems based on those concepts, or 

the concepts can be introduced while working through an example. In my own research on engineering 

programs at universities in Quebec (chapter 4) I found that some mathematics courses teach the 

concept of limit prior to infinite series, while others introduce the limit after teaching infinite series, thus 

supporting Howson’s view.  

Blum and Niss (1991) also characterize engineering mathematics as being different from vocational 

mathematics, and classify it as a service subject. In mathematics courses for engineers, the focus is not 

on the mathematics itself but on the other subjects in which mathematics will provide a service. In their 

research, the characterization of mathematics instruction is analyzed by considering the educational 

histories, the purpose, and the organizational framework of mathematics instruction. In terms of 

educational history, engineering mathematics is classified as a service subject, while mathematics taught 

to mathematicians or mathematics teachers is not. The purpose of mathematics instruction for 
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engineers is to provide students with mathematical knowledge as it relates to other subjects in their 

field (mechanics, thermodynamics, structural analysis, etc.). Engineering mathematics is further 

characterized by the organizational framework in which it is found. In fact, it can be classified into two 

frameworks: it can be taught as a separate subject in mathematics courses, or as part of, and integrated 

into, one or more engineering courses. These separate frameworks can lead to a division of labour 

among the mathematics and engineering professors such that the mathematics courses may be entirely 

devoid of mathematical modelling, and are instead organized so as to present all of the mathematical 

concepts that will be needed in the subject being serviced, while the applications and modelling will take 

place in the extra-mathematical courses. The results of my research, presented in chapter 4, fit this 

description fairly well. 

3.5 MATHEMATICS IN THE WORKPLACE 

The edited volume Education for Mathematics in the Workplace (2000) presents a number of studies on 

mathematical knowledge and the use of mathematics at both school and work. The main theoretical 

framework of the book is based on the Anthropological Theory of the Didactic: that mathematics is a 

human activity that takes place in all kinds of contexts and situations; however, in the workplace, the 

mathematics is deeply entrenched in a given profession’s activities, and is not always visible either to 

outside observers, or to the workers themselves (Noss, Hoyles, & Pozzi, 2000). 

Evans (2000) discusses the problem that workers have in “transferring” their mathematical knowledge 

from school to the workplace, i.e., applying what they have learned at school to non-pedagogical 

contexts, such as their work environment. Of particular note is that there is no guarantee that transfer 

will even occur; in other words “book smarts” do not always transfer to “street smarts”. For example, a 

student who is capable of properly subtracting fractions from whole numbers (e.g., performing the 

operation     
 

 
) using subtraction techniques in a classroom setting may not be able to perform the 
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same task on a construction site where they are handed a two-foot long piece of lumber and asked to 

make it three and quarter inches shorter. 

To say that mathematical knowledge can be transferred implies that it can be applied to similar 

problems but in different contexts. This is based on the assumptions that: 

 Learning is the transmission of knowledge from a teacher to a student. 

 The mathematical knowledge that is needed to solve a problem can be removed from the 

context of the problem. In the context of the ATD, this would mean that there exists 

mathematical knowledge that is independent of any task to accomplish, or technique to 

accomplish that task. 

 A problem can be reduced to its mathematics, and that a mathematical strategy can be used to 

solve problems across different contexts. 

But are these assumptions justified? Mathematics is learned in a socially constructed environment, with 

established and ongoing activities, social relationships, and language. Thus there are more factors at 

play than just the interaction between the teacher and the student. Furthermore, changing the 

environment in which a person finds themselves can change the mathematical strategies that they use. 

Recall the studies of Castela and Romo-Vazquez presented in section 3.1, and the finding that much of 

the students’ work could not be reduced to mathematics alone. Referring to my earlier example of a 

construction worker cutting a two-foot long piece of lumber, by changing the context of the problem 

(subtracting a fraction from a whole number) from a school exercise to a work situation, the 

mathematical strategy of using techniques of subtraction becomes too time-consuming and ultimately 

useless; making the two-foot piece of lumber three and quarter inches shorter one simply has to 

measure  
 

 
 inches on a tape measure, and make the cut at that length. Determining the length of 

lumber that remains is not necessary. Moreover, since the construction site environment has additional 
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pressures and stresses such as loud noises and having to work quickly and efficiently while following 

safety regulations, the mathematical knowledge of subtraction becomes only a small part of the total 

knowledge engaged when working. 

Rather than thinking about how mathematical knowledge is transferred in the sense described by Evans, 

this thesis considers that mathematical knowledge undergoes institutional transposition. The difficulty 

in reconciling school mathematics with work mathematics may occur in the transposition that the 

mathematical knowledge undergoes between institutions. 

In the same volume, Noss et al. (2000) present a study showing that professionals and practitioners (i.e., 

labourers) use mathematics differently than mathematicians. While mathematicians study mathematics 

for its own sake, professionals are driven by a pragmatic agenda: they study mathematics to solve 

problems external to mathematics. They must solve problems efficiently and effectively using 

mathematical knowledge and expertise, but their professional concerns take precedence over 

mathematical concerns. For the practitioners, a theorem must, first of all, “work” as a tool in solving 

their practical problems; for mathematicians, a theorem must be, first of all, “true” and then important 

for the advancement of a theory; it is better if it is also non-trivial. This brings to mind the studies 

discussed in section 3.2 involving electricians. 

The theory of situated abstraction (a term coined by Noss) focuses on the similarities in the structures of 

“mathematics in learning” and “mathematics at work.” Other theories, such as situated cognition and 

policy-driven studies, tend to emphasize the differences between the two. From the perspective of 

situated abstraction, the authors performed an exploratory study to examine the relationship between 

practical, professional, and mathematical knowledge in three professions: commercial airline pilots, 

bankers, and nurses. Their goal was to locate the mathematics that was used at work, searching for 

“visible mathematics” in the day-to-day activities of the different professions. Visible mathematics could 
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take the form of conventional mathematical symbolism and representation, or the use of concepts, 

strategies, and methods of a mathematics classroom. However, it was found that, in routine tasks, very 

little of the practitioners’ mathematics is visible. Even the workers themselves failed to notice when 

they are using mathematics, or simply did not regard what they were doing as “mathematical.” The 

visible mathematics that was found took the form of: 

 Finding solutions in procedural ways, with the use of algorithms and spreadsheets to perform 

menial computations, particularly by bankers. 

 Routine gathering and interpreting of data. 

 Using “look up” methods, i.e., the use of tables and charts containing pre-calculated values for 

similar or general problems (rather than using analytic formulas or functions for calculating their 

values). 

Look up methods are used to solve problems that are already well-understood, and can circumvent the 

need to work in the realm of school mathematics. But an understanding of the underlying mathematics 

that lead to the development of the look up tables is still a necessity for those who use them; otherwise 

the values in the tables may not be properly interpreted. For example, a pilot deciding whether or not to 

land in wintery conditions must quickly calculate the normal component of crosswinds acting on the 

aircraft. In Figure 5, the crosswind is represented by the red arrow, and its components are represented 

by the blue arrows. The normal component of the crosswind acts orthogonal to the direction of travel, 

and the amount of force it exerts on the plane is critical in determining whether it is safe to land. 



34 
 

 

Figure 5 - Crosswind and its components (drawing is my own) 

The generally accepted practice is to use lookup tables and rules of thumb. Calculating the normal 

component of the crosswind with proper trigonometric functions would be more accurate, but the 

accuracy they provide is unnecessary, given the size of the aircraft, and the speed at which it travels. The 

difference between the results obtained using trigonometry and those found by looking up tables is 

negligible, and using trigonometry requires too much of the pilot’s time. Instead, a generally accepted 

technique is to estimate the value of a trigonometric function of an angle based on the known values of 

the more common angles (30, 45, 60 degrees). But, the pilot has the knowledge that this rule of thumb 

is based on using trigonometry for finding the components of vectors that are normal to the trajectory 

of the plane. 

Rules of thumb are not generally found in engineering practice, but lookup tables are. An engineer can 

choose to look up the size of a steel beam with the desired strength if they know the forces that it must 

withstand, even though he or she has the ability to calculate the needed size with knowledge from 

school. Performing the calculations will not only be time consuming, but may result in finding a beam 

with dimensions (width and height) that are not even manufactured. The calculations may yield 

minimum required dimensions of   millimetres by   millimetres, but beams are mass produced, not 

custom-made, and their sizes are regulated by industry standards. Since the calculated dimensions are 

minimum requirements, the engineer can use a look up table to find the industry-standard beam whose 

dimensions are slightly larger than those calculated. Or, since the lookup table also contains the 
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strengths of each of the standard beam sizes, the engineer can simply skip the calculations altogether 

and find a beam whose strength is greater than the applied forces. 

Noss et al. (2000) points out that it is when “breakdown episodes” (conflicts in routine tasks) occur that 

mathematical knowledge may come to the fore, and become more visible. In these situations, workers 

are provoked into justifying their approach and the mathematical models on which they are based. For 

example, a nurse had to decide if their patient’s blood pressure was too high for a drug to be 

administered. Statistically, the patient’s blood pressure was considered to be too high for the drug to be 

administered, when compared with the average blood pressure of the population. But this particular 

patient’s baseline blood pressure was also higher than normal. This created a conflict in the decision of 

whether or not to administer the drug, and the nurse was forced to re-evaluate their statistical model, 

and what it meant to have a “high” blood pressure. Similar conflicts arise in engineering as well. An 

engineer who specializes in designing single-storey steel structures for warehouses may be tempted to 

“recycle” an already-proven design on a new structure in a different location. But different locations 

have different geographic and topographic features. Perhaps the new structure is located in a city with 

higher winds, or in an area that is more prone to earthquakes. Such a scenario can create a breakdown 

episode, and force the engineer to develop an entirely new design. 

3.6 GEOMETRY, MEASUREMENT AND ERROR 

Geometry plays an important role in civil engineering. It is used in, among other fields, surveying, which 

is literally the measurement of the earth, transportation engineering, to determine the shapes and 

directions of roads and railways, and structural engineering, in determining the geometric properties of 

structural elements such as length, cross-sectional area, and moment of inertia. Furthermore, the 

construction of engineering projects requires technical drawings which rely on orthographic projections, 

idealized representations of real world objects, and the principles of descriptive geometry. 
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Mathematicians and engineers (as well as other tradespeople) have different motives for studying and 

using geometry. The mathematician seeks truth or the construction of consistent theoretical systems, 

while the engineer seeks practicality (Bessot, 2000). The underlying motives vary so greatly that Bessot 

remarks “a builder may well have problems finding solutions to practical problems in a traditional 

geometry course.” The geometry of building construction, and civil engineering in general, is Euclidean, 

while the geometry of mathematicians refers to many theories, and include non-Euclidean geometries 

(hyperbolic and elliptic geometry), differential geometry, topology, etc. For the engineer, geometry is a 

description of the reality they work with: the axioms are treated as “facts.” For the mathematician, a 

geometry is just one axiomatic theory among others; its axioms should be consistent with each other 

and they need not be a faithful or “true” model of some external reality. 

In France, geometry courses as a structured entity in vocational schools have all but disappeared (Bessot, 

2000). In its place are descriptive geometry and practical geometry which are used in the drawing, 

reading, and marking out of plans. Like mathematical models, plans are idealized representations of the 

real world that use two-dimensional shapes to represent three-dimensional objects: straight lines can 

represent various objects such as beams in a structure or water conduits under a roadway; rectangles 

and circles can be used to indicate multiple objects as well as the cross-sections of columns in a 

structure or valve chambers. Figure 6 shows the typical shapes, symbols, and text that are used on a 

municipal roadwork plan to indicate a water conduit (the black line) and its dimensions (AQ. Ø 250: 

aquéduc diamètre 250 mm; water conduit with 250 millimetre diameter), and a valve chamber2 (C.V.: 

chambre de vanne; valve chamber).  

                                                           
2
 A valve chamber is a large concrete box that houses a valve. The valve is connected to the water conduit and can 

be opened or closed to either allow or impede the flow of water through the conduit. The valve can be accessed by 
entering the chamber through a manhole cover found in the roadway. 
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Figure 6 - Symbols for water mains and valve chambers (drawing is my own) 

In mathematics, the solution to a geometric problem may require a formal proof of existence of an 

object or a relation between properties, a construction of an object satisfying certain conditions, and 

theoretical precision. In vocational and professional practices, a solution doesn’t require the same 

exactitude. To a mathematician, the ratio of any circle’s circumference to its diameter is always ; for an 

engineer, the decimal approximation of 3.14 may be “good enough” for many calculations. A project’s 

construction plans need only be “sufficiently precise” in relation to desired tolerances to be considered 

acceptable. For example, connecting a steel beam to a column can be done as long as there is enough 

“wiggle room” for inserting the bolts. While the plan may state the required dimensions to the 

millimetre, variation in the fabrication of the steel pieces cannot be completely eliminated. 

This is not to suggest that there isn’t any amount of care taken, or precision required, when civil 

engineers use mathematics in their work of designing and executing engineering projects. In fact, the 

opposite is true – but it is a different precision and care about different aspects. Engineers raise 

questions about the nature and magnitude of errors and tolerances in calculations and in measurements. 

Eberhard (2000) discusses geometry and measurement as used by the students taking part in an actual 

construction project being overseen by their technical high school. At this school the students are being 

trained to become foremen and skilled workers, earning a Brevet de Technicien. The students use 

measuring techniques to transfer dimensions from a plan into physical markings on the ground, a 

process called marking out. They must then verify that their physical markings match the specified 

dimensions on the plan. 
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All measurements of the physical world contain an inherent error, even those made using state of the 

art technology. To mitigate these errors, the students in Eberhard’s study are introduced to two 

techniques for measuring: partial dimensions, which are measured from point to point, and cumulated 

dimensions, which are measured from an origin to an endpoint. With partial dimensions (Figure 7 (top)), 

measuring can be done for any desired length by adding adjacent measurements, but the error in each 

of the measurements accumulates over the entire measured length. Cumulated dimensions (Figure 7 

(bottom), on the other hand, are limited by the length of the tape being used to measure, but they 

require only a single measurement for multiple points of interest and provide fewer opportunities for 

error. 

 

Figure 7 - Measuring with partial dimensions (top) and cumulated dimensions (bottom) (adapted from Eberhard (2000)) 

The exact transfer of measurements from a plan to markings on the ground is impossible, so the goal is 

to find a balance between the precision of a measurement and a tolerance for error in both the process 

of marking out and verifying the markings. As a practical example, consider a construction site that will 

install prefabricated components provided by other parties. When they arrive on site, they must fit 

properly with the components that were built in place. If the accumulated error in the parts already 

constructed is too great, then the prefabricated components may not fit, leading to delays and 

increased costs. Once again, time is money. 
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Since there is always error involved in measurement, we might well ask how the notion of error is taught 

in vocational schools. The general teaching of mathematics in France (as of 2000) does not include the 

topic of error in measurements, though it was taught in the 1960’s (Eberhard, 2000). As it relates to the 

use of partial and cumulated dimensions, it could be explained that the latter technique is favourable if 

measurement error is thought of as either an uncertainty in measurement (the model of uncertainties), 

or as a random variable with a characteristic standard deviation (the model of probabilities). Eberhard 

(2000) states that “the algebraic theory of uncertainties or the probability theory of errors *could+ work 

together as a basis for theoretical understanding”, and could also help in showing why the use 

cumulated dimensions is preferred. But the teachers at schools awarding the Brevet de technicien are 

not required to teach the theoretical notion of error. In their view, using cumulated dimensions is 

preferred simply because it maximizes the efficiency of construction site. It is noted that the teaching of 

errors in measurement is found in a surveying textbook in a course for a Brevet de Technicien Supérieur. 

The notion of error in measurement is taught in some, but not all, engineering programs. In the 

engineering profession it arises in the fabrication of materials and construction of projects, but less so in 

the design process. It is usually the subject of contractual clauses that specify tolerances for error; 

clauses that surveyors, contractors, and fabricators are legally required to respect. Since it as a concept 

that is known in construction, it would be useful for engineers to have the knowledge of it as well, if only 

as a means of ensuring clear and precise communication between designers and builders. 

The final topic of discussion in this section, which also relates to measuring and to communication 

between engineers and labourers, is the system of units used in measuring. In professional engineering 

design, there is an emphasis on the use of the metric system. But in the construction industry, use of the 

imperial system is still widespread, even in Canada. In a study of engineering technician apprentices, 

Ridgway (2000) discusses a “strong feeling” amongst employers at engineering technology companies of 

an apparent decline in basic number skills of their applicants, with the most frequent problem cited 
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being a lack of awareness and familiarity with imperial units. In engineering education, many textbook 

application problems do make a point of presenting problems with imperial units, but any given problem 

is usually uses one system, either metric or imperial. Rarely are problems shown that require the use of 

both systems, and conversion between the two in order to find a solution. 
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4 MATHEMATICS FOR ENGINEERS 

In this chapter I present details from the mathematics courses that a student must take in order to 

obtain a degree in civil engineering, and will compare and contrast them with the mathematics to be 

taught to, and expected to be learned by mathematics students. 

The mathematical concepts to be taught to both groups of students were determined from course 

descriptions in university calendars and course outlines (syllabi). The mathematics that the students are 

expected to learn was determined from final examination questions (tasks). The bulk of the chapter is a 

comparative analysis of the tasks on final examinations from comparable courses. Comparisons of the 

necessary techniques to accomplish the given tasks are also analyzed. The analysis classifies the tasks 

according to their nature as either computational or conceptual, as well as by their mathematical 

content: are the tasks (1) purely mathematical, (2) mathematical applications, or do they require (3) 

mathematical modelling. Counting the number of tasks in each classification will allow me to quantify 

the differences, and similarities, between mathematics courses taken by engineers and those taken by 

mathematics students. 

Prior to presenting the details of my research, I will first discuss the institutional reasons for engineering 

programs to teach the mathematics that they do, and will discuss the general education of engineering 

students in Quebec. 

4.1 ACCREDITATION OF AN ENGINEERING PROGRAM 

The education of an engineer is regulated by the Canadian Engineering Accreditation Board (CEAB), a 

standing committee of the national professional organization Engineers Canada. Established in 1965, the 

CEAB is responsible for accrediting engineering programs at higher education institutions in Canada. 

According to the CEAB, the purpose of accreditation is to inform the professional engineering 
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organizations (such as the Ordre des ingénieurs du Québec) which programs are capable of producing 

graduates who are academically qualified to begin the process of becoming a professional engineer3. 

Among the requirements for a program to be accredited is an adequate curriculum with the goal that 

graduates demonstrate competence in university level mathematics, natural sciences, engineering 

fundamentals, and specialized engineering knowledge appropriate to the program (Canadian 

Engineering Accreditation Board, 2013). 

The CEAB quantifies curriculum content using Accreditation Units (AU), with 1 AU corresponding to 

either one hour of lecture or two hours of laboratory or scheduled tutorial. An accredited engineering 

program must include, in its entirety, a minimum of 1,950 AU. A minimum of 195 AU, that is one-tenth 

of the entire program, and up to 225 AU, must be dedicated exclusively to mathematics courses. The 

topics covered in the mathematics courses must include linear algebra, differential and integral calculus, 

differential equations, probability, statistics, and numerical analysis (Canadian Engineering Accreditation 

Board, 2013). 

The bulk of the program, a minimum of 900 AU, is to be dedicated to courses in engineering science and 

engineering design. The courses devised for engineering science must involve the “application of 

mathematics to practical problems through the development of mathematical or numerical techniques, 

modelling, simulation, and experimental procedures” (Canadian Engineering Accreditation Board, 2013). 

These courses may involve the development of mathematical or numerical techniques, modelling, 

simulation, and experimental procedures. Such courses are considered to be at the core of engineering 

education. For civil engineering programs they include courses such as statics, mechanics of materials, 

dynamics and thermodynamics. In other words, the core engineering courses are to include 

mathematical applications to engineering problems. This would not prevent mathematics courses from 

                                                           
3
 A bachelor’s degree in engineering is only one of the requirements for becoming a professional engineer. 

Obtaining a license also entails acquiring a minimum amount of work experience, and passing a professional 
licensing exam. 
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including application problems, but modelling problems would most likely be left for the core 

engineering courses. 

Engineering design, for its part, is meant to integrate mathematics, natural sciences, engineering 

sciences, and complementary studies in a creative, iterative, and open-ended design process, subject to 

constraints which may be governed by standards or legislation to varying degrees depending upon the 

discipline (Canadian Engineering Accreditation Board, 2013). The concept of engineering design and the 

design process is perhaps most closely associated with the professional practice of engineering and the 

execution of engineering projects. 

At this point it is important to recall what is meant by mathematical applications and mathematical 

models. An application is the use of mathematics, its concepts, its objects, and its rules, to solve a 

problem in the real world (Blum & Niss, 1991; Galbraith, Henn, & Niss, 2007). Applications are useful in 

order to show students how mathematics can be used to solve relevant tasks. But in every application of 

mathematics there is an underlying mathematical model. A mathematical model is an idealized 

representation of the real world; it is a mapping of physical objects into objects of a mathematical 

domain. The task of modelling involves creating or designing an appropriate mathematical description of 

an extra-mathematical situation or phenomenon. 

Based on the requirements of the CEAB, within an accredited engineering program I should expect to 

find courses that are dedicated solely to teaching mathematics, as well as engineering courses that have 

mathematical application and modelling problems embedded within them. Thus, I may not find tasks 

that involve mathematical applications and modelling in the mathematics courses themselves, since 

they would instead appear in the engineering courses. 

The accreditation criteria of the CEAB reinforce the notion that engineering programs are institutions as 

defined by the chosen theoretical framework. And since the CEAB is overseen by the Engineers Canada, 
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an umbrella organization that regulates the provincial professional associations, I can also claim that the 

institution of engineering education is situated within the institution of the engineering profession. 

4.2 ACCREDITED ENGINEERING PROGRAMS IN QUEBEC 

The following universities in Quebec have civil engineering programs that are accredited by the CEAB. 

They are listed in chronological order the year of their accreditation. 

1. McGill University – Faculty of Engineering – Civil Engineering and Applied Mechanics (1965) 

2. Université Laval – Faculté des sciences et de génie – Génie civil (1965) 

3. École Polytechnique, affiliated with l’Université de Montréal – Génie Civil (1965) 

4. Université de Sherbrooke – Faculté de génie – Génie civil (1965) 

5. Concordia University – Faculty of Engineering and Computer Science – Civil Engineering (1969) 

6. École de technologie supérieure, affiliated with l’Université du Québec – Génie de la 

construction (1993) 

7. Université du Québec à Chicoutimi – Département des sciences appliquées – Génie civil (2012) 

For each of these programs, I analyzed the course descriptions found in the university calendars in an 

attempt to categorize the mathematical topics that they have in common and to determine the 

mathematical knowledge that is to be taught. 

The faculties of engineering at Concordia and McGill are separated into engineering administrative 

departments, including their respective departments responsible for civil engineering (the Department 

of Building, Civil and Environmental Engineering at Concordia; the Department of Civil Engineering and 

Applied Mechanics at McGill). Some mathematics courses at these schools are common to multiple 

engineering departments; students from different engineering departments can enrol in them together. 

It is common for a calculus or differential equations class to be attended by civil, mechanical, and 
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electrical engineering students. This could make the task of writing relatable application problems more 

difficult for the professors. Writing application problems, in general, is not easy for professors who are, 

for the most part, mathematicians and not engineers. 

The Université du Québec is a network of universities located in various cities and regions across the 

province, including Montreal (UQAM), Trois-Rivières (UQTR), and Gatineau (UQO). Only the school 

located in Chicoutimi (UQAC) offers a degree in civil engineering, while degrees in other disciplines 

(mechanical, electrical, chemical, and industrial engineering) are offered elsewhere. The École de 

technologie supérieure (ÉTS) is an engineering- and technology-specific institution affiliated with the 

Université du Québec. While they do not offer a degree in civil engineering, they do have a program that 

leads to a bachelor’s degree in construction engineering. The difference between the two degrees 

appears to be that the construction engineering program focuses on the management of civil 

engineering construction projects as opposed to engineering design and analysis. Some of its courses 

are entirely unique to this program, including a course on estimating the costs of construction projects 

and establishing project schedules. In my professional experience, these tasks were learned “on the job.” 

In all programs, after completing common core courses, students can choose to focus their studies on 

one of a number of sub-disciplines. In civil engineering, for example, a student can choose to study 

structural engineering, environmental engineering, or transportation engineering, among others. École 

Polytechnique de Montréal has a unique feature. Students enrolled in its program have the additional 

option of a thematic orientation called mathématiques de l’ingénieur (mathematics for engineers). The 

purpose of this orientation is to allow students to acquire knowledge in advanced applied mathematics, 

and broaden their abilities to model mathematically in order to solve engineering problems (École 

Polytechnique de Montréal). École Polytechnique is a renowned research facility, and as such it is 

important for them to offer proper training for students who wish to focus on research in engineering 
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science in their graduate studies, hence the need for this orientation (École Polytechnique de Montréal, 

n.d.). 

4.3 MATHEMATICS IN ACCREDITED CIVIL ENGINEERING PROGRAMS 

The mathematics to be taught in the accredited engineering programs in Quebec can be grouped into 

seven subjects: 

1. Pre-university linear algebra 

2. Pre-university calculus 

3. University level calculus 

4. Differential equations 

5. Probability and statistics 

6. Numerical methods 

7. Engineering geometry 

I established these groupings by reading course descriptions found in the university calendars of the 

schools mentioned in the previous section and identifying commonalities in all of the required 

mathematics courses. The list of mathematics course names and complete courses descriptions for each 

program are included in appendix 8.2. Note that unlike calculus, there is no university level linear 

algebra course for engineers. 

In the majority of the accredited programs identified in section 4.2, the instructors for subjects 1 

through 4 are professors from the mathematics department, while subjects 5 through 7 are taught by 

members of the engineering faculty. 

It is necessary to establish what is meant by pre-university (subjects 1 and 2) and university level 

mathematics (subjects 3 through 7). By pre-university mathematics I am referring to mathematical 
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content that is also taught either in CEGEP (for students from Quebec) or in high school (for students 

from other provinces). Universities offer pre-university mathematics courses for various reasons. For 

one, students from outside of the province who move to Quebec to attend university may not have 

necessarily taken a course in linear algebra or calculus prior to starting their university education, while 

those who are from Quebec have. In Quebec, linear algebra and calculus are required to graduate from 

CEGEP, and are taken not only by students who want to be engineers, but also by those who will enter 

other science programs such as biology, physiology, and computer science. There is also a need, from 

the universities’ perspective, to ensure that all of their students have the same level of mathematical 

knowledge before they begin courses in the engineering program. Some topics covered in pre-university 

calculus courses – differentiation and integration of single-variable functions, for example – are 

important and necessary concepts that are required in first year engineering courses such as statics and 

mechanics of materials. The pre-university courses are also necessary for students who were accepted 

into an engineering program on the condition that they retake the pre-university courses in order to 

improve their academic standing, or for students who return to school after a prolonged absence and 

lack the prerequisites to enter their desired program. 

Because of these pre-university level courses, the first year of study at Concordia and McGill may differ 

for some students. For example, when I attended McGill, my first year of study included mathematics 

courses only at the university level. However, my classmates included many students from Ontario and 

other provinces that were in their second year at the school. They had spent the previous year, while I 

was finishing CEGEP, taking pre-university mathematics (and natural science) courses. This is referred to 

as year U0 (undergraduate year 0) at McGill, and EC (extended credit) at Concordia. Thus, for students 

from Quebec who are not required to retake pre-university level mathematics courses (subjects 3 to 7), 

more than half of their mathematics courses are taught by professors from the engineering faculty, as 

opposed to professors of mathematics. 
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4.3.1 Methodology for the analysis of final exams 

In the sections that follow I present the results of my analysis of final exams from mathematics courses 

taken by engineering students, and from comparable courses taken by mathematics students, focusing 

only on the programs at Concordia and McGill. Final exams were chosen instead of textbooks since they 

give us the most insight into what mathematics students are expected to learn during the course. 

One final exam from each course is analyzed. The engineering exams that I chose were similar to those 

that I wrote as an engineering student, and in my experience as a mathematics instructor final exams for 

mathematics courses do not change very much from one year to the next (at least in these universities). 

As a result of this I claim that the chosen exams represent institutionalized mathematical knowledge to 

be learned by the students of the respective courses. 

The exams were analyzed by categorizing the tasks in two ways. First, the nature of each task is 

classified as either computational or conceptual. I make this distinction from the point of view of a 

mathematics educator, with the institution used as a reference model being that of mathematics 

courses in university programs. Various mathematics textbooks, including Lay (2016), describe the 

exercises contained within as either computational or conceptual. While computational tasks require 

routine calculations, conceptual tasks demand a bit more thought as well as a justification of their 

solutions. This particular distinction in ways of knowing and doing mathematics has been studied and 

discussed in mathematics education practically forever. 

To identify the computational tasks on the final exams, I searched for keywords such as “find”, 

“evaluate”, or “compute”, in the problem’s text. Tasks that explicitly state which technique the student 

should use to solve the problem also fall into this category. Conceptual tasks were identified as those 

that required proving a given statement or showing an equality to be true or false (problems that used 

phrases such as “show that”, or “prove”), or demonstrating an understanding of mathematical concepts 
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based on axioms and definitions. Any task that asked for an explanation of justification of a technique 

beyond its computational use is also considered a conceptual problem. 

The tasks were also independently classified according to their content as either purely mathematical, 

an application problem, or a modelling problem. An application problem will make reference to some 

real world object or phenomena that is being investigated using mathematics, either explicitly or 

implicitly through the use of units. A modelling problem will require the construction of a mathematical 

model as opposed to just an application of an existing model. While modelling necessarily implies that 

real world objects or phenomena are involved, the task of modelling is more intensive and time-

consuming than an application as it requires a mapping from the physical world into the language of 

mathematics. Perhaps as a result of these constraints, only two modelling tasks were found on all of the 

final exams that were analyzed, both for courses taken exclusively by engineering students. Tasks are 

considered purely mathematical if no real world context is given in the problem. 

Each individual exam question can be comprised of multiple tasks, either explicitly identified as parts (a), 

(b), (c), etc., or not. For every final exam in my analysis, each identifiable task was appropriately 

categorized, and a table indicating the relative frequency of each type of task was constructed: 

Table 1 - Sample table: Relative frequency of tasks on a final exam 

 Computational Conceptual  

Mathematical _% _% _% 
Application _% _% _% 
Modelling _% _% _% 
 _% _%  

 

These tables offer a quantifiable measure of the different types of tasks given to engineering students 

versus those given to mathematics students. As a result of my analysis, I have found that the similarities 

between the mathematics for engineers and mathematics students outnumber the differences. Many 

exams in comparable courses feature the same types of tasks requiring the same techniques to solve 



50 
 

them, use the same notation, and feature a similar number of purely mathematical and application 

problems. 

The exams that were analyzed are included in their entirety in appendix 8.3. 

4.3.2 Pre-university linear algebra 

Topics taught in pre-university linear algebra include solving systems of linear equations, matrix algebra, 

evaluating determinants and inverses of square matrices, the geometry and algebra of vectors in   , 

operations on vectors (dot product and cross product), the geometry of lines and planes, an 

introduction to vector spaces and subspaces, an introduction to linear transformations, eigenvalues and 

eigenvectors of matrices, and the diagonalisation of matrices using their eigenvectors and eigenvalues. 

This list is not written to suggest that linear algebra courses contain a random collection of disconnected 

topics, but rather to simply highlight what concepts the students are expected to learn in such a course. 

The courses offered in this subject are MATH 204 – Vectors and Matrices at Concordia, and MATH 133 – 

Linear Algebra and Geometry, at McGill. I was unable to obtain any documentation about final exams for 

MATH 133. Concordia’s MATH 204 is not reserved for engineering students. It is offered to students in 

many programs, including mathematics students who may need it as a prerequisite for their university 

level linear algebra courses MATH 251 – Linear Algebra I, and MATH 252 – Linear Algebra II. 

I analyzed final exams from these two university level courses as well as from MATH 204. Since 

engineering students do not take university level linear algebra, it is assumed that the topics covered in 

MATH 204 represent all that engineers need to know of the domain of linear algebra. They are assumed 

not to need to know the theory of general vector spaces and linear transformations over arbitrary 

vector spaces that justifies, at the level of “theory” in the model of praxeology, the techniques and 

elements of “technology” learned in MATH 204. 
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The following tables show the relative frequencies of the different types of tasks found on the linear 

algebra final exams. The MATH 204 exam is dated December 2014, while the exams for MATH 251 and 

MATH 252 are dated December, 2013, and April 2013, respectively. 

Table 2 - Relative frequency of tasks: MATH 204 - Vectors and Matrices (Concordia), December 2014 

 Computational Conceptual  

Mathematical 71% 29% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 71% 29%  

 

Table 3 - Relative frequency of tasks: MATH 251 - Linear Algebra I (Concordia), December 2013 

 Computational Conceptual  

Mathematical 39% 61% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 39% 61%  

 

Table 4 - Relative frequency of tasks: MATH 252 - Linear Algebra II (Concordia), April 2013 

 Computational Conceptual  

Mathematical 76% 24% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 76% 24%  

 

None of the tasks on any of the exams are application problems. All tasks contained only objects that 

are mathematical in nature (matrices, vectors, lines, and planes) without any physical meaning attached 

to them. As for the nature of the tasks, we can see that MATH 251 contains more conceptual problems 

(61%) than computational, but the proportions of computational tasks are about the same for MATH 

204 and MATH 252 (71% and 76%, respectively). 

The lack of applications could possibly be attributed to the fact that MATH 204 is a pre-requisite for 

multiple programs, or perhaps because the course is administered by the mathematics department. 
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Another reason is the lack of time. MATH 204 is a short, dense course, with many concepts and 

techniques that are new to the students. For engineering students this is the only linear algebra course 

they will take so everything they will ever need in their studies and work has to be included; there is 

very little time left for solving some more serious application problems. They may be briefly mentioned 

in general terms but that is usually all the instructor has the time for. The problem of time is 

exacerbated if, and this is often the case, the course examiner insists that all calculations be done by 

hand on the mid-term and final examinations. Much of the class time is then spent on computational 

tasks such as row reduction of matrices. This is a particularly boring and tedious activity but students 

insist on practicing it because every slight mistake in this process has dramatic consequences for the rest 

of the solution. The requirement of manual computation forces the choice of “easy” numbers (integers) 

for the entries of the matrices and vectors whose sizes are also chosen to be small. This is ironic because 

the introduction of the powerful methods of linear algebra in the course can hardly be justified by their 

application to systems of two equations in two unknowns or even three equations in five unknowns. 

Such cases can serve at most to illustrate the techniques and concepts, but can hardly motivate it. 

Indeed, in the tasks given in MATH 204, the sizes of the objects are such that the computations are 

manageable. Question 4 (Figure 8) requires evaluating the determinant of a 4x4 matrix, and question 8 

(Figure 9) asks the students to find the solution to a system of size 3x5, but all other matrices and 

systems of equations are limited to sizes 2x2 or 3x3. All of the vectors in the exam are from the vector 

space   , as seen in question 5 (Figure 10). 

 

Figure 8 - MATH 204 - Vectors and Matrices (Concordia), December 2014, question 4 
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Figure 9 - MATH 204 - Vectors and Matrices (Concordia), December 2014, question 8 

 

Figure 10 - MATH 204 - Vectors and Matrices (Concordia), December 2014, question 5 

To solve question 4, students are expected to use cofactor expansion, a technique which is greatly 

simplified in this example by using a row operation to create a 0 in entry (1, 1). Solving question 8 

doesn’t require any row operations to be performed as the given matrix is already in reduced row 

echelon form. The students can use the given matrix to identify the two free variables,   and  , and find 

the general solution to the homogeneous system. The technique for solving part (a) of question 5 is to 

use the formula for the projection of one vector onto another, which the students are expected to 

memorize: 

        
   

‖ ‖ 
  

To solve part (b) of question 5, students must recognize that the given equation can be represented by 

the matrix-vector equation      , where   is the matrix whose columns are the vectors   ,   , and 

  ,   is the unknown vector 〈        〉, and   is the vector 〈     〉. The task can then be solved using 

either row reduction, or by finding the inverse of the matrix  . All of these tasks are considered 

computational. Question 2 (Figure 11) is an example of a conceptual question from MATH 204. 
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Figure 11 - MATH 204 - Vectors and Matrices (Concordia), December 2014, question 2 

A complete solution to this task requires using Gaussian elimination to row reduce the augmented 

matrix of the system, and then justifying why certain values of the parameter   cause the system have 

no solution, exactly one solution, or infinitely many solutions by demonstrating an understanding of the 

conditions in which each of these situations arises. I make the claim of what constitutes a complete 

solution based on my experience as a mathematics instructor. 

There are more tasks of a conceptual nature on the MATH 251 exam. Only two of the ten questions 

feature matrices with defined sizes and entries, and half of the questions involve arbitrary vector spaces 

and linear transformations. 

 

Figure 12 - MATH 251 - Linear Algebra I (Concordia), December 2013, questions 4, 5, and 6 

Referring to Figure 12, problem 4 defines V as simply “a vector space”, while T and U are said to be “two 

linear transformations” on vectors in the space V. Similarly, in problems 5 and 6, T is “a linear 
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transformation”, or simply “a linear map” between two arbitrary vector spaces. What these vector 

spaces and transformations actually are is left unspecified, because it is unimportant to the given task, 

which is to verify properties that could be attributed to any transformation on the given vector space(s). 

Solving these problems involves constructing a logical proof using the definitions and axioms of vector 

spaces and linear transformations. 

The tasks in MATH 252 lean more towards being computational in nature, but they differ from those in 

MATH 204 in the techniques required to accomplish them. Since MATH 252 is a university level linear 

algebra course, it features concepts and topics that engineering students simply don’t learn in MATH 

204. For example, consider the three questions in Figure 13. 

 

Figure 13 - MATH 252 - Linear Algebra II (Concordia), April 2013, questions 7, 8, and 9 

In each of these questions the task is essentially the same: diagonalise the given matrix. However, 

different techniques of diagonalisation are requested: eigenvectors in question 7, unitary matrices in 

question 8, and a Jordan matrix in question 9. Of those three techniques, only diagonalisation using 

eigenvectors is found in the knowledge to be taught in MATH 204, as illustrated by question 10 (Figure 

14). 
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Figure 14 - MATH 204 - Vectors and Matrices (Concordia), December 2014, question 10 

Though eigenvectors aren’t specifically mentioned, it is the only diagonalisation technique presented to 

the students in MATH 204. 

The following comment could be made about one’s perception of the mathematical objects themselves. 

To an engineer (student or professional), a     matrix with integer entries, such as the one shown in 

Figure 8, is an abstract mathematical object. It may represent any number of real world objects or 

phenomena, though what those objects are remains unspecified in the context of the exam. But to a 

mathematician, this same matrix is a specific element from the set of all     matrices with real 

coefficients – it is an object that makes sense on its own without the need to relate it to something from 

outside the structure of mathematics. For a mathematician, an abstract matrix would be similar to that 

which is described in question 9 of the MATH 251 exam (Figure 15). 

 

Figure 15 - MATH 251 - Linear Algebra I (Concordia), December 2014, question 9 

In this problem, even though the size of the matrix is defined as    , its entries can be any real 

number, not just integers, and the matrix itself is nothing more than an object in a vector space upon 

which a linear transformation is being applied. 

This reflects the research of Sierpinska (2000) who described the difference between an “arithmetic” 

mode of thinking in linear algebra and a “structural” mode of thinking. The focus in university level 
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linear algebra gears the students towards structural thinking with tasks involving the generalization of 

properties of linear transformations and abstract vector spaces, as well as more advanced 

computational techniques. Engineering students are not required to learn such material; rather, they 

learn the rules of manipulating numerical examples of linear algebra objects in order to solve problems 

that they will encounter in their core engineering courses, and thus tend to focus on an arithmetic mode 

of thinking. 

4.3.3 Pre-university calculus 

Topics taught in pre-university calculus include a review of functions and their graphs, functional 

notation, limits and continuity, derivatives and techniques for differentiating elementary functions, 

applications of differentiation (optimization, related rates, approximation using differentials), 

antiderivatives and definite integrals, techniques of integration, applications of integration (calculating 

arc lengths, areas and volumes), sequences and series, and Taylor series and power series. The functions 

considered in these courses include exponential, logarithmic, and trigonometric functions, but all are 

functions of a single real variable. Complex functions and functions with complex coefficients and 

variables are not included in these courses, and multivariable functions are taught in university level 

calculus, which is discussed in the next section. 

At Concordia and McGill, pre-university calculus is broken up into two parts: differential calculus, and 

integral calculus. The courses offered in this subject are MATH 203 – Calculus 1, and MATH 205 – 

Calculus 2, at Concordia, and MATH 140 – Differential and Integral Calculus I, and MATH 141 – 

Differential and Integral Calculus II, at McGill. As with the courses for pre-university linear algebra, I was 

unable to obtain documentation from the McGill courses. 

In general, both engineering students and mathematics students should be enrolled in university level 

calculus courses at the outset of their programs, but as with linear algebra, these pre-university calculus 
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courses are offered as pre-requisites for students who are lacking the required credits, and for students 

from out of province. Since these courses are not taken exclusively by engineering students, I should not 

expect application or modelling problems necessarily to be related to engineering. 

The following tables show the relative frequencies of the different types of tasks found on the final 

exams for MATH 203 and MATH 205, both dated December 2014. 

Table 5 - Relative frequency of tasks: MATH 203 - Calculus I (Concordia), December 2014 

 Computational Conceptual  

Mathematical 68% 29% 97% 
Application 0% 3% 3% 
Modelling 0% 0% 0% 
 68% 32%  

 

Table 6 - Relative frequency of tasks: MATH 205 - Calculus II (Concordia), December 2014 

 Computational Conceptual  

Mathematical 63% 37% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 63% 37%  

 

In general, about two thirds of the tasks on the exams that I analyzed are computational, and include 

routine computations such as evaluating limits, and differentiating and integrating arbitrary functions. 

The only application problem that was found on either exam is part (b) of question 7 (Figure 16), and as 

expected it is not related to engineering, but is rather a demonstration of related rates using the length 

and width of a rectangle. It is the use of the units of length (  ) and time ( ) that categorizes this 

problem as an application: it is a problem about quantities, not abstract numbers or functions only. 
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Figure 16 - MATH 203 - Calculus 1 (Concordia), December 2014, question 7 

I consider this question to be slightly more conceptual as opposed to computational, since it requires 

some thought in deciding what technique to use in order to solve it. Students who understand the 

concept of related rates wouldn’t have difficulty spotting that this problem fits the description, 

especially given the use of the units centimetres per second, but it still requires deducing that the 

equation to differentiate is              . 

The exponential and logarithmic functions found in these exams are all defined using base  , and there 

is also ample use of trigonometric functions, which are prevalent in the mathematical models used by 

engineers. The use of these functions is best illustrated by question 4 from MATH 203 (Figure 17), and 

questions 3 and 4 from MATH 205 (Figure 18). 

 

Figure 17 - MATH 203 - Calculus 1 (Concordia), December 2014, question 4 
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Figure 18 - MATH 205 - Calculus 2 (Concordia), December 2014, questions 3 and 4 

The tasks in Figure 17 can be solved using various techniques of differentiation including the product 

rule, the quotient rule, the chain rule, or any combination thereof, as well as logarithmic differentiation 

for part (e). Part (d) in particular requires multiple uses of the chain rule concurrently with the product 

rule. For the integration problems shown in Figure 18, students must know how to use the techniques of 

substitution, integration by parts, partial fraction decomposition, and trigonometric substitution. All of 

these problems are computational. 

It should be noted that both exams also feature bonus questions (Figure 19) that ask to verify a 

statement about the chain rule (from MATH 203) and the average value of any single variable function 

(from MATH 205). 

 

Figure 19 - MATH 203 - Calculus 1 (Concordia) and MATH 205 - Calculus 2 (Concordia), bonus questions 

These questions reflect the fact that these courses are administered by the mathematics department. 

The concepts learned in these courses are required knowledge for university level calculus which is 

discussed in the next section. 
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4.3.4 University level calculus 

In university level calculus, students are introduced to multivariable and vector-valued functions, are 

taught (according to course descriptions) how to perform differential and integral calculus on such 

functions (e.g., partial differentiation, gradients, curl, line and surface integrals), and also learn about 

Lagrange multipliers and the theorems of Gauss, Green and Stokes. Thus, another appropriate name for 

the subject would be multivariable calculus. 

In some course descriptions, such as at École Polytechnique, we find topics such as limits and continuity, 

approximations using differentials, and optimization. These are included in a review section at the 

beginning of the course since, unlike at McGill and Concordia, those programs don’t offer pre-university 

level calculus courses for credit. The programs at École Polytechnique, Université Laval, and UQAT also 

introduce complex numbers and their representations in the complex plane in their calculus course 

descriptions. Lastly, McGill also introduces differential equations in their calculus course, though the 

bulk of that subject is reserved for a course dealing specifically with that topic. 

The courses offered in this subject are ENGR 233 – Applied Advanced Calculus at Concordia, while MATH 

262 – Intermediate Calculus, and MATH 264 – Advanced Calculus, are offered at McGill. Despite the 

course code ENGR, the course at Concordia is taught by a mathematics professor. The same is true for 

the two courses at McGill. However, all of these courses are offered exclusively to engineering students, 

and it is common for such courses to be attended by students of different engineering departments (civil, 

mechanical, electrical, etc.) at the same time. Comparable courses for mathematics students at 

Concordia are MATH 264 – Advanced Calculus I, and MATH 265 – Advanced Calculus II. 

Besides listing the topics of study, the course outline for ENGR 233 also mentions that the “ability to 

identify, formulate and solve engineering problems”, a competency from the List of Design Soft Skill 
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Competencies found in documentation by the CEAB, is relevant to the course. Analyzing the course’s 

final exam should reveal whether this competency is in fact expected to develop in students. 

Since there is only one calculus course for engineers at Concordia, some topics that are to be taught in 

the courses at McGill are not found in Concordia’s ENGR 233 course outline. These include series and 

power series which are taught at the beginning of McGill’s MATH 262, and the introduction to partial 

differential equations at the end of McGill’s MATH 264. In essence, infinite series is a topic that students 

in ENGR 233 are expected to have learned prior to attending the course, and partial differential 

equations are taught to them in a separate differential equations course (section 4.3.5). Regardless, 

there is still considerable overlap in the topics on the course outlines for all of the courses offered to 

engineers and mathematics students at Concordia and McGill. Among them are vector geometry and 

vector-valued functions, differential and integral calculus of vector-valued functions and multivariable 

functions, line integrals and the theorems of Green and Stokes. 

The following tables show the relative frequencies of the different types of tasks found on the final 

exams from the following courses: ENGR 233, dated December 2014; MATH 262, dated December 2010; 

MATH 264 for engineers at McGill, dated April 2007; MATH 264 for mathematics students at Concordia, 

dated December 2014; MATH 265, dated April 2014. 

Table 7 - Relative frequency of tasks: ENGR 233 - Applied Advanced Calculus (Concordia), December 2014 

 Computational Conceptual  

Mathematical 78% 0% 78% 
Application 11% 0% 11% 
Modelling 0% 11% 11% 
 89% 11%  
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Table 8 - Relative frequency of tasks: MATH 262 - Intermediate Calculus (McGill), December 2010 

 Computational Conceptual  

Mathematical 69% 31% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 69% 31%  

 

Table 9 - Relative frequency of tasks: MATH 264 - Advanced Calculus (McGill), April 2007 

 Computational Conceptual  

Mathematical 100% 0% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 100% 0%  

 

Table 10 - Relative frequency of tasks: MATH 264 - Advanced Calculus I (Concordia), December 2014 

 Computational Conceptual  

Mathematical 65% 20% 85% 
Application 15% 0% 15% 
Modelling 0% 0% 0% 
 80% 20%  

 

Table 11 - Relative frequency of tasks: MATH 265 - Advanced Calculus II (Concordia), April 2014 

 Computational Conceptual  

Mathematical 87.5% 12.5% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 87.5% 12.5%  

 

As seen in the tables, an overwhelming majority of the tasks on all of the exams are computational in 

nature, even in the courses taken by mathematics students. Examples of conceptual tasks that I did find 

are shown in Figure 20 and Figure 21. 
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Figure 20 - MATH 262 - Intermediate Calculus (McGIll), December 2010, question 6 

 

Figure 21 - MATH 264 - Advanced Calculus I (Concordia), December 2014, question 2 

Question 6 from MATH 262 (Figure 20) does require some computation, but the task is not solved until 

the results of the computations are used to show that the given equality is true. Question 2 from MATH 

264 for mathematics students (Figure 21) contains three tasks, two of which are computational. The 

conceptual task involves showing that        as   approaches both   and  , which can be 

accomplished by evaluating the limit of     . It is worth noting that the task of computing      is 

somewhat simplified since the formula for its evaluation was given at the top of the exam question 

sheet (Figure 22). 

 

Figure 22 - MATH 264 - Advanced Calculus I (Concordia), December 2014, formulas 

Despite being reserved for engineering students, only one task on all the engineering courses’ finals is an 

application, while one other is a modelling task. Both appear on the final for ENGR 233 at Concordia, 

though neither are related to the field of engineering. Question 3 (Figure 23) refers to a quarterback 

throwing a football, while question 4 refers to an insect on a heated metal plate. 
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Figure 23 - ENGR 233 - Applied Advanced Calculus (Concordia), December 2014, questions 3 and 4 

To solve question 4, the student has to recognize that in order for the insect to “cool off as rapidly as 

possible” it would have to follow the path of the greatest decrease in temperature on the metal plate. 

Mathematically this is in the direction of the greatest decrease in directional derivative of the given 

function. This task was labelled as a conceptual due to the additional thought required in translating the 

problem from the English language into a mathematical concept. This task also requires creating a 

mathematical model. Recall that a mathematical model is a mapping of a real world concept into objects 

in the mathematical domain. In this problem, the direction in which the insect walks has to be modelled 

as a vector in the direction of the greatest decrease of the given function.  

A similar question appears on the final exam from MATH 264 for mathematics students (Figure 24), 

asking for the direction of greatest decrease of a function said to represent the temperature at any 

given point in space. In this problem, the students are asked explicitly for the direction of greatest 

decrease of temperature, but this direction does not represent the trajectory or path taken by some 

physical object, such as an insect. As such it is not a modelling problem. 

 

Figure 24 - MATH 264 - Advanced Calculus I (Concordia), December 2014, question 4 
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The technique required for both questions is the same, and no additional justification or explanation are 

required of the mathematics students that aren’t also expected of the engineering students. These two 

questions could have appeared on the exam for the other course without seeming out of place. 

Two questions on the final exam for MATH 264 at McGill are tenuous applications at best (Figure 25). 

The given differential equations are said to be heat equations, but the task involves simply solving the 

equations using the requested techniques, and the solution is not dependent on the real world context 

of the equations themselves. Thus I labelled these tasks as mathematical. 

 

Figure 25 - MATH 264 - Advanced Calculus (McGill), April 2007, questions 5 and 6 

It is worth noting that the notation used on the exams given to engineering students is typical for 

courses that are taught by mathematics professors: functions are labelled  ,  , or  , and all of their 

arguments are either  ,  ,  , or  . This is important because in engineering courses these symbols take 

on different meanings. Figure 26 shows a standard list of symbols that one would find in an engineering 

textbook. 
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Figure 26 - List of symbols (Beer & Johnston, 1992, p. xvii) 

This particular list shows that   is used to denote the value of a frequency as well as functions,   

represents either a distance or the height of an object, the symbols  ,  , and  , usually associated with 

arbitrary variables in mathematics, are used to denote physical distances and deformations (deflections) 

as well as rectangular coordinates, and   is used to represent a measure of an object’s thickness. In 

many contexts   is also used to represent time. For an engineer outside of a mathematics class, each of 

these symbols is associated with a physical meaning in the real world. 

Another similarity worth highlighting is questions that specify the use of Green’s theorem and Stokes’ 

theorem in the evaluation of integrals, and the use of  ,  , and   in the notation for vectors in    (refer 

to problem 8 in Figure 27). 

 

Figure 27 - ENGR 233 - Applied Advanced Calculus (Concordia), December 2014, questions 7 and 8 

 

Figure 28 - MATH 264 - Advanced Calculus (McGill), April 2007, question 3 
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Figure 29 - MATH 265 - Advanced Calculus II (Concordia), December 2014, questions 5 and 6 

Questions 7 and 8 in Figure 27 and problem 3 in Figure 28 are from engineering exams, while questions 

5 and 6 in Figure 29 are from a mathematics exam. There is little difference in the mathematical content 

or the nature of the tasks in the questions. Both test students’ memory of certain theorems and their 

ability to apply them to compute the values of given mathematical expressions, but they do not test 

their ability to choose a convenient mathematical technique or property to compute its values, which is 

what engineers often have to do in practice. This appears to be counter to the claim that is made in the 

ENGR 233 course outline about the competencies that are developed in the engineering student, 

particularly being able to identify engineering problems and the knowing how to solve them. 

4.3.5 Differential equations 

The knowledge to be taught in differential equations courses includes how to solve different types of 

ordinary (ODE) and partial (PDE) differential equations including separable equations, exact equations, 

homogeneous equations, second order and higher order linear equations with constant and 

undetermined coefficients, as well as systems of differential equations. 

Applications of ODE’s and their use in mathematical models related to mechanics and electrical circuits 

are mentioned in the course descriptions in some programs, such as the one at École de technologie 

supérieure (ÉTS), but the construction of mathematical models from given data is not. Engineering 
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applications of ODE’s include orthogonal trajectories, harmonic motion, and free and forced oscillations, 

while applications involving PDE’s and boundary value problems include heat equations and problems of 

heat transfer, wave equations, and vibrations. The program at Université Laval is the only one whose 

curriculum mentions Sturm-Liouville theory and related problems, while Concordia has the only course 

that includes the study of eigenvalues and eigenvectors of linear systems of differential equations. 

The courses offered in this subject are ENGR 213 – Applied Ordinary Differential Equations, and ENGR 

311 – Transform Calculus and Partial Differential Equations, at Concordia; MATH 263 – Ordinary 

Differential Equations for Engineers, is offered at McGill. While engineering students at Concordia are 

required to take two courses including one in partial differential equations, students at McGill are only 

introduced to the topic of partial differential equations in their advanced calculus course, MATH 264. 

As with the university level calculus courses, only students in an engineering program can enrol in these 

differential equations courses. However, these courses are multi-departmental; i.e., they are taken by 

students in different engineering departments. This could add to the difficulty of writing application 

problems that are relatable to all of the students in the class. 

The comparable course for mathematics students at Concordia is MATH 370 – Ordinary Differential 

Equations. 

The following tables show the relative frequencies of the different types of tasks found on the various 

final exams: ENGR 213, dated December 2014; ENGR 311, dated August 2009; MATH 263, dated 

December 2012; MATH 370, dated December 2014. 

Table 12 - Relative frequency of tasks: ENGR 213 - Applied Ordinary Differential Equations (Concordia), December 2014 

 Computational Conceptual  

Mathematical 91% 0% 91% 
Application 9% 0% 9% 
Modelling 0% 0% 0% 
 100% 0%  
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Table 13 - Relative frequency of tasks: ENGR 311 - Transform Calculus and Partial Differential Equations (Concordia), August 
2009 

 Computational Conceptual  

Mathematical 75% 12.5% 87.5% 
Application 0% 12.5% 12.5% 
Modelling 0% 0% 0% 
 75% 25%  

 

Table 14 - Relative frequency of tasks: MATH 263 - Ordinary Differential Equations for Engineers (McGill), December 2012 

 Computational Conceptual  

Mathematical 67% 33% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 67% 33%  

 

Table 15 - Relative frequency of tasks: MATH 370 - Ordinary Differential Equations (Concordia), December 2014 

 Computational Conceptual  

Mathematical 69% 31% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 69% 31%  

 

A majority of the tasks on all of the exams are computational, but the students in the courses ENGR 311 

and MATH 263 are given about as many conceptual tasks as mathematics students. Question 7(a) from 

MATH 263 is one example of such a conceptual (Figure 30). It involves finding the series solution for an 

arbitrary and undefined function     . 

 

Figure 30 - MATH 263 - Ordinary Differential Equations for Engineers (McGill), December 2012, question 7 

Question 8(a) from the same exam (Figure 31) is also conceptual, since the task requires justifying a 

given statement using the definition of a regular singular point of a differential equation. 
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Figure 31 - MATH 263 - Ordinary Differential Equations for Engineers (McGill), December 2012, question 8 

The exam for ENGR 311 features a task that is conceptual but also set in the context of the real world, 

making it an application (Figure 32). The first part of the question is a computational task since it 

involves simply solving the differential equation. 

 

Figure 32 - ENGR 311 - Transform Calculus and Partial Differential Equations (Concordia), August 2009, question 4 

Part (b) however involves a bit more thought since it requires knowing the definition of steady-state 

temperature, and interpreting the result of the solution to the differential equation. 

Examples of conceptual tasks on the exam for MATH 370 are seen in Figure 33. The first part of each of 

questions 3 and 4 asks the student to check whether the given equation is exact or not. This requires 

knowing the definition of an exact equation, and justifying that the given equation matches that 

definition. The second part of each question is considered a computational task. 

 

Figure 33 - MATH 370 - Ordinary Differential Equations (Concordia), December 2014, questions 3 and 4 
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As with the calculus course ENGR 233, the course outline for ENGR 213 lists the CEAB competencies that 

the course supposedly emphasizes and aims to develop in engineering students. These include the 

ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex 

engineering problems in order to reach substantiated conclusions. Despite these assertions, nearly all of 

the tasks on the ENGR 213 final exam explicitly state which technique to use to solve the given 

differential equation, as seen in questions 3, 6, and 7 (Figure 34). 

 

 

Figure 34 - ENGR 213 - Applied Ordinary Differential Equations (Concordia), December 2014, questions 3, 6, and 7 

These questions are all computational in nature. Question 3 asks the student to use the integrating 

factor method, while questions 6 and 7 state that the general solution is to be found using the methods 

of undetermined coefficients and variation of parameters, respectively. While these questions test the 

students’ proficiency in each of the specified techniques, they do not test their abilities to identify which 

technique should be used to solve the problem. Similar problems on the final exam for MATH 263 at 

McGill, also computational in nature, do not explicitly state the method to be used, as it is to be inferred 

from the equation itself (Figure 35). 
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Figure 35 - MATH 263 - Ordinary Differential Equations for Engineers (McGill), December 2012, question 3 through 6 

These questions would be a better test of an engineering student’s ability to identify what type of 

problem they are being asked to solve. 

Of the ten questions on the final exam for ENGR 213, only question 5 is an application (Figure 36). It is a 

problem in which a given second order differential equation is said to represent the motion of a mass 

and spring system. 

 

Figure 36 - ENGR 213 - Applied Ordinary Differential Equations (Concordia), December 2014, question 5 

The equation is relatively simple to solve however since the spring constant,  , and the mass,  , in the 

problem are set equal to 1   ⁄  and 1   , respectively. Even though spring-mass systems are pertinent 

examples of how motion can be modelled using differential equations, the exams for the engineering 

courses are clearly lacking in application problems. 
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This would not be considered a modelling problem because all of the physical objects described in the 

problem have already been mapped into the mathematical domain. The position of the mass is already 

labelled as  , and this position is a function of time,  . Furthermore, no assumptions need to be made 

about the initial position and velocity of the mass since they are explicitly stated in the problem as being 

1   and 0   ⁄ , respectively. 

The overall similarity between the content of the exams for engineering and mathematics students is 

perhaps best illustrated by the following two questions. Figure 37 is taken from the exam for ENGR 213, 

while Figure 38 is from the exam for MATH 370 for mathematics students. The tasks are simply stated: 

find the general solution(s) of the following equation(s). 

 

Figure 37 - ENGR 213 - Applied Ordinary Differential Equations (Concordia), December 2014, question 4 

 

Figure 38 - MATH 370 - Ordinary Differential Equations (Concordia), December 2014, question 5 

The only difference of note in these two problems is the different notations: Leibnizian (    ⁄ ) in the 

ENGR question, and Newtonian (  ) in the MATH question. These notations aren’t exclusive to either 

field though. The questions in Figure 30, Figure 34, and Figure 35 are all from engineering exams and use 

Newtonian notation, while the questions in Figure 33 are from a mathematics exam and use Leibnizian 

notation. A cursory glance at the required textbook by Boyce and DiPrima (1997) for the course MATH 
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263 at McGill reveals that the problems use Newtonian notation in a ratio of about 2:1 relative to 

Leibnizian notation. 

All of these similarities may very well be a result of the fact that the differential equations courses for 

engineers are taught by mathematics professors, and thus there is a tendency to focus on the 

computational techniques of solving differential equations without the need to attach the equations to 

a physical situation of phenomenon. Engineering students do eventually see the practicality of 

differential equations in their engineering core courses, where they learn how the physical world can be 

modeled as required by their disciplines. Examples of this will be shown in Chapter 5. 

4.3.6 Probability and statistics 

Topics to be taught in probability and statistics courses include the axioms and concepts of probability 

theory and descriptive statistics, probability models and density functions of discrete and continuous 

random variables, statistical estimation with confidence intervals and hypothesis testing, linear 

regression and correlation, and statistical sampling and its use in quality control. 

The courses offered in this subject are ENGR 371 – Probability and Statistics in Engineering, at Concordia, 

and CIVE 302 – Probabilistic Systems, at McGill. Both of these courses are administered by their 

respective civil engineering departments and taught by engineering professors. In the McGill course 

calendar, CIVE 302 is described as “an introduction to probability and statistics with applications to civil 

engineering design”, and as will be seen shortly, this is in fact reflected in the content of the course’s 

final exam. Comparable courses for mathematics students at Concordia are STAT 249 – Probability I, and 

STAT 250 – Statistics. 

The following tables show the relative frequencies of the different types of tasks found on the various 

final exams: ENGR 371, dated April 2013; CIVE 302, dated April 2006; STAT 249, dated December 2011; 

STAT 250, dated December 2013. 
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Table 16 - Relative frequency of tasks: ENGR 371 - Probability and Statistics in Engineering (Concordia), April 2013 

 Computational Conceptual  

Mathematical 16% 4% 20% 
Application 56% 24% 80% 
Modelling 0% 0% 0% 
 72% 28%  

 

Table 17 - Relative frequency of tasks: CIVE 302 - Probabilistic Systems (McGill), April 2006 

 Computational Conceptual  

Mathematical 12.5% 0% 12.5% 
Application 75% 12.5% 87.5% 
Modelling 0% 0% 0% 
 87.5% 12.5%  

 

Table 18 - Relative frequency of tasks: STAT 249 - Probability I (Concordia), December 2011 

 Computational Conceptual  

Mathematical 39% 11% 50% 
Application 50% 0% 50% 
Modelling 0% 0% 0% 
 89% 11%  

 

Table 19 - Relative frequency of tasks: STAT 250 - Statistics (Concordia), December 2013 

 Computational Conceptual  

Mathematical 42% 23% 65% 
Application 12% 23% 35% 
Modelling 0% 0% 0% 
 54% 46%  

 

Once again a majority of the tasks are computational in nature. However, the engineering exams contain 

a significant number of applications, and considerably more than on the math exams (80% and 87.5% 

versus 50% and 35%). Moreover, the applications on the engineering exams are related to their field, 

particularly on the McGill exam. 
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Yet there is still one task that is both conceptual and mathematical in its nature and content on the 

exam for ENGR 371. Question 3(a) (Figure 39) asks the students to determine the value of a parameter 

in the function defining a probability density function. 

 

Figure 39 - ENGR 371 - Probability and Statistics in Engineering (Concordia), April 2013, question 3 

Solving this task requires knowing that the area between the graph of a continuous random variable’s 

probability density function and the  -axis must be 1. The value for   could thus be determined by 

solving the equation: 

∫         
 

 

 

Once the value of   is known, the other two tasks can be solved as well. The expected value, , and the 

variance,     , can be found by evaluating the definite integrals: 

  ∫        
 

 

 

     ∫             
 

 

 

The tasks in parts (b) and (c) are computational, not conceptual, and none of the tasks in this question 

are considered applications. Question 4 from the same exam (Figure 40) is also mathematical in its 

content, though it is entirely computational. 
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Figure 40 - ENGR 371 - Probability and Statistics in Engineering (Concordia), April 2013, question 4 

These tasks are easily solvable using basic antidifferentiation techniques. Since the problem states that 

the variable   has an exponential probability density function with an expected value of 4, part (a) can 

be solved by evaluating the following integral: 

       ∫
 

 
  

 
 
   

 

 

    
   

∫
 

 
  

 
 
   

 

 

 

To answer part (b), a similar integral is used, but the following equation must be solved for the unknown 

value  : 

   
   

∫
 

 
  

 
 
   

 

 

     

It is expected of the students to know the definitions and mathematical formulae for the expected value 

and variance of several different kinds of probability distributions, including exponential distributions, 

since they are not provided on the exam’s question sheet. 

Of the six questions on the ENGR 371 exam that are applications, two are framed in the context of 

engineering problems, while the remaining problems involve situations from commerce, school, 

medicine, and sports. Of the two engineering applications, one is merely a combinatorics problem 

where the objects being counted are professional engineers. Only question 7 (Figure 41) immerses the 

student in a situation where a decision needs to be made about the validity of an engineering product 

claim using statistical analysis.  
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Figure 41 - ENGR 371 - Probability and Statistics in Engineering (Concordia), April 2013, question 7 

Parts (a) and (d) of this problem are conceptual tasks that demand the students justify their decision 

using the results of their statistical analysis, as well as an explanation of how to reduce type I and type II 

errors in their analysis.  

Similar questions are found on the final exam for CIVE 302, thus fulfilling the course’s description as “an 

introduction to probability and statistics with applications to Civil Engineering design.” This exam 

contains by far the largest quantity of engineering applications that I have found in my research. The 

most representative of these are problems 3 (Figure 42)and 6 (Figure 43) in which confidence intervals 

are to be established in order to make important decisions: which company to choose as a provider of 

construction materials, and whether or not the capacity of a batch of load bearing piles meets the 

minimum requirement based on nine test piles. 
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Figure 42 - CIVE 302 - Probabilistic Systems (McGill), April 2006, question 3 

 

Figure 43 - CIVE 302 - Probabilistic Systems (McGill), April 2006, question 6 

Note that in both of these problems, the real world concepts of material durability (figure 42) and pile 

capacity (figure 43) have already been modeled as statistical variables. In the former, the durability is 

measured by the amount of wear in the material, and labelled as    and    for the different materials. 

Labels aren’t given explicitly in the latter problem, but by giving the student the sample mean, standard 
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deviation, and explicitly stating the null hypothesis (in part (a)), the work of modelling the situation has 

already been done. 

Some parts of these questions are computational, but those that involve making a decision and then 

justifying that decision are conceptual in nature. This type of statistical analysis is frequently performed 

by professional engineers involved in the construction of structures that are built on foundation support 

piles. Since it is too costly to test the strength of each individual pile, random tests are performed and 

the results analyzed statistically to determine whether or not there are any structural deficiencies. 

The exams for mathematics students are decidedly more mathematical in their content than their 

engineering counterparts, but there are still a considerable number of applications. This may very well 

be due to the nature of the topics of probability and statistics themselves, and their historical 

development. 

Indeed, the applications on the mathematics students’ exams are set in a variety of real world situations 

including forming a committee from a group of men and women, the distribution of grades in professors’ 

courses, the tossing of an unfair coin, the distribution of certain types of rare birds, and accidents 

occurring on a stretch of road. Three of these questions are shown in Figure 44. It is worth noting that 

these questions are all entirely computational in their nature. 
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Figure 44 - STAT 249 - Probability I (Concordia), December 2011, questions 3, 4, and 5 

Only two tasks on the exam for STAT 249 are conceptual, and one of them is nearly identical to the 

conceptual task given to students in ENGR 371, as it involves finding the value of a parameter in the joint 

probability density function of two random variables,   and   (Figure 45). 

 

Figure 45 - STAT 249 - Probability I (Concordia), December 2011, question 9 

The technique for solving this problem is similar to that taught to engineering students, except that 

engineers don’t learn about join density functions of two variables. 

The exam for STAT 250 is both more conceptual in its nature, and features fewer applications than the 

other three exams discussed thus far. Questions 6 and 7 (Figure 46) are posed in such a way that 
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complete solutions to the given tasks require written explanations to be included in the students’ 

answers. 

 

Figure 46 - STAT 250 - Statistics (Concordia), December 2013, questions 6 and 7 

I also found in this exam topics and concepts that engineering students simply do not learn. As with the 

concept of joint density functions shown in the exam for STAT 249, question 1 of the exam for STAT 250 

(Figure 47) asks the students to evaluate marginal and conditional densities of two random variables. 

 

Figure 47 - STAT 250 - Statistics (Concordia), December 2013, question 1 

Each task is mathematical in its content since the random variables are not said to represent any real 

world objects. While the first three tasks are computational, the fourth (mislabelled on the question 

sheet as part (c)) asks for a justification in the students’ answers, making it a conceptual task. 



84 
 

Of the seven mathematical subjects in my research, probability and statistics is the only one in which the 

relative frequency of application problems on the final exams was greater than those that were purely 

mathematical. 

4.3.7 Numerical methods 

Topics to be taught in numerical methods include techniques for finding the roots of equations such as 

Newton’s method, the secant method, and other iterative techniques, the approximation and 

interpolation of functions using linear and polynomial splines, numerical differentiation and integration 

of functions, solving differential equations by various techniques including Euler’s method and the 

Runge-Kutta method, and finding solutions to initial-value and boundary value problems. 

Though not explicitly identified in the curricula or course descriptions in every engineering program, an 

important feature in working with numerical methods is being able to evaluate the error that is inherent 

in the use of the various techniques. The inclusion of this topic arises from the fact that mathematical 

models are not always comprised of equations or functions with integer or rational coefficients or 

arguments; real numbers are more prevalent and errors due to the rounding of values can accumulate 

substantially. Computers are also more readily used, and while they are efficient at performing 

algorithms, they are still necessarily limited in their ability to represent and store real numbers. As a 

result, errors due to rounding or truncation can appear even when computers are used to solve 

problems (Gilat & Subramaniam, 2008). It is important for engineers, who use computers in their 

profession, to understand these errors and learn how to manage and minimize them. 

The courses offered in this subject are ENGR 391 – Numerical Methods in Engineering, at Concordia, and 

CIVE 320 – Numerical Methods, at McGill. As with probability and statistics, these courses are overseen 

by the schools’ respective civil engineering departments. A comparable course for mathematics students 

at Concordia is MATH 354 – Numerical Analysis, though the comparison is slightly more difficult since 
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many topics taught to mathematics students, and thus techniques for solving tasks on their final exam, 

are not taught to engineering students. Examples of these include Neville’s method and Stefensen’s 

method for finding roots of an equation, Hermite interpolation polynomials, and dividend differences. 

The following tables show the relative frequencies of the different types of tasks found on the various 

final exams: ENGR 391, dated December 2013; CIVE 320, dated December 2007; these are compared 

with two exams from MATH 354, the first dated December 2011, and another dated December 2012. 

Table 20 - Relative frequency of tasks: ENGR 391 - Numerical Methods in Engineering (Concordia), December 2013 

 Computational Conceptual  

Mathematical 87.5% 0% 87.5% 
Application 12.5% 0% 12.5% 
Modelling 0% 0% 0% 
 100% 0%  

 

Table 21 - Relative frequency of tasks: CIVE 320 - Numerical Methods (McGill), December 2007 

 Computational Conceptual  

Mathematical 46% 6% 52% 
Application 42% 0% 42% 
Modelling 6% 0% 5% 
 94% 6%  

 

Table 22 - Relative frequency of tasks: MATH 354 - Numerical Analysis (Concordia), December 2011 

 Computational Conceptual  

Mathematical 65% 24% 89% 
Application 11% 0% 11% 
Modelling 0% 0% 0% 
 76% 24%  

 

Table 23 - Relative frequency of tasks: MATH 354 - Numerical Analysis (Concordia), December 2012 

 Computational Conceptual  

Mathematical 83% 17% 100% 
Application 0% 0% 0% 
Modelling 0% 0% 0% 
 83% 17%  
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Both exams for engineering students (ENGR 391 and CIVE 320) feature more tasks that are 

computational in nature, though McGill’s contains more applications, nearly as many application tasks 

as tasks that are purely mathematical. Furthermore, the CIVE 320 exam features the only other 

modelling problem that I found in my research. Lastly, the more recent MATH 354 exam (December 

2012) does not include any applications, and the majority of its tasks are computational. 

Indeed, the final exam for ENGR 391 features only one application that is tenuously related to 

engineering (Figure 48), asking for the rate of change of the stopping distance of a truck on a wet road 

from given discrete data points. 

 

Figure 48 - ENGR 391 - Numerical Methods in Engineering (Concordia), December 2013, question 4 (b) 

This problem can be solved using the two-point backward difference formula, a suggested technique of 

numerical differentiation. The solution to this problem would be written as follows: 

       
             

 
 

     

        
       

 

  
 ⁄

 

The problem shown in Figure 48 is the second part of question 4. In the first part of question 4 (Figure 

49), students are given the task of evaluating an integral and asked to solve it with the use of multiple 

techniques: analytically, using Simpson’s method, and using four-point Gauss quadrature. 
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Figure 49 - ENGR 391 - Numerical Methods in Engineering (Concordia), December 2013, question 4 (a) 

A question with a similar construction appears in the final exam for the McGill course CIVE 320 (Figure 

50). In this problem, the maximum value of a function is to be found by using a golden-section search, 

quadratic interpolation, and Newton’s method. 

 

Figure 50 - CIVE 320 - Numerical Methods (McGill), December 2007, question 3 

The idea of accomplishing a task with multiple techniques is not something that is foreign to the 

engineering profession. Verifying calculations by independent methods is a technique that an engineer 

would use in practice, but since the given integral and function in the questions aren’t related to any 

real world engineering problem, this notion may be lost on students who may instead see the task 

simply as repetitive manual labour. To an engineering student, the questions themselves would seem 

purely mathematical. 
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While there are considerably more tasks on the CIVE 320 final exam that are applications, none of them 

are immediately identifiable as being engineering problems. There are questions framed in the context 

of metabolism rates of various animals, evaluating the distance traveled given tabulated data of time 

and velocity, the tracking of an airplane via radar and the use of polar coordinates, and a differential 

equation that is said to represent a falling object such as a parachutist. In all cases, the technique 

required to solve the problem is explicitly stated in the question ( 

Figure 51). 

 

Figure 51 - CIVE 320 - Numerical Methods (McGill), December 2007, questions 5, 7, and 9 

The task in the following problem, also from CIVE 320, involves determining an equation that relates 

metabolism rate to mass based on given data (Figure 52). 

 

Figure 52 - CIVE 320 - Numerical Methods (McGill), December 2007, question 6 
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This is a modelling task. The mass and metabolism rate must both be modelled as variables, one of them 

labelled as the independent variable and the other as the dependent variable. Numerical techniques 

must then be used to find an appropriate relation between the two variables, be it linear, exponential, 

logarithmic, etc. A complete solution will require explicitly stating assumptions that were made in 

choosing which of these best models the relationship between the two variables. 

There are two questions from ENGR 391 and MATH 354 (2012) that are so similar (Figure 53 and Figure 

54) that it might be difficult to identify which question was given to engineering students and which was 

given to mathematics students without the captions. This is an apt example of just how similar 

mathematics for engineers can be to mathematics for mathematics students. 

 

Figure 53 - MATH 354 - Numerical Analysis (Concordia), December 2012, question 2 

 

Figure 54 - ENGR 391 - Numerical Methods in Engineering (Concordia), December 2013, question 1 

The only application found in either of the MATH 354 exams involves the use of discrete least squares 

approximation to estimate the temperature of a peach pie that is being cooled after being removed 

from an oven (Figure 55). One could argue that the given task could have also been given to 

mathematics students without the need to frame it in such a situation. 
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Figure 55 - MATH 354 - Numerical Analysis (Concordia), December 2011, question 5 

Regardless, what is important is that discrete least squares approximation is not a technique learned by 

engineering students, and this is perhaps the only, and yet fairly important difference between the 

exams for ENGR 391 and MATH 354. Concepts such as inverse interpolation, Neville’s method, Hermite 

interpolation polynomials and cubic continuous least squares approximation are found on the exam for 

mathematics students, but are absent from the engineering course content. This brings to mind the 

differences between pre-university linear algebra taken by engineering students and the linear algebra 

learned by mathematics students. The latter appeared to introduce more advanced topics and 

techniques that are simply not needed for the purposes of solving engineering problems. Perhaps the 

methods learned by engineering students in their courses are the only numerical methods they will 

need. 

4.3.8 Engineering geometry 

There are two broad subjects that could be considered part of engineering geometry: technical drawing, 

and surveying. 

The technical drawing course at Concordia is CIVI 212 – Civil Engineering Drawing, and at McGill it is 

MECH 289 – Design Graphics. I was unable to obtain any exams from either of these courses. Despite 

the absence of course documentation, it can be stated that no equivalent courses are taken by 

mathematics students. The geometry of technical drawing and surveying is Euclidean, and serves only to 
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represent the size, shape, and position of three-dimensional physical objects in the two-dimensional 

mediums of computer monitors and paper. 

Topics covered in technical drawing courses include the fundamentals and standards of technical 

drawing, orthographic projections of objects onto plan, elevation, and section views, standards for 

indicating dimensions and measurements, and communication in engineering through the use of 

graphics. With this knowledge students learn how to create technical drawings both by hand and with 

the use of computer software, a process called CAD (computer assisted drafting). 

Orthographic projections are used exclusively in engineering practice for the preparation of design and 

construction plans. In orthographic drawing, the images of objects in three-dimensional space are drawn 

by projecting lines of sight perpendicularly onto horizontal and vertical planes. The image in Figure 56 is 

taken from the design plan of a proposed bridge that will span (cross over) a river. 

 

Figure 56 - Orthographic drawing of a bridge spanning a river (Used with permission of CIMA+) 

The plan shows the result of the orthographic projections of the bridge onto a horizontal and a vertical 

plane. The upper portion of the plan is called the plan view (VUE EN PLAN). It is a projection of the 
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bridge and its surrounding environment on a horizontal plane located directly above. Looking at this 

view, one must imagine hovering above the bridge looking down on it, but rather than having lines of 

sight merge at infinity (on the image’s “horizon”), the lines of sight from each part of the image are 

perpendicular to the horizontal plane that they are projected onto. 

The elevation view (VUE EN ÉLÉVATION), below the plan view, is a projection of the same bridge onto a 

vertical plane giving the viewer the impression of standing in the river facing the bridge. These two 

views appear on a structural plan in the same position they are shown in Figure 56, with the plan view 

on top, and the elevation view directly below. In technical drawing courses, engineers learn to get a 

sense of the entire three-dimensional shape of objects from these projections. 

Indicated on these drawings are measurements such as lengths and distances between important points 

on the bridge and the terrain. The proposed elevations of the roadway and the bridge’s foundations are 

also included. This technical drawing is part of a series of instructions that shows what the bridge is 

supposed to look like when it is built. The use of geometry is an efficient means of communicating those 

instructions. 

The other subject in engineering geometry is surveying, which is taught in the courses BCEE 371 at 

Concordia, and CIVE 210 at McGill (both courses are simply titled “Surveying”). At both schools, the 

technical drawing course is a prerequisite to surveying. The surveying course is taught in a condensed 

three week session during the summer term. Students learn the elementary operations employed in 

engineering surveying: how to use, care for and adjust the technical instruments (levels, transits, and 

theodolites) that are used for linear distance and angular measurements between objects, how to 

design vertical and horizontal curves for roadways so that they fit into an existing terrain, how to 

perform calculations for earthworks projects, evaluating and managing the errors that are inherent in 

surveying measurement, and the application of surveying methods in field work. 
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An important aspect of surveying is the meticulousness that is needed when recording one’s 

measurements in a field book. A surveyor’s field book must contain all of the necessary data for 

preparing a technical drawing of the environment that was surveyed. During construction of a structure 

such as a bridge, the surveyor’s measurements are also used to ensure that the construction is being 

done in accordance with the measurements on the plans. The students at the technical school discussed 

in the literature review were charged with a similar task (Eberhard, 2000). 

In professional practice, an engineering surveyor will provide his field data, consisting of measured 

elevations, distances, and angular measures between points of interest to a technical draftsperson that 

will use the data to produce a technical drawing or plan. 

Though I was unable to obtain any documentation in the form of a final exam for either surveying 

course, I do recall the final project in the surveying course that I took as a student at McGill. A parcel of 

land on Mount Royal near the University’s campus was divided into adjacent regions that were roughly 

in the shape of chevrons approximately ten metres by twenty metres, though no two regions were 

exactly identical (Figure 57). 

 

Figure 57 - Chevron-shaped parcels of land (drawing is my own) 

The students were paired off, and two groups were assigned to each region. Topographic features such 

as large rocks, trees, and other points of interest including the regions’ boundaries had to be precisely 

located and their elevations measured as accurately as possible. A technical plan of each region then 
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had to be drafted by each independent pair of students. The plans of each region were then assembled 

to see if they fit together as they did in reality. 

In this sense, engineering geometry closely fits the etymology of the subject, namely the measurement 

of the earth. But there is more to be said about an engineer’s geometry beyond the topics of technical 

drawing and surveying. At its core, the geometry used by engineers is Euclidean, and is concerned with 

representing the three-dimensional physical objects as images on a two-dimensional plane. Euclidean 

geometry assumes that for all intents and purposes the world is flat, and remains so underneath any 

object or parcel of land that is being measured. It is essentially a very “local” geometry. In this geometry, 

the surface of the earth is a “horizontal plane”, and “vertical planes” are orthogonal to it. Orthographic 

projection takes physical objects and projects their image onto three planes which are pairwise 

orthogonal to each other, with the horizontal plane being parallel to the surface of the earth. 

Another aspect of this geometry is the use of pairwise orthogonal axes to describe the position and 

orientation of objects in the physical world. A structural engineer’s task in the analysis and design of a 

structure focuses on the members that make up the structure. Each structural member has a position 

and orientation within the structure. In terms of geometry, a member can be thought of as a regular 

prism, such as the object shown in Figure 58. 

 

Figure 58 - Example of a structural member with a rectangular cross-section 
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The orange arrow identifies the orientation of the member’s longitudinal axis. The length of the member 

in the direction of the longitudinal axis is called the axial length. The member’s cross-section is the 

surface of intersection of the member and a vertical plane that is orthogonal to the longitudinal axis. For 

the member shown in Figure 58, the cross-section is a rectangle. A similar member with a circular cross-

section would be identified by mathematicians as a “cylinder”. Thus the cross-section is a two-

dimensional geometric shape, and in designing a structural member, the engineer is concerned with 

many properties of these shapes such as their width, height, area, and moment of inertia (see section 

5.2.2). Examples of cross-sectional shapes most commonly used in construction include W-shapes (wide-

flange shapes) and S-Shapes (American standard shapes), both commonly referred to as “I-beams”, as 

well as C-shapes (channels) and angles (Figure 59). 

 

Figure 59 - Common geometric cross-sectional shapes for structural members (Beer & Johnston, 2007, p. 486) 

It’s worth noting that when a structural engineer speaks of a member’s area, they may be referring 

either to the numerical value associated with the cross-section’s measured area, or the cross-sectional 

shape itself, depending on the context. 

In contrast, a mathematician’s geometry is not strictly Euclidean. A mathematics student’s study of 

geometry at Concordia will involve an introduction to geometric topology and differential geometry of 

surfaces, as opposed to the measurement of physical objects. The Concordia course MATH 480 – 
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Geometry and Topology, has listed as prerequisites courses in analysis and abstract algebra, hinting that 

the geometry in question involves more mathematical knowledge than an engineer needs. 

4.4 SUMMARY OF RESULTS 

Despite the necessity to apply mathematics in their eventual professional careers, relatively few of the 

tasks given to engineering students on their final exams are application problems, with the sole 

exception being the courses in probability and statistics. The tables that follow show the results from 

compiling all of the tasks given to engineering students and those given mathematics students on their 

respective final exams for each subject. 

Table 24 - Summary of the relative frequency of tasks: Pre-university linear algebra 

 Engineering Mathematics 

 Computational Conceptual  Computational Conceptual  
Mathematical 71% 29% 100% 54% 46% 100% 
Application 0% 0% 0% 0% 0% 0% 
Modelling 0% 0% 0% 0% 0% 0% 
 71% 29%  54% 46%  

 

For pre-university linear algebra, we see that neither engineering nor mathematics students are given 

any application problems. However, mathematics students are given more tasks that are conceptual in 

nature than engineering students. 

Table 25 - Summary of the relative frequency of tasks: Pre-university calculus 

 Engineering 

 Computational Conceptual  
Mathematical 65% 33% 98% 
Application 0% 2% 2% 
Modelling 0% 0% 0% 
 65% 35%  
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When the tasks of the two calculus courses are compiled, we see that the bulk of the questions are 

mathematical in nature, with an emphasis on computational tasks. The only application problem 

involved using related rates to determine the rate at which a rectangle’s area was increasing. 

Table 26 - Summary of the relative frequency of tasks: University level calculus 

 Engineering Mathematics 

 Computational Conceptual  Computational Conceptual  
Mathematical 78% 16% 94% 71% 18% 89% 
Application 3% 0% 3% 11% 0% 11% 
Modelling 0% 3% 3% 0% 0% 0% 
 81% 19%  82% 18%  

 

In university calculus, we find nearly identical quantities of computational and conceptual tasks given to 

both groups of students. Surprisingly, it is mathematics students who are given a greater number of 

application problems, though only slightly more. This can perhaps be explained by the fact that the 

engineering students’ calculus course is taught by mathematics professors. 

Table 27 - Summary of the relative frequency of tasks: Differential equations 

 Engineering Mathematics 

 Computational Conceptual  Computational Conceptual  
Mathematical 76% 18% 94% 69% 31% 100% 
Application 3% 3% 6% 0% 0% 0% 
Modelling 0% 0% 0% 0% 0% 0% 
 79% 21%  69% 31%  

 

The relative frequencies of the different types of tasks given to engineering and mathematics students 

are similar in theirs differential equations courses as well, though mathematics students are given a few 

more conceptual tasks. 
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Table 28 - Summary of the relative frequency of tasks: Probability and statistics 

 Engineering Mathematics 

 Computational Conceptual  Computational Conceptual  
Mathematical 14% 2% 16% 41% 18% 59% 
Application 66% 18% 84% 27% 14% 41% 
Modelling 0% 0% 0% 0% 0% 0% 
 80% 20%  68% 32%  

 

Probability and statistics is the only subject in which we notice a significant difference in the types of 

tasks given to engineering and mathematics students. The emphasis for for the former is placed on 

computational application problems, while the latter have roughly half as many applications, and more 

tasks that are conceptual in nature. 

Table 29 - Summary of the relative frequency of tasks: Numerical methods 

 Engineering Mathematics 

 Computational Conceptual  Computational Conceptual  
Mathematical 66% 3% 69% 72% 21% 93% 
Application 28% 0% 28% 7% 0% 7% 
Modelling 3% 0% 2% 0% 0% 0% 
 97% 3%  79% 21%  

 

In numerical methods we again see a much greater emphasis placed on computational and application 

tasks on the engineering students’ final exams. Both of these last two subjects are administered by the 

school’s respective civil engineering departments. 

Overall, the nature and content of the tasks given to engineering students is similar to those given to 

mathematics students. It could be argued that the differences in the mathematics education of an 

engineer and that of a mathematician begin to differ only after the second year of university study. The 

mathematics courses identified and discussed in this section are all taken in first two years of study in 

both engineering and mathematics programs. This raises the question: do things differ in subsequent 

years of study? The answer is an unqualified yes. 
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Engineering students complete their studies with courses in engineering sciences. For all intents and 

purposes, their mathematics education is finished after their second year. Mathematics students, 

however, learn about concepts and topics that for the most part remain foreign to engineers (both 

students and professionals). These include topics in mathematical logic, real and complex analysis, 

abstract algebra, and measure theory. These courses explore the inner workings of mathematics; they 

provide the “theory” in the academic mathematics praxeology. 

Instead of diving deeper into the theory behind the rules of mathematics, engineers take the rules they 

have learned for manipulating mathematical objects – matrices and vectors, derivatives and integrals of 

functions, differential equations, numerical methods – and use them to solve problems in the 

engineering domain. 
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5 ENGINEERS’ MATHEMATICS 

In chapter 4 it was shown that the types of mathematical tasks given to engineering students and the 

topics they are expected to learn in their mathematics courses are not noticeably different from those 

learned by mathematics students in the first two years of their university education. But the education 

of engineers isn’t limited to mathematics classes. They must also learn about the physical sciences in 

order to be able to describe, understand, and predict physical phenomena. The goal of an engineer’s 

mathematics education is to express these phenomena symbolically using mathematical models, and it 

is precisely this use of mathematics to model the physical world that differentiates an engineer’s 

mathematics from that of the mathematician. 

The present chapter will explore how engineers use mathematics to create models of the physical world 

in order to solve engineering problems, and will focus particularly on the models used in the field of 

structural engineering. Structural engineering comprises the tasks of design, analysis, construction, and 

maintenance of all manner of modern structures including conventional shelters such as houses, office 

buildings, and commercial warehouses, as well as specialized structures such as bridges, highway 

overpasses and interchanges, and hydroelectric dams. 

The chapter begins with a brief explanation of two types of models: analytical and empirical. Established 

mathematical models, their assumptions, and how they were developed, are presented to students in 

their engineering textbooks. These models are then used by students in application problems. Examples 

of these models from the subjects of statics, mechanics of materials, and structural analysis will be 

shown in section 5.2. As they are presented, observations will be made about which aspects of the 

models are important to engineers, and which aspects a mathematician may see that an engineer might 

overlook. 
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Section 5.3 contains an in-depth examination of a mathematical model of matrix structural analysis. 

Included in this section is a discussion of the concept of eigenvalues and eigenvectors in the context of 

matrix structural analysis. My intention is to show the physical meaning of an abstract mathematical 

concept in an engineering context. 

The final section of this chapter presents documents from a professional engineer’s dossier de calculs 

that will illustrate how the mathematics used in professional practice rests upon the extensive research 

and refinement of the mathematical models developed by professional and research engineers. 

5.1 ANALYTICAL MODELS AND EMPIRICAL MODELS 

In chapter 4 I showed that mathematics courses taken during an engineer’s education provide tasks that 

involve applications, but there were none that required the student to create a mathematical model. In 

the current chapter I will show that many of the mathematical models used by engineers are introduced 

in the textbooks of engineering core courses. I will present some of these models, explain how they are 

developed, and show that the tasks given to engineering students involve applications of these models. 

Engineers make use of two different types of mathematical models: analytical models and empirical 

models. Analytical models are developed directly from foundational principles of physical sciences. In 

their physics courses, for example, engineering students learn about kinematics, the study of the motion 

of objects, without regard for the cause of the motion. The laws of how things fall were developed long 

before Newton described why things fall (Tipler, 1991). Kinematics relates three physical quantities: the 

displacement of an object, its velocity, and its acceleration. Displacement is the change in an object’s 

position in space: 
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Velocity is defined as the rate of change of displacement. This is expressed mathematically as: 

    
  

  
 

for average velocity, and: 

     
    

  

  
 

  

  
 

for instantaneous velocity. Similarly, acceleration is defined as the rate of change of velocity, and is 

expressed as: 

    
  

  
 

for average acceleration, and: 

     
    

  

  
 

  

  
 

for instantaneous acceleration. But, if the acceleration is constant (as it is for objects that are dropped 

or fall on Earth) then velocity varies linearly with time. This leads to the development of the four 

equations of kinematics that can be used to solve problems: 

        

   
 

 
        

         
 

 
    

     
       

Each equation can be used depending on the context of the problem that one wishes to solve, on what 

information is known, and what information is sought. The last equation would be used if one wants to 
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know the final velocity,  , of an object as it hits the ground when dropped from a known height,   , 

without any regard to the time it took to fall (Tipler, 1991). These four equations are all derived through 

analytical means directly from the relationships between displacement, velocity, and acceleration. 

An example of an analytical model used specifically by structural engineers is the various formulae for 

calculating the moment of inertia of common geometric shapes. These formulae, and how they are 

developed, will be shown and discussed in section 5.2.2. 

Empirical models on the other hand are developed through experimentation, and are often refined with 

statistical analysis. Such models cannot be derived solely by analytical means. A well-known example of 

an empirical model is Hooke’s Law which states that the force, F, required to stretch a spring is directly 

proportional to the length, X, that it is stretched:     . This relationship is usually investigated in high 

school physics classes, and could not be determined based on the principles of mechanics alone. A 

similar relationship arises in the study of mechanics of materials, and is presented in section 5.2.3. 

The design codes that structural engineers are obligated to follow in the design and analysis of 

structures are peppered with equations that were derived empirically. Historically, research engineers 

have always been interested in determining the effects that small changes in the shape, size, and 

configuration of structural members may have on a structure’s performance. The only way to determine 

those effects is to perform controlled experiments and analyze the results. The result is the empirical 

models that are found in the design codes. 

Recall that the use of these models to solve a problem results in an application of mathematics, but the 

development of the equations themselves in order to represent physical reality is done through the 

process of mathematical modelling. The mathematical models that are introduced throughout section 

5.2 will be identified as either analytical or empirical in nature. 
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5.2 THE MATHEMATICS OF MECHANICS 

Civil engineering is a multidisciplinary field encompassing many different kinds of engineering disciplines 

including environmental engineering, transportation engineering, and structural engineering among 

others. Prior to my career as a graduate student, I was employed as a licensed structural engineer, 

hence my interest in writing on the topic of this thesis. The remainder of this chapter will therefore 

focus solely on the mathematics used by structural engineers. 

Structural engineering is an advanced discipline that stems from applied mechanics, particularly the 

fields of statics, which is the study of rigid bodies at rest, and the mechanics of materials, which is the 

study of deformable bodies4. All structures, be they houses, bus shelters, skyscrapers, or bridges, must 

be static, i.e., they must not move from their location after being exposed to some force pushing it or 

pulling on it. But they are not rigid bodies; they are subject to deformations due to the properties of the 

materials they are made from. A bus shelter may sway due to the gust of a strong wind (it will deform), 

but it should not move from where it was built (it will be static against the applied force of the wind). 

While mechanics and mathematics may seem to be distinct subjects, historically there is very little 

separation between the two. Bkouche (1989) neatly summarizes the close relationship between the two 

fields and how each has allowed a better understanding of the other. It is in applying mathematics to 

the problems from which its concepts and theories were born, among which are physical problems, that 

we see its power. The formalisation of mathematics in the late nineteenth century removed it from its 

empirical origins in mechanics and physics. Prior to this, the lines between the two fields of study were 

blurred. Consider the works of Newton and Euler who are celebrated for their discoveries in both 

mathematics and mechanics. Newton’s laws of motion are well-tested mathematical models that are 

generally accepted as being correct, and weren’t superseded in their accuracy or generality until 

                                                           
4
 Deformable bodies are objects whose shapes can be altered by stretching, compressing, bending, or twisting. In 

the field of statics, objects are assumed to be un-deformable, i.e., rigid. 
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Einstein’s theory of relativity. Euler is also recognized for his contributions to mechanics as well and is 

remembered for models that he developed through experimentation and equations that that are named 

in his honour. 

The sections that follow will present some mathematical models from statics, mechanics of materials, 

and structural analysis, along with an introduction to the underlying physical principles that they 

represent. Certain details will be highlighted to indicate the differences in what an engineer and a 

mathematician may notice about the mathematics used in the models. I begin by discussing the 

important concept of units, without which there would perhaps be no understanding of the measure of 

the physical world. 

5.2.1 Units and numerical accuracy 

Units are vital to a proper description of physical quantities. The number 10 by itself may or may not 

convey any meaning to the reader, but if one is asked to hold a toothbrush weighing 10 grams in one 

hand, and a bowling ball weighing 10 kilograms in the other, suddenly the number 10 can take on 

different meanings. It is worth noting that in the tasks from various exams shown in chapter 4, units of 

measure only appear in application questions, when objects from the physical world are involved. 

In mechanics, there are three fundamental units of measure that are considered base units, i.e., they are 

defined arbitrarily, and are used to derive other units (Beer & Johnston, 2007). These are the units of 

time, length, and mass. Two systems are still in use to describe these units: the Système International 

(SI), also known as the metric system, and the U.S. Customary system, commonly referred to as the 

Imperial system. In the SI system, the base units for time, length, and mass are, respectively, the second 

( ) the metre ( ) and the kilogram (  ). 

A fourth unit that is considered fundamental to mechanics is that of force. Its unit of measure in the SI 

system is called the newton ( ), and it is derived from the base units of time, length, and mass. A force 
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of 1   is the force that must be applied to a mass of 1    in order to make it move with an acceleration 

of 1    ⁄ : 

          (  
 

  
)    

    

  
 

With these four units, other important units used in engineering can be derived as well, including: 

 The pascal (Pa) for units of stress, also referred to as pressure, defined as applying a force of 1 

newton over an area of 1 square metre: 

     
   

    
   

 

  
 

 The joule (J) for units of work, defined as the energy transferred when applying a force of 1 

newton to an object over a distance of 1 metre: 

                     

 The watt (W) for units of power, defined as 1 joule per second: 

    
   

   
   

 

 
  

   

 
 

It is often the case that physical quantities can only be expressed by large numerical values of these 

units. To simplify numerical notation, a system of prefixes is used for various orders of magnitude of 

units (Figure 60). 

 

Figure 60 - SI prefixes and multiplication factors (Beer & Johnston, 2007) 
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The most commonly used units of length, force, and stress are the kilometre (          ), the 

millimetre (            ), the kilonewton (           ), the megapascal (            ), 

and the gigapascal (             ). The use of the prefixes kilo, milli, mega, and giga allows the 

numerical value of certain measures to be written more efficiently and therefore more easily 

understood. 

It is interesting to note the recommendation that certain prefixes including centi and deci be avoided, 

especially for units of length. In engineering practice the preferred units for lengths and distances are 

the kilometre, the metre and the millimetre. Figure 61 is an extract from the same plan that was used to 

generate the image in Figure 56 (in section 4.3.8). 

 

Figure 61 - General notes from an engineering plan (Used with permission of CIMA+) 

It shows the plan view of a proposed bridge (VUE EN PLAN) as well as the bridge’s cross section (COUPE 

A-A). The text in the red box in the upper right hand corner of the plan shows the general comments 

(NOTES) that apply to every numerical measurement on the plan. The text reads “The dimensions are in 

millimetres”, and “Chainage distances and elevations are expressed in metres.” With the inclusion of 

these notes, every number that appears on the plan is assigned an appropriate unit of measure. 
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The two red boxes in the lower half of Figure 61 are shown in larger scale inFigure 62 and Figure 63. 

 

Figure 62 - Chainage and elevation of a bridge abutment 

The numbers shown in Figure 62 indicate the chainage marker (CH.) and the elevation (ÉL.) of the 

roadway on the face of the bridge’s abutment. According to the general notes, these measurements are 

in metres. This tells the engineers that the face of the bridge’s abutment is to be located at the position 

10296.518 metres from the beginning of the roadway, and the elevation of the roadway is to be 39.863 

metres at this same spot. 

Figure 63 shows the measurements of the bridge’s cross-section. Since these are not chainage distances 

or elevations, these measurements all have units of millimetres. Thus, the total width of the bridge is 

14450 mm broken up into two curbs of 450 mm each, two shoulders (ACC. for accotement) of 3000 mm, 

and two lanes (VOIE) of 3700 mm. 

 

Figure 63 - Cross-section of a proposed bridge 
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Notice that when measurements are given in metres (Figure 62), there are three digits to the right of the 

decimal place. This means that the precision of the measurement is to the millimetre. As such, 

measurements whose units are millimetres have no digits following the decimal (Figure 63). 

This raises questions about the level of precision that is expected of engineers in their use of numbers to 

represent physical quantities. The table of prefixes in Figure 60 is from a textbook section entitled 

“Systems of units” (Beer & Johnston, 2007). Nearly all introductory mechanics textbooks will include a 

section explaining the proper use of units, prefixes, and expressing quantities using scientific notation. 

An equally important section entitled “Numerical accuracy” discusses the use of significant figures when 

computing solutions to problems. In general, the numerical value of a solution cannot be more accurate 

than either (1) the accuracy of the given data, or (2) the accuracy of the computations performed (Beer 

& Johnston, 2007). Computed quantities are often truncated, removing digits that are considered to be 

beyond the accuracy of the known measured data. For example, while the circumference of a circle 

whose diameter is 1.00 m is precisely equal to π m, an engineer will express the circumference as 3.14 m. 

Any additional decimal places beyond the hundredths position would be considered more accurate than 

the measured value of the circle’s diameter. If, however, more precise measurements are taken, and the 

diameter is measured to be 1.005 m, then the circumference can be expressed as 3.157 m. Similarly, the 

lengths and distances indicated on the plan in Figure 61 can be precise “to the millimetre” because the 

equipment that will be used to measure those same lengths during construction will have the same 

precision in their measuring capabilities. 

This is an example of how engineers and mathematicians differ in their respective concepts of 

“precision.” While mathematicians strive to achieve absolute precision in how they represent numbers, 

engineers seek practicality. While the symbol π is the only true way to represent the number that is 

exactly the ratio of a circle’s circumference to its diameter, measuring a length of π metres is rather 



110 
 

impractical since it requires a level of precision that cannot be achieved. Thus engineers use precision 

relative to the context of the physical problem which they are trying to solve. 

Lastly, there is another unit of measure that I have neglected to mention thus far but that is important 

to every engineering project that a professional engineer will work on. That unit is the dollar ($). 

Structural engineers design and construct all manners of structure that much resist applied loads and 

have limited deformations, but they must also be built efficiently and economically. Professional 

engineers who work in the role of project manager are chiefly responsible for ensuring that the 

monetary aspects of the project are met. 

5.2.2 Statics 

Statics is the study of rigid bodies, i.e., objects that are assumed to remain un-deformed when acted 

upon by external forces. The principle of static equilibrium is at the heart of the subject. Static 

equilibrium is an interpretation of Newton’s first law of motion which states that an object at rest will 

remain at rest unless it is acted upon by an external force. But the effects of any external force applied 

to an object can be countered by applying a second force that is equal in magnitude but opposite in 

direction to the first. Thus Newton’s first law can be restated as: an object will be in static equilibrium if 

the net sum of the external forces acting upon it is 0. 

Applying a force is akin to the act of pushing or pulling on an object. Imagine pushing a large block. 

When pushed with enough force the block moves in the same direction that the force is applied (Figure 

64). Applying a second force of equal magnitude but in the opposite direction on the block will stop the 

block from moving; the block will be static. 
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Figure 64 - Applying a force to a block and pushing it. Applying two forces: the block does not move (drawing is my own) 

There is an important caveat: forces of equal magnitude do not always cancel each other out. Consider a 

book resting on a table, and the two forces applied to opposite corners (Figure 65). It is intuitive to see 

that these forces will cause the book to rotate. Even though they are equal in magnitude and opposite in 

direction, applying the forces in this manner does not leave the book in static equilibrium. The rotational 

potential of a force, or a pair of forces, is called a moment,  . 

 

Figure 65 - Applying a force: rotating a book (drawing is my own) 

To understand how moments are measured, imagine closing a door using only your index finger (Figure 

66). If you place your finger near the door’s extremity, far from the hinge, you only need to apply a small 

force,  , for the door to close. This is because the line of action of the force is located a relatively large 

distance,  , away from the axis about which the door rotates. The applied force and its distance from 

the axis of rotation work together to create the rotational force called a moment,  . 
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Figure 66 - Applying a moment to a door (1) (drawing is my own) 

Moving your finger closer to the hinge reduces the distance,   (Figure 67). In order to close the door 

with the same rotational force, or moment, as before, you will now need to apply a much larger force to 

the door. 

 

Figure 67 - Applying a moment to a door (2) (drawing is my own) 

As a scalar, the magnitude of a moment is the product of the applied force and the distance from the 

line of action of the force to the axis of rotation. Thus, the unit of measure of the moment is the 

newton-metre,    . As a vector, a moment is the cross product of the radius vector  ⃗ defined from the 

point of rotation to the line of action of the force, and the force vector,  ⃗. Due to its definition as a cross 

product, the line of action of   in Figure 66 and Figure 67 is directed out of the plane of the page, but its 

effects are drawn on the plane and represented by a curved arrow in the direction of its rotation. A 

positive moment will rotate an object in a counter-clockwise direction when viewed from overhead. 
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For a body to be in static equilibrium the sum of all forces and the sum of all moments acting upon it 

must be zero. The former prevents the body from being displaced in a plane, and the latter prevents it 

from rotating within the same plane. This is expressed mathematically as: 

∑     ∑    

This is the mathematical model that was presented in section 3.3. Here I note that in expressing these 

requirements, engineers do not concern themselves with the indices or bounds in the sigma notation. In 

the context of Newton’s first law and static equilibrium it is implied that the number of forces and 

moments is finite, and all those that are identified in a problem are to be included in the summation. 

The concepts of forces and moments are two examples of how engineers use vectors in an analytical 

mathematical model. This particular model of static equilibrium allows engineers to solve problems that 

require finding unknown reaction forces in the supports that hold up a structure. Setting the sum of all 

forces and moments equal to 0 results in a system of equations that can be solved using techniques 

learned in linear algebra, with the solutions to the systems being the unknown forces that are sought. 

A typical problem from a statics textbook is shown in Figure 68. 

 

Figure 68 - Statics problem (Beer & Johnston, 2007, p. 173) 
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Letting    and    represent the forces at supports A and B leads the following system of two equations 

and two unknowns: 

∑                              

∑                                   (   
 

 
    )      (   

 

 
)    

Implicit in the derivation of these equations is the knowledge that forces and moments that act in 

opposite directions have opposite signs, just as vectors acting in opposite directions and equal length 

can be expressed as   and   . Thus, if a force acting vertically upwards is taken to be positive (as is the 

case for the support reaction forces    and   ), then those acting in the opposite direction are negative 

(as is the case for the applied forces of 3.9, 6.3, 7.9, and 7.3   ). Notice as well the sudden use of 

subscripts on the symbols    and   . These indicate that the forces are being summed in the vertical 

direction (parallel to the standard       ) and that the moments are being summed about, or around, 

the point  , the leftmost point on the beam. While the general mathematical model of static 

equilibrium does not include these subscripts, they become necessary in particular applications to clarify 

the origins of the terms in each equation. 

For the purposes of determining the reaction forces in the supports, it is implicitly assumed that the 

bridge is a rigid body. In reality the beam supporting the two cars in Figure 68 would deform according 

to the properties of the material it is made from. But since these deformations tend to be relatively 

small when compared to the size of beam itself, the assumption of rigidity is reasonable, and the model 

remains valid. 

Another important mathematical model learned in statics is the one for evaluating the second moment 

of area, also known as the moment of inertia. The moment of inertia is a measure of an object’s ability 

to resist being bent. Imagine being asked to stand on the two boards in Figure 69. Both have a 

rectangular cross-section, but the one on the left is resting on the cross-section’s height while the other 
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is resting on its base. It is not difficult to imagine that the board on the left would bend more easily than 

the board on the right. 

 

Figure 69 - Boards with rectangular cross-sections (drawing is my own) 

The board on the right is more resistant to being bent because it has a larger moment of inertia. In 

Figure 70 the cross-sections of the two boards are shown (see section 4.3.8 for a discussion on the cross-

section of a structural member). 

 

Figure 70 - Rectangular cross-sections (drawing is my own) 

The dashed lines are passing through the centroid of each cross-section; these are referred to as the 

cross-section’s horizontal centroidal axis. A centroidal axis divides a cross-section into two parts of equal 

area on either side of the axis. The vertical distance between the centroidal axis and the top of the 

cross-section is labelled  . Notice that the value of   is greater for the cross-section on the right of 

Figure 70, indicating that its cross-sectional area is located further away from its centroidal axis. Cross-
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sections whose areas are concentrated further away from the centroidal axis have greater moments of 

inertia. 

Mathematically the moment of inertia,  , is evaluated using the integral: 

   ∫     

In this equation,    is a differential area located somewhere in the cross-section, and   is its distance 

from the centroidal axis. The analysis that leads to the derivation of this model is beyond the scope of 

this thesis, but simply put, the integral is the sum of the product of each differential area (  ) with the 

square of its distance (  ) away from the centroidal axis. Notice that doubling a differential area’s 

distance from the centroidal axis increases its effects on the moment of inertia by a factor of 4. Thus, 

the further away the area is from the centroid, the larger the cross-section’s moment of inertia. 

An example of applying this model is as follows. Consider the rectangular cross-section in Figure 71 with 

the dimensions   and  . The differential area,   , highlighted in dark blue, has dimensions     , and 

the sum of the differential areas is performed from the bottom of the cross-section, where    , to the 

top, where    . 

 

Figure 71 - Moment of inertia of a rectangular cross-section (drawing is my own) 

The result of the integral then is: 

  ∫      ∫        
 

 

  ∫     
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The equation   
 

 
    is recognized by engineers as the formula for the moment of inertia of a 

rectangular cross-sectional area. Of note is that the defining equation treats integral as being indefinite; 

there are no limits on the integral. However, when calculating the moment of inertia, the model 

requires establishing the limits and evaluating a definite integral. 

This model, which is purely analytical in its origins, gives a mathematical justification for why the wood 

joists that support the floors of your home are aligned vertically, just like the board on the right in Figure 

69. It also explains why shapes such as those shown in Figure 72 are standard in the construction 

industry. 

 

Figure 72 - Wide-flange and American standard cross sections (Beer & Johnston, 2007, p. 486) 

The horizontal centroidal axes of these cross-section are located at mid-height (the axes labelled    ), 

but the bulk of their areas are located at the bottom and the top of the sections, resulting in a very large 

moment of inertia for a relatively small amount of material, making these shapes very economical. 

This model shows how engineers use integral calculus to model physical properties of real world objects. 

In a statics course, engineering students can be tasked with evaluating the moment of inertia of a given 

cross-sectional area composed of different shapes either by means of integration, or through more 

efficient techniques that they are taught (Figure 73). 
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Figure 73 - Statics textbook problems: finding the moment of inertia of geometric shapes (Beer & Johnston, 2007, p. 493) 

Solving such tasks is simplified by using formulas for the moment of inertia of standard geometric 

shapes such as rectangles, triangles, and circles (Figure 74). 

 

Figure 74 - Moments of inertia of common geometric shapes (adapted from (Beer & Johnston, 2007, p. inside back cover)) 

However, once one becomes a practicing engineer, even these tasks no longer become necessary since 

the moments of inertia of standard cross-sections have already been evaluated and the values compiled 

in tables found in design manuals. The table in Figure 75 is taken from the Handbook of Steel 

Construction (2000) and includes various geometric properties for different wide-flange shapes, 

standard in the design and construction of steel structures. 
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Figure 75 - Properties and dimensions of structural shapes (Canadian Institute of Steel Construction, 2000, pp. 6-48) 

From this table we read that for a structural member whose cross-sectional shape is designated 

W460x68 (in the column Designation), the moment of inertia is listed in the column    as 297 x 106    . 

A member whose cross-section is W460x52 has a moment of inertia of 212 x 106    . 

5.2.3 Mechanics of materials 

While statics allows an engineer to determine the resulting effects of forces that act upon a member, it 

cannot help in deciding if the member is strong enough to resist those forces. Whether or not a member 

will safely carry a load or break as a result of it depends not only on the magnitude of the force, but also 

on the material the member is made from, as well as the size and shape of the member itself, including 

its cross-section. The properties of the cross-section that are of particular interest are the area and the 

moment of inertia. The study of these properties and their effects on a member’s ability to resist applied 

forces is called mechanics of materials (Beer & Johnston, 1992). 

Mechanics of materials builds upon the concept of force from statics and explores the properties of 

deformable bodies. Even if an object is in static equilibrium, applying enough force will cause it to 

deform; it can stretch, compress, bend, twist, or any combination thereof. This is due simply to the 

physical and chemical properties of the material that the object is made of. 
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A concept that is introduced in mechanics of materials is that of stress: the amount of force applied per 

unit area. Symbolically, stress is represented by the lower case Greek letter sigma: 

   
 

 
 

Its unit of measure is the pascal (  ), where           ⁄ . Due to their strength, measuring stress in 

materials such as steel and aluminum requires the use of orders of magnitudes such as the megapascal 

(   ) or gigapascal (   ). 

Applying a force of equal magnitude to two objects with different cross-sectional areas will have 

different effects, since the object with the smaller area will be subjected to a larger stress (Figure 76). 

Here an engineer is required to understand direct and inverse relationships. While stress is directly 

proportional to force, it is inversely proportional to area. 

 

Figure 76 - Stress in a structural member (drawing is my own) 

While both members in Figure 76 are subjected to the same applied force,  , since the area    of the 

member on the left is greater than the area    of the member on the right, the stress    in the member 

on the left is less than the stress    in the member on the right. 
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If enough force is applied to an object, the stress it creates in the material will cause the object to 

deform. Deformations can be measured either as an absolute quantity, or as an amount relative to the 

original, un-deformed length of the object. Consider a steel rod of length 50    (Figure 77) to which we 

apply enough force until its length is stretched 50.75   .  

 

Figure 77 - Elongation a steel rod (drawing is my own) 

The deformation can either be calculated in absolute terms, as follows: 

                         

or as a ratio of the deformation to the original length. This relative deformation is called strain, a 

displacement per unit length, and it is represented by the lower case Greek letter epsilon: 

   
 

 
 

For the rod in Figure 77: 

   
 

 
  

       

     
       

Since displacement and length are both measured with the same units, it would appear that strain is a 

unit-less quantity, but this is not the case. Though the units are often omitted, it is understood that the 

units of strain are     ⁄ . Multiplication factors can be used in order to express strain in units such as 

   ⁄  (millimetres per metre), or    ⁄  (micrometres per metre). 

In section 5.1, Hooke’s Law was mentioned as an example of an empirical mathematical model, relating 

weights attached to a spring and the resulting elongation. This relationship is also found between the 
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applied stress and the resulting strain in certain materials. In laboratory sessions of their mechanics of 

material courses, engineering students perform a standard experiment on material samples. Stress is 

applied in increasing increments on the samples, and the resulting strain is measured. Plotting the 

results produces a graph similar to the one shown in Figure 78. 

 

Figure 78 - Stress-strain diagram for a ductile material (drawing is my own) 

A civil engineer would instantly recognize this drawing as the “stress-strain diagram” of a ductile 

material5. A mathematician would notice that the independent variable described in the experiment 

(stress,  ) is plotted on the ordinate ( -axis) while the dependent variable (strain,  ) is plotted on the 

abscissa ( -axis). The principal reason for this is to be able to express the relationship between stress 

and strain mathematically as: 

      

The coefficient of the linear relationship is called the modulus of elasticity,  . Graphically, the modulus 

of elasticity is the slope of the linear portion of the stress-strain diagram. Due to the nature of the units 

of stress and strain, it is more convenient to express the linear relation in this manner so that the units 

of the modulus of elasticity match those of stress, i.e., it has units of pascal, megapascal, or gigapascal. 

                                                           
5
 Ductility refers to a material’s ability to yield under stress. A ductile material continues to deform without any 

increase in applied stress. Examples of ductile materials include steel, aluminum, and other metal alloys. Brittle 
materials on the other hand are prone to rupture, or breaking without yielding. Examples include glass, masonry, 
and cast iron. 
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The values    and    indicated on the axes in Figure 78 are referred to as the yield stress and yield strain 

of the material. If the applied stress remains below the value   , then the linear relation holds true, and 

the material is said to be elastic. Much like how a rubber band returns to its original shape after being 

stretched, the strain in elastic materials is eliminated once the applied stress is removed. Applying 

stresses greater than    causes excessive and permanent deformations in the material. At this point the 

material is said to become plastic. This is represented by the horizontal portion of the stress-strain 

diagram, indicating that strain, and therefore deformation, can increase without any corresponding 

increase in applied stress. 

In general, an engineer seeks to design a structure so that the stresses in its structural members remain 

below the yield stress of the material they are made from. If this is achieved, then the members will not 

rupture. It is also important that the resulting deformations do not exceed the yield strain, as excessive 

deformations in a structure are unfavourable as well. Recall that the principle of static equilibrium 

depends on the assumption that the deformations of bodies are negligible. If this assumption is violated 

then a mathematical model at the heart of structural analysis becomes invalidated. 

The modulus of elasticity appears in nearly every mathematical model that is used in structural analysis. 

The proper choice of material is vital to a structure’s ability to resist the loads that are applied to it. And 

yet, the mathematics behind its development is remarkably simple: ratios of forces to areas (stress), 

deformations to lengths (strain), and the linear relationship found through empirical tests. It is the use 

of mathematics to describe these concepts that allows material properties such as elasticity to be 

understood. 

The linear equation relating stress and strain via the modulus of elasticity is an empirical model that can 

be used for introductory application problems in mechanics of materials. But more advanced 

mathematics is required in order to develop concepts that are needed in structural analysis. Differential 
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equations are used, for example, in a model for determining the maximum amount that a beam will 

deform when it is bent under an applied load (Beer & Johnston, 1992). A beam is a horizontal structural 

member, and its deformed shape is referred to as its elastic curve. While the details of its development 

are beyond the scope of this thesis, the following differential equation is used to relate the second 

derivative of the elastic curve to the bending moment (the bending force) in the beam, as well as the 

beam’s modulus of elasticity and moment of inertia: 

   

   
  

    

  
 

The function      whose second derivative is shown is the equation of the beam’s elastic curve, with   

representing the vertical distance that the beam is bent, and   the horizontal position along the length 

of the beam. Note that the symbols   and   are used to represent physical distances in the horizontal 

and vertical directions, and are not simply arbitrary variables.      is the magnitude of the bending 

moment at a position   along the length of the beam. Depending on what external forces are being 

applied to the beam, the bending moment at any position,  , along the length of the beam will vary.   

and   are, respectively, the modulus of elasticity of the material the beam is made of and the moment of 

inertia of the beam’s cross-section. The product    is called the flexural rigidity of a member’s cross-

section. 

Deriving this differential equation requires analyzing the curvature of the elastic curve     . In the 

analysis, the assumption is made that     ⁄ , the slope of the elastic curve, is very small compared to 

unity. As such, the actual differential equation: 
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is simplified by neglecting the denominator in the term of the left hand side. This assumption is not 

unreasonable, as it is essentially the same assumption used in the principle of static equilibrium: 

deformations are considered small relative to the size of the object being deformed. If the slope of the 

elastic curve,     ⁄ , is indeed negligible, then so is its square (text in read in the equation above). Thus 

the denominator on the left hand side is simply equal to 1. 

If the magnitude and location of the forces applied to the beam are known, then the equation defining 

     can be determined from the principles of statics, and the general solution of the differential 

equation is shown to be (Beer & Johnston, 1992): 

      
 

  
 ∫   

 

 

 ∫                

 

 

 

The constants    and    must be determined from the support conditions at the ends of the beam, and 

whether they are free to displace or rotate. Deflections and rotations can be set equal to 0 at either end 

depending on the type of support that holds the beam in place. 

This model is shown in engineering textbooks to illustrate that a simply supported beam with a 

uniformly distributed loaded has a maximum displacement,     , at its mid-length of: 

      
      

       
 

If an engineer is prudent with their use of units, the value of maximum displacement that results from 

this calculation will be in appropriate units such as millimetres. To accomplish this, the following units 

should be used for the other terms in the equation: 

 The applied load,        ⁄  

 The length of the beam,      

 The modulus of elasticity,            ⁄  

 The moment of inertia,       
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The formulae for maximum deflection under different loading configurations are all evaluated using this 

same differential equation. Many loading configurations can appear in different design situations, and 

so the solutions to the differential equations of the most common configurations have already been 

evaluated, and their results compiled in convenient tables that professional engineers can reference in 

design manuals, such as that shown in Figure 79, taken from the Handbook of Steel Construction (2000). 

While an engineer learns how to use the differential equation model as a student, their professional 

practice is made more efficient by not having to retrace the same calculations repeatedly. 

 

Figure 79 - Beam diagrams and formulae (Canadian Institute of Steel Construction, 2000, pp. 5-132) 

The top section of Figure 79 shows the situation described in my example: a simple beam with a 

uniformly distributed load. That is, rather than having a single force applied at a unique point on the 

beam, there is an equal amount of force being distributed across its entire length. The weight of the 

beam itself is modelled in such a manner. The value labeled      is the maximum displacement of the 
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beam under the described loading condition. The bottom section of the figure shows that a simple beam, 

with a distributed load that increases uniformly from 0 at either end to some amount   at its centre, 

will experience a maximum deformation of: 

      
   

    
 

Models such as these are essential in performing structural analysis, discussed in the next section. 

5.2.4 Structural analysis 

The goal of structural analysis is to predict the performance of a structure under prescribed forces, or 

loads. Loads can come from a variety of sources including the weight of the structure itself, from the use 

of the structure’s occupants, and from other external effects such as wind, snow, earthquakes, and 

temperature changes. The performance characteristics that a structural engineer is interested in 

determining are the stresses in the structural members, the deflections or deformations of the structure, 

and the magnitude of the reaction forces in the structure’s supports. 

Structural analysis is one phase in the iterative process of structural design. The analysis phase allows 

the engineer to verify whether a design meets the criteria for safety (resistance to loads) and 

serviceability (limited deformation). If either of these criteria isn’t met, the design is revised, and the 

analysis is performed anew. 

A crucial step prior to the analysis is estimating the loads, or forces, that will act upon the structure. The 

National Building Code of Canada (NBCC) is the model code6 upon which provincial jurisdictions base 

their own design and construction codes. Part 4 of the NBCC states that structural design be performed 

                                                           
6
 The word “model” in this case does not refer to a mathematical model, but is used in the sense of a guide. The 

various provincial building codes are written using the National Building Code of Canada as a model for their 
content. 
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using a method called limit states design. In limit states design, the factored resistance of a structure 

must be greater than the factored effect of the loads applied to the structure. This is expressed as: 

                                               

and alternatively as: 

              

                   
    

This inequality features prominently in design and analysis calculations performed by practicing 

engineers. Examples of its use will be shown in section 5.4. 

The key to understanding limit states design lies in the use of the word “factored.” In brief, the design 

process will over-estimate the magnitude of applied loads and under-estimate the strength of the 

structural members. This provides a margin of safety in the design of the structure. As the name implies, 

the process involves multiplying the values of calculated loads and resistances by factors. The terms 

“factored resistance” and “factored loads” can each be written symbolically as (Canadian Institute of 

Steel Construction, 2000): 

                               

On the left hand side of the inequality,   is the resistance of a structural member. It is evaluated using 

models developed in mechanics of materials and in specialized courses on the design of structures. For 

the terms on the right-hand side of the inequality, the NBCC includes formulae and tables that are to be 

used to estimate the various loads that a structure must resist. Included among these are (National 

Research Council of Canada, 2010): 

 Dead loads ( ): the weight of the structure itself and all of the materials used in its construction 

 Live loads ( ): the load on an area of floor or roof depending on the intended use and 

occupancy; loads due to ice, snow, and rain are also considered live loads 

 Wind loads ( ): the load caused by wind blowing on the structure 
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 Loads induced the structure by changes in temperature ( ) 

The various coefficients    are load factors, while   and  are the importance factor and the load 

combination factor, respectively. These factors have the effect of amplifying the prescribed loads that 

are applied to the structure in the analysis. The values assigned to them are chosen from pre-

determined load combinations that are prescribed either by the NBCC, or the appropriate design manual. 

For example, in the Handbook of Steel Construction, clause 7.2.3 of the Limit States Design of Steel 

Structures states that the load factors   are to taken as: 

         

         

         

         

Thus, the loads are automatically increased by either 25%, or up to 50% of those suggested by the NBCC. 

The value of , however, may be less than 1. This would appear to have the effect of reducing the 

estimated load, but this is actually not the case. In the Handbook of Steel Construction, the value of  is 

taken to be 1.00 when the structure is analyzed under the effects of only one of the loads  ,  , and  , 

but it can be taken to be 0.70 when the effects two of  ,  , and   are analyzed. In other words, when 

analyzing the structure’s performance against only live loads,  , 100% of the factored loads must be 

applied to the structure in the analysis. But, when analyzing its performance against live loads,  , and 

wind loads,  , only 70% of the factored loads need to be applied in the analysis. The underlying reason 

for this is due to statistical analysis. The load estimates for   and   provided by the NBCC are the 

maximum loads that the structure could expect to encounter in its life. The probability that the structure 

will have to resist the maximum values of   and   simultaneously is small; hence the estimated 
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factored loads can be reduced. This is an example of how statistics are intrinsic to some empirical 

mathematical models used in the engineer’s design process. 

Engineers have several techniques available to accomplish the task of structural analysis. Since the 

advent of computer programming, techniques involving linear algebra and matrices have become 

prevalent. Such techniques are collectively referred to as matrix structural analysis. The most widely 

used analysis technique, called the direct stiffness method, is described in some detail in the following 

section since it can illustrate some different perceptions that engineers and mathematicians have of 

matrices as mathematical objects. 

5.3 MATRIX STRUCTURAL ANALYSIS 

In the previous sections I described the fundamental principles of structural engineering and how 

engineers use the mathematics they learn to create mathematical models that represent various 

physical concepts such as forces, stress and strain, the modulus of elasticity, and the moment of inertia. 

These principles gave way to a brief introduction to structural analysis and its goal of predicting the 

performance of a structure under the effects of applied loads. The purpose of these sections was also to 

lay the groundwork for the text that follows, which explains how matrix structural analysis is used as a 

technique to accomplish the task of predicting structural performance. 

In preparation for my research for this thesis, a discussion about linear algebra and its practical uses 

prompted the following question: do matrix properties such as eigenvectors have any physical meaning 

to a structural engineer? The answer, as I will show, is yes, they do. After presenting the details of matrix 

structural analysis, I will discuss the physical representations of eigenvectors in this context. However, it 

will then be shown that, for a structural engineer, an eigenvector’s physical representation holds no 

interest in the task of structure analysis, specifically because of what they represent. This is not to 
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suggest that eigenvectors don’t hold any meaning at all, it is simply an illustration of how the use of 

mathematics to model the physical world is context dependent. 

5.3.1 The elastic stiffness matrix 

Of particular interest in structural analysis is determining the displacements and rotations of a 

structure’s joints due to the effects of applied forces. Joints are connection points between structural 

members; horizontal members are called beams and vertical members are called columns. Each 

individual member in a structure plays an important role in matrix structural analysis. 

A member whose displacements are restricted to a two-dimensional plane is called a plane member. 

Each end of a member has the potential to move, or be displaced, in one of three directions in the 

plane: horizontally, vertically, or by rotating about the axis perpendicular to the plane. In Figure 80, the 

horizontal line represents a beam. The left and right ends of the beam are referred as to end 1 and 2, 

and the potential displacements of each end are labeled    through    as follows: 

    and   : Horizontal displacements at ends 1 and 2 respectively 

    and   : Vertical displacements at ends 1 and 2 respectively 

    and  : Rotation about the axis perpendicular to the plane at ends 1 and 2 respectively 

 

Figure 80 - Potential displacements of a beam (drawing is my own) 

The convention in matrix structural analysis is to label the displacements first at one end of the member, 

starting with the horizontal displacement, then the vertical displacement, and lastly the rotation about 
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the axis perpendicular to the plane. The displacements are then labeled at the other end in the same 

order (Kassimali, 1999). 

Forces are labeled following the same convention (Figure 81). Note that the forces labeled    and    are 

moments. These forces contribute significantly (though not exclusively) to the creation of the rotational 

displacements    and   . 

 

Figure 81 - Potential forces in a beam (drawing is my own) 

The mathematical relationship between displacements and forces is linear, and the coefficient of this 

relationship is referred to as the member’s stiffness. This relation can be represented mathematically by 

the matrix-vector equation: 

{ }   [  ] { } 

where { } is the force vector whose entries are    through   , { } is the displacement vector with 

entries    through   , and [  ] is the member’s elastic stiffness matrix. What an engineer wishes to 

determine from the analysis is the displacement vector, since, as discussed in section 5.2.4, the forces 

acting on the structure are known from the design process. The displacement vector is thus evaluated 

using the inverse of [  ] by the equation: 

{ }   [  ]
   { } 

Vectors { } and { } are of size    , where   is the number of displacements at the member ends, also 

called degrees of freedom. As seen in Figure 80, a plane member has 3 degrees of freedom at each end 
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for 6 degrees of freedom in total. The vectors { } and { } for a plane member then are of size 6x1. For 

the matrix-vector equation to be compatible, the elastic stiffness matrix [  ] must therefore be of size 

    for a plane member. 

The matrix equation can be thus expanded to show all of the elements of the vectors and the stiffness 

matrix: 

{ }   [  ]{ } 
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In reality, the members in a structure aren’t always restricted to movement in a plane. In a three-

dimensional world, each member end can potentially be translated along, or rotated about, any of three 

independent axes. Each member would therefore have up to 12 degrees of freedom, making the 

stiffness matrix for a general structural member of size 12x12 (McGuire, Gallagher, & Zieman, 2000). 

Thus, an implicit assumption of the analysis of a plane frame is that the frame actually remains in the 

plane. 

A structure is composed of several members connected at joints. The number of degrees of freedom for 

a structure is the total number of unrestrained displacements of the joints. Figure 82 depicts a structural 

plane frame made up of five members (three columns and two beams), with nine degrees of freedom 

(labelled    to   ). 
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Figure 82 - Plane frame (drawing is my own) 

The bases of the three columns are restrained by supports that connect the columns to the ground, 

restricting any potential movement. Thus, the degrees of freedom of those ends of the columns are 

eliminated, and are not counted among the degrees of freedom of the structure. But the joints at the 

top of the columns, labeled   ,   , and   , are free to move within the plane. The displacement and force 

vectors for this structure would be of size 9x1, and its elastic stiffness matrix would be of size 9x9. 

If this frame weren’t restricted to the plane, then its stiffness matrix would be of size 18x18. It is perhaps 

obvious then why computer programs have become necessary for the computations involved matrix 

structural analysis. But the size of the matrix does not change the underlying mathematical relationship 

between forces and displacements, or the mathematical technique required to solve the matrix vector 

equation { }   [  ]{ }. 

The values of each entry     in the stiffness matrix [  ] are determined from the principles of static 

equilibrium and mechanics of materials – the basics of which were discussed in sections 5.2.2 and 5.2.3 

– as well as principles known as structural compatibility and superposition. A structural member’s 

physical and geometric properties of modulus of elasticity,  , cross-sectional area,  , moment of inertia, 

 , and length, , all play a role in evaluating its stiffness. 
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Structural compatibility means that the displacement of a joint is shared by all of the members 

connected at the joint (Kassimali, 1999). If a joint connecting a column and a beam is displaced 

horizontally by 5   , then the ends of both the column and the beam are displaced horizontally by 5 

  . This may seem trivial, but stating this principle ensures that connected members in the real 

structure remain connected in the mathematical model as well. This principle could be considered a 

physical representation of the transitive property of equality: if the displacement of the column equals 

the displacement of the joint, and the displacement of the beam equals the displacement of the joint, 

then the displacement of the column equals the displacement of the beam. 

The principle of superposition, for its part, states that the total displacement caused by a system of 

forces is equivalent to the sum of the displacements caused by each individual force applied separately 

(Kassimali, 1999). Physically this means that the displacement of a joint connecting a beam to a column 

is affected equally by the stiffness of both the beam and the column. In the matrix structural analysis 

model, this means that the stiffness of a joint is evaluated by simply adding the corresponding stiffness 

of all of the members connected at the joint.  

With these principles defined, I can now present the values of the entries     in the elastic stiffness 

matrix, [  ] for a member in a plane structure (Kassimali, 1999): 
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Each entry     of is determined by answering the question “what force    creates a unit displacement in 

the direction of   , while keeping all other displacements 0?” For example, entry     has a value of 
   

  
 

because a rotational force,   , of this magnitude is required to create a vertical displacement of     , 

while keeping all other displacements 0.  

Some typical values of  ,  , and   are as follows: 

 For structural steel, modulus of elasticity               
  

    

 For a member whose cross-section is the shape with designation W410x85: 

o              

o                 

The notation “W410x85” refers to a shape colloquially known as an “I beam”, but is technically called a 

“wide flange”, or W section. The value 410 refers to the nominal height of the cross section in   ; and 

85 refers to the weight of the member per unit length, thus 85    ⁄ . 

For a member with these properties, and supposing a design length of 5 000   , the stiffness matrix is 

evaluated to be: 
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A mathematician with a keen eye will notice that the columns of this matrix are linearly dependent; 

specifically the pairs of columns 1 & 4, and 2 & 5 are scalar multiples of each other. This matrix is 

singular. But this is no accident; it is a direct result of the principles of static equilibrium and mechanics 

of materials. 
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The entries in column 1 are the forces required to create a unit in the direction of the degree of freedom 

  , while keeping all other displacements 0 (Figure 83). 

 

Figure 83 - Stiffness matrix entries for displacement d1 (drawing is my own) 

The force     creates the desired displacement. At the same end, forces     and     are 0 since they 

don’t create any displacement in the direction of   , and we wish to keep the displacements they do 

create equal to 0. For the same reason, forces     and     at the other end of the member are 0 as well. 

But a horizontal force     is needed in order to keep the member in static equilibrium. Without the 

force    , the member would simply be pushed away to the right, just like the block depicted in Figure 

64 (section 5.2.2). The magnitude of the force     must be equal to that of    , but it must act in the 

opposite direction. Thus,          . This creates the first column of [  ]: 
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To create column 4, the same reasoning is used (Figure 84). 
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Figure 84 - Stiffness matrix entries for displacement d4 (drawing is my own) 

In this case it is the force     that creates the desired displacement in the direction of   , while the 

forces    ,    ,    , and     are all 0; their actions neither create nor affect the displacement in the 

direction of   . As before, a horizontal force    , equal in magnitude but opposite in direction to    , is 

needed in to prevent a horizontal displacement at the other end and to keep the member in static 

equilibrium. Hence,          . This creates the fourth column of [  ]: 
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The expression that represents the values of the forces     and    , namely the expression 
  

 
, is 

determined from the principles of mechanics of materials. Since the member’s material and geometric 

properties are assumed to remain constant across its entire length, the forces needed to create the unit 

displacements at either end must be the same. This means that         . The result is that columns 1 

and 4 become: 
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So not only are columns 1 and 4 scalar multiples of each other, but because of the underlying physical 

principles of statics and mechanics of material, that scalar must necessarily be -1. The same reasoning 

holds for columns 2 and 5. The reasons for why the same is not true for columns 3 and 6 are beyond the 

scope of this thesis. 

But now an interesting question must be asked: If the elastic stiffness matrix is singular, how can the 

displacement vector be calculated using the equation: 

{ }   [  ]
   { } 

since [  ] does not have an inverse? 

The explanation is simple, but before presenting it, it should be noted that the singularity of [  ] is not 

something that most engineers would notice at first glance. For an engineer, a matrix is a tool that that 

is used in the technique to accomplish this particular task; the matrix itself is not the object of study. 

The elastic stiffness matrix for a single structural member is singular, and so by definition it has no 

inverse. But the 6x6 matrix represents potential displacements in all directions, as if both ends of the 

member were completely unrestrained and free to move without bound. But this is not a true reflection 

of reality. Members in a structure are restrained; some are connected to other members at joints, while 

others are connected directly to ground via supports. At joints, the stiffness of other members prevents 

displacements from becoming too large, while supports effectively eliminate displacements altogether. 

This has an impact on the stiffness matrix, as will be shown shortly. 
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Supports connect a structural member to the ground and restrict displacements. Figure 85 depicts three 

different types of supports. Roller supports (Figure 85, left) allow horizontal displacements and rotations, 

but restrict vertical displacements; pinned supports (Figure 85, centre) allow rotations, but do not allow 

either horizontal or vertical displacements; fixed supports (Figure 85, right) do not allow displacements 

of any kind. 

 

Figure 85 - Supports: Roller support (left), Pinned support (centre), Fixed support (right) (drawing is my own) 

If the displacement at a support is 0, then its corresponding degree of freedom is removed from the 

structure. No amount of force will cause the member to move in the direction of the restricted 

displacement, and thus the row and column of the stiffness matrix that represents these forces and 

displacements are unnecessary to the analysis, and they are removed from the structure’s stiffness 

matrix. 

When all restricted degrees of freedom are removed from the stiffness matrix, the resulting matrix will 

be non-singular. In fact, a singular stiffness matrix necessarily implies that the structure it represents is 

unstable and at risk of having unbounded displacements which can lead to the structure’s collapse. 

Hence, the mathematics of this technique of matrix structural analysis has built into it a way of ensuring 

that the engineer designs a stable structure that is properly supported. 

Once a structure’s stiffness matrix is properly evaluated and the load vector { } is assembled from the 

factored loads applied to the structure, the displacement vector can be calculated by using: 



141 
 

{ }   [  ]
   { } 

The following is an example of a displacement vector for a member in a plane frame resulting from an 

analysis using the direct stiffness method: 
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The units are shown next to the displacement vector for clarity though it is the engineer’s responsibility 

to interpret the displacements as shown in the vector. Computer software designed specifically for 

structural analysis can display the results visually so the engineer can see the deformed shape of the 

member. In Figure 86 we see the analysis results for a frame similar to that in Figure 82. In this structure, 

the five members are made of steel; the shape of the columns is W310x97, and the beams are W200x22. 

The beam on the right half of the frame is the member whose displacement vector is presented above. 

Its left end is translated horizontally to the right by 30.465 mm, vertically downwards by 0.39847 mm, 

and rotated clockwise by 0.010225 radians. Similarly, the right end of the beam is translated horizontally 

to the right by 29.885 mm, vertically downwards by 0.45031 mm, and rotated clockwise by 0.0041687 

radians. 
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Figure 86 - Deformed shape of a plane frame (Software provided with (Kassimali, 1999)) 

Following this analysis the engineer would have to decide if these displacements are acceptable or not 

for the intended use of the truss. If the answer is no (and with horizontal displacements in excess of 30 

   this is a near certainty), then the members will be resized, the loads re-evaluated, and the structure 

subjected to a second analysis to verify the new displacements. 

The complete report created by this software, including all of the data input and the output of the 

analysis is included in appendix 8.4. 

5.3.2 The eigenvectors of an elastic stiffness matrix 

Consider the structure in Figure 87, and suppose that the engineer has determined that loads applied to 

it are as shown. In order to simplify the demonstration that follows this particular structure is modelled 

so that its members do not experience any rotations at their ends. Such a structure is called a plane 

truss. 
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Figure 87 - Plane truss (drawing is my own) 

Since the bottoms of the two members are connected to the ground by pinned supports at joints    and 

  , their horizontal and vertical displacements are restricted, so they are not free to move. Only joint    

can be displaced by the applied forces. Thus, this structure has only two degrees of freedom:    in the 

horizontal direction and    in the vertical direction. Its elastic stiffness matrix will therefore be    . 

Suppose the truss members were designed with the following material and geometric properties: 

 Member 1: 

o                   ⁄  

o W410x85:              

 

 Member 2: 

o                   ⁄  

o W410x39:             

Since the members are not subjected to rotations, their cross-sectional moments of inertia are not 

required. The stiffness matrix of this truss can be shown to be (Kassimali, 1999): 
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It is worth noting that the stiffness matrices of all stable structures are symmetric. This is by virtue of the 

principles of structural compatibility and superposition. With this stiffness matrix and the known loads, 

the displacements of joint    can be calculated: 
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These results indicate that joint    will displace horizontally to the right by 5.052   , and vertically 

downwards by 4.561   . Figure 88 shows the deformed shape of the truss under the given applied 

loads (Kassimali, 1999). 

 

Figure 88 - Results from a structural analysis: deformed shape of a plane truss (Software provided with (Kassimali, 1999)) 
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A mathematician might now be curious about what representation the eigenvectors of the matrix 

[      ] might have. Using the mathematical software Maple, its eigenvalues,   , and eigenvectors,   , 

are determined to be: 

                            

    *
      
     

+        *
      
      

+ 

Notice that vectors    and    are unit vectors. This is not coincidental, especially considering how the 

entries of the stiffness matrix are obtained. Regardless, a set of eigenvectors could always be normalized. 

Since these are eigenvectors of a stiffness matrix, [      ], then physically they must represent 

displacements of the joint   . The forces that cause the displacements represented by the eigenvector 

   are: 

             

Since    is an eigenvector, this equation can be written as: 

         

If we evaluate the Euclidean norm of each of these vectors we find that: 

‖  ‖  ‖    ‖ 

‖  ‖  |  |‖  ‖ 

Since the eigenvector    is a unit vector, its Euclidean norm is 1, giving us: 

‖  ‖  |  | 

From this we can see that the eigenvalues of a stiffness matrix tell us the magnitude of the eigenforces 

that create the unit eigendisplacements. The vector    can be found using eigenvector   : 
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[  ]  [
   

   
]  *

              
              

+ *
      
     

+  *
        
      

+ 
  
  

 

Expressing vectors    and    in terms of their magnitude and direction yields: 

                      

                

Notice that the magnitude of    is the eigenvalue   . The interpretation of this is that applying a force 

with magnitude of 173.453    at an angle of 154.20  with the horizontal direction results in a 

displacement of 1    in the same direction as the applied force. This is the physical representation of 

the eigenvectors of a structure’s elastic stiffness matrix. This situation is represented in Figure 89 (not to 

scale). The same interpretation exists for eigenvalue   , and eigenvector   , along with its associated 

eigenforce,   . The direction of these latter vectors is orthogonal to the direction of vectors    and   . 

 

Figure 89 - Eigenvectors of a plane truss: applied force and resulting displacement are in the same direction (drawing is my own) 

Though it is interesting to discover that eigenvectors in this model do have physical meaning, it is 

unfortunately irrelevant to the structural engineer performing this analysis. Recall that structural 

analysis is only one stage in the design process. Prior to analyzing a structure, the engineer must first 

ascertain the loads that will be applied to it. Thus, the forces acting on the structure are known ahead of 

time; their magnitudes and direction are pre-determined. It is the displacements that are sought, and 
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whether or not they occur in the same direction as the net forces is of no consequence; what matters is 

their magnitude. Furthermore, the effect is difficult to demonstrate in the context of computer software 

since the applied forces must be input as component vectors acting in the horizontal and vertical 

directions. The force in Figure 89 would be input in to the software as two forces: a horizontal force with 

magnitude -156.165   , and vertical force with magnitude 75.488   . The output from the software, 

namely the displacement caused by the forces, would be displayed as two displacements in the same 

component directions. It’s only in combining the components that the eigenvector effect becomes 

apparent, and this process can deter engineering students from the actual purpose of their analysis. 

This particular example of eigenvalues was presented because it relates to a mathematical model that 

all civil engineering students learn in a required structural analysis course, and because it was an 

interesting exercise in examining an engineering model from a mathematics educator’s perspective. 

While the eigenvectors have no importance in this instance, there are cases where the eigenvalue of a 

matrix is important. In critical load analysis of columns, the largest eigenvalue of a stiffness matrix is 

used to determine the smallest force that will cause a structural column to buckle. The derivation of the 

model requires advanced engineering knowledge that is beyond the scope of this thesis (specifically 

non-linear structural analysis, which accounts for geometric changes in a structural member, i.e., 

changes in cross-sectional area or moment of inertia along the length of the member). 

This kind of structural analysis is performed for members subjected to loads as shown in Figure 90. The 

column shown is being subjected to both a vertical load and a horizontal load. The horizontal load 

causes the top of the column to displace slightly. The vertical load is now being applied to the column a 

distance    away from the axis of the column. Thus, the load P now creates a moment about the bottom 

of the column causing it to rotate and deform even further, increasing the distance  . The creates a 

feedback loop known as the P-  effect. 
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Figure 90 - Critical load analysis of a column - P-  effect 

In the matrix analysis of this situation, the largest eigenvalue of the matrix corresponds to the smallest 

critical load, P, that can be applied to the column so that it remains stable. The eigenvector tells the 

engineer the column’s final displacement. The other eigenvalues and eigenvectors play no role in the 

analysis since the engineer is looking to find the smallest critical load. Applying loads greater than this 

will cause the column to “buckle”, i.e., to be unstable. 

5.4 MATHEMATICS IN THE ENGINEER’S WORKPLACE 

The vocational mathematics of nurses, airline pilots, and construction workers has been studied in some 

detail in past mathematics education research (LaCroix, 2014; Roth, 2014; Coben & Weeks, 2014; Wake, 

2014). These are all occupations that require some mathematics training and education, but once the 

practitioners reach the workplace much of the mathematics is hidden or black-boxed, and the workers 

describe the mathematics that they do use as rules of thumb. Many of them also take advantage of 

tabulated data. 

To a certain extent, the same can be said for professional engineers. Design codes contain all of the 

formulae that engineers need to use in their design and analysis tasks, as well as tables of data with 

pertinent information that simplify many of the computations in the design process. 
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As a student, an engineer will learn how to calculate the factored resistance of a steel beam and 

determine whether or not their choice of beam will be able to resist the factored loads. But since the 

cross-sectional shapes used in steel construction are all standardised, their resistances for various 

lengths of beams have already been calculated and the results tabulated. Once an engineer knows the 

factored load that a beam must resist, they can look up an adequately sized cross-section size in a table 

that lists beam resistances. 

Recall that not all practicing engineers are involved in the design process. Many are charged with project 

management, ensuring that a structure meets not only design specifications prescribed by code, but also 

those specified by the client, and that the project is completed on time and on budget. The most 

arduous mathematics used by these engineers is in the proper management of resources and personnel 

in an effort to complete a project efficiently. The use of tabulated data is thus a necessity for the 

designers to work efficiently. 

5.4.1 Dossier de calculs 

Returning to the tasks of a structural design engineer, another important outcome of structural analysis 

is the magnitude of the forces in the structure’s supports. The forces applied to the structure are 

supported by the structural members and transferred into the ground via the supports. The supports 

therefore have to be designed to resist the loads that pass through them. 

In this section, I present the details a work document called a dossier de calculs that was prepared by a 

practicing engineer for the design of a structural support. The document contains calculations that serve 

to determine the factored resistance of the support, and to verify that the resistance is greater than the 

factored loads, as prescribed by the limits states design model described in section 5.2.4. The 

calculations are written on a sheet graph paper with numbered rows and columns which will make 

identifying calculations in the images easier on the reader. 
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In Figure 91, the dimensions of the base plate – a thick rectangular plate made of steel on which the 

column will rest – are selected based on the known size of the column that it will support (row 7). 

 

Figure 91 - Dossier de calculs: Base plate dimensions (Source: Obtained from a licensed engineer) 

The selected dimensions are 18 inches x 18 inches x 1 ½ inches. Note that until this point, the units I 

have used have all been chosen from the SI system. However, in the construction industry, even in 

Canada, the Imperial system of measurement is still in frequent use. As a result, practicing engineers 

must be familiar with, and be able to convert measurements from both systems. In SI units, the base 

plate’s dimensions are 457    x 457    x 38.1   . 

In Figure 92, the engineer checks that the selected thickness of 38.1    is greater than the minimum 

thickness required by the design code. 
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Figure 92 - Dossier de calculs: Checking base plate thickness (Source: Obtained from a licensed engineer) 

The formula in row 10 determines the minimum required thickness of the base plate. It is an empirical 

equation (developed through research and experimentation) that requires knowing the factored load 

being transferred from the supported column into the base plate (          , row 2), the yield 

stress of the material that will be used to fabricate the base plate (          , row 7), and the 

dimensions of the base plate (            , row 8). The term   is a resistance factor for 

structural steel whose value is most frequently prescribed as 0.9. This factor takes into account the 

variability of material properties due to uncertainty in production and fabrication, and has the effect of 

under-estimating the strength of the material and the members made from it, as described in the 

method of limit states design (section 5.2.4). 

In row 13 we see that the engineer has determined that a minimum thickness of 35 mm is required, but 

since the selected thickness of 38.1 mm is greater than the required minimum, the base plate is OK (row 

16), and the calculations can proceed. 
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In a similar manner, the engineer checks that the concrete foundation pedestal upon which the base 

plate rests can also resist the force being transferred from the column (Figure 93). 

 

Figure 93 - Dossier de calculs: Checking concrete pedestal bearing stress (Source: Obtained from a licensed engineer) 

In row 19, using another empirical formula that requires knowing the factored strength of the concrete 

to be used (     ), the concrete pedestal is determined to have a resistive stress of             . 

Meanwhile, in row 21, the value of the stress that is transferred into the pedestal from the column and 

the base plate is found to be    16.37 MPa. This value is found by dividing the force transferred from 

the column (           ) by the area of the base plate that rests upon the pedestal (         

                 ). In performing this calculation, the engineer omitted the step of converting 

from units of      ⁄  to units of     by multiplying by 1 000. 

With the bearing stress and bearing resistance calculated, the engineer expresses that the check is OK in 

two ways: (1)      in row 22, and (2) 
 

  
          in row 24. Both inequalities are reminiscent of 

those presented in the discussion on limit states design in section 5.2.4. 

For a final example, Figure 94 depicts the calculations verifying the resistance of the steel anchor bolts 

that connect the base plate to concrete pedestal. 
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Figure 94 - Dossier de calculs: Checking anchor bolt resistance (Source: Obtained from a licensed engineer) 

Rows 20 and 21 indicate the values of the factored loads in the column that the anchor bolts will have to 

resist. The first load is referred to as a shear force (           ), and the second is a tension force 

(         ). In rows 27 and 32 we find the corresponding factored resistances, the calculations for 

which are found in the rows directly above. The terms in the equations for shear resistance (  ) and 

tension resistance (  ) are material and geometric properties of the anchor bolts. As with the 

verification of the concrete pedestal’s resistance, the resistance of the anchor bolts is compared to the 

factored load both in absolute terms (     ;      ), and as ratios that are less than 1 (
  

  
      ; 

  

  
     ), and so the anchor bolts are deemed to be O.K. in combined shear and tension (row 34). 

On the surface it would appear that the mathematics an engineer uses is limited to arithmetic 

operations, in particular multiplication, division, and evaluating roots. But what isn’t visible is the 

underlying mathematical modelling that went into developing the formulas that were used for the 
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calculations. Nor do we see the decision making and logic that went into the selection of the sizes of the 

base plate and the anchor bolts during the design. Much like the workplaces discussed in the research 

reviewed in chapter 3, where the mathematics was not always visible to the practitioner, the 

mathematics that is visible in the engineer’s workplace does not tell the whole story of the profession. 

The engineer must decide which clauses of a design code apply and which don’t. In terms of the 

engineering profession’s praxeology, if performing the design is the task, then selecting the appropriate 

formulas from the handbook is part of the technique along with competent use of mathematics. The 

technology is found in the design codes themselves, in the text that describes when and how each 

formula is to be used, and the fields of engineering design, engineering science and engineering 

research that lead to the development of the design codes and their acceptance by the Canadian 

Standards Association and professional engineering societies are the theory. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

Before identifying and describing the differences between an engineer’s and a mathematician’s 

mathematics, I will first address the similarities that I found during my research. While the similarities in 

mathematical praxeologies of engineers and mathematicians are limited mainly to the tasks and 

techniques, differences are found in all levels of the praxeologies: tasks, techniques, technologies, and 

theories. Some of the differences are overt, such as in the standardised symbolism used by engineers. 

Others, while less obvious, are still describable in the terms of the ATD. A general view of an engineer’s 

mathematical praxeology is presented towards the end of this chapter, which then concludes with a 

discussion on the limitations of this thesis, and proposals for future studies. 

6.1 SIMILARITIES IN MATHEMATICAL PRAXEOLOGIES 

The results of my analysis of final exams presented in chapter 4 show that there are some similarities in 

the mathematics expected to be learned by engineering students and mathematics students, though 

they are mainly limited to the tasks given to students on their final exams and the techniques that both 

groups of students can use to accomplish the tasks. 

I did not intend to find these similarities, and in fact they surprised me to a certain extent. They were 

found, however, because I needed to identify what mathematics an engineering student is required to 

learn in order to obtain a degree, and wanted to compare it with the mathematics to be learned by 

mathematics students in comparable courses. 

The most striking examples of similarities are found in problems from the differential equations and 

numerical methods courses, in particular the problems shown in Figure 52 - CIVE 320 - Numerical 

Methods (McGill), December 2007, question 6, and Figure 53 - MATH 354 - Numerical Analysis 

(Concordia), December 2012, question 2. 



156 
 

It could be argued that, to a certain extent, the technology in the mathematical praxeologies of the 

institutions of mathematics courses is similar as well. In the exams that were analyzed for chapter 4, I 

was unable to find any instances where the amount of justification of a technique seemed to be greater 

for mathematicians than it was for engineers. That is, the level of discourse for describing and justifying 

the use of certain techniques was about the same for both groups. In fact, many questions on 

engineering exams specifically asked the students to justify their answers. Furthermore, the fact that the 

exams for some mathematics courses taken exclusively by engineers feature questions that are entirely 

conceptual in nature and mathematical in content shows that engineers are expected to have some 

level of understanding of pure mathematics (for example, see Figure 39 - ENGR 371 - Probability and 

Statistics in Engineering (Concordia), April 2013, question 3, and Figure 40 - ENGR 371 - Probability and 

Statistics in Engineering (Concordia), April 2013, question 4). 

But it should be noted that these similarities occur only in the first two years of university education, 

when the topics and concepts learned by both groups are essentially the same. After the first two years, 

the educational paths of the two groups diverge, and differences arise. These are discussed in the next 

section. 

6.2 DIFFERENCES IN MATHEMATICAL PRAXEOLOGIES 

For engineering students and mathematics students, the courses in linear algebra, calculus, probability 

and statistics, numerical methods, and differential equations are all required to be taken in the first two 

years of study. Considering the similarities in mathematical content in the first two years, the logical 

question to ask is “do things differ in the next two years of study?” The answer is an unqualified yes. The 

divergent educational paths of mathematicians and engineers are illustrated in Figure 95. 
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Figure 95 - Diverging educational paths of mathematics students and engineering students 

During the first two years of university, both groups learn concepts from common subjects. But, in 

subsequent years, mathematics students learn concepts that engineers don’t. Chief among these are 

topics in mathematical logic which can be used to prove theorems in subjects such as analysis, set 

theory, abstract algebra, measure theory, and number theory. Each of these topics aims at exploring 

how and why mathematics works the way it does. 

To engineering students, and practicing engineers, these concepts are too general, and serve little to no 

practical purpose in solving problems based in the real world. Engineering students spend part of their 

first two years of university taking engineering courses as well as mathematics courses. In subsequent 

years they learn how to apply the mathematics they’ve learned to practical problems. In conjunction 

with the additional knowledge from their engineering courses, they learn to create and use 

mathematical models to describe and predict physical phenomena in various engineering disciplines. 

The differences in the mathematics of engineers and that of mathematicians can be described through 

the lens of the ATD by considering (1) the different tasks and techniques in the divergent educational 

streams of both groups, and (2) the different technologies and theories that describe and justify the 

techniques that are taught in school and used in professional practice. 
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6.2.1 Differences in tasks and techniques 

As previously mentioned, in their later university education, mathematics students learn concepts that 

engineering students don’t. For mathematics students, the subject of linear algebra is taught from the 

perspective of linear transformations over abstract vector spaces; courses in logic introduce them to the 

concept of “mathematical thinking”; they learn how to prove the fundamental theorems of arithmetic, 

algebra, and calculus in real and complex analysis; and courses in abstract algebra, measure theory, and 

number theory generalize other mathematical concepts. These concepts equip the students with new 

techniques to accomplish new types of tasks, including, perhaps most importantly, proving 

mathematical theorems, a task that engineers simply never encounter in either their engineering 

courses or their professional practice. 

Engineering students, on the other hand, use the techniques that they learned in their mathematics 

courses in conjunction with knowledge from the physical sciences to accomplish tasks that involve the 

creation and application of mathematical models to solve problems in engineering. Examples of this are 

shown in chapter 5, including the use of differential equations to model the deflection of a structural 

beam, and the necessity of statistical analysis in developing the model of limit states design. 

6.2.2 Differences in technologies and theories 

Arguably the most important differences in the mathematical praxeologies of engineers and 

mathematicians are found at the levels of technology and theory. Among these differences are the ones 

found in the standardised symbolism used by engineers, discussed in the next section. 

6.2.2.1 Differences in standardised symbolism 

Standardised symbolism belongs to the technology of the engineer’s mathematical praxeology because 

it is codified knowledge that serves to communicate to each member of the institution of the 
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professional practice of engineering how to properly communicate numerical information with each 

other. 

Differences in standardised symbolism of engineers versus that of mathematicians include the ways in 

which real numbers are represented. While mathematicians prefer precision and use symbols such as  , 

√ , and 
 

 
, engineers will often approximate the values of these numbers as 3.14, 1.414, and 0.5. The 

level of precision of the approximation will vary depending on the context of the task the number is 

being used for, and will depend on the accuracy of measurements or of the values in a given data set. 

Also belonging to standardised symbolism is the use of units in application problems. When 

mathematicians encounter application problems they will use units as well, since it is the units that give 

the numbers physical meaning. But engineering science has led to the creation of new units of measure 

that are, for the most part, unknown to mathematicians. Examples of these are the newton for units of 

force, and the pascal for units of pressure. 

Other examples mentioned in this thesis are the use of standard prefixes (Figure 60 - SI prefixes and 

multiplication factors ) for units of measure. Some professional mathematicians may be surprised to 

learn that the preferred unit of measure for the size of small objects is the millimetre, and not the 

centimetre. Consider as well the sigma notation that omitted indices in the model of static equilibrium 

(section 5.2.2), and the integral that didn’t include limits in the model of the moment of inertia (section 

5.2.3). While a mathematician would certainly include the indices and limits, their omission is justified in 

the engineer’s technology by the context in which the symbols are being used. 

6.2.2.2 Differences in technologies in education 

The research of Castela and Romo Vasquez proposes that engineers augment the technology of their 

mathematical praxeology with justifications based on practicality and efficiency, and not solely on 
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mathematical consistency (Castela & Romo Vasquez, 2011). The theory of their praxeologies is also 

rooted in the natural and engineering sciences. Not everything an engineer does can be reduced to 

mathematics alone, thus, their technology and theory also includes knowledge from the physical 

sciences. This was exemplified by the study on the different methods of teaching Laplace transforms to 

engineering students (see section 3.1). 

A comparable difference can be seen from the point of view of mathematicians. The new techniques 

that mathematics students learn in their later university courses augment the level of discourse, i.e., the 

technology, of the techniques that they learned in their earlier courses. Proving the fundamental 

theorem of calculus in an analysis course, for example, adds to the justification of its use in the calculus 

course taken earlier in their education. Engineers, however, never add this mathematical content to the 

technology of their mathematical praxeology. 

While engineers augment their praxeologies with knowledge learned in physical sciences, 

mathematicians augment their own praxeologies with more mathematics. Thus, there is a difference in 

the technologies of the institutions of engineering education and mathematics education. 

6.2.2.3 Differences in technologies and theories in professional practice 

The differences in technologies and theories become more evident when we examine an engineer’s 

professional practice. Evidence of the claim that not everything an engineer does can be reduced to 

mathematics alone was shown in section 5.4. The knowledge embedded in the engineer’s dossier de 

calculs involves more than just the visible calculations using arithmetic and algebra. The engineer must 

decide which formulas necessarily apply to the structure he is designing, and which don’t. These 

decisions must be justified, and doing so requires more than just mathematics. Furthermore, the 

formulas themselves that are used in the engineer’s design calculations were developed through 
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extensive empirical testing and mathematical modelling, and the creation of these models also requires 

knowledge from the physical sciences. 

Recall from section 4.1 the accreditation requirements for an engineering program. The bulk of a 

program is to be dedicated to courses in engineering science and engineering design (Canadian 

Engineering Accreditation Board, 2013). While engineering design combines mathematics, natural 

sciences, and engineering sciences, it is an iterative process of applications of mathematical models. 

Engineering science, on the other hand, applies mathematics to practical problems through the 

development of mathematical models. In a sense, while engineering designers apply mathematical 

models, engineering scientists (i.e. academic engineers) create the mathematical models that are used 

in practice, including those that appear in design codes. In this way, the theory of the engineer’s 

mathematical praxeology is also augmented by extra-mathematical concepts. 

For a final example of how an engineer’s mathematical praxeology includes more than just mathematics, 

consider the case of the London Millennium Pedestrian Bridge. Not long after it opened in the year 2000, 

the bridge began to sway excessively. Pedestrians began adjusting their footsteps to counter the effects 

of the swaying; this caused the bridge to sway even more creating a positive feedback loop. According to 

Noss (2001), the failure in the bridge’s design wasn’t in the mathematics or the mathematical models 

that the engineers used, but in the design code. The bridge was designed using existing techniques 

specified by the appropriate bridge design code. At the time of its design, though, lateral vibrations in 

pedestrian bridges were simply not a matter of consideration as it is generally vertical vibrations that are 

of more concern. In terms of the ATD, the existing techniques, while mathematically sound, failed when 

applied in the real world. Following extensive research on the cause of the vibrations (Dallard, et al., 

2001), a new technique, in the form of an additional clause, was added to the design code. The new 

clause found in the British Standard on bridge live loading, BD 37, contained in volume 1 of the Design 

Manual for Roads and Bridges states: 
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“Where the fundamental frequency of horizontal vibration is less than 1.5 Hz, special 

consideration shall be given to the possibility of excitation by pedestrians of lateral movements 

of unacceptable magnitude.” (Highways England, 2001) 

The justification for this technique, at the level of technology and theory, is that it will now prevent 

bridges from suffering the same fate in the future. Its effects are justified for practical reasons, not only 

mathematical. A mathematical model needs to be more than internally logical and consistent on the 

mathematical level. It also has to be practical, operational, and serviceable; it has to actually work in 

practice. If a model doesn’t work it will become apparent in its application, and the model will then have 

to be refined. 

6.3 A GENERAL VIEW OF AN ENGINEER’S MATHEMATICAL PRAXEOLOGY 

In general, we can visualize the theoretical block of an engineer’s mathematical praxeology by 

considering the process of mathematical modelling, and the application of those models to problems 

based in the physical world (Figure 96). 

 

Figure 96 - Visualization of an engineer's mathematical praxeology 
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Modelling is the process that maps elements from the real world into the mathematical domain, while 

application problems involve using a mathematical model to solve a problem that involves extra-

mathematical elements. 

A mathematician’s praxeology must be consistent entirely within the realm of mathematics. An 

engineer’s mathematical praxeology, on the other hand, requires that the mathematics work when they 

are applied in the physical world. For a mathematician, a mathematical proof requires only the use of 

valid mathematics. For an engineer, the proof is in the successful application of mathematics. 

6.4 LIMITATIONS OF THIS THESIS AND RECOMMENDATIONS FOR FUTURE STUDIES 

The findings of this thesis are based on limited amounts of data. The statistics in section 4.3, for example, 

should be taken with a grain of salt. My analysis included exams from only two schools, and focused on 

a single school year for each course. While the final exams for most of these courses don’t tend to 

change very much over a relatively short time span (the earliest exam that I referenced is eight years old 

at the time of writing), and the engineering exams that I analyzed didn’t strike me as any different from 

those I that wrote as a student in the early 2000’s, having more time to analyze exams from multiple 

years would certainly result in a more accurate representation of the relative frequencies of the 

different type of tasks. 

For the subject of engineering geometry I had no exams to analyze, and my discussion of the topic was 

based largely on documents from professional practice and on past personal experience. Engineering 

surveying requires extensive use of trigonometry. Analyzing exams from surveying courses could offer a 

wealth of information into how engineers use trigonometry in practice, in particular how precise their 

calculations and approximations have to be in order to be considered “correct.” 
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It would be pertinent to analyze final exams from engineering courses to see if, in fact, more modelling 

problems are given when compared with their mathematics courses. Since the exams analyzed for this 

thesis are clearly lacking in modelling problems, the engineering courses would almost certainly have to 

offer more of them in order to comply with the requirements of the Canadian Engineering Accreditation 

Board. 
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8 APPENDICES 

8.1 WEBSITES OF ACCREDITED ENGINEERING PROGRAMS IN QUEBEC 

General information about the accredited civil engineering programs in Quebec can be found on the 

following university websites: 

1. McGill University: www.mcgill.ca/engineering 

2. Université Laval: www.fsg.ulaval.ca 

3. École Polytechnique: www.polymtl.ca 

4. Université de Sherbrooke: www.usherbrooke.ca/genie 

5. Concordia University: www.encs.concordia.ca 

6. École de technologie supérieure: www.etsmtl.ca 

7. Université du Québec à Chicoutimi: http://programmes.uqac.ca/7480 

8.2 LIST OF MATHEMATICS COURSES IN THE ACCREDITED ENGINEERING PROGRAMS IN QUEBEC 

The tables in the sections that follow include the complete list of required mathematics courses in the 

seven accredited engineering programs in Quebec. The courses are grouped together by subject 

following the same order as section 4.3. 

Some courses are listed in multiple subjects, e.g., the course MAT165 - Algèbre linéaire et analyse 

vectorielle at École de technologie supérieure is listed in both pre-university linear algebra and 

university level calculus. This is because there are a substantial number of topics in the course 

description that qualify the course for both subjects. 

These course descriptions were used to define the different groups of mathematics subjects whose 

exams were analyzed in section 4.3. 

http://www.mcgill.ca/engineering
http://www.fsg.ulaval.ca/
http://www.polymtl.ca/
http://www.usherbrooke.ca/genie
http://www.encs.concordia.ca/
http://www.etsmtl.ca/
http://programmes.uqac.ca/7480
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8.2.1 Pre-university linear algebra 

School Course 
Number 

Course Title 
Course Description 

McGill MATH 133 Linear Algebra and Geometry 
Systems of linear equations, matrices, inverses, determinants; geometric 
vectors in three dimensions, dot product, cross product, lines and planes; 
introduction to vector spaces, linear dependence and independence, 
bases; quadratic loci in two and three dimensions. 

Laval - - 
Polytechnique MTH1006  Algèbre linéaire 

Plan et espace euclidiens. Vecteurs géométriques du plan et de l'espace. 
Produits scalaire, vectoriel et mixte. Droites et plans. Espaces vectoriels, 
sous-espaces vectoriels, indépendance linéaire, base, dimension. Bases 
orthogonales et orthonormales, procédé de Gram-Schmidt. 
Transformations linéaires, matrices et changement de bases. Noyau, 
image et rang. Systèmes d'équations linéaires homogènes, non 
homogènes et liens avec les matrices. Valeurs propres et vecteurs 
propres. Diagonalisation. Formes quadratiques et matrices symétriques. 
Applications à la géométrie : classification des équations du second degré 
(coniques et quadriques). 

Sherbrooke GCI 100 Algèbre linéaire 
Calcul matriciel : notation, opérations sur les vecteurs et les matrices, 
propriétés des opérations. Systèmes d'équations linéaires. Algorithme de 
Gauss-Jordan. Espace vectoriel : sous-espaces, indépendance linéaire, 
base, dimension, norme, orthogonalisation de Gram-Schmidt, 
interprétation géométrique. Déterminants. Vecteurs et valeurs propres : 
définitions, matrices diagonalisables, symétriques, à coefficients 
complexes, hermitiennes, unitaires et définies positives, interprétation 
géométrique, applications. 

Concordia MATH 204 Vectors and Matrices 
Algebra and geometry of vectors, dot and cross products, lines and 
planes. System of equations, operations on matrices, rank, inverse, 
quadratic form, and rotation of axes. 

ÉTS MAT165  Algèbre linéaire et analyse vectorielle 
Vecteurs, algèbre et géométrie vectorielle, produits scalaires, vectoriels 
et mixtes, fonctions vectorielles à une variable et applications. 
Transformations linéaires, matrices, déterminants, inversion de matrices, 
systèmes d'équations linéaires, valeurs propres et vecteurs propres. 
Fonctions à plusieurs variables, dérivées partielles, dérivées 
directionnelles, gradient; applications géométriques : courbes de niveaux, 
optimisation, plans tangents. Intégrales doubles et triples; applications : 
calcul de surfaces, volumes, centres de gravité, moments d'inertie. 
Champ vectoriel, divergence et rotationnel, intégrales de lignes et de 
surfaces; théorèmes de Green, Stokes et de la divergence. 
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UQAC 8MAT142 Algèbre vectorielle et matricielle 
Vecteurs géométriques: définition, addition, produit par un scalaire, 
combinaison linéaire de vecteurs parallèles et coplanaires, composantes 
d'un vecteur. Vecteurs algébriques: définition, opération sur ces vecteurs. 
Produit scalaire et applications. Produit vectoriel et applications. Le plan 
dans l'espace: équations vectorielle et algébrique du plan, vecteur normal 
à un plan, équation normale, angle de deux plans, distance entre deux 
plans parallèles, distance d'un point à un plan, équations paramétriques 
pour un plan. 
La droite dans l'espace: équations paramétriques et symétriques, droite 
d'intersection de deux plans non parallèles, distance d'un point à une 
droite, angle de deux droites, angle d'un plan et d'une droite, point d'une 
droite le plus rapproché d'un point donné, intersection d'une droite et 
d'un plan. 
Matrices: élément, format, addition, produit par un scalaire, produit des 
matrices, transposées, déterminants et calculs, inversions de matrices, 
matrices symétriques et orthogonales, valeurs et vecteurs propres, 
matrices diagonalisables. Systèmes d'équations linéaires: expression 
vectorielle et matricielle d'un système linéaire, matrice augmentée, 
méthode de Gauss. 
Notions de nombres et variables complexes: définition et justification des 
nombres complexes, représentation sur le plan complexe, formes polaire 
et cartésienne, égalité, inversion et conjugués. Addition, soustraction. 
Forme exponentielle. Multiplication et division. Racine. Fonctions d'une 
variable complexe: fonctions exponentielles et sinusoïdales. 
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8.2.2 Pre-university calculus 

School Course 
Number 

Course Title 
Course Description 

McGill MATH 140 Calculus 1 
Review of functions and graphs. Limits, continuity, derivative. 
Differentiation of elementary functions. Antidifferentiation. Applications. 

MATH 141 Calculus 2 
The definite integral. Techniques of integration. Applications. 
Introduction to sequences and series. 

Laval - - 
Polytechnique - - 
Sherbrooke - - 
Concordia MATH 203 Differential and Integral Calculus I 

Functional notation. Differentiation of polynomials. The power, product, 
quotient, and chain rules. Differentiation of elementary functions. Implicit 
differentiation. Higher derivatives. Maxima and minima. Applications: 
tangents to plane curves, graphing, related rates. Approximations using 
the differential. Antiderivatives, definite integrals, area. 

MATH 205 Differential and Integral Calculus II 
Techniques of integration: substitutions, integration by parts, partial 
fractions. Improper integrals. Physical applications of the definite 
integral. Infinite series: tests for convergence. Power series, Taylor’s 
theorem. 

ÉTS MAT145  Calcul différentiel et intégral 
Analyse : généralités sur les fonctions de R dans R; calcul différentiel : 
limites, dérivée, dérivée des fonctions élémentaires, règles de dérivation, 
étude de graphe, optimisation, etc. Calcul intégral : intégrales indéfinies, 
méthode d'intégration, utilisation des tables, intégrales définies, 
application (calcul d'aires, de volumes, de longueurs d'arc), méthodes 
numériques, intégrales impropres, etc. Suites et séries. Développements 
limités (Taylor, Maclaurin), évaluation de fonctions et d'intégrales 
définies à l'aide des séries. 

UQAC 8GMA102 Calcul différentiel et intégral 
Rappels sur les ensembles et nombres réels. Valeur absolue, droite 
orientée, inéquations. Fonctions et graphes, fonctions élémentaires: 
puissances, exponentielles, logarithmiques, trigonométriques, 
hyperboliques, fonctions inverses et composées. Forme implicite. Lieux 
géométriques et les coniques. Représentations paramétriques. Définition 
d'une limite et ses propriétés. Calcul de limites de fonctions algébriques. 
Continuité d'une fonction et propriétés des fonctions continues. Dérivée: 
définition, existence, propriétés et calculs. Formules de dérivation, 
dérivation en chaîne, dérivation implicite. Différentielle. Applications des 
dérivées: extremums de fonctions, tracé d'une courbe, modélisation et 
optimisation, théorèmes des accroissements finis, limites des formes 
indéterminées: règle de l'Hôpital. Approximations d'une fonction par 
série. Applications au génie. Intégrales indéfinies. Intégrales définies: 
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définition et propriétés. Théorème fondamental du calcul. Applications: 
calcul des aires planes, des aires et volumes de révolution, centre de 
gravité, moment d'inertie, pression des fluides, travail, longueur d'arc. 
Intégration numériques. Intégrales impropres. 
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8.2.3 University level calculus 

School Course 
Number 

Course Title 
Course Description 

McGill MATH 262 Intermediate Calculus 
Series and power series, including Taylor's theorem. Brief review of vector 
geometry. Vector functions and curves. Partial differentiation and 
differential calculus for vector valued functions. Unconstrained and 
constrained extremal problems. Multiple integrals including surface area 
and change of variables. 

MATH 264 Advanced Calculus for Engineers 
Review of multiple integrals. Differential and integral calculus of vector 
fields including the theorems of Gauss, Green, and Stokes. Introduction to 
partial differential equations, separation of variables, Sturm-Liouville 
problems, and Fourier series. 

Laval MAT-1900 Mathématiques de l'ingénieur I 
Calcul différentiel des fonctions de plusieurs variables: théorie et 
applications. Nombres complexes; polynômes. Équations différentielles 
du premier ordre et du premier degré; méthodes numériques. Équations 
différentielles du second ordre de types spéciaux. Équations 
différentielles linéaires d'ordre n à coefficients constants. Systèmes 
d'équations différentielles. Applications. 

MAT-1910 Mathématiques de l'ingénieur II 
Intégrales simples, calcul formel et numérique. Intégrales multiples, 
coordonnées curvilignes, applications. Calcul des champs de vecteurs. 
Intégrales sur les courbes et les surfaces: applications, circulation, travail, 
flux. Théorèmes fondamentaux: Stokes, Gauss; applications à la 
physique. 

Polytechnique MTH1101  Calcul I 
Suites infinies et séries. Séries entières. Approximations de Taylor. 
Analyse de l'erreur d'approximation par un polynôme. Nombres 
complexes. Fonctions de plusieurs variables. Courbes et surfaces de 
niveau. Limite et continuité. Dérivées de fonctions de plusieurs variables. 
Différentielle. Recherche des extrema avec ou sans contraintes. Méthode 
du gradient en optimisation. Multiplicateurs de Lagrange. 

MTH1102  Calcul II 
Intégrales multiples. Systèmes de coordonnées. Changements de 
variables. Courbes et surfaces paramétrées. Intégrales curvilignes : travail 
et circulation. Champs vectoriels, gradients et champs conservatifs. 
Théorème de Green. Intégrales de surface et de flux pour les cylindres, 
sphères et surfaces paramétrées. Divergence et théorème de divergence. 
Rotationnel et théorème de Stokes. 

Sherbrooke GCI 101 Mathématiques I 
Rappel des propriétés de l'intégrale simple. Dérivées partielles de 
fonctions de plusieurs variables, application à la géométrie dans 
R3.Coordonnéespolaires, cylindriques et sphériques. Techniques 
d'intégration des intégrales doubles et triples. Applications des intégrales 
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à la géométrie dans le plan et l'espace et à des problèmes reliés à la 
mécanique. Dérivée directionnelle, gradient d'une fonction scalaire, 
divergence et rotationnel d'un champ vectoriel. 

Concordia ENGR 233  Applied Advanced Calculus 
This course introduces Engineering students to the theory and application 
of advanced calculus. Functions of several variables, partial derivatives, 
total and exact differentials, approximations with differentials. Tangent 
plane and normal line to a surface; directional derivatives; gradient. 
Double and triple integrals. Polar, cylindrical, and spherical coordinates. 
Change of variables in double and triple integrals. Vector differential 
calculus; divergence, curl, curvature, line integrals, Green’s theorem, 
surface integrals, divergence theorem, applications of divergence 
theorem, Stokes’ theorem. 

ÉTS MAT165  Algèbre linéaire et analyse vectorielle 
Vecteurs, algèbre et géométrie vectorielle, produits scalaires, vectoriels 
et mixtes, fonctions vectorielles à une variable et applications. 
Transformations linéaires, matrices, déterminants, inversion de matrices, 
systèmes d'équations linéaires, valeurs propres et vecteurs propres. 
Fonctions à plusieurs variables, dérivées partielles, dérivées 
directionnelles, gradient; applications géométriques : courbes de niveaux, 
optimisation, plans tangents. Intégrales doubles et triples; applications : 
calcul de surfaces, volumes, centres de gravité, moments d'inertie. 
Champ vectoriel, divergence et rotationnel, intégrales de lignes et de 
surfaces; théorèmes de Green, Stokes et de la divergence. 

UQAC 8MAP110 Calcul avancé I 
Introduction aux équations différentielles : exemples, ordre d'une 
équation, équations linéaires. Équations différentielles linéaires d'ordre 
1 : facteur intégrant, problème de valeur initiale, comportement à l'infini, 
représentation graphique, champ de directions. 
Les vecteurs de Rn et les vecteurs géométriques : repère cartésien, 
vecteur position d'un point, norme et distance, coordonnées polaires. 
Produits scalaire, vectoriel et mixte : propriétés, interprétations 
géométrique et physique (travail, moment vectoriel, flux). Projections 
scalaire et vectoriel d'un vecteur. Différentes équations d'une droite et 
d'un plan : paramétrique, normal-point et algébrique. 
Fonctions vectorielles d'une variable : courbes paramétrées, hélices 
circulaire et elliptique, cubique gauche, intersection d'un plan et d'un 
cylindre conique, trajectoire d'une particule, dérivée et règles de 
dérivation, vecteur tangent, intégrale définie, intégration et condition 
initiale, longueur d'arc, vecteurs vitesse et accélération, vitesse et 
accélération. Fonctions scalaires : relation entre variables, fonction de 
plusieurs variables et graphe, surface de révolution, les quadriques, 
courbes et surfaces de niveau, limite et continuité, dérivées partielles et 
dérivée le long d'une droite parallèle à un axe, dérivée directionnelle et 
dérivée le long d'une droite orientée, vecteur gradient et interprétation 
géométrique, variation optimale d'une fonction, dérivation des fonctions 
composées et dérivée le long d'une courbe orientée, plan tangent à une 
surface définie par une relation, plan tangent à une graphe et 



175 
 

approximation linéaire, dérivées partielles d'ordre supérieur, introduction 
à l'optimisation (extremums locaux, points critiques, test de dérivées 
secondes, ensemble fermé et borné, frontière, extremums globaux, 
multiplicateurs de Lagrange). Utilisation de la différentielle totale pour le 
calcul d'erreurs. Formules et séries de Taylor à une et deux variables : 
approximations d'une fonction. Introduction à la méthode des différences 
finies successives. Tables des différences, formules d'interpolation de 
Newton, solutions numériques. 
Applications en ingénierie : principe de superposition des forces et des 
vecteurs de vitesse, les 3 lois de Newton, intégration de la deuxième loi 
de Newton et conditions initiales, vecteurs accélérations normale et 
tangentielle, topographie, équations de Laplace, de la chaleur et des 
ondes. Utilisations d'un logiciel de calcul. 

8MAP111 Calcul avancé II 
Fonctions vectorielles de plusieurs variables : coordonnées cylindriques et 
sphériques, cylindres et solides cylindriques, sphères et boules, surfaces et 
solides paramétrés, taux de variation le long d'une courbe orientée et 
matrice jacobienne, plans tangents à une surface paramétrée. Intégrales 
multiples : rappel sur l'intégrale simple, principe de Cavalieri, intégrales 
doubles et triples, changement de variables, applications au génie, 
méthodes numériques (méthodes des rectangles, du trapèze et de 
Simpson). Intégration vectorielle: intégration de champs scalaire et 
vectoriel et interprétations, travail d'une force et circulation d'un champ 
vectoriel, intégrale d'une surface d'un champ scalaire et d'un champ 
vectoriel, flux d'un champ vectoriel, applications au génie. Théorèmes 
fondamentaux en analyse vectorielle : divergence et rotationnel, 
théorèmes de Green et de Stokes, champs conservatifs et potentiel 
scalaire, théorème de divergence, flux et divergence, champs solénoïdaux 
et potentiel vecteur, applications au génie. Fonctions d'une variable 
complexe : les nombres complexes (plan complexe, algèbre des nombres 
complexes), fonctions d'une variable complexe (limite, continuité, 
dérivation), équations de Cauchy-Riemann, fonctions analytiques, 
fonctions exponentielle et trigonométriques, fonction logarithmique et 
puissances complexes, intégration dans le plan complexe (intégration 
curviligne, théorème de Cauchy, principe de déformation des contours), 
formule intégrale de Cauchy, séries de Taylor (suites et séries de nombres 
complexes, série de puissances, séries de Taylor), zéros et pôles d'une 
fonction. Applications au génie. Utilisations d'un logiciel de calcul. 
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8.2.4 Differential equations 

School Course 
Number 

Course Title 
Course Description 

McGill MATH 263 Ordinary Differential Equations for Engineers 
First order ODEs. Second and higher order linear ODEs. Series solutions at 
ordinary and regular singular points. Laplace transforms. Linear systems 
of differential equations with a short review of linear algebra. 

Laval GCI 2002 Mathématiques appliquées 
Modélisation de problèmes appliqués par des équations aux dérivées 
ordinaires. Système d'équations aux dérivées ordinaires. Problème de 
Sturm-Liouville: définition et notions de fonctions orthogonales. Série de 
Fourier: fonctions paires et impaires, approximations. Équations aux 
dérivées partielles : séparation de variables et série de Fourier. 

Polytechnique MTH1110  Équations différentielles ordinaires 
Équations différentielles ordinaires. Équations d'ordre un : à variables 
séparables, exactes, linéaires, de Bernoulli. Équations linéaires d'ordre 
supérieur : ensemble fondamental de solutions, équations à coefficients 
constants (homogènes et non homogènes), équation d'Euler-Cauchy, 
oscillations libres et forcées. Systèmes d'équations différentielles d'ordre 
un : linéaires (homogènes et non homogènes), non linéaires (linéarisation 
et stabilité). Transformée de Laplace : propriétés et application aux 
équations linéaires non homogènes. 

Sherbrooke GCI 103 Mathématiques II 
Notions d'équations différentielles. Équations différentielles du 1er 
ordre : équations à variables séparables, exactes, équations linéaires, 
équations se ramenant au 1er ordre. Équations et systèmes d'équations 
différentielles linéaires à coefficients constants : opérateur D, solutions 
générales complémentaires et particulières. Transformée de Laplace : 
calcul de transformée, fonctions périodiques et avec délai. Équations 
différentielles partielles. Séries de Fourier. Applications. 

Concordia ENGR 213  Applied Ordinary Differential Equations 
This course introduces Engineering students to the theory and application 
of ordinary differential equations. Definition and terminology, initial-
value problems, separable differential equations, linear equations, exact 
equations, solutions by substitution, linear models, orthogonal 
trajectories, complex numbers, form of complex numbers: powers and 
roots, theory: linear equations, homogeneous linear equations with 
constant coefficients, undetermined coefficients, variation of parameters, 
Cauchy-Euler equation, reduction of order, linear models: initial value, 
review of power series, power series solutions, theory, homogeneous 
linear systems, solution by diagonalisation, non-homogeneous linear 
systems. Eigenvalues and eigenvectors. 

ENGR 311  Transform Calculus and Partial Differential Equations 
Elements of complex variables. The Laplace transform: Laplace 
transforms and their properties, solution of linear differential equations 
with constant coefficients. Further theorems and their applications. The 
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Fourier transform: orthogonal functions, expansion of a function in 
orthogonal functions, the Fourier series, the Fourier integral, the Fourier 
transform, the convolution theorem. Partial differential equations: 
physical foundations of partial differential equations, introduction to 
boundary value problems. 

ÉTS MAT265  Équations différentielles 
Origine et définition, famille de solutions, conditions initiales, équations 
différentielles du premier ordre : séparables exactes, linéaires. 
Applications : mouvement rectiligne, circuits électriques, etc. Équations 
différentielles linéaires à coefficients constants : solutions 
complémentaires (homogènes) et solutions particulières, méthode des 
coefficients indéterminés (variation des paramètres, opérateur inverse); 
applications : mouvement harmonique et circuits électriques. 
Transformées de Laplace en équations différentielles, applications, 
systèmes d'équations différentielles. Solutions d'équations différentielles 
par séries, méthodes numériques en équations différentielles. Séries de 
Fourier, résolutions d'équations différentielles par séries de Fourier. 

UQAC 8MAP120 Équations différentielles et séries de Fourier 
Équations différentielles d'ordre deux ou plus : équations linéaires d'ordre 
deux à coefficients constants, réduction de l'ordre, principe de 
superposition, wronskien, méthode de variation de paramètres, 
coefficients indéterminés. Méthode numérique : solutionner des 
équations différentielles et systèmes d'équations différentielles à l'aide 
de la méthode d'Euler et de Runge-Kutta. Séries de Fourier : 
développement en série de Fourier, série de Fourier en cosinus, en sinus 
et exponentielles. Applications : redressement d'un signal alternatif, 
valeur efficace, identité de Parseval, système ressort-masse, équation des 
cordes vibrantes, équation de la chaleur dans une tige et de l'équation de 
Laplace. Méthode numérique : série de Fourier lorsque le signal est donné 
par un tableau de valeurs. Intégrale de Fourier : forme trigonométrique, 
forme exponentielle; transformée de Fourier : diverses transformées de 
Fourier, théorème de convolution. Méthode numérique : transformée de 
Fourier discrète à l'aide de la transformée de Fourier rapide (FFT). La 
transformée de Laplace : transformée de fonctions élémentaires, 
fonctions d'Heaviside et Dirac; propriétés élémentaires de la transformée, 
solutions de problèmes aux conditions initiales; les méthodes de 
décomposition des fractions partielles, transformée des fonctions 
causales périodiques, l'intégrale de convolution de deux fonctions, 
propagation de la chaleur dans une tige, équation des cordes vibrantes 
(longueur infinie). Utilisations d'un logiciel de calcul. 
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8.2.5 Probability and statistics 

School Course 
Number 

Course Title 
Course Description 

McGill CIVE 302 Probabilistic Systems 
An introduction to probability and statistics with applications to Civil 
Engineering design. Descriptive statistics, common probability models, 
statistical estimation, regression and correlation, acceptance sampling. 

Laval STT-1900 Méthodes statistiques pour ingénieurs 
Théorie des probabilités. Loi normale. Statistique descriptive. Lois 
échantillonnales. Estimation ponctuelle et par intervalle de confiance. 
Tests d'hypothèses. Analyse de la variance : expériences à un facteur, en 
blocs, à plusieurs facteurs et factorielles. Régression linéaire simple et 
multiple. 

Polytechnique MTH2302C  Probabilités et statistique 
Notions de probabilités : axiomes, probabilité conditionnelle, règle de 
Bayes, analyse combinatoire. Variables aléatoires : fonctions de 
répartition, de masse et de densité, espérance mathématique. Lois de 
probabilités discrètes et continues. Vecteurs aléatoires, distribution multi-
normale, covariance et corrélation, théorème central limite. Probabilité 
d'événements extrêmes. Statistique : propriétés des estimateurs et 
distributions d'échantillonnage, moindres carrés, intervalles de confiance. 
Tests d'hypothèses : tests paramétriques et test d'ajustement. Analyse de 
décision. Régressions simple et multiple. Méthodes statistiques spatiales. 

Sherbrooke GCI 102 Méthodes probabilistes en génie civil 
Probabilités : concepts de base en probabilité. Lois de probabilité 
discrètes et continues. Moments et espérances. Distributions 
probabilistes uniforme, normale, binomiale, hypergéométrique, gamma 
et de Poisson. Statistiques : distributions empiriques. Mesures de 
tendance centrale et de dispersion. Distributions d'échantillonnage des 
moyennes (loi normale et du T de Student) et des variances (loi du Chi-
carré et de Fisher). Estimation et tests d'hypothèse. Régression et 
corrélation. 

Concordia ENGR 371  Probability and Statistics in Engineering 
Axioms of probability theory. Events. Conditional probability. Bayes 
theorem. Random variables. Mathematical expectation. Discrete and 
continuous probability density functions. Transformation of variables. 
Probabilistic models, statistics, and elements of hypothesis testing 
(sampling distributions and interval estimation). Introduction to 
statistical quality control. Applications to engineering problems. 

ÉTS MAT350  Probabilités et statistiques 
Définition et axiomes de probabilité, règles d'union, d'intersection, 
d'addition et de multiplication, probabilité conditionnelle, loi de Bayes. 
Analyse combinatoire. Variables aléatoires discrètes et continues, 
distribution de probabilités standards. Mesures d'échantillonnage. 
Distribution des paramètres d'échantillonnage, combinaison des 
variables aléatoires, distribution du Khi-carré. Tests statistiques, 
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estimation, intervalle de confiance, tests sur la comparaison de deux 
populations. Régression linéaire, variance des résidus, tests statistiques 
et intervalles de confiance pour le paramètre du modèle. 

UQAC 8GEN444 Statistiques de l'ingénieur 
Distribution empirique et histogrammes. Dérivation expérimentale de la 
distribution gaussienne et exponentielle. Notion de probabilité. Fonctions 
et densités de probabilité. Aléas continus et discontinus. Densité de 
probabilité bidimensionnelle. Probabilité marginale et conditionnelle. 
Aléas indépendants. Approche bayésien. Espérance mathématique. Loi 
normale et loi uniforme. Simulation par la technique Monte Carlo de 
procédés stochastiques. Analyse combinatoire. Distribution binomiale, 
hypergéométrique, géométrique, Poisson. Calcul des probabilités à l'aide 
d'approximations. Distribution exponentielle. Introduction à la fiabilité. 
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8.2.6 Numerical methods 

School Course 
Number 

Course Title 
Course Description 

McGill CIVE 320 Numerical Methods 
Numerical procedures applicable to civil engineering problems: 
integration, differentiation, solution of initial-value problems, solving 
linear and non-linear systems of equations, boundary-value problems for 
ordinary-differential equations, and for partial-differential equations. 

Laval MAT-2910 Analyse numérique pour l'ingénieur 
Calcul numérique. Algèbre linéaire. Résolution de systèmes non linéaires. 
Approximation. Intégration et dérivation. Différences finies. Équations 
différentielles du premier ordre. 

Polytechnique MTH2210A  Calcul scientifique pour ingénieurs 
Interpolation, différentiation et intégration numérique. Discrétisation des 
équations différentielles. Résolution numérique des équations 
algébriques. Méthodes directes et itératives pour les systèmes 
d'équations algébriques linéaires et non-linéaires. Modélisation 
mathématique. Erreurs de modélisation, de représentation et de 
troncature. 

Sherbrooke - - 
Concordia ENGR 391  Numerical Methods in Engineering 

Roots of algebraic and transcendental equations; function 
approximation; numerical differentiation; numerical integration; solution 
of simultaneous algebraic equations; numerical integration of ordinary 
differential equations. 

ÉTS - - 
UQAC 8MAP110 Calcul avancé I 

See Appendix 0 
8MAP120 Équations différentielles et séries de Fourier 

See Appendix 0 
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8.2.7 Engineering geometry 

School Course 
Number 

Course Title 
Course Description 

McGill MECH 289 Design Graphics 
The design process, including free-hand sketching; from geometry 
construction to engineering construction; the technology and standards 
of engineering graphic communication; designing with CAD software. The 
role of visualization in the production of engineering designs. 

CIVE 210 Surveying 
The construction and use of modern survey instruments; transit, level, 
etc.; linear and angular measurements and errors; horizontal and vertical 
curves; error analysis, significance of figures; use of computers and 
software; recent developments. 

Laval GCI 1006 Dessin, plans et SIG pour l'ingénieur 
Dessin technique et lecture de plan. Conventions du dessin technique. 
Devis: types de devis, sections de devis. Estimation. Préparation d’une 
soumission. Introduction au SIG. Notions de base de cartographie et de 
référence spatiale. Potentiels et limites des SIG en ingénierie. 

GCI 1009 Dessin, plans et géomatique pour ingénieurs 
Dessin technique: croquis et normes de base. Lecture de plans. 
Modélisation des informations sur le bâtiment (BIM). Devis: types de 
devis, sections de devis. Principes de base de la topométrie. Gestion de 
projets: estimation, préparation d’une soumission. Introduction aux 
systèmes d’information géographique (SIG): applications pratiques et 
limites. 

Polytechnique MEC1515  DAO en ingénierie 
Techniques de représentation graphique et numérique utilisées par les 
ingénieurs pour l'analyse et la définition de produits (composants ou 
bâtiments) selon les normes et les conventions établies. Projections 
orthogonales. Représentations tridimensionnelles. Projections en coupe. 
Technique du croquis. Conventions de cotation. Description de pièces 
normalisées ou commerciales. Réalisation de dessins de détail et de 
dessins d'assemblage. Création et modification de dessins d'ensemble ou 
de plans d'aménagement et de bâtiments. Interprétation et analyse de 
dessins. Lecture et recherche d'informations dans des catalogues 
industriels. Utilisation d'un logiciel de dessin assisté par ordinateur (DAO) 
pour la génération de dessins techniques. Introduction à la conception 
assistée par ordinateur (CAO). Travaux pratiques en laboratoires à l'aide 
du logiciel AutoCAD et introduction à CATIA. 

CIV1101 Géométronique 
Théorie des erreurs, précision, exactitude. Mesure linéaire, chaînage, 
instruments électroniques, modes opératoires, corrections. Nivellement 
différentiel, types, normes, précision. Nivellement trigonométrique 
topométrique, méthode stadimétrique. Plan laser, mesure 
goniométrique, instruments à dispositif optique, instruments 
électroniques, modes opératoires. Polygonation, levé topographique, 
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systèmes de coordonnées. Orientation, système arbitraire, magnétique, 
astronomique. Superficies et volumes. Topométrie routière, plans 
horizontal et vertical. Applications. 

Sherbrooke GCI 107 Communication graphique en ingénierie 
Éléments de dessin technique et de croquis. Outils de dessin. Projections. 
Dessin à vues multiples. Coupes et sections. Cotations. Formats de papier 
et mise en pages. Apprentissage du logiciel AutoCAD par cours et 
tutoriels - commandes de base et avancées, introduction au dessin 3D. 
Lecture de plans dans différents domaines du génie. Éléments d'images 
numériques. Introduction à un logiciel de traitement des images. 

Concordia CIVI 212 Civil Engineering Drawing 
Fundamentals of technical drawing, orthographic projections, sectional 
views. Computer-aided drawing; slabs, beams, and columns; steel 
structures; building trusses and bridges, wood and masonry structures. 
Working drawing and dimensioning practice. Introduction to the design 
process. 

BCEE 371 Surveying 
Elementary operations employed in engineering surveying; use, care, and 
adjustment of instruments; linear and angular measurements; traversing; 
earthwork calculations; theory of errors; horizontal and vertical curves 
and curve layout; slope stakes and grades, application of surveying 
methods to city, topographic surveying, and introduction to advanced 
surveying techniques; use of digital computers in surveying calculations. 

ÉTS - - 
UQAC 6DDG100 Sciences graphiques 

Rappels géométriques. Instruments de base. Tracés géométriques. 
Croquis et description de forme. Dessin à vues multiples. Coupes et 
sections. Conventions de représentation particulières. Vues auxiliaires. 
Cotation. Tolérances et ajustements. Classification des projections. 
Intersections et développements. Notions de lecture de plans. 
Introduction aux différents langages de dessin assisté par ordinateur 
(DAO et CAO). Les différentes notions du cours sont mises en application 
par des exemples et devoirs lors des séances de travaux dirigés. 
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8.3 FINAL EXAMS FROM MATHEMATICS COURSES AT MCGILL AND CONCORDIA 

This appendix contains the complete final exams that were analyzed in section 4.3. They are organized 

by subject in the same order as previously presented. A table showing the classification of each of the 

tasks is presented before each exam. 

8.3.1 Pre-university linear algebra 

8.3.1.1 MATH 204 

The classification of the tasks on the exam for Concordia’s MATH 204 – Vectors and Matrices (December 

2014) are shown in Table 30. 

Table 30 - Classification of tasks: MATH 204 - Vectors and Matrices (Concordia), December 2014 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1       

2       

3       

4 a      

4 b      

5 a      

5 b      

6 a (i)      

6 a (ii)      

6 b (i)      

6 b (ii)      

7 a      

7 b      

8       

9 a      

9 b      

10       

TOTAL 12 5 17 0 0 

Relative frequency 71% 29% 100% 0% 0% 
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8.3.1.2 MATH 251 

The classification of the tasks on the exam for Concordia’s MATH 251 – Linear Algebra I (December 

2013) are shown in Table 31. 

Table 31 - Classification of tasks: MATH 251 - Linear Algebra I (Concordia), December 2013 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 (i)      

1 (ii)      

1 (iii)      

1 (iv)      

2 a (i)      

2 a (ii)      

2 b      

3 a      

3 b      

4 a      

4 b      

4 c      

5 a      

5 b      

5 c (i)      

5 c (ii)      

6       

7 a      

7 b (i)      

7 b (ii)      

7 b (iii)      

8 a (i)      

8 a (ii)      

8 b (i)      

8 b (ii)      

8 c (i)      

8 c (ii)      

9 a      

9 b (i)      

9 b (ii)      

9 b (iii)      

10 a      

10 b      

TOTAL 13 20 33 0 0 

Relative frequency 39% 61% 100% 0% 0% 
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8.3.1.3 MATH 252 

The classification of the tasks on the exam for Concordia’s MATH 252 – Linear Algebra II (April 2013) are 

shown in Table 32. 

Table 32 - Classification of tasks: MATH 252 - Linear Algebra II (Concordia), April 2013 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 (i)      

1 (ii)      

2       

3 a (i)      

3 a (ii)      

3 b (i)      

3 b (ii)      

4       

5 (i)      

5 (ii)      

6       

7 (i)      

7 (ii)      

8 (i)      

8 (ii)      

8 (iii)      

9 (i)      

9 (ii)      

10 a      

10 b      

11       

TOTAL 16 5 21 0 0 

Relative frequency 76% 24% 100% 0% 0% 
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8.3.2 Pre-university calculus 

8.3.2.1 MATH 203 

The classification of the tasks on the exam for Concordia’s MATH 203 – Calculus 1 (December 2014) are 

shown in Table 33Table 30. 

Table 33 - Classification of tasks: MATH 203 - Calculus 1 (Concordia), December 2014 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a      

1 b      

1 c (i)      

1 c (ii)      

1 c (iii)      

2 a      

2 b      

3       

4 a      

4 b      

4 c      

4 d      

4 e      

5 a      

5 b      

5 c      

6 a      

6 b      

7 a (i)      

7 a (ii)      

7 b      

7 c      

8 a      

8 b      

9 a      

9 b (i)      

9 b (ii)      

9 c (i)      

9 c (ii)      

9 d      

Bonus       

TOTAL 21 10 30 1 0 

Relative frequency 68% 32% 97%  3% 0% 
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8.3.2.2 MATH 205 

The classification of the tasks on the exam for Concordia’s MATH 205 – Calculus 2 (December 2014) are 

shown in Table 30. 

Table 34 - Classification of tasks: MATH 205 - Calculus 2 (Concordia), December 2014 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a (i)      

1 a (ii)      

1 a (iii)      

1 b (i)      

1 b (ii)      

2 a      

2 b      

3 a      

3 b      

3 c      

4 a      

4 b      

5 a      

5 b      

6 a (i)      

6 a (ii)      

6 b      

6 c      

7 a      

7 b      

8 a      

8 b      

8 c      

9 a (i)      

9 a (ii)      

9 b      

Bonus       

TOTAL 17 10 17 0 0 

Relative frequency 63% 37% 100% 0% 0% 
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8.3.3 University level calculus 

8.3.3.1 ENGR 233 

The classification of the tasks on the exam for Concordia’s ENGR 233 – Applied Advanced Calculus 

(December 2014) are shown in Table 35. 

Table 35 - Classification of tasks: ENGR 233 - Applied Advanced Calculus (Concordia), December 2014 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1       

2       

3       

4       
5       

6       

7       

8       

9       

TOTAL 8 1 7 1 1 

Relative frequency 89% 11% 78% 11% 11% 
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8.3.3.2 MATH 262 

The classification of the tasks on the exam for McGill’s MATH 262 – Intermediate Calculus (December 

2010) are shown in Table 36. 

Table 36 - Classification of tasks: MATH 262 - Intermediate Calculus (McGill), December 2010 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a      

1 b (i)      

1 b (ii)      

2 a      

2 b      

3 a      

3 b      

4 (i)      

4 (ii)      

5 (i)      

5 (ii)      

6       

7       

8 (i)      

8 (ii)      

9       

TOTAL 11 5 16 0 0 

Relative frequency 69% 31% 100% 0% 0% 
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8.3.3.3 MATH 264 (for engineering students) 

The classification of the tasks on the exam for McGill’s MATH 264 – Advanced Calculus for engineering 

students (April 2007) are shown in Table 37. 

Table 37 - Classification of tasks: MATH 264 - Advanced Calculus (McGill), April 2007 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1       

2       

3       

4       

5       

6       

TOTAL 6 0 6 0 0 

Relative frequency 100% 0% 100% 0% 0% 
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8.3.3.4 MATH 264 (for mathematics students) 

The classification of the tasks on the exam for Concordia’s MATH 264 – Advanced Calculus I for 

mathematics students (December 2014) are shown in Table 38. 

Table 38 - Classification of tasks: MATH 264 - Advanced Calculus I (Concordia), December 2014 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 (i)      

1 (ii)      

2 (i)      

2 (ii)      

2 (iii)      

3 (i)      

3 (ii)      

3 (iii)      

3 (iv)      

4 a (i)      

4 a (ii)      

4 b      

5 (i)      

5 (ii)      

6       

7       

8       

9       

10 (i)      

10 (ii)      

TOTAL 16 4 17 3 0 

Relative frequency 80% 20% 85% 15% 0% 

 

  



210 
 

 

 

  



211 
 

 

 

  



212 
 

 

 

  



213 
 

8.3.3.5 MATH 265 

The classification of the tasks on the exam for Concordia’s MATH 265 – Advanced Calculus II (April 2014) 

are shown in Table 39. 

Table 39 - Classification of tasks: MATH 265 - Advanced Calculus II (Concordia), April 2014 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1       

2       

3       

4 (i)      

4 (ii)      

5       

6       

Bonus       

TOTAL 7 1 8 0 0 

Relative frequency 87.5% 12.5% 100% 0% 0% 
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8.3.4 Differential equations 

8.3.4.1 ENGR 213 

The classification of the tasks on the exam for Concordia’s ENGR 213 – Applied Ordinary Differential 

Equations (December 2014) are shown in Table 40. 

Table 40 - Classification of tasks: ENGR 213 - Applied Ordinary Differential Equations (Concordia), December 2014 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a      

1 b      

2       

3       

4 a      

4 b      

5       

6       

7       

8       

9       

TOTAL 11 0 10 1 0 

Relative frequency 100% 0% 91%  9% 0% 
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8.3.4.2 ENGR 311 

The classification of the tasks on the exam for Concordia’s ENGR 311 – Transform Calculus and Partial 

Differential Equations (August 2009) are shown in Table 41. 

Table 41 - Classification of tasks: ENGR 311 - Transform Calculus and Partial Differential Equations (Concordia), August 2009 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1       

2 a      

2 b      

2 c      

3       

4 a      

4 b      

5       

TOTAL 6 2 7 1 0 

Relative frequency 75% 25% 87.5% 12.5 0% 
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8.3.4.3 MATH 263 

The classification of the tasks on the exam for McGill’s MATH 263 – Ordinary Differential Equations for 

Engineers (December 2012) are shown in Table 42. 

Table 42 - Classification of tasks: MATH 263 - Ordinary Differential Equations for Engineers (McGill), December 2012 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 (i)      

1 (ii)      

2       

3       

4       

5       

6       

7 a      

7 b      

8 a      

8 b      

8 c      

9 a      

9 b      

9 c      

TOTAL 10 5 15 0 0 

Relative frequency 67% 33% 100% 0% 0% 
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8.3.4.4 MATH 370 

The classification of the tasks on the exam for Concordia’s MATH 370 – Ordinary Differential Equations 

(December 2014) are shown in Table 43. 

Table 43 - Classification of tasks: MATH 370 - Ordinary Differential Equations (Concordia), December 2014 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1       

2       

3 (i)      

3 (ii)      

4 (i)      

4 (ii)      

5       

6       

7       

8       

9       

10 (i)      

10 (ii)      

TOTAL 9 4 13 0 0 

Relative frequency 69% 31% 100% 0% 0% 
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8.3.5 Probability and statistics 

8.3.5.1 ENGR 371 

The classification of the tasks on the exam for Concordia’s ENGR 371 – Probability and Statistics in 

Engineering (April 2013) are shown in Table 44. 

Table 44 - Classification of tasks: ENGR 371 - Probability and Statistics in Engineering (Concordia), April 2013 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a      

1 b      

2 a      

2 b      

2 c      

3 a      

3 b      

3 c      

4 a      

4 b      

5 a      

5 b      

5 c      

5 d      

5 e      

6 a      

6 b      

6 c      

7 a      

7 b      

7 c      

7 d      

8 a      

8 b      

8 c      

TOTAL 18 7 5 20 0 

Relative frequency 72% 28% 20% 80% 0% 
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8.3.5.2 CIVE 302 

The classification of the tasks on the exam for McGill’s CIVE 302 – Probabilistic Systems (April 2006) 

are shown in Table 45. 

Table 45 - Classification of tasks: CIVE 302 - Probabilistic Systems (McGill), April 2006 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a      

1 b      

1 c      

2 a      

2 b      

2 c      

3 a      

3 b      

3 c      

4 a      

4 b      

5 a      

5 b      

5 c      

6 a      

6 b      

6 c      

7 a      

7 b      

7 c      

8 a      

8 b      

8 c      

8 d      

TOTAL 21 3 3 21 0 

Relative frequency 87.5% 12.5% 12.5% 87.5% 0% 

 

  



235 
 

 

 

  



236 
 

 

 

  



237 
 

 

 

  



238 
 

 

 

  



239 
 

 

 

  



240 
 

 

 

  



241 
 

 

 

  



242 
 

 

 

  



243 
 

 

 

  



244 
 

8.3.5.3 STAT 249 

The classification of the tasks on the exam for Concordia’s STAT 249 – Probability I (December 2011) are 

shown in Table 46. 

Table 46 - Classification of tasks: STAT 249 - Probability I (Concordia), December 2011 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a      

1 b      

1 c      

2 a      

2 b      

3       

4 a      

4 b      

5       

6       

7 a      

7 b      

8 a (i)      

8 a (ii)      

8 b      

9 a      

9 b      

10       

TOTAL 16 2 9 9 0 

Relative frequency 89% 11% 50% 50% 0% 
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8.3.5.4 STAT 250 

The classification of the tasks on the exam for Concordia’s STAT 250 – Statistics (December 2013) are 

shown in Table 47. 

Table 47 - Classification of tasks: STAT 250 - Statistics (Concordia), December 2013 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a      

1 b      

1 c      

1 d      

2 a      

2 b (i)      

2 b (ii)      

3 a      

3 b      

3 c      

3 d      

4 a      

4 b      

4 c      

5 a      

5 b      

5 c      

6 a      

6 b      

6 c      

7 a      

7 b      

7 c      

8 a      

8 b      

8 c      

TOTAL 14 12 17 9 0 

Relative frequency 54% 46% 65% 35% 0% 
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8.3.6 Numerical methods 

8.3.6.1 ENGR 391 

The classification of the tasks on the exam for Concordia’s ENGR 391 – Numerical Methods in 

Engineering (December 2013) are shown in Table 48. 

Table 48 - Classification of tasks: ENGR 391 - Numerical Methods in Engineering (Concordia), December 2013 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a      

1 b      

2 a (i)      

2 a (ii)      

2 b (i)      

2 b (ii)      

3 a      

3 b      

4 a (i)      

4 a (ii)      

4 a (iii)      

4 a (iv)      

4 b (i)      

4 b (ii)      

5 a      

5 b      

TOTAL 16 20 14 2 0 

Relative frequency 100% 0% 87.5% 12.5% 0% 
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8.3.6.2 CIVE 320 

The classification of the tasks on the exam for McGill’s CIVE 320 – Numerical Methods (December 2007) 

are shown in Table 49. 

Table 49 - Classification of tasks: CIVE 320 - Numerical Methods (McGill), December 2007 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1       

2       

3 a      

3 b      

3 c      

4 (i)      

4 (ii)      

5       

6       
7 a      

7 b      

7 c      

8       

9 a      

9 b (i)      

9 b (ii)      

10 a      

10 b      

10 c      

TOTAL 18 1 10 8 1 

Relative frequency 94% 6% 52% 42% 6% 
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8.3.6.3 MATH 354 (2011) 

The classification of the tasks on the exam for Concordia’s MATH 354 – Numerical Analysis (December 

2011) are shown in Table 50. 

Table 50 - Classification of tasks: MATH 354 - Numerical Analysis (Concordia), December 2011 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 a      

1 b      

2 a      

2 b      

2 c      

2 d      

3 (i)      

3 (ii)      

4 a      

4 b      

5 a      

5 b      

6       

7 a      

7 b      

7 c      

Bonus       

TOTAL 13 4 15 2 0 

Relative frequency 76% 24% 89% 11% 0% 
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8.3.6.4 MATH 354 (2012) 

The classification of the tasks on the exam for Concordia’s MATH 354 – Numerical Analysis (December 

2012) are shown in Table 51. 

Table 51 - Classification of tasks: MATH 354 - Numerical Analysis (Concordia), December 2012 

Task Nature Content 

Question Part Comp Conc Math App Mod 

1 (i)      

1 (ii)      

2       

3       

4       

5 (i)      

5 (ii)      

6       

7       

8       

9       

10       

TOTAL 10 2 12 0 0 

Relative frequency 83% 17% 100% 0% 0% 
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8.4 STRUCTURAL ANALYSIS SOFTWARE REPORT 

The appendix contains the report that is generated by the structural analysis software that is bundled 

with the engineering textbook Structural Analysis by Kassimali (1999). This software was used to 

generate the images of the deformed plane frame and plane truss in section 5.3. The report includes the 

data that was input into the software to describe geometry and material of the structural members as 

well as the applied forces, and the output of the analysis that the software performed using the direct 

stiffness method. 

At the outset of the analysis, a decision must be made about what units will be used when inputting the 

structure’s data. I chose to use the units of millimetres (  ) for distance and kilonewtons (  ) for force. 

The results of the analysis are therefore displayed in the same units. This makes interpreting the results 

of the analysis easier. 

A detailed explanation of the information included in the report follows. 
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Joint coordinates 

Joint coordinates are entered in millimetres. Joint 1 is chosen as the origin with coordinates (0, 0). Joint 

6 is furthest away from the origin located at coordinates (               ). This indicates that the 

frame is 9 metres long and 5 metres high. 

Material properties 

The modulus of elasticity is entered using units of gigapascals (GPa) since             , making 

this consistent with our chosen units. The value that is entered is: 

                            
  

  
 

This is the modulus of elasticity of structural steel. 

Cross-sectional properties 

The values for cross-sectional area and moment of inertia are entered in units of     and    , 

respectively Two values are entered for each property since two different shapes are used in the design. 

Cross-section 1 is the shape W310x97 and cross-section 2 is the shape W200x22. The entered value for 

the area of cross-section 1 is: 

                      

Member data 

This section indicates where each member begins and ends, and associates with each member a 

material and a cross-section. Member 2 begins at joint 3 and ends at joint 4, is assigned the properties 

of material 1, and the cross-sectional properties of the shape W310x97 (cross-section 1). Since only one 

modulus of elasticity was entered, only one material is defined in this analysis, and so all of the 

members are assigned material 1. Two cross-sections were defined though, so some members are 

assigned cross-section 1, while others are assigned cross-section 2. 
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Joint loads 

The loads applied at joint 2 are entered using units of kilonewtons. The horizontal (X) force is: 

                     

Member loads 

The uniformly distributed load applied to member 5 is entered using units of kilonewtons per millimetre 

(     ). While such loads are usually defined in units of     , this would lead to an inconsistency in 

the units, and the results of the analysis would not be reliable. The entered value for the distributed 

load is: 

               
  

  
    

  

 
 

Joint displacements 

Since the data was entered with consistent units, the results of the analysis are reliable and are 

displayed using the same units as the inputted data. Thus, the X translation of joint 4 is: 

                     

The rotations are measured in radians. The rotation at joint 6 is: 

                           

Member end forces 

The member end forces are the forces that are carried by the members. The results show the forces in 

units of kilonewtons and the moments in units of kilonewton-millimetres. The axial force in member 3 

is: 

                     

The moment in member 3 at joint 5 is: 
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Support reactions 

The support reactions are the forces that are transferred from the frame into the supports that connect 

it to the ground. These are the forces that the supports themselves must resist. At join 3, the support 

must resist a vertical (Y) force of: 

                     

It must also resist a moment of: 

                                      


