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ABSTRACT 
 

Performance Modeling and Optimization of Resource Allocation in Cloud 

Computing Systems 

Shahin Vakilinia, Ph.D.  

Concordia University, 2015 

 

Cloud computing offers on-demand network access to the computing resources through 

virtualization. This paradigm shifts the computer resources to the cloud, which results in 

cost savings as the users leasing instead of owning these resources. Clouds will also 

provide power constrained mobile users accessibility to the computing resources. In this 

thesis, we develop performance models of these systems and optimization of their 

resource allocation.  

In the performance modeling, we assume that jobs arrive to the system according to a 

Poisson process and they may have quite general service time distributions. Each job may 

consist of multiple number of tasks with each task requiring a virtual machine (VM) for 

its execution. The size of a job is determined by the number of its tasks, which may be a 

constant or a variable. In the case of constant job size, we allow different classes of jobs, 

with each class being determined through their arrival and service rates and number of 

tasks in a job.  In the variable case a job generates randomly new tasks during its service 

time. The latter requires dynamic assignment of VMs to a job, which will be needed in 

providing service to mobile users. We model the systems with both constant and variable 

size jobs using birth-death processes. In the case of constant job size, we determined joint 

probability distribution of the number of jobs from each class in the system, job blocking 

probabilities and distribution of the utilization of resources for systems with both 

homogeneous and heterogeneous types of VMs. We have also analyzed tradeoffs for 

turning idle servers off for power saving. In the case of variable job sizes, we have 

determined distribution of the number of jobs in the system and average service time of a 

job for systems with both infinite and finite amount of resources. We have presented 
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numerical results and any approximations are verified by simulation. The performance 

results may be used in the dimensioning of cloud computing centers.  

Next, we have developed an optimization model that determines the job schedule, which 

minimizes the total power consumption of a cloud computing center. It is assumed that 

power consumption in a computing center is due to communications and server activities. 

We have assumed a distributed model, where a job may be assigned VMs on different 

servers, referred to as fragmented service. In this model, communications among the 

VMs of a job on different servers is proportional to the product of the number of VMs 

assigned to the job on each pair of servers which results in a quadratic network power 

consumption in number of job fragments. Then, we have applied integer quadratic 

programming and the column generation method to solve the optimization problem for 

large scale systems in conjunction with two different algorithms to reduce the complexity 

and the amount of time needed to obtain the solution. In the second phase of this work, 

we have formulated this optimization problem as a function of discrete-time. At each 

discrete-time, the job load of the system consists of new arriving jobs during the present 

slot and unfinished jobs from the previous slots. We have developed a technique to solve 

this optimization problem with full, partial and no migration of the old jobs in the system. 

Numerical results show that this optimization results in significant operating costs 

savings in the cloud computing systems.  
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Chapter 1 

Introduction 
 

1.1 Introduction to Cloud Computing  

Reduced costs of processing and storage technologies brought about the rapid growth of 

the computer industry. Recently, a new computing paradigm called cloud computing has 

emerged which provides on-demand network access to the computing resources through 

virtualization.  

 

There have been many definitions of cloud computing, but one of the most referred-to 

definitions of it was published by the National Institute of Standards and Technology 

(NIST), which is given below, 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources that can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction.”  

The cloud computing paradigm offers cost savings because users lease the computing 

resources from a service provider when needed instead of owning them. Cloud 

computing enables dynamic sharing of the computing resources among the users and 

allows them to submit and execute applications of many kinds. Different applications, 

however, require distinct types of resources. Applications such as interactive databases or 

web-based services lease the cloud resources and usually occupy various resources to 

maintain a high quality of service (QoS) level for their users. A service level agreement 
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(SLA) specifies the QoS to be provided to the user in terms of various performance 

parameters such as throughput, reliability, blocking probability and response time.  

 

The enabling technology of cloud computing is virtualization. Virtualization is a 

technique for separating software applications from each other and the hardware 

resources. Virtual Machine (VM) also called instance refers to running of an individual 

copy of a particular user’s application software or operating system in a virtual 

environment. Virtual systems feature multitenant capabilities through hypervisor. 

Hypervisor (also called a virtual machine monitor) is the virtualization software platform 

that allows simultaneous running of multiple instances on a server. Housing multiple 

virtual machines on a physical server utilize the physical server resources more 

efficiently. In a non-virtualized environment, most of the time servers are idle and it has 

been found that less than 10 percent of computing resources are used at any one time. 

These servers accrue maintenance and human resource costs along with the costs of the 

energy required to power and cool the hardware. After virtualization, server utilization is 

found to rise as high as 80 percent.  Therefore, virtualization is one of the operative ways 

to mitigate datacenter (DC) expenses. Moreover, virtualized datacenters accommodate 

pools of resources rather than isolated servers. The goal is to pool resources and serve 

demands from these resource pools. 
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1.2 Cloud Computing Services  

In this section, we describe the services provided by cloud computing systems. Cloud 

computing services may be classified into three types as Infrastructure-as-a-service 

(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS). IaaS refers to 

providing hardware equipment such as CPU, memory and storage as a service, PaaS 

refers to providing platforms such as software development frameworks, operating 

systems or multi-tenant application supports as a service and SaaS provides software and 

applications as a service. The research interest of this thesis is  IaaS, which is described 

below.     

Generally, the topology of a cloud computing center is hierarchical with racks containing 

a fixed number of blade servers. A blade server contains a number of processors each one 

consisting of several processing cores. The processing cores, memory and storage space 

are configured into VMs. IaaS is deployed in a cloud provider’s datacenter (DC) in the 

form of VMs. The user of the IaaS acquires a resource and is charged for that resource 

based on the amount of resource used and the duration of that usage. IaaS allows access 

and management of systems from anywhere and thus helps organization in extending or 

shrinking their IT infrastructure. In IaaS, back-end hardware is administered and owned 

by the cloud service provider. Mobility, stability, agility, availability and elasticity in 

IaaS, is achieved by providing a user interface for the management of a number of 

resources. It enables the users to allocate a subset of the resources for their own use. 

Moreover, the interface provides the required functionality for operations, such as 

starting and stopping operating system instances.   

Figure 1.1 simply depicts cloud computing platforms which provide IaaS, in the form of 

VMs. Cloud users request for VMs are specified in terms of resources such as CPU, 

memory and storage space.  
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Fig 1.1 Dynamic resource allocation in a cloud computing center 

 

1.3 Future of Cloud Computing 

Cloud computing has been widely studied and applied in various fields as it can provide 

elastic computation platform and on-demand use and efficient sharing of resources. 

Further, clouds will provide mobile users access to computing resources, which is 

referred to as mobile cloud computing. This is very important as mobile devices are 

becoming the primary computing platform to many users and they have limited 

processing power and battery life. Thus many vendors and industry observers expect the 

expenditures on cloud services to increase dramatically. The following graph gives an 

insight into the investment growth in different cloud computing services over time. 

Gartner estimates that the global market size for cloud computing services will be around 

$210 billion in 2016. Gartner also expects annual growth of 41.3% for cloud computing 

services through 2016.  
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Figure 1.2: Public Cloud Service Market by segment, 2010-2016 provided by Gartner’s 

“Worldwide IT Spending Forecast”  

 

1.4 Motivations   

Next, we will describe the motivation for the research in this thesis. We will discuss 

resource allocation models and associated algorithms of cloud Data-Centers (DCs) 

workloads with respect to power usage, and the QoS factor of service providers.  

1.4.1 Modeling of the Resource Allocation in Cloud Computing 

Datacenters 

One of the prime objectives of modern computing is to implement parallel computations 

on large distributed resources such as DCs. On demand allocation of resources in a cloud 

DC improves performance and reduces the deployment overheads significantly. 

However, efficient resource allocation requires accurate modeling of DCs. This is why 

more accurate modeling of jobs and resources that reflect real world scenarios, has 

attracted wide attention recently. Although the cloud computing technology is emerging 
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and growing rapidly, due to its complexity it suffers from a lack of standards  [2], detailed 

models and optimal resource allocation algorithms.  

 The main issue that makes cloud resource allocation complex is heterogeneity of 

resources and workloads. Based on the types of applications served by the cloud 

computing center, there is a vast diversity in resource demand profiles which make the 

incoming workflow heterogonous. Besides heterogeneity of workloads, one of the 

essential characteristics of a cloud computing system is heterogeneity of server resources. 

As time goes by, DCs update their resources’ configuration, processing capabilities, 

memory and storage spaces. They also introduce new platforms based on the new high 

performance servers along with older hardware, which makes the cloud platform 

heterogeneous.  

 Cloud workloads often have very large range of resource requirements, arrival rate and 

execution time. Jobs entering the cloud may demand different types of services. In the 

interactive applications, the users occupy cloud resources for a long period of time, 

whereas batch jobs require much shorter execution time. Hence, the execution time of the 

applications is notably divergent.  In general, computing jobs such as web serving are 

more processing intensive, while database operations typically require high-memory 

support.  Most of the jobs require parallel data analysis. This is the main reason for the 

recent development of MapReduce Programming model  [3]. This model relies on parallel 

processing with a sequential functional approach. Job fragments are executed in parallel 

to speed up processing of the jobs. MapReduce has usually three phases: fan out, map 

and reduce. Applications such as Apache Hadoop  [4] and platforms such as Pig  [5] 

implement the MapReduce programming model. This model also applies to bag-of-tasks 

(BoTs) where a job consists of parallel and sequential tasks. The number of task 

executions in the mapping phase will be larger than the fan out and reduce phases. Hence, 

a job’s load depends on the phase of execution. 

As a result, high variety in resource and workload characteristics makes resource 

allocation in cloud computing centers very challenging.  
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1.4.2 Energy Efficient Resource Allocation in Cloud Computing 

Datacenters 

Present day servers consume more power than those of a decade ago. Researchers 

believe that high performance servers impose more energy costs to the system. With the 

growing number of in-service servers, the worldwide expenditure on enterprise power 

usage and server cooling is estimated to be quite high. (Currently, server farms have been 

identified as one of the major electricity consumers in the world)  [6]. Optimal resource 

allocation methods in datacenters can save up to 20% of the energy consumption. These 

savings may lead to an additional 30% saving in cooling energy requirements  [6].  Given 

the rising cost of energy, cloud providers are presently looking for state-of-the-art 

solutions to ensure optimality of their power consumption. Service of a job at a 

datacenter results in power consumption because of the server processing and network 

communication demands of this processing.  

Hence, one option can be VM placement in a way that minimizes the number of active 

servers and communication traffic among VMs at the same time in favor of cloud 

computing DCs. Dynamic power management aims to reduce power consumption in DCs 

by temporarily shutting down servers when they are not required. However, full 

reactivation of a server is delayed by setup time, which can adversely affect the system 

performance. Hence, in order to be able to manage the number of active servers 

dynamically, the amount of incoming workload needs to be determined and assign VMs 

to new arriving jobs. This VM assignment process includes all server resources; namely 

CPU, memory and storage; which leads to a “multidimensional bin packing problem”. 

 Beside power usage of servers, communication also impacts both performance and 

cost of the operations. Communication increases job execution latency and power 

consumption. One way to mitigate the Cloud Network (CN) power usage is to apply 

traffic aware VM placement methods  [7],  [8]. Thus, the optimal solution of VM 

placement problem would include both CN and servers power consumption.  
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1.5 Contributions 

Next, the main contributions of this research are summarized below. The first part of 

the contributions is due to performance modeling of cloud computing systems, while the 

second part is due to the proposed optimal allocation of resources.  

 We modeled a cloud computing system with multiple classes of jobs with 

constant sizes and with homogeneous VMs. Assuming Poisson arrival of jobs 

with arbitrary service distributions, we have determined the joint distribution of 

the number of jobs from each class in the system, job blocking probabilities of 

each class and the distribution of the utilization of resources under a single 

server, multiple-servers and multiple-server pool cases. In multiple-server case, 

we have determined fragmentation probability of a job’s service among 

multiple servers. We show the applicability of our results to study a power 

management algorithm that reduces the power consumption while maintaining 

a plausible job blocking probability under time-varying traffic load. We have 

also derived job blocking probabilities and distribution of the utilization of 

resources with multiple classes of jobs with heterogeneous VMs. Probability 

distribution of the service time and average number of jobs for a system with 

constant job sizes and independent task completion times are determined.  We 

have considered a system with jobs arriving to the system according to a 

Poisson process with variable job sizes in number of tasks. It is assumed that a 

job will generate new tasks randomly during its service time in the system. We 

have derived service time distribution of a job, distribution of the number of 

jobs and total number of tasks in the system.  

 We developed an optimization problem that determines job scheduling such 

that the total power consumption of the cloud computing center is minimized. 

Then, the optimization problem using integer quadratic programming (IQP) and 

column generation (CG) are introduced. First, the optimization problem has 

been modeled as an IQP, then, we have applied the CG method to solve large 

scale optimization problem in conjunction with two different algorithms to 

decrease the complexity and the time to obtain a solution to the model, both 
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pertaining to the performance of the platform.   Then, we have shown how to 

formulate and solve optimization problem of the system in discrete-time as the 

time evolves. At each discrete-time, the job load of the system consists of new 

arriving jobs during the present slot and unfinished jobs from the previous 

slots. We solve this optimization problem with full, partial and no migration of 

the old jobs in the system.  

 

1.6 Thesis Organization  

Next, we give the structure of the thesis. In chapter 2, a comprehensive literature survey 

of modeling and optimization of the dynamic resource allocation in cloud DCs is 

presented. Chapter 3 presents performance analyses of various cloud computing models. 

The systems with both constant and variable job sizes with both homogenous and 

heterogeneous types of VMs have been studied. Chapter 4 proposes an optimization 

platform for VM placement that minimizes the total power consumption of DC.  The 

proposed optimization problem has been solved using the CG technique for both the ILP 

and IQP versions of the problem. The initialization patterns and heuristic termination 

approach for the CG technique, which reduces the complexity and time of obtaining a 

solution have been presented. Subsequently, an optimization problem for VM placement 

while there are still unfinished jobs from previous timeslots has been formulated and 

solved. Finally, concluding remarks are presented in chapter 5 with potential future work. 
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Chapter 2 

Literature Review 

 

In this chapter, we provide a survey of the modeling of cloud computing systems. 

Survey of the previous work has been divided into several groups depending on the 

objective of the works.  

2.1 Performance Modeling of Cloud Computing Systems 

The research work in this group studies performance of a DC under stochastic job arrival 

processes and service time distributions. The objective of these studies is to determine 

equilibrium distribution of the number of jobs in the system, job blocking probabilities 

and response times, and distribution of utilization of resources. 

As explained in the previous chapter, when a job arrives at the system, VM are created 

and assigned to cloud computing resources to handle the job execution. This assignment 

has been referred to as VM placement
1
 in the literature. The problem of efficient 

assignment of VMs to PMs (servers) in cloud computing centers is considered as a 

stochastic problem  [9]. Knapsack  [9] and stochastic bin packing (SBP)  [10] problems are 

the typical stochastic approaches used to allocate resources in the context of cloud 

computing systems. In such problems, multiple input flows of several types of jobs are 

considered, with the mean service time depending on their type. There is a finite number 

of servers in which SBP server packing algorithm takes into account. Each new arriving 

                                                           
1
  Selecting the most appropriate server for the virtual machine is known as virtual machine placement 
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job is served immediately by being placed into the servers according to the resource 

sharing policy. Service times of jobs are independent of each other. 

In  [11], a cloud computing center has been modeled as a M/G/m/m+r queue, where r is 

the buffer size. New arriving jobs to a full buffer are lost. The steady-state distribution of 

the queue length is determined by writing down the transition probability matrix of the 

embedded Markov chain at the job arrival points and solving the equilibrium equations. 

This analysis makes the approximation that at most three jobs may be served during an 

inter-arrival time and the queue length distribution does not have a closed form. In  [12] 

and   [13] the work in  [11] has been extended to a more complicated cloud computing 

center model. It has been assumed that the cloud computing center has a number of 

servers and each server has been configured as a number of VMs. A server may be in a 

hot (with running VMs), warm (turned on but without running VMs) or cold state (turned 

off). The amount of time it takes to launch a job on a server depends on the state of the 

server, a hot server requires the shortest amount of time. The system attempts to serve a 

job depending on availability in the following order on a hot, warm and a cold server. It 

is also assumed that each job contains a number of tasks chosen from a discrete 

probability distribution. The tasks may have general service time distributions and service 

of each task requires a VM. A server accepts a job if it has enough available idle 

instances of resources to start serving all the tasks of a job simultaneously. If a job cannot 

be accepted on any of the servers, then it will be blocked. The steady-state distribution of 

the queue length is determined by writing down the transition probability matrix of the 

embedded Markov chain at the arrival points and solving the equilibrium equations 

through fixed point iteration among the server states. In  [14], performance of cloud 

computing systems has been studied using stochastic reward networks (SRNs) which are 

an extension of generalized stochastic Petri Nets (GSPNs). In  [15], performance of cloud 

computing systems with fault recovery has been considered. 

In  [16], cloud computing capacity has been studied under time-varying traffic load 

using historical traces with the assumption that idle capacity is turned off through 

simulation. The time-axis has been divided into 5-minute slots. Various moving average 

and autoregressive models have been used to predict the job demand for the next slot 
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using the demands information for the present and past slots. Then, the required server 

capacity for the predicted load is determined using Erlang loss formula. As a result, extra 

capacity may be added or subtracted to/from the presently active capacity respectively. It 

is assumed that it takes one slot to turn on the extra capacity. The unneeded capacity is 

turned off after one slot to prevent unnecessary on-off turning of the servers. It is 

assumed that an arriving job will be blocked and lost if there is no available active 

capacity to serve it. Under this scheduling algorithm, the paper determined job blocking 

probabilities and unutilized server capacity for prediction models as well as for a model 

that maintains a fixed reserved capacity using simulation. It has been determined that 

fixed reserve capacity provides better performance than the prediction models.  

   In  [17], throughput optimal load balancing models have been considered in systems 

that include clusters of servers. The work assumes heterogeneous types of VM 

configurations. The time-axis is slotted and in each slot, a number of job requests arrive 

to the system. Each job may request a single VM for a number of slots. When the system 

is busy the arriving jobs are stored in a central queue for each type of jobs. It is shown 

that server-by-server max-weight job scheduling with preemption and server 

reconfiguration in each slot is throughput optimal. A non-preemptive algorithm, which is 

nearly optimal, is also proposed. To reduce the communication overhead, a more 

distributed system is also considered where each server maintains its own queues. The 

paper also presents simulation results, which show that the mean delay performance of 

centralized and distributed queuing systems is not very different. The paper does not take 

into consideration QoS requirements of different types of jobs which may not be met in 

this process.  

Recently, Amazon introduced a new cloud computing service that sells the idle 

instances of resources called Spot Instance (SI) through competitive bidding. The price of 

SI depends on the demand but, in general, it is lower because no reliability is provided for 

the services. In  [18], a statistical modeling of the SI prices and inter-price durations have 

been provided through curve-fitting to the experimental data available from Amazon.  

2.2 Heterogeneity of Cloud Computing Resources  
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The research work in this group studies impacts of the resource heterogeneity on the 

performance of cloud computing center.  As mentioned earlier, due to inevitable platform 

upgrades or enhanced hardware resources, cloud platforms gradually become 

heterogeneous over time which makes the VM placement problem more complex.  

 In  [19], the impact of hardware heterogeneity on the performance of public clouds has 

been investigated. Amazon EC2 and Rackspace cloud platforms providing IaaS and 

experienced several generations of hardware upgrades were selected to represent the 

hardware diversity.  During a two-year period, the activities of DCs in US are measured 

to collect some useful benchmarks that might affect the dynamic resource allocation in 

cloud DCs. Then, these benchmarks such as CPU performance and network overhead of 

cloud communication are utilized to evaluate the impact of heterogeneity on the 

performance of heterogeneous cloud computing centers. For instance, CPUBench and 

UnixBench  [20] are used to analyze CPU performance metrics such as processing time 

and CPU running and idle percentages for Amazon EC2 and Rackspace instances. 

TCPBench also is used to measure the networking of instances. It indicates that for some 

EC2 m1.small instances can acquire approximately 40% of CPU processing time, while 

m1.large instances can acquire 75 % of CPU time. For Rackspace, 4-GB instance type, 

one-process can acquire close to 100% CPU acquisition percentage; while for dual-core 

type, CPU acquisition percentage for each process varies between 95 and 99 percent, 

which is related to the administration overhead. Therefore, the task scheduling 

mechanism of hypervisors also has an effect on benchmarks. Moreover, the team uses a 

“trial-and-better” approach that has three steps for the incoming jobs into the system. 

First, arriving job should apply for certain number of instances from the cloud, then, the 

performance levels of the acquired instances will be checked and finally the better 

performing instances are kept and the other ones are discarded. Finally, based on the 

benchmarks and “trial-and-better” approach in which arriving jobs seek out better-

performing instances, game theoretic analysis, and Nash equilibrium are discussed from 

the cloud user perspective. Then, the heuristic cost-saving optimization algorithm is 

proposed. Their results show that their proposed algorithm can achieve up to 30 percent 

costs saving while instances performance is satisfactory.  

In  [21] and  [22], heterogeneous VMs are considered when jobs require different 
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amount of resources during their service times. After the completion of a service, the job 

releases all the resources that were allocated to it and leaves the system. However, it is 

assumed that each job has only a single task that requires one VM for its execution. The 

system is modeled in order to propose an optimum VM placement algorithm which 

minimizes the communication latencies of VMs. Due to elasticity characteristics, cloud 

computing centers need to provide VMs with various types of resources which may be 

specified in terms of its requirements for different resources. In  [23], heterogeneity of 

workloads and PMs are also addressed. According to their characteristics, tasks are 

classified into classes with similar resource demands and performance characteristics. 

Different types of servers are also considered based on their platform ID and capacities 

on different resources. A time series-based estimator has been implemented to predict 

workload arrival rate. Then, a heterogeneity aware resource monitoring and management 

system dubbed “Harmony” was proposed to perform dynamic capacity provisioning to 

minimize the total energy consumption and scheduling delay considering heterogeneity 

as well as reconfiguration costs. 

 

2.3 OPTIMAL RESOURCE ALLOCATION IN CLOUD 

COMPUTING DATACENTERS 
 

Next, we describe the work on the optimal allocation of resources in cloud computing 

centers. The objective of optimization may be different performance metrics such as 

throughput, communication latency and power consumption. This type of work provides 

scheduling of the jobs that minimizes the chosen performance metric. 

In cloud computing centers, communication latencies of applications may affect 

performance when the VMs for an application are split over multiple servers  [7],  [8] 

and  [21]. Due to communication latencies, response time may exceed the QoS 

requirements of the users. So the usage of optimum resource allocation algorithms is 

critical to achieve optimum application performance in cloud systems  [21].  A structural 

constraint-aware VM placement algorithm has been proposed in  [24] where the 

objectives are the reduction of communication latencies and improving system 

availability. With awareness of availability and communication requirements,  [25] 
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formulated VM placement as an optimization problem with DCs characteristics and 

applications as its inputs.  [25] also minimizes the intra-datacenter traffic by proposing 

application-aware VM migration algorithm.  [10],  [26],  [27] and  [28] consider 

optimization of a cloud computing center with respect to communication bandwidth 

demands. The sum of the bandwidth requirements of VMs on a server may exceed the 

capacity of a server’s network interface. Since bandwidth demands on the VMs are 

stochastic, statistical multiplexing may be used to place VMs on a minimum number of 

servers such that VMs bandwidth guarantees may be met probabilistically. This problem 

may be modeled as an SBP problem. Under the assumption that a VM’s bandwidth 

consumption is normally distributed,  [10] presents approximate online and offline 

algorithms for the optimal assignment of VMs to the servers. 

On the other hand, many studies have been done on traffic aware VM placement. The 

VM placement problem taking into account network communication and server (PM) 

operation costs, is investigated in  [22], then, an algorithm is proposed in order to 

minimize the network cost with fixed PM-cost. However, there is a trade-off between PM 

and network operation cost. Network cost is minimized when each job is assigned to a 

single server while PM cost is minimized when jobs are packed to the servers. This may 

result in job fragmentation among the servers which increase the network cost. 

In  [21],  [27],  [28] and  [29], the traffic between VMs are assumed to be known or fixed 

for the placement period, and the placement is proposed based on this assumption. 

In  [30], the authors study the VM placement problem with the product traffic pattern in 

DCs. The product traffic pattern is defined as a product of the VMs communication 

activities in which the probability that a request belongs to a VM is defined as its 

activity.  [30] proposed an optimal solution to minimize the network cost for a 

homogenous scenario by demonstrating that the more active VMs has to be placed on the 

PMs with higher capacity.   

Due to high variety of the cloud network traffic, traffic awareness is impossible in 

practice. Therefore  [22] and  [30] relates network cost to the number of separated VMs of 

a tenant, by defining different cost functions in which the number of job fragmentations 

is the variable.  [22] and  [30] use a single dimensional resource allocation algorithm and 

define a slot to represent one resource unit (CPU/memory/disk), in a way that each slot 
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can host one VM.  [30] also proposed a binary search based heuristic algorithm to achieve 

an optimum point in the tradeoff between PM-cost and network cost in order to minimize 

the cost according to the arbitrary assumption for the proposed cost functions.  

 [31] addresses the problem of traffic engineering in data center networks from a 

different aspect. In  [31], each job is characterized by the set of VMs communication with 

each other.  The problem of mapping traffic flows of each job into VLANs and selecting 

the most efficient spanning tree protocols with the objective of load balancing is 

investigated regarding the bandwidth requirements of VMs and bandwidth constraints. 

CG is proposed to solve the optimization problem reducing the complexity and search 

space and then a semi-heuristic decomposition approach is proposed to make it scalable. 

Data access latencies became a challenge in delay sensitive cloud applications. One of 

the main components of the latency is the communication between the processors and 

data nodes. In order to overcome this problem, network distance between computation 

and storage has to be designed precisely. Considering the VM placement problem as a 

classic linear sum assignment problem (investigated in  [32]),  [33] took the 

MapReduce/Hadoop architecture into account, and investigated the delay intensive cloud 

applications. They used the Hungarian algorithm proposed in  [32] to optimize the data 

access latencies under various cases in which each VM requires different data sources or 

several VMs demand for just a data source.  

In general, tasks of a user may have different demands and number of the tasks may 

vary over the time. In  [34], it is assumed that each user runs individual tasks, and each 

task is characterized by a demand vector, which specifies the amount of resources 

required by the task. In general, tasks of a user may have different demands and quantity 

of the tasks may vary over the time. Then, Dominant Resource Fairness (DRF) multi-

resource allocation algorithm is proposed to equalize the dominant share. This factor is 

defined as the maximum of the ratios of any resource type allocated to each user in the 

entire cloud.   [35],  [36],  [37] and  [38] also extend several types of DRF algorithm by 

focusing on the scenarios with different forms of demand.  [39] proposed Dominant 

Resource Fairness in Heterogeneous cloud (DRFH) by generalizing DRF to heterogeneity 

in both resources and demands. DRFH equalizes users’ dominant share in a 

heterogeneous cloud that leads to higher resource utilization. Then a heuristic algorithm 
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is suggested to decrease complexity of DRFH, for implementation in real world 

scenarios. 

Many papers such as  [28] address the traffic aware VM migration process. The service 

placement optimization problem belongs to the class of quadratic assignment problem 

(QAP), which is one of the hardest problems in the NP-hard class, and even its 

approximation is hard  [40]  and  [41]. In  [42], NetDEO, based on a swarm intelligence 

optimization model and search algorithm, is proposed to relocate VMs in order to adjust 

resource demands and resource availability.  They defined the problem by considering a 

collection of jobs and servers. Traffic matrix is also considered to show the traffic rates 

among the jobs in the cloud computing system. In the traffic matrix, for jobs in the same 

server, the corresponding matrix element is zero. Each server has a capacity composite 

metric of process, memory and storage while jobs also are attributed by their resource 

requirements and traffic rates.  Traffic stress of a node is defined as the root mean square 

of traffic rate between the node and all its communication peers.  [42] relocates the VMs 

in order to minimize the total stress of the DC considering the initial condition of the CN. 

In the next step, they designed NetDEO that applies swarm intelligence optimization 

characteristics to improve the solution. However their stress definition is arbitrary with 

respect to to incoming and outgoing traffic.    

 

2.4 Power Management in Cloud Computing Centers 

   Next, we describe the previous work on the power management in cloud computing 

centers. Generally, the cost of energy required for operation of a server is higher than its 

purchase price  [43]. However, the consolidation of many servers in a cloud computing 

center empowers efficient usage of a server and provides better consumption of the 

power resources in the shared resource pools.  Initiating from a small scale,  [44] 

developed a model that considers the dynamic power usage of a server as a function of 

CPU utilization (it relies on the fact that CPU is the main power consumer in 

servers).  [44] stated that the power consumption of a server grows linearly with 

increasing CPU utilization from the idle state upto  fully utilized server. Then, according 

to the workload of DC, the number of servers in idle and busy states with different levels 
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of CPU utilization is estimated.  [45] also found a strong relationship between CPU 

utilization and total power consumption of a server. Again, the proposed model assumes 

that the power consumption of a server increases linearly with the rise of CPU utilization. 

Finally, the total power consumption of a cloud computing center is estimated by 

summing up the power consumption of all the servers in the cloud.     

   In  [46], several server pools have been considered in a DC. A reactive migration 

controller is proposed to detect and track the server load. Moreover, it dynamically 

enhances and reduces the number of active servers in the system to minimize the power 

usage. Their study shows that the controller approach, offers the best results in terms of 

quality of service and power usage. 

In  [43], the effectiveness of dynamic power management in data centers under an 

M/M/k queuing model via matrix analytic methods is investigated. Moreover, policies 

such as Delayed Off, ON/OFF and static power management have been considered and 

analyzed in  [27] and  [43]. Under ON/OFF policy, servers are in off,  setup, or busy 

modes.  If a new job arrives and all the active servers are already in the busy mode, then 

the job changes the status of a server in the off mode into setup mode. Also a server is 

shut down if there is no waiting job in the system. They propose Delayed Off policy 

which is the same as ON/OFF policy, except for the server going into the wait mode 

when the queue is empty. The waiting duration is the time that a server spends in the idle 

mode whenever there is no waiting job in the system.  In  [47], Balter et al. continue 

analysis in the heterogeneous workload case. They addressed heterogeneous types of jobs 

and workloads in the system. They considered several types of workloads and suggest a 

new method entitled “Auto Scale” which is independent of workload type.  AutoScale 

scales the DC capacity and adjusts (by adding/removing) servers as needed. It maintains 

just the right amount of spare capacity to handle bursts in the request rate and it is robust 

to changes in the request rate, size and server efficiency. Under the AutoScale policy 

proposed in  [47], each server decides autonomously when to turn itself off. When a 

server goes idle, rather than turning off immediately, it sets the duration to wait in the idle 

state. Timers prevent servers from going offline mistakenly just as a new arrival joins the 

system. However, timers can also waste power and capacity by leaving too many servers 
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in the idle state. Autoscale only keeps a small number of servers in the idle state by 

proposing a routing scheme that tends to concentrate jobs in a small number of servers. In 

order to implement AutoScale on a given cluster, such parameters have to be determined. 

The aforementioned parameter depends on the specifications of the system, such as the 

server type, the setup time, and the application, which do not change during the runtime. 

Under various conditions of loading, such as changes in the request size and in the server 

speed, as well as changes in the request rate, Autoscale has shown a better performance 

compared to the predictive algorithms. 

 

2.5 Resource Allocation in Mobile Cloud Computing  

Popularity of smartphones and related applications in various fields are significantly 

increasing in everyday life. These devices have a wide range of features (e.g., high-speed 

processors and supporting multiple wireless interfaces). Smartphones have become the 

primary computing platform for many users due to well-developed mobile applications in 

various realms such as commerce, learning, health care, computing, gaming, etc. While 

applications are becoming more and more complex, smartphones remain constrained due 

to limited processing power battery life. Most of the smartphone applications are QoS-

sensitive and computation-intensive to perform on a mobile system. Mobile cloud 

computing (MCC) is a new concept in which mobile users access the cloud virtual 

resources via the Internet.  [48], [49] and  [50] give an overview of the MCC presenting 

definition, architecture, applications, and approaches, then, on the corresponding 

challenges at the operational, user, and application levels have been discussed. They 

introduced MCC as the dominant computing model for mobile applications in the future.  

Mobile users usually need to maintain a low level of power consumption and thus 

computation must be performed in the cloud, which comes with a cost. Some researchers 

have studied power consumption in smartphones.  It is beneficial to QoS improvement 

and battery power consumption to offload mobile data. The mobile computation 

offloading technique shares an application code between the cloud server and the mobile. 

A framework for smartphones is introduced in  [51]. It shifts smartphone application 

processing into the cloud centers. It is based on the concept of smartphone virtualization 
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in the cloud and addresses lack of scalability by creating VMs of a complete smartphone 

system on the cloud. ThinkAir  [51] provides on-demand resource allocation by 

dynamically managing VMs in the cloud via an execution controller. The execution 

controller handles decision-making and communication with the cloud server. It 

considers execution time, energy, and cost to make decision in order to achieve optimum 

performance.  [52] suggests that cloud computing can potentially save energy through 

offloading of processing of applications with limited reliability and quality of service 

requirements. This reflects the fact that for some applications such as delay-sensitive 

ones, offloading to the clouds could not significantly offer energy savings to the 

smartphones while also satisfying QoS parameters. 
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Chapter 3  

Performance Modeling of the Cloud 

Computing Centers 
 

 

In this chapter, we will consider various cloud computing models that may be used in the 

dimensioning of these systems. Performance of these models will be determined under 

stochastic job arrival process and job service time distribution. The objective will be 

determining equilibrium distribution of the number of jobs in the system, job blocking 

probabilities, response time for different classes of jobs and distribution of the resource 

utilization.  

 

3.1 Introduction of the models   

 

In this chapter, we study several models which have been determined by a number of 

model parameters. These parameters are explained below.   

 

 Job Size parameter  

This parameter specifies the number of tasks in a job. This parameter may be a constant 

or variable. In the variable case, a job will initially require service to a single task but 

during its service time it will generate random number of tasks in the system. In the case 

of constant job type, a job will require service to a constant number of tasks at its arrival 

time.  
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 Service Completion parameter  

This parameter determines service completion type of the tasks of a job. This parameter 

allows two types of service completion, simultaneous or individual. In the simultaneous 

category the service of all the tasks of a job will be completed simultaneously, while in 

the individual category service time of tasks will be independent of each other.   

 

 Resource Parameter  

This parameter determines the amount of resources available which maybe infinite or 

finite. In the infinite resource model, we assume that datacenter has infinite number of 

servers and in the finite case a datacenter has finite number of servers.  

 

 Virtual Machine Type parameter 

This parameter determines types of VMs which may be homogeneous or heterogeneous. 

In the first case, VMs have the same requirements (number of CPUs, memory and storage 

sizes), while in the second case, there may be different VM types which may differ from 

each other in their requirements. 

 

 Job arrival parameter 

We consider two types of job arrival processes, unsaturated and saturated cases. In 

unsaturated case, the job will arrive according to a Poisson process to the system as a 

function of time. In saturated case, there will be constant number of jobs in the system, 

where a new job will be inserted into the system as soon as service of a job is completed. 

Each parameter value has been assigned an abbreviation. The combinations of the values 

of these parameters result in different models. These combinations result in a tree 

structure as shown in Fig. 3.1.   

At each leave of the tree, the parameter of that leave as well as all of its ancestors are in 

effect. The numbers within parentheses at the leave of the tree give the subsection 

numbers where the analyses of these models are given in the chapter.  

In the following sections of the chapter we present performance analysis of the cloud 
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computing models described in the above.  In all cases, system is modeled using birth-

death process. The models admit quite general service type distribution.  

The remainder of this chapter is organized as follows. In section 3.2, we study systems 

with homogeneous VMs with constant job sizes and simultaneous task release times. 

Sections 3.3 and 3.4 extend the analysis of section 3.2 to systems with heterogeneous 

VMs and jobs with independent task release times respectively. In section 3.5, we present 

modeling of a system with variable job size.  In section 3.6, we give a comparison of our 

results with the closest previous work that has been referred to in chapter 2 and section 

3.7 contains the conclusions. 

 

  

 

Fig. 3.1 Tree diagram of cloud computing models  
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3.2 Modeling of a system with homogeneous VMs, constant job sizes and 

simultaneous release times (CJ, SR, HM) 

In this section we will study the performance of a system with with homogenous VMs, 

constant job size and simultaneous release time. The abbreviation for the values of the 

model parameters have been listed in the above (CJ, SR, HM).  

 We assume multiple classes of jobs. Each class of jobs arrives at the system according 

to a Poisson process with a different parameter and each class has a different service rate 

and job size. The size of a job is determined by the number of tasks that it has and the job 

size remains constant during its service time. Each task requires a VM for its execution. 

Distribution of the service times of jobs may have rational Laplace transforms with a 

different mean service time for each class. Service time of a job begins with its arrival to 

the system and at the end of that service time all its tasks terminate simultaneously. In 

other words, resources related to an arriving job are provisioned and released together. 

The relevant notation has been introduced in Table 3.1.  

Table 3.1 Parameter/Variable Definitions 

Parameters Indicator 

  number of classes of jobs 

   arrival rate of class r jobs 

   total job arrival rate 

   Service rate of class r jobs 

   total number of busy VMs 

   number of VMs required by a class r job 

   number of  class r jobs in the system 

 

We will consider single and multiple servers and multiple server pools cases. We 

assume finite resources, thus a job will be blocked if there are no enough number of idle 

VMs to serve it. The objective of the following analysis will be to determine joint 

distribution of the number of jobs from each class, job blocking probabilities and 

distribution of the utilization of resources. We will also show applicability of our results 
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into power management in a cloud computing center. 

Let us define state of the system as number of jobs from each class in the system, 

 ⃗ = ( 1  2 …     …  𝑅), and  𝑝( ⃗ ) as the distribution of  ⃗ .  

 

3.2.1 Single Server Model 

First, we consider a system with finite resources of S VMs all located at a single server. 

In this case, an arriving job will be lost if there are not enough number of idle VMs to 

serve it. This model is same as blocking in shared resources environment studied in  [53]. 

From there, the joint probability distribution of the number of jobs in the system is given 

by,  

 𝑝( ⃗ ) =
1

𝐺
∏

𝜌 
  

  !
𝑅
 =1                                             (3.1) 

where G is the normalization constant, which may be determined through a recursion  [53] 

and 𝜌 =
𝜆 

𝜇 
.  It may be seen that the joint probability distribution depends on the service 

time only through its mean value.  Let j denote number of the busy VMs at the computing 

center, then,  =  ⃗   ⃗   where  ⃗ = [ 1 …    …  𝑅] . Defining probability distribution of 

the number of busy VMs in the computing center as, 

 ( ) =  𝑟( =  ⃗   ⃗  ) 

from  [53], q(j) is given by the following recursion,  

                      ( ) = ∑   
𝑅
 =1 𝜌  ( −   )                                (3.2)  

Then average number of busy VMs in the system is given by, 

 𝐸[  ] = ∑   ( )𝑆
 =1                                            (3.3)  

Let  ̃( ) denote probability distribution of the number of idle VMs , then,  ̃( ) =

 (𝑆 −  ). Defining     as the probability that a class r job will be blocked, then 

from  [53], 
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   = ∑  ̃( )
𝑏 −1
 =1 = 1 −

𝐺(𝑆−𝑏  𝑅)

𝐺(𝑆 𝑅)
                                          (3.4) 

where 𝐺(𝑆 −     ) may be calculated recursively  [53]. 

𝐺(   ) =  ∑
𝜌 

 

 !

[
 

  
]

 =0
𝐺( −   𝑖  − 1)   = 2…     = 0 1 …  𝑆  

𝐺(  1) =  ∑ 𝐺( −   𝑖  − 1)
[
 

  
]

 =0
        = 0 1 …  𝑆 

The overall job blocking probability is given by, 

 𝑏 =
1

  
∑ 𝑖  𝑖

𝑅

𝑖=1

 

where   = ∑  𝑖
𝑅
𝑖=1 . 

 

3.2.2 Multiple Servers Model 

Next, we consider a system with M servers where each server has S VMs.  

As before, an arriving job will be blocked if the total number of idle VMs in the 

computing center is less than the number of VMs needed to serve the arriving job. Thus 

as far as job blocking probabilities are concerned the system may be considered as a 

single server with a total of MS VMs. However, in this case, it is possible that no server 

may have enough number of idle VMs to serve an accepted job to the system and the job 

may need to be assigned VMs from multiple servers which will be referred to as 

fragmented service. As a result, these jobs will experience additional performance penalty 

due to the need for communication among the servers. Henceforth, we determine the 

probability that assigned VMs to an accepted job will be fragmented among servers. Let 

us introduce the following additional notation, 

𝑉 = total number of VMs at the computing center. 

j = total number of busy VMs in the computing center. 

휀 = (휀1 휀2 …  휀  … 휀𝑀) where 휀  corresponds to the number of idle  VMs at an 

arbitrary time in the m
th

 server. 
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The total number of VMs in the datacenter is given by: 

𝑉 =  𝑆                                                     (3.5) 

Let   denote the total number of idle VMs in the computing center, 

 = ∑ 휀 
𝑀
 =1 = 𝑉 −                                                  (3.6) 

Since    denote the number of VMs required to provide service to a class r job, 

depending on the value of the  , the following possibilities exist for a class r job: 

 

{

 𝑜  𝑤 𝑙𝑙  𝑒  𝑙𝑜  𝑒𝑑             𝑓                   <   

 𝑜   𝑎  𝑟𝑒 𝑒  𝑒  𝑓𝑟𝑎𝑔 𝑒 𝑡𝑒𝑑 𝑠𝑒𝑟   𝑒    ≤  <    

 𝑜  𝑤 𝑙𝑙 𝑟𝑒 𝑒  𝑒 𝑠𝑒𝑟   𝑒 𝑓𝑟𝑜  𝑎 𝑠  𝑔𝑙𝑒 𝑠𝑒𝑟 𝑒𝑟       ≤  
                    

Assuming a load balancer is operating in the system, then probability distribution of 

the number of idle VMs in each server will be identical. Given that total number of idle 

VMs is equal to  , let  (      )  denote the conditional probability that none of the M 

servers have    or more idle VMs: 

 (      ) =  𝑟(휀1 <    …  휀 <        휀𝑀 <   )                (3.7)  

Distribution of the number of idle VMs in servers is analogous to the traditional balls 

urn model, where each ball is placed into one of the urns with equal probability. Then, 

distribution of the number of idle VMs in each server will be the same as distribution of 

the balls in the urns model  [57].  (      ) does not have a closed form solution but it 

could be obtained recursively  [57], 

 ( + 1     ) =   (      ) − (  
𝑏 
) ( −     −  1   )

( −1)    

                            (3.8) 

with the following initial condition, 

  (      ) = 1   𝑓𝑜𝑟   {1 ≤  ≤    1 ≤  ≤  }   

 The following result may be used to simplify the above recursion,  
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     (  
𝑏 
)

( −1)    

  = (
 −1

 
) (

 

 −𝑏 
) {( −1

𝑏 
)

( −1)      

    }                          (3.9)                             

Note that  (      ) gives the probability of a class r job receiving fragmented service 

when   ≤  <    . If     ≤ 𝑆 then  ≤ 𝑆 , then all assignment combinations of idle 

instances of V resources into servers are feasible. But if  𝑆 <      it is possible that 

 > 𝑆, then some assignment of idle VMs to the servers will not be admissible because it 

will result in allocation of more idle VMs to a server than the capacity of that server. The 

non-admissible assignments of idle VMs have to be excluded through normalization. Let 

 ̃(      ) denote the probability that a class r job receives fragmented service, thus: 

 ̃(      ) = {
 (      )                 f     ≤ 𝑆

𝑃(  𝑀 𝑏 ) 

1−𝜎
                                > 𝑆      

                          (3.10) 

where 𝜎 = ∑  (     ) 
 =𝑆   and  (     ) is obtained from (3.8). Next, unconditioning 

the above result wrt the distribution of the number of idle VMs leads to the probability 

that a class r job will receive fragmented service.  Defining, 

 𝐹 = Pr(an accepted class r job receives fragmented service) 

Then, it is given by, 

 𝐹 =
∑ �̃�(  𝑀 𝑏 )�̃�( )

     
    

1−𝑃𝐵 
                                                   (3.11) 

In the above, denominator normalizes the fragmentation probability with the 

probability of accepting a job.  

Next, we present numerical and simulation results for a computing center with multiple 

servers. Discrete event-based simulation has been developed to determine accuracy of the 

assumption in the analysis that the number of idle VMs is uniformly distributed over 

multiple servers. Simulation implements a practical load balancer to be described below 

to achieve fair distribution of the load among the servers. In simulation also it has been 

assumed that jobs arrive into the system according to a Poisson process and job service 

time are exponentially distributed.  

We consider a system with M=5 servers with 𝑆 = 50 VMs per server. We assume 4 

classes of jobs with the following VM requirements and job arrival rates,   
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                    ⃗ = [ 1  2  3  4] = [1  2  3  4]                                           (3.12) 

        = [ 1  2  3  4] = [0 4 0 3  2 0 1]                                  (3.13) 

It may be seen that jobs with smaller VMs requirements have been assigned higher 

arrival rates. Fig. 3.2 presents blocking probabilities of different classes of jobs as a 

function of the total job arrival rate. As may be seen, blocking probabilities increases with 

the number of VMs required by a job class. As expected, there is total agreement between 

numerical and simulation results as the analysis for calculation of job blocking 

probabilities is exact.  

 

Next we present the results concerning service fragmentation. In simulation, using a 

load balancer, it is assumed that a server selection algorithm attempts to achieve fair 

distribution of the load among the servers. An accepted job if possible will be given 

service without fragmentation otherwise with fragmentation. If a job receives service 

without fragmentation, then it is assigned to the server with highest number of idle VMs. 

On the other hand, if a job receives service with fragmentation the scheduling algorithm 

aims to minimize the number of fragments depending on the distribution of the number of 

idle VMs in the servers. In Fig.s 3.3 and 3.4, we present average number of idle VMs in a 

server and job fragmentation probabilities for each class as a function of the total job 

arrival rate. The jobs with higher VM requirements experience higher fragmentation 

 

Fig. 3.2 Numerical and simulation results for blocking probabilities of different classes of jobs 

as a function of total job arrival rate 
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probabilities at any total arrival rate. From Fig. 3.4, the fragmentation probability of class 

4 jobs reaches to %30 at the total job arrival rate of 30. Job fragmentation will increase 

the communication latency between the VMs, which will increase job service times. As 

may be seen, there is a close agreement between numerical and simulation results in both 

figures, which validates the assumption in the analysis that the number of idle VMs is 

uniformly distributed across the multiple servers. 

 

 

 

 

Fig. 3.3 Numerical and simulation results for the average number of idle instances of resources 

per server as a function of total job arrival rate.  
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Fig. 3.4 Numerical and simulation results for fragmented service probabilities of different classes 

of jobs as a function of total job arrival rate. 

 

3.2.3 Multiple Server Pools Model 

 

Fig. 3.5 Topology of the cloud computing center 

Server Pool 1 Server Pool n Server Pool N

… …

Load Balancer

......

Server  1 Server  m Server  M
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In this subsection, we extend our model to cloud computing centers with pools of servers. 

Pool management techniques attempt to reduce power consumption of the system, which 

represents a significant component of the operating cost of a cloud computing center. 

Topology of the cloud computing center under consideration is shown in Fig. 3.5. These 

techniques turn off a server pool to save power if its servers are not currently serving any 

job. Let us assume that there are N server pools in the system, which are numbered as, 

n=1..N. We assume that scheduling algorithm always assigns a job to the server pool with 

the smallest index number that has enough idle resources.  It is assumed that a job will 

not be assigned resources from multiple server pools to keep communication overhead 

low. Thus a job will be served by the pool n+1 with enough idle resources if pool n does 

not have enough idle resources. As before the total job arrival process at the system will 

be according to a Poisson process. The first pool of servers will see the total job arrival 

process while any other pool of servers will see the overflow traffic from the preceding 

pool. We assume that the overflow processes are Poisson which is an approximation to be 

verified by simulation. Within a pool, if possible, a job will be placed in a single server 

otherwise it will be fragmented.  Thus VMs of each pool may be considered as a 

completely shared resource without the need to make a distribution among its servers. Let 

us define, 

   = arrival rate of class r jobs to the n’th server pool. 

   = total arrival rate of the jobs to the n’th server pool. 

    = probability that a class r job will be blocked by the n’th server pool. 

   = overall job blocking probability at the n’th server pool.  

  ( ) =    (                                          ) 

g = number of active server pools. 

𝑔 =   (𝑔 =  ) 

Then, we have the following,  

                      =   ( −1)   ( −1) =  1 ∏    𝑖        ≥ 2  −1
𝑖=1  

         = ∑    
𝑅
 =1    
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where   1 =   ,    1 =    

                             =
1

𝜆  
∑        

𝑅
 =1                                                 (3.14) 

Assuming that each pool has M servers with S VMs per server, then,   ( ) will be 

determined by (3.2) with finite resources of MS and overflow traffic from the pool (n-1) 

as job arrival process. Then, 

𝑔 = ∏  𝑖(0)
𝑁
𝑖= +1                                                      (3.15) 

𝑔 = [𝑔0 …  𝑔  …  𝑔𝑁] 

We have tested the accuracy of the Poisson approximation of the overflow processes in 

the analysis through discrete event based simulation. In simulation also arrival of the jobs 

is according to a Poisson process and job service times are exponentially distributed. We 

assumed four job classes defined in (3.12, 3.13) with N=5 server pools, M=5 servers/pool 

and S =50 VMs/server. In Fig.s 3.6 and 3.7, we have plotted numerical and simulation 

results for the average number of idle VMs and the probability distribution of the number 

of active server pools in the system as a function of the total job arrival rate respectively. 

As may be seen, there is a close agreement between numerical and simulation results, 

which justifies Poisson assumption of overflow processes.  From Fig. 3.7, it is seen that 

at any arrival rate with probability one there will be only single number of active server 

pools except in the narrow transition regions. This plot shows that system operation does 

not result in frequent on-off switching of the server pools if the job arrival rate is not 

time-varying. Fig. 3.8 presents overall job blocking probabilities of the server pools as a 

function of the total job arrival rate. As may be seen, job blocking probabilities of server 

pools drop with the increasing index value with  B5 giving the overall job blocking 

probability of the system. The results in this figure may be used to determine number of 

needed active server pools to support a given traffic load at an acceptable level of job 

blocking probability.  
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Fig. 3.6 Numerical and simulation results for the average number of idle VMs of different server 

pools as a function of total job arrival rate 

 
 

 

Fig. 3.7 Numerical and simulation results for probability distributions of number of active server 

pools as a function of total job arrival rate  
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Fig. 3.8 Job blocking probabilities of server pools as a function of total job arrival rate. 

 

Next, we will assume that the total job arrival rate to the system is time-varying. It will be 

assumed that job arrival rate will be changing according to a discrete-time Markov chain. 

The time-axis will be slotted with slot durations equaling to server set-up time.  We will 

let number of active servers to denote state of the system with the state of the system 

changing at the discrete-times. There will be set-up times for turning an off machine to 

on, while turning an on machine off will be instantaneous. As may be seen from the 

previous results, the domain of the total arrival rate may be divided into intervals during 

which number of active server pools has a non-zero probability only for a single value 

during an interval. Let  ′   denote the total arrival rate at the midpoint of the interval for 

𝑔 = 1. In calculation of job blocking probabilities during the transition from state i to 

state j, where  >    we will assume that the total job arrival rate is given by  ′  .  

Letting 𝑝𝑖  denote the transition probability from state i to state j and P the corresponding 

transition probability matrix, then the steady-state probability distribution of the number 

of active server pools is determined by, 

  𝑔 = 𝑔                                                           (3.16) 

Defining �̅� as average utilization of the server pools in the system, 
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  �̅� =
1

𝑁
∑  𝑁

𝑖=0 𝑔𝑖                                          (3.17) 

Given the rising cost of energy, with the growing scale of cloud computing datacenters, 

the expenditure on enterprise power usage and server cooling prevents facility owners to 

keep all server pools active. On the other hand, switching a server pool on requires setup 

time, which can adversely affect system performance in terms of job blocking rate. 

Hence, we consider a dynamic power management approach similar to that in  [47] 

aiming to reduce power wastage while keeping job blocking probabilities and 

consequently loss of revenue at an acceptable level. In the following we consider four 

schemes, which will be referred to as always-on, reactive, proactive and optimal 

prediction and compare their performances. In the always-on case, there is no power 

management and all the idle server pools remain on. In the reactive case, idle server pools 

are turned off and they are turned on according to the demand. This scheme includes set-

up times during which job losses occur. Reactive scheme responds to load increases with 

the time lag of one slot. In proactive case, an additional pool is kept in idle state to meet 

any load increases. The optimal prediction scheme predicts the job arrival rate for the 

next slot and turns on enough number of off servers to meet the demand.  

Let   𝑝 denote the cost of per unit power consumption (standard fee per watt) and     

denote per hour rental rate of a VM. Also, 𝑝𝑜  and 𝑝𝑖𝑑𝑙𝑒  denote the average power usage 

of a VM in active and idle states respectively. Next, we determine the net cost of 

transition (NC) to a higher state per slot for each of the four schemes, which is the 

difference between revenue and cost of power consumption.  In the following equations, 

earned and lost revenue has negative and positive signs respectively.  

 𝐶𝑎𝑙𝑤𝑎𝑦𝑠−𝑜 = 휁̅∑ 𝑔𝑖 { 𝑝( −  ) 𝑆𝑝𝑖𝑑𝑙𝑒 − ∑ 𝑝𝑖 ∑ (  𝑟 ′     𝑖
1

𝜇 
)𝑅

 =1
𝑁
 =𝑖+1 }𝑁−1

𝑖=0   

(3.18)                         

 𝐶 𝑒𝑎𝑐 𝑖𝑣𝑒 = 휁̅∑ 𝑔𝑖 {∑ 𝑝𝑖 [ 𝑝( −  ) 𝑆𝑝𝑜 + ∑ (  𝑟 ′     𝑖
1

𝜇 
)𝑅

 =1 ]𝑁
 =𝑖+1 }𝑁−1

𝑖=0    (3.19)              

 𝐶𝑝 𝑜𝑎𝑐 𝑖𝑣𝑒 = 휁̅∑ 𝑔𝑖 { 𝑝 𝑆𝑝𝑜 + ∑ 𝑝𝑖 
𝑁
 =𝑖+1 ∑ (  𝑟 ′     (𝑖+1)

1

𝜇 
)𝑅

 =1 −𝑁−1
𝑖=0
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∑ 𝑝𝑖 
𝑁
 =𝑖+1 ∑ [  𝑟 ′  (   𝑖 −    (𝑖+1))

1

𝜇 
]𝑅

 =1 }                                                         (3.20) 

 𝐶𝑂𝑝 𝑖 𝑎𝑙 𝑃 𝑒𝑑𝑖𝑐 𝑖𝑜 =

 휁̅∑ 𝑔𝑖 {∑ 𝑝𝑖 [ 𝑝( −  ) 𝑆𝑝𝑜 − ∑ (  𝑟 ′     𝑖
1

𝜇 
)𝑅

 =1 ]𝑁
 =𝑖+1 }𝑁−1

𝑖=0                          (3.21) 

In the above, the terms with  𝑝 and    correspond to cost and revenue items respectively. 

Clearly, the scheme with the most negative net cost value will be performing better than 

the others. We need to know transition probabilities of the imbedded Markov chain for 

calculation of the net cost of the transitions. In practice, these values will be determined 

from the measurements, however, next we illustrate the utilization of our results through 

an example. We assume the same job classes that have been defined in (3.12) with the 

additional parameter values given below,  

 𝑝 = 0 055
$

 𝑊 
 (𝐻 𝑑𝑟𝑜 𝑢𝑒 𝑒  𝑟𝑎𝑡𝑒)  

  = 0 085
$

  
(   𝑟𝑜𝑠𝑜𝑓 𝐴𝑧𝑢𝑟𝑒 𝑆 𝑎𝑙𝑙 𝑉   )  

 = 5  = 5 𝑆 = 50,   = 4  

𝑝𝑜 = 405𝑤      𝑝𝑖𝑑𝑙𝑒 = 225𝑤 , (Intel Atom Centerton 1.6 GHz CPU)  

휁̅ = 300 𝑠𝑒  

where 𝑝𝑜  is the required power to turn a CPU on. Next we assume that the transition 

probabilities for the discrete-time Markov chain are given by,  

𝑝𝑖 = {

𝛾𝑖
𝑖−                        0 ≤  <  ≤  
𝛼𝑖                                      =  

𝛽𝑖
 −𝑖                        0 ≤  <  ≤  

                                   (3.22) 

where 𝛼𝑖  𝛽𝑖 and 𝛾𝑖 are state dependent parameters. As may be seen the transition 

probability between states i and j is given by a power of 𝛽𝑖 or 𝛾𝑖 where the power is 

determined by the distance between the two states. Thus probability of transition between 

two states decreases with the increasing distance between them. Next, we will relate state 
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dependent parameters 𝛼𝑖 𝛽𝑖 to each other. It has been found that average utilization of a 

cloud computing center is presently about 30%, �̅� = 0 3  [58]. As a result, the system will 

spend more time in state 1 than the other states. We will designate state 1 as the base state 

and express all the 𝛼𝑖  𝛽𝑖  as functions of 𝛼1, 𝛽1 respectively. Next we assumed that 

𝛽𝑖 = 𝜏|1−𝑖|𝛽1 𝛼𝑖 = 𝜎|1−𝑖|𝛼1 where 𝜎 𝜏 are proportionality constants, 0 ≤ 𝜎 𝜏 ≤ 1. We 

note that 𝛾𝑖 is determined from the normalization condition of the transition probabilities 

of each state. High value of 𝛼1 ( low values of 𝛽1 𝛾1) indicates a system with slowly 

varying job arrival rate, on the other hand low value of 𝛼1 (higher values of 𝛽1 𝛾1) 

indicates a system with fast varying job arrival rate, the latter being a more dynamic 

system.  

In Fig.s 3.9 and 3.10, we present plots of NC for the four schemes as a function of  𝛽1 and 

𝛼1 respectively. As expected, in both cases, optimal prediction gives the best performance 

as its net cost has the most negative value. In Fig 3.9, reactive scheme always performs 

better than always-on and most of the time better than proactive scheme because the 

system spends a lot of time in state 1 due to high value of 𝛼1. In Fig. 3.10, the system is 

more dynamic for low values of α1 compared to its high values.  Since reactive scheme’s 

response has a lag time, it gives the worst performance for 𝛼1 < 0 65.  It may be seen 

that the performance of various schemes depend on degree of time-variation of the traffic 

load. Fig. 3.11 shows the utilization of the system as a function of parameter 𝛼1 with the 

other parameters fixed. As may be seen, utilization increases with increasing value of 𝛼1. 
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Fig 3.9 Net cost of a transition for always-on, reactive, proactive and optimal prediction schemes 

as a function of 𝛽1 for 𝛼1 = 0 88  𝜎 = 𝜏 = 0 1    

 

Fig. 3.10 Net cost of a transition for always-on, reactive, proactive  and optimal prediction 

schemes as a function of  𝛼1 for 𝛽1 = 0 05    𝜎 = 𝜏 = 0 1   
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Fig.3.11 Utilization as a function of 𝛼1 

 

Findings in this section may give insight to the selection of appropriate system 

operation policy, i.e. proactive to reactive or vice versa. For example, in a static scenario 

(large values of 𝛼1) reactive approach is good enough while for more dynamic systems 

the proactive approach gives better performance. 

3.3 Modeling of a system with heterogeneous VMs, constant 

job size and simultaneous release times (CJ, SR, HT) 

In this section, we extend the results of the previous section to a single server with 

heterogeneous types of VMs. The VM types may differ from each other in the amount of 

resources allocated to a VM, such as in number of CPUs, memory and storage sizes. We 

assume that there are L types of VMs and a job may request up to J VMs of a single type. 

The type and number of VMs requested will define class of a job. Thus a class     job 

will request j VMs of type  ,  = 1     = 1  𝐿  Let us introduce the following notation,  

𝐹 =  number of resource types.   

𝐶𝑓 =  number of units of resource f, 𝑓 = 1  𝐹   

  𝑓 = number of units of resource f required by a type   VM,  = 1  𝐿 𝑓 = 1  𝐹  

   = arrival rate of class    jobs that require   number of type   VMs,  = 1     =

1  𝐿  
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   =  service rate of class    jobs. 

    = number of class    jobs in the system. 

 ⃗  = (  1 …   𝑓  …    𝐹) 

𝐶 = (𝐶1 … 𝐶𝑓  …  𝐶𝐹) 

 ⃗ = ( 11 …    1 …   𝐽1 …   1   …      …  𝐽  …   1𝐿  …    𝐿  …   𝐽𝐿) 

  ⃗⃗⃗    
− = ( 11 …    1 …   𝐽1 …   1 − 1 … 𝐽  …  1𝐿  …    𝐿  …   𝐽𝐿)                                                  

Total arrival rate of the jobs is given by, 

  = ∑ ∑    
𝐿
 =1

𝐽
 =1   

Defining B as the resource matrix of VM types, 

 =  [

 11 ⋯     1𝑓       ⋯  1𝐹

⋮   𝑓 ⋱ ⋮

 𝐿1 ⋯      𝐿𝑓       ⋯  𝐿𝐹

] 

  

Next defining N and Λ as matrices of the number of each class of jobs and their arrival 

rates respectively, 

 = [

 11 ⋯     1       ⋯  1𝐿

⋮    ⋱ ⋮
 𝐽1 ⋯      𝐽       ⋯  𝐽𝐿

]                                   (3.23)  

𝛬 =  [

 11 ⋯     1       ⋯  1𝐿

⋮    ⋱ ⋮

 𝐽1 ⋯      𝐽       ⋯  𝐽𝐿

] 

As before, we assume that the distribution of the service time of each class of jobs has a 

rational Laplace transform.  

We note that this model is an extension of blocking in shared resources environment 

studied in  [53] to a system with multiple types of resources. Following the analysis 

in  [53], we will determine joint probability distribution of the number of jobs in the 

system and derive a multi-dimensional recursion for the distribution of the utilization of 

resources. First, we will write the local balance equation (LBE) of this system. An LBE 

equates the flow due to a departure of a job from a network state to the flow due to an 

arrival of a job to a network that will return the system to the same state, thus, 
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      𝑝( ⃗ ) =    𝑝(  ⃗⃗⃗    
−)                                          (3.24) 

Let us assume the following joint probability distribution of the number of different 

classes of the jobs in the system, 

𝑝( ⃗ ) =
1

𝐺
∏ ∏

𝜌  
   

   !

𝐿
 =1

𝐽
 =1                                               (3.25) 

 

where G is the normalization constant and  𝜌  =
𝜆  

𝜇  
  

It may be shown by substitution that (3.25) satisfies (3.24). Since  𝑝( ⃗ ) satisfies the 

LBE, it also satisfies the global balance equations (GBEs), and therefore (3.25) is the 

correct distribution.  It may be seen again that the joint probability distribution depends 

on service only through it mean.   

Let us define, 

𝑢𝑓 = number of units of resource f that is busy. 

�⃗� = (𝑢1    𝑢𝑓     𝑢𝐹)                                             (3.26) 

 

Let  (�⃗� ) denote joint probability distribution of the utilization (number of busy units) of 

different type of resources. Next, we derive the following multi-dimensional recursion for 

determining this distribution,  

          𝑢𝑓 (�⃗� ) = ∑ ∑    𝑓𝜌   (�⃗� −   ⃗  )
𝐽
 =1

𝐿
𝑙=1                          (3.27)        

Proposition 3.1:  (�⃗� ), probability distribution of the utilization of resources may be 

determined by following multi-dimensional recursion,  

𝑢𝑓 (�⃗� ) = ∑∑   𝑓𝜌   (�⃗� −   ⃗  )

𝐽

 =1

𝐿

𝑙=1

 

Proof: Let us define, 

𝑎  = number of type    VMs that is busy. 

𝑎 = [𝑎1  𝑎2 …  𝑎  … 𝑎𝐿]  
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   = (1 2…    …  ) 

From the above definitions, we have, 

𝑎 = ∑     
𝐽
 =1  ,  𝑢𝑓 = ∑ 𝑎   𝑓

𝐿
 =1 = ∑ ∑        

𝐽
 =1

𝐿
 =1                      (3.28) 

Then, 

                        𝑎 =          �⃗� = 𝑎                                                            (3.29) 

 (�⃗� )  is given by, 

 (�⃗� ) =  𝑟(𝑎  = �⃗� ) = ∑ 𝑝( ⃗ ) ⃗ |�⃗� 𝐵=�⃗⃗�                                        (3.30) 

 

Let us rewrite LBE in equation (3.24) as follows,  

 

   𝑝( ⃗ ) = 𝜌  𝑝(  ⃗⃗⃗    
−)                                                        (3.31) 

 

Multiplying both sides of (3.31) by    𝑓 and summing over   and  , 

𝑝( ⃗ )∑∑   𝑓   

𝐽

 =1

𝐿

 =1

= ∑∑   𝑓𝜌  𝑝(  ⃗⃗⃗    
−) 

𝐽

 =1

𝐿

 =1

 

Substituting from (3.28) on the LHS,  

𝑢𝑓𝑝( ⃗ ) = ∑ ∑    𝑓𝜌  𝑝(  ⃗⃗⃗    
−)𝐽

 =1
𝐿
 =1                                  (3.32) 

Next let us sum both sides of equation (3.32) over the states ( ⃗ |𝑎  = �⃗� ), 

∑ 𝑢𝑓𝑝( ⃗ )
 ⃗ |�⃗� 𝐵=�⃗⃗� 

= ∑ ∑∑   𝑓𝜌  𝑝(  ⃗⃗⃗    
−)

𝐽

 =1

𝐿

 =1
 ⃗ |�⃗� 𝐵=�⃗⃗� 

 

Substituting from (3.28) on the LHS and interchanging the order of summations on the 

RHS, 
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𝑢𝑓 (�⃗� ) = ∑ ∑    𝑓𝜌  𝑝∑ 𝑝(  ⃗⃗⃗    
−) ⃗ |�⃗� 𝐵=�⃗⃗� 

𝐽
 =1

𝐿
 =1                     (3.33) 

                    

We note from (3.28), ( ⃗ |𝑎  = �⃗� ) = ( ⃗ |    = �⃗� ) 

Then  ( ⃗ |𝑎  = �⃗� ) means that, 

 (  ⃗⃗⃗    
− |    ⃗⃗⃗    

− = �⃗� −    
⃗⃗  ⃗)                                              (3.34) 

Substituting (3.34) in (3.33) completes the proof. 

Then, the average utilization vector is given by, 

𝐸(�⃗� ) = ∑ �⃗�  (�⃗� )�⃗⃗� | (∀𝑓 ∈ 𝐹    𝑢 ≤ 𝐶 )                                      (3.35)       

The probability that demand for a type   VM will be blocked is given by, 

 

   = ∑  (�⃗� ) �⃗⃗� | (∀𝑓 ∈ 𝐹  𝑢 +𝑏  > 𝐶 )                                   (3.36)      

Next we will give an example based on a system with three VM types given in Table 3.2 

with the following resource vector,   

 
Table 3.2 

Representative VMs Specifications 

 VM type Memory CPU cores Storage  

Standard 2(GB) 2 100 (GB) 

High Memory 

Extra Large 
16(GB) 6 400 (GB) 

High CPU 

Extra Large 
8(GB) 10 200 (GB) 

 

 𝐶 = (160𝐺  200 𝐶𝑜𝑟𝑒 10000 𝐺 )                                (3.37)  

From Table 3.2, resource matrix of VM types is given by, 

                                  =  [
2 2 100
16 6 400
8 8 200

]                                                     (3.38) 

Assuming the following arrival rate matrix for classes of jobs with (J =4),  
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Λ =  [

0 2 0 1 0 1  
0 15 0 075 0 075  
0 1  0 05 0 05 

 0 05    0 025     0 025   

]                                              (3.39) 

It should be noted that in the above job classes with higher resource requirements have 

lower arrival rates. Figures 3.12, 3.13 and 3.14 show the cumulative probability 

distributions of memory, CPU and storage utilizations respectively with the total job 

arrival rate as a parameter. These results may be used to determine bottleneck resources 

and redundancy in the system. It may be seen that at the total job arrival rate of 10, the 

values of memory, CPU and storage corresponding to cumulative probabilities of unity 

are 160Gb, 130cores and 4500Gb respectively. Since at this arrival rate all the available 

memory may be busy, the system cannot support a higher traffic load. As a result, the 

number of cores beyond 130 and storage beyond 4500Gb will not be utilized and they 

will be redundant. 

 
 

 

Fig. 3.12 Cumulative Distribution of memory utilization  with    as a parameter 
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Fig. 3.13 Cumulative Distribution of CPU utilizatiion with    as a parameter 

 

 

Fig. 3.14 Cumulative Distribution of storage utilization with    as a parameter  

 
 

Figure 3.15 shows the blocking probabilities of the requests for different types of VMs 

as a function of the total job arrival rate. As may be seen, VMs differ in their blocking 

probabilities pertaining to their resource requirements.   
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Fig. 3.15 Blocking probabilities of different types of VMs as a function of job arrival rate     

 

3.4 Modeling of the system with Constant Job size, 

Homogeneous VMs and Independent Release times (CJ, 

HM, IR) 

In this section, as in section 3.2, we assume constant job sizes with multiple classes as 

defined in Table 3.1. This model differs from the model of that section in the service 

given to the tasks. Defining system state as the total number of the tasks in the system, 

the state-transition rate diagram of the system is given by Fig. 3.16. It is assumed that 

service times of the tasks of a job are i.i.d with exponential distribution with parameter  , 

which results in the independent as opposed to simultaneous task completion times.  
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Fig. 3.16 State-transition rate diagram of the Could computing system (independent release 

Times) 

 

3.4.1 Infinite Resource Model  

We first analyze the system for a datacenter with infinite number of  servers serving 

different classes of jobs (𝑆 = ∞  𝑟 = 1 … ). Let 𝑝  denote probability that there will be 

j tasks in the system, then equilibrium equations can be written as follows, 

{
 (∑   )

𝑅
 =1 𝑝0 =  𝑝1                     = 0     

 (∑   
𝑅
 =1 +   )𝑝 = ( + 1) 𝑝 +1 + ∑ 𝑝 −    

𝑅
 =1  > 0  

                                  (3.40)          

After multiplying by 𝑧  and summing over j, we have: 

∑ (∑   
𝑅
 =1 +   )𝑝 

∞
 =1 𝑧 =

∑ ( + 1) 𝑝 +1
∞
 =1 𝑧  + ∑ ∑ 𝑝 −   

𝑅
 =1

∞
 =1 𝑧                                                                  (3.41)       

Taking out 𝑧  from the internal summation leads to: 

∑ (∑   
𝑅
 =1 +   )𝑝 

∞
 =1 𝑧 = ∑ ( + 1) 𝑝 +1

𝑆
 =1 𝑧  + (∑   𝑧

 ∑ 𝑝 − 
𝑆
 = 

𝑅
 =1 𝑧 − )     

  (3.42) 

Let us define 𝛬(𝑧) = ∑   
𝑅
 =1 𝑧  and 𝑝(𝑧) =  ∑ 𝑝 

𝑆
 =0 𝑧  then with substitution of the 

variable  ′ =  − 𝑟 we obtain: 

𝛬(1)(𝑝(𝑧) − 𝑝0) + 𝑧 𝑝(𝑧) =  (𝑝(𝑧) − 𝑝1) +  𝛬(𝑧)𝑝(𝑧)                                     (3.43)                                                       

This could be simplified to:  

(𝛬(1) − 𝛬(𝑧))𝑝(𝑧) + (𝑧 − 1) 𝑝(𝑧)́ = 𝛬(1)𝑝0 −  𝑝1                                           (3.44)   

From (3.40) we find that 𝛬(1)𝑝0 −  𝑝1 = 0. Hence, after solving the first order 

differential equation  𝑝(𝑧) is given by, 

𝑝(𝑧) = 𝑒
∫
 ( )  ( )

 (   )
𝜕𝑧

=  𝑒
 ∑  ∑

 
 

 
    ∑  ∑

  

 
 
   

                             (3.45) 
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where  
𝛬(𝑧)−𝛬(1)

𝑧−1
=

∑ 𝜆 
 
   (𝑧 −1)

𝑧−1
= ∑   

𝑅
 =1 (∑ 𝑧𝑖 −1

𝑖=0 ) and the constant part of the PGF 

is obtained by applying normalization condition  𝑝(𝑧)|𝑧=1 = 1. 

The average number and variance of occupied VMs in the system is equal to: 

𝐸[  ] =
𝑑𝑝(𝑧)

𝑑𝑧
|𝑧=1 =

∑  𝜆 
 
   

𝜇
                                          (3.46) 

𝑉𝐴   
= (

𝑑 𝑝(𝑧)

𝑑𝑧
+

𝑑𝑝(𝑧)

𝑑𝑧
−

𝑑𝑝(𝑧)

𝑑𝑧

2

)|𝑧=1 =
∑  (

   

 
)𝜆 

 
   

𝜇
               (3.47)     

3.4.2 Finite Resource Model 

In this subsection, we assume finite resources with S VMs and model the system with 

birth-death processes. GBE of the system may be written as, 

 

{
 

 
(∑   

𝑅
 =1 +   )𝑝 = ( + 1) 𝑝 +1 + ∑ 𝑝 −𝑏 

    
𝑅
 =1 0 <  < 𝑆 

∑   
𝑅
 =1 𝑝0 =  𝑝1                        = 0                                         (33)

𝑆 𝑝𝑆 = ∑ 𝑝𝑆−𝑏 
    

𝑅
 =1        = 𝑆                                             

         

              (3.48) 

The above equations cannot be solved through the transform analysis, but the distribution 

of the number of busy VMs may be determined from the above recursive equations 

together with the normalization condition. Then average of the total number of the busy 

VMs is given by, 

𝐸[  ] = ∑ 𝑝 

𝑆

 =0

 

Let  𝐵 
 denote the blocking probability of class r jobs, then it is given by, 

 𝐵 
= ∑ 𝑝 

𝑆

 =𝑆− +1

 

Next we will determine pdf of the service time of a class r job. Let 𝑇  and 𝑓  (𝑡) this 

service time and its pdf respectively. Then, 

𝑇 = max(𝑡1 𝑡2 …  𝑡  …  𝑡 ) 
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where 𝑡  is the service time of the j
th

 task. Since service times of the tasks are i.i.d. with 

exponential distribution, 

 𝑟(𝑇 < 𝑡) = ∏ (𝑡 < 𝑡)

 

 =1

 

From the above, the pdf of 𝑇  is given by, 

𝑓  (𝑡) = 𝑟 𝑒−𝜇 (1 − 𝑒−𝜇 ) −1 

The average service time of a class r job is given by, 

                  𝑇 ̅ = 
1

𝜇
∑

(  )

𝑖

 
𝑖=1 (−1)𝑖+1                                             (3.49)    

Let    denote number of class r jobs in the system, then from the Little’s result its 

average is given by,   

𝐸[  ] =   (1 −  𝐵 
)𝑇 ̅                                          (3.50) 

Fig. 3.17 presents probability distribution of the number of busy VMs for a system 

with four classes of jobs with equal arrival rates with total arrival rate as a parameter for a 

fixed number of VMs in the system. As may be seen, probability distribution shifts to the 

right with increasing total arrival rate. Further, the distribution has the largest spread at 

the medium job arrival rate. Figure 3.18 presents the average number of jobs from each 

class in the system as a function of the total arrival rate. It may be observed that average 

of the number of class 4 jobs in the system decreases faster than the other classes with 

increasing total arrival rate. 
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Fig. 3.17 Distribution of busy VMs under low, medium, heavy and very heavy load (R=4, S 

=100, μ=1) 

 

 

 

 

 

 

Fig. 3.18 Average number of jobs from each class as a function of the total job arrival rate (R=4, S=100, 

μ=1) 
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3.5 Modeling of the system with Variable Job Size (VJ) 

In this section, we propose a performance model for systems with dynamic service 

demand where job size in number of tasks varies during service. As explained in chapter 

1, this model will be more appropriate to mobile cloud computing systems. We assume 

that the size of a job in number of tasks varies randomly during the time that job is in the 

system. The arrival of the jobs to the system will be according to a Poisson process with 

parameter λ jobs/sec. We assume that a new arriving job to the system initially demands 

service for a single task. A job generates random number of tasks according to a Poisson 

process with parameter 𝛼 task/job/sec during its service time in the system. We assume 

that each task requires a VM for its execution and task execution times are exponentially 

distributed with parameter  .  Service time of a job begins with its arrival to the system 

and it is completed when there are no more tasks belonging to that job left in the system. 

Clearly, a job will have a general service type distribution. In this section, a birth-death 

process is proposed to model this type of cloud computing systems. Figure 3.19 shows 

the state transition diagram for the tasks of a job in the system. The objective of this 

analysis is to determine distribution of the number of jobs in the system, service time 

distribution of a job and average of the total number of tasks. We will consider systems 

 

 

 

 

 

 

 

 

Fig. 3.19 State-transition-rate diagram for the tasks of a job in the system 
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with both infinite and finite number of VMs.  

3.5.1 Infinite Resource model (VD, IR, UJ) 

First, we consider infinite resource model where there is always an idle VM available 

for the execution of each newly generated task to begin immediately. In this case the 

number of jobs in the system can be modeled as an  /𝐺/ ∞ queuing system. Next, we 

will determine main performance measures of this system. 

i) Distribution of the number of jobs in the system 

Let 𝑝  denote the steady state probability of having n jobs in the system and  (𝑧) its 

probability generating function (PGF). From the results for the  /𝐺/ ∞  queuing 

system  [59], 

𝑝 =
(𝜆�̅�) 

 !
𝑒𝜆�̅�                                                       (3.51) 

 (𝑧) = 𝑒−𝜆�̅�(1−𝑧)                                                  (3.52) 

where  ̅ denotes the average service time of a job which is determined below.  

As stated above, each job initially requires service for a single task; however, it 

generates new tasks according to a Poisson process during its service time in the system. 

Since we have assumed infinite resource model, each newly generated task immediately 

begins to receive service. Since task execution times are also exponentially distributed, 

service time of a job corresponds to the busy period of an  / / ∞  queue, where the 

number of customers served during the busy period corresponds to the total number of 

 

Fig. 3.20 State-transition diagram for the stages of the system 
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tasks generated by the job. Figure 3.20 shows the state-transition-rate diagram for the 

tasks of a job in the system. From  [60], Laplace transform of the probability distribution 

of the busy period of an   / / ∞  queue with arrival and service rates of 𝛼  and   is 

given by, 

 (𝑠) = 1 + 𝛼−1(𝑠 − (∫ 𝑒−𝑠 − ∫ (1−𝐺( ))𝑑 
 
 ) )                         (3.53) 

where 𝐺(𝜈) denotes the service time distribution of a task in the system, which has 

exponential distribution.   

Then average service time of a job is given by the mean busy period of  / /

 ∞ queue,   

 ̅ =
𝑒 / −1

 
                                                        (3.54) 

From the Little’s result the average number of jobs in the system is given by:   

        𝐸[ ] =   ̅                                                      (3.55) 

ii) Average number of tasks generated by a job during its lifetime in the system   

Next, we determine average of the total number of tasks generated by a job during its 

life-time in the system, which is given by the ratio of average service time of a job to the 

service rate seen by its tasks in the system. Thus, first, we will determine the service rate 

seen by the tasks of a job. 

Let     denote probability that there will be k customers in an  / / ∞  queuing 

system at the steady-state. From  [59],     has Poisson distribution given by,  

   =
( /𝜇) 

 !
𝑒− /𝜇   ≥ 0                                            (3.56) 

Letting   
′  denote probability that there will be k customers at an arbitrary time during 

a busy period in an  / / ∞  queuing system, then: 

  
′ =

𝑞 

1−𝑞 
,  ≥ 1                                                     (3.57) 

Let    denote service rate of the tasks of a job, which has k tasks in the system at an 
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arbitrary time. Since   =   , the average service rate of the tasks generated by a job is 

given by, 

 ̅ =  ∑    
′∞

 =1 =
 

1−𝑒
  
 

                                            (3.58) 

Defining �̅� as the average number of tasks generated by a job during its service time in 

the system, then it is given by, 

�̅� =
�̅�

�̅�
= 𝑒

 

 
(1−𝑒

  
 ) 

  
                                                     (3.59) 

iii) Joint distribution of the number of jobs in each stage of the system 

We define a job to be in stage j if it has j tasks in execution at that time within the 

system. Let    denote number of jobs in stage j at an arbitrary time. Next, we will 

determine joint distribution of the number of jobs in each stage of the system. 

Proposition 3.2.    has a Poisson distribution.  

Proof. Let us define Bernoulli random variable  𝑖  as,    

 𝑖 = {   1         
     𝑜  ℎ𝑎𝑠    𝑡𝑎𝑠 𝑠    𝑡ℎ𝑒 𝑠 𝑠𝑡𝑒 

 0            𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒     
                                         (3.60) 

Then, PGF of the distribution of   𝑖  is given by, 

𝐾𝑖 (𝑧) =   
′𝑧 + 1 −   

′                                             (3.61) 

From the above,    may be expressed as,  

   = ∑  𝑖 
 
𝑖=1                                                          (3.62) 

Let   (𝑧) denote PGF of the probability distribution of   , then,  

  (𝑧) =  (𝑧)|𝑧=𝐾  (𝑧)
= 𝑒−𝜆�̅�𝑞 

 (1−𝑧)                                (3.63) 

where we substituted from (3.56) and (3.61) in the above. The inversion of the above PGF 

gives, 
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  𝑝   
=

(𝜆�̅�𝑞 )
   

   !
𝑒−𝜆�̅�𝑞                                                (3.64) 

which completes the proof. 

Now, we will determine the joint distribution of the number of jobs at each stage of the 

system. Let state of the system denoted by the vector  ⃗ = ( 1 …   𝑖  …  ∞).  We will 

show that the joint probability distribution of  ⃗  has a Poisson distribution given by,  

               𝑝( ⃗ ) = ∏ [
(𝜆�̅�𝑞 

 )
   

   !
𝑒−𝜆�̅�𝑞 

 

]∞
 =1                                       (3.65) 

Let us define the following vectors that differ from  ⃗  at most in two components by unit 

value: 

 ⃗  
+ = ( 1 …    

+ …  ∞) 

  ⃗⃗⃗   
− = ( 1 …    

− … ∞) 

 ⃗ 𝑖 
+− = ( 1 …   𝑖

+ …    
− …  ∞)                                                                                 (3.66) 

  ⃗ 𝑖 
−+ = ( 1 …   𝑖

− …    
+ …  ∞) 

where     
+ =   + 1   

− =   − 1 . 

Next, we will write the LBEs for the state   ⃗ ,  

{

    𝑝(  ⃗  ) +   𝛼𝑝( ⃗ )     = ( + 1)(  +1 + 1)  𝑝( ⃗    +1
−+  )

+(  −1 + 1)𝛼𝑝( ⃗  −1  
+−  )          > 1                                         

 1 𝑝( ⃗ ) +  1𝛼𝑝( ⃗ ) = 2( 2 + 1)  𝑝( ⃗ 12
−+) + λ  ( ⃗ 1

−)  = 1 

                               (3.67) 

 By means of substitution it can be shown that (3.65) satisfies the LBEs in (3.67) and 

therefore it is the correct distribution. 

iv)  Distribution of the total number of tasks in the system 

Next, we will determine distribution of the total number of tasks in the system. Let us 

introduce the following notation,  

𝑟 =      

𝑟 = (𝑟1 …  𝑟  …  𝑟∞) 

𝑧 = (𝑧1 …  𝑧  …  𝑧∞) 

 ⃗ = ( 1 …     …   ∞) 
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where, 𝑟  corresponds to the total number of tasks that belong to the jobs in stage j. Let us 

define PGF of the distribution of  𝑟  as,  

 (𝑧 ) = 𝐸[𝑧   ]= 𝐸 [∏ 𝑧
 

  ∞
 =1 ] = 𝐸[∏ 𝑧

 

   ∞
 =1 ]= 𝐸[∏ (𝑧 

 
)  ∞

 =1 ] 

 (𝑧 ) =  𝐸[∏ (𝑧 
 
)  ∞

 =1 ]                                                                                             (3.68)  

 (𝑧 ) = ∑ …  ∑ …  ∑ [∏ (𝑧 
 
)  ∞

 =1 ]∞
  =0

∞
  =0

∞
  =0  𝑝( ⃗ )  

Substituting for 𝑝( ⃗ ) from (3.57), 

 (𝑧 ) = ∑   ∑   ∑ [∏ 𝑒−𝜆�̅� 𝑞 
 (𝜆�̅�𝑞 

 𝑧 
 )

  

  !

∞
 =1 ]∞

  =0
∞
  =0

∞
  =0     

    Interchanging the order of summations and multiplications, 

 (𝑧 ) = ∏ 𝑒−𝜆�̅� 𝑞 
 

𝑒
𝜆�̅� 𝑞 

 𝑧 
 

∞
 =1 = ∏ 𝑒

−𝜆�̅� 𝑞 
 (1−𝑧 

 
)
   ∞

 =1   

 (𝑧 ) = 𝑒
−𝜆�̅�  ∑ 𝑞 

 (1−𝑧 
 
) 

   = 𝑒
−𝜆�̅� (1−∑ 𝑞 

 𝑧 
 
) 

                                                               (3.69) 

    Next let us define     as the total number of tasks in the system and 𝐾 (𝑧) as the PGF 

of its distribution, then, 

   = ∑ 𝑟 
∞
 =1   

𝐾 (𝑧) = 𝐸[𝑧  ]=  (𝑧 )|𝑧 =𝑧 𝑖=1 … ∞=𝑒−𝜆�̅� (1−∑ 𝑞 
 𝑧 ) 

                                                   (3.70) 

Substituting in the above from (3.51), (3.70) gives, 

𝐾 (𝑧)=𝑒

−𝜆�̅� [1−
 

  (   )
   

  
 

   

  
 

]

                                                       (3.71) 

Finally, from the above average of the total number of tasks in the system are given by, 

                𝐸[  ] =
𝜆 �̅�

𝜇(1−𝑒
  
 )

=
𝜆

𝜇
𝑒

 

                                             (3.72) 
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Figure 3.21 presents average of the total number of the tasks in the system as a function 

of the task arrival rate with job arrival rate as a parameter. Fig. 3.22 presents the average 

service time of a job with dynamic service time and the independent release time of the 

previous section from  equations (3.54) and (3.49) respectively. We plotted the results for 

class 3 and 4 jobs for the independent release times. For fair comparison, average of the 

number of tasks generated by a job with dynamic service time, (3.54), has been set equal 

to the number of tasks in each class of jobs for the independent release time. Thus for 

each value of  , task generation parameter   has been chosen such that  ̅ =  . As may be 

seen, under these assumptions the average service times of a job in the two models are 

close to each other. 

 

 

 

Fig. 3.21 Average of the total number of the tasks as a function of 𝛼  and   as a parameter 
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Fig. 3.22.  Average service time of a job as a function of task service rate for dynamic service and 

independent release time models 

 

3.5.2  Finite Resource Model (VJ, IR, UJ) 

   Next, we consider the finite resource model where the computing center has finite 

number of VMs given by S. A new arriving job will be blocked if all the VMs are 

occupied. In this model, we assume that each job is assigned a fixed number of VMs, c, 

for its service. When the number of tasks belonging to a job is more than c, then the 

excess tasks are queued. Let us assume that S is an integral multiple of c, then the number 

of jobs in the system can be modeled as an M/G/N/N queuing system where  = 𝑆/ .  

The service time of a job may be modeled by the busy period of an  / /   queue, 

where customers are the tasks generated by the job. The average service time of a job is 

given by the mean busy period of the  / /   queue, which is from  [61],  

 ̅ =

{
 
 

 
 

1

𝜇(1−
 

  
)
                                        f    ≤ 2

1

 
[

(
 

 
)
 

(1−
 

  
)𝑐!

+
1

 
∑

(
 

 
)
 

 !

𝑐−1
 =1 ]               f     > 2     

                          (3.73) 

Let   denote the number of tasks in the system that belongs to a job, then it may be 

determined from the distribution of the number of customers in an M/M/c queuing 

system,  [61], 
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     ( =  ) =
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Pr ( =0)

1−Pr ( =0)
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)
 

𝑖!
                 0 <   ≤   

Pr ( =0)

1−Pr ( =0)

(
 

 
)
 

𝑐!𝑐                 >  

                                 (3.74) 

where , 

   ( = 0) = [∑
(
 

 
)
 

 !

𝑐−1
 =0 + 

(
 

 
)
 

𝑐!(1−
 

  
)
]

−1

  

Let   denote the number of busy VMs from those that assigned to a job, then, 

  

   ( =  ) = {
    ( =  )               0 <   <   

∑    ( =  )∞
 =𝑐               =  

                               (3.75) 

 

From the M/G/N/N queuing results, probability distribution of the number of jobs in the 

system is given by,  [62], 

𝑝 = {
     𝑝0

(𝑁𝜌) 

 !
                    <   

𝑝0
(𝑁𝜌) 

𝑁!
                    =  

                                             (3.76)       

where  𝑝0 = [∑
(𝑁𝜌) 

 !
+

(𝑁𝜌) 

𝑁!
  𝑁−1

 =0 ]
−1

 and 𝜌 =    ̅   

We note that blocking probability of a job is given by 𝑝𝑁. Let    denote total number of 

tasks in the system, and then its average is given by,  

         𝐸[  ] = 𝐸[ ]𝐸[ ]                                                        (3.77) 

The above average needs to be determined numerically from (3.74) and (3.76).  

Figure 3.23 shows the average number of VMs in the system as a function of task 

arrival rate and job arrival rate as a parameter. We assumed that N=40 and c=10. As 

illustrated, due to hard limitation on maximum number of tasks of a job, task arrival rate 

is dominant in creation of VMs compared to job arrival rate. With increasing the job 

arrival rate, job saturation probability shifts to the left.    
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3.5.3 Saturated job arrival Process (VJ, SJ) 

In this part, we consider a system in which there are always N jobs in service. When 

service of a job is completed, a new job immediately enters the system. Also, the new job 

initially requires service for a single task and generates new tasks according to a Poisson 

process. The service time of a job remains as in the previous case. The objective of 

analysis is to determine total number of tasks in the system. Since each job has at least a 

single task in the system, the minimum number of tasks in the system will be N. Defining 

   to be the total number of tasks as the state of the system, and then the system may be 

modeled as a birth-death process with birth and death coefficients: 

 𝛼 =  𝛼   ,       
=     ,      ≥   ,                                                       (3.78) 

Thus the distribution of the total number of tasks in the system is given by the product 

form solution,  

𝑝  
( ) = 𝑝𝑁 ∏

  

𝜇   
  −1

𝑖=𝑁      ≥                                                         (3.79) 

Substituting (3.78) in the above, 

 𝑝  
( ) = 𝑝𝑁

𝑁!

 !
(
𝑁 

𝜇
)
 −𝑁

      ≥                                                         (3.80) 

where 𝑝𝑁 is determined from the normalization condition, ∑ 𝑝  
( ) = 1∞

 =𝑁 ,                                                                                                       

 

Fig. 3.23 Average number of the VMs as a function of task arrival rate and job arrival rate as a 

parameter. (c=10, N=40) 



 

   62 

 

𝑝𝑁 =
1

∑
 !

 !
(
  

 
)
   

 
   

=
(
  

 
)
 

𝑁!(𝑒
  
 −∑

(
  
 

)
 

 !
   
   )

                                                   (3.81) 

Then substituting (3.81) in (3.78) will lead to: 

𝑝  
( ) =   (𝑒

  

 −∑
(
  

 
)
 

𝑖!

𝑁−1
𝑖=0 )

−1

 
(
  

 
)
 

 !
       ≥                                     (3.82) 

From the above, average number of tasks in the system is obtained as: 

𝐸[  ] = ∑   𝑝  
( )∞

 =𝑁 = (
𝑁 

𝜇
)(1 + (𝑒

  

 − ∑
(
  

 
)
 

𝑖!

𝑁−1
𝑖=0 )

−1

 
(
  

 
)
   

(𝑁−1)!
)          (3.83) 

In the finite resource model, we assume that the system has finite number of VMs to 

execute the tasks, denoted by S. In this model, we only consider saturated job arrival 

process and there will always be N jobs in service. Service of a job is completed, 

whenever a job does not have any more tasks left in the system. Following the service 

completion of a job, a new job is immediately inserted into the system. The new job also 

initially requires service for a single task and generates new tasks according to a Poisson 

process. We note that 𝑆 ≥   and maximum number of the tasks that can be executed 

simultaneously equals to S. When number of tasks in the system exceeds S the remainder 

will be queuing. The objective of the analysis is again to obtain the total number of 

tasks,   , in the system.  Here, we define the system state as total number of tasks 

currently in the system. We model the system as a birth-death process with the following 

coefficients, 

𝛼 =  𝛼 ,           
= {

                     ≤    ≤ 𝑆 
𝑆                          > 𝑆

                                                 (3.84) 

The distribution of the total number of tasks in the system is given by the product form 

solution in (3.79). Substituting from (3.84) in (3.79), 
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𝑝  
( ) =

{
 

 𝑝𝑁 ∏
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(𝑖+1)𝜇
= 𝑝𝑁
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 !

 −1
 =1 (
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𝜇
)
 −𝑁
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𝑝𝑁 ∏
𝑁 
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𝑁 
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𝑆!
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)
   

𝑆           ≥ 𝑆

                    (3.85) 

Normalization condition gives 𝑝𝑁 as,  

𝑝𝑁 =
1

∑ 𝑝 
 !

 !
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    +∑
 !

 !
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)
   

=
(
  

 
)
 

𝑁!(∑
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 !
 
   +

  

 !
∑ (

  

  
)
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                           (3.86) 

Finally, average number of tasks in the system is given by, 

   𝐸[  ] = ∑   𝑝  
( )∞

 =𝑁 =
𝑁 

𝜇
(1 + 𝑝𝑁

(
  

 
)
 

(𝑆−1)!(1−
  

  
)
 )                            (3.87) 

Next, we present numerical results for variable service demand models.  

 

     Fig 3.24 Probability distribution of number of tasks in the system with N and 𝛼  as the 

parameters 

 

Figure 3.24 illustrates the distribution of total number of tasks in the system with    𝛼 

as parameters. Note that, the spread of the probability distribution increases with the 
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growth of task arrival rate while probability distribution shifts to the right with increasing 

number of jobs. 

Figures 3.25, 3.26 show the average number of tasks in the infinite and finite resource 

models respectively as functions of task arrival rate with number of jobs as a parameter. 

As it is shown in Fig. 3.25, when task arrival rate increases, the average number of tasks in 

the system will increase. However, for larger values of 𝛼 this growth is more tangible. 

Moreover, for larger number of jobs in the system, the total number of tasks in the system 

is higher. Figure 3.26 also indicates that when task arrival rates increase, until the system 

is saturated, the total number of the tasks in the system will also increase. In addition, for 

low task arrival rates, the average number of tasks in the system will remain almost the 

same for different job arrival rates. 

 

Fig. 3.25 Average of the total number of tasks for infinite resource model with saturated job 

arrival process as a function of task arrival rate and number of jobs, N, as a parameter and 

 = 1. 

 

Figure 3.27 also compares the average number of tasks from several modeling 

perspectives namely saturated, unsaturated infinite resource models and finite resource 

models. As illustrated, the average number of tasks in unsaturated infinite resource model 

is much higher than in the other two. 𝐸[  ] associated with infinite server model under 

unsaturated job arrival process is also included in the figure with E[n]=   ̅= N  given in 



 

   65 

 

(3.55). N is assumed to be a constant, thus for all values of 𝛼,   is determined such that 

average number of jobs in the system remains fixed. 

 

Fig. 3.26 Average number of tasks in finite resource model as a function of task arrival rate and 

number of jobs, N, as a parameter and  = 1 𝑆 = 100  

 

 

Fig. 3.27 Comparison of the average number of tasks for saturated and unsaturated infinite 

resource model and finite resource model (S=40) as a function of task arrival rate ( = 1  =

30).  
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3.6 Comparison of the Performance Modeling Results with 

the Previous Work 

In this section, we give a comparison of the performance analysis of cloud computing 

systems developed in this chapter with the previous work that has been introduced in the 

previous chapter. There is an overlap between the work in this chapter and that in [11-13], 

though we have studied several more models not considered in those works.  

In [11], a cloud computing center has been modeled as a M/G/m/m+r queue, where m 

is the number of VMs in the system and r is the size of the buffer that stores the waiting 

jobs. A new arriving job to a full buffer is lost and the jobs in the buffer are served on 

FCFS basis. It is assumed that each job requires a single VM for its execution. The 

steady-state distribution of the queue length is determined by writing down the transition 

probability matrix of the embedded Markov chain at the arrival points. The analysis 

makes the approximation that at most three jobs may be served during an inter-arrival 

time. The equilibrium equations had to be solved numerically, thus the queue length 

distribution could not be obtained in a closed form. This model corresponds to our single 

server model with one class of jobs, when no buffering is allowed, r=0. In Fig. 3.28, we 

plot average number of busy VMs for both our and their model under the assumption of 

no buffering, r=0, as a function of the job arrival rate. The results have been plotted both 

for exponential and deterministic service times. As may be seen, the approximate results 

of  [11] are very close to our exact results.  



 

   67 

 

 

Fig. 3.28 Average number of the jobs in the system as a function of job arrival rate for 

M/G/m approximation and the exact results for  = 1. 

In  [12],  [13], the analysis in [11] has been extended to the jobs where each job contains 

random number of tasks and execution of each task demands a VM.  In this model, the 

tasks of a waiting job are stored in the buffer with each task occupying one position. All 

the tasks of a job need to start execution simultaneously. If the tasks of a new arriving job 

cannot be served immediately and there is no enough storage in the buffer to store all the 

tasks, then that job is rejected. Since jobs are still served on a FCFS basis, this results in 

head-of-line (HOL) blocking until enough servers become available to serve the HOL 

job. Service times of the tasks are i.i.d with a general distribution, thus the tasks of a job 

have independent release times. Letting number of tasks to denote the system state, then 

the system has been analyzed by embedding a Markov chain at the job arrival points. 

Similar to the original model, it is assumed that a VM cannot serve more than three tasks 

during a job interarrival time. The transition probabilities are determined assuming 

constant number of tasks in a job, which needs to be unconditioned numerically 

afterwards. Further, an important weakness of the analysis is that the probabilities 

involving transitions from a state with number of idle VMs require knowledge of the 

distribution of the idle VMs, which is part of the solution that is being determined. The 

distribution of the number of idle VMs had to be determined through simulation. After 

determination of the transition probability matrix, which is quite tedious, the equilibrium 
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equations have been solved numerically. This model becomes identical to our model for a 

system with multiple classes of jobs and independent task release times under the 

assumptions of exponential task service times and no buffering, r = 0 (section 3.4). For 

this case, we also determine distribution of the service time of a job and average number 

of jobs from each class in the system (latter is plotted in Fig. 3.14), which are not 

available in [24]. We note that our single server models apply to systems with multiple 

job classes and simultaneous task completion times for both homogeneous and 

heterogeneous VMs under no queuing assumption. The joint distribution of the number of 

jobs is presented in equations (3.1) and (3.25) for homogeneous and heterogeneous VMs 

cases respectively.  

In  [14], the performance of cloud computing systems has been studied using stochastic 

reward networks (SRNs). It is assumed that cloud center has N servers that may support 

upto M VMs where N≥M. The arrival of the jobs is either according to a homogeneous 

Poisson process or a Markov Modulated Poisson Process (MMPP) which allows time 

variations in the arrival rate. It is assumed that each job requires a single VM for its 

execution and service times are exponentially distributed. However, mean service time is 

a function of the number of busy VMs on a server. The system has a finite queue, which 

is managed according to the FCFS discipline and a job arriving to a full queue is lost. The 

models of  [14] and [11] become identical for Poisson arrivals and exponentially 

distributed service times with a constant mean value, when number of servers and 

number of VMs are equal to each other, N=M. For this case, the two models have been 

compared in  [14] and the presented numerical results show very close agreement. This 

also means that our results agree with that of  [14] for the case of single task per job 

scenario with no buffering, since all the three models become same for this special case. 

The main weakness of the model in  [14] is that it is numerical and lacks closed form 

results.    

In  [15], performance of cloud computing systems has been studied considering fault 

recovery. It is assumed that arrival of jobs is according to a general stochastic process and 

each job has random number of tasks. The system has a server with S VMs and each task 

requires a VM for its execution. Task service times are i.i.d with exponentially 

distribution, which results in independent task completion times. The system has a finite 
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queue and each task of a job occupies a position in the queue. A job is lost if not all of its 

tasks can be accepted to the system. The system has been modeled as GI
x
/M/S/N queue 

where N corresponds to the maximum number of allowed tasks in the system. The 

steady-state probability distribution of the number of tasks in the system is determined by 

writing down the transition probability matrix for the embedded Markov chain and 

solving numerically the equilibrium equations. We note that, the analysis doesnot result 

in the distribution of the number of jobs in the system. For fault modeling, it is assumed 

that VMs fail according to a Poisson process and VM recovery times are exponentially 

distributed. Following recovery, the execution of a task resumes from the point of failure. 

Under the approximation that all the tasks of a job begin receiving service 

simultaneously, job service times have been determined. However, probability 

distribution of the number of tasks in the system with fault tolerance could not be 

obtained because the queuing model only allows exponential service times. Again, this 

model under the assumption of Poisson arrival of jobs with no queuing and simultaneous 

service completion of the tasks of a job corresponds to our single server model with 

single class of jobs (section 3.2.1). Simultaneous service completion means that 

whenever a VM assigned to a task fails, all the tasks belonging to the job as the failed 

task are also delayed until recovery. Then for fault tolerance scenario, our model gives 

the distribution of the number of jobs in the system from equation (1), since the analysis 

applies for any service time distribution. Let μ,γ denote parameters of the exponential 

distributions for service and recovery times respectively and α parameter of the Poisson 

distribution for failure. Then, mean service time of a job is given by, 

 ̿ =
𝛼 + 𝛾

 𝛾
 

In Fig. 3.29, we plotted average number of jobs in the system as a function of the job 

arrival rate λ with α as a parameter for constant values of μ,γ and S. It is assumed that 

number of tasks per job is four. As may be seen, average number of jobs in the system 

increases with increasing value of VM failure rate at any job arrival rate. 
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Fig. 3.29 Average number of the jobs in the system as a function of job arrival rate with 𝛼 as a 

parameter for = 𝛾 = 1 , 𝑆 = 100 and four tasks per job. 

The optimal resource allocation approach and its objective in this thesis also is similar 

to works in  [22] and  [23], except for the solutions methods.   [22] and  [23] proposed 

heuristic method to find the solution while column generation technique is proposed in 

this thesis to find the optimal resource allocation. Further, similar to  [39] our analysis 

allows heterogeneous VMs with different resource requirements, while  [22] considered 

the problem into a one dimensional resource type. We also develop a technique for the 

optimal allocation of the resources as a function of the time under a stochastic job arrival 

process with and without migration of the VMs belonging to incomplete jobs. 

 

3.7 Conclusion  

In this chapter, we have studied performance modeling of cloud computing systems. 

We have derived joint distribution of the number of jobs from each class in the system, 

job blocking probabilities and distribution of the utilization of resources as a function of 

the traffic load under various scenarios for systems with both homogenous and 

heterogeneous VMs. We have shown that joint distribution of the number of jobs depend 

on the service time only through its mean. We have determined service fragmentation 

probabilities and have shown application of the derived results in power management 

techniques under time-varying loads. We have obtained results for systems that resource 

requirements of jobs may vary dynamically during their service times, which may be 

appropriate to mobile cloud computing environment.  The derived results advance the 
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state-of-the-art on performance modeling of cloud computing systems and they will be 

useful in dimensioning of cloud computing systems.  
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Chapter 4   
 

Job Scheduling with Optimization of 

Power Consumption in Cloud 

Computing Centers 

  

In this chapter, we propose an optimization model for VM placement in the cloud 

computing centers. The VM placement scheduler should minimize the power 

consumption of servers and inter-VMs communications.  

In previous chapter, performance of the cloud computing models is determined under 

stochastic job arrival process and job service time distribution. The objective of that 

analysis was determining equilibrium distribution of the number of jobs in the system, 

job blocking probabilities, response time for different classes of jobs and distribution of 

the resource utilization. In this chapter, given the number of jobs and occupied VMs in 

the system, we develop an optimization model that determines the job schedule, which 

minimizes the total power consumption of a cloud computing center 

The problem of VM placement for power minimization is NP-hard  [22]. Due to 

similarity between our optimization problem and cutting stock problem, we utilized 

column generation (CG) technique to solve this large scale optimization problem. 

Moreover, initialization and heuristic termination algorithms are also proposed to 

mitigate the complexity of the optimization problem. The model also has been extended 

to the case where communication rate and computation level are random variables to 

make the model more realistic.  

The remainder of this chapter is organized as follows: Job scheduling with 

optimization of power consumption is defined in Section 4.1. In Section 4.2, we extend 

the optimization problem of Section 4.1 to include communication network infrastructure 

and bandwidth constraints in order to have a more realistic model. Section 4.3 discusses 
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the probabilistic model. Dynamic job scheduling with optimization of power 

consumption as a function of time is studied in Section 4.4. Complexity order analysis 

followed by initialization, and heuristic rounding algorithm for finding the ILP solution 

from the relaxed LP solution is discussed in section 4.5. Section 4.6 discusses the 

numerical results and section 4.7 presents conclusion. 

 

 

4.1 Job Scheduling with Optimization of Power Consumption 

in a Cloud Computing Center 

  

In this section, we will develop an optimization problem that determines the job 

schedule, which minimizes the total power consumption of a cloud computing datacenter. 

It is assumed that power consumption in a datacenter is due to communications and 

server operations. We assume a distributed model, where a job may be assigned VMs on 

different servers. There will be a need for communications among the VMs assigned to a 

job on different servers. This demand will be proportional to the product of the number of 

VMs assigned to each job on each pair of servers. We assume a server will be on if it has 

at least one VM assigned to at least one of the jobs and otherwise it will be off.  It will be 

assumed that an on server consumes constant power and an off server zero power. In this 

optimization problem, we will ignore power consumption of communication network 

infrastructure since that is topology dependent. However, in the follow up section, 

optimization problem will be expanded to include this power consumption for a 

hierarchical network topology.  

We assume that a datacenter that has T types of servers, where each server type is 

determined by the amount of different types of resources that it contains. A server type 

may have K different types of resources such as bandwidth, storage, CPU and memory. A 

unique resource vector determines the amount of resources that each server type has. We 

let    denote number of type t servers in the datacenter, 𝑡 ∈ {1 …  𝑇}. Power 

consumption of an on type t server will be denoted by    and otherwise it will be zero. 

We assume that a server may have R different VM configurations. Each VM 

configuration is determined by the amount of different types of resources that it contains. 

We let   
  denote the type k resource requirement of type 𝑟 VM. We assume that there are 
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H types of jobs, where each job type requires a random number of VMs from a group of 

VM types and it has geometrically distributed service time with a different parameter. We 

let    denote number of type h jobs in the datacenter, ℎ ∈ {1 …  𝐻}. Let also    
  denote 

the number of type 𝑟 VMs that job    requires,   ∈ {1  …    }. N is defined as the 

number of jobs in the datacenter, then,  = ∑   
𝐻
 =1 . The notation for this optimization 

problem has been summarized in Table 4.1.  

 

 

Table 4.1 Parameter/Variable Definitions  

Parameters Definitions 

  number of VM types 

  number of jobs in the datacenter 

𝐾 number of resource types 

T number of different types of servers. 

   total number of  type t servers 

   power usage of type t  servers 

   
  number of type r VMs required by job    

  
  type k resource capacity of a type t server 

   
 power usage rate of communicating with a server serving VMs of job   . 

  
  Amount of type k resource required by a type r VM 

Variables Definitions 

     

   number of type r VMs in  m
th

  type t server assigned to job   . 

 ̃  

   number of VMs in  m
th

  type t server assigned to serve job   . 

   
 binary variable denote on or off status of  m

th
  type t server. 

 

The total power will be minimized if the job load is served by minimum number of 

servers and each job is assigned VMs from as few servers as possible. Next, optimization 

problem using IQP and CG will be introduced. First, IQP is used to model the 

optimization problem. Then, CG will be introduced to solve the optimization problem 

with less complexity.  

 

4.1.1 Integer Quadratic Programming Model 
 

In this subsection, we will develop an IQP model for the optimization problem 
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described in the above. We assume that communication power consumption between two 

VMs assigned to a job depends on the type of job but not on the types of VMs. We let    
 

denote communication power consumption between two VMs assigned to the job   . The 

scheduling variable      

   represents number of type r VMs in m
th

 type t server assigned 

to serve job   , where   = 1     . We are interested in finding optimal values of      

  s 

that minimize the DC power consumption.  Similarly defining connectivity variable  ̃  

   

as number of VMs assigned to job    on the     type t server. Then, the optimization 

problem is given by,  

    ∑ ∑    
 ∑ ∑ [∑ ∑  ( ̃  

   ̃  

 
  
 

 )
𝑀

  

 
  
 =1  

 
  =1 − ( ̃  

  )
2
]

𝑀 
  =1 

 
 =1

𝑁 
  =1 

𝐻
 =1 +

 ∑   ∑    

𝑀 
  =1 

 
 =1                                                                                                        (4.1)                                           

𝑆𝑢  𝑒 𝑡 𝑡𝑜  

 ̃  

  = ∑      

  𝑅
 =1       ∀   ∈ {1 …    }    ∈ {1  …    }                                       (4.2)                          

∑ ∑      

  𝑀 
  =1 

 
 =1 ≥     

    ∀ 𝑟 ∈ {1 …   }    ∈ {1  …    } ℎ ∈ {1 …  𝐻}          (4.3) 

∑ ∑ ∑      

    
 𝑅

 =1
𝑁 
  =1 

𝐻
 =1 ≤   

   ∀  ∈ {1 …  𝐾}   ∈ {1  …    }                        (4.4)                                  

   
= {

1       ∑ ∑  ̃  

  𝑁 
  =1 

𝐻
 =1 > 0 

0         ∑ ∑  ̃  

  𝑁 
  =1 

𝐻
 =1 = 0 

                                                                        (4.5) 

where    
 denotes on and off status of     type t server.  

In the objective function the first and second terms correspond to communications and 

server power consumptions of the datacenter respectively. Constraint group (4.3) ensures 

that VM requirements of each type of job are satisfied and group (4.4) guarantees that 

resource demands of jobs scheduled on a server do not exceed that server’s resource 

capacities. In the above optimization problem, objective function is quadratic and 

constraints group (4.5) is nonlinear. We would like to simplify the optimization problem 

to IQP with linear constraints by converting nonlinear constraints in (4.5) to linear. This 

can be achieved by replacing the constraints in (4.5) by the following two pairs of linear 

constraints for all servers, 

∑ ∑  ̃  

  𝑁 
  =1 

𝐻
 =1 −    

≥ 0                                                                                      (4.6) 
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휃   
− ∑ ∑  ̃  

  𝑁 
  =1 

𝐻
 =1 ≥ 0                                                                                    (4.7) 

That implies ∑ ∑  ̃  

  𝑁 
  =1 

𝐻
 =1  = 0 ⇔    

 = 0 and ∑ ∑  ̃  

  𝑁 
  =1 

𝐻
 =1  > 0 ⇔    

 = 1. 

휃 denotes an integer much larger than the maximum value of the above positive integer. 

For the remainder of the Chapter, constraints in (4.5) will be replaced by the constraints 

in (4.6) and (4.7), which will be referred as “positive integer to binary linear conversion 

constraints” (IBLC). As a result of the replacement, the above optimization problem may 

be expressed as, 

    (4 1)                                 

𝑆𝑇  (4.2) - (4.4), (4.6) and (4.7) 

We note that   ∈ {1  …    } stands ∀ 𝑡 ∈ {1 …  𝑇}. In the above ST is the abbreviation 

for ”Subject To” . 

It should be noted that solution of the IQP model gives exact results.  

4.1.2  Column Generation Model 

The optimization problem, which has been developed in the previous subsection is NP 

hard. For large scale datacenters, finding the global optimum point of the IQP becomes 

overly complex and time consuming. In this subsection, we will use column generation 

technique to provide an alternative solution to our problem. This technique originally had 

been applied to cutting-stock problem. In column generation approach, the optimization 

problem is divided into restricted master and pricing problems  [63],  [79]. The Restricted 

Master Problem (RMP) determines if the explored patterns satisfy the job demand 

constraints. The pricing problem finds a new pattern to feed the RMP. The objective 

function of the pricing problem is in fact the reduced cost coefficient of the RMP. The 

RMP and pricing problems collaborate until reduced cost coefficients (objectives) of the 

pricing problems are negative indicating optimal solution has been reached.  In our 

problem, there are T pricing problems, one for each server type.  

Let us define a pattern as a distinct combination of number of VMs from each type of 

VMs that a server can accommodate. Let    denote such a pattern and    total number of 

patterns available for a type t server, then   ∈ {1  …    }. The new introduced notation is 

explained in Table. 4.2. We also define,     as the number of times pattern    is used in 
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scheduling of type t servers. Let also      

   denote number of VMs of type r that has been 

assigned to job    by pattern   .  

Table 4.2 Parameter/Variable Definitions for CG  

Parameters Definitions 

   Total number of configuration patterns collection of  type t  servers 

Variables Indicator 

    number of active  server type t with pattern    

     

   number of  VM type r of job    over the server type t in pattern    

  ̃ Pattern   ̃ of type t servers introduced by pricing problem t. 

 ̃  

   number of  VMs of job    over the server type t in pattern    

 

Similarly,  ̃  

   denotes total number of VMs assigned to job    by pattern   . Then, we 

have the following equality between the two variables, 

   ̃  

  = ∑      

  𝑅
 =1                                                   (4.8) 

Number of communication links of type t servers with pattern    dedicated to job   , is 

given by, 

[∑ ∑ (    ̃  

     
  
  ̃  

 
  
 

 )
𝐽 
 
  
 =1  

 
  =1 −    ( ̃  

  )
2
]   

Then, the optimization for the RMP is given by, 

   ∑ ∑    
 

𝑁 
  =1 

𝐻
 =1 ∑ ∑ [∑ ∑ (    ̃  

     
  
  ̃  

 
  
 

 )
𝐽 
 
  
 =1  

 
  =1 −   ( ̃  

  )
2
] +

𝐽 
  =1 

 
 =1

∑   
 
 =1 ∑    

𝐽 
  =1 

                                                                                                          (4.9) 

𝑆𝑇    (4.8) 

∑ ∑      

     
𝐽 
  =1 

 
 =1 ≥    

   ∀ 𝑟 ∈ {1 …   }    ∈ {1  …    } ℎ ∈ {1 …  𝐻}      (4.10)                                                                       

∑    
𝐽 
  =1 

 ≤         ∀ 𝑡 ∈ {1 …  𝑇}                                                                         (4.11) 

In the above objective function, first and second terms correspond to VMs 
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communication and server power consumption respectively. Constraint group (4.10) 

ensures that VM requirements of jobs are satisfied. Constraint (4.11) verifies that number 

of needed patterns for a server type does not exceed number of servers of that type.  

Next, we present the T pricing problems one for each server type. The pricing problem 

for server type t attempts to introduce the new pattern   ̃ to the RMP. 

 𝑎 ∑ ∑ 𝑢    
 (     

 �̃� )𝑅
 =1  𝑁

 =1                                                                                    (4.12) 

𝑆𝑇   ∑ ∑      

 �̃� 𝑅
 =1   

  𝑁
 =1 ≤   

  ∀ ∈ {1 …  𝐾}                                                         (4.13) 

Where      

 �̃�  represents number of type r VMs assigned to job    by pattern   ̃. The 

pricing problem’s objective function is the reduced cost function of the RMP with respect 

to server type t. 𝑢    
  denotes the dual variables of the RMP for type t server. Constraint 

groups (4.13) ensure resource constraints of the servers are satisfied.  

In the column generation technique, RMP and pricing problems are solved iteratively. 

In each iteration, a new pattern for each server type will be introduced to the RMP. The 

new pattern maximizes the objective function of the pricing problem for that server type. 

The iterations continue, as long as there are reduced cost functions with positive values. 

The algorithm terminates when all the reduced cost functions are negative and no new 

pattern is introduced to the RMP.  
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4.2 Job Scheduling with Power Consumption Optimization 

including Network infrastructure  

In this section, we extend the optimization problem of the previous section to include 

communication network infrastructure and bandwidth constraints in order to have a more 

realistic model. The extension will include power consumption of the switches and traffic 

congestion in the network. Clearly, this extension depends on the network topology. We 

chose hierarchical network topology as it is commonly used in the datacenters shown in 

Fig. 4.1. We assumed that a datacenter consists of a collection of Performance Optimized 

modular Datacenters (PoD). Each PoD consists of a number of racks and each rack 

contains a collection of servers. We considered a typical two-tier datacenter 

network  [64],  [65], which has servers housed in a rack connected to a Top-of-Rack (ToR) 

switch. The ToR switch provides connectivity among the servers of a rack and also 

 

Fig. 4.1  Hierarchical Architecture of  a Datacenter 
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connects the rack to the Core Switch (CS) of its host PoD. Core switches depending on 

the datacenter topology such as Hyper-X, clique or fat-tree  [64] may have different types 

of connectivity that provides varying amounts of bandwidths for communication among 

the PoDs.  

In the assumed model, there is no communication congestion between the servers in 

the same rack because their connected to their ToR switch with high capacity links. The 

communication congestion may occur either in the (ToRS-CS) links or in PoD links (CS-

CS). Hence, resource allocation has to consider the communication constraints of 

datacenter topology. We assume that a ToR switch will be turned off if none of the servers 

in that rack are being utilized. Similarly CS in a PoD will be turned off if all the servers 

connected to its racks are off. We note that an on switch consumes a constant power plus 

load dependent variable power; the former will be referred to as static and the latter as 

dynamic power respectively. We will let  𝑆  𝑒
 𝑜𝑅𝑆  𝑆 

𝐶𝑆 denote static power consumption 

of the ToR switch on rack 𝑎  𝑒, and CS switch in PoD    respectively. Similarly, we will 

let  𝐷  𝑒
 𝑜𝑅𝑆  𝐷 

𝐶𝑆 denote dynamic power consumptions of these switches for per bit 

transmission rate. We also let  𝑊𝑁𝐼𝐶 denote the power consumption at the network 

interface card (NIC) of a server per bit transmission rate. We define 휂  𝑒 as a variable that 

determines whether ToR switch serving to rack e on pod   is active or not.  Similarly, 𝜉    

determines status of the CS serving PoD  . In addition to the newly introduced notation 

that is given in Table. 4.3, the notation of Table 4.1 remains valid for this model. From 

Table 4.3, 

Table 4.3 Parameter/Variable Definitions  

Parameters Indicator 

𝐿 number of PoDs in the data center. 

𝑑  number of racks in pod  . 

   set denoting racks in pod  . 

𝑎  𝑒 set denoting servers on rack 𝑒 in pod  . 

   
 data rate of VMs serving job     

𝑆  𝑒 capacity of the link connecting rack 𝑒 to its       CS switch. 

𝐶      the capacity of the link connecting CS switches of pods   a    ′. 

   𝑒
  number of type t servers  in  rack 𝑒 of           
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   𝑒 total number of servers in  rack 𝑒 of        

 𝑆 
𝐶𝑆 static power usage rate of the CS switch in PoD   

 𝑆  𝑒
 𝑜𝑅𝑆 static power usage of the ToR switch on rack 𝑎  𝑒 and 

 𝐷  𝑒
 𝑜𝑅𝑆 dynamic communication power usage of e

th
 rack ToR switch of pod  . 

 𝐷 
𝐶𝑆 dynamic communication power usage of pod   CS switch. 

 𝑊𝑁𝐼𝐶  dynamic communication power usage of server NIC card switch (for bit per second). 

 
      

 
   dynamic communication power usage between two VMs serving job    allocated in 

servers    and    
′ . 

 ′
  𝑒    𝑒 
   dynamic communication power usage between two VMs serving job    allocated in a 

server in rack 𝑒  of PoD    and in a server in rack 𝑒′ in PoD  ′of. 

    𝑒 power supply of rack e on PoD  . 

Variables Indicator 

휂  𝑒 
binary variable that assumes the value of one if at least one server on rack e in pod   is 

active and otherwise zero.  

𝜉  binary variable that assumes the value of one if at least one server in pod   is active and 

otherwise zero. 

   𝑒
    number of active type t servers with pattern    in the e

th
 rack of pod  . 

   𝑒
𝑓    binary variable indicate whether server  𝑓 type t  in the e

th
 rack of pod   is  active  pattern 

   or not. 

 

  = ∑ ∑    𝑒
 𝑑 

𝑒=1
𝐿
 =1                                                                                                (4.14) 

   𝑒 = ∑    𝑒
  

 =1                                                                                                       (4.15) 

𝑎  𝑒 = {1  𝑒  …     𝑒       𝑒}                                                                                    (4.16) 

𝜉 = {1       ∑ 휂  𝑒 > 0
𝑑 
𝑒=1      

0                    
                                                                                    (4.17) 

Also from the definition of 휂  𝑒, 

휂  𝑒 = {
1       ∑ ∑ ∑ ∑  ̃  

  
   ∈𝑎   

 
 =1

𝑁 
  =1 

𝐻
 =1  > 0  

0      ∑ ∑ ∑ ∑  ̃  

  
   ∈𝑎   

 
 =1

𝑁 
  =1 

𝐻
 =1 = 0 

 ∀𝑒 ∈ {1 …  𝑑 } ∀ ∈ {1 …  𝐿}  

4.2.1 Integer Linear Programming Model 

In this subsection, we will develop an integer linear programming (ILP) model of the 

optimization problem introduced in the above. Dynamic communication power 

consumption between two VMs located in servers m  and m  
′  serving job   ,  

      
 

  , is 

given by, 
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  =

{
 
 
 

 
 
 

0                                            𝑓    =    
′           (𝑎)

 
   

(2 𝑊𝑁𝐼𝐶 +  𝐷  𝑒
 𝑜𝑅𝑆)                    𝑓        

′  ∈ 𝑎  𝑒    ≠    
′            ( )         

 
   

(2 𝑊𝑁𝐼𝐶 +  𝐷  𝑒
 𝑜𝑅𝑆 +  𝐷 

𝐶𝑆 +  𝐷  𝑒 
 𝑜𝑅𝑆)  𝑓   ∈ 𝑎  𝑒     

′ ∈ 𝑎  𝑒    𝑒 ≠ 𝑒′         ( ) 
                                                                  

   
(2 𝑊𝑁𝐼𝐶 +  𝐷  𝑒

 𝑜𝑅𝑆 +  𝐷 
𝐶𝑆 +  𝐷  

𝐶𝑆 +  𝐷   𝑒 
 𝑜𝑅𝑆)  𝑓   ∈ 𝑎  𝑒     

′ ∈ 𝑎   𝑒   ≠  ′(𝑑) 
     }

 
 
 

 
 
 

    

(4.18) 

In the above, (4.18a) corresponds to dynamic power consumption of communication 

between two VMs of a type ℎ job located at the same server. (4.18b) corresponds to the 

power consumption of communication between two VMs of a job    located at the same 

rack but different servers. As may be seen, power consumption depends on data rate, and 

NICs and ToRS dynamic power consumption per bit. (4.18c) corresponds to dynamic 

power consumption of communication between two VMs of a type ℎ job located in two 

servers at two different racks of a PoD. As seen in (4.18c) dynamic power consumption 

in this case depends on the data rate, and NICs, ToRSs and CS dynamic power 

consumption per bit. (4.18d) corresponds to the dynamic power consumption of 

communication between two VMs of a job placed in two servers at two different racks in 

separated PoDs.  In this case, as seen in (4.18d), in addition to data rate, and NICs, ToRSs 

power consumption per bit, dynamic power consumption  of communication between two 

VMs of a job also depends on the CSs dynamic power consumption per bit. Then, the 

optimization problem is given by, 

   {∑ ∑ ∑ ∑ ∑ ∑         

  ( ̃  

   ̃  

 
  
 

 )
𝑀 
   =1  

𝑀 
  =1 

 
  =1

 
 =1

𝑁 
  =1 

𝐻
 =1 + ∑ (𝜉  𝑆𝐶𝑆

 +𝐿
 =1

∑ 휂  𝑒 𝑆 𝑜𝑅
  𝑒𝑑 

𝑒=1 ) + ∑   ∑    

𝑀 
  =1

 
 =1 }                                                                       (4.19) 

𝑆𝑇 (4 2) (4 3) (4 4) (4 6) (4 7)  

∑      ∈𝑎   
− 휂  𝑒 ≥ 0    ∀ 𝑒 ∈ {1 …  𝑑 } ∀  ∈ {1…  𝐿}                                       (4.20)                                         

휃휂  𝑒 − ∑      ∈𝑎   
≥ 0  ∀ 𝑒 ∈ {1 …  𝑑 } ∀  ∈ {1…  𝐿}                                       (4.21)                      

∑ 휂  𝑒
𝑑 
𝑒=1 − 𝜉 ≥ 0             ∀  ∈ {1…  𝐿}                                                                     (4.22)                                                       

휃𝜉 − ∑ 휂  𝑒
𝑑 
𝑒=1 ≥ 0      ∀  ∈ {1…  𝐿}                                   (4.23) 
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∑ ∑    
∑ [∑ ∑ ∑ ( ̃  

   ̃  

 
  
 

 )  
  
 ∈𝑎      

𝑑
   

𝑒 =1
𝐿
  =1 −   ∈𝑎   

𝑁 
  =1 

𝐻
 =1

∑ ( ̃  

   ̃  

 
  
 

 ) 
  
 ∈𝑎   

] ≤  𝑆  𝑒  ∀ 𝑒 ∈ {1 …  𝑑 } ∀  ∈ {1…  𝐿}                                  (4.24) 

∑ ∑    
∑ ∑ ∑ ∑ ( ̃  

   ̃  

 
  
 

 )  
  
 ∈𝑎      

𝑑
   

𝑒 =1   ∈𝑎   

𝑑  
𝑒=1

𝑁 
  =1 

𝐻
 =1 ≤ 𝐶      ∀    

′ ∈ {1…  𝐿} 

   ≠  ′                                                                                                                         (4.25)                

In the objective function, the first term corresponds to the dynamic part of the 

communication power consumption. Second term represents the static part of 

communication power consumption and finally the last term expresses the power 

consumption of the servers. It should be noted that traffic congestion may occur only in 

ToRS to CS and CS to CS links, with their capacities 𝑆  𝑒, 𝐶      defined in Table 4.3. As 

explained before, there is no traffic congestion in server communications within a rack. 

The constraints (4.24) and (4.25) ensure that bandwidth demands do not violate the 

capacities of ToRs to CS and CS to CS links respectively.  The rest of constraints, (4.20)-

(4.23) are used for IBLC.  Constraints (4.21), (4.22) make the connection between 

휂  𝑒     
 such that 휂  𝑒 = 0 ↔ ∑      ∈𝑎   

= 0 and 휂  𝑒 = 1 ↔ ∑      ∈𝑎   
> 0. 

Constraints (4.22), (4.23) make the connection between 𝜉   휂  𝑒 such that 𝜉 = 0 ↔

∑ 휂  𝑒
𝑑 
𝑒=1 = 0 and 𝜉 = 1 ↔ ∑ 휂  𝑒

𝑑 
𝑒=1 > 0. 

4.2.2 Column Generation Model 

Due to large-scale of the optimization problem, once again we are interested in 

applying column generation technique which provides an alternative solution to our 

problem. Here,    𝑒
     represents number of active type t servers with pattern    in the e

th
 

rack of PoD  . Hence, the state of rack e on pod   as active or not may be expressed as, 

휂  𝑒 = {
1        ∑ ∑    𝑒

   𝐽 
  =1 

 
 =1 > 0    

0                      𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒     
  

We note that dynamic communication power consumption between two VMs depend 

on the rack locations of the servers housing the VMs and not on the server locations 
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within the racks. Let us define  ′
  𝑒    𝑒 
   as dynamic communication power consumption 

between a VM allocated in a server in rack 𝑒  of PoD    and a VM allocated in a server in 

rack 𝑒′in PoD  ′ serving job   , which is given by, 

 ′
  𝑒    𝑒 
  = {

   
(2 𝑊𝑁𝐼𝐶 +  𝐷  𝑒

 𝑜𝑅)                   𝑓      =  ′ 𝑒 = 𝑒′    

    
(2 𝑊𝑁𝐼𝐶 +  𝐷  𝑒

 𝑜𝑅𝑆 +  𝐷 
𝐶𝑆 +  𝐷  𝑒 

 𝑜𝑅𝑆)  𝑓    =  ′ 𝑒 ≠ 𝑒′  

   
(2 𝑊𝑁𝐼𝐶 +  𝐷  𝑒

 𝑜𝑅𝑆 +  𝐷 
𝐶𝑆 +  𝐷  

𝐶𝑆 +  𝐷   𝑒 
 𝑜𝑅𝑆)      𝑓   ≠  ′

}    (4.26) 

It should be noted that communication power consumption between VMs of a job 

located in the same server is considered to be zero similar to the assumption made in the 

previous subsections. Then the optimization problem may be expressed as,  

     {∑ ∑ ∑ ∑ ∑ ∑ {[∑ ∑ ∑ ∑  ′
  𝑒    𝑒 
  (   𝑒

    ̃  

       
   𝑒 

  
  
 

 ̃  

  
  
 

)
𝐽
  

 
  
 =1  

 
  =1

𝑑
  

𝑒 =1
𝐿
  =1 ] −

𝐽 
  =1 

 
 =1

𝑑 
𝑒=1

𝐿
 =1

𝑁 
  =1 

𝐻
 =1

 ′
 𝑒  𝑒
     𝑒

   ( ̃  

   )
2
} + ∑ [𝜉  𝑆 

𝐶𝑆 + ∑ 휂  𝑒( 𝑆 𝑜𝑅
  𝑒 )

𝑑 
𝑒=1 ]𝐿

 =1 + ∑ ∑ ∑   
 
 =1 ∑    𝑒

   𝐽 
  =1 

𝑑 
𝑒=1

𝐿
 =1 }   

    (4.27)                             

𝑆𝑇   (4.22), (4.23) and 

∑ ∑    
∑ ∑    𝑒

    ̃  

   [(∑ ∑ ∑ ∑  
   𝑒 

  
  
 

 ̃  

  
  
 

𝐽
  

 
  
 =1  

 
  =1

𝑑
  

𝑒 =1   ∈{1  𝐿}  ≠  ) +
𝐽 
  =1 

 
 =1

𝑁 
  =1 

𝐻
 =1

(∑ ∑ ∑  
  𝑒 

  
  
 

 ̃  

  
  
 

𝐽
  

 
  
 =1  

 
  =1𝑒 ∈𝑏  𝑒

 ≠𝑒 )] ≤  𝑆  𝑒                                                            (4.28)          

 ∑ ∑    
∑ ∑ ∑ ∑ ∑ ∑ (   𝑒

    ̃  

     
   𝑒 

  
  
 

 ̃  

  
  
 

)
𝐽
  

 
  
 =1  

 
  =1

𝑑
  

𝑒 =1

𝐽 
  =1 

 
 =1

𝑑 
𝑒=1

𝑁 
  =1 

 ≤𝐻
 =1 𝐶               

∀    ′ ∈ {1… L},  ′ ≠                                                                                               (4.29) 

∑ ∑ ∑ ∑      

      𝑒
   𝐽 

  =1 

 
 =1

𝑑 
𝑒=1

𝐿
 =1 ≥    

                                                                        (4.30) 

∑    𝑒
   𝐽 

  =1 
 ≤     𝑒

                                                                                                       (4.31) 

∑ ∑    𝑒
   𝐽 

  =1 

 
 =1 − 휂  𝑒 ≥ 0                                                                                         (4.32) 

휃휂  𝑒 − ∑ ∑    𝑒
   𝐽 

  =1 

 
 =1 ≥ 0                                                                                       (4.33) 

where constraints (4.30) are ∀ 𝑟 ∈ {1 …   }   ∈ {1  …    } ℎ ∈ {1 …  𝐻} 

constraints (4.31) are ∀ 𝑡 ∈ {1 …  𝑇} ∀ 𝑒 ∈ {1 …  𝑑 } ∀ ∈ {1…  𝐿} and constraints 

(4.28), (4.32) and (4.33) are  ∀𝑒 ∈ {1 …  𝑑 } ∀ ∈ {1…  𝐿} . 
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In the objective function (4.27), the first term corresponds to power consumption of the 

interface cards and dynamic power consumption of active switches due to 

communication load, second term to static power consumption of active switches and the 

third term to power consumption of active servers. The constraint (4.28) and (4.29) 

ensures that bandwidth demands of the jobs do not violate the capacities of the ToRS to 

CS links and CS to CS links respectively. Constraint (4.30) ensures that job and VM 

requirements are satisfied. Constraint (4.31) ensures that the number of type t servers in 

each rack, does not exceed the maximum number of type t servers in the rack. Constraints 

(4.32) and (4.33) are used for IBLC and connect    𝑒
    and 휂  𝑒 variables. 

The pricing sub-problems are similar to those in (4.12), (4.13). In this case, the 

existence of the non-linear constraints (4.28), (4.29) and objective function creates 

problems for column generation, which requires their linearization. We use LP conversion 

method in order to convert the IQP to ILP.  

Let us define binary variables    𝑒
𝑓    as follows, 

   𝑒
𝑓   = {

   1       𝑓 𝑓        𝑡            ack 𝑒         
    ac     a    a   a         

 0            𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒      

 

Hence we have,  

   𝑒
   = ∑    𝑒

𝑓   𝑀   
 

𝑓=1
                                                                                                     (4.34) 

Then, product    𝑒
     

   𝑒 

  
   that appears in non-linear constraints may be expressed as,  

   𝑒
     

   𝑒 

  
  
 

= ∑ ∑    𝑒
𝑓    

   𝑒 

𝑓   
  
 𝑀

     
  

𝑓 =1

𝑀   
 

𝑓=1
                                                                     (4.35) 

Next let us further define a new binary variable 𝜓
    𝑒𝑒 

𝑓𝑓        
 

 as, 

                                    𝜓
    𝑒𝑒 

𝑓𝑓        
 

=    𝑒
𝑓    

   𝑒 

𝑓   
  
 

  

then,  

𝜓
    𝑒𝑒 

𝑓𝑓        
 

= {   1       𝑓     𝑒
𝑓   =  

   𝑒 

𝑓   
  
 

= 1

 0            𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒      
 

Thus the product term in (4.35) may be expressed in linear form as follows, 
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   𝑒
     

   𝑒 

  
  
 

= ∑ ∑ 𝜓
    𝑒𝑒 

𝑓𝑓        
 𝑀

     
  

𝑓 =1

𝑀   
 

𝑓=1
                                                                          (4.36) 

Binary multiplication can be linearized through adding the following constraints,   

𝜓
    𝑒𝑒 

𝑓𝑓        
 

≥    𝑒
𝑓   +  

   𝑒 

𝑓   
  
 

− 1                                                                                (4.37)                                                                                               

     𝜓
    𝑒𝑒 

𝑓𝑓        
 

≤  
   𝑒 

𝑓   
  
 

                                                                                              (4.38)                                                                                                        

    𝜓
    𝑒𝑒 

𝑓𝑓        
 

≤    𝑒
𝑓                                                                                                     (4.39)                                                                                                                 

     𝜓
    𝑒𝑒 

𝑓𝑓        
 

≥ 0                                                                                                      (4.40)                                                                                              

(4.37), (4.38), (4.39) and (4.40) are ∀    ′ ∈{1…L},∀ 𝑡 𝑡′ ∈ {1 …  𝑇} ∀ 𝑒′ ∈

{1   …  𝑑  }, ∀𝑒 ∈ {1  …  𝑑 } ∀  ∈ {1  …    } ∀   
′ ∈ {1   …     }, 

∀ 𝑓 ∈ {1 …     𝑒
 } 𝑓′ ∈ {1 …      𝑒 

  } 

Using and substituting mentioned conversion in the objective function and constraints, 

CG problem becomes linear which reduces the complexity order at the expense of 

increasing number of variables and constraints drastically. 

     

4.3 Probabilistic Model  

In the previous sections, we assumed that the traffic (communication) rates and 

processing (computation) levels of different VM types were deterministic; however, in 

reality they are random and vary as a function of time. In this section, we extend the 

optimization problem of the previous section to a more realistic model, in which PM 

computation levels and VM communication rates are considered as random variables. In 

this model, the data rate between two VMs serving to a type h job,    
, becomes a 

random variable. As a result, bandwidth constraints given in (4.28, 4.29) become 

probabilistic. In particular, (4.28) may be expressed as, 

   (∑    
∑ 𝛹  𝑒   

𝑁 
  =1 

𝐻
 =1 > 𝑆  𝑒) ≤ 𝑝                                                                 (4.41) 

Where 𝛹  𝑒   
 denotes the total number of external communication flows of job    in 

rack 𝑒 of PoD   .For instance, 𝛹  𝑒   
 for IQP model is given by, 
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𝛹  𝑒   
= ∑ [∑ ∑ ∑ ( ̃  

   ̃  

 
  
 

 )  
  
 ∈𝑎      

𝑑
   

𝑒 =1
𝐿
  =1 − ∑ ( ̃  

   ̃  

 
  
 

 ) 
  
 ∈𝑎   

]   ∈𝑎   
   (4.42a) 

and parameter p is used to control the probability of link congestion or system failure. 

As in  [66], we assume that traffic rate follows a Gaussian distribution, from the Central 

Limit Theorem which remains a good model for the total link traffic even if the 

individual streams are non-Gaussian  [67],  [68].  

Next, we assume that    
 has a Gaussian distribution with mean    and standard 

deviation 𝜎 . Then, the constraint (4.42) may be expressed as, 

∑ (  ∑ 𝛹  𝑒   

𝑁 
  =1 

)𝐻
 =1 + 휁√∑ 𝜎 

2𝐻
 =1 (∑ 𝛹  𝑒   

𝑁 
  =1 

)
2

≤ 𝑆  𝑒                        (4.43)                             

where  휁 = Φ−1(1 − 𝑝) and Φ−1 is the inverse function of the normal CDF. 

From  [71], we note that LHS of the above constraint may be bounded as follows,  

∑   ∑ 𝛹  𝑒   

𝑁 
  =1 

𝐻
 =1 + 휁√∑ 𝜎 

2𝐻
 =1 (∑ 𝛹  𝑒   

𝑁 
  =1 

)
2

≤

∑ [(  + 휁𝜎 )∑ 𝛹  𝑒   

𝑁 
  =1 

]𝐻
 =1                                                                                  (4.44) 

We decided to use the above upper bound in inequality (4.44) in order to eliminate the 

nonlinearity introduced by the square-root function, which results in, 

∑ [(  + 휁𝜎 )∑ 𝛹  𝑒   

𝑁 
  =1 

]𝐻
 =1 ≤ 𝑆  𝑒                                                                 (4.45)    

In the previous sections, power consumption of a type t server is assumed to be 

constant denoted by   . In fact, power consumption of a server is random and depends on 

processing utility, I/O, load, memory usage etc. Let     denote power consumption of a 

type t server. From  [66],    has a general probability distribution and varies in the range 

[0 5     ] with mean and standard deviation denoted by 𝜔   𝛿 . When total power 

consumption, reaches to 96% of rated capacity at rack level or 72% at data center 

level  [74]), then system failure, overheating, circuit break tripped may occur. It is better 

to avoid high power consumption at the rack level in order to prevent such a malfunction. 

As a result, we introduce the following constraint, 
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 𝑟 (∑   
 
 =1 ∑    𝑒

   𝐽 
  =1 

>     𝑒) ≤ 𝑝                                                                    (4.46) 

Where     𝑒 denotes the power supply of rack e on PoD  . From the Central limit 

theorem we can assume that the total power consumption at the rack level has a Gaussian 

distribution. Similar to the analysis that has been done to find Eq. (4.45), Eq. (4.46) can 

be linearized as follows, 

∑ 𝜔  ∑    𝑒
   𝐽 

  =1 

 
 =1 + 휁 ∑ 𝛿 ∑    𝑒

   𝐽 
  =1 

 
 =1 ≤     𝑒                                            (4.47)                       

Hence, the optimization problem has to consider uncertainty of computation and 

communication. The new optimization problem has two more constraints namely (4.45) 

and (4.46). These constraints provide margin against power failure and link congestion 

and therefore, leads to a more reliable system. 

 

4.4 Dynamic Job Scheduling  

In this section, we would like to study job scheduling with optimization of power 

consumption as a function of time. As a result, it will be assumed that time-axis is slotted 

and VMs are assigned to jobs in units of slot times. We will assume that arrival of jobs to 

the system is according to a Poisson process, though the analysis is applicable to other 

arrival processes. The new arriving jobs during the present slot and leftover jobs from the 

present slot will be scheduled for service in the next slot. We will consider two types of 

service disciplines, a job either releasing its assigned VMs simultaneously or individually 

according to Bernoulli trials at the end of each slot. In the former case, a leftover job will 

require full complement of its VMs and in the latter case a subset of the VMs it’s 

currently holding. At the beginning of the next slot, the system will schedule the new 

arriving jobs and the leftover old jobs from the previous slot such that power 

consumption is minimized. For the scheduling of leftover jobs, there are two options 

depending whether or not VM migration is allowed.  If VM migration is allowed, then 

leftover jobs are scheduled like the new jobs, on the other hand, if no migration is 

allowed then the new jobs can only be scheduled to VMs not utilized by the leftover jobs. 

As a result of migration, the system may end up in a state that consumes less power, 
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however, migration has communication and processing overhead that optimization needs 

to take into account. Let 𝐺  denote normalized power consumption cost of migration of 

type r VMs. Optimization will allow VM migration if power saving due to migration 

offsets the cost of migration. As a result, the optimization may result in partial VM 

migration.  

We consider dynamic resource allocation model with and without VM migration. Since 

jobs release their VMs according to Bernoulli trials, number of leftover jobs to the next 

slot will be a random variable with Binomial distribution. However, for simplicity we 

will assume that number of leftover jobs is a constant given by the mean of the Binomial 

distribution. Let   
′  denote number of the type h leftover jobs from the current slot and 

   total number of jobs to be scheduled in the next slot, which include both leftover as 

well as new arriving jobs. We note that   ≥   
′  and   ∈ (1       

′       ) and the first 

  
′  jobs in the set correspond to the leftover jobs from the current slot. Next, we will 

develop both dynamic ILP and CG models.  

 4.4.1 Dynamic ILP Model 

First, we will consider the job scheduling that allows VM migration. Let us consider 

  
   job, which is in the system in the current slot and will continue to receive service in 

the next slot. Let  ′
    

  ,       

   denote the number of type r VMs assigned to this job over 

the     type t server during the current and next slots respectively. Based on the new 

notation introduced in Table. 4, we define the following binary variable, 

𝛽    

  = {
   1      f      

  −  ′
    

  < 0

 0                           
                                                                         (4.48) 

The value of 𝛽    

   shows whether type r VMs required by job    have migrated or not. 

In the case of VM migration from this type of server, then       

  <  ′
    

   and 𝛽    

   will 

have a nonzero value and in all other cases a zero value. The objective function of this 

optimization problem will be given by, 

    [ (4 19)  + ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝐺 𝛽    

  |     

  −  ′
    

  |  ∈𝑎   

 
 =1

𝑑 
𝑒=1

𝐿
 =1

𝑅
 =1

𝑁 
 

  =1 
 𝐻

 =1 ]  
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where absolute value of  (     

  −  ′
    

  ) corresponds to number of VM migrations. In the 

above, migration of a VM will be allowed if it results in power saving larger than power 

cost of migration.  

Table 4.4 Parameter/Variable Definitions for Dynamic Job Scheduling 

Parameters Definitions 

 ′
    

   number of type r VMs of server    assigned to serve job    at the current time slot. 

  
′  total number of current type  ℎ jobs 

𝜈′
  

 
 number of type r VMs required by job    at current time slot left in the system. 

 ′
    

    number of type r VMs serving job    on a type t server with pattern    at current time slot 

 ′
  𝑒
    number of active type t servers with pattern    in the  rack of pod   at the current time slot. 

 ′
  𝑒
𝑓    

Binary parameter represents whether type t server on rack e in pod   which has pattern    

at current time slot is active or not. 

𝐺  power consumption related to the migration of type r VMs 

𝐼 Number of iterations among RMP and pricing problems to find the best cutting patterns 

𝐷𝑠𝑢𝑏  expectation of the time required to solve a sub-problem 

𝐷𝑀  expectation of time required to solve the relaxed RMP  

𝐷𝐼   time required to convert RMP relaxed LP to ILP optimal solution.  

    
𝐼  

number of  VM type r for type ℎ jobs over the server type t in pattern 𝐼  introduced by 

initialization 

   

 
Different VM types demanded by type  ℎ  jobs.  

 

  Job scheduling without VM migration can be achieved by setting 𝐺  to a very large 

value. This will prevent migration as its cost cannot be offset by any power saving. As a 

result, old jobs will preserve their VM assignments. 

Finally, we have to add the following constraints into the problem in order to linearize 

equation (4.48),  

     

  −  ′
    

  + 휃𝛽    

  < 1                                                                                     (4.49) 

     

  −  ′
    

  + 휃𝛽    

  ≥ 0                                                                                      (4.50) 

Where (4.49), (4.50) are ∀ 𝑟 ∈ {1 …   }    ∈ {1 …    } 𝑡 ∈ {1 …  𝑇}    ∈

{1  …    } ℎ ∈ {1 …  𝐻} 
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4.4.2 Dynamic Column Generation Model  

As in the above, first let us consider job scheduling with VM migration. Assume that 

  
   job is in the system in the current slot and will continue to receive service in the 

next slot. Let  ′
    

  ,       

   denote the number of type r VMs assigned to this  job over the 

  
th

 pattern during the current and next slots respectively. Similarly,  ′
  𝑒
𝑓   ,    𝑒

𝑓    are 

binary variables indicating whether f
th

 type t server on rack e in pod ℓ is active and has 

pattern    during the current and next slots respectively.  In this model, we define the 

binary variables 𝛽  𝑒     

𝑓  
 that show whether or not r type VMs required by job    have 

migrated or not from a server as follows,  

𝛽  𝑒     

𝑓  
= {

   1      𝑓 ∑ (     

      𝑒
𝑓   −  ′

    

    ′
  𝑒
𝑓   )

𝐽 
  =1 

 < 0

 0            𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒      
                                  (4.51) 

We note that the summation in the above allows the use of a different pattern at the 

server as long as it preserves the number of VMs assigned by the original pattern to this 

job. The objective function of this optimization problem is given by, 

    [ (4 27) +

∑ ∑ ∑ 𝐺 ∑ ∑ ∑ ∑ 𝛽  𝑒     

𝑓  ∑ |     

      𝑒
𝑓   −  ′

    

    ′
  𝑒
𝑓   |

𝐽 
  =1 

𝑀   
 

𝑓=1
 
 =1

𝑑 
𝑒=1

𝐿
 =1

𝑅
 =1

𝑁 
 

  =1 
 𝐻

 =1 ]   

                                                                                                                                 (4.52) 

  As in the previous subsection, job scheduling without VM migration can be achieved 

by setting 𝐺  to a very large value. Finally, similar to the previous subsection, we have to 

add the following constraints to the problem in order to linearize Eq. (4.51), 

∑ (     

      𝑒
𝑓   −  ′

    

    ′
  𝑒
𝑓   )

𝐽 
  =1 

+ 휃𝛽  𝑒     

𝑓  
< 1                                                 (4.53) 

∑ (     

      𝑒
𝑓   −  ′

    

    ′
  𝑒
𝑓   )

𝐽 
  =1 

+ 휃𝛽  𝑒     

𝑓  
≥ 0                                                 (4.54) 

where (4.53), (4.54) are ∀ 𝑟 ∈ {1 …   }  𝑓 ∈ {1 …     𝑒
 } 𝑡 ∈ {1   𝑇}   ∈

{1  …    } ℎ ∈ {1 …  𝐻}. 
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4.5. Optimization Structure and Complexity Reduction 

In addition to the complexity of the search region and large scale of the number of 

variables, computing time constraint is also an important factor which has to be taken 

 

Fig. 4.2 Optimization Module Structure 
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into account. As discussed earlier, we have used the CG technique to solve the 

optimization problem. The aforementioned optimization problem cannot be solved in a 

plausible short time frame. Hence, we are interested in steps that will reduce the 

computing time.  

The main optimization problem consists of several sub-problems: RMP, T pricing sub-

problems and the problem of finding the exact ILP solution from the relaxed LP-solution 

of RMP. Let 𝑇𝑠𝑐  denote the amount of time it takes to solve the optimization problem 

using CG technique.  𝑇𝑠𝑐  may be expressed in terms of new variables  𝐼 𝐷𝑀  𝐷𝑠𝑢𝑏  𝐷𝐼   

introduced in Table. 4 as follows,  

𝑇𝑠𝑐 =  𝐼(𝐷𝑀 + 𝑇𝐷𝑠𝑢𝑏) + 𝐷𝐼    

𝑇𝑠𝑐  may be reduced through the following steps:  

1- Reduction of the number of iterations, I, by offline initialization.   

2-  Simultaneous, instead of sequential, execution of sub-pricing problems that results 

in replacing T by 1 in the expression.  

3-   Reduction of computing time to find the ILP solution from the LP-relaxed 

solution, 𝐷𝐼  , through the use of a proposed heuristic.  

Figure 4.2 depicts the proposed optimization platform. Given a number of different 

types of jobs, first, we solve the offline optimization problem explained in subsection 

4.5.1 for each server type to obtain initial server configuration patterns. Then, RMP is 

initialized with these patterns. RMP is solved using the barrier optimizer, which applies a 

primal-dual logarithmic algorithm to determine the optimal solution. The solution yields 

the dual vector of variables to the pricing problems.  

The pricing problem in (4.12), (4.13) is solved for different server types, which 

introduces a new set of patterns to the RMP. Pricing problems use branch and cut 

algorithms to solve the integer programming problems. As long as values of the reduced 

cost functions are positive, the algorithm (collaboration among RMP and pricing 

problems) continues, but once the reduced cost functions all together become negative, 

the pricing problem terminates and does not introduce any new candidate pattern set to 

the RMP. Instead of using the branch and bound technique, we use a heuristic rounding 

algorithm explained in Subsection 4.5.2 to find the ILP solution from the relaxed LP 
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solution of the RMP.  

 

4.5.1 CG Initialization 

We use offline initialization to reduce computation time for the solution of the 

optimization problem. Without initialization, in the first iterations, the RMP does not 

contain adequate columns to provide beneficial dual information to pricing sub-

problems  [76]. An appropriate initialization helps to reduce number of iterations RMP 

and pricing problems to reach to the solution through introduction of optimum patterns. 

Optimum patterns maximize resource utilization of active servers. We use the notation 

introduced in Table. 4.4 and define the initialization (optimization) problem as follows,  

 𝑎  ∑     
𝐼   

 𝑅
 =1                                                                                                       (4.55)              

ST. ∑     
𝐼   

  𝑅 
 =1 ≤   

  
  ∀ ′ ∈ {1 …  𝐾}                                                                  (4.56) 

We solve this problem for each  {  𝑡 ℎ}  and find the best 𝛶  patterns for different 

types of jobs. Then, for a type t server we will have  𝛶 𝐻𝐾 initial patterns. To obtain 

     

 𝐼 s, which are introduced in the previous sections and are related to the initial pattern 

𝐼  ,     
𝐼  is assigned to a type h job while other jobs are set to zero. Hence, for each     

𝐼  

vector there would be    different patterns. Thus, initial number of patterns for server 

type t will be equal to ∑   𝛶 𝐾
𝐻
 =1 . So in the proposed initialization, we may have 

separate candidate patterns for each job. After collaboration of the pricing problems and 

RMP, new patterns that consider different jobs in a server will be introduced by pricing 

problems.   

4.5.2 Heuristic Rounding Termination Algorithm 

As mentioned earlier, LP problem (solvable in polynomial time) has less complexity 

compared to ILP problem (NP-hard optimization problem). In the CG solution of our 

optimization problem, RMP is LP and pricing problems are ILP type. As a result, we need 

to determine the optimal ILP solution of the RMP from its relaxed LP solution following 

the termination of the iterative process. Typically, this is done through the branch and 
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bound algorithm  [63], which is time consuming.  In the following, we propose a heuristic 

method to find the ILP solution from the relaxed LP solution that satisfies the scheduling 

time constraint  [76],  [77]. The proposed method will round up and down the values of the 

scheduling variables,    𝑒
   , in the relaxed LP solution  [75],  [78]. This operation will be 

carried out after    𝑒
    have been sorted according to their priorities.    𝑒

   s more likely to 

be rounded down will be given higher priority. Following this operation, it is possible that 

all the servers of a rack will become inactive in that case ToR switch serving to that rack 

will be turned off to save power.  

First, let us define    e as the set of scheduling variables for the rack 𝑎  𝑒,  

𝑠  𝑒 = {   𝑒
       ∈ {1  …    } 𝑡 ∈ {1 …  𝑇}}   

and define set  S as the set with its elements given by the subsets    e as given below, 

  𝑆 = {𝑠  𝑒|1 ≤ 𝑒 ≤ 𝑑  1 ≤  ≤ 𝐿} 

Next, we split S into two mutually exclusive subsets, 

𝑆 = {𝑆1 𝑆2} 

where 𝑆1 consists of all 𝑠  𝑒 whose elements have values strictly less than one and S2 

otherwise. The elements of 𝑆1 denote potentially inactive racks, while elements of S2 

active racks. From the above definition, elements of 𝑆1is given higher priority than S2 in 

rounding operation. 

First, we sort set 𝑆1 according to the number of active servers in a rack, 

∑ ∑    𝑒
   𝐽 

  =1 

 
 =1 , in ascending order. Thus, the number of active servers in elements of 𝑆1 

will increase from left to right. We note that the order of the elements of S2 isnot 

significant for rounding operation. 

Next, we sort scheduling variables,    𝑒
   ,  within each 𝑠  e wrt two performance 

measures in ascending order. These performance measures are efficiencies of server types 

(t) and patterns (  ). First,    𝑒
    will be sorted according to server type efficiency. Then, 

the ties among    𝑒
     with the same service type will be broken through sorting according 

to pattern efficiency. Next, we explain each of these sorting algorithms.  

i) Server Type efficiency-based sorting:  
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Depending on the job load some resources become critical and may become 

performance bottleneck  [80],  [81]. As a result, we first sort resources according to their 

criticalities. For a given job load, let Lkdenote the total demand for resource type k,  

𝐿 = ∑ ∑ ∑    
    

 𝑅
 =1

𝑁 
  =1 

𝐻
 =1     ∀  ∈ {1 …  𝐾} 

Then, the resource types may be ordered according to their criticality using the 

following formula 

  𝑎  
𝐿 

∑ 𝑀 𝑐 
  

   
                                                                                                         (4.57) 

Thus higher is the ratio of total demand to total amount of that resource in the 

datacenter, then higher will be the criticality of that resource. Next, we define efficiency 

of a server type with respect to resource type k as the ratio of (  
 /  ) with higher value 

indicating higher efficiency. Next, we order server types according to their efficiency for 

the critical resource. In the case of a tie, server efficiencies wrt second critical resource 

will be used to break down the ties and so on and so forth. System will prefer to use the 

server types with higher efficiencies. Set for each rack will be sorted in ascending order 

according to the efficiency of the server type of each element. The ties between the 

elements having the same server type will be broken through pattern-based sorting. 

ii)      Pattern efficiency-based sorting:   

The patterns of each server type will be sorted in ascending order according to their 

resource utilization ∑ ∑ ∑      

     
 𝑅

 =1
𝑁 
  =1 

𝐻
 =1 . The sorting function is illustrated in 

Algorithm 4.1. 
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Algorithm 4.1. Terminating the optimization (non-Integer to Integer Conversion) 

Data :  optimal LP values of    𝑒
    s 

Result : Integer Values of    𝑒
   s 

1 For   =1 :L and 𝑓𝑜𝑟 𝑒 = 1   𝑑  

2 Find  (   𝑒)| ∀ 𝑡 ∈ {1 …  𝑇}   ∈        𝑒
    ≤ 1  

3    Prioritize servers in 𝑆1 

Case  𝑆1 

           Prioritize  𝑠  𝑒s  according to  min(∑ ∑    𝑒
   

  ∈𝐽 
 
 =1 ) 

4      Sort    𝑒
    according to the type ();  

5           For t=1:T  

           Sort servers according to the patterns(); end 

Case 𝑆2  

6    Sort    𝑒
    according to the types();  

7    For t=1:T  

8           Sort servers according to the patterns(); end     

9 Round up all the    𝑒
   s; 

10   For all    𝑒
   s 

              𝑒
   =    𝑒

   − 1 ;   

                     If  ∑ ∑ ∑ ∑ (     
  )   𝑒

   
  ∈𝐽 

 
 =1

𝑑 
𝑒=1

𝐿
 =1 <   

   

                             𝑒
   =    𝑒

   + 1     end           

        Go for the next highest priority    𝑒
   

  

 

 

Following the completion of sorting, all the    𝑒
   s within the set S have been assigned 

priority with the first element of the set having the highest priority in rounding down 

operation. First, we round up all the    𝑒
    variables is the set S with non-integer values. 

Then, rounding down operation is applied from the highest to lowest priority    𝑒
   s one 

by one. In this operation, each    𝑒
     is decremented by one if the demand constraints are 

not violated. Steps 4 and 6 can be done offline such that all the server types are sorted 

according to   
 /  . The complexity order of the mentioned algorithm is approximated 

by, 

 𝑂(∑     
 
 =1 (    (𝑙𝑜𝑔(∑     

 
 =1 )   ))  

in which        and     are number of type t servers, number of jobs, number of VM 

types and number of pattern of type t servers respectively.  

(∑     
 
 =1  (𝑙𝑜𝑔(∑     

 
 =1 )) is due to the sorting part and   ∑     

 
 =1  is because of 
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the checking the demands constraints part.  

4.6  Numerical Results  

In this section, we present some numerical results regarding the analysis in this 

chapter. Numerical results plot a performance metric either at a random time or as a 

function of discrete time. In the first case, number of jobs is assumed to be either a 

constant or a variable. In the latter case, new jobs arrive to the datacenter according to a 

Poisson process.  

We compare performance of our optimum resource allocation algorithms with two 

heuristic scheduling methods namely deterministic and random. The deterministic 

method is similar to the scheduling algorithm proposed in section 3.3 of chapter 3 that 

assigns a job to the PoD and rack with the smallest index number that also has enough 

idle resources to serve the job.  In the random method, each VM of a job is placed to a 

randomly chosen rack of a PoD with enough idle resources given that communication 

demand does not violate the link capacities; otherwise a new rack is randomly chosen for 

the placement of VM. 

IBM ILOG CPLEX is used as a platform to model and solve the optimization 

problems. We assume a datacenter with the topology shown in Fig. 4.1. We presume that 

the datacenter has 4 PoDs and each PoD having 25 racks. In consonance with  [82], we 

assumed that each rack contains 40 to 80 servers and racks of each PoD has the same 

server composition. It should be noted that solution of the IQP model always gives the 

exact results. However, for large scale datacenters, finding the global optimum point of 

the IQP becomes overly complex and time consuming. 

Next, we present the parameters of the system used in generation of numerical results.  

 

i ) Servers and Server Types 

Table 4.5a presents number of servers per server type per rack at each PoD. Table 4.5b 

shows number of servers per server type per PoD, which is obtained by multiplication of 

each entry of Table 4.5a by 25. Considering Amazon instances and Google clusters, we 

consider T=12 server types with two resource types,  CPU cores and memory. Table 4.6 
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presents the amount of resources and power consumption of each server type.  

 

 

 

Table 4.5a No. of servers per type per PoD 

PoD No( ) Server 

type(t)  
  =1   =2   =3   =4 

1 300 0 550 150 

2 100 0 200 200 

3 150 0 200 150 

4 200 0 150 150 

5 300 0 200 0 

6 200 0 100 100 

7 0 300 0 700 

8 0 250 0 250 

9 0 150 0 100 

10 0 50 0 200 

11 0 250 0 0 

12 0 100 0 0 

Total No. 

of servers  

1250 1100 1400 2000 

 

 

 

 

Table 4.5b. No. of servers per type per rack 

   𝑒
      -> 

  𝑡    
  =1   =2   =3   =4 

1 12 0 22 6 

2 4 0 8 8 

3 6 0 8 6 

4 8 0 6 6 

5 12 0 8 0 

6 8 0 4 4 

7 0 12 0 28 

8 0 10 0 10 

9 0 6 0 4 

10 0 2 0 8 

11 0 10 0 0 

12 0 4 0 0 

No. of Servers 50 44 56 80 
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Table 4.6 Characteristics of Server types 

 

Index (t) 

 

Model 
No. of  

Cores    1 

Memory 

   2 

No. of 

PMs    

Power Supply 

   
𝜔   𝛿  

1 Dell PE T110 4 16GB 1000 350W 200W,  20W 

2 Dell PE T410 8 128GB 300 580W 400W,  20W 

3 Dell PE M910 32 512GB 200 2750W 1500W, 100W 

4 Dell PE R810 16 512 GB 250 2200W 1200W,  100W 

5 Dell PE M915 64 1TB 100 2750W 1500W,  100W 

6 Dell PE R910 40 2TB 150 3000W 1500W, 100W 

7 HP DL320e Gen8 4 32GB 1000 350W 200W,  20W 

8 HP DL360e Gen8 8 384GB 500 750W 400W,  50W 

9 HP DL380p Gen8 8 768GB 250 1200W 700W,  50W 

10 HP DL360 G7 4 768GB 250 1200W 700W,  50W 

11 HP DL385p G7 16 768 GB 150 2000W 1200W, 100W 

12 HP DL370 G6 16 2 TB 100 2300W 1150W, 100W 

 

ii) Communication Network Parameters  

Network power consumption parameters,  𝐷  𝑒 and  𝑆  𝑒 , are the same as discussed 

in  [83],  [84] and  [85]. We also assume that dynamic power consumption of a NIC is 

given by  WNIC = 0 6 m c  W. ToR switches offer a combination of internal (int) and 

external (ext) interfaces. The internal interfaces connect to NIC of the blade-servers while 

the external interfaces connect to Core switches. It is assumed that internal and external 

interfaces support up to 10 Gbps and 40 Gbps respectively. Table 4.7 presents the 

performance characteristics of the chosen switches for the network structure.  

 

Table 4.7. Specification of Typical Switches 

Name 
Switch   

Type 
Data Rate No. 

Power 

(static)  

 𝑆 
 𝑜𝑅/𝐶𝑆

 

Power  

(Dynamic)  

 𝐷  𝑒
 𝑜𝑅/𝐶𝑆

 

NEC 

IP8800 
ToR 

10 GbpS   int 

40GbpS   ext 

100  

 
25W 65  a    /    

HP 

A12500 

Core 

Switch 
200Gbps 4 200W 10  a    /    

 

iii) Parameters of VM Types  
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We presume that number of VM types is R=18 with their resource requirements given 

in Table 4.8. Resources of VMs consist of number of CPU cores and amount of memory.  

It is assumed that each physical core of a CPU is utilized as a virtual CPU (vCPU). In 

order to balance CPU, memory and network resources, Amazon t2 and m3 series are 

appropriate for many applications and servers, Microsoft SharePoint, and enterprise 

applications. c3 series with higher ratio of vCPU to memory represent compute-

optimized Amazon instances which are appropriate for high-traffic web sites, on-demand 

batch processing, distributed analytics, web servers, and high performance science and 

engineering applications. r3 series represent memory optimized amazon instances and are 

recommended for memory bound applications such as high performance databases and 

distributed cache, in-memory analytics, genome assembly, and larger deployments of 

SAP. cg1 and g2  are also considered for game streaming, video encoding, 3D application 

streaming and other server-side graphic workloads.  

 

Table 4.8 VM Types 

Type (r) Model vCPU(  
1) Mem (GiB) (  

2) 

1 t2.micro 1 1 
2 t2.small 1 2 
3 t2.medium 2 4 
4 m3.medium 1 3.75 
5 m3.large 2 7.5 
6 m3.xlarge 4 15 
7 c3.large 2 3.75 
8 c3.xlarge 4 7.5 
9 c3.2xlarge 8 15 
10 c3.4xlarge 16 30 
11 c3.8xlarge 32 60 
12 r3.large 2 15.25 
13 r3.xlarge 4 30.5 
14 r3.2xlarge 8 61 
15 r3.4xlarge 16 122 
16 r3.8xlarge 32 244 
17 g2.2xlarge 8 15 
18 cg1.xlarge 16 22.5 

 

iv) Parameters of job types  

We assume that the number of job types equals to H = 9. Table 4.9 presents 
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requirements and appropriate applications for each job type. It may be seen that with 

increasing job type h value, requirements for one or more of the following resources also 

increases, the number of VMs, VM sizes and VM traffic rates.  Thus jobs with higher h 

type have higher resource demands. The type of each job is determined probabilistically 

according to 𝛼  values given in the table. We assumed that arrival rates of job types are 

an inverse function of their demand requirements. A job belonging to each type may 

request VMs with different types. From Amazon recommendations in  [69] and  [70], the 

table presents types of VMs for each job type. As given in the table, the number of VMs 

required by a job is either a constant 𝐶  or a uniformly distributed random number 

between      and  𝑎   for type h jobs.  

After determining the type of a job and the number of VMs it requires, the next step is 

determination of the types of its VMs. The type of each VM of each job type is 

determined probabilistically according to the percentages given in the table.   

We assume that the traffic rate between two VMs of a job type is either a random 

variable or a constant. In the former case, we assumed that traffic rate for each job type 

has a Gaussian distribution with the mean and standard deviation given in the table. In the 

latter case, the traffic rate for each job type is a constant that equals to the mean of the 

Gaussian variable.  

We considered both individual and simultaneous VM release service disciplines for a 

type h job at the end of a slot according to a Bernoulli trial with probability 𝜌 . Then, we 

assume that 𝜌 =0.3  ∀ ℎ ∈ {1 …  𝐻}. 

Finally for the power constraint in the probabilistic model, we assume that power 

supply of a rack is given by     e = 25kW  [74]. We assumed that power overloading 

probability of the racks should be less than p=0.02.  
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Table 4.9 Jobs Types and their Requirements 

Inde

x (h) 

 

Job 
Types 

VM Type 
VM types 
Percentage  

 
𝐶      

−  𝑎   

 
𝛼  

Traffic 
rates, 

𝜔  𝜎  

(Mbps) 

1 

General 
Processi
ng Jobs 

t2.micro, 
t2.small, 

t2.medium
, 

m3.mediu
m, 

m3.large, 
m3.xlarge 

30% 
20% 
20% 
10% 
10% 
10% 

 
 
 

10 
 
 
 

1-20 0.46 3,  0.2  

2 

Graphic
al 

Processi
ng Jobs 

g2.2xlarge, 
cg1.xlarge 

%70 
%30 

50 

10-100 0.02 3,  0.2  

3 
Scientifi
c Jobs 1 

c3.large, 
c3,xlarge, 

c3.2xlarge, 
c3.4xlarge, 
c3.8xlarge 

30% 
30% 
20% 
10% 
10% 

 
 

100 10-200 0.02 0.7,  0.05  

4 
Scientifi
c Jobs 2 

r3.large, 
r3,xlarge, 

r3.2xlarge, 
r3.4xlarge, 
r3.8xlarge 

30% 
30% 
20% 
10% 
10% 

 
 

100 20-200 0.02 0.7,  0.05  

5 
Scientifi
c Jobs 3 

m3.mediu
m, 

m3.large, 
m3.xlarge 

50% 
30% 
20% 

 

 
100 

10-200 0.02 12,  2 

6 
Web 

Services 

m3.mediu
m,m3.larg
e, 3.xlarge 
+c3.large, 
c3,xlarge, 

c3.2xlarge, 

50% 
30% 
20% 

+ 
50% 
30% 
20% 

 
10 
 

+ 
 

10 
 

1-20 
+ 

0-20 
0.4 5,  0.5 

7 
Data 

Search 

m3.xlarge,
r3.large, 

r3,xlarge, 
r3.2xlarge,
r3.4xlarge, 
r3.8xlarge 

30% 
20% 
20% 
10% 
10% 
10% 

 
 

100 10--
200 

0.02 1,  0.1  

8 

Enterpri
se 

Infrastru
cture 

Services 

 
t2.micro,t2

.small, 
t2.medium

, 
m3.mediu
m,m3.larg
e, 3.xlarge 

30% 
20% 
20% 
10% 
10% 
10% 

 
 

100 
5-200 

 
0.02 3,  0.5  

9 
Peer 2 
Peer 

Services 

c3.large,c3
,xlarge,c3.
2xlarge, 

c3.4xlarge, 
c3.8xlarge 

+ 

r3.large,r3,
xlarge,r3.2
xlarger3.4

xlarge, 
r3.8xlarge 

30%, 30%, 
20%, 10% 

10% 
+ 

30%, 30% 
20%, 10% 

10% 

 
100 

 
+ 
 

50 

5 -100 
+ 

5- 100 
0.02 10,  1  
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Fig. 4.3 presents optimal power consumption of the datacenter with Poisson arrival of 

new jobs as a function of the number of time slots. For these results, we assumed constant 

server power consumption and deterministic traffic rates between VMs. We considered 

optimization both with/without VM migration of the leftover jobs with individual VM 

release service discipline. For the VM migration scheme, we assumed zero power cost for 

migration. In this figure, we also plot consumption of the deterministic heuristic. Optimal 

power consumption with migration is lower compared to the without VM migration, once 

we have zero cost VM migration. We note that power consumption varies as a function of 

time because of the random job arrival process. It may be seen that there is a significant 

power usage gap (100KW) between optimal and heuristic algorithms power consumption, 

which shows value of the optimization. 

Fig. 4.4 shows number of active racks as a function of the time for the two schemes, as 

expected VM with migration results in lower values compared to without migration 

scheme. For the same system, Fig. 4.5 plots optimal power consumption of the datacenter 

as a function of time for both with/without VM migration schemes with simultaneous 

VM release service discipline.  As may be seen power consumption of the two schemes 

are closer to each other compared to individual VM release service discipline. 

Figure 4.6 shows the cumulative distribution function (CDF) of bandwidth demand for 

the ToRS-CS links between the racks and core switches for fixed number of jobs in the 

datacenter, N=350 jobs. CDF resulting from the optimization is given both for 

deterministic and random traffic rates with Gaussian distribution between two VMs. It 

may be seen that probabilities for a given demand is 18% or more less for the random 

than deterministic traffic rates due to statistical averaging. The figure also plots CDF of 

the bandwidth demand for the random placement of the VMs of a job in the datacenter 

without optimization of power consumption. The random heuristic results in higher 

communication demand than the optimized placement of the VMs. It may be seen that 

probabilities for a given demand is 45% or more higher for random than optimized 

placement of the VMs.  

Figure 4.7 shows the number of active servers as a function of the number of jobs in 

the datacenter with number of VMs in each job type as a constant parameter. Results have 

been plotted for the 𝐶        𝑎   values of the parameter. For       𝑎   results 
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have been plotted only for constant VM traffic rates, while for 𝐶  for both constant and 

random traffic rates.  As depicted, the number of active servers increases exponentially. It 

is rationally related to the lack of high performance servers as jobs increase. Hence more 

number of the servers is required to serve the jobs. Moreover upper and lower number of 

VMs for each type of jobs also has been considered in order to investigate the impact of 

number of demanding VMs on number of required PMs. As demonstrated in Figure 4.7, 

for the maximum number of VMs, system cannot support more than 250 jobs. Hence, for 

the same number of jobs, different number of VMs may change the required PMs 

dramatically. Moreover, due to the high communication rate among VMs of jobs, it is 

observed that for a fixed number of loads in terms of VMs, lower number of jobs with 

higher number of VMs per job requires more number of servers compared to the case of 

having higher number of jobs with lower number of VMs. In other words, smaller 

numbers of jobs with bigger number of VMs require more infrastructures with higher 

bandwidth which may lead into usage of bigger number of the servers. Furthermore, 

considering the probabilistic case, due to the reservation of the bandwidth for random 

traffic, the bandwidth usage becomes more critical and number of the servers required to 

serve the jobs is more than the case with a fixed traffic. Also, the constraints on power 

usage and external bandwidth of racks may cause activation of less efficient servers 

leading to a larger number of active servers. However, in a probabilistic case reliability 

and resistance against congestion will be higher, which prevent latency and rack power 

failure.   

 Figure 4.8 plots the total power consumption as a function of the number of jobs in the 

datacenter for optimal and random placement of the VMs of a job. For optimal placement 

of VMs, results have been plotted both for constant and random server power 

consumption cases, while for random placement only for constant server power 

consumption.  Random allocation algorithm allocates VMs in DC randomly. As it shown, 

there is huge power usage gap (5MW) between maximum constant optimum resource 

allocation and random algorithm and (1MW) between maximum constant optimum 

resource allocation and deterministic heuristic for half loaded DC which shows we can 

achieve the optimal solution for power saving by using the proposed optimal resource 

allocation method. 
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Figure 4.9 also presents the number of active racks for different PoDs as a function of 

number of jobs in the datacenter. It may be seen that the number of active PoDs increases 

with the job load. Similarly, the number of active racks in an activated PoD increases 

almost linearly with the job load. Thus optimization keeps only needed number of PoDs 

and racks active to serve the job load and others are turned off.  

Figure 4.10 compares optimal results gap of CG using heuristic termination. As it 

depicted, the optimality gap (objective difference over  objective optimal value) among 

the CG using heuristic termination results is less than %0.01 percent for N=50. Hence, 

the difference between our proposed heuristic method and branch and bound method is 

negligible and we can say it is less than half a percent of the optimal value. However, it is 

possible to face a bigger optimality gap for larger values of N.   

We also examined the quality of the obtained solutions. In Table 4.10, the difference 

among values of the objective functions of CG/Proposed rounding, IQP are represented. 

Moreover, results of random rounding algorithm of the relaxed CG RMP solution is 

considered to represent the upper bound for the performance of our optimization model. 

It can be seen that the optimality gap between the exact results and upper bound is up to 6 

% and  the gap between the solution of CG/proposed rounding and that of the IQP is less 

than 1% for N<50. The optimality gap of CG/proposed rounding and the upper bound is 

attributed to the heuristic nature of the methodology followed for mapping the pure 

relaxed solution to the integers. This shows that the better and more effective 

employment of the relaxed to integer conversion results in smaller optimality gap.   

  Next, we look at the run time of the optimization models in Table 4.11. It can be noticed 

that as the workload (number of jobs) in the datacenter increases, the runtime of both IQP 

and CG increase. However, the runtime of the IQP grows exponentially while that of CG 

almost linearly due to the fact that CG scan much smaller number of configurations.  
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  Fig. 4. 3. Optimal power consumption with/without VM migration and power consumption of 

heuristics with VM migration (with independent VM release time) as a function of time.  

 

 

 

 

  Fig. 4.4.  Number of active racks as a function of time with/without VM migration with 

independent VM release time.  
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Fig. 4. 5.  Optimal power consumption as a function of time with/without VM migration with 

simultaneous VM release time.   

 

 

 

  

Fig. 4.6.  Numerical results of CDF of ToRS to CS links of different models for N= 350, 
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Fig. 4. 7.  Number of active servers as a function of total number of jobs in the DC. 

 

 

 

 

 

Fig. 4. 8.  Optimum power consumed in DC as a function of total number of jobs in the DC 
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Fig. 4. 9.  Number of Active Racks in each PoD as a function of number of jobs 

 

 

Fig. 4. 10  Numerical results of optimality gap for CG using proposed heuristic rounding method  
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Table 4.10 Comparison of values of the objective functions among IQP, CG/ Proposed Rounding and 

CG/Random Rounding 

Optimization Method Value of the objective for different N 

 10 20 30 40 50 

IQP  16.92 29.2 49.2 92 422 

CG/Proposed Rounding 16.95 29.25 49.95 92.35 426.5 

CG/Random Rounding 20.7 36.85 59.6 121.5 453.3 

 

Table 4.11 Comparison of the run time between IQP and CG/proposed rounding  

Optimization Method Run Time (hour) for different N 

 10 20 30 40 50 

IQP 8 31 78.2 111.3 169.2 

CG/Proposed Rounding 0.3 1.7 4.5 8 13.2 

 

 

4.7 Conclusion 
 

In this chapter, we considered the optimization of resource allocation in a cloud 

computing center. The objective of the optimization problem optimization was 

scheduling of incoming workloads among servers such that total power consumption of 

cloud computing center is minimized; both network and server power consumption have 

been taken into account. First, we formulated energy efficient VM placement problems. 

Then, a CG based algorithm is presented to determine the number, type and location of 

the servers that should be used to serve the workloads in order to minimize power 

consumption of the datacenter. Subsequently, we optimized VM placement problem 

while there are still unfinished jobs from the previous timeslots. We developed a 

technique to solve the optimization problem that allows full, partial and no migration of 

VMs belonging to unfinished jobs. Finally, pattern initialization and heuristic termination 

algorithms are proposed to reduce complexity of the optimization problem. Numerical 

results show that the heuristic algorithm yields near to optimal solution under random job 

arrival process. Optimal results show significant savings power consumption. 
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Chapter 5  

Conclusions and Future Work 

In this chapter, we present the conclusions of the research done in this thesis and discuss 

the future work.  

5.1. Conclusions 

In this thesis, we have studied performance modeling of cloud computing systems and 

optimization of resource allocations in these systems. On the topic of performance 

modeling, we have assumed Poisson arrival of jobs to the system, where a job may 

consist of multiple numbers of tasks with each task requiring a virtual machine (VM) for 

its execution.  The studied models admit quite general job service time distributions. We 

considered both constant and variable job sizes in the number of tasks during their service 

times. In the case of constant job size, we allow different classes of jobs, which are 

determined through their arrival and service rates and number of tasks in a job.  In the 

variable case a job generates randomly new tasks during its service time. The latter case 

requires dynamic assignment of VMs to a job, which will be needed in the mobile cloud. 

In both cases, the system is modeled using birth-death processes. In the case of constant 

job size, we have derived joint distribution of the number of jobs from each class in the 

system, job blocking probabilities and distribution of the utilization of resources as a 

function of the job load under various scenarios for systems with both homogenous and 

heterogeneous VMs. We have shown that joint distribution of the number of jobs in the 

system depends on the job service times only through its mean value. We have 

determined service fragmentation probabilities and have shown application of the derived 

results in power management techniques under time-varying traffic loads. In the case of 
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variable job sizes, we have determined distribution of the number of jobs in the system 

and the average service time of a job for both infinite and finite resources systems. 

Next we have studied optimization of resource allocation for a given cloud computing 

center architecture. We have developed an optimization model that determines the job 

schedule, which minimizes the total power consumption of the datacenter. It is assumed 

that power consumption in a datacenter is due to communications and server activities. 

We assumed a distributed model, where a job may be assigned VMs on different servers, 

resulting in fragmented job service. In this model, communications among the VMs of a 

job on different servers is proportional to the product of the number of VMs assigned to 

the job on each pair of servers which results in a quadratic network power consumption 

in the number of job fragments. We have applied the CG method to solve this 

optimization problem for large scale colud computing systems in conjunction with two 

different algorithms that reduces the complexity and the amount of time it takes to obtain 

the solution. We have also investigated the impact of stochastic communication rate and 

computation level on the optimization of resource allocation. Afterwards, we have 

extended the model to the periodical application of the optimization problem. The 

extended model solves the optimization problem at discrete-time instants where the load 

includes new arriving jobs in the present slot as well as unfinished jobs from the previous 

timeslots. An important contribution of this thesis is development of a technique that 

solves this optimization problem such that it allows full, partial and no migration of VMs 

belonging to the unfinished jobs. Numerical results show that the proposed platform 

yields an approximate optimal solution (optimality gap less than 2 percent) within a 

limited computing time. The numerical results also show that optimal VM placement 

results in significant power consumption savings. Thus the proposed optimization will 

provide significant cost savings to the operators of cloud computing systems. 

The main contributions of this thesis are published in [86] and [87]. 

 

5.2. Future Work  
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Next, we present proposals for future research. 

 

5.2.1 Performance modeling of cloud computing systems under 

nonstationary conditions 
 

The performance modeling in this thesis assumes equilibrium conditions in the cloud 

computing system. However, the application workloads are time-varying, which results 

in nonstationary resource demands over time. Thus, we propose to study performance of 

cloud computing systems under nonstationary conditions. This may be achieved through 

the prediction of the future workload through the use of historical data. The referenced 

literature on forecasting includes a time series prediction of the status of distributed 

system resources such as CPU and available memory based on historical information 

captured throughout monitoring of the systems. Nevertheless, time series approaches 

such as Linear Regression (LR) and Moving Window Average (MWA) are not powerful 

estimators for load prediction. Non-stationary space of the job arrival process makes the 

LR and MWA approaches too error prone.  However, powerful estimators such as 

Kalman, and particle filters may be used in the prediction of the workloads and available 

resources. Then, the predicted load may be used to study nonstationary behaviour of the 

system as a function of the system.  

5.2.2 Performance Modeling of Cognitive Cloud Computing Systems  

Cloud computing allows different services to be offered by the service providers in the 

cloud. Among the provided services are access to interactive databases and some web 

based applications.  For these services, the service providers lease cloud resources for a 

long period of time in order to meet QoS requirements of their users. However, as the 

result of fluctuation in the total user load, some of the resources leased by the service 

provider may be idle significant periods of time. The service provider may rent out these 

resources to the secondary users on the condition that QoS given to the primary users of 

the service provider is not affected. This could be achieved by giving pre-emptive priority 
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to primary users over the secondary users. This problem is similar to the sharing of a 

communication channel by the primary and secondary users in a cognitive radio system, 

hence the name cognitive cloud computing system. We would like to study performance 

seen by the secondary users in cognitive cloud computing system.  

5.2.3 In Depth Study of VM Migration Policy  

We propose an in depth study of the VM migration policy. There are three main 

objectives of VMs migration in a cloud computing center: reduction of communication 

network traffic over the DC, reduction of power consumption, and avoidance of server 

failure.  After the prediction of the mentioned events, VM migration policy should be 

used to determine movement of the computation load away from irresolute servers to 

other appropriate servers. We note that VM migration has a cost due to interruption of the 

processing in the migrating VM (VM downtime), the additional power required for the 

migration and increased communication network utilization. The downtime of VM 

migration may be modeled as a random variable. The frequency of VM migration should 

be limited to avoid high cost of VM migration. 

In this thesis, we modeled the network considering communication amongst VMs 

inside the DC.  However, inter-traffic communication (out-of-band cloud signals) also 

exists, which could be as important as the server power consumption and internal traffic 

in the resource allocation and relocation processes of VMs.    

As mentioned earlier, any VM migration causes a slight performance degradation of 

the application hosted by the VM. The time needed to transfer the VM memory from the 

source to the target server may vary from a few seconds up to two minutes in the worst 

cases. As discussed earlier, each VM has a lifetime in the DC. So it is possible that there 

is a VM existing in a network where its lifetime is going to end. In this situation it might 

be preferable not to migrate the VM. So in addition to the traffic amongst VMs in the 

cloud, their lifetime also has to be considered in order to make an optimum decision on 

VM migration. For example, in the dynamic service demand case the amount of traffic 

the VM will generate and communicate over the network should also consider job service 

time, which has been calculated in this thesis. For calculating service time of a job, two 

different scenarios where VMs service times are totally independent have been 

investigated. In the scenario where VMs release the system simultaneously, this has been 
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presented in this thesis. The other scenario is for a correlation between VM service times 

of a job in the DC. Under these circumstances, it is possible to approximate the service 

times of a job using the cross correlation of processes presented above.   
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