

Performance Modeling and Optimization of Resource Allocation in

Cloud Computing Systems

Shahin Vakilinia

A Thesis

In the Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

July 2015

© Shahin Vakilinia, 2015

CONCORDIA UNIVERSITY SCHOOL

OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Shahin Vakilinia

 Entitled: Performance Modeling and Optimization of Resource Allocation in Cloud Computing

Systems

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 Chair

Dr. A. Awasthi

___External Examiner

Dr. Z. Dziong

___External to Program

Dr. C.Assi

 Examiner

Dr. W-P.Zhu

 Examiner

Dr. Y. Liu

__Thesis Co-Supervisor

Dr. M. Mehmet Ali

__Thesis Co-Supervisor

Dr. D. Qiu

Approved by:

 Dr. A.R. Sebak, Graduate Program Director

September 8, 2015 Dr. A. Asif, Dean

Faculty of Engineering & Computer Science

iii

ABSTRACT

Performance Modeling and Optimization of Resource Allocation in Cloud

Computing Systems

Shahin Vakilinia, Ph.D.

Concordia University, 2015

Cloud computing offers on-demand network access to the computing resources through

virtualization. This paradigm shifts the computer resources to the cloud, which results in

cost savings as the users leasing instead of owning these resources. Clouds will also

provide power constrained mobile users accessibility to the computing resources. In this

thesis, we develop performance models of these systems and optimization of their

resource allocation.

In the performance modeling, we assume that jobs arrive to the system according to a

Poisson process and they may have quite general service time distributions. Each job may

consist of multiple number of tasks with each task requiring a virtual machine (VM) for

its execution. The size of a job is determined by the number of its tasks, which may be a

constant or a variable. In the case of constant job size, we allow different classes of jobs,

with each class being determined through their arrival and service rates and number of

tasks in a job. In the variable case a job generates randomly new tasks during its service

time. The latter requires dynamic assignment of VMs to a job, which will be needed in

providing service to mobile users. We model the systems with both constant and variable

size jobs using birth-death processes. In the case of constant job size, we determined joint

probability distribution of the number of jobs from each class in the system, job blocking

probabilities and distribution of the utilization of resources for systems with both

homogeneous and heterogeneous types of VMs. We have also analyzed tradeoffs for

turning idle servers off for power saving. In the case of variable job sizes, we have

determined distribution of the number of jobs in the system and average service time of a

job for systems with both infinite and finite amount of resources. We have presented

iv

numerical results and any approximations are verified by simulation. The performance

results may be used in the dimensioning of cloud computing centers.

Next, we have developed an optimization model that determines the job schedule, which

minimizes the total power consumption of a cloud computing center. It is assumed that

power consumption in a computing center is due to communications and server activities.

We have assumed a distributed model, where a job may be assigned VMs on different

servers, referred to as fragmented service. In this model, communications among the

VMs of a job on different servers is proportional to the product of the number of VMs

assigned to the job on each pair of servers which results in a quadratic network power

consumption in number of job fragments. Then, we have applied integer quadratic

programming and the column generation method to solve the optimization problem for

large scale systems in conjunction with two different algorithms to reduce the complexity

and the amount of time needed to obtain the solution. In the second phase of this work,

we have formulated this optimization problem as a function of discrete-time. At each

discrete-time, the job load of the system consists of new arriving jobs during the present

slot and unfinished jobs from the previous slots. We have developed a technique to solve

this optimization problem with full, partial and no migration of the old jobs in the system.

Numerical results show that this optimization results in significant operating costs

savings in the cloud computing systems.

v

To

My parents, my Wife and my Grandparents

Acknowledgements

I would like to extend my utmost gratitude to Profs. Mustafa Mehmet Ali and Dongyu

Qiu for their patience, for being generous with their time and for countless great ideas

and advices that helped me overcome the difficulties of research. The completion of this

thesis would not have been possible without their significant support. I am truly indebted

to them for their insightful comments and uncompromising attention to details.

I would like to express my deep gratitude to my dear wife, Samaneh Mansouri, for her

tolerance of my lifestyle which has also become hers. I am especially grateful to Ehsan

Farahani, Dariush Ebrahimi and Behdad Heidarpour for their support and for being great

friends. Last but not least, I owe more than thanks to my family members, which include

my parents, my brother (Iman Vakilinia) and my grandparents. Without them, I would

not be able to succeed throughout my life. I am always grateful to them for their

encouragement and support.

vi

TABLE OF CONTENTS

List of Figures……………………………………………………………...….….. x

List of Tables…………………………………………………………...……….… xiii

Abbreviations ………………………………………………………….…............ xiv

Glossary ………………………………………………………….…....................... xvi

1. Introduction 1

1.1. Introduction to Cloud Computing ………………………………………………... 1

1.2. Cloud Computing Services……………………………………………………….. 3

1.3. Future of Cloud Computing ……………………………………………………… 4

1.4. Motivations ……………………………………………..……..…………………. 5

 1.4.1 Modeling of the Resource Allocation in Cloud Computing Datacenters…… 5

 1.4.2 Energy Efficient Resource Allocation in Cloud Computing Datacenters….. 7

1.5. Contributions …………………………………………………………………….. 8

1.6. Thesis Organization……………………………………………………………… 9

2. Literature Review 10

2.1. Performance Modeling of Cloud Computing Systems …………………………... 10

2.2. Heterogeneity of Cloud Computing Resources ……..…………………………… 12

2.3. Optimal Resource Allocation in Cloud Computing Datacenters ………………… 14

2.4. Power Management in Cloud Computing Centers ………………….…………… 17

2.5. Resource allocation in Mobile Cloud Computing ………..……………………… 19

vii

3. Performance Modeling of the Cloud Computing Centers…………. 21

3.1. Introduction of the models……………………………………………………… 21

3.2. Modeling of a system with homogeneous VMs, constant job sizes and

simultaneous release ……………………………………………………………….….
28

3.2.1 Single Server Model…………….……………………………………. 25

3.2.2 Multiple Servers Model…………………………….…………………. 26

3.2.3 Multiple Server Pools Model…………………………………………. 31

3.3. Modeling of a system with heterogeneous VMs, constant job size and

simultaneous release times …………………………….……..............………………
40

3.4. Modeling of the system with Constant Job size, Homogeneous VMs and

Independent Release times ……………….………………….……………..…………
47

3.4.1. Infinite Resource Model (CJ, HM, IR)………………………………….... 48

3.4.2. Finite Resource Model (CJ, HM, IR)………………………….………… 49

3.5. Modeling of the system with Variable Job Size………………………………….. 52

3.5.1. Infinite Resource Model (VJ)…………………………………………….. 53

3.5.2. Finite Resource Model (VJ)………………………….…………………… 59

3.5.3. Saturated job arrival Process (VJ)………………………………………… 61

3.6. Comparison of the Performance Modeling Results with the Previous Work….... 66

3.7 Conclusion …………………………………………………………..…………… 70

4. Job Scheduling with Optimization of Power Consumption in

Cloud Computing Centers
72

4.1. Job Scheduling with Optimization of Power Consumption in a Cloud Computing

Center ………………………………………………………..
73

viii

 4.1.1. Integer Quadratic Programming Model………………………………….. 74

4.1.2. Column Generation Model……..………………………………………….. 76

4.2. Job Scheduling with Power Consumption Optimization including Network

infrastructure …………………………………………………………………………..
79

4.2.1. Integer Linear Programming Model……………….…………………….… 81

4.2.2 Column Generation Model……………………………………..…………… 83

4.3. Probabilistic Model ………………………………………………………………. 86

4.4 Dynamic Job Scheduling ………………………………………………………... 88

4.4.1 Dynamic ILP Model………………………………………………………... 89

 4.4.2 Dynamic Column Generation Model………………………………………. 91

4.5. Optimization Structure and Complexity Reduction……..……………………..... 92

4.5.1 CG Initialization……………….………………………………………….. 94

4.5.2 Heuristic Rounding Termination Algorithm……………………………… 94

4.6. Numerical Results ……………….………………………………………………. 98

 4.7. Conclusion ……………….………………………………………………………. 111

5. Conclusions and Future Work 112

5.1. Conclusion……………………………………………………………………….. 112

5.2. Future Work……………………………………………………………………… 113

5.2.1. Performance modeling of cloud computing systems under non-stationary

conditions ……….…………………………………………………………………….
114

5.2.2. Performance Modeling of Cognitive Cloud Computing Systems …………….. 114

5.2.3 In Depth Study of VM Migration Policy………………………………...……… 115

ix

References…………………………………………………………………………... 117

x

LIST OF FIGURES

1.1. Dynamic resource allocation in a cloud computing center…………………………. 4

1.2. Public Cloud Service Market by segment, 2016……………...……….................... 5

3.1. Tree diagram of cloud computing models …………………………………………. 23

3.2. Numerical and simulation results for blocking probabilities of different classes of

 jobs as a function of total job arrival rate……………………………………….....
29

3.3 Numerical and simulation results for the average number of idle instances of

 resources per server as a function of total job arrival rate.………..………………
30

3.4. Numerical and simulation results for fragmented service probabilities of different

 classes of jobs as a function of total job arrival rate…………………………….
31

3.5. Topology of the cloud computing center………………………..…………………. 31

3.6. Numerical and simulation results for the average number of idle VMs of different

 server pools as a function of total job arrival rate ……………………….………
34

3.7. Numerical and simulation results for probability distributions of number of active

 server pools as a function of total job arrival rate. ……………………..…………..
34

3.8. Job blocking probabilities of server pools as a function of total job arrival rate….. 35

3.9. Net cost of a transition for always-on, reactive, proactive and optimal prediction

 schemes as a function of β for α=0.88 ,σ=τ=0.1……………………………..
39

3.10. Net cost of a transition for always-on, reactive, proactive and optimal prediction

schemes as a function of α for β=0.05, σ=τ=0.1………………..…….……………….
39

3.11. Utilization as a function of α………………...……….…..……….……………… 40

3.12. Cumulative Distribution of memory utilization with as a parameter ………… 45

3.13. Cumulative Distribution of CPU utilization with as a parameter …………….. 46

3.14. Cumulative Distribution of storage utilization with as a parameter …………… 46

3.15. Blocking probabilities of different types of VMs as a function of total job arrival

rate ……………………………………………………………………………………….

47

xi

3.16. State-transition rate diagram of the Could Computing system (independent

release Times) …………………………………………………………………………
48

3.17. Distribution of busy VMs under low, medium, heavy and very heavy load 51

3.18. Average number of jobs from each class as a function of the total job arrival rate 51

3.19. State-transition-rate diagram for the tasks of a job in the system……………… 52

3.20. State-transition diagram for the stages of the system ……………………………. 53

3.21. Average of the total number of the tasks as a function of α and λ as a parameter 58

3.22. Average service time of a job as a function of task service rate for dynamic

 service and independent release time models……………………………………
59

3.23. Average number of the VMs as a function of task arrival rate and job arrival rate

 as a parameter. ……………………………………………………………………..
61

3.24 Probability distribution of number of tasks in the system with N and α as the

 parameters. …………………………………………………………………………
63

3.25. Average of the total number of tasks for infinite resource model with saturated

 job arrival process as a function of task arrival rate and number of jobs, N, as a

 parameter and μ=1. …………………………….…………………………………

64

3.26. Average number of tasks in finite resource model as a function of task arrival rate

 and number of jobs, N, as a parameter and μ=1, S=100………….………………
65

3.27. Comparison of the average number of tasks for saturated and unsaturated infinite

 resource model and finite resource model (S=40) as a function of task arrival rate
65

3.28. Average number of the jobs in the system as a function of job arrival rate for

 M/G/m approximation and the exact results for μ=1………………………………
67

3.29. Average number of the jobs in the system as a function of job arrival rate with α

 as a parameter for =γ=1 , S=100 and four tasks per job……………………........
70

4.1 Hierarchical Architecture of a Datacenter. …...…………….……………………… 79

4.2. Optimization Module Structure. …………………………………………………… 92

4. 3. Optimal power consumption with/without VM migration and power consumption

 of heuristics with VM migration (with independent VM release time) as a function
107

xii

 of time…………..………………………………………………………...………...

4.4. Number of active racks as a function of time with/without VM migration with

 independent VM release time. ………….……………………………...……..…..
107

4. 5. Optimal power consumption as a function of time with/without VM migration

 with simultaneous VM release time. …...……………………..……………….
108

4.6. Numerical results of CDF of ToRS to CS links of different models for N= 350….. 108

4. 7. Number of active servers as a function of total number of jobs in the DC………... 109

4.8. Optimum power consumed in DC as a function of total number of jobs in the DC 109

4.9. Number of Active Racks in each PoD as a function of number of jobs…………... 110

4.10. Numerical results of optimality gap for CG using proposed heuristic rounding

 method ……………………………………………………..……………………….
110

xiii

LIST OF TABLES

3.1. Parameter/Variable Definitions…………………………..………..……………. 24

3.2. Representative VMs Specifications …………………………………..……...… 44

4.1 Parameter/Variable Definitions ………………………………….……............... 74

4.2 Parameter/Variable Definitions for CG…………………………………............ 77

4.3 Parameter/Variable Definitions for Job Scheduling including Network

Infrastructure ………………………………….……………………………………...
80

4.4 Parameter/Variable Definitions for Dynamic Job Scheduling…………………… 90

4.5a. No. of servers per type per PoD ………………………………….……............ 99

4.5b. No. of servers per type per rack ………………………………….……............ 99

4.6 Characteristics of Server types……………………………..……………............ 100

4.7. Specification of Typical Switches………………….……………..…………….. 100

4.8 VM Types………………………………………………………………………... 101

4.9 Jobs Types and their Requirements…………………..…………………………. 103

4.10 Comparison of values of the objective functions among IQP and CG/ Proposed

Rounding and CG/Random Rounding…………………………………………..
111

4.11 Comparison of the run time between IQP, CG/proposed rounding and

CG/random rounding…………………………………………………………………
111

xiv

ABBREVIATIONS

BoT Bag of tasks

CC Cloud Computing

CG Column Generation

CM Centralized Model

CS Core Switch

DC Datacenter

DM Distributed Model

IaaS Infrastructure as a Service

ILP Integer Linear Programming

IQP Integer Quadratic Programming

HOL Head of Line

LHS Left hand side

LP Linear programming

MCC Mobile Cloud Computing

RMP Restricted Master Problem

OPL Optimization programming language

PaaS Platform as a Service

PP Pricing problem

PoD Performance Optimized Modular Data Centers

QoS Quality of Service

RHS Right Hand Side

SaaS Software as a service

SBP Stochastic Bin Packing

SLA Service Level Agreement

SI Spot Instance

SRN stochastic reward network

xv

TOR Top-Of-Rack

VM Virtual Machine

xvi

GLOSSARY

Symbol Definition

 Number of classes of jobs

 Arrival rate of class r jobs

 Total job arrival rate

 Service rate of class r jobs

 Total number of busy VMs

 Number of VMs required by a class r job

 Number of class r jobs in the system

 Arrival rate of class r jobs to the n’th server pool.

 Total arrival rate of the jobs to the n’th server pool.

 Probability that a class r job will be blocked by the n’th server pool.

 Overall job blocking probability at the n’th server pool.

 () Probability of having

g Number of active server pools.

 Arrival rate of class r jobs to the n’th server pool.

 Total arrival rate of the jobs to the n’th server pool.

 Probability that a class r job will be blocked by the n’th server pool.

 Overall job blocking probability at the n’th server pool.

𝐹 Number of resource types.

𝐶𝑓 Number of units of resource f, 𝑓 = 1 𝐹

 𝑓 Number of units of resource f required by a type VM

 , Arrival rate of class jobs that require number of type VMs,

 Service rate of class jobs.

 Number of class jobs in the system.

 Number of jobs in the datacenter

T Number of different types of servers.

 Total number of type t servers

xvii

 Power usage of type t servers

 Number of type r VMs required by job

 Type k resource capacity of a type t server

 Power usage rate of communicating with a server serving VMs of job .

 Amount of type k resource required by a type r VM

 Number of type r VMs in m
th

 type t server assigned to job .

 ̃

 Number of VMs in m
th

 type t server assigned to serve job .

 Binary variable that denote on or off status of m

th
 type t server.

 Total number of patterns of type t servers

 Number of active type t servers with pattern

 Number of type r VMs assigned to job over type t server with pattern

 ̃ Pattern ̃ of type t servers introduced by pricing problem t.

 ̃

 Number of VMs assigned to job over a type t server with pattern .

 1

Chapter 1

Introduction

1.1 Introduction to Cloud Computing

Reduced costs of processing and storage technologies brought about the rapid growth of

the computer industry. Recently, a new computing paradigm called cloud computing has

emerged which provides on-demand network access to the computing resources through

virtualization.

There have been many definitions of cloud computing, but one of the most referred-to

definitions of it was published by the National Institute of Standards and Technology

(NIST), which is given below,

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources that can be rapidly

provisioned and released with minimal management effort or service provider

interaction.”

The cloud computing paradigm offers cost savings because users lease the computing

resources from a service provider when needed instead of owning them. Cloud

computing enables dynamic sharing of the computing resources among the users and

allows them to submit and execute applications of many kinds. Different applications,

however, require distinct types of resources. Applications such as interactive databases or

web-based services lease the cloud resources and usually occupy various resources to

maintain a high quality of service (QoS) level for their users. A service level agreement

 2

(SLA) specifies the QoS to be provided to the user in terms of various performance

parameters such as throughput, reliability, blocking probability and response time.

The enabling technology of cloud computing is virtualization. Virtualization is a

technique for separating software applications from each other and the hardware

resources. Virtual Machine (VM) also called instance refers to running of an individual

copy of a particular user’s application software or operating system in a virtual

environment. Virtual systems feature multitenant capabilities through hypervisor.

Hypervisor (also called a virtual machine monitor) is the virtualization software platform

that allows simultaneous running of multiple instances on a server. Housing multiple

virtual machines on a physical server utilize the physical server resources more

efficiently. In a non-virtualized environment, most of the time servers are idle and it has

been found that less than 10 percent of computing resources are used at any one time.

These servers accrue maintenance and human resource costs along with the costs of the

energy required to power and cool the hardware. After virtualization, server utilization is

found to rise as high as 80 percent. Therefore, virtualization is one of the operative ways

to mitigate datacenter (DC) expenses. Moreover, virtualized datacenters accommodate

pools of resources rather than isolated servers. The goal is to pool resources and serve

demands from these resource pools.

 3

1.2 Cloud Computing Services

In this section, we describe the services provided by cloud computing systems. Cloud

computing services may be classified into three types as Infrastructure-as-a-service

(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS). IaaS refers to

providing hardware equipment such as CPU, memory and storage as a service, PaaS

refers to providing platforms such as software development frameworks, operating

systems or multi-tenant application supports as a service and SaaS provides software and

applications as a service. The research interest of this thesis is IaaS, which is described

below.

Generally, the topology of a cloud computing center is hierarchical with racks containing

a fixed number of blade servers. A blade server contains a number of processors each one

consisting of several processing cores. The processing cores, memory and storage space

are configured into VMs. IaaS is deployed in a cloud provider’s datacenter (DC) in the

form of VMs. The user of the IaaS acquires a resource and is charged for that resource

based on the amount of resource used and the duration of that usage. IaaS allows access

and management of systems from anywhere and thus helps organization in extending or

shrinking their IT infrastructure. In IaaS, back-end hardware is administered and owned

by the cloud service provider. Mobility, stability, agility, availability and elasticity in

IaaS, is achieved by providing a user interface for the management of a number of

resources. It enables the users to allocate a subset of the resources for their own use.

Moreover, the interface provides the required functionality for operations, such as

starting and stopping operating system instances.

Figure 1.1 simply depicts cloud computing platforms which provide IaaS, in the form of

VMs. Cloud users request for VMs are specified in terms of resources such as CPU,

memory and storage space.

 4

Fig 1.1 Dynamic resource allocation in a cloud computing center

1.3 Future of Cloud Computing

Cloud computing has been widely studied and applied in various fields as it can provide

elastic computation platform and on-demand use and efficient sharing of resources.

Further, clouds will provide mobile users access to computing resources, which is

referred to as mobile cloud computing. This is very important as mobile devices are

becoming the primary computing platform to many users and they have limited

processing power and battery life. Thus many vendors and industry observers expect the

expenditures on cloud services to increase dramatically. The following graph gives an

insight into the investment growth in different cloud computing services over time.

Gartner estimates that the global market size for cloud computing services will be around

$210 billion in 2016. Gartner also expects annual growth of 41.3% for cloud computing

services through 2016.

UserUser

Load
Balancer

VM
Automation

Cloud ServersNetwork
Infrastructure

App Jobs

 5

Figure 1.2: Public Cloud Service Market by segment, 2010-2016 provided by Gartner’s

“Worldwide IT Spending Forecast”

1.4 Motivations

Next, we will describe the motivation for the research in this thesis. We will discuss

resource allocation models and associated algorithms of cloud Data-Centers (DCs)

workloads with respect to power usage, and the QoS factor of service providers.

1.4.1 Modeling of the Resource Allocation in Cloud Computing

Datacenters

One of the prime objectives of modern computing is to implement parallel computations

on large distributed resources such as DCs. On demand allocation of resources in a cloud

DC improves performance and reduces the deployment overheads significantly.

However, efficient resource allocation requires accurate modeling of DCs. This is why

more accurate modeling of jobs and resources that reflect real world scenarios, has

attracted wide attention recently. Although the cloud computing technology is emerging

 6

and growing rapidly, due to its complexity it suffers from a lack of standards [2], detailed

models and optimal resource allocation algorithms.

 The main issue that makes cloud resource allocation complex is heterogeneity of

resources and workloads. Based on the types of applications served by the cloud

computing center, there is a vast diversity in resource demand profiles which make the

incoming workflow heterogonous. Besides heterogeneity of workloads, one of the

essential characteristics of a cloud computing system is heterogeneity of server resources.

As time goes by, DCs update their resources’ configuration, processing capabilities,

memory and storage spaces. They also introduce new platforms based on the new high

performance servers along with older hardware, which makes the cloud platform

heterogeneous.

 Cloud workloads often have very large range of resource requirements, arrival rate and

execution time. Jobs entering the cloud may demand different types of services. In the

interactive applications, the users occupy cloud resources for a long period of time,

whereas batch jobs require much shorter execution time. Hence, the execution time of the

applications is notably divergent. In general, computing jobs such as web serving are

more processing intensive, while database operations typically require high-memory

support. Most of the jobs require parallel data analysis. This is the main reason for the

recent development of MapReduce Programming model [3]. This model relies on parallel

processing with a sequential functional approach. Job fragments are executed in parallel

to speed up processing of the jobs. MapReduce has usually three phases: fan out, map

and reduce. Applications such as Apache Hadoop [4] and platforms such as Pig [5]

implement the MapReduce programming model. This model also applies to bag-of-tasks

(BoTs) where a job consists of parallel and sequential tasks. The number of task

executions in the mapping phase will be larger than the fan out and reduce phases. Hence,

a job’s load depends on the phase of execution.

As a result, high variety in resource and workload characteristics makes resource

allocation in cloud computing centers very challenging.

 7

1.4.2 Energy Efficient Resource Allocation in Cloud Computing

Datacenters

Present day servers consume more power than those of a decade ago. Researchers

believe that high performance servers impose more energy costs to the system. With the

growing number of in-service servers, the worldwide expenditure on enterprise power

usage and server cooling is estimated to be quite high. (Currently, server farms have been

identified as one of the major electricity consumers in the world) [6]. Optimal resource

allocation methods in datacenters can save up to 20% of the energy consumption. These

savings may lead to an additional 30% saving in cooling energy requirements [6]. Given

the rising cost of energy, cloud providers are presently looking for state-of-the-art

solutions to ensure optimality of their power consumption. Service of a job at a

datacenter results in power consumption because of the server processing and network

communication demands of this processing.

Hence, one option can be VM placement in a way that minimizes the number of active

servers and communication traffic among VMs at the same time in favor of cloud

computing DCs. Dynamic power management aims to reduce power consumption in DCs

by temporarily shutting down servers when they are not required. However, full

reactivation of a server is delayed by setup time, which can adversely affect the system

performance. Hence, in order to be able to manage the number of active servers

dynamically, the amount of incoming workload needs to be determined and assign VMs

to new arriving jobs. This VM assignment process includes all server resources; namely

CPU, memory and storage; which leads to a “multidimensional bin packing problem”.

 Beside power usage of servers, communication also impacts both performance and

cost of the operations. Communication increases job execution latency and power

consumption. One way to mitigate the Cloud Network (CN) power usage is to apply

traffic aware VM placement methods [7], [8]. Thus, the optimal solution of VM

placement problem would include both CN and servers power consumption.

 8

1.5 Contributions

Next, the main contributions of this research are summarized below. The first part of

the contributions is due to performance modeling of cloud computing systems, while the

second part is due to the proposed optimal allocation of resources.

 We modeled a cloud computing system with multiple classes of jobs with

constant sizes and with homogeneous VMs. Assuming Poisson arrival of jobs

with arbitrary service distributions, we have determined the joint distribution of

the number of jobs from each class in the system, job blocking probabilities of

each class and the distribution of the utilization of resources under a single

server, multiple-servers and multiple-server pool cases. In multiple-server case,

we have determined fragmentation probability of a job’s service among

multiple servers. We show the applicability of our results to study a power

management algorithm that reduces the power consumption while maintaining

a plausible job blocking probability under time-varying traffic load. We have

also derived job blocking probabilities and distribution of the utilization of

resources with multiple classes of jobs with heterogeneous VMs. Probability

distribution of the service time and average number of jobs for a system with

constant job sizes and independent task completion times are determined. We

have considered a system with jobs arriving to the system according to a

Poisson process with variable job sizes in number of tasks. It is assumed that a

job will generate new tasks randomly during its service time in the system. We

have derived service time distribution of a job, distribution of the number of

jobs and total number of tasks in the system.

 We developed an optimization problem that determines job scheduling such

that the total power consumption of the cloud computing center is minimized.

Then, the optimization problem using integer quadratic programming (IQP) and

column generation (CG) are introduced. First, the optimization problem has

been modeled as an IQP, then, we have applied the CG method to solve large

scale optimization problem in conjunction with two different algorithms to

decrease the complexity and the time to obtain a solution to the model, both

 9

pertaining to the performance of the platform. Then, we have shown how to

formulate and solve optimization problem of the system in discrete-time as the

time evolves. At each discrete-time, the job load of the system consists of new

arriving jobs during the present slot and unfinished jobs from the previous

slots. We solve this optimization problem with full, partial and no migration of

the old jobs in the system.

1.6 Thesis Organization

Next, we give the structure of the thesis. In chapter 2, a comprehensive literature survey

of modeling and optimization of the dynamic resource allocation in cloud DCs is

presented. Chapter 3 presents performance analyses of various cloud computing models.

The systems with both constant and variable job sizes with both homogenous and

heterogeneous types of VMs have been studied. Chapter 4 proposes an optimization

platform for VM placement that minimizes the total power consumption of DC. The

proposed optimization problem has been solved using the CG technique for both the ILP

and IQP versions of the problem. The initialization patterns and heuristic termination

approach for the CG technique, which reduces the complexity and time of obtaining a

solution have been presented. Subsequently, an optimization problem for VM placement

while there are still unfinished jobs from previous timeslots has been formulated and

solved. Finally, concluding remarks are presented in chapter 5 with potential future work.

 10

Chapter 2

Literature Review

In this chapter, we provide a survey of the modeling of cloud computing systems.

Survey of the previous work has been divided into several groups depending on the

objective of the works.

2.1 Performance Modeling of Cloud Computing Systems

The research work in this group studies performance of a DC under stochastic job arrival

processes and service time distributions. The objective of these studies is to determine

equilibrium distribution of the number of jobs in the system, job blocking probabilities

and response times, and distribution of utilization of resources.

As explained in the previous chapter, when a job arrives at the system, VM are created

and assigned to cloud computing resources to handle the job execution. This assignment

has been referred to as VM placement
1
 in the literature. The problem of efficient

assignment of VMs to PMs (servers) in cloud computing centers is considered as a

stochastic problem [9]. Knapsack [9] and stochastic bin packing (SBP) [10] problems are

the typical stochastic approaches used to allocate resources in the context of cloud

computing systems. In such problems, multiple input flows of several types of jobs are

considered, with the mean service time depending on their type. There is a finite number

of servers in which SBP server packing algorithm takes into account. Each new arriving

1
 Selecting the most appropriate server for the virtual machine is known as virtual machine placement

 11

job is served immediately by being placed into the servers according to the resource

sharing policy. Service times of jobs are independent of each other.

In [11], a cloud computing center has been modeled as a M/G/m/m+r queue, where r is

the buffer size. New arriving jobs to a full buffer are lost. The steady-state distribution of

the queue length is determined by writing down the transition probability matrix of the

embedded Markov chain at the job arrival points and solving the equilibrium equations.

This analysis makes the approximation that at most three jobs may be served during an

inter-arrival time and the queue length distribution does not have a closed form. In [12]

and [13] the work in [11] has been extended to a more complicated cloud computing

center model. It has been assumed that the cloud computing center has a number of

servers and each server has been configured as a number of VMs. A server may be in a

hot (with running VMs), warm (turned on but without running VMs) or cold state (turned

off). The amount of time it takes to launch a job on a server depends on the state of the

server, a hot server requires the shortest amount of time. The system attempts to serve a

job depending on availability in the following order on a hot, warm and a cold server. It

is also assumed that each job contains a number of tasks chosen from a discrete

probability distribution. The tasks may have general service time distributions and service

of each task requires a VM. A server accepts a job if it has enough available idle

instances of resources to start serving all the tasks of a job simultaneously. If a job cannot

be accepted on any of the servers, then it will be blocked. The steady-state distribution of

the queue length is determined by writing down the transition probability matrix of the

embedded Markov chain at the arrival points and solving the equilibrium equations

through fixed point iteration among the server states. In [14], performance of cloud

computing systems has been studied using stochastic reward networks (SRNs) which are

an extension of generalized stochastic Petri Nets (GSPNs). In [15], performance of cloud

computing systems with fault recovery has been considered.

In [16], cloud computing capacity has been studied under time-varying traffic load

using historical traces with the assumption that idle capacity is turned off through

simulation. The time-axis has been divided into 5-minute slots. Various moving average

and autoregressive models have been used to predict the job demand for the next slot

 12

using the demands information for the present and past slots. Then, the required server

capacity for the predicted load is determined using Erlang loss formula. As a result, extra

capacity may be added or subtracted to/from the presently active capacity respectively. It

is assumed that it takes one slot to turn on the extra capacity. The unneeded capacity is

turned off after one slot to prevent unnecessary on-off turning of the servers. It is

assumed that an arriving job will be blocked and lost if there is no available active

capacity to serve it. Under this scheduling algorithm, the paper determined job blocking

probabilities and unutilized server capacity for prediction models as well as for a model

that maintains a fixed reserved capacity using simulation. It has been determined that

fixed reserve capacity provides better performance than the prediction models.

 In [17], throughput optimal load balancing models have been considered in systems

that include clusters of servers. The work assumes heterogeneous types of VM

configurations. The time-axis is slotted and in each slot, a number of job requests arrive

to the system. Each job may request a single VM for a number of slots. When the system

is busy the arriving jobs are stored in a central queue for each type of jobs. It is shown

that server-by-server max-weight job scheduling with preemption and server

reconfiguration in each slot is throughput optimal. A non-preemptive algorithm, which is

nearly optimal, is also proposed. To reduce the communication overhead, a more

distributed system is also considered where each server maintains its own queues. The

paper also presents simulation results, which show that the mean delay performance of

centralized and distributed queuing systems is not very different. The paper does not take

into consideration QoS requirements of different types of jobs which may not be met in

this process.

Recently, Amazon introduced a new cloud computing service that sells the idle

instances of resources called Spot Instance (SI) through competitive bidding. The price of

SI depends on the demand but, in general, it is lower because no reliability is provided for

the services. In [18], a statistical modeling of the SI prices and inter-price durations have

been provided through curve-fitting to the experimental data available from Amazon.

2.2 Heterogeneity of Cloud Computing Resources

 13

The research work in this group studies impacts of the resource heterogeneity on the

performance of cloud computing center. As mentioned earlier, due to inevitable platform

upgrades or enhanced hardware resources, cloud platforms gradually become

heterogeneous over time which makes the VM placement problem more complex.

 In [19], the impact of hardware heterogeneity on the performance of public clouds has

been investigated. Amazon EC2 and Rackspace cloud platforms providing IaaS and

experienced several generations of hardware upgrades were selected to represent the

hardware diversity. During a two-year period, the activities of DCs in US are measured

to collect some useful benchmarks that might affect the dynamic resource allocation in

cloud DCs. Then, these benchmarks such as CPU performance and network overhead of

cloud communication are utilized to evaluate the impact of heterogeneity on the

performance of heterogeneous cloud computing centers. For instance, CPUBench and

UnixBench [20] are used to analyze CPU performance metrics such as processing time

and CPU running and idle percentages for Amazon EC2 and Rackspace instances.

TCPBench also is used to measure the networking of instances. It indicates that for some

EC2 m1.small instances can acquire approximately 40% of CPU processing time, while

m1.large instances can acquire 75 % of CPU time. For Rackspace, 4-GB instance type,

one-process can acquire close to 100% CPU acquisition percentage; while for dual-core

type, CPU acquisition percentage for each process varies between 95 and 99 percent,

which is related to the administration overhead. Therefore, the task scheduling

mechanism of hypervisors also has an effect on benchmarks. Moreover, the team uses a

“trial-and-better” approach that has three steps for the incoming jobs into the system.

First, arriving job should apply for certain number of instances from the cloud, then, the

performance levels of the acquired instances will be checked and finally the better

performing instances are kept and the other ones are discarded. Finally, based on the

benchmarks and “trial-and-better” approach in which arriving jobs seek out better-

performing instances, game theoretic analysis, and Nash equilibrium are discussed from

the cloud user perspective. Then, the heuristic cost-saving optimization algorithm is

proposed. Their results show that their proposed algorithm can achieve up to 30 percent

costs saving while instances performance is satisfactory.

In [21] and [22], heterogeneous VMs are considered when jobs require different

 14

amount of resources during their service times. After the completion of a service, the job

releases all the resources that were allocated to it and leaves the system. However, it is

assumed that each job has only a single task that requires one VM for its execution. The

system is modeled in order to propose an optimum VM placement algorithm which

minimizes the communication latencies of VMs. Due to elasticity characteristics, cloud

computing centers need to provide VMs with various types of resources which may be

specified in terms of its requirements for different resources. In [23], heterogeneity of

workloads and PMs are also addressed. According to their characteristics, tasks are

classified into classes with similar resource demands and performance characteristics.

Different types of servers are also considered based on their platform ID and capacities

on different resources. A time series-based estimator has been implemented to predict

workload arrival rate. Then, a heterogeneity aware resource monitoring and management

system dubbed “Harmony” was proposed to perform dynamic capacity provisioning to

minimize the total energy consumption and scheduling delay considering heterogeneity

as well as reconfiguration costs.

2.3 OPTIMAL RESOURCE ALLOCATION IN CLOUD

COMPUTING DATACENTERS

Next, we describe the work on the optimal allocation of resources in cloud computing

centers. The objective of optimization may be different performance metrics such as

throughput, communication latency and power consumption. This type of work provides

scheduling of the jobs that minimizes the chosen performance metric.

In cloud computing centers, communication latencies of applications may affect

performance when the VMs for an application are split over multiple servers [7], [8]

and [21]. Due to communication latencies, response time may exceed the QoS

requirements of the users. So the usage of optimum resource allocation algorithms is

critical to achieve optimum application performance in cloud systems [21]. A structural

constraint-aware VM placement algorithm has been proposed in [24] where the

objectives are the reduction of communication latencies and improving system

availability. With awareness of availability and communication requirements, [25]

 15

formulated VM placement as an optimization problem with DCs characteristics and

applications as its inputs. [25] also minimizes the intra-datacenter traffic by proposing

application-aware VM migration algorithm. [10], [26], [27] and [28] consider

optimization of a cloud computing center with respect to communication bandwidth

demands. The sum of the bandwidth requirements of VMs on a server may exceed the

capacity of a server’s network interface. Since bandwidth demands on the VMs are

stochastic, statistical multiplexing may be used to place VMs on a minimum number of

servers such that VMs bandwidth guarantees may be met probabilistically. This problem

may be modeled as an SBP problem. Under the assumption that a VM’s bandwidth

consumption is normally distributed, [10] presents approximate online and offline

algorithms for the optimal assignment of VMs to the servers.

On the other hand, many studies have been done on traffic aware VM placement. The

VM placement problem taking into account network communication and server (PM)

operation costs, is investigated in [22], then, an algorithm is proposed in order to

minimize the network cost with fixed PM-cost. However, there is a trade-off between PM

and network operation cost. Network cost is minimized when each job is assigned to a

single server while PM cost is minimized when jobs are packed to the servers. This may

result in job fragmentation among the servers which increase the network cost.

In [21], [27], [28] and [29], the traffic between VMs are assumed to be known or fixed

for the placement period, and the placement is proposed based on this assumption.

In [30], the authors study the VM placement problem with the product traffic pattern in

DCs. The product traffic pattern is defined as a product of the VMs communication

activities in which the probability that a request belongs to a VM is defined as its

activity. [30] proposed an optimal solution to minimize the network cost for a

homogenous scenario by demonstrating that the more active VMs has to be placed on the

PMs with higher capacity.

Due to high variety of the cloud network traffic, traffic awareness is impossible in

practice. Therefore [22] and [30] relates network cost to the number of separated VMs of

a tenant, by defining different cost functions in which the number of job fragmentations

is the variable. [22] and [30] use a single dimensional resource allocation algorithm and

define a slot to represent one resource unit (CPU/memory/disk), in a way that each slot

 16

can host one VM. [30] also proposed a binary search based heuristic algorithm to achieve

an optimum point in the tradeoff between PM-cost and network cost in order to minimize

the cost according to the arbitrary assumption for the proposed cost functions.

 [31] addresses the problem of traffic engineering in data center networks from a

different aspect. In [31], each job is characterized by the set of VMs communication with

each other. The problem of mapping traffic flows of each job into VLANs and selecting

the most efficient spanning tree protocols with the objective of load balancing is

investigated regarding the bandwidth requirements of VMs and bandwidth constraints.

CG is proposed to solve the optimization problem reducing the complexity and search

space and then a semi-heuristic decomposition approach is proposed to make it scalable.

Data access latencies became a challenge in delay sensitive cloud applications. One of

the main components of the latency is the communication between the processors and

data nodes. In order to overcome this problem, network distance between computation

and storage has to be designed precisely. Considering the VM placement problem as a

classic linear sum assignment problem (investigated in [32]), [33] took the

MapReduce/Hadoop architecture into account, and investigated the delay intensive cloud

applications. They used the Hungarian algorithm proposed in [32] to optimize the data

access latencies under various cases in which each VM requires different data sources or

several VMs demand for just a data source.

In general, tasks of a user may have different demands and number of the tasks may

vary over the time. In [34], it is assumed that each user runs individual tasks, and each

task is characterized by a demand vector, which specifies the amount of resources

required by the task. In general, tasks of a user may have different demands and quantity

of the tasks may vary over the time. Then, Dominant Resource Fairness (DRF) multi-

resource allocation algorithm is proposed to equalize the dominant share. This factor is

defined as the maximum of the ratios of any resource type allocated to each user in the

entire cloud. [35], [36], [37] and [38] also extend several types of DRF algorithm by

focusing on the scenarios with different forms of demand. [39] proposed Dominant

Resource Fairness in Heterogeneous cloud (DRFH) by generalizing DRF to heterogeneity

in both resources and demands. DRFH equalizes users’ dominant share in a

heterogeneous cloud that leads to higher resource utilization. Then a heuristic algorithm

 17

is suggested to decrease complexity of DRFH, for implementation in real world

scenarios.

Many papers such as [28] address the traffic aware VM migration process. The service

placement optimization problem belongs to the class of quadratic assignment problem

(QAP), which is one of the hardest problems in the NP-hard class, and even its

approximation is hard [40] and [41]. In [42], NetDEO, based on a swarm intelligence

optimization model and search algorithm, is proposed to relocate VMs in order to adjust

resource demands and resource availability. They defined the problem by considering a

collection of jobs and servers. Traffic matrix is also considered to show the traffic rates

among the jobs in the cloud computing system. In the traffic matrix, for jobs in the same

server, the corresponding matrix element is zero. Each server has a capacity composite

metric of process, memory and storage while jobs also are attributed by their resource

requirements and traffic rates. Traffic stress of a node is defined as the root mean square

of traffic rate between the node and all its communication peers. [42] relocates the VMs

in order to minimize the total stress of the DC considering the initial condition of the CN.

In the next step, they designed NetDEO that applies swarm intelligence optimization

characteristics to improve the solution. However their stress definition is arbitrary with

respect to to incoming and outgoing traffic.

2.4 Power Management in Cloud Computing Centers

 Next, we describe the previous work on the power management in cloud computing

centers. Generally, the cost of energy required for operation of a server is higher than its

purchase price [43]. However, the consolidation of many servers in a cloud computing

center empowers efficient usage of a server and provides better consumption of the

power resources in the shared resource pools. Initiating from a small scale, [44]

developed a model that considers the dynamic power usage of a server as a function of

CPU utilization (it relies on the fact that CPU is the main power consumer in

servers). [44] stated that the power consumption of a server grows linearly with

increasing CPU utilization from the idle state upto fully utilized server. Then, according

to the workload of DC, the number of servers in idle and busy states with different levels

 18

of CPU utilization is estimated. [45] also found a strong relationship between CPU

utilization and total power consumption of a server. Again, the proposed model assumes

that the power consumption of a server increases linearly with the rise of CPU utilization.

Finally, the total power consumption of a cloud computing center is estimated by

summing up the power consumption of all the servers in the cloud.

 In [46], several server pools have been considered in a DC. A reactive migration

controller is proposed to detect and track the server load. Moreover, it dynamically

enhances and reduces the number of active servers in the system to minimize the power

usage. Their study shows that the controller approach, offers the best results in terms of

quality of service and power usage.

In [43], the effectiveness of dynamic power management in data centers under an

M/M/k queuing model via matrix analytic methods is investigated. Moreover, policies

such as Delayed Off, ON/OFF and static power management have been considered and

analyzed in [27] and [43]. Under ON/OFF policy, servers are in off, setup, or busy

modes. If a new job arrives and all the active servers are already in the busy mode, then

the job changes the status of a server in the off mode into setup mode. Also a server is

shut down if there is no waiting job in the system. They propose Delayed Off policy

which is the same as ON/OFF policy, except for the server going into the wait mode

when the queue is empty. The waiting duration is the time that a server spends in the idle

mode whenever there is no waiting job in the system. In [47], Balter et al. continue

analysis in the heterogeneous workload case. They addressed heterogeneous types of jobs

and workloads in the system. They considered several types of workloads and suggest a

new method entitled “Auto Scale” which is independent of workload type. AutoScale

scales the DC capacity and adjusts (by adding/removing) servers as needed. It maintains

just the right amount of spare capacity to handle bursts in the request rate and it is robust

to changes in the request rate, size and server efficiency. Under the AutoScale policy

proposed in [47], each server decides autonomously when to turn itself off. When a

server goes idle, rather than turning off immediately, it sets the duration to wait in the idle

state. Timers prevent servers from going offline mistakenly just as a new arrival joins the

system. However, timers can also waste power and capacity by leaving too many servers

 19

in the idle state. Autoscale only keeps a small number of servers in the idle state by

proposing a routing scheme that tends to concentrate jobs in a small number of servers. In

order to implement AutoScale on a given cluster, such parameters have to be determined.

The aforementioned parameter depends on the specifications of the system, such as the

server type, the setup time, and the application, which do not change during the runtime.

Under various conditions of loading, such as changes in the request size and in the server

speed, as well as changes in the request rate, Autoscale has shown a better performance

compared to the predictive algorithms.

2.5 Resource Allocation in Mobile Cloud Computing

Popularity of smartphones and related applications in various fields are significantly

increasing in everyday life. These devices have a wide range of features (e.g., high-speed

processors and supporting multiple wireless interfaces). Smartphones have become the

primary computing platform for many users due to well-developed mobile applications in

various realms such as commerce, learning, health care, computing, gaming, etc. While

applications are becoming more and more complex, smartphones remain constrained due

to limited processing power battery life. Most of the smartphone applications are QoS-

sensitive and computation-intensive to perform on a mobile system. Mobile cloud

computing (MCC) is a new concept in which mobile users access the cloud virtual

resources via the Internet. [48], [49] and [50] give an overview of the MCC presenting

definition, architecture, applications, and approaches, then, on the corresponding

challenges at the operational, user, and application levels have been discussed. They

introduced MCC as the dominant computing model for mobile applications in the future.

Mobile users usually need to maintain a low level of power consumption and thus

computation must be performed in the cloud, which comes with a cost. Some researchers

have studied power consumption in smartphones. It is beneficial to QoS improvement

and battery power consumption to offload mobile data. The mobile computation

offloading technique shares an application code between the cloud server and the mobile.

A framework for smartphones is introduced in [51]. It shifts smartphone application

processing into the cloud centers. It is based on the concept of smartphone virtualization

 20

in the cloud and addresses lack of scalability by creating VMs of a complete smartphone

system on the cloud. ThinkAir [51] provides on-demand resource allocation by

dynamically managing VMs in the cloud via an execution controller. The execution

controller handles decision-making and communication with the cloud server. It

considers execution time, energy, and cost to make decision in order to achieve optimum

performance. [52] suggests that cloud computing can potentially save energy through

offloading of processing of applications with limited reliability and quality of service

requirements. This reflects the fact that for some applications such as delay-sensitive

ones, offloading to the clouds could not significantly offer energy savings to the

smartphones while also satisfying QoS parameters.

 21

Chapter 3

Performance Modeling of the Cloud

Computing Centers

In this chapter, we will consider various cloud computing models that may be used in the

dimensioning of these systems. Performance of these models will be determined under

stochastic job arrival process and job service time distribution. The objective will be

determining equilibrium distribution of the number of jobs in the system, job blocking

probabilities, response time for different classes of jobs and distribution of the resource

utilization.

3.1 Introduction of the models

In this chapter, we study several models which have been determined by a number of

model parameters. These parameters are explained below.

 Job Size parameter

This parameter specifies the number of tasks in a job. This parameter may be a constant

or variable. In the variable case, a job will initially require service to a single task but

during its service time it will generate random number of tasks in the system. In the case

of constant job type, a job will require service to a constant number of tasks at its arrival

time.

 22

 Service Completion parameter

This parameter determines service completion type of the tasks of a job. This parameter

allows two types of service completion, simultaneous or individual. In the simultaneous

category the service of all the tasks of a job will be completed simultaneously, while in

the individual category service time of tasks will be independent of each other.

 Resource Parameter

This parameter determines the amount of resources available which maybe infinite or

finite. In the infinite resource model, we assume that datacenter has infinite number of

servers and in the finite case a datacenter has finite number of servers.

 Virtual Machine Type parameter

This parameter determines types of VMs which may be homogeneous or heterogeneous.

In the first case, VMs have the same requirements (number of CPUs, memory and storage

sizes), while in the second case, there may be different VM types which may differ from

each other in their requirements.

 Job arrival parameter

We consider two types of job arrival processes, unsaturated and saturated cases. In

unsaturated case, the job will arrive according to a Poisson process to the system as a

function of time. In saturated case, there will be constant number of jobs in the system,

where a new job will be inserted into the system as soon as service of a job is completed.

Each parameter value has been assigned an abbreviation. The combinations of the values

of these parameters result in different models. These combinations result in a tree

structure as shown in Fig. 3.1.

At each leave of the tree, the parameter of that leave as well as all of its ancestors are in

effect. The numbers within parentheses at the leave of the tree give the subsection

numbers where the analyses of these models are given in the chapter.

In the following sections of the chapter we present performance analysis of the cloud

 23

computing models described in the above. In all cases, system is modeled using birth-

death process. The models admit quite general service type distribution.

The remainder of this chapter is organized as follows. In section 3.2, we study systems

with homogeneous VMs with constant job sizes and simultaneous task release times.

Sections 3.3 and 3.4 extend the analysis of section 3.2 to systems with heterogeneous

VMs and jobs with independent task release times respectively. In section 3.5, we present

modeling of a system with variable job size. In section 3.6, we give a comparison of our

results with the closest previous work that has been referred to in chapter 2 and section

3.7 contains the conclusions.

Fig. 3.1 Tree diagram of cloud computing models

Cloud Computing
 Models

Constant Job size
(CJ)

Finite Resources
(FR)
3.4.2Homogenous

(HM)
3.2

Simultaneous
Release (SR)

Variable Job Size
(VJ)
3.5

Finite Resources
(FR)

Infinite
Resrouces (IR)

Saturated Job
arrival process

(SJ)
3.5.3

Unsaturated Job
arrival process(UJ)

3.5.2

Saturated Job
arrival process (SJ)

3.5.3

Unsaturated Job
arrival process(UJ)

3.5.1

Individual
Release (ICR)

3.4

Single Server
3.2.1

Multiple
Server Pools

3.2.3

Infinite
Resources (IR)

3.4.1Heterogeneous
(HT)
3.3

Multiple
Server
3.2.2

 24

3.2 Modeling of a system with homogeneous VMs, constant job sizes and

simultaneous release times (CJ, SR, HM)

In this section we will study the performance of a system with with homogenous VMs,

constant job size and simultaneous release time. The abbreviation for the values of the

model parameters have been listed in the above (CJ, SR, HM).

 We assume multiple classes of jobs. Each class of jobs arrives at the system according

to a Poisson process with a different parameter and each class has a different service rate

and job size. The size of a job is determined by the number of tasks that it has and the job

size remains constant during its service time. Each task requires a VM for its execution.

Distribution of the service times of jobs may have rational Laplace transforms with a

different mean service time for each class. Service time of a job begins with its arrival to

the system and at the end of that service time all its tasks terminate simultaneously. In

other words, resources related to an arriving job are provisioned and released together.

The relevant notation has been introduced in Table 3.1.

Table 3.1 Parameter/Variable Definitions

Parameters Indicator

 number of classes of jobs

 arrival rate of class r jobs

 total job arrival rate

 Service rate of class r jobs

 total number of busy VMs

 number of VMs required by a class r job

 number of class r jobs in the system

We will consider single and multiple servers and multiple server pools cases. We

assume finite resources, thus a job will be blocked if there are no enough number of idle

VMs to serve it. The objective of the following analysis will be to determine joint

distribution of the number of jobs from each class, job blocking probabilities and

distribution of the utilization of resources. We will also show applicability of our results

 25

into power management in a cloud computing center.

Let us define state of the system as number of jobs from each class in the system,

 ⃗ = (1 2 … … 𝑅), and 𝑝(⃗) as the distribution of ⃗ .

3.2.1 Single Server Model

First, we consider a system with finite resources of S VMs all located at a single server.

In this case, an arriving job will be lost if there are not enough number of idle VMs to

serve it. This model is same as blocking in shared resources environment studied in [53].

From there, the joint probability distribution of the number of jobs in the system is given

by,

 𝑝(⃗) =
1

𝐺
∏

𝜌

 !
𝑅
 =1 (3.1)

where G is the normalization constant, which may be determined through a recursion [53]

and 𝜌 =
𝜆

𝜇
. It may be seen that the joint probability distribution depends on the service

time only through its mean value. Let j denote number of the busy VMs at the computing

center, then, = ⃗ ⃗ where ⃗ = [1 … … 𝑅] . Defining probability distribution of

the number of busy VMs in the computing center as,

 () = 𝑟(= ⃗ ⃗)

from [53], q(j) is given by the following recursion,

 () = ∑
𝑅
 =1 𝜌 (−) (3.2)

Then average number of busy VMs in the system is given by,

 𝐸[] = ∑ ()𝑆
 =1 (3.3)

Let ̃() denote probability distribution of the number of idle VMs , then, ̃() =

 (𝑆 −). Defining as the probability that a class r job will be blocked, then

from [53],

 26

 = ∑ ̃()
𝑏 −1
 =1 = 1 −

𝐺(𝑆−𝑏 𝑅)

𝐺(𝑆 𝑅)
 (3.4)

where 𝐺(𝑆 −) may be calculated recursively [53].

𝐺() = ∑
𝜌

 !

[

]

 =0
𝐺(− 𝑖 − 1) = 2… = 0 1 … 𝑆

𝐺(1) = ∑ 𝐺(− 𝑖 − 1)
[

]

 =0
 = 0 1 … 𝑆

The overall job blocking probability is given by,

 𝑏 =
1

∑ 𝑖 𝑖

𝑅

𝑖=1

where = ∑ 𝑖
𝑅
𝑖=1 .

3.2.2 Multiple Servers Model

Next, we consider a system with M servers where each server has S VMs.

As before, an arriving job will be blocked if the total number of idle VMs in the

computing center is less than the number of VMs needed to serve the arriving job. Thus

as far as job blocking probabilities are concerned the system may be considered as a

single server with a total of MS VMs. However, in this case, it is possible that no server

may have enough number of idle VMs to serve an accepted job to the system and the job

may need to be assigned VMs from multiple servers which will be referred to as

fragmented service. As a result, these jobs will experience additional performance penalty

due to the need for communication among the servers. Henceforth, we determine the

probability that assigned VMs to an accepted job will be fragmented among servers. Let

us introduce the following additional notation,

𝑉 = total number of VMs at the computing center.

j = total number of busy VMs in the computing center.

휀 = (휀1 휀2 … 휀 … 휀𝑀) where 휀 corresponds to the number of idle VMs at an

arbitrary time in the m
th

 server.

 27

The total number of VMs in the datacenter is given by:

𝑉 = 𝑆 (3.5)

Let denote the total number of idle VMs in the computing center,

 = ∑ 휀
𝑀
 =1 = 𝑉 − (3.6)

Since denote the number of VMs required to provide service to a class r job,

depending on the value of the , the following possibilities exist for a class r job:

{

 𝑜 𝑤 𝑙𝑙 𝑒 𝑙𝑜 𝑒𝑑 𝑓 <

 𝑜 𝑎 𝑟𝑒 𝑒 𝑒 𝑓𝑟𝑎𝑔 𝑒 𝑡𝑒𝑑 𝑠𝑒𝑟 𝑒 ≤ <

 𝑜 𝑤 𝑙𝑙 𝑟𝑒 𝑒 𝑒 𝑠𝑒𝑟 𝑒 𝑓𝑟𝑜 𝑎 𝑠 𝑔𝑙𝑒 𝑠𝑒𝑟 𝑒𝑟 ≤

Assuming a load balancer is operating in the system, then probability distribution of

the number of idle VMs in each server will be identical. Given that total number of idle

VMs is equal to , let () denote the conditional probability that none of the M

servers have or more idle VMs:

 () = 𝑟(휀1 < … 휀 < 휀𝑀 <) (3.7)

Distribution of the number of idle VMs in servers is analogous to the traditional balls

urn model, where each ball is placed into one of the urns with equal probability. Then,

distribution of the number of idle VMs in each server will be the same as distribution of

the balls in the urns model [57]. () does not have a closed form solution but it

could be obtained recursively [57],

 (+ 1) = () − (
𝑏
) (− − 1)

(−1)

 (3.8)

with the following initial condition,

 () = 1 𝑓𝑜𝑟 {1 ≤ ≤ 1 ≤ ≤ }

 The following result may be used to simplify the above recursion,

 28

 (
𝑏
)

(−1)

 = (
 −1

) (

 −𝑏
) {(−1

𝑏
)

(−1)

 } (3.9)

Note that () gives the probability of a class r job receiving fragmented service

when ≤ < . If ≤ 𝑆 then ≤ 𝑆 , then all assignment combinations of idle

instances of V resources into servers are feasible. But if 𝑆 < it is possible that

 > 𝑆, then some assignment of idle VMs to the servers will not be admissible because it

will result in allocation of more idle VMs to a server than the capacity of that server. The

non-admissible assignments of idle VMs have to be excluded through normalization. Let

 ̃() denote the probability that a class r job receives fragmented service, thus:

 ̃() = {
 () f ≤ 𝑆

𝑃(𝑀 𝑏)

1−𝜎
 > 𝑆

 (3.10)

where 𝜎 = ∑ ()
 =𝑆 and () is obtained from (3.8). Next, unconditioning

the above result wrt the distribution of the number of idle VMs leads to the probability

that a class r job will receive fragmented service. Defining,

 𝐹 = Pr(an accepted class r job receives fragmented service)

Then, it is given by,

 𝐹 =
∑ �̃�(𝑀 𝑏)�̃�()

1−𝑃𝐵
 (3.11)

In the above, denominator normalizes the fragmentation probability with the

probability of accepting a job.

Next, we present numerical and simulation results for a computing center with multiple

servers. Discrete event-based simulation has been developed to determine accuracy of the

assumption in the analysis that the number of idle VMs is uniformly distributed over

multiple servers. Simulation implements a practical load balancer to be described below

to achieve fair distribution of the load among the servers. In simulation also it has been

assumed that jobs arrive into the system according to a Poisson process and job service

time are exponentially distributed.

We consider a system with M=5 servers with 𝑆 = 50 VMs per server. We assume 4

classes of jobs with the following VM requirements and job arrival rates,

 29

 ⃗ = [1 2 3 4] = [1 2 3 4] (3.12)

 = [1 2 3 4] = [0 4 0 3 2 0 1] (3.13)

It may be seen that jobs with smaller VMs requirements have been assigned higher

arrival rates. Fig. 3.2 presents blocking probabilities of different classes of jobs as a

function of the total job arrival rate. As may be seen, blocking probabilities increases with

the number of VMs required by a job class. As expected, there is total agreement between

numerical and simulation results as the analysis for calculation of job blocking

probabilities is exact.

Next we present the results concerning service fragmentation. In simulation, using a

load balancer, it is assumed that a server selection algorithm attempts to achieve fair

distribution of the load among the servers. An accepted job if possible will be given

service without fragmentation otherwise with fragmentation. If a job receives service

without fragmentation, then it is assigned to the server with highest number of idle VMs.

On the other hand, if a job receives service with fragmentation the scheduling algorithm

aims to minimize the number of fragments depending on the distribution of the number of

idle VMs in the servers. In Fig.s 3.3 and 3.4, we present average number of idle VMs in a

server and job fragmentation probabilities for each class as a function of the total job

arrival rate. The jobs with higher VM requirements experience higher fragmentation

Fig. 3.2 Numerical and simulation results for blocking probabilities of different classes of jobs

as a function of total job arrival rate

 30

probabilities at any total arrival rate. From Fig. 3.4, the fragmentation probability of class

4 jobs reaches to %30 at the total job arrival rate of 30. Job fragmentation will increase

the communication latency between the VMs, which will increase job service times. As

may be seen, there is a close agreement between numerical and simulation results in both

figures, which validates the assumption in the analysis that the number of idle VMs is

uniformly distributed across the multiple servers.

Fig. 3.3 Numerical and simulation results for the average number of idle instances of resources

per server as a function of total job arrival rate.

 31

Fig. 3.4 Numerical and simulation results for fragmented service probabilities of different classes

of jobs as a function of total job arrival rate.

3.2.3 Multiple Server Pools Model

Fig. 3.5 Topology of the cloud computing center

Server Pool 1 Server Pool n Server Pool N

… …

Load Balancer

......

Server 1 Server m Server M

 32

In this subsection, we extend our model to cloud computing centers with pools of servers.

Pool management techniques attempt to reduce power consumption of the system, which

represents a significant component of the operating cost of a cloud computing center.

Topology of the cloud computing center under consideration is shown in Fig. 3.5. These

techniques turn off a server pool to save power if its servers are not currently serving any

job. Let us assume that there are N server pools in the system, which are numbered as,

n=1..N. We assume that scheduling algorithm always assigns a job to the server pool with

the smallest index number that has enough idle resources. It is assumed that a job will

not be assigned resources from multiple server pools to keep communication overhead

low. Thus a job will be served by the pool n+1 with enough idle resources if pool n does

not have enough idle resources. As before the total job arrival process at the system will

be according to a Poisson process. The first pool of servers will see the total job arrival

process while any other pool of servers will see the overflow traffic from the preceding

pool. We assume that the overflow processes are Poisson which is an approximation to be

verified by simulation. Within a pool, if possible, a job will be placed in a single server

otherwise it will be fragmented. Thus VMs of each pool may be considered as a

completely shared resource without the need to make a distribution among its servers. Let

us define,

 = arrival rate of class r jobs to the n’th server pool.

 = total arrival rate of the jobs to the n’th server pool.

 = probability that a class r job will be blocked by the n’th server pool.

 = overall job blocking probability at the n’th server pool.

 () = ()

g = number of active server pools.

𝑔 = (𝑔 =)

Then, we have the following,

 = (−1) (−1) = 1 ∏ 𝑖 ≥ 2 −1
𝑖=1

 = ∑
𝑅
 =1

 33

where 1 = , 1 =

 =
1

𝜆
∑

𝑅
 =1 (3.14)

Assuming that each pool has M servers with S VMs per server, then, () will be

determined by (3.2) with finite resources of MS and overflow traffic from the pool (n-1)

as job arrival process. Then,

𝑔 = ∏ 𝑖(0)
𝑁
𝑖= +1 (3.15)

𝑔 = [𝑔0 … 𝑔 … 𝑔𝑁]

We have tested the accuracy of the Poisson approximation of the overflow processes in

the analysis through discrete event based simulation. In simulation also arrival of the jobs

is according to a Poisson process and job service times are exponentially distributed. We

assumed four job classes defined in (3.12, 3.13) with N=5 server pools, M=5 servers/pool

and S =50 VMs/server. In Fig.s 3.6 and 3.7, we have plotted numerical and simulation

results for the average number of idle VMs and the probability distribution of the number

of active server pools in the system as a function of the total job arrival rate respectively.

As may be seen, there is a close agreement between numerical and simulation results,

which justifies Poisson assumption of overflow processes. From Fig. 3.7, it is seen that

at any arrival rate with probability one there will be only single number of active server

pools except in the narrow transition regions. This plot shows that system operation does

not result in frequent on-off switching of the server pools if the job arrival rate is not

time-varying. Fig. 3.8 presents overall job blocking probabilities of the server pools as a

function of the total job arrival rate. As may be seen, job blocking probabilities of server

pools drop with the increasing index value with B5 giving the overall job blocking

probability of the system. The results in this figure may be used to determine number of

needed active server pools to support a given traffic load at an acceptable level of job

blocking probability.

 34

Fig. 3.6 Numerical and simulation results for the average number of idle VMs of different server

pools as a function of total job arrival rate

Fig. 3.7 Numerical and simulation results for probability distributions of number of active server

pools as a function of total job arrival rate

 35

Fig. 3.8 Job blocking probabilities of server pools as a function of total job arrival rate.

Next, we will assume that the total job arrival rate to the system is time-varying. It will be

assumed that job arrival rate will be changing according to a discrete-time Markov chain.

The time-axis will be slotted with slot durations equaling to server set-up time. We will

let number of active servers to denote state of the system with the state of the system

changing at the discrete-times. There will be set-up times for turning an off machine to

on, while turning an on machine off will be instantaneous. As may be seen from the

previous results, the domain of the total arrival rate may be divided into intervals during

which number of active server pools has a non-zero probability only for a single value

during an interval. Let ′ denote the total arrival rate at the midpoint of the interval for

𝑔 = 1. In calculation of job blocking probabilities during the transition from state i to

state j, where > we will assume that the total job arrival rate is given by ′ .

Letting 𝑝𝑖 denote the transition probability from state i to state j and P the corresponding

transition probability matrix, then the steady-state probability distribution of the number

of active server pools is determined by,

 𝑔 = 𝑔 (3.16)

Defining �̅� as average utilization of the server pools in the system,

 36

 �̅� =
1

𝑁
∑ 𝑁

𝑖=0 𝑔𝑖 (3.17)

Given the rising cost of energy, with the growing scale of cloud computing datacenters,

the expenditure on enterprise power usage and server cooling prevents facility owners to

keep all server pools active. On the other hand, switching a server pool on requires setup

time, which can adversely affect system performance in terms of job blocking rate.

Hence, we consider a dynamic power management approach similar to that in [47]

aiming to reduce power wastage while keeping job blocking probabilities and

consequently loss of revenue at an acceptable level. In the following we consider four

schemes, which will be referred to as always-on, reactive, proactive and optimal

prediction and compare their performances. In the always-on case, there is no power

management and all the idle server pools remain on. In the reactive case, idle server pools

are turned off and they are turned on according to the demand. This scheme includes set-

up times during which job losses occur. Reactive scheme responds to load increases with

the time lag of one slot. In proactive case, an additional pool is kept in idle state to meet

any load increases. The optimal prediction scheme predicts the job arrival rate for the

next slot and turns on enough number of off servers to meet the demand.

Let 𝑝 denote the cost of per unit power consumption (standard fee per watt) and

denote per hour rental rate of a VM. Also, 𝑝𝑜 and 𝑝𝑖𝑑𝑙𝑒 denote the average power usage

of a VM in active and idle states respectively. Next, we determine the net cost of

transition (NC) to a higher state per slot for each of the four schemes, which is the

difference between revenue and cost of power consumption. In the following equations,

earned and lost revenue has negative and positive signs respectively.

 𝐶𝑎𝑙𝑤𝑎𝑦𝑠−𝑜 = 휁̅∑ 𝑔𝑖 { 𝑝(−) 𝑆𝑝𝑖𝑑𝑙𝑒 − ∑ 𝑝𝑖 ∑ (𝑟 ′ 𝑖
1

𝜇
)𝑅

 =1
𝑁
 =𝑖+1 }𝑁−1

𝑖=0

(3.18)

 𝐶 𝑒𝑎𝑐 𝑖𝑣𝑒 = 휁̅∑ 𝑔𝑖 {∑ 𝑝𝑖 [𝑝(−) 𝑆𝑝𝑜 + ∑ (𝑟 ′ 𝑖
1

𝜇
)𝑅

 =1]𝑁
 =𝑖+1 }𝑁−1

𝑖=0 (3.19)

 𝐶𝑝 𝑜𝑎𝑐 𝑖𝑣𝑒 = 휁̅∑ 𝑔𝑖 { 𝑝 𝑆𝑝𝑜 + ∑ 𝑝𝑖
𝑁
 =𝑖+1 ∑ (𝑟 ′ (𝑖+1)

1

𝜇
)𝑅

 =1 −𝑁−1
𝑖=0

 37

∑ 𝑝𝑖
𝑁
 =𝑖+1 ∑ [𝑟 ′ (𝑖 − (𝑖+1))

1

𝜇
]𝑅

 =1 } (3.20)

 𝐶𝑂𝑝 𝑖 𝑎𝑙 𝑃 𝑒𝑑𝑖𝑐 𝑖𝑜 =

 휁̅∑ 𝑔𝑖 {∑ 𝑝𝑖 [𝑝(−) 𝑆𝑝𝑜 − ∑ (𝑟 ′ 𝑖
1

𝜇
)𝑅

 =1]𝑁
 =𝑖+1 }𝑁−1

𝑖=0 (3.21)

In the above, the terms with 𝑝 and correspond to cost and revenue items respectively.

Clearly, the scheme with the most negative net cost value will be performing better than

the others. We need to know transition probabilities of the imbedded Markov chain for

calculation of the net cost of the transitions. In practice, these values will be determined

from the measurements, however, next we illustrate the utilization of our results through

an example. We assume the same job classes that have been defined in (3.12) with the

additional parameter values given below,

 𝑝 = 0 055
$

 𝑊
 (𝐻 𝑑𝑟𝑜 𝑢𝑒 𝑒 𝑟𝑎𝑡𝑒)

 = 0 085
$

(𝑟𝑜𝑠𝑜𝑓 𝐴𝑧𝑢𝑟𝑒 𝑆 𝑎𝑙𝑙 𝑉)

 = 5 = 5 𝑆 = 50, = 4

𝑝𝑜 = 405𝑤 𝑝𝑖𝑑𝑙𝑒 = 225𝑤 , (Intel Atom Centerton 1.6 GHz CPU)

휁̅ = 300 𝑠𝑒

where 𝑝𝑜 is the required power to turn a CPU on. Next we assume that the transition

probabilities for the discrete-time Markov chain are given by,

𝑝𝑖 = {

𝛾𝑖
𝑖− 0 ≤ < ≤
𝛼𝑖 =

𝛽𝑖
 −𝑖 0 ≤ < ≤

 (3.22)

where 𝛼𝑖 𝛽𝑖 and 𝛾𝑖 are state dependent parameters. As may be seen the transition

probability between states i and j is given by a power of 𝛽𝑖 or 𝛾𝑖 where the power is

determined by the distance between the two states. Thus probability of transition between

two states decreases with the increasing distance between them. Next, we will relate state

 38

dependent parameters 𝛼𝑖 𝛽𝑖 to each other. It has been found that average utilization of a

cloud computing center is presently about 30%, �̅� = 0 3 [58]. As a result, the system will

spend more time in state 1 than the other states. We will designate state 1 as the base state

and express all the 𝛼𝑖 𝛽𝑖 as functions of 𝛼1, 𝛽1 respectively. Next we assumed that

𝛽𝑖 = 𝜏|1−𝑖|𝛽1 𝛼𝑖 = 𝜎|1−𝑖|𝛼1 where 𝜎 𝜏 are proportionality constants, 0 ≤ 𝜎 𝜏 ≤ 1. We

note that 𝛾𝑖 is determined from the normalization condition of the transition probabilities

of each state. High value of 𝛼1 (low values of 𝛽1 𝛾1) indicates a system with slowly

varying job arrival rate, on the other hand low value of 𝛼1 (higher values of 𝛽1 𝛾1)

indicates a system with fast varying job arrival rate, the latter being a more dynamic

system.

In Fig.s 3.9 and 3.10, we present plots of NC for the four schemes as a function of 𝛽1 and

𝛼1 respectively. As expected, in both cases, optimal prediction gives the best performance

as its net cost has the most negative value. In Fig 3.9, reactive scheme always performs

better than always-on and most of the time better than proactive scheme because the

system spends a lot of time in state 1 due to high value of 𝛼1. In Fig. 3.10, the system is

more dynamic for low values of α1 compared to its high values. Since reactive scheme’s

response has a lag time, it gives the worst performance for 𝛼1 < 0 65. It may be seen

that the performance of various schemes depend on degree of time-variation of the traffic

load. Fig. 3.11 shows the utilization of the system as a function of parameter 𝛼1 with the

other parameters fixed. As may be seen, utilization increases with increasing value of 𝛼1.

 39

Fig 3.9 Net cost of a transition for always-on, reactive, proactive and optimal prediction schemes

as a function of 𝛽1 for 𝛼1 = 0 88 𝜎 = 𝜏 = 0 1

Fig. 3.10 Net cost of a transition for always-on, reactive, proactive and optimal prediction

schemes as a function of 𝛼1 for 𝛽1 = 0 05 𝜎 = 𝜏 = 0 1

 40

Fig.3.11 Utilization as a function of 𝛼1

Findings in this section may give insight to the selection of appropriate system

operation policy, i.e. proactive to reactive or vice versa. For example, in a static scenario

(large values of 𝛼1) reactive approach is good enough while for more dynamic systems

the proactive approach gives better performance.

3.3 Modeling of a system with heterogeneous VMs, constant

job size and simultaneous release times (CJ, SR, HT)

In this section, we extend the results of the previous section to a single server with

heterogeneous types of VMs. The VM types may differ from each other in the amount of

resources allocated to a VM, such as in number of CPUs, memory and storage sizes. We

assume that there are L types of VMs and a job may request up to J VMs of a single type.

The type and number of VMs requested will define class of a job. Thus a class job

will request j VMs of type , = 1 = 1 𝐿 Let us introduce the following notation,

𝐹 = number of resource types.

𝐶𝑓 = number of units of resource f, 𝑓 = 1 𝐹

 𝑓 = number of units of resource f required by a type VM, = 1 𝐿 𝑓 = 1 𝐹

 = arrival rate of class jobs that require number of type VMs, = 1 =

1 𝐿

 41

 = service rate of class jobs.

 = number of class jobs in the system.

 ⃗ = (1 … 𝑓 … 𝐹)

𝐶 = (𝐶1 … 𝐶𝑓 … 𝐶𝐹)

 ⃗ = (11 … 1 … 𝐽1 … 1 … … 𝐽 … 1𝐿 … 𝐿 … 𝐽𝐿)

 ⃗⃗⃗
− = (11 … 1 … 𝐽1 … 1 − 1 … 𝐽 … 1𝐿 … 𝐿 … 𝐽𝐿)

Total arrival rate of the jobs is given by,

 = ∑ ∑
𝐿
 =1

𝐽
 =1

Defining B as the resource matrix of VM types,

 = [

 11 ⋯ 1𝑓 ⋯ 1𝐹

⋮ 𝑓 ⋱ ⋮

 𝐿1 ⋯ 𝐿𝑓 ⋯ 𝐿𝐹

]

Next defining N and Λ as matrices of the number of each class of jobs and their arrival

rates respectively,

 = [

 11 ⋯ 1 ⋯ 1𝐿

⋮ ⋱ ⋮
 𝐽1 ⋯ 𝐽 ⋯ 𝐽𝐿

] (3.23)

𝛬 = [

 11 ⋯ 1 ⋯ 1𝐿

⋮ ⋱ ⋮

 𝐽1 ⋯ 𝐽 ⋯ 𝐽𝐿

]

As before, we assume that the distribution of the service time of each class of jobs has a

rational Laplace transform.

We note that this model is an extension of blocking in shared resources environment

studied in [53] to a system with multiple types of resources. Following the analysis

in [53], we will determine joint probability distribution of the number of jobs in the

system and derive a multi-dimensional recursion for the distribution of the utilization of

resources. First, we will write the local balance equation (LBE) of this system. An LBE

equates the flow due to a departure of a job from a network state to the flow due to an

arrival of a job to a network that will return the system to the same state, thus,

 42

 𝑝(⃗) = 𝑝(⃗⃗⃗
−) (3.24)

Let us assume the following joint probability distribution of the number of different

classes of the jobs in the system,

𝑝(⃗) =
1

𝐺
∏ ∏

𝜌

 !

𝐿
 =1

𝐽
 =1 (3.25)

where G is the normalization constant and 𝜌 =
𝜆

𝜇

It may be shown by substitution that (3.25) satisfies (3.24). Since 𝑝(⃗) satisfies the

LBE, it also satisfies the global balance equations (GBEs), and therefore (3.25) is the

correct distribution. It may be seen again that the joint probability distribution depends

on service only through it mean.

Let us define,

𝑢𝑓 = number of units of resource f that is busy.

�⃗� = (𝑢1 𝑢𝑓 𝑢𝐹) (3.26)

Let (�⃗�) denote joint probability distribution of the utilization (number of busy units) of

different type of resources. Next, we derive the following multi-dimensional recursion for

determining this distribution,

 𝑢𝑓 (�⃗�) = ∑ ∑ 𝑓𝜌 (�⃗� − ⃗)
𝐽
 =1

𝐿
𝑙=1 (3.27)

Proposition 3.1: (�⃗�), probability distribution of the utilization of resources may be

determined by following multi-dimensional recursion,

𝑢𝑓 (�⃗�) = ∑∑ 𝑓𝜌 (�⃗� − ⃗)

𝐽

 =1

𝐿

𝑙=1

Proof: Let us define,

𝑎 = number of type VMs that is busy.

𝑎 = [𝑎1 𝑎2 … 𝑎 … 𝑎𝐿]

 43

 = (1 2… …)

From the above definitions, we have,

𝑎 = ∑
𝐽
 =1 , 𝑢𝑓 = ∑ 𝑎 𝑓

𝐿
 =1 = ∑ ∑

𝐽
 =1

𝐿
 =1 (3.28)

Then,

 𝑎 = �⃗� = 𝑎 (3.29)

 (�⃗�) is given by,

 (�⃗�) = 𝑟(𝑎 = �⃗�) = ∑ 𝑝(⃗) ⃗ |�⃗� 𝐵=�⃗⃗� (3.30)

Let us rewrite LBE in equation (3.24) as follows,

 𝑝(⃗) = 𝜌 𝑝(⃗⃗⃗
−) (3.31)

Multiplying both sides of (3.31) by 𝑓 and summing over and ,

𝑝(⃗)∑∑ 𝑓

𝐽

 =1

𝐿

 =1

= ∑∑ 𝑓𝜌 𝑝(⃗⃗⃗
−)

𝐽

 =1

𝐿

 =1

Substituting from (3.28) on the LHS,

𝑢𝑓𝑝(⃗) = ∑ ∑ 𝑓𝜌 𝑝(⃗⃗⃗
−)𝐽

 =1
𝐿
 =1 (3.32)

Next let us sum both sides of equation (3.32) over the states (⃗ |𝑎 = �⃗�),

∑ 𝑢𝑓𝑝(⃗)
 ⃗ |�⃗� 𝐵=�⃗⃗�

= ∑ ∑∑ 𝑓𝜌 𝑝(⃗⃗⃗
−)

𝐽

 =1

𝐿

 =1
 ⃗ |�⃗� 𝐵=�⃗⃗�

Substituting from (3.28) on the LHS and interchanging the order of summations on the

RHS,

 44

𝑢𝑓 (�⃗�) = ∑ ∑ 𝑓𝜌 𝑝∑ 𝑝(⃗⃗⃗
−) ⃗ |�⃗� 𝐵=�⃗⃗�

𝐽
 =1

𝐿
 =1 (3.33)

We note from (3.28), (⃗ |𝑎 = �⃗�) = (⃗ | = �⃗�)

Then (⃗ |𝑎 = �⃗�) means that,

 (⃗⃗⃗
− | ⃗⃗⃗

− = �⃗� −
⃗⃗ ⃗) (3.34)

Substituting (3.34) in (3.33) completes the proof.

Then, the average utilization vector is given by,

𝐸(�⃗�) = ∑ �⃗� (�⃗�)�⃗⃗� | (∀𝑓 ∈ 𝐹 𝑢 ≤ 𝐶) (3.35)

The probability that demand for a type VM will be blocked is given by,

 = ∑ (�⃗�) �⃗⃗� | (∀𝑓 ∈ 𝐹 𝑢 +𝑏 > 𝐶) (3.36)

Next we will give an example based on a system with three VM types given in Table 3.2

with the following resource vector,

Table 3.2

Representative VMs Specifications

 VM type Memory CPU cores Storage

Standard 2(GB) 2 100 (GB)

High Memory

Extra Large
16(GB) 6 400 (GB)

High CPU

Extra Large
8(GB) 10 200 (GB)

 𝐶 = (160𝐺 200 𝐶𝑜𝑟𝑒 10000 𝐺) (3.37)

From Table 3.2, resource matrix of VM types is given by,

 = [
2 2 100
16 6 400
8 8 200

] (3.38)

Assuming the following arrival rate matrix for classes of jobs with (J =4),

 45

Λ = [

0 2 0 1 0 1
0 15 0 075 0 075
0 1 0 05 0 05

 0 05 0 025 0 025

] (3.39)

It should be noted that in the above job classes with higher resource requirements have

lower arrival rates. Figures 3.12, 3.13 and 3.14 show the cumulative probability

distributions of memory, CPU and storage utilizations respectively with the total job

arrival rate as a parameter. These results may be used to determine bottleneck resources

and redundancy in the system. It may be seen that at the total job arrival rate of 10, the

values of memory, CPU and storage corresponding to cumulative probabilities of unity

are 160Gb, 130cores and 4500Gb respectively. Since at this arrival rate all the available

memory may be busy, the system cannot support a higher traffic load. As a result, the

number of cores beyond 130 and storage beyond 4500Gb will not be utilized and they

will be redundant.

Fig. 3.12 Cumulative Distribution of memory utilization with as a parameter

 46

Fig. 3.13 Cumulative Distribution of CPU utilizatiion with as a parameter

Fig. 3.14 Cumulative Distribution of storage utilization with as a parameter

Figure 3.15 shows the blocking probabilities of the requests for different types of VMs

as a function of the total job arrival rate. As may be seen, VMs differ in their blocking

probabilities pertaining to their resource requirements.

 47

Fig. 3.15 Blocking probabilities of different types of VMs as a function of job arrival rate

3.4 Modeling of the system with Constant Job size,

Homogeneous VMs and Independent Release times (CJ,

HM, IR)

In this section, as in section 3.2, we assume constant job sizes with multiple classes as

defined in Table 3.1. This model differs from the model of that section in the service

given to the tasks. Defining system state as the total number of the tasks in the system,

the state-transition rate diagram of the system is given by Fig. 3.16. It is assumed that

service times of the tasks of a job are i.i.d with exponential distribution with parameter ,

which results in the independent as opposed to simultaneous task completion times.

 48

Fig. 3.16 State-transition rate diagram of the Could computing system (independent release

Times)

3.4.1 Infinite Resource Model

We first analyze the system for a datacenter with infinite number of servers serving

different classes of jobs (𝑆 = ∞ 𝑟 = 1 …). Let 𝑝 denote probability that there will be

j tasks in the system, then equilibrium equations can be written as follows,

{
 (∑)

𝑅
 =1 𝑝0 = 𝑝1 = 0

 (∑
𝑅
 =1 +)𝑝 = (+ 1) 𝑝 +1 + ∑ 𝑝 −

𝑅
 =1 > 0

 (3.40)

After multiplying by 𝑧 and summing over j, we have:

∑ (∑
𝑅
 =1 +)𝑝

∞
 =1 𝑧 =

∑ (+ 1) 𝑝 +1
∞
 =1 𝑧 + ∑ ∑ 𝑝 −

𝑅
 =1

∞
 =1 𝑧 (3.41)

Taking out 𝑧 from the internal summation leads to:

∑ (∑
𝑅
 =1 +)𝑝

∞
 =1 𝑧 = ∑ (+ 1) 𝑝 +1

𝑆
 =1 𝑧 + (∑ 𝑧

 ∑ 𝑝 −
𝑆
 =

𝑅
 =1 𝑧 −)

 (3.42)

Let us define 𝛬(𝑧) = ∑
𝑅
 =1 𝑧 and 𝑝(𝑧) = ∑ 𝑝

𝑆
 =0 𝑧 then with substitution of the

variable ′ = − 𝑟 we obtain:

𝛬(1)(𝑝(𝑧) − 𝑝0) + 𝑧 𝑝(𝑧) = (𝑝(𝑧) − 𝑝1) + 𝛬(𝑧)𝑝(𝑧) (3.43)

This could be simplified to:

(𝛬(1) − 𝛬(𝑧))𝑝(𝑧) + (𝑧 − 1) 𝑝(𝑧)́ = 𝛬(1)𝑝0 − 𝑝1 (3.44)

From (3.40) we find that 𝛬(1)𝑝0 − 𝑝1 = 0. Hence, after solving the first order

differential equation 𝑝(𝑧) is given by,

𝑝(𝑧) = 𝑒
∫
 () ()

 ()
𝜕𝑧

= 𝑒
 ∑ ∑

 ∑ ∑

 (3.45)

2
k b

1
k b

2

1
k bk 2

k b

(1)k k

2

R

r
k b

R
k b

r
k b

R
k b

1

r

1
 r

1k 1k

R

 49

where
𝛬(𝑧)−𝛬(1)

𝑧−1
=

∑ 𝜆

 (𝑧 −1)

𝑧−1
= ∑

𝑅
 =1 (∑ 𝑧𝑖 −1

𝑖=0) and the constant part of the PGF

is obtained by applying normalization condition 𝑝(𝑧)|𝑧=1 = 1.

The average number and variance of occupied VMs in the system is equal to:

𝐸[] =
𝑑𝑝(𝑧)

𝑑𝑧
|𝑧=1 =

∑ 𝜆

𝜇
 (3.46)

𝑉𝐴
= (

𝑑 𝑝(𝑧)

𝑑𝑧
+

𝑑𝑝(𝑧)

𝑑𝑧
−

𝑑𝑝(𝑧)

𝑑𝑧

2

)|𝑧=1 =
∑ (

)𝜆

𝜇
 (3.47)

3.4.2 Finite Resource Model

In this subsection, we assume finite resources with S VMs and model the system with

birth-death processes. GBE of the system may be written as,

{

(∑

𝑅
 =1 +)𝑝 = (+ 1) 𝑝 +1 + ∑ 𝑝 −𝑏

𝑅
 =1 0 < < 𝑆

∑
𝑅
 =1 𝑝0 = 𝑝1 = 0 (33)

𝑆 𝑝𝑆 = ∑ 𝑝𝑆−𝑏

𝑅
 =1 = 𝑆

 (3.48)

The above equations cannot be solved through the transform analysis, but the distribution

of the number of busy VMs may be determined from the above recursive equations

together with the normalization condition. Then average of the total number of the busy

VMs is given by,

𝐸[] = ∑ 𝑝

𝑆

 =0

Let 𝐵
 denote the blocking probability of class r jobs, then it is given by,

 𝐵
= ∑ 𝑝

𝑆

 =𝑆− +1

Next we will determine pdf of the service time of a class r job. Let 𝑇 and 𝑓 (𝑡) this

service time and its pdf respectively. Then,

𝑇 = max(𝑡1 𝑡2 … 𝑡 … 𝑡)

 50

where 𝑡 is the service time of the j
th

 task. Since service times of the tasks are i.i.d. with

exponential distribution,

 𝑟(𝑇 < 𝑡) = ∏ (𝑡 < 𝑡)

 =1

From the above, the pdf of 𝑇 is given by,

𝑓 (𝑡) = 𝑟 𝑒−𝜇 (1 − 𝑒−𝜇) −1

The average service time of a class r job is given by,

 𝑇 ̅ =
1

𝜇
∑

()

𝑖

𝑖=1 (−1)𝑖+1 (3.49)

Let denote number of class r jobs in the system, then from the Little’s result its

average is given by,

𝐸[] = (1 − 𝐵
)𝑇 ̅ (3.50)

Fig. 3.17 presents probability distribution of the number of busy VMs for a system

with four classes of jobs with equal arrival rates with total arrival rate as a parameter for a

fixed number of VMs in the system. As may be seen, probability distribution shifts to the

right with increasing total arrival rate. Further, the distribution has the largest spread at

the medium job arrival rate. Figure 3.18 presents the average number of jobs from each

class in the system as a function of the total arrival rate. It may be observed that average

of the number of class 4 jobs in the system decreases faster than the other classes with

increasing total arrival rate.

 51

Fig. 3.17 Distribution of busy VMs under low, medium, heavy and very heavy load (R=4, S

=100, μ=1)

Fig. 3.18 Average number of jobs from each class as a function of the total job arrival rate (R=4, S=100,

μ=1)

 52

3.5 Modeling of the system with Variable Job Size (VJ)

In this section, we propose a performance model for systems with dynamic service

demand where job size in number of tasks varies during service. As explained in chapter

1, this model will be more appropriate to mobile cloud computing systems. We assume

that the size of a job in number of tasks varies randomly during the time that job is in the

system. The arrival of the jobs to the system will be according to a Poisson process with

parameter λ jobs/sec. We assume that a new arriving job to the system initially demands

service for a single task. A job generates random number of tasks according to a Poisson

process with parameter 𝛼 task/job/sec during its service time in the system. We assume

that each task requires a VM for its execution and task execution times are exponentially

distributed with parameter . Service time of a job begins with its arrival to the system

and it is completed when there are no more tasks belonging to that job left in the system.

Clearly, a job will have a general service type distribution. In this section, a birth-death

process is proposed to model this type of cloud computing systems. Figure 3.19 shows

the state transition diagram for the tasks of a job in the system. The objective of this

analysis is to determine distribution of the number of jobs in the system, service time

distribution of a job and average of the total number of tasks. We will consider systems

Fig. 3.19 State-transition-rate diagram for the tasks of a job in the system

 53

with both infinite and finite number of VMs.

3.5.1 Infinite Resource model (VD, IR, UJ)

First, we consider infinite resource model where there is always an idle VM available

for the execution of each newly generated task to begin immediately. In this case the

number of jobs in the system can be modeled as an /𝐺/ ∞ queuing system. Next, we

will determine main performance measures of this system.

i) Distribution of the number of jobs in the system

Let 𝑝 denote the steady state probability of having n jobs in the system and (𝑧) its

probability generating function (PGF). From the results for the /𝐺/ ∞ queuing

system [59],

𝑝 =
(𝜆�̅�)

 !
𝑒𝜆�̅� (3.51)

 (𝑧) = 𝑒−𝜆�̅�(1−𝑧) (3.52)

where ̅ denotes the average service time of a job which is determined below.

As stated above, each job initially requires service for a single task; however, it

generates new tasks according to a Poisson process during its service time in the system.

Since we have assumed infinite resource model, each newly generated task immediately

begins to receive service. Since task execution times are also exponentially distributed,

service time of a job corresponds to the busy period of an / / ∞ queue, where the

number of customers served during the busy period corresponds to the total number of

Fig. 3.20 State-transition diagram for the stages of the system

2
2n

1
n

2
n

1
n

2
n

1
n

1
()

j
n

()

j
n

j
n

1j
n

 1j
n

j
jn 1

(1)
j

j n

3

3n

 54

tasks generated by the job. Figure 3.20 shows the state-transition-rate diagram for the

tasks of a job in the system. From [60], Laplace transform of the probability distribution

of the busy period of an / / ∞ queue with arrival and service rates of 𝛼 and is

given by,

 (𝑠) = 1 + 𝛼−1(𝑠 − (∫ 𝑒−𝑠 − ∫ (1−𝐺())𝑑

)) (3.53)

where 𝐺(𝜈) denotes the service time distribution of a task in the system, which has

exponential distribution.

Then average service time of a job is given by the mean busy period of / /

 ∞ queue,

 ̅ =
𝑒 / −1

 (3.54)

From the Little’s result the average number of jobs in the system is given by:

 𝐸[] = ̅ (3.55)

ii) Average number of tasks generated by a job during its lifetime in the system

Next, we determine average of the total number of tasks generated by a job during its

life-time in the system, which is given by the ratio of average service time of a job to the

service rate seen by its tasks in the system. Thus, first, we will determine the service rate

seen by the tasks of a job.

Let denote probability that there will be k customers in an / / ∞ queuing

system at the steady-state. From [59], has Poisson distribution given by,

 =
(/𝜇)

 !
𝑒− /𝜇 ≥ 0 (3.56)

Letting
′ denote probability that there will be k customers at an arbitrary time during

a busy period in an / / ∞ queuing system, then:

′ =

𝑞

1−𝑞
, ≥ 1 (3.57)

Let denote service rate of the tasks of a job, which has k tasks in the system at an

 55

arbitrary time. Since = , the average service rate of the tasks generated by a job is

given by,

 ̅ = ∑
′∞

 =1 =

1−𝑒

 (3.58)

Defining �̅� as the average number of tasks generated by a job during its service time in

the system, then it is given by,

�̅� =
�̅�

�̅�
= 𝑒

(1−𝑒

)

 (3.59)

iii) Joint distribution of the number of jobs in each stage of the system

We define a job to be in stage j if it has j tasks in execution at that time within the

system. Let denote number of jobs in stage j at an arbitrary time. Next, we will

determine joint distribution of the number of jobs in each stage of the system.

Proposition 3.2. has a Poisson distribution.

Proof. Let us define Bernoulli random variable 𝑖 as,

 𝑖 = { 1
 𝑜 ℎ𝑎𝑠 𝑡𝑎𝑠 𝑠 𝑡ℎ𝑒 𝑠 𝑠𝑡𝑒

 0 𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒
 (3.60)

Then, PGF of the distribution of 𝑖 is given by,

𝐾𝑖 (𝑧) =
′𝑧 + 1 −

′ (3.61)

From the above, may be expressed as,

 = ∑ 𝑖

𝑖=1 (3.62)

Let (𝑧) denote PGF of the probability distribution of , then,

 (𝑧) = (𝑧)|𝑧=𝐾 (𝑧)
= 𝑒−𝜆�̅�𝑞

 (1−𝑧) (3.63)

where we substituted from (3.56) and (3.61) in the above. The inversion of the above PGF

gives,

 56

 𝑝
=

(𝜆�̅�𝑞)

 !
𝑒−𝜆�̅�𝑞 (3.64)

which completes the proof.

Now, we will determine the joint distribution of the number of jobs at each stage of the

system. Let state of the system denoted by the vector ⃗ = (1 … 𝑖 … ∞). We will

show that the joint probability distribution of ⃗ has a Poisson distribution given by,

 𝑝(⃗) = ∏ [
(𝜆�̅�𝑞

)

 !
𝑒−𝜆�̅�𝑞

]∞
 =1 (3.65)

Let us define the following vectors that differ from ⃗ at most in two components by unit

value:

 ⃗
+ = (1 …

+ … ∞)

 ⃗⃗⃗
− = (1 …

− … ∞)

 ⃗ 𝑖
+− = (1 … 𝑖

+ …
− … ∞) (3.66)

 ⃗ 𝑖
−+ = (1 … 𝑖

− …
+ … ∞)

where
+ = + 1

− = − 1 .

Next, we will write the LBEs for the state ⃗ ,

{

 𝑝(⃗) + 𝛼𝑝(⃗) = (+ 1)(+1 + 1) 𝑝(⃗ +1
−+)

+(−1 + 1)𝛼𝑝(⃗ −1
+−) > 1

 1 𝑝(⃗) + 1𝛼𝑝(⃗) = 2(2 + 1) 𝑝(⃗ 12
−+) + λ (⃗ 1

−) = 1

 (3.67)

 By means of substitution it can be shown that (3.65) satisfies the LBEs in (3.67) and

therefore it is the correct distribution.

iv) Distribution of the total number of tasks in the system

Next, we will determine distribution of the total number of tasks in the system. Let us

introduce the following notation,

𝑟 =

𝑟 = (𝑟1 … 𝑟 … 𝑟∞)

𝑧 = (𝑧1 … 𝑧 … 𝑧∞)

 ⃗ = (1 … … ∞)

 57

where, 𝑟 corresponds to the total number of tasks that belong to the jobs in stage j. Let us

define PGF of the distribution of 𝑟 as,

 (𝑧) = 𝐸[𝑧]= 𝐸 [∏ 𝑧

 ∞
 =1] = 𝐸[∏ 𝑧

 ∞
 =1]= 𝐸[∏ (𝑧

) ∞

 =1]

 (𝑧) = 𝐸[∏ (𝑧

) ∞

 =1] (3.68)

 (𝑧) = ∑ … ∑ … ∑ [∏ (𝑧

) ∞

 =1]∞
 =0

∞
 =0

∞
 =0 𝑝(⃗)

Substituting for 𝑝(⃗) from (3.57),

 (𝑧) = ∑ ∑ ∑ [∏ 𝑒−𝜆�̅� 𝑞
 (𝜆�̅�𝑞

 𝑧
)

 !

∞
 =1]∞

 =0
∞
 =0

∞
 =0

 Interchanging the order of summations and multiplications,

 (𝑧) = ∏ 𝑒−𝜆�̅� 𝑞

𝑒
𝜆�̅� 𝑞

 𝑧

∞
 =1 = ∏ 𝑒

−𝜆�̅� 𝑞
 (1−𝑧

)
 ∞

 =1

 (𝑧) = 𝑒
−𝜆�̅� ∑ 𝑞

 (1−𝑧

)

 = 𝑒
−𝜆�̅� (1−∑ 𝑞

 𝑧

)

 (3.69)

 Next let us define as the total number of tasks in the system and 𝐾 (𝑧) as the PGF

of its distribution, then,

 = ∑ 𝑟
∞
 =1

𝐾 (𝑧) = 𝐸[𝑧]= (𝑧)|𝑧 =𝑧 𝑖=1 … ∞=𝑒−𝜆�̅� (1−∑ 𝑞
 𝑧)

 (3.70)

Substituting in the above from (3.51), (3.70) gives,

𝐾 (𝑧)=𝑒

−𝜆�̅� [1−

 ()

]

 (3.71)

Finally, from the above average of the total number of tasks in the system are given by,

 𝐸[] =
𝜆 �̅�

𝜇(1−𝑒

)

=
𝜆

𝜇
𝑒

 (3.72)

 58

Figure 3.21 presents average of the total number of the tasks in the system as a function

of the task arrival rate with job arrival rate as a parameter. Fig. 3.22 presents the average

service time of a job with dynamic service time and the independent release time of the

previous section from equations (3.54) and (3.49) respectively. We plotted the results for

class 3 and 4 jobs for the independent release times. For fair comparison, average of the

number of tasks generated by a job with dynamic service time, (3.54), has been set equal

to the number of tasks in each class of jobs for the independent release time. Thus for

each value of , task generation parameter has been chosen such that ̅ = . As may be

seen, under these assumptions the average service times of a job in the two models are

close to each other.

Fig. 3.21 Average of the total number of the tasks as a function of 𝛼 and as a parameter

 59

Fig. 3.22. Average service time of a job as a function of task service rate for dynamic service and

independent release time models

3.5.2 Finite Resource Model (VJ, IR, UJ)

 Next, we consider the finite resource model where the computing center has finite

number of VMs given by S. A new arriving job will be blocked if all the VMs are

occupied. In this model, we assume that each job is assigned a fixed number of VMs, c,

for its service. When the number of tasks belonging to a job is more than c, then the

excess tasks are queued. Let us assume that S is an integral multiple of c, then the number

of jobs in the system can be modeled as an M/G/N/N queuing system where = 𝑆/ .

The service time of a job may be modeled by the busy period of an / / queue,

where customers are the tasks generated by the job. The average service time of a job is

given by the mean busy period of the / / queue, which is from [61],

 ̅ =

{

1

𝜇(1−

)
 f ≤ 2

1

[

(

)

(1−

)𝑐!

+
1

∑

(

)

 !

𝑐−1
 =1] f > 2

 (3.73)

Let denote the number of tasks in the system that belongs to a job, then it may be

determined from the distribution of the number of customers in an M/M/c queuing

system, [61],

 60

 (=) =

{

Pr (=0)

1−Pr (=0)

(

)

𝑖!
 0 < ≤

Pr (=0)

1−Pr (=0)

(

)

𝑐!𝑐 >

 (3.74)

where ,

 (= 0) = [∑
(

)

 !

𝑐−1
 =0 +

(

)

𝑐!(1−

)
]

−1

Let denote the number of busy VMs from those that assigned to a job, then,

 (=) = {
 (=) 0 < <

∑ (=)∞
 =𝑐 =

 (3.75)

From the M/G/N/N queuing results, probability distribution of the number of jobs in the

system is given by, [62],

𝑝 = {
 𝑝0

(𝑁𝜌)

 !
 <

𝑝0
(𝑁𝜌)

𝑁!
 =

 (3.76)

where 𝑝0 = [∑
(𝑁𝜌)

 !
+

(𝑁𝜌)

𝑁!
 𝑁−1

 =0]
−1

 and 𝜌 = ̅

We note that blocking probability of a job is given by 𝑝𝑁. Let denote total number of

tasks in the system, and then its average is given by,

 𝐸[] = 𝐸[]𝐸[] (3.77)

The above average needs to be determined numerically from (3.74) and (3.76).

Figure 3.23 shows the average number of VMs in the system as a function of task

arrival rate and job arrival rate as a parameter. We assumed that N=40 and c=10. As

illustrated, due to hard limitation on maximum number of tasks of a job, task arrival rate

is dominant in creation of VMs compared to job arrival rate. With increasing the job

arrival rate, job saturation probability shifts to the left.

 61

3.5.3 Saturated job arrival Process (VJ, SJ)

In this part, we consider a system in which there are always N jobs in service. When

service of a job is completed, a new job immediately enters the system. Also, the new job

initially requires service for a single task and generates new tasks according to a Poisson

process. The service time of a job remains as in the previous case. The objective of

analysis is to determine total number of tasks in the system. Since each job has at least a

single task in the system, the minimum number of tasks in the system will be N. Defining

 to be the total number of tasks as the state of the system, and then the system may be

modeled as a birth-death process with birth and death coefficients:

 𝛼 = 𝛼 ,
= , ≥ , (3.78)

Thus the distribution of the total number of tasks in the system is given by the product

form solution,

𝑝
() = 𝑝𝑁 ∏

𝜇
 −1

𝑖=𝑁 ≥ (3.79)

Substituting (3.78) in the above,

 𝑝
() = 𝑝𝑁

𝑁!

 !
(
𝑁

𝜇
)
 −𝑁

 ≥ (3.80)

where 𝑝𝑁 is determined from the normalization condition, ∑ 𝑝
() = 1∞

 =𝑁 ,

Fig. 3.23 Average number of the VMs as a function of task arrival rate and job arrival rate as a

parameter. (c=10, N=40)

 62

𝑝𝑁 =
1

∑
 !

 !
(

)

=
(

)

𝑁!(𝑒

 −∑

(

)

 !

)

 (3.81)

Then substituting (3.81) in (3.78) will lead to:

𝑝
() = (𝑒

 −∑
(

)

𝑖!

𝑁−1
𝑖=0)

−1

(

)

 !
 ≥ (3.82)

From the above, average number of tasks in the system is obtained as:

𝐸[] = ∑ 𝑝
()∞

 =𝑁 = (
𝑁

𝜇
)(1 + (𝑒

 − ∑
(

)

𝑖!

𝑁−1
𝑖=0)

−1

(

)

(𝑁−1)!
) (3.83)

In the finite resource model, we assume that the system has finite number of VMs to

execute the tasks, denoted by S. In this model, we only consider saturated job arrival

process and there will always be N jobs in service. Service of a job is completed,

whenever a job does not have any more tasks left in the system. Following the service

completion of a job, a new job is immediately inserted into the system. The new job also

initially requires service for a single task and generates new tasks according to a Poisson

process. We note that 𝑆 ≥ and maximum number of the tasks that can be executed

simultaneously equals to S. When number of tasks in the system exceeds S the remainder

will be queuing. The objective of the analysis is again to obtain the total number of

tasks, , in the system. Here, we define the system state as total number of tasks

currently in the system. We model the system as a birth-death process with the following

coefficients,

𝛼 = 𝛼 ,
= {

 ≤ ≤ 𝑆
𝑆 > 𝑆

 (3.84)

The distribution of the total number of tasks in the system is given by the product form

solution in (3.79). Substituting from (3.84) in (3.79),

 63

𝑝
() =

{

 𝑝𝑁 ∏
𝑁

(𝑖+1)𝜇
= 𝑝𝑁

𝑁!

 !

 −1
 =1 (

𝑁

𝜇
)
 −𝑁

 ≤ < 𝑆

𝑝𝑁 ∏
𝑁

(𝑖+1)𝜇
∏

𝑁

𝑆𝜇
=

𝑖=𝑆+1
𝑆
𝑖=𝑁 𝑝𝑁

𝑁!

𝑆!

(

)

𝑆 ≥ 𝑆

 (3.85)

Normalization condition gives 𝑝𝑁 as,

𝑝𝑁 =
1

∑ 𝑝
 !

 !

(

)

 +∑
 !

 !

 (

)

=
(

)

𝑁!(∑
(

)

 !

 +

 !
∑ (

)

)

 (3.86)

Finally, average number of tasks in the system is given by,

 𝐸[] = ∑ 𝑝
()∞

 =𝑁 =
𝑁

𝜇
(1 + 𝑝𝑁

(

)

(𝑆−1)!(1−

)
) (3.87)

Next, we present numerical results for variable service demand models.

 Fig 3.24 Probability distribution of number of tasks in the system with N and 𝛼 as the

parameters

Figure 3.24 illustrates the distribution of total number of tasks in the system with 𝛼

as parameters. Note that, the spread of the probability distribution increases with the

 64

growth of task arrival rate while probability distribution shifts to the right with increasing

number of jobs.

Figures 3.25, 3.26 show the average number of tasks in the infinite and finite resource

models respectively as functions of task arrival rate with number of jobs as a parameter.

As it is shown in Fig. 3.25, when task arrival rate increases, the average number of tasks in

the system will increase. However, for larger values of 𝛼 this growth is more tangible.

Moreover, for larger number of jobs in the system, the total number of tasks in the system

is higher. Figure 3.26 also indicates that when task arrival rates increase, until the system

is saturated, the total number of the tasks in the system will also increase. In addition, for

low task arrival rates, the average number of tasks in the system will remain almost the

same for different job arrival rates.

Fig. 3.25 Average of the total number of tasks for infinite resource model with saturated job

arrival process as a function of task arrival rate and number of jobs, N, as a parameter and

 = 1.

Figure 3.27 also compares the average number of tasks from several modeling

perspectives namely saturated, unsaturated infinite resource models and finite resource

models. As illustrated, the average number of tasks in unsaturated infinite resource model

is much higher than in the other two. 𝐸[] associated with infinite server model under

unsaturated job arrival process is also included in the figure with E[n]= ̅= N given in

 65

(3.55). N is assumed to be a constant, thus for all values of 𝛼, is determined such that

average number of jobs in the system remains fixed.

Fig. 3.26 Average number of tasks in finite resource model as a function of task arrival rate and

number of jobs, N, as a parameter and = 1 𝑆 = 100

Fig. 3.27 Comparison of the average number of tasks for saturated and unsaturated infinite

resource model and finite resource model (S=40) as a function of task arrival rate (= 1 =

30).

 66

3.6 Comparison of the Performance Modeling Results with

the Previous Work

In this section, we give a comparison of the performance analysis of cloud computing

systems developed in this chapter with the previous work that has been introduced in the

previous chapter. There is an overlap between the work in this chapter and that in [11-13],

though we have studied several more models not considered in those works.

In [11], a cloud computing center has been modeled as a M/G/m/m+r queue, where m

is the number of VMs in the system and r is the size of the buffer that stores the waiting

jobs. A new arriving job to a full buffer is lost and the jobs in the buffer are served on

FCFS basis. It is assumed that each job requires a single VM for its execution. The

steady-state distribution of the queue length is determined by writing down the transition

probability matrix of the embedded Markov chain at the arrival points. The analysis

makes the approximation that at most three jobs may be served during an inter-arrival

time. The equilibrium equations had to be solved numerically, thus the queue length

distribution could not be obtained in a closed form. This model corresponds to our single

server model with one class of jobs, when no buffering is allowed, r=0. In Fig. 3.28, we

plot average number of busy VMs for both our and their model under the assumption of

no buffering, r=0, as a function of the job arrival rate. The results have been plotted both

for exponential and deterministic service times. As may be seen, the approximate results

of [11] are very close to our exact results.

 67

Fig. 3.28 Average number of the jobs in the system as a function of job arrival rate for

M/G/m approximation and the exact results for = 1.

In [12], [13], the analysis in [11] has been extended to the jobs where each job contains

random number of tasks and execution of each task demands a VM. In this model, the

tasks of a waiting job are stored in the buffer with each task occupying one position. All

the tasks of a job need to start execution simultaneously. If the tasks of a new arriving job

cannot be served immediately and there is no enough storage in the buffer to store all the

tasks, then that job is rejected. Since jobs are still served on a FCFS basis, this results in

head-of-line (HOL) blocking until enough servers become available to serve the HOL

job. Service times of the tasks are i.i.d with a general distribution, thus the tasks of a job

have independent release times. Letting number of tasks to denote the system state, then

the system has been analyzed by embedding a Markov chain at the job arrival points.

Similar to the original model, it is assumed that a VM cannot serve more than three tasks

during a job interarrival time. The transition probabilities are determined assuming

constant number of tasks in a job, which needs to be unconditioned numerically

afterwards. Further, an important weakness of the analysis is that the probabilities

involving transitions from a state with number of idle VMs require knowledge of the

distribution of the idle VMs, which is part of the solution that is being determined. The

distribution of the number of idle VMs had to be determined through simulation. After

determination of the transition probability matrix, which is quite tedious, the equilibrium

 68

equations have been solved numerically. This model becomes identical to our model for a

system with multiple classes of jobs and independent task release times under the

assumptions of exponential task service times and no buffering, r = 0 (section 3.4). For

this case, we also determine distribution of the service time of a job and average number

of jobs from each class in the system (latter is plotted in Fig. 3.14), which are not

available in [24]. We note that our single server models apply to systems with multiple

job classes and simultaneous task completion times for both homogeneous and

heterogeneous VMs under no queuing assumption. The joint distribution of the number of

jobs is presented in equations (3.1) and (3.25) for homogeneous and heterogeneous VMs

cases respectively.

In [14], the performance of cloud computing systems has been studied using stochastic

reward networks (SRNs). It is assumed that cloud center has N servers that may support

upto M VMs where N≥M. The arrival of the jobs is either according to a homogeneous

Poisson process or a Markov Modulated Poisson Process (MMPP) which allows time

variations in the arrival rate. It is assumed that each job requires a single VM for its

execution and service times are exponentially distributed. However, mean service time is

a function of the number of busy VMs on a server. The system has a finite queue, which

is managed according to the FCFS discipline and a job arriving to a full queue is lost. The

models of [14] and [11] become identical for Poisson arrivals and exponentially

distributed service times with a constant mean value, when number of servers and

number of VMs are equal to each other, N=M. For this case, the two models have been

compared in [14] and the presented numerical results show very close agreement. This

also means that our results agree with that of [14] for the case of single task per job

scenario with no buffering, since all the three models become same for this special case.

The main weakness of the model in [14] is that it is numerical and lacks closed form

results.

In [15], performance of cloud computing systems has been studied considering fault

recovery. It is assumed that arrival of jobs is according to a general stochastic process and

each job has random number of tasks. The system has a server with S VMs and each task

requires a VM for its execution. Task service times are i.i.d with exponentially

distribution, which results in independent task completion times. The system has a finite

 69

queue and each task of a job occupies a position in the queue. A job is lost if not all of its

tasks can be accepted to the system. The system has been modeled as GI
x
/M/S/N queue

where N corresponds to the maximum number of allowed tasks in the system. The

steady-state probability distribution of the number of tasks in the system is determined by

writing down the transition probability matrix for the embedded Markov chain and

solving numerically the equilibrium equations. We note that, the analysis doesnot result

in the distribution of the number of jobs in the system. For fault modeling, it is assumed

that VMs fail according to a Poisson process and VM recovery times are exponentially

distributed. Following recovery, the execution of a task resumes from the point of failure.

Under the approximation that all the tasks of a job begin receiving service

simultaneously, job service times have been determined. However, probability

distribution of the number of tasks in the system with fault tolerance could not be

obtained because the queuing model only allows exponential service times. Again, this

model under the assumption of Poisson arrival of jobs with no queuing and simultaneous

service completion of the tasks of a job corresponds to our single server model with

single class of jobs (section 3.2.1). Simultaneous service completion means that

whenever a VM assigned to a task fails, all the tasks belonging to the job as the failed

task are also delayed until recovery. Then for fault tolerance scenario, our model gives

the distribution of the number of jobs in the system from equation (1), since the analysis

applies for any service time distribution. Let μ,γ denote parameters of the exponential

distributions for service and recovery times respectively and α parameter of the Poisson

distribution for failure. Then, mean service time of a job is given by,

 ̿ =
𝛼 + 𝛾

 𝛾

In Fig. 3.29, we plotted average number of jobs in the system as a function of the job

arrival rate λ with α as a parameter for constant values of μ,γ and S. It is assumed that

number of tasks per job is four. As may be seen, average number of jobs in the system

increases with increasing value of VM failure rate at any job arrival rate.

 70

Fig. 3.29 Average number of the jobs in the system as a function of job arrival rate with 𝛼 as a

parameter for = 𝛾 = 1 , 𝑆 = 100 and four tasks per job.

The optimal resource allocation approach and its objective in this thesis also is similar

to works in [22] and [23], except for the solutions methods. [22] and [23] proposed

heuristic method to find the solution while column generation technique is proposed in

this thesis to find the optimal resource allocation. Further, similar to [39] our analysis

allows heterogeneous VMs with different resource requirements, while [22] considered

the problem into a one dimensional resource type. We also develop a technique for the

optimal allocation of the resources as a function of the time under a stochastic job arrival

process with and without migration of the VMs belonging to incomplete jobs.

3.7 Conclusion

In this chapter, we have studied performance modeling of cloud computing systems.

We have derived joint distribution of the number of jobs from each class in the system,

job blocking probabilities and distribution of the utilization of resources as a function of

the traffic load under various scenarios for systems with both homogenous and

heterogeneous VMs. We have shown that joint distribution of the number of jobs depend

on the service time only through its mean. We have determined service fragmentation

probabilities and have shown application of the derived results in power management

techniques under time-varying loads. We have obtained results for systems that resource

requirements of jobs may vary dynamically during their service times, which may be

appropriate to mobile cloud computing environment. The derived results advance the

 71

state-of-the-art on performance modeling of cloud computing systems and they will be

useful in dimensioning of cloud computing systems.

 72

Chapter 4

Job Scheduling with Optimization of

Power Consumption in Cloud

Computing Centers

In this chapter, we propose an optimization model for VM placement in the cloud

computing centers. The VM placement scheduler should minimize the power

consumption of servers and inter-VMs communications.

In previous chapter, performance of the cloud computing models is determined under

stochastic job arrival process and job service time distribution. The objective of that

analysis was determining equilibrium distribution of the number of jobs in the system,

job blocking probabilities, response time for different classes of jobs and distribution of

the resource utilization. In this chapter, given the number of jobs and occupied VMs in

the system, we develop an optimization model that determines the job schedule, which

minimizes the total power consumption of a cloud computing center

The problem of VM placement for power minimization is NP-hard [22]. Due to

similarity between our optimization problem and cutting stock problem, we utilized

column generation (CG) technique to solve this large scale optimization problem.

Moreover, initialization and heuristic termination algorithms are also proposed to

mitigate the complexity of the optimization problem. The model also has been extended

to the case where communication rate and computation level are random variables to

make the model more realistic.

The remainder of this chapter is organized as follows: Job scheduling with

optimization of power consumption is defined in Section 4.1. In Section 4.2, we extend

the optimization problem of Section 4.1 to include communication network infrastructure

and bandwidth constraints in order to have a more realistic model. Section 4.3 discusses

 73

the probabilistic model. Dynamic job scheduling with optimization of power

consumption as a function of time is studied in Section 4.4. Complexity order analysis

followed by initialization, and heuristic rounding algorithm for finding the ILP solution

from the relaxed LP solution is discussed in section 4.5. Section 4.6 discusses the

numerical results and section 4.7 presents conclusion.

4.1 Job Scheduling with Optimization of Power Consumption

in a Cloud Computing Center

In this section, we will develop an optimization problem that determines the job

schedule, which minimizes the total power consumption of a cloud computing datacenter.

It is assumed that power consumption in a datacenter is due to communications and

server operations. We assume a distributed model, where a job may be assigned VMs on

different servers. There will be a need for communications among the VMs assigned to a

job on different servers. This demand will be proportional to the product of the number of

VMs assigned to each job on each pair of servers. We assume a server will be on if it has

at least one VM assigned to at least one of the jobs and otherwise it will be off. It will be

assumed that an on server consumes constant power and an off server zero power. In this

optimization problem, we will ignore power consumption of communication network

infrastructure since that is topology dependent. However, in the follow up section,

optimization problem will be expanded to include this power consumption for a

hierarchical network topology.

We assume that a datacenter that has T types of servers, where each server type is

determined by the amount of different types of resources that it contains. A server type

may have K different types of resources such as bandwidth, storage, CPU and memory. A

unique resource vector determines the amount of resources that each server type has. We

let denote number of type t servers in the datacenter, 𝑡 ∈ {1 … 𝑇}. Power

consumption of an on type t server will be denoted by and otherwise it will be zero.

We assume that a server may have R different VM configurations. Each VM

configuration is determined by the amount of different types of resources that it contains.

We let
 denote the type k resource requirement of type 𝑟 VM. We assume that there are

 74

H types of jobs, where each job type requires a random number of VMs from a group of

VM types and it has geometrically distributed service time with a different parameter. We

let denote number of type h jobs in the datacenter, ℎ ∈ {1 … 𝐻}. Let also
 denote

the number of type 𝑟 VMs that job requires, ∈ {1 … }. N is defined as the

number of jobs in the datacenter, then, = ∑
𝐻
 =1 . The notation for this optimization

problem has been summarized in Table 4.1.

Table 4.1 Parameter/Variable Definitions

Parameters Definitions

 number of VM types

 number of jobs in the datacenter

𝐾 number of resource types

T number of different types of servers.

 total number of type t servers

 power usage of type t servers

 number of type r VMs required by job

 type k resource capacity of a type t server

 power usage rate of communicating with a server serving VMs of job .

 Amount of type k resource required by a type r VM

Variables Definitions

 number of type r VMs in m
th

 type t server assigned to job .

 ̃

 number of VMs in m
th

 type t server assigned to serve job .

 binary variable denote on or off status of m

th
 type t server.

The total power will be minimized if the job load is served by minimum number of

servers and each job is assigned VMs from as few servers as possible. Next, optimization

problem using IQP and CG will be introduced. First, IQP is used to model the

optimization problem. Then, CG will be introduced to solve the optimization problem

with less complexity.

4.1.1 Integer Quadratic Programming Model

In this subsection, we will develop an IQP model for the optimization problem

 75

described in the above. We assume that communication power consumption between two

VMs assigned to a job depends on the type of job but not on the types of VMs. We let

denote communication power consumption between two VMs assigned to the job . The

scheduling variable

 represents number of type r VMs in m
th

 type t server assigned

to serve job , where = 1 . We are interested in finding optimal values of

 s

that minimize the DC power consumption. Similarly defining connectivity variable ̃

as number of VMs assigned to job on the type t server. Then, the optimization

problem is given by,

 ∑ ∑
 ∑ ∑ [∑ ∑ (̃

 ̃

)
𝑀

 =1

 =1 − (̃

)
2
]

𝑀
 =1

 =1

𝑁
 =1

𝐻
 =1 +

 ∑ ∑

𝑀
 =1

 =1 (4.1)

𝑆𝑢 𝑒 𝑡 𝑡𝑜

 ̃

 = ∑

 𝑅
 =1 ∀ ∈ {1 … } ∈ {1 … } (4.2)

∑ ∑

 𝑀
 =1

 =1 ≥

 ∀ 𝑟 ∈ {1 … } ∈ {1 … } ℎ ∈ {1 … 𝐻} (4.3)

∑ ∑ ∑

 𝑅

 =1
𝑁
 =1

𝐻
 =1 ≤

 ∀ ∈ {1 … 𝐾} ∈ {1 … } (4.4)

= {

1 ∑ ∑ ̃

 𝑁
 =1

𝐻
 =1 > 0

0 ∑ ∑ ̃

 𝑁
 =1

𝐻
 =1 = 0

 (4.5)

where
 denotes on and off status of type t server.

In the objective function the first and second terms correspond to communications and

server power consumptions of the datacenter respectively. Constraint group (4.3) ensures

that VM requirements of each type of job are satisfied and group (4.4) guarantees that

resource demands of jobs scheduled on a server do not exceed that server’s resource

capacities. In the above optimization problem, objective function is quadratic and

constraints group (4.5) is nonlinear. We would like to simplify the optimization problem

to IQP with linear constraints by converting nonlinear constraints in (4.5) to linear. This

can be achieved by replacing the constraints in (4.5) by the following two pairs of linear

constraints for all servers,

∑ ∑ ̃

 𝑁
 =1

𝐻
 =1 −

≥ 0 (4.6)

 76

휃
− ∑ ∑ ̃

 𝑁
 =1

𝐻
 =1 ≥ 0 (4.7)

That implies ∑ ∑ ̃

 𝑁
 =1

𝐻
 =1 = 0 ⇔

 = 0 and ∑ ∑ ̃

 𝑁
 =1

𝐻
 =1 > 0 ⇔

 = 1.

휃 denotes an integer much larger than the maximum value of the above positive integer.

For the remainder of the Chapter, constraints in (4.5) will be replaced by the constraints

in (4.6) and (4.7), which will be referred as “positive integer to binary linear conversion

constraints” (IBLC). As a result of the replacement, the above optimization problem may

be expressed as,

 (4 1)

𝑆𝑇 (4.2) - (4.4), (4.6) and (4.7)

We note that ∈ {1 … } stands ∀ 𝑡 ∈ {1 … 𝑇}. In the above ST is the abbreviation

for ”Subject To” .

It should be noted that solution of the IQP model gives exact results.

4.1.2 Column Generation Model

The optimization problem, which has been developed in the previous subsection is NP

hard. For large scale datacenters, finding the global optimum point of the IQP becomes

overly complex and time consuming. In this subsection, we will use column generation

technique to provide an alternative solution to our problem. This technique originally had

been applied to cutting-stock problem. In column generation approach, the optimization

problem is divided into restricted master and pricing problems [63], [79]. The Restricted

Master Problem (RMP) determines if the explored patterns satisfy the job demand

constraints. The pricing problem finds a new pattern to feed the RMP. The objective

function of the pricing problem is in fact the reduced cost coefficient of the RMP. The

RMP and pricing problems collaborate until reduced cost coefficients (objectives) of the

pricing problems are negative indicating optimal solution has been reached. In our

problem, there are T pricing problems, one for each server type.

Let us define a pattern as a distinct combination of number of VMs from each type of

VMs that a server can accommodate. Let denote such a pattern and total number of

patterns available for a type t server, then ∈ {1 … }. The new introduced notation is

explained in Table. 4.2. We also define, as the number of times pattern is used in

 77

scheduling of type t servers. Let also

 denote number of VMs of type r that has been

assigned to job by pattern .

Table 4.2 Parameter/Variable Definitions for CG

Parameters Definitions

 Total number of configuration patterns collection of type t servers

Variables Indicator

 number of active server type t with pattern

 number of VM type r of job over the server type t in pattern

 ̃ Pattern ̃ of type t servers introduced by pricing problem t.

 ̃

 number of VMs of job over the server type t in pattern

Similarly, ̃

 denotes total number of VMs assigned to job by pattern . Then, we

have the following equality between the two variables,

 ̃

 = ∑

 𝑅
 =1 (4.8)

Number of communication links of type t servers with pattern dedicated to job , is

given by,

[∑ ∑ (̃

 ̃

)
𝐽

 =1

 =1 − (̃

)
2
]

Then, the optimization for the RMP is given by,

 ∑ ∑

𝑁
 =1

𝐻
 =1 ∑ ∑ [∑ ∑ (̃

 ̃

)
𝐽

 =1

 =1 − (̃

)
2
] +

𝐽
 =1

 =1

∑

 =1 ∑

𝐽
 =1

 (4.9)

𝑆𝑇 (4.8)

∑ ∑

𝐽
 =1

 =1 ≥

 ∀ 𝑟 ∈ {1 … } ∈ {1 … } ℎ ∈ {1 … 𝐻} (4.10)

∑
𝐽
 =1

 ≤ ∀ 𝑡 ∈ {1 … 𝑇} (4.11)

In the above objective function, first and second terms correspond to VMs

 78

communication and server power consumption respectively. Constraint group (4.10)

ensures that VM requirements of jobs are satisfied. Constraint (4.11) verifies that number

of needed patterns for a server type does not exceed number of servers of that type.

Next, we present the T pricing problems one for each server type. The pricing problem

for server type t attempts to introduce the new pattern ̃ to the RMP.

 𝑎 ∑ ∑ 𝑢
 (

 �̃�)𝑅
 =1 𝑁

 =1 (4.12)

𝑆𝑇 ∑ ∑

 �̃� 𝑅
 =1

 𝑁
 =1 ≤

 ∀ ∈ {1 … 𝐾} (4.13)

Where

 �̃� represents number of type r VMs assigned to job by pattern ̃. The

pricing problem’s objective function is the reduced cost function of the RMP with respect

to server type t. 𝑢
 denotes the dual variables of the RMP for type t server. Constraint

groups (4.13) ensure resource constraints of the servers are satisfied.

In the column generation technique, RMP and pricing problems are solved iteratively.

In each iteration, a new pattern for each server type will be introduced to the RMP. The

new pattern maximizes the objective function of the pricing problem for that server type.

The iterations continue, as long as there are reduced cost functions with positive values.

The algorithm terminates when all the reduced cost functions are negative and no new

pattern is introduced to the RMP.

 79

4.2 Job Scheduling with Power Consumption Optimization

including Network infrastructure

In this section, we extend the optimization problem of the previous section to include

communication network infrastructure and bandwidth constraints in order to have a more

realistic model. The extension will include power consumption of the switches and traffic

congestion in the network. Clearly, this extension depends on the network topology. We

chose hierarchical network topology as it is commonly used in the datacenters shown in

Fig. 4.1. We assumed that a datacenter consists of a collection of Performance Optimized

modular Datacenters (PoD). Each PoD consists of a number of racks and each rack

contains a collection of servers. We considered a typical two-tier datacenter

network [64], [65], which has servers housed in a rack connected to a Top-of-Rack (ToR)

switch. The ToR switch provides connectivity among the servers of a rack and also

Fig. 4.1 Hierarchical Architecture of a Datacenter

Datacenter

PoD

Rack

…...

…...

…...ToR
Switch

Core
Switch

…...

ToR
Switch

Rack

Core
Switch

PoD

Rack

Servers type C

Servers type A

Servers type B

 80

connects the rack to the Core Switch (CS) of its host PoD. Core switches depending on

the datacenter topology such as Hyper-X, clique or fat-tree [64] may have different types

of connectivity that provides varying amounts of bandwidths for communication among

the PoDs.

In the assumed model, there is no communication congestion between the servers in

the same rack because their connected to their ToR switch with high capacity links. The

communication congestion may occur either in the (ToRS-CS) links or in PoD links (CS-

CS). Hence, resource allocation has to consider the communication constraints of

datacenter topology. We assume that a ToR switch will be turned off if none of the servers

in that rack are being utilized. Similarly CS in a PoD will be turned off if all the servers

connected to its racks are off. We note that an on switch consumes a constant power plus

load dependent variable power; the former will be referred to as static and the latter as

dynamic power respectively. We will let 𝑆 𝑒
 𝑜𝑅𝑆 𝑆

𝐶𝑆 denote static power consumption

of the ToR switch on rack 𝑎 𝑒, and CS switch in PoD respectively. Similarly, we will

let 𝐷 𝑒
 𝑜𝑅𝑆 𝐷

𝐶𝑆 denote dynamic power consumptions of these switches for per bit

transmission rate. We also let 𝑊𝑁𝐼𝐶 denote the power consumption at the network

interface card (NIC) of a server per bit transmission rate. We define 휂 𝑒 as a variable that

determines whether ToR switch serving to rack e on pod is active or not. Similarly, 𝜉

determines status of the CS serving PoD . In addition to the newly introduced notation

that is given in Table. 4.3, the notation of Table 4.1 remains valid for this model. From

Table 4.3,

Table 4.3 Parameter/Variable Definitions

Parameters Indicator

𝐿 number of PoDs in the data center.

𝑑 number of racks in pod .

 set denoting racks in pod .

𝑎 𝑒 set denoting servers on rack 𝑒 in pod .

 data rate of VMs serving job

𝑆 𝑒 capacity of the link connecting rack 𝑒 to its CS switch.

𝐶 the capacity of the link connecting CS switches of pods a ′.

 𝑒
 number of type t servers in rack 𝑒 of

 81

 𝑒 total number of servers in rack 𝑒 of

 𝑆
𝐶𝑆 static power usage rate of the CS switch in PoD

 𝑆 𝑒
 𝑜𝑅𝑆 static power usage of the ToR switch on rack 𝑎 𝑒 and

 𝐷 𝑒
 𝑜𝑅𝑆 dynamic communication power usage of e

th
 rack ToR switch of pod .

 𝐷
𝐶𝑆 dynamic communication power usage of pod CS switch.

 𝑊𝑁𝐼𝐶 dynamic communication power usage of server NIC card switch (for bit per second).

 dynamic communication power usage between two VMs serving job allocated in

servers and
′ .

 ′
 𝑒 𝑒
 dynamic communication power usage between two VMs serving job allocated in a

server in rack 𝑒 of PoD and in a server in rack 𝑒′ in PoD ′of.

 𝑒 power supply of rack e on PoD .

Variables Indicator

휂 𝑒
binary variable that assumes the value of one if at least one server on rack e in pod is

active and otherwise zero.

𝜉 binary variable that assumes the value of one if at least one server in pod is active and

otherwise zero.

 𝑒
 number of active type t servers with pattern in the e

th
 rack of pod .

 𝑒
𝑓 binary variable indicate whether server 𝑓 type t in the e

th
 rack of pod is active pattern

 or not.

 = ∑ ∑ 𝑒
 𝑑

𝑒=1
𝐿
 =1 (4.14)

 𝑒 = ∑ 𝑒

 =1 (4.15)

𝑎 𝑒 = {1 𝑒 … 𝑒 𝑒} (4.16)

𝜉 = {1 ∑ 휂 𝑒 > 0
𝑑
𝑒=1

0
 (4.17)

Also from the definition of 휂 𝑒,

휂 𝑒 = {
1 ∑ ∑ ∑ ∑ ̃

 ∈𝑎

 =1

𝑁
 =1

𝐻
 =1 > 0

0 ∑ ∑ ∑ ∑ ̃

 ∈𝑎

 =1

𝑁
 =1

𝐻
 =1 = 0

 ∀𝑒 ∈ {1 … 𝑑 } ∀ ∈ {1 … 𝐿}

4.2.1 Integer Linear Programming Model

In this subsection, we will develop an integer linear programming (ILP) model of the

optimization problem introduced in the above. Dynamic communication power

consumption between two VMs located in servers m and m
′ serving job ,

 , is

given by,

 82

 =

{

0 𝑓 =
′ (𝑎)

(2 𝑊𝑁𝐼𝐶 + 𝐷 𝑒
 𝑜𝑅𝑆) 𝑓

′ ∈ 𝑎 𝑒 ≠
′ ()

(2 𝑊𝑁𝐼𝐶 + 𝐷 𝑒
 𝑜𝑅𝑆 + 𝐷

𝐶𝑆 + 𝐷 𝑒
 𝑜𝑅𝑆) 𝑓 ∈ 𝑎 𝑒

′ ∈ 𝑎 𝑒 𝑒 ≠ 𝑒′ ()

(2 𝑊𝑁𝐼𝐶 + 𝐷 𝑒

 𝑜𝑅𝑆 + 𝐷
𝐶𝑆 + 𝐷

𝐶𝑆 + 𝐷 𝑒
 𝑜𝑅𝑆) 𝑓 ∈ 𝑎 𝑒

′ ∈ 𝑎 𝑒 ≠ ′(𝑑)
 }

(4.18)

In the above, (4.18a) corresponds to dynamic power consumption of communication

between two VMs of a type ℎ job located at the same server. (4.18b) corresponds to the

power consumption of communication between two VMs of a job located at the same

rack but different servers. As may be seen, power consumption depends on data rate, and

NICs and ToRS dynamic power consumption per bit. (4.18c) corresponds to dynamic

power consumption of communication between two VMs of a type ℎ job located in two

servers at two different racks of a PoD. As seen in (4.18c) dynamic power consumption

in this case depends on the data rate, and NICs, ToRSs and CS dynamic power

consumption per bit. (4.18d) corresponds to the dynamic power consumption of

communication between two VMs of a job placed in two servers at two different racks in

separated PoDs. In this case, as seen in (4.18d), in addition to data rate, and NICs, ToRSs

power consumption per bit, dynamic power consumption of communication between two

VMs of a job also depends on the CSs dynamic power consumption per bit. Then, the

optimization problem is given by,

 {∑ ∑ ∑ ∑ ∑ ∑

 (̃

 ̃

)
𝑀
 =1

𝑀
 =1

 =1

 =1

𝑁
 =1

𝐻
 =1 + ∑ (𝜉 𝑆𝐶𝑆

 +𝐿
 =1

∑ 휂 𝑒 𝑆 𝑜𝑅
 𝑒𝑑

𝑒=1) + ∑ ∑

𝑀
 =1

 =1 } (4.19)

𝑆𝑇 (4 2) (4 3) (4 4) (4 6) (4 7)

∑ ∈𝑎
− 휂 𝑒 ≥ 0 ∀ 𝑒 ∈ {1 … 𝑑 } ∀ ∈ {1… 𝐿} (4.20)

휃휂 𝑒 − ∑ ∈𝑎
≥ 0 ∀ 𝑒 ∈ {1 … 𝑑 } ∀ ∈ {1… 𝐿} (4.21)

∑ 휂 𝑒
𝑑
𝑒=1 − 𝜉 ≥ 0 ∀ ∈ {1… 𝐿} (4.22)

휃𝜉 − ∑ 휂 𝑒
𝑑
𝑒=1 ≥ 0 ∀ ∈ {1… 𝐿} (4.23)

 83

∑ ∑
∑ [∑ ∑ ∑ (̃

 ̃

)

 ∈𝑎

𝑑

𝑒 =1
𝐿
 =1 − ∈𝑎

𝑁
 =1

𝐻
 =1

∑ (̃

 ̃

)

 ∈𝑎

] ≤ 𝑆 𝑒 ∀ 𝑒 ∈ {1 … 𝑑 } ∀ ∈ {1… 𝐿} (4.24)

∑ ∑
∑ ∑ ∑ ∑ (̃

 ̃

)

 ∈𝑎

𝑑

𝑒 =1 ∈𝑎

𝑑
𝑒=1

𝑁
 =1

𝐻
 =1 ≤ 𝐶 ∀

′ ∈ {1… 𝐿}

 ≠ ′ (4.25)

In the objective function, the first term corresponds to the dynamic part of the

communication power consumption. Second term represents the static part of

communication power consumption and finally the last term expresses the power

consumption of the servers. It should be noted that traffic congestion may occur only in

ToRS to CS and CS to CS links, with their capacities 𝑆 𝑒, 𝐶 defined in Table 4.3. As

explained before, there is no traffic congestion in server communications within a rack.

The constraints (4.24) and (4.25) ensure that bandwidth demands do not violate the

capacities of ToRs to CS and CS to CS links respectively. The rest of constraints, (4.20)-

(4.23) are used for IBLC. Constraints (4.21), (4.22) make the connection between

휂 𝑒
 such that 휂 𝑒 = 0 ↔ ∑ ∈𝑎

= 0 and 휂 𝑒 = 1 ↔ ∑ ∈𝑎
> 0.

Constraints (4.22), (4.23) make the connection between 𝜉 휂 𝑒 such that 𝜉 = 0 ↔

∑ 휂 𝑒
𝑑
𝑒=1 = 0 and 𝜉 = 1 ↔ ∑ 휂 𝑒

𝑑
𝑒=1 > 0.

4.2.2 Column Generation Model

Due to large-scale of the optimization problem, once again we are interested in

applying column generation technique which provides an alternative solution to our

problem. Here, 𝑒
 represents number of active type t servers with pattern in the e

th

rack of PoD . Hence, the state of rack e on pod as active or not may be expressed as,

휂 𝑒 = {
1 ∑ ∑ 𝑒

 𝐽
 =1

 =1 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒

We note that dynamic communication power consumption between two VMs depend

on the rack locations of the servers housing the VMs and not on the server locations

 84

within the racks. Let us define ′
 𝑒 𝑒
 as dynamic communication power consumption

between a VM allocated in a server in rack 𝑒 of PoD and a VM allocated in a server in

rack 𝑒′in PoD ′ serving job , which is given by,

 ′
 𝑒 𝑒
 = {

(2 𝑊𝑁𝐼𝐶 + 𝐷 𝑒

 𝑜𝑅) 𝑓 = ′ 𝑒 = 𝑒′

(2 𝑊𝑁𝐼𝐶 + 𝐷 𝑒

 𝑜𝑅𝑆 + 𝐷
𝐶𝑆 + 𝐷 𝑒

 𝑜𝑅𝑆) 𝑓 = ′ 𝑒 ≠ 𝑒′

(2 𝑊𝑁𝐼𝐶 + 𝐷 𝑒

 𝑜𝑅𝑆 + 𝐷
𝐶𝑆 + 𝐷

𝐶𝑆 + 𝐷 𝑒
 𝑜𝑅𝑆) 𝑓 ≠ ′

} (4.26)

It should be noted that communication power consumption between VMs of a job

located in the same server is considered to be zero similar to the assumption made in the

previous subsections. Then the optimization problem may be expressed as,

 {∑ ∑ ∑ ∑ ∑ ∑ {[∑ ∑ ∑ ∑ ′
 𝑒 𝑒
 (𝑒

 ̃

 𝑒

 ̃

)
𝐽

 =1

 =1

𝑑

𝑒 =1
𝐿
 =1] −

𝐽
 =1

 =1

𝑑
𝑒=1

𝐿
 =1

𝑁
 =1

𝐻
 =1

 ′
 𝑒 𝑒
 𝑒

 (̃

)
2
} + ∑ [𝜉 𝑆

𝐶𝑆 + ∑ 휂 𝑒(𝑆 𝑜𝑅
 𝑒)

𝑑
𝑒=1]𝐿

 =1 + ∑ ∑ ∑

 =1 ∑ 𝑒

 𝐽
 =1

𝑑
𝑒=1

𝐿
 =1 }

 (4.27)

𝑆𝑇 (4.22), (4.23) and

∑ ∑
∑ ∑ 𝑒

 ̃

 [(∑ ∑ ∑ ∑
 𝑒

 ̃

𝐽

 =1

 =1

𝑑

𝑒 =1 ∈{1 𝐿} ≠) +
𝐽
 =1

 =1

𝑁
 =1

𝐻
 =1

(∑ ∑ ∑
 𝑒

 ̃

𝐽

 =1

 =1𝑒 ∈𝑏 𝑒

 ≠𝑒)] ≤ 𝑆 𝑒 (4.28)

 ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑ (𝑒

 ̃

 𝑒

 ̃

)
𝐽

 =1

 =1

𝑑

𝑒 =1

𝐽
 =1

 =1

𝑑
𝑒=1

𝑁
 =1

 ≤𝐻
 =1 𝐶

∀ ′ ∈ {1… L}, ′ ≠ (4.29)

∑ ∑ ∑ ∑

 𝑒
 𝐽

 =1

 =1

𝑑
𝑒=1

𝐿
 =1 ≥

 (4.30)

∑ 𝑒
 𝐽

 =1
 ≤ 𝑒

 (4.31)

∑ ∑ 𝑒
 𝐽

 =1

 =1 − 휂 𝑒 ≥ 0 (4.32)

휃휂 𝑒 − ∑ ∑ 𝑒
 𝐽

 =1

 =1 ≥ 0 (4.33)

where constraints (4.30) are ∀ 𝑟 ∈ {1 … } ∈ {1 … } ℎ ∈ {1 … 𝐻}

constraints (4.31) are ∀ 𝑡 ∈ {1 … 𝑇} ∀ 𝑒 ∈ {1 … 𝑑 } ∀ ∈ {1… 𝐿} and constraints

(4.28), (4.32) and (4.33) are ∀𝑒 ∈ {1 … 𝑑 } ∀ ∈ {1… 𝐿} .

 85

In the objective function (4.27), the first term corresponds to power consumption of the

interface cards and dynamic power consumption of active switches due to

communication load, second term to static power consumption of active switches and the

third term to power consumption of active servers. The constraint (4.28) and (4.29)

ensures that bandwidth demands of the jobs do not violate the capacities of the ToRS to

CS links and CS to CS links respectively. Constraint (4.30) ensures that job and VM

requirements are satisfied. Constraint (4.31) ensures that the number of type t servers in

each rack, does not exceed the maximum number of type t servers in the rack. Constraints

(4.32) and (4.33) are used for IBLC and connect 𝑒
 and 휂 𝑒 variables.

The pricing sub-problems are similar to those in (4.12), (4.13). In this case, the

existence of the non-linear constraints (4.28), (4.29) and objective function creates

problems for column generation, which requires their linearization. We use LP conversion

method in order to convert the IQP to ILP.

Let us define binary variables 𝑒
𝑓 as follows,

 𝑒
𝑓 = {

 1 𝑓 𝑓 𝑡 ack 𝑒
 ac a a a

 0 𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒

Hence we have,

 𝑒
 = ∑ 𝑒

𝑓 𝑀

𝑓=1
 (4.34)

Then, product 𝑒

 𝑒

 that appears in non-linear constraints may be expressed as,

 𝑒

 𝑒

= ∑ ∑ 𝑒
𝑓

 𝑒

𝑓

 𝑀

𝑓 =1

𝑀

𝑓=1
 (4.35)

Next let us further define a new binary variable 𝜓
 𝑒𝑒

𝑓𝑓

 as,

 𝜓
 𝑒𝑒

𝑓𝑓

= 𝑒
𝑓

 𝑒

𝑓

then,

𝜓
 𝑒𝑒

𝑓𝑓

= { 1 𝑓 𝑒
𝑓 =

 𝑒

𝑓

= 1

 0 𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒

Thus the product term in (4.35) may be expressed in linear form as follows,

 86

 𝑒

 𝑒

= ∑ ∑ 𝜓
 𝑒𝑒

𝑓𝑓
 𝑀

𝑓 =1

𝑀

𝑓=1
 (4.36)

Binary multiplication can be linearized through adding the following constraints,

𝜓
 𝑒𝑒

𝑓𝑓

≥ 𝑒
𝑓 +

 𝑒

𝑓

− 1 (4.37)

 𝜓
 𝑒𝑒

𝑓𝑓

≤
 𝑒

𝑓

 (4.38)

 𝜓
 𝑒𝑒

𝑓𝑓

≤ 𝑒
𝑓 (4.39)

 𝜓
 𝑒𝑒

𝑓𝑓

≥ 0 (4.40)

(4.37), (4.38), (4.39) and (4.40) are ∀ ′ ∈{1…L},∀ 𝑡 𝑡′ ∈ {1 … 𝑇} ∀ 𝑒′ ∈

{1 … 𝑑 }, ∀𝑒 ∈ {1 … 𝑑 } ∀ ∈ {1 … } ∀
′ ∈ {1 … },

∀ 𝑓 ∈ {1 … 𝑒
 } 𝑓′ ∈ {1 … 𝑒

 }

Using and substituting mentioned conversion in the objective function and constraints,

CG problem becomes linear which reduces the complexity order at the expense of

increasing number of variables and constraints drastically.

4.3 Probabilistic Model

In the previous sections, we assumed that the traffic (communication) rates and

processing (computation) levels of different VM types were deterministic; however, in

reality they are random and vary as a function of time. In this section, we extend the

optimization problem of the previous section to a more realistic model, in which PM

computation levels and VM communication rates are considered as random variables. In

this model, the data rate between two VMs serving to a type h job,
, becomes a

random variable. As a result, bandwidth constraints given in (4.28, 4.29) become

probabilistic. In particular, (4.28) may be expressed as,

 (∑
∑ 𝛹 𝑒

𝑁
 =1

𝐻
 =1 > 𝑆 𝑒) ≤ 𝑝 (4.41)

Where 𝛹 𝑒
 denotes the total number of external communication flows of job in

rack 𝑒 of PoD .For instance, 𝛹 𝑒
 for IQP model is given by,

 87

𝛹 𝑒
= ∑ [∑ ∑ ∑ (̃

 ̃

)

 ∈𝑎

𝑑

𝑒 =1
𝐿
 =1 − ∑ (̃

 ̃

)

 ∈𝑎

] ∈𝑎
 (4.42a)

and parameter p is used to control the probability of link congestion or system failure.

As in [66], we assume that traffic rate follows a Gaussian distribution, from the Central

Limit Theorem which remains a good model for the total link traffic even if the

individual streams are non-Gaussian [67], [68].

Next, we assume that
 has a Gaussian distribution with mean and standard

deviation 𝜎 . Then, the constraint (4.42) may be expressed as,

∑ (∑ 𝛹 𝑒

𝑁
 =1

)𝐻
 =1 + 휁√∑ 𝜎

2𝐻
 =1 (∑ 𝛹 𝑒

𝑁
 =1

)
2

≤ 𝑆 𝑒 (4.43)

where 휁 = Φ−1(1 − 𝑝) and Φ−1 is the inverse function of the normal CDF.

From [71], we note that LHS of the above constraint may be bounded as follows,

∑ ∑ 𝛹 𝑒

𝑁
 =1

𝐻
 =1 + 휁√∑ 𝜎

2𝐻
 =1 (∑ 𝛹 𝑒

𝑁
 =1

)
2

≤

∑ [(+ 휁𝜎)∑ 𝛹 𝑒

𝑁
 =1

]𝐻
 =1 (4.44)

We decided to use the above upper bound in inequality (4.44) in order to eliminate the

nonlinearity introduced by the square-root function, which results in,

∑ [(+ 휁𝜎)∑ 𝛹 𝑒

𝑁
 =1

]𝐻
 =1 ≤ 𝑆 𝑒 (4.45)

In the previous sections, power consumption of a type t server is assumed to be

constant denoted by . In fact, power consumption of a server is random and depends on

processing utility, I/O, load, memory usage etc. Let denote power consumption of a

type t server. From [66], has a general probability distribution and varies in the range

[0 5] with mean and standard deviation denoted by 𝜔 𝛿 . When total power

consumption, reaches to 96% of rated capacity at rack level or 72% at data center

level [74]), then system failure, overheating, circuit break tripped may occur. It is better

to avoid high power consumption at the rack level in order to prevent such a malfunction.

As a result, we introduce the following constraint,

 88

 𝑟 (∑

 =1 ∑ 𝑒

 𝐽
 =1

> 𝑒) ≤ 𝑝 (4.46)

Where 𝑒 denotes the power supply of rack e on PoD . From the Central limit

theorem we can assume that the total power consumption at the rack level has a Gaussian

distribution. Similar to the analysis that has been done to find Eq. (4.45), Eq. (4.46) can

be linearized as follows,

∑ 𝜔 ∑ 𝑒
 𝐽

 =1

 =1 + 휁 ∑ 𝛿 ∑ 𝑒

 𝐽
 =1

 =1 ≤ 𝑒 (4.47)

Hence, the optimization problem has to consider uncertainty of computation and

communication. The new optimization problem has two more constraints namely (4.45)

and (4.46). These constraints provide margin against power failure and link congestion

and therefore, leads to a more reliable system.

4.4 Dynamic Job Scheduling

In this section, we would like to study job scheduling with optimization of power

consumption as a function of time. As a result, it will be assumed that time-axis is slotted

and VMs are assigned to jobs in units of slot times. We will assume that arrival of jobs to

the system is according to a Poisson process, though the analysis is applicable to other

arrival processes. The new arriving jobs during the present slot and leftover jobs from the

present slot will be scheduled for service in the next slot. We will consider two types of

service disciplines, a job either releasing its assigned VMs simultaneously or individually

according to Bernoulli trials at the end of each slot. In the former case, a leftover job will

require full complement of its VMs and in the latter case a subset of the VMs it’s

currently holding. At the beginning of the next slot, the system will schedule the new

arriving jobs and the leftover old jobs from the previous slot such that power

consumption is minimized. For the scheduling of leftover jobs, there are two options

depending whether or not VM migration is allowed. If VM migration is allowed, then

leftover jobs are scheduled like the new jobs, on the other hand, if no migration is

allowed then the new jobs can only be scheduled to VMs not utilized by the leftover jobs.

As a result of migration, the system may end up in a state that consumes less power,

 89

however, migration has communication and processing overhead that optimization needs

to take into account. Let 𝐺 denote normalized power consumption cost of migration of

type r VMs. Optimization will allow VM migration if power saving due to migration

offsets the cost of migration. As a result, the optimization may result in partial VM

migration.

We consider dynamic resource allocation model with and without VM migration. Since

jobs release their VMs according to Bernoulli trials, number of leftover jobs to the next

slot will be a random variable with Binomial distribution. However, for simplicity we

will assume that number of leftover jobs is a constant given by the mean of the Binomial

distribution. Let
′ denote number of the type h leftover jobs from the current slot and

 total number of jobs to be scheduled in the next slot, which include both leftover as

well as new arriving jobs. We note that ≥
′ and ∈ (1

′) and the first

′ jobs in the set correspond to the leftover jobs from the current slot. Next, we will

develop both dynamic ILP and CG models.

 4.4.1 Dynamic ILP Model

First, we will consider the job scheduling that allows VM migration. Let us consider

 job, which is in the system in the current slot and will continue to receive service in

the next slot. Let ′

 ,

 denote the number of type r VMs assigned to this job over

the type t server during the current and next slots respectively. Based on the new

notation introduced in Table. 4, we define the following binary variable,

𝛽

 = {
 1 f

 − ′

 < 0

 0
 (4.48)

The value of 𝛽

 shows whether type r VMs required by job have migrated or not.

In the case of VM migration from this type of server, then

 < ′

 and 𝛽

 will

have a nonzero value and in all other cases a zero value. The objective function of this

optimization problem will be given by,

 [(4 19) + ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝐺 𝛽

 |

 − ′

 | ∈𝑎

 =1

𝑑
𝑒=1

𝐿
 =1

𝑅
 =1

𝑁

 =1
 𝐻

 =1]

 90

where absolute value of (

 − ′

) corresponds to number of VM migrations. In the

above, migration of a VM will be allowed if it results in power saving larger than power

cost of migration.

Table 4.4 Parameter/Variable Definitions for Dynamic Job Scheduling

Parameters Definitions

 ′

 number of type r VMs of server assigned to serve job at the current time slot.

′ total number of current type ℎ jobs

𝜈′

 number of type r VMs required by job at current time slot left in the system.

 ′

 number of type r VMs serving job on a type t server with pattern at current time slot

 ′
 𝑒
 number of active type t servers with pattern in the rack of pod at the current time slot.

 ′
 𝑒
𝑓

Binary parameter represents whether type t server on rack e in pod which has pattern

at current time slot is active or not.

𝐺 power consumption related to the migration of type r VMs

𝐼 Number of iterations among RMP and pricing problems to find the best cutting patterns

𝐷𝑠𝑢𝑏 expectation of the time required to solve a sub-problem

𝐷𝑀 expectation of time required to solve the relaxed RMP

𝐷𝐼 time required to convert RMP relaxed LP to ILP optimal solution.

𝐼

number of VM type r for type ℎ jobs over the server type t in pattern 𝐼 introduced by

initialization

Different VM types demanded by type ℎ jobs.

 Job scheduling without VM migration can be achieved by setting 𝐺 to a very large

value. This will prevent migration as its cost cannot be offset by any power saving. As a

result, old jobs will preserve their VM assignments.

Finally, we have to add the following constraints into the problem in order to linearize

equation (4.48),

 − ′

 + 휃𝛽

 < 1 (4.49)

 − ′

 + 휃𝛽

 ≥ 0 (4.50)

Where (4.49), (4.50) are ∀ 𝑟 ∈ {1 … } ∈ {1 … } 𝑡 ∈ {1 … 𝑇} ∈

{1 … } ℎ ∈ {1 … 𝐻}

 91

4.4.2 Dynamic Column Generation Model

As in the above, first let us consider job scheduling with VM migration. Assume that

 job is in the system in the current slot and will continue to receive service in the

next slot. Let ′

 ,

 denote the number of type r VMs assigned to this job over the

th

 pattern during the current and next slots respectively. Similarly, ′
 𝑒
𝑓 , 𝑒

𝑓 are

binary variables indicating whether f
th

 type t server on rack e in pod ℓ is active and has

pattern during the current and next slots respectively. In this model, we define the

binary variables 𝛽 𝑒

𝑓
 that show whether or not r type VMs required by job have

migrated or not from a server as follows,

𝛽 𝑒

𝑓
= {

 1 𝑓 ∑ (

 𝑒
𝑓 − ′

 ′
 𝑒
𝑓)

𝐽
 =1

 < 0

 0 𝑜𝑡ℎ𝑒𝑟𝑤 𝑠𝑒
 (4.51)

We note that the summation in the above allows the use of a different pattern at the

server as long as it preserves the number of VMs assigned by the original pattern to this

job. The objective function of this optimization problem is given by,

 [(4 27) +

∑ ∑ ∑ 𝐺 ∑ ∑ ∑ ∑ 𝛽 𝑒

𝑓 ∑ |

 𝑒
𝑓 − ′

 ′
 𝑒
𝑓 |

𝐽
 =1

𝑀

𝑓=1

 =1

𝑑
𝑒=1

𝐿
 =1

𝑅
 =1

𝑁

 =1
 𝐻

 =1]

 (4.52)

 As in the previous subsection, job scheduling without VM migration can be achieved

by setting 𝐺 to a very large value. Finally, similar to the previous subsection, we have to

add the following constraints to the problem in order to linearize Eq. (4.51),

∑ (

 𝑒
𝑓 − ′

 ′
 𝑒
𝑓)

𝐽
 =1

+ 휃𝛽 𝑒

𝑓
< 1 (4.53)

∑ (

 𝑒
𝑓 − ′

 ′
 𝑒
𝑓)

𝐽
 =1

+ 휃𝛽 𝑒

𝑓
≥ 0 (4.54)

where (4.53), (4.54) are ∀ 𝑟 ∈ {1 … } 𝑓 ∈ {1 … 𝑒
 } 𝑡 ∈ {1 𝑇} ∈

{1 … } ℎ ∈ {1 … 𝐻}.

 92

4.5. Optimization Structure and Complexity Reduction

In addition to the complexity of the search region and large scale of the number of

variables, computing time constraint is also an important factor which has to be taken

Fig. 4.2 Optimization Module Structure

Expected
Load (N)

Pricing
Problem

1st

Pricing
Problem

Tst

RMP

Pattern Set
Initialization

Column
Generation

Heuristic
Rounding

All Reduced Cost
Functions <0

Master Dual

LP Optimal
Solution

yes

No

N
e

w
 P

a
tt

e
rn

 o
f

ty
p

e
 T

 S
e

rv
e

rs

Optimal
Configuration

N
e

w
 p

a
tte

rn
 o

f
typ

e
 1

 se
rve

rs

 93

into account. As discussed earlier, we have used the CG technique to solve the

optimization problem. The aforementioned optimization problem cannot be solved in a

plausible short time frame. Hence, we are interested in steps that will reduce the

computing time.

The main optimization problem consists of several sub-problems: RMP, T pricing sub-

problems and the problem of finding the exact ILP solution from the relaxed LP-solution

of RMP. Let 𝑇𝑠𝑐 denote the amount of time it takes to solve the optimization problem

using CG technique. 𝑇𝑠𝑐 may be expressed in terms of new variables 𝐼 𝐷𝑀 𝐷𝑠𝑢𝑏 𝐷𝐼

introduced in Table. 4 as follows,

𝑇𝑠𝑐 = 𝐼(𝐷𝑀 + 𝑇𝐷𝑠𝑢𝑏) + 𝐷𝐼

𝑇𝑠𝑐 may be reduced through the following steps:

1- Reduction of the number of iterations, I, by offline initialization.

2- Simultaneous, instead of sequential, execution of sub-pricing problems that results

in replacing T by 1 in the expression.

3- Reduction of computing time to find the ILP solution from the LP-relaxed

solution, 𝐷𝐼 , through the use of a proposed heuristic.

Figure 4.2 depicts the proposed optimization platform. Given a number of different

types of jobs, first, we solve the offline optimization problem explained in subsection

4.5.1 for each server type to obtain initial server configuration patterns. Then, RMP is

initialized with these patterns. RMP is solved using the barrier optimizer, which applies a

primal-dual logarithmic algorithm to determine the optimal solution. The solution yields

the dual vector of variables to the pricing problems.

The pricing problem in (4.12), (4.13) is solved for different server types, which

introduces a new set of patterns to the RMP. Pricing problems use branch and cut

algorithms to solve the integer programming problems. As long as values of the reduced

cost functions are positive, the algorithm (collaboration among RMP and pricing

problems) continues, but once the reduced cost functions all together become negative,

the pricing problem terminates and does not introduce any new candidate pattern set to

the RMP. Instead of using the branch and bound technique, we use a heuristic rounding

algorithm explained in Subsection 4.5.2 to find the ILP solution from the relaxed LP

 94

solution of the RMP.

4.5.1 CG Initialization

We use offline initialization to reduce computation time for the solution of the

optimization problem. Without initialization, in the first iterations, the RMP does not

contain adequate columns to provide beneficial dual information to pricing sub-

problems [76]. An appropriate initialization helps to reduce number of iterations RMP

and pricing problems to reach to the solution through introduction of optimum patterns.

Optimum patterns maximize resource utilization of active servers. We use the notation

introduced in Table. 4.4 and define the initialization (optimization) problem as follows,

 𝑎 ∑
𝐼

 𝑅
 =1 (4.55)

ST. ∑
𝐼

 𝑅
 =1 ≤

 ∀ ′ ∈ {1 … 𝐾} (4.56)

We solve this problem for each { 𝑡 ℎ} and find the best 𝛶 patterns for different

types of jobs. Then, for a type t server we will have 𝛶 𝐻𝐾 initial patterns. To obtain

 𝐼 s, which are introduced in the previous sections and are related to the initial pattern

𝐼 ,
𝐼 is assigned to a type h job while other jobs are set to zero. Hence, for each

𝐼

vector there would be different patterns. Thus, initial number of patterns for server

type t will be equal to ∑ 𝛶 𝐾
𝐻
 =1 . So in the proposed initialization, we may have

separate candidate patterns for each job. After collaboration of the pricing problems and

RMP, new patterns that consider different jobs in a server will be introduced by pricing

problems.

4.5.2 Heuristic Rounding Termination Algorithm

As mentioned earlier, LP problem (solvable in polynomial time) has less complexity

compared to ILP problem (NP-hard optimization problem). In the CG solution of our

optimization problem, RMP is LP and pricing problems are ILP type. As a result, we need

to determine the optimal ILP solution of the RMP from its relaxed LP solution following

the termination of the iterative process. Typically, this is done through the branch and

 95

bound algorithm [63], which is time consuming. In the following, we propose a heuristic

method to find the ILP solution from the relaxed LP solution that satisfies the scheduling

time constraint [76], [77]. The proposed method will round up and down the values of the

scheduling variables, 𝑒
 , in the relaxed LP solution [75], [78]. This operation will be

carried out after 𝑒
 have been sorted according to their priorities. 𝑒

 s more likely to

be rounded down will be given higher priority. Following this operation, it is possible that

all the servers of a rack will become inactive in that case ToR switch serving to that rack

will be turned off to save power.

First, let us define e as the set of scheduling variables for the rack 𝑎 𝑒,

𝑠 𝑒 = { 𝑒
 ∈ {1 … } 𝑡 ∈ {1 … 𝑇}}

and define set S as the set with its elements given by the subsets e as given below,

 𝑆 = {𝑠 𝑒|1 ≤ 𝑒 ≤ 𝑑 1 ≤ ≤ 𝐿}

Next, we split S into two mutually exclusive subsets,

𝑆 = {𝑆1 𝑆2}

where 𝑆1 consists of all 𝑠 𝑒 whose elements have values strictly less than one and S2

otherwise. The elements of 𝑆1 denote potentially inactive racks, while elements of S2

active racks. From the above definition, elements of 𝑆1is given higher priority than S2 in

rounding operation.

First, we sort set 𝑆1 according to the number of active servers in a rack,

∑ ∑ 𝑒
 𝐽

 =1

 =1 , in ascending order. Thus, the number of active servers in elements of 𝑆1

will increase from left to right. We note that the order of the elements of S2 isnot

significant for rounding operation.

Next, we sort scheduling variables, 𝑒
 , within each 𝑠 e wrt two performance

measures in ascending order. These performance measures are efficiencies of server types

(t) and patterns (). First, 𝑒
 will be sorted according to server type efficiency. Then,

the ties among 𝑒
 with the same service type will be broken through sorting according

to pattern efficiency. Next, we explain each of these sorting algorithms.

i) Server Type efficiency-based sorting:

 96

Depending on the job load some resources become critical and may become

performance bottleneck [80], [81]. As a result, we first sort resources according to their

criticalities. For a given job load, let Lkdenote the total demand for resource type k,

𝐿 = ∑ ∑ ∑

 𝑅
 =1

𝑁
 =1

𝐻
 =1 ∀ ∈ {1 … 𝐾}

Then, the resource types may be ordered according to their criticality using the

following formula

 𝑎
𝐿

∑ 𝑀 𝑐

 (4.57)

Thus higher is the ratio of total demand to total amount of that resource in the

datacenter, then higher will be the criticality of that resource. Next, we define efficiency

of a server type with respect to resource type k as the ratio of (
 /) with higher value

indicating higher efficiency. Next, we order server types according to their efficiency for

the critical resource. In the case of a tie, server efficiencies wrt second critical resource

will be used to break down the ties and so on and so forth. System will prefer to use the

server types with higher efficiencies. Set for each rack will be sorted in ascending order

according to the efficiency of the server type of each element. The ties between the

elements having the same server type will be broken through pattern-based sorting.

ii) Pattern efficiency-based sorting:

The patterns of each server type will be sorted in ascending order according to their

resource utilization ∑ ∑ ∑

 𝑅

 =1
𝑁
 =1

𝐻
 =1 . The sorting function is illustrated in

Algorithm 4.1.

 97

Algorithm 4.1. Terminating the optimization (non-Integer to Integer Conversion)

Data : optimal LP values of 𝑒
 s

Result : Integer Values of 𝑒
 s

1 For =1 :L and 𝑓𝑜𝑟 𝑒 = 1 𝑑

2 Find (𝑒)| ∀ 𝑡 ∈ {1 … 𝑇} ∈ 𝑒
 ≤ 1

3 Prioritize servers in 𝑆1

Case 𝑆1

 Prioritize 𝑠 𝑒s according to min(∑ ∑ 𝑒

 ∈𝐽

 =1)

4 Sort 𝑒
 according to the type ();

5 For t=1:T

 Sort servers according to the patterns(); end

Case 𝑆2

6 Sort 𝑒
 according to the types();

7 For t=1:T

8 Sort servers according to the patterns(); end

9 Round up all the 𝑒
 s;

10 For all 𝑒
 s

 𝑒
 = 𝑒

 − 1 ;

 If ∑ ∑ ∑ ∑ (
) 𝑒

 ∈𝐽

 =1

𝑑
𝑒=1

𝐿
 =1 <

 𝑒
 = 𝑒

 + 1 end

 Go for the next highest priority 𝑒

Following the completion of sorting, all the 𝑒
 s within the set S have been assigned

priority with the first element of the set having the highest priority in rounding down

operation. First, we round up all the 𝑒
 variables is the set S with non-integer values.

Then, rounding down operation is applied from the highest to lowest priority 𝑒
 s one

by one. In this operation, each 𝑒
 is decremented by one if the demand constraints are

not violated. Steps 4 and 6 can be done offline such that all the server types are sorted

according to
 / . The complexity order of the mentioned algorithm is approximated

by,

 𝑂(∑

 =1 ((𝑙𝑜𝑔(∑

 =1)))

in which and are number of type t servers, number of jobs, number of VM

types and number of pattern of type t servers respectively.

(∑

 =1 (𝑙𝑜𝑔(∑

 =1)) is due to the sorting part and ∑

 =1 is because of

 98

the checking the demands constraints part.

4.6 Numerical Results

In this section, we present some numerical results regarding the analysis in this

chapter. Numerical results plot a performance metric either at a random time or as a

function of discrete time. In the first case, number of jobs is assumed to be either a

constant or a variable. In the latter case, new jobs arrive to the datacenter according to a

Poisson process.

We compare performance of our optimum resource allocation algorithms with two

heuristic scheduling methods namely deterministic and random. The deterministic

method is similar to the scheduling algorithm proposed in section 3.3 of chapter 3 that

assigns a job to the PoD and rack with the smallest index number that also has enough

idle resources to serve the job. In the random method, each VM of a job is placed to a

randomly chosen rack of a PoD with enough idle resources given that communication

demand does not violate the link capacities; otherwise a new rack is randomly chosen for

the placement of VM.

IBM ILOG CPLEX is used as a platform to model and solve the optimization

problems. We assume a datacenter with the topology shown in Fig. 4.1. We presume that

the datacenter has 4 PoDs and each PoD having 25 racks. In consonance with [82], we

assumed that each rack contains 40 to 80 servers and racks of each PoD has the same

server composition. It should be noted that solution of the IQP model always gives the

exact results. However, for large scale datacenters, finding the global optimum point of

the IQP becomes overly complex and time consuming.

Next, we present the parameters of the system used in generation of numerical results.

i) Servers and Server Types

Table 4.5a presents number of servers per server type per rack at each PoD. Table 4.5b

shows number of servers per server type per PoD, which is obtained by multiplication of

each entry of Table 4.5a by 25. Considering Amazon instances and Google clusters, we

consider T=12 server types with two resource types, CPU cores and memory. Table 4.6

 99

presents the amount of resources and power consumption of each server type.

Table 4.5a No. of servers per type per PoD

PoD No() Server

type(t)
 =1 =2 =3 =4

1 300 0 550 150

2 100 0 200 200

3 150 0 200 150

4 200 0 150 150

5 300 0 200 0

6 200 0 100 100

7 0 300 0 700

8 0 250 0 250

9 0 150 0 100

10 0 50 0 200

11 0 250 0 0

12 0 100 0 0

Total No.

of servers

1250 1100 1400 2000

Table 4.5b. No. of servers per type per rack

 𝑒
 ->

 𝑡
 =1 =2 =3 =4

1 12 0 22 6

2 4 0 8 8

3 6 0 8 6

4 8 0 6 6

5 12 0 8 0

6 8 0 4 4

7 0 12 0 28

8 0 10 0 10

9 0 6 0 4

10 0 2 0 8

11 0 10 0 0

12 0 4 0 0

No. of Servers 50 44 56 80

 100

Table 4.6 Characteristics of Server types

Index (t)

Model
No. of

Cores 1

Memory

 2

No. of

PMs

Power Supply

𝜔 𝛿

1 Dell PE T110 4 16GB 1000 350W 200W, 20W

2 Dell PE T410 8 128GB 300 580W 400W, 20W

3 Dell PE M910 32 512GB 200 2750W 1500W, 100W

4 Dell PE R810 16 512 GB 250 2200W 1200W, 100W

5 Dell PE M915 64 1TB 100 2750W 1500W, 100W

6 Dell PE R910 40 2TB 150 3000W 1500W, 100W

7 HP DL320e Gen8 4 32GB 1000 350W 200W, 20W

8 HP DL360e Gen8 8 384GB 500 750W 400W, 50W

9 HP DL380p Gen8 8 768GB 250 1200W 700W, 50W

10 HP DL360 G7 4 768GB 250 1200W 700W, 50W

11 HP DL385p G7 16 768 GB 150 2000W 1200W, 100W

12 HP DL370 G6 16 2 TB 100 2300W 1150W, 100W

ii) Communication Network Parameters

Network power consumption parameters, 𝐷 𝑒 and 𝑆 𝑒 , are the same as discussed

in [83], [84] and [85]. We also assume that dynamic power consumption of a NIC is

given by WNIC = 0 6 m c W. ToR switches offer a combination of internal (int) and

external (ext) interfaces. The internal interfaces connect to NIC of the blade-servers while

the external interfaces connect to Core switches. It is assumed that internal and external

interfaces support up to 10 Gbps and 40 Gbps respectively. Table 4.7 presents the

performance characteristics of the chosen switches for the network structure.

Table 4.7. Specification of Typical Switches

Name
Switch

Type
Data Rate No.

Power

(static)

 𝑆
 𝑜𝑅/𝐶𝑆

Power

(Dynamic)

 𝐷 𝑒
 𝑜𝑅/𝐶𝑆

NEC

IP8800
ToR

10 GbpS int

40GbpS ext

100

25W 65 a /

HP

A12500

Core

Switch
200Gbps 4 200W 10 a /

iii) Parameters of VM Types

 101

We presume that number of VM types is R=18 with their resource requirements given

in Table 4.8. Resources of VMs consist of number of CPU cores and amount of memory.

It is assumed that each physical core of a CPU is utilized as a virtual CPU (vCPU). In

order to balance CPU, memory and network resources, Amazon t2 and m3 series are

appropriate for many applications and servers, Microsoft SharePoint, and enterprise

applications. c3 series with higher ratio of vCPU to memory represent compute-

optimized Amazon instances which are appropriate for high-traffic web sites, on-demand

batch processing, distributed analytics, web servers, and high performance science and

engineering applications. r3 series represent memory optimized amazon instances and are

recommended for memory bound applications such as high performance databases and

distributed cache, in-memory analytics, genome assembly, and larger deployments of

SAP. cg1 and g2 are also considered for game streaming, video encoding, 3D application

streaming and other server-side graphic workloads.

Table 4.8 VM Types

Type (r) Model vCPU(
1) Mem (GiB) (

2)

1 t2.micro 1 1
2 t2.small 1 2
3 t2.medium 2 4
4 m3.medium 1 3.75
5 m3.large 2 7.5
6 m3.xlarge 4 15
7 c3.large 2 3.75
8 c3.xlarge 4 7.5
9 c3.2xlarge 8 15
10 c3.4xlarge 16 30
11 c3.8xlarge 32 60
12 r3.large 2 15.25
13 r3.xlarge 4 30.5
14 r3.2xlarge 8 61
15 r3.4xlarge 16 122
16 r3.8xlarge 32 244
17 g2.2xlarge 8 15
18 cg1.xlarge 16 22.5

iv) Parameters of job types

We assume that the number of job types equals to H = 9. Table 4.9 presents

 102

requirements and appropriate applications for each job type. It may be seen that with

increasing job type h value, requirements for one or more of the following resources also

increases, the number of VMs, VM sizes and VM traffic rates. Thus jobs with higher h

type have higher resource demands. The type of each job is determined probabilistically

according to 𝛼 values given in the table. We assumed that arrival rates of job types are

an inverse function of their demand requirements. A job belonging to each type may

request VMs with different types. From Amazon recommendations in [69] and [70], the

table presents types of VMs for each job type. As given in the table, the number of VMs

required by a job is either a constant 𝐶 or a uniformly distributed random number

between and 𝑎 for type h jobs.

After determining the type of a job and the number of VMs it requires, the next step is

determination of the types of its VMs. The type of each VM of each job type is

determined probabilistically according to the percentages given in the table.

We assume that the traffic rate between two VMs of a job type is either a random

variable or a constant. In the former case, we assumed that traffic rate for each job type

has a Gaussian distribution with the mean and standard deviation given in the table. In the

latter case, the traffic rate for each job type is a constant that equals to the mean of the

Gaussian variable.

We considered both individual and simultaneous VM release service disciplines for a

type h job at the end of a slot according to a Bernoulli trial with probability 𝜌 . Then, we

assume that 𝜌 =0.3 ∀ ℎ ∈ {1 … 𝐻}.

Finally for the power constraint in the probabilistic model, we assume that power

supply of a rack is given by e = 25kW [74]. We assumed that power overloading

probability of the racks should be less than p=0.02.

 103

Table 4.9 Jobs Types and their Requirements

Inde

x (h)

Job
Types

VM Type
VM types
Percentage

𝐶

− 𝑎

𝛼

Traffic
rates,

𝜔 𝜎

(Mbps)

1

General
Processi
ng Jobs

t2.micro,
t2.small,

t2.medium
,

m3.mediu
m,

m3.large,
m3.xlarge

30%
20%
20%
10%
10%
10%

10

1-20 0.46 3, 0.2

2

Graphic
al

Processi
ng Jobs

g2.2xlarge,
cg1.xlarge

%70
%30

50

10-100 0.02 3, 0.2

3
Scientifi
c Jobs 1

c3.large,
c3,xlarge,

c3.2xlarge,
c3.4xlarge,
c3.8xlarge

30%
30%
20%
10%
10%

100 10-200 0.02 0.7, 0.05

4
Scientifi
c Jobs 2

r3.large,
r3,xlarge,

r3.2xlarge,
r3.4xlarge,
r3.8xlarge

30%
30%
20%
10%
10%

100 20-200 0.02 0.7, 0.05

5
Scientifi
c Jobs 3

m3.mediu
m,

m3.large,
m3.xlarge

50%
30%
20%

100

10-200 0.02 12, 2

6
Web

Services

m3.mediu
m,m3.larg
e, 3.xlarge
+c3.large,
c3,xlarge,

c3.2xlarge,

50%
30%
20%

+
50%
30%
20%

10

+

10

1-20
+

0-20
0.4 5, 0.5

7
Data

Search

m3.xlarge,
r3.large,

r3,xlarge,
r3.2xlarge,
r3.4xlarge,
r3.8xlarge

30%
20%
20%
10%
10%
10%

100 10--
200

0.02 1, 0.1

8

Enterpri
se

Infrastru
cture

Services

t2.micro,t2

.small,
t2.medium

,
m3.mediu
m,m3.larg
e, 3.xlarge

30%
20%
20%
10%
10%
10%

100
5-200

0.02 3, 0.5

9
Peer 2
Peer

Services

c3.large,c3
,xlarge,c3.
2xlarge,

c3.4xlarge,
c3.8xlarge

+

r3.large,r3,
xlarge,r3.2
xlarger3.4

xlarge,
r3.8xlarge

30%, 30%,
20%, 10%

10%
+

30%, 30%
20%, 10%

10%

100

+

50

5 -100
+

5- 100
0.02 10, 1

 104

Fig. 4.3 presents optimal power consumption of the datacenter with Poisson arrival of

new jobs as a function of the number of time slots. For these results, we assumed constant

server power consumption and deterministic traffic rates between VMs. We considered

optimization both with/without VM migration of the leftover jobs with individual VM

release service discipline. For the VM migration scheme, we assumed zero power cost for

migration. In this figure, we also plot consumption of the deterministic heuristic. Optimal

power consumption with migration is lower compared to the without VM migration, once

we have zero cost VM migration. We note that power consumption varies as a function of

time because of the random job arrival process. It may be seen that there is a significant

power usage gap (100KW) between optimal and heuristic algorithms power consumption,

which shows value of the optimization.

Fig. 4.4 shows number of active racks as a function of the time for the two schemes, as

expected VM with migration results in lower values compared to without migration

scheme. For the same system, Fig. 4.5 plots optimal power consumption of the datacenter

as a function of time for both with/without VM migration schemes with simultaneous

VM release service discipline. As may be seen power consumption of the two schemes

are closer to each other compared to individual VM release service discipline.

Figure 4.6 shows the cumulative distribution function (CDF) of bandwidth demand for

the ToRS-CS links between the racks and core switches for fixed number of jobs in the

datacenter, N=350 jobs. CDF resulting from the optimization is given both for

deterministic and random traffic rates with Gaussian distribution between two VMs. It

may be seen that probabilities for a given demand is 18% or more less for the random

than deterministic traffic rates due to statistical averaging. The figure also plots CDF of

the bandwidth demand for the random placement of the VMs of a job in the datacenter

without optimization of power consumption. The random heuristic results in higher

communication demand than the optimized placement of the VMs. It may be seen that

probabilities for a given demand is 45% or more higher for random than optimized

placement of the VMs.

Figure 4.7 shows the number of active servers as a function of the number of jobs in

the datacenter with number of VMs in each job type as a constant parameter. Results have

been plotted for the 𝐶 𝑎 values of the parameter. For 𝑎 results

 105

have been plotted only for constant VM traffic rates, while for 𝐶 for both constant and

random traffic rates. As depicted, the number of active servers increases exponentially. It

is rationally related to the lack of high performance servers as jobs increase. Hence more

number of the servers is required to serve the jobs. Moreover upper and lower number of

VMs for each type of jobs also has been considered in order to investigate the impact of

number of demanding VMs on number of required PMs. As demonstrated in Figure 4.7,

for the maximum number of VMs, system cannot support more than 250 jobs. Hence, for

the same number of jobs, different number of VMs may change the required PMs

dramatically. Moreover, due to the high communication rate among VMs of jobs, it is

observed that for a fixed number of loads in terms of VMs, lower number of jobs with

higher number of VMs per job requires more number of servers compared to the case of

having higher number of jobs with lower number of VMs. In other words, smaller

numbers of jobs with bigger number of VMs require more infrastructures with higher

bandwidth which may lead into usage of bigger number of the servers. Furthermore,

considering the probabilistic case, due to the reservation of the bandwidth for random

traffic, the bandwidth usage becomes more critical and number of the servers required to

serve the jobs is more than the case with a fixed traffic. Also, the constraints on power

usage and external bandwidth of racks may cause activation of less efficient servers

leading to a larger number of active servers. However, in a probabilistic case reliability

and resistance against congestion will be higher, which prevent latency and rack power

failure.

 Figure 4.8 plots the total power consumption as a function of the number of jobs in the

datacenter for optimal and random placement of the VMs of a job. For optimal placement

of VMs, results have been plotted both for constant and random server power

consumption cases, while for random placement only for constant server power

consumption. Random allocation algorithm allocates VMs in DC randomly. As it shown,

there is huge power usage gap (5MW) between maximum constant optimum resource

allocation and random algorithm and (1MW) between maximum constant optimum

resource allocation and deterministic heuristic for half loaded DC which shows we can

achieve the optimal solution for power saving by using the proposed optimal resource

allocation method.

 106

Figure 4.9 also presents the number of active racks for different PoDs as a function of

number of jobs in the datacenter. It may be seen that the number of active PoDs increases

with the job load. Similarly, the number of active racks in an activated PoD increases

almost linearly with the job load. Thus optimization keeps only needed number of PoDs

and racks active to serve the job load and others are turned off.

Figure 4.10 compares optimal results gap of CG using heuristic termination. As it

depicted, the optimality gap (objective difference over objective optimal value) among

the CG using heuristic termination results is less than %0.01 percent for N=50. Hence,

the difference between our proposed heuristic method and branch and bound method is

negligible and we can say it is less than half a percent of the optimal value. However, it is

possible to face a bigger optimality gap for larger values of N.

We also examined the quality of the obtained solutions. In Table 4.10, the difference

among values of the objective functions of CG/Proposed rounding, IQP are represented.

Moreover, results of random rounding algorithm of the relaxed CG RMP solution is

considered to represent the upper bound for the performance of our optimization model.

It can be seen that the optimality gap between the exact results and upper bound is up to 6

% and the gap between the solution of CG/proposed rounding and that of the IQP is less

than 1% for N<50. The optimality gap of CG/proposed rounding and the upper bound is

attributed to the heuristic nature of the methodology followed for mapping the pure

relaxed solution to the integers. This shows that the better and more effective

employment of the relaxed to integer conversion results in smaller optimality gap.

 Next, we look at the run time of the optimization models in Table 4.11. It can be noticed

that as the workload (number of jobs) in the datacenter increases, the runtime of both IQP

and CG increase. However, the runtime of the IQP grows exponentially while that of CG

almost linearly due to the fact that CG scan much smaller number of configurations.

 107

 Fig. 4. 3. Optimal power consumption with/without VM migration and power consumption of

heuristics with VM migration (with independent VM release time) as a function of time.

 Fig. 4.4. Number of active racks as a function of time with/without VM migration with

independent VM release time.

 108

Fig. 4. 5. Optimal power consumption as a function of time with/without VM migration with

simultaneous VM release time.

Fig. 4.6. Numerical results of CDF of ToRS to CS links of different models for N= 350,

 109

Fig. 4. 7. Number of active servers as a function of total number of jobs in the DC.

Fig. 4. 8. Optimum power consumed in DC as a function of total number of jobs in the DC

 110

Fig. 4. 9. Number of Active Racks in each PoD as a function of number of jobs

Fig. 4. 10 Numerical results of optimality gap for CG using proposed heuristic rounding method

 111

Table 4.10 Comparison of values of the objective functions among IQP, CG/ Proposed Rounding and

CG/Random Rounding

Optimization Method Value of the objective for different N

 10 20 30 40 50

IQP 16.92 29.2 49.2 92 422

CG/Proposed Rounding 16.95 29.25 49.95 92.35 426.5

CG/Random Rounding 20.7 36.85 59.6 121.5 453.3

Table 4.11 Comparison of the run time between IQP and CG/proposed rounding

Optimization Method Run Time (hour) for different N

 10 20 30 40 50

IQP 8 31 78.2 111.3 169.2

CG/Proposed Rounding 0.3 1.7 4.5 8 13.2

4.7 Conclusion

In this chapter, we considered the optimization of resource allocation in a cloud

computing center. The objective of the optimization problem optimization was

scheduling of incoming workloads among servers such that total power consumption of

cloud computing center is minimized; both network and server power consumption have

been taken into account. First, we formulated energy efficient VM placement problems.

Then, a CG based algorithm is presented to determine the number, type and location of

the servers that should be used to serve the workloads in order to minimize power

consumption of the datacenter. Subsequently, we optimized VM placement problem

while there are still unfinished jobs from the previous timeslots. We developed a

technique to solve the optimization problem that allows full, partial and no migration of

VMs belonging to unfinished jobs. Finally, pattern initialization and heuristic termination

algorithms are proposed to reduce complexity of the optimization problem. Numerical

results show that the heuristic algorithm yields near to optimal solution under random job

arrival process. Optimal results show significant savings power consumption.

 112

Chapter 5

Conclusions and Future Work

In this chapter, we present the conclusions of the research done in this thesis and discuss

the future work.

5.1. Conclusions

In this thesis, we have studied performance modeling of cloud computing systems and

optimization of resource allocations in these systems. On the topic of performance

modeling, we have assumed Poisson arrival of jobs to the system, where a job may

consist of multiple numbers of tasks with each task requiring a virtual machine (VM) for

its execution. The studied models admit quite general job service time distributions. We

considered both constant and variable job sizes in the number of tasks during their service

times. In the case of constant job size, we allow different classes of jobs, which are

determined through their arrival and service rates and number of tasks in a job. In the

variable case a job generates randomly new tasks during its service time. The latter case

requires dynamic assignment of VMs to a job, which will be needed in the mobile cloud.

In both cases, the system is modeled using birth-death processes. In the case of constant

job size, we have derived joint distribution of the number of jobs from each class in the

system, job blocking probabilities and distribution of the utilization of resources as a

function of the job load under various scenarios for systems with both homogenous and

heterogeneous VMs. We have shown that joint distribution of the number of jobs in the

system depends on the job service times only through its mean value. We have

determined service fragmentation probabilities and have shown application of the derived

results in power management techniques under time-varying traffic loads. In the case of

 113

variable job sizes, we have determined distribution of the number of jobs in the system

and the average service time of a job for both infinite and finite resources systems.

Next we have studied optimization of resource allocation for a given cloud computing

center architecture. We have developed an optimization model that determines the job

schedule, which minimizes the total power consumption of the datacenter. It is assumed

that power consumption in a datacenter is due to communications and server activities.

We assumed a distributed model, where a job may be assigned VMs on different servers,

resulting in fragmented job service. In this model, communications among the VMs of a

job on different servers is proportional to the product of the number of VMs assigned to

the job on each pair of servers which results in a quadratic network power consumption

in the number of job fragments. We have applied the CG method to solve this

optimization problem for large scale colud computing systems in conjunction with two

different algorithms that reduces the complexity and the amount of time it takes to obtain

the solution. We have also investigated the impact of stochastic communication rate and

computation level on the optimization of resource allocation. Afterwards, we have

extended the model to the periodical application of the optimization problem. The

extended model solves the optimization problem at discrete-time instants where the load

includes new arriving jobs in the present slot as well as unfinished jobs from the previous

timeslots. An important contribution of this thesis is development of a technique that

solves this optimization problem such that it allows full, partial and no migration of VMs

belonging to the unfinished jobs. Numerical results show that the proposed platform

yields an approximate optimal solution (optimality gap less than 2 percent) within a

limited computing time. The numerical results also show that optimal VM placement

results in significant power consumption savings. Thus the proposed optimization will

provide significant cost savings to the operators of cloud computing systems.

The main contributions of this thesis are published in [86] and [87].

5.2. Future Work

 114

Next, we present proposals for future research.

5.2.1 Performance modeling of cloud computing systems under

nonstationary conditions

The performance modeling in this thesis assumes equilibrium conditions in the cloud

computing system. However, the application workloads are time-varying, which results

in nonstationary resource demands over time. Thus, we propose to study performance of

cloud computing systems under nonstationary conditions. This may be achieved through

the prediction of the future workload through the use of historical data. The referenced

literature on forecasting includes a time series prediction of the status of distributed

system resources such as CPU and available memory based on historical information

captured throughout monitoring of the systems. Nevertheless, time series approaches

such as Linear Regression (LR) and Moving Window Average (MWA) are not powerful

estimators for load prediction. Non-stationary space of the job arrival process makes the

LR and MWA approaches too error prone. However, powerful estimators such as

Kalman, and particle filters may be used in the prediction of the workloads and available

resources. Then, the predicted load may be used to study nonstationary behaviour of the

system as a function of the system.

5.2.2 Performance Modeling of Cognitive Cloud Computing Systems

Cloud computing allows different services to be offered by the service providers in the

cloud. Among the provided services are access to interactive databases and some web

based applications. For these services, the service providers lease cloud resources for a

long period of time in order to meet QoS requirements of their users. However, as the

result of fluctuation in the total user load, some of the resources leased by the service

provider may be idle significant periods of time. The service provider may rent out these

resources to the secondary users on the condition that QoS given to the primary users of

the service provider is not affected. This could be achieved by giving pre-emptive priority

 115

to primary users over the secondary users. This problem is similar to the sharing of a

communication channel by the primary and secondary users in a cognitive radio system,

hence the name cognitive cloud computing system. We would like to study performance

seen by the secondary users in cognitive cloud computing system.

5.2.3 In Depth Study of VM Migration Policy

We propose an in depth study of the VM migration policy. There are three main

objectives of VMs migration in a cloud computing center: reduction of communication

network traffic over the DC, reduction of power consumption, and avoidance of server

failure. After the prediction of the mentioned events, VM migration policy should be

used to determine movement of the computation load away from irresolute servers to

other appropriate servers. We note that VM migration has a cost due to interruption of the

processing in the migrating VM (VM downtime), the additional power required for the

migration and increased communication network utilization. The downtime of VM

migration may be modeled as a random variable. The frequency of VM migration should

be limited to avoid high cost of VM migration.

In this thesis, we modeled the network considering communication amongst VMs

inside the DC. However, inter-traffic communication (out-of-band cloud signals) also

exists, which could be as important as the server power consumption and internal traffic

in the resource allocation and relocation processes of VMs.

As mentioned earlier, any VM migration causes a slight performance degradation of

the application hosted by the VM. The time needed to transfer the VM memory from the

source to the target server may vary from a few seconds up to two minutes in the worst

cases. As discussed earlier, each VM has a lifetime in the DC. So it is possible that there

is a VM existing in a network where its lifetime is going to end. In this situation it might

be preferable not to migrate the VM. So in addition to the traffic amongst VMs in the

cloud, their lifetime also has to be considered in order to make an optimum decision on

VM migration. For example, in the dynamic service demand case the amount of traffic

the VM will generate and communicate over the network should also consider job service

time, which has been calculated in this thesis. For calculating service time of a job, two

different scenarios where VMs service times are totally independent have been

investigated. In the scenario where VMs release the system simultaneously, this has been

 116

presented in this thesis. The other scenario is for a correlation between VM service times

of a job in the DC. Under these circumstances, it is possible to approximate the service

times of a job using the cross correlation of processes presented above.

 117

References

[1] P. Mell and T. Grance. "The NIST definition of cloud computing", National Institute of Standards

and Technology, vol. 53, no. 6, pp. 50, 2009.

[2] S. S. Islam, M. B. Mollah, M. I. Huq, M. A. Ullah, “Cloud Computing for Future Generation of

Computing Technology”, Proceedings of the 2nd IEEE International Conference on Cyber

Technology in Automation, Control, and Intelligent Systems, pp. 1-6. May 2012.

[3] D. Jeffrey, and S. Ghemawat. "MapReduce: simplified data processing on large clusters."

Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[4] T. White, “Hadoop: the definitive guide”, O'Reilly, 2012.

[5] C. Lam, “Hadoop in action”, Manning Publications Co., 2010.

[6] A. Berl, , E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Quan Dang, and K.

Pentikousis. "Energy-efficient cloud computing." The computer journal, vol. 53, no. 7, pp. 1045-

1051, 2010.

[7] M. Alicherry, T.V. Lakshman "Network Aware Resource Allocation in Distributed Clouds",

Proceedings of IEEE INFOCOM, pp. 963-971, 2012.

[8] X. Meng “Improving the scalability of datacenter networks with traffic-aware Virtual Machinne

placement”, Proceedings of INFOCOM, pp. 1-9, 2010.

[9] S .T. Maguluri, R. Srikant, L.Ying, “Stochastic Models of Load Balancing and Scheduling in

Cloud Computing Clusters”, Proceedings of IEEE INFOCOM, pp. 702-710, 2012.

[10] A. Stolyar, “An infinite server system with general packing constraints”, Operations Research

Journal, vol. 61, no. 5, pp. 1200-1217, 2013.

[11] H. Khazaei, J. Misic, and V. B. Misic. "Performance analysis of cloud computing centers using

M/G/m/m+ r queuing systems." IEEE Transactions on Parallel and Distributed Systems, vol. 23,

no 5, pp. 936-943, 2012.

 118

[12] H. Khazaei, J. Miˇsi´c, V. B. Miˇsi´c, and S. Rashwand, “Analysis of a pool management scheme

for cloud computing centers,” IEEE Transactions on Parallel and Distributed Systems, vol. 99, no.

5, pp. 849-861, 2012.

[13] H. Khazaei, J. Miˇsi´c, V. B. Miˇsi´c, “Performance of cloud centers with high degree of

virtualization under batch task arrivals”, IEEE Transactions on Parallel and Distributed Systems,

vol. 24, no. 12, pp. 2429-2438, 2013.

[14] D. Bruneo, “A Stochastic Model to Investigate Data Center Performance and QoS in IaaS Cloud

Computing Systems”, IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 3, pp.

560-569, March 2014.

[15] B. Yang, F. Tan, Y. Dai, “Performance Evaluation of Cloud Service Considering Fault

Recovery”, Journal of Supercomputing, Springer, Vol. 65, pp. 426-444, 2013.

[16] B. Bouterse and H. Perros, “Scheduling Cloud Capacity for Time-Varying Customer Demand”,

Proceedings of IEEE Cloud Networking (CLOUDNET), pp. 137-142, 2012.

[17] S .T. Maguluri, R. Srikant, L.Ying, “Stochastic Models of Load Balancing and Scheduling in

Cloud Computing Clusters”, Proceedings of INFOCOM, 2012.

[18] B. Javadi, R. K. Thulasiram, and R. Buyya, “Statistical modeling of spot instance prices in public

cloud environments”, Proceedings of the UCC 2011.

[19] Z. Ou, , H. Zhuang, A. Lukyanenko, J. Nurminen, P. Hui, V. Mazalov, and A. Yla-Jaaski. "Is the

Same Instance Type Created Equal? Exploiting Heterogeneity of Public Clouds", IEEE

Transaction on Cloud Computing, vol. 1 no. 1, pp. 201-214, 2013.

[20] “UnixBench,” http://freecode.com/projects/ unixbench, 2013.

[21] Y. Guo, A L., and A. Walid, "Shadow-Routing Based Dynamic Algorithms for Virtual Machine

Placement in a Network Cloud", Proceedings of INFOCOM, pp. 620-628, 2013.

[22] X. Li, n, J. Wu, S. Tang, and S. Lu, "Let’s Stay Together: Towards Traffic Aware Virtual

Machine Placement in Data Centers." Proceedings of the INFOCOM, pp. 1842-1850, 2014.

[23] Q. Zhang, R. Boutaba, L. Hellerstein et al., “Dynamic Heterogeneity-Aware Resource

Provisioning in the Cloud”, IEEE Transactions on Cloud Computing, vol. 2, no. 1, pp. 14-28,

2014.

[24] A. Deepal, et al, "Improving performance and availability of services hosted on IaaS clouds with

structural constraint-aware Virtual Machine placement", Proceedings of IEEE Services

Computing (SCC), pp. 72-79, 2011.

 119

[25] Sh. Vivek, P. Zerfos, K. Lee, H. Jamjoom, Y. Liu, and S. Banerjee, "Application-aware Virtual

Machine migration in data centers", Proceedings of INFOCOM, pp. 66-70, 2011.

[26] D. Breitgand and A. Epstein, "Improving Consolidation of Virtual Machines with Risk-Aware

Bandwidth Oversubscription in Compute Clouds", Proceeding of INFOCOM, pp. 2861-2865,

2012.

[27] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang. “Joint Virtual Machine placement and

routing for data center traffic engineering”, Proceedings of INFOCOM 2012, pp. 3158–3162,

2012.

[28] X. Meng, V. Pappas, and L. Zhang. “Improving the scalability of data center networks with

traffic-aware Virtual Machine placement”, Proceedings of INFOCOM, pp. 1-9, 2010.

[29] J. Zhu, D. Li, J.Wu, H. Liu, Y. Zhang, and J. Zhang, “Towards bandwidth guarantee in multi-

tenancy cloud computing networks”, 20th IEEE International Conference on Network Protocols

(ICNP), pp. 1-10, 2012.

[30] K. You, B. Tang, and F. Ding. “Near-optimal Virtual Machine placement with product traffic

pattern in data centers”. Proceedings of IEEE ICC, pp. 3705-3709, 2013.

[31] C. Assi, Chadi, S. Ayoubi, S. Sebbah, and K. Shaban, "Towards Scalable Traffic Management in

Cloud Data Centers.", IEEE Transaction on communications, vol. 62, no. 3, pp: 1-13, 2014.

[32] D. Dolev, D. Feitelson, J. Halpern, R. Kupferman, and N. Linial, “No justified complaints: On

fair sharing of multiple resources”, Proceedings of the 3rd Innovations in Theoretical Computer

Science ACM Conference, pp. 68-75, 2012.

[33] A. Gutman and N. Nisan, "Fair allocation without trade.", in Proceedings of the 11th

International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 719-728.,

2012.

[34] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Dominant

resource fairness: Fair allocation of multiple resource types”, NSDI, vol. 11, pp. 24-38, 2011.

[35] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, "Multi-resource allocation: fairness-efficiency

tradeoffs in a unifying framework.", IEEE/ACM Transactions on Networking (TON), vol. 21, no.

6, pp. 1785-1798, 2012.

[36] D. Dolev, D. Feitelson, J. Halpern, R. Kupferman, and N. Linial, “No justified complaints: On

fair sharing of multiple resources”, Proceedings of the 3rd Innovations in Theoretical Computer

Science ACM Conference, pp. 68-75, 2012.

[37] A. Gutman and N. Nisan, "Fair allocation without trade.", Proceedings of the 11th International

Conference on Autonomous Agents and Multiagent Systems-Volume 2, pp. 719-728, 2012.

 120

[38] A. Gutman, N. Nisan, D. Parkes, A. Procaccia, and N. Shah, “Beyond dominant resource fairness:

Extensions, limitations, and indivisibilities”, Proceedings of the 13th ACM Conference on

Electronic Commerce, pp. 808-825, 2012.

[39] W. Wei, B. Li, and B. Liang. "Dominant Resource Fairness in Cloud Computing Systems with

Heterogeneous Servers", Proceedings ofINFOCOM, pp. 583-591, Toronto, 2014.

[40] S. Sahni and T. Gonzalez, “P-complete approximation problems”, J. ACM on Applied Math.,

vol. 23, pp. 555–565, July 1976.

[41] R. Hassin, A. Levin, and M. Sviridenko, “Approximating the minimum quadratic assignment

problems,” ACM Trans. Algorithms, vol. 6, pp. 181–189, 2009.

[42] Z.Wu, Y. Zhang, V. Singh, G. Jiang, and H. Wang. "Automating Cloud Network Optimization

and Evolution", IEEE Journal on Cloud computing, vol. 31, no. 12, pp. 2620-2631, 2013.

[43] A.Gandhi, M.Harchol-Balter. "How data center size impacts the effectiveness of dynamic power

management", Proceeding of 49th IEEE Annual Allerton Conference on Network Management,

pp. 1164-1169, 2011.

[44] V. Venkatachalam, M. Franz, “Power reduction techniques for microprocessor systems”, ACM

Computer Survey journal (CSUR), vol. 37, no. 3, pp. 195–237, 2005.

[45] X. Fan, W.D. Weber, L.A. Barroso, “Power provisioning for a warehouse-sized computer”, in

Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA),

ACM New York, pp. 13–23, 2007.

[46] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. "Resource pool management: Reactive

versus proactive or let’s be friends", Elsevier Computer Networks, vol. 53, no. 17, pp. 2905-2922,

2009.

[47] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M.A. Kozuch, "Autoscale: Dynamic, robust

capacity management for multi-tier data centers.", ACM Transactions on Computer Systems

(TOCS), vol. 30, no. 4, pp. 14-26, 2012.

[48] MR Rahimi, J Ren, CH Liu, AV Vasilakos, N Venkatasubramanian, “Mobile cloud computing: a

survey, state of art and future directions”, Mobile Netw. Appl., vol. 19, no. 2, pp. 133–143, 2014.

[49] N Fernando, SW Loke, W Rahayu, “Mobile cloud computing: a survey”, Future Generation

Comput. Syst., vol. 29, no. 1, pp. 84–106, 2013.

 121

[50] H. T. Dinh, C. Lee, D. Niyato and P. Wang, “A Survey of mobile cloud computing: architecture,

applications and approaches”, Wireless Communications and Mobile Computing, vol. 13, no. 18, pp.

1587-1611. 2013.

[51] S Kosta, A Aucinas, P Hui, R Mortier, X Zhang, “ThinkAir: dynamic resource allocation and parallel

execution in the cloud for mobile code offloading”, Proceedings of INFOCOM, pp. 945–953, 2012.

[52] K. Kumar, Y.H. Lu, “Cloud Computing for mobile users: Can Offloading Computation Save Energy”,

IEEE Computer Magazine, vol. 4, no. 1, pp. 51-56, April 2010.

[53] J. F. Kaufman, “Blocking in a Shared Resource Environment”, IEEE Trans. Communications,

vol 29, pp. 1474–1481, 1981.

[54] M. Mehmet-Ali. "Call–burst blocking and call admission control in a broadband network with

bursty sources", Performance Evaluation, vol. 38, no. 1, pp. 1-19, 1999.

[55] J.W. Roberts, “A service system with heterogeneous user requirements”, Performance of Data

Communications Systems and their Applications, North-Holland, Amsterdam, pp. 423–431, 1981.

[56] Z. Dziong, J.W. Roberts, Congestion probabilities in a circuit-switched integrated services

network, Performance Evaluation, vol. 7, no. 1, pp. 267–284, 1987.

[57] M.V. Ramakrishna, “An exact probability model for finite hash table”, Proceedings of IEEE

Fourth International Conference on Data Engineering, pp. 362-368, February 1988.

[58] A. Gandhi, M. Harchol-Balter, R. Das, and Ch. Lefurgy. "Optimal power allocation in server

farms." ACM SIGMETRICS Performance Evaluation Review, vol. 37, no. 1, pp. 157-168, 2009.

[59] L. Kleinrock, “Queuing Systems”, vol. I. John Wiley& Sons, 1976.

[60] M. A. M. Ferreira and M. Andrade, “The M/G/∞ queue busy period distribution exponentially”,

Journal of Appl. Math. vol. 4, no. 3, pp. 249-260, 2011.

[61] J. R. Artalejo, and M. J. L Herrero, "Analysis of the busy period for the M/M/c queue: An

algorithmic approach", Journal of Applied Probability, pp. 209-222, 2001.

[62] T. Kimura, "A transform-free approximation for the finite capacity M/G/s queue", Operations

Research, vol. 44, no. 6, pp. 984-988, 1996.

 122

[63] V. Chvatal, “Linear Programming. Macmillan”, W. H. Freeman and Company, New York - San

Francisco, 1983.

[64] F. Cedric, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill. "Fiber optic communication

technologies: What's needed for datacenter network operations", IEEE Communications

Magazine, vol. 48, no. 7, pp. 32-39, 2010.

[65] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, "Towards predictable datacenter

networks", ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 242-253,

2011.

[66] D. Xu, X. Liu, and Z. Niu, “Joint Resource Provisioning for Internet Datacenters with Diverse

and Dynamic Traffic”, IEEE Transactions on Cloud Computing, vol. PP, no 99, pp. 1-14, 2014.

[67] H. Xu and B. Li, “Cost Efficient Datacenter Selection for Cloud Services”, Proceeding of IEEE

1st International Conference on Communications in China (ICCC), pp. 51-56. 2012.

[68] D. Niu, C. Feng, B. Li, “Pricing Cloud Bandwidth Reservations under Demand Uncertainty”,

ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1, pp. 151-162, 2012.

[69] K. Mills, J. Filliben, and Ch. Dabrowski. "Comparing vm-placement algorithms for on-demand

clouds." In Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third

International Conference on, pp. 91-98, 2011.

[70] G. Juve , E. Deelman, V. Karan Vahi, M. Gaurang, B. Berriman, P. Berman, and P. Maechling,

"Scientific workflow applications on Amazon EC2", 5th IEEE International Conference on In E-

Science Workshops, pp. 59-66. 2009.

[71] M Wang, X Meng, L. Zhang, “Consolidating virtual machines with dynamic bandwidth demand

in data centers”, Proceedings of INFOCOM, pp. 71–75, 2011.

 123

[72] R. Stanojevic and R. Shorten, “Distributed dynamic speed scaling”, Proceedings of INFOCOM,

pp. 1-5, 2010.

[73] G. Chen, and et.al, “Energy-Aware Server Provisioning and Load Dispatching for Connection-

Intensive Internet Services,”, USENIX NSDI, vol. 8, no. 1, pp. 337-350., 2008.

[74] X. Zhang, H. Wang, Z. Xu, and X. Wang. "Power Attack: An Increasing Threat to Data

Centers.", Proceedings of the 2014 Network and Distributed System Security Symposium, NDSS,

pp. 132-147, 2014.

[75] KC. Poldi, and M. Nereu Arenales, "Heuristics for the one-dimensional cutting stock problem

with limited multiple stock lengths", Computers & Operations Research, vol. 36, no. 6, pp. 2074-

2081, 2009.

[76] A. I. Hinxman, "The trim-loss and assortment problems: A survey", European Journal of

Operational Research, vol. 5, no. 1, pp. 8-18, 1980.

[77] G.Wäscher, and Th. Gau. "Heuristics for the integer one-dimensional cutting stock problem: A

computational study." Operations-Research-Spectrum, vol. 18, no. 3, pp. 131-144, 1996.

[78] D. Carvalho, JM Valério, "LP models for bin packing and cutting stock problems", European

Journal of Operational Research, vol. 141, no. 2, pp. 253-273, 2002.

[79] A. Wolsey, “Integer programming”, New York: Wiley, vol. 42, 1998.

[80] Sh. Srikantaiah, A. Kansal, and F. Zhao. "Energy aware consolidation for cloud computing",

Proceedings of the IEEE conference on Power aware computing and systems. vol. 10, 2008.

[81] A. Beloglazov, J. Abawajy, and R. Buyya. "Energy-aware resource allocation heuristics for

efficient management of data centers for cloud computing", Future generation computer systems,

vol. 28, no. 5, pp. 755-768, 2012.

 124

[82] B. Barroso, L. André, J. Dean, and U. Holzle. "Web search for a planet: The Google cluster

architecture." IEEE Micro Journal, vol. 23, no. 2, pp. 22-28, 2003.

[83] S. Aleksic, “Analysis of power consumption in future high-capacity network nodes”, IEEE/OSA

Journal of Optical Communications and Networking, vol. 1, no. 3, pp. 245-258, 2009.

[84] P. Pries, M. Rastin, M. Jarschel, D. Schlosser, M. Klopf, and P. Tran-Gia, "Power Consumption

Analysis of Data Center Architectures", Green Communications and Networking, Springer Berlin

Heidelberg, pp. 114-124, 2012.

[85] K. Kant, "Power control a high speed network interconnects in data centers", Proceeding of

INFOCOM Workshops, pp. 1-6, 2009.

[86] S.Vakilinia, MM. Ali, and D. Qiu. "Modeling of the Resource Allocation in Cloud Computing

Centers", Computer Networks, 2015.

[87] S. Vakilinia, D. Qiu, and MM. Ali. "Optimal multi-dimensional dynamic resource allocation in

mobile cloud computing." EURASIP Journal on Wireless Communications and Networking 2014,

no. 1. pp. 1-14, 2014.

