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Abstract

Short Production Run Control Charts to Monitor Process Variances

Zhong Yao Meng

Control chart is one of the most commonly wused statistical tools for quality control and
improvement. If the process mean and standard deviation are not given or unknown, most
Shewhart control charts require sufficient sample data before the control chart can be established.
However, in certain industries or processes, it may not be practical to collect adequate amount of
data at the beginning of the manufacturing process to build the trial control chart in Phase I. For
quality improvement in such or similar processes, some authors developed self-starting control
charts for short-run production, e.g. t chart, Q chart, EWMA t chart/Q chart, CUSUM t chart/Q
chart. This thesis studies the performance of some short run control charts for monitoring process
variances. Numerical simulations are using in this study. The results of the numerical experime nts
are extensively tested for different combinations of process lengths and starting points of process

shifts.

Key words: statistical quality control, short production run, control charts, standard deviation,

numerical simulation.
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1 Introduction

1.1 Motivation

1.1.1 Quality and Quality Control Tools

As it is widely known, quality is one of the most important factors for consumers in acquiring
different products and services. Consequently, it is significant for companies to understand and
mprove quality to realise business success, growth, and enhanced competitiveness. In large scale
production, a widely used definition of quality is “inversely proportional to variability”
(Montgomery, 2013). Accordingly, variability is an important characteristic for quality of the
products. Since “variability can only be described in statistical terms” (Montgomery, 2013),

statistical methods play a central role in quality improvement process.

As stated in Montgomery (2013), main statistical tools for quality improvement are statistical
process control (SPC), design of experiments, and acceptance sampling. Statistical process control
(SPC) 1s a powerful collection of problem-solving tools useful in achieving process stability and
improving capability through the reduction of variability. A designed experiment is an approach
to systematically varying the controllable mput factors in the process and determining their effects
on the output. Designed experiments are a major off-line quality-control tool. They are mainly
used for product development and in early stages of manufacturing. Acceptance sampling is to
inspect a sample of units selected at random from a large batch or lot and decide on the disposition

of the lot.



1.1.2 Statistical Process Control (SPC)

“Among the three major statistical tools for quality improvement, SPC is one of the greatest
technological developments of the twentieth century because it is based on sound underlying
principles, is easy to use, has significant impact and can be applied to any process.” (Montgomery,

2013). Its seven major tools are:

- Histogram or stem-and-leaf plot
- Check sheet

- Pareto chart

- Cause-and-effect diagram

- Defect concentration diagram

- Scatter diagram

Control chart

Among them, Shewhart control chart is probably the most technically sophisticated. It was
developed in 1920s by Walter A. Shewhart of the Bell Telephone Laboratories. Different from
design of experiment, control chart is used for on-line process monitoring. Some Shewhart control
charts are designed for variables, e.g. X-R charts and X-s charts. Some others are for attributes, e.g.

p chart for fraction nonconforming, c chart and u chart for number of nonconformities.

Normally, there are two general situations when applying Shewhart control charts. In the first case,
previous experience and knowledge can provide accurate mformation on the process mean and
standard deviation (SD) in advance, and a Shewhart control chart can be built as soon as the
manufacture starts. In the second case, there is no information on the process mean or SD from

previous knowledge or experiences. Sample data are required at the begmning of the process to

2



build the control chart, so called Phase I. After Phase [ is built, the established chart can be applied

to detect the process changes in the process. This is Phase II.

1.1.3 Short-Run Production Control Charts

Most of the Shewhart control chart applications are non-self-starting. As mentioned before, since
the process mean and SD are unknown in advance, they require sufficient sample data at the
beginning of the process to build the control chart (Phase I). However, in certain industries or
processes, it may not be practical to collect adequate amount of data at the beginning of the
manufacturing process to build the trial control chart in Phase 1. For example, in aerospace industry,
production rate of large components can be very low. It takes very long time to collect enough
sample data for constructing a control chart. On the other hand, it is often desirable that the quality
control process start as early as possible, because the cost of each product is too high to be
nonconforming. In such situations, classic Shewhart control charts are less effective. They require
Phase I to build trial control charts and may need more sample data to adjust the control limits

until they are accurate enough to monitor the production process.

For quality improvement in such or similar processes, some authors developed self-starting control
charts for short-run production. For example, Quesensberry (1991) developed Q charts. Q statistic
is a standardized individual measurement. It can be plotted to the standard normal control chart
with centerline at zero and the control Lmits at £3 without requiring Phase I to build the control
limits. Zhang et al. (2009) proposed t control charts to solve the problem of inaccurately estimating
the SD of the process in short-run production. EWMA schemes and CUSUM schemes for Q chart

and t chart are also developed for short-run production processes.



Most of the existing research work tests the statistical properties of short-run control charts by
detecting a shift on process mean. There are not many studies on the detecting ability for SD shift.
In practice, the variance of the quality measurement is as important as the process mean. In short-
run production, it is necessary to monitor the process variation as well So in this research the

detecting ability of different short-run control charts for SD shift will be studied.

1.2 Objectives

The main purpose of this thesis research is to compare the detecting ability of different short-run

control charts for SD shift. More specifically, we have the following objectives:

To review the papers related to short-run control charts and to summarize the conclusions

and observations.

- To summarize the model for each available short-run control chart.

- To identify promising parameter values for certain charts through numerical experiments.

- To compare performances of several short run control charts using common parameter
values.

- To test the detecting ability on SD shift of several popular short-run control charts under

different conditions and observe their performances.

1.3 Methodology

The main method used in this paper is numerical simulation. We use numerical simulation in
searching for optimal values of parameter A for EWMA t chart, and for the optimal combination

of several widely used supplemental rules as they are applied to Q chart. We also compare the



performances and effectiveness of those short-run control charts studied in this thesis. We built a

simple Microsoft Excel program for conducting required simulation runs.

1.4 Organization

Chapter 2 reviews and summarizes the existing research on both non self-starting control charts
and self-starting control charts for short-run production. In Chapter 3, models for different short-
run control charts are presented and some of the parameter values are defined based on previous
research. In the first two parts of Chapter 4, we present numerical simulations for selecting proper
values of parameter A of EWMA t chart and optimal supplemental rules for Q chart. In the final
part of Chapter 4, we run simulations for comparing all the short-run control charts studied in this

thesis. Finally, we present conclusions and future research i this area in Chapter 5.



2 Literature Review

2.1 Non Self-Starting Charts

Non self-starting control charts are those requiring Phase I to estimate the unknown process
parameters and accordingly to construct the control limits. In other words, non self-starting control
charts cannot be constructed without Phase I when the process parameters are unknown. In Phase
I, data are collected and analyzed to determine the center line and the trial control limits. If the
control chart constructed with Phase I data is in statistical control, Phase II can start. Otherwise,
one needs to find out the assignable causes and eliminate all corresponding data to make the control
chart in control and then starts Phase II. It has to be mentioned that, in Phase I sufficient amount
of data should be collected to construct a reliable control chart. In practice, 20 to 25 subgroups of
data with reasonable group sizes are typically required n Phase I (Saleh et al. 2015). In Phase II,
after the nfluence ofassignable causes is eliminated, the control chart will be well used to monitor
the process. X-R charts and X-s charts are the most commonly used non self-starting control charts
for variables. X chart is usually used to monitor the process mean. While R chart and s chart are to
monitor the process variability. R chart is the control chart based on range of the subgroups, while
s chart uses the sample SD. X chart is always combined with R chart or s chart to monitor the
process mean and variance at the same time. All of the above three charts require the sample size
greater than 1, normally 4 or 5. Under the conditions that the sample size is equal to 1, there are
also ndividual X chart and Moving Range (MR) chart for monitoring individual observations.

Some of the more recent developments on these Shewhart control charts are discussed below.

Ma et al. (2010) conducted research to improve the detecting capability of s chart when the shift
size¢. was small. They established two supplemental rules and illustrated that with the

6



implementation of those rules, s chart has better average run length (ARL) performance when

detecting small shift and its detecting capability maintains satisfied when the shift size is large.

Yang et al. (2012) studied individual X chart and compared it with 3-Cumulative Sum Control (3-
CUSUM) chart proposed in Reynolds and Stoumbos (2004). Yang et al. (2012) found that the
individual X chart outperforms X charts with sample sizes larger than one on detecting capability
when both mean and variance shift. It also has better performance than 3-CUSUM chart in almost
all cases except that the shift size is quite small. Chen and Yeh (2010) conducted the economic

statistical design for X chart with genetic algorithm.

In addition to the above mentioned 3 commonly used non self-starting control charts for variables,
non self-starting control charts for attributes are also available such as p chart for fraction

nonconforming, c chart and u chart for nonconformities.

Recently, Noskievicova et al (2014)used MATLAB to program cumulative count of conforming
(CCC) chart and cumulative quantity of conforming (CQC) chart for attributes and provided
software support for these two attribute control charts. CCC chart is utilised to monitor the
cumulative count of conforming while CQC chart is the alternative of ¢ chart and u chart. The two
charts are able to detect smaller defect rate in a manufacturing process compared to that by
traditional attribute control charts. The software design provides help on implementing CCC and

CQC charts in practice.

All of the above discussed traditional control charts are non self-starting control charts. They
require Phase I to estimate the parameters of the processes to establish relatively reliable control
limits. They are widely used in industries of mass production which are capable of providing
adequate samples in a certain period of time for control chart implementation.

7



2.2 Self-Starting Charts

As discussed, commonly used control charts require that the process mean and SD are known or
well estimated before they can be constructed. However, this may be difficult to satisfy in certain
situations. For instance, in short-run production processes without knowing the process mean and
SD, one may not have enough data to estimate the process mean and SD. Even for long-run
processes, at the beginning of the production, there may not be sufficient data to estimate the
process parameters. A control chart can only be built after a certain period of time. However, we
always hope to start the control chart as early as possible. For this purpose, some self-starting

control charts have been developed. Typical such charts are Q charts and t charts.

2.2.1 Q Charts

Shewhart Q Charts

Quesensberry (1991) first proposed Q charts n 1991 for quality control of short-run processes. He
presented the Q statistic which is the standardized individual measurement considering four

different cases

- both process mean and SD are known;
- process mean is known and SD is unknown;
- process mean is unknown and SD is known; and

- both process mean and SD are unknown.

The proposed Q statistic is a standard normal variable transformed from t-statistics. The Q statistic
can be plotted to the standard normal control chart with center line at zero and control Lmits at £3.

It is also possible for a Q chart to plot different parts in one chart because of its standardized control

8



limits, which may to some extent simplify the work related to process control charts for front-line

workers.

Castillo and Montgomery (1994) believed that implementing Q charts for various applications
should be further studied. They pointed out that the average run length (ARL) performance of Q
charts is not satisfactory in some cases. One of the main concerns is, if the Q chart cannot detect
the shift of the process mean immediately after it occurs, the plotted data will quickly become
steady at a new level and the chart tends to “miss” the shift. They used numerical simulation to
investigate the statistical properties of Q charts for a normally-distributed variable for all the four
cases when both or either of the mean and SD were not known. They proposed to use EWMA
charts and adaptive Kalman fitering method for the processes when the mean is known and
process SD is unknown. Their tests showed that these tools have better ARL performances than Q
charts. For the case that both the mean and SD are unknown, they proposed to use adaptive Kalman
filtering method together with a tracking signal to improve the ARL performance. However
Quesenberrry  (1996) pointed out that results of some cases are incorrect in Castillo and

Montgomery (1994).

The same problem was also studied in Zantek (2005). He compared the signal probability of each
observation following a shift of the mean and observed that the signal probability decreased when
the number of observations following process mean shift increased. This indicates that the signal
for a shift of the mean may not persist in Q charts. In addition, based on run length (RL) distribution
study, he also demonstrated that if the out-of-control signal is missed, the RL would increase and

the shit may be masked.



He et al. (2008) conducted further investigations on ARL of Q charts. They considered that the
control chart is biased if the out-of-control ARL (ARL:) is larger than the in-control ARL (ARLo).
They used simulation and showed that for Q charts ARL; is larger than ARLo when the shift of
mean appears at the beginning of the process when its mean and SD are unknown. They also
pomted out that when the shift of the mean happens in the later part of the process, Q charts have
similar performance comparing to classic Shewhart charts without the bias. Regarding the bias
problem, they explored two alternative Q charts to decrease the bias. The main reason for the
existing bias is that the estimation of process variance will be biased after a shift happens in the
process mean. An alternative Q chart, named Qichart, was proposed subsequently. It revises the
method of estimating sample variance. The new estimator would be less affected by the shift of
the mean happened at the beginning of the process. But it may still be affected by the shift occurred
at the later time. They further improved the Qi chart to Qu chart by performing a test for
determming the shift likely to occur in which subgroup. Such subgroup would be discarded when

estimating the process variance.

Recently, several researchers proposed different methods to address some of the disadvantages of
Q charts. They include using Q charts in combmation with other charts. Different versions of

revised Q charts were also proposed.

Roes et al. (1999) mvestigated Q chart performance with a set of Western Electric type of rules.
They also used tightened control limits on Q chart and compared with EWMA Q chart. They
concluded that comparing with applying individual rules, applying combinations of the rules on Q
chart has higher signal probability at the first observation after shift. An alternative control chart -

Q(R) chart was also proposed. It uses the average moving range as the estimator of process SD.
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The authors also developed an economic model for short-run processes. Champ and Woodball

(1987) conducted similar investigation with Shewahrt X chart.

Wen and Zhao (2012) used Q charts in conjunction with variable sampling mterval (VSI) to
mprove ARL performance of Q charts with parameters unknown. Although this can improve the
Q chart performance to some extent, the early stage of the control chart may not be stable. The

authors recommended smaller sampling intervals at the early part of the process.

Zhu and Zhou (2010) proposed weighted Q control charts based on difference-declining weight
parameters. They used simulation and showed that ARL performance of weighted Q charts was

better than that of the classic Shewhart Q charts when both process mean and SD are unknown.

Lampreia and Requeijo (2012) proposed a Modified Q control chart. It was designed for vibration
monitoring of repairable systems. The Modified Q chart can be applied to monitor vibration

processes online.

Chang and Tong (2013) used Q chart in software development processes where sufficient data
were not available for statistical quality control practice. The authors showed that Q chart is more
effective than other conventional control charts because of its self-starting characteristic and its

standardized control limits.

Kawamura et al. (2013) proposed a method of applying Q chart to autocorrelated data. They
combined Q statistic with residuals from a time series model. To illustrate the use of the method,
they applied it in a horizontal low-pressure chemical vapor deposition (LPCVD) process. The
authors showed the effectiveness of the method for quality control ofthe considered semiconductor

manufacturing processes through a practical study. Snoussi et al. (2005) showed that using Q

11



statistic in conjunction with residuals control charts is another possible tool for monitoring

autocorrelated data.

CUSUM Q Charts and EWMA Q Charts

Quesenberry (1995) also proposed for short production run EWMA Q charts and CUSUM Q charts.
He conducted a series of simulation tests to identify their capabilities of detecting the shifts of
process mean and SD for Shewhart Q charts, EWMA Q charts and CUSUM Q charts. The results
showed that EWMA and CUSUM Q charts are more sensitive to one-step permanent shifts on

process mean or SD than classic Shewhart Q chart.

Zantek (2006) improved the design of CUSUM Q chart to enhance its capability of detecting a
larger range of shifts of process mean. Different ranges for more promising parameter values to

construct CUSUM Q charts were identified based on simulation experiments.

One problem of using CUSUM Q charts is that the constant value £ is determined by the shift size
of process mean. When the shift size is unknown, it may be difficult to apply CUSUM Q chart
directly. Li and Wang (2010) developed an adaptive CUSUM Q chart (ACQ). It does not need to
have a given shift size in advance. They estimated the mean shift using an EWMA scheme with a
reflecting boundary as a one-step-ahead forecast. It was shown through simulation that the ACQ
charts perform better than CUSUM Q charts especially when the shift size is small and happens in

later part of the monitored process.

Li et al. (2010) presented another adaptive CUSUM Q charts. They adopted variable sampling
mtervals (VSIACQ) in them. The authors studied the distribution of CUSUM of Q statistics by

simulation tests to solve the “mask™ problem of Q charts. They believed that the VSIACQ charts

12



are able to detect a range of shifts rather than only a fixed size of shifts compared with conventio nal

CUSUM charts. The VSIACQ charts were developed assuming normal distribution.

Capizzi and Masarotto (2012) explored the adaptive cumulative score (ACUSCORE) control
charts. They estimated the process mean using both adaptive EWMA and adaptive CUSUM
control charts to address the dynamic pattern of mean change. Compared with traditional CUSUM
Q and EWMA Q charts, ACUSCORE charts have stronger detecting ability when there is a small
shit on mean. When the shift on mean is large, the performance of ACUSCORE charts are
similarly to those of CUSUM Q and EWMA Q charts. The author believed that ACUSCORE

charts outperform other control charts on detecting ability of mean shift.

2.2.2 tCharts

Zhang et al. (2009) first proposed t control charts to solve the problem of inaccurately estimating
process SD. t charts plot t statistics following Student’s t-distribution. They illustrated that t charts
are more robust against changes in the process SD than X chart. Yet when the SD has no change,
X chart has better ARL performances than t chart. They also compared ARL performances of
EWMA tcharts and EWMA X charts to show that EWMA t charts are more robust than the EWMA

X charts against changes in process SD.

Celano et al. (2011) showed the possibility of implementing t control chart for short-run production
processes when the setup is perfect (the estimated mean is equal to the target) or imperfect
(otherwise). The authors believed that one can use t charts to monitor the short-run production
because it does not require Phase I data and it is easy to implement. They compared the statistical
properties of several t type charts (Shewhart t charts and EWMA t charts) and X type charts
(Shewhart x charts and EWMA X charts) under the conditions of perfect setup and imperfect setup.
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The simulation tests illustrated that EWMA t charts are more effective on mean shift detection

compared with Shewhart t chart.

In short run productions, the process mean and SD are often unknown i advance due to the lack
of Phase I data. Furthermore, when the mean of the process shifts, the shift size is most likely
unavailable in practice as well Celano et al. (2013) investigated statistical performances of
Shewhart t, EWMA tand CUSUM t charts for short production runs when the shift size is unknown.
They proposed an approach of modeling the unknown shift size using statistical distribution. They
showed that CUSUM t and EWMA t charts perform better than Shewhart t chart when the shift

size 18 in a certain range.

Castagliola et al. (2013) proposed a variable sample size (VSS) t chart and investigated the
performance of the variable sample size strategy. They compared it with fixed-parameter (FP) t
chart considering both fixed and unknown shift sizes. When the shift size is fixed and occurs at
the start of the run, the tests showed that the VSS t chart is more effective than FP t chart. When
the shift size is unknown, it was illustrated that the VSS t chart is more sensitive on the shift than

FP t chart.

Sitt et al. (2014) proposed another revised t chart, the run sum t chart. Run sum t chart is a zone
chart. It divides the mterval between upper control limit (UCL) and lower control limit (LCL) into
several different zones. The authors demonstrated that as an addition to the EWMA t charts and t
charts, run sum t charts perform better than EWMA t charts for medium to large shifts. When
compared with run sum X charts and EWMA X charts, run sum t charts perform better for large
shifts while run sum X charts and EWMA X charts are more effective for small shifts. They also

conducted further research on economic optimal design for t type charts and X type charts. It is
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found that x type charts have the lower minimum cost than t type charts. Considering that X charts

can only be used when the mean and SD are accurately estimated, the authors suggested that t type

charts be selected if there are estimation errors.

Celano et al. (2012) studied economic design of CUSUM t charts for short production runs and
compared CUSUM t charts and CUSUM x charts for different scenarios. The numerical analysis
show that the economic loss of CUSUM t charts due to imperfect implementation of the chart is

msignificant when the process parameters are not accurately estimated.

Besides Q charts and t charts, other self-starting control charts with different features are presented
as well. Some more recent development can be found in, for example, Zhang et al. (2012), Li et
al. (2014), Li etal (2010), Luu et al. (2015). In addition, Garjani and Noorossana (2010) proposed

a control scheme for monitor start-up processes and short runs.

2.3 Summary

The literature discussed above is summarized i Table 2.1 with information on the authors, the

year of publishing, main work, method used, and the result of the research.
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Table 2.1 Summary of short production run charts

Author Year Main Work Method Result
Non Self-Starting Control Charts
Established two Improved the detecting
Ma et al. 2010 | supplemental rules for s Analytical capability of' s chart when
chart. the shift size is small.
Studied X chart and Numerical Showed the advantage of
Yang et al. 2012 | compared it with 3-CUSUM | . . simple X chart with sample
simulation .
chart. size n=1.
Noskievicova Developed the MATLAB Analvtical Provided the aids on
tal 2014 | application for CCC and d m di implementation of the CCC
ctat CQC charts for attributes. and codmne | and CQC charts in practice.
Self-Starting Control Charts
0O Charts
Solved the difficulties of
. estimating the process
Quesensberry 1991 | Proposed Q chart. Analytical mean and SD in short-run
productions.
Explained the problems of Q
Castillo and chqrts and proposed Numerical Pointed out the problem of
Monteome 1994 | weighted moving average simulation Q charts and proposed the
gomery method and an adaptive alternative methods.
Kalman filtering method.
Compared the signal Analytical
Zantek 2005 probabilities Qf Q chart on and . Showed the problem of Q
each observation following a | numerical charts.
shift on mean. simulation
Investigated the bias of Analytical
Shewhart Q charts. Explored | and Showed the problem of Q
He ctal 2008 two alternative Q charts to numerical charts.
decrease the bias. simulation
Investigated the performance
of supplemental run rules. N cal Ilustrated the effectiveness
Roes et al. 1999 | Presented Q(R) chart and ;umerica of the supplemental rules of
. simulation
developed an economic Q chart.
model.
Designed Qehartin | IR e e @ e
Wen and Zhao | 2012 | conjunction with Various . p
. numerical performance to some
Sampling Interval (VSI). . .
simulation extent.
. C Showed how t
Combined Q statistic with owed how to apply Q
Kawamura et residuals of a time series charts when the data are
2013 - autocorrelated rather than

al.

model and applied Q charts
to autocorrelated data.

independent.
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Table 2.2 Summary of short production run charts (continued)

Author Year Main Work Method Result
. Showed the advantage of
Zhuand Zhou | 2010 | Fresented Weighted Q Analytical | weighted Q chartin ARL
control chart.
performance.
Lamoreia and Designed MQ chart for Illustrated that the MQ
Rp .. 2012 | vibration monitoring of - chart can monitor the state
equeto repairable system. of equipment online.
Concluded Q chart is more
Chang and 2013 Applied Q chart in software | effective in software
Tong industry. industry than other
conventional control charts.
CUSUM Q Charts and EWMA Q Charts
Showed that EWMA Q and
Designed EWMA Q charts Numerical CUS.[.JM Q charts are more
Quesenberry 1995 and CUSUM Q charts simulation sensitive to detect a shift on
' . mean or SD than Shewhart
Q charts.
I d the design of
tprovee the dosign Enhanced the capability of
CUSUM Q chart with .
. . Numerical | CUSUM Q charts for
Zantek 2006 | considering the changing of ) . .
. . oy simulation detecting a broad range of
distribution of Q statistics shifts
after a shift. '
Developed an ACQ charts Showed that the ACQ
. which do not need to be Numerical | charts perform better than
Li and W 2010
tand vang designed with a given shift Simulation CUSUM Q charts.
size.
Presented another adaptive Numerical Sltll:l)rv:se\(zivg;:ta‘:bhlz ?(/)S(;?tecc?a
Lietal 2010 | CUSUM of Q chart— ) . .
VSIACQ charts simulation range of shifts rather than a
' fixed shift size.
Showed that ACUSCORE
Capizzi and Explored the ACUSCORE Numerical charts.have stronger
M t 2012 trol chart ulati detection power than
asarotto control charts. simulation CUSUM Q and EWMA Q
chart.
t Charts
Showed that t charts were
Numerical | more robust against
Zhang et al. 2009 | Proposedt control chart. simulation changes in the process SD
than the x chart.
Ilustrated that EWMA t
Implemented t control chart
: . . charts are the most
into short-run production Numerical .
Celano et al. 2011 . . effective chart on mean
process under perfectsetup | Simulation

and imperfect setup.

shift detection compared
with Shewhart t chart.
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Table 2.3 Summary of short production run charts (continued)

Author Year Main Work Method Result
Investigated the statistical Demonstrated that CUSUM
t and EWMA t charts
performance of the Shewhart erform better than
Celano et al. 2013 | t, EWMA tand CUSUMt Analytical P
iy Shewhart t chart when the
charts when the shift size e .
shift size is in a certain
was unknown.
range.
Castacliola et ;r?lytlcal Showed that the VSS t
£ 2013 | Proposed the VSS't chart. . chart is more effective than
al. numerical
. . FP t chart.
simulation
Explored the run sum t chart. .
Analytical
Conducted research on
. . . . and Showed advantage of run
Sitt et al. 2014 | economic optimal design for .
_ numerical sum t chart.
t type charts and X type . .
simulation
charts.
[Nlustrated that the
Cel ¢ al 2012 Conducted economic design | Numerical | economic loss of CUSUM t
clano et at of the CUSUM t chart. analysis. chart corresponding to the

imperfect implementation.

As can be seen in the reviewed literature in this area, different versions of control charts based on

t chart and Q chart were proposed and tested for their detecting capability on mean shift. It is

apparent that most of the studies on control charts for short-run production focus on monitoring

the process mean shifts. A less number of research papers studied the detecting ability for SD shifts

of short-run control charts. In practice, the variance of a certain measurement in a manufacturing

process is as important as the process mean, and there is a need to apply the short-run control charts

to monitor the process variation as well. In this thesis, we study the detecting ability of Q type

charts and t type charts for detecting process SD shifts. We also compare various performances of

t type charts and Q type charts. Finally we identify several effective control charts for detecting

SD shift in short production runs.
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3 Modeling Short Production Processes

3.1 Introduction

From the literature review, most of the existing research aims at studying detecting ability of
control charts on mean shift, but few of the published papers study the detecting ability on SD
shift. However, in many manufacturing processes, the variance of the measurements is as
immportant as the mean and the variance control is an inevitable aspect in statistical quality control
as well. When the fluctuation of a certain character increases significantly, the potential problem
must be identified and further studied. Consequently, considering its practical value in
manufacturing, numerical simulation used i this thesis focuses on the performance of different

short-run control charts in detecting SD shift.

This chapter presents several statistical models for the control charts to be compared in the
simulation study. They include Q chart, Q chart with supplemental rules, EWMA Q chart, CUSUM
Q chart, t chart, EWMA t chart, CUSUM t chart and individual X chart. Before the detailed
numerical experiments are presented, we briefly explain the general settings of the parameters used

in this simulation study.
3.2 Q and Q type Charts Setting

3.2.1 Q Chart

Quesensberry (1991) first proposed Q chart in an attempt to overcome the difficulties in estimating

the process mean and SD in short production runs. As explained in Quesensberry (1991) as well
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as reported in Castillo and Montgomery (1994), Q chart can be well used for certain types of short-

run productions. The basics of setting up a Q chart are described below.

Considering a normally and independently distributed process with mean pand SD o, collect a
sample of {X,,X,,..., X, },r =1,2,..,n. The Q statistics for monitoring the process mean are

calculated under the following four cases:

Case I (KK): Both u and o are known, p = p,, 0 = g,, the Q statistic is calculated as follows:
Qr(xr)="ra;:‘°,(r=1,2,...) 3.1)

Case Il (UK): p is unknown and o is known,o = g, the Q statistic is calculated with the estimator

X,
1 o
-1\2 (X, —X,_
Q.(x) = (=) (Tl) (r=23,...) (3.2)
where:
= 1
Xr =721 (3.3)

Case III (KU): p 1s known and o is unknown, u = pu,, Q statistic is calculated with the estimator

SO,r

0.(X,) = CD‘l{Gr_l (ﬂ» (r=23,...) (3.4)

SO,T—l

where: @~ 1is the inverse of the standard normal distribution, G,_,is the t distribution with r-1

degrees of freedom and
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1

S(?,r = =1 (X — Ho)? (3.5)

Case IV (UU): Both u and o are unknown, the Q statistic is calculated as follows:

r

0,(X,) = cp-l{(;r_z [(ﬂ)l/2 (i)]} (r=34,..) (3.6)

where: @71 is the inverse of the standard normal distribution, G, _,is the t distribution with r-2

degrees of freedom and

=iyr X, (3.7)

r T Aj=14
sz=2L7yr (x.-X.)
r =7 i (X — %) (3-8)

The Q statistics are independently and identically distributed N(0O, 1) random variables. They can

be plotted on a Shewhart chart with:

UCL,= +3 (3.92)
Center Line =0 (3.9b)
LCL,= -3 (3.9¢)

In short production runs, it mainly is Case IV (both p and ¢ are unknown), since most of the time
the process mean and SD are not known in advance. In this research, the simulation experiments

focus on the study of Q statistic of Case I'V.

3.2.2 Supplemental Rules of Q Chart

Using supplemental run rules may, to some extent, improve the detecting capability of Q chart.
Roes et al. (1999) tested the detecting capabilty of supplemental run rules (origmally
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recommended by Western Electric Company) for mean shift of Q chart. In this thesis, we test the
effectiveness of the following rules on detecting capability of SD shift for Q chart to be discussed

in Chapter 4.The supplemental rules are listed below.

(A) 1-of-1 test - signals if the last point is beyond the control limits (+3);

(B) 2-0f-3 test - signals if two out of the last three points are beyond the same warning limit (+2);
(C) 4-0f-5 test - signals if four of the last five points are beyond the same auxiliary limit (+1);
(D) 8-of-8 test - signals if eight consecutive pomts fall on the same side of the central line (0).
3.2.3 CUSUM Q Chart and EWMA Q Chart

Quesenberry (1995) pointed out that the Q statistics can be used as the mput data of CUSUM

(Cumulative Sum) and EWMA (Exponentially Weighted Moving Average) charts as well.

Originally, CUSUM chart was designed to detect the small shift of mean which may be difficult

to be captured by standard Shewhart control chart. Let po be the target for the process mean and x;

be the jth sample. The CUSUM control chart is formed by plotting the quantity of

Ci = Xj=a(3 — o) (3.10)
The statistics of C; are further computed as follows:

Ct =max[0,x; — (uy, +K) + C,] (3.11a)

C; =max[0,(u,— K) —x; + C_,] (3.11b)
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with C5 = C; = 0. K is the reference value and H is the decision interval. The control limits
are TH . K and H are constant parameters. They can be optimized according to the desired average

run length.

For CUSUM Q chart, Quesenberry (1991) defined the CUSUM statistics as S;" and S; :

S} =max[0,5F, +Q; — k] (3.12a)

7 =min[0,57, +Q; + k] (3.12b)

with S =S, =0

Based on the results in Quesenberry (1991), we set the reference value k. and decision interval h,
at kg = 0.75and hy = 3.34 mn our simulation study. These values provide CUSUM Q chart an in
control average run length (ARL) of 370.5 for detecting a mean shift of 1.50 in a normal process.

In our simulation experiments, we also use this average run length to search parameter values for

CUSUM and EWMA control charts.

Similar to CUSUM control charts, EWMA control charts were first developed for detecting small

shifts of mean.

EWMA statistics are constructed as:

zp=Ax;+ (1= Dz, (3.13)

where 0 < A < 1,z, = u,, the known process mean or the estimated process mean.

EWMA chart control limits and centre line are defined by:
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_ ’ 2
UCL=pu,+ Lo o (3.14a)

Center Line = u, (3.14b)

A
2=

LCL=py— Lo (3.14¢)

L and A are constant parameters which can be designed according to the desired average run length.

For EWMA Q chart, the EWMA statistics given by Quesenberry (1991) are:

z;=2Q; +(1 - Dz, (3.15)

with z, = 0. The control limits are +K./A/(2 —A).

Following Quesenberry (1991), parameters A and K can be designed according to the same ARL
used for CUSUM Q chart (ARL=370.5). The values obtained are A = 0.25 and K = 2.90, which
give an ARL of 372.6 (the difference with 370.5 is very small and can be ignored) to detect a mean

shift of 1.56 in a normal process.

It may be noticed that the parameter settings for CUSUM Q chart and EWMA Q chart here are the
optimized settings for detecting mean shift rather than SD shift, while the simulation in this thesis
is aiming at detecting SD shift. Through the research work i this thesis, we would like to compare
different short-run control charts rather than design optimal control charts. We used consistent
parameter settings in comparing detecting capabilities of different charts developed for short

production runs.
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3.3 tand t Type Charts Setting

3.3.1 tChart

t chart was first proposed in Zhang et al. (2009) to more accurately estimate the of SD of a process
or to estimate SD when the process is not stable. The details of setting up at chart can be described

below.

Assume that we take several subgroups X, X;,, ..., X;, of size n at time i = 1,2, .... Typically n
is small, say n=5. We assume that the subgroups are independent with each other and

X;j~N(uo,09) i = 1,2,...,1 < j <n ,where 1, and g, are the nominal process mean and SD,

respectively.

The subgroup mean X; and the subgroup SD S; at time i can be calculated as following:

Xy =-30 1 X, (3.16)

Then the t statistics T; canbe defined by the following function:

_Xi-uy . _
Ty=4 2 i=12. (3.18)

T; follows Student’s t-distribution with n-1 degrees of freedom. So the control limits are:
UCL,=F'(1->n-1) (3.19a)

LCL, = —UCL, (3.19b)
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Where F, "1 (- |[n — 1) is the inverse distribution function of the Student’s t-distribution with n-1 degrees

of freedom, and a is the false alarm rate (the probability of Type I error). Different from X chart,
implementing a t chart may not be necessary to know or to estimate SD of the process. So using t chart for

short-run process is possible without knowing or estimating process SD and mean.

For short-run production applications, Quesenberry (1991) utilised t statistics as part of the Q statistics

under the condition that both 1, and o, are unknown. According to Quesenberry (1991), we may
use the current data to estimate the unknown u, and update it when having a new data each time.
The control limits provided by Zhang et al. (2009) should be implemented when sample size n>1.
However in most short-run processes, to have sample size n>1 may not be practical. So for short-
run production, the number of the samples i will replace the sample size n in the formula. It can
also be understood that there is only one sample and the sample size i keeps updating as new data
are collected. t statistics and the control limits of t chart can be revised as following. Assume i

stands for the ith sample with sample size n=1, then:

T, = 4¥cKi) y o930 (3.20)
Si-1
where a; =./(i—1)/i
veL, = F(1-%]i-1) (3.21a)
LCL, = —UCL, (3.21b)

where the false alarm rate a will be set at 0.0027 , the same as for a Shewhart X chart.
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3.3.2 CUSUM t Chart and EWMA t Chart

Celano et al. (2012) utilised t statistic as the nput data of CUSUM scheme and proposed CUSUM

t chart. The plotted statistic C; is given by:

C,=0 (3.22a)

Ci = max{o, Ci—l + Tl - E(T) - k},l = 1,2, o (3.22b)
where E(T)is the mean of the Student t distribution function with n-1 degrees of freedom.

The control limits are +H where H = ho, ; h is a parameter to calculate the decision interval; k
is a parameter and typically k = ga , 0 1s the shift size of the mean, o is the SD used to generate

the normally distributed random numbers. For short-run production, o, will be replaced by S;

which is the estimated SD from the first 1 pomts.

Zhang et al. (2009) first plotted t statistics in the EWMA charting scheme and presented EWMA

t chart. The plotted statistic Y; is given by:

Y, =0 (3.23a)

Y, =T, +(1—-DY_, i=12,.. (3.23b)

a;
where T; = -
Si-1

i=23,.. 1€ (0,1]is a parameter, usually takes very small values.

The lower and upper control limits of EWMA t chart satisfy LCL, = —UCL, and the center line is
0. The control limits are +K.,/A/(2 — A), where K = Lo, .For short-run production, o, will be

replaced by S; which is the estimated SD from the first i pomts. L is the constant parameter.
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Unlke CUSUM Q chart and EWMA Q chart, research publications focusing on design of CUSUM
t chart, EWMA t chart and therr parameter values are very limited. We follow the common
Shewhart control chart structure and use h=3 for CUSUM t chart and L=3 for EWMA t chart to
construct the control limits in our simulation study. We conduct numerical experiments to be

presented in Chapter 4 to select proper values of parameter A for EWMA t chart.

3.4 Individual X Charts and Setting

In short run productions, the sample size is typically equal to one. So the individual X charts
designed for individual measurement is possible to apply as well The theoretical support for
implementing individual X chart in short-run production is not strong and study on this possibility
is less. From practical point of view, if the performance of individual X charts is similar or slightly
weaker than other short-run production control charts, it may still be a preferred choice for many
processes, since implementation of Individual X charts is much simpler. Thus, we included

individual X chart in our study to compare it with other charts.

Individual X chart is the plot of the ndividual observations. Assume that there are m samples,

X1,X5, .. X, , The control limits and the center line are:

UCL=%+32% (3.24a)
2

Center Line = X (3.24b)

LCL= % — 3? (3.24c)

2

where MR, = |x;— x;_,|, MR =2=1"% g, = 1128
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The limitations of Individual X chart can be seen from the formulas. Control limits and the center
line can only be constructed after all the samples are collected, unlike other self-starting control
charts. In our short-run production simulation, we used the first i data to estimate the MR to build
the control limits from the very beginning of the process. The MR was updated with the number

of samples being collected each time.

3.5 Setting Simulation Experiments

All simulation experiments were run using Microsoft Excel programme. We assumed that a shift
of process SD happened at a certain point of the process. Such shift is then implanted in all the
tested control charts to evaluate their performances of detecting ability accordingly. The general

simulation and parameter settings are explained below.

Distribution function

We used normal distribution functions built in Excel to simulate short run processes studied i this
research. Considering that normal distribution is the most common distribution in manufacturing

process.

Number of samples

30 random variable values following normal distribution N(1, 1) were generated in each simulation
run by Excel based on the following considerations. In many short-run manufacturing processes,
it may be difficult or impossible to obtain sufficient number of samples typically required for
statistical quality control purpose, because it may take too long time to collect enough data. On
the other hand, in order to observe the existence of the signals and to compare the detecting ability

of different control charts, the number of samples could not be too small, or there would rarely
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have any signal in any control charts. However, to study some specific aspects of the processes in
more detail, the number of samples was increased or decreased around 30 in some simulation runs.

Details will be given in the next chapter.

Starting time of shifts

For mean shift, a single permanent shift would be implanted at the 7th sample, as to the mean shift
is typically the first one to monitor by most control charts. Meanwhile, enough space should be
left between the shift sample and the last sample so that a signal will possibly show. For SD shift,
a single permanent shift would be implanted at the 10th sample, as we assume that a change of the

process SD, if it occurs, should do so, after a shift of the process mean occurs.
Shift size

Define 0’ = 6,04, 4" = py + 8,0y, 6, and §,, is the shift size of SD and mean. For mean shift, we

set §, = 1.5. For SD shift, we set§, = 1.3,1.7 and 2.0.

Replications per experiment

For each experiment, 30 replications were run. If 2 or more points are out of control before the
shift actually happened, the group of data would be abandoned and re-generated. We assume that

such a data stream may not be representative to those from the actual processes.

3.6 Summary

This chapter mainly introduces the control charts to be studied in the simulation experiments in
this research and the parameter settings for their implementations. Results from simulation

experiments on Q type charts and t type charts, the main control charts for short-run production,
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will be presented and analyzed in Chapter 4. In addition, simulation results on individual X charts

will be analyzed and compared as well
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4 Simulation Experiments

4.1 Introduction

In the first part of Chapter 4, we identify the more promising values of the parameter for setting
up EWMA t chart through numerical experiments with a common criterion that the in control ARL

is equal to 370 for the shift of the mean being 1.5 o.

In the second part of this chapter, we evaluate the supplemental rules for Q chart also through
numerical simulation as discussed mn Section 3.1.2. We notice that several other researchers had
conducted similar investigations. Their work, however, was mainly aiming at studying the
detecting ability on the shift of the mean rather than process SD. Through our simulation study,
we identify the best combination of the supplemental rules for detecting SD shift and apply it to Q
chart. We then conduct simulation experiments to evaluate the performance of Q chart using the

best supplemental rules.

The simulation experiments for all short-run control charts conducted in this research are presented
in the third part of this chapter. We study the detecting ability for SD shift of the following ten

charts through simulation:

- Q Chart

- Q Chart with optimal combination of supplemental rules
- EWMA Q Chart

- CUSUM Q Chart

- tChart

-  EWMA tChart
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- CUSUM t Chart

- Individual X Chart

We present and analyse the simulation results n Section 4.4.

4.2 EWMA t Chart Parameter Setting

As stated in Montgomery (2013), 0.05 < A < 0.25 generally works well for EWMA scheme in
many applications. We conduct several numerical experiments for short run EWMA t chart with

different A values i this range in order to identify better A values.

In each of the simulation runs, 30 random variable values following normal distribution N(1, 1)
are generated by the normal distribution generation function built in Microsoft Excel. As discussed
mn Chapter 3, the simulation study is set with the considerations that ARL=370 and mean shift
0=1.5c. A shift of the mean 6=1.50,is implanted at the 7th sample as we assume that in short-
run productions the mean shifts tend to happen in early stage of the process. So from the 7th point,
the distribution will shit to N(2.5, 1). Accordingly, the EWMA control charts may correctively
signal such shift at any time from the 7th point onwards while we would like to see if the out of
control signal will appear before the 30th point. We start our simulation with A=0.05. We increase
the value of A by 0.01 each time until A=0.25. Therefore, there are 21 experiments in total with
each experiment has 30 replications. The best A value corresponding to the highest success rate are

identified for setting up EWMA t chart.

The experiments results are presented in Table 4.1.
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Table 4.1 4 performances for short-run EWMA t chart

2=0.05 2=0.06 2=0.07 2=0.08 2=0.09 2=0.10 A=0.11
N.O.S.* 5.0 5.0 11.0 10.0 13.0 7.0 6.0
A.A.P.* 17.4 16.2 14.3 15.8 16.9 18.6 15.7
N.O.R.* 30.0 30.0 30.0 30.0 30.0 30.0 30.0
S.R.* 0.2 0.2 0.4 0.3 0.4 0.2 0.2
2=0.12 2=0.13 2=0.14 2=0.15 2=0.16 2=0.17 2=0.18
N.O.S. 8.0 6.0 5.0 5.0 6.0 5.0 2.0
A.A.P. 15.5 14.5 14.8 15.6 13.5 13.4 19.5
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.3 0.2 0.2 0.2 0.2 0.2 0.1
2=0.19 2=0.20 2=0.21 2=0.22 2=0.23 2=0.24 2=0.25
N.O.S. 6.0 4.0 9.0 4.0 3.0 8.0 5.0
A.A.P. 16.3 12.0 11.9 16.5 11.0 12.0 15.4
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.2 0.1 0.3 0.1 0.1 0.3 0.2

*N.O.S.: Number of successesamong 30 replications
A.AP.: Average alarm point for 30 replications
N.O.R.: Number of replications
S.R.: Success rate

The data shown in Table 4.1 are also plotted in Figure A.4.1, presented in the Appendix of this
thesis. Similarly, we also plotted the results shown in other tables in this chapter and presented the

corresponding figures in the Appendix.

As can be seen in Table 4.1, when A=0.07 ~ 0.09, we have higher number of successes (11.0, 10.0
and 13.0) than the cases when A takes other values. In addition, when A=0.07 ~ 0.09, EWMA t
chart has better detecting performance. Accordingly, we select A=0.09 (which has the highest

number of successes in this case) for EWMA t chart in the following simulation experiments.

4.3 Identify Supplemental Rules of Q Charts

Roes et al. (1999) tested the following supplemental rules for Q chart on its detecting ability on

mean shift. In this section, we present simulation experiments for its detecting ability on SD shift.
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The following supplemental rules for Q chart are considered in this study:

(A) 1-of-1 test - signals if the last point is beyond the control limits (33);

(B) 2-0f-3 test - signals if two out of the last three points are beyond the same warning limit (+2);

(C) 4-of-5 test - signals if four of the last five points are beyond the same auxiliary limit (+1);

(D) 8-0f-8 test - signals if eight consecutive points fall on the same side of the central line (0).

If the chart shows an out-of-control signal before the shift point, this will be treated as a false alarm.

The first effective signal would be counted after the shift point.

We can expect that the combination of four rules tends to have the strongest detecting ability
among all the other possible combinations. However, the main objective of the experiments of this
section is to find other simpler combinations having similar or equal effectiveness. If so, the four

rules could be replaced by less rules. The application would be much simpler.

4.3.1 Original Experiments

30 random variable values following N(1, 1) are generated for each replication by MS-Excel. To
distinguish the starting time of mean shift and SD shift, we implant the latter from the 10th point
rather than the 7th point, considering that a SD shift may happen after the mean shift. In practice,
it may take longer time for the process SD to change than the process mean. For example, the worn
out of a lathe tool and increased vibration may cause the SD of the turned diameter to change.
Normally, this type of system changes should not occur at the early stage of the process. To observe
the effectiveness of different individual rules on the sizes of SD shifts, we used 3 different shift

sizes by letting 61” =1.360,02" =1.760 and 63’ =260 in our simulation experiments. Each test has 30
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replications. The first effective signal is counted if it is plotted outside the control limit, warning
limit or auxiliary limit after the shift is implanted at thelOth plot. For example, for applying
supplemental Rule B, the signal will be considered if the 2 out of limits points appear after the
10th point. If one happens at the 9th point and another one happens at the 11th point, this will not

be counted as an out of control signal

Results of these simulation experiments for 61 =1.360, 62" =1.760 and 63 =200 are presented in
Tables 4.2, 4.3 and 4.4, respectively. Each of the table presents the number of successes (N.O.S.),
average alarm pomnt (A.A.P.), number of replications (N.O.R.) and success rate (S.R.)
corresponding to the individual or combmnations of different supplemental rules. For example, in
Tables 4.1 to 4.5, “AB” means that the shift is detected by supplemental Rule A or Rule B and
“ABCD” means that the shift is detected by any of the supplemental Rules A, B, C, or D. Table
4.5 presents the averaged values of N.O.S.and A.A.P. based on the corresponding ones listed in

Tables 4.2 to 4.4.

Table 4.2 Supplemental rules performances: n=30, shift size 1.30

A B C D
N.O.S. 8.0 9.0 17.0 1.0
A.A.P. 17.8 15.1 14.7 15.0
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 0.3 0.6 0.0
AB AC AD BC BD CD
N.O.S. 14.0 22.0 10.0 21.0 9.0 21.0
A.A.P. 14.3 15.2 17.5 13.6 17.8 16.0
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.5 0.7 0.3 0.7 0.3 0.7
ABC ABD ACD BCD ABCD
N.O.S. 22.0 13.0 19.0 20.0 22.0
A.A.P. 15.9 18.8 15.8 14.4 16.7
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.7 0.4 0.6 0.7 0.7
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Table 4.3 Supplemental rules performances: n=30, shift size 1.7c

A B C D
N.O.S. 18.0 6.0 21.0 5.0
A.A.P. 15.2 15.2 13.4 15.6
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.6 0.2 0.7 0.2
AB AC AD BC BD CD
N.O.S. 18.0 24.0 13.0 24.0 13.0 21.0
A.A.P. 13.7 12.8 16.8 14.5 15.7 15.3
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.6 0.8 0.4 0.8 0.4 0.7
ABC ABD ACD BCD ABCD
N.O.S. 29.0 24.0 24.0 26.0 27.0
A.A.P. 14.7 15.2 12.8 14.3 14.6
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 1.0 0.8 0.8 0.9 0.9
Table 4.4 Supplemental rules performances: n=30, shift size 2o
A B C D
N.O.S. 13.0 9.0 23.0 3.0
A.A.P. 13.9 14.6 14.5 15.0
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.4 0.3 0.8 0.1
AB AC AD BC BD CD
N.O.S. 22.0 29.0 16.0 22.0 17.0 21.0
A.A.P. 14.9 13.8 15.1 14.9 14.3 14.3
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.7 1 0.5 0.7 0.6 0.7
ABC ABD ACD BCD ABCD
N.O.S. 24.0 23.0 24.0 26.0 26.0
A.AP. 13.2 14.8 13.2 13.5 12.5
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.8 0.8 0.8 0.9 0.9

Observing from the experiment results of the 3 shift sizes of the SD, we can see that the
combination of Rules A and C has the best performance on N.O.S. among all combinations of any
two rules. In addition, when the shift sizes are 1.3c and 26 as shown in Table 4.2 and 4.4,
respectively, AC has the best N.O.S. performance among all the tested individual rules and all

combmations. For all the SD shift sizes, there is no significant difference on A.A.P. between
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different individual rules or rule combinations. Still, when SD shift is at 1.7¢ as shown in Table
4.3, AC is one of the combinations which have the best performance on A.A.P. When SD shift is
at 1.30 or 20 as shown in Table 4.2 and Table 4.4, respectively, the A.A.P. performance of

combination AC is still comparable with the best ones.

As can be seen from Tables 4.2,4.3 and 4.4, for most supplemental rule combinations, the N.O.S.
performances become better when the shift size of SD increases. For example, AB has the N.O.S.
of 14.0 when the shift size is 1.3c, 18.0 when the shift size s 1.70, 22.0 when the shift size is 2c.
For individual rules, such trend is not obvious. In terms of A.A.P., most of the mdividual rules and
combined rules detect the shift faster when the shift size of SDis larger. For example, the A.A.P.
by ABCD is 16.7 when the shift size is 1.30, 14.6 when the shift size is 1.70, and 12.5 when the

shift size is 2.

Table 4.5 Average values of N.O.S. and A.A.P. when n=30

A B C D
Average N.O.S. 13.0 8.0 20.3 3.0
Average A.A.P. 15.6 14.9 14.2 15.2

AB AC AD BC BD CD
Average N.O.S. 18.0  25.0 13.0 223 13.0 21.0
Average A AP. 143 14.0 16.4 14.3 15.9 15.2

ABC ABD ACD BCD ABCD

Average N.O.S. 250 20.0 223 24.0 25.0
Average A.A.P.  14.6 16.3 13.9 14.0 14.6

It is apparent from Table 4.5 that for the 3 SD shift sizes, the combinations of Rules ABCD, Rules
ABC and Rules AC have the best average N.O.S. performance among other rule combinations or
individual rules. For practicality considerations, AC is the best combination of rules to use since

it is simpler and more effective. Rule C is the most effective individual rule and performs better
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than Rules A, B and D. At the same time, any other rule orrules combmning with Rule C have good

performance as shown in Table 4.5.

In terms of average A.A.P, we can see from Table 4.5 that there is no significant difference
between different combinations and individual rules. Although combinations of Rules ABCD,
Rules ABC and Rules AC no longer have the best performance, they still have good performance

comparing to all other individual rules and rule combinations.

4.3.2 Experiments for Different Lengths of Tested Processes

The length of the tested processes may affect the detecting capability of the rules investigated in
this research. For example, using Rule C and Rule D requires longer run lengths to identify the
signal. It means that the number of samples should be larger when these rules are used. With this
consideration, we conducted two groups of experiments to observe the influence of process length
on the detecting ability of the considered rules with all other conditions kept the same. Similar to
those discussed earlier, we used 3 different shift sizes by letting 61" =1.360,62 =1.760 and 63° =260
in our simulation experiments. Normal distribution function in Microsoft Excel is used to generate
30 random variable values following N(1,1) in each simulation run. A shift of the SD is implanted
at the 10th sample. Each test has 30 simulation runs or replications. The first effective signal is
counted if it is plotted outside the control limit, warning Lmit or auxiliary limit after the shift is

mmplanted at thel0th plot.

For the first group of experiments, we reduced the length of the tested process from 30 points to

20 pomts without changing the shift starting point, the 10th plot.
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Results of these experiments for 61 =1.360,62 =1.760 and 63’ =200 are presented in Tables 4.6, 4.7
and 4.8, respectively. Each of the table presents the number of successes (N.O.S.), average alarm
point (A.A.P.), number of replications (N.O.R.) and success rate (S.R.) corresponding to the
individual or combinations of different supplemental rules. Table 4.9 presents the averaged values

of N.O.S. and A.A.P. based on the corresponding ones listed in Tables 4.6 to 4.8.

Table 4.6 Supplemental rules performances: n=20, shift size 1.30

A B C D
N.O.S. 2.0 5.0 11.0 0.0
A.A.P. 11.0 14.0 11.6 -
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 0.2 0.4 0.0
AB AC AD BC BD CD
N.O.S. 9.0 14.0 7.0 11.0 8.0 13.0
A.A.P. 12.7 12.4 15.9 12.5 13.3 11.7
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.3 0.5 0.2 0.4 0.3 0.4
ABC ABD ACD BCD ABCD
N.O.S. 14.0 9.0 10.0 14.0 22.0
A.A.P. 12.9 13.8 11.7 10.7 12.5
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.5 0.3 0.3 0.5 0.7
Table 4.7 Supplemental rules performances: n=20, shift size 1.7c
A B C D
N.O.S. 6.0 13.0 12.0 0.0
A.A.P. 14.8 11.5 12.3 -
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.2 0.4 0.4 0.0
AB AC AD BC BD CD
N.O.S. 12.0 24.0 7.0 12.0 9.0 13.0
A.A.P. 13.7 12.6 12.7 11.3 11.7 11.2
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.4 0.8 0.2 0.4 0.3 0.4
ABC ABD ACD BCD ABCD
N.O.S. 19.0 14.0 18.0 19.0 21.0
A.A.P. 12.4 12.7 11.9 11.9 12.8
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.6 0.5 0.6 0.6 0.7
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Table 4.8 Supplemental rules performances: n=20, shift size 2a

A B C D
N.O.S. 15.0 13.0 18.0 0.0
A.A.P. 12.9 12.2 10.9 -
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.5 0.4 0.6 0.0
AB AC AD BC BD CD
N.O.S. 20.0 22.0 9.0 20.0 19.0 18.0
A.A.P. 12.5 11.8 14.1 11.3 12.8 11.6
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.7 0.7 0.3 0.7 0.6 0.6
ABC ABD ACD BCD ABCD
N.O.S. 22.0 16.0 19.0 21.0 24.0
A.A.P. 11.5 11.7 13.4 10.8 11.3
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.7 0.5 0.6 0.7 0.8

Combination of Rules AC still has the best performance on N.O.S. among all the 2 rule
combinations. When the shift size is 1.7c as shown i Table 4.7, AC has the best N.O.S.
performance among all the tested individual rules and combmations. When the shift sizes are 1.3¢
and 26 as shown in Table 4.6 and Table 4.8 respectively, Rules ABCD performs best. It is worth
mentioning that Rules AC and other combmations show limited effectiveness when shift size is
1.30, while Rules ABCD still has the N.O.S at 22.0, the largest among all individual rules or rule
combinations. Rules AC follow it with 14.0. For A.A.P., when shift size is 1.3c (Table 4.6), Rule
A, Rule C, Rules CD and Rules ACD have better A.A.P. performance. When shift size is 1.70c,
Rule B, Rules BC, Rules BD, Rules CD, Rules ACD and Rules BCD have better A.A.P
performance. When shift size is 2o, Rules AC, Rules BC, Rules CD, Rules ABC, Rules ABD,
Rules BCD and Rules ABCD have better A.A.P. performance. We can see from above
observations, Rules AC always has better A.A.P. performance for all the SD shift sizes with its

value at around 12.0.
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As can be seen in Table 4.6, 4.7 and 4.8, the N.O.S. performances in this set of experiments are
similar to those in the original experiments. For almost all the individual rules and combinations,
the N.O.S. becomes better when the SD shift size increases. It also shows that Rule D is less
effective for all the 3 SD shift sizes. This is understandable as using Rule D requires 8 pomts to
identify the signal. After reducing the length of the tested process to 20 points, only 10 points after
the shift could be observed. In terms of A.A.P., there is no apparent increasing or decreasing trend

when the shift size of SD becomes larger.

Table 4.9 Average values of N.O.S. and A.A.P. when n=20

A B C D
Average N.O.S. 7.7 10.3 13.7 0.0
Average A.A.P. 129 12.6 11.6 -

AB AC AD BC BD CDh
Average N.O.S. 13.7  20.0 7.7 14.3 12.0 147
Average A.A.P. 129 12.3 14.2 11.7 12.6 11.5

ABC ABD ACD BCD ABCD

Average N.O.S. 183 13.0 15.7 18.0 22.3
Average AL AP. 123 12.7 12.3 11.2 12.2

Observing the averaged values of N.O.S. and A.A.P shown i Table 4.9, for the tested 3 shift sizes
of SD, the combination of Rules ABCD is the most effective one in terms of N.O.S. Rules AC,
similar to the results from our original experiments, has a competitive performance on N.O.S. as
well. Rule C still has the best performance among individual rules. The averaged A.A.P. value
does not show significant differences corresponding to different individual rules and rule

combinations, except the weakness of Rule D, as discussed earlier.

For the second group of experiments, we increased the length of the tested process from 30 points

to 40 pomts without changing the shift startimg pomnt at the 10th plot.
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Results of these experiments for 61’ =1.360,02" =1.760 and 63 =200 are presented in Tables 4.10,
4.11 and 4.12, respectively. Each of the tables presents the number of successes (N.O.S.), average
alarm point (A.A.P.), number of replications (N.O.R.) and success rate (S.R.) corresponding to the

individual or combinations of different supplemental rules. Table 4.13 presents the averaged

values of N.O.S. and A.A.P. based on the corresponding ones listed in Tables 4.10 to 4.12.

Table 4.10 Supplemental rules performances: n=40, shift size 1.30

A B C D
N.O.S. 5.0 7.0 17.0 3.0
A.A.P. 16.6 20.1 17.5 18.7
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.2 0.2 0.6 0.1
AB AC AD BC BD CD
N.O.S. 20.0 27.0 14.0 25.0 21.0 21.0
A.A.P. 20.1 15.5 20.3 18.5 17.5 18.5
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.7 0.9 0.5 0.8 0.7 0.7
ABC ABD ACD BCD ABCD
N.O.S. 28.0 25.0 26.0 26.0 29.0
A.A.P. 14.3 15.6 15.5 15.3 13.4
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.9 0.8 0.9 0.9 1.0
Table 4.11 Supplemental rules performances: n=40, shift size 1.70
A B C D
N.O.S. 13.0 17.0 25.0 2.0
A.A.P. 18.8 16.2 19.2 20.5
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.4 0.6 0.8 0.1
AB AC AD BC BD CD
N.O.S. 22.0 26.0 13.0 25.0 14.0 24.0
A.A.P. 16.5 14.7 18.9 15.0 17.0 17.3
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.7 0.9 0.4 0.8 0.5 0.8
ABC ABD ACD BCD ABCD
N.O.S. 28.0 23.0 26.0 26.0 29.0
A.A.P. 18.1 18.3 19.9 17.5 14.4
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.9 0.8 0.9 0.9 1.0
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Table 4.12 Supplemental rules performances: n=40, shift size 2o

A B C D
N.O.S. 11.0 17.0 23.0 3.0
A.A.P. 15.3 18.4 16.2 21.7
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.4 0.6 0.8 0.1
AB AC AD BC BD CD
N.O.S. 25.0 29.0 20.0 27.0 15.0 24.0
A.A.P. 12.9 14.1 16.3 13.7 17.3 17.5
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.8 1.0 0.7 0.9 0.5 0.8
ABC ABD ACD BCD ABCD
N.O.S. 28.0 25.0 26.0 26.0 29.0
A.A.P. 14.3 15.6 15.5 15.3 13.4
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.9 0.8 0.9 0.9 1.0

It is clear from Tables 4.10, 4.11 and 4.12 that combination of Rules AC still has the best
performance on N.O.S.among all the 2 rule combinations. When the shift size is 26 as shown in
Table 4.12, AC and ABCD have the best N.O.S. performance compared to all the tested individual
rules and rule combinations. When the shift sizes are 1.3c and 1.7c as shown in Tables 4.10 and
Table 4.11 respectively, Rules ABCD performs best. After increasing the length of the tested
process, the performance of Rule D on N.O.S. for the 3 SD shift sizes does not improve
significantly. It is less effective than other individual rules and combined rules. In contrast, Rule
C keeps a higher level of N.O.S. performance among other individual rules. In terms of A.A.P.,
when shift size is 1.3c as shown in Table 4.10, Rule ABCD has the best A.A.P. performance at
13.4. When shift size s 1.70, Rules AC and Rules ABCD have better A.A.P performance at 14.7
and 14.4, respectively. When shift size is 2o, Rules AB has the best A.A.P. performance at 12.9.
Compared with experiment results from the tested shorter processes, we can see that Rule AC no
longer has the best performance i terms of A.A.P., but it is steady at the level of 14.0 to 15.0 for

the 3 SD shift sizes.



As can be seen in Tables 4.10, 4.11 and 4.12, for individual rules, except for Rule D showing less
effectiveness on N.O.S. for the 3 SD shift sizes, the N.O.S. of Rule A, B and C tend to increase
with the SD shift size. For the 2 rule combmations, the N.O.S. of Rules BD shows a trend of
decrease when the SD shift size is larger. N.O.S. of other 2 rule combinations increase with the
SD shift size. For 3 and 4 rule combinations, the N.O.S. performances are relatively steady for the
3 SD shift sizes. In terms of A.A.P., there is no apparent increasing or decreasing trend for
mndividual rules or for combmations of 3 and 4 rules when the shift size of SD becomes larger. For

most of the 2 rule combinations, A.A.P. decreases when the SD shift size increases.

Table 4.13 Average values of N.O.S. and A.A.P. when n=40
A B C D

Average N.O.S. 9.7 13.7 217 2.7
Average A A.P. 169 18.3 17.7 20.3

AB AC AD BC BD CDh
Average N.O.S. 223 273 15.7  25.7 16.7  23.0
Average A.A.P. 165 14.7 18.5 15.7 17.3 17.7

ABC ABD ACD BCD ABCD

Average N.O.S. 280 243 260  26.0 29.0
Average AL AP. 155 16.5 17.0 16.0 13.7

Observing the averaged values of N.O.S. and A.A.P shown in Table 4.13, for the tested 3 shift
sizes of SD, the combination of Rules ABCD is the most effective ones in terms of N.O.S. Rules
AC, similar to the results from our original experiments, has a competitive performance on N.O.S.
as well. Rule C still has the best performance among individual rules. Rules ABCD has the best
A.A.P. performance at 13.7, followed by Rules AC, Rules ABC and Rules BC at 14.7, 15.5 and
15.7, respectively. To summarize, when increase the length of the tested process, Rules AC is the

combation with simpler application and competitive performance on both N.O.S.and A.A.P.
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Comparing the results with that of the original experiment, for most of the rule combinations, the
average N.O.S. of different shift sizes increases with the increase of the process length. For
example, as can be seen from Table 4.9, when the number of samples is 20, the average N.O.S. of
Rules AB is 13.7. From Tables 4.5 and 4.13, when the number of samples are 30 and 40, the
average N.O.S. of Rules AB are 18 and 22.3, respectively. However, individual rules A and B do
not show such trend. When the length of tested process increases from 20 to 30 and 40, the average
N.O.S.of rule A are 7.7, 13.0 and 9.7, respectively and the average N.O.S. of rule B are 10.3, 8.0

and 13.7, respectively.

For this set of experiments, we cannot compare the average A.A.P. for different rules or rule
combinations since the run lengths after the shift are different so that such comparison will not be

meaningful.

We can summarize that different lengths of tested process affect the detecting performance for
most of'the tested rules and rule combinations. The combination of Rules AC in most cases always
has the highest N.O.S. among all the mdividual rules and 2 rule combations. In addition, the
combination of Rules AC has a comparable performance with 3 rule combinations and even 4 rule

combination while 2 rule combination will be much easier to implement in practice.

4.3.3 Experiments for Different Shift Starting Points

We conducted other two groups of experiments to observe if changing the starting point of the
shit will lead to different performances of the rules or rule combinations. Similar to those
discussed earlier, we used 3 different shift sizes by letting o1’ =1.360, 62" =1.760 and 63" =200 in
our simulation experiments. Normal distribution function in MS-Excel is used to generate 30

random variable values following N(1,1) in each simulation run. A shift ofthe SD is implanted at
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the 10th sample. Each test has 30 simulation runs or replications. The first effective signal is
counted if it is plotted outside the control limit, warning limit or auxiliary limit after the shift is

mplanted at thelOth plot.

For the first group, we implant SD shift at the 10th point, same as we did in the original set of
experiments. In this case, the number of samples is kept at 30. For the second group, we implanted
the shift at the 20th pont, the number of samples is also kept at 30. Considering that the shifted
process of the second group lasts only for 10 points (from the 20th pomnt to 30th point), for the first
group, we only observed 10 points after the shift (from the 10th point to the 20th point), not all the

20 points after the shift.

Results of the first group of experiments for o1 =1.360, 62" =1.760 and 63 =200 are presented in
Tables 4.14, 4.15 and 4.16, respectively. Each of the table presents the number of successes
(N.O.S.), average alarm point (A.A.P.), number of replications (N.O.R.) and success rate (S.R.)
corresponding to the individual rules or combinations of different supplemental rules. Table 4.17
presents the averaged values of N.O.S. and A.A.P. based on the corresponding ones listed in Tables

4.14, 4.15 and 4.16.

As can be seen from the simulation results, combination of Rules AC still has the best performance
on N.O.S. among all the 2 rule combinations. When the shift size is 1.7¢ and 2c as shown in Tables
4.15 and 4.16, respectively, Rules AC has the best N.O.S. performance among all the tested
mdividual rules and rule combinations. When shift size is 1.3c as shown in Table 4.14, Rules
ABCD performs best. For A.A.P., when shift size is 1.36 (Table 4.14), Rule D and Rules AD have
the best A.A.P. performance. We notice that the N.O.S. of Rule D and Rules AD is 1.0, it means

that Rule D and Rules AD are not effective even they have best A.A.P. performance. Except for
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Rule D and Rules AD, Rule C and Rule ABC perform well on A.A.P. When shift size is 1.7c, Rule
C and Rules CD have the best A.A.P. performance. When shift size is 26, A.A.P. performance of

all individual rules and rule combinations are similar.

Table 4.14 Supplemental rules performances: SD shifts from the 10th point, shift size 1.30

A B C D
N.O.S. 4.0 5.0 12.0 1.0
A.A.P. 16.3 14.4 11.7 10.0
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 0.2 0.4 0.0
AB AC AD BC BD CD
N.O.S. 8.0 16.0 1.0 13.0 3.0 9.0
A.A.P. 13.8 12.4 10.0 12.2 11.7 12.1
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.3 0.5 0.0 0.4 0.1 0.3
ABC ABD ACD BCD ABCD
N.O.S. 11.0 7.0 15.0 16.0 18.0
A.A.P. 11.2 13.7 12.2 11.6 12.4
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.4 0.2 0.5 0.5 0.6

Table 4.15 Supplemental rules performances: SD shifts from the 10th point, shift size 1.7c

A B C D
N.O.S. 6.0 11.0 11.0 0.0
A.A.P. 12.8 13.6 10.9 -
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.2 0.4 0.4 0.0
AB AC AD BC BD CD
N.O.S. 13.0 20.0 8.0 19.0 10.0 10.0
A.A.P. 13.2 11.9 12.5 12.0 11.6 11.0
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.4 0.7 0.3 0.6 0.3 0.3
ABC ABD ACD BCD ABCD
N.O.S. 20.0 18.0 21.0 21.0 20.0
A.A.P. 12.7 12.8 12.5 12.0 12.1
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.7 0.6 0.7 0.7 0.7
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Table 4.16 Supplemental rules performances: SD shifts from the 10th point, shift size 2a

A B C D
N.O.S. 12.0 12.0 19.0 0.0
A.A.P. 13.2 12.0 11.1 -
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.4 0.4 0.6 0.0
AB AC AD BC BD CD
N.O.S. 18.0 26.0 11.0 20.0 12.0 24.0
A.A.P. 12.8 11.3 12.1 12.8 11.4 11.3
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.6 0.9 0.4 0.7 0.4 0.8
ABC ABD ACD BCD ABCD
N.O.S. 24.0 16.0 19.0 21.0 22.0
A.A.P. 12.3 11.2 11.6 11.5 11.5
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.8 0.5 0.6 0.7 0.7

As can be seen in Tables 4.6, 4.7 and 4.8, the N.O.S. performances in this set of experiments are
similar to those i the original experiments.
combinations, the N.O.S. becomes better when the SD shift size increases. It also shows that Rule
D s less effective for all the 3 SD shift sizes. As mentioned earlier, using Rule D requires 8 points
to identify the signal. In our first group of experiments, although the total number of samples is
still. 30, we only observe 10 points after shift. In terms of A.A.P., there is no apparent increasing

or decreasing trend when the shift size of SD becomes larger. For the 3 SD shift sizes, the A.A.P.

performances of all the individual rules and combined rules are similar.

For almost all the individual rules and rule

Table 4.17 Average values of N.O.S. and A.A.P. when SD shifts from the 10th point

A B C D
Average N.O.S. 7.3 9.3 14.0 0.3
Average A AP. 14.1 13.3 11.2 -

AB AC AD BC BD CD
Average N.O.S. 13.0 20.7 6.7 17.3 8.3 14.3
Average A.A.P. 132 11.9 11.5 12.3 11.6 11.5

ABC ABD ACD BCD ABCD

Average N.O.S. 18.3 13.7 18.3 19.3 20.0
Average A A.P. 121 12.6 12.1 11.7 12.0
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Observing the averaged values of N.O.S. and A.A.P shown in Table 4.17, for the tested 3 shift
sizes of SD, Rules AC and Rules ABCD are the most effective ones in terms of N.O.S. Rules AC
performs slightly better than Rules ABCD (20.7 compare to 20.0). Rule C still has the best

performance among all individual rules. Rules C also has the best A.A.P. performance at 11.2.

The effectiveness of Rules AC is clearly showed from the experiment results agam.

For the second group of experiments, we implanted the shift at the 20th point, the number of

samples is kept at 30.

Results of the second group of experiments for 61 =1.360,62  =1.7c0and 63° =200 are presented in
Tables 4.18, 4.19 and 4.20, respectively. Each of the tables presents the number of successes
(N.O.S.), average alarm point (A.A.P.), number of replications (N.O.R.) and success rate (S.R.)
corresponding to the individual or combinations of different supplemental rules. Table 4.21
presents the averaged values of N.O.S. and A.A.P. based on the corresponding ones listed in Tables

4.18,4.19 and 4.20.

Table 4.18 Supplemental rules performances: SD shifts from the 20th point, shift size 1.30

A B C D
N.O.S. 5.0 10.0 8.0 1.0
A.A.P. 25.0 23.5 22.4 23.0
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.2 0.3 0.3 0.0
AB AC AD BC BD CD
N.O.S. 5.0 15.0 3.0 13.0 7.0 10.0
A.A.P. 25.0 22.1 253 22.1 23.6 21.9
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.2 0.5 0.1 0.4 0.2 0.3
ABC ABD ACD BCD ABCD
N.O.S. 15.0 10.0 13.0 11.0 19.0
A.A.P. 22.1 22.7 22.6 21.3 22.5
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.5 0.3 0.4 0.4 0.6
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Table 4.19 Supplemental rules performances: SD shifts from the 20th point, shift size 1.70

A B C D
N.O.S. 8.0 15.0 20.0 0.0
A.A.P. 233 22.2 21.8 -
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 0.5 0.7 0.0
AB AC AD BC BD CD
N.O.S. 19.0 24.0 9.0 16.0 12.0 19.0
A.A.P. 23.7 21.3 22.9 21.7 22.6 21.9
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.6 0.8 0.3 0.5 0.4 0.6
ABC ABD ACD BCD ABCD
N.O.S. 25.0 17.0 18.0 23.0 23.0
A.A.P. 21.2 23.0 21.5 21.6 21.9
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.8 0.6 0.6 0.8 0.8

Table 4.20 Supplemental rules performances: SD shifts from the 20th point, shift size 2o

A B C D
N.O.S. 17.0 13.0 19.0 1.0
A.A.P. 22.8 214 21.6 21.0
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.6 0.4 0.6 0.0
AB AC AD BC BD CD
N.O.S. 21.0 26.0 16.0 24.0 11.0 17.0
A.A.P. 22.4 21.7 233 21.1 22.2 20.9
N.O.R. 30.0 30.0 30.0 30.0 30.0 30.0
S.R. 0.7 0.9 0.5 0.8 0.4 0.6
ABC ABD ACD BCD ABCD
N.O.S. 27.0 21.0 25.0 23.0 27.0
A.A.P. 21.6 23.1 22.2 213 22.0
N.O.R. 30.0 30.0 30.0 30.0 30.0
S.R. 0.9 0.7 0.8 0.8 0.9

Combination of Rules AC has the best performance on N.O.S. among all the 2 rule combinations.
When the shift size is 1.7c as shown in Table 4.19, Rules AC has the best N.O.S. performance
among all the tested individual rules and combinations. When the shift sizes are 1.3c and 2c as
shown in Tables 4.18 and 4.20, respectively, Rules ABCD performs best. For A.A.P., when shift

size 15 1.3c (Table 4.18), Rule AC, Rules BC, Rules ABC and Rules BCD have the best A.A.P.
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performance. When shift sizes are 1.70 and 20, the A.A.P. performances of different individual

rules and combined rules are similar, around 21.0 to 23.0.

As can be seen in Tables 4.6, 4.7 and 4.8, the N.O.S. performances are similar to those in the
original experiments. For almost all the individual rules and rule combinations, the N.O.S.
becomes better when the SD shift size increases. It also shows that Rule D is less effective for all
the 3 SD shift sizes. In terms of A.A.P., there is no apparent increasing or decreasing trend when
the shift size of SD becomes larger. The A.A.P. performances of all the individual rules and 2 rule
combinations tend to decrease with the shift size of SD. While the A.A.P. for 3 and 4 rule

combinations are relatively steady and do not change dramatically with the shift sizes of SD.

Table 4.21 Average values of N.O.S. and A.A.P. when SD shifts from the 20th point
A B C D
Average N.O.S. 10.0 12.7 15.7 0.7
Average A.A.P. 237 22.4 21.9 22.0
AB AC AD BC BD CD
Average N.O.S. 15.0 21.7 9.3 17.7 10.0 15.3
Average A.A.P.  23.7 21.7 23.8 21.6 22.8 21.6
ABC ABD ACD BCD ABCD
Average N.O.S. 223 16.0 18.7 19.0 23.0
Average A A.P. 21.6 22.9 22.1 21.4 22.1

Observing the averaged values of N.O.S. and A.A.P shown in Table 4.21, for the tested 3 shift
sizes of SD, Rules ABCD is the most effective one in terms of N.O.S at 23.0. Rules AC has a
slightly lower N.O.S. at 21.7. Rule C still has the best performance among individual rules. The
average A.A.P performances are similar between different individual rules and combined rules.
Among them, Rule C, Rules AC, Rules BC, Rules CD, Rules ABC, Rules ACD, Rules BCD and

Rules ABCD have slightly better A.A.P. performances.
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Comparing the results of the two groups of experiments, we can see from Tables 4.17 and 4.21
that the average N.O.S. performances of different individual rules and combined rules improve
when the SD shift starts from a later point. For example, for Rules AB, the total number of
successes is 13.0 when the shift starts from the 10th point as shown in Table 4.17 and 15.0 when
the shift starts from the 20th point as shown from Table 4.21. A possible reason for this
phenomenon is, when SD shift starts from a later pont, more data are collected before the shift
happens and the control chart is steadier when the shift actually occurs. This may mprove the

effectiveness of detection.

In terms of average A.A.P. performance, the average alarm point reflects the out-of-control
average run length (ARL)) to some extent. Since we observe the same length of tested process
here, it is reasonable to compare the average alarm point of different rules under different shift
sizes. For example, from Table 4.17, rule A has an average alarm point of 14.1 when the shift starts
from the 10th pont. This means that the corresponding ARL; is 4.1. From Table 4.21, rule A has
an average alarm point of 23.7 when the shift starts from the 20th point. This means that the ARL;

is 3.7. It appears that the ARL; of different rules are similar when the shift starts at different points.

As well, combination of Rules AC still has the best performance among all the individual rules
and 2 rule combinations. Meanwhile, AC also has a comparable performance with 3 and 4 rule

combinations.

The experiments in Sections 4.3.2 and 4.3.3 illustrate that the combination of rules AC has the best
performance on detecting a shift on SD for all 3 shift sizes, for different lengths of the tested

processes and for different starting pomts of the shift. In the following simulation experiments in
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Section 4.4, we will test different short run control charts using some of the results on Q chart

shown in this section.

4.4 Simulation Experiments for Short-Run Control Charts

In this section, we conducted simulation experiments for Q and other short-run control charts
discussed i this thesis. The objective is to identify more effective control charts for detecting SD

shift in short-run production.

The tested control charts using simulation are:

- tChart

- CUSUM t Chart

-  EWMA t Chart

- Q Chart

- CUSUM Q Chart

- EWMA Q Chart

- Q Chart with supplemental rules A&C

- Individual X Chart

As discussed in Chapter 3 the parameter values used in the simulation for some of the tested

charts are listed below:

Table 4.22 The parameter values identified for different charts

CUSUM t EWMA t CUSUM Q EWMA Q
t Chart Chart Chart Chart Chart X Chart
o 0.0027 | h 3 A 0.09 hs 3.34 A 0.25 d 1.128
k 0.75 L 3 ks 0.75 K 2.9
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Similar to that discussed in Section 4.3, we investigate the detecting abilities of the tested control
charts to see if they vary with the increase or decrease of the lengths of the tested process; or

change with the starting point of the SD shift.

4.4.1 Original Experiments

To observe the effectiveness of different short-run control charts on the sizes of SD shifts, we used
3 different shift sizes by letting o1 =1.360,62" =1.700 and 63" =200 in our simulation experiments.
30 random variable values following N(1, 1) are generated for each replication by MS-Excel. Each
test has 30 replications. The first effective signal is counted if it is plotted outside the control limit

after the shift is implanted at thelOth plot.

Results of these simulation experiments for 61 =1.360, 62" =1.760 and 63 =200 are presented in
Tables 4.23, 4.24 and 4.25, respectively. Each of the tables presents the number of successes
(N.O.S.), average alarm point (A.A.P.), number of replications (N.O.R.) and success rate (S.R.)
corresponding to the control charts tested in our thesis. Table 4.5 presents the averaged values of

N.O.S.and A.A.P. based on the corresponding ones listed in Tables 4.23, 4.24 and 4.25.

Table 4.23 Short-run control charts performances: n=30, shift size 1.30

t EWMA t CUSUM t Q
N.O.S. 2.0 - 2.0 6.0
A.A.P. 19.0 - 26.0 17.7
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 0.0 0.1 0.2
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 2.0 6.0 22.0 10.0
A.A.P. 17.0 14.2 16.6 16.6
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 0.2 0.7 0.3
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Table 4.24 Short-run control charts performances: n=30, shift size 1.7c

t EWMA t CUSUM t Q
N.O.S. 14.0 - 4.0 11.0
A.AP. 18.3 - 13.8 16.9
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.5 0.0 0.1 0.4
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 8.0 14.0 22.0 17.0
A.A.P. 19.6 16.4 13.3 17.0
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 0.5 0.7 0.6

Table 4.25 Short-run control charts performances: n=30, shift size 2o

t EWMA t CUSUM t Q

N.O.S. 15.0 1.0 6.0 10.0
A.AP. 16.7 11.0 16.8 20.6
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.5 0.0 0.2 0.3

EWMA Q CUSUM Q Q& Rules AC X

N.O.S. 10.0 11.0 27.0 17.0
A.AP. 17.1 17.8 14.2 13.4
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 0.4 0.9 0.6

It is apparent that Q chart with Rules AC always has the best N.O.S. performance for 3 shift sizes
of SD as shown in Tables 4.23,4.24 and 4.25. Individual X chart also has better performance than
the rest of the control charts and the difference between Individual X chart and Q chart with Rules
AC is significant in most of the times. When the SD shift sizes are 1.36 and 20, the differences of
N.O.S between Individual X chart and Q chart with Rules AC are 12.0 and 10.0, respectively.
When the SD shift size is 1.7c, the difference is smaller at 5.0. In terms of A.A.P., when the SD
shift size is 1.3c as shown in Table 4.23, CUSUM Q chart has the best A.A.P performance at 14.2.
When the SD shift size is 1.70, Q chart with Rules AC and CUSUM t have the best A.A.P.

performances at 13.3 and 13.8, respectively. When the SD shift size is 26, EWMA t chart and
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individual X chart have the best A.A.P. performance at 11.0 and 13.4, respectively. When the SD
is at different shift sizes, there is no obvious trend in terms of A.A.P. performance for different

control charts.

Table 4.26 Average values of N.O.S. and A.A.P. when n=30

t EWMA t CUSUM t Q
Average N.O.S. 10.3 1.0 4.0 9.0
Average A.A.P. 18.0 11.0 18.9 18.4
EWMA Q CUSUM Q Q & Rules AC X
Average N.O.S. 6.7 10.3 23.7 14.7
Average A.A.P. 17.9 16.1 14.7 15.7

From Tables 4.23 to 4.25, for most of the charts (t Chart, CUSUM t Chart, Q Chart, EWMA Q
Chart, CUSUM Q Chart, Q Chart with supplemental rules A&C, individual X Chart), the number
of successes increases with the shift size of SD. It means that larger shift size corresponds to better
detecting abilty. However, EWMA t Chart has a weak detecting ability for the 3 SD shift sizes.
When it comes to A.A.P. performance, there is no apparent increasing or decreasing trend for each

control chart when the shift size of SD becomes larger.

From Table 4.26, Q chart with Rules AC and individual X chart have the best average N.O.S.
performance. t chart, Q chart and CUSUM Q chart have similar performances at 10.3,9.0 and 10.3,
respectively. It can be noticed that the average N.O.S. for EWMA t Chart is 1.0. It is much smaller
than those for other charts. Besides, EWMA Q chart did not perform well with the average N.O.S.
being 6.7. While, on the other hand, both CUSUM t chart and CUSUM Q chart have better
performances than EWMA t and EWMA Q charts, respectively. This may show to some extent
that when detecting the SD shift in short-run production, CUSUM scheme charts are more effective
than corresponding EWMA scheme charts. From the perspective of average alarm point, although
EWMA t chart detects the shift fastest from as shown in Table 4.26, the corresponding average
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N.O.S. is almost zero. It seems that EWMA t chart is less effective in SD shift detection. The
results show that Q chart with Rules AC and individual X chart have the best performance on

average A.A.P. with the average A.A.P. being 14.7 and 15.7, respectively.

Overall, Q chart with Rules AC and Individual X chart have better performance on both number

of successes and average alarm point.

4.4.2 Experiments for Different Lengths of Tested Processes

Similar to that discussed in Section 4.3.2, we conducted simulation experiments with different
process lengths to see if they will affect the detecting ability of some of the short run control charts.
When the tested process has more plotted data, the control charts can have more time to detect the
shift. However, when applying Q chart to capture the shift of the mean, for short-run production,
if it cannot detect the shift immediately after the shift takes place, it has higher probability to miss
the shift in the rest of the shifted process. As mentioned in literature review, some authors studied
this issue and analysed the reason theoretically, while few papers illustrates if such phenomenon

exists on other control charts as well.

In this section, to observe the effectiveness of different short-run control charts on the sizes of SD
shifts, we also used 3 different shift sizes by lettng o1” =1.360, 62" =1.760 and 63" =200 in our
simulation experiments. We used 30 random variable values following N(1,1) generated by Excel.
Each test has 30 replications. The first effective signal is counted if it is plotted outside the control

limit after the shift is implanted at thelOth plot.

For the first group of experiments, we reduced the length of the tested process from 30 points to

20 points without changing the shift starting pomnt at the 10th plot.
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Results of these experiments for 61" =1.360,62" =1.760 and 63 =200 are presented in Tables 4.27,
4.28 and 4.29, respectively. Each of the tables presents the number of successes (N.O.S.), average
alarm point (A.A.P.), number of replications (N.O.R.) and success rate (S.R.) corresponding to the
individual or combinations of different supplemental rules. Table 4.30 presents the averaged

values of N.O.S. and A.A.P. based on the corresponding ones listed in Tables 4.27, 4.28 and 4.29.

Table 4.27 Short-run control charts performances: n=20, shift size 1.30

t EWMA t CUSUM t Q
N.O.S. 2.0 - 4.0 5.0
A.A.P. 19.0 - 15.5 12.4
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 - 0.1 0.2
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 4.0 4.0 13.0 10.0
A.AP. 14.5 18.3 11.9 13.5
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 0.1 0.4 0.3

Table 4.28 Short-run control charts performances: n=20, shift size 1.70

t EWMA t CUSUM t Q
N.O.S. 9.0 1.0 4.0 9.0
A.A.P. 13.4 16.0 14.0 13.2
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 - 0.1 0.3
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 5.0 10.0 13.0 10.0
A.A.P. 13.2 13.6 11.4 12.9
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.2 0.3 0.4 0.3
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Table 4.29 Short-run control charts performances: n=20, shift size 2o

t EWMA t CUSUM t Q
N.O.S. 11.0 - 4.0 9.0
A.AP. 12.5 - 14.8 14.1
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.4 0.0 0.1 0.3
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 8.0 8.0 23.0 18.0
A.A.P. 12.4 12.4 12.1 13.3
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 0.3 0.8 0.6

Q chart with Rules AC has the best N.O.S. performance for the 3 SD shift sizes shown in Tables
4.27,4.28 and 4.29, similar to those shown in the original experiments. Individual X chart also has
a better N.O.S. performance than other charts. Compare with the original experiments, when the
length of the tested process decreases, the difference of N.O.S. performance between individual X
chart and Q chart with Rules AC reduces as well. When the SD shift sizes are 1.3c and 1.76 shown
in Table 4.27 and 4.28, respectively, the differences of N.O.S. between Individual X chart and Q
chart with Rules AC are both 3.0. When the SD shift size is 2o, this difference is 5.0 as shown in
Table 4.29. EWMA t chart still shows lack of effectiveness for all the 3 SD shift sizes. For A.A.P.
performance, Q chart with Rules AC shows more advances in the tested shorter process of 20 plots.
When the SD shift sizes are 1.3c and 1.70, Q chart with Rules AC has the best A.A.P. performance
for both conditions. When the SD shift size is 2o, t chart, EWMA Q chart, CUSUM Q chart and
Q chart with Rules AC have the best A.A.P. performance at around 12. Individual X chart, as well,

performs well at 13.3 when SD shift is 2.

As can be seen form Tables 4.27, 4.28 and 4.29, the N.O.S. performances of almost all the control
charts tested here are improved when the SD shift size becomes larger. The N.O.S. of CUSUM t

chart keeps steady when the SD shift size increases. In terms of A.A.P., t chart, EWMA Q chart
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and CUSUM Q chart show a decreasing trend when the SD shift size increases. The A.A.P. of Q
chart tends to increase when the SD shift size increases. The A.A.P. of CUSUM t chart, Q chart

with Rules AC and individual X chart almost keep constant for the 3 SD shift sizes.

Table 4.30 Average values of N.O.S. and A.A.P. when n=20

t EWMA t CUSUM t Q
Average N.O.S. 7.3 1.0 4.0 7.7
Average A.A.P. 15.0 16.0 14.8 13.2
EWMA Q CUSUM Q Q & Rules AC X
Average N.O.S. 5.7 7.3 16.3 12.7
Average A.A.P. 13.4 14.7 11.8 13.2

It is clear from Table 4.30 that Q chart with Rules AC and individual X chart have the best
performances on both average N.O.S. and average A.A.P. CUSUM scheme charts have better

performances than the corresponding EWMA scheme charts.

For the second group of experiments, we increased the length of the tested process from 30 points

to 40 points without changing the shift starting point at the 10th plot.

Results of these experiments for 61" =1.360,02" =1.760 and 63" =200 are presented in Tables 4.31,
4.32 and 4.33, respectively. Each of the tables presents the number of successes (N.O.S.), average
alarm point (A.A.P.), number of replications (N.O.R.) and success rate (S.R.) corresponding to the
ndividual or combmations of different supplemental rules. Table 4.34 presents the averaged

values of N.O.S. and A.A.P. based on the corresponding ones listed in Tables 4.31, 4.32 and 4.33.
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Table 4.31 Short-run control charts performances: n=40, shift size 1.3c

t EWMA t CUSUM t Q
N.O.S. 6.0 2.0 6.0 7.0
A.AP. 25.8 16.0 17.2 22.6
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.2 0.1 0.2 0.2
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 3.0 5.0 17.0 16.0
A.A.P. 22.7 24.0 16.3 20.1
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 0.2 0.6 0.5

Table 4.32 Short-run control charts performances: n=40, shift size 1.7c

t EWMA t CUSUM 't Q
N.O.S. 13.0 1.0 6.0 8.0
A.A.P. 18.3 10.0 13.2 18.0
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.4 0.0 0.2 0.3
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 12.0 11.0 27.0 15.0
A.A.P. 18.8 15.6 16.3 16.1
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.4 0.4 0.9 0.5

Table 4.33 Short-run control charts performances: n=40, shift size 2o

t EWMA t CUSUM t Q
N.O.S. 17.0 1.0 6.0 13.0
A.AP. 19.4 11.0 15.8 14.2
N.O.R. 30.0 30.0 30.0 30.0

S.R. 0.6 0.0 0.2 0.4

EWMA Q CUSUM Q  Q & Rules AC X
N.O.S. 10.0 18.0 25.0 21.0
A.A.P. 18.8 18.5 12.4 14.8
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 0.6 0.8 0.7

As shown in the results ofthis set of simulation experiments, Q chart with Rules AC and individual

X chart still have the best performances on N.O.S. for the 3 SD shift sizes. When SD shift is 1.7,
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the difference between Q chart with Rules AC and Individual X chart is 12. For other 2 shift sizes,
the differences between the N.O.S. for Q chart with Rules AC and Individual X chart are smaller.
The N.O.S. performance of EWMA t chart improves slightly with longer process, but it is still lack
of effectiveness compared with other charts. For A.A.P. performance, except for EWMA t chart,
when the SD shift sizes are 1.3c6 and 20, Q chart with Rules AC performs best in both cases. When

the SD shift size is 1.70, CUSUM t chart has the best A.A.P. performance.

As can be seen from Tables 4.31, 4.32 and 4.33, the N.O.S. of most of the charts increase with the
SD shift size, except for CUSUM t chart. The N.O.S. of CUSUM t chart keeps unchanged when
the SD shift size increases. We had the same observation from the results of the first group of
experiments. In terms of A.A.P. performance, all the tested control charts have trends to decrease
with the SD shift size increasing. This means for longer processes, the control chart can detect the

shift earlier if the size of the SD shift is larger.

Table 4.34 Average values of N.O.S. and A.A.P. when n=40

t EWMA t CUSUM t Q
Average N.O.S. 12.0 1.3 6.0 93
Average A.A.P. 21.2 13.0 15.4 18.3
EWMA Q CUSUM Q Q & Rules AC X
Average N.O.S. 8.3 11.3 23.0 17.3
Average A.A.P. 20.1 19.4 15.0 17.0

As shown in Table 4.34, both Q chart with Rules AC and X chart have better average N.O.S.
performance than the rest of the control charts. EWMA t chart is lack of effectiveness compared
with other charts. CUSUM scheme charts have better performances than their EWMA counterparts.
Expect for EWMA t chart, Q chart with Rules AC has the best average A.A.P. performance as
well. The A.A.P. performance of Individual X chart is also comparable to that of Q chart with

Rules AC.
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Comparing the results in Tables 4.30 and 4.34 with those in Table 4.26 (the result of the original
experiments), we can see that most of the control charts have a better performance on average
N.O.S. when the length of the tested process is longer. Among them, the performance of Q chart
with Rules AC has more visible improvement with the average N.O.S. increased from 16.3 to 23.0.
Consequently, compared with other control charts, we can see that the performance of Q chart with
Rules AC is more easily to be affected by the length of the tested process. Yet, we also notice that
from Table 4.26, when the length of the tested process is 30, the average N.O.S. for Q chart with
Rules AC has already increased to 23.7. It is almost the same with the result when the process
length is 40 points which is 23.0 as shown in Table 4.34. For A.A.P. performance, as mentioned
before in Section 4.3.2, we cannot compare the average A.A.P. meaningfully since the lengths of

the tested processes are different.

Overall, Q chart with rules AC and Individual X chart are still the most effective control charts

among all the tested charts under the given conditions discussed in this section.

4.4.3 Experiments for Different Shift Starting Points

We conducted other two groups of experiments to observe if changing the starting point of the
shift would lead to different results. Similar to the experiments discussed in Section 4.3.3, we used
3 different shift sizes by letting o1 =1.360,62" =1.700 and 63" =200 in our simulation experiments.
We used normal distribution function i MS-Excel to generate 30 random variable values
following N(1, 1). A shift ofthe SD is implanted at the 10th sample. Each test has 30 replications.
The first effective signal is counted if it is plotted outside the control Lmit after the shift is

mmplanted.
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For the first group, we implanted SD shift at the 10th point, just as we did in the original setting.
In this case, the number of samples is kept at 30. For the second group, we implant the shift at the
20th point, the number of samples is also kept at 30. The processes of the second group after the
shifft have only 10 points To make these two groups of experiments comparable, we only
observed the 10 points following the shift (from the 10th pomt to the 20th point) in the first group

of experiments.

Results of the first group of experiments for 61’ =1.360, 62" =1.700 and 63’ =200 are presented in
Tables 4.35, 4.36 and 4.37, respectively. Each of the tables presents the number of successes
(N.O.S.), average alarm pomnt (A.A.P.), number of replications (N.O.R.) and success rate (S.R.)
corresponding to the different control charts tested in this thesis. Table 4.38 presents the averaged

values of N.O.S. and A.A.P. based on the corresponding ones listed in Tables 4.35, 4.36 and 4.37.

The N.O.S. performances of Q chart with Rules AC and individual X chart are the best for the 3
SD shift sizes among all the charts as shown in Tables 4.35, 4.36 and 4.37. When the SD shift
sizes are 1.3c and 1.7c as shown in Tables 4.35 and 4.36, respectively, the N.O.S. performances
of individual X chart are as good as Q chart with Rules AC. EWMA t chart is still less effective
for most of the experiments. For A.A.P. performance, t chart has the best performance when the
SD shift sizes are 1.7c and 26 as shown in Tables 4.36 and 4.37, respectively. When SD shifts to
1.30, Q chart with Rules AC has the best A.A.P. performance. Q chart with Rules AC always has
best A.A.P. performance for the 3 SD shift sizes. On the other hand, individual X chart tends to
perform better when the SD shift size is larger. For example, when the shift size of SD is 2c as
shown in Table 4.37, ndividual X chart has the A.A.P. of 12.8. It is very close to that of Q chart
with Rules AC which is12.3. But when the shift sizes are 1.3c and 1.7c as shown in Tables 4.35

and 4.36 respectively, the performances of individual X chart are below average.
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Table 4.35 Short-run control charts performances: SD shifts from the 10th point, shift size 1.3

t EWMA t CUSUM t Q
N.O.S. 4.0 - - 2.0
A.AP. 17.0 - - 14.0
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 0.0 0.0 0.1
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 3.0 4.0 11.0 11.0
A.A.P. 15.0 14.3 12.6 15.2
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 0.1 0.4 0.4

Table 4.36 Short-run control charts performances: SD shifts from the 10th point, shift size 1.7c

t EWMA t CUSUM 't Q
N.O.S. 9.0 - 4.0 10.0
A.A.P. 12.3 - 13.3 14.7
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 0.0 0.1 0.3
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 4.0 2.0 14.0 14.0
A.A.P. 13.0 13.5 13.4 14.4
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.1 0.1 0.5 0.5

Table 4.37 Short-run control charts performances: SD shifts from the 10th point, shift size 2o

t EWMA t CUSUM t Q
N.O.S. 11.0 1.0 4.0 9.0
A.AP. 11.7 12.0 13.3 12.7
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.4 0.0 0.1 0.3

EWMA Q CUSUM Q  Q & Rules AC X
N.O.S. 12.0 11.0 21.0 18.0
A.A.P. 13.3 14.0 12.3 12.8
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.4 0.4 0.7 0.6

As can be seen from Tables 4.35, 4.36 and 4.37, all the control charts tested here have a trend of

having better N.O.S. performances when the SD shift size increases. In terms of A.A.P., t chart, Q
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chart, EWMA Q chart and Individual X chart have the decreasing A.A.P. when the shift size of
SD increases. For CUSUM t chart, CUSUM Q chart and Q chart with Rules AC, their A.A.P.

performances tend to be at a steady level when the shift size of SD changes.

Table 4.38 Average values of N.O.S. and A.A.P. when SD shifts from the 10th point

t EWMA t CUSUM t Q
Average N.O.S. 8.0 1.0 4.0 7.0
Average A.A.P. 13.7 12.0 13.3 13.8
EWMA Q CUSUM Q Q & Rules AC X
Average N.O.S. 6.3 5.7 15.3 14.3
Average A.A.P. 13.8 13.9 12.8 14.1

From Table 4.38, it is observed that Q chart with Rules AC has the best average N.O.S.
performance, followed by individual X chart. CUSUM t chart has better performance than EWMA
t chart, while CUSUM Q chart does not show such advantage over EWMA Q chart. They have
similar performance onaverage N.O.S. When it comes to average A.A.P., EWMA tchart performs
best followed by Q chart with Rules AC. Individual X chart performs worst in this case. But we
can notice that there are no significant differences between the average values of A.A.P. for

different control charts.

For the second group of experiments, we mmplanted the SD shift at the 20th point. The number of

total plots is kept at 30.

Results of the second group of experiments for 61 =1.360,062 =1.7c0and 63" =200 are presented in
Tables 4.39, 4.40 and 4.41, respectively. Each of the tables presents the number of successes
(N.O.S.), average alarm point (A.A.P.), number of replications (N.O.R.) and success rate (S.R.)
corresponding to the different control charts tested in this section. Table 4.42 presents the averaged

values of N.O.S. and A.A.P. based on the corresponding ones listed in Tables 4.39, 4.40 and 4.41.
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Table 4.39 Short-run control charts performances: SD shifts from the 20th point,

shift size 1.30

t EWMA t CUSUM t Q
N.O.S. 6.0 1.0 - 5.0
A.AP. 24.0 22.0 - 26.8
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.2 0.0 0.0 0.2
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 7.0 7.0 9.0 10.0
A.A.P. 23.7 244 22.8 23.8
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.2 0.2 0.3 0.3

Table 4.40 Short-run control charts performances: SD shifts from the 20th point, shift size 1.7c

t EWMA t CUSUM 't Q
N.O.S. 9.0 - 5.0 11.0
A.A.P. 24.0 - 23.4 23.9
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 0.0 0.2 0.4
EWMA Q CUSUM Q Q & Rules AC X
N.O.S. 6.0 9.0 22.0 11.0
A.AP. 24.8 26.1 22.4 233
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.2 0.3 0.7 0.4

Table 4.41 Short-run control charts performances: SD shifts from the 20th point, shift size 2o

t EWMA t CUSUM t Q
N.O.S. 18.0 1.0 4.0 21.0
A.AP. 23.1 20.0 23.3 22.6
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.6 0.0 0.1 0.7

EWMA Q CUSUM Q  Q & Rules AC X
N.O.S. 8.0 15.0 22.0 16.0
A.AP. 24.5 24.7 22.2 22.8
N.O.R. 30.0 30.0 30.0 30.0
S.R. 0.3 0.5 0.7 0.5

The results in Tables 4.39,4.40 and 4.41 show that Q chart with Rules AC and individual X chart

still have the best performance on N.O.S. for the 3 SD shift sizes. When the SD shift size is 1.3c,
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individual X chart performs slightly better than Q chart with Rules AC. When the shift size of SD
is larger at 1.76 and 20, the N.O.S. of Q chart with Rules AC performs much better than individual
X chart again and the difference between Q chart with Rules AC and Individual X chart become
larger as well. EWMA t chart is less effective for the 3 SD shift sizes. In terms of A.A.P., EWMA
t chart performs best followed by Q chart with Rules AC. Comparing with those of the first group
of experiments, the A.A.P. performance of ndividual X chart improves significantly. It closely

follow that of Q chart with Rules AC.

Comparing the results in Tables 4.39, 4.40 and 4.41, we can see that the N.O.S. performances of
most charts improve with the increases of SD shift size. For A.A.P., the performances of t chart,
CUSUM t chart, EWMA Q chart, Q chart with Rules AC and individual X chart tend to keep at a

steady level The A.A.P. of Q chart decreases when the SD shift size increases.

Table 4.42 Average values of N.O.S. and A.A.P. when SD shifts from the 20th point

t EWMA t CUSUM t Q
Average N.O.S. 11.0 1.0 4.5 12.3
Average A.A.P. 23.7 21.0 23.3 24.4
EWMA Q CUSUM Q Q & Rules AC X
Average N.O.S. 7.0 10.3 17.7 12.3
Average A.A.P. 243 25.1 22.5 233

As can be seen from Table 4.42, Q chart with Rules AC has the best average value of N.O.S. at
17.7 followed by individual X chart and Q chart at 12.3. CUSUM scheme charts perform better
than the corresponding EWMA scheme charts on N.O.S. For average A.A.P., Q chart with Rules

AC and individual X chart still have the best performances.

Comparing the average N.O.S.shown in Tables 4.38 and 4.42, we can find that most of the control

charts have similar number of successes when the shift starts at different points. For example, for
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CUSUM t chart, when the shift starts at the 10th point, it detects the shift 4 times out of the 30
replications. When the shift starts at the 20th pomt, it detects the shift 4.5 times, in average, out of
the 30 replications. However, t chart, Q chart and CUSUM Q chart show a different trend. When
the shift happens at a later point (the 20th point), the average N.O.S. becomes much larger for
both charts with Q chart increasing from 7.0 to 12.3 and CUSUM Q chart increasing from 5.7 to
10.3. Such phenomenon might indicate that t chart, Q chart and CUSUM Q chart need longer time
to become steady. Although the SD shift starts from a later point, the control charts are still built
from the very beginning of the process. If a SD shift happens at a later point, this may lead to
longer warmup time periods for these charts. For t chart, Q chart and CUSUM Q chart, the longer

warmup period probably leads to better detecting ability.

The average alarm point can, to some extent, reflect the out of control average run length (ARL:).
If the average alarm point is 3 pomts after the shift pomt, the ARL; will be 3 in this particular
simulation run. Comparing the results of the two group of experiments, it can be seen that the

ARL; has been kept the same for all tested charts.

Overall, Q chart with Rules AC and individual X chart are the most effective control charts as

shown in the results of this set of experiments.

We notice that although individual X charts show better performances than many other charts, the
false alarm rate of individual X charts is higher than other charts. In the simulation experiments,
we found that individual X charts have more chances to signal before the SD shift happens. The
reason may be that at the beginning of the process, there is no sufficient data to better estimate the
process mean in establishing more accurate control limits. Individual X charts are quite unstable

in monitoring the early stage of the tested short-run processes.
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4.5 Summary

In Chapter 4, first we identify the best range of the parameter A for EWMA t chart and we select
the one with the highest success rate in the simulation experiments in Section 4.2. In Section 4.3,
we find best combmation of supplemental rules (Rules AC) for Q chart through numerical
experiments. We further test the result with different process lengths and by changing the pomnts
of the implanted process shifts. In Section 4.4, we apply the optimal parameter A found in Section
4.2 to EWMA t chart and use the best rule combinations found in the experiments in Sections 4.3
and run the simulation experiments for other short-run control charts considered i this thesis. The
experiment results show that Q chart with Rules AC and individual X chart are the most effective

short-run control charts for SD shift compared with other tested control charts.
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5 Conclusions and Future Research

5.1 Summary

This thesis maily discusses the detecting ability of short-run control charts for SD shifts. In
Chapter 2, we reviewed research literature related control charts for short production run. In
Chapter 3, different models for short-run control charts were presented and some of the more
promising parameter values were identified based on related work done by other researchers.
Numerical smulations were conducted with results and their analysis presented n Chapter 4. The
simulation runs were to select better parameter values for EWMA t chart; more effective
supplemental rules for Q chart and to test other short-run control charts studied in this thesis for

different settings and conditions.

5.2 Contributions of the Thesis

We tested the detecting ability of short-run control charts for SD shift through numerical

simulation in this thesis.

Q chart is different from other charts, some papers proposed supplemental rules for Q charts to
improve its detecting abilty in short production run. In our thesis, we identify the best
supplemental rule combination for detecting the SD shift using simulation. We applied it to Q chart

to compare the detecting ability with that of other short-run control charts.

From the simulation results, we have the following general observations:

e In most cases, Q chart with Rules AC has the best performance on N.O.S. and good

performance on A.A.P.
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Individual X chart has the second best performance on N.O.S., while in terms of A.A.P.,
Its A.A.P. performance varies for different conditions. Individual X chart is much simpler
to be implemented in practice than Q chart with Rules AC. One must pay attention to the
high rate of false alarms at the beginning of the process.

For most tested control charts for short-run production, their N.O.S. performances will
increase with the increase of SD shift.

In most cases, we found that CUSUM scheme charts (CUSUM t charts and CUSUM Q
charts) perform better than corresponding EWMA scheme charts (EWMA t charts and
EWMA Q charts) on N.O.S.

Most of the tested control charts have better N.O.S. performances when the length of the
tested processes increase, especially for Q chart with Rules AC. The N.O.S. of Q chart with
Rules AC increases largely when the length of the tested process is longer.

Most of the tested control charts have similar N.O.S. performances when we change the
starting point of the shift. The N.O.S.values of t chart, Q chart and CUSUM Q chart clearly
increase when the SD shift occurs at a later point. This may indicate that t chart, Q chart
and CUSUM Q chart may not be steady if the shift occurs at an early stage (e.g. the 10th
point) and they need longer warmup time period. The A.A.P. of all the tested control chart
keep unchanged when the starting point of SD shift changes. This means that the out of
control ARL (or ARL) of the control charts will not change with the starting point of the

shift.
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5.3 Future Research

This thesis studies the detecting ability of several short-run control charts for SD shift through
numerical simulation. Future research can further explore this topic from theoretical perspective.
The numerical results from simulation experiments can be better explamed with theoretical

analysis.

The parameter values we used in setting up EWMA and CUSUM scheme charts are based on the
results reported in the literature on short-run control charts to detect process mean shift. Research
on optimal design of EWMA and CUSUM scheme charts for detecting SD shift is very limited.
Studies on short-run control chart design for detecting SD shift using EWMA and CUSUM scheme

charts are needed.

Future research in this area may also be to study the performances of EWMA X chart and CUSUM
X chart for short-run production processes. They are simpler than EWMA t/Q and CUSUM t/Q

charts, and are easier to implement in practical applications.

Future research also could include case studies with real data of certain short-run productions to

test the possibility and effectiveness of the short-run control charts mentioned in this thesis.
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Appendix

Figures Plotting Simulation Results in Corresponding Tables in Chapter 4

A Perfromances for EWMA t Chart
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Figure A.4.1: Results in Table 4.1
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Figure A.4.2-4.4 (a): Results in Table 4.2-4.4
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Figure A.4.2-4.4 (b): Results in Table 4.2-4.4
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Figure A.4.5: Results in Table 4.5
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Figure A.4.6-4.8 (a): Results in Table 4.6-4.8
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Figure A.4.6-4.8 (b): Results in Table 4.6-4.8

82



Average Values 0f N.O.S. & A.A.P.
30.0

[\e}
L
(e}

[\e]
=
(e

=0 Average N.O.S.
=0 Average A.A.P.

Average value
S o
(e (e

5.0
0.0
<«muAamLUAVDAARAAAA
<< <APA@m0RAMT OO0
<< IaAa
<
Supplemental rules
Figure A.4.9: Results in Table 4.9
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Figure A.4.10-4.12 (a): Results in Table 4.10-4.12
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Figure A.4.10-4.12 (b): Results in Table 4.10-4.12
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Figure A.4.13: Results in Table 4.13
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Figure A.4.17: Results in Table 4.17
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Figure A.4.18-4.20 (a): Results in Table 4.18-4.20
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Figure A.4.21: Results in Table 4.21
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Figure A.4.23-4.25 (a): Results in Table 4.23-4.25
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Figure A.4.23-4.25 (b): Results in Table 4.23-4.25
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Figure A.4.26: Results in Table 4.26
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Figure A.4.27-4.29 (a): Results in Table 4.27-4.29
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Figure A.4.30: Results in Table 4.30
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Figure A.4.31-4.33 (b): Results in Table 4.31-4.33
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Figure A.4.34: Results in Table 4.34
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Figure A.4.35-4.37 (a): Results in Table 4.35-4.37
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Figure A.4.35-4.37 (b): Results in Table 4.35-4.37
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Figure A.4.38: Results in Table 4.38
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Figure A.4.39-4.41 (a): Results in Table 4.39-4.41
A.A.P. Performances
30.0
25.0
——t
20.0 =e=EWMA t
o =@= CUSUM t
< 15.0
< Q
10.0 —e—[EWMA Q
50 == CUSUM Q
=@ Q&Rules AC
0.0 -—= X
1.30 1.7¢ 26
SD shift size

Figure A.4.39-4.41 (b): Results in Table 4.39-4.41
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Figure A.4.42: Results in Table 4.42
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