
INFLUENCE MAXIMIZATION IN SOCIAL

NETWORKS

Kangkang Wu

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

November 2015

c© Kangkang Wu, 2015

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Kangkang Wu

Entitled: Influence Maximization in Social Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. C. Poulis

Examiner

Dr. T. Fevens

Examiner

Dr. H. Harutyunyan

Supervisor

Dr. L. Narayanan

Approved

Chair of Department or Graduate Program Director

20

Dr. Amir Asif, PhD, PEng

Dean, Faculty of Engineering and Computer Science

Abstract

Influence Maximization in Social Networks

Kangkang Wu

In the social network era, every decision an individual makes, whether it is watching a

movie or purchasing a book, is influenced by his or her personal network to a certain

degree. This thesis investigates the power of the word-of-mouth effect within social

networks.

Given a network G = (V,E, t) where t(v) denotes the threshold of node v, we model

the spread of influence as follows. Influence propagates deterministically in discrete

steps. An influenced node u exerts a fixed amount of influence bu,w on any neighbor

w. For any uninfluenced node v, if the total amount of influence it receives from all its

already influenced neighbors at time step t−1 is at least t(v), node v will be influenced

in step t.

Given a social network G, we study the problem of introducing an already ac-

tivated external influencer v into the network, and choosing links from v to nodes

in G that can maximize the spread of influence in G. We study two problems: the

Minimum Links problem, which is to choose the minimum number of links that can

activate the entire network, and the Maximum Influence problem, which is to choose

k neighbors that will maximize the size of the influenced set. We prove that the Max-

imum Influence problem is NP-hard, even for bipartite graphs in which thresholds of

all nodes are either one or two. We also study both problems in paths, rings, trees

and cliques, and we give polynomial time algorithms that find optimal solutions to

both problems for all these topologies.

iii

Acknowledgments

First and most importantly, I would like to express my deepest gratitude for my thesis

supervisor, Dr. Lata Narayanan. Not only she has provided me with very detailed

instructions on how to write a thesis from scratch, but also I have learned from her

the attitude of attention to details and self-discipline. I shall carry this attitude to

my future endeavors.

Secondly, I want to thank my parents for their unconditional love and continuous

support in so many years. It is a big decision of going back to school again after

working for a few years, I really appreciate their understanding and support.

I also would like to thank my friends, Puspal Bhabak, Sunidhi Azad, Zhiyuan Li

and Lei Cao for all their encouragement and help during this period.

iv

Contents

List of Figures viii

List of Algorithms x

1 Introduction 1

1.1 Modeling the spread of influence in a social network 2

1.2 Seed Set problem . 4

1.3 Critique of the seed set problem formulation 5

1.4 Problem statement . 6

1.5 Thesis contributions . 9

1.6 Thesis outline . 9

2 Related Work 11

2.1 Influence diffusion model . 12

2.1.1 Threshold model . 12

2.1.1.1 Linear threshold model 13

2.1.1.2 General threshold model 13

2.1.1.3 Majority threshold model 14

2.1.1.4 Unanimous threshold model 14

2.1.2 Cascade model . 14

2.1.2.1 General cascade model 15

v

2.1.2.2 Independent cascade model 15

2.1.3 Equivalence between threshold model and cascade model . . . 16

2.2 Learning Influence Probabilities . 16

2.3 Seed Set Problem . 18

2.3.1 Submodularity property for set function 18

2.3.2 Submodularity property for seed set problem 19

2.4 Minimum Coverage problem . 22

2.5 Influence Maximization with Latency Bound 23

2.6 Fractional Influence Maximization problem 24

2.7 Influence maximization in the presence of negative opinions 26

2.8 Non-Progressive Influence Diffusion 26

2.9 Discussion . 28

2.9.1 Difference between Seed Set problem and Maximum Influence

problem . 28

2.9.2 Difference between Fractional Influence problem and Maximum

Influence problem . 31

3 NP-Hardness of Maximum Influence problem 32

4 Paths 36

4.1 Minimum Links problem . 36

4.1.1 The path consists of only nodes with threshold 1 or 2 38

4.1.2 The path contains nodes with threshold 3 40

4.2 Maximum Influence problem . 42

4.2.1 The path consists of only nodes with threshold 1 or 2 44

4.2.2 The path contains nodes with threshold > 2 54

vi

5 Rings 57

5.1 Minimum Links problem . 57

5.1.1 Rn consists of only nodes with threshold 1 or 2 58

5.1.2 Rn contains nodes with threshold 3 60

5.2 Maximum Influence problem . 63

5.2.1 Rn consists of only nodes with threshold 1 or 2 64

6 Trees 68

6.1 Minimum Links problem . 68

6.1.1 Minimum Links problem for trees of height 1 69

6.1.2 Minimum Links problem for trees of height > 1 72

6.2 Maximum Influence problem . 79

6.2.1 Computation of A(Tv, k) . 83

6.2.2 Computation of A(Fv,d, i, k) 85

6.2.3 Computation of B(Tv, k) . 87

6.2.4 Computation of B(Fv,d, i, k) 88

6.2.5 Base case for leaves . 89

7 Cliques 93

7.1 Minimum Links problem . 94

7.2 Maximum Influence problem . 97

8 Conclusions and Future Work 100

vii

List of Figures

1 A social network with a path topology. Thresholds of nodes are given

inside the circles. 4

2 Influenced nodes at time step 1 with {b, e, h} as seed set 5

3 Influenced nodes at time step 2 with {b, e, h} as seed set 5

4 Influenced nodes at time step 3 with {b, e, h} as seed set 5

5 Maximum Influence problem for the same path as Figure 1 29

6 Influenced nodes with {b, e, h} as link set 29

7 Influenced nodes at time step 0 with {c, d, f} as link set 29

8 Influenced nodes at time step 1 with {c, d, f} as link set 30

9 Influenced nodes at time step 2 with {c, d, f} as link set 30

10 Reduction process from G to G′ . 33

11 An optimal solution S which gives a link to node i 39

12 An path which has nodes with threshold 3 40

13 Maximum Influence problem in a path with k = 1 43

14 Maximum Influence problem in a different path with k = 1 43

15 Maximum Influence problem in a path with k = 2 43

16 Maximum Influence problem in a different path with k = 2 43

17 An optimal assignment S for MIA(Pi,n, 4) 45

18 An optimal assignment S for MIA(Pi,n, 4) which activates node n as

well . 46

viii

19 An optimal assignment by which next(i) ∈ I(S) 48

20 An optimal assignment by which next(i) /∈ I(S) 48

21 There does not exist a node with threshold 3 in Rn 59

22 There exists a node with threshold 3 in Rn 61

23 Node p does not belong to I(Rn, S) 65

24 Node p belongs to I(Rn, S) . 66

25 A star network . 69

26 The definition for Tr1 and (Tr − Tr1) 72

27 Maximum Influence problem in a tree with k = 1 80

28 Maximum Influence problem in a different tree with k = 1 80

29 Maximum Influence problem in a tree with k = 2 80

30 Node c is activated before a . 81

31 Node b is activated before A . 82

32 Node b is activated . 82

33 Node c is activated . 83

34 A clique of size N . 93

ix

List of Algorithms

1 Seed set selection(k, σ()) - Proposed by Kempe et al. 20

2 IsFeasible(Pi,j) - Feasibility checking for paths 41

3 Minimum Links algorithm for paths 41

4 Influence maximization algorithm for paths 52

5 Finding an optimal link set of size k in paths 53

6 Minimum Links algorithm for rings 62

7 Influence maximization algorithm for rings 67

8 IsFeasible(Tr) - Feasibility checking for trees 74

9 Minimum Links algorithm for paths - MinLinks(Tr) 78

10 Modified BFS . 90

11 Influence maximization algorithm for trees 91

12 Influence maximization algorithm for trees part2 92

13 Minimum Links algorithm for cliques 95

14 Influence maximization algorithm for cliques 98

x

Chapter 1

Introduction

We live in an increasingly connected century. The average size of an individual’s

personal network keeps growing, and interaction and information exchange between

friends and social contacts is much easier and more frequent with the advent and

popularity of social network applications such as Twitter and Facebook. As a result,

the study of social network structure and the dynamic process by which information

propagates in a social network is a hot topic in the past decade in many areas including

sociology, economics and computer science. The massive data sets which can be

obtained from social networking web sites facilitate the research in this area.

In the social network era, every decision an individual makes, whether it is watch-

ing a movie or purchasing a book, is influenced by his or her personal network to a

certain degree. Not surprisingly, social networks have changed traditional marketing

theory. Considering only the intrinsic value of the customer (the expected profit

from direct sales to this customer) is not enough anymore. Viral marketing has thus

become a very important strategy in promoting new products or ideas nowadays. In

viral marketing theory, once a certain fraction of the social network adopts a product,

a larger cascade of further adoptions is predictable due to the word-of-mouth network

effect [17, 31, 4].

1

Inspired by social networks and viral marketing, Domingos and Richardson [13,

37] were the first to study a customer’s network value, the expected profit gained

from other purchases that may follow if this customer buys the product, from the

data mining perspective. They tried to identify the most influential customers in

a connected network formed by customers. They raised the following important

algorithmic problem in the context of social network analysis: If a company can turn

a subset of customers in a given network into early adopters, and the goal is to trigger

a large cascade of further adoptions, which set of customers should they target?

From then on, the influence maximization problem has attracted the attention of

many researchers in the field of computer science. Kempe, Kleinberg and Tardos in

their seminal paper [28], systematically studied the influence maximization problem,

including models for influence diffusion process in a social network.

1.1 Modeling the spread of influence in a social

network

In order to study the influence diffusion process in social network from an algorithmic

perspective, we model the social network by a directed edge-weighted graph G =

(V,E) with V (G) representing individuals in the social network and E(G) denoting

the social connections. If two individuals u and w are connected in the social network,

then edge {u,w} ∈ E(G). Finally, the weight of an edge bu,v denotes the amount of

influence exerted by u on v.

There are two main models for the spread of influence in a social network, the

cascade model and the threshold model. In [28], Kempe et al. formally defined these

two types of models in their general form as well as special cases including linear

2

threshold model and independent cascade model. Most of the current influence diffu-

sion models in use for the study of social networks are extensions of these two basic

models.

We briefly introduce the so-called linear threshold model here, and defer a detailed

discussion of influence diffusion models to the next chapter. The threshold model is

based on the idea that if enough of a person’s neighbors in the social network have

adopted an idea or a product or a technology, then this person will also adopt it.

We use the term activated or influenced to denote that a person has adopted the

idea under question. Thus, each individual may have a certain threshold of resistance

to adoption of the product, but once the collective influence exerted by activated

neighbors is greater than this threshold, then the individual will be activated.

More precisely, in the linear threshold model, every node v is associated with

an threshold t(v). Influence propagates deterministically in discrete time steps. Let

I(G,S, t) be the set of influenced nodes at time t, where S is the set of nodes influenced

at time 1. We term S the seed set. Let N(v) be the set of neighbors of v. For any

uninfluenced node v, if the total amount of influence it receives from all its already

influenced neighbors at time step t−1 is at least t(v), that is, if Σw∈I(G,t−1)∩N(v)bw,v ≥

t(v), then node v will be influenced in step t. A node once influenced stays influenced.

That is,

I(G,S, t) = I(G,S, t− 1) ∪ {v /∈ I(G,S, t− 1) | Σw∈I(G,S,t−1)∩N(v)bw,v ≥ t(v)}

It is easy to see that if S is non-empty, then the process terminates after at most

|V |−1 steps. We call the set of nodes that are activated when the process terminates

as the influenced set, and denote it by I(G,S).

3

1.2 Seed Set problem

In the previous section, we described a model for the spread of influence in a social

network. In viral marketing, as already mentioned, the word-of-mouth effect is a

key factor in the success of the promotion of new products. To take advantage of

the word-of-mouth effect and maximize the number of adopters of the product, it is

important to choose the right early adopters, i.e. the seed set. These early adopters

can be persuaded to be activated/adopt the product by external incentives, and they

in turn will activate other nodes via the influence diffusion process described in the

previous section. The number of early adopters that we can choose is clearly limited

because of budget limitations.

The problem proposed by Domingo and Richardson [13, 37] can now be formulated

as the seed set problem: Given a social network G = (V,E, t), and an integer k, find a

subset S ⊆ V of size k so that I(G,S) is as large as possible. Notice that k corresponds

to the budget, and S is a seed set that maximizes the size of the influenced set. There

has been a lot of work on the seed set problem; a detailed literature survey will be

given in Chapter 2.

We provide a small example in Figure 1 to illustrate the seed set problem and

the propagation of influence. The influenced nodes are shaded dark in the following

figures. Consider the problem of finding an optimal seed set of size 3 in the path

shown in Figure 1 which has unweighted edges.

1

a

2

b

2

c

1

d

2

e

1

f

2

g

2

h

1

i

Figure 1: A social network with a path topology. Thresholds of nodes are given inside
the circles.

Consider the set {b, e, h} as the seed set. In step 1, the nodes {b, e, h} are influ-

enced,

4

1

a

2

b

2

c

1

d

2

e

1

f

2

g

2

h

1

i

Figure 2: Influenced nodes at time step 1 with {b, e, h} as seed set

In step 2, nodes {a, d, f, i} are influenced.

1

a

2

b

2

c

1

d

2

e

1

f

2

g

2

h

1

i

Figure 3: Influenced nodes at time step 2 with {b, e, h} as seed set

In step 3, nodes {c, g} are influenced.

1

a

2

b

2

c

1

d

2

e

1

f

2

g

2

h

1

i

Figure 4: Influenced nodes at time step 3 with {b, e, h} as seed set

Since all nodes are eventually influenced, clearly, the set {b, e, h} is an optimal

seed set in that it influences the maximum possible number of nodes in the network.

The interested reader can verify that the seed set {b, e, h} is the only seed set of size

3 which can influence all 9 nodes.

1.3 Critique of the seed set problem formulation

There is an interesting hidden assumption in the formulation of the seed set problem.

By allowing any node in the graph to be chosen as part of the seed set, we assume

that early adopters can be chosen and activated immediately regardless of their own

thresholds, and at the same cost. This assumption has two flaws.

• Uniform activation cost assumption

Highly influential nodes in the network are usually associated with high thresh-

olds. It is not reasonable to assume that such a node can be activated at the

5

same cost as a node with a lower threshold. With budget constraints, it may

be more cost-effective to reach such nodes through the network effect. Also, in

some scenarios, there may exist high influence nodes that can only be reached

through the word-of-mouth effect, and cannot be activated by some external

process. For example, suppose we want to promote an abstract product such

as a political idea. At the initial stage, even if we can identify the most influen-

tial people in the social network, they are usually the hardest to influence. In

this case, the early adopters could be less influential people with lower thresh-

olds, who subsequently influence the people with higher influence through the

network effect.

• Impossibility of giving partial incentives

In the specification of the seed set problem, the nodes in the seed set are com-

pletely activated immediately by external incentives, and the remaining nodes

are activated solely by the network effect. However, with a given budget, rather

than completely activating a large set of nodes, we may prefer to activate only a

small set of nodes, and provide partial incentives to other nodes, which can then

be activated sooner by the network effect. For example, instead of giving away

free software to 1000 selected customers, a software company could offer 30% off

coupons to 5000 selected customers, and free software to far fewer customers.

The formulation of the seed set problem does not take into account this type of

marketing strategy.

1.4 Problem statement

In this thesis, we propose a new way to model a viral marketing strategy, which

addresses the above flaws in the the seed set problem formulation. There are two

6

main differences in our modeling of a viral marketing strategy from that assumed by

the seed set problem:

1. We allow partial incentives: Nodes chosen to be early adopters may not be

immediately completely activated; instead they may receive partial incentives

that effectively reduce their thresholds, and in turn facilitate later activation by

the network effect.

2. Each node has a maximum limit on the amount of partial incentive it may

receive. If a node has a threshold higher than this maximum limit, it cannot be

activated entirely by external incentives.

The problem we consider is which nodes to incentivize and by how much in order

to influence the maximum number of nodes. We formalize the problem as follows.

Let x be the maximum amount of incentive that can be given to any node, and let k

be the maximum budget, that is, the maximum total incentive that can be given to

all nodes. Given a social network G = (V,E, t), we introduce a set V ′ of x additional

nodes, which are called external influencers and are assumed to be already activated.

A link assignment is an assignment L of k links from nodes in V ′ to nodes in V .

Given a link assignment P for a graph G, we define I(G,P) to be the set of nodes in

V (G) that are activated by P .

Observe that adding a link of weight 1 to a node v ∈ V is equivalent to giving

it external incentive of 1, and is also equivalent to reducing its threshold by 1. Since

there are x external influencers, each node v ∈ V can be the endpoints of at most x

links from nodes in V ′, which corresponds to a maximum external incentive of x per

node. Finally, since the link assignment contains at most k links, the constraint on

the maximum total budget is also respected.

In this thesis, we consider the following two problems:

7

Definition 1 Minimum Links (MinLinks) problem: Given a social network

G = (V,E, t), and a set of external influencers V ′ of size x, find a link assignment P

of minimum size that activates the entire network, that is, I(G,P) = G.

Definition 2 Maximum Influence (MaxIn) problem: Given a social network

G = (V,E, t), a set of external influencers V ′ of size x, and an integer k, find a link

assignment P of size k that maximizes I(G,P).

We study the complexity of the two problems above for general graphs, as well

as the special cases when the graph is a path, ring, clique, or tree.

In this thesis, we generally assume that all edges have unit weight; this is generally

called the uniform weight assumption, and models the situation when every neighbor

of an individual has the same influence on him or her with respect to adoption of the

product in question, and has been considered in [5, 16, 9, 10]. While our hardness

results holds for multiple influencers, we generally consider the case of a single influ-

encer v. This implies that each node in the social network can receive at most one

link, that is, it receives a partial incentive of 1, or no incentive at all. This partial

incentive may or may not be enough to activate the node. Since each edge in the link

assignment/link set has v as one of the endpoints, it can be uniquely specified by the

other endpoint. Therefore, for convenience, we usually specify the link set as a subset

of V , the nodes in the social network.

Given a graph G, we denote the minimum number of links necessary to activate

all nodes in G by ML(G). Given a graph G and an integer k, we denote the maximum

number of nodes that can be activated in G by an assignment of k links by MI(G, k).

8

1.5 Thesis contributions

In this thesis, we give a different model for viral marketing that allows for giving

partial incentives and imposes an upper bound on the amount of incentive that can

be given to any single node. We introduce and study two new problems: the MinLinks

and the Maximum Influence problems.

• We introduce a new to model viral marketing, and propose two related problems:

MinLinks problem and Maximum Influence problem.

• We prove that Maximum Influence problem is NP-hard, even for bipartite

graphs in which thresholds of all nodes are either one or two.

• We prove necessary and sufficient conditions for the MinLinks problem to have

a feasible solution when the social network can be represented by a path, ring,

clique, or tree.

• We give Θ(n) algorithms for the Minimum Links problem for the cases when

the social network can be represented by a path, a ring, a clique, or a tree.

• We give a Θ(kn) algorithm for the Maximum Influence problem with k links

for the case when the social network can be represented by a path, a Θ(kn2)

algorithm when it is a ring, a Θ(n) algorithm when it is a clique, and a Θ(n2k2)

algorithm when it is a tree.

1.6 Thesis outline

In Chapter 2, we give a review of the literature in this area. In Chapter 3, we prove

Maximum Influence problem to be NP-hard. In Chapter 4 to Chapter 7, we give

polynomial time algorithms for both problems under special graph topologies. In the

9

last chapter, we summarize our work and conclude with some possible directions for

future work.

10

Chapter 2

Related Work

In this chapter, we review the research work related to the influence maximization

problem in social networks. There exist three parameters in the set of problems

related to influence maximization in social networks.

1. The budget which restricts the size of the initial seed set

2. The coverage which is the expected size of total influenced nodes

3. The influence propagation time

In general, one or two of these parameters are restricted, and the problem is to

optimize the third parameter. For example, in the seed set problem, we restrict the

size of the budget (the size of the seed set), and want to maximize the total number

of influenced nodes. Alternatively, in the minimum coverage problem which will be

discussed in Section 2.4, we want to find a minimum-sized seed set that can influence

at least a pre-specified fraction of nodes in the network. Finally, in the influence

propagation with latency bound problem which will be discussed in Section 2.5, we

are interested in choosing a seed set which maximizes the number of influenced nodes

within a pre-specified number of rounds.

11

This chapter is organized as follows. In Section 2.1, we review the literature on

various influence diffusion models. In Section 2.2, we review literatures on how to infer

the influence probability over edges. In Section 2.3, we review the literature on Seed

Set problem. We review the literature on Minimum Coverage problem and Influence

Maximization Problem with Latency Bound in Section 2.4 and 2.5 respectively. In

Section 2.6, we review the literature on Fractional Influence Maximization problem.

In Section 2.7, we review the literature on influence maximization problem while there

exist negative influences. In Section 2.8, we review the literature on Non-progressive

influence diffusion models. We conclude this chapter by discussing the difference

between our problem with seed set problem and fractional influence problem.

2.1 Influence diffusion model

As mentioned earlier, there are two main influence diffusion models: threshold model

and cascade model.

2.1.1 Threshold model

Granovetter and Schelling [23, 39] were among the first to propose the initial version

of the threshold model to capture the dynamic process of information cascading in

social networks. The key concept introduced by Granovetter is the notion of threshold:

the number of other people who must make the same decision before the given actor

does so. This threshold is the critical point that the benefits begin to exceed the cost.

In the threshold based model, every node v is associated with an threshold θv which

represents the amount of influence required to influence node v.

In this section, we present some different versions of the threshold model that

have been proposed in the literature.

12

2.1.1.1 Linear threshold model

We have already introduced this model in Chapter 1, but repeat it here for complete-

ness. In the linear threshold model, every node v is associated with an threshold

θv which is arbitrarily drawn from the interval [0, 1], and all influences coming from

different neighbors of v are aggregated linearly. A node v is influenced by its neighbor

u to a degree bu,v which satisfies:

∑
u∈N(v)

bu,v ≤ 1

2.1.1.2 General threshold model

In [28], Kempe et al. proposed the general threshold model used for modeling the

influence diffusion process. In the general threshold model, every node v is associated

with an threshold θv which represents the hurdle that must be overcome in order to

influence node v. Each node v is also associated with a monotone influence function

fv: 2V → [0, 1] that maps all subsets of V to real numbers in [0, 1]. fv(S) denotes

the amount of influence node v receives when all nodes in set S have been activated.

fv satisfies fv(∅) = 0. If we assume that only direct neighbors can exert influence on

node v, then fv(S) = fv(S∩ N(v)). Let S be the set of active neighbors of node v at

time step t, then only if fv(S) ≥ θv, node v will become active at time step t+ 1.

Clearly, the linear threshold model is a special instance of the general threshold

model.

In some papers, the thresholds is selected randomly due to lack of knowledge about

each node’s threshold. However, there also exist special cases of threshold model

which have hard-wired thresholds. We will introduce some hard-wired threshold

model shortly.

13

2.1.1.3 Majority threshold model

The majority threshold model is one of the most famous and well-studied threshold

based models with fixed thresholds. In majority threshold model, every node has a

fixed threshold of 1/2, and an influenced node u exerts a fixed amount of influence

bu,w = 1/d(w) on any neighbor w where d(w) is the in-degree of node w, such that an

uninfluenced node w becomes active as soon as half of its neighbors become active.

The majority threshold model has practical applications in simulating voting

system [36] and other scenarios.

2.1.1.4 Unanimous threshold model

The unanimous threshold model is another well studied threshold model with fixed

thresholds. In unanimous threshold model, the threshold of each node is equal to its

degree θv = d(v) and an influenced node u exerts a unit influence 1 on any neighbor

w.

Under the unanimous threshold model, before a node gets influenced, all its neigh-

bors must be influenced beforehand. Thus, unanimous threshold model is the most

influence resistant model among all threshold based models.

The unanimous threshold model has its applications in the network security area.

2.1.2 Cascade model

Dynamic cascade model originated from the research in interacting particle systems

in probability theory [14, 33].

In the cascade model, the influence propagation also progresses in discrete steps.

At time step 0, only nodes in the seed set become active. At time step t, if a node u

is activated in step t − 1, it is given a chance to activate all of its inactive neighbor

v ∈ N(u). It activates each neighbor v with probability Pu,v. Regardless whether

14

u succeeds or not, it cannot make any more attempts in the subsequent rounds. If

multiple neighbors of an inactive node v become active at time step t, they would

attempt to activate v in an arbitrary sequential order and the probability that v

is activated does not depend on the order in which these attempts are made. If u

succeeds in activating an inactive neighbor v at time step t, then at time t+ 1, node

v is also active. The activation process terminates when there are no more newly

activated nodes.

2.1.2.1 General cascade model

In [28], Kempe et al. proposed the general cascade model for modeling the influence

diffusion process. Let Pu,v be the probability that node u succeeds in activating a

neighbor v, Pu,v is not constant in the general cascade model, but depends on the set

of v′s neighbors that have already tried and failed to activate v.

At time step t, suppose u is a newly activated neighbor of an inactive node v

and S is the set of active neighbors of v which have failed to activate v, then the

probability that u succeeds in activating v is defined to be Pv(u, S).

In the general cascade model, each node v is associated with an incremental

function pv(u, S) that maps u and S to real numbers in [0, 1].

2.1.2.2 Independent cascade model

The independent cascade model was proposed by Goldenberg, Libai, and Muller in

[17, 18]. There are two ways in which the probability that a node u will be activated

is independent.

1) The probability Pu,v by which a active node u can successfully activate an inactive

neighbor v is constant, independent of the previous activation history.

15

2) If multiple neighbors of an inactive node u become active at time step t, the

sequential order by which these nodes attempt to activate u does not affect the

probability for u to be activated.

Clearly, the independent cascade model is a special case of the general cascade

model.

2.1.3 Equivalence between threshold model and cascade model

In [28], Kempe, Kleinberg, and Tardos proved that the general threshold model and

general cascade model are in fact equivalent models.

They provide the following equations to transform a threshold based network into

cascade network.

Pv(u, S) =
fv(S ∪ {u})− fv(S)

1− fv(S)
(1)

Conversely, consider a node v in the cascade model, and let set S = {u1, ..., uk}

be v’s neighbors, and let Si = {u1, ..., ui}. They provide the following equations to

transform a cascade network into threshold based network.

fv(S) = 1−
k∏

i=1

(1− pv(ui, Si−1)) (2)

2.2 Learning Influence Probabilities

In this section, we review the literature on how to infer the influence probabilities.

In the Independent Cascade model, we need to know the influence probability

Pu,v on edge (u, v) to determine the chances that v will be activated once u has

16

been activated. However, normally we don’t have much information on the influence

probabilities over the edges, but instead we need to make assumptions about these

probabilities. The common techniques for addressing the lacking of accurate influence

probability include: (1) Uniform model adopting uniform weight for all the edges(such

as 0.1) (2) Trivalency model taking influence probability over edges uniformly at

random from a small set of constants such as {0.1,0.05,0.01} (3) Weighted Cascade

model this model was first proposed in [28] and is the most widely used model. In

weighted cascade model, Pu,v = 1/d(v) where d(v) is the in-degree of node v.

In the Linear Threshold model, similar to weighted cascade model, the most com-

mon assumption is : the threshold of node v is randomly drawn from [0, 1] and an

influenced node u exerts influence bu,v = 1/d(v) on neighbor v.

Recently, there have been some studies on learning the influence probabilities

over edges from real data on past propagation traces. Saito et al. in [38] are among

the first to investigate how to learn influence probabilities from action logs. They

estimated the diffusion probabilities using the EM algorithm from an observed data

set of information diffusion under Independent Cascade model. In [19], Goyal et

al. studied this problem: How to build a influence model from a social graph and

logs of actions by its users? They developed algorithms for learning the parameters

of influence models by taking a social graph and action logs as input under the

General Threshold model. In [20], instead of making assumptions on the influence

probabilities over the edges, Goyal et al. proposed a new social influence model

called credit distribution model which leverages available propagation traces to learn

how influence flows in the network and used this model to estimate the expected

influence spread.

17

2.3 Seed Set Problem

In this section, we review the literature on the seed set problem.

The seed set selection problem is naturally inspired by research in marketing

strategies. Domingos and Richardson [13, 37] were the first to formulate the seed set

problem: Given data of a social network, with budget sufficient enough to target k

customers, how to choose k customers from the network in order to have the maximal

further adoptions? We can come up with several natural heuristics for solving this

seed set selection problem, for example in [28, 29]:

1. High-degree heuristic, choose nodes in the order of decreasing degree

2. Distance centric heuristic, choose nodes in the order of their centrality

In [28, 29], Kempe, Kleinberg, and Tardos considered the seed set problem as a

discrete optimization problem. They showed that the seed set problem is NP-hard

in both the linear threshold model and the independent cascade model. Besides,

they proved a very important property of the seed set problem, the submodularity

property which will be discussed in the next part.

2.3.1 Submodularity property for set function

Given a set N and a function f : 2N → R that maps all subsets of N to a real number,

we define the following properties for set function f .

1. Normalized: if f(∅) = 0, then f is normalized;

2. Monotone: if f(S) ≤ f(T) for any S ⊆ T ⊆ N , then f is monotone;

3. Submodular: if f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T) for any S ⊆ T ⊆ N ,

then f is submodular;

18

A submodular function exhibits a natural diminishing returns property which

means that the marginal gain from adding an element x to a set S will not be less

than adding x to a superset T of S. Submodular functions have wide applications in

optimization algorithms, approximation algorithms, game theory and machine learn-

ing.

Suppose we have a monotone and submodular set function f and we want to

find a set S with size k for which f(S) shall be maximized. Nemhauser, Wolsey, and

Fisher in [11, 35] proved that a natural and simple greedy heuristic, in which you

start with an empty set, and repeatedly add an element that gives current maximum

marginal gain, approximates the optimum result to within a factor of (1− 1/e).

2.3.2 Submodularity property for seed set problem

For the seed set problem, let σ(·) denote the number of nodes that can be influenced

by a seed set S where σ(S) = I(G,S).

In [28], it was proved that in both the independent cascade model and the lin-

ear threshold model, the influence capability function σ(·) is both submodular and

monotone.

Theorem 1 ([28], Theorem 2.2 and Theorem 2.5) For an arbitrary instance of

the independent cascade model or linear threshold model, the resulting influence func-

tion σ(·) is submodular.

Therefore, the seed set problem admits a greedy hill-climbing algorithm with

(1 − 1/e)-approximation guarantee. Based on the submodularity property for seed

set problem, Kempe et al. in [28] proposed a greedy algorithm with (1−1/e) approx-

imation guarantee for selecting a seed set of size k which could maximize the number

of influenced nodes in the network. This greedy algorithm in shown in Algorithm 1.

19

Theorem 2 ([28], Theorem 2.1) For a non-negative, monotone submodular func-

tion f , let S be a set of size k obtained by selecting elements one at a time, each

time choosing an element that provides the largest marginal increase in the function

value. Let S∗ be a set that maximizes the value of f over all k element sets. Then

f(S) ≥ (1− 1/e) ∗ f(S∗); in other words, S provides a (1− 1/e)-approximation.

Algorithm 1 Seed set selection(k, σ()) - Proposed by Kempe et al.

1: Input: (1) k- the size of seed set (2) influence function σ()

2: Output: S ← seed set

3: S ← ∅
4: while k > 0 do

5: u ← Max
u∈V \S (σ(S ∪ {u}) - σ(S))

6: S ← S ∪ u
7: return S

This greedy algorithm significantly out-performs the high-degree heuristic and

distance centric heuristic according to simulations conducted by Kempe et al. One

major reason is that both high-degree heuristic and distance centric heuristic ignore

the network effect. However, this greedy algorithm in [28] used time consuming

Monte-Carlo simulations to estimate the influence capability σ(S0) for a given seed

set S0. Even finding a small seed set in a moderately large network of ten thousand

nodes could take days to complete on a modern computer using Algorithm 1. This

gives room for future optimization and triggers a lot of interesting follow-up work,

either to reduce the number of influence capability evaluations required by Algorithm

1, or propose new heuristics that can speed up the process while still achieving good

performance.

In [32], Leskovec et al. used an optimization technique called “lazy evaluation”

which could significantly reduce the number of evaluations of σ(S0) while producing

20

the same result as Algorithm 1. They named the greedy algorithm adopting lazy

evaluations as CELF and CELF is 700 times faster than Algorithm 1.

In [7], Chen et al. first gave further improvement to Algorithm 1, proposed an

algorithm the running time of which is 15% to 34% faster than the CELF algorithm

for the same input. Later, they designed a new heuristic terms as degree discount

heuristic for the seed set problem which nearly matches the performance of Algorithm

1 but orders of magnitude faster. In [8], Chen et al. proved that the influence

capability σ(S0) can be computed in linear time in directed acyclic graphs (DAGs).

By constructing a local DAG for every node in the network and taking advantage

of the previous property of DAGs, they proposed a scalable and efficient heuristic

algorithm called LDAG for the seed set problem under the Linear Threshold model

which can scale to networks with millions of nodes and edges. In 2011, Goyal et

al. in [22] proposed an algorithm called CELF++ for the seed set problem and

empirically showed that CELF++ is 35-55% faster than CELF. The latest work in

this direction is [3] by Borgs et al. They introduced a pre-processing step which

generates a sparse, undirected hypergraph representation of the underlying graph G

and solved the maximum influence problem on the sampled hypergraph, which greatly

reduces the time complexity of Algorithm 1.

After Kempe et al. proved that the influence function σ(·) is submodular and

monotone in both Independent Cascade model and Linear Threshold model in [28],

Mossel and Roch in [34] positively resolved a conjecture in [28] whether the influence

function σ(·) is also submodular and monotone in general threshold model. Mossel

and Roch proved that if every threshold function fv(S) for each node v is submodular,

then this type of general threshold model also admits the the same 1 − 1/e approx-

imation guarantee by using a similar greedy hill-climbing algorithm, which indicates

that the local submodularity is preserved globally .

21

2.4 Minimum Coverage problem

In this section, we review the literature on the minimum coverage problem.

Minimum coverage means finding a minimum-sized seed set which is guaranteed

to influence a fixed fraction of nodes in the network. Minimum coverage problem is

a natural extension of the original seed set problem proposed in [13, 37]. Instead of

finding an optimal seed set of fixed size, they are interested in finding the minimum-

sized seed set which could influence a specified fraction of nodes. Chen formally

defined this problem as Target Set Selection problem in [5] and he studied this problem

using threshold model.

Definition 3 Target Set Selection problem: Given a connected undirected graph

G = (V,E) where each node v ∈ V is associated with a threshold t(v), 1 ≤ t(v) ≤ d(v),

find a minimum size seed set S ⊂ V such that activating S would lead to the adoption

of the product by all nodes (or a fraction of nodes) in the graph.

Chen proved that the target set selection problem cannot be approximated within

a ratio of O(2log1−εn) for any constant ε > 0 for a general graph G. Chen further

studied this problem under special threshold models. In the majority threshold model,

target set selection problem has the same hardness of approximated ratio as general

threshold model. In small threshold model in which all the thresholds are small

constants and the edge has uniform weight of 1, even if all nodes has threshold ≤ 2,

approximating the target selection problem is as hard as the general threshold model.

However, when every node has threshold 1, this problem is trivial to solve.

Chen′s work inspires another direction for influence maximization research. He

et al. studied a similar minimum-sized seed set selection [26]. They proved that

minimum coverage problem is also NP-hard in Independent Cascade model.

22

2.5 Influence Maximization with Latency Bound

In this section, we review the literature on influence maximization problem with

latency bound.

As we know, the influence propagation process in G = (V,E) terminates in at

most n − 1 steps where n = |V |. In all previous research, propagation time has

not been taken into account. In reality, people are not only interested in finding an

optimal seed set of fixed size, they are also concerned about propagation time. In

marketing, quickly passing the product information to every desired customer is of

great importance, especially when there exist similar competing products.

In [21], Goyal et al. proposed a problem termed as MINTIME problem. In the

MINTIME problem, a fixed budget k and a coverage threshold η is given as input.

The goal is to find a seed set with size no larger than k and can activate at least η

nodes in the smallest number of propagation rounds.

In [9, 10], inspired by a viral campaign for an online video game, Cicalese et al.

formulated several propagation time related problems. They are interested in finding

a bounded size seed set which can influence the maximum number of nodes within

bounded rounds. The first problem is termed as Maximally influencing set problem:

Given a graph G = (V,E, t) where t denotes the threshold function, together with

budget k and latency bound λ, the goal is to find a seed set S ⊆ V , such that |S| ≤ k

and |I(G,S, λ)| is as large as possible. The second problem is (λ, β, α)- Target Set

Selection problem: Given a graph G = (V,E, t), together with budget β and latency

bound λ plus activation requirement α. The goal is to find a seed set S ⊆ V , such

that |S| ≤ β and |I(G,S, λ)| ≥ α.

It is interesting to observe that when λ = 1, t(v) = 1 for each node v ∈ V and

each edge has uniform weight of 1, maximally influencing set problem is reduced to

domination problems in graphs. Although the maximally influencing set problem in

23

NP-hard in general setting, Cicalese et al. gave an polynomial time solution for trees.

2.6 Fractional Influence Maximization problem

In this section, we review the literature on fractional influence maximization problem.

Gunnec and Raghavan [24, 25] are the first to investigate fractional incentives in

social network influence maximization area for a problem realted to product design in

marketing. They formulate a problem called Least Cost Influence (LCIP) problem

which can be viewed as fractional counterpart of the Minimum Coverage problem.

Definition 4 LCIP problem: Given an undirected graph G = (V,E, t), we define

di,j to be the amount of influence node i exerts on node j when i is influenced, and we

define Pv to be the amount of external influence node v receives and I(G, t) to be the

set of influenced nodes at time step t. Node v would be influenced at time step t only

if Pv +
∑

j∈(V ∩I(G,t−1)) dj,v ≥ t(v). The goal is to use the minimum total incentives∑
v∈V Pv while guaranteeing that a fixed fraction of nodes α|V | will be influenced.

They proved that LCIP problem is NP-hard if the edge has non-uniform weight

under the linear threshold model. They proposed a linear time algorithm for trees

assuming each neighbor of node v exerts uniform weight on v.

In [12], Demaine et al. proposed and studied the Fractional Influence problem

which can be viewed as the fractional counterpart of the seed set problem. In the

fractional influence problem, for a node v with threshold t(v), the designer is free to

give partial external incentives ranging from 0 to t(v) to node v, instead of assuming

that activating different nodes has the same cost. They studied this problem under

the general threshold model.

Definition 5 Fractional influence problem: Given an undirected graph G =

24

(V,E, t), let X be a vector of size n where Xv denotes the amount of external in-

fluence node v receives and let fv(S) denote the amount of influence node v receives

when all nodes in set S have all been activated. We define I(G, t) to be the set of

influenced nodes at time step t. Node v would be influenced at time step t only if

Xv + fv(I(G, t)) ≥ t(v). The goal of the problem is to find an assignment satisfy-

ing
∑

v∈V Xv ≤ k where k represents the budget, while maximizing the total size of

influenced nodes.

In the seed set problem, the designer can only give either 0 or t(v) incentives to

node v. The solution for the seed set problem can be seen as a vector x ∈ {0, 1}n

indexed by v where xv is either 0 or 1. If xv = 1, then node v is in the seed set and

be influenced in time step 1. It is easy to observe that the seed set problem can be

viewed as the integral counterpart for the fractional influence problem.

For some problems such as the Knapsack problem, the fractional version is eas-

ier to solve than its integral counterpart. But Demaine et al. in [12] proved that

the fractional influence problem is also NP-complete, by using reduction from the

Independent Set problem. Besides, they proved that the submodularity property still

holds true in the fractional influence problem. They concluded that this problem

also admits a natural greedy algorithm with (1− 1/e) -approximation ratio and pro-

posed a greedy heuristic for the fractional influence problem. With simulations on

real-life social networks, they showed that the fractional influence model performs

substantially better than the integral counterpart under the same budget constraint.

Furthermore, they proved that it is NP-hard to approximate the factional influence

problem to within any factor better than 1− 1/e.

25

2.7 Influence maximization in the presence of neg-

ative opinions

In this section, we review the literature on influence maximization problem while

there exist negative opinions.

In previous discussions, we consider only positive influence propagation in the

network. However, for the sane product, some customers may propagate negative

influences in the network.

In [6], Chen et al. proposed a model called IC-N which is based on the indepen-

dent cascade model, and this model incorporates the emergence and propagation of

negative opinions. Each node in the network has three states, neutral, positive, and

negative. Node v is said to be activated at time t if it becomes positive or negative

at time t and was neutral at time t − 1. IC-N model introduced a quality factor q

to denote the probability that a node stays positive after it is activated by a positive

neighbor. Initially only nodes in chosen seed set S are active, and for each node

v ∈ S, it has probability q to stay positive and with probability 1− q to become neg-

ative. At time t > 0, every active node v (both positive and negative) has a chance

to activate its neutral node with an independent probability of pv,u. The problem is

to find a seed set of size k which can activate most positive nodes. They showed that

IC-N model maintains some nice properties such as submodularity, thus the greedy

approach still applies. Besides, they give a heuristic algorithm called MIA-N which

is much more efficient than the greedy hill-climbing approach in practical.

2.8 Non-Progressive Influence Diffusion

In this section, we review the literature on Non-Progressive influence diffusion model.

Most previous work on modeling the influence diffusion process has assumed that

26

once a node is influenced, it will remain active for all subsequent rounds. This type

of influence diffusion can be categorized as progressive model [28]. However, this

assumption is unrealistic in many scenarios where nodes can switch between inactive

and active states and vice versa. For example, you will recommend an interesting

movie to your friends in a few days after you watching it, but you will not remain

active for a long time span. Non-progressive influence diffusion models have been

widely used in epidemic and economical modeling [15, 27].

In [28], Kempe et al. proposed a Non-progressive threshold model. In their model,

the influence diffusion process is analogous to the progressive model, except that at

each step t, each node v will choose a new threshold θtv. Node v will be active in step

t if fv(S) ≥ θtv.

Recently, there has been some work dedicated to influence maximization on non-

progressive models. In [16], Gargano et al. proposed a new non-progressive threshold

model in which agents have a limit memory span λ which means at time t, only

influenced received in time span [t − λ, t] can be aggregated and influence received

before t−λ is lost. In this model, all edges have uniform weight of 1, and the threshold

of node v is randomly chosen in range [1, d(v)]. Using this model, they studied the

following problem: given a network G = (V,E, t), and a time window size λ, find a

small set of nodes that can influence the whole graph. They proved that this problem

is hard to approximate within a poly-logarithmic factor for general graphs, and gave

polynomial time algorithm for trees.

Sometimes, multiple companies will be competing to promote similar products

in the network, the customer can switch between different adoptions. In this type

of non-monopolistic settings, progressive influence diffusion models are not sufficient

to describe how influence propagates within a social network. Instead, some non-

progressive models can be used in non-monopolistic setting.

27

In [2], Bharathi et al. studied the case that multiple innovations are competing

within a social network. They proposed a new model which is an extension on the

Independent Cascade model for modeling the diffusion process of multiple innovations

in a social network. If the last agent has know which subset of nodes its opponent

has chosen, they gave a (1− 1/e) approximation algorithm for the last agent to find

a subset of nodes in the network as seed set.

2.9 Discussion

Of all these problems, our thesis is most closely related to the seed set problem and the

fractional influence problem. We elaborate this section by discussing the difference

between the Maximum Influence problem and the seed set problem, together with

the fractional influence problem.

2.9.1 Difference between Seed Set problem and Maximum

Influence problem

In order to show the difference between seed set problem and the Maximum Influence

problem, we provide a small example.

Now consider the problem of finding an optimal link set of size 3 for the same

path as the one in Figure 1. We use node v to denote the existence of a single external

influencer in this thesis.

28

1

a

2

b

2

c

1

d

2

e

1

f

2

g

2

h

1

i

v

Figure 5: Maximum Influence problem for the same path as Figure 1

Observe that if the influencer links to the same set of nodes {b, e, h} as in Figure

4, the total number of influenced nodes would be 0 instead of 9.

1

a

2

b

2

c

1

d

2

e

1

f

2

g

2

h

1

i

v

Figure 6: Influenced nodes with {b, e, h} as link set

Instead, with 3 links, the maximum number of nodes we can activate is 4. If the

influencer links to the set {c, d, f}, the influence diffusion process proceeds as follows:

In step 0, the influencer sets links to nodes {c, d, f}.

1

a

2

b

2

c

1

d

2

e

1

f

2

g

2

h

1

i

v

Figure 7: Influenced nodes at time step 0 with {c, d, f} as link set

29

In step 1, nodes {d, f} are influenced.

1

a

2

b

2

v

1

d

2

e

1

f

2

g

2

h

1

i

v

Figure 8: Influenced nodes at time step 1 with {c, d, f} as link set

In step 2, nodes {c, e} are influenced.

1

a

2

b

2

c

1

d

2

e

1

f

2

g

2

h

1

i

v

Figure 9: Influenced nodes at time step 2 with {c, d, f} as link set

It is easy to verify that the set {c, d, f} is an optimal link set of size 3, and it

is not an optimal seed set. We conclude that an optimal link set is not an optimal

seed set and vice versa. In the seed set problem, we generally prefer to choose high

influential nodes (nodes with highest degree, nodes in the center, nodes with high

thresholds) first. However, the same node selection strategy does not work in the

Maximum Influence problem, as these nodes cannot be activated immediately.

30

2.9.2 Difference between Fractional Influence problem and

Maximum Influence problem

Fractional influence problem can be viewed as a special case of the Maximum influence

problem. That is if we consider a Maximum influence problem in which the number of

external influencers is equal to the highest threshold in the network, the problem will

be an instance of the fractional influence problem. This is because in this Maximum

influence problem, there is no upper bound on the amount of influence that can be

given to a single node, other than that given by the total budget.

Given a fixed budget k, the solution for the fractional influence maximization

problem is a vector x indexed by node v satisfying
∑

v∈V xv ≤ k while maximizing

the size of influenced nodes at the same time.

Given the same budget k and the number of influencers x, the solution for the

Maximum Influence problem is a vector x indexed by node v satisfying
∑

v∈V xv ≤

k and xv ≤ x while maximizing the size of influenced nodes at the same time.

The authors of [12] focused on proving the submodular property of the fractional

influence model and the hardness of solving fractional influence maximization problem

as general. Their reduction from Independet Set problem does not work for the case of

undirected graph while we proved that the Maximum influence problem is NP-hard

in undirected graphs. Besides, they did not identify or propose any algorithm for

the polynomial time solvable cases of the fractional influence maximization problem.

We studied the polynomial time solvable cases for both the Minimum Links problem

and Maximum Influence problem, and gave polynomial time solution for paths, rings,

trees and cliques.

31

Chapter 3

NP-Hardness of Maximum

Influence problem

In this chapter, we will prove that the Maximum Influence problem is NP-hard even

for bipartite graphs in which thresholds of all nodes are either one or two. First,

we give the decision versions for both the Minimum Links problem and Maximum

Influence problem:

Definition 6 Minimum Links problem: Given a social network G = (V,E, t), a

set of external influencers A, and an integer k, is there a link assignment S of size k

that activates the entire network, that is, I(G,S) = G?

Definition 7 Maximum Influence problem: Given a social network G = (V,E, t),

a set of external influencers A, and integers k and p, is there a link assignment S of

size k such that |I(G,S)| = p?

Clearly, if there is a polynomial time algorithm for the Maximum Influence prob-

lem, the Minimum Links problem is also polynomial time solvable. We proceed to

prove that the Maximum Influence problem is NP-hard. The complexity of Minimum

Links problem remains open.

32

Theorem 3 The Maximum Influence problem is NP-hard, even for bipartite graph

with all nodes having threshold 1 or 2 and having only a single influencer.

Proof. We show the hardness of the Maximum Influence problem by reducing from

the Max Clique problem: Given a graph G = (V,E) and an integer k, does G contain

a clique of size at least k?

Given an instance of the Max Clique problem (G, k), we construct a bipartite

graph G′ = (L1∪L2, E
′, t) as follows. For every node v ∈ V , we create a corresponding

node v of threshold 1 in L1. For every edge {u, v} ∈ E, we create a corresponding

node (uv) of threshold 2 in L2. Next, for every edge {u, v} ∈ E, we create the edges

(u, (uv)) and (v, (uv)).

Figure 10 illustrates the reduction.

a

b c

d e

1

a

1

b

1

c

1

d

1

e

2

(ab)

2

(ac)

2

(bc)

2

(bd)

2

(cd)

2

(ce)

2

(de)

Figure 10: Reduction process from G to G′

We now show that G has a clique of size k if and only if G′ has a link set of size

k that can activate at least C2
k + k nodes. To do this, we first show that it suffices to

33

consider link sets that contain only nodes in L1.

Claim 1 For any link set T ⊆ L1 ∪L2, there exists a set S ⊆ L1 such that |S| ≤ |T |

and |I(G′, S)| ≥ |I(G′, T)|.

Proof. Consider a node v ∈ T ∩ L2 that is connected to v1 and v2 ∈ L1. We argue

that we can either remove the link assigned to v, or assign that link to some other

node in L1 while not decreasing the size of the influenced set. The following five cases

about the time of activation of v are exhaustive.

Case 1: v is not activated in the final round: We can simply remove the link assigned

to v.

Case 2: v is activated before v1 and v2: Since v has threshold 2 while v1 and v2 are

both of threshold 1, this is impossible with a single influencer, as the link v

receives can only reduce its threshold by 1.

Case 3: v is activated after v1 is activated and before v2 is activated: We can move the

link assigned for v to v2, the same set of nodes will be activated eventually.

Case 4: v is activated after v2 and before v1: similar as the previous case, we can

move the link assigned for v to v1.

Case 5: v is activated after v1 and v2 are activated: The link assigned to v is unnec-

essary and can be removed.

The above claim shows that it suffices to consider only link set S ⊆ L1.

Claim 2 G′ has a link set S ⊆ L1 with |S| ≤ k and |I(G′, S)| ≥ C2
k + k if and only

if G has a clique of size k.

34

Proof. Suppose first that G has a clique V ′ of size k. We claim that V ′ ⊆ L1 is a

link set such that |I(G′, V ′)| = C2
k +k. Clearly, all nodes in V ′ are activated at round

1. Then since V ′ is a clique in G, it is easy to see that all nodes in L2 corresponding

to the C2
k edges between nodes in V ′ will be activated in round 2. This proves that

|I(G′, V ′)| ≥ C2
k + k .

Suppose next that there is a link set S ⊆ L1 such that |I(G′, V ′)| = C2
k + k, then

we claim that the corresponding set for S in G forms a clique of size k.

We claim that given S ⊆ L1 as a link set, it is impossible to activate any new

node ∈ L1 except nodes in S and for any node (uv) ∈ L2 that gets activated, it must

be that u ∈ S and v ∈ S.

Suppose there exists a node d ∈ L1−S such that d is eventually activated. Since

d has threshold 1 and d doesn’t receive a link, in order for d to be activated, one of

d′s neighbors must be activated first. Let us say d is connected to (dx) and (dx) is

activated before d. Node (dx) is of threshold 2, thus in order for (dx) to be activated,

both d and x must be activated before (dx), a contradiction.

For the second part, suppose there exists a node (uv) ∈ L2 such that u /∈ S and

(uv) gets activated eventually. But from the previous analysis, we know that u can

never be activated. Therefore (uv) cannot be activated either.

We have shown that with a set S ⊆ L1 of size k, only nodes in S can be activated

for the nodes in L1; only those nodes which are connected to two nodes in S can be

activated for nodes in L2. If |I(G′, S)| ≥ C2
k + k, then for every pair of nodes in S,

they must be connected in G, thus S must be a clique of size k in G.

Therefore, this completes the proof of the theorem.

35

Chapter 4

Paths

In the previous chapter, we showed that the Maximum Influence problem is NP-hard

even for bipartite graphs in which thresholds of all nodes are either one or two. In this

chapter, we show that both the Minimum Links problem and the Maximum Influence

problem are polynomial time solvable for paths.

Let Pn = (V,E, t) be a path with n nodes, V = {1, 2, ..., n}, E = {(i, (i+1)) | 1 ≤

i ≤ n− 1}, and t : t(v) → Z+. For 1 ≤ i ≤ j ≤ n, we define Pi,j to be the sub-path

of Pn consisting of all nodes in {i, . . . , j}. We say node v receives a link or that we

give a link to node v, when we add a link from the influencer to v.

4.1 Minimum Links problem

In this section, we study the Minimum Links problem in paths. Let MinLinks(Pn)

be the problem of finding a minimum-sized link assignment that activates the entire

path, and let ML(Pn) be the minimum number of links needed to activate the entire

path.

First observe that if all nodes in the path have threshold one, then by giving a link

to any of the nodes, we can activate the entire path. However, there are situations

36

in which it is impossible to activate the entire path, for example, if any node has

threshold greater than three. We now show a necessary and sufficient condition for

the Minimum Links problem to have a feasible solution:

Proposition 1 The Minimum Links problem has a feasible solution on Pn = (V,E, t)

if and only if one of the following two conditions is met:

1. There is no node in Pn with threshold ≥ 3, and there exists a node with threshold

1.

2. There exists a node v with threshold 3, and both P1,i−1 and Pi+1,n have feasible

solutions.

Proof. First we consider the case when there is no node in Pn with threshold ≥ 3.

If there is no node with threshold 1 and all nodes have threshold 2, clearly, even if all

nodes in Pn receive links, no node can be activated. Conversely, suppose there does

exist a node i with threshold 1. Then by giving a link to i, it is activated, and by

the cascade effect, the threshold on both i − 1 and i + 1 (if they exist) is effectively

reduced. The remaining sub-paths are shorter paths each with at least one node of

threshold 1. Inductively, there exists a feasible solution.

Next we move to (2). To activate a node i with threshold 3, it is clear that i

must receive a link, and both of its neighbors have to be activated before i. This is

not possible if one of P1,i−1and Pi+1,n does not have a feasible solution. Conversely, if

both these sub-paths have feasible solutions, then by using these solutions and giving

a link to v, we can activate the node v as well, thereby creating a feasible solution

for Pn.

Given a path Pi,j, we now show how to find a minimum-sized set of nodes that

can activate all the nodes in the path. We define next(i) to be the first node with

37

threshold 1 in Pi+1,j. For convenience, we define t(j + 1) = 1.

next(i) = min{k : i+ 1 ≤ k ≤ j + 1 & t(k) = 1}

Clearly, the problem does not have a feasible solution if there exists a node with

threshold greater than 3. We study separately the two cases that there does and does

not exist a node with threshold 3 in Pi,j.

4.1.1 The path consists of only nodes with threshold 1 or 2

First, we consider the case that Pi,j only consists of nodes with threshold 1 or 2. We

solve the MinLinks(Pi,j) problem by considering the different thresholds node i may

have.

Case 1: t(i) = 2. If next(i) > j, this implies that all nodes in Pi,j have threshold

two, and by Proposition 1, we know that there is no feasible solution. Otherwise,

there is a feasible solution, but to activate node i, we must both give it a link, and

activate its neighbor i+ 1. It follows that the optimal number of links to activate Pi,j

is one more than the optimal number of links to activate Pi+1,j.

Case 2: t(i) = 1. If next(i) > j, this implies that node i is the rightmost node

with threshold one in the path Pi,j. Therefore, to activate all the nodes in Pi,j, it is

necessary and sufficient to give a link to every node in Pi,j. If instead next(i) ≤ j,

then by Proposition 1, the path Pi+1,j also has a feasible solution. In this case, we

claim that any optimal solution for Pi+1,j is also an optimal solution for Pi,j. To prove

the claim, suppose that there is an optimal solution S for Pi+1,j that has k links but

S is not optimal for Pi,j. Consider an optimal solution S ′ for Pi,j. Since S is not

optimal for Pi,j, it must be that |S ′| < k. If S ′ does not have a link to node i, then

clearly it is also a solution for Pi+1,j which contradicts the optimality of S for Pi+1,j.

38

If S ′ has a link to node i, note that since S ′ is optimal, there must exist some node

p ∈ [i + 1, next(i)] which does not receive a link (see Figure 11). Therefore, the link

assigned to node i can be moved to node p, giving a valid solution S ′′ for Pi,j of the

same size as S ′. However, S ′′ is also a solution for Pi+1,j and has fewer than k links,

contradicting the optimality of S for Pi+1,j.

1

i

2 2

p

1

next(i)

v

Figure 11: An optimal solution S which gives a link to node i

Let C(i, j) be the minimum number of links needed to activate the sub-path Pi,j.

The above discussion gives the following dynamic programming formulation to find

C(i, j).

C(i, j) =



1 + C(i+ 1, j) if t(i) = 2 & next(i) ≤ j

∞ if t(i) = 2 & next(i) > j

C(i+ 1, j) if t(i) = 1 & next(i) ≤ j

j − i+ 1 if t(i) = 1 & next(i) > j

If we study this dynamic programming formulation in depth, we can observe that

we give a link to every node with threshold 2 and we only give a link to the last node

with threshold 1. The theorem below follows immediately:

Theorem 4 Given a path Pi,j which admits a feasible solution and only consists of

nodes with threshold 1 or 2, C(i, j) = n2 + 1 where n2 is the number of nodes with

threshold 2 in Pi,j.

39

4.1.2 The path contains nodes with threshold 3

Now, we consider the case that Pi,j has nodes with threshold 3. If t(i) = 3 or

t(j) = 3, clearly the problem does not have a feasible solution. If there exists an

index k (i < k < j) with t(k) = 3, then it is clear that node i must receive a link,

and both Pi,k−1 and Pk+1,j must have feasible solutions.

ML(Pi,j) = ML(Pi,k−1) +ML(Pk+1,j) + 1

Let n3 be the number of nodes in Pi,j with threshold 3. Nodes with threshold 3

divide Pi,j into n3+1 sub-paths (Figure 12). For each sub-path, the minimum number

of links required is the number of nodes with threshold 2 in this sub-path plus 1 by

Theorem 4 . Therefore, the overall number of links required for all the sub-paths are

n2 + n3 + 1, and we need to give a link to every node with threshold 3 in Pi,j. The

theorem below follows immediately:

2

a

1

b

3

c

2

d

1

e

3

f

1

g

Figure 12: An path which has nodes with threshold 3

Theorem 5 Given a path Pi,j which admits a feasible solution, C(i, j) = 2∗n3+n2+1

where n3 and n2 are the number of nodes with threshold 3 and 2 in Pi,j respectively.

Next, we give a linear time algorithm for finding a minimum-sized link set for the

problem MinLinks(Pi,j).

40

Algorithm 2 IsFeasible(Pi,j) - Feasibility checking for paths

1: Input: Path Pi,j = (V,E, t)

2: Output: IsSolvable - Pi,j admits a solution or not;

3: IsSolvable← false

4: last← 0

5: IsLastOne[]← {false}
6: for index p← i, j do

7: if t(p) == 3 then

8: IsSolvable← false

9: last← 0 . resetting the indicator

10: if p == i then . special case

11: return false

12: if t(p) == 1 then

13: IsSolvable = true

14: if last == 0 then

15: last← p

16: IsLastOne[last]← true

17: else

18: IsLastOne[last]← false

19: last← p

20: IsLastOne[last]← true

21: return IsSolvable

Algorithm 3 Minimum Links algorithm for paths

1: Input: Path Pi,j = (V,E, t)

2: Output: Minimum-sized link set S;

3: S = ∅
4: for index p← i, j do

5: if t(p) == 3 || t(p) == 2 || IsLastOne[p] then

6: S ← S ∪ {p}

7: return S

Theorem 6 The Minimum Links problem for a path P1,n can be solved in time θ(n).

Proof. A simple linear time scan can verify if the problem instance has a feasible

41

solution and find all the last node with threshold 1 in every sub-path divided by nodes

with threshold 3.

If the problem admits a feasible solution, as stated in Theorem 5, in an optimal

solution S, every node with threshold 2 and 3 must receive a link, and every last

node with threshold 1 in every sub-path divided by nodes with threshold 3 must also

receive a link. The pseudocode is given in Algorithm 3. The optimal link set can be

constructed by a linear scan.

4.2 Maximum Influence problem

In this section, we study the Maximum Influence problem in paths. Let MaxIn(Pn, k)

be the problem of finding an assignment of at most k links to nodes in path Pn

that maximizes the number of influenced nodes, and let MI(Pn, k) be the maximum

number of nodes that can be influenced in the path using k links. Since not every

node will be activated by an optimal assignment for the Maximum Influence problem,

we develop some new notation to facilitate our discussion. Let MIA(Pi,n, k) be the

problem of finding an assignment of at most k links to nodes in the sub-path Pi,n that

maximizes the number of influenced nodes while ensuring that node i is activated.

Similarly, let MIB(Pi,n, k) be the problem of finding an assignment of at most k

links to nodes in the sub-path Pi,n that maximizes the number of influenced nodes

while ensuring that node i is not activated. Let A(i, k) and B(i, k) be the number of

nodes that can be influenced by optimal solutions to MIA(Pi,n, k) and MIB(Pi,n, k)

respectively. Then clearly

MI(P1,n, k) = max{A(1, k), B(1, k)}

We provide two examples to show that the optimal solution for the Maximum

42

Influence problem may or may not activate the first node, depending on the thresholds

in the path. Therefore, it is necessary to consider both cases.

1

a

1

b

2

c

1

d

Figure 13: Maximum Influence problem in
a path with k = 1

1

a

2

b

1

c

1

d

Figure 14: Maximum Influence problem in
a different path with k = 1

In Figure 13, A(1, 1) = 2, {a} is an optimal link set that can activate nodes

{a, b}, meanwhile B(1, 1) = 1, {d} is an optimal link set that does not activate node

a; while in Figure 14, A(1, 1) = 1, {a} is an optimal link set that can activate node

{a}, meanwhile B(1, 1) = 2, {c} is an optimal link set that does not activate node a,

instead, it activates {c, d}.

1

a

2

b

2

c

1

d

2

e

1

f

Figure 15: Maximum Influence problem in a path with k = 2

1

a

2

b

1

c

2

d

2

e

1

f

Figure 16: Maximum Influence problem in a different path with k = 2

In Figure 15, A(1, 2) = 2, {a, b} is an optimal link set that can activate nodes

{a, b}; meanwhile B(1, 2) = 3, {d, e} is an optimal link set that does not activate

node a, instead, it activates {d, e, f}. However, in Figure 16, A(1, 2) = 3, {a, b} is an

optimal link set that can activate nodes {a, b, c}; meanwhile B(1, 2) = 2, {c, d} is an

optimal link set that does not activate node a, instead, it activates {c, d}.

We proceed to give a solution for the problem MI(Pn, k), and study separately

the two cases that there does and does not exist a node with threshold > 2 in Pn.

43

4.2.1 The path consists of only nodes with threshold 1 or 2

Given a path Pn in which all nodes have thresholds 1 or 2 together with k links

available, we give a recursive definition for A(i, k) and B(i, k) to solve the Maximum

Influence problem. As we will see, these definitions are inter-dependent and need to

be developed together. Clearly, A(i, 0) = B(i, 0) = 0 for every i. For convenience,

We also define t(n+ 1) = 1 and A(n+ 1, k) = B(n+ 1, k) = 0 for all k.

First we consider the case when node i has threshold 2. If next(i) > n (that is,

no nodes with threshold 1 in Pi+1,n), then there is no way to activate any node in

Pi,n, therefore A(i, k) = B(i, k) = 0 for every k. If instead next(i) ≤ n, then it is

possible to activate at least one node in Pi,n. Observe that in any feasible solution for

MIA(Pi,n, k), not only does node i need to receive a link, but its neighbor node i+ 1

needs to be activated as well, therefore A(i, k) = 0 if A(i + 1, k − 1) = 0; otherwise

A(i, k) = 1 +A(i+ 1, k− 1). Finally, note that any feasible solution for MIB(Pi,n, k)

is a solution in which i does not receive a link, and the next node may or may not

be activated, or it does receive a link, and the next node is not activated. That is

B(i, k) = max{A(i+ 1, k), B(i+ 1, k), B(i+ 1, k−1)} = max{A(i+ 1, k), B(i+ 1, k)}

Putting together the recursive definitions of A(i, k) and B(i, k) we obtain:

A(i, k) =


0 if t(i) = 2 & next(i) > n

0 if t(i) = 2 & A(i+ 1, k − 1) = 0

1 + A(i+ 1, k − 1) if t(i) = 2 & A(i+ 1, k − 1) > 0

B(i, k) =


0 if t(i) = 2 & next(i) > n

max


A(i+ 1, k)

B(i+ 1, k)

if t(i) = 2 & next(i) ≤ n

44

Next we consider the case when node i has threshold 1. If there are no other nodes

with threshold 1 in the path, that is if next(i) > n, then clearly any activation has to

progress with first node i getting activated and then consecutive nodes to its right,

one in each activation round. Therefore, A(i, k) = min(k, n− i+ 1). Otherwise, node

i is not the rightmost node with threshold one. The following two technical lemmas

are useful in characterizing the optimal substructure of the problem.

Lemma 1 Given a path Pi,n in which node i has threshold 1 and the remaining

nodes have threshold 2, let S be an optimal solution to the problem MIA(Pi,n, k).

Then S can activate exactly min{k, n − i + 1} nodes, and must give links to the set

{i, . . . , i+min{k, n− i+ 1} − 1}.

Proof. If node i does not receive a link, then it is not possible to activate any node

in Pi+1,n by Proposition 1. Then node i must receive a link and be activated first (see

Figure 17). Inductively, we can show that node i+1 is the second node which receives

a link and gets activated. Therefore, all nodes in {i, . . . , i + min{k, n − i + 1} − 1}

must receive a link. Any node that does not receive a link cannot get activated, the

maximum number of activated nodes would be min{k, n− i+ 1}.

1

i

2 2 2 2 2

n

v

Figure 17: An optimal assignment S for MIA(Pi,n, 4)

Lemma 2 Given a path Pi,n with i < n in which nodes i and n have threshold 1 and

the remaining nodes have threshold 2 and k links with k < n− i. Let S be an optimal

solution for MIA(Pi,n, k) that activates node n as well.

45

In S, the set of nodes that receive links is two sequences [i, i + α], and [n − `, j]

while satisfying α + `− 2 = k.

Proof. Since k < n − i, then there are at least two nodes in the range [i, n] would

not receive a link, thus at least one node is the range [i+ 1, n− 1] is not activated by

S.

Suppose node p is some node in range [i + 1, n − 1] that is not activated by S

(see Figure 18). Then we can break Pi,n into two sub-paths Pi,p−1 in which node i

has threshold 1 and the remaining nodes have threshold 2, and Pp+1,n in which node

n has threshold 1 and the remaining nodes have threshold 2. Then this problem can

be reduced to finding an optimal assignment S of k links to Pi,p−1 and Pp+1,n which

maximizes the number of overall activated nodes while ensuring node i and node n

are both activated.

According to Lemma 1, in such an optimal S for Pi,p−1 and Pp+1,n, the set of

nodes that received links is two sequences [i, i + α], and [n − `, j] while satisfying

α + `− 2 = k.

1

i

2 2

p

2

p+ 1

2 1

n

v

Figure 18: An optimal assignment S for MIA(Pi,n, 4) which activates node n as well

We are now ready to describe the optimal substructure of the problem.

Lemma 3 Let Pi,n be a path with t(i) = 1 and next(i) ≤ n. If in every optimal

solution for MIA(Pi,n, k), node i receives a link, then there exists an optimal solution

S ′ for MIA(Pi,n, k) in which neither node i+ 1 nor node i+ 2 is activated.

46

Proof. Let S be an optimal solution for MIA(Pi,n, k) where next(i) ≤ n, which

uses the fewest links possible. By assumption, node i receives a link. First observe

that if next(i) = i+ 1, then i+ 1 cannot have a link since that would contradict the

minimality of S. So we can simply move the link from node i to i+1 and activate the

same set of nodes, but this contradicts the assumption that in every optimal solution,

node i must receive a link. Next suppose next(i) = i + 2. Then it is not possible

that both i + 1 and i + 2 receive links, as this would contradict the minimality of

S. If exactly one of i + 1 and i + 2 have a link, we can move the link to i to the

node among i+ 1 and i+ 2 that does not have a link, thus creating a solution which

activates exactly the same set of nodes, a contradiction. If neither i+ 1 nor i+ 2 has

a link, and neither is activated, then the lemma is proved. Finally, if neither has a

link, but one of them is activated, it must be that i + 2 is activated by node i + 3.

In this case, we can move the link from node i to node i+ 1, getting a solution that

activates the same set of nodes, a contradiction to the assumption that there is no

optimal solution that does not give node i a link.

It remains to consider the case when next(i) > i+2, that is, both nodes i+1 and

i+ 2 have threshold 2. We consider the set of nodes in Z = {i+ 1, i+ 2, . . . , next(i)}

and the links assigned to the nodes in Z by S.

Claim 3 If next(i) ∈ I(Pi,n, S), there are at least two nodes in Z − {next(i)} that

do not receive links in S, and if next(i) /∈ I(Pi,n, S), there are at least two nodes in

Z that do not receive a link.

Proof. We first consider the case when next(i) ∈ I(Pi,n, S). Assume for the purpose

of contradiction that there are fewer than two nodes in Z − {next(i)} that do not

receive links. If all such nodes receive links, clearly S does not use the fewest links

possible. So there must exist exactly one node p ∈ Z − {next(i)} to which S does

not give a link (see Figure 19). Observe that all nodes in Z ∪ {i} are then activated

47

by S. By moving the link given to node i to the node p, we get a solution which

activates the same set of nodes as S, but in which node i does not receive a link, a

contradiction to the assumption that there is no such optimal solution. We conclude

that there are at least two nodes in Z − {next(i)} that do not receive links in S, as

needed.

1

i

2 2 2

p

2 1

next(i)

v

Figure 19: An optimal assignment by which next(i) ∈ I(S)

Next consider the case when next(i) /∈ I(S) (see Figure 20). Then clearly next(i)

does not receive a link in S. If every node in Z − {next(i)} receives a link, the all

these nodes will be activated, in turn activating next(i), contradicting the assumption

that next(i) /∈ I(S). Therefore, there are at least two nodes in Z without links as

required.

1

i

2 2 2 2 1

next(i)

v

Figure 20: An optimal assignment by which next(i) /∈ I(S)

We now show how to convert S into another optimal solution S ′ with the claimed

properties. The following four cases are exhaustive.

next(i) is not activated by S : By Lemma 1, the set of nodes that received links

is some contiguous sequence [i, i+ j], giving j + 1 nodes that are activated. We

48

create a new solution S ′ which is the same as S except that j links are removed

from nodes [i+ 1, i+ j] and assigned instead to [next(i)− j + 1, next(i)]. S ′ is

a solution for MIA(Pi,n, k) that activates exactly the same number of nodes as

S, and is therefore optimal. By Claim 3, at least two nodes in Z did not receive

links in S, and therefore, in S ′, nodes i+ 1 and i+ 2 are not activated.

next(i) received a link in S: By Lemma 2, the set of nodes that received links

is two sequences [i, i + j], and [next(i) − `, next(i)] giving j + ` + 1 nodes

that are activated in Z. We create a new solution S ′ which is the same as S

except that j links are removed from nodes [i+ 1, i+ j] and assigned instead to

[next(i)− `− j, next(i)− `− 1]. S ′ is a solution for MIA(Pi,n, k) and activates

exactly the same number of nodes as S, and is therefore optimal. Furthermore,

S ′ does not give links to i+ 1 and i+ 2 since by Claim 3, there are at least two

nodes in Z − {next(i)} that do not receive links in S.

next(i) does not receive a link but is activated by next(i)− 1 : In this case,

it must be that all nodes in Z−{next(i)} received links in S. But then the link

to node i can be moved to next(i) giving an optimal solution in which node i

does not receive a link, a contradiction to the assumption that there is no such

optimal solution.

next(i) does not receive a link but is activated by next(i) + 1 : Using a proof

similar to that of Lemma 2, it can be seen that the set of nodes that received

links can be partitioned into two sequences [i, i+j], and [next(i)−1−`, next(i)−

1] giving j + ` + 1 nodes that are activated in Z. We create a new solution S ′

which is the same as S except that j links are removed from nodes [i+ 1, i+ j]

and assigned instead to [next(i) − ` − j, next(i) − ` − 1]. S ′ is a solution for

MIA(Pi,n, k) and activates exactly the same number of nodes as S, and is

49

therefore optimal. Furthermore, S ′ does not give links to i + 1 and i + 2 since

by Claim 3, there are at least two nodes in Z − {next(i)} that do not receive

links in S.

In all cases, S ′ is an optimal solution in which neither node i + 1 nor node i + 2

receives a link, and are therefore not activated.

The following lemma summarizes the optimal substructure of the problemMIA(Pi,n, k)

when t(i) = 1 and next(i) ≤ n.

Lemma 4 Suppose t(i) = 1 and next(i) ≤ n. Then

A(i, k) = max{A(i+ 1, k) + 1, B(i+ 1, k − 1) + 1}

Proof. First observe that either there exists an optimal solution for MIA(Pi,n, k) in

which node i does not receive a link, or in every optimal solution for MIA(Pi,n, k),

node i receives a link. In the first case, let S be an optimal solution for MIA(Pi,n, k)

in which node i does not receive a link. It follows that its neighbor node i + 1 was

also activated. Clearly S must be an optimal solution for MIA(Pi+1,n, k) (if not, and

if S ′ is a solution for MIA(Pi+1,n, k) that activates more nodes than S, then S ′ is

also a better solution for MIA(Pi,n, k), contradicting the optimality of S. Therefore,

A(i, k) = 1 + A(i+ 1, k).

In the second case, by Lemma 3, we have an optimal solution S ′ in which nodes

i + 1 and i + 2 do not receive links and are therefore not activated. Furthermore,

using a cut-and-paste argument, it is straightforward to see that S ′′ = S ′ − {i} is an

optimal solution for MIB(Pi+1,n, k− 1). It follows that A(i, k) = 1 +B(i+ 1, k− 1).

This completes the proof.

Finally, any solution in which node i is not activated, we can be sure that neither

node i gets a link, nor does its neighbor, node i+1 get activated. Therefore B(i, k) =

50

B(i+ 1, k).

Putting together the recursive definitions of A(i, k) and B(i, k) we obtain:

A(i, k) =


min{k, n− i+ 1} if t(i) = 1 & next(i) > n

max


1 + A(i+ 1, k)

1 +B(i+ 1, k − 1)

if t(i) = 1 & next(i) ≤ n

B(i, k) =

 0 if t(i) = 1 & next(i) > n

B(i+ 1, k) if t(i) = 1 & next(i) ≤ n

51

Algorithm 4 Influence maximization algorithm for paths

1: Input: (1) Path Pn = (V,E, t), t(v) ∈ {1, 2}; (2) links available k;

2: Output: Maximum number of nodes that can be activated;

3: A(n+ 1, k) = B(n+ 1, k) = 0, for all k

4: A(i, 0) = B(i, 0) = 0, for all i

5: for Index i← n, 1 do

6: if t(i) == 2 then

7: for p← 1, k do

8: StartIndexHasThreshold2(i, p)

9: else . node i is of threshold 1

10: for p← 1, k do

11: StartIndexHasThreshold1(i, p)

12: return max(A(1, k), B(1, k))

13: procedure StartIndexHasThreshold1(index i, links k)

14: if next(i) > n then . no node with threshold 1 in Pi+1,n

15: A(i, k)← min(k, n− i+ 1)

16: B(i, k)← 0

17: else

18: B(i, k)← B(i+ 1, k)

19: if A(i+ 1, k) > 0 then

20: A(i, k)← max(A(i+ 1, k) + 1, B(i+ 1, k − 1) + 1)

21: else . impossible to activate node i+ 1

22: A(i, k)← B(i+ 1, k − 1) + 1

23: procedure StartIndexHasThreshold2(index i, links k)

24: if next(i) > n then . no node with threshold 1 in Pi+1,n

25: A(i, k)← 0

26: B(i, k)← 0

27: else

28: B(i, k)← max(A(i+ 1, k), B(i+ 1, k))

29: if A(i+ 1, k − 1) > 0 then

30: A(i, k)← 1 + A(i+ 1, k − 1)

31: else . impossible to activate node i+ 1

32: A(i, k)← 0

52

After successfully calculating A(i, k) and B(i, k) for all pairs of i and k, we give

the following linear time algorithm (Algorithm 5) to construct an optimal link set

from A(i, k) and B(i, k).

Algorithm 5 Finding an optimal link set of size k in paths

1: Input: (1) Path Pn = (V,E, t), t(v) ∈ {1, 2}; (2) links available k; (3) A(i, k) and

B(i, k) matrix generated in Algorithm 4

2: Output: an optimal link set S

3: Start Index i← 0

4: while k > 0 & i ≤ n do

5: if A(i, k) ≥ B(i, k) then

6: if t(i) == 1 then . node i has threshold 1

7: if next(i) == n+ 1 then . Special case

8: for i← i,min(i+ k, n) do

9: add node i to S

10: k ← 0

11: else . next(i) ≤ n

12: if A(i+ 1, k) > 0 then

13: if B(i+ 1, k − 1) > A(i+ 1, k) then

14: add node i to S

15: i← i+ 1

16: k ← k − 1

17: else

18: i← i+ 1

19: else . A(i+ 1, k) = 0 impossible to activate i+ 1

20: add node i to S

21: i← i+ 1

22: k ← k − 1

23: else . node i has threshold 2

24: add node i to S

25: i← i+ 1

26: k ← k − 1

27: else . B(i, k) > A(i, k)

28: i← i+ 1

29: return S

53

4.2.2 The path contains nodes with threshold > 2

We consider now the case that there exists a node q in the path Pn with t(q) ≥ 3. If

q = 1 or q = n or t(q) > 3, it is obvious that node q cannot be activated. Similarly

for any node q with 1 ≤ q ≤ n, if t(q) > 3, it cannot be activated. Therefore, the

optimal solution to the Max-Influence problem with k links does not give node q a

link, and instead uses ` links to solve the Max-Influence problem on the path P1,q−1

and k− ` links to solve the Max-Influence problem on the path Pq+1,n for some value

of ` such that 0 ≤ ` ≤ k. Thus the optimal solution can be found by checking for all

possible values of ` between 0 and k.

If 1 < q < n, and t(q) = 3, then the optimal solution may or may not activate

node q. If it does not activate node q, the optimal solution can be found in the same

way as the case that t(q) > 3. If it does activate node q, the optimal solution must

not only give a link to node q, it must also activate both nodes j−1 and j+ 1 since q

has threshold 3. Thus, it must use ` links to solve the Maximum Influence problem on

Pi,q−1 while making sure that node q− 1 is activated, and k− `− 1 links to solve the

Maximum Influence problem on Pq+1,j while making sure that node q+1 is activated.

To solve the Maximum Influence problem when there are nodes with threshold 3

or greater, therefore, we proceed as follows. The values A(i, k) and B(i, k) are defined

identically to the previous section, when t(i) = 1 or t(i) = 2.

If t(i) ≥ 3,

A(i, k) = 0

B(i, k) = max

 A(i+ 1, k)

B(i+ 1, k)

Now we define C(j, k) and D(j, k) to be the maximum number of nodes that

can be influenced in the path P1,j while ensuring that node j is influenced, and not

54

influenced respectively. The values C and D are computed similarly to A and B for

all threshold values, going backwards in the path rather than forwards. Finally, to

derive the value of MI(Pn, k), we first verify if there is a node q with threshold greater

than 2. If there is no such node, then MI(Pn, k) is defined as before. Suppose there

is a node q with t(q) ≥ 3.

If t(q) > 3,

MI(Pn, k) = max
0≤`≤k

{max(C(q−1, `), D(q−1, `))+max(A(q+1, k−`), B(q+1, k−`))}

If t(q) = 3,

MI(Pn, k) = max


max
0≤`≤k


max(C(q − 1, `), D(q − 1, `))+

max(A(q + 1, k − `), B(q + 1, k − `))

max
0≤`≤k−1

1 + C(q − 1, `) + A(q + 1, k − 1− `)

This allows us to prove the following theorem:

Theorem 7 The Maximum Influence problem for a path Pn using k links, can be

solved in Θ(kn) time.

Proof. The dynamic programming formulation given above can be solved using the

tabular method. First we check in Θ(n) time if there is a node of threshold greater

than two. If there are no such nodes, we create two-dimensional tables A and B of

dimension n× k. We fill the table in row major order, filling each row from right to

left. Each table entry can therefore be calculated in constant time. Thus the time

taken is Θ(kn). If there is a node of threshold greater than two, say node q, then we

create additional tables C and D, and calculate A(q + 1, `), B(q + 1, `), C(q − 1, `),

and D(q − 1, `) for all values of ` in 0 ≤ ` ≤ k. Now the computation of MI(Pn, k)

can be done in Θ(k) time. Therefore the total time taken is once again Θ(kn). The

55

pseudocode for finding the arrays A, B, C, and D is given in Algorithm 4.

56

Chapter 5

Rings

In this chapter, we study the Minimum Links problem and Maximum Influence

problem for rings. Let Rn = (V,E, t) be a ring with n nodes, V = {1, 2, ..., n},

E = {(i, (i + 1)) mod n) | 1 ≤ i ≤ n}, and t : t(v) → Z+. We define Pi,j (i 6= j) to

be the sub-path of Rn consisting of all nodes in {i, . . . , j} in the clockwise direction.

5.1 Minimum Links problem

In this section, we study the Minimum Links problem in rings. Let MinLinks(Rn)

be the problem of finding a minimum-sized link assignment that activates the entire

ring, and let ML(Pn) be the minimum number of links needed to activate the entire

ring.

First observe that if all nodes in the ring have threshold one, then by giving a link

to any of the nodes, we can activate the entire ring. However, there are situations

in which it is impossible to activate the entire ring, for example, if any node has

threshold greater than three. We now show a necessary and sufficient condition for

the Minimum Links problem to have a feasible solution:

Proposition 2 The Minimum Links problem has a feasible solution on Rn = (V,E, t)

57

if and only if one of the following two conditions is met:

1. There is no node in Rn with threshold ≥ 3, and there exists a node with threshold

1.

2. There exists a node i with threshold 3, and Pi+1,i−1 has a feasible solution.

Proof. First we prove that (a) is a necessary and sufficient condition for the Minimum

Links problem to have a feasible solution. If there is no node with threshold 3 or 1,

all nodes have threshold 2, clearly even if all nodes in Rn receive links, no node can

be activated. Conversely, suppose there is no node with threshold 3, and there does

exist a node i with threshold 1. Then by giving a link to i, it is activated, and by

the cascade effect, the thresholds on both i − 1 and i + 1 are effectively reduced.

The remaining would be a path Pi+1,i−1 with at least one node of threshold 1. By

Proposition 1, there exists a feasible solution for Pi+1,i−1.

Next we move to (b). To activate a node i with threshold 3, it is clear that i

must receive a link, and both of its neighbors have to be activated before i. This is

not possible if Pi+1,i−1 does not have a feasible solution. Conversely, if Pi+1,i−1 has a

feasible solution S, then S ∪ {i} will be a feasible solution for Rn.

We proceed to find a minimum-sized assignment of links for inputs that admit

a feasible solution. Clearly, there is no node in Rn with threshold > 3. We study

separately the two cases that there does and does not exist a node with threshold 3

in Rn.

5.1.1 Rn consists of only nodes with threshold 1 or 2

First, we study the case that there does not exist a node of threshold 3 in Rn. We

observe that if all nodes in the ring have threshold 1 or there is only one node of

threshold 2 in the ring, then by giving a link to any of the nodes with threshold 1,

58

we can activate the entire ring. Consider such a ring Rn with at least one node of

threshold 1 and at least two nodes with threshold 2. We choose an arbitrary node i of

threshold 1 in Rn, and we define C(i) and CC(i) to be the first node with threshold 2

in i’s clockwise direction and counter clockwise direction respectively, C(i) 6= CC(i)

(see Figure 21). We also define PC(i),CC(i) be the path from C(i) to CC(i) where

t(C(i)) = t(CC(i)) = 2; and P ′C(i),CC(i) to be the same path as PC(i),CC(i) except that

t(C(i)) = t(CC(i)) = 1.

1 i

2CC(i)

1
1

1

1

1

2 C(i)

PC(i),CC(i)

Figure 21: There does not exist a node with threshold 3 in Rn

Theorem 8 Given a ring Rn = (V,E, t) which admits a feasible solution and consists

of only nodes with threshold 1 and 2, ML(Rn) = n2 where n2 is the number of nodes

with threshold 2 in Rn.

Proof. Let S be an optimal solution for MinLinks(Rn). It is easy to observe that

some node i with threshold 1 must receive a link in S otherwise it is impossible to

start the activation process.

We claim that S − {i} is an optimal solution to MinLinks(P ′C(i),CC(i)). Suppose

not, let |S| = k and let S ′ be an optimal solution to MinLinks(P ′C(i),CC(i)) of size

59

< k − 1. Then giving a link to node i can activate all nodes in [CC(i) + 1, C(i)− 1]

and effectively reduce the thresholds of C(i) and CC(i). S ′ ∪ {i} is a solution of size

< k which can activate all nodes in Rn, a contradiction to the optimality of S. So we

can conclude that an optimal solution S for MinLinks(Rn) can be constructed by

choosing any node of threshold 1 to be part of the solution, together with an optimal

solution to the residual path P ′C(i),CC(i).

Recalling that the number of nodes with threshold 2 in P ′C(i),CC(i) is n2 − 2. By

Theorem 4, the minimum number of links needed to activate P ′C(i),CC(i) is n2−2+1 =

n2 − 1; so the minimum number of links needed to activate Rn is n2.

5.1.2 Rn contains nodes with threshold 3

Next, we study the case that there exists a node i with threshold 3. It is clear that i

must receive a link and both of its neighbors must be activated before i gets activated.

Let S be an optimal solution for MinLinks(Rn), we claim that S − {i} is also an

optimal solution for MinLinks(Pi+1,i−1). Suppose not, let S ′ be a better solution

for MinLinks(Pi+1,i−1) which satisfies |S ′| < |S| − 1, obviously S ′ ∪ {i} is a solution

for MinLinks(Rn) using fewer links, contradicting the optimality of S. Therefore,

an optimal solution S for MinLinks(Rn) can be constructed by choosing any node

i of threshold 3 to be part of the solution, together with an optimal solution to the

residual path MinLinks(Pi+1,i−1).

60

3i

i− 1

i+ 1Pi+1,i−1

Figure 22: There exists a node with threshold 3 in Rn

We give the following theorem similar to Theorem 8.

Theorem 9 Given a ring Rn = (V,E, t) which admits a feasible solution, ML(Rn) =

2 ∗ n3 + n2 where n3 and n2 are the number of nodes with threshold 3 and 2 in Rn

respectively.

Proof. Let i be an arbitrary node with threshold 3 in Rn, we have already proven that

{i}∪ S ′ which is an optimal solution for MinLinks(Pi+1,i−1) is an optimal solution

to MinLinks(Rn).

Recalling that the number of nodes with threshold 2 in Pi+1,i−1 is n2 and the

number of nodes with threshold 3 in Pi+1,i−1 is n3 − 1. By Theorem 5, the minimum

number of links needed to activate Pi+1,i−1 is 2 ∗ (n3 − 1) + n2 + 1 = 2 ∗ n3 + n2 − 1;

so the minimum number of links needed to activate Rn is 2 ∗ n3 + n2.

Next, we give a linear time algorithm for finding a minimum-sized link set for

problem MinLinks(Rn).

61

Algorithm 6 Minimum Links algorithm for rings

1: Input: Ring Rn = (V,E, t)

2: Output: Minimum-sized link set;

3: for index p← 1, n do

4: if t(p) > 3 then

5: return No valid solution

6: if t(p) == 3 then

7: S ′ ← an optimal solution for MinLinks(Pp+1,p−1)

8: return S ′ ∪ {p}

9: choose an arbitrary node i of threshold 1 in Rn

10: C(i)← the first node with threshold 2 in i’s clockwise direction

11: CC(i)← the first node with threshold 2 in i’s counter clockwise direction

12: if C(i) == CC(i) then . There is only one node with threshold 2

13: return {i}
14: else

15: S ′′ ← an optimal solution for MinLinks(P ′C(i),CC(i))

16: return S ′′ ∪ {i}

Theorem 10 The Minimum Links problem for a ring Rn can be solved in time θ(n).

Proof. If there is no node with threshold 3 in the path, as showed in the proof of

Lemma 8, an optimal solution for the MinLinks problem for Rn is given by choosing

any node of threshold 1 to be part of the solution, together with an optimal solution

to the residual path P ′C(i),CC(i).

If there is a node i with threshold 3 in the path, as argued before, an optimal

solution to the residual path Pi+1,i−1 together with {i} forms an optimal solution for

the MinLinks problem for Rn.

The pseudocode is given in Algorithm 6. Since the MinLinks problem for a path

can be solved in θ(n) according to Theorem 6, we can construct an optimal solution

for a ring in θ(n) time as well.

62

5.2 Maximum Influence problem

In this section, we study the Maximum Influence problem in rings. Let MaxIn(Rn, k)

be the problem of finding an assignment of at most k links to nodes in the ring Rn

that maximizes the number of influenced nodes, and let MI(Rn, k) be the maximum

number of nodes that can be influenced in Rn using k links.

Similar to the MinLinks problem, we try to find a way to reduce the problem

to a Maximum Influence problem in a path. First, we check if ML(Rn) ≤ k. If

ML(Rn) ≤ k, clearly MI(Rn, k) = n since we can activate all nodes in Rn with k

links. If ML(Rn) > k, then it is not possible to activate all the nodes in the ring, and

there must exist some node p in Rn which is not activated by an optimal assignment

S for the problem MaxIn(Rn, k). Since S is optimal, it is clear that S cannot

give a link to node p. We claim that S is also an optimal assignment for problem

MaxIn(Pp+1,p−1, k). Suppose not, let S ′ be a solution of size k for MaxIn(Pp+1,p−1, k)

which can activate more nodes than S. It is easy to see that S ′ is also a better solution

for MaxIn(Rn, k), contradicting the optimality of S for MaxIn(Rn, k). Therefore,

MI(Rn, k) = MI(Pp+1,p−1, k). In order to find such a node p , we can try every

possibility of p (1 ≤ p ≤ n) to find the maximum MI(Pp+1,p−1, k), this maximum

value is equal to MI(Rn, k).

MI(Rn, k) =


n if ML(Rn) ≤ k

max
1≤i≤n

{MI(Pi+1,i−1, k)} otherwise

Theorem 11 The Maximum Influence problem for a ring Rn using k links, can be

solved in time θ(kn2).

Proof. From previous analysis, we can see that MI(Rn, k) can computed by calling

63

the Maximum Influence algorithm for a path n times. The time complexity of the

Maximum Influence algorithm for a path is Θ(kn) by Theorem 7. Therefore, the

Maximum Influence problem for a ring Rn can be solved in time θ(kn2).

5.2.1 Rn consists of only nodes with threshold 1 or 2

If there is no node of threshold > 2 in Rn, we can solve the Maximum Influence

problem in rings more efficiently in θ(kn) time. Clearly, if all nodes in Rn have

threshold 2, we cannot activate any node. If there is only one node with threshold 2

in Rn, we can activate the whole ring by giving a link to any node with threshold 1.

Consider such a ring Rn with at least one node of threshold 1 and at least two nodes

with threshold 2. We choose an arbitrary node p of threshold 1 in Rn. Consider an

optimal assignment S for problem MaxIn(Rn, k) which uses the fewest links possible.

We can see that node p either belongs to I(Rn, S) or not. Let MIA(Rp, k) be the

problem of finding an assignment of at most k links to nodes in the ring Rn that

maximizes the number of influenced nodes while ensuring that node p is activated.

Similarly, let MIB(Rp, k) be the problem of finding an assignment of at most k links

to nodes in the ring Rn that maximizes the number of influenced nodes while ensuring

that node p is not activated. Let A(p, k) and B(p, k) be the number of nodes that

can be influenced by optimal solutions to MIA(Rp, k) and MIB(Rp, k) respectively.

Then clearly,

MI(Rn, k) = max{A(p, k), B(p, k)}

Let us consider the case that node p does not belong to I(Rn, S) first (see Figure

23). Since node p is not activated, then nodes in the range of [CC(p) + 1, C(p) − 1]

cannot receive any link; besides, both CC(p) and C(p) cannot be activated. Since S

is optimal and uses the fewest links possible, S cannot give links to CC(p) and C(p).

We now claim that S is an optimal solution for problem MaxIn(PC(p)+1,CC(p)−1, k).

64

Suppose not, let S ′ be a better solution for MaxIn(PC(p)+1,CC(p)−1, k) which can

activate more nodes than S using k links. It is easy to see that S ′ is also a better

solution for MIB(Rp, k), a contradiction.

B(p, k) = MI(PC(p)+1,CC(p)−1, k)

1 p

2

CC(p) 1
1

1

1

1

2 C(p)

Pc(p)+1,cc(p)−1

Figure 23: Node p does not belong to I(Rn, S)

If instead, node p belongs to I(Rn, S) (see Figure 24). Since p is activated, then

all nodes in the range [CC(p) + 1, C(p)−1] are activated too. Also, at least one node

in the range of [CC(p), C(p)] including CC(p) and C(p) must receive a link. We claim

that this link can always be moved to p without reducing the size of the influenced

set. If either one of CC(p) and C(p) receives a link, without loss of generality, we

say CC(p) receives a link, then we can move the link CC(p) receives to node p while

still effectively reducing the threshold of CC(p) by one. If a node in the range of

[CC(p) + 1, C(p)− 1] receives a link, we can still move the link to node p while still

be able to activate nodes in [CC(p) + 1, C(p)− 1]. This proves the claim.

65

Therefore, we assume that p ∈ S. We now claim that S−{p} is an optimal solution

for problem MaxIn(P ′C(p),CC(p), k − 1). Suppose not, let S ′ be a better solution of

MaxIn(P ′C(p),CC(p), k − 1) which can activate more nodes than S − {p} using k − 1

links. It is easy to see that S ′ ∪ {p} is also a better solution for MIA(Rp, k), a

contradiction.

A(p, k) = C(p)− CC(p)− 1 +MI(P ′C(p),CC(p), k − 1)

1 p

2

CC(p) 1
1

1

1

1

2 C(p)

P ′c(p),cc(p)

Figure 24: Node p belongs to I(Rn, S)

We develop the following algorithm to calculate MI(Rn, k).

66

Algorithm 7 Influence maximization algorithm for rings

Input: (1) Ring Rn = (V,E, t), t : V → {1, 2}; (2) links available k;

Output: Maximum number of nodes that can be activated;

Select an arbitrary node p of threshold 1

C(p) ← first node of threshold 2 in p′s clockwise direction

CC(p) ← first node of threshold 2 in p′s counter clockwise direction

if p is not activated by the optimal assignment then

x←MI(PC(p)+1,CC(p)−1, k)

if p is activated by the optimal assignment then

y ← C(p)− CC(p)− 1 +MI(P ′C(p),CC(p), k − 1)

return max(x, y)

Theorem 12 The Maximum Influence problem for a ring Rn which consists of only

node with threshold 1 or 2 can be solved in time θ(kn) where k is the number of links

available.

Proof. The time complexity of Algorithm 7 depends on the time complexity of

Maximum Influence algorithm for a path. Since the Maximum Influence problem

for a path can be solved in O(kn) time by Theorem 7, so can MaxIn(Rn, k). The

optimal link set can also be construed using an optimal solution for the Minimum

Links problem for a residual path in Rn.

67

Chapter 6

Trees

Tree model is widely used in the study of social networks such as Facebook page

tree proposed by Sun et al. in [40], retweet tree introduced by Kwak et al. in [30]

and infection tree proposed by Adar et al. in [1] which are all models used to track

influence cascading in social networks.

Let Tn = (V,E, t) be a tree with n nodes, V = {1, 2, ..., n} and t : t(v) → Z+.

Fix an arbitrary root of the tree and order the children of every node in an arbitrary

fashion. We define Tv and dv to be the sub-tree rooted at node v, and the number of

children of node v respectively. We define T−1v to be the same sub-tree as Tv except

that the threshold of the root v is reduced by 1. We also define vi to be ith child of

node v and Tvi to be the sub-tree rooted at vi.

6.1 Minimum Links problem

In this section, we study the Minimum Links problem in trees. Let MinLinks(Tn)

be the problem of finding a minimum-sized link assignment that activates the entire

tree, and let ML(Tn) be the minimum number of links needed to activate the entire

tree.

68

We study the properties of tree based on its height. It is trivial to solve the

Minimum Links problem for a tree of height 0. In order for a tree of height 0 to have

a feasible solution, the threshold of the root must be 1 and it takes 1 link to activate

such a tree.

6.1.1 Minimum Links problem for trees of height 1

4

r

1 1 1 22

S1 S2

Figure 25: A star network

We call such a tree with height 1 (see Figure 25) a star network. Given a star network

Tr = (V,E, t) rooted at node r, we denote the set of leaf nodes in Tr by L. We define

the set of nodes with threshold 1 and 2 in L to be S1 and S2 respectively.

First, we show a necessary and sufficient condition for the Minimum Links prob-

lem to have a feasible solution with a star network.

Proposition 3 Given a star network Tr = (V,E, t) rooted at node r, the Minimum

Links problem has a feasible solution if and only if both the following conditions are

met:

1. There is no node in L with threshold ≥ 3

2. t(r)− |S1| ≤ 1

69

Proof. First we prove the necessary condition. Suppose there exists a leaf node

v ∈ L with t(v) ≥ 3, it is easy to observe that it is impossible to activate v even

if the root is activated before v. Suppose there is no node in L with threshold ≥ 3

and t(r)− |S1| > 1, first we observe that nodes in S2 can be activated only after the

activation of root v, then even if all the nodes in S1 are given a link, the effective

threshold of r would remain greater than 1, so it is impossible to activate root r or

nodes in S2.

Second, we prove the sufficient condition. Suppose there exists a star network Tr

which satisfies the two conditions in the statement of the lemma. Let S be a link

assignment in which every node is given a link. Clearly, nodes in S1 will be activated

first, then the root r can also be activated and finally nodes in S2 will be activated,

so that S activates all the nodes in Tr.

Before we proceed to give a solution for the Minimum Links problem in a star

network, we prove the following lemma which is applicable for multiple influencers

and helpful for both MinLinks and Maximum Influence problems.

Lemma 5 Suppose S is an assignment of k links to a tree T in which v = root(T)

is activated, and p links are assigned to v in S with p < t(v). Then there exists an

assignment S ′ with t(v) links being assigned to v and the remaining k − t(v) links to

other nodes in T , such that I(T, S ′) = I(T, S) and |S ′| = k.

Proof. We prove the lemma by induction on the height of the tree T . Clearly, the

lemma is true for trees of height 0; the only way to activate such a tree is to give t(v)

links to the root v.

Now consider a tree of height h and an assignment S with p links assigned to v

where 0 ≤ p < t(v), such that v is activated. We will create a new assignment S ′ of

the same size as S in which v is assigned p+ 1 links and the activated set of nodes is

exactly the same as in S.

70

Since in S, there are fewer than t(v) links assigned to v, there must exist a child

c of v which is activated before v, and contributes to the activation of v. By the

inductive hypothesis, we can assume that t(c) links have been assigned to c in S. Our

new assignment S ′ is identical to S except that we assign p+ 1 links to v and t(c)− 1

links to c. Any node except c that was activated by S before v, is also activated in

S ′ before v. Therefore v will be activated by S ′, and will subsequently activate c. All

other children of v that were activated after v in S will also be activated after v by

S ′. Therefore, I(T, S) = I(T, S ′).

Clearly the above process can be repeated until p = t(v).

The corollary below for the single influencer case follows immediately.

Corollary 1 Suppose S is an assignment of k links to a tree T in which v = root(T)

is activated, and no link is assigned to v in S. Then there exists an assignment S ′

with a link being assigned to v and the remaining k − 1 links to other nodes in T ,

such that I(T, S ′) = I(T, S) and |S ′| = k.

Now, we are ready to give a solution for the Minimum Links problem in a star

network.

Theorem 13 Given a star network Tr = (V,E, t) which admits a feasible solution,

the minimum number of links required to activate Tr satisfies the following equation:

ML(Tr) = 1 +
∑
v∈V

(t(v)− 1)

Proof. By Corollary 1, there exists an optimal solution S in which the root r is given

a link. Now consider such a solution S. It is easy to observe that we need to activate

t(r) − 1 leaves such that the root r can be activated, and nodes in S2 can only be

activated after the activation of r. Since t(r) − 1 ≤ |S1|, we give t(r) − 1 links to

nodes in S1, then the root r as well as the remaining nodes in S1 will be activated.

71

It is now necessary and sufficient to give a link to every node in S2 to activate all the

nodes in S2.

So the minimum number of links required to activate Tr is 1 + t(r)− 1 + |S2| =

1 +
∑

v∈V (t(v)− 1).

6.1.2 Minimum Links problem for trees of height > 1

Now we consider a tree with height > 1 (see Figure 26). We define Tr − Tr1 to

be the same tree as Tr after removing the sub-tree Tr1 , and as before, we also define

(Tr−Tr1)−1 to be same tree as Tr−Tr1 except that the threshold of root r is effectively

reduced by 1.

r

r1 r2 r3 r5r4

Tr − Tr1Tr1

Figure 26: The definition for Tr1 and (Tr − Tr1)

We now give a necessary and sufficient condition for the Minimum Links problem

to have a feasible solution for a tree of height greater than 1. The base case is tree of

height ≤ 1.

Proposition 4 Given a tree Tr = (V,E, t) rooted at node r, the Minimum Links prob-

lem has a feasible solution if and only if one of the following conditions is met:

72

1. Both Tr1 and tree (Tr − Tr1)−1 have feasible solutions;

2. Both T−1r1
and tree (Tr − Tr1) have feasible solutions;

Proof. First we prove the sufficient condition for the Minimum Links problem to

have a feasible solution.

• For (1), if both Tr1 and tree (Tr − Tr1)−1 have feasible solutions, then let S be

a solution for MinLinks(Tr1) and S ′ be a solution for MinLinks((Tr−Tr1)−1).

We claim that S ∪ S ′ is a solution for MinLinks(Tr). With S, every node in

Tr1 including r1 will be activated and with S ′, every node in T−1r − Tr1 will be

activated. Because of the activation of r1, root r can be activated as well, and

this completes the proof of the claim.

• For (2), if both T−1r1
and tree (Tr − Tr1) have feasible solutions, then let S be

a solution to MinLinks(T−1r1
) and S ′ be a solution to MinLinks(Tr − Tr1).

We claim that S ∪ S ′ is a solution for MinLinks(Tr). With S, every node in

Tr−1
1

will be activated and with S ′, every node in Tr − Tr1 including r will be

activated. Because of the activation of r, r1 can be activated as well, and this

completes the proof of the claim.

Second we prove the necessary condition for the Minimum Links problem to

have a feasible solution. We define N1 and N2 to be the set of nodes in tree Tr1

and (Tr − Tr1) respectively. Let S be a solution for MinLinks(Tr). We claim that

S ∩ N1 is either a solution for MinLinks(Tr1) or a solution for MinLinks(T−1r1
). If

not, it is easy to observe that it is impossible for S to activate all nodes in Tr1 .

Suppose S ∩ N1 is a solution for MinLinks(Tr1), then S ∩ N2 must be a solution

for MinLinks((Tr − Tr1)−1), otherwise it is impossible for S to activate all nodes in

(Tr − Tr1). Suppose next S ∩N1 is a solution for MinLinks(T−1r1
), then S ∩N2 must

73

be a solution for MinLinks(Tr − Tr1), otherwise it is impossible for S to activate all

nodes in (Tr − Tr1).

We give the following algorithm to verify if Tr admits a feasible solution.

Algorithm 8 IsFeasible(Tr) - Feasibility checking for trees

1: Input: Tree Tr = (V,E, t)

2: Output: Tr admits a feasible solution or not

3: if Height of Tr == 0 then

4: if t(r) ≤ 1 then

5: return true

6: else

7: return false

8: else

9: if IsFeasible(Tr1) & IsFeasible((Tr − Tr1)−1) then

10: return true

11: else if IsFeasible(T−1r1
) & IsFeasible(Tr − Tr1) then

12: return true

13: else

14: return false

We proceed to give a solution for Minimum Links problem for tree with height

greater than 1.

Theorem 14 Given a tree Tr = (V,E, t) which admits a feasible solution, the mini-

mum number of links required to activate Tr satisfies the following equation:

ML(Tr) = 1 +
∑
v∈V

(t(v)− 1)

Proof. We give a proof by strong double induction on the height of Tr and the

number of children of root r. Clearly, the statement is true for trees of height 1 where

the root has any number of children by Theorem 13.

74

First consider a tree Tr = (V,E, t) of height h > 1 where the root r has only

one child. Suppose for any tree Tr of height < h where the root has any number of

children, ML(Tr) = 1 +
∑

v∈V (t(v)− 1). We now prove the following claim.

Claim 4 The minimum number of links required to activate a tree Tr = (V,E, t) of

height h > 1 where the root r has only one child, satisfies the following equation:

ML(Tr) = 1 +
∑
v∈V

(t(v)− 1)

Proof. First we claim that t(r) ≤ 2 if root r has only one child. If t(r) > 2, then

even if the only child r1 is activated before r and r is given a link, it is still impossible

to activate root r.

By Corollary 1, there exists an optimal solution S for problem MinLinks(Tr) in

which root r receives a link. Let us consider such a solution S.

If t(r) = 1, by the usual cut-and-past argument, we can prove S − {r} must be

an optimal solution for tree T−1r1
which is of height h − 1. The minimum number

of links required to activate T−1r1
is 1 +

∑
v∈T−1

r1
(t(v) − 1) =

∑
v∈Tr1

(t(v) − 1) by the

induction hypothesis. So the overall number of links required is 1 +
∑

v∈Tr1
(t(v)− 1)

= 1 +
∑

v∈V (t(v)− 1).

If t(r) = 2, giving root r a link is not sufficient to activate it, r1 must be activated

before r. By the usual cut-and-past argument, S − {r} must be an optimal solution

for tree Tr1 which is of height h−1. The minimum number of links required to activate

Tr1 is 1+
∑

v∈Tr1
(t(v)−1) by the induction hypothesis. So the overall number of links

required is 1 + 1 +
∑

v∈Tr1
(t(v)− 1) = 1 +

∑
v∈V (t(v)− 1).

In both cases, ML(Tn) = 1 +
∑

v∈V (t(v)− 1). We can conclude that for any tree

with height > 1 where the root has only one child, ML(Tn) = 1 +
∑

v∈V (t(v)− 1).

Now consider a tree Tr = (V,E, t) of height h > 1 where the root r has n > 1

75

children. Suppose for any tree of height < h where the root has any number of

children, and for any tree of height h where the root has n − 1 children, ML(Tr) =

1 +
∑

v∈V (t(v)− 1). We now prove the following claim.

Claim 5 The minimum number of links required to activate a tree Tr = (V,E, t) of

height h > 1 where the root r has n > 1 children, satisfies the following equation:

ML(Tr) = 1 +
∑
v∈V

(t(v)− 1)

Proof. By Proposition 4, Tr must satisfy at least one of these two conditions: (1)

Both Tr1 and (Tr − Tr1)−1 have feasible solutions; (2) Both T−1r1
and (Tr − Tr1) have

feasible solutions. Observe that, Tr1 is a tree of height < h and (Tr − Tr1) is a tree of

height ≤ h and the root r has n− 1 children.

• Case 1 : Tr only satisfies condition (1).

It is easy to observe that if Tr has a feasible solution, T−1r1
must also has a

feasible solution; if (Tr − Tr1) has a feasible solution, then so will (Tr − Tr1)−1.

Since Tr only satisfies condition (1), then (Tr − Tr1) has no feasible solution in

this case. The only way to activate Tr is to activate Tr1 first, then to activate

(Tr−Tr1)−1. By the induction hypothesis, the minimum number of links required

to activate Tr1 is 1+
∑

v∈Tr1
(t(v)−1) and the minimum number of links required

to activate (Tr−Tr1)−1 is 1+
∑

v∈T−1
r −Tr1

(t(v)−1) =
∑

v∈Tr−Tr1
(t(v)−1). So the

overall number of links required is 1 +
∑

v∈Tr1
(t(v)− 1) +

∑
v∈Tr−Tr1

(t(v)− 1)

= 1 +
∑

v∈V (t(v)− 1).

• Case 2 : Tr only satisfies condition (2).

Since Tr only satisfies condition (2), following a similar argument as in case 1,

it is easy to see that Tr1 has no feasible solution in this case. Therefore, the

76

only way to activate Tr is to activate (Tr−Tr1) first, then to activate T−1r . The

minimum number of links required to activate T−1r1
is 1 +

∑
v∈T−1

r1
(t(v) − 1) =∑

v∈Tr1
(t(v)−1) and the minimum number of links required to activate (Tr−Tr1)

is 1 +
∑

v∈Tr−Tr1
(t(v) − 1) by the induction hypothesis . So overall number of

links required is
∑

v∈Tr1
(t(v)−1) + 1+

∑
v∈Tr−Tr1

(t(v)−1)= 1+
∑

v∈V (t(v)−1).

• Case 3 : Tr only satisfies both condition (1) and (2).

In this case, both Tr1 and (Tr − Tr1) have feasible solutions. Suppose S is an

optimal solution for MinLinks(Tr) which gives root r a link, we claim that

either r is activated before r1 by S or vice versa. Suppose instead that r and

r1 are activated in the same time step by S. We create a new assignment S ′

by removing the link assigned to r. All nodes that are activated before r and

r1 in S will still be activated by S ′, so r1 will still be activated, and r will be

activated in the next step after the activation of r1. The remaining nodes that

will be activated after r and r1 in S will also be activated by S ′. Therefore, S ′

is a smaller set than S to activate Tr, which contradicts the optimality of S.

This proves that r is activated before r1 by S or vice versa.

If r1 is activated before r by S, an argument similar to case 1 proves the claim.

If r is activated before r1 by S, an argument similar to case 2 proves the claim.

In both cases, the minimum number of links required to activate Tr is = 1 +∑
v∈V (t(v)− 1).

This completes the proof of the inductive statement. We can conclude that we

need 1 +
∑

v∈V (t(v)− 1) links to activate any tree Tr with height > 1.

We proceed to give the algorithm for finding an optimal link set for a tree Tr

which admits a feasible solution.

77

Algorithm 9 Minimum Links algorithm for paths - MinLinks(Tr)

1: Input: tree Tr = (V,E, t);

2: Output: an optimal link set S

3: if Height of Tr == 0 then

4: if t(r) == 1 then

5: return {r}

6: if t(r) > 1 then

7: return No feasible solution

8: else if IsFeasible(Tr1) & IsFeasible((Tr − Tr1)−1) then

9: S1 ←MinLinks(Tr1)

10: S2 ←MinLinks((Tr − Tr1)−1)
11: return S1 ∪ S2

12: else if IsFeasible(T−1r1
) & IsFeasible(Tr − Tr1) then

13: S1 ←MinLinks(T−1r1
)

14: S2 ←MinLinks(Tr − Tr1)
15: return S1 ∪ S2

16: else

17: return No feasible solution

Theorem 15 The Minimum Links problem for a tree Tn = (V,E, t) can be solved in

time Θ(n).

Proof. We do a bottom-up implementation of the above algorithm. When we come

to node v, we assume that we already have available solutions for Tx as well as

T−1x for each child x of v. To build the solution for Tv and T−1v , in the bottom-up

implementation, we would start with the subtree of Tv containing only the last child of

v, which takes constant time, and then successively add in the subtrees rooted at other

children of v. Adding each such subtree takes constant time. Therefore, the total

amount of time needed to compute the solutions for Tv and T−1v is O(d(v)) where d(v)

is the degree of v. The total time therefore for the entire tree is Θ(Σv∈Td(v)) = Θ(n).

78

6.2 Maximum Influence problem

In this section, we study the Maximum Influence problem in trees. Let MaxIn(Tn, k)

be the problem of finding an assignment of at most k links to nodes in tree Tn that

maximizes the number of influenced nodes and let MI(Tn, k) be the maximum number

of nodes that can be influenced in the tree using k links.

Since some nodes might not be activated by the optimal assignment for the Max-

imum Influence problem, in order to facilitate our discussion, we develop some new

notation. We define MIA(Tv, k) to be the problem of finding an assignment of at

most k links to nodes in the sub-tree Tv that maximizes the number of influenced

nodes while ensuring that root v is activated. Similarly, let MIB(Tv, k) be the prob-

lem of finding an assignment of at most k links to nodes in the sub-tree Tv that

maximizes the number of influenced nodes while ensuring that root v is not acti-

vated. Let A(Tv, k) and B(Tv, k) be the number of nodes that can be influenced by

optimal solutions to MIA(Tv, k) and MIB(Tv, k) respectively. Clearly, given a tree

Tn = (V,E, t) rooted at node r, by an optimal assignment S for problem MI(Tn, k),

root r is either activated or not. Therefore:

MI(Tn, k) = max{A(Tr, k), B(Tr, k)}

We provide a examples to show that the optimal solution for the Maximum In-

fluence problem may or may not activate the root, depending on the structure of the

tree and thresholds in the tree. Therefore, it is necessary to consider both cases.

79

1

a

2

c

1

d

1

e

2

f

Figure 27: Maximum Influence problem in
a tree with k = 1

2

a

1

b

1

c

1

e

2

f

Figure 28: Maximum Influence problem in
a different tree with k = 1

Observe that for the tree in Figure 27, A(Ta, 1) = 2 if we choose {a} as the link set,

and B(Ta, 1) = 1 if we choose {e} as the link set, therefor MI(Ta, 1) = A(Ta, 1) = 2.

However, for the tree in Figure 28, A(Ta, 1) = 0 as there does not exist a link set of

size 1 which can activate the root, and B(Ta, 1) = 2 if we choose {b} as the link set,

therefore MI(Ta, 1) = B(Ta, 1) = 2.

Before we proceed to give the dynamic programming formulation for A(Tv, k) and

B(Tv, k), we give a small example here.

2

a

1

b

1

c

1

e

2

f

Figure 29: Maximum Influence problem in a tree with k = 2

Consider the tree in Figure 29. We need to compute MI(Ta, 2) which is equal to

max{A(Ta, 2), B(Ta, 2)}.

• Computation of A(Ta, 2)

80

By Corollary 1, there must exist an optimal assignment in which the root re-

ceives a link, so we give a link to node a. Giving node a a link is not sufficient

to activate node a, one of a′s children has to be activated before a. Let Fa,2 be

the forest composed of Tb and Tc, we are now facing a sub-problem of finding an

optimal assignment of 1 link to Fa,2 that maximizes the number of influenced

nodes in Fa,2 while ensuring that either b or c is activated before a.

Suppose c is activated before a, it is easy to observe that we need to give a link

to node c. The overall activated nodes would be the activated nodes in Tc plus

root v plus the nodes that would be activated by v. After the activation of c,

node a will be activated, then node b and e will also be activated in the next

time step.

2

a

1

b

1

c

1

e

2

f

v

Figure 30: Node c is activated before a

Suppose b is activated before a, it is easy to observe that we need to give a

link to b by Corollary 1. The overall activated nodes would be the activated

nodes in Tb plus root v plus the nodes that would be activated by v. After the

activation of b, node e and a will be activated in the next time step, then node

c will also be activated.

81

2

a

1

b

1

c

1

e

2

f

v

Figure 31: Node b is activated before A

In both cases, A(Ta, 2) = 4

• Computation of B(Ta, 2)

Since the root a is not activated in B(Ta, 2), we don’t give any link to a. We

are now facing a sub-problem of finding an optimal assignment of 2 link to Fa,2

that maximizes the number of influenced nodes while ensuring that root a is not

activated which means that at most one node between b and c can be activated.

Suppose b is the node that is allowed to be activated, we can activate nodes b,

e and f in this case, therefore we have three active nodes.

2

a

1

b

1

c

1

e

2

f

v

Figure 32: Node b is activated

Suppose c is the node that is allowed to be activated, we can only activate node

c in this case, therefore we have only one active node.

82

2

a

1

b

1

c

1

e

2

f

v

Figure 33: Node c is activated

Overall, B(Ta, 2) = 3

From the previous analysis, we observe that in the computation of A(Tv, k) and

B(Tv, k), we will face the sub-problem of distributing links among the forest formed

by sub-trees rooted at the children of v. We define MIA(Fv,d, i, k) to be the problem

of finding an assignment of at most k links to nodes in the forest Fv,d consisting

of sub-trees from Tv1 to Tvd that maximizes the number of influenced nodes while

ensuring that there are i out of d children of root v are activated before v. Similarly,

we define MIB(Fv,d, i, k) to be the problem of finding an assignment of at most k

links to nodes in the forest Fv,d that maximizes the number of influenced nodes while

ensuring that there are i out of d children of root v are activated. Let A(Fv,d, i, k) and

B(Fv,d, i, k) be the number of influenced nodes by optimal solutions to MIA(Fv,d, i, k)

and MIB(Fv,d, i, k) respectively.

Now we are ready to give the recursive formulations of A(Tv, k) and B(Tv, k).

6.2.1 Computation of A(Tv, k)

In the computation of A(Tv, k), we want to find an assignment of at most k links to

nodes in the sub-tree Tv such that the number of influenced nodes will be maximized

83

while ensuring that root v is activated. Based on the relationship of t(v) and k, the

following four cases are exhaustive:

1) if t(v) > k ≥ 0, it is impossible to activate the root v with only k links.

Lemma 6 It is impossible to activate the root of a sub-tree Tv when the number

of links k < t(v).

Proof. We prove this lemma by induction on the height of the tree T . Clearly,

the lemma is true for trees of height 0.

Now consider a tree of height h. Suppose we give all k links to root v, we cannot

activate any node in the tree by such an assignment. Suppose next we give p

(0 ≤ p < k) links to root v, and give k − p links to forest Fv,dv . In such an

assignment, we need t(v) − p children of v to be activated before v. By the

inductive hypothesis, it is impossible to activate the root v with less than t(v)

links when the height is h− 1. Since k < t(v), then k− p < t(v)− p; so we cannot

activate t(v) − p roots in the forest Fv,dv with less than t(v) − p links since the

forest is consisting of trees with height less than h. This completes the proof.

2) if t(v) = 1 and k ≥ 1, by Corollary 1, there exists an optimal assignment S in

which root v receives a link. We claim that S −{v} is also an optimal solution to

problem MIA(Fv,dv , 0, k − 1). Suppose not, let |S| = k and let S ′ be an optimal

solution to MIA(Fv,dv , 0, k−1) which can activate more nodes than S−{v}. Then

S ′ ∪ {v} will be an assignment of k links which can activate more nodes than S,

contradicting the optimality of S. Therefore:

A(Tv, k) = 1 + A(Fv,dv , 0, k − 1)

3) if t(v) = 0 and k ≥ 0, we don’t allow nodes with threshold 0 in the input, but in

the computation process, we might come across a sub-tree T−1v in which the root

84

has effective threshold 0. Consider the tree in Figure 27, if we give root a a link,

the threshold of d will be reduced by 1 to reach 0. When we start processing a

sub-tree Tv, root v is the only node that might have threshold 0. Similar to case

2, we have

A(Tv, k) = 1 + A(Fv,dv , 0, k)

4) if 1 < t(v) ≤ k, giving root v a link does not suffice to activate v, t(v) − 1 of v′s

children have to be activated before v, otherwise v cannot be activated. By Corol-

lary 1, there exists an optimal assignment S which gives root v a link. We claim

that S−{v} is an optimal solution to problem MIA(Fv,dv , t(v)−1, k−1). Suppose

not, let |S| = k and let S ′ be an optimal solution to MIA(Fv,dv , t(v) − 1, k − 1)

which can activate more nodes than S − {v}. With S ′, t(v)− 1 children of v has

been activated. Adding a link to v, node v will be activated as well, so will the

rest nodes that will be activated due to the activation of v. Then S ′ ∪ {v} will be

an assignment of k links which can activate more nodes than S, contradicting the

optimality of S. Therefore:

A(Tv, k) = 1 + A(Fv,dv , t(v)− 1, k − 1)

Putting together all cases for A(Tv, k), we obtain:

A(Tv, k) =


1+A(Fv,dv , 0, k − t(v)) if t(v) ≤ 1 and t(v) ≤ k

1+A(Fv,dv , t(v)− 1, k − 1) if 1 < t(v) ≤ k

−∞ if k < t(v)

6.2.2 Computation of A(Fv,d, i, k)

In the computation of A(Fv,d, i, k), we want to find an assignment of at most k links to

nodes in the forest Fv,d that maximizes the number of influenced nodes while ensuring

85

that there are i out of d children of root v are activated before v.

We use the dynamic programming approach to solve this problem. Let S be

an optimal solution to MIA(Fv,d, i, k), we formulate the recursive equations based

on the relationship of i and d. We give the base case for A(Fv,d, i, k) where d = 0,

A(Fv,0, i, k) = 0 for all i and k.

1) if i > d, clearly it is impossible to activate exactly i of the first d children of v

when i > d.

A(Fv,d, i, k) = −∞

2) if i = d, this means that all children vj with 1 ≤ j ≤ d have to be activated before

v. The optimal solution S will assign p links to Fv,d−1 and k − p links to Tvd , so

we try all possibilities of p to find the best distribution.

A(Fv,d, i, k) = max
0≤p≤k

{A(Fv,d−1, i− 1, p) + A(Tvd , k − p)}

3) if i < d, vd may or may not be activated before v by an optimal solution S when

d > i

(a) vd is not activated before v by S. Observe that vd may or may not be ac-

tivated after v. Besides, due to the fact that its parent has already been

activated, the threshold of vd is effectively reduced by one. An optimal as-

signment S will assign p links to Fv,d−1 and k − p links to Tvd , therefore we

try all possibilities of p to find the best distribution. Therefore:

A(Fv,d, i, k) = max
0≤p≤k

{A(Fv,d−1, i, p) +max


A(T−1vd

, k − p)

B(T−1vd
, k − p)

}

(b) vd is activated before v by S. In this case, only i − 1 children of v in Fv,d−1

are required to be activated before v. Since vd contributes to the activation

of v, the threshold of vd remains unchanged.

A(Fv,d, i, k) = max
0≤p≤k

{A(Fv,d−1, i− 1, p) + A(Tvd , k − p)}

86

When i = 0, we only need to consider situation (a), instead of both (a) and (b).

Putting together all cases for A(Fv,d, i, k) we obtain:

A(Fv,d, i, k) =



−∞ if i > d

max
0≤p≤k

{A(Fv,d−1, i− 1, p) + A(Tvd , k − p)} if i = d > 0

max


max
0≤p≤k

A(Fv,d−1, i, p) +max


A(T−1vd

, k − p)

B(T−1vd
, k − p)

max
0≤p≤k

{A(Fv,d−1, i− 1, p) + A(Tvd , k − p)}

if 0 < i < d

max
0≤p≤k

A(Fv,d−1, i, p)+max


A(T−1vd

, k − p)

B(T−1vd
, k − p)

if i = 0

6.2.3 Computation of B(Tv, k)

In the computation of B(Tv, k), we want to find an assignment of at most k links to

nodes in the sub-tree Tv such that the number of influenced nodes will be maximized

while ensuring that root v is not activated. Since the root v is not activated in

B(Tv, k), we will not give any link to v. Also observe that the number of children of

v which are activated cannot exceed t(v), otherwise v will also get activated.

We claim that an optimal assignment S for MIB(Tv, k) is also an optimal assign-

ment for MIB(Fv,d, i, k) where 0 ≤ i ≤ t(v) − 1. Suppose not, let S ′ be an optimal

solution to MIB(Fv,d, i, k) (0 ≤ i ≤ t(v)− 1) which can activate more nodes than S.

With S ′, at most t(v)− 1 children of v can be activated, therefore root v will not be

activated. It is easy to see that S ′ is a better solution for MIB(Tv, k), contradicting

the optimality of S. Therefore:

87

B(Tv, k) =


max

0≤i<min(t(v),dv+1)
B(Fv,dv , i, k) if t(v) > 0

−∞ if t(v) ≤ 0

6.2.4 Computation of B(Fv,d, i, k)

In the computation of B(Fv,d, i, k), we want to find an assignment of at most k links

to nodes in the forest Fv,d that maximizes the total number of influenced nodes while

ensuring that there are i out of d children of root v are activated.

We still use the dynamic programming approach to solve this problem. Let S be

an optimal solution to MIB(Fv,d, i, k), we formulate the recursive equations based

on the relationship of i and d. We give the base case for B(Fv,d, i, k) where d = 0,

B(Fv,0, i, k) = 0 for all i and k.

1) if i > d, clearly it is impossible to activate exactly i of the first d children of v

when i > d, and therefore

B(Fv,d, i, k) = −∞

2) if i = d, same as the case for A(Fv,d, i, k), vd has to be activated by S when d = i.

An optimal solution S will assign p links to Fv,d−1 and k − p links to Tvd , so we

try all possible values of p to find the best distribution.

B(Fv,d, i, k) = max
0≤p≤k

{B(Fv,d−1, i− 1, p) + A(Tvd , k − p)}

3) if i < d, vd may or may not be activated by S when d > i.

(a) vd is not activated by S. In this case, S must assign p links to Fv,d−1 and

k − p links Tvd . To find the optimal assignment, it suffices to try all possible

values of (p, k − p).

B(Fv,d, i, k) = max
0≤p≤k

{B(Fv,d−1, i, p) +B(Tvd , k − p) }

88

(b) vd is activated by S. In this case, only i− 1 children of v in Fv,d−1 should be

activated. As before, we try all possible values of (p, k − p) with p links as-

signed to Fv,d−1 and k−p links assigned to Tvd to find the optimal assignment.

B(Fv,d, i, k) = max
0≤p≤k

{B(Fv,d−1, i− 1, p) + A(Tvd , k − p)}

When i = 0, we only need to consider situation (a), instead of both (a) and (b).

Putting together all cases for B(Fv,d, i, k), we obtain:

B(Fv,d, i, k) =



−∞ if i > d

max
0≤p≤k

{B(Fv,d−1, i− 1, p) + A(Tvd , k − p)} if i = d > 0

max


max
0≤p≤k

{B(Fv,d−1, i, p) +B(Tvd , k − p)}

max
0≤p≤k

{B(Fv,d−1, i− 1, p) + A(Tvd , k − p)}
if 0 < i < d

max
0≤p≤k

{B(Fv,d−1, i, p) +B(Tvd , k − p)} if i = 0

6.2.5 Base case for leaves

Consider a leaf node l, we give the base case for A(Tv, k) and B(Tv, k) here.

A(Tl, k) =


1 if t(v) ≤ 1& k ≥ t(v)

−∞ otherwise

B(Tl, k) =


0 if t(v) > 0

−∞ if t(v) ≤ 0

89

Algorithm 10 Modified BFS

1: Input: Tree Tn = (V,E, t) rooted at node r

2: Output: nodes in Tn ordered by levels;

3: L ← List〈List〈Node〉〉
4: Running BFS from the root r,

5: H ← the height of Tn

6: h← 0

7: while h < H do

8: add nodes in layer h to L

9: h← h+ 1

10: return L;

90

Algorithm 11 Influence maximization algorithm for trees

1: Input: (1) Tree Tn = (V,E, t) and level traversal of the tree L; (2) links available

k;

2: Output: Maximum number of nodes that can be activated;

3: for i← H − 1, 0 do

4: for each node v ∈ Li do

5: if dv = 0 then . base case for leaf node

6: if t(v) == 2 then

7: A(Tv, k)← −∞ for all k

8: A(T−1v , k)← 1 for all k ≥ 1

9: B(Tv, k) = B(T−1v , k)← 0 for all k

10: else if t(v) == 1 then

11: A(Tv, k)← 1 for all k ≥ 1

12: A(T−1v , k)← 1 for all k

13: B(Tv, k)← 0 for all k

14: B(T−1v , k)← −∞ for all k

15: else

16: A(Tv, k) = A(T−1v , k)← −∞ for all k

17: B(Tv, k) = B(T−1v , k)← 0 for all k

18: else . Non-leaf node

19: for p← 0, k do . base case for A(Fv,1, i, p)

20: A(Fv,1, 0, p)← max{A(T−1v1
, p), B(T−1v1

, p)}
21: B(Fv,1, 0, p)← B(T−1v1

, p)

22: A(Fv,1, 1, p)← A(Tv1 , p), B(Fv,1, 1, p)← A(Tv1 , p)

23: for i← 2, dv do

24: A(Fv,1, i, p)← −∞, B(Fv,1, i, p)← −∞
25: for d← 2, dv do . compute A(Fv,d, i, p) and A(Fv,d, i, p) for node v

26: for i← 0, dv do

27: if i > d then . first case

28: A(Fv,d, i, p)← −∞, B(Fv,d, i, p)← −∞
29: if i == d > 0 then . second case

30: A(Fv,d, i, p)← max
0≤p≤k

{A(Fv,d−1, i− 1, p) + A(Tvd , k − p)}
31: B(Fv,d, i, p)← max

0≤p≤k
{B(Fv,d−1, i− 1, p) + A(Tvd , k − p)}

32: if 0 < i < d then . third case

33: A(Fv,d, i, p) ← max{max
0≤p≤k

{A(Fv,d−1, i − 1, p) + A(Tvd , k −

p)}, max
0≤p≤k

{A(Fv,d−1, i, p) +max{A(T−1vd
, k − p), B(T−1vd

, k − p)}}}
34: B(Fv,d, i, p) ← max{max

0≤p≤k
{B(Fv,d−1, i − 1, p) + B(Tvd , k −

p)}, max
0≤p≤k

{B(Fv,d−1, i− 1, p) + A(Tvd , k − p)}}

91

Algorithm 12 Influence maximization algorithm for trees part2

35: if i == 0 & d > 1 then . last case

36: A(Fv,d, i, p) ← max
0≤p≤k

{A(Fv,d−1, i − 1, p) + max{A(T−1vd
, k −

p), B(T−1vd
, k − p)}}

37: B(Fv,d, i, p)← max
0≤p≤k

{B(Fv,d−1, i− 1, p) +B(Tvd , k − p)}

38: for p← 0, k do . compute A(Tv, k) for node v

39: if t(v) ≤ 1 & t(v) ≤ p then

40: A(Tv, p) = 1 + A(Fv,dv , 0, p− t(v))

41: if t(v) ≤ 1 and t(v) then

42: A(Tv, p) = 1 + A(Fv,dv , t(v)− 1, p− t(v))

43: if p < t(v) then

44: A(Tv, p) = −∞
45: for p← 0, k do . compute B(Tv, k) for node v

46: if t(v) > 0 then

47: B(Tv, p) = max
0≤i<min(t(v),dv+1)

{B(Fv,dv , i, k)}

48: if t(v) ≤ 0 then

49: B(Tv, p) = −∞
50: return max{A(Tr, k), B(Tr, k)}

Theorem 16 The Maximum Influence problem for a tree Tn = (V,E, t) using k links,

can be solved in time O(n2k2).

Proof. In the worst case, for any node w with d children, we need to compute

A(Fv,p, i, j) and B(Fv,p, i, j) for 1 ≤ p ≤ d, 0 ≤ i ≤ d, and 0 ≤ j ≤ k. These are

d2k values, each of which can take Θ(k) time to compute. The values A(Tv, k) and

B(Tv, k) can be computed in constant time, and there are k such values. Therefore,

the total time taken is O(n2k2).

92

Chapter 7

Cliques

n− 1

n

1

2

3

4

5

6

Figure 34: A clique of size N

In this chapter, we study the Minimum Links problem and Maximum Influence

problem for cliques. Let Kn = (V,E, t) be a clique with n nodes (see Figure 34),

V = {1, 2, ..., n} and E = {(i, j) : 1 ≤ i < j ≤ n} and t : t(v) → Z+. For the conve-

nience of future analysis, we assume that the nodes in the clique are sorted according

to their thresholds so that t(i) ≤ t(i+ 1), for all 1 ≤ i < n.

93

7.1 Minimum Links problem

In this section, we study the Minimum Links problem in cliques. Let MinLinks(Kn)

be the problem of finding a minimum-sized link assignment that activates the entire

clique, and let ML(Kn) be the minimum number of links needed to activate the entire

clique.

We observe that there are situations in which it is impossible to activate the entire

clique with a single influencer. We now show a necessary and sufficient condition for

the Minimum Links problem to have a feasible solution:

Proposition 5 The Minimum Links problem has a feasible solution on Kn = (V,E, t)

if and only if t(i) ≤ i for all 1 ≤ i ≤ n.

Proof.

First, we prove the sufficient condition. If t(i) ≤ i for all 1 ≤ i ≤ n, it is easy to

see that there exists a solution S by giving a link to every node i. Since t(1) ≤ 1,

node 1 is activated in round 1. We claim that node i is activated in or before round i.

Inductively, node 1 to i−1 are already activated in round i−1, the effective threshold

of node i has been reduced to ≤ 1. Node i receives a link, therefore, node i must be

activated in the ith round, if it is not already activated.

Second, we prove the necessary condition. Suppose there exists a node p which is

the first node for which t(p) > p. In order to activate any node q with q ≥ p, at least

t(p) − 1 ≥ p nodes have to be activated before q. However, there are only p-1 other

nodes. It is impossible to activate such a node q, thus no node q with q ≥ p can be

activated.

We come to the conclusion that every node in the clique should satisfy t(i) ≤ i

for the MinLinks problem to have a solution.

We give the following greedy linear time algorithm (assuming that the nodes

94

are already sorted by threshold) for a clique which admits a feasible solution; the

condition given in Proposition 5 can easily be checked in linear time. We examine

the nodes in order. When we process node i, if t(i) < i, we simply increment i and

continue; if t(i) = i, we give a link to node i, that is, we add i to the link set.

Algorithm 13 Minimum Links algorithm for cliques

1: Input: sorted list of nodes {1, 2, . . . i, i+ 1, . . . n};
2: Output: count ← min links to activate the path; S ← an optimal link set

3: count ← 0

4: S ← ∅
5: index i← 1

6: while i ≤ n do

7: if t(i) > i then

8: return no feasible solution

9: if t(i) < i then

10: i← i+ 1

11: if t(i) == i then

12: count ← count+1

13: add node i to S

14: i← i+ 1

15: return count and S

The while loop in line 6 repeatedly processes nodes in the order of their thresh-

olds. This while loop maintains the following invariant: At the start of ith iteration

of the while loop, nodes in the range [1, i−1] have been activated. We show this loop

invariant as follows:

Initialization: By the time we process node 1, there are no active nodes, the

loop invariant weakly holds.

Maintenance: In the ith iteration of the while loop, since nodes in the range

[1, i − 1] have been activated, thus the threshold of node i is effectively decreased

by i − 1. If t(i) < i, the effective threshold of i has been reduced to 0, so node i is

activated automatically; if t(i) = i, the effective threshold of i has been reduced to

95

1, so by giving a link to node i, it is activated. Observe that in both cases, nodes in

range [1, i] have been activated after this iteration, as necessary for the maintenance

of the loop invariant.

We now show that the link set produced by the greedy algorithm above is optimal.

First we prove the greedy choice property by showing that there must be an optimal

solution that contains the node 1. Consider an optimal solution S and let i be the

smallest index of a node that receives a link in S. If i = 1, then we are done. If not,

since there must always be a node with threshold 1 that receives a link, it must be

that t(i) = 1. We can therefore move the link from i to 1, to create a new solution S ′

which will activate node i in the next step. Since |S ′| = |S| and I(Kn, S) = I(Kn, S
′),

S ′ is an optimal solution to the MinLinks problem that contains the node 1. Thus,

we can assume that the optimal solution S contains the node 1. We now claim that

S − {1} is an optimal solution to the clique C ′ which is the induced sub-graph on

the nodes {j, j + 1, . . . , n} where j > 1 is the smallest index with t(j) = j, and with

thresholds of all nodes reduced by j− 1. Suppose there is a smaller solution S ′ to C ′.

We claim that S ′ ∪ {1} activates all nodes in the clique Kn. As described above in

the proof of the loop invariant, all nodes until node j are activated by the link given

to node 1. Furthermore, the thresholds of all nodes in {j, j + 1, . . . , n} are effectively

reduced by j − 1. Thus using the links in S ′ suffices to activate them. Finally, since

|S ′| < |S|−1, S ′∪{1} is a smaller solution than S to the clique Kn, contradicting the

optimality of S for Kn. This proves the optimal substructure property. We conclude

that the greedy algorithm described above produces a minimum sized solution to the

MinLinks problem.

We conclude with the following theorem:

Theorem 17 The Minimum Links problem for a clique Kn can be solved in time

θ(n).

96

Proof. Algorithm 13 only requires a linear scan of the nodes in the clique, so it can

be completed in θ(n) time.

7.2 Maximum Influence problem

In this section, we study the Maximum Influence problem in cliques. LetMaxIn(Kn, k)

be the problem of finding an assignment of at most k links to nodes in clique Kn that

maximizes the number of influenced nodes, and Let MI(Kn, k) be the maximum

number of nodes that can be influenced in the clique using k links. We develop the

following linear time greedy algorithm (assuming that the nodes are already sorted by

threshold). We examine the nodes in order while we still have links to assign. When

we process node i, if t(i) > i, we stop assigning links and break. If t(i) < i, similar

to the MinLinks problem, we simply increment i and continue. Finally if t(i) = i, we

give a link to node i.

97

Algorithm 14 Influence maximization algorithm for cliques

1: Input: (1) sorted list of nodes {1, 2, . . . i, i+ 1, . . . n}; (2) k links available

2: Output: count ← maximum number of nodes that can be activated; S ← an

optimal link set

3: count ← 0

4: index i← 1

5: while i ≤ n do

6: if t(i) > i || k == 0 then

7: break

8: if t(i) < i then

9: count ← count+1

10: i← i+ 1

11: if t(i) == i then

12: count ← count+1

13: k ← k − 1

14: i← i+ 1

15: add node i to S

16: return count and S

First observe that if we reach a node i with t(i) > i, it is impossible to activate

any node q ≥ i, as all these nodes, even if they would be assigned a link, require at

least t(i) − 1 ≥ i nodes to be activated before them, and there are only i − 1 other

nodes. Therefore, the algorithm makes the correct decision to stop assigning links

on reaching such a node. We now show that MaxIn(Kn, k) problem exhibits the

greedy-choice and optimal sub-structure properties.

The following lemma shows that the greedy-choice property holds.

Lemma 7 There exists an optimal assignment S for problem MaxIn(Kn, k) in which

node 1 receives a link.

Proof. Let S be an optimal solution for problem MaxIn(Kn, k), and let node i be

the node with smallest index in S. If i = 1, we are done, so assume i > 1. It must

be that t(i) = 1, as otherwise it is impossible to activate any node, therefore, we can

98

create a new solution S ′ = S ∪ {1} − {i}. By the activation of node 1, node i would

be also activated automatically in the next round because of internal influence, thus

I(Kn, S) = I(Kn, S
′), and S ′ is an optimal solution that contains node 1 as needed.

We now prove that, theMaxIn(Kn, k) problem exhibits the optimal sub-structure

property. Let clique C ′ be the induced sub-graph on the nodes {j, j+1, . . . , n} where

j > 1 is the smallest index with t(j) = j, and with thresholds of all nodes reduced

by j − 1.

Lemma 8 Suppose S is an optimal solution for problem MaxIn(Kn, k) in which node

1 receives a link, then S ′ = S−{1} is an optimal solution for problem MaxIn(C ′, k−

1).

Proof. Suppose there is a solution S ′′ to C ′ that activates more nodes than S ′.

Consider S ′′ ∪ {1} as a solution to Kn. The link to node 1 activates all nodes in

{1, . . . , j − 1}, and the links in S ′′ now activate all the same nodes they activate

in C ′, since these nodes now have the same effective thresholds they have in C ′.

Therefore, S ′′ ∪ {1} must activate more nodes than S in the clique Kn, contradicting

the optimality of S.

We conclude with the following theorem:

Theorem 18 The Maximum Influence problem for a Clique Kn can be solved in time

θ(n).

Proof. Algorithm 14 only requires a linear scan of the nodes in the clique, so it can

be completed in θ(n) time.

99

Chapter 8

Conclusions and Future Work

This chapter summarizes the thesis and recommends some area for future work.

In this thesis, we proposed a new way to model the viral marketing strategy

that allows for partial incentives and imposes a limit on the maximum amount of

incentive that can be given to any single node. We model this by introducing external

influencers to the network and allowing each external influencer to link to a subset of

nodes in the network. In this thesis, we studied the single influencer case and proposed

a pair of problems: the Minimum Links problem and the Maximum Influence problem.

We proved that the Maximum Influence problem is NP-hard even for bipartite graphs

in which thresholds of all nodes are either one or two. We proceeded to study both

the Minimum Links problem and the Maximum Influence problem in paths, rings,

trees and cliques, and gave polynomial time algorithms for both problems for all these

graphs.

The first open problem directly related to this thesis is the complexity of the

MinLinks problem for general graphs. The next area for future work is to propose an

approximation algorithm with good performance for the Maximum Influence problem

in general graphs.

100

We have systematically studied both the Minimum Links problem and the Max-

imum Influence problem in paths, rings, trees and cliques under the single influencer

setting. We gave Θ(n) algorithms for the Minimum Links problem for paths, rings,

cliques, and trees, and for the Maximum Influence problem on cliques. These algo-

rithms are clearly optimal. However, it would be interesting to investigate if there

are more efficient algorithms for the Maximum Influence problem on paths, rings and

trees.

Our hardness proof implies the hardness of the Max-Influence problem for multiple

influencers, but if there are m influencers and n links available, then what is the best

strategy to assign links when the underlying network G = (V,E) is a path, ring, tree

or clique? For trees, Lemma 5 provides a starting point.

In this thesis, we assumed unweighted edges, that is, for each node, all its neigh-

bors exert unit influence on it. It would be interesting to study the case where edges

are weighted. Clearly, our hardness result for the Maximum influence problem still

holds true for the more general case. But it would be interesting to investigate al-

gorithms for the special topologies which we have studied for the case of weighted

edges.

We have assumed in our thesis that once the threshold of a node i is reduced to

0, node i will be activated and remain active forever in the subsequent steps. But in

reality, the activation process is more complicated. Once the threshold of a node i

is reduced to 0, node i might only be active for a fixed amount of time λ and then

become inactive for a period of time and might be activated again later. A new

influence diffusion model is necessary if we want to study this phenomenon.

101

Bibliography

[1] Eytan Adar, Lada Adamic, et al. Tracking information epidemics in blogspace. In

Proceedings of IEEE/WIC/ACM international conference on Web Intelligence,

pages 207–214. IEEE, 2005.

[2] Shishir Bharathi, David Kempe, and Mahyar Salek. Competitive influence max-

imization in social networks. In Proceedings of the 3rd International Conference

on Internet and Network Economics, WINE’07, pages 306–311, 2007.

[3] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maxi-

mizing social influence in nearly optimal time. In Proceedings of the Twenty-Fifth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 946–

957, 2014.

[4] Jacqueline Johnson Brown and Peter H Reingen. Social ties and word-of-mouth

referral behavior. Journal of Consumer research, pages 350–362, 1987.

[5] Ning Chen. On the approximability of influence in social networks. In Proceed-

ings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’08, pages 1029–1037, 2008.

[6] Wei Chen, Alex Collins, Rachel Cummings, Te Ke, Zhenming Liu, David Rincon,

Xiaorui Sun, Yajun Wang, Wei Wei, and Yifei Yuan. Influence maximization in

social networks when negative opinions may emerge and propagate. In SIAM

102

International Conference on Data Mining, volume 11, pages 379–390. SIAM,

2011.

[7] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social

networks. In Proceedings of the 15th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’09, pages 199–208, 2009.

[8] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social

networks under the linear threshold model. In Proceedings of the 2010 IEEE

International Conference on Data Mining, ICDM ’10, pages 88–97, 2010.

[9] Ferdinando Cicalese, Gennaro Cordasco, Luisa Gargano, M. Milani, JosephG.

Peters, and Ugo Vaccaro. How to go viral: Cheaply and quickly. In Fun with

Algorithms, volume 8496 of Lecture Notes in Computer Science, pages 100–112.

2014.

[10] Ferdinando Cicalese, Gennaro Cordasco, Luisa Gargano, Martin Milani, and Ugo

Vaccaro. Latency-bounded target set selection in social networks. In The Nature

of Computation. Logic, Algorithms, Applications, volume 7921 of Lecture Notes

in Computer Science, pages 65–77. 2013.

[11] Gerard Cornuejols, Marshall L Fisher, and George L Nemhauser. Location of

Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate

Algorithms. Management science, 23:789–810, 1977.

[12] Erik D. Demaine, Mohammad Taghi Hajiaghayi, Hamid Mahini, David L. Malec,

S. Raghavan, Anshul Sawant, and Morteza Zadimoghadam. How to influence

people with partial incentives. In Proceedings of the 23rd International Confer-

ence on World Wide Web, WWW ’14, pages 937–948, 2014.

103

[13] Pedro Domingos and Matt Richardson. Mining the network value of cus-

tomers. In Proceedings of the Seventh ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’01, pages 57–66, 2001.

[14] Richard Durrett. Lecture Notes on Particle Systems and Percolation. Wadsworth

Publishing, 1988.

[15] Ayalvadi Ganesh, Laurent Massoulié, and Don Towsley. The effect of network

topology on the spread of epidemics. In 24th Annual Joint Conference of the

IEEE Computer and Communications Societies, volume 2, pages 1455–1466.

IEEE, 2005.

[16] Luisa Gargano, Pavol Hell, Joseph Peters, and Ugo Vaccaro. Influence diffusion

in social networks under time window constraints. In Structural Information and

Communication Complexity, volume 8179 of Lecture Notes in Computer Science,

pages 141–152. 2013.

[17] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A

complex systems look at the underlying process of word-of-mouth. Marketing

Letters, 12:211–223, 2001.

[18] Jacob Goldenberg, Barak Libai, and Eitan Muller. Using complex systems anal-

ysis to advance marketing theory development: Modeling heterogeneity effects

on new product growth through stochastic cellular automata. Academy of Mar-

keting Science Review, 9:1–18, 2001.

[19] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan. Learning influence

probabilities in social networks. In Proceedings of the third ACM international

conference on Web search and data mining, pages 241–250. ACM, 2010.

104

[20] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan. A data-based ap-

proach to social influence maximization. Proceedings of the VLDB Endowment,

5:73–84, 2011.

[21] Amit Goyal, Francesco Bonchi, Laks V.S. Lakshmanan, and Suresh Venkatasub-

ramanian. On minimizing budget and time in influence propagation over social

networks. Social Network Analysis and Mining, 3:179–192, 2013.

[22] Amit Goyal, Wei Lu, and Laks V.S. Lakshmanan. Celf++: Optimizing the

greedy algorithm for influence maximization in social networks. In Proceedings

of the 20th International Conference Companion on World Wide Web, WWW

’11, pages 47–48, 2011.

[23] Mark Granovetter. Threshold models of collective behavior. American journal

of sociology, pages 1420–1443, 1978.

[24] Dilek Gunnec. Integrating social network effects in product design and diffusion.

PhD thesis, University of Maryland, College Park, 2012.

[25] Dilek Gunnec and S Raghavan. Integrating social network effects in the share-

of-choice problem. Technical report, University of Maryland, College Park, 2012.

[26] Jing (Selena) He, Shouling Ji, Raheem Beyah, and Zhipeng Cai. Minimum-sized

influential node set selection for social networks under the independent cascade

model. In Proceedings of the 15th ACM International Symposium on Mobile Ad

Hoc Networking and Computing, MobiHoc ’14, pages 93–102, 2014.

[27] Matthew O Jackson and Leeat Yariv. Diffusion on social networks. Economie

publique/Public economics, 16, 2006.

[28] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of in-

fluence through a social network. In Proceedings of the Ninth ACM SIGKDD

105

International Conference on Knowledge Discovery and Data Mining, KDD ’03,

pages 137–146, 2003.

[29] David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion

model for social networks. In Proceedings of the 32rd International Conference

on Automata, Languages and Programming, ICALP’05, pages 1127–1138, 2005.

[30] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,

a social network or a news media? In Proceedings of the 19th International

Conference on World Wide Web, WWW ’10, pages 591–600. ACM, 2010.

[31] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics

of viral marketing. In Proceedings of the 7th ACM Conference on Electronic

Commerce, pages 228–237. ACM, 2006.

[32] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne

VanBriesen, and Natalie Glance. Cost-effective outbreak detection in networks.

In Proceedings of the 13th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’07, pages 420–429, 2007.

[33] Thomas Liggett. Interacting particle systems. Springer, 1985.

[34] Elchanan Mossel and Sebastien Roch. Submodularity of influence in social net-

works: From local to global. SIAM Journal on Computing, 39:2176–2188, 2010.

[35] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analy-

sis of approximations for maximizing submodular set functionsi. Mathematical

Programming, 14:265–294, 1978.

[36] David Peleg. Local majority voting, small coalitions and controlling monopolies

in graphs: A review. In Proceedings of 3rd Colloquium on Structural Information

and Communication Complexity, pages 152–169, 1997.

106

[37] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for

viral marketing. In Proceedings of the Eighth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, KDD ’02, pages 61–70, 2002.

[38] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. Prediction of informa-

tion diffusion probabilities for independent cascade model. In Proceedings of the

12th International Conference on Knowledge-Based Intelligent Information and

Engineering Systems, Part III, KES ’08, pages 67–75, 2008.

[39] Thomas C Schelling. Micromotives and Macrobehavior. New York: Norton, 1978.

[40] Eric Sun, Itamar Rosenn, Cameron Marlow, and Thomas M Lento. Gesundheit!

modeling contagion through facebook news feed. In Proceedings of International

AAAI Conference on Weblogs and Social Media, 2009.

107

	List of Figures
	List of Algorithms
	Introduction
	Modeling the spread of influence in a social network
	Seed Set problem
	Critique of the seed set problem formulation
	Problem statement
	Thesis contributions
	Thesis outline

	Related Work
	Influence diffusion model
	Threshold model
	Linear threshold model
	General threshold model
	Majority threshold model
	Unanimous threshold model

	Cascade model
	General cascade model
	Independent cascade model

	Equivalence between threshold model and cascade model

	Learning Influence Probabilities
	Seed Set Problem
	Submodularity property for set function
	Submodularity property for seed set problem

	Minimum Coverage problem
	Influence Maximization with Latency Bound
	Fractional Influence Maximization problem
	Influence maximization in the presence of negative opinions
	Non-Progressive Influence Diffusion
	Discussion
	Difference between Seed Set problem and Maximum Influence problem
	Difference between Fractional Influence problem and Maximum Influence problem

	NP-Hardness of Maximum Influence problem
	Paths
	Minimum Links problem
	The path consists of only nodes with threshold 1 or 2
	The path contains nodes with threshold 3

	Maximum Influence problem
	The path consists of only nodes with threshold 1 or 2
	The path contains nodes with threshold >2

	Rings
	Minimum Links problem
	Rn consists of only nodes with threshold 1 or 2
	Rn contains nodes with threshold 3

	Maximum Influence problem
	Rn consists of only nodes with threshold 1 or 2

	Trees
	Minimum Links problem
	Minimum Links problem for trees of height 1
	Minimum Links problem for trees of height > 1

	Maximum Influence problem
	Computation of A(Tv, k)
	Computation of A(Fv, d,i, k)
	Computation of B(Tv, k)
	Computation of B(Fv, d, i, k)
	Base case for leaves

	Cliques
	Minimum Links problem
	Maximum Influence problem

	Conclusions and Future Work

