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Abstract

Integrated tactical planning in the lumber supply chain under demand

and supply uncertainty

Omid Sanei Bajgiran, Ph.D.

Concordia University, 2016

Lumber supply chain includes forests as suppliers, sawmills as production sites,
distribution centers, and different types of customers. In this industry, the raw ma-
terials are logs that are shipped from forest contractors to sawmills. Logs are then
sawn to green/finished lumbers in sawmills and are distributed to the lumber market
through different channels. Unlike a traditional manufacturing industry, the lumber
industry is characterized by a divergent product structure with the highly heteroge-
neous nature of its raw material (logs). Moreover, predicting the exact amount of
the product demand and the availability of logs in the forest is impossible in this
industry. Thus, considering random demand and supply in the lumber supply chain
planning is essential.

Integrated tactical planning in a supply chain incorporates the synchronized plan-
ning of procurement, production, distribution and sale activities in order to ensure
that the customer demand is satisfied by the right product at the right time. Briefly,
in this dissertation, we aim at developing integrated planning tools in lumber supply
chains for making decisions in harvesting, material procurement, production, distri-
bution, and sale activities in order to obtain a maximum robust profit and service
level in the presence of uncertainty in the log supply and product demand. In order
to gain the latter objectives, we can categorize this research into three phases. In
the first phase, we investigate the integrated annual planning of harvesting, procure-

ment, production, distribution, and sale activities in the lumber supply chain in a
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deterministic context. The problem is formulated as a mixed integer programming
(MIP) model. The proposed model is applied on a real-size case study, which leads to
a large-scale MIP model that cannot be solved by commercial solvers in a reasonable
time. Consequently, we propose a Lagrangian Relaxation based heuristic algorithm in
order to solve the latter MIP model. While improving significantly the convergence,
the proposed algorithm also guarantees the feasibility of the converged solution.

In the second phase, the uncertainty is incorporated in the lumber supply chain
tactical planning problems. Thus, we propose a multi-stage stochastic mixed-integer
programming (MS-MIP) model to address this problem. Due to the complexity of
solving the latter MS-MIP model with commercial solvers or relevant solution method-
ologies in the literature, we develop a Hybrid Scenario Cluster Decomposition (HSCD)
heuristic algorithm which is also amenable to parallelization. This algorithm decom-
poses the original scenario tree into a set of smaller sub-trees. Hence, the MS-MIP
model is decomposed into smaller sub-models that are coordinated by Lagrangian
terms in their objective functions. By embedding an ad-hoc heuristic and a Variable
Fixing algorithm into the HSCD algorithm, we considerably improve its convergence
and propose an implementable solution in a reasonable CPU time.

Finally, due to the computational complexity of multi-stage stochastic program-
ming approach, we confine our formulation to the robust optimization method. Hence,
at the third phase of this research, we propose a robust planning model formulated
based on cardinality-constrained method. The latter provides some insights into the
adjustment of the level of robustness of the proposed plan over the planning horizon
and protection against uncertainty. An extensive set of experiments based on Monte-
Carlo simulation is also conducted in order to better validate the proposed robust

optimization approach applied on the harvesting planning in lumber supply chains.
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Chapter 1

Introduction

In this chapter, first we provide the motivation of this thesis. Then, we describe the
problem studied. The scope and objectives, as well as the thesis organization are

provided at the end of this chapter.

1.1 Research motivation

In the divergent-type production systems, several products can be produced after
processing a common material. Amongst different examples, we can refer to indus-
tries that process natural resources (such as forestry, oil & gas, etc.). The variable
mix of products, in addition to the existence of by-products, make the coordination
of production, procurement, distribution and sale planning in such supply chains
more difficult. In lumber supply chain, in particular, different types of uncertainties,
namely, uncertain supply and demand make the lumber supply chain planning even
more complicated.

Because of these characteristics, lumber supply chain tactical planning represents a
major challenge in this industry that cannot be addressed by commonly used spread-

sheet solutions. Yet, more sophisticated approaches such as optimization models



would be able to better capture the aforementioned features. On the other hand,
forests in Canada belong to the public sector while sawmills and distribution chan-
nels are independent private companies. Hence, tactical planning in such value chain
can be addressed via either a decoupled or an integrated approach.

A decoupled planning approach, which is the current practice in the lumber in-
dustry in Canada, is implemented via solving the decoupled harvesting, procurement,
production, and sale/distribution models in a sequential manner. However, due to
the fact that only rough estimations of upstream entities’ capacities (e.g., harvest-
ing capacity) are considered in models corresponding to downstream entities (e.g.,
sawmills), sub-optimal plans in terms of supply chain profit would be highly expected.
For instance, smaller quantities of products can be promised to customers, which will
directly impact the supply chain revenue. In contrary, promising sale amounts that
are more than capacities of sawmills would lead to considerable quantities of backlogs
and increased supply chain costs.

The purpose of an integrated model is to combine supply chain functions with
the goal of increasing efficiency and better connecting demand with supply, which
can both improve customer service and lower costs. Consequently, by proposing a
mathematical model dealing with integrated planning in different entities of lumber
supply chains as well as developing efficient solution approach to solve the resulting
complex integrated mathematical model for real-size instances, some important chal-
lenges in the lumber supply chain tactical planning literature will be covered. To
the best of our knowledge, less effort has been done in the literature in integrating
tactical decisions in the lumber supply chain planning.

The plans proposed by deterministic approaches are not realistic and robust in the
presence of future uncertain events [1]. In the integrated tactical planning in lumber

supply chains, lack of knowledge in the availability of logs in the forest concludes



that the right quality and quantity of raw materials are not considered in the pro-
curement plan. This uncertain supply makes the output of the production process to
be different from the planned production quantities. As a consequence, the customer
demand cannot usually be satisfied compared to the promised service level. Finally,
the unrealistic distribution decisions resulted by uncertain production quantities and
demand can lead to increased transportation cost and negative environmental effects.
This is the other motivation of this research in order to develop robust integrated
planning tools that protects the plan against undesirable random variations in supply
chain parameters. Thus, we aim for investigating the effectiveness of implementing
stochastic programming and robust optimization approaches in obtaining a robust

tactical plan in this value chain.

1.2 Problem description

The lumber supply chain investigated in this research is a network that includes
forests as supply entities, sawmills as production units, distribution centers (DCs),
sale departments, and customers. Forests are composed of blocks that contain differ-
ent families and species of trees. Two main operations in the forests are harvesting
and forwarding. Through the harvesting operations in forests, the trees are cut down,
piled, and thinned in the harvesting blocks. The forwarding operations collect the
piles and transfer them to the storage locations in the harvesting blocks or to the ad-
jacent forest roads. Finally, the logs are transported to sawmills by trucks. In forests,
we are dealing with harvesting planning where the harvesting schedule on different
blocks over the planning horizon must be determined. Wood procurement planning
that incorporates decisions on the quantity and timing of ordering logs is a compli-
cated task, as a multitude of factors must be taken into account. It is even more

complex in a multiform environment, where forest stands are composed of several



tree species.

Sawmills purchase logs from the forest, and then transform them to lumbers as
main products, and chips or sawdust as by-products. There are three main processes
in sawmills: sawing, drying, and finishing. In the sawing process, the logs are cut
into different sizes of rough lumbers by different cutting patterns. In the drying
process, the lumber moisture contents are reduced in large dryers or in air. In the
finishing process, the lumbers are surfaced, trimmed and sorted based on customer
requirements. According to the demand, some logs are shipped to the distribution
centers or directly to customers after the sawing process, while others are first sent
to drying and finishing processes and then are shipped to distribution centers or
customers. Product shipment to customers is carried out by a number of distribution
companies that use different vehicle types. Sawmills are dealing with procurement
and production planning during the planning horizon.

The supply chain serves contract-based customers (e.g., construction industry
and furniture manufacturers) and non-contract based customers (e.g., pulp & paper
industries or the spot market). Contract-based customers sign a contract at an agreed
price and quantity for a given planning horizon. Although the contract demand must
be satisfied, the enterprise reserves the right of postponing some parts of agreed
quantities because of capacity shortage in the demand period. Unsatisfied demand
may be served in a future period as the backlog. When there is surplus capacity in
sawmills, the spot market is sought to absorb the remaining capacity. Distribution
centers seek a distribution plan during the planning horizon while sale departments in
the lumber supply chain are looking for realistic amounts of sale that can be promised
to customers.

In the lumber supply chain, the availability of raw materials in the forest cannot be

forecasted with certainty. Moreover, forecasting the exact amount of demand is also



impossible. Hence, considering random log supply and lumber demand is essential
for robust tactical planning in the lumber supply chain planning.

To the best of our knowledge, less attempt has been done in the literature on
developing an integrated tactical planning model that leads to robust plans in the

presence of uncertainties.

1.2.1 Scope and objectives

According to the existing gaps in the literature, our general objective is to develop
a robust tactical planning tool for the lumber supply chain in the presence of uncer-
tainties. The specific objectives of this dissertation is described as follows:

1. To propose a comprehensive literature review on integrating harvesting, wood
procurement, production, distribution, and sale decisions in the lumber supply chain

2. To formulate a mathematical programming model to coordinate the harvesting,
wood procurement, production, distribution, and sale planning in the lumber supply
chain

3. To develop an efficient algorithm in order to solve the proposed large-scale
integrated model in 2

4. To consider the random log supply and demand and model them into the
proposed integrated model in 2 by the aid of stochastic and robust optimization
optimization approaches

5. To develop efficient solution strategies that are able to find high quality solu-
tions for the resulting stochastic programming and robust optimization models

6. To explore comprehensive test instances in order to validate the proposed
models and methodologies under realistic circumstances in Canadian lumber supply

chains



1.2.2 Organization of the thesis

This Section outlines the layout of this thesis. This thesis consists of five chapters
and organizes as follows. Chapter 1 provides the motivations and a brief description
of the problem investigated in this thesis. Chapter 2 is dedicated to developing an
integrated model for the annual planning of harvesting, procurement, production,
distribution, and sale activities in the lumber supply chain. A mixed integer pro-
gramming (MIP) model as well as an efficient algorithm to solve it is developed in
this chapter. Furthermore, in order to evaluate the value of integration , the com-
parison of the integrated model and decoupled planning models is also provided. In
order to develop a more realistic plan in lumber supply chains, we take into account
uncertain log supply and demand and propose a multi-stage stochastic mixed-integer
programming (MS-MIP) model corresponding to the tactical planning in the lum-
ber supply chain provided in Chapter 3. As the MS-MIP is a complex model with
no special structure, we develop a Hybrid Scenario Cluster Decomposition (HSCD)
heuristic in order to solve it. Afterwards, the efficiency of the HSCD algorithm is
evaluated by a set of realistic-scale test cases in this chapter. Chapter 4 attempts
to provide a robust optimization method in order to address stochasticity in lumber
supply chains. Hence, we formulate a robust planning model based on cardinality-
constrained method and adjust the level of robustness of the proposed plan. An
extensive set of experiments based on Monte-Carlo simulation is also conducted in
this chapter in order to validate the proposed robust optimization approach. Finally,
Chapter 5 summarizes this dissertation by providing some concluding remarks and

recommendations for future works.



Chapter 2

The value of integrated tactical
planning optimization in the

lumber supply chain

This chapter is dedicated to the article entitled “The value of integrated tactical plan-
ning optimization in the lumber supply chain.” It was published in the International
Journal of Production Economics in November 2015. The version presented in the

thesis is identical to the final corrected version sent to the editor for publication.



Abstract

This study investigates the integrated annual planning of harvesting, procurement,
production, distribution, and sale activities in the lumber supply chain. The problem
is formulated as a mixed integer programming (MIP) model in which the binary vari-
ables correspond to the harvesting schedule over the planning horizon. The proposed
model is applied on a real-size case study, which leads to a large-scale MIP model
that cannot be solved by commercial solvers in a reasonable time. Consequently, we
propose a heuristic algorithm which iteratively updates the search step-size of the
sub-gradient method in the Lagrangian Relaxation algorithm through obtaining a
new lower-bound on the objective function value based on the most recent upper-
bound. While improving significantly the convergence, this heuristic also guarantees
the feasibility of the converged solution. Furthermore, in order to measure the value
of integration, we compare the integrated model with the decoupled planning mod-
els currently implemented in the lumber industry. It is observed that, depending on
the number of decoupled models, 11%-84% profit improvement can be achieved by
considering an integrated model. Finally, the advantage of the proposed heuristic
algorithm in finding high quality plans in 51%-77% less CPU time comparing to a
commercial solver and the classical Lagrangian Relaxation algorithm is demonstrated

through a set of real-size test instances.

2.1 Introduction

2.1.1 Research motivation

Lumber supply chains incorporate forest, as the supplier, sawmills as the manufactur-

ing entities, different distribution channels, as well as contract and non-contract-based



customers. Unlike the manufacturing industry which has a convergent structure (i.e.,
assembly lines), the lumber supply chain (SC) is characterized by: (i) a divergent
structure (i.e., logs are transformed into several products and by-products), (ii) the
highly heterogeneous nature of its raw material, and (iii) different manufacturing
processes [2]. Because of these characteristics, lumber supply chain tactical planning
represents a major challenge in this industry that cannot be addressed by commonly
used spreadsheet solutions. Yet, more sophisticated approaches such as optimization
models would be able to better capture the aforementioned features. Furthermore, it
is assumed that forests (supply entities) belong to the public sector, while sawmills
and distribution channels are independent private companies. Hence, tactical plan-
ning in such value chain can be addressed via either a decoupled or an integrated
approach.

A decoupled planning approach, which is the current practice in the lumber in-
dustry in Canada, is implemented via solving the decoupled harvesting, procurement,
production, and sale/distribution models in a sequential manner. However, due to the
fact that only rough estimations of upstream entities’ capacities (e.g., harvesting ca-
pacity) are considered in models corresponding to downstream entities (e.g., sawmill
production planning model), sub-optimal plans in terms of SC profit would be highly
expected. For instance, smaller quantities of products can be promised to customers,
which will directly impact the SC revenue. In contrary, promising sale amounts that
are more than capacities of sawmills would lead to considerable quantities of backlogs
and increased SC costs.

The purpose of an integrated model is to combine supply chain functions with the
goal of increasing efficiency and better connecting demand with supply, which can
both improve customer service and lower costs. To the best of our knowledge, less

effort has been done in the literature in integrating tactical decisions in the lumber



supply chain planning. The problem dealt with in this paper is focused on integrating
tactical planning decisions in lumber supply chains. It can be stated by the following
research questions:

(i) How to integrate all medium-term decisions that different entities of lumber
supply chains are dealing with?

(ii) What are the benefits of the integrated model in comparison with decoupled
models in lumber supply chains?

(iii) How to solve the resulting complex integrated mathematical model for real-
size instances?

By answering the proposed research questions, some important challenges in the
lumber supply chain tactical planning literature will be covered. In what follows,
we first review the literature on lumber supply chain tactical planning; then, we

summarize the contributions of the article.

2.1.2 Relevant literature

Tactical planning in a supply chain incorporates the synchronized planning of pro-
curement, production, distribution and sale activities, in order to ensure that the
customer demand is satisfied by the right product at the right time [3]. A systematic
review on supply chain tactical planning models was provided in [4]. Comelli et al. [5]
proposed an approach to evaluate financial benefits of supply chain tactical planning
in terms of cash flow. An iterative procedure for optimizing production and inventory
planning was proposed in [6]. A dynamic programming approach for production and
inventory planning under random demand was proposed in [7].

Over the last twenty years, much research has been conducted into the partial inte-
gration of the functions in a SC due to the difficulty in their complete integration [8].

Integrated design and tactical planning in bio-mass value chains has been investigated

10



in [9-11]. Moreover, SC tactical planning is also addressed in the framework of Sales
& Operation planning (S&OP) in the literature. Recent studies consider S&OP as
a synchronization mechanism that integrates the demand forecast with supply chain
capabilities through coordination of marketing, manufacturing, purchasing, logistics,
and financing decisions and activities [12, 13]. The relevant literature on the partial
integrated planning in the forestry industry can be summarized as follows.
Harvesting planning is one of the most important decisions in the lumber supply
chain. Two main operations in the forests are harvesting and forwarding. The main
important tactical decisions in the forests are the harvesting area (block) selection and
bucking over the planning horizon [14]. Wood procurement models can be tracked
back to the early 1960s. Since that time, several models have been developed to
address different aspects of wood procurement [15]. Some of these models have been
designed for specific activities such as skidding or transportation [16, 17]. Beaudoin
et al. [15] proposed a deterministic model for forest tactical planning. They also
assessed the impact of uncertainty into their model and evaluated these uncertainties
under alternative tactical scenarios by the aid of simulation. Other models tried
to integrate several forest planning decisions in a single model, in order to capture
possible synergies between them. As an instance, Burger and Jamnick [18] integrated
harvesting, storage, and transportation decisions. Andalaft et al. [19] integrated
harvesting and road-building decisions. Karlsson et al. [20] presented an optimization
model for annual harvest planning. Their model includes transportation planning,
road maintenance decisions, and control of storage in the forest and at terminals in
mills. Bredstrom et al. [14] formulated a mixed-integer programming (MIP) model
to integrate the assignment of machines and harvest teams to harvesting blocks.
They proposed a two stage methodology such that the first one solves the assignment

and the second one tries to schedule. Dems et al. [21] developed a MIP model

11



for annual timber procurement planning with considering bucking decisions in order
to minimize the operational costs such as harvesting, transportation, and inventory
costs. In their proposed procurement planning model, they considered a multi-period,
multi-product, multiple blocks and multi-mill setting. Chauhan et al. [22] proposed
an integrated approach for harvesting, bucking, and transportation decisions. They
assumed a multi-product and multi-mill setting in a single period planning horizon.
To minimize the harvesting and transportation costs in the forest, they developed a
heuristic algorithm based on the column generation approach. However, to the best
of our knowledge, there is no attempt to coordinate the above mentioned decisions
(i.e., harvesting schedule, raw material quantity, etc.) with production, distribution,
and sale decisions in the lumber SC.

There are several contributions in the literature focused on lumber production
planning. Among them, Maness et al. [23] proposed a MIP model to simultaneously
determine the optimal bucking and sawing policies based on demand and final prod-
uct prices. Singer et al. [24] presented a model for optimizing production planning
decisions in the sawmill industry in Chile. They also demonstrated the benefit of
collaboration in the SC. Kazemi Zanjani et al. [25, 26] proposed a two-stage stochas-
tic programming model and two robust optimization models for sawmill production
planning by considering the non-homogeneity of raw materials. Kazemi Zanjani et
al. [27] proposed a multi-stage stochastic program for sawmill production planning
under demand and yield uncertainty.

To summarize, the available research on lumber supply chain tactical planning
only covers the decoupled or partially integrated models. In addition, majority of
the existing MIP models are solved by the aid of commercial solvers such as CPLEX.
However, solving the integrated tactical planning model in the lumber supply chain,

which is a large-scale MIP model, by the aid of a commercial solver is expected to be

12



very time-consuming for real-size instances.

2.1.3 Contribution and article outline

Based on the existing literature gaps in coordinating tactical decisions in lumber
supply chains, we aim to integrate harvesting, procurement, production, distribution,
and sale decisions in the lumber supply chain so as to maximize the total profit of the
supply chain. Our integrated model considers all entities of the lumber supply chain;
therefore it is more comprehensive than the existing models. Moreover, according to
the current practice in the lumber industry, three decoupled models are formulated
representing, respectively, harvesting/procurement, production, and sale/distribution
decisions. In order to demonstrate the sub-optimality of the currently used tactical
plans, obtained by solving the decoupled models in a sequential manner, we compare
the SC profits. Our experimental results on a number of realistic test cases show
a significant gap in the SC profit between our integrated model and the existing
decoupled planning models. This evaluation of the profit gap can be exploited by
our industrial partners to promote for more integration in the lumber SC. It allows
the quantification of the acceptable effort to reach the integration. In fact, this value
of integration can be interpreted as the maximum price that can be paid in order
to facilitate such integration, for example by information sharing and collaboration
mechanisms.

The integrated tactical planning problem is formulated as a MIP model with
dozens of families of constraints corresponding to different entities of the lumber SC.
Hence, solving this model for real-size instances in a reasonable time is another chal-
lenge which is covered in this paper. To solve this issue, we propose an enhanced

Lagrangian Relaxation (LR) algorithm that addresses two key issues related to the
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classical LR method, namely slow convergence and infeasibility of the converged so-
lution. The latter enhancement is achieved by proposing a heuristic algorithm which
iteratively updates the search step-size of the sub-gradient method in the LR algo-
rithm through obtaining an improved lower-bound on the objective function value.
By the aid of several test cases, we demonstrate that the proposed heuristic for up-
dating the lower-bound guides the sub-gradient algorithm in a way that a high quality
feasible solution (i.e., with a very small optimality gap) can be obtained in a relatively
small CPU time.

The proposed methodology can be summarized by the following steps:
Step 1 - Definition of the lumber supply chain network: This is based on the mapping
of all the supply chain entities, in order to facilitate the development of the mathe-
matical models.
Step 2 - Formulation of the integrated tactical planning optimization model:  An
integrated mathematical model is provided to simultaneously address the tactical
planning decisions.
Step 3 - Formulation of the decoupled tactical planning optimization models: We
develop decoupled mathematical models that correspond to the currently practiced
tactical planning approach in industry.
Step 4 - Development of solution methods to solve the large sized integrated model: To
solve the large mixed-integer programming formulated in Step 2, an efficient heuristic
is developed.
Step 5 - Comparison of the models: The value of integration is evaluated by comparing
the integrated tactical planning model with the decoupled models.

To summarize, the paper contribution is twofold. Not only a new integrated model
is proposed and compared to several decoupled models, but also an efficient heuristic

algorithm is developed in order to solve the resulting large-scale integrated model for
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real-size instances of an industrial case study.

The paper remainder is organized as follows. The mathematical models are pre-
sented in Section 2.2. The solution methodology is provided in Section 2.3. Finally,
the numerical results and conclusions are presented in Sections 2.4 and 2.5, respec-

tively.

2.2 Mathematical models

In this section, after explaining the lumber SC network, we formulate the integrated

model and the decoupled models.

2.2.1 Defining the lumber supply chain network

The lumber supply chain entities are summarized as a network in Fig.1. This network
includes forests as supplier entities, sawmills as production units, distribution centers
(DCs), sale departments, and customers. Forests are composed of blocks that contain
different families and species of trees. Through the harvesting operations in forests,
the trees are cut down, piled, and thinned in the harvesting blocks. The forwarding
operations collect the piles and transfer them to the storage locations in the harvesting
blocks or to the adjacent forest roads. Finally, the logs are transported to sawmills by
trucks. In forests (supply entities), we are dealing with harvesting planning where the
harvesting schedule on different blocks over the planning horizon must be determined.
The availability of each family of raw material, storage, and transportation capacity
of each block are important parameters that should be considered in the harvesting
planning. Furthermore, the maximum number of harvesting in each block and the
maximum number of blocks in which harvesting can occur in each period in the

planning horizon are other important factors that must be considered in the harvesting
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planning.

Sawmills purchase logs from the forest, and then transform them to lumbers as
main products, and chips or sawdust as by-products. There are three main processes
in sawmills: sawing, drying, and finishing. In the sawing process, the logs are cut
into different sizes of rough lumbers by different cutting patterns. In the drying
process, the lumber moisture contents are reduced in large dryers or in air. In the
finishing process, the lumbers are surfaced, trimmed and sorted based on customer
requirements. According to the demand, some logs are shipped to the distribution
centers or directly to customers after the sawing process, while others are first sent
to drying and finishing processes and then are shipped to distribution centers or
customers. Product shipment to customers is carried out by a number of distribution
companies that use different vehicle types. Sawmills are dealing with procurement
and production planning during the planning horizon.

The supply chain serves contract-based customers (e.g., construction industry
and furniture manufacturers) and noncontract-based customers (e.g., pulp & paper
industries or the spot market). Contract-based customers sign a contract at an agreed
price and quantity for a given planning horizon. Although the contract demand must
be satisfied, the enterprise reserves the right of postponing some parts of agreed
quantities because of capacity shortage in the demand period. Unsatisfied demand
may be served in a future period as the backlog. When there is surplus capacity in
sawmills, the spot market is sought to absorb the remaining capacity. Distribution
centers seek a distribution plan during the planning horizon while sale departments in
the lumber supply chain are looking for realistic amounts of sale that can be promised

to customers.
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2.2.2 The integrated model

In this section, we provide a MIP model to simultaneously address harvesting, pro-
curement, production, distribution and sale planning decisions in the lumber supply
chain.

The objective is to maximize the global net profit by balancing the sale revenue
and supply chain cost over a planning horizon T". The harvesting decisions involve the
blocks where the harvesting should occur as well as the proportion of the harvested
blocks in different periods of the planning horizon. The procurement decisions include
the purchasing quantity of raw material from each block, and the inventory of raw
materials in each block. Production decisions incorporate the quantity of lumbers
that should be sawn, dried, and finished as well as inventory and backlog quantities
of lumbers. Distribution decisions include the shipping quantity of products, the
inventory quantity of products in each distribution center, the number of truckload
requirement along with the type of vehicle and route. Finally, sale planning involves
the amount of sale promised to customers as well as possible backlog quantity of
products.

The indices, sets, parameters, and decision variables used in the proposed model
are defined in the appendix.

The objective function of the proposed MIP model is defined in equation (1) and
divided into several parts presented in (2)-(9), respectively representing the total
cost of harvesting (including cost of building new access roads), stumpage, log trans-
portation (from harvesting blocks to sawmills), log storage cost in harvesting blocks,

various costs incurred by sawmills, and the final product distribution cost.
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Max Z = R — (Charvesting + Cstumpage + Ctransportation + Cstorage

+ Cprocu'r‘ement + Cproduction + Cdistribution)

where:

R=D_ DD WuSi

ceC iel teT
§ : E H E
Charvesting == Cbltybl,t( Urm,bl)
ble BLteT rmeRM

Cstumpage = E E § U'rm,blfrm,bl,tybl,t

rmeRM ble BL teT

2 : 2 : 2 : 2 : T bl
Ctransportation - Crm,bl,m,ter,m,t

ble BL meM rmeRM teT

o 2 : S
Csto’rage - E E : C”‘m,bhtlrm,bl,t

rmeERM ble BL teT

§ § : § : § bl bl
Cprocurement - mrm,ter,m,t

ble BLrmeRM meM teT

+ Z Z Zhrm,m-[rm,m,t

rmERM meM teT

Cproduction = Z Z Z Cim(XSWi,m,t + XDRi,m,t + OXFi,m,t)
meM i€l teT

+ >0 3> hlimISW,

meM i€lgw teT

+ > > > h2iumIDR},,,

meM i€lpr teT

+ 30N> h3inF

meM i€lp teT

+ ) DD bolin IS,

meM i€lsw teT

+ 3 > > bo2nIDR;,,,

meM i€lpp teT

+ 3N > o3I,

meM i€l teT
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s s
Cdistribution = § § E E E (eim;Xir,v,t + ShrvNﬁ,v,t)

seS iel reRveV teT

T2 D D DDt X

s€S i€l dce DCTrERy, 4 vEV LtET

+Z Z Zhichi,th (9)

i€l deeDC teT

Equation (8) incorporates the cost sawmills incur to purchase logs from forest
contractors, as well as the production, inventory, and backlog costs in sawing, drying,
and finishing units of sawmills. Furthermore, equation (9) represents the total trans-
portation/transshipment cost of end products (lumber and by-products) to customers

in addition to inventory holding cost of products at distribution centers.

Harvesting constraints

>y <1 W (10)
teT
Yoi,0 < Hypp o YOI E (11)
ZHbl,t <y Vbl (12)
teT

Z Hy s <ng Vi (13)
blEBL

Z (Yot Z Urmpt) < by Vi (14)
bleBL rm€RM

DD DD P, G T (15)

rmeERM meM ble BL

Irm7bl7T =0 Vrm, bl (16)

Irm,bl,t = Irm,bl,t—l - Z Xﬂn)mﬂg + Urm, bl Yol ,t ‘v’rm, bl7 t \ 0 (17)
meM

Constraints (10)-(17) formulate various restrictions in the harvesting blocks in

the forest. Constraint (10) ensures that the harvested proportion of a block does not
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exceed the availability of logs in that block. Constraint (11) describes that if har-
vesting occurs on a block, then we can ensure that raw materials from that block are
available. Constraint (12) restricts the number of times each block can be harvested
during the planning horizon; while (13) limits the number of blocks that can be har-
vested in each period. Constraints (14) and (15) correspond to total harvesting and
transportation capacity of harvesting blocks, respectively. Constraint (16) represents
the final inventory of raw materials in each block. Constraint (17) formulates the
inventory balance of raw materials in each block which equals the initial inventory
form previous period plus the harvested amount minus the total amount shipped to

sawmills.

Procurement constraints

Z Xﬁiﬂ,m,t—LTm + [rm,m,t—l - Irm,m,t = Z Curm,i,mXSWimt
bleBL i€(IswUl’' sw)
Vrm,m,t=1+L ... T (18)
Irm7m,t — SSrm,m Z 0 VTTTL, mvt (19)
Z Irm,m,t S KI’m Vm,t (20)
rmeERM
S>> XM < KS Wbl (21)

rmeRM meM

S>> x> qmin® Wbl (22)

meM rmeRM teT

Constraints (18)-(22) formulate various purchasing conditions in sawmills. Con-
straint (18) represents the inventory balance of logs in sawmills, which is equal to the
previous inventory level plus the quantity received from the harvesting blocks minus
the quantity that will be consumed in sawmills. The raw material safety stock policies

are stated in constraint (19) and the raw material inventory capacity constraint is
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provided in (20). Constraint (21) limits the maximum quantity of logs that can be
purchased from the forest. Constraint (22) states that the material procured from a

supplier must satisfy the contract minimum quantity commitment.

Production constraints

Sawing process

> (XSWimy + ISW ) — ISW,

i,m,t—1
meM
—ISW,  +ISW;, )<Y Sf Vielgy VteT (23)
ceC
> ISW,,=> BS{, VicIlgyVteT (24)
meM ceC
> Pl XSWims < Kswpy  Ym,t (25)

1€(IswUl' sw)

SNoISswi 4+ Y ISW),, < Klsw, Ym,t (26)
1€1sw icl’ sw
ISW,o=1SW;, 7 =0 Vie(I, Ul sw)m (27)
XSWime +ISWH = ISWi, . —ISW]

+ISW;,  =OXSWinm: Vi€ Isw,m,t (28)

Drying process

Qi’mtOXSWi’,mﬁt = XDRi)mﬂg Vi e Isw,i € Ipr,m,t (29)
XDRims+IDR}, . —IDR;, , —IDR] ,

+IDR;,,, = OXDR; Vi€ Ipg,m,t (30)

> 02y XDRimy < Kdrp  VYm,t (31)
i€IpRr

> IDR}, , < Kldr,, Vm,t (32)
i€IpRr
IDR;, o=IDR;, ;=0 Vi€lprm (33)
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Finishing process

pi'mtOXDRil7m,t = OXFi7m,t v i/ S IDR,i S Ip,m,t (34)
Z (OXFiJﬂ,t + IF;,;rz,t—l - IF;m,t—l - IF:m,t + IF;m,t) < Z Sf,t Vie Ip,t (35)
meM veC
Z IFi_,m,t:ZBSf,t Vielp,t (36)
meM ceC
Z p3imtOXFi,m,t S Kfmt V m,t (37)
i€lp
Z IF;Tmyt < KiIf,, Vmt (38)
i€lp
IF; o =1Fp =0 Yiclp,m (39)

Constraints (23)-(39) describe various conditions in the sawing, drying, and fin-
ishing units of sawmills. Constraints (23) and (35) are the coupling constraints that
link the production and sale decisions and determine the maximum net inventory
level in the sawing and finishing units. The backlog quantities are converted into
backlogged sale (BSS,) in (24) and (36), in order to be used in distribution constraint
(40). Constraints (25), (31), and (37) formulate the production capacity constraints
in sawing, drying, and finishing units. Constraints (26), (32), and (38) define the
warehouse inventory capacity in sawing, drying, and finishing units. The beginning
and ending backlog conditions in sawing, drying, and finishing units are described in
constraints (27), (33), and (39), respectively. Constraint (28) is a flow balance that
calculates the output quantity of products from the sawing unit. It indicates that the
total quantity of green lumber that can be sent to the dying unit equals the initial
net inventory plus the total quantity produced minus the net inventory that will be
left. Constraint (29) ensures that the total amount of green lumber received from
the sawing unit will be processed in the drying unit with a specific yield. Constraint

(30) is a flow balance that calculates the quantity of dried lumber that will be sent
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to the finishing unit. Constraint (34) ensures that the total amount of dried lumbers
received from the drying unit will be processed in the finishing unit by considering a

specific yield.

Dastribution constraints

Z(Sic,t + BSg,tfl - Bsf,t) = Z Z Z 1,70, Vi, t (40)

ceC SESTE(RW,,CURdc,C) veV
Z (XSWzmt+ISW1mt I_ISijt Z Z ZXZTUt Viellé‘w’t
meM SESTE(Rm,acURm, ) VEV
(41)
Z(OXFzmt+Ianzt 1 lT)’Lt Z Z Z zrvt vZEIF?t (42)
meM S€ESTE(Rm, acURm, ) vEV
Z Z Zervt"_Ii,dc,tfl zdct—z Z Zervt Vi € (I/SWUIF>7dcat
s€ESTERy, gc VEV s€SrcRge,c veEV
(43)
s aiXis,r,v,t
NT‘Ut IZ Ki‘/,l) VS,T’7U7t (44)
ZE(I swUIF)
> N, <KSH, Vst (45)
reR

> > > ONi,. < Vm, t (46)

SESTE(Rm dcURm, c) veV

Ii,dc,O =0 Vi, dce (47)

Constraints (40)-(47) represent various limitations in the distribution centers.
Constraint (40) links the sale and distribution decisions. It indicates that the to-
tal quantity of end products that will be shipped to customers equals the net sale
amount after considering the backlogged sale. Constraints (41) and (42) link the pro-
duction and distribution decisions. They, respectively, indicate that the total quantity
of green or finished lumbers that can be shipped to customers equals the net inventory

level of these products in the sawing and finishing units. Constraint (43) is the flow
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balance constraints at a distribution center. Constraint (44) calculates the number of
truckload requirements for each vehicle type from each shipping supplier. Constraint
(45) and (46) formulate the shipping supplier capacity and the mill dispatch capacity,
respectively. Constraint (47) represents the initial inventory of each product in each

distribution center.

Sale constraints:

Siy— BS{, > dminj, Yee CCieIp,t (48)
Sit S dg,t VC, ia t (49)
BSS, <S¢, Vee it (50)

Finally, Constraints (48)-(50) formulate sale conditions. Constraints (48) and
(49) describe the sale decisions for contract and non-contract-based demands. In the
former case, a minimum amount of sale in the contract must be delivered. In both
cases, the demand might be accepted and be served in future periods as the backlog

(i,

imt

), or, might be rejected. In either case, the backlog amount (BS,) should not be
greater than the sale quantity (S5) (50). Upon the satisfaction of the base amount
(48), the company may continue serving the contract demand up to the capacity
limit, or switch to serve non-contract demand, whichever is more profitable.

Domain constraints:

Sit? Bsg’m OXSWi,m,tJ XSW’L,m,t7 OXDRi,m,t7 XDRi,m,t7 OXFi,m,t7

IF;fmi, ISW s IF; 0

IDR*

i,m,t)

ISW;

i,m,t)

IDR; ,, +,

s s bl
Xiﬂ‘,vﬂf? Ii7dc7t7 Nr,v,t’ er,m,ta Irm,m7t7 Yol ts Irm,bl,t > 0;

Hbl,t € {071}Vbl,rm,c,i,m,s,r,v,dc,t (51)
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Constraint (51) represents the domain constraints.

2.2.3 Decoupled models

Two classes of decoupled models are considered. The first class considers three mod-
els: (i) sale & distribution; (ii) production; and (iii) harvesting & procurement. The
second one considers two models: (i) sale & distribution & production; and (ii) har-
vesting & procurement. As mentioned earlier, adopting a decoupled planning ap-
proach would require solving the abovementioned decoupled models in sequential
manner which might lead to infeasible plans in each echelon due to the lack of perfect
information from the upstream echelon. Thus, it is necessary to add extra constraints
in each (sub-)model in order to link (sub-)models to each other and to ensure the fea-
sibility of each one. Moreover, the output of one (sub-)model acts as the input of
another one. Note that these decoupling models are assumed to correspond to the
currently practiced tactical plannig approach in industry. In practice, the planners
are acting independently while taking into account the extra constraints described
above. For instance, production planning in the production entities of the SC (i.e.,
sawmills) is carried out by considering a rough estimation of supply capacity of differ-
ent harvesting blocks in the forest (supply entity). This estimation can be included

as a supply capacity constraint in the production planning (sub-)model.

2.2.3.1 Sale & distribution model
The objective of this model is to maximize the total revenue from sale activities minus
the distribution costs as follows:

Mazx Z = R — Cpistribution (52)
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The constraints of this model include constraints (40), and (43)-(51) in the inte-

grated model, in addition to the following ones:

Sosi< N Kf,, vt (53)
1€l meM

Z S5, < Z Kswpe Vt (54)
iE(ISWuI'Sw) meM

Constraints (53) and (54) enforce the sale & distribution model to control the
amount of the sale quantity of each product based on the production capacity of
sawing and finishing units. These two constraints are added to this decoupled model

in order to ensure the feasibility of promised sale amount to the customer.

2.2.3.2 Production model

The objective is to minimize the production, inventory, and backlog costs at sawing,
drying and finishing units. Also, this model gets the sale and distribution decisions
(5%, I; aet) as parameters (input) from the sale & distribution (sub-)model (52)—(54).

Min Z = OProduction (55)

The constraints of this model involve constraints (23) — (39) in the integrated

model, in addition to the following ones:
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>N > ClrmimXSWime <b (56)

rmERM meM ic(Isw Ul sw)

Z Z Z CUyrm,i,m XSWi,m,t < Z KS?l vt (57)

rmeRM meM i€(Isw Ul sw) blEBL

Z Z Z ZcuTm’i,mXSWi,m,t > gmin® Vbl (58)

rmeRM meM i (Isw Ul sw) teT

N (OXFimy+1F],, ,  —IFf ) > > dminf, Vi€ lp,t (59)
meM ceCC

Constraints (56) and (57) enforce the production model to control the production
amount based on the supply and transportation capacity of raw material in the forest.
Constraints (58) and (59) ensure that the production amount satisfies the minimum
purchase quantity of raw material from each block and minimum contract demand,

respectively.

2.2.3.3 Harvesting & procurement model

The objective is to minimize the harvesting cost, stumpage fee, storage and procure-

ment cost in the forest. Also, this model receives the production quantities of lumber

(X SWimt, OX SWipe ) from the production (sub-)model (55) — (59) as the input.

Min Z = Charvesting + Cstumpage + Ctransportation + Cstorage + Cprocurement (60)

Constraints of this model are the same as constraints (10)-(22) in the integrated

model.

2.2.3.4 Production & sale & distribution model

The objective is to maximize the total revenue from sale activities minus the distri-

bution and production costs.
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Max Z =R — (Cproduction + Cdistribution) (61)

Constraints of this model include constraints (23)-(51) in the integrated model,

in addition to constraints (56)-(58) from the production model.

2.3 Solution methodology

The proposed integrated model (1)-(51) is a mixed-integer programming model with
dozens of families of constraints. Solving this model in a reasonable time is a chal-
lenge for realistic-scale problem instances. We propose an efficient heuristic within
the framework of the LR algorithm, and we compare its performance in terms of
solution quality and CPU time with a commercial solver (CLPLEX 12.3), and with
the classical LR algorithm , where the classical sub-gradient method is exploited to
solve Lagrangian sub-models [28]. In what follows, we provide a detailed description
of our proposed heuristic algorithm.

It is worth mentioning that solving model (1)-(51) by the aid of classical LR algo-
rithm suffers from two essential issues namely the slow convergence of the algorithm
and the infeasibility of the converged solution. Consequently, the LR based heuristic
algorithm in this paper proposes a procedure to iteratively update the search step-size
of the sub-gradient method in the LR algorithm through obtaining a new lower-bound
on the objective function value based on the most recent upper-bound. This heuris-
tic improves the quality of lower-bound based on the improved upper-bound as we
proceed in the sub-gradient algorithm. The improved lower-bound can be used to
adjust the search step-size, which is expected to accelerate the convergence of the

sub-gradient algorithm and to avoid the infeasibility of the converged solution.
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2.3.1 Heuristic algorithm

It is worth mentioning that the complexity of the integrated model (1)-(51) is due to
the existence of binary variables corresponding to harvesting schedule during the plan-
ning horizon, in addition to constraints (12) and (13) that formulate the harvesting
constraints in the forest. In other words, the latter two constraints can be considered
as complicating constraints in the sense that after relaxing them from model (1)-(51),
the resulting model can be solved much faster by a commercial solver. However,
the optimal solution of the relaxed model might be infeasible regarding the relaxed
constraints. One way to tackle this difficulty is implementing the LR algorithm [28-
33]. In LR algorithm, possible violations of relaxed constraints are penalized in the
objective function of the relaxed model (i.e., the Lagrangian Relaxation model) by
considering Lagrangian multipliers. In other words, in the integrated model (1)-(51),
the violation of relaxed constraints (12)-(13) are incorporated into the objective func-
tion by introducing multipliers uy;, and v;. Thus, the Lagrangian Relaxation of model

(1)-(51) (Lagrangian sub-model) can be stated as follows:

Lip(u,v) = Mazimize {Z + Z wpy * (I — ZHZ’“) + th * (ng — Z Hblt)} (62)

ble BL teT teT ble BL

Subject to:

(10)-(11) and (14)-(51).

Since the above Lagrangian sub-model is convex and non-differentiable, the sub-
gradient method is implemented to solve it. The summary of the sub-gradient method
in classical LR algorithm for solving this model is summarized in algorithm (1).

The stopping criterion in algorithm (1) is considered as a predetermined number

of iterations. The convergence of the sub-gradient method is heavily dependent on
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Algorithm 1 Sub-gradient method in classical LR algorithm

Step O (initialization):
Assign zero to up; and vt
Find an initial lower-bound (LB) (feasible solution) and assign co to the upper-bound (UB)
Let iteration counter k equal to 1
while the stopping criteria is not satisfied do
Step 1
Solve the Lagrangian sub-model and determine Lyp(u,v)
Step 2
If Lyp(u,v) < UB) then UB = Lip(u,v)
Step 3
Update dual multipliers as follost:
k4+1 _ k Lip(u,v)—LB
uy, = maz{uy, — € * ToreS e Hon
LII"P(u,v)—LB
Ine=Soienr Howell®

* (Ipy — Xper Huit), 0}

k41
Ut+ = *(nt_zbleBLHblt)vo}

maz{vf — ey *

k=k+1
end while

the step size. In the classical sub-gradient approach, the lower-bound is considered as
a fixed amount which can hinder the convergence of the LR algorithm. Furthermore,
the classical approach cannot guaranty the feasibility of converged solution. In order
to solve these issues in the sub-gradient method, inspired from [28-33], we propose a
heuristic to iteratively adjust the step size through updating the lower-bound. More
precisely, we propose to improve the quality of the lower-bound (LB) based on the
most recent upper-bound (UB) obtained at each iteration of the sub-gradient algo-
rithm. The reason is that the quality of the UB is expected to be improved as we
proceed in the sub-gradient algorithm. The following procedure is implemented in

order to update the LB.

Lower-Bound Updating Heuristic

In each iteration of the sub-gradient method (algorithm (1)), we verify the ob-
tained optimal solution in terms of its feasibility regarding the relaxed constraints
(12)-(13). For this purpose, we calculate the slack variables corresponding to the
relaxed constraints (12)-(13). If the slack variable is positive, it means that the corre-
sponding constraint is satisfied. Hence, we suggest identifying binary variables with

the value equal to zero (at optimal solution) in the non-violated constraints. Those
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variables are then fixed to zero in the original integrated MIP model in order to obtain
a reduced MIP model that can be solved faster than the original one by a commercial
solver. By solving the reduced model (1)-(51) by a commercial solver, we can obtain
a new feasible solution (LB). The proposed lower-bound updating heuristic (LBUH)

is summarized in algorithm (2).

Algorithm 2 Lower-Bound Updating Heuristic (LBUH)

Step 0:
Calculate {slacky = (lp; — >_,cq Hort) V0l} and {slacky = (nt — 32y c gy, Huit) Vt} after solving
Lagrangian problem in each iteration
if slacky; > 0 then
Step 1:
Identify the binary variables which are equal to 0 in the optimal solution and fix them in the
initial MIP model (1)-(51)
if slacks > 0 then
Step 2:
Identify the binary variables which are equal to 0 in the optimal solution and fix them in the
initial MIP model (1)—(51)

Step 3:
Solve the reduced MIP model (1)-(51) resulted from steps (1) and (2) by a commercial solver to
obtain new lower-bound (new LB)
if (new LB) > (old LB) then
Step 4:
Lower-bound for the next iteration in the sub-gradient algorithm (LB) = new LB

Incorporating the LBUH into the sub-gradient method leads to an enhanced LR
heuristic summarized in algorithm (3). This heuristic is proposed as an efficient
algorithm for solving the integrated tactical planning model (1)-(51) for real-size

instances.

Algorithm 3 Heuristic algorithm

Step 0 (initialization):
(sub-gradient method (algorithm (1)))
while the stopping criteria is not satisfied do
Step 1
If Lyp(u,v) < UB) then UB = Lp(u,v)
Update lower-bound (LB) based on the “lower-bound updating heuristic (LBUH)” (i.e., algorithm (2))
Step 2
Update dual multipliers
(sub-gradient method (algorithm (1)))
end while
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2.4 Numerical results

2.4.1 Case study

The considered case study is characterized by a data set that sufficiently represents
a realistic scale lumber SC in Canada. This SC consists of two sawmills producing
27 product families using 14 classes of logs. Products are shipped to 140 customers
by 4 outbound shipping suppliers using 5 different vehicle types via 2 distribution
centers and 20 routes. Also, we assumed that 50 harvesting blocks are available in
the forest during the 12 month planning horizon. The supply capacity of each block
per month is supposed to be 23,500 m?®. Adopted from Beaudoin et al. [15], the max-
imum number of periods (months) over which harvesting can occur in each block, the
maximum number of blocks in which harvesting can occur per month are randomly
selected from uniform distributions U(1-6) and U(10-12), respectively. The average
volumes of each log class available in each block are also randomly generated [15].
The total harvesting capacity per month is supposed to be approximately 1,175,000
m?. There are also further aspects that must be considered in harvesting planning
such as weather conditions during the year, road maintenance, and crew scheduling.
For example, it is not possible to transport the logs from some blocks to mills during
winter, because the snow might close some roads. This would lead to road mainte-
nance or substitution which will change the harvesting plan. The abovementioned
aspects of harvesting were included implicitly in the transportation cost from the
blocks to mills. For instance, if a road does not exist, the cost of building that road is
included in the transportation cost. In sawmills, we supposed approximately 750,000
m? production capacity per month. Finally, the demand for each type of products is
derived from [26]. The capacity of each vehicle type is randomly generated from the

uniform distribution U(3-25).
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This case study results in 280,000 continuous, 600 binary variables, and 280,000
constraints in the integrated tactical planning model. All algorithms were coded in
C++ using CPLEX concert technology on a Dual-Core, 2.80GHz computer with 4.00
GB RAM.

2.4.2 The value of integration

In this section, we compare the integrated tactical planning model with the decoupled
planning approach, in terms of the total revenue as well as the costs of harvesting, pro-
curement, production and distribution. The results for the two classes of decoupled
models are provided in tables (9) and (10). The decoupled class 1 (sale & distribution
+ production + harvesting & procurement) incorporates more (sub-)models compar-
ing to class 2 (sale & distribution & production + harvesting & procurement). In
tables (9) and (10), A denotes the difference between the revenue/cost of integrated
and decoupled models. The negative value of A in the revenue and (costs) indicates
that the total revenue (cost) of the decoupled model are greater (less) than the inte-
grated one, respectively. As an instance, the negative value of A for revenue in table
(9) implies that the revenue of the integrated model is less than that of the decoupled
one. Also, the positive value of A for backlog cost in the same table indicates that

the backlog cost of the integrated model is less than that of the decoupled model.

Table 1: Value of integrated planning versus decoupled class 1

Criteria Integrated model Decoupled models A over class 1 Deviation over class 1
Actual revenue 435,359,356 709,780,241 -274,420,885 39%
Inventory cost at DCs 0 0 0 0%
Transshipment cost at DCs 3,787,256 5,097,326 1,310,070 26%
Inventory cost 27,086,403 29,822,645 2,736,242 9%

Backlog cost 86,258,429 479,162,072 392,903,643 82%
Production cost 28,125,487 26,322,034 -1,803,453 -T%
Harvesting cost 20,849,181 21,153,326 304,145 1%

Procurement cost 4,568,000 4,205,207 -362,793 -9%

Total profit 264,684,600 144,017,631 120,666,969 (value of integration) 84%

From table (9), it can be observed that the total revenue in the decoupled model is
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Table 2: Value of integrated planning versus decoupled class 2

Criteria Integrated model Decoupled models A over class 2 Deviation over class 2

Actual revenue 435,359,356 422,530,613 12,828,743 3%
Inventory cost at DCs 0 0 0 0%
Transshipment cost at DCs 3,787,256 3,594,670 -192,586 -5%

Inventory cost 27,086,403 10,810,574 -16,275,829 -151%
Backlog cost 86,258,429 115,758,944 29,500,515 25%
Production cost 28,125,487 26,829,579 -1,295,908 -5%
Harvesting cost 20,849,181 21,962,604 1,113,423 5%
Procurement cost 4,568,000 4,341,904 -226,096 -5%

Total profit 264,684,600 239,232,338 25,452,262 (value of integration) 11%

greater than the integrated one. This means that the delivered sale in the decoupled
model is greater than the integrated one. In contrary, the inventory and backlog
quantities in the decoupled models are much higher than the integrated one in order
to satisfy the bigger amount of delivered sale in the decoupled models. The reason
is that in the decoupled approach (class 1), sale & distribution decisions are not
coordinated with the production planning model. In the same table, the production
quantity and consequently the procurement quantity of logs in the integrated model
are also greater than the decoupled one. Higher amounts of log procurement in the
integrated model can be explained by the fact that the availability of logs in each block
is different. Hence, the integrated model will satisfy the log requirement in sawmills
from several blocks according to their log inventory and available harvesting quantity:.
Hence, the greater procurement quantity is not necessarily equivalent to the greater
harvesting amount or higher log inventory in each block. Finally, we can observe that
although the revenue in the decoupled models is greater than the integrated model,
the latter made further modifications on sale decisions. In other words, while the
overall revenue was reduced in the integrated model, the total inventory and backlog
costs were reduced more significantly, resulting in a net profit improvement (84%
improvement in the total profit). As expected, similar results can be observed in
table (10). The only difference between the results presented in tables (9) and (10)
is that the benefit of the integrated model in terms of total profit over the decoupled

one in class 2 is more moderate comparing to class 1 (84% versus 11% improvement
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in profit). The reason is due to the fact that in class 2, production planning is
integrated with sale and distribution planning. Hence, smaller quantities of inventory
and backlog are obtained comparing to class 1 where production planning is decoupled
from sale and distribution planning.

In summary, the results and the analysis above suggest that:

(i) The decoupling planning approach provides sub-optimal plans in terms of SC
total profit comparing to the integrated planning model.

(ii) The abovementioned sub-optimality gets deteriorated as more decoupled (sub-
Jmodels are utilized (i.e., low coordination among SC entities). This is due to the
lower level of sharing exact information among the upstream and downstream entities
in the SC.

It is worth mentioning that the difference between the profit of the integrated
model and the decoupled approach in each table represents the value of adopting an
integrated planning approach versus a decoupled one. Furthermore, this value can be
interpreted as the maximum price that the owner of the supply chain (for instance,
a sawmill) is willing to pay in order to obtain a plan which is coordinated with all

entities of the supply chain.

2.4.3 Results of implementing the heuristic solution algo-

rithm

We provide here the results of implementing the heuristic algorithm proposed to solve
the integrated tactical planning model for the case study. This algorithm is tested
on a set of 10 large-scale test instances to compare the CPU time and the optimality

gap with a commercial solver (CPLEX) and with the classical LR algorithm.
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2.4.3.1 Implementing the heuristic algorithm on the case study

We first solved the integrated model and the different models of the decoupled ap-
proach by CPLEX. Table (3) provides the objective function value and CPU times
of the abovementioned models. As it can be observed in this table, solving the large-
scale MIP integrated model by a commercial solver is very time-consuming (more
than 5h). Hence, we applied the heuristic algorithm, described in 3.1, in order to
reduce the CPU time while obtaining a feasible solution with a small optimality gap
as shown in table (3) for the integrated model and the decoupled approach when
using CPLEX.

Table 3: CPLEX results

Models Objective function CPU time (Sec)
Integrated model 264,684,600 17,097
Sale & Distribution model (Class 1) 704,682,915 78
Production model (Class 1) 535,306,751 141
Harvesting & Procurement model (Class 1) 25,358,533 4,368
Sale & Distribution & Production model (Class 2) 265,536,846 303
Harvesting & Procurement model (Class 2) 26,304,508 7,379

It is worth mentioning that in order to find the initial lower-bound in the heuristic
algorithm (step 0 in algorithm (1)), we ran the original integrated model on CPLEX
for 30 minutes and we considered the best feasible solution as the initial LB. Our ex-
perimental results indicate that this time limit is adequate in order to obtain an initial
high quality lower-bound and increasing this time limit does not have a significant im-
pact on accelerating the convergence of LR algorithm. Furthermore, the sub-gradient
step-size (step 2 in algorithm (3)) was divided by 2 whenever no improvement in the
upper-bound was observed.

Table (4) presents the results of implementing the heuristic algorithm on the case
study. The result of applying the classical LR algorithm is also provided in this table.

It should be noted that the classical LR algorithm converges in 11 iterations while
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the converged solution is not feasible regarding the relaxed harvesting constraints.
As it can be observed in table (4), the heuristic algorithm provides a high quality
feasible solution (0.022% optimality gap) in a significantly shorter CPU time (1A
versus Hh). The results provided in table (4) confirm that the lower-bound updating
heuristic (LBUH) ( algorithm (2)) proposed to update the step-size in the sub gradient
algorithm significantly accelerates the convergence of LR algorithm into a feasible
solution (77% improvement in CPU time).

Table 4: Heuristic algorithm results

Classical LR algorithm Heuristic algorithm CPLEX
Profit 264,653,000 (infeasible) 264,624,000 264,684,600
CPU time (Sec) 9,028 3,921 17,097

2.4.3.2 Validating the heuristic algorithm

In order to better validate the performance of the proposed heuristic algorithm, we
implemented it on a set of 10 large-scale test instances as summarized in table (5).
In this table, the “LB” and “UB” represents the best lower-bound and upper-bound
of heuristic algorithm, respectively. Column “heuristic gap%” corresponds to the
gap between the UB and LB calculated based on (Y2=EE + 100), while column “LR
time(Sec)”, “Heuristic time (Sec)”, and “Total time (Sec)” represents the time spent
by the commercial solver in the Lagrangian sub-problems, lower-bound updating
heuristic (LBUH), and the total time of running the heuristic method, respectively.
Moreover, we provided the “CPLEX results” and the “CPLEX time (Sec)” in table
(5) which represent the optimal objective value and CPU time of different instances

run with the commercial solver. Finally, the “Gap%” field represents the relative gap

between the best feasible solution found by the heuristic algorithm and the optimal

solution found by CPLEX, and is calculated as (CIZYL];EL);T;iZf&fB % 100). As expected,

we could not reach to the optimal solution by CPLEX in 5 hours (> 5h) in some
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instances. In such case, the “CPLEX results” and “Gap%” fields are represented by
N.A. It is important to note that “LB”, “UB”, and “CPLEX results” are divided by
1000 in table (5).

As it can be observed in table (5), the proposed heuristic algorithm provides
high quality feasible solutions with small (negligible) optimality gaps in a relatively
small CPU time. The reason is that the proposed lower-bound updating heuristic
(algorithm (2)) within the sub-gradient algorithm adjusts the search step-size based
on an improved upper-bound as we proceed in the sub-gradient algorithm. Hence, not
only the convergence of the algorithm is significantly reduced, but also the converged

solution is always feasible, as was observed in all test instances in table (5).

Table 5: The results of implementing the heuristic algorithm in different test instances

Instances LB UB heuristic LR time Heuristic time Total time CPLEX time CPLEX Gap%
Gap% (Sec) (Sec) (Sec) (Sec) results

1 264,624 264,950 0.12% 2,275 1,646 3,921 17,097 264,684 0.022
2 429,115 429,439  0.08% 681 1,418 2,099 7,465 429,214  0.023
3 375,406 375,668 0.07% 2,151 1,554 3,705 7,616 375,444 0.01
4 524,317 524,361  0.01% 2,776 1,113 3,889 12,806 524,345 0.005
5 191,875 191,905  0.02% 1,424 805 2,229 >5h N.A. N.A.
6 352,000 353,153  0.33% 1,190 1,805 2,895 >5h N.A. N.A.
7 560,347 560,406  0.01% 633 1,644 2,277 >5h N.A. N.A.
8 244,833 244,973 0.06% 2,350 3,470 5,820 >5h N.A. N.A.
9 221,278 221,408  0.06% 3,605 2,321 5,926 >5h N.A. N.A.
10 47,972 48,116 0.3% 13,178 1,447 14,625 >5h N.A. N.A.

2.5 Conclusion

In this paper, we proposed a MIP model to address harvesting, procurement, pro-
duction, distribution, and sale decisions in the lumber supply chain in an integrated
scheme. We evaluated the value of adopting an integrated tactical planning approach
versus a decoupled planning method where a set of models corresponding to different
entities of supply chain are solved in a sequential manner. Our computational results

on a realistic scale case study revealed the sub-optimality of the plan proposed by
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the decoupled planning approach in terms of the total profit of the supply chain.
More precisely, we demonstrated that substantial cost/revenue improvement can be
reached by using an integrated tactical planning model rather than a decoupled plan-
ning approach. Nonetheless, despite of the superiority of the integrated planning
approach, several challenges are expected while trying to implement it in the lum-
ber supply chain. The first issue is the fact that not all entities of this value chain,
namely the forest, sawmills, and distribution channels, are owned by one company. In
the existing non-integrated supply chain, each entity is seeking to maximize its own
profit. In contrary, if stakeholders agree on a vertical collaboration (i.e., adopting
an integrated planning approach), where they share information among each other in
terms of profit margin, costs, and capacity, it is possible that some parties face with
a major loss while others gain major profit. Hence, in order to make sure that the
improved results of such integration are achieved, a mechanism must be devised so
that all stakeholders are paid-off. Game-theoretical approaches could be adopted to
achieve such a win-win situation for all parties. The value of integration can then
be interpreted as the maximum price that can be paid in order to facilitate infor-
mation sharing among entities of this supply chain. On the other hand, solving the
integrated model for real-size instances is challenging due to the existence of binary
variables corresponding to harvesting schedule. Hence, we proposed a heuristic algo-
rithm in the framework of Lagrangian Relaxation algorithm where the performance of
the sub-gradient algorithm was improved in terms of convergence and the feasibility
of converged solution. The latter was obtained by updating iteratively the step-size
of the sub-gradient algorithm through updating the lower-bound according to the
most recent upper-bound. Our computational results on a set of large-scale test cases
revealed the effectiveness of the proposed heuristic in obtaining high quality feasi-

ble solutions in a considerably reduced CPU time comparing to using a commercial
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solver, and the classical LR algorithm.
We are currently extending this work to take into account the randomness of
demand and log supply into the proposed integrated model, and to solve the resulting

large size stochastic formulations by developing efficient algorithms.
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2.6 Appendix

The indices, parameters, and decision variables are summarized as follows.

Sets

M: Set of manufacturing mills

Isw: Set of products produced by sawing process that are transferred to drying unit
(such as lumbers)

Iyt Set of products produced by sawing process (such as chips and green lumbers)
Ipg: Set of products produced by drying process

Ir: Set of products produced by sawing, drying and finishing processes (such as fin-
ished product)

I: Set of end products (I = Iy, U Ir)

T: Set of time periods

C": Set of customers

CC: Set of contract customers
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NC" Set of non-contract customers

RM: Set of raw materials

DC': Set of distribution centers

V' Set of vehicles

R: Set of all routes

S: Set of outbound shipping suppliers

R, ac: Set of routes from mills to distribution centers
Rgcc: Set of routes from distribution centers to customers
R, .. Set of routes from mills to customer directly

BL: Set of harvesting blocks

Parameters

bS,: The price of product ¢ for customer ¢ during period ¢

dj,: The forecasted demand of product ¢ from customer ¢ during period ¢

dming,: The minimum demand of product ¢ from customer ¢ during period ¢

K sw,,;: Production capacity of mill m in period ¢ at sawing unit

Kdr,,;: Production capacity of mill m in period ¢ at drying unit

K f: Production capacity of mill m in period ¢ at finishing unit

plime: Capacity consumption for producing product ¢ at mill m in sawing unit during
period t

P2ime: Capacity consumption for producing product ¢ at mill m in drying unit during
period t

p3ime: Capacity consumption for producing product ¢ at mill m in finishing unit dur-
ing period t

hl;,: Inventory cost of product i at sawing unit of mill m

h2;m,: Inventory cost of product ¢ at drying unit of mill m

42



h3imn: Inventory cost of product ¢ at finishing unit of mill m

bol,,,: Backlog cost of product ¢ at sawing unit of mill m

bo2;,,: Backlog cost of product ¢ at drying unit of mill m

bo3;,,: Backlog cost of product ¢ at finishing unit of mill m

KIsw,,: Warehouse inventory capacity of mill m at sawing unit

KIdr,,: Warehouse inventory capacity of mill m at drying unit

K1 f,,: Warehouse inventory capacity of mill m at finishing unit

K D,,: Expedition capacity of mill m

¢im: Unit production cost to produce product ¢ at mill m

pime: Average yield of product ¢ processed at finishing unit of mill m in period ¢
Oimt: Average yield of product ¢ processed at drying unit of mill m in period ¢

sh;,: Shipping fixed cost of supplier s on route r using vehicle type v

s .
v’

es . Shipping variable cost of supplier s for product ¢ on route r using vehicle type v
hiqe: Inventory holding cost for unit quantity of product ¢ at distribution center dc
a;: Vehicle capacity absorption coefficient per unit of product ¢

trige: Transshipment cost of product ¢ through distribution center dc

KSH}: Shipping capacity of supplier s with vehicle v

KYV,: Capacity of vehicle type v

CUpm,im: Consumption of raw material 7m for producing unit quantity of product ¢
at mill m

K1, Inventory capacity at mill m during period ¢

K SY: Supply capacity of block bl in period ¢

gmin®: Minimum contract purchase quantity from block bl

8Srm.m: Safety stock of raw material rm at mill m

bl .

m.¢: Unit purchase cost of raw material rm from block m in period ¢

m

Pym,m: Inventory holding cost of raw material rm at mill m
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LY . Lead time of procuring raw material rm from block bl
cl: Unit cost to harvest block bl during period ¢

cfm7bl7t: Unit cost to store raw material rm in block bl during period ¢

T

Crm,bl,m,t :

Unit cost to transport raw material rm from block bl to mill m during
period ¢

frmpie: Stumpage fee for raw material rm in block bl during period ¢

lp;: Maximum number of periods over which harvesting can occur in block bl

n;: Maximum number of blocks in which harvesting can occur during period ¢

bH: The total harvesting capacity in period ¢

bl': The total transportation capacity in period ¢

Upmpi: Volume of available raw material rm in block bl

€x: Step size modifier in iteration k in algorithm (1)

Decision variables

X, .. Purchasing quantity of raw material rm from block bl in period ¢

Iy m e Inventory of raw material 7m at mill m at the end of period ¢

Iy o1 Inventory of raw material 7m in block bl at the end of period ¢

yp+: Proportion of harvested block bl in period ¢

Hy ;: Binary variable that takes 1 if harvesting occurs in block bl during time period
t and 0 otherwise

OXSWie: Quantity of product ¢ that should be transferred from sawing to drying
unit of mill m in period ¢

XSWipme: Quantity of product ¢ which should be sawn at sawing unit of mill m in
period t

XDR;: Quantity of product ¢ which should be processed at drying unit of mill m

in period ¢
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OX DR Quantity of product ¢ which should be transferred from drying to finish-
ing unit of mill m in period ¢

OX Fne: Quantity of product ¢ which should be transferred from finishing unit of
mill m in period ¢

ISW;! .. Inventory quantity of product i at sawing unit of mill m in period ¢

IDR} .: Inventory quantity of product ¢ at drying unit of mill m in period ¢
IF; : Inventory quantity of product 4 at finishing unit of mill m in period ¢

ISW,, .. Backlog quantity of product i at sawing unit of mill m in period ¢
IDR;, ,: Backlog quantity of product 7 at drying unit of mill m in period ¢

IF;,,: Backlog quantity of product ¢ at finishing unit of mill m in period ¢

X: ¢ Shipping quantity of product ¢ with shipping supplier s on route r with vehicle
v in period ¢

N;?,,: Number of truckload requirement from shipping supplier s on route r with ve-
hicle v in period ¢t

I; 4e+: Inventory quantity of product ¢ in distribution center dc at the end of period ¢

S5 Sale quantity of product ¢ to customer c in period ¢

BSf,: Backlogged sale quantity of product ¢ to customer ¢ in period ¢
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Chapter 3

A hybrid scenario cluster
decomposition algorithm for
supply chain tactical planning

under uncertainty

The article entitled “A hybrid scenario cluster decomposition algorithm for supply
chain tactical planning under uncertainty” is included in this chapter. It was ac-
cepted (with revision) to the European Journal of Operational Research in November
2015. The titles, figures, tables, algorithms and mathematical formulations have been

revised to the keep the coherence through the thesis.

46



Abstract

We propose a Hybrid Scenario Cluster Decomposition (HSCD) heuristic for solv-
ing a large-scale multi-stage stochastic mixed-integer programming (MS-MIP) model
corresponding to a supply chain tactical planning problem. The HSCD algorithm
decomposes the original scenario tree into smaller sub-trees that share a certain num-
ber of predecessor nodes. Then, the MS-MIP model is decomposed into smaller
scenario-cluster multi-stage stochastic sub-models coordinated by Lagrangian terms
in their objective functions, in order to compensate the lack of non-anticipativity
corresponding to common ancestor nodes of sub-trees. The sub-gradient algorithm
is then implemented in order to guide the scenario-cluster sub-models into an im-
plementable solution. Moreover, a Variable Fixing Heuristic is embedded into the
sub-gradient algorithm in order to accelerate its convergence. Along with the possi-
bility of parallelization, the HSCD algorithm provides the possibility of embedding
various heuristics for solving scenario-cluster sub-models. The algorithm is specialized
to lumber supply chain tactical planning under demand and supply uncertainty. An
ad-hoc heuristic, based on Lagrangian Relaxation, is proposed to solve each scenario-
cluster sub-model. Our experimental results on a set of realistic-scale test cases reveal

the efficiency of HSCD in terms of solution quality and computation time.

3.1 Introduction

Large-scale Multi-stage Stochastic Mixed Integer Programming (MS-MIP) models
usually arise in multi-period planning models under uncertain parameters with dy-
namic and non-stationary behavior over the planning horizon. Supply chain planning
(e.g., [35, 36]), and production planning ([27, 37, 38]) under uncertainty are few ex-

amples among others.
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Such models are among the most intractable ones due to the fact that the num-
ber of complicating binary and/or integer variables in the deterministic MIP model
increases exponentially once the uncertainty is modeled as a scenario tree in a multi-
stage setting. The latter is a viable way of capturing the evolution of all information
trajectories over time. A variety of algorithms for solving multi-stage stochastic MIP
models have been proposed (e.g., see [39]). Branch-and-Price ([40]) and Branch-and-
Fix Coordination methods ([35, 36|, [41, 42]) are two of prevalent methods in the
literature for solving MS-MIP models. Nonetheless, such algorithms are designated
for special structured models such as lot-sizing and batch-sizing problems or pure 0-1
integer programming models. This makes them less suitable for general large-scale
MS-MIP models with no particular structure similar to the supply chain tactical
planning model investigated in this article.

Scenario decomposition strategies (e.g., see [43, 44]) are among the most efficient
approaches to solve large-scale multi-stage stochastic programs. Progressive Hedg-
ing Algorithm (PHA) [43] is one of the scenario decomposition techniques that has
been successfully applied as a heuristic to solve multi-stage stochastic MIP mod-
els. The main idea behind this algorithm is to decompose the original multi-stage
stochastic program into deterministic scenario sub-models. Such subproblems are
then coordinated by Lagrangian penalty terms in their objective function in order
to obtain an implementable solution. Lgkketangen and Woodruff [45] proposed a
heuristic algorithm based on PHA and Tabu Search. Haugen et al. [46] cast the
PHA in a meta-heuristic algorithm where the generated sub-problems for each sce-
nario are solved heuristically. Despite several advantages of Scenario Decomposition
(SD) algorithms in solving stochastic programs, such approaches suffer from critical

issues non-convergence or unacceptably long run-times in the context of large-scale
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MS-MIP models. Recently, Watson and Woodruff [47] proposed algorithmic innova-
tions to address several critical issues of PHA in the context of large-scale two-stage
discrete optimization problems. In an attempt to speed up scenario decomposition
algorithms in the context of large-scale MS-MIP models, the idea of scenario parti-
tioning (clustering) in scenario trees has been proposed by several authors. The idea
is to decompose the initial scenario tree into smaller sub-trees that share a certain
number of ancestor nodes. The multi-stage stochastic model is then decomposed into
scenario cluster sub-models which are coordinated by Lagrangian penalty terms in
their objective function in order to compensate the lack of non-anticipativity. Escud-
ero et al. [41] embedded the idea of scenario partitioning with the Branch-and-Fix
Coordination method to solve large-scale 0-1 multi-stage stochastic models. Escud-
ero et al. [48] proposed a cluster Lagrangian decomposition algorithm for solving
MS-MIP model while implementing four approaches for updating Lagrangian multi-
pliers. Carpentier et al. [49] proposed a heuristic for scenario partitioning of large
scenario trees within the PHA. Escudero et al. [48, 50] demonstrated that adopting
the sub-gradient algorithm to coordinate scenario cluster sub-models would result
considerably higher convergence comparing to the PHA. It is noteworthy that in the
PHA, an implementable solution in each node of the scenario tree is considered as
the average of solutions of the set of scenario cluster sub-models that are indistin-
guishable at that node. In contrary, the sub-gradient method directly imposes the
implementability condition in each node through a pair-wise comparison between the
solutions of the set of indistinguishable scenario clusters at that node.

In this study, we eztend the idea of scenario clustering of Escudero et al. [48]
based on an accelerated sub-gradient method. More precisely, we propose a scenario
cluster decomposition (SCD) based on the sub-gradient method. Along with this

contribution, there are also three other main contributions in the present paper. First,
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with the goal of reducing the number of iterations, we embed a variable-fixzing heuristic
within the sub-gradient algorithm. This algorithm fixes the value of binary variables
in the common nodes of scenario cluster sub-models obtained at each iteration of SCD
algorithm to zero or one in the next iteration according to a consensus rule among
the solution of indistinguishable scenario cluster sub-models. Second, the accelerated
SCD algorithm s specialized to tactical supply and procurement planning in the lumber
supply chain under demand and supply uncertainty. To the best of our knowledge,
due to high computational complexity, this problem has never been addressed in the
literature. In this problem, scenario-cluster sub-models are MS-MIP models that
are hard to solve. Hence, our third contribution is focused on proposing an ad-hoc
heuristic to solve such sub-models. This algorithm is a Lagrangian Relaxation-based
heuristic enhanced through updating the sub-gradient step-size.

Hence, the proposed algorithm in this study is a Hybrid Scenario Cluster Decom-
position (HSCD) heuristic applicable to large-scale MS-MIP models with a particular
application in supply chain tactical planning. Along with the possibility of paral-
lelization, the main advantage of the HSCD heuristic is accelerating the sub-gradient
algorithm applied to coordinate scenario cluster sub-models into an implementable
solution. Furthermore, it provides the possibility of embedding proper heuristics for
solving scenario cluster sub-models depending on their special structure. Hence, sig-
nificant improvement in terms of the convergence of the sub-gradient algorithm within
the HSCD algorithm can be expected.

Our experimental results on a set of real-size test cases in a Canadian lumber
supply chain indicate the high quality of the solutions obtained by the HSCD heuris-
tic in addition to significant CPU time reduction comparing to a commercial solver

and the SCD algorithm proposed in [42] and [48].
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This article is organized as follows. In Section 3.2, a brief description of multi-
stage stochastic programming is provided. The details of the HSCD algorithm is
presented in Section 3.3. Section 3.4 summarizes the specialization of the HSCD
algorithm to tactical supply and procurement planning in the lumber supply chain.
Numerical results and concluding remarks are respectively provided in Sections 3.5
and 3.6. Finally, the multi-stage programming model for harvesting and procurement
tactical planning in the lumber supply chain that is another contribution of this study

is presented in the Appendix.

3.2 Multi-stage stochastic mixed-integer programs

Let us consider the following multi-period deterministic mixed integer model [1]:

7 = min Z[atxt]

ter

Subject to:
Ajzy < e
Ay + Ay <c  Vier\{1}

>0 Vier (63)

where 7 = {1,2,3,...,T} is the set of periods such that T" = |7|; z; is the vector
of decision variables including binary, integer, and continuous variables. a; is the
vector of objective function coefficients, A; and A} are the constraints matrices, and
¢; is the right-hand-side vector in period t. For the sake of simplicity, we only present
constraints with variables linking consecutive periods. These types of models are very
useful in practice and usually arise in multi-period planning models under uncertain
parameters with dynamic and non-stationary behavior over the planning horizon.

Supply chain planning, lot-sizing, and batch-sizing problems are few examples among
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others.

Without loss of generality, we assume that the uncertainty may affect parameters
associated with technological coefficients in the constraints, as well as the right-hand-
side vector. Furthermore, we consider that uncertain parameters have a dynamic
behavior over time, hence they can be modeled as a scenario tree. A scenario tree,
represented by Tree in this paper, is a computationally viable way of discretising
the underlying dynamic stochastic data over time. Figure 2 represents a four-stage
scenario tree. Fach stage in a scenario tree denotes the stage of the time when
new information is available to the decision maker. The root node in a scenario
tree represents the current state while the other nodes represent scenarios in other
stages. Moreover, a scenario w is a specific path from the root to the leaf of the tree.
A probability (pr(n)) is associated to each node of the scenario tree indicating the

likelihood of the corresponding node.

Stage 1 Stage 2 Stage 3 Stage 4

Figure 2: A four-stage scenario tree

It is possible to reformulate model (63) in the stochastic context based on a given
scenario tree that leads to the Deterministic Equivalent Model (DEM). In order to

obtain the multi-stage stochastic formulation, each decision variable in model (63)
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can be defined for each scenario, leading to the scenario reformulation model. How-
ever, the latter will not yield an implementable solution, as the decision maker cannot
foresee the unknown parameters. The implementability or non-anticipativity condi-
tion (NAC) indicates that the decision variables corresponding to each node of the
scenario tree at stage t are identical for any pair of indistinguishable scenarios at that
stage. There are at least two ways to impose NAC in multi-stage stochastic programs
leading to split and compact variable formulations. In the split formulation (model

(64)), we need to enforce non-anticipativity by adding extra constraints explicitly.

Z = min Z Z w® [agzy)

we ter

Subject to:

A2y < YweQ

ATy [+ A% < Vter\{l},weQ
=2 Vter\{T},w,w' € B w+#u'

Y >0 VierT,wel) (64)

where () represents the set of scenarios, w“ represents the probability attributed
to scenario w, and By is bundle of scenarios that are indistinguishable from w at
stage t. AY and A’} are the constraints matrices and ¢ is the right-hand-side vector
for scenario w in period t. Moreover, the non-anticipativity condition is explicitly
formulated as 2 = 2%

In contrast, in the compact formulation, the NAC is implicitly considered in DEM
through defining decision variable for the nodes of the scenario tree. Model (65) is

the compact formulation of model (63) in the stochastic context.
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Z = min Z ZPT (n) [azzy (n)]

n€Tree t€T

Subject to:

Az <
!

Ay (n)xi—y (a(n)) + Ar (n) 2t (n) < ¢t (n) Vte T\ {1l},n € Tree

x¢(n) >0 Vter,neTree (65)

where x; (n) represents the vector of decision variables at node n in stage ¢ in the
scenario tree. Ay (n) and A} (n) are the constraints matrices and ¢; (n) is the right-
hand-side vector at node n in stage t. The immediate predecessor of node n in the
scenario tree is denoted as a(n). Moreover, the probability of each node, pr(n), is
calculated as }_ o po w®.

Comparing multi-stage stochastic models (64) and (65) with the deterministic
model (63) clearly indicates that the number of decision variables grows exponentially
as the number of stages and branches in the scenario tree increases. This would
make the model computationally intractable, particularly in cases that all or part of
decisions are binary/integer. This is the main motivation behind developing efficient

solution algorithms for solving this class of problems.

3.3 Hybrid Scenario Cluster Decomposition (HSCD)
algorithm

The main idea behind the HSCD algorithm is to embed efficient heuristics within the
scenario cluster decomposition (SCD) scheme in order to accelerate its convergence.
Hence, we extend the method of Escudero et al. [48] in MS-MIP models based on an

accelerated sub-gradient method.
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The acceleration is based on a Variable Fixing Heuristic (VFH). Furthermore,
since each scenario cluster sub-model is a multi-stage stochastic program that might
be hard to solve in real-size instances, we propose to use an efficient ad-hoc heuristic
to solve them. The procedure described above is summarized in Algorithm 4 and will

be elaborated in what follows.

Algorithm 4 HSCD heuristic

Step 1. Scenario Cluster Decomposition (SCD) algorithm
Step 1.1. Partition the scenario tree into a number of sub-trees after
choosing the break stage [42]

Step 1.2.  Formulate scenario cluster sub-models in a compact form
after adding NAC violation terms in their objective function
Step 2. Sub-gradient method (to obtain an implementable solution for

scenario cluster sub-models)
Step 2.1. Ad-hoc heuristic (to solve each scenario-cluster sub-model)
Step 2.2. VFH heuristic (to speed-up the sub-gradient algorithm)

3.3.1 Scenario Cluster Decomposition (SCD) algorithm

Scenario clustering in multi-stage stochastic programming is equivalent to breaking
down the original scenario tree in a given stage (i.e., break stage) and obtain a set
of scenario cluster sub-trees. For instance, in the scenario tree depicted in Figure 2,
if the break stage is chosen as stage 2, four scenario cluster sub-trees are obtained,
as depicted in Figure 3. As can be observed in Figure 3, two of the latter sub-trees
share node 2 and the other two share node 3, and all share node 1 in the original
scenario tree. In the SCD algorithm proposed in this article, after clustering the
original scenario tree, we formulate a multi-stage stochastic model for each scenario
sub-tree (cluster) using the compact formulation by relaxing the NACs corresponding
to common nodes. Scenario cluster sub-models are then coordinated by Lagrangian
penalty terms in their objective function in order to compensate the lack of non-

anticipativity. Finally, scenario cluster sub-models are solved into an implementable
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solution by the aid of sub-gradient algorithm. The advantages of using a direct sub-
gradient method for coordinating scenario cluster sub-models rather than the PHA
in terms of convergence has been demonstrated in Escudero et al. [50] for two-stage
stochastic programs.

In order to select the break stage in the SCD algorithm, the trade-off between the
size and the number of scenario cluster sub-models must be taken into consideration.
On the one hand, as the number of scenario cluster sub-trees increases more sub-
problems in the sub-gradient algorithm should be solved which would slow down its
convergence. On the other hand, if the chosen number of scenario clusters is small,
each scenario cluster sub-model becomes a large-scale MS-MIP which might be hard
to solve. Finally, it should be noted that the convergence of scenario decomposition
algorithms to an optimal solution has been proved in the literature ([43]) for linear
MSP problems. However, such algorithms can be considered as heuristics in the
context of integer or MIP problems (see, e.g., [45]). Same can be expected when
applying the SCD algorithm to MS-MIP models. In what follows, we provide more
details on partitioning the original scenario tree into sub-trees as well as the general

formulation of scenario-cluster sub-models within the SCD framework.

3.3.1.1 Partitioning the scenario tree into scenario cluster sub-trees

As mentioned earlier, the first step of the SCD algorithm is choosing the break stage
(t*). Hence, in a symmetric scenario tree, the original scenario tree is decomposed to
p = ||/l scenario cluster sub-trees, where €2 indicates the scenario set and [ denotes
the number of scenarios in each sub-tree. It should be noted that the abovementioned
sub-trees share common nodes that belong to stages ¢ = 1,2,...,¢* in the initial
scenario tree. Let us denote NP as the set of nodes belonging to sub-tree p and n™

as sub-tree sets that have node n in common. N; and N, are sets of nodes belonging
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to stages that are not after (i.e., t = 1,2,...,t*) and after the break stage (i.e., t =
t*4+1,t*+2,...,T). Furthermore, N} = N;NN? and N§ = NoN NP are sets of nodes in
sub-tree p belonging to N; and N,, respectively. For example, consider the four-stage
scenario tree in Figure 2 that is broken down into four scenario cluster sub-trees in
Figure 3. In this figure, the breaking stage is at t* = 2, and there are four scenario
cluster sub-trees. n' = {sub — tree 1, sub — tree 2, sub — tree 3, sub — tree 4} ,n* =
{sub — tree 1, sub — tree 2} ,n* = {sub — tree 3, sub — tree 4} show that node 1 is
included in sub-trees 1, 2, 3 and 4; node 2 is included in sub-trees 1 and 2; and node
3 is included in sub-trees 3 and 4. Also, N' = {1,2,4,8,9}, N? = {1,2,5,10, 11},
N3 = {1,3,6,12,13}, and N* = {1,3,7,14,15}. Moreover, N; = {1,2,3}, Ny =
{4,5,...,15}, N} = {1,2}, and N} = {4,8,9}.

Sub-tree 1

Sub-tree 2

Sub-tree 3

Sub-tree 4

©
®
GGAAA

Stage 1 Stage 2 Stage 3

4
e
5
=

Figure 3: A decomposed scenario tree to four clusters

3.3.1.2 Scenario cluster sub-model formulation

Let us consider the compact formulation of the DEM of a multi-stage stochastic

problem (model (65)). After breaking down the scenario tree into p sub-trees, we
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decompose model (65) into p sub-models accordingly. Thus, the multi-stage stochastic
MIP sub-model for each scenario cluster p can be expressed by the following compact

formulation (model (66)).

ZP = min Z pr(n)[atxf (n)]

nENf ter

+ 0 > wr(n) [aaf (n)]

nENé’ ter
Subject to:
Az < ¢
p

Ay (n)ziy (a(n)) + A7 (n) o} (n) < cf (n) vter\{l}, ne N”

¥ (n)>0 Vter,neNP (66)

where wP(n) = Zwegp w® is the weight (probability) of nodes before the break stage

w

(n € Nyp) in sub-tree p; w* is likelihood of scenario w; and €2, is the set of scenarios

belonging to sub-tree p. Moreover, the p sub-problems (66) should be linked with
each other by the NAC as follows:

2 (n) —2f (n) =0 Vp,plen":p;«ép/,teT,neNl (67)

Considering the same example in Figure 3, the explicit NAC formulated in (67)

can be expressed as follows:

w3 (3) = a3 (3) (68)

It is also possible to consider the NAC (67) as a set of inequalities:
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¥ (n) —xf“ (n) <0 Vp:Bnn,...,(ﬁnn) —1l,ter,neN; (69)

" (n) — xf”” (n)<0 Vter,neN; (70)

where Py and p,» are the first and the last ordered sub-trees belonging to n™(i.e.,
min {p|p € "} and max {p|p € n"}, respectively). At each stage belonging to 7 =
{1,2,...,t"(break stage)}, n"™ represents the set of scenario sub-trees that have node
n € Np in common. For instance, in the decomposed scenario sub-trees in Figure
3, at stage 2, n? represents the scenario sub-trees 1 and 2; and 7® represents the
scenario sub-trees 3 and 4. Finally, the original MS-MIP model can be formulated
as a splitting-compact variable representation model over the set of sub-trees [42] as

follows:

Zms—-MIp = minz Z Zw”(n)[atzi’ (n)] +Z Z ZPT (n) [azzf (n)]

p=1neN} teT p=1necNP ter
Subject to:
Az <
Ay (n)ai_y (a(n)) + A7 () zf (n) < ¢ (n) Vpen™ter\{1},ne {N, N2}
af () =2 () S0 Wp=p .. (@) ~ Lt eT\{T},n €M

"(n) <0 Vter\{T},neN;

2y (n) >0 Vter,neTree,pen” (71)

By relaxing the NACs (the last two set of constraints) in model (71), the latter is
decomposable into p sub-problems corresponding to each scenario cluster sub-tree p.
In order to compensate the lack of non-anticipativity in such sub-models, Lagrangian
penalty terms (1 (n)) can be added to their objective function and the sub-gradient

algorithm can be implemented to solve the Lagrangian models. Model (72) is the
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Lagrangian relaxation of model (71) after relaxing the NACs.

Zscp (14, D) mlnz Z pr ) [agz? ( —I—Z Z Zpr ) a2l (

p= 1n6Np ter p= 1nENp ter
(ﬁn")_l »
) p+1 Don
+ 2 2 2ol () =2 )+ 30 Y () (n) = ()
P:gnn neN; ter n€EN; ter
Subject to:
Az <o

A ()l (a(n) + AY ()2} (n) < () Wpen™,t€r\{1},n€ {Ni,No}

¥ (n)>0 Vter,néeTreepen” (72)

As we mentioned before, model (72) can be decomposed into p smaller sub-
problems (model (74)), and its objective function can be obtained as the sum of

Zeop (@) values corresponding to each sub-tree as follows:

P
Zscp (1) Z SCD (73)

where Z%.p, (1) is the objective value of the pth scenario sub-tree. For p = Py T
1,....,pyn, the scenario cluster sub-model can be expressed (in compact formulation)

as follows:
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Zhep () =min 3 S w? () [aga? ()

nENY ter

+ > D pr@faaf ]+ DY (1] (n) = pf T (n)(@f (n)
neNp ter neN, ter

Subject to:

Az < ¢

'p

Ay (n)xi_y (a(n)) + A7 (n) 27 (n) < ¢/ (n)  Vter\{1},n € {Ny, Np}

¥ (n)>0 Vter,neNP (74)

It should be noted that for p = p,., the term > nen: Doer (1] (n)—p? ™" (n))(2 (n))
should be replaced by > .y > e, (,uf"n (n) — 1™ (n))
(xf"" (n)) in the objective function. Finally, scenario cluster sub-models (74) are co-
ordinated to an implementable solution by the aid of the sub-gradient algorithm. In
what follows, we provide the details of sub-gradient algorithm and heuristics embed-

ded in it to speed-up its convergence.

3.3.2 Scenario-cluster decomposition algorithm

The SCD algorithm is summarized in Algorithm 5. After initializing the Lagrangian
multipliers (uf(n)), each scenario cluster sub-model is solved by the aid of an ad-
hoc heuristic. Once, the solutions of all sub-trees are obtained, the violation of
corresponding NACs are verified and subsequently the sub-gradient vector (sf(n)) is
calculated. Next, the Lagrangian multipliers are updated. This procedure is repeated
for a number of iterations until the NAC are satisfied within a given error threshold.
In Algorithm 5, Zygcp is an upper-bound on the objective function of each scenario
cluster sub-model and oy is the step modifier. The stopping criterion in this algorithm

requires that Zpgcop does not improve after two consecutive iterations.
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Algorithm 5 SCD algorithm (sub-gradient based)

Step 0 (initialization):

Assign zero to Lagrangian multipliers vector (u° = 0) and solve the p sub-

problems (74) to obtain z' and Zgsop (1Y, p) based on equation (73)
Let iteration counter k£ equal to 1

while the stopping criteria is not satisfied do

Step 1 (Vn € Nyt € 1)

Compute the sub-gradient vector at node n for the set of sub-trees in 7

k, n k, n +1
2" () — 2, " (n)

n

e P () — a7 (n)

(n)
Step 2
Update Lagrangian multipliers as follows:

i (n) = pf(n) + au.

_ k,
N ORE

(Zuscp—Zuscp(W*5)) j (n)

skl
Step 3
Solve the p sub-problems (74) with pf*1 to obtain 2*!
Zuscp (WD)
Step 4
Set k< k+1
end while

and

3.3.2.1 Variable Fixing Heuristic (VFH) algorithm

As mentioned earlier, in order to accelerate the convergence of sub-gradient algorithm

within the SCD algorithm, we propose a Variable Fixing Heuristic. The idea is to

reduce the number of binary variables in each scenario cluster sub-model (74) in

order to reduce the CPU time required to solve them. The details of this heuristic

algorithm are elaborated in Algorithm 6. In this algorithm, 27”(n) represents the

vector of binary decision variables.

At each iteration of the SCD algorithm, the VFH algorithm verifies the value

of binary variables corresponding to all nodes in each stage before the break stage

(n € Ny), obtained in the previous iteration over all scenario cluster sub-models (74).
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Algorithm 6 VFH algorithm

Step 1.
Solve MS-MIP sub-problem for all scenario sub-trees (model (74)) in SCD
algorithm (Algorithm 5) and obtain the vector of binary decision variables
27®(n) at all nodes before the break stage (Yn € Ny)
for (Vn € Ny) do
Step 2. Over all sub-trees (p) that share node n, count the number of
sub-trees where a given binary variable takes 1 or 0.
Step 3. Update Counter =3 . 27 (n)
Step 4. Consensus rule:
Step 4.1. Fix 27%(n) in the next iteration in SCD as follows:

1, Counter > @

z}" (n) =

0, Counter < "]

end for

Next, such binary variables are fixed to 0 or 1 according to a consensus rule among
all sub-trees. For instance, consider the case of 3 scenario sub-trees, where at a given
iteration k, the value of a given binary variable at node n in a given stage before the
break stage is equal to 1 in two of sub-trees and equal to 0 in the third one. According
to the consensus rule given in Algorithm 6, we fix that binary variables at node n to

1 at iteration k& + 1 in all scenario sub-trees that share node n.

3.4 Application of HSCD heuristic to tactical sup-
ply and procurement planning in the lumber
supply chain

In this section, we aim at specializing the proposed HSCD algorithm described in
Section 3.3 to a tactical supply and procurement planning in the lumber supply chain
(SC) under supply and demand uncertainty. In what follows, we first describe the

problem and the uncertainty involved in it. Furthermore, we provide the details of
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the application of the HSCD algorithm to solve this problem.

3.4.1 Tactical supply and procurement planning in the lum-

ber supply chain

In the lumber supply chain, the raw materials are logs that are shipped from forest
contractors to sawmills. Logs are then sawn to green/finished lumbers in sawmills
and are distributed to the lumber market through different channels. Supply and
procurement planning in the lumber SC determines the optimal harvesting and pro-
curement decisions over a planning horizon with the goal of minimizing cost while
satisfying the log demand in sawmills. More precisely, we are looking for the harvest-
ing schedule, i.e. the selection of harvesting blocks and the quantity of harvesting
in each period by considering several harvesting constraints as well as log procure-
ment decisions in sawmills. This problem can be formulated as a MIP model in the
deterministic context [51].

In lumber SC, forecasting the exact amount of demand for log type rm at sawmill
m in period ¢ (dym, m,) is almost impossible. Furthermore, the availability of log type
rm in harvesting block bl (v;, »1) is also uncertain. Thus, considering random demand
and supply in harvesting and lumber procurement tactical planning is essential. The
uncertain log demand can be modeled as a scenario tree similar to the one depicted
in Figure 2. The nodes at each stage of the scenario tree constitute the states of the
demand that can be distinguished by the information available up to that stage. On
the other hand, the uncertainty in forecasting the availability of logs in each block can
be modeled as a time independent random variable over the planning horizon; hence
it can be modeled as a scenario set. According to the abovementioned uncertainty
modeling for the log demand and supply, the Harvesting/Procurement (HP) tactical

planning problem can be formulated as multi-stage mixed-integer stochastic program
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with recourse (model (79)-(93) in the appendix).

It should be noted that model (79)-(93) is a compact formulation, where the
decision variables have been defined for each node of the scenario tree. Also, the
stages in models (79)-(93) incorporate a number of time periods, and t,, denotes the
set of all time periods corresponding to node n. Due to the large size of tactical
planning model in a real-size case study, we applied the HSCD heuristic described in

Section 3.3 as a solution method.

3.4.2 Solving HP tactical planning model by the aid of HSCD

heuristic

The HP problem is a multi-stage-stochastic mixed-integer programming problem.
After decomposing the original scenario tree into a set of sub-trees (step 1.1. of Al-
gorithm 4), we formulate the HP problem as an MS-MIP model for each scenario
sub-tree (step 1.2) by considering the NACs corresponding to the implementability

of Hy ¢(n) (harvesting schedule), Yy +(n) (portion of harvesting), X% .(n) (procure-

rm,m,t

ment quantity) in model (79)-(93) as follows:

Hfy,(n)—Hp, (n)=0 Vp,p €n”:p#p bl€BLtEt,neN (75)

’

Y, (n)=Yh,(n)=0 Vpp €n”:p#p bl €BLLEt,nEN (76)

XPP i (n) = XP(n) =0 Vp,p €n":p#p.,bl€ BLrme RM,

rm,m,t

me M,t€t,,ne Ny (77)
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Next, we implement the sub-gradient algorithm to solve the scenario cluster sub-
models into an implementable solution. Since, such sub-models are MS-MIP problems
that are hard to solve for large-scale test instances, steps 2.1 and 2.2 in Algorithm 4

are applied as follows:

Step 2.1 (Algorithm 4): A Lagrangian Relazation-based Heuristic (LRH) for
solving scenario cluster HP sub-models
It is worth mentioning that the complexity of the integrated model (79)-(93) is
due to the existence of binary variables corresponding to harvesting schedule during
the planning horizon, in addition to constraints (84) and (85) that formulate the
harvesting constraints in the forest. In other words, the latter two constraints can
be considered as complicating constraints in the sense that after relaxing them from
model (79)-(93), the resulting model can be solved much faster by a commercial solver.
Hence, we propose a Lagrangian Relaxation (LR) algorithm where the aforementioned
constraints are relaxed and their violation is penalized in the objective function by
the aid of Lagrangian multipliers. Next, the sub-gradient method can be used to
solve the Lagrangian model. The summary of LRH algorithm for model (79)-(93) is
summarized in Algorithm 7. The stopping criterion in the LRH is the same as SCD
algorithm (Algorithm 5), and €, is the step modifier. The Lagrangian Relaxation
of model (79)-(93) (Lagrangian model) can be stated as model (78) where wuy(n)
and v;(n) are the Lagrangian multipliers corresponding to constraints (84) and (85),

respectively. A(n) is the set of ancestors of nodes that belong to the last stage (Np).
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L' (u,v) = Minimize {ZHP — Z Z upr(n') * (lpg — Z Z Hy i(n)) —

n’€Np ble BL tetn neA(n’)
S Y- Y Hbl,m»} )
neTlreetety ble BL
Subject to:

(79)-(83) and (86)-(93).

Note that solving model (78) by a classical sub-gradient algorithm suffers from two
essential issues namely the slow convergence of the algorithm and the infeasibility of
the converged solution. Consequently, we propose a Lagrangian Relaxation Heuristic
(LRH) where we embed a heuristic algorithm which iteratively updates the search
step-size of the sub-gradient algorithm. This is achieved through obtaining a new
upper-bound on the objective function value based on the most recent lower-bound.
The idea is to improve the quality of upper-bound based on the improved lower-bound
as we proceed in the sub-gradient algorithm. The improved upper-bound can be used
to adjust the search step-size (step 3 in Algorithm 7) which is expected to accelerate
the convergence of the sub-gradient algorithm and to avoid the infeasibility of the
converged solution. Algorithm 8 summarizes the upper-bound updating algorithm.
Updating the upper-bound is performed by solving a reduced MS-MIP model obtained
after fixing a certain number of binary decision variables to zero according to the
following criteria. In each iteration of the LRH, the solution of the Lagrangian model
is verified in terms of feasibility of the relaxed binary constraints. Next, in the non-
violated constraints, we identify those binary variables with the value equal to zero
at the optimal solution. Those variables are then fixed to zero in each HP scenario
cluster sub-model in order to obtain a feasible solution and a new upper-bound on

the optimal objective function value.
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Algorithm 7 LRH algorithm
Step 0 (initialization):
Assign zero to uy(n')(n’ € Ny) and vi(n)(n € Tree)
Find an initial upper-bound (UB) (feasible solution) and assign —oco to the
lower-bound (LB)
Let iteration counter k equal to 1
while the stopping criteria is not satisfied do
Step 1
Solve the Lagrangian problem (78) and determine the objective function value
of Lkn(u,v)
Step 2
If (Lkp(u,v) > LB) then LB = LY, (u,v)
Update the upper-bound (UB) based on the “Upper-bound updating al-
gorithm”
Step 3
Update Lagrangian multipliers as follows:

L%, (uw)—LB (I
|t = it Znea(nry Hott(n) ||2

D tety Qomeawm) Hue(n)), 0}

vt (n) = maz{vF(n) — € x

ZbleBL Hy4(n)), 0}

u () = mar{up(n’) — e

Lk (uw)—LB

* J—
Hnt_ZblEBL I{bl,t(n)”2 (nt

k=k+1
end while

Step 2.2 (Algorithm 4) (VFH)

In each iteration of Algorithm 5 (SCD), we apply VFH heuristic (Algorithm 6) in
order to reduce the number of iterations. For this purpose, we should find the value
of > . Hyy (n) in all nodes belonging to the stages before the break stage (n € V1)
and fix the value of Hﬁt(n) to 0 or 1 in the next iteration of SCD algorithm based

on the given criterion in Algorithm 6.

3.5 Numerical results

In this section, we first provide details on generating a testbed of problem instances

along with algorithmic implementations. Then we provide the results of applying the
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Algorithm 8 Upper-bound updating algorithm

Step 0 (initialization):
Calculate slack variable corresponding to binary constraints (84) and (85)
if slack variable > 0 then
Step 1:

Identify the binary variables which are equal to 0 and fix them to zero
in each scenario cluster sub-model (74) in order to obtain a reduced
sub-model

Step 2:
Solve each reduced scenario cluster sub-model (74) (by a
commercial solver) to obtain a new upper-bound (new UB)
Step 3:
if (new UB) < (old UB) then
Update upper-bound for the next iteration in LRH algorithm

(UB) = new UB
end if
end if

HSCD heuristic proposed in this article to those test instances, where we compare the
CPU time and the quality of solutions obtained by this algorithm with a commercial
solver (CPLEX v12.5) and a 3-cluster SCD algorithm that provides optimal solution

to the MS-MIP HP model.

3.5.1 Testbed data and implementation details

We consider 3 classes of tactical supply and procurement (HP) tactical planning
problems (model (79-93)) that differ in terms of the number stages. In the first
class (problem instances P1-P4), each stage incorporates 6 month (periods) over the
12-month planning horizon, leading to a 3-stage MS-MIP model; while in the second
and third classes (P5-P8 and P9-P12 instances), each stage encompasses, respectively
4 and 3 months, leading to 4 and 5-stage MS-MIP models. In each class of test
instances, we consider two types of lumber supply chains that differ in terms of the
number of harvesting blocks available during the planning horizon and the amount

of log demand. Finally, within each class and supply chain size, two variants of
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problems have been investigated that differ in terms of the variability level of the
random log demand. More specifically, we consider two normal distributions for the
log demand with equal mean-values and variances equal to 5% and 20% of the mean-
values, respectively. The above-mentioned approach leads to 12 problem instances as
summarized in Table 6. Its headings are as follows: Instance, member of the testbed
we have experimented with; nc, number of constraints; ncv, number of continuous
variables; nbv, number of 0-1 variables; nel, number of nonzero coefficients in the
constraint matrix; dens, constraint matrix density (in %); |Q2|, number of scenarios;
|Tree|, number of nodes in the scenario tree; T, number of stages; Variability%,
variance of random log demand as a percentage of mean-value; and |BL|, number of
harvesting blocks. In all test instances, the supply capacity of each block in the forest

per month is supposed to be 2,350 m?

. As in Beaudoin et al. [15], the maximum
number of periods (months) over which harvesting can occur in each block in the forest
as well as the maximum number of blocks in which harvesting can occur per month
are randomly generated from uniform distributions in the following intervals: U[10,
12] and U[1, 6], respectively. The average volumes of each log class available in each
block are also randomly generated based on Beaudoin et al. [15]. The total harvesting
capacity per month is supposed to be approximately 175,000 m?. At each stage in the
scenario tree corresponding to each test instance, we consider a normal distribution
for the log demand which is approximated by a 3-point discrete distribution (i.e.,
high, average, and low demand). Furthermore, in each node of the demand scenario
tree, 3 scenarios have been considered for the yield of different blocks in the forest
according to the yield data provided in Beaudoin et al. [15]. The above-mentioned
data sets have been validated by our industrial partner to correspond to the reality.

All algorithms in this paper were coded in C++ using CPLEX v12.5 concert
technology on a Dual-Core CPU 3.40GHz computer with 16.00 GB RAM.
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Table 6: Testbed problem dimensions

Instance nc nev nbv nel dens |Q| [Tree] T  Variability% |BL|
P1 233,715 126,847 1,800 669,762 0.0022 9 13 3 5% 25
P2 233,715 126,847 1,800 669,762 0.0022 9 13 3 20% 25
P3 459,950 247,257 3,600 1,321,236 0.0011 9 13 3 5% 50
P4 459,950 247,257 3,600 1,321,236 0.0011 9 13 3 20% 50
P5 522,774 276,382 3,900 1,448,136  0.0009 27 40 4 5% 25
P6 522,774 276,382 3,900 1,448,136  0.0009 27 40 4 20% 25
P7 1,029,746 538,929 7,800 2,855,628 0.0005 27 40 4 5% 50
P8 1,029,746 538,929 7,800 2,855,628 0.0005 27 40 4 20% 50
P9 1,237,935 641,899 9,000 3,332,394 0.0004 81 121 5 5% 25
P10 1,237,935 641,899 9,000 3,332,394 0.0004 81 121 5 20% 25
P11 2,439,950 1,234,080 18,000 6,570,036 0.0002 81 121 5 5% 50
P12 2,439,950 1,234,089 18,000 6,570,036 0.0002 81 121 5 20% 50

3.5.2 Application of the HSCD heuristic on test instances

In this section, we first provide the main results of our computational experiments
on implementing the HSCD heuristic (Algorithm 4) on the 12 HP tactical planning
instances, described in Table 6, where we compare the solution and CPU time with
a commercial solver (CPLEX v12.5). Next, we verify the importance of embedding
LRH and VFH algorithms into SCD algorithm in terms of improvement in CPU time
and the quality of the solution.

It is noteworthy that CPLEX v12.5 could find a feasible solution with 18% op-
timality gap after 15h CPU time for the smallest test instances (P1 and P2) while
considering a compact representation. Hence, this commercial solver was disregarded
as an efficient tool for solving the 12 test instances. Alternatively, by decomposing
the original scenario tree into 3 clusters, the SCD algorithm (Algorithm 5) (solving
scenario cluster sub-models by CPLEX v12.5) can obtain the optimal solution of the
MS-MIP HP model (79-93). The reason is the lack of NACs in stage one (break stage).
Table 7 represents the comparison between the results of HSCD algorithm with a 3-
cluster SCD algorithm applied to solve the HP model for 12 test instances described in
Table 6. 4h has been considered as the time limit to run both algorithms. The results
are provided for two different values of break-stage including ¢t* = 1 and ¢* = 2 that
results, respectively, 3 and 9 scenario clusters in both algorithms. The headings of

Table 7 are as follows: Instance, member of testbed; Cost (HSCD), the best objective
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function value obtained by HSCD; HSCD time, time it takes for the HSCD algorithm
to converge; Optimal cost, the optimal objective function value (cost) obtained by the
3-cluster SCD algorithm; and Gap %, the relative gap between the optimal objective
value of the HSCD and SCD algorithms (relative optimality gap). In this table, N.A.
indicates that the algorithm does not converge in 4h. All cost values in this table are
divided by 1000 and CPU times are indicated in seconds. Furthermore, as indicated
in Section 3.3, the stopping criterion for the HSCD heuristic requires that Zgscp
does not improve in two consecutive iterations. It should be noted that the HSCD
heuristic is a Lagrangian-Relaxation based algorithm that provides a Lower Bound
(LB) on the objective function value of the original MS-MIP HP model. Hence, it is
expected that the bound obtained for break-stage t* = 1 is smaller than the one for
t* > 2 (as also indicated in [48]). As it can be observed in this table, for t* = 1,
SCD cannot provide an optimal solution for the last 4 test instances within 4h CPU
time. In contrary both SCD and HSCD algorithms provide an optimal solution for
the first 8 instances (0 optimality gap between the LB obtained by HSCD and the
SCD algorithm). In contrary, for t* = 2 (9 scenario clusters), HSCD converges in less
than 3h for the largest test instances. As expected, the quality of LB obtained by
the HSCD heuristic is worse than ¢* = 1 although the optimality gap is less than 1%
(0.68%) in average over the first 8 test instances. Furthermore, all non-anticipativity
constraints are satisfied over all test instances. Since the quality of the LB obtained
by considering t* > 2 was not better than t* = 2, the results are not provided in the
article.

Next, in Table 8, for the same test instances, we compare the performance of the
HSCD heuristic with the following three algorithms: ) the SCD algorithm (Algorithm
5), where scenario cluster sub-models are solved by CPLEX v12.5, indicated as “SC”;

i1) the SCD algorithm, where scenario cluster sub-models are solved by the aid of LRH
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Table 7: HSCD algorithm results with different break stages

Cost HSCD  Optimal
Instance (HSCD) time cost Gap%

Three clusters (t* = 1)
P1 13,796 114 13,796 0
P2 13,878 129 13,878 0
P3 26,729 125 26,729 0
P4 26,783 101 26,783 0
P5 13,744 12,014 13,744 0
P6 13,803 7,196 13,803 0
P7 26,406 1,559 26,406 0
P8 26,489 1,290 26,489 0
P9 N.A. N.A. N.A. N.A.
P10 N.A. N.A. N.A. N.A.
P11 N.A. N.A. N.A. N.A.
P12 N.A. N.A. N.A. N.A.

Nine clusters (t* = 2)
P1 13,706 39 13,796 0.65%
P2 13,702 38 13,878 1.26%
P3 26,580 115 26,729 0.56%
P4 26,680 112 26,783 0.38%
P5 13,663 380 13,744 0.58%
P6 13,732 316 13,803 0.51%
P7 26,227 375 26,406 0.68%
P8 26,268 389 26,489 0.83%
P9 14,624 10,084 N.A. N.A.
P10 14,674 7,829 N.A. N.A.
P11 27,636 8,391 N.A. N.A.
P12 27,946 6,562 N.A. N.A.

(Algorithm 7), indicated as “SCD-LRH”; and #i4) the combination of SCD-LHR and
VFH (Algorithm 6), indicated as“HSCD”. In Table 8 the headings are defined as
follows: Instance, member of testbed; Algorithm, type of algorithm used to solve each
test instance; cost (LB), the converged LB in each algorithm; # iteration, number of
iterations that each algorithm requires to converge according to the stopping criterion
previously defined; and CPU time, the convergence time of each algorithm (seconds).
It should be noted that the results provided in Table 8 correspond to t* = 2 (9
scenario clusters) since the last 4 instances did not converge by the above-mentioned
algorithms within 4h CPU time. Also, all algorithms are run until a converged LB
is obtained. As it can be observed in this table, embedding the LRH algorithm in
the SCD algorithm considerably improves the CPU time (average of 40% over all test
instances) with a negligible degradation in the objective function value. Furthermore,
embedding VFH heuristic in addition to LRH and the SCD algorithm (i.e. HSCD

heuristic) improves the CPU time by 60% on average with a slight degradation in the
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objective function value.

Table 8: Comparison of HSCD, SCD-LRH and SCD algorithms (t* = 2)

Instance Algorithm Cost (LB)  # Iteration CPU time
SCD 13,706 3 621
P1 SCD-LRH 13,706 3 430
HSCD (SCD-LRH-VFH) 13,706 3 39
oy SCD 13,701 5 1,600
SCD-LRH 13,702 2 410
HSCD (SCD-LRH-VFH) 13,702 2 38
3 SCD 26,579 6 1,420
SCD-LRH 26,530 4 1,102
HSCD (SCD-LRH-VFH) 26,580 4 115
o1 SCD 26,574 7 1,420
SCD-LRH 26,579 5 1,100
HSCD (SCD-LRH-VFH) 26,680 4 112
P5 SCD 13,653 5 2,093
SCD-LRH 13,661 4 1,418
HSCD (SCD-LRH-VFH) 13,663 3 380
P6 SCD 13,727 5 2,113
SCD-LRH 13,733 3 1,337
HSCD (SCD-LRH-VFH) 13,734 3 316
o SCD 26,226 1 2,145
SCD-LRH 26,227 3 1,327
HSCD (SCD-LRH-VFH) 26,227 3 375
P8 SCD 26,261 3 1,084
SCD-LRH 26,268 2 1,057
HSCD (SCD-LRH-VFH) 26,268 2 389
o SCD 14,104 ] 12,830
SCD-LRH 14,614 5 8,920
HSCD (SCD-LRH-VFH) 14,624 5 10,084
P10 SCD 14,251 9 12,560
SCD-LRH 14,626 6 9,130
HSCD (SCD-LRH-VFH) 14,674 3 7,829
P11 SCD 27,628 5 62,648
SCD-LRH 27,635 3 10,844
HSCD (SCD-LRH-VFH) 27,636 3 8,391
P12 SCD 27,934 6 45,500
SCD-LRH 27,935 4 7,604
HSCD (SCD-LRH-VFH) 27,946 2 6,562

To conclude, the results provided in Tables 7 and 8 demonstrate the high quality
of LB that can be obtained by the HSCD algorithm in a reasonable amount of time
while CPLEX v12.5 is not able to find a high quality feasible solution within 15h
CPU time for the smallest test instance. Furthermore, embedding the VFH into
SCD algorithm in addition to solving scenario cluster sub-models by the aid of LRH
significantly improves the convergence of SCD algorithm with a negligible degradation

of the converged LB.
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3.6 Concluding remarks

In this study, we proposed a new algorithmic procedure to solve multi-stage stochas-
tic mixed-integer programming models applicable to supply chain tactical planning
problems. This algorithm is based on the idea of on scenario clustering in multi-stage
stochastic programs. The Hybrid Scenario Cluster Decomposition scheme proposed in
this article is an accelerated scenario cluster decomposition method that decomposes
the MS-MIP model into smaller MS-MIP sub-models after breaking down the initial
scenario tree into a set of smaller sub-trees. The scenario sub-models are formulated
in a compact format and are coordinated by Lagrangian penalty terms in order to
compensate the lack of non-anticipativity corresponding to the nodes of scenario sub-
trees that are common in the initial scenario tree. The scenario tree decomposition
framework described above is expected to converge faster than classical scenario de-
composition methods, due to smaller number of relaxed non-anticipativity constraints
in MS-MIP sub-models. In contrary, each sub-model is an MS-MIP model on its own
that can be challenging to solve in realistic-size instances. Consequently, with the goal
of accelerating the SCD algorithm, we proposed to solve scenario cluster sub-models
by the aid of an ad-hoc heuristic (a Lagrangian based heuristic). Furthermore, we
embedded a Variable Fixing Heuristic within the SCD algorithm in order to speed up
its convergence. Another contribution of this article is the specialization of the above-
mentioned algorithm to supply and procurement tactical planning in the lumber SC
under demand and supply uncertainty. Our experimental results on a set of realistic-
size cases revealed that the HSCD algorithm proposed in this article can find high
quality solutions in a reasonable CPU time while CPLEX fails to find a high quality
feasible solution within 152 CPU time for the smallest test instance. Furthermore,

it was observed that embedding the above-mentioned accelerating heuristics into the
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SCD scheme has substantially reduced the CPU time with a negligible degradation of
the solution. Two of the main advantages of the HSCD algorithm are: 7) amenability
to parallelization; and i) possibility of embedding specialized algorithms for solving
scenario cluster sub-models depending on their particular structure.

Since many industries are faced with several types of perturbations in their busi-
ness environment, adopting a stochastic optimization approach in their decision mod-
els seems to be inevitable for robust decision making. More specially, when the in-
dustry is dealing with sequential decisions over time such as supply chain tactical
planning or dynamic supply chain design problems, multi-stage stochastic program-
ming is one of the most promising methods in order to obtain robust decisions in the
presence of future uncertainties. In contrast, such models are featured as intractable
ones for real-size problem instances. While the ability to come up with robust plans
in a relatively short amount of time is one of the main competitive advantages of
an industry, the new HSCD algorithmic procedure proposed in this paper is an at-
tempt to reduce the challenge of solving such problems. The high quality of the plans
proposed by our algorithm while overcoming the computational complexity of multi-
stage stochastic MIP models, demonstrated through our industrial case study, can
motivate the lumber industry to move toward adopting more robust decision making
tools rather than current deterministic ones.

Future research would focus on the implementation of the HSCD algorithm on
parallel machines in order to reduce the CPU time. Furthermore, this algorithm
can be applied to other supply chain tactical planning problems that incorporate
uncertain parameters with a dynamic behavior over time. Finally, other efficient
heuristic algorithms can be embedded within the HSCD scheme in order to efficiently

solve scenario cluster sub-models.
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3.7 Multi-stage stochastic mixed-integer program-
ming model for Harvesting and Procurement
(HP) tactical planning in the lumber supply
chain

In this appendix, the multi-stage stochastic model representing the HP model is pro-

vided. The description of constraints and notations are followed by the model.

HP model (Compact formulation)

Min ZHP: Z Z Psc Z Zcbltyblt Z Urm,bl, s(‘

neTree sceSC bleBL tet, rmeRM
+ E p(n) E Psc E Z Z Urm,bl,scfrm,bl,tybl,t (n)
neTree sceSC rmeRM ble BL tet,
2 § § : § § : T bl
+ p(n) C'r"m,,bl,m,tX'r”m,m,t(n)
neTree ble BL meM rmeRM teEt,
+ >0 pm) D P D D D (n)
s¢ rm,bl,t rm,bl,t,sc
neTree sceSC rmERM bleBL tEt,
mrm ter m,t n)
nGTree bleBL rmeRM meM tety,
+ E p(n) E Psc E g E hrm,mjrm,m,t,sc(n) (79)
n€Tree sceSC rmERM meM tety,
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Subject to:
Harvesting constraints
Flow balance constraints

Limpirsc(n) =0 Vrm,bl,sc,n € Tree

Irrmbl,t,sc(n) = rm,bl,tfl,sc(n/) Z Xffn m,t ( ) + vrm,bl7scybl7t(n)

meM

an) t—1¢&t
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Capacity Constraints
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Procurement constraints

Flow balance constraints
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Z Z Z Z Xf%7m7t(n)2qminbl Vbl (92)

meM rmeRM tet, n€Tree

X'f’inﬂn,t(n)? Irm,m,t,w(n)a Z/bl,t(n)a Irm,bl,t,sc(n) >0, Hbl,t(n) S {O, 1} Ym, bl,rm, sc,t € t,

(93)

Model (79)-(93) (HP model) is a multi-stage-stochastic programming MIP trying
to minimize harvesting, stumpage, transportation, storage and procurement costs.
Constraint (80) represents the final inventory of raw materials in each harvesting
block. Constraint (81) formulates the inventory balance of raw materials in each
block. Constraint (82) ensures that the harvested proportion of a block does not
exceed the availability of logs in that block. Constraint (83) describes that if har-
vesting occurs in a block, then we can ensure that raw materials from that block
are available. Constraints (84) and (85) correspond to the maximum number of har-
vesting and maximum number of blocks in which harvesting can occur, respectively.
Constraints (86) and (87) correspond to the harvesting and transportation capacity
from each block to each mill, respectively. Constraint (88) formulates the inventory
balance of raw materials at each mill. The raw material safety stock policies are
stated in constraint (89) and the raw material inventory capacity constraint is pro-
vided in constraint (90). Constraint (91) describes the raw material supply capacity.
Constraint (92) states that the material procured from a supplier must satisfy the

contract quantity commitment.
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Chapter 4

Forest harvesting planning under
uncertainty: a

cardinality-constrained approach

The forth chapter consists the article entitled “Forest harvesting planning under un-
certainty: a cardinality-constrained approach” was submitted to the International
Journal of Production Research in October 2015. The titles, figures, tables, algo-
rithms and mathematical formulations have been revised to the keep the coherence

through the thesis.
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Abstract

Harvesting planning is a key tactical decision in lumber supply chains. Harvesting
areas in the forests are divided into different blocks with different types and quantities
of raw materials (logs). Predicting the availability of raw materials in each block along
with log demand is impossible in this industry. Hence, incorporating uncertainty into
the harvesting planning problem is essential in order to obtain robust plans that do
not drastically fluctuate in the presence of future perturbations in the forest and log
market. In this paper, we propose a robust harvesting planning model formulated
based on cardinality-constrained method. The latter provides some insights into the
adjustment of the level of robustness of the harvesting plan over the planning horizon
and protection against uncertainty. An extensive set of experiments based on Monte-
Carlo simulation is also conducted in order to better validate the proposed robust

optimization approach.

4.1 Introduction

Lumber supply chains (SC) incorporate forest, as the supplier, sawmills as the manu-
facturing entities, different distribution channels, as well as contract and non-contract-
based customers. Harvesting planning in the lumber SC incorporates the optimal
harvesting schedule, i.e. the selection of harvesting blocks and the quantity of har-
vesting in each period by considering several harvesting constraints with the goal of
minimizing costs of harvesting and log storage while satisfying sawmills demand [52].

Harvesting planning has been addressed with the other tactical decisions in the
lumber SC in a deterministic context (e.g., see [14-22, 52, 53]). In harvesting plan-
ning, forecasting the exact amount of log demand in sawmills is almost impossible.

Furthermore, the availability of logs in each block of the forest is also uncertain.
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These uncertainties affect the amount of log inventory and harvesting capacity in
the forest as well. Thus, considering random log demand and supply in harvesting
tactical planning is crucial in order to obtain plans that do not drastically fluctuate
in the presence of forest and log market perturbations.

Robust optimization is one of the predominant approaches for addressing opti-
mization problems with uncertain data where there is not enough information about
their probability distributions. The classical approach to robust optimization is to
search for an optimal solution so that the solution will satisfy all possible outcomes of
uncertain parameters. On the other hand, such an approach might lead to a conser-
vative solution that is overprotected against uncertainty. In order to find a trade-off
between the cost of robustness and protection of the solution against uncertainty;,
Bertsimas and Sim [54] proposed the cardinality-constrained robust optimization ap-
proach. This method constitutes the main methodology in this article for addressing
uncertainty in the harvesting planning problem. Nonetheless, the structure of con-
straints and objective function terms in this problem makes the application of this
approach less trivial.

To the best of our knowledge, harvesting tactical planning under supply and de-
mand uncertainty has been less investigated in the literature. Scenario analysis is the
only approach that has been applied in order to study the impact of uncertain log
availability on this problem [15]. This article contributes to the literature through
proposing a robust optimization model based on cardinality constrained approach
which provides the possibility of finding a trade-off between the protection of the har-
vesting plan against uncertainties and the cost of such protection. It is noteworthy
that the uncertain log supply and demand affects simultaneously constraints’ coeffi-
cients and right-hand-sides as well as objective function coefficients. Furthermore, due

to dynamic behavior of demand over the planning horizon in addition to the complex
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structure of the objective function and constraints, formulating the robust counter-
part of this problem is not straightforward. This will distinguish the model from the
existing robust optimization models in the literature applied to supply chain tactical
planning. Another contribution of this study revolves around conducting an exten-
sive set of experimental results with the goal of analyzing the degree of robustness
of the proposed harvesting plan in addition to the extra cost incurred to obtain such
protection against uncertainty under realistic circumstances. This has been achieved
through using the existing theoretical bounds in addition to Monte-Carlo simulation
approach.

The remainder of the paper is organized as follows. The related literature is re-
viewed in Section 4.2. The cardinality-constrained optimization approach is described
in Section 4.3. The robust harvesting planning model is provided in Section 4.4. The
numerical results are presented in Section 4.5. Finally, the conclusions and future

works are presented in Sections 4.6.

4.2 Literature review

In this section, we first provide a review on various robust optimization approaches.
Next, we focus on the review of articles relevant to the application of this approach
on supply chain planning problems.

The robust optimization approach has been categorized into static and dynamic
models. In the static robust optimization approach, the decision maker must choose a
strategy before the exact values of uncertain parameters are revealed. In other words,
all decision variables are “here and now”. The objective is typically to minimize the
worst-case cost. The first step in the static robust optimization approach was taken
by Soyster [55]. In this study, he proposed a linear optimization model to construct

a solution that is feasible for all outcomes of uncertain data that belong to a convex
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set. This approach was further developed by several authors (e.g., see [56-58], [59],
[60], [54], and [61]).

In order to reduce the degree of conservatism of Soyster [55], Bertsimas and Sim
[54] proposed the cardinality-constrained approach for solving linear mathematical
model with uncertain coefficient matrix. By assuming interval uncertainty, their ap-
proach provides a robust solution whose level of conservatism can be flexibly adjusted.
They define a predetermined budget of uncertainty for every constraint in order to
provide an optimal solution that guarantees feasibility for all admissible data realiza-
tion of uncertain parameters at a given probability (confidence level).

When planning is dynamic (e.g., multi-period planning problems), it is reasonable
to expect that better solutions can be found as we can dynamically adjust the planning
when more information is known. This is called a dynamic robust solution. Ben-Tal
[58] introduced a computationally tractable robust formulation for the special case
where the future decision variables can be expressed as affine functions of the uncer-
tainty set. This method, however, has no flexibility in elaborations with uncertainty
sets, since a minor adjustment could change the robust counterpart into an intractable
formulation. Bertsimas and Caramanis [62] approached a more general method where
the uncertainty set may be a general polytope. In the solution approach, they use the
partitioning of the uncertainty set and find a static robust solution for each partition.
In a later stage, without uncertainty, at least one of the static solutions fulfills the
now realized parameters, and the best static solution is selected for implementation.
The difficulty with this approach is to select a well performing partitioning so that
the static robust solutions are reasonable while at the same time keeping the number
of partitions low for the sake of efficiency. Bertsimas and Thiele [61] presented the ro-
bust optimization method for inventory management under demand uncertainty over

a multi-period planning horizon. By assuming an interval uncertainty for demand,
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they developed the robust counterpart for the inventory control problem in dynamic
settings. They also proposed a method for eliminating state (inventory) variables, so
all decisions in the model are “here and now”. Furthermore, since in this problem
the inventory balance constraints depend on periods in the planning horizon, the un-
certainty set will depend on time periods as well. They modeled the uncertainty as
the cumulative demand up to each time period. This motivates defining a sequence
of budgets of uncertainty for each period, rather than using a single predetermined
budget explained in the static case. The main advantage of this approach is its ap-
plicability to a wide range of supply chain tactical planning problems similar to the
one investigated in this article.

Adida and Perakis [63] introduced a robust optimization model to dynamic pricing
and inventory control. They proposed a linear function for a time-dependent budget of
uncertainty such that it avoids very conservative values for the budget of uncertainty
and control the level of conservatism. There are more papers in the literature focused
on dynamic robust optimization where the budget of uncertainty for each period is
generated randomly (e.g., see [64] and [65]). Alvarez and Vera [66] presented the
application of robust optimization to a production planning problem. They consider
an equal amount of budget of uncertainty for each period to represent the grade of
robustness to each constraint. Alem and Morabito [67] explored a robust optimization
model to integrate lot sizing and cutting stock model in furniture industry under cost
and demand uncertainty. They control the level of uncertainty with a predetermined
budget of uncertainty in a dynamic setting.

Bredstrom et al. [68] proposed a rolling horizon method based on the robust opti-
mization approach for tactical planning in supply chains under demand uncertainty.
In their approach, the uncertainties are described as an arbitrary polytope and for-

mulated as explicit constraints. Carlsson et al. [69] applied the above-mentioned
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robust optimization approach to handle the uncertainty in distribution and inventory
planning in the pulp production context.

Wu [70] developed a scenario-based robust optimization method to solve uncertain
production loading problem in the global supply chain management environment.
This approach is a goal programming method that balances the trade-off between
solution robustness and model robustness in the context of two-stage stochastic pro-
grams. Similar approach has been applied by other authors in different supply chain
planning problems (e.g., see [71], [72] and [73]). Kanyalkar and Adil [71] developed a
robust optimization model by considering random demand in order to integrate multi-
site procurement, production, and distribution decisions in a supply chain. Kazemi
Zanjani et al. [72] presented two robust optimization models with different variabil-
ity measures to address multi-period sawmill production planning by considering the
uncertainty in quality of raw materials. They also proposed an efficient solution algo-
rithm to solve this model for large instances in [38]. Khakdaman et al. [73] proposed
a robust tactical plan for the hybrid Make-to-Stock-Make-to-Order manufacturing

system by considering demand, process and supply uncertainties.

4.3 Cardinality-constrained robust optimization ap-
proach

In this paper, we use the robust optimization approach developed by Bertsimas and
Sim [54] for linear programming problems. We present here the idea and a summary
of this method. For more details, the reader is referred to [54]. Let consider the

following Linear Programming (LP) model:
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Max Z = cx

[ <x<u (94)

where some parameters of the coefficient matrix (a;;) are uncertain. In addition,
each uncertain parameter (a;;) takes a value according to a symmetric distribution
with the mean equal to the nominal value (a@;;) in the interval [a;; — a;;, @i; + Q5.
Furthermore, we define a parameter I';, budget of uncertainty, for every constraint
i. This parameter is not necessarily integer and takes a value in the interval [0, |J;|],
where J; is the set of uncertain parameters in the ith constraint. A linear robust
counterpart can be obtained to protect against all cases that |I';] coefficients of set
J; are permitted to change to their worst-case value, and one coefficient (a;,) can
change by a fraction of its worst-case value (i.e., (I'; — [I';])a;;). In order to guarantee
feasibility of constraints affected by uncertainty, a protection function, denoted as

B(x,T;), can be added to the left-side of every constraint ¢ as follows:

= max
{SiUt;]SiCJ;,|Si|=|Ti),t:i€Ji\Si } | 4
JjeJi

Bla,Ti) = > diglesl + (Ti = [Ti])aa |, I} (95)

The protection function is a an optimization model by itself that tries to select a
subset of uncertain coefficients in each constraint to take their worst-case value such
that the highest increase in the left-side of constraint is achieved. Therefore, model

(94) can be rewritten as model (96):
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Max Z = cx

.t.: 71" 1 Ai‘ i Fi_ Fi Ai, ) <bi \V/
S zj:a ]-rj + {Siuti\Sing‘Jgi?i{[FiJ,tiGJi\Si} {]; a ]y] + ( |_ J)a/ tzytz} = 1

-y <wz; <y; Vj
ljngguj V]

y; >0 Vj (96)

In order to avoid the above nonlinear protection function, it can be replaced by its

dual counterpart. Hence, model (96) can be formulated into its robust counterpart

as follows:
Max Z = cx
J JjEJ:

zi +pij > a5y Vi,5 € J;
-y <z <y; Vj
lj<z; <u; Vj

y; >0 Vj

zi >0 Vi

pij >0 Vi,j€J; (97)

It is noteworthy that the robust counterpart model (97) is a linear programming
model that can be efficiently solved. Finally, the cardinality-constrained approach,
described above, provides an effective method to determine probability bounds for
the constraint violation. The probability bound that the ith constraint is violated

can be approximated as follows:
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| 3]

—_

pr(Z ayay > b;i) < 1—¢( ) (98)

where ¢(a) = \/% e exp(—%)dy is the cumulative standard normal distribution
function, and 27 is the optimal solution of the robust optimization problem.

To summarize, in order to obtain the robust counterpart of an uncertain LP
model similar to (94), the decision-maker needs to set a budget of uncertainty and add
accordingly a protection term in the left-side of the constraints affected by uncertainty.
Finally, replacing the latter protection function by its dual counterpart will provide

a linear robust counterpart that is computationally tractable.

4.4 Robust harvesting planning model

In this section, we first present the deterministic mathematical model of tactical

harvesting planning; then we develop its robust counterpart.

4.4.1 Deterministic harvesting planning model

Notations

Sets

RM: Set of raw materials
BL: Set of harvesting blocks
T Set of time periods

M: Set of manufacturing mills

Parameters

dﬁilm,t: Forecasted demand of raw material rm in period ¢ at harvesting block bl
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cf: Unit cost to harvest block bl during period ¢

¢ gt Unit cost to store raw material rm in block bl during period ¢

frmpie: Stumpage fee for raw material rm in block bl during period ¢

lp;: Maximum number of periods over which harvesting can occur in block bl
ng: Maximum number of blocks in which harvesting can occur during period ¢
bH: The total harvesting capacity in period ¢

Upmpi: Volume of available raw material rm in harvesting block bl

Decision variables

Iy ¢ Inventory of raw material 7m in harvesting block bl at the end of period ¢
yp1: Proportion of harvested block bl in period ¢

Hy;: Binary variable that takes 1 if harvesting occurs in block bl during time period

t and 0 otherwise

The tactical harvesting planning (HP) model tries to minimize the harvesting,
inventory, and stumpage costs. The harvesting decisions involve the blocks where the
harvesting should occur (Hy ) as well as the proportion of the harvested blocks in
different periods of the planning horizon (y ). The inventory of each raw material
in each block in different periods (I, ) is the other decision in the harvesting
model. Constraint (100) formulates the inventory balance of raw materials in each
block. Constraint (101) represents the final inventory of raw materials in each block.
Constraint (102) ensures that the harvested proportion of a block do not exceed the
availability of logs in that block. Constraint (103) describes that if harvesting occurs
in a block, then we can ensure that raw materials from that block are available.
Constraints (104) and (105) correspond to the maximum number of harvesting and

maximum number of blocks in which harvesting can occur, respectively. Constraints

90



(106) limits the harvesting capacity of the blocks in each period.

Min Z = Z chtybl,t( Z Urm,bl)

ble BLteT rmeRM

+ Z Z Z”ﬁrm,blfrm,bz,tybz,t

rmERM bleBL teT

+ Z Z Z Cfmvblat]rm,bl,t (99)

rmeRM ble BL teT

Subject to:
Irm,bl,t - Irm,bl,tfl - d?lm,’t + ﬁrm,blybl,t Vrm, bla t (100)
Limpr,r =0 Vrm,bl (101)
Sy <1 Wl (102)
teT
Yoip < Hppy o V0L (103)
> Hyy<ly Vbl (104)
teT

> Hyi<ng Vit (105)
bleBL

S (e Y. Brmu) bV (106)
ble BL rmeERM
Yoits Lrmopie > 0, Hy o € {0, 1}Vbl,rm,t (107)

4.4.2 Robust harvesting planning model

The HP model is affected by two uncertain parameters namely random log demand
and supply. Notice that these uncertain parameters affect constraints coefficients and
right-hand-sides as well as objective function coefficients. In this study, we model

random demand and supply as uncertain intervals.

Jbl

Let’s denote d’! ¢ as uncertain log demand with the nominal value of d;,, ,, and

m

Upm b1 @S uncertain log supply with a nominal value of ¥y, 5. The uncertain log demand

is assumed symmetric and time-dependent. This random variable (czbl

o) takes values
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in the interval [d% , —d” . d% ,+d” ,]. Then, the scale deviation z% , (belonging
o [~1,1]) of d” . from its nominal value is defined as 2% , = (d® ., —d® )/d% ..
Thus, we can also write d¥, , = d% , +d% 2% ..

Furthermore, ¥y, is assumed time independent and takes values in the interval
[ O bt — Opim,bls Ormpt + Ormopi) - We consider the scale deviation of ., 4 from its nominal
value as Wympt = (Vpm,pt — Vrmop) /Urm,p that belongs to [—1, 1]. Similarly, the random
supply might be rewritten as U, 1 = Upm,pt + W, i O, bl-

As was illustrated in Section 4.3, in order to construct the robust counterpart of
model (99)-(107), we should follow two steps. At first, we should formulate the protec-
tion function for the constraints affected by uncertain parameters as an optimization
problem. Next, by incorporating the dual of the aforementioned protection function
into each constraint, their robust counterpart will be extracted. In what follows, we
provide the robust counterpart of uncertain constraints and objective function terms,

respectively.

4.4.2.1 Robust counterpart of uncertain constraints

The first constraint in the HP model formulates the inventory balance of raw materials
in each block and includes both uncertain parameters (supply and demand). The
main decision variable in this constraint is the proportion of harvested block (v ¢)
while the quantity of the inventory in each block is the state variable (I, p¢). In
the static robust optimization approach, all decision variables are “here and now”
and there is not possibility for recourse actions. Inspired by Bertsimas and Thiele
[61], it is possible to remove the state variables and cumulate the effects of uncertain
parameters by rewriting constraint (100) as the following closed-form equation which

models the evolution of the inventory over time.
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t

Irm,bl,t = Irm,bl,O + Z(ﬁrm.,blybl,s - Jf’lm,s) Vrm, bla t (108)

s=1

As the inventory quantity (state variable) also exists in the objective function, it

is possible to consider the total amount of the storage cost as a constraint such as
. . . S .

(109) by using the closed-form equation (108) and substitute term ¢, [ rmple 11

the objective function by H H,,,; which is defined as the storage cost at the end of

period t.

t

C;S-‘m7bl7t(l7”m,bl,0 + Z({)'r'rn,blybl,s - £?£n75)) S HHr'm,bl,t Vrm, bla t (109)
s=1

Hence, Constraint (100) in model (99)-(107) is replaced by (109) that includes
only “here-and-now” decisions and the uncertain demand and supply affect both its
coefficients and right-hand-side vector. Next, we are looking for the robust counter-
part of constraint (109) which is equivalent to minimizing the inventory cost over all
realizations of uncertain demand and log supply. In other words, we aim for mini-
mizing the maximum amount of the right-hand side of constraint (109) over the set
of all admissible realization of uncertain log demand and supply. To do this, we
should find a feasible solution by considering the worst-cases for uncertain param-
eters. Intuitively, the maximum storage cost occurs when the log availability and
demand, respectively, reach their maximum and minimum values in the given un-
certain intervals. In other words, the worst-case for uncertain supply (O, ) which

is a time-independent parameter iS Uy, 5 + Upmpi, and the worst-case for uncertain

demand (d”

vm.t)s the time-dependent parameter, is calculated as follows. In reality,

it is unlikely that all uncertain demand parameters from period 1 to a given period

t change to their worst-case value, thus we assume a predetermined number of log
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demand parameters in constraint (109) in each block can change to their worst-case
value (I, € [0,t]). With this parameter, the decision maker considers a trade-off
between the level of protection of the constraint satisfaction against the degree of
conservatism of the solution. Accordingly, the following protection function can be

defined for constraint (109).

t
Ma:cimizeg dvt - o

rm,s<rm,s

s=1
t
bl bl
s.t. Z Zrms < Dyt
s=1
0<zl, ., <1 Vs<t (110)

where 2% denotes the scaled deviation of uncertain demand from its nominal value.

m,s

The dual counterpart of this protection function is the following optimization problem.

t
Minimize A, T 0
mimaize rm,t— rm,t + rm,bl.t,s
s=1

st N+ Ormpes > doh o Vrm bl Vs <t

m,

)\bl

rm,t?

GT’m,bl,t,s >0 vrmv blat7vs <t (111)

where )\f,lmt and 0,515 are the dual variables corresponding to the constraints of

protection function (110). By substitution of protection function (110) by (111) and
adding this protection function to (109), the robust counterpart of this constraint
is obtained. Moreover, because the inventory amount at the end of each period
(Lrmopi0 + Zizl(ﬁrm,bliybl,s — ch;lms)) is always greater or equal to zero, constraint (114)
should also be added to the robust counterpart which guarantees the positive amount
of inventory when the minimum amount of log supply and maximum amount of

log demand in the given uncertain intervals is realized. Hence, model (112)-(115)
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represent the robust counterpart of constraint (100).

t

S _ N
HHT’m,bl,t > Crm7b[7t(Irm,bl,0 + Z((Urm,bl + Urm,bl)ybl,s
s=1

Yrm, bl, t

bl 5bl
Aot T Ormoplts = dpyy, s Vrm, bl t, Vs <t

t

(Lrm b0 + Y ((Brmpt = Drm,o0)Yot,s = Ay s) = Apr il

s=1

)\bl

rm,t?

erm,,bl,t,s >0 Vrm,bl,t,Vs <t

t
bl § :
Frm,t + erm,bl,t,s)
s=1

(112)

(113)

t
- Z erm,bl,t,s) >0 vrm, bl, t

(114)

(115)

Constraint (106) in model (99)-(107) is another constraint faced with uncertain

supply (¥pmpi). This constraint indicates that the total quantity that might be har-

vested must not exceed the harvesting capacity in each period. Thus, its robust

counterpart is equivalent to satisfying the capacity constraint in case the total har-

vesting quantity is maximized as a result of maximum amount of available logs in

each block. Accordingly, the following protection function (116) might be developed

for a given ¢ by the budget of uncertainty I'j; which indicates the maximum number

of uncertain supply parameters in each block that can take their worst-case value.

In (116), y;, is the optimal solution of model (99)-(107), and wy,, , is the scaled

deviation from the nominal value of ¥y, 4.

.y « A 1
Maximize g (Y4 E O bl Wy, 1)
bleBL rmeRM

st > wh,y <TH W
rmeRM

0<wl,, <1 Vrm,bl

rm,b

(116)

For the above protection function, we define g; and w7, ;; as the dual variables
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corresponding to its constraints. By applying the same approach explained earlier,
we can substitute the dual of protection function in constraint (106) in order to find

its robust counterpart (constraints (117)-(119)).

Z (ybl,t Z Erm,bl)+ Z Fglqgl'i_ Z Z :u’:”}m,bl sz{_] vt (117)

bleBL rmeRM ble BL rmeRM ble BL

G+ ot = D Ybt Dot Vrm, bl (118)
teT

pps My = 0 Vrm, bl (119)

4.4.2.2 Robust counterpart of uncertain terms in the objective function

As can be observed in model (99)-(107), the first two terms in the objective function
contain uncertain log availability. In order to obtain their robust counterpart, first, we
consider them as constraints. Hence, we substitute (3",cpr e Conoit (O rmerar Orm.bl)

by m,and Y0 e D venn Dorer Vrmbt frmpiYiie) B T2 in the objective function and

consider the following constraints in the harvesting planning model.

Z ZCﬁtybz,t( Z Vrm,b) < 1 (120)

ble BLteT rmeRM

Z Z Zfirm,bzfrm,bl,tybl,t < (121)

rmERM ble BL teT

Recall from 4.4.1 that constraints (120) and (121) try to minimize the harvest-
ing and stumpage cost, respectively. Hence, their robust counterpart is equivalent
to finding a harvesting plan such that the harvesting and stumpage costs over all
realizations of uncertain log supply within the given interval is minimized. Moreover,
it is unlikely that all uncertain supply parameters change simultaneously to their
worst-case value; thus we consider the budgets of uncertainty I';' and I'™ for the

above-mentioned constraints. Intuitively the worst-case for both constraints occur
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when the supply quantities (0, ) take their maximum value. As a consequence, we
propose the following protection functions ((122) and (123)) for constraints (120) and
(121). Notice that in (122) and (123), vy, is considered as the optimal solution of
model (99)-(107), and w?,, ,; and w?, ,; are the scaled deviations from the nominal

value of Uy, 4.

N H | * - 2
Maximize E E Cbltybz,t( E Urm,blwrm,bl)

ble BLteT rmeRM
s.t. Z wgm)bl S F;:ll Vbl
rmeERM
0<wl, ;<1 Vrm,bl (122)

Lo ~ * 3
Maximize g E g Orm, bl frm oLt Yt Wym, bl

rmeRM bleBL teT

st Y > wh,y <T= YT

rmeRM ble BL ble BL

0<w?, ;<1 Yrm,bl (123)

rm,b

Afterwards, by considering g;', ¢™, € and vy, as the dual variables of

:m,bb rm
the related protection functions (122) and (123), the dual of protection functions
are added to constraints (120)-(121) in order to formulate their robust counterparts

(constraints (124)-(128)).
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YD eyl Y Bemw) + D Then D D S <m (124)

ble BL teT rmeRM bleBL rm€RM bleBL
E E E Vrrm, bl frm ptt Yot + 17297 + E E Vbl < T2 (125)
rmERM ble BL teT rmERM ble BL
H ~

an + Ermpl = E Co1eYol tOrm. bt Vrm, bl (126)
teT

97+ Vi = E O bt frm o tYor,e  Vrm, bl (127)
teT

uy

Go1 9" Ermpis Vi = 0 Vrm, bl (128)

Finally, the robust counterpart of the HP model, denoted as R-HP can be formu-

lated as follows:

Min ZR—HP =7 + 7o+ Z Z ZHHrm,bl,t (129)
rmERM ble BL teT

Subject to:

Constraints  (101) — (105); (107); (112) — (115); (117) — (119); (124) — (128) (130)

The R-HP model is a mixed-integer program including more decision variables
and constraints compared to the deterministic HP model. In contrary, this model

protects the harvesting plan against the uncertainty in log demand and supply.

4.5 Numerical results

In this section, we validate the proposed robust harvesting planning (R-HP) model
through a set of realistic-size instances from a lumber supply chain in Canada. The

purpose of the numerical experiments is three-fold.
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Our first goal is to analyze the trade-off between the level and the cost of robust-
ness. More precisely, we are interested in investigating how increasing the degree of
robustness (budget of uncertainty) affects the feasibility and optimality of the nomi-
nal (deterministic) solution. This is important for the decision maker in order to set
a budget of uncertainty so that the harvesting plan obtained by the R-HP model is
feasible in the presence of future uncertainties while it is not too costly (i.e., overpro-
tected against uncertainty). This goal is achieved by the aid of theoretical probability
bounds and through comparison between the solution obtained by the R-HP model
and the nominal one for different levels of budget of uncertainty.

Our second goal is to verify the feasibility and the degree of conservatism of the
robust optimal solution in the presence of randomly generated uncertain demand and
supply parameters. Monte-Carlo simulation is employed for this purpose. This is a
more realistic approach for evaluating the impact of the budget of uncertainty that
will be adopted by the decision maker on the feasibility and the cost of the plan.

Finally, we are interested in studying the structural changes in the optimal nominal
solution after implementing the robust optimization approach. This is due the fact
that decision makers do not prefer drastic changes in plans resulting from adopting
new planning approaches compared to their current practice.

The above-mentioned analyses are carried out on two sets of test problems that are
distinguished by the level of variability of uncertain parameters. In what follows, the
results are provided in three sub-sections corresponding to considering uncertainty in

log supply, log demand, and both log supply and demand.

4.5.1 Case data implementation details

In the harvesting planning case study, we assume that 50 harvesting blocks are avail-

able in the forest during the 12 month planning horizon. The supply capacity of each
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block per month is supposed to be 2350 m3. Adopted from Beaudoin et al. [15],
the maximum number of periods (months) over which harvesting can occur in each
block, and the maximum number of blocks in which harvesting can occur per month
are randomly selected from uniform distributions U(1-6) and U(10-12), respectively.
The total harvesting capacity per month is supposed to be approximately 117,500
m?3.

We define v as the level of variability of uncertain log supply and demand quan-
tities comparing to their nominal values and consider two classes of test problems
corresponding to v = 5% and 20%. This will result Oy, p0 = Y0rmu and cif,lmt = Vc?film’t
in R-HP model provided in 4.4.2.

While considering uncertainty in log supply, we assume that I} and I';;, vary from
0 to |RM| = 14 (the worst-case). Also, I'™ vary from 0 to |RM||BL| = 700 since
™ =2 wep Tol-

When dealing with uncertainty in log demand, we aim at considering time-dependent
budgets of uncertainty inspired by Adida and Perakis [63]. Hence, the following three

scenarios for I, . based on a linear function of ¢ are investigated including: (1)

rm,t
I, =05+02t (2) T, =0.5+0.4¢t and (3) I, = ¢. It is important to note
that T , > ¢ means the worst-case is obtained. The last category of results is con-

ducted based on the combination of budgets of uncertainty described for uncertain
supply and demand. Furthermore, Z"'¢ provided in our experimental results denotes
the optimal nominal objective value when the deterministic (nominal) model is solved
by considering the worst-case bound in the given uncertain interval. This measure is
used to verify whether or not the solution of R-HP model is over-protected against
uncertainty.

Finally, the Monte-Carlo simulation is based on generating random scenarios for

uncertain log supply and demand from their corresponding uniform distribution, and
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verifying the feasibility and the actual objective function value of the robust solution
for each scenario. In other words, for each scenario, the optimal solution of the R-
HP model is plugged into the deterministic model where the uncertain parameters
are substituted by the simulated value. Afterwards, the feasibility and the actual
objective function value of the robust solution are verified.

The robust model in this paper is coded in C++ using CPLEX concert technology
on a Core i7 CPU 3.40GHz computer with 8.00 GB RAM.

4.5.2 Results for uncertainty in log supply parameters

As previously mentioned,the uncertain supply parameter affects harvesting and stumpage
costs in the objective function of R-HP model. Moreover, this parameter affects con-
straint (106) related to the harvesting capacity. Hence, it can be expected that
uncertain supply affects on the feasibility and optimality of the R-HP model’s solu-
tion.

The trade-off between robustness (i.e., the budget of uncertainty) and the cost of
robustness is estimated by calculating the cost deviation (25 ,p — Z8 1 5)/Z8 up,
where ZE ,,» and Z§ ,p are the robust and nominal optimal objective values, re-
spectively.

Another important issue is the analysis of the robust solution in terms of feasibility.
As explained earlier, when the budget of uncertainty achieves its maximum value, the
robust solutions are always feasible. In contrast, the feasibility condition cannot be
guaranteed by considering smaller values for the budget of uncertainty. Recall from
Section 3 that it is possible to provide probability bounds for the constraint violation
in such cases. Based on equation (98), the probabilistic bounds of constraint violation
depend only on the number of coefficients subject to uncertainty (i.e., |J|) and the

budget of uncertainty.
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Figure 4: Robust optimal values vs nominal and the probability bounds for constraint
violation for random supply

Figure (4) represents the percentage increase in the objective function value ver-
sus the nominal one for two levels of supply variability and different values of budget
of uncertainty in constraints (106) and (120)-(121). As expected, when robustness is
enforced to the model, the cost is increased in order to envisage worst-case values for
a certain number of log availability parameters in the objective function (constraints
(120)-(121)) and in constraint (106). The latter increase in the robust objective func-
tion value is the effect of considering such worst-case supply values on harvesting and
stumpage costs. It is worth noting that such worst-cases occur when log availability
parameters (U,n, ) take their highest value. In such cases , more logs are harvested
and consequently the corresponding harvesting and stumpage costs are increased.
Additionally, we can conclude from Figure (4), when the variability level of uncertain
parameters is small (i.e., v = 5%), the impact of imposing robustness on the objective
function is less significant in comparison with higher level of variability. Moreover,
the objective function is increased by increasing the budget of uncertainty. When
the budget of uncertainty is increased, it indicates that the number of uncertain pa-

rameters that take their worst-case value are increased which in turn, is expected to
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increase the cost.

As is observable in Figure (4), the violation probability decreases and tends to
reach zero as we increase the budget of uncertainty to its maximum value. This prob-
ability is near zero when the budget of uncertainty is greater than 8. In other words,
the probability violation in this figure is stable in near 50% of budget of uncertainty.
By increasing the budget of uncertainty, the number of uncertain parameters that take
their worst-case value in the constraint (106) is increased. Thus, the R-HP model
tries to find a feasible solution to satisfy the harvesting capacity in constraint (106)
for such worst-case scenarios. Consequently, the violation probability of constraint
(106) is reduced.

Furthermore, we compare the structural changes in the solutions of robust and
nominal problems. By considering the cumulative portion of harvested blocks (3, yu.e),
no significant structural changes in the solutions of robust model compared to the
nominal problem is observed. Moreover, the changes in the Zbl,t Y+ for lower amount
of budget of uncertainty is more, but this dispersion is not significant.

For the Monte-Carlo simulation results, we randomly generate 500 random log
supply quantities based on different variability levels for each value of budget of
uncertainty. Consequently, we solved 500 % 14 x 2 = 14,000 deterministic models
in order to better analyze the feasibility and the level of conservatism of the robust
solution. At the first test, we check the feasibility of the robust solution in the nominal
problem with simulated random log supplies. These results are depicted in Figure (5)
for the two classes of test instances.

As is shown in Figure (5), when the budget of uncertainty is greater than 3, the
number of infeasible instances equal to zero. Thus, by considering I' > 3, it is possible
to guarantee the feasibility of solutions for random log supplies, and it is not necessary

to increase the value of I' and enforce more costs.
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Figure 5: Feasibility of robust solutions with simulated log supplies

Additionally, we calculate the fraction of simulated instances where the actual
cost is lower than the optimal objective value of the optimal value of robust model.
We observe that in all cases the optimal objective function of robust problem is worse
than the simulated ones. As a consequence, the robust problem overestimates the
actual cost in comparison with the simulated instances.

Finally, we compare the robust problem with the worst-case deterministic model
(WQC). If (ZWC — ZE ,5) > 0, it is concluded that the robust problem proposes
a solution with lower cost. Noted that the ZE ,, are related to the average of the
robust objective values obtained based on different values of budget of uncertainty.

The latter analysis is presented in Table (9).

Table 9: Comparison of Z"¢ and Z& ,,, with uncertain log supply

v =5% v =20%
ZW¢ 21,081,400 23,809,300
ZB .» 21,070,193 23,773,686

As (ZWC — ZE ) > 0 for both variability levels in Table (9), it is concluded

that the robust problem outperforms the worst-case deterministic problem.
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4.5.3 Results for uncertainty in log demand parameters

As mentioned earlier, uncertain demand affects the feasibility of log inventory levels
as well as the inventory holding cost. Table (10) shows the percentage increase of the
robust objective function value compared to the nominal case for the three scenarios
corresponding to the time-dependent budget of uncertainty, described in 4.5.1. As
expected, the optimal robust costs and the level of conservatism increase as the un-
certainty variability level increases. Also, no significant difference between different
scenarios for modeling the budget of uncertainty is observed. It is noteworthy that
the increased objective function value is the result of augmented log inventory holding
cost obtained in the R-HP model. Recall from section 4.4.2.1 that the robust counter-
part of constraint (109) is equivalent to the case where some log demand parameters
take their smallest value. This, as a consequence, will increase the inventory holding

cost.

Table 10: Percentage increase in the cost of R-HP model compared to the nominal
model

v=5% ~v=20%
Scenario 1 (T2, , = 0.5+0.2t) 20.70%  83.01%

Scenario 2 (T2, , = 0.5+ 0.4t) 21.45%  86.06%
Scenario 3 (I' . =1t) 21.47%  86.17%

m

Again, we calculate the probability bounds for constraints (109) and (114) viola-
tion for different scenarios of budget of uncertainty in different periods in the planning
horizon. The results of the latter probability bound are summarized in Figure (6).
Recall from 4.4.2.1, constraint (109) might be violated when all log demand param-

eters (d!

o) take their minimum values in their uncertainty intervals. In contrast,

constraint (114) is expected to be violated when all demand parameters take their
maximum values in the uncertainty interval. The curve of probability bounds in Fig-

ure (6) reaches to zero when we face with the worst-case scenario which is shown
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by scenario 3. As scenarios 1 and 2 do not reflect the worst-case for demand, their
curves do not reach to zero and decreased convexly by the time. Furthermore, when
the budget of uncertainty in scenario 3 is greater and equal to 7, the probability of
violation reaches to zero. In other words, the probability violation in this figure is
stable in near 50% of budget of uncertainty. On the other hand, as we proceed over
the planning horizon, the budget of uncertainty is increased in constraints (112) and

(114). Consequently, the violation probability of constraints are reduced.
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Figure 6: The probability bounds for violation of constraints (109) and (114) in R-HP
model

In the presence of uncertainty in log demand, we compare structural changes
in solution of robust and nominal problems. Since the robust model tries to find
a feasible solution in the worst-case perspective, demand is always assumed as its
highest value (in order to satisfy constraint (114)), so the robust model increases
the portion of harvested blocks. Again, this comparison indicates that there is not a
significant change in (3, , y..) compared to nominal solution although the difference
is more than the previous case where the log supply was considered as an uncertain
parameter. Moreover, the behavior to the structural changes increases by increasing
the budget of uncertainty as well as increasing the variability level.

For the simulation tests, we randomly generate 500 random demand parameters for
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each variability level and each budget of uncertainty scenario (totally 3000 instances).
First, the feasibility of the robust solution in the nominal problem with randomly
generated log demand is verified. It should be noted that the uncertain demand
affects 8,400 constraints (constraint (114)) in R-HP model. The simulation results
reveal that the number of infeasible constraints are negligible. Table (11) provides
the percentage of infeasible constraints for different scenarios of budget of uncertainty

and demand variability levels.

Table 11: The percentage of infeasible constraints in nominal model

vy=5% v=20%
Scenario 1 (0.2t +0.5)  0.02%  0.03%
Scenario 2 (0.4t +0.5) 0.003%  0.005%

Scenario 3 (t) 0% 0%
As the third scenario (I} , = ) considers the worst-case of uncertain demand

in the robust model, the number of infeasible constraints in the nominal problem
with simulated demand equals zero. Moreover, as the variability level is increased,
the dispersion of simulated demand and the number of infeasibile constraints are
increased.

Next, we compare the objective functions of simulated instances by the robust one
for feasible instances. The results indicate that the objective functions of all simulated
instances are better than the corresponding objective value in the robust problem.
Finally, we can conclude that the robust problem presents a more conservative solution
in comparison with the simulated instances.

Finally, the comparison of the robust model with the worst-case deterministic one
(WC) is presented in Table (12). Noted that the ZF ;5 objective values are related

to the second scenario (I'” , = 0.4t + 0.5) in the robust model.

rm,t

Table (12) indicates that the robust problem outperforms the worst-case deter-

ministic problem in both uncertainty levels.
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Table 12: Comparison of Z"¢ and ZE ,,, with uncertain log demand

v =5% v = 20%
ZWC¢  24.305,800 37,308,800
ZB . 24,279,000 37,195,100

4.5.4 Results for uncertainty in log supply and demand pa-

rameters

In this case, we test all generated instances in the previous sections for some budget
of uncertainty and variability levels for uncertain log supply and demand. In Figures
(7)-(9), 71 and 7, indicate the variability levels for supply and demand, respectively.
These figures show the percentage increase in the objective function of the robust
model in comparison with the nominal one, where (y1,v2) = {(5%, 5%), (5%, 20%), (20%, 5%) }.
Based on the latter set, we considered 3 cases for variability level of supply and de-
mand, 3 scenarios to generate budget of uncertainty corresponding to demand (Fflmt),

and 14 cases for I'}; or I'}, that totally tests 14 x 3 x 3 = 126 problems.
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27.00% P R R I B
]

o
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o o
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26.00% | %

Percentage increase in the objective
function

25.80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Figure 7: Percentage increase in the objective function where (y1,v2) = (5%, 5%)

Similarly, the elaborated increase in the objective function with considering un-

certainty in both supply and demand is the consequence of increasing harvesting,
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Figure 8: Percentage increase in the objective function where (v1,72) = (20%, 5%)
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Figure 9: Percentage increase in the objective function where (v1,72) = (5%, 20%)

stumpage and inventory holding costs in the forest in order to satisfy R-HP con-
straints for all admissible amount of supply and demand. Moreover, it is concluded
that when the variability level of uncertain parameters are smaller, the impact of
imposing robustness is less in comparison with higher level of variability.

The comparison between Figure (4), Table (10) and Figures (7)-(9) indicates that

the objective function is more sensitive to the uncertain demand.
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4.6 Conclusions

In this paper, we proposed a robust optimization model based on cardinality-constrained
approach to address the forest harvesting planning under log supply and demand un-
certainty. The latter provides the possibility of adjusting the level of robustness of
the solution in terms of feasibility in the presence of uncertainty against the cost of
such a robust solution. We also conducted an extensive set of experiments to compare
the quality of the robust solution in terms of feasibility and cost. This has been real-
ized by the aid of theoretical bounds and Monte-Carlo simulation. Our experimental
results revealed the high quality of robust solutions in terms of feasibility with an
acceptable overestimation of the cost. The above-mentioned results provide enough
insight to the decision maker in order to choose the right budget of uncertainty such
that a feasible plan in the presence of future uncertainties at a reasonable cost is ob-
tained. Furthermore, compared to the plan proposed by the nominal (deterministic)
model, no significant structural change in the total amount of harvesting in different
blocks was observed. This is a desirable feature given the fact that the decisions mak-
ers do not prefer fluctuations in the harvesting plan while facing with uncertainties.
According to the experimental results, it can be concluded that the proposed robust
planning tool is essential for forest supply chain in order to survive against market
perturbations and log growth variations.

Future research would focus on the implementation of the proposed robust ap-
proach in integration with other tactical decisions in the lumber supply chain such as
sawmills production planning where non-homogeneous and random characteristics of

log supply and demand might result in more random parameters.
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Chapter 5

Conclusion and Future Work

In this thesis, we investigated in integrated tactical planning in the lumber supply
chain while considering uncertain supply and demand. At first, we focused on the
deterministic context. Then, we considered uncertainty into the tactical decisions
in the lumber supply chain and proposed stochastic programming and robust opti-
mization models in order to handle the latter uncertainties. To solve the models in
each section, we developed efficient algorithms and evaluated them based on data
sets that sufficiently represent realistic-scale lumber supply chains in Canada. The
experimental results in each section, showed the high performance of the proposed
mathematical models and solution algorithms in order to find high quality plans in a
considerably small CPU time.

The remainder of this chapter is dedicated to elaborate the concluding remarks
of this research provided in each chapter. Then, several avenues for future work

following this dissertation are presented.
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5.1 Concluding Remarks

In the second chapter, we proposed a mixed-integer programming (MIP) model to
address harvesting, procurement, production, distribution, and sale decisions in the
lumber supply chain in an integrated scheme. The benefit of the integrated model
was evaluated by comparing the total profit/cost of the integrated model and the
decoupled planning models. Our experimental results revealed that substantial im-
provement can be obtained by using an integrated model rather than the decoupled
models. On the other hand, solving the integrated MIP model for large-scale in-
stances was an issue. Hence, in order to overcome the complexity of the integrated
model for real-size instances, we proposed a heuristic algorithm in the framework of
Lagrangian Relaxation algorithm where the performance of the sub-gradient algo-
rithm was improved in terms of convergence and the feasibility of converged solution.
Our computational results on a set of large-scale test cases revealed the effectiveness
of the proposed heuristic in obtaining high quality feasible solutions in a consider-
ably reduced CPU time comparing to using a commercial solver, and the classical
Lagrangian Relaxation algorithm.

In Chapter 3, we proposed a multi-stage stochastic mixed-integer programming
(MS-MIP) model to incorporate uncertainties into the lumber supply chain tactical
planning model. As the proposed model was a large-scale MS-MIP model with no
special structure, it could not be solved by commercial solvers or relevant approached
in the literature. Hence, we proposed a new algorithmic procedure entitled as the
Hybrid Scenario Cluster Decomposition (HSCD) algorithm. The HSCD scheme pro-
posed in this research is an accelerated scenario cluster decomposition method that
decomposes the original MS-MIP model into smaller MS-MIP sub-models correspond-

ing to decomposed scenario sub-trees in the original scenario tree. As solving each
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sub-problem in real instances would be another issue, we proposed an ad-hoc heuris-
tic (a Lagrangian based heuristic) and a Variable Fixing Heuristic (VFH) in order to
speed up the convergence of the HSCD algorithm. Finally, we evaluated the perfor-
mance of the HSCD algorithm by conducting a set of large-scale test instances. The
numerical results revealed that the HSCD algorithm can overcome the computational
complexity of MS-MIP models, and find high quality solutions in a reasonable CPU
time.

Due to the computational complexity of multi-stage stochastic programming ap-
proach, in Chapter 4, a robust optimization model based on cardinality-constrained
approach was proposed. This approach provided the possibility of adjusting the level
of robustness of the harvesting plan over the planning horizon in terms of feasibility
in the presence of uncertainty against the cost of such robust solution. An exten-
sive set of experiments through Monte-Carlo simulation was also conducted in order
to evaluate the quality of the robust solution in terms of feasibility and cost. The
numerical results revealed the high quality of robust solutions in terms of feasibility
with a negligible increase in the cost. Moreover, by comparing the proposed plan in
the deterministic and robust model indicated that there is no significant structural

change in the total amount of decision variables.

5.2 Future research directions

There are several avenues for future research directions following this thesis. The per-

spectives driven from this dissertation mostly revolve around the following directions.

e [t would be interesting to investigate various coordination mechanisms in the
lumber supply chain in order to facilitate the implementation of the proposed

integrated tactical planning tool in this industry. Game-theoretical approaches
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could be adopted to achieve a win-win situation for all parties of the lumber
supply chain. The value of integration can then be interpreted as the maximum
price that can be paid in order to facilitate information sharing among entities

of this supply chain.

It is of interest to implement the proposed approach in Chapter 3, Hybrid Sce-
nario Cluster Decomposition (HSCD) algorithm, on parallel machines in order
to reduce the CPU time. Moreover, it is possible to embed other efficient heuris-
tic algorithms within the HSCD scheme in order to efficiently solve scenario

cluster sub-models.

Furthermore, the HSCD algorithm can be applied to other supply chain tacti-
cal planning problems that incorporate uncertain parameters with a dynamic
behavior over time. Finally, further research can also be focused on considering
robustness terms into the objective function of the multi-stage stochastic model
in Chapter 3 and controlling the variability of the recourse cost under various

scenarios.

The cardinality-constrained approach developed in Chapter 4 can be applied to

other supply chain tactical planning problems that incorporate uncertainties.

The uncertain parameters studied in the thesis are random log supply and
lumber demand. Other random parameters such as sawmills production yield
can be taken into account in the proposed stochastic and robust optimization
models and applying efficient algorithms to solve them would be interesting in

order to further investigations.
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