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Abstract

Integrated tactical planning in the lumber supply chain under demand

and supply uncertainty

Omid Sanei Bajgiran, Ph.D.

Concordia University, 2016

Lumber supply chain includes forests as suppliers, sawmills as production sites,

distribution centers, and different types of customers. In this industry, the raw ma-

terials are logs that are shipped from forest contractors to sawmills. Logs are then

sawn to green/finished lumbers in sawmills and are distributed to the lumber market

through different channels. Unlike a traditional manufacturing industry, the lumber

industry is characterized by a divergent product structure with the highly heteroge-

neous nature of its raw material (logs). Moreover, predicting the exact amount of

the product demand and the availability of logs in the forest is impossible in this

industry. Thus, considering random demand and supply in the lumber supply chain

planning is essential.

Integrated tactical planning in a supply chain incorporates the synchronized plan-

ning of procurement, production, distribution and sale activities in order to ensure

that the customer demand is satisfied by the right product at the right time. Briefly,

in this dissertation, we aim at developing integrated planning tools in lumber supply

chains for making decisions in harvesting, material procurement, production, distri-

bution, and sale activities in order to obtain a maximum robust profit and service

level in the presence of uncertainty in the log supply and product demand. In order

to gain the latter objectives, we can categorize this research into three phases. In

the first phase, we investigate the integrated annual planning of harvesting, procure-

ment, production, distribution, and sale activities in the lumber supply chain in a
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deterministic context. The problem is formulated as a mixed integer programming

(MIP) model. The proposed model is applied on a real-size case study, which leads to

a large-scale MIP model that cannot be solved by commercial solvers in a reasonable

time. Consequently, we propose a Lagrangian Relaxation based heuristic algorithm in

order to solve the latter MIP model. While improving significantly the convergence,

the proposed algorithm also guarantees the feasibility of the converged solution.

In the second phase, the uncertainty is incorporated in the lumber supply chain

tactical planning problems. Thus, we propose a multi-stage stochastic mixed-integer

programming (MS-MIP) model to address this problem. Due to the complexity of

solving the latter MS-MIP model with commercial solvers or relevant solution method-

ologies in the literature, we develop a Hybrid Scenario Cluster Decomposition (HSCD)

heuristic algorithm which is also amenable to parallelization. This algorithm decom-

poses the original scenario tree into a set of smaller sub-trees. Hence, the MS-MIP

model is decomposed into smaller sub-models that are coordinated by Lagrangian

terms in their objective functions. By embedding an ad-hoc heuristic and a Variable

Fixing algorithm into the HSCD algorithm, we considerably improve its convergence

and propose an implementable solution in a reasonable CPU time.

Finally, due to the computational complexity of multi-stage stochastic program-

ming approach, we confine our formulation to the robust optimization method. Hence,

at the third phase of this research, we propose a robust planning model formulated

based on cardinality-constrained method. The latter provides some insights into the

adjustment of the level of robustness of the proposed plan over the planning horizon

and protection against uncertainty. An extensive set of experiments based on Monte-

Carlo simulation is also conducted in order to better validate the proposed robust

optimization approach applied on the harvesting planning in lumber supply chains.
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Chapter 1

Introduction

In this chapter, first we provide the motivation of this thesis. Then, we describe the

problem studied. The scope and objectives, as well as the thesis organization are

provided at the end of this chapter.

1.1 Research motivation

In the divergent-type production systems, several products can be produced after

processing a common material. Amongst different examples, we can refer to indus-

tries that process natural resources (such as forestry, oil & gas, etc.). The variable

mix of products, in addition to the existence of by-products, make the coordination

of production, procurement, distribution and sale planning in such supply chains

more difficult. In lumber supply chain, in particular, different types of uncertainties,

namely, uncertain supply and demand make the lumber supply chain planning even

more complicated.

Because of these characteristics, lumber supply chain tactical planning represents a

major challenge in this industry that cannot be addressed by commonly used spread-

sheet solutions. Yet, more sophisticated approaches such as optimization models
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would be able to better capture the aforementioned features. On the other hand,

forests in Canada belong to the public sector while sawmills and distribution chan-

nels are independent private companies. Hence, tactical planning in such value chain

can be addressed via either a decoupled or an integrated approach.

A decoupled planning approach, which is the current practice in the lumber in-

dustry in Canada, is implemented via solving the decoupled harvesting, procurement,

production, and sale/distribution models in a sequential manner. However, due to

the fact that only rough estimations of upstream entities’ capacities (e.g., harvest-

ing capacity) are considered in models corresponding to downstream entities (e.g.,

sawmills), sub-optimal plans in terms of supply chain profit would be highly expected.

For instance, smaller quantities of products can be promised to customers, which will

directly impact the supply chain revenue. In contrary, promising sale amounts that

are more than capacities of sawmills would lead to considerable quantities of backlogs

and increased supply chain costs.

The purpose of an integrated model is to combine supply chain functions with

the goal of increasing efficiency and better connecting demand with supply, which

can both improve customer service and lower costs. Consequently, by proposing a

mathematical model dealing with integrated planning in different entities of lumber

supply chains as well as developing efficient solution approach to solve the resulting

complex integrated mathematical model for real-size instances, some important chal-

lenges in the lumber supply chain tactical planning literature will be covered. To

the best of our knowledge, less effort has been done in the literature in integrating

tactical decisions in the lumber supply chain planning.

The plans proposed by deterministic approaches are not realistic and robust in the

presence of future uncertain events [1]. In the integrated tactical planning in lumber

supply chains, lack of knowledge in the availability of logs in the forest concludes
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that the right quality and quantity of raw materials are not considered in the pro-

curement plan. This uncertain supply makes the output of the production process to

be different from the planned production quantities. As a consequence, the customer

demand cannot usually be satisfied compared to the promised service level. Finally,

the unrealistic distribution decisions resulted by uncertain production quantities and

demand can lead to increased transportation cost and negative environmental effects.

This is the other motivation of this research in order to develop robust integrated

planning tools that protects the plan against undesirable random variations in supply

chain parameters. Thus, we aim for investigating the effectiveness of implementing

stochastic programming and robust optimization approaches in obtaining a robust

tactical plan in this value chain.

1.2 Problem description

The lumber supply chain investigated in this research is a network that includes

forests as supply entities, sawmills as production units, distribution centers (DCs),

sale departments, and customers. Forests are composed of blocks that contain differ-

ent families and species of trees. Two main operations in the forests are harvesting

and forwarding. Through the harvesting operations in forests, the trees are cut down,

piled, and thinned in the harvesting blocks. The forwarding operations collect the

piles and transfer them to the storage locations in the harvesting blocks or to the ad-

jacent forest roads. Finally, the logs are transported to sawmills by trucks. In forests,

we are dealing with harvesting planning where the harvesting schedule on different

blocks over the planning horizon must be determined. Wood procurement planning

that incorporates decisions on the quantity and timing of ordering logs is a compli-

cated task, as a multitude of factors must be taken into account. It is even more

complex in a multiform environment, where forest stands are composed of several

3



tree species.

Sawmills purchase logs from the forest, and then transform them to lumbers as

main products, and chips or sawdust as by-products. There are three main processes

in sawmills: sawing, drying, and finishing. In the sawing process, the logs are cut

into different sizes of rough lumbers by different cutting patterns. In the drying

process, the lumber moisture contents are reduced in large dryers or in air. In the

finishing process, the lumbers are surfaced, trimmed and sorted based on customer

requirements. According to the demand, some logs are shipped to the distribution

centers or directly to customers after the sawing process, while others are first sent

to drying and finishing processes and then are shipped to distribution centers or

customers. Product shipment to customers is carried out by a number of distribution

companies that use different vehicle types. Sawmills are dealing with procurement

and production planning during the planning horizon.

The supply chain serves contract-based customers (e.g., construction industry

and furniture manufacturers) and non-contract based customers (e.g., pulp & paper

industries or the spot market). Contract-based customers sign a contract at an agreed

price and quantity for a given planning horizon. Although the contract demand must

be satisfied, the enterprise reserves the right of postponing some parts of agreed

quantities because of capacity shortage in the demand period. Unsatisfied demand

may be served in a future period as the backlog. When there is surplus capacity in

sawmills, the spot market is sought to absorb the remaining capacity. Distribution

centers seek a distribution plan during the planning horizon while sale departments in

the lumber supply chain are looking for realistic amounts of sale that can be promised

to customers.

In the lumber supply chain, the availability of raw materials in the forest cannot be

forecasted with certainty. Moreover, forecasting the exact amount of demand is also

4



impossible. Hence, considering random log supply and lumber demand is essential

for robust tactical planning in the lumber supply chain planning.

To the best of our knowledge, less attempt has been done in the literature on

developing an integrated tactical planning model that leads to robust plans in the

presence of uncertainties.

1.2.1 Scope and objectives

According to the existing gaps in the literature, our general objective is to develop

a robust tactical planning tool for the lumber supply chain in the presence of uncer-

tainties. The specific objectives of this dissertation is described as follows:

1. To propose a comprehensive literature review on integrating harvesting, wood

procurement, production, distribution, and sale decisions in the lumber supply chain

2. To formulate a mathematical programming model to coordinate the harvesting,

wood procurement, production, distribution, and sale planning in the lumber supply

chain

3. To develop an efficient algorithm in order to solve the proposed large-scale

integrated model in 2

4. To consider the random log supply and demand and model them into the

proposed integrated model in 2 by the aid of stochastic and robust optimization

optimization approaches

5. To develop efficient solution strategies that are able to find high quality solu-

tions for the resulting stochastic programming and robust optimization models

6. To explore comprehensive test instances in order to validate the proposed

models and methodologies under realistic circumstances in Canadian lumber supply

chains
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1.2.2 Organization of the thesis

This Section outlines the layout of this thesis. This thesis consists of five chapters

and organizes as follows. Chapter 1 provides the motivations and a brief description

of the problem investigated in this thesis. Chapter 2 is dedicated to developing an

integrated model for the annual planning of harvesting, procurement, production,

distribution, and sale activities in the lumber supply chain. A mixed integer pro-

gramming (MIP) model as well as an efficient algorithm to solve it is developed in

this chapter. Furthermore, in order to evaluate the value of integration , the com-

parison of the integrated model and decoupled planning models is also provided. In

order to develop a more realistic plan in lumber supply chains, we take into account

uncertain log supply and demand and propose a multi-stage stochastic mixed-integer

programming (MS-MIP) model corresponding to the tactical planning in the lum-

ber supply chain provided in Chapter 3. As the MS-MIP is a complex model with

no special structure, we develop a Hybrid Scenario Cluster Decomposition (HSCD)

heuristic in order to solve it. Afterwards, the efficiency of the HSCD algorithm is

evaluated by a set of realistic-scale test cases in this chapter. Chapter 4 attempts

to provide a robust optimization method in order to address stochasticity in lumber

supply chains. Hence, we formulate a robust planning model based on cardinality-

constrained method and adjust the level of robustness of the proposed plan. An

extensive set of experiments based on Monte-Carlo simulation is also conducted in

this chapter in order to validate the proposed robust optimization approach. Finally,

Chapter 5 summarizes this dissertation by providing some concluding remarks and

recommendations for future works.
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Chapter 2

The value of integrated tactical

planning optimization in the

lumber supply chain

This chapter is dedicated to the article entitled “The value of integrated tactical plan-

ning optimization in the lumber supply chain.” It was published in the International

Journal of Production Economics in November 2015. The version presented in the

thesis is identical to the final corrected version sent to the editor for publication.
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Abstract

This study investigates the integrated annual planning of harvesting, procurement,

production, distribution, and sale activities in the lumber supply chain. The problem

is formulated as a mixed integer programming (MIP) model in which the binary vari-

ables correspond to the harvesting schedule over the planning horizon. The proposed

model is applied on a real-size case study, which leads to a large-scale MIP model

that cannot be solved by commercial solvers in a reasonable time. Consequently, we

propose a heuristic algorithm which iteratively updates the search step-size of the

sub-gradient method in the Lagrangian Relaxation algorithm through obtaining a

new lower-bound on the objective function value based on the most recent upper-

bound. While improving significantly the convergence, this heuristic also guarantees

the feasibility of the converged solution. Furthermore, in order to measure the value

of integration, we compare the integrated model with the decoupled planning mod-

els currently implemented in the lumber industry. It is observed that, depending on

the number of decoupled models, 11%-84% profit improvement can be achieved by

considering an integrated model. Finally, the advantage of the proposed heuristic

algorithm in finding high quality plans in 51%-77% less CPU time comparing to a

commercial solver and the classical Lagrangian Relaxation algorithm is demonstrated

through a set of real-size test instances.

2.1 Introduction

2.1.1 Research motivation

Lumber supply chains incorporate forest, as the supplier, sawmills as the manufactur-

ing entities, different distribution channels, as well as contract and non-contract-based
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customers. Unlike the manufacturing industry which has a convergent structure (i.e.,

assembly lines), the lumber supply chain (SC) is characterized by: (i) a divergent

structure (i.e., logs are transformed into several products and by-products), (ii) the

highly heterogeneous nature of its raw material, and (iii) different manufacturing

processes [2]. Because of these characteristics, lumber supply chain tactical planning

represents a major challenge in this industry that cannot be addressed by commonly

used spreadsheet solutions. Yet, more sophisticated approaches such as optimization

models would be able to better capture the aforementioned features. Furthermore, it

is assumed that forests (supply entities) belong to the public sector, while sawmills

and distribution channels are independent private companies. Hence, tactical plan-

ning in such value chain can be addressed via either a decoupled or an integrated

approach.

A decoupled planning approach, which is the current practice in the lumber in-

dustry in Canada, is implemented via solving the decoupled harvesting, procurement,

production, and sale/distribution models in a sequential manner. However, due to the

fact that only rough estimations of upstream entities’ capacities (e.g., harvesting ca-

pacity) are considered in models corresponding to downstream entities (e.g., sawmill

production planning model), sub-optimal plans in terms of SC profit would be highly

expected. For instance, smaller quantities of products can be promised to customers,

which will directly impact the SC revenue. In contrary, promising sale amounts that

are more than capacities of sawmills would lead to considerable quantities of backlogs

and increased SC costs.

The purpose of an integrated model is to combine supply chain functions with the

goal of increasing efficiency and better connecting demand with supply, which can

both improve customer service and lower costs. To the best of our knowledge, less

effort has been done in the literature in integrating tactical decisions in the lumber

9



supply chain planning. The problem dealt with in this paper is focused on integrating

tactical planning decisions in lumber supply chains. It can be stated by the following

research questions:

(i) How to integrate all medium-term decisions that different entities of lumber

supply chains are dealing with?

(ii) What are the benefits of the integrated model in comparison with decoupled

models in lumber supply chains?

(iii) How to solve the resulting complex integrated mathematical model for real-

size instances?

By answering the proposed research questions, some important challenges in the

lumber supply chain tactical planning literature will be covered. In what follows,

we first review the literature on lumber supply chain tactical planning; then, we

summarize the contributions of the article.

2.1.2 Relevant literature

Tactical planning in a supply chain incorporates the synchronized planning of pro-

curement, production, distribution and sale activities, in order to ensure that the

customer demand is satisfied by the right product at the right time [3]. A systematic

review on supply chain tactical planning models was provided in [4]. Comelli et al. [5]

proposed an approach to evaluate financial benefits of supply chain tactical planning

in terms of cash flow. An iterative procedure for optimizing production and inventory

planning was proposed in [6]. A dynamic programming approach for production and

inventory planning under random demand was proposed in [7].

Over the last twenty years, much research has been conducted into the partial inte-

gration of the functions in a SC due to the difficulty in their complete integration [8].

Integrated design and tactical planning in bio-mass value chains has been investigated

10



in [9–11]. Moreover, SC tactical planning is also addressed in the framework of Sales

& Operation planning (S&OP) in the literature. Recent studies consider S&OP as

a synchronization mechanism that integrates the demand forecast with supply chain

capabilities through coordination of marketing, manufacturing, purchasing, logistics,

and financing decisions and activities [12, 13]. The relevant literature on the partial

integrated planning in the forestry industry can be summarized as follows.

Harvesting planning is one of the most important decisions in the lumber supply

chain. Two main operations in the forests are harvesting and forwarding. The main

important tactical decisions in the forests are the harvesting area (block) selection and

bucking over the planning horizon [14]. Wood procurement models can be tracked

back to the early 1960s. Since that time, several models have been developed to

address different aspects of wood procurement [15]. Some of these models have been

designed for specific activities such as skidding or transportation [16, 17]. Beaudoin

et al. [15] proposed a deterministic model for forest tactical planning. They also

assessed the impact of uncertainty into their model and evaluated these uncertainties

under alternative tactical scenarios by the aid of simulation. Other models tried

to integrate several forest planning decisions in a single model, in order to capture

possible synergies between them. As an instance, Burger and Jamnick [18] integrated

harvesting, storage, and transportation decisions. Andalaft et al. [19] integrated

harvesting and road-building decisions. Karlsson et al. [20] presented an optimization

model for annual harvest planning. Their model includes transportation planning,

road maintenance decisions, and control of storage in the forest and at terminals in

mills. Bredstrom et al. [14] formulated a mixed-integer programming (MIP) model

to integrate the assignment of machines and harvest teams to harvesting blocks.

They proposed a two stage methodology such that the first one solves the assignment

and the second one tries to schedule. Dems et al. [21] developed a MIP model
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for annual timber procurement planning with considering bucking decisions in order

to minimize the operational costs such as harvesting, transportation, and inventory

costs. In their proposed procurement planning model, they considered a multi-period,

multi-product, multiple blocks and multi-mill setting. Chauhan et al. [22] proposed

an integrated approach for harvesting, bucking, and transportation decisions. They

assumed a multi-product and multi-mill setting in a single period planning horizon.

To minimize the harvesting and transportation costs in the forest, they developed a

heuristic algorithm based on the column generation approach. However, to the best

of our knowledge, there is no attempt to coordinate the above mentioned decisions

(i.e., harvesting schedule, raw material quantity, etc.) with production, distribution,

and sale decisions in the lumber SC.

There are several contributions in the literature focused on lumber production

planning. Among them, Maness et al. [23] proposed a MIP model to simultaneously

determine the optimal bucking and sawing policies based on demand and final prod-

uct prices. Singer et al. [24] presented a model for optimizing production planning

decisions in the sawmill industry in Chile. They also demonstrated the benefit of

collaboration in the SC. Kazemi Zanjani et al. [25, 26] proposed a two-stage stochas-

tic programming model and two robust optimization models for sawmill production

planning by considering the non-homogeneity of raw materials. Kazemi Zanjani et

al. [27] proposed a multi-stage stochastic program for sawmill production planning

under demand and yield uncertainty.

To summarize, the available research on lumber supply chain tactical planning

only covers the decoupled or partially integrated models. In addition, majority of

the existing MIP models are solved by the aid of commercial solvers such as CPLEX.

However, solving the integrated tactical planning model in the lumber supply chain,

which is a large-scale MIP model, by the aid of a commercial solver is expected to be
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very time-consuming for real-size instances.

2.1.3 Contribution and article outline

Based on the existing literature gaps in coordinating tactical decisions in lumber

supply chains, we aim to integrate harvesting, procurement, production, distribution,

and sale decisions in the lumber supply chain so as to maximize the total profit of the

supply chain. Our integrated model considers all entities of the lumber supply chain;

therefore it is more comprehensive than the existing models. Moreover, according to

the current practice in the lumber industry, three decoupled models are formulated

representing, respectively, harvesting/procurement, production, and sale/distribution

decisions. In order to demonstrate the sub-optimality of the currently used tactical

plans, obtained by solving the decoupled models in a sequential manner, we compare

the SC profits. Our experimental results on a number of realistic test cases show

a significant gap in the SC profit between our integrated model and the existing

decoupled planning models. This evaluation of the profit gap can be exploited by

our industrial partners to promote for more integration in the lumber SC. It allows

the quantification of the acceptable effort to reach the integration. In fact, this value

of integration can be interpreted as the maximum price that can be paid in order

to facilitate such integration, for example by information sharing and collaboration

mechanisms.

The integrated tactical planning problem is formulated as a MIP model with

dozens of families of constraints corresponding to different entities of the lumber SC.

Hence, solving this model for real-size instances in a reasonable time is another chal-

lenge which is covered in this paper. To solve this issue, we propose an enhanced

Lagrangian Relaxation (LR) algorithm that addresses two key issues related to the
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classical LR method, namely slow convergence and infeasibility of the converged so-

lution. The latter enhancement is achieved by proposing a heuristic algorithm which

iteratively updates the search step-size of the sub-gradient method in the LR algo-

rithm through obtaining an improved lower-bound on the objective function value.

By the aid of several test cases, we demonstrate that the proposed heuristic for up-

dating the lower-bound guides the sub-gradient algorithm in a way that a high quality

feasible solution (i.e., with a very small optimality gap) can be obtained in a relatively

small CPU time.

The proposed methodology can be summarized by the following steps:

Step 1 - Definition of the lumber supply chain network: This is based on the mapping

of all the supply chain entities, in order to facilitate the development of the mathe-

matical models.

Step 2 - Formulation of the integrated tactical planning optimization model: An

integrated mathematical model is provided to simultaneously address the tactical

planning decisions.

Step 3 - Formulation of the decoupled tactical planning optimization models: We

develop decoupled mathematical models that correspond to the currently practiced

tactical planning approach in industry.

Step 4 - Development of solution methods to solve the large sized integrated model : To

solve the large mixed-integer programming formulated in Step 2, an efficient heuristic

is developed.

Step 5 - Comparison of the models: The value of integration is evaluated by comparing

the integrated tactical planning model with the decoupled models.

To summarize, the paper contribution is twofold. Not only a new integrated model

is proposed and compared to several decoupled models, but also an efficient heuristic

algorithm is developed in order to solve the resulting large-scale integrated model for
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real-size instances of an industrial case study.

The paper remainder is organized as follows. The mathematical models are pre-

sented in Section 2.2. The solution methodology is provided in Section 2.3. Finally,

the numerical results and conclusions are presented in Sections 2.4 and 2.5, respec-

tively.

2.2 Mathematical models

In this section, after explaining the lumber SC network, we formulate the integrated

model and the decoupled models.

2.2.1 Defining the lumber supply chain network

The lumber supply chain entities are summarized as a network in Fig.1. This network

includes forests as supplier entities, sawmills as production units, distribution centers

(DCs), sale departments, and customers. Forests are composed of blocks that contain

different families and species of trees. Through the harvesting operations in forests,

the trees are cut down, piled, and thinned in the harvesting blocks. The forwarding

operations collect the piles and transfer them to the storage locations in the harvesting

blocks or to the adjacent forest roads. Finally, the logs are transported to sawmills by

trucks. In forests (supply entities), we are dealing with harvesting planning where the

harvesting schedule on different blocks over the planning horizon must be determined.

The availability of each family of raw material, storage, and transportation capacity

of each block are important parameters that should be considered in the harvesting

planning. Furthermore, the maximum number of harvesting in each block and the

maximum number of blocks in which harvesting can occur in each period in the

planning horizon are other important factors that must be considered in the harvesting
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planning.

Sawmills purchase logs from the forest, and then transform them to lumbers as

main products, and chips or sawdust as by-products. There are three main processes

in sawmills: sawing, drying, and finishing. In the sawing process, the logs are cut

into different sizes of rough lumbers by different cutting patterns. In the drying

process, the lumber moisture contents are reduced in large dryers or in air. In the

finishing process, the lumbers are surfaced, trimmed and sorted based on customer

requirements. According to the demand, some logs are shipped to the distribution

centers or directly to customers after the sawing process, while others are first sent

to drying and finishing processes and then are shipped to distribution centers or

customers. Product shipment to customers is carried out by a number of distribution

companies that use different vehicle types. Sawmills are dealing with procurement

and production planning during the planning horizon.

The supply chain serves contract-based customers (e.g., construction industry

and furniture manufacturers) and noncontract-based customers (e.g., pulp & paper

industries or the spot market). Contract-based customers sign a contract at an agreed

price and quantity for a given planning horizon. Although the contract demand must

be satisfied, the enterprise reserves the right of postponing some parts of agreed

quantities because of capacity shortage in the demand period. Unsatisfied demand

may be served in a future period as the backlog. When there is surplus capacity in

sawmills, the spot market is sought to absorb the remaining capacity. Distribution

centers seek a distribution plan during the planning horizon while sale departments in

the lumber supply chain are looking for realistic amounts of sale that can be promised

to customers.
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2.2.2 The integrated model

In this section, we provide a MIP model to simultaneously address harvesting, pro-

curement, production, distribution and sale planning decisions in the lumber supply

chain.

The objective is to maximize the global net profit by balancing the sale revenue

and supply chain cost over a planning horizon T . The harvesting decisions involve the

blocks where the harvesting should occur as well as the proportion of the harvested

blocks in different periods of the planning horizon. The procurement decisions include

the purchasing quantity of raw material from each block, and the inventory of raw

materials in each block. Production decisions incorporate the quantity of lumbers

that should be sawn, dried, and finished as well as inventory and backlog quantities

of lumbers. Distribution decisions include the shipping quantity of products, the

inventory quantity of products in each distribution center, the number of truckload

requirement along with the type of vehicle and route. Finally, sale planning involves

the amount of sale promised to customers as well as possible backlog quantity of

products.

The indices, sets, parameters, and decision variables used in the proposed model

are defined in the appendix.

The objective function of the proposed MIP model is defined in equation (1) and

divided into several parts presented in (2)-(9), respectively representing the total

cost of harvesting (including cost of building new access roads), stumpage, log trans-

portation (from harvesting blocks to sawmills), log storage cost in harvesting blocks,

various costs incurred by sawmills, and the final product distribution cost.
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Max Z = R− (Charvesting + Cstumpage + Ctransportation + Cstorage

+ Cprocurement + Cproduction + Cdistribution) (1)

where:

R =
∑
c∈C

∑
i∈I

∑
t∈T

bci,tS
c
i,t (2)

Charvesting =
∑

bl∈BL

∑
t∈T

cHbltybl,t(
∑

rm∈RM

vrm,bl) (3)

Cstumpage =
∑

rm∈RM

∑
bl∈BL

∑
t∈T

vrm,blfrm,bl,tybl,t (4)

Ctransportation =
∑

bl∈BL

∑
m∈M

∑
rm∈RM

∑
t∈T

cTrm,bl,m,tX
bl
rm,m,t (5)

Cstorage =
∑

rm∈RM

∑
bl∈BL

∑
t∈T

cSrm,bl,tIrm,bl,t
(6)

Cprocurement =
∑

bl∈BL

∑
rm∈RM

∑
m∈M

∑
t∈T

mbl
rm,tX

bl
rm,m,t

+
∑

rm∈RM

∑
m∈M

∑
t∈T

hrm,mIrm,m,t (7)

Cproduction =
∑
m∈M

∑
i∈I

∑
t∈T

cim(XSW i,m,t +XDRi,m,t +OXF i,m,t)

+
∑
m∈M

∑
i∈ISW

∑
t∈T

h1imISW+
i,m,t

+
∑
m∈M

∑
i∈IDR

∑
t∈T

h2imIDR+
i,m,t

+
∑
m∈M

∑
i∈IF

∑
t∈T

h3imIF+
i,m,t

+
∑
m∈M

∑
i∈ISW

∑
t∈T

bo1imISW−
i,m,t

+
∑
m∈M

∑
i∈IDR

∑
t∈T

bo2imIDR−i,m,t

+
∑
m∈M

∑
i∈IF

∑
t∈T

bo3imIF−i,m,t (8)
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Cdistribution =
∑
s∈S

∑
i∈I

∑
r∈R

∑
v∈V

∑
t∈T

(e
s
irvX

s
i,r,v,t + shs

rvN
s
r,v,t)

+
∑
s∈S

∑
i∈I

∑
dc∈DC

∑
r∈Rm,dc

∑
v∈V

∑
t∈T

tridc Xs
i,r,v,t

+
∑
i∈I

∑
dc∈DC

∑
t∈T

hidcIi,dc,t (9)

Equation (8) incorporates the cost sawmills incur to purchase logs from forest

contractors, as well as the production, inventory, and backlog costs in sawing, drying,

and finishing units of sawmills. Furthermore, equation (9) represents the total trans-

portation/transshipment cost of end products (lumber and by-products) to customers

in addition to inventory holding cost of products at distribution centers.

Harvesting constraints

∑
t∈T

ybl,t ≤ 1 ∀bl (10)

ybl,t ≤ Hbl,t ∀bl, t (11)∑
t∈T

Hbl,t ≤ lbl ∀bl (12)

∑
bl∈BL

Hbl,t ≤ nt ∀t (13)

∑
bl∈BL

(ybl,t
∑

rm∈RM

vrm,bl) ≤ bHt ∀t (14)

∑
rm∈RM

∑
m∈M

∑
bl∈BL

Xbl
rm,m,t ≤ bTt ∀t (15)

Irm,bl,T = 0 ∀rm, bl (16)

Irm,bl,t = Irm,bl,t−1 −
∑
m∈M

Xbl
rm,m,t + vrm,blybl,t ∀rm, bl, t \ 0 (17)

Constraints (10)-(17) formulate various restrictions in the harvesting blocks in

the forest. Constraint (10) ensures that the harvested proportion of a block does not

20



exceed the availability of logs in that block. Constraint (11) describes that if har-

vesting occurs on a block, then we can ensure that raw materials from that block are

available. Constraint (12) restricts the number of times each block can be harvested

during the planning horizon; while (13) limits the number of blocks that can be har-

vested in each period. Constraints (14) and (15) correspond to total harvesting and

transportation capacity of harvesting blocks, respectively. Constraint (16) represents

the final inventory of raw materials in each block. Constraint (17) formulates the

inventory balance of raw materials in each block which equals the initial inventory

form previous period plus the harvested amount minus the total amount shipped to

sawmills.

Procurement constraints

∑
bl∈BL

Xbl
rm,m,t−Lbl

rm
+ Irm,m,t−1 − Irm,m,t =

∑
i∈(ISW∪I′

SW )

curm,i,mXSW imt

∀rm,m, t = 1 + Lbl
rm, . . . , T (18)

Irm,m,t − ssrm,m ≥ 0 ∀rm,m, t (19)∑
rm∈RM

Irm,m,t ≤ KIm ∀m, t (20)

∑
rm∈RM

∑
m∈M

Xbl
rm,m,t ≤ KSbl

t ∀bl, t (21)

∑
m∈M

∑
rm∈RM

∑
t∈T

Xbl
rm,m,t ≥ qminbl ∀bl (22)

Constraints (18)-(22) formulate various purchasing conditions in sawmills. Con-

straint (18) represents the inventory balance of logs in sawmills, which is equal to the

previous inventory level plus the quantity received from the harvesting blocks minus

the quantity that will be consumed in sawmills. The raw material safety stock policies

are stated in constraint (19) and the raw material inventory capacity constraint is
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provided in (20). Constraint (21) limits the maximum quantity of logs that can be

purchased from the forest. Constraint (22) states that the material procured from a

supplier must satisfy the contract minimum quantity commitment.

Production constraints

Sawing process

∑
m∈M

(XSWi,m,t + ISW+
i,m,t−1 − ISW−

i,m,t−1

− ISW+
i,m,t + ISW−

i,m,t) ≤
∑
c∈C

Sc
i,t ∀i ∈ I ′SW , ∀ t ∈ T (23)

∑
m∈M

ISW−
i,m,t =

∑
c∈C

BSc
i,t ∀i ∈ I ′SW , ∀t ∈ T (24)

∑
i∈(ISW∪I′

SW )

p1imtXSW i,m,t ≤ Kswmt ∀m, t (25)

∑
i∈Isw

ISW+
i,m,t +

∑
i∈I′

SW

ISW+
i,m,t ≤ KIswm ∀m, t (26)

ISW−
i,m,0 = ISW−

i,m,T = 0 ∀i ∈ (Isw ∪ I
′
SW ),m (27)

XSW i,m,t + ISW+
i,m,t−1 − ISW−

i,m,t−1 − ISW+
i,m,t

+ ISW−
i,m,t = OXSW i,m,t ∀i ∈ ISW ,m, t (28)

Drying process

∅i′mtOXSW i′,m,t = XDRi,m,t ∀ i′ ∈ ISW , i ∈ IDR,m, t (29)

XDRi,m,t + IDR+
i,m,t−1 − IDR−i,m,t−1 − IDR+

i,m,t

+ IDR−i,m,t = OXDRi,m,t ∀i ∈ IDR,m, t (30)∑
i∈IDR

p2imtXDRi,m,t ≤ Kdrmt ∀m, t (31)

∑
i∈IDR

IDR+
i,m,t ≤ KIdrm ∀m, t (32)

IDR−i,m,0 = IDR−i,m,T = 0 ∀i ∈ IDR,m (33)

22



Finishing process

ρi′mtOXDRi′,m,t = OXF i,m,t ∀ i′ ∈ IDR, i ∈ IF ,m, t (34)∑
m∈M

(OXF i,m,t + IF+
i,m,t−1 − IF−i,m,t−1 − IF+

i,m,t + IF−i,m,t) ≤
∑
c∈C

Sc
i,t ∀i ∈ IF , t (35)

∑
m∈M

IF−i,m,t =
∑
c∈C

BSc
i,t ∀ i ∈ IF , t (36)

∑
i∈IF

p3imtOXF i,m,t ≤ Kfmt ∀ m, t (37)

∑
i∈IF

IF+
i,m,t ≤ KIfm ∀ m, t (38)

IF−i,m,0 = IF−i,m,T = 0 ∀ i ∈ IF ,m (39)

Constraints (23)-(39) describe various conditions in the sawing, drying, and fin-

ishing units of sawmills. Constraints (23) and (35) are the coupling constraints that

link the production and sale decisions and determine the maximum net inventory

level in the sawing and finishing units. The backlog quantities are converted into

backlogged sale (BSc
it) in (24) and (36), in order to be used in distribution constraint

(40). Constraints (25), (31), and (37) formulate the production capacity constraints

in sawing, drying, and finishing units. Constraints (26), (32), and (38) define the

warehouse inventory capacity in sawing, drying, and finishing units. The beginning

and ending backlog conditions in sawing, drying, and finishing units are described in

constraints (27), (33), and (39), respectively. Constraint (28) is a flow balance that

calculates the output quantity of products from the sawing unit. It indicates that the

total quantity of green lumber that can be sent to the dying unit equals the initial

net inventory plus the total quantity produced minus the net inventory that will be

left. Constraint (29) ensures that the total amount of green lumber received from

the sawing unit will be processed in the drying unit with a specific yield. Constraint

(30) is a flow balance that calculates the quantity of dried lumber that will be sent
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to the finishing unit. Constraint (34) ensures that the total amount of dried lumbers

received from the drying unit will be processed in the finishing unit by considering a

specific yield.

Distribution constraints

∑
c∈C

(Sc
i,t +BSc

i,t−1 −BSc
i,t) =

∑
s∈S

∑
r∈(Rm,c∪Rdc,c)

∑
v∈V

Xs
i,r,v,t ∀i, t (40)

∑
m∈M

(XSW i,m,t + ISW+
i,m,t−1 − ISW+

i,m,t) =
∑
s∈S

∑
r∈(Rm,dc∪Rm,c)

∑
v∈V

Xs
i,r,v,t ∀i ∈ I

′
sw, t

(41)∑
m∈M

(OXF i,m,t + IF+
i,m,t−1 − IF+

i,m,t) =
∑
s∈S

∑
r∈(Rm,dc∪Rm,c)

∑
v∈V

Xs
i,r,v,t ∀ i ∈ IF , t (42)

∑
s∈S

∑
r∈Rm,dc

∑
v∈V

Xs
i,r,v,t + Ii,dc,t−1 − Ii,dc,t =

∑
s∈S

∑
r∈Rdc,c

∑
v∈V

Xs
i,r,v,t ∀i ∈

(
I

′
SW ∪ IF

)
, dc, t

(43)

Ns
r,v,t ≥

∑
i∈(I′

SW∪IF )

aiX
s
i,r,v,t

KV v
∀s, r, v, t (44)

∑
r∈R

Ns
r,v,t ≤ KSHs

v ∀s, v, t (45)

∑
s∈S

∑
r∈(Rm,dc∪Rm,c)

∑
v∈V

Ns
r,v,t ≤ KDm ∀m, t (46)

Ii,dc,0 = 0 ∀i, dc (47)

Constraints (40)-(47) represent various limitations in the distribution centers.

Constraint (40) links the sale and distribution decisions. It indicates that the to-

tal quantity of end products that will be shipped to customers equals the net sale

amount after considering the backlogged sale. Constraints (41) and (42) link the pro-

duction and distribution decisions. They, respectively, indicate that the total quantity

of green or finished lumbers that can be shipped to customers equals the net inventory

level of these products in the sawing and finishing units. Constraint (43) is the flow
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balance constraints at a distribution center. Constraint (44) calculates the number of

truckload requirements for each vehicle type from each shipping supplier. Constraint

(45) and (46) formulate the shipping supplier capacity and the mill dispatch capacity,

respectively. Constraint (47) represents the initial inventory of each product in each

distribution center.

Sale constraints:

Sc
i,t −BSc

i,t ≥ dminc
it ∀c ∈ CC, i ∈ IF , t (48)

Sc
i,t ≤ dci,t ∀c, i, t (49)

BSc
i,t ≤ Sc

i,t ∀c ∈ C, i, t (50)

Finally, Constraints (48)-(50) formulate sale conditions. Constraints (48) and

(49) describe the sale decisions for contract and non-contract-based demands. In the

former case, a minimum amount of sale in the contract must be delivered. In both

cases, the demand might be accepted and be served in future periods as the backlog

(I−imt), or, might be rejected. In either case, the backlog amount (BSc
it) should not be

greater than the sale quantity (Sc
it) (50). Upon the satisfaction of the base amount

(48), the company may continue serving the contract demand up to the capacity

limit, or switch to serve non-contract demand, whichever is more profitable.

Domain constraints:

Sc
i,t, BSc

i,t, OXSW i,m,t, XSW i,m,t, OXDRi,m,t, XDRi,m,t, OXF i,m,t,

ISW+
i,m,t, IDR+

i,m,t, IF
+
i,m,t, ISW

−
i,m,t, IDR−i,m,t, IF

−
i,m,t,

Xs
i,r,v,t, Ii,dc,t, N

s
r,v,t, X

bl
rm,m,t, Irm,m,t, ybl,t, Irm,bl,t ≥ 0,

Hbl,t ∈
{
0, 1

}
∀bl, rm, c, i,m, s, r, v, dc, t (51)
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Constraint (51) represents the domain constraints.

2.2.3 Decoupled models

Two classes of decoupled models are considered. The first class considers three mod-

els: (i) sale & distribution; (ii) production; and (iii) harvesting & procurement. The

second one considers two models: (i) sale & distribution & production; and (ii) har-

vesting & procurement. As mentioned earlier, adopting a decoupled planning ap-

proach would require solving the abovementioned decoupled models in sequential

manner which might lead to infeasible plans in each echelon due to the lack of perfect

information from the upstream echelon. Thus, it is necessary to add extra constraints

in each (sub-)model in order to link (sub-)models to each other and to ensure the fea-

sibility of each one. Moreover, the output of one (sub-)model acts as the input of

another one. Note that these decoupling models are assumed to correspond to the

currently practiced tactical plannig approach in industry. In practice, the planners

are acting independently while taking into account the extra constraints described

above. For instance, production planning in the production entities of the SC (i.e.,

sawmills) is carried out by considering a rough estimation of supply capacity of differ-

ent harvesting blocks in the forest (supply entity). This estimation can be included

as a supply capacity constraint in the production planning (sub-)model.

2.2.3.1 Sale & distribution model

The objective of this model is to maximize the total revenue from sale activities minus

the distribution costs as follows:

Max Z = R− CDistribution (52)
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The constraints of this model include constraints (40), and (43)-(51) in the inte-

grated model, in addition to the following ones:

∑
i∈IF

Sc
it ≤

∑
m∈M

Kfmt ∀ t (53)

∑
i∈(ISW∪I′

SW )

Sc
it ≤

∑
m∈M

Kswmt ∀t (54)

Constraints (53) and (54) enforce the sale & distribution model to control the

amount of the sale quantity of each product based on the production capacity of

sawing and finishing units. These two constraints are added to this decoupled model

in order to ensure the feasibility of promised sale amount to the customer.

2.2.3.2 Production model

The objective is to minimize the production, inventory, and backlog costs at sawing,

drying and finishing units. Also, this model gets the sale and distribution decisions

(Sc
it, Ii,dc,t) as parameters (input) from the sale & distribution (sub-)model (52)–(54).

Min Z = CProduction (55)

The constraints of this model involve constraints (23) – (39) in the integrated

model, in addition to the following ones:
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∑
rm∈RM

∑
m∈M

∑
i∈(ISW∪I′

SW )

curm,i,mXSW i,m,t ≤ bTt ∀t (56)

∑
rm∈RM

∑
m∈M

∑
i∈(ISW∪I′

SW )

curm,i,m XSW i,m,t ≤
∑

bl∈BL

KSbl
t ∀t (57)

∑
rm∈RM

∑
m∈M

∑
i∈(ISW∪I′

SW )

∑
t∈T

curm,i,mXSW i,m,t ≥ qminbl ∀bl (58)

∑
m∈M

(OXF i,m,t + IF+
i,m,t−1 − IF+

i,m,t) ≥
∑
c∈CC

dminc
it ∀i ∈ IF , t (59)

Constraints (56) and (57) enforce the production model to control the production

amount based on the supply and transportation capacity of raw material in the forest.

Constraints (58) and (59) ensure that the production amount satisfies the minimum

purchase quantity of raw material from each block and minimum contract demand,

respectively.

2.2.3.3 Harvesting & procurement model

The objective is to minimize the harvesting cost, stumpage fee, storage and procure-

ment cost in the forest. Also, this model receives the production quantities of lumber

(XSWimt, OXSWimt ) from the production (sub-)model (55) – (59) as the input.

Min Z = Charvesting + Cstumpage + Ctransportation + Cstorage + Cprocurement (60)

Constraints of this model are the same as constraints (10)-(22) in the integrated

model.

2.2.3.4 Production & sale & distribution model

The objective is to maximize the total revenue from sale activities minus the distri-

bution and production costs.
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Max Z = R− (Cproduction + Cdistribution) (61)

Constraints of this model include constraints (23)-(51) in the integrated model,

in addition to constraints (56)-(58) from the production model.

2.3 Solution methodology

The proposed integrated model (1)-(51) is a mixed-integer programming model with

dozens of families of constraints. Solving this model in a reasonable time is a chal-

lenge for realistic-scale problem instances. We propose an efficient heuristic within

the framework of the LR algorithm, and we compare its performance in terms of

solution quality and CPU time with a commercial solver (CLPLEX 12.3), and with

the classical LR algorithm , where the classical sub-gradient method is exploited to

solve Lagrangian sub-models [28]. In what follows, we provide a detailed description

of our proposed heuristic algorithm.

It is worth mentioning that solving model (1)-(51) by the aid of classical LR algo-

rithm suffers from two essential issues namely the slow convergence of the algorithm

and the infeasibility of the converged solution. Consequently, the LR based heuristic

algorithm in this paper proposes a procedure to iteratively update the search step-size

of the sub-gradient method in the LR algorithm through obtaining a new lower-bound

on the objective function value based on the most recent upper-bound. This heuris-

tic improves the quality of lower-bound based on the improved upper-bound as we

proceed in the sub-gradient algorithm. The improved lower-bound can be used to

adjust the search step-size, which is expected to accelerate the convergence of the

sub-gradient algorithm and to avoid the infeasibility of the converged solution.
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2.3.1 Heuristic algorithm

It is worth mentioning that the complexity of the integrated model (1)-(51) is due to

the existence of binary variables corresponding to harvesting schedule during the plan-

ning horizon, in addition to constraints (12) and (13) that formulate the harvesting

constraints in the forest. In other words, the latter two constraints can be considered

as complicating constraints in the sense that after relaxing them from model (1)-(51),

the resulting model can be solved much faster by a commercial solver. However,

the optimal solution of the relaxed model might be infeasible regarding the relaxed

constraints. One way to tackle this difficulty is implementing the LR algorithm [28–

33]. In LR algorithm, possible violations of relaxed constraints are penalized in the

objective function of the relaxed model (i.e., the Lagrangian Relaxation model) by

considering Lagrangian multipliers. In other words, in the integrated model (1)-(51),

the violation of relaxed constraints (12)-(13) are incorporated into the objective func-

tion by introducing multipliers ubl, and vt. Thus, the Lagrangian Relaxation of model

(1)-(51) (Lagrangian sub-model) can be stated as follows:

LIP (u, v) = Maximize

{
Z +

∑
bl∈BL

ubl ∗ (lbl −
∑
t∈T

Hblt) +
∑
t∈T

vt ∗ (nt −
∑

bl∈BL

Hblt)

}
(62)

Subject to:

(10)-(11) and (14)-(51).

Since the above Lagrangian sub-model is convex and non-differentiable, the sub-

gradient method is implemented to solve it. The summary of the sub-gradient method

in classical LR algorithm for solving this model is summarized in algorithm (1).

The stopping criterion in algorithm (1) is considered as a predetermined number

of iterations. The convergence of the sub-gradient method is heavily dependent on

30



Algorithm 1 Sub-gradient method in classical LR algorithm
Step 0 (initialization):

Assign zero to ubl and vt
Find an initial lower-bound (LB) (feasible solution) and assign ∞ to the upper-bound (UB)
Let iteration counter k equal to 1

while the stopping criteria is not satisfied do
Step 1

Solve the Lagrangian sub-model and determine LIP (u, v)
Step 2

If LIP (u, v) < UB) then UB = LIP (u, v)
Step 3

Update dual multipliers as follows:

uk+1
bl = max{uk

bl − εk ∗ Lk
IP (u,v)−LB

‖lbl−∑
t∈T Hblt‖2 ∗ (lbl −

∑
t∈T Hblt), 0}

vk+1
t = max{vkt − εk ∗ Lk

IP (u,v)−LB

‖nt−
∑

bl∈BL Hblt‖2 ∗ (nt −
∑

bl∈BL Hblt), 0}
k = k + 1

end while

the step size. In the classical sub-gradient approach, the lower-bound is considered as

a fixed amount which can hinder the convergence of the LR algorithm. Furthermore,

the classical approach cannot guaranty the feasibility of converged solution. In order

to solve these issues in the sub-gradient method, inspired from [28–33], we propose a

heuristic to iteratively adjust the step size through updating the lower-bound. More

precisely, we propose to improve the quality of the lower-bound (LB) based on the

most recent upper-bound (UB) obtained at each iteration of the sub-gradient algo-

rithm. The reason is that the quality of the UB is expected to be improved as we

proceed in the sub-gradient algorithm. The following procedure is implemented in

order to update the LB.

Lower-Bound Updating Heuristic

In each iteration of the sub-gradient method (algorithm (1)), we verify the ob-

tained optimal solution in terms of its feasibility regarding the relaxed constraints

(12)-(13). For this purpose, we calculate the slack variables corresponding to the

relaxed constraints (12)-(13). If the slack variable is positive, it means that the corre-

sponding constraint is satisfied. Hence, we suggest identifying binary variables with

the value equal to zero (at optimal solution) in the non-violated constraints. Those
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variables are then fixed to zero in the original integrated MIP model in order to obtain

a reduced MIP model that can be solved faster than the original one by a commercial

solver. By solving the reduced model (1)–(51) by a commercial solver, we can obtain

a new feasible solution (LB). The proposed lower-bound updating heuristic (LBUH)

is summarized in algorithm (2).

Algorithm 2 Lower-Bound Updating Heuristic (LBUH)
Step 0:

Calculate {slackbl = (lbl −
∑

t∈T Hblt) ∀bl} and {slackt = (nt −
∑

bl∈BL Hblt) ∀t} after solving
Lagrangian problem in each iteration

if slackbl ≥ 0 then
Step 1:

Identify the binary variables which are equal to 0 in the optimal solution and fix them in the
initial MIP model (1)-(51)

if slackt ≥ 0 then
Step 2:

Identify the binary variables which are equal to 0 in the optimal solution and fix them in the
initial MIP model (1)–(51)

Step 3:
Solve the reduced MIP model (1)-(51) resulted from steps (1) and (2) by a commercial solver to
obtain new lower-bound (new LB)

if (new LB) > (old LB) then
Step 4:

Lower-bound for the next iteration in the sub-gradient algorithm (LB) = new LB

Incorporating the LBUH into the sub-gradient method leads to an enhanced LR

heuristic summarized in algorithm (3). This heuristic is proposed as an efficient

algorithm for solving the integrated tactical planning model (1)-(51) for real-size

instances.

Algorithm 3 Heuristic algorithm
Step 0 (initialization):

(sub-gradient method (algorithm (1)))
while the stopping criteria is not satisfied do
Step 1

If LIP (u, v) < UB) then UB = LIP (u, v)
Update lower-bound (LB) based on the “lower-bound updating heuristic (LBUH)” (i.e., algorithm (2))

Step 2
Update dual multipliers
(sub-gradient method (algorithm (1)))

end while
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2.4 Numerical results

2.4.1 Case study

The considered case study is characterized by a data set that sufficiently represents

a realistic scale lumber SC in Canada. This SC consists of two sawmills producing

27 product families using 14 classes of logs. Products are shipped to 140 customers

by 4 outbound shipping suppliers using 5 different vehicle types via 2 distribution

centers and 20 routes. Also, we assumed that 50 harvesting blocks are available in

the forest during the 12 month planning horizon. The supply capacity of each block

per month is supposed to be 23,500 m3. Adopted from Beaudoin et al. [15], the max-

imum number of periods (months) over which harvesting can occur in each block, the

maximum number of blocks in which harvesting can occur per month are randomly

selected from uniform distributions U(1-6) and U(10-12), respectively. The average

volumes of each log class available in each block are also randomly generated [15].

The total harvesting capacity per month is supposed to be approximately 1,175,000

m3. There are also further aspects that must be considered in harvesting planning

such as weather conditions during the year, road maintenance, and crew scheduling.

For example, it is not possible to transport the logs from some blocks to mills during

winter, because the snow might close some roads. This would lead to road mainte-

nance or substitution which will change the harvesting plan. The abovementioned

aspects of harvesting were included implicitly in the transportation cost from the

blocks to mills. For instance, if a road does not exist, the cost of building that road is

included in the transportation cost. In sawmills, we supposed approximately 750,000

m3 production capacity per month. Finally, the demand for each type of products is

derived from [26]. The capacity of each vehicle type is randomly generated from the

uniform distribution U(3-25).
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This case study results in 280,000 continuous, 600 binary variables, and 280,000

constraints in the integrated tactical planning model. All algorithms were coded in

C++ using CPLEX concert technology on a Dual-Core, 2.80GHz computer with 4.00

GB RAM.

2.4.2 The value of integration

In this section, we compare the integrated tactical planning model with the decoupled

planning approach, in terms of the total revenue as well as the costs of harvesting, pro-

curement, production and distribution. The results for the two classes of decoupled

models are provided in tables (9) and (10). The decoupled class 1 (sale & distribution

+ production + harvesting & procurement) incorporates more (sub-)models compar-

ing to class 2 (sale & distribution & production + harvesting & procurement). In

tables (9) and (10), Δ denotes the difference between the revenue/cost of integrated

and decoupled models. The negative value of Δ in the revenue and (costs) indicates

that the total revenue (cost) of the decoupled model are greater (less) than the inte-

grated one, respectively. As an instance, the negative value of Δ for revenue in table

(9) implies that the revenue of the integrated model is less than that of the decoupled

one. Also, the positive value of Δ for backlog cost in the same table indicates that

the backlog cost of the integrated model is less than that of the decoupled model.

Table 1: Value of integrated planning versus decoupled class 1

Criteria Integrated model Decoupled models Δ over class 1 Deviation over class 1

Actual revenue 435,359,356 709,780,241 -274,420,885 39%
Inventory cost at DCs 0 0 0 0%

Transshipment cost at DCs 3,787,256 5,097,326 1,310,070 26%
Inventory cost 27,086,403 29,822,645 2,736,242 9%
Backlog cost 86,258,429 479,162,072 392,903,643 82%

Production cost 28,125,487 26,322,034 -1,803,453 -7%
Harvesting cost 20,849,181 21,153,326 304,145 1%
Procurement cost 4,568,000 4,205,207 -362,793 -9%

Total profit 264,684,600 144,017,631 120,666,969 (value of integration) 84%

From table (9), it can be observed that the total revenue in the decoupled model is
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Table 2: Value of integrated planning versus decoupled class 2

Criteria Integrated model Decoupled models Δ over class 2 Deviation over class 2

Actual revenue 435,359,356 422,530,613 12,828,743 3%
Inventory cost at DCs 0 0 0 0%

Transshipment cost at DCs 3,787,256 3,594,670 -192,586 -5%
Inventory cost 27,086,403 10,810,574 -16,275,829 -151%
Backlog cost 86,258,429 115,758,944 29,500,515 25%

Production cost 28,125,487 26,829,579 -1,295,908 -5%
Harvesting cost 20,849,181 21,962,604 1,113,423 5%
Procurement cost 4,568,000 4,341,904 -226,096 -5%

Total profit 264,684,600 239,232,338 25,452,262 (value of integration) 11%

greater than the integrated one. This means that the delivered sale in the decoupled

model is greater than the integrated one. In contrary, the inventory and backlog

quantities in the decoupled models are much higher than the integrated one in order

to satisfy the bigger amount of delivered sale in the decoupled models. The reason

is that in the decoupled approach (class 1), sale & distribution decisions are not

coordinated with the production planning model. In the same table, the production

quantity and consequently the procurement quantity of logs in the integrated model

are also greater than the decoupled one. Higher amounts of log procurement in the

integrated model can be explained by the fact that the availability of logs in each block

is different. Hence, the integrated model will satisfy the log requirement in sawmills

from several blocks according to their log inventory and available harvesting quantity.

Hence, the greater procurement quantity is not necessarily equivalent to the greater

harvesting amount or higher log inventory in each block. Finally, we can observe that

although the revenue in the decoupled models is greater than the integrated model,

the latter made further modifications on sale decisions. In other words, while the

overall revenue was reduced in the integrated model, the total inventory and backlog

costs were reduced more significantly, resulting in a net profit improvement (84%

improvement in the total profit). As expected, similar results can be observed in

table (10). The only difference between the results presented in tables (9) and (10)

is that the benefit of the integrated model in terms of total profit over the decoupled

one in class 2 is more moderate comparing to class 1 (84% versus 11% improvement
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in profit). The reason is due to the fact that in class 2, production planning is

integrated with sale and distribution planning. Hence, smaller quantities of inventory

and backlog are obtained comparing to class 1 where production planning is decoupled

from sale and distribution planning.

In summary, the results and the analysis above suggest that:

(i) The decoupling planning approach provides sub-optimal plans in terms of SC

total profit comparing to the integrated planning model.

(ii) The abovementioned sub-optimality gets deteriorated as more decoupled (sub-

)models are utilized (i.e., low coordination among SC entities). This is due to the

lower level of sharing exact information among the upstream and downstream entities

in the SC.

It is worth mentioning that the difference between the profit of the integrated

model and the decoupled approach in each table represents the value of adopting an

integrated planning approach versus a decoupled one. Furthermore, this value can be

interpreted as the maximum price that the owner of the supply chain (for instance,

a sawmill) is willing to pay in order to obtain a plan which is coordinated with all

entities of the supply chain.

2.4.3 Results of implementing the heuristic solution algo-

rithm

We provide here the results of implementing the heuristic algorithm proposed to solve

the integrated tactical planning model for the case study. This algorithm is tested

on a set of 10 large-scale test instances to compare the CPU time and the optimality

gap with a commercial solver (CPLEX) and with the classical LR algorithm.
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2.4.3.1 Implementing the heuristic algorithm on the case study

We first solved the integrated model and the different models of the decoupled ap-

proach by CPLEX. Table (3) provides the objective function value and CPU times

of the abovementioned models. As it can be observed in this table, solving the large-

scale MIP integrated model by a commercial solver is very time-consuming (more

than 5h). Hence, we applied the heuristic algorithm, described in 3.1, in order to

reduce the CPU time while obtaining a feasible solution with a small optimality gap

as shown in table (3) for the integrated model and the decoupled approach when

using CPLEX.

Table 3: CPLEX results

Models Objective function CPU time (Sec)

Integrated model 264,684,600 17,097
Sale & Distribution model (Class 1) 704,682,915 78

Production model (Class 1) 535,306,751 141
Harvesting & Procurement model (Class 1) 25,358,533 4,368

Sale & Distribution & Production model (Class 2) 265,536,846 303
Harvesting & Procurement model (Class 2) 26,304,508 7,379

It is worth mentioning that in order to find the initial lower-bound in the heuristic

algorithm (step 0 in algorithm (1)), we ran the original integrated model on CPLEX

for 30 minutes and we considered the best feasible solution as the initial LB. Our ex-

perimental results indicate that this time limit is adequate in order to obtain an initial

high quality lower-bound and increasing this time limit does not have a significant im-

pact on accelerating the convergence of LR algorithm. Furthermore, the sub-gradient

step-size (step 2 in algorithm (3)) was divided by 2 whenever no improvement in the

upper-bound was observed.

Table (4) presents the results of implementing the heuristic algorithm on the case

study. The result of applying the classical LR algorithm is also provided in this table.

It should be noted that the classical LR algorithm converges in 11 iterations while
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the converged solution is not feasible regarding the relaxed harvesting constraints.

As it can be observed in table (4), the heuristic algorithm provides a high quality

feasible solution (0.022% optimality gap) in a significantly shorter CPU time (1h

versus 5h). The results provided in table (4) confirm that the lower-bound updating

heuristic (LBUH) ( algorithm (2)) proposed to update the step-size in the sub gradient

algorithm significantly accelerates the convergence of LR algorithm into a feasible

solution (77% improvement in CPU time).

Table 4: Heuristic algorithm results

Classical LR algorithm Heuristic algorithm CPLEX

Profit 264,653,000 (infeasible) 264,624,000 264,684,600
CPU time (Sec) 9,028 3,921 17,097

2.4.3.2 Validating the heuristic algorithm

In order to better validate the performance of the proposed heuristic algorithm, we

implemented it on a set of 10 large-scale test instances as summarized in table (5).

In this table, the “LB” and “UB” represents the best lower-bound and upper-bound

of heuristic algorithm, respectively. Column “heuristic gap%” corresponds to the

gap between the UB and LB calculated based on (UB−LB
UB

∗ 100), while column “LR

time(Sec)”, “Heuristic time (Sec)”, and “Total time (Sec)” represents the time spent

by the commercial solver in the Lagrangian sub-problems, lower-bound updating

heuristic (LBUH), and the total time of running the heuristic method, respectively.

Moreover, we provided the “CPLEX results” and the “CPLEX time (Sec)” in table

(5) which represent the optimal objective value and CPU time of different instances

run with the commercial solver. Finally, the “Gap%” field represents the relative gap

between the best feasible solution found by the heuristic algorithm and the optimal

solution found by CPLEX, and is calculated as (CPLEXresult−LB
CPLEXresult

∗ 100). As expected,
we could not reach to the optimal solution by CPLEX in 5 hours (> 5h) in some
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instances. In such case, the “CPLEX results” and “Gap%” fields are represented by

N.A. It is important to note that “LB”, “UB”, and “CPLEX results” are divided by

1000 in table (5).

As it can be observed in table (5), the proposed heuristic algorithm provides

high quality feasible solutions with small (negligible) optimality gaps in a relatively

small CPU time. The reason is that the proposed lower-bound updating heuristic

(algorithm (2)) within the sub-gradient algorithm adjusts the search step-size based

on an improved upper-bound as we proceed in the sub-gradient algorithm. Hence, not

only the convergence of the algorithm is significantly reduced, but also the converged

solution is always feasible, as was observed in all test instances in table (5).

Table 5: The results of implementing the heuristic algorithm in different test instances

Instances LB UB heuristic LR time Heuristic time Total time CPLEX time CPLEX Gap%
Gap% (Sec) (Sec) (Sec) (Sec) results

1 264,624 264,950 0.12% 2,275 1,646 3,921 17,097 264,684 0.022
2 429,115 429,439 0.08% 681 1,418 2,099 7,465 429,214 0.023
3 375,406 375,668 0.07% 2,151 1,554 3,705 7,616 375,444 0.01
4 524,317 524,361 0.01% 2,776 1,113 3,889 12,806 524,345 0.005
5 191,875 191,905 0.02% 1,424 805 2,229 >5h N.A. N.A.
6 352,000 353,153 0.33% 1,190 1,805 2,895 >5h N.A. N.A.
7 560,347 560,406 0.01% 633 1,644 2,277 >5h N.A. N.A.
8 244,833 244,973 0.06% 2,350 3,470 5,820 >5h N.A. N.A.
9 221,278 221,408 0.06% 3,605 2,321 5,926 >5h N.A. N.A.
10 47,972 48,116 0.3% 13,178 1,447 14,625 >5h N.A. N.A.

2.5 Conclusion

In this paper, we proposed a MIP model to address harvesting, procurement, pro-

duction, distribution, and sale decisions in the lumber supply chain in an integrated

scheme. We evaluated the value of adopting an integrated tactical planning approach

versus a decoupled planning method where a set of models corresponding to different

entities of supply chain are solved in a sequential manner. Our computational results

on a realistic scale case study revealed the sub-optimality of the plan proposed by
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the decoupled planning approach in terms of the total profit of the supply chain.

More precisely, we demonstrated that substantial cost/revenue improvement can be

reached by using an integrated tactical planning model rather than a decoupled plan-

ning approach. Nonetheless, despite of the superiority of the integrated planning

approach, several challenges are expected while trying to implement it in the lum-

ber supply chain. The first issue is the fact that not all entities of this value chain,

namely the forest, sawmills, and distribution channels, are owned by one company. In

the existing non-integrated supply chain, each entity is seeking to maximize its own

profit. In contrary, if stakeholders agree on a vertical collaboration (i.e., adopting

an integrated planning approach), where they share information among each other in

terms of profit margin, costs, and capacity, it is possible that some parties face with

a major loss while others gain major profit. Hence, in order to make sure that the

improved results of such integration are achieved, a mechanism must be devised so

that all stakeholders are paid-off. Game-theoretical approaches could be adopted to

achieve such a win-win situation for all parties. The value of integration can then

be interpreted as the maximum price that can be paid in order to facilitate infor-

mation sharing among entities of this supply chain. On the other hand, solving the

integrated model for real-size instances is challenging due to the existence of binary

variables corresponding to harvesting schedule. Hence, we proposed a heuristic algo-

rithm in the framework of Lagrangian Relaxation algorithm where the performance of

the sub-gradient algorithm was improved in terms of convergence and the feasibility

of converged solution. The latter was obtained by updating iteratively the step-size

of the sub-gradient algorithm through updating the lower-bound according to the

most recent upper-bound. Our computational results on a set of large-scale test cases

revealed the effectiveness of the proposed heuristic in obtaining high quality feasi-

ble solutions in a considerably reduced CPU time comparing to using a commercial
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solver, and the classical LR algorithm.

We are currently extending this work to take into account the randomness of

demand and log supply into the proposed integrated model, and to solve the resulting

large size stochastic formulations by developing efficient algorithms.
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2.6 Appendix

The indices, parameters, and decision variables are summarized as follows.

Sets

M : Set of manufacturing mills

ISW : Set of products produced by sawing process that are transferred to drying unit

(such as lumbers)

I ′SW : Set of products produced by sawing process (such as chips and green lumbers)

IDR: Set of products produced by drying process

IF : Set of products produced by sawing, drying and finishing processes (such as fin-

ished product)

I: Set of end products (I = I ′SW ∪ IF )

T : Set of time periods

C: Set of customers

CC: Set of contract customers
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NC: Set of non-contract customers

RM : Set of raw materials

DC: Set of distribution centers

V : Set of vehicles

R: Set of all routes

S: Set of outbound shipping suppliers

Rm,dc: Set of routes from mills to distribution centers

Rdc,c: Set of routes from distribution centers to customers

Rm,c: Set of routes from mills to customer directly

BL: Set of harvesting blocks

Parameters

bcit: The price of product i for customer c during period t

dcit: The forecasted demand of product i from customer c during period t

dminc
it: The minimum demand of product i from customer c during period t

Kswmt: Production capacity of mill m in period t at sawing unit

Kdrmt: Production capacity of mill m in period t at drying unit

Kfmt: Production capacity of mill m in period t at finishing unit

p1imt: Capacity consumption for producing product i at mill m in sawing unit during

period t

p2imt: Capacity consumption for producing product i at mill m in drying unit during

period t

p3imt: Capacity consumption for producing product i at mill m in finishing unit dur-

ing period t

h1im: Inventory cost of product i at sawing unit of mill m

h2im: Inventory cost of product i at drying unit of mill m
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h3im: Inventory cost of product i at finishing unit of mill m

bo1im: Backlog cost of product i at sawing unit of mill m

bo2im: Backlog cost of product i at drying unit of mill m

bo3im: Backlog cost of product i at finishing unit of mill m

KIswm: Warehouse inventory capacity of mill m at sawing unit

KIdrm: Warehouse inventory capacity of mill m at drying unit

KIfm: Warehouse inventory capacity of mill m at finishing unit

KDm: Expedition capacity of mill m

cim: Unit production cost to produce product i at mill m

ρimt: Average yield of product i processed at finishing unit of mill m in period t

φimt: Average yield of product i processed at drying unit of mill m in period t

shs
rv: Shipping fixed cost of supplier s on route r using vehicle type v

esirv: Shipping variable cost of supplier s for product i on route r using vehicle type v

hidc: Inventory holding cost for unit quantity of product i at distribution center dc

ai: Vehicle capacity absorption coefficient per unit of product i

tridc: Transshipment cost of product i through distribution center dc

KSHs
v : Shipping capacity of supplier s with vehicle v

KVv: Capacity of vehicle type v

curm,i,m: Consumption of raw material rm for producing unit quantity of product i

at mill m

KIm,t: Inventory capacity at mill m during period t

KSbl
t : Supply capacity of block bl in period t

qminbl: Minimum contract purchase quantity from block bl

ssrm,m: Safety stock of raw material rm at mill m

mbl
rm,t: Unit purchase cost of raw material rm from block m in period t

hrm,m: Inventory holding cost of raw material rm at mill m
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Lbl
rm: Lead time of procuring raw material rm from block bl

cHblt: Unit cost to harvest block bl during period t

cSrm,bl,t: Unit cost to store raw material rm in block bl during period t

cTrm,bl,m,t: Unit cost to transport raw material rm from block bl to mill m during

period t

frm,bl,t: Stumpage fee for raw material rm in block bl during period t

lbl: Maximum number of periods over which harvesting can occur in block bl

nt: Maximum number of blocks in which harvesting can occur during period t

bHt : The total harvesting capacity in period t

bTt : The total transportation capacity in period t

vrm,bl: Volume of available raw material rm in block bl

εk: Step size modifier in iteration k in algorithm (1)

Decision variables

Xbl
rm,m,t: Purchasing quantity of raw material rm from block bl in period t

Irm,m,t: Inventory of raw material rm at mill m at the end of period t

Irm,bl,t: Inventory of raw material rm in block bl at the end of period t

ybl,t: Proportion of harvested block bl in period t

Hbl,t: Binary variable that takes 1 if harvesting occurs in block bl during time period

t and 0 otherwise

OXSWimt: Quantity of product i that should be transferred from sawing to drying

unit of mill m in period t

XSWimt: Quantity of product i which should be sawn at sawing unit of mill m in

period t

XDRimt: Quantity of product i which should be processed at drying unit of mill m

in period t
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OXDRimt: Quantity of product i which should be transferred from drying to finish-

ing unit of mill m in period t

OXFimt: Quantity of product i which should be transferred from finishing unit of

mill m in period t

ISW+
imt: Inventory quantity of product i at sawing unit of mill m in period t

IDR+
imt: Inventory quantity of product i at drying unit of mill m in period t

IF+
imt: Inventory quantity of product i at finishing unit of mill m in period t

ISW−
imt: Backlog quantity of product i at sawing unit of mill m in period t

IDR−imt: Backlog quantity of product i at drying unit of mill m in period t

IF−imt: Backlog quantity of product i at finishing unit of mill m in period t

Xs
irvt: Shipping quantity of product i with shipping supplier s on route r with vehicle

v in period t

N s
rvt: Number of truckload requirement from shipping supplier s on route r with ve-

hicle v in period t

Ii,dc,t: Inventory quantity of product i in distribution center dc at the end of period t

Sc
it: Sale quantity of product i to customer c in period t

BSc
it: Backlogged sale quantity of product i to customer c in period t
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Chapter 3

A hybrid scenario cluster

decomposition algorithm for

supply chain tactical planning

under uncertainty

The article entitled “A hybrid scenario cluster decomposition algorithm for supply

chain tactical planning under uncertainty” is included in this chapter. It was ac-

cepted (with revision) to the European Journal of Operational Research in November

2015. The titles, figures, tables, algorithms and mathematical formulations have been

revised to the keep the coherence through the thesis.
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Abstract

We propose a Hybrid Scenario Cluster Decomposition (HSCD) heuristic for solv-

ing a large-scale multi-stage stochastic mixed-integer programming (MS-MIP) model

corresponding to a supply chain tactical planning problem. The HSCD algorithm

decomposes the original scenario tree into smaller sub-trees that share a certain num-

ber of predecessor nodes. Then, the MS-MIP model is decomposed into smaller

scenario-cluster multi-stage stochastic sub-models coordinated by Lagrangian terms

in their objective functions, in order to compensate the lack of non-anticipativity

corresponding to common ancestor nodes of sub-trees. The sub-gradient algorithm

is then implemented in order to guide the scenario-cluster sub-models into an im-

plementable solution. Moreover, a Variable Fixing Heuristic is embedded into the

sub-gradient algorithm in order to accelerate its convergence. Along with the possi-

bility of parallelization, the HSCD algorithm provides the possibility of embedding

various heuristics for solving scenario-cluster sub-models. The algorithm is specialized

to lumber supply chain tactical planning under demand and supply uncertainty. An

ad-hoc heuristic, based on Lagrangian Relaxation, is proposed to solve each scenario-

cluster sub-model. Our experimental results on a set of realistic-scale test cases reveal

the efficiency of HSCD in terms of solution quality and computation time.

3.1 Introduction

Large-scale Multi-stage Stochastic Mixed Integer Programming (MS-MIP) models

usually arise in multi-period planning models under uncertain parameters with dy-

namic and non-stationary behavior over the planning horizon. Supply chain planning

(e.g., [35, 36]), and production planning ([27, 37, 38]) under uncertainty are few ex-

amples among others.
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Such models are among the most intractable ones due to the fact that the num-

ber of complicating binary and/or integer variables in the deterministic MIP model

increases exponentially once the uncertainty is modeled as a scenario tree in a multi-

stage setting. The latter is a viable way of capturing the evolution of all information

trajectories over time. A variety of algorithms for solving multi-stage stochastic MIP

models have been proposed (e.g., see [39]). Branch-and-Price ([40]) and Branch-and-

Fix Coordination methods ([35, 36], [41, 42]) are two of prevalent methods in the

literature for solving MS-MIP models. Nonetheless, such algorithms are designated

for special structured models such as lot-sizing and batch-sizing problems or pure 0-1

integer programming models. This makes them less suitable for general large-scale

MS-MIP models with no particular structure similar to the supply chain tactical

planning model investigated in this article.

Scenario decomposition strategies (e.g., see [43, 44]) are among the most efficient

approaches to solve large-scale multi-stage stochastic programs. Progressive Hedg-

ing Algorithm (PHA) [43] is one of the scenario decomposition techniques that has

been successfully applied as a heuristic to solve multi-stage stochastic MIP mod-

els. The main idea behind this algorithm is to decompose the original multi-stage

stochastic program into deterministic scenario sub-models. Such subproblems are

then coordinated by Lagrangian penalty terms in their objective function in order

to obtain an implementable solution. Løkketangen and Woodruff [45] proposed a

heuristic algorithm based on PHA and Tabu Search. Haugen et al. [46] cast the

PHA in a meta-heuristic algorithm where the generated sub-problems for each sce-

nario are solved heuristically. Despite several advantages of Scenario Decomposition

(SD) algorithms in solving stochastic programs, such approaches suffer from critical

issues non-convergence or unacceptably long run-times in the context of large-scale
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MS-MIP models. Recently, Watson and Woodruff [47] proposed algorithmic innova-

tions to address several critical issues of PHA in the context of large-scale two-stage

discrete optimization problems. In an attempt to speed up scenario decomposition

algorithms in the context of large-scale MS-MIP models, the idea of scenario parti-

tioning (clustering) in scenario trees has been proposed by several authors. The idea

is to decompose the initial scenario tree into smaller sub-trees that share a certain

number of ancestor nodes. The multi-stage stochastic model is then decomposed into

scenario cluster sub-models which are coordinated by Lagrangian penalty terms in

their objective function in order to compensate the lack of non-anticipativity. Escud-

ero et al. [41] embedded the idea of scenario partitioning with the Branch-and-Fix

Coordination method to solve large-scale 0-1 multi-stage stochastic models. Escud-

ero et al. [48] proposed a cluster Lagrangian decomposition algorithm for solving

MS-MIP model while implementing four approaches for updating Lagrangian multi-

pliers. Carpentier et al. [49] proposed a heuristic for scenario partitioning of large

scenario trees within the PHA. Escudero et al. [48, 50] demonstrated that adopting

the sub-gradient algorithm to coordinate scenario cluster sub-models would result

considerably higher convergence comparing to the PHA. It is noteworthy that in the

PHA, an implementable solution in each node of the scenario tree is considered as

the average of solutions of the set of scenario cluster sub-models that are indistin-

guishable at that node. In contrary, the sub-gradient method directly imposes the

implementability condition in each node through a pair-wise comparison between the

solutions of the set of indistinguishable scenario clusters at that node.

In this study, we extend the idea of scenario clustering of Escudero et al. [48]

based on an accelerated sub-gradient method. More precisely, we propose a scenario

cluster decomposition (SCD) based on the sub-gradient method. Along with this

contribution, there are also three other main contributions in the present paper. First,
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with the goal of reducing the number of iterations, we embed a variable-fixing heuristic

within the sub-gradient algorithm. This algorithm fixes the value of binary variables

in the common nodes of scenario cluster sub-models obtained at each iteration of SCD

algorithm to zero or one in the next iteration according to a consensus rule among

the solution of indistinguishable scenario cluster sub-models. Second, the accelerated

SCD algorithm is specialized to tactical supply and procurement planning in the lumber

supply chain under demand and supply uncertainty. To the best of our knowledge,

due to high computational complexity, this problem has never been addressed in the

literature. In this problem, scenario-cluster sub-models are MS-MIP models that

are hard to solve. Hence, our third contribution is focused on proposing an ad-hoc

heuristic to solve such sub-models. This algorithm is a Lagrangian Relaxation-based

heuristic enhanced through updating the sub-gradient step-size.

Hence, the proposed algorithm in this study is a Hybrid Scenario Cluster Decom-

position (HSCD) heuristic applicable to large-scale MS-MIP models with a particular

application in supply chain tactical planning. Along with the possibility of paral-

lelization, the main advantage of the HSCD heuristic is accelerating the sub-gradient

algorithm applied to coordinate scenario cluster sub-models into an implementable

solution. Furthermore, it provides the possibility of embedding proper heuristics for

solving scenario cluster sub-models depending on their special structure. Hence, sig-

nificant improvement in terms of the convergence of the sub-gradient algorithm within

the HSCD algorithm can be expected.

Our experimental results on a set of real-size test cases in a Canadian lumber

supply chain indicate the high quality of the solutions obtained by the HSCD heuris-

tic in addition to significant CPU time reduction comparing to a commercial solver

and the SCD algorithm proposed in [42] and [48].
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This article is organized as follows. In Section 3.2, a brief description of multi-

stage stochastic programming is provided. The details of the HSCD algorithm is

presented in Section 3.3. Section 3.4 summarizes the specialization of the HSCD

algorithm to tactical supply and procurement planning in the lumber supply chain.

Numerical results and concluding remarks are respectively provided in Sections 3.5

and 3.6. Finally, the multi-stage programming model for harvesting and procurement

tactical planning in the lumber supply chain that is another contribution of this study

is presented in the Appendix.

3.2 Multi-stage stochastic mixed-integer programs

Let us consider the following multi-period deterministic mixed integer model [1]:

Z = min
∑
t∈τ

[atxt]

Subject to:

A1x1 ≤ c1

A
′
txt−1 +Atxt ≤ ct ∀t ∈ τ \ {1}

xt ≥ 0 ∀t ∈ τ (63)

where τ = {1, 2, 3, ..., T} is the set of periods such that T = |τ |; xt is the vector

of decision variables including binary, integer, and continuous variables. at is the

vector of objective function coefficients, At and A′t are the constraints matrices, and

ct is the right-hand-side vector in period t. For the sake of simplicity, we only present

constraints with variables linking consecutive periods. These types of models are very

useful in practice and usually arise in multi-period planning models under uncertain

parameters with dynamic and non-stationary behavior over the planning horizon.

Supply chain planning, lot-sizing, and batch-sizing problems are few examples among
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others.

Without loss of generality, we assume that the uncertainty may affect parameters

associated with technological coefficients in the constraints, as well as the right-hand-

side vector. Furthermore, we consider that uncertain parameters have a dynamic

behavior over time, hence they can be modeled as a scenario tree. A scenario tree,

represented by Tree in this paper, is a computationally viable way of discretising

the underlying dynamic stochastic data over time. Figure 2 represents a four-stage

scenario tree. Each stage in a scenario tree denotes the stage of the time when

new information is available to the decision maker. The root node in a scenario

tree represents the current state while the other nodes represent scenarios in other

stages. Moreover, a scenario ω is a specific path from the root to the leaf of the tree.

A probability (pr(n)) is associated to each node of the scenario tree indicating the

likelihood of the corresponding node.

Figure 2: A four-stage scenario tree

It is possible to reformulate model (63) in the stochastic context based on a given

scenario tree that leads to the Deterministic Equivalent Model (DEM). In order to

obtain the multi-stage stochastic formulation, each decision variable in model (63)
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can be defined for each scenario, leading to the scenario reformulation model. How-

ever, the latter will not yield an implementable solution, as the decision maker cannot

foresee the unknown parameters. The implementability or non-anticipativity condi-

tion (NAC) indicates that the decision variables corresponding to each node of the

scenario tree at stage t are identical for any pair of indistinguishable scenarios at that

stage. There are at least two ways to impose NAC in multi-stage stochastic programs

leading to split and compact variable formulations. In the split formulation (model

(64)), we need to enforce non-anticipativity by adding extra constraints explicitly.

Z = min
∑
ω∈Ω

∑
t∈τ

wω[atx
ω
t ]

Subject to:

Aω
1 x

ω
1 ≤ cω1 ∀ω ∈ Ω

A
′ω
t x

ω
t−1 +Aω

t x
ω
t ≤ cωt ∀t ∈ τ \ {1} , ω ∈ Ω

xω
t = xω′

t ∀t ∈ τ \ {T} , ω, ω′ ∈ Bω
t , ω 	= ω′

xω
t ≥ 0 ∀t ∈ τ, ω ∈ Ω (64)

where Ω represents the set of scenarios, wω represents the probability attributed

to scenario ω, and Bω
t is bundle of scenarios that are indistinguishable from ω at

stage t. Aω
t and A′ωt are the constraints matrices and cωt is the right-hand-side vector

for scenario ω in period t. Moreover, the non-anticipativity condition is explicitly

formulated as xω
t = xω′

t .

In contrast, in the compact formulation, the NAC is implicitly considered in DEM

through defining decision variable for the nodes of the scenario tree. Model (65) is

the compact formulation of model (63) in the stochastic context.
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Z = min
∑

n∈Tree

∑
t∈τ

pr (n) [atxt (n)]

Subject to:

A1x1 ≤ c1

A
′
t (n)xt−1 (a(n)) +At (n)xt (n) ≤ ct (n) ∀t ∈ τ \ {1} , n ∈ Tree

xt (n) ≥ 0 ∀t ∈ τ, n ∈ Tree (65)

where xt (n) represents the vector of decision variables at node n in stage t in the

scenario tree. At (n) and A′t (n) are the constraints matrices and ct (n) is the right-

hand-side vector at node n in stage t. The immediate predecessor of node n in the

scenario tree is denoted as a(n). Moreover, the probability of each node, pr(n), is

calculated as
∑

ω∈Bω
t
wω.

Comparing multi-stage stochastic models (64) and (65) with the deterministic

model (63) clearly indicates that the number of decision variables grows exponentially

as the number of stages and branches in the scenario tree increases. This would

make the model computationally intractable, particularly in cases that all or part of

decisions are binary/integer. This is the main motivation behind developing efficient

solution algorithms for solving this class of problems.

3.3 Hybrid Scenario Cluster Decomposition (HSCD)

algorithm

The main idea behind the HSCD algorithm is to embed efficient heuristics within the

scenario cluster decomposition (SCD) scheme in order to accelerate its convergence.

Hence, we extend the method of Escudero et al. [48] in MS-MIP models based on an

accelerated sub-gradient method.
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The acceleration is based on a Variable Fixing Heuristic (VFH). Furthermore,

since each scenario cluster sub-model is a multi-stage stochastic program that might

be hard to solve in real-size instances, we propose to use an efficient ad-hoc heuristic

to solve them. The procedure described above is summarized in Algorithm 4 and will

be elaborated in what follows.

Algorithm 4 HSCD heuristic

Step 1. Scenario Cluster Decomposition (SCD) algorithm
Step 1.1. Partition the scenario tree into a number of sub-trees after

choosing the break stage [42]
Step 1.2. Formulate scenario cluster sub-models in a compact form

after adding NAC violation terms in their objective function
Step 2. Sub-gradient method (to obtain an implementable solution for

scenario cluster sub-models)
Step 2.1. Ad-hoc heuristic (to solve each scenario-cluster sub-model)
Step 2.2. VFH heuristic (to speed-up the sub-gradient algorithm)

3.3.1 Scenario Cluster Decomposition (SCD) algorithm

Scenario clustering in multi-stage stochastic programming is equivalent to breaking

down the original scenario tree in a given stage (i.e., break stage) and obtain a set

of scenario cluster sub-trees. For instance, in the scenario tree depicted in Figure 2,

if the break stage is chosen as stage 2, four scenario cluster sub-trees are obtained,

as depicted in Figure 3. As can be observed in Figure 3, two of the latter sub-trees

share node 2 and the other two share node 3, and all share node 1 in the original

scenario tree. In the SCD algorithm proposed in this article, after clustering the

original scenario tree, we formulate a multi-stage stochastic model for each scenario

sub-tree (cluster) using the compact formulation by relaxing the NACs corresponding

to common nodes. Scenario cluster sub-models are then coordinated by Lagrangian

penalty terms in their objective function in order to compensate the lack of non-

anticipativity. Finally, scenario cluster sub-models are solved into an implementable
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solution by the aid of sub-gradient algorithm. The advantages of using a direct sub-

gradient method for coordinating scenario cluster sub-models rather than the PHA

in terms of convergence has been demonstrated in Escudero et al. [50] for two-stage

stochastic programs.

In order to select the break stage in the SCD algorithm, the trade-off between the

size and the number of scenario cluster sub-models must be taken into consideration.

On the one hand, as the number of scenario cluster sub-trees increases more sub-

problems in the sub-gradient algorithm should be solved which would slow down its

convergence. On the other hand, if the chosen number of scenario clusters is small,

each scenario cluster sub-model becomes a large-scale MS-MIP which might be hard

to solve. Finally, it should be noted that the convergence of scenario decomposition

algorithms to an optimal solution has been proved in the literature ([43]) for linear

MSP problems. However, such algorithms can be considered as heuristics in the

context of integer or MIP problems (see, e.g., [45]). Same can be expected when

applying the SCD algorithm to MS-MIP models. In what follows, we provide more

details on partitioning the original scenario tree into sub-trees as well as the general

formulation of scenario-cluster sub-models within the SCD framework.

3.3.1.1 Partitioning the scenario tree into scenario cluster sub-trees

As mentioned earlier, the first step of the SCD algorithm is choosing the break stage

(t∗). Hence, in a symmetric scenario tree, the original scenario tree is decomposed to

p̂ = |Ω|/l scenario cluster sub-trees, where Ω indicates the scenario set and l denotes

the number of scenarios in each sub-tree. It should be noted that the abovementioned

sub-trees share common nodes that belong to stages t = 1, 2, ..., t∗ in the initial

scenario tree. Let us denote Np as the set of nodes belonging to sub-tree p and ηn

as sub-tree sets that have node n in common. N1 and N2 are sets of nodes belonging
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to stages that are not after (i.e., t = 1, 2, ..., t∗) and after the break stage (i.e., t =

t∗+1, t∗+2, ..., T ). Furthermore, Np
1 = N1∩Np and Np

2 = N2∩Np are sets of nodes in

sub-tree p belonging to N1 and N2, respectively. For example, consider the four-stage

scenario tree in Figure 2 that is broken down into four scenario cluster sub-trees in

Figure 3. In this figure, the breaking stage is at t∗ = 2, and there are four scenario

cluster sub-trees. η1 = {sub− tree 1, sub− tree 2, sub− tree 3, sub− tree 4} , η2 =

{sub− tree 1, sub− tree 2} , η3 = {sub− tree 3, sub− tree 4} show that node 1 is

included in sub-trees 1, 2, 3 and 4; node 2 is included in sub-trees 1 and 2; and node

3 is included in sub-trees 3 and 4. Also, N1 = {1, 2, 4, 8, 9}, N2 = {1, 2, 5, 10, 11},
N3 = {1, 3, 6, 12, 13}, and N4 = {1, 3, 7, 14, 15}. Moreover, N1 = {1, 2, 3}, N2 =

{4, 5, ..., 15}, N1
1 = {1, 2}, and N1

2 = {4, 8, 9}.

Stage 1 Stage 2 Stage 3 Stage 4

Sub-tree 1

Sub-tree 2

Sub-tree 3

Sub-tree 4

Figure 3: A decomposed scenario tree to four clusters

3.3.1.2 Scenario cluster sub-model formulation

Let us consider the compact formulation of the DEM of a multi-stage stochastic

problem (model (65)). After breaking down the scenario tree into p̂ sub-trees, we

57



decompose model (65) into p̂ sub-models accordingly. Thus, the multi-stage stochastic

MIP sub-model for each scenario cluster p can be expressed by the following compact

formulation (model (66)).

Zp = min
∑

n∈Np
1

∑
t∈τ

wp(n)[atx
p
t (n)]

+
∑

n∈Np
2

∑
t∈τ

pr (n) [atx
p
t (n)]

Subject to:

A1x1 ≤ c1

A
′p
t (n)x

p
t−1 (a(n)) +Ap

t (n)x
p
t (n) ≤ cpt (n) ∀t ∈ τ \ {1} , n ∈ Np

xp
t (n) ≥ 0 ∀t ∈ τ, n ∈ Np (66)

where wp(n) =
∑

ω∈Ωp
wω is the weight (probability) of nodes before the break stage

(n ∈ N1) in sub-tree p; wω is likelihood of scenario ω; and Ωp is the set of scenarios

belonging to sub-tree p. Moreover, the p̂ sub-problems (66) should be linked with

each other by the NAC as follows:

xp
t (n)− xp

′

t (n) = 0 ∀p, p′ ∈ ηn : p 	= p
′
, t ∈ τ, n ∈ N1 (67)

Considering the same example in Figure 3, the explicit NAC formulated in (67)

can be expressed as follows:

x1
1 (1) = x2

1 (1) = x3
1 (1) = x4

1 (1)

x1
2 (2) = x2

2 (2)

x3
2 (3) = x4

2 (3) (68)

It is also possible to consider the NAC (67) as a set of inequalities:
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xp
t (n)− xp+1

t (n) ≤ 0 ∀p = p
ηn , ..., (p̄ηn)− 1, t ∈ τ, n ∈ N1 (69)

x
p̄ηn

t (n)− x
p
ηn

t (n) ≤ 0 ∀t ∈ τ, n ∈ N1 (70)

where p
ηn

and p̄ηn are the first and the last ordered sub-trees belonging to ηn(i.e.,

min {p|p ∈ ηn} and max {p|p ∈ ηn}, respectively). At each stage belonging to τ =

{1, 2, ..., t∗(break stage)}, ηn represents the set of scenario sub-trees that have node

n ∈ N1 in common. For instance, in the decomposed scenario sub-trees in Figure

3, at stage 2, η2 represents the scenario sub-trees 1 and 2; and η3 represents the

scenario sub-trees 3 and 4. Finally, the original MS-MIP model can be formulated

as a splitting-compact variable representation model over the set of sub-trees [42] as

follows:

ZMS−MIP = min

p̂∑
p=1

∑
n∈Np

1

∑
t∈τ

wp(n)[atx
p
t (n)] +

p̂∑
p=1

∑
n∈Np

2

∑
t∈τ

pr (n) [atx
p
t (n)]

Subject to:

A1x1 ≤ c1

A
′p
t (n)x

p
t−1 (a(n)) +Ap

t (n)x
p
t (n) ≤ cpt (n) ∀p ∈ ηn, t ∈ τ \ {1} , n ∈ {N1, N2}

xp
t (n)− xp+1

t (n) ≤ 0 ∀p = p
ηn , ..., (p̄ηn)− 1, t ∈ τ \ {T} , n ∈ N1

x
p̄ηn

t (n)− x
p
ηn

t (n) ≤ 0 ∀t ∈ τ \ {T} , n ∈ N1

xp
t (n) ≥ 0 ∀t ∈ τ, n ∈ Tree, p ∈ ηn (71)

By relaxing the NACs (the last two set of constraints) in model (71), the latter is

decomposable into p̂ sub-problems corresponding to each scenario cluster sub-tree p.

In order to compensate the lack of non-anticipativity in such sub-models, Lagrangian

penalty terms (μp
t (n)) can be added to their objective function and the sub-gradient

algorithm can be implemented to solve the Lagrangian models. Model (72) is the
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Lagrangian relaxation of model (71) after relaxing the NACs.

ZSCD (μ, p̂) = min

p̂∑
p=1

∑
n∈Np

1

∑
t∈τ

wp (n) [atx
p
t (n)] +

p̂∑
p=1

∑
n∈Np

2

∑
t∈τ

pr (n) [atx
p
t (n)]

+

(p̄ηn )−1∑
p=p

ηn

∑
n∈N1

∑
t∈τ

μp
t (n)(x

p
t (n)− xp+1

t (n)) +
∑
n∈N1

∑
t∈τ

μ
p̄ηn

t (n)(x
p̄ηn

t (n)− x
p
ηn

t (n))

Subject to:

A1x1 ≤ c1

A
′p
t (n)x

p
t−1 (a(n)) +Ap

t (n)x
p
t (n) ≤ cpt (n) ∀p ∈ ηn, t ∈ τ \ {1} , n ∈ {N1, N2}

xp
t (n) ≥ 0 ∀t ∈ τ, n ∈ Tree, p ∈ ηn (72)

As we mentioned before, model (72) can be decomposed into p̂ smaller sub-

problems (model (74)), and its objective function can be obtained as the sum of

Zp
SCD (μ) values corresponding to each sub-tree as follows:

ZSCD (μ, p̂) =

p̂∑
p=1

Zp
SCD (μ) (73)

where Zp
SCD (μ) is the objective value of the pth scenario sub-tree. For p = p

(ηn)
+

1, . . . ., p̄ηn , the scenario cluster sub-model can be expressed (in compact formulation)

as follows:
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Zp
SCD (μ) = min

∑
n∈Np

1

∑
t∈τ

wp (n) [atx
p
t (n)]

+
∑

n∈Np
2

∑
t∈τ

pr (n) [atx
p
t (n)] +

∑
n∈N1

∑
t∈τ

(μ
p
t (n)− μp−1

t (n))(xp
t (n))

Subject to:

A1x1 ≤ c1

A
′p
t (n)x

p
t−1 (a(n)) +Ap

t (n)x
p
t (n) ≤ cpt (n) ∀t ∈ τ \ {1} , n ∈ {N1, N2}

xp
t (n) ≥ 0 ∀t ∈ τ, n ∈ Np (74)

It should be noted that for p = p
ηn
, the term

∑
n∈N1

∑
t∈τ (μ

p
t (n)−μp−1

t (n))(xp
t (n))

should be replaced by
∑

n∈N1

∑
t∈τ (μ

p
ηn

t (n)− μ
p̄ηn
t (n))

(x
p
ηn

t (n)) in the objective function. Finally, scenario cluster sub-models (74) are co-

ordinated to an implementable solution by the aid of the sub-gradient algorithm. In

what follows, we provide the details of sub-gradient algorithm and heuristics embed-

ded in it to speed-up its convergence.

3.3.2 Scenario-cluster decomposition algorithm

The SCD algorithm is summarized in Algorithm 5. After initializing the Lagrangian

multipliers (μp
t (n)), each scenario cluster sub-model is solved by the aid of an ad-

hoc heuristic. Once, the solutions of all sub-trees are obtained, the violation of

corresponding NACs are verified and subsequently the sub-gradient vector (skt (n)) is

calculated. Next, the Lagrangian multipliers are updated. This procedure is repeated

for a number of iterations until the NAC are satisfied within a given error threshold.

In Algorithm 5, Z̄HSCD is an upper-bound on the objective function of each scenario

cluster sub-model and αk is the step modifier. The stopping criterion in this algorithm

requires that ZHSCD does not improve after two consecutive iterations.
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Algorithm 5 SCD algorithm (sub-gradient based)

Step 0 (initialization):
Assign zero to Lagrangian multipliers vector (μ0 = 0) and solve the p̂ sub-

problems (74) to obtain x0 and ZHSCD (μ0, p̂) based on equation (73)
Let iteration counter k equal to 1

while the stopping criteria is not satisfied do
Step 1 (∀n ∈ N1,t ∈ τ)

Compute the sub-gradient vector at node n for the set of sub-trees in ηn

skt (n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
k,p

ηn

t (n)− x
k,(p

ηn
)+1

t (n)
.
.
.

x
k,((p̄ηn )−1)
t (n)− x

k,p̄ηn
t (n)

x
k,p̄ηn
t (n)− x

k,p
ηn

t (n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 2
Update Lagrangian multipliers as follows:

μk+1
t (n) = μk

t (n) + αk.
(Z̄HSCD−ZHSCD(μk,p̂))

‖skt (n)‖2 .skt (n)

Step 3
Solve the p̂ sub-problems (74) with μk+1 to obtain xk+1 and
ZHSCD

(
μk+1, p̂

)
Step 4

Set k ← k+1
end while

3.3.2.1 Variable Fixing Heuristic (VFH) algorithm

As mentioned earlier, in order to accelerate the convergence of sub-gradient algorithm

within the SCD algorithm, we propose a Variable Fixing Heuristic. The idea is to

reduce the number of binary variables in each scenario cluster sub-model (74) in

order to reduce the CPU time required to solve them. The details of this heuristic

algorithm are elaborated in Algorithm 6. In this algorithm, xpB
t (n) represents the

vector of binary decision variables.

At each iteration of the SCD algorithm, the VFH algorithm verifies the value

of binary variables corresponding to all nodes in each stage before the break stage

(n ∈ N1), obtained in the previous iteration over all scenario cluster sub-models (74).
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Algorithm 6 VFH algorithm

Step 1.
Solve MS-MIP sub-problem for all scenario sub-trees (model (74)) in SCD
algorithm (Algorithm 5) and obtain the vector of binary decision variables
xpB
t (n) at all nodes before the break stage (∀n ∈ N1)

for (∀n ∈ N1) do
Step 2. Over all sub-trees (p) that share node n, count the number of

sub-trees where a given binary variable takes 1 or 0.
Step 3. Update Counter =

∑
p∈ηn x

pB
t (n)

Step 4. Consensus rule:
Step 4.1. Fix xpB

t (n) in the next iteration in SCD as follows:

xpB
t (n) =

⎧⎨
⎩

1 , Counter > |ηn|
2

0 , Counter < |ηn|
2

end for

Next, such binary variables are fixed to 0 or 1 according to a consensus rule among

all sub-trees. For instance, consider the case of 3 scenario sub-trees, where at a given

iteration k, the value of a given binary variable at node n in a given stage before the

break stage is equal to 1 in two of sub-trees and equal to 0 in the third one. According

to the consensus rule given in Algorithm 6, we fix that binary variables at node n to

1 at iteration k + 1 in all scenario sub-trees that share node n.

3.4 Application of HSCD heuristic to tactical sup-

ply and procurement planning in the lumber

supply chain

In this section, we aim at specializing the proposed HSCD algorithm described in

Section 3.3 to a tactical supply and procurement planning in the lumber supply chain

(SC) under supply and demand uncertainty. In what follows, we first describe the

problem and the uncertainty involved in it. Furthermore, we provide the details of
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the application of the HSCD algorithm to solve this problem.

3.4.1 Tactical supply and procurement planning in the lum-

ber supply chain

In the lumber supply chain, the raw materials are logs that are shipped from forest

contractors to sawmills. Logs are then sawn to green/finished lumbers in sawmills

and are distributed to the lumber market through different channels. Supply and

procurement planning in the lumber SC determines the optimal harvesting and pro-

curement decisions over a planning horizon with the goal of minimizing cost while

satisfying the log demand in sawmills. More precisely, we are looking for the harvest-

ing schedule, i.e. the selection of harvesting blocks and the quantity of harvesting

in each period by considering several harvesting constraints as well as log procure-

ment decisions in sawmills. This problem can be formulated as a MIP model in the

deterministic context [51].

In lumber SC, forecasting the exact amount of demand for log type rm at sawmill

m in period t (drm,m,t) is almost impossible. Furthermore, the availability of log type

rm in harvesting block bl (vrm,bl) is also uncertain. Thus, considering random demand

and supply in harvesting and lumber procurement tactical planning is essential. The

uncertain log demand can be modeled as a scenario tree similar to the one depicted

in Figure 2. The nodes at each stage of the scenario tree constitute the states of the

demand that can be distinguished by the information available up to that stage. On

the other hand, the uncertainty in forecasting the availability of logs in each block can

be modeled as a time independent random variable over the planning horizon; hence

it can be modeled as a scenario set. According to the abovementioned uncertainty

modeling for the log demand and supply, the Harvesting/Procurement (HP) tactical

planning problem can be formulated as multi-stage mixed-integer stochastic program
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with recourse (model (79)-(93) in the appendix).

It should be noted that model (79)-(93) is a compact formulation, where the

decision variables have been defined for each node of the scenario tree. Also, the

stages in models (79)-(93) incorporate a number of time periods, and tn denotes the

set of all time periods corresponding to node n. Due to the large size of tactical

planning model in a real-size case study, we applied the HSCD heuristic described in

Section 3.3 as a solution method.

3.4.2 Solving HP tactical planning model by the aid of HSCD

heuristic

The HP problem is a multi-stage-stochastic mixed-integer programming problem.

After decomposing the original scenario tree into a set of sub-trees (step 1.1. of Al-

gorithm 4), we formulate the HP problem as an MS-MIP model for each scenario

sub-tree (step 1.2) by considering the NACs corresponding to the implementability

of Hbl,t(n) (harvesting schedule), Ybl,t(n) (portion of harvesting), Xbl
rm,m,t(n) (procure-

ment quantity) in model (79)-(93) as follows:

Hp
bl,t (n)−Hp

′

bl,t (n) = 0 ∀p, p′ ∈ ηn : p 	= p
′
, bl ∈ BL, t ∈ tn, n ∈ N1 (75)

Y p
bl,t (n)− Y p

′

bl,t (n) = 0 ∀p, p′ ∈ ηn : p 	= p
′
, bl ∈ BL, t ∈ tn, n ∈ N1 (76)

Xbl,p
rm,m,t (n)−Xbl,p

′

rm,m,t (n) = 0 ∀p, p′ ∈ ηn : p 	= p
′
, bl ∈ BL, rm ∈ RM,

m ∈ M, t ∈ tn, n ∈ N1 (77)
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Next, we implement the sub-gradient algorithm to solve the scenario cluster sub-

models into an implementable solution. Since, such sub-models are MS-MIP problems

that are hard to solve for large-scale test instances, steps 2.1 and 2.2 in Algorithm 4

are applied as follows:

Step 2.1 (Algorithm 4): A Lagrangian Relaxation-based Heuristic (LRH) for

solving scenario cluster HP sub-models

It is worth mentioning that the complexity of the integrated model (79)-(93) is

due to the existence of binary variables corresponding to harvesting schedule during

the planning horizon, in addition to constraints (84) and (85) that formulate the

harvesting constraints in the forest. In other words, the latter two constraints can

be considered as complicating constraints in the sense that after relaxing them from

model (79)-(93), the resulting model can be solved much faster by a commercial solver.

Hence, we propose a Lagrangian Relaxation (LR) algorithm where the aforementioned

constraints are relaxed and their violation is penalized in the objective function by

the aid of Lagrangian multipliers. Next, the sub-gradient method can be used to

solve the Lagrangian model. The summary of LRH algorithm for model (79)-(93) is

summarized in Algorithm 7. The stopping criterion in the LRH is the same as SCD

algorithm (Algorithm 5), and εh is the step modifier. The Lagrangian Relaxation

of model (79)-(93) (Lagrangian model) can be stated as model (78) where ubl(n)

and vt(n) are the Lagrangian multipliers corresponding to constraints (84) and (85),

respectively. A(n) is the set of ancestors of nodes that belong to the last stage (NT ).
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Lh
IP (u, v) = Minimize

⎧⎨
⎩ZHP −

∑
n′∈NT

∑
bl∈BL

ubl(n
′) ∗ (lbl −

∑
t∈tn

∑
n∈A(n′)

Hbl,t(n)) −

∑
n∈Tree

∑
t∈tn

vt(n) ∗ (nt −
∑

bl∈BL

Hbl,t(n))

}
(78)

Subject to:

(79)-(83) and (86)-(93).

Note that solving model (78) by a classical sub-gradient algorithm suffers from two

essential issues namely the slow convergence of the algorithm and the infeasibility of

the converged solution. Consequently, we propose a Lagrangian Relaxation Heuristic

(LRH) where we embed a heuristic algorithm which iteratively updates the search

step-size of the sub-gradient algorithm. This is achieved through obtaining a new

upper-bound on the objective function value based on the most recent lower-bound.

The idea is to improve the quality of upper-bound based on the improved lower-bound

as we proceed in the sub-gradient algorithm. The improved upper-bound can be used

to adjust the search step-size (step 3 in Algorithm 7) which is expected to accelerate

the convergence of the sub-gradient algorithm and to avoid the infeasibility of the

converged solution. Algorithm 8 summarizes the upper-bound updating algorithm.

Updating the upper-bound is performed by solving a reduced MS-MIP model obtained

after fixing a certain number of binary decision variables to zero according to the

following criteria. In each iteration of the LRH, the solution of the Lagrangian model

is verified in terms of feasibility of the relaxed binary constraints. Next, in the non-

violated constraints, we identify those binary variables with the value equal to zero

at the optimal solution. Those variables are then fixed to zero in each HP scenario

cluster sub-model in order to obtain a feasible solution and a new upper-bound on

the optimal objective function value.
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Algorithm 7 LRH algorithm

Step 0 (initialization):
Assign zero to ubl(n

′)(n′ ∈ NT ) and vt(n)(n ∈ Tree)
Find an initial upper-bound (UB) (feasible solution) and assign −∞ to the
lower-bound (LB)
Let iteration counter k equal to 1

while the stopping criteria is not satisfied do
Step 1

Solve the Lagrangian problem (78) and determine the objective function value
of Lk

IP (u, v)
Step 2

If (Lk
IP (u, v) > LB) then LB = Lk

IP (u, v)
Update the upper-bound (UB) based on the “Upper-bound updating al-

gorithm”
Step 3
Update Lagrangian multipliers as follows:

uk+1
bl (n′) = max{uk

bl(n
′) − εk ∗ Lk

IP (u,v)−LB
‖lbl−∑t∈tn

∑
n∈A(n′) Hbl,t(n)‖2 ∗ (lbl −∑

t∈tn
∑

n∈A(n′) Hbl,t(n)), 0}
vk+1
t (n) = max{vkt (n) − εk ∗ Lk

IP (u,v)−LB
‖nt−

∑
bl∈BL Hbl,t(n)‖2 ∗ (nt −∑

bl∈BL Hbl,t(n)), 0}
k = k + 1

end while

Step 2.2 (Algorithm 4) (VFH)

In each iteration of Algorithm 5 (SCD), we apply VFH heuristic (Algorithm 6) in

order to reduce the number of iterations. For this purpose, we should find the value

of
∑

p∈ηn H
p
bl,t(n) in all nodes belonging to the stages before the break stage (n ∈ N1)

and fix the value of Hp
bl,t(n) to 0 or 1 in the next iteration of SCD algorithm based

on the given criterion in Algorithm 6.

3.5 Numerical results

In this section, we first provide details on generating a testbed of problem instances

along with algorithmic implementations. Then we provide the results of applying the
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Algorithm 8 Upper-bound updating algorithm

Step 0 (initialization):
Calculate slack variable corresponding to binary constraints (84) and (85)

if slack variable ≥ 0 then
Step 1:

Identify the binary variables which are equal to 0 and fix them to zero
in each scenario cluster sub-model (74) in order to obtain a reduced
sub-model

Step 2:
Solve each reduced scenario cluster sub-model (74) (by a
commercial solver) to obtain a new upper-bound (new UB)

Step 3:
if (new UB) < (old UB) then

Update upper-bound for the next iteration in LRH algorithm
(UB) = new UB

end if
end if

HSCD heuristic proposed in this article to those test instances, where we compare the

CPU time and the quality of solutions obtained by this algorithm with a commercial

solver (CPLEX v12.5) and a 3-cluster SCD algorithm that provides optimal solution

to the MS-MIP HP model.

3.5.1 Testbed data and implementation details

We consider 3 classes of tactical supply and procurement (HP) tactical planning

problems (model (79-93)) that differ in terms of the number stages. In the first

class (problem instances P1-P4), each stage incorporates 6 month (periods) over the

12-month planning horizon, leading to a 3-stage MS-MIP model; while in the second

and third classes (P5-P8 and P9-P12 instances), each stage encompasses, respectively

4 and 3 months, leading to 4 and 5-stage MS-MIP models. In each class of test

instances, we consider two types of lumber supply chains that differ in terms of the

number of harvesting blocks available during the planning horizon and the amount

of log demand. Finally, within each class and supply chain size, two variants of
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problems have been investigated that differ in terms of the variability level of the

random log demand. More specifically, we consider two normal distributions for the

log demand with equal mean-values and variances equal to 5% and 20% of the mean-

values, respectively. The above-mentioned approach leads to 12 problem instances as

summarized in Table 6. Its headings are as follows: Instance, member of the testbed

we have experimented with; nc, number of constraints; ncv, number of continuous

variables; nbv, number of 0-1 variables; nel, number of nonzero coefficients in the

constraint matrix; dens, constraint matrix density (in %); |Ω|, number of scenarios;

|Tree|, number of nodes in the scenario tree; T, number of stages; Variability%,

variance of random log demand as a percentage of mean-value; and |BL|, number of

harvesting blocks. In all test instances, the supply capacity of each block in the forest

per month is supposed to be 2,350 m3. As in Beaudoin et al. [15], the maximum

number of periods (months) over which harvesting can occur in each block in the forest

as well as the maximum number of blocks in which harvesting can occur per month

are randomly generated from uniform distributions in the following intervals: U[10,

12] and U[1, 6], respectively. The average volumes of each log class available in each

block are also randomly generated based on Beaudoin et al. [15]. The total harvesting

capacity per month is supposed to be approximately 175,000 m3. At each stage in the

scenario tree corresponding to each test instance, we consider a normal distribution

for the log demand which is approximated by a 3-point discrete distribution (i.e.,

high, average, and low demand). Furthermore, in each node of the demand scenario

tree, 3 scenarios have been considered for the yield of different blocks in the forest

according to the yield data provided in Beaudoin et al. [15]. The above-mentioned

data sets have been validated by our industrial partner to correspond to the reality.

All algorithms in this paper were coded in C++ using CPLEX v12.5 concert

technology on a Dual-Core CPU 3.40GHz computer with 16.00 GB RAM.
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Table 6: Testbed problem dimensions
Instance nc ncv nbv nel dens |Ω| |Tree| T Variability% |BL|

P1 233,715 126,847 1,800 669,762 0.0022 9 13 3 5% 25
P2 233,715 126,847 1,800 669,762 0.0022 9 13 3 20% 25
P3 459,950 247,257 3,600 1,321,236 0.0011 9 13 3 5% 50
P4 459,950 247,257 3,600 1,321,236 0.0011 9 13 3 20% 50
P5 522,774 276,382 3,900 1,448,136 0.0009 27 40 4 5% 25
P6 522,774 276,382 3,900 1,448,136 0.0009 27 40 4 20% 25
P7 1,029,746 538,929 7,800 2,855,628 0.0005 27 40 4 5% 50
P8 1,029,746 538,929 7,800 2,855,628 0.0005 27 40 4 20% 50
P9 1,237,935 641,899 9,000 3,332,394 0.0004 81 121 5 5% 25
P10 1,237,935 641,899 9,000 3,332,394 0.0004 81 121 5 20% 25
P11 2,439,950 1,234,089 18,000 6,570,036 0.0002 81 121 5 5% 50
P12 2,439,950 1,234,089 18,000 6,570,036 0.0002 81 121 5 20% 50

3.5.2 Application of the HSCD heuristic on test instances

In this section, we first provide the main results of our computational experiments

on implementing the HSCD heuristic (Algorithm 4) on the 12 HP tactical planning

instances, described in Table 6, where we compare the solution and CPU time with

a commercial solver (CPLEX v12.5). Next, we verify the importance of embedding

LRH and VFH algorithms into SCD algorithm in terms of improvement in CPU time

and the quality of the solution.

It is noteworthy that CPLEX v12.5 could find a feasible solution with 18% op-

timality gap after 15h CPU time for the smallest test instances (P1 and P2) while

considering a compact representation. Hence, this commercial solver was disregarded

as an efficient tool for solving the 12 test instances. Alternatively, by decomposing

the original scenario tree into 3 clusters, the SCD algorithm (Algorithm 5) (solving

scenario cluster sub-models by CPLEX v12.5) can obtain the optimal solution of the

MS-MIP HP model (79-93). The reason is the lack of NACs in stage one (break stage).

Table 7 represents the comparison between the results of HSCD algorithm with a 3-

cluster SCD algorithm applied to solve the HP model for 12 test instances described in

Table 6. 4h has been considered as the time limit to run both algorithms. The results

are provided for two different values of break-stage including t∗ = 1 and t∗ = 2 that

results, respectively, 3 and 9 scenario clusters in both algorithms. The headings of

Table 7 are as follows: Instance, member of testbed; Cost (HSCD), the best objective
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function value obtained by HSCD; HSCD time, time it takes for the HSCD algorithm

to converge; Optimal cost, the optimal objective function value (cost) obtained by the

3-cluster SCD algorithm; and Gap %, the relative gap between the optimal objective

value of the HSCD and SCD algorithms (relative optimality gap). In this table, N.A.

indicates that the algorithm does not converge in 4h. All cost values in this table are

divided by 1000 and CPU times are indicated in seconds. Furthermore, as indicated

in Section 3.3, the stopping criterion for the HSCD heuristic requires that ZHSCD

does not improve in two consecutive iterations. It should be noted that the HSCD

heuristic is a Lagrangian-Relaxation based algorithm that provides a Lower Bound

(LB) on the objective function value of the original MS-MIP HP model. Hence, it is

expected that the bound obtained for break-stage t∗ = 1 is smaller than the one for

t∗ ≥ 2 (as also indicated in [48]). As it can be observed in this table, for t∗ = 1,

SCD cannot provide an optimal solution for the last 4 test instances within 4h CPU

time. In contrary both SCD and HSCD algorithms provide an optimal solution for

the first 8 instances (0 optimality gap between the LB obtained by HSCD and the

SCD algorithm). In contrary, for t∗ = 2 (9 scenario clusters), HSCD converges in less

than 3h for the largest test instances. As expected, the quality of LB obtained by

the HSCD heuristic is worse than t∗ = 1 although the optimality gap is less than 1%

(0.68%) in average over the first 8 test instances. Furthermore, all non-anticipativity

constraints are satisfied over all test instances. Since the quality of the LB obtained

by considering t∗ > 2 was not better than t∗ = 2, the results are not provided in the

article.

Next, in Table 8, for the same test instances, we compare the performance of the

HSCD heuristic with the following three algorithms: i) the SCD algorithm (Algorithm

5), where scenario cluster sub-models are solved by CPLEX v12.5, indicated as “SC”;

ii) the SCD algorithm, where scenario cluster sub-models are solved by the aid of LRH
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Table 7: HSCD algorithm results with different break stages
Instance

Cost
(HSCD)

HSCD
time

Optimal
cost

Gap%

Three clusters (t∗ = 1)
P1 13,796 114 13,796 0
P2 13,878 129 13,878 0
P3 26,729 125 26,729 0
P4 26,783 101 26,783 0
P5 13,744 12,014 13,744 0
P6 13,803 7,196 13,803 0
P7 26,406 1,559 26,406 0
P8 26,489 1,290 26,489 0
P9 N.A. N.A. N.A. N.A.
P10 N.A. N.A. N.A. N.A.
P11 N.A. N.A. N.A. N.A.
P12 N.A. N.A. N.A. N.A.

Nine clusters (t∗ = 2)
P1 13,706 39 13,796 0.65%
P2 13,702 38 13,878 1.26%
P3 26,580 115 26,729 0.56%
P4 26,680 112 26,783 0.38%
P5 13,663 380 13,744 0.58%
P6 13,732 316 13,803 0.51%
P7 26,227 375 26,406 0.68%
P8 26,268 389 26,489 0.83%
P9 14,624 10,084 N.A. N.A.
P10 14,674 7,829 N.A. N.A.
P11 27,636 8,391 N.A. N.A.
P12 27,946 6,562 N.A. N.A.

(Algorithm 7), indicated as “SCD-LRH”; and iii) the combination of SCD-LHR and

VFH (Algorithm 6), indicated as“HSCD”. In Table 8 the headings are defined as

follows: Instance, member of testbed; Algorithm, type of algorithm used to solve each

test instance; cost (LB), the converged LB in each algorithm; # iteration, number of

iterations that each algorithm requires to converge according to the stopping criterion

previously defined; and CPU time, the convergence time of each algorithm (seconds).

It should be noted that the results provided in Table 8 correspond to t∗ = 2 (9

scenario clusters) since the last 4 instances did not converge by the above-mentioned

algorithms within 4h CPU time. Also, all algorithms are run until a converged LB

is obtained. As it can be observed in this table, embedding the LRH algorithm in

the SCD algorithm considerably improves the CPU time (average of 40% over all test

instances) with a negligible degradation in the objective function value. Furthermore,

embedding VFH heuristic in addition to LRH and the SCD algorithm (i.e. HSCD

heuristic) improves the CPU time by 60% on average with a slight degradation in the
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objective function value.

Table 8: Comparison of HSCD, SCD-LRH and SCD algorithms (t∗ = 2)
Instance Algorithm Cost (LB) # Iteration CPU time

P1
SCD 13,706 3 621

SCD-LRH 13,706 3 430
HSCD (SCD-LRH-VFH) 13,706 3 39

P2
SCD 13,701 5 1,600

SCD-LRH 13,702 2 410
HSCD (SCD-LRH-VFH) 13,702 2 38

P3
SCD 26,579 6 1,420

SCD-LRH 26,580 4 1,102
HSCD (SCD-LRH-VFH) 26,580 4 115

P4
SCD 26,574 7 1,420

SCD-LRH 26,579 5 1,100
HSCD (SCD-LRH-VFH) 26,680 4 112

P5
SCD 13,653 5 2,093

SCD-LRH 13,661 4 1,418
HSCD (SCD-LRH-VFH) 13,663 3 380

P6
SCD 13,727 5 2,113

SCD-LRH 13,733 3 1,337
HSCD (SCD-LRH-VFH) 13,734 3 316

P7
SCD 26,226 4 2,145

SCD-LRH 26,227 3 1,327
HSCD (SCD-LRH-VFH) 26,227 3 375

P8
SCD 26,261 3 1,084

SCD-LRH 26,268 2 1,057
HSCD (SCD-LRH-VFH) 26,268 2 389

P9
SCD 14,104 8 12,830

SCD-LRH 14,614 5 8,920
HSCD (SCD-LRH-VFH) 14,624 5 10,084

P10
SCD 14,251 9 12,560

SCD-LRH 14,626 6 9,130
HSCD (SCD-LRH-VFH) 14,674 3 7,829

P11
SCD 27,628 5 62,648

SCD-LRH 27,635 3 10,844
HSCD (SCD-LRH-VFH) 27,636 3 8,391

P12
SCD 27,934 6 45,500

SCD-LRH 27,935 4 7,604
HSCD (SCD-LRH-VFH) 27,946 2 6,562

To conclude, the results provided in Tables 7 and 8 demonstrate the high quality

of LB that can be obtained by the HSCD algorithm in a reasonable amount of time

while CPLEX v12.5 is not able to find a high quality feasible solution within 15h

CPU time for the smallest test instance. Furthermore, embedding the VFH into

SCD algorithm in addition to solving scenario cluster sub-models by the aid of LRH

significantly improves the convergence of SCD algorithm with a negligible degradation

of the converged LB.
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3.6 Concluding remarks

In this study, we proposed a new algorithmic procedure to solve multi-stage stochas-

tic mixed-integer programming models applicable to supply chain tactical planning

problems. This algorithm is based on the idea of on scenario clustering in multi-stage

stochastic programs. The Hybrid Scenario Cluster Decomposition scheme proposed in

this article is an accelerated scenario cluster decomposition method that decomposes

the MS-MIP model into smaller MS-MIP sub-models after breaking down the initial

scenario tree into a set of smaller sub-trees. The scenario sub-models are formulated

in a compact format and are coordinated by Lagrangian penalty terms in order to

compensate the lack of non-anticipativity corresponding to the nodes of scenario sub-

trees that are common in the initial scenario tree. The scenario tree decomposition

framework described above is expected to converge faster than classical scenario de-

composition methods, due to smaller number of relaxed non-anticipativity constraints

in MS-MIP sub-models. In contrary, each sub-model is an MS-MIP model on its own

that can be challenging to solve in realistic-size instances. Consequently, with the goal

of accelerating the SCD algorithm, we proposed to solve scenario cluster sub-models

by the aid of an ad-hoc heuristic (a Lagrangian based heuristic). Furthermore, we

embedded a Variable Fixing Heuristic within the SCD algorithm in order to speed up

its convergence. Another contribution of this article is the specialization of the above-

mentioned algorithm to supply and procurement tactical planning in the lumber SC

under demand and supply uncertainty. Our experimental results on a set of realistic-

size cases revealed that the HSCD algorithm proposed in this article can find high

quality solutions in a reasonable CPU time while CPLEX fails to find a high quality

feasible solution within 15h CPU time for the smallest test instance. Furthermore,

it was observed that embedding the above-mentioned accelerating heuristics into the
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SCD scheme has substantially reduced the CPU time with a negligible degradation of

the solution. Two of the main advantages of the HSCD algorithm are: i) amenability

to parallelization; and ii) possibility of embedding specialized algorithms for solving

scenario cluster sub-models depending on their particular structure.

Since many industries are faced with several types of perturbations in their busi-

ness environment, adopting a stochastic optimization approach in their decision mod-

els seems to be inevitable for robust decision making. More specially, when the in-

dustry is dealing with sequential decisions over time such as supply chain tactical

planning or dynamic supply chain design problems, multi-stage stochastic program-

ming is one of the most promising methods in order to obtain robust decisions in the

presence of future uncertainties. In contrast, such models are featured as intractable

ones for real-size problem instances. While the ability to come up with robust plans

in a relatively short amount of time is one of the main competitive advantages of

an industry, the new HSCD algorithmic procedure proposed in this paper is an at-

tempt to reduce the challenge of solving such problems. The high quality of the plans

proposed by our algorithm while overcoming the computational complexity of multi-

stage stochastic MIP models, demonstrated through our industrial case study, can

motivate the lumber industry to move toward adopting more robust decision making

tools rather than current deterministic ones.

Future research would focus on the implementation of the HSCD algorithm on

parallel machines in order to reduce the CPU time. Furthermore, this algorithm

can be applied to other supply chain tactical planning problems that incorporate

uncertain parameters with a dynamic behavior over time. Finally, other efficient

heuristic algorithms can be embedded within the HSCD scheme in order to efficiently

solve scenario cluster sub-models.
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3.7 Multi-stage stochastic mixed-integer program-

ming model for Harvesting and Procurement

(HP) tactical planning in the lumber supply

chain

In this appendix, the multi-stage stochastic model representing the HP model is pro-

vided. The description of constraints and notations are followed by the model.

HP model (Compact formulation)

Min ZHP =
∑

n∈Tree

p(n)
∑

sc∈SC

psc
∑

bl∈BL

∑
t∈tn

cHbltybl,t(n)(
∑

rm∈RM

vrm,bl,sc)

+
∑

n∈Tree

p(n)
∑

sc∈SC

psc
∑

rm∈RM

∑
bl∈BL

∑
t∈tn

vrm,bl,scfrm,bl,tybl,t(n)

+
∑

n∈Tree

p(n)
∑

bl∈BL

∑
m∈M

∑
rm∈RM

∑
t∈tn

cTrm,bl,m,tX
bl
rm,m,t(n)

+
∑

n∈Tree

p(n)
∑

sc∈SC

psc
∑

rm∈RM

∑
bl∈BL

∑
t∈tn

cSrm,bl,tIrm,bl,t,sc
(n)

+ (
∑

n∈Tree

p(n)
∑

bl∈BL

∑
rm∈RM

∑
m∈M

∑
t∈tn

mbl
rm,tX

bl
rm,m,t(n)

+
∑

n∈Tree

p(n)
∑

sc∈SC

psc
∑

rm∈RM

∑
m∈M

∑
t∈tn

hrm,mIrm,m,t,sc(n) (79)
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Subject to:

Harvesting constraints

Flow balance constraints

Irm,bl,T,sc(n) = 0 ∀rm, bl, sc, n ∈ Tree (80)

Irm,bl,t,sc(n) = Irm,bl,t−1,sc(n
′)−

∑
m∈M

Xbl
rm,m,t (n) + vrm,bl,scybl,t(n) ∀rm, bl, sc,

t ∈ tn, n ∈ Tree, n′ =

⎧⎨
⎩a(n) t− 1 /∈ tn

n t− 1 ∈ tn

(81)

Capacity Constraints∑
t∈tn

∑
n∈A(n′)

ybl,t(n) ≤ 1 ∀bl, ∀n′ ∈ NT (82)

ybl,t(n) ≤ Hbl,t(n) ∀bl, t ∈ tn, n ∈ Tree (83)∑
t∈tn

∑
n∈A(n′)

Hbl,t(n) ≤ lbl ∀bl, ∀n′ ∈ NT (84)

∑
bl∈BL

Hbl,t(n) ≤ nt ∀t ∈ tn, n ∈ Tree (85)

∑
bl∈BL

(ybl,t(n)
∑

rm∈RM

vrm,bl,sc) ≤ bHt ∀sc, t ∈ tn, n ∈ Tree (86)

∑
rm∈RM

∑
m∈M

∑
bl∈BL

Xbl
rm,m,t(n) ≤ bTt ∀t ∈ tn, n ∈ Tree (87)

Procurement constraints

Flow balance constraints∑
bl∈BL

Xbl
rm,m,t−Lbl

rm
(n) + Irm,m,t−1,sc(n

′
)− Irm,m,t,sc(n) = drm,m,t(n)

∀rm,m, sc, t ∈ tn, t = 1 + Lbl
rm, . . . , T, n ∈ Tree, n′ =

⎧⎨
⎩a(n) t− 1 /∈ tn

n t− 1 ∈ tn

(88)

Capacity Constraints

Irm,m,t,sc(n)− ssrm,m ≥ 0 ∀rm,m, sc, t ∈ tn, n ∈ Tree (89)∑
rm∈RM

Irm,m,t,sc(n) ≤ KIm,t ∀m, sc, t ∈ tn, n ∈ Tree (90)

∑
rm∈RM

∑
m∈M

Xbl
rm,m,t(n) ≤ KSbl

t ∀bl, t ∈ tn, n ∈ Tree (91)
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∑
m∈M

∑
rm∈RM

∑
t∈tn

∑
n∈Tree

Xbl
rm,m,t(n) ≥ qminbl ∀bl (92)

Xbl
rm,m,t(n), Irm,m,t,sc(n), ybl,t(n), Irm,bl,t,sc(n) ≥ 0, Hbl,t(n) ∈

{
0, 1

}
∀m, bl, rm, sc, t ∈ tn

(93)

Model (79)-(93) (HP model) is a multi-stage-stochastic programming MIP trying

to minimize harvesting, stumpage, transportation, storage and procurement costs.

Constraint (80) represents the final inventory of raw materials in each harvesting

block. Constraint (81) formulates the inventory balance of raw materials in each

block. Constraint (82) ensures that the harvested proportion of a block does not

exceed the availability of logs in that block. Constraint (83) describes that if har-

vesting occurs in a block, then we can ensure that raw materials from that block

are available. Constraints (84) and (85) correspond to the maximum number of har-

vesting and maximum number of blocks in which harvesting can occur, respectively.

Constraints (86) and (87) correspond to the harvesting and transportation capacity

from each block to each mill, respectively. Constraint (88) formulates the inventory

balance of raw materials at each mill. The raw material safety stock policies are

stated in constraint (89) and the raw material inventory capacity constraint is pro-

vided in constraint (90). Constraint (91) describes the raw material supply capacity.

Constraint (92) states that the material procured from a supplier must satisfy the

contract quantity commitment.
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Chapter 4

Forest harvesting planning under

uncertainty: a

cardinality-constrained approach

The forth chapter consists the article entitled “Forest harvesting planning under un-

certainty: a cardinality-constrained approach” was submitted to the International

Journal of Production Research in October 2015. The titles, figures, tables, algo-

rithms and mathematical formulations have been revised to the keep the coherence

through the thesis.
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Abstract

Harvesting planning is a key tactical decision in lumber supply chains. Harvesting

areas in the forests are divided into different blocks with different types and quantities

of raw materials (logs). Predicting the availability of raw materials in each block along

with log demand is impossible in this industry. Hence, incorporating uncertainty into

the harvesting planning problem is essential in order to obtain robust plans that do

not drastically fluctuate in the presence of future perturbations in the forest and log

market. In this paper, we propose a robust harvesting planning model formulated

based on cardinality-constrained method. The latter provides some insights into the

adjustment of the level of robustness of the harvesting plan over the planning horizon

and protection against uncertainty. An extensive set of experiments based on Monte-

Carlo simulation is also conducted in order to better validate the proposed robust

optimization approach.

4.1 Introduction

Lumber supply chains (SC) incorporate forest, as the supplier, sawmills as the manu-

facturing entities, different distribution channels, as well as contract and non-contract-

based customers. Harvesting planning in the lumber SC incorporates the optimal

harvesting schedule, i.e. the selection of harvesting blocks and the quantity of har-

vesting in each period by considering several harvesting constraints with the goal of

minimizing costs of harvesting and log storage while satisfying sawmills demand [52].

Harvesting planning has been addressed with the other tactical decisions in the

lumber SC in a deterministic context (e.g., see [14–22, 52, 53]). In harvesting plan-

ning, forecasting the exact amount of log demand in sawmills is almost impossible.

Furthermore, the availability of logs in each block of the forest is also uncertain.
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These uncertainties affect the amount of log inventory and harvesting capacity in

the forest as well. Thus, considering random log demand and supply in harvesting

tactical planning is crucial in order to obtain plans that do not drastically fluctuate

in the presence of forest and log market perturbations.

Robust optimization is one of the predominant approaches for addressing opti-

mization problems with uncertain data where there is not enough information about

their probability distributions. The classical approach to robust optimization is to

search for an optimal solution so that the solution will satisfy all possible outcomes of

uncertain parameters. On the other hand, such an approach might lead to a conser-

vative solution that is overprotected against uncertainty. In order to find a trade-off

between the cost of robustness and protection of the solution against uncertainty,

Bertsimas and Sim [54] proposed the cardinality-constrained robust optimization ap-

proach. This method constitutes the main methodology in this article for addressing

uncertainty in the harvesting planning problem. Nonetheless, the structure of con-

straints and objective function terms in this problem makes the application of this

approach less trivial.

To the best of our knowledge, harvesting tactical planning under supply and de-

mand uncertainty has been less investigated in the literature. Scenario analysis is the

only approach that has been applied in order to study the impact of uncertain log

availability on this problem [15]. This article contributes to the literature through

proposing a robust optimization model based on cardinality constrained approach

which provides the possibility of finding a trade-off between the protection of the har-

vesting plan against uncertainties and the cost of such protection. It is noteworthy

that the uncertain log supply and demand affects simultaneously constraints’ coeffi-

cients and right-hand-sides as well as objective function coefficients. Furthermore, due

to dynamic behavior of demand over the planning horizon in addition to the complex
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structure of the objective function and constraints, formulating the robust counter-

part of this problem is not straightforward. This will distinguish the model from the

existing robust optimization models in the literature applied to supply chain tactical

planning. Another contribution of this study revolves around conducting an exten-

sive set of experimental results with the goal of analyzing the degree of robustness

of the proposed harvesting plan in addition to the extra cost incurred to obtain such

protection against uncertainty under realistic circumstances. This has been achieved

through using the existing theoretical bounds in addition to Monte-Carlo simulation

approach.

The remainder of the paper is organized as follows. The related literature is re-

viewed in Section 4.2. The cardinality-constrained optimization approach is described

in Section 4.3. The robust harvesting planning model is provided in Section 4.4. The

numerical results are presented in Section 4.5. Finally, the conclusions and future

works are presented in Sections 4.6.

4.2 Literature review

In this section, we first provide a review on various robust optimization approaches.

Next, we focus on the review of articles relevant to the application of this approach

on supply chain planning problems.

The robust optimization approach has been categorized into static and dynamic

models. In the static robust optimization approach, the decision maker must choose a

strategy before the exact values of uncertain parameters are revealed. In other words,

all decision variables are “here and now”. The objective is typically to minimize the

worst-case cost. The first step in the static robust optimization approach was taken

by Soyster [55]. In this study, he proposed a linear optimization model to construct

a solution that is feasible for all outcomes of uncertain data that belong to a convex
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set. This approach was further developed by several authors (e.g., see [56–58], [59],

[60], [54], and [61]).

In order to reduce the degree of conservatism of Soyster [55], Bertsimas and Sim

[54] proposed the cardinality-constrained approach for solving linear mathematical

model with uncertain coefficient matrix. By assuming interval uncertainty, their ap-

proach provides a robust solution whose level of conservatism can be flexibly adjusted.

They define a predetermined budget of uncertainty for every constraint in order to

provide an optimal solution that guarantees feasibility for all admissible data realiza-

tion of uncertain parameters at a given probability (confidence level).

When planning is dynamic (e.g., multi-period planning problems), it is reasonable

to expect that better solutions can be found as we can dynamically adjust the planning

when more information is known. This is called a dynamic robust solution. Ben-Tal

[58] introduced a computationally tractable robust formulation for the special case

where the future decision variables can be expressed as affine functions of the uncer-

tainty set. This method, however, has no flexibility in elaborations with uncertainty

sets, since a minor adjustment could change the robust counterpart into an intractable

formulation. Bertsimas and Caramanis [62] approached a more general method where

the uncertainty set may be a general polytope. In the solution approach, they use the

partitioning of the uncertainty set and find a static robust solution for each partition.

In a later stage, without uncertainty, at least one of the static solutions fulfills the

now realized parameters, and the best static solution is selected for implementation.

The difficulty with this approach is to select a well performing partitioning so that

the static robust solutions are reasonable while at the same time keeping the number

of partitions low for the sake of efficiency. Bertsimas and Thiele [61] presented the ro-

bust optimization method for inventory management under demand uncertainty over

a multi-period planning horizon. By assuming an interval uncertainty for demand,
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they developed the robust counterpart for the inventory control problem in dynamic

settings. They also proposed a method for eliminating state (inventory) variables, so

all decisions in the model are “here and now”. Furthermore, since in this problem

the inventory balance constraints depend on periods in the planning horizon, the un-

certainty set will depend on time periods as well. They modeled the uncertainty as

the cumulative demand up to each time period. This motivates defining a sequence

of budgets of uncertainty for each period, rather than using a single predetermined

budget explained in the static case. The main advantage of this approach is its ap-

plicability to a wide range of supply chain tactical planning problems similar to the

one investigated in this article.

Adida and Perakis [63] introduced a robust optimization model to dynamic pricing

and inventory control. They proposed a linear function for a time-dependent budget of

uncertainty such that it avoids very conservative values for the budget of uncertainty

and control the level of conservatism. There are more papers in the literature focused

on dynamic robust optimization where the budget of uncertainty for each period is

generated randomly (e.g., see [64] and [65]). Alvarez and Vera [66] presented the

application of robust optimization to a production planning problem. They consider

an equal amount of budget of uncertainty for each period to represent the grade of

robustness to each constraint. Alem and Morabito [67] explored a robust optimization

model to integrate lot sizing and cutting stock model in furniture industry under cost

and demand uncertainty. They control the level of uncertainty with a predetermined

budget of uncertainty in a dynamic setting.

Bredstrom et al. [68] proposed a rolling horizon method based on the robust opti-

mization approach for tactical planning in supply chains under demand uncertainty.

In their approach, the uncertainties are described as an arbitrary polytope and for-

mulated as explicit constraints. Carlsson et al. [69] applied the above-mentioned
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robust optimization approach to handle the uncertainty in distribution and inventory

planning in the pulp production context.

Wu [70] developed a scenario-based robust optimization method to solve uncertain

production loading problem in the global supply chain management environment.

This approach is a goal programming method that balances the trade-off between

solution robustness and model robustness in the context of two-stage stochastic pro-

grams. Similar approach has been applied by other authors in different supply chain

planning problems (e.g., see [71], [72] and [73]). Kanyalkar and Adil [71] developed a

robust optimization model by considering random demand in order to integrate multi-

site procurement, production, and distribution decisions in a supply chain. Kazemi

Zanjani et al. [72] presented two robust optimization models with different variabil-

ity measures to address multi-period sawmill production planning by considering the

uncertainty in quality of raw materials. They also proposed an efficient solution algo-

rithm to solve this model for large instances in [38]. Khakdaman et al. [73] proposed

a robust tactical plan for the hybrid Make-to-Stock-Make-to-Order manufacturing

system by considering demand, process and supply uncertainties.

4.3 Cardinality-constrained robust optimization ap-

proach

In this paper, we use the robust optimization approach developed by Bertsimas and

Sim [54] for linear programming problems. We present here the idea and a summary

of this method. For more details, the reader is referred to [54]. Let consider the

following Linear Programming (LP) model:
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Max Z = cx

ãx ≤ b

l ≤ x ≤ u (94)

where some parameters of the coefficient matrix (ãij) are uncertain. In addition,

each uncertain parameter (ãij) takes a value according to a symmetric distribution

with the mean equal to the nominal value (āij) in the interval [āij − âij, āij + âij].

Furthermore, we define a parameter Γi, budget of uncertainty, for every constraint

i. This parameter is not necessarily integer and takes a value in the interval [0, |Ji|],
where Ji is the set of uncertain parameters in the ith constraint. A linear robust

counterpart can be obtained to protect against all cases that �Γi� coefficients of set

Ji are permitted to change to their worst-case value, and one coefficient (aiti) can

change by a fraction of its worst-case value (i.e., (Γi−�Γi�)âij). In order to guarantee

feasibility of constraints affected by uncertainty, a protection function, denoted as

β(x,Γi), can be added to the left-side of every constraint i as follows:

β(x,Γi) = max
{Si∪ti|Si⊆Ji,|Si|=�Γi�,ti∈Ji\Si }

⎧⎨
⎩

∑
j∈Ji

âij |xj |+ (Γi − �Γi�)âiti |xti |
⎫⎬
⎭ (95)

The protection function is a an optimization model by itself that tries to select a

subset of uncertain coefficients in each constraint to take their worst-case value such

that the highest increase in the left-side of constraint is achieved. Therefore, model

(94) can be rewritten as model (96):
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Max Z = cx

s.t. :
∑
j

āijxj + max
{Si∪ti|Si⊆Ji,|Si|=�Γi�,ti∈Ji\Si }

⎧⎨
⎩

∑
j∈Ji

âijyj + (Γi − �Γi�)âitiyti

⎫⎬
⎭ ≤ bi ∀i

− yj ≤ xj ≤ yj ∀j

lj ≤ xj ≤ uj ∀j

yj ≥ 0 ∀j (96)

In order to avoid the above nonlinear protection function, it can be replaced by its

dual counterpart. Hence, model (96) can be formulated into its robust counterpart

as follows:

Max Z = cx

s.t. :
∑
j

āijxj + ziΓi +
∑
j∈Ji

pij ≤ bi ∀i

zi + pij ≥ âijyj ∀i, j ∈ Ji

− yj ≤ xj ≤ yj ∀j

lj ≤ xj ≤ uj ∀j

yj ≥ 0 ∀j

zi ≥ 0 ∀i

pij ≥ 0 ∀i, j ∈ Ji (97)

It is noteworthy that the robust counterpart model (97) is a linear programming

model that can be efficiently solved. Finally, the cardinality-constrained approach,

described above, provides an effective method to determine probability bounds for

the constraint violation. The probability bound that the ith constraint is violated

can be approximated as follows:
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pr(
∑
j

ãijx
∗
j > bi) ≤ 1− φ(

Γi − 1√|Ji|
) (98)

where φ(α) = 1√
2π

∫ α

−∞ exp(−y2

2
)dy is the cumulative standard normal distribution

function, and x∗j is the optimal solution of the robust optimization problem.

To summarize, in order to obtain the robust counterpart of an uncertain LP

model similar to (94), the decision-maker needs to set a budget of uncertainty and add

accordingly a protection term in the left-side of the constraints affected by uncertainty.

Finally, replacing the latter protection function by its dual counterpart will provide

a linear robust counterpart that is computationally tractable.

4.4 Robust harvesting planning model

In this section, we first present the deterministic mathematical model of tactical

harvesting planning; then we develop its robust counterpart.

4.4.1 Deterministic harvesting planning model

Notations

Sets

RM : Set of raw materials

BL: Set of harvesting blocks

T : Set of time periods

M : Set of manufacturing mills

Parameters

dblrm,t: Forecasted demand of raw material rm in period t at harvesting block bl
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cHblt: Unit cost to harvest block bl during period t

cSrm,bl,t: Unit cost to store raw material rm in block bl during period t

frm,bl,t: Stumpage fee for raw material rm in block bl during period t

lbl: Maximum number of periods over which harvesting can occur in block bl

nt: Maximum number of blocks in which harvesting can occur during period t

bHt : The total harvesting capacity in period t

vrm,bl: Volume of available raw material rm in harvesting block bl

Decision variables

Irm,bl,t: Inventory of raw material rm in harvesting block bl at the end of period t

ybl,t: Proportion of harvested block bl in period t

Hbl,t: Binary variable that takes 1 if harvesting occurs in block bl during time period

t and 0 otherwise

The tactical harvesting planning (HP) model tries to minimize the harvesting,

inventory, and stumpage costs. The harvesting decisions involve the blocks where the

harvesting should occur (Hbl,t) as well as the proportion of the harvested blocks in

different periods of the planning horizon (ybl,t). The inventory of each raw material

in each block in different periods (Irm,bl,t) is the other decision in the harvesting

model. Constraint (100) formulates the inventory balance of raw materials in each

block. Constraint (101) represents the final inventory of raw materials in each block.

Constraint (102) ensures that the harvested proportion of a block do not exceed the

availability of logs in that block. Constraint (103) describes that if harvesting occurs

in a block, then we can ensure that raw materials from that block are available.

Constraints (104) and (105) correspond to the maximum number of harvesting and

maximum number of blocks in which harvesting can occur, respectively. Constraints
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(106) limits the harvesting capacity of the blocks in each period.

Min Z =
∑

bl∈BL

∑
t∈T

cHbltybl,t(
∑

rm∈RM

vrm,bl)

+
∑

rm∈RM

∑
bl∈BL

∑
t∈T

ṽrm,blfrm,bl,tybl,t

+
∑

rm∈RM

∑
bl∈BL

∑
t∈T

cSrm,bl,tIrm,bl,t
(99)

Subject to:

Irm,bl,t = Irm,bl,t−1 − dblrm,t + ṽrm,blybl,t ∀rm, bl, t (100)

Irm,bl,T = 0 ∀rm, bl (101)∑
t∈T

ybl,t ≤ 1 ∀bl (102)

ybl,t ≤ Hbl,t ∀bl, t (103)∑
t∈T

Hbl,t ≤ lbl ∀bl (104)

∑
bl∈BL

Hbl,t ≤ nt ∀t (105)

∑
bl∈BL

(ybl,t
∑

rm∈RM

ṽrm,bl) ≤ bHt ∀t (106)

ybl,t, Irm,bl,t ≥ 0, Hbl,t ∈
{
0, 1

}
∀bl, rm, t (107)

4.4.2 Robust harvesting planning model

The HP model is affected by two uncertain parameters namely random log demand

and supply. Notice that these uncertain parameters affect constraints coefficients and

right-hand-sides as well as objective function coefficients. In this study, we model

random demand and supply as uncertain intervals.

Let’s denote d̃blrm,t as uncertain log demand with the nominal value of d̄blrm,t, and

ṽrm,bl as uncertain log supply with a nominal value of v̄rm,bl. The uncertain log demand

is assumed symmetric and time-dependent. This random variable (d̃blrm,t) takes values
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in the interval [d̄blrm,t − d̂blrm,t, d̄
bl
rm,t + d̂blrm,t]. Then, the scale deviation zblrm,t (belonging

to [−1, 1]) of d̃blrm,t from its nominal value is defined as zblrm,t = (d̃blrm,t − d̄blrm,t)/d̂
bl
rm,t.

Thus, we can also write d̃blrm,t = d̄blrm,t + d̂blrm,tz
bl
rm,t.

Furthermore, ṽrm,bl is assumed time independent and takes values in the interval

[v̄rm,bl−v̂rm,bl, v̄rm,bl+v̂rm,bl]. We consider the scale deviation of ṽrm,bl from its nominal

value as wrm,bl = (ṽrm,bl − v̄rm,bl)/v̂rm,bl that belongs to [−1, 1]. Similarly, the random

supply might be rewritten as ṽrm,bl = v̄rm,bl + wrm,blv̂rm,bl.

As was illustrated in Section 4.3, in order to construct the robust counterpart of

model (99)-(107), we should follow two steps. At first, we should formulate the protec-

tion function for the constraints affected by uncertain parameters as an optimization

problem. Next, by incorporating the dual of the aforementioned protection function

into each constraint, their robust counterpart will be extracted. In what follows, we

provide the robust counterpart of uncertain constraints and objective function terms,

respectively.

4.4.2.1 Robust counterpart of uncertain constraints

The first constraint in the HP model formulates the inventory balance of raw materials

in each block and includes both uncertain parameters (supply and demand). The

main decision variable in this constraint is the proportion of harvested block (ybl,t)

while the quantity of the inventory in each block is the state variable (Irm,bl,t). In

the static robust optimization approach, all decision variables are “here and now”

and there is not possibility for recourse actions. Inspired by Bertsimas and Thiele

[61], it is possible to remove the state variables and cumulate the effects of uncertain

parameters by rewriting constraint (100) as the following closed-form equation which

models the evolution of the inventory over time.
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Irm,bl,t = Irm,bl,0 +

t∑
s=1

(ṽrm,blybl,s − d̃blrm,s) ∀rm, bl, t (108)

As the inventory quantity (state variable) also exists in the objective function, it

is possible to consider the total amount of the storage cost as a constraint such as

(109) by using the closed-form equation (108) and substitute term cSrm,bl,tIrm,bl,t
in

the objective function by HHrm,bl,t which is defined as the storage cost at the end of

period t.

cSrm,bl,t(Irm,bl,0 +

t∑
s=1

(ṽrm,blybl,s − d̃blrm,s)) ≤ HHrm,bl,t ∀rm, bl, t (109)

Hence, Constraint (100) in model (99)-(107) is replaced by (109) that includes

only “here-and-now” decisions and the uncertain demand and supply affect both its

coefficients and right-hand-side vector. Next, we are looking for the robust counter-

part of constraint (109) which is equivalent to minimizing the inventory cost over all

realizations of uncertain demand and log supply. In other words, we aim for mini-

mizing the maximum amount of the right-hand side of constraint (109) over the set

of all admissible realization of uncertain log demand and supply. To do this, we

should find a feasible solution by considering the worst-cases for uncertain param-

eters. Intuitively, the maximum storage cost occurs when the log availability and

demand, respectively, reach their maximum and minimum values in the given un-

certain intervals. In other words, the worst-case for uncertain supply (ṽrm,bl) which

is a time-independent parameter is v̄rm,bl + v̂rm,bl, and the worst-case for uncertain

demand (d̃blrm,t), the time-dependent parameter, is calculated as follows. In reality,

it is unlikely that all uncertain demand parameters from period 1 to a given period

t change to their worst-case value, thus we assume a predetermined number of log
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demand parameters in constraint (109) in each block can change to their worst-case

value (Γbl
rm,t ∈ [0, t]). With this parameter, the decision maker considers a trade-off

between the level of protection of the constraint satisfaction against the degree of

conservatism of the solution. Accordingly, the following protection function can be

defined for constraint (109).

Maximize

t∑
s=1

d̂blrm,sz
bl
rm,s

s.t.
t∑

s=1

zblrm,s ≤ Γbl
rm,t

0 ≤ zblrm,s ≤ 1 ∀s ≤ t (110)

where zblrm,s denotes the scaled deviation of uncertain demand from its nominal value.

The dual counterpart of this protection function is the following optimization problem.

Minimize λbl
rm,tΓ

bl
rm,t +

t∑
s=1

θrm,bl,t,s

s.t. λbl
rm,t + θrm,bl,t,s ≥ d̂blrm,s ∀rm, bl, t, ∀s ≤ t

λbl
rm,t, θrm,bl,t,s ≥ 0 ∀rm, bl, t, ∀s ≤ t (111)

where λbl
rm,t and θrm,bl,t,s are the dual variables corresponding to the constraints of

protection function (110). By substitution of protection function (110) by (111) and

adding this protection function to (109), the robust counterpart of this constraint

is obtained. Moreover, because the inventory amount at the end of each period

(Irm,bl,0+
∑t

s=1(ṽrm,blybl,s− d̃blrm,s)) is always greater or equal to zero, constraint (114)

should also be added to the robust counterpart which guarantees the positive amount

of inventory when the minimum amount of log supply and maximum amount of

log demand in the given uncertain intervals is realized. Hence, model (112)-(115)
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represent the robust counterpart of constraint (100).

HHrm,bl,t ≥ cSrm,bl,t(Irm,bl,0 +
t∑

s=1

((v̄rm,bl + v̂rm,bl)ybl,s − d̄blrm,s) + λbl
rm,tΓ

bl
rm,t +

t∑
s=1

θrm,bl,t,s)

∀rm, bl, t (112)

λbl
rm,t + θrm,bl,t,s ≥ d̂blrm,s ∀rm, bl, t, ∀s ≤ t (113)

(Irm,bl,0 +
t∑

s=1

((v̄rm,bl − v̂rm,bl)ybl,s − d̄blrm,s)− λbl
rm,tΓ

bl
rm,t −

t∑
s=1

θrm,bl,t,s) ≥ 0 ∀rm, bl, t

(114)

λbl
rm,t, θrm,bl,t,s ≥ 0 ∀rm, bl, t, ∀s ≤ t (115)

Constraint (106) in model (99)-(107) is another constraint faced with uncertain

supply (ṽrm,bl). This constraint indicates that the total quantity that might be har-

vested must not exceed the harvesting capacity in each period. Thus, its robust

counterpart is equivalent to satisfying the capacity constraint in case the total har-

vesting quantity is maximized as a result of maximum amount of available logs in

each block. Accordingly, the following protection function (116) might be developed

for a given t by the budget of uncertainty Γv
bl which indicates the maximum number

of uncertain supply parameters in each block that can take their worst-case value.

In (116), y∗bl,t is the optimal solution of model (99)-(107), and w1
rm,bl is the scaled

deviation from the nominal value of ṽrm,bl.

Maximize
∑

bl∈BL

(y∗bl,t
∑

rm∈RM

v̂rm,blw
1
rm,bl)

s.t.
∑

rm∈RM

w1
rm,bl ≤ Γv

bl ∀bl

0 ≤ w1
rm,bl ≤ 1 ∀rm, bl (116)

For the above protection function, we define qvbl and μv
rm,bl as the dual variables
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corresponding to its constraints. By applying the same approach explained earlier,

we can substitute the dual of protection function in constraint (106) in order to find

its robust counterpart (constraints (117)-(119)).

∑
bl∈BL

(ybl,t
∑

rm∈RM

v̄rm,bl) +
∑

bl∈BL

Γv
blq

v
bl +

∑
rm∈RM

∑
bl∈BL

μv
rm,bl ≤ bHt ∀t (117)

qvbl + μv
rm,bl ≥

∑
t∈T

ybl,tv̂rm,bl ∀rm, bl (118)

qvbl, μ
v
rm,bl ≥ 0 ∀rm, bl (119)

4.4.2.2 Robust counterpart of uncertain terms in the objective function

As can be observed in model (99)-(107), the first two terms in the objective function

contain uncertain log availability. In order to obtain their robust counterpart, first, we

consider them as constraints. Hence, we substitute (
∑

bl∈BL

∑
t∈T cHbltybl,t(

∑
rm∈RM ṽrm,bl)

by π1, and
∑

rm∈RM

∑
bl∈BL

∑
t∈T ṽrm,blfrm,bl,tybl,t) by π2 in the objective function and

consider the following constraints in the harvesting planning model.

∑
bl∈BL

∑
t∈T

cHbltybl,t(
∑

rm∈RM

ṽrm,bl) ≤ π1 (120)

∑
rm∈RM

∑
bl∈BL

∑
t∈T

ṽrm,blfrm,bl,tybl,t ≤ π2 (121)

Recall from 4.4.1 that constraints (120) and (121) try to minimize the harvest-

ing and stumpage cost, respectively. Hence, their robust counterpart is equivalent

to finding a harvesting plan such that the harvesting and stumpage costs over all

realizations of uncertain log supply within the given interval is minimized. Moreover,

it is unlikely that all uncertain supply parameters change simultaneously to their

worst-case value; thus we consider the budgets of uncertainty Γπ1
bl and Γπ2 for the

above-mentioned constraints. Intuitively the worst-case for both constraints occur
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when the supply quantities (ṽrm,bl) take their maximum value. As a consequence, we

propose the following protection functions ((122) and (123)) for constraints (120) and

(121). Notice that in (122) and (123), y∗bl,t is considered as the optimal solution of

model (99)-(107), and w2
rm,bl and w3

rm,bl are the scaled deviations from the nominal

value of ṽrm,bl.

Maximize
∑

bl∈BL

∑
t∈T

cHblty
∗
bl,t(

∑
rm∈RM

v̂rm,blw
2
rm,bl)

s.t.
∑

rm∈RM

w2
rm,bl ≤ Γπ1

bl ∀bl

0 ≤ w2
rm,bl ≤ 1 ∀rm, bl (122)

Maximize
∑

rm∈RM

∑
bl∈BL

∑
t∈T

v̂rm,blfrm,bl,ty
∗
bl,tw

3
rm,bl

s.t.
∑

rm∈RM

∑
bl∈BL

w3
rm,bl ≤ Γπ2 =

∑
bl∈BL

Γπ1

bl

0 ≤ w3
rm,bl ≤ 1 ∀rm, bl (123)

Afterwards, by considering gπ1
bl , gπ2 , επrm,bl, and νπ

rm,bl as the dual variables of

the related protection functions (122) and (123), the dual of protection functions

are added to constraints (120)-(121) in order to formulate their robust counterparts

(constraints (124)-(128)).
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∑
bl∈BL

∑
t∈T

cHbltybl,t(
∑

rm∈RM

v̄rm,bl) +
∑

bl∈BL

Γπ1

bl g
π1

bl +
∑

rm∈RM

∑
bl∈BL

επrm,bl ≤ π1 (124)

∑
rm∈RM

∑
bl∈BL

∑
t∈T

v̄rm,blfrm,bl,tybl,t + Γπ2gπ2 +
∑

rm∈RM

∑
bl∈BL

νπrm,bl ≤ π2 (125)

gπ1

bl + επrm,bl ≥
∑
t∈T

cHbltybl,tv̂rm,bl ∀rm, bl (126)

gπ2 + νπrm,bl ≥
∑
t∈T

v̂rm,blfrm,bl,tybl,t ∀rm, bl, t (127)

gπ1

bl , g
π2 , επrm,bl, ν

π
rm,bl ≥ 0 ∀rm, bl (128)

Finally, the robust counterpart of the HP model, denoted as R-HP can be formu-

lated as follows:

Min ZR−HP = π1 + π2 +
∑

rm∈RM

∑
bl∈BL

∑
t∈T

HHrm,bl,t (129)

Subject to:

Constraints (101)− (105); (107); (112)− (115); (117)− (119); (124)− (128) (130)

The R-HP model is a mixed-integer program including more decision variables

and constraints compared to the deterministic HP model. In contrary, this model

protects the harvesting plan against the uncertainty in log demand and supply.

4.5 Numerical results

In this section, we validate the proposed robust harvesting planning (R-HP) model

through a set of realistic-size instances from a lumber supply chain in Canada. The

purpose of the numerical experiments is three-fold.
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Our first goal is to analyze the trade-off between the level and the cost of robust-

ness. More precisely, we are interested in investigating how increasing the degree of

robustness (budget of uncertainty) affects the feasibility and optimality of the nomi-

nal (deterministic) solution. This is important for the decision maker in order to set

a budget of uncertainty so that the harvesting plan obtained by the R-HP model is

feasible in the presence of future uncertainties while it is not too costly (i.e., overpro-

tected against uncertainty). This goal is achieved by the aid of theoretical probability

bounds and through comparison between the solution obtained by the R-HP model

and the nominal one for different levels of budget of uncertainty.

Our second goal is to verify the feasibility and the degree of conservatism of the

robust optimal solution in the presence of randomly generated uncertain demand and

supply parameters. Monte-Carlo simulation is employed for this purpose. This is a

more realistic approach for evaluating the impact of the budget of uncertainty that

will be adopted by the decision maker on the feasibility and the cost of the plan.

Finally, we are interested in studying the structural changes in the optimal nominal

solution after implementing the robust optimization approach. This is due the fact

that decision makers do not prefer drastic changes in plans resulting from adopting

new planning approaches compared to their current practice.

The above-mentioned analyses are carried out on two sets of test problems that are

distinguished by the level of variability of uncertain parameters. In what follows, the

results are provided in three sub-sections corresponding to considering uncertainty in

log supply, log demand, and both log supply and demand.

4.5.1 Case data implementation details

In the harvesting planning case study, we assume that 50 harvesting blocks are avail-

able in the forest during the 12 month planning horizon. The supply capacity of each
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block per month is supposed to be 2350 m3. Adopted from Beaudoin et al. [15],

the maximum number of periods (months) over which harvesting can occur in each

block, and the maximum number of blocks in which harvesting can occur per month

are randomly selected from uniform distributions U(1-6) and U(10-12), respectively.

The total harvesting capacity per month is supposed to be approximately 117,500

m3.

We define γ as the level of variability of uncertain log supply and demand quan-

tities comparing to their nominal values and consider two classes of test problems

corresponding to γ = 5% and 20%. This will result v̂rm,bl = γv̄rm,bl and d̂blrm,t = γd̄blrm,t

in R-HP model provided in 4.4.2.

While considering uncertainty in log supply, we assume that Γπ1
bl and Γv

bl vary from

0 to |RM | = 14 (the worst-case). Also, Γπ2 vary from 0 to |RM ||BL| = 700 since

Γπ2 =
∑

bl∈BL Γ
π1
bl .

When dealing with uncertainty in log demand, we aim at considering time-dependent

budgets of uncertainty inspired by Adida and Perakis [63]. Hence, the following three

scenarios for Γbl
rm,t based on a linear function of t are investigated including: (1)

Γbl
rm,t = 0.5 + 0.2t; (2) Γbl

rm,t = 0.5 + 0.4t; and (3) Γbl
rm,t = t. It is important to note

that Γbl
rm,t ≥ t means the worst-case is obtained. The last category of results is con-

ducted based on the combination of budgets of uncertainty described for uncertain

supply and demand. Furthermore, ZWC provided in our experimental results denotes

the optimal nominal objective value when the deterministic (nominal) model is solved

by considering the worst-case bound in the given uncertain interval. This measure is

used to verify whether or not the solution of R-HP model is over-protected against

uncertainty.

Finally, the Monte-Carlo simulation is based on generating random scenarios for

uncertain log supply and demand from their corresponding uniform distribution, and
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verifying the feasibility and the actual objective function value of the robust solution

for each scenario. In other words, for each scenario, the optimal solution of the R-

HP model is plugged into the deterministic model where the uncertain parameters

are substituted by the simulated value. Afterwards, the feasibility and the actual

objective function value of the robust solution are verified.

The robust model in this paper is coded in C++ using CPLEX concert technology

on a Core i7 CPU 3.40GHz computer with 8.00 GB RAM.

4.5.2 Results for uncertainty in log supply parameters

As previously mentioned,the uncertain supply parameter affects harvesting and stumpage

costs in the objective function of R-HP model. Moreover, this parameter affects con-

straint (106) related to the harvesting capacity. Hence, it can be expected that

uncertain supply affects on the feasibility and optimality of the R-HP model’s solu-

tion.

The trade-off between robustness (i.e., the budget of uncertainty) and the cost of

robustness is estimated by calculating the cost deviation (ZR
R−HP − ZN

R−HP )/Z
N
R−HP ,

where ZR
R−HP and ZN

R−HP are the robust and nominal optimal objective values, re-

spectively.

Another important issue is the analysis of the robust solution in terms of feasibility.

As explained earlier, when the budget of uncertainty achieves its maximum value, the

robust solutions are always feasible. In contrast, the feasibility condition cannot be

guaranteed by considering smaller values for the budget of uncertainty. Recall from

Section 3 that it is possible to provide probability bounds for the constraint violation

in such cases. Based on equation (98), the probabilistic bounds of constraint violation

depend only on the number of coefficients subject to uncertainty (i.e., |J |) and the

budget of uncertainty.
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Figure 4: Robust optimal values vs nominal and the probability bounds for constraint
violation for random supply

Figure (4) represents the percentage increase in the objective function value ver-

sus the nominal one for two levels of supply variability and different values of budget

of uncertainty in constraints (106) and (120)-(121). As expected, when robustness is

enforced to the model, the cost is increased in order to envisage worst-case values for

a certain number of log availability parameters in the objective function (constraints

(120)-(121)) and in constraint (106). The latter increase in the robust objective func-

tion value is the effect of considering such worst-case supply values on harvesting and

stumpage costs. It is worth noting that such worst-cases occur when log availability

parameters (ṽrm,bl) take their highest value. In such cases , more logs are harvested

and consequently the corresponding harvesting and stumpage costs are increased.

Additionally, we can conclude from Figure (4), when the variability level of uncertain

parameters is small (i.e., γ = 5%), the impact of imposing robustness on the objective

function is less significant in comparison with higher level of variability. Moreover,

the objective function is increased by increasing the budget of uncertainty. When

the budget of uncertainty is increased, it indicates that the number of uncertain pa-

rameters that take their worst-case value are increased which in turn, is expected to
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increase the cost.

As is observable in Figure (4), the violation probability decreases and tends to

reach zero as we increase the budget of uncertainty to its maximum value. This prob-

ability is near zero when the budget of uncertainty is greater than 8. In other words,

the probability violation in this figure is stable in near 50% of budget of uncertainty.

By increasing the budget of uncertainty, the number of uncertain parameters that take

their worst-case value in the constraint (106) is increased. Thus, the R-HP model

tries to find a feasible solution to satisfy the harvesting capacity in constraint (106)

for such worst-case scenarios. Consequently, the violation probability of constraint

(106) is reduced.

Furthermore, we compare the structural changes in the solutions of robust and

nominal problems. By considering the cumulative portion of harvested blocks (
∑

bl,t ybl,t),

no significant structural changes in the solutions of robust model compared to the

nominal problem is observed. Moreover, the changes in the
∑

bl,t ybl,t for lower amount

of budget of uncertainty is more, but this dispersion is not significant.

For the Monte-Carlo simulation results, we randomly generate 500 random log

supply quantities based on different variability levels for each value of budget of

uncertainty. Consequently, we solved 500 ∗ 14 ∗ 2 = 14, 000 deterministic models

in order to better analyze the feasibility and the level of conservatism of the robust

solution. At the first test, we check the feasibility of the robust solution in the nominal

problem with simulated random log supplies. These results are depicted in Figure (5)

for the two classes of test instances.

As is shown in Figure (5), when the budget of uncertainty is greater than 3, the

number of infeasible instances equal to zero. Thus, by considering Γ ≥ 3, it is possible

to guarantee the feasibility of solutions for random log supplies, and it is not necessary

to increase the value of Γ and enforce more costs.
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Figure 5: Feasibility of robust solutions with simulated log supplies

Additionally, we calculate the fraction of simulated instances where the actual

cost is lower than the optimal objective value of the optimal value of robust model.

We observe that in all cases the optimal objective function of robust problem is worse

than the simulated ones. As a consequence, the robust problem overestimates the

actual cost in comparison with the simulated instances.

Finally, we compare the robust problem with the worst-case deterministic model

(WC). If (ZWC − ZR
R−HP ) ≥ 0, it is concluded that the robust problem proposes

a solution with lower cost. Noted that the ZR
R−HP are related to the average of the

robust objective values obtained based on different values of budget of uncertainty.

The latter analysis is presented in Table (9).

Table 9: Comparison of ZWC and ZR
R−HP with uncertain log supply

γ = 5% γ = 20%
ZWC 21,081,400 23,809,300
ZR

R−HP 21,070,193 23,773,686

As (ZWC − ZR
R−HP ) ≥ 0 for both variability levels in Table (9), it is concluded

that the robust problem outperforms the worst-case deterministic problem.
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4.5.3 Results for uncertainty in log demand parameters

As mentioned earlier, uncertain demand affects the feasibility of log inventory levels

as well as the inventory holding cost. Table (10) shows the percentage increase of the

robust objective function value compared to the nominal case for the three scenarios

corresponding to the time-dependent budget of uncertainty, described in 4.5.1. As

expected, the optimal robust costs and the level of conservatism increase as the un-

certainty variability level increases. Also, no significant difference between different

scenarios for modeling the budget of uncertainty is observed. It is noteworthy that

the increased objective function value is the result of augmented log inventory holding

cost obtained in the R-HP model. Recall from section 4.4.2.1 that the robust counter-

part of constraint (109) is equivalent to the case where some log demand parameters

take their smallest value. This, as a consequence, will increase the inventory holding

cost.

Table 10: Percentage increase in the cost of R-HP model compared to the nominal
model

γ = 5% γ = 20%
Scenario 1 (Γbl

rm,t = 0.5 + 0.2t) 20.70% 83.01%
Scenario 2 (Γbl

rm,t = 0.5 + 0.4t) 21.45% 86.06%
Scenario 3 (Γbl

rm,t = t) 21.47% 86.17%

Again, we calculate the probability bounds for constraints (109) and (114) viola-

tion for different scenarios of budget of uncertainty in different periods in the planning

horizon. The results of the latter probability bound are summarized in Figure (6).

Recall from 4.4.2.1, constraint (109) might be violated when all log demand param-

eters (d̃blrm,t) take their minimum values in their uncertainty intervals. In contrast,

constraint (114) is expected to be violated when all demand parameters take their

maximum values in the uncertainty interval. The curve of probability bounds in Fig-

ure (6) reaches to zero when we face with the worst-case scenario which is shown
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by scenario 3. As scenarios 1 and 2 do not reflect the worst-case for demand, their

curves do not reach to zero and decreased convexly by the time. Furthermore, when

the budget of uncertainty in scenario 3 is greater and equal to 7, the probability of

violation reaches to zero. In other words, the probability violation in this figure is

stable in near 50% of budget of uncertainty. On the other hand, as we proceed over

the planning horizon, the budget of uncertainty is increased in constraints (112) and

(114). Consequently, the violation probability of constraints are reduced.

Figure 6: The probability bounds for violation of constraints (109) and (114) in R-HP
model

In the presence of uncertainty in log demand, we compare structural changes

in solution of robust and nominal problems. Since the robust model tries to find

a feasible solution in the worst-case perspective, demand is always assumed as its

highest value (in order to satisfy constraint (114)), so the robust model increases

the portion of harvested blocks. Again, this comparison indicates that there is not a

significant change in (
∑

bl,t ybl,t) compared to nominal solution although the difference

is more than the previous case where the log supply was considered as an uncertain

parameter. Moreover, the behavior to the structural changes increases by increasing

the budget of uncertainty as well as increasing the variability level.

For the simulation tests, we randomly generate 500 random demand parameters for
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each variability level and each budget of uncertainty scenario (totally 3000 instances).

First, the feasibility of the robust solution in the nominal problem with randomly

generated log demand is verified. It should be noted that the uncertain demand

affects 8,400 constraints (constraint (114)) in R-HP model. The simulation results

reveal that the number of infeasible constraints are negligible. Table (11) provides

the percentage of infeasible constraints for different scenarios of budget of uncertainty

and demand variability levels.

Table 11: The percentage of infeasible constraints in nominal model

γ = 5% γ = 20%
Scenario 1 (0.2t+ 0.5) 0.02% 0.03%
Scenario 2 (0.4t+ 0.5) 0.003% 0.005%

Scenario 3 (t) 0% 0%

As the third scenario (Γbl
rm,t = t) considers the worst-case of uncertain demand

in the robust model, the number of infeasible constraints in the nominal problem

with simulated demand equals zero. Moreover, as the variability level is increased,

the dispersion of simulated demand and the number of infeasibile constraints are

increased.

Next, we compare the objective functions of simulated instances by the robust one

for feasible instances. The results indicate that the objective functions of all simulated

instances are better than the corresponding objective value in the robust problem.

Finally, we can conclude that the robust problem presents a more conservative solution

in comparison with the simulated instances.

Finally, the comparison of the robust model with the worst-case deterministic one

(WC) is presented in Table (12). Noted that the ZR
R−HP objective values are related

to the second scenario (Γbl
rm,t = 0.4t+ 0.5) in the robust model.

Table (12) indicates that the robust problem outperforms the worst-case deter-

ministic problem in both uncertainty levels.
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Table 12: Comparison of ZWC and ZR
R−HP with uncertain log demand

γ = 5% γ = 20%
ZWC 24,305,800 37,308,800
ZR

R−HP 24,279,000 37,195,100

4.5.4 Results for uncertainty in log supply and demand pa-

rameters

In this case, we test all generated instances in the previous sections for some budget

of uncertainty and variability levels for uncertain log supply and demand. In Figures

(7)-(9), γ1 and γ2 indicate the variability levels for supply and demand, respectively.

These figures show the percentage increase in the objective function of the robust

model in comparison with the nominal one, where (γ1, γ2) = {(5%, 5%), (5%, 20%), (20%, 5%)}.
Based on the latter set, we considered 3 cases for variability level of supply and de-

mand, 3 scenarios to generate budget of uncertainty corresponding to demand (Γbl
rm,t),

and 14 cases for Γπ
bl or Γ

v
bl that totally tests 14 ∗ 3 ∗ 3 = 126 problems.

Figure 7: Percentage increase in the objective function where (γ1, γ2) = (5%, 5%)

Similarly, the elaborated increase in the objective function with considering un-

certainty in both supply and demand is the consequence of increasing harvesting,

108



Figure 8: Percentage increase in the objective function where (γ1, γ2) = (20%, 5%)

Figure 9: Percentage increase in the objective function where (γ1, γ2) = (5%, 20%)

stumpage and inventory holding costs in the forest in order to satisfy R-HP con-

straints for all admissible amount of supply and demand. Moreover, it is concluded

that when the variability level of uncertain parameters are smaller, the impact of

imposing robustness is less in comparison with higher level of variability.

The comparison between Figure (4), Table (10) and Figures (7)-(9) indicates that

the objective function is more sensitive to the uncertain demand.
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4.6 Conclusions

In this paper, we proposed a robust optimization model based on cardinality-constrained

approach to address the forest harvesting planning under log supply and demand un-

certainty. The latter provides the possibility of adjusting the level of robustness of

the solution in terms of feasibility in the presence of uncertainty against the cost of

such a robust solution. We also conducted an extensive set of experiments to compare

the quality of the robust solution in terms of feasibility and cost. This has been real-

ized by the aid of theoretical bounds and Monte-Carlo simulation. Our experimental

results revealed the high quality of robust solutions in terms of feasibility with an

acceptable overestimation of the cost. The above-mentioned results provide enough

insight to the decision maker in order to choose the right budget of uncertainty such

that a feasible plan in the presence of future uncertainties at a reasonable cost is ob-

tained. Furthermore, compared to the plan proposed by the nominal (deterministic)

model, no significant structural change in the total amount of harvesting in different

blocks was observed. This is a desirable feature given the fact that the decisions mak-

ers do not prefer fluctuations in the harvesting plan while facing with uncertainties.

According to the experimental results, it can be concluded that the proposed robust

planning tool is essential for forest supply chain in order to survive against market

perturbations and log growth variations.

Future research would focus on the implementation of the proposed robust ap-

proach in integration with other tactical decisions in the lumber supply chain such as

sawmills production planning where non-homogeneous and random characteristics of

log supply and demand might result in more random parameters.
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Chapter 5

Conclusion and Future Work

In this thesis, we investigated in integrated tactical planning in the lumber supply

chain while considering uncertain supply and demand. At first, we focused on the

deterministic context. Then, we considered uncertainty into the tactical decisions

in the lumber supply chain and proposed stochastic programming and robust opti-

mization models in order to handle the latter uncertainties. To solve the models in

each section, we developed efficient algorithms and evaluated them based on data

sets that sufficiently represent realistic-scale lumber supply chains in Canada. The

experimental results in each section, showed the high performance of the proposed

mathematical models and solution algorithms in order to find high quality plans in a

considerably small CPU time.

The remainder of this chapter is dedicated to elaborate the concluding remarks

of this research provided in each chapter. Then, several avenues for future work

following this dissertation are presented.
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5.1 Concluding Remarks

In the second chapter, we proposed a mixed-integer programming (MIP) model to

address harvesting, procurement, production, distribution, and sale decisions in the

lumber supply chain in an integrated scheme. The benefit of the integrated model

was evaluated by comparing the total profit/cost of the integrated model and the

decoupled planning models. Our experimental results revealed that substantial im-

provement can be obtained by using an integrated model rather than the decoupled

models. On the other hand, solving the integrated MIP model for large-scale in-

stances was an issue. Hence, in order to overcome the complexity of the integrated

model for real-size instances, we proposed a heuristic algorithm in the framework of

Lagrangian Relaxation algorithm where the performance of the sub-gradient algo-

rithm was improved in terms of convergence and the feasibility of converged solution.

Our computational results on a set of large-scale test cases revealed the effectiveness

of the proposed heuristic in obtaining high quality feasible solutions in a consider-

ably reduced CPU time comparing to using a commercial solver, and the classical

Lagrangian Relaxation algorithm.

In Chapter 3, we proposed a multi-stage stochastic mixed-integer programming

(MS-MIP) model to incorporate uncertainties into the lumber supply chain tactical

planning model. As the proposed model was a large-scale MS-MIP model with no

special structure, it could not be solved by commercial solvers or relevant approached

in the literature. Hence, we proposed a new algorithmic procedure entitled as the

Hybrid Scenario Cluster Decomposition (HSCD) algorithm. The HSCD scheme pro-

posed in this research is an accelerated scenario cluster decomposition method that

decomposes the original MS-MIP model into smaller MS-MIP sub-models correspond-

ing to decomposed scenario sub-trees in the original scenario tree. As solving each
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sub-problem in real instances would be another issue, we proposed an ad-hoc heuris-

tic (a Lagrangian based heuristic) and a Variable Fixing Heuristic (VFH) in order to

speed up the convergence of the HSCD algorithm. Finally, we evaluated the perfor-

mance of the HSCD algorithm by conducting a set of large-scale test instances. The

numerical results revealed that the HSCD algorithm can overcome the computational

complexity of MS-MIP models, and find high quality solutions in a reasonable CPU

time.

Due to the computational complexity of multi-stage stochastic programming ap-

proach, in Chapter 4, a robust optimization model based on cardinality-constrained

approach was proposed. This approach provided the possibility of adjusting the level

of robustness of the harvesting plan over the planning horizon in terms of feasibility

in the presence of uncertainty against the cost of such robust solution. An exten-

sive set of experiments through Monte-Carlo simulation was also conducted in order

to evaluate the quality of the robust solution in terms of feasibility and cost. The

numerical results revealed the high quality of robust solutions in terms of feasibility

with a negligible increase in the cost. Moreover, by comparing the proposed plan in

the deterministic and robust model indicated that there is no significant structural

change in the total amount of decision variables.

5.2 Future research directions

There are several avenues for future research directions following this thesis. The per-

spectives driven from this dissertation mostly revolve around the following directions.

• It would be interesting to investigate various coordination mechanisms in the

lumber supply chain in order to facilitate the implementation of the proposed

integrated tactical planning tool in this industry. Game-theoretical approaches
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could be adopted to achieve a win-win situation for all parties of the lumber

supply chain. The value of integration can then be interpreted as the maximum

price that can be paid in order to facilitate information sharing among entities

of this supply chain.

• It is of interest to implement the proposed approach in Chapter 3, Hybrid Sce-

nario Cluster Decomposition (HSCD) algorithm, on parallel machines in order

to reduce the CPU time. Moreover, it is possible to embed other efficient heuris-

tic algorithms within the HSCD scheme in order to efficiently solve scenario

cluster sub-models.

Furthermore, the HSCD algorithm can be applied to other supply chain tacti-

cal planning problems that incorporate uncertain parameters with a dynamic

behavior over time. Finally, further research can also be focused on considering

robustness terms into the objective function of the multi-stage stochastic model

in Chapter 3 and controlling the variability of the recourse cost under various

scenarios.

• The cardinality-constrained approach developed in Chapter 4 can be applied to

other supply chain tactical planning problems that incorporate uncertainties.

• The uncertain parameters studied in the thesis are random log supply and

lumber demand. Other random parameters such as sawmills production yield

can be taken into account in the proposed stochastic and robust optimization

models and applying efficient algorithms to solve them would be interesting in

order to further investigations.
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