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Abstract

BINARY CODE REUSE DETECTION FOR REVERSE

ENGINEERING AND MALWARE ANALYSIS

He Huang

Code reuse detection is a key technique in reverse engineering. However, existing

source code similarity comparison techniques are not applicable to binary code. More-

over, compilers have made this problem even more difficult due to the fact that dif-

ferent assembly code and control flow structures can be generated by the compilers

even when implementing the same functionality. To address this problem, we present

a fuzzy matching approach to compare two functions. We first obtain our initial map-

ping between basic blocks by leveraging the concept of longest common subsequence

on the basic block level and execution path level. Then, we extend the achieved map-

ping using neighborhood exploration. To make our approach applicable to large data

sets, we designed an effective filtering process using Minhashing and locality-sensitive

hashing.

Based on the approach proposed in this thesis, we implemented a tool named

BinSequence. We conducted extensive experiments to test BinSequence in terms

of performance, accuracy, and scalability. Our results suggest that, given a large

assembly code repository with millions of functions, BinSequence is efficient and can

attain high quality similarity ranking of assembly functions with an accuracy above

90% within seconds.

We also present several practical use cases including patch analysis, malware anal-

ysis, and bug search. In the use case for patch analysis, we utilized BinSequence to
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compare the unpatched and patched versions of the same binary, to reveal the vul-

nerability information and the details of the patch. For this use case, a Windows

system driver (HTTP.sys) which contains a recently published critical vulnerability is

used. For the malware analysis use case, we utilized BinSequence to identify reused

components or already analyzed parts in malware so that the human analyst can fo-

cus on those new functionality to save time and effort. In this use case, two infamous

malware, Zeus and Citadel, are analyzed. Finally, in the bug search use case, we

utilized BinSequence to identify vulnerable functions in software caused by copying

and pasting or sharing buggy source code. In this case, we succeeded in using Bin-

Sequence to identify a bug from Firefox. Together, these use cases demonstrate that

our tool is both efficient and effective when applied to real-world scenarios.

We also compared BinSequence with three state of the art tools: Diaphora,

PatchDiff2 and BinDiff. Experiment results show that BinSequence can achieve the

best accuracy when compared with these tools.
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Chapter 1

Introduction

1.1 Motivation

Reverse engineering [33] is a primary step towards understanding the functionality

and behavior of a software when its source code is not available. However, reverse

engineering is a tedious and time-consuming process, and its success depends heavily

on the experience and knowledge of the reverse engineer. Moreover, as the software

to be analyzed grows in size, this task becomes overwhelming. Code reuse detection

is thus of great interest to reverse engineers. For example, given a binary and a

repository of already analyzed and commented code, one can speed up the analysis

by applying code reuse detection on the binary to identify identical or similar code

in the repository, and then focus only on the new functionality or components of the

binary.

Consider, for instance, malware reverse engineering. Malware authors do not

create viruses from scratch; instead, they tend to reuse their existing source code.

Besides, in order to not reinvent the wheel, they may leverage some open source

projects that provide certain functionality that they require. Identifying these reused

code not only greatly reduces the efforts of analysis, but also helps in understanding

1



the behavior of malware. For example, Citadel, derived from the leaked Zeus source

code, keeps most of the core components of Zeus intact [62], and the malware Flame

makes heavy use of SQLite [22], which is a light-weight database engine.

Code reuse detection is also of high interest to software maintainers and con-

sumers. In many software development environments, it is common practice to copy

and paste existing source code, as this can significantly reduce programming effort

and time. However, if the copied code contains a bug or vulnerability, and the de-

velopers copied the code without fixing the bug, they may bring the bug into their

own project. Library reuse is a special case in which the developer either includes

the source code of a certain library into their project, or statically links to the library

directly. Either way, the bug contained in the copied code will be brought into the

new project. Code reuse detection can help identify such bugs resulting from shared

source code.

Last but not least, code reuse detection can be applied in numerous scenarios such

as software plagiarism detection, open source project license violation detection and

binary diffing.

Code reuse detection can be achieved by calculating the similarity of two code

regions. The higher the similarity, the more likely they are from the same source

code base. In this thesis, we present an approach for measuring the similarity of two

assembly functions.

1.2 Contributions

The contributions of our thesis can be summarized as follows:

• We designed a fuzzy matching approach to compare assembly functions. To

address the mutations introduced by the compilers, our fuzzy matching algo-

rithm operates at multiple levels, namely instruction level, basic block level and
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structure level.

• To prune the search space when comparing a target function against a vast

number of functions, we designed an effective filtering process with two filters

which can efficiently rule out functions that are not likely to be matched to our

target function. With the help of this filtering process, we can compare one

function against millions of functions within seconds.

• Based on the approach presented in this thesis, we implemented a fully working

tool for binary code reuse detection. Extensive experiments show that our tool

is fast, accurate, and scalable.

• We introduced many use cases, including patch analysis, malware analysis, and

bug search, to demonstrate the efficiency and effectiveness of our approach when

applied in real-world scenarios.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 provides a literature

review and background knowledge of source code and binary code reuse detection. In

Chapter 3, we introduce the fuzzy matching approach we use to compare functions

and the detailed design of our filtering process. In Chapter 4, we present the results

of the extensive experiments we conducted to evaluate our approach. Chapter 5

concludes the thesis and provides possible future research directions.
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Chapter 2

Related Work and Background

Knowledge

In general, when comparing two software for code reuse detection, there are three

different scenarios according to the presence of the source code and binary code.

1. The two software are both available in source code form.

2. Only binary code is available.

3. One software is in source code form, while the other is in binary format.

For the first case, we can perform source code reuse detection. In the second

scenario, binary code reuse detection can be applied. For the last scenario, binary to

source matching, or source to binary matching, can be conducted.

In this chapter, we first introduce the state of the art techniques for source code

reuse detection and binary code reuse detection. We classify these techniques into

several categories, and for each category we introduce and briefly describe some of

the most representative techniques.
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2.1 Source Code Reuse Detection

Source code reuse detection, sometimes known as source code clone detection, is a

well-explored area, and many approaches have been proposed in different literatures.

In general, these approaches can be classified into five categories [70] [71], namely

text-based approaches, token-based approaches, tree-based approaches, graph-based

approaches and metrics-based approaches.

Text-based approaches

Text-based approaches consider the source code as a sequence of lines and compare

the raw source code directly. Normally, prior to the actual comparison, little or no

transformation/normalization is performed, except for basic steps such as comment

removal and whitespace removal.

The pioneer paper by Johnson [42] presented a substring matching approach where

the source files are first transformed to remove characters such as white spaces. A

sliding window is then used to generate a set of substrings with a minimum length of

50 lines. When matching substrings, Johnson leverages a hash scheme based on the

Karp and Rabin string matching approach [45, 46] to generate a fingerprint for each

substring. The intention is to save storage space and matching overhead. To allow

fuzzy matching, Johnson also normalizes the source code by replacing each maximal

sequence of alphanumeric characters by a single letter, such as ‘x’.

For example, the line

for(k = 1; k <= n; k ++)

would be normalized to

x(x = x; x <= x; x++)
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and the line

#define ASDF 1234

would be normalized to

#xxx

Despite the loss of information by normalizing the code, the number of matches would

not explode due to the requirement of a 50-line match.

Ducasse et al. [30] developed a language-independent visual approach to identify

source code reuse. First, the source code is transformed to remove all comments and

white spaces. Then, Ducasse et al. treat every line as an entity and compare it with

every other line (entity) using string matching. The result is a comparison matrix.

Subsequently, as shown in Figure 1, the scatter-plots are used to visualize the matrix.

In scatter-plots, diagonals of dots represent lines of reused source code. To capture

duplicated code that was changed inside one line, a pattern matcher is used to find

diagonals with holes up to a certain size.

Marcus and Maletic [58] applied latent semantic indexing to detect high-level

concept clones such as abstract data types. They use a simpler equivalency definition

to reduce the cost and difficulty of detection at the expense of some lack in precision

and automation. Furthermore, their method would fail to identify two functions with

similar structure and functionality if comments are not available and the identifier

names are different.

Token-based approaches

Token-based approaches normally first perform lexical analysis on the given source

code. Subsequently, a sequence of tokens is extracted from the source. The sequence

is then scanned for duplicated subsequences, and the corresponding source code is

reported as reused code. Compared to text-based approaches, token-based approaches

are generally more resilient to minor code changes such as formatting or spacing.
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d) Rectangles

a) Diagonals b) Diagonals with holes

c) Broken Diagonals

Figure 1: An example of different configurations of dots and each letter represents a
line (Ducasse et al. [30])
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Kamiya et al. [43] proposed a language-independent token-based source code clone

detection tool named CCFinder. By transforming the input source code into a regular

form of token sequence, CCFinder can extract code clones in multiple programming

languages including C, C++, JAVA, and COBOL.

The first step of the approach introduced by Kamiya et al. is to perform lexical

analysis on the given source files. During this step, each line is processed and divided

into tokens based on the specific lexical rule of the programming language. All of the

tokens from each source file are concatenated to form one single token sequence, and

all of the white spaces and comments are removed. The generated token sequence

is then transformed based on certain language-dependent transformation rules. For

example, for C++ code, Kamiya et al. perform the following modifications: removing

namespace attribution, removing template parameters, removing initialization lists,

separating function definitions, removing accessibility keywords, and converting the

source code into compound blocks (statements enclosed by braces).

Following these transformation rules,

void print_table (const map<string, string>& m) {
int c = 0 ;
map<string, string>::const_iterator i

= m.begin();
for (; i != m.end(); ++i) {

cout << c << ", "
<< i->first << " "
<< i->second << endl;

++ c;
}

}
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will be transformed into the following token sequence:

void print_table ( const map & m ) {
int c = 0 ;
const_iterator i
= m . begin ( ) ;
for ( ; i != m . end ( ) ; ++ i ) {
cout << c << ", "
<< i -> first << " "
<< i -> second << endl ;
++ c ;
}
}

The next step is to replace all identifiers related to types, variables, and constants

with a special token such as $p. In so doing, code regions with similar structures but

different syntax, like variable names, can be matched as clone pairs. For example,

after replacing all identifiers, the above token sequence will become the following:

$p $p ( $p $p & $p ) {
$p $p = $p ;
$p $p
= $p . $p ( ) ;
for ( ; $p != $p . $p ( ) ; ++ $p ) {
$p << $p << $p
<< $p -> $p << $p
<< $p -> $p << $p ;
++ $p ;
}
}

9



All equivalent subsequence pairs of the transformed token sequence are now de-

tected as clone pairs. In order to efficiently compute the matching, a suffix-tree

matching algorithm [38] is adopted, such that the clone location information is repre-

sented as a tree with sharing nodes for leading identical subsequences. By searching

leading nodes on the tree, all clone pairs can be identified.

Basit et al. [20] proposed an efficient token-based clone detection tool named

Repeated Tokens Finder (RTF). Unlike most works that use suffix trees for string

matching, RTF uses more efficient suffix arrays to detect string matches. Moreover,

it provides a simple and customizable tokenization mechanism.

Basit et al. first use a language-specific tokenizer to assign each token class (e.g.,

keywords, operators, and comment markers) a unique numeric ID. Each token and its

location are stored for output generation. In this step, all blank lines and comments

are ignored and only one single large token string is generated from all source files.

During tokenization, RTF gives the user multiple options to tailor the generated token

string. First, RTF allows the user to suppress insignificant token classes. For example,

access modifiers such as private, protected, and public do not carry much information

in terms of clone detection and thus, this “noise” should be suppressed. RTF also

allows the user to equate different token classes. For example, if users do not want

to differentiate between the types {int, short, long, float, double} , they can use the

same ID to represent every member of these types. The motivation is to match codes

that only differ in the type of certain variables. In addition, the tokenizer they use

can locate method boundaries to exclude clones that start from the middle of one

method and end in the middle of another. By doing this, human analysts can focus

on other meaningful clones.

Basit et al. treat clone detection as the problem of finding repeating substrings

within the token string. Specifically, they focus only on finding non-extendible (NE)

repeating substrings, as these NE repeating substrings correspond to clone classes
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[43]. To this end, they leverage the suffix array data structure [57]. The key benefit

of using the suffix array instead of a suffix tree is a significant reduction in memory

usage. Subsequently, in order to locate all NE repeating pairs of substrings, a variation

of the algorithm described in [16] is used so that the complete sets of NE repeats are

computed instead of just pairs.

Tree-based approaches

Tree-based approaches normally first transform the source code into tree repre-

sentations, such as parse trees or abstract syntax trees (ASTs). In these tree repre-

sentations, variable names and literal values are abstracted away and similar subtrees

represent code clones.

Yang [78] proposed one of the first approaches for identifying the syntactic dif-

ferences from the source code of two versions of the same program. First, both the

target and the reference source code are transformed into two parse trees using a

parser. In this tree representation, a node denotes a token (e.g., variable name) or a

non-terminal that represents a substructure (e.g., expression). The longest common

subsequence algorithm is then applied, to match nodes of both parse trees. A node

of a tree that does not have a matching node in the other tree is considered as a

difference. However, in this approach, the source code must be syntactically correct.

If part of the source code does not conform to the grammar, the parser will fail to

produce a tree representation; consequently, the whole comparison will fail.

Baxter et al. [21] proposed a tool using ASTs to detect duplicated source codes,

or in other words, clones. The first step of their approach is to parse the source code,

and from this, produce an AST. Figure 2 shows an example of the generated AST.

Subsequently, Baxter et al. apply three different algorithms on the generated ASTs

to find clones.

Their first algorithm, called Basic algorithm, is used to detect subtree clones.

Instead of comparing trees for exact equality, Baxter et al. choose to compare trees

11



void f ()
{
    x=0;
    a=1;
    b=2;
    c=3;
    w=4;
}

void g ()
{
    y=2;
    a=1;
    b=2;
    c=3;
    i=5;
}

;

;

;

;

;

=

=

=

=

=

4w

c

b

a

3

2

1

0x

;

;

;

;

;

=

=

=

=

=

5i

c

b

a

3

2

1

2y

Figure 2: Abstract syntax tree (Baxter et al. [21])
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for similarity. To this end, Baxter et al. adopt the hashing technique which was

used for building directed acyclic graphs for expressions in compiler construction [21].

First, all subtrees are hashed to several buckets, and only subtrees in the same bucket

are compared for equality. This saves a great deal of computation at the expense of

only a little additional storage space. Sometimes two subtrees are almost identical,

except for a few differences. However, a good hash function would hash them into

two different buckets. Baxter et al. denote such clones as near-miss clones. To detect

near-miss clones, an artificially bad hash function is chosen so that such subtrees are

hashed to the same bucket. Finally, the similarity between two subtrees is calculated

using the following formula:

similairty = 2× S/(2× S + L+R)

where S is the number of shared nodes, L is the number of different nodes of the

target subtree, and R is the number of different nodes in the reference subtree. If the

calculated similarity is above a specified threshold, these two subtrees are added to

the clone list.

The second algorithm is the sequence detection algorithm. Based on the Basic

algorithm, the sequence detection algorithm focuses on right- or left-leaning trees with

some kind of identical sequencing operator as a root. To detect these clone sequences,

Baxter et al. leverage the longest common sequence algorithm to compare each pair

of subtrees that contain sequence nodes, to look for maximum length sequences that

encompassed previously detected clones.

After these two algorithms are applied, Baxter et al. begin to visit the parents of

the already-detected clones and to verify whether their parents are near-miss clones.

By doing this, more complex near-miss clones can be detected. In this step, subsumed

clones are also deleted.

13



Graph-based approaches

The program dependency graph (PDG) is the most commonly used graph repre-

sentation in source code reuse detection. In PDGs, nodes represent program state-

ments and predicates, and edges represent data and control dependencies. Since the

PDG is a high level abstraction of the original source code, approaches based on PDGs

are normally resilient to multiple changes such as statement reordering or insertion,

as long as such changes do not alter the original dependencies.

Komondoor and Horwitz [49] designed a PDG-based approach to identify source

code clones. The first step of their approach is to represent each procedure using

its program dependence graph. All PDG nodes are then partitioned into equivalence

classes based on the syntactic structure of the statement/predicate that the node

represents. For each pair of matching nodes (r1, r2), Komondoor and Horwitz find

two isomorphic subgraphs of the PDGs that contain r1 and r2. To this end, they

use two kinds of program slicing [77]: backward slicing and forwarding slicing. Take

backward slicing for example, Komondoor and Horwitz start from r1 and r2 and slice

backwards in lock step. A predecessor and the connecting edge are added to one slice

if and only if there is a corresponding matching predecessor in the other PDG. The

output of the slicing is two isomorphic subgraphs that represent duplicated source

code. After all isomorphic subgraphs have been identified, Komondoor and Horwitz

conduct post-processing steps, including removing subsumed clones and combining

clones into larger groups. A clone pair (S ′
1, S

′
2) subsumes another clone pair (S1, S2)

iff S1 ⊆ S ′
1 and S2 ⊆ S ′

2. So, given two clone pairs (S ′
1, S

′
2) and (S1, S2), (S1, S2) will

be removed if (S1, S2) is subsumed by (S ′
1, S

′
2). When combining clones into larger

groups, two clone pairs (S1, S2) and (S1, S3) will be combined into one large clone

group (S1, S2, S3).

Liu et al. [55] developed a PDG-based software plagiarism detection tool named

GPLAG. They state that even if the source code has been significantly altered, the
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corresponding PDG is nearly invariant. Liu et al. thus address the plagiarism detec-

tion problem through isomorphism testing. To tolerate some extent of noise, instead

of doing exact isomorphism testing, they conduct γ-isomorphism testing by intro-

ducing a relaxation parameter γ (0 < γ ≤ 1). A graph G is γ-isomorphic to G′

if there exists a subgraph S ⊆ G such that S is subgraph isomorphic to G′, and

|S| ≥ γ|G|, γ ∈ (0, 1]. Intuitively, the γ-isomorphism testing becomes exact isomor-

phism testing when γ equals to 1.

Liu et al. also analyzed five types of alteration techniques that may be applied

during plagiarism: format alteration, identifier renaming, statement reordering, con-

trol replacement, and code insertion. Format alteration involves adding/removing

separators, blanks, or comments into/from the original source code. However, as the

PDG is a high level abstraction of the code, this alteration does not change the PDG.

Identifier renaming is to rename variables, classes, or procedures. Consequently, the

syntax of the corresponding nodes of the original PDG may change, but the struc-

tures remain preserved. Statement reordering is a technique of changing the order

of statements. However, there are normally some dependencies between statements.

Some statements may perform operations on the output of previous statements. As

a result, the order of these statements cannot be switched. On the other hand, re-

ordering two instructions that are not bounded by dependencies will leave the PDG

untouched. Then Liu et al. studied the effect of control replacement on the PDGs as

well, and found that most replacements do not change the PDGs. The only exception

is when a while or for loop is replaced by an infinite loop with a break statement. In

this case, a vertex will be added to the new PDG. However, this added vertex does

not break any existing dependencies. As a result, the original PDG is still an isomor-

phic subgraph of the new PDG. The last type of alteration, code insertion, normally

introduces new vertices or edges into the new PDG. However, the old PDG is still an

isomorphic subgraph of the new PDG, as the introduced vertices or dependencies do
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not change the existing vertices or dependencies in the original PDG.

Relaxed subgraph isomorphism testing is a time-consuming process. In order to

prune the search space, Liu et al. adopt two filters: a lossless filter and a lossy filter.

The lossless filter has two stages. In the first stage, PDGs with a size smaller than a

threshold K will not be checked for isomorphism, as Liu et al. focus only on finding

non-trivial PDG isomorphism pairs. The second stage is based on the definition of

γ-isomorphism. Two PDGs g and g′ will not be checked if |g′| < γ|g|, as they cannot

be γ-isomorphic. The second filter, a lossy filter, is based on the vertex histogram of

the PDG. Specifically, a tuple is used to represent each PDG:

h(g) = (n1, n2, ..., nk)

where ni is the frequency of the ith kind of vertex. Two PDGs g and g′ are checked

for γ-isomorphic only if the similarity between h(g) and h(g′) is above a threshold.

Experiment results suggest that, with the help of these filters, more than 90% of the

original search space can be pruned.

Krinke [51] proposed a fine-grained PDG-based approach for identifying similar

code. In Krinke’s approach, the traditional PDGs are first transformed into fine-

grained PDGs. To this end, vertices are attributed with a class, an operator, and a

value. The class is used to specify the type of vertex, such as statement, expression,

and procedure call. The operator further specifies the type, for example, binary ex-

pression or constant. The value is used to carry the exact operator, constant values,

and identifier names. Krinke also separates the edges into three specialized types:

immediate control edges, value dependence edges, and reference dependence edges.

Immediate control edges denote the control dependence between the components of

an expression, such that the targets of this type of edge are always evaluated prior to

the source. Value dependence edges represent the data flow between the expression
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components. Reference dependence edges are used to denote the assignment of a com-

puted value to a variable. After all vertices and edges in both PDGs are attributed,

Krinke reports the maximal isomorphic subgraphs as duplicated code.

Metrics-based approaches

Metrics-based approaches first extract a number of metrics/vectors either from the

source code directly or from other abstractions of the original code, such as abstract

syntax trees. Instead of comparing source code, these metrics/vectors are compared.

These approaches are based on the assumption that if two code fragments are similar,

then the extracted metrics/vectors should be similar as well.

Kontogiannis et al. [50] proposed two techniques for detecting source code clones.

The first technique extracts five well-known metrics from the source code and com-

pares the metric values directly. The second technique leverages a dynamic program-

ming algorithm to find the best alignment between two code fragments. Kontogiannis

et al. use the following five metrics:

• The number of functions called (fanout)

• The ratio of input/output variables to the fanout

• McCabe cyclomatic complexity [60]

• Modified Albrecht’s function point metric [17]

• Modified Henry-Kafura’s information flow quality metric [39]

Assuming s is a code fragment, the McCabe cyclomatic complexity can be calcu-

lated as McCabe(s) = 1 + d, where d is the number of control decision predicates in

s, and the modified Albrecht’s function point metric can be calculated as:

Albrecht(s) =P1 × V ARS USED AND SET (s) + P2 ×GLOBAL V ARS SER(s)+

P3 × USER INPUT (s) + P4 × FILE INPUT (s)
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where P1, P2, P3, and P4 are four weight factors. The modified Henry-Kafura’s

information flow quality metric is defined as:

Kafura(s) = (KAFURA IN(s)×KAFURA OUT (s))2

where KAFURA IN(s) is the sum of local and global incoming dataflow to the code

fragment s and KAFURA OUT (s) is the sum of local and global outgoing dataflow

from s.

Mayrand et al. [59] presented a technique for identifying (near) duplicate functions

in a large software system. The source code is first transformed into an Abstract

Syntax Tree, which is subsequently transformed into an Intermediate Representation

Language (IRL). For example, the function

int fct (int param)
{
    int ret = 0;
    if (param! = 0)
    {
        fct2();
        ret = 1;
    }
    else
    {
        fct3();
        ret = 2;
    }
    return ret;
}
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is transformed into the following IRL representation:

Start

Exp

ExpCond

Ident:fct2 ExpCallExpCall

Exp Ident:ret Exp

Exp

End

Ident:ret

Ident:fct3

Ident:ret

Ident: ret

Ident:param

Def

CtlJump

Use

CtlJumpTrue CtlJumpFalse

CtlJump

CtlJump
CtlJump

Use

CtlJump

Def

The reason behind using IRL is to support multiple source languages. Moreover,

the IRL abstraction carries all of the information required to compute the metrics,

including control flow metrics and data flow metrics.

In total, Mayrand et al. conduct four points of comparison: function name, func-

tion layout, expressions, and function control flow. For function name, the symbolic

names of the functions are compared. For the latter three points, Mayrand et al.

calculate 21 metrics. For instance, for the function layout, they calculate the fol-

lowing five metrics: volume of declaration comments, volume of control comments,

number of logical comments, number of non-blank lines, and average variable name

length. By using these five layout metrics, the organization of the source code can be

extracted.

Also, Mayrand et al. use five metrics to characterize the nature and complexity of

the expressions: total calls to other functions, unique calls to other functions, average

19



complexity of decisions, number of declaration statements, and number of executable

statements.

Finally, Mayrand et al. use eleven metrics to capture the structure information

of the control flow graph (e.g., number of decisions, number of independent paths,

average decision span, etc.). When comparing two functions, Mayrand et al. first

specify a delta threshold for each metric. Two functions are reported as similar if the

absolute difference for each metric is less than or equal to the delta threshold defined

for the corresponding metric.

2.2 Binary Code Reuse Detection

Text-based approaches

Text-based approaches consider the binary code as a sequence of bytes and com-

pare the byte sequence directly.

In [40] Jang and Brumley proposed BitShred, which can identify shared code. Bit-

Shred consists of three phases: shredding a file, creating a fingerprint, and comparing

fingerprints.

First, each given binary is disassembled. Once all executable code sections are

identified, these sections are then divided into fragments denoted as shreds. Each

shred is essentially a contiguous byte sequence of length n. The length must be

appropriate to achieve a trade-off between accuracy and resistance to code reordering.

An example of shredding when n = 5 is shown in Figure 3.

To improve scalability, a Bloom filter [23] is leveraged to create a fingerprint for

each binary file. The Bloom filter is a data structure for set membership tests. It

consists of a bit array of m bits and k different hash functions. To add an element to

the Bloom filter, k hash functions are applied to the element, and the corresponding

bits in the bit array are set to 1. For each binary file, all of the shreds are added to
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53 8a 5c 24 08 56 24 08 56 24 08 8a 5c 24 08 56
(a) Given byte sequence

538a5c2408 8a5c240856 5c24085624 2408562408
0856240856 5624085624 2408562408 085624088a
5624088a5c 24088a5c24 088a5c2408 8a5c240856

(b) Derived shreds with size 5

Figure 3: An example of shredding a byte sequence when n = 5 (Jang and Brumley
[40])

a Bloom filter which is then considered as the fingerprint of the binary file.

Jang and Brumley use the Jaccard index to measure the similarity between two

files. The Jaccard index is defined as the size of the intersection divided by the

size of the union of two sets [10]. However, instead of comparing two files directly,

their fingerprints are compared. More specifically, Jang and Brumley use JR(A,B)

to estimate the true Jaccard index between two files A and B by:

JR(A,B) =
S(BFA ∧BFB)

S(BFA ∨BFB)

where S(BF ) returns the number of set bits of the Bloom filter BF . They also define

JC(A,B) for the containment case when file A includes file B:

JC(A,B) =
S(BFA ∧BFB)

BFB

where S(BFA) > S(BFB). Finally, during clustering, a similarity threshold t is

defined, and two files with a similarity above t would be grouped into the same

cluster.

The main problem of BitShred is that it is too coarse. Considering only the

shreds of byte sequences leads to significant loss of information. Furthermore, the

byte sequences are by no means stable, and could easily be changed across different

21



binaries even when compiled from the same source code base. As a result, it is not

applicable to binary code reuse detection.

FCatalog [7] is also a text-based approach for finding similarities between binary

functions. FCatalog first applies k-gram analysis on the binary code to generate fea-

ture sets. Minhashing [18] is then used to convert these sets into minhash signatures

of constant size. When comparing two functions, FCatalog compares their minhash

signatures.

K-gram/K-perm-based approaches

Myles and Collberg [64] proposed to use opcode level k-gram as birthmarks of

software. A k-gram is a contiguous substring of length k which can be letters, words,

or in their approach, opcodes. Suppose f(p) and f(q) are two sets of k-gram birth-

marks extracted from the sets of modules p and q respectively. The similarity between

p and q is then defined by:

s(p, q) =
|f(p)⋂ f(q)|

|f(p)| × 100.

Myles and Collberg also found that increases in the value of k result in increases in

credibility, but decreases in resilience. Consequently, they claim that k = 4 or 5 is

appropriate to achieve an acceptable trade-off between credibility and resilience.

An alternative to using k-gram is to use k-perm. In [44] Karim et al. used k-

perm to generate phylogeny for malware. For a sequence of k characters, k-perm

represents every possible permutation of that sequence. As a result, the order of

characters within k-perm is irrelevant for matching purposes. Using k-perm results

in the advantage of better matching of permutations of code, especially when the

instructions are not in the same order. During experiments, Karim et al. found

that using k-perm produces higher similarity scores for permuted programs. The

drawback is that, for the same program, using k-perm would generates less k-perms
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than using k-gram. This loss of information might affect accuracy. Furthermore,

apart from code reordering, there are many evolution techniques, such as instruction

substitution, insertion, and deletion. Using k-perm could not track evolution in the

presence of such techniques.

Metrics-based approaches

Inspired by the source code reuse detection work in [41], Sæbjørnsen et al. [72]

proposed a practical binary code clone detection framework.

The first step of their approach is to disassemble the input binaries and extract

the assembly code. The assembly code is then split into code regions using a sliding

window. To allow some “fuzziness”, the instructions of all code regions are normal-

ized. Specifically, the mnemonics of the instructions are kept untouched, and the

operands are normalized into three categories: MEM, REG, and VAL, representing

memory references, registers, and constant values, respectively.

Sæbjørnsen et al. also defined two types of clone pairs: exact clone pairs and

inexact clone pairs. Two code regions with identical normalized instruction sequences

are considered as an exact clone pair. For inexact clone pairs, a similarity threshold

is defined, and code regions with a similarity above this threshold are considered as

inexact clone pairs.

For exact clone detection, in order to avoid pairwise comparisons of all code re-

gions, a hashing mechanism is used to generate a fingerprint for each code region and

two code regions with identical hash value are considered as a clone pair.

To detect inexact clones, Sæbjørnsen et al. extract some features from each code

region and construct a feature vector from that. In total, the following five groups of

features are extracted:

• M : Each distinct mnemonic

• OPTYPE : Each operand type
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• M × OPTYPE : Each combination of the mnemonic and the type of the first

operand

• OPTYPE × OPTYPE : The types of the first and second operands

• OPTYPE × Nk: Each normalized operand and its index

The vectors are generated based on the number of occurrences of each feature

within a code region. Subsequently, locality-sensitive hashing [18] is applied on all

the feature vectors, such that similar feature vectors (code regions) are hashed into

the same bucket. Then the code regions whose feature vectors are in the same bucket

are considered as clone pairs. Finally, before reporting the found clone clusters, trivial

clones are removed and overlapping clone pairs are merged.

Based on the framework proposed by Sæbjørnsen et al. [72], Farhadi et al. [34]

designed an assembly code clone detection system named BinClone. Compared with

the work in [72], BinClone can provide deterministic results and achieve better recall

rates, which is of great importance in malware reverse engineering.

Similar to what Sæbjørnsen et al. do in [72], Farhadi et al. also first disassemble

the binary code into assembly code, and use a sliding window to split the assembly

code into code regions. During normalization, unlike Sæbjørnsen et al. who only

normalize the operands into three categories MEM, REG, and VAL, Farhadi et al.

use a more fine-grained approach with different levels of hierarchy. In Farhadi et al.’s

approach, operands are first normalized to three categories MEM, REG, and VAL.

The REG category is further normalized into 3 groups: General Registers (e.g., EAX,

EBX), Segment Registers (e.g., CS, DS), and Index and Pointer Registers (e.g., ESI,

EDI). Finally, the General Registers group is broken down by size into three groups:

32-bit registers (e.g., EAX), 16-bit registers (e.g., AX, BX), and 8-bit registers (e.g.,

AH, BL).

For exact clone detection, Farhadi et al. use a similar hashing mechanism as used
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by Sæbjørnsen et al.

For inexact clone detection, Farhadi et al. proposed two methods, a sequential

feature selection method and a two-combination method. The sequential feature

selection method first computes the median of each feature on all regions and filters

out features whose median equals to 0. A binary vector is then generated for each

region by comparing the feature vector of the region with the median vector. Then the

binary vector is partitioned into sub-vectors which are hashed into different buckets.

By keeping track of the frequency of region co-occurrences of all buckets, inexact

clones are identified.

The two-combination method is similar to the sequential feature selection method.

However, the two-combination method considers all possible two-combinations of fea-

tures when generating sub-vectors. Consequently, the set of sub-vectors generated by

the sequential feature selection method is a subset of the sub-vectors generated by

the two-combination method. As a result, the two-combination method has a better

recall rate. However, there is a trade-off of lower performance of scalability than the

sequential feature selection method.

The problem is, their approach does not take the structure of assembly function

into account. Instead, it partitions each function into multiple code regions and

matches these code regions. As a result, the precision is a problem.

In [25] Bruschi et al. proposed a novel metric-based approach for detecting self-

mutating malware. Virus writers may reuse code when creating malware. In order

to evade anti-virus products, they may introduce various mutation techniques, such

as instruction substitution, instruction permutation, dead code insertion, variable

substitution, and control flow alteration.

To overcome these evasion techniques, Bruschi et al. propose to first normalize

the code to a canonical form, which is suitable for comparison, and to then compare

the normalized code. The following normalization techniques are used:
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• Instruction meta-representation: This is a high level representation of the se-

mantics of the original machine instructions. All side effects on registers, mem-

ory, and control flags are recorded in this representation. For example, “pop

eax” will be translated into “r10 = [r11]; r11 = r11 + 4”.

• Propagation: This is used to propagate forward values assigned or computed by

intermediate instructions. Once an instruction defines a value, its occurrences

would be replaced with the value computed by the defining instruction, if sub-

sequent instructions did not redefine it. By doing this, all temporary variables

can be eliminated and higher level expressions can be generated.

• Dead code elimination: This technique removes instructions whose results are

never used.

• Algebraic simplification: This simplifies expressions according to ordinary alge-

braic rules.

• Control flow graph compression: This technique analyzes inserted fake condi-

tional and unconditional jumps. If the condition of a jump always evaluates to

true or false, which means that the underlying path will never be accessed, then

all the paths originating from it should be removed.

After all the codes have been normalized, Bruschi et al. begin to compare them

and measure the similarity between them. To do this, the approach proposed by

Kontogiannis et al. [50] is adopted. More specifically, every control flow graph is

encoded into a 7-vector using the metrics shown in Table 1:

For each given code fragment, a 7-vector (m1,m2,m3,m4,m5,m6,m7) is generated

as its fingerprint. To compare two code fragments a and b, the Euclidean distance
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Metrics for encoding a control flow graph into a vector
m1: number of nodes in the control flow graph
m2: number of edges in the control flow graph
m3: number of direct calls
m4: number of indirect calls
m5: number of direct jumps
m6: number of indirect jumps
m7: number of conditional jumps

Table 1: Metrics (Bruschi et al. [25] )

between their fingerprints is calculated as:

√√√√ 7∑
i=1

(mi,a −mi,b)2

where mi,a and mi,b are the ith metric calculated on fragments a and b, respectively.

Bruschi et al. also define a threshold, and if the calculated distance is below this

threshold, these code fragments are considered equivalent.

Structure-based approaches

Flake [35] and its extension proposed by Dullien and Bochum [32] presented a pi-

oneer work of structure-based comparison approach. Their work aimed at comparing

two different but similar executables. The whole approach is based on the observation

that the call graph of an executable stays largely the same, even when compiled in

different compilation environments. They also introduced a novel way of comparing

two basic blocks, namely small prime product (SPP), which is resilient to instruction

reordering.

The SPP algorithm works as follows. First, a unique small prime number is

assigned to each distinct mnemonic based on an arbitrary but deterministic order.

Since every basic block can be looked at as a sequence of instructions, then the

product of all corresponding primes based on the mnemonics of consisting instructions
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is calculated. If two basic blocks have an identical product, they must have the same

set of mnemonics, though not necessarily in the same order due to the uniqueness of

prime decompositions and the fact that multiplication is commutative. For real-world

applications, this product is truncated (module 264). Dullien and Bochum also proved

that this truncation is safe for a sequence shorter than 14 elements with an alphabet

of 100 elements. Naturally, this SPP can also be applied to compare two functions as

well.

Given two executables, the call graphs of both executables are first constructed,

followed by the generation of control flow graphs for all functions of both executables.

Note that each node in the call graph is essentially a function that can be replaced by

its control flow graph. Dullien and Bochum operate first on call graphs. More specif-

ically, they generate a number of “fixedpoints” in the call graphs of both executables

by selecting node (function) pairs that meet the following criteria:

• K-indegree nodes / k-outdegree nodes: Selecting functions whose indegree or

outdegree is exactly k

• Recursive nodes: Selecting functions that invoke themselves

• Same name: Selecting functions with the same symbolic name

• Same string reference: Selecting functions that contain code referring to the

same string

• Same SPP: Selecting functions that have the same prime product

A 3-tuple is also assigned to each node (function) representing three extracted

features: the number of basic blocks in the function, the number of edges linking

them to form the control flow graph, and the number of subfunction calls in all

consisting basic blocks of that function. This 3-tuple is then considered as a feature
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vector. When comparing two nodes, the Euclidean distance between their feature

vectors is calculated.

After the initial fixedpoints have been generated, Dullien and Bochum continue

to explore their successors and predecessors to expand these fixedpoints. Given an

unmatched node in one executable, the node with the minimal distance from the

other executable is chosen. If multiple nodes with the same minimal distance to that

unmatched node are found, then no nodes will be chosen.

More formally:

sc(x,A) :=

⎧⎪⎪⎨
⎪⎪⎩
a if ∃a∈A∀b∈A,b �=a|x− a| < |x− b|

0, Otherwise

After all fixedpoints are generated, the output is a (partial) mapping of functions

in both executables. For each matched function pair, Dullien and Bochum begin

to work on their control flow graphs in the same manner as in call graphs. The

fixedpoints in control flow graphs are generated using the following criteria:

• K-indegree nodes / k-outdegree nodes: Selecting basic blocks that have the

same number of predecessors or successors

• Recursive nodes: Selecting basic blocks that may jump back to their beginning

• Same string reference: Selecting basic blocks that contain code referring to the

same string

• Same SPP: Selecting basic blocks that have the same prime product

• Same subfunction call: Selecting basic blocks that contain calls to the same

subfunction

The output of the control flow analysis is a (partial) mapping of basic blocks of

every matched function pair. Once all the matchings have been generated, every
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instruction in a basic block is then treated as a node and every basic block is treated

as a special simple form of graph, and again, the same algorithm used on call graphs

and control flow graphs is applied on basic blocks.

Dullien and Bochum applied their approach on two well-known trojans: Bagle.X

and Bagle.W [2]. A thorough analysis of Bagle.X had already been conducted, with

every function properly named and commented. By using their approach on both the

new found Bagle.W and already analyzed Bagle.X, Dullien and Bochum successfully

associate all but 6 functions of Bagle.W with their counterpart in Bagle.X. As a

result, human analysts have only to focus on these 6 unmatched functions, which

greatly saves the analysts both effort and time.

Despite encouraging results, the largest shortcoming of this approach is that it

is doing exact matching, instead of fuzzy matching. For example, when generating

fixedpoints for control flow graphs or for call graphs, this approach requires two nodes

to have the same in-degree or out-degree. In addition, the same SPP requires two basic

blocks (or functions) to have exactly the same set of mnemonics, which do not always

hold true even for a true match. These requirements are overly strict, especially

for executables compiled in different compilation environments. As a result, this

approach is only suitable for comparing the same executable, from the same source

code base, and compiled in the same compilation environment, which greatly limits

its usefulness.

BinDiff [3], developed by the Zynamics company, is the de facto standard com-

mercial tool for comparing binary files. The intention of BinDiff is to compare two

related and similar, but different executables, and to identify identical or similar func-

tions among them. One advantage of BinDiff is that it is applicable across various

platforms. Analysts can apply BinDiff on binary files from different platforms, such

as x86, MIPS, ARM, and PowerPC. The changed (unmatched) functions and basic

blocks are displayed in an easy to understand way.
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In [31], Dullien et al. presented some results on executable code comparison for

attacker correlation. After a successful attack has taken place, the only thing left

for defenders to analyze is the malicious code obtained from compromised systems.

Dullien et al. thus focus their analysis on the structural features, such as the call graph

and control flow graph, of the malicious code. Since using pairwise comparisons to

compare one piece of malicious code with a large repository of code does not scale

well, Dullien et al. designed a way to encode the control flow graph into a sequence of

bits to allow fast querying into large sets of data. To do this, every edge in a control

flow graph is first converted into an n-tuple of integers using the following function:

tup : G → P(Z5)

tup(g) �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

topologicalorder(src(e)),

indegree(src(e)),

outdegree(src(e)),

indegree(dest(e)),

outdegree(dest(e))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|e ∈ Eg

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where G is the set of all control flow graphs and Eg is the set of edges of a particular

G belonging to G. Next, each 5-tuple is converted into a real number as follows:

emb(z) �→ z0 + z1
√
2 + z2

√
3 + z3

√
5 + z4

√
7.

Finally, the MD-Index for a given graph is calculated using a hash function:

Hash(g) =
∑ 1√

emb(t)

where t ∈ tup(g).

Dullien et al. also designed an algorithm that operates at both call graph and
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control flow graph levels, to construct an approximation of the maximum subgraph

isomorphism. The algorithm attempts to match nodes and edges based on the fol-

lowing characteristics:

• Bytes Hash: A traditional hash over the bytes of the function or basic block

• MD-Index of a particular function, which is the MD-Index of the underlying

function of the given node

• MD-Index of the source and destination of edges of the call graph, which is a

tuple consisting of the MD-Index of the source node and destination node

• MD-Index of the graph neighborhood of a node/edge, which is the MD-Index of

a subgraph containing the given node/edge, extracted from the original graph

• Small Prime Product, which is a simple way of comparing the mnemonics of a

basic block or function [32]

Figure 4: System architecture (Dullien et al. [31])

Figure 4 depicts the overall system architecture. The central part is an SQL database

from which multiple components fetch data. In total, there are four components:
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• Unpacker. This component attempts to remove the encryption by emulating the

executable and monitoring the statistical properties of the system RAM. Once

the entropy of memory drops, the component assumes that the encryption was

removed.

• Disassembly. This component disassembles the memory dump from the Un-

packer and extracts call graphs and control flow graphs.

• Scheduler. The Scheduler conducts a rough comparison based on the MD-

Indices of the functions in the disassembly and obtains a subset of promising

executables for later comparison.

• Comparison. This component performs the comparison and writes the results

back to the database.

Kruegel et al. [53] presented a novel technique based on structural analysis to

detect polymorphic worms. Polymorphic worms are able to change their code while

spreading. To detect such kind of worms, first control flow graphs are constructed

from the network stream. Then, k-subgraphs are generated from the control flow

graphs. To do this more efficiently, a depth-first traversal is conducted on each basic

block b to first generate the spanning tree. Once the spanning tree is constructed, all

possible k-node subtrees are generated with basic block b as the root node. To ease the

comparison of two subgraphs, canonical graph labeling [19] is leveraged to transform

every subgraph into its canonical representation so that two subgraphs with identical

canonical forms are isomorphisms. To overcome the limitation of considering only the

structure, every basic block is assigned a color based on the instructions, to encode

the functionality of that basic block. The color value used by Kruegel et al. is 14-bit.

Correspondingly the assembly instructions are classified into 14 categories and each

bit in the color value represents the presence of a certain category of instructions. The

Nauty library [61] is then used to take the color into consideration when canonicalizing
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a subgraph. By combining the structural analysis and graph coloring techniques, the

high-level structure of a polymorphic worm is captured.

In [24], Bruschi et al. proposed an approach for malicious code detection. Given

a malicious code M and a program P , Bruschi et al. first collect information from P

by conducting control flow and data flow analysis. This information is then used to

normalize the program to PN , after which the control flow graphs for the malicious

code and PN are generated. To augment these control flow graphs, labeling (coloring)

is applied to both nodes and edges based on instruction classes and flow transition

classes, respectively. Bruschi et al. label nodes in a manner very similar to the

work proposed in [53], but with fewer instruction classes. Subsequently, a subgraph

isomorphism algorithm, VF2 [27], is applied on the labeled control flow graphs. The

corresponding isomorphism in PN is then reported as an instance of the malicious

code, as depicted in Figure 5.

Figure 5: Malicious code M and normalized program PN , respectively. The high-
lighted nodes are the matching nodes in PN (Bruschi et al. [24])

34



Semantic-based approaches

The semantic-based approach bases its analysis on the semantics of the binary

code. In the case of binary code reuse detection, semantics often refer to the input-

behavior and output-behavior of the binary code. Semantic-based approaches are

often combined with structural analysis or with clustering methods from machine

learning.

BinHunt [36], proposed by Gao et al., is the first work that combines symbolic

execution and theorem proving to perform binary code similarity comparison. Figure

6 depicts the overall architecture of BinHunt. Given two binary files, the first step is

to disassemble both files. In their implementation, a commercial disassembler, IDA

Pro [9], is used. Note that Gao et al. use IDA Pro only to obtain a sequence of

x86 instructions; they do not rely on it to generate the control flow graph. Subse-

quently, all x86 instructions are fed to a converter, and the output is an intermediate

representation (IR) of the original x86 instructions. This IR is far simpler than the

original instruction set. It consists of roughly a dozen different statements that are

type-checked and free of side effects. The generated IR is then fed into a control

flow graph constructor to generate the control flow graph for each function as well

as the call graph for each binary. The control flow graph of an assembly function is

a directed graph, where nodes represent basic blocks and edges represent the execu-

tion flow between basic blocks. To compare two control flow graphs, Gao et al. first

introduce a way to compare their nodes (basic blocks) in terms of semantics.

Figure 6: Overall architecture of BinHunt (Gao et al. [36])
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For every basic block, Gao et al. first find all input and output registers and

variables from the IR representation. Then, symbolic execution [48] is used to obtain

the final values of all output registers and variables. After that, a theorem prover is

applied to test if two basic blocks have the same output registers and variables. Gao et

al. claim that two basic blocks are functionally equivalent if there is a permutation of

all the registers and variables between the two basic blocks such that all the matched

registers and variables contain the same value. A matching strength is also assigned

to every matching basic block pair to denote the similarity of the two basic blocks in

terms of functionality.

Guided by this matching strength, subgraph isomorphism analysis is conducted.

More specifically, when comparing two functions, the backtracking [75, 52] algorithm

is used to find the maximum common subgraph of the control flow graphs of these

two functions. The backtracking algorithm keeps the best match found so far and

replaces erroneous matches with a better one until the best one has been found. The

output is four fold, namely the (partial) matching between functions, the (partial)

matching between basic blocks for matched functions and the matching strengths for

matched functions and basic blocks.

To demonstrate the effectiveness of BinHunt, Gao et al. applied BinHunt on three

use cases. The first use case corresponds to a buffer overflow vulnerability in gzip.

By comparing both the patch and unpatched version of gzip, BinHunt successfully

identified the function where the patch took place. Gao et al. also conducted experi-

ments on other executables such as tar and Microsoft.NET framework 2.0 (ASP.NET),

and successfully identified these functions whose functionality has been changed.

Despite encouraging results, BinHunt is not without drawbacks. The first problem

is that using graph isomorphism to detect similar binary code is overly strict and is not

suitable for practical use. Its usefulness is severely limited by the fact that compilers

may bring mutations or noise to the control flow structure. As a result, BinHunt
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is only suitable for analyzing two versions of the same binary compiled by the same

compiler in the same compilation environment. Second, BinHunt focuses its analysis

on x86 executables, as the used IR converter does not support x64 or other platforms.

Third, symbolic execution, theorem proving, and graph isomorphism detection are

all time-consuming. For example, during graph isomorphism, a timeout must be

introduced for function pairs in which the backtracking algorithm did not return in

a timely fashion and no results will be returned in such case. It is thus not suitable

for large-scale code reuse detection.

Recently proposed by Ng and Prakash [65], Exposé is a tool for identifying library

code reuse in applications. It combines symbolic execution using theorem proving

with k-gram at the function level to achieve a trade-off between performance and

accuracy. To do this, Exposé divides the functions of an application into two sets

based on numerous criteria. Symbolic execution [48] is then performed on one set,

while k-gram analysis is performed on the other.

The first step is pre-filtering, during which loader support functions are excluded.

Exposé also excludes functions that are improbable for semantic equivalence checking

by only selecting functions with the following criteria:

• Has the same number of input arguments as the target library function.

• Has the same out-degree as the target library function.

• With a cyclomatic complexity of less than 15.

• With a function size of less than 300 bytes.

These criteria are required due to the fact that checking semantic equivalence

using symbolic execution is very expensive. Excluding functions that are unlikely to

be matched or are too expensive to match could speed up the process.

Exposé also maintains two sets, an IS-pairs set and a MAY-pairs set. If two func-

tions from the library and executable respectively are semantically equivalent, Exposé

37



places them into the IS-pairs set. For functions that are improbable for semantic

equivalence checking, k-gram analysis is applied. First, a feature vector is generated

for each function. Then, to compare two functions, the cosine distance [4] between

the feature vectors of these two functions is calculated. After that, Exposé biases the

original cosine distance following a specially crafted score strategy. For example, if

two functions have different out-degrees, Exposé increases the cosine distance by 0.1,

and if they have the same number of non-zero input parameters, Exposé decreases

the distance by 0.2. Ng and Prakash claim that the values used for biasing work well

in their experiments. Then, for every library function, Exposé selects five functions

with the smallest biased cosine distance from the application, and places them in the

MAY-pairs set.

Once all IS-pairs and MAY-pairs have been obtained, Exposé uses the Hungarian

algorithm [54] to find the best localized mapping of functions between the library

and the application. The final distance score between the library and the application

is the average of the biased cosine distance of the pairs returned by the localized

Hungarian algorithm. The smaller the score, the more likely the application contains

the code of that library.

Ng and Prakash conducted two experiments to evaluate Exposé. In the first

experiment, given the library libpng and an application known to contain the code

of libpng, Exposé correctly ranked the application as #1 out of 128 applications. In

the second experiment, using zlib as the target library, Exposé successfully identified

10 applications that are known to contain the target library from an assortment of

2,927 applications.

Since Exposé aims to rank applications based on the likelihood of containing the

target library code, the features it uses, such as k-gram, are very coarse and are

not suitable to accurately compare two binary functions. Moreover, if an application

reuses part of the library’s code, Exposé may fail to detect this kind of partial code

38



reuse.

More recently, Pewny et al. proposed TEDEM [67], which is a binary code reuse

detection system which can identify the buggy function from a set of reference func-

tions. Unlike previous works which leverage theorem proving, Pewny et al. designed

a novel way of comparing code regions semantically by leveraging tree edit distance.

Similar to most existing works, the first step is to disassemble the buggy function

and all reference functions and to generate the control flow graph with nodes repre-

senting basic blocks. However, each basic block is further split into strict basic blocks

at function calls. Pewny et al. argue that the instruction following a call is actually

an implicit target of a return instruction, and thus should be the first instruction of

a strict basic block.

imul edx, 4
imul ebx, 2
add  esi, edx
mov eax, [esi]
add  eax, ebx

eax := Ind(4, esi + edx * 4) + ebx * 2
edx := 4 *edx
ebx := 2 * ebx
esi  := esi + 4*edx

imul edx, 4
imul ebx, 2
add  esi, edx
mov eax, [esi]
add  eax, ebx

eax := Ind(4, esi + edx * 4) + ebx * 2
edx := 4 *edx
ebx := 2 * ebx
esi  := esi + 4*edx

strict basic block basic block semantics

Figure 7: Exemplary strict basic block and its semantic equations, where Ind(x, y)
refers to the x-byte value at address y

After all (strict) basic blocks have been obtained, Pewny et al. use METASM [37]

to extract the semantics of each basic block. METASM, written in Ruby, is capable

of executing or accumulating assembly instructions. The output of the execution is a

list of equations which represent the effect of the execution on registers, memory, or

branch conditions. Figure 7 shows an example of a strict basic block and its semantic

equations extracted by METASM. Subsequently, all semantic equations are converted

into S-Expressions. For example, the S-Expression of the first equation in Figure 7
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would be:

(:= eax (+ (Ind 4 (+ esi (∗ edx 4))) (∗ ebx 2 ))).

Since the S-Expression is a notation for tree-like data structures, every equation is

then represented by a tree, such that the root node is an assignment, the leaf nodes

are registers or constants, and the intermediate nodes are operations. To compare

two basic blocks, Pewny et al. first transform all semantic equations of both basic

blocks into trees, and then use the tree edit distance (TED) to measure the distance

of these two basic blocks. To this end, the tree edit distance algorithm proposed by

Tekli et al. [74] is adopted. Pewny et al. choose this algorithm specifically for its

ability to support subtree-edits. An example is shown in Figure 8.

Figure 8: Exemplary tree edit distance with subtree-edits (Pewny et al. [67])

Basic block comparison using TED is the cornerstone of their approach. However,

comparing basic blocks using TED does not scale well. To address this problem, given

a target buggy function, Pewny et al. first use coarse-grained basic block features to

find a small set of candidate basic blocks from the reference functions. The features

they use include the number of equations, the depth of the equation trees, and the

number of nodes in the tree. This small set is then used as a set of starting points.

Then, for every starting point, Pewny et al. use the fine-grained feature, namely

TED, to further select 20 basic blocks with the smallest tree edit distance from the

reference functions as matching candidates.

40



For every starting point and each of its 20 matching candidates, Pewny et al. con-

duct neighborhood exploration in both the buggy function and the reference function

based on their control flow graphs. Each time, newly matched basic block pairs will

be used to expand the existing mapping. The exploration terminates when no further

neighbors can be explored. Pewny et al. conduct this for each matching candidate of

each starting point. The final distance is the smallest sum of tree edit distances of

all the matching basic block pairs found so far. The smaller the distance, the more

similar the reference function is to the buggy function.

The largest limitation of this approach is performance. Recall that for every basic

block in the set of starting points, 20 matching basic blocks must be found using

tree edit distance. It is thus not suitable for code reuse detection in large data sets.

Moreover, this approach must conduct neighborhood exploration multiple times and

each time it starts exploration from only one pair of basic blocks. As a result, the

quality of the mapping found by this approach might not be good.

Behavioral-based approaches

Comparetti et al. [26] developed a system named REANIMATOR which can de-

termine the capabilities of malware programs by dynamically executing the malware

and simultaneously observing its behavior. When malicious actions are observed dur-

ing dynamic execution, Comparetti et al. extract and model the parts of the malware

binary that caused this behavior. These models are then used to check whether sim-

ilar code is present in other malware samples. Their system consists of three phases:

dynamic behavior identification, extracting genotype models, and finding dormant

functionality. In the dynamic behavior identification phase, a dynamic execution

sandbox, Anubis [1], is leveraged to execute the given malware binary and to record

all invocations of security-relevant system calls and Windows API functions. In the

second phase, the part of the binary responsible for certain behavior is located and

modeled. Finally, all the models built in the previous phase are used to check other

41



binaries for dormant functionality.

In [73], Shankarapani et al. proposed two methods, Static Analyzer for Vicious

Executables (SAVE) and Malware Examiner using Disassembled Code, for malicious

code detection. The first method, SAVE, focuses on behaviors of API calls (e.g., static

API call sequence and static API call set) for analysis, whereas the second method

focuses analysis on assembly calls of the code.

Hybrid detection approaches

In [47], Khoo et al. built a search engine for binary code in which they com-

bined five different abstraction techniques: instruction mnemonic k-grams, instruc-

tion mnemonic k-perms, control flow subgraph, extended control flow subgraph, and

data constants. Khoo et al. first generate mnemonic k-grams [64] from a given piece

of binary code. Since the mnemonic k-grams are not resilient to instruction reorder-

ing, mnemonic k-perms [44] are combined together with k-grams. To capture control

flow structure information, Khoo et al. first break the control flow graph into sev-

eral small k-subgraphs, and then use graph canonicalization [61] to transform each

k-subgraph into a k2-bit number in order to ease the comparison of graphs. To ad-

dress the shortcoming of low uniqueness of k-subgraphs, Khoo et al. propose to use

extended control flow subgraph by introducing a virtual external node. Finally, two

types of data constants, integers and strings, are extracted from the binary code.

Lastly, Wang et al. [76] presented a tool called BMAT, which can match two

versions of a binary program without knowledge of source code changes. The intention

is to propagate the profile information from an old build to a newer build, and thus,

save the time of re-profiling.
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2.3 Summary

We have presented different approaches for both source code reuse detection and

binary code reuse detection. Unlike the source code, the binary code is essentially

a sequence of assembly instructions with mnemonics, various registers and memory

references. All these mnemonics, different registers and memory references are very

abstract, and do not preserve much information from the source. Consequently, these

source code reuse detection techniques cannot be applied to binary code reuse de-

tection. On the other hand, existing binary code reuse detection techniques are not

without their limitations. For example, these text-based approaches are too coarse,

and are not suitable for function level binary code reuse detection; the metrics-based

approaches normally can handle a large collection of code, but the precision is a prob-

lem as different code might have identical or similar feature vectors. Structure-based

approaches take the control flow graph or the call graph into consideration; however,

it is relatively expensive to compare two graphs especially for large graphs. Com-

pared with other techniques, semantic-based approaches can achieve better accuracy.

However, using semantics to compare binary code is expensive and overly strict. We

need an approach that is efficient, accurate and at the same time scalable.
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Chapter 3

Algorithm Description

The problem we are trying to solve can be described as follows: Given one target

binary function from one executable, and a large repository with thousands or mil-

lions of functions from other executables, how to identify all the identical or similar

functions from the repository. This problem is two-fold. First, how to compare two

assembly functions and obtain a similarity score. Second, how to efficiently retrieve

those ones that are likely to be identical or similar to our target function and at the

same time, avoid pairwise comparison of each function pair.

In this work, we establish the similarity of two functions by comparing their control

flow graphs (CFGs). The CFG of an assembly function is a directed graph, where

nodes represent basic blocks, and edges represent the execution flow between basic

blocks.

The compiler is responsible for transforming the source code into assembly code.

Take C++ for example, generally speaking there are four types of control structures:

• Sequential control structure

• Selection control structure (e.g., if, if-else or switch statement)

• Iteration control structure (e.g., for, while or do-while loop)
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• Goto structure

Normally the sequential control structure will not bring additional edges or branches

into the control flow graph, while the later three structures would. Figure 9 shows

some typical examples of these structures and their corresponding CFGs. Note that

as these structures can be nested in source code, so do their corresponding CFGs.

Figure 10 depicts two examples of nested control structures.

if(expr)
{
    statement1;
else
    statement2;
}
next statement;

cmp
jcond

statement1 statement2

next statement

(a) The “if-else” structure

switch(expr)
{
case one:
    statement1;
    break;
case two:
    statement2;
    break;
default:
    statement3;
    break;
}
next statement;

cmp
jcond

statement1

statement2

next statement

statement3

cmp
jcond

(b) The “switch” structure

for( ;expr; )
{
    statement;
}
next statement;

cmp
jcond

next statement statement

(c) The “for” loop structure

statement1;
goto s2; 
next statement
s2:
    statement2;

statement1

statement2

next statement

(d) The “goto” statement

Figure 9: Examples of control structures and corresponding CFGs

Although different compilation environments would bring some mutations or “noise”

into the CFGs, still the overall structure is relatively stable. As can be seen from

Figure 9, the mapping between source code statements and basic blocks is stable as

well.

Based on these observations, we choose to use a basic block-centric approach when
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if(expr)
{
    if(expr)
    {
        statement1_1;
    }
    else
    {
        statement1_2;
    }
else
    statement2;
}
next statement;

cmp
jcond

statement2

cmp
jcond

statement1_1 statement1_2

next statement

(a) The nested “if-else” structure

for( ;expr; )
{
    for( ;expr; )
    {
        statement;
    }
}
next statement;

cmp
jcond

next statement

cmp
jcond

statement

(b) The nested “for” loop structure

Figure 10: Examples of nested control structures and corresponding CFGs

comparing two functions. We first find the mapping of basic blocks between these

two functions and then for every matching basic block pair, we obtain a matching

score using the concept of longest common subsequence. Finally, we calculate the

similarity score of two functions from the matching results of the basic blocks.

Since pairwise comparison is not efficient, we choose to apply a filtering process

before the actual comparison. Given a target function, instead of comparing it with

every function in the repository, we choose to first obtain a subset of promising

functions using the filtering process and then pairwise compare the target with every

function in this subset.

The rest of this chapter is organized as follows. First, the overall design and work-

flow of our approach is presented in Section 3.1. Then we introduce every step of the

algorithm we use to compare two functions, namely disassembly and normalization

(Section 3.2), instruction comparison (Section 3.3), basic block comparison (Section

3.4), longest path generation (Section 3.5), path exploration (Section 3.6) and neigh-

borhood exploration (Section 3.7). In Section 3.8 we introduce the detailed design of

our filtering process and Section 3.9 summarizes this chapter.
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3.1 Overview
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By Basic Block
Number
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Basic Block Mapping
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Candidate

Target

Longest Path Generation Path Expl. Neighborhood Expl.

Basic Block Mapping
& Function Similarity

Result

Ranking

Figure 11: Workflow of BinSequence

Figure 11 depicts the workflow of BinSequence. First, a collection of interesting

binaries such as previously analyzed malware or open source software that may have

been reused, is disassembled. The output is a set of functions. We then keep all the

functions in a large repository after normalizing them. Given a target function, we

can compare it with every function in the repository and rank the results. However,

this is not efficient as most of the functions in the repository are not similar to our

target and should thus not be compared. To speed up the process, we focus only

on those functions that are likely to be similar with our target. To this end, we

adopt a filtering process in which we use two filters. The first filter is based on

the number of basic blocks, while the second is based on the similarity of feature

sets that we extracted as fingerprints for every function. The output of the filtering

process is a subset of functions from the repository, which we call the candidate set.

We then perform pairwise comparisons of the target function with every function in

the candidate set. The comparison consists of three phases. First, we generate the
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longest path of the target function. Then we explore the reference function in the

candidate set to find the corresponding matching path, from which we can obtain the

initial mapping of basic blocks. We then improve the mapping through neighborhood

exploration in both the target and reference functions. The output is the mapping of

basic blocks and the similarity score of these two functions. After we have done this

to every function in the candidate set, we obtain a ranking of functions based on the

similarity score.

3.2 Disassembly and Normalization

Given a collection of binaries, the first step is to disassemble each binary to a set of

functions. In our experiments, we use IDA Pro [9] to generate the control flow graph

for every function. Since the compiler has many choices with regard to mnemonics,

registers and memory allocations when generating the assembly code, it is essential

that every assembly instruction in the basic block is normalized before comparison

[72].

Note that an assembly instruction consists of a mnemonic and a sequence of up to

3 operands. When normalizing instructions, we keep the mnemonics untouched, and

only normalize the operands. We classify the operands into three categories, namely

registers, memory references and immediate values. For immediate values, we further

normalize them into two categories, memory offsets (addresses) and constant values

as depicted in Figure 12a. The reason to differentiate between addresses and constant

values is that addresses would change according to different assembly code layouts

while constant values do not. If an immediate value is classified as constant value, we

keep the literal value. The motivation is that normally constants stay the same even

when different compilers or optimization levels have been used.

Some literatures also consider strings as a special type of data constants [47, 29].
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OPERAND

IMM MEMREG

OFFSET CONSTANT

(a) Normalization hierarchy

push    ebp
mov     ebp, esp
mov     ecx, [ebp+adler]
push    ebx
mov     ebx, [ebp+len]
push    esi
mov     esi, ecx
and      ecx, 0FFFFh
shr       esi, 10h
push    0FFFFFFFFh
push    edi
mov     edi, [ebp+8]
call       sub_1001BDC0
cmp     dword ptr [edi+1Ch], 0
jnz        loc_1001C030

push    REG
mov     REG, REG
mov     REG, MEM
push    REG
mov     REG, MEM
push    REG
mov     REG, REG
and      REG, 0FFFFh
shr       REG, 10h     
push    0FFFFFFFFh
push    REG
mov     REG, MEM
call       OFFSET
cmp     MEM, 0
jnz        OFFSET

pu hhsh    bbebp
mov     ebp, esp
mov     ecx, [ebp+adler]
push    ebx
mov     ebx, [ebp+len]
push    esi
mov     esi, ecx
and      ecx, 0FFFFh
shr       esi, 10h
push    0FFFFFFFFh
push    edi
mov     edi, [ebp+8]
call       sub_1001BDC0
cmp     dword ptr [edi+1Ch], 0
jnz        loc_1001C030

pu hhsh    REREGG
mov     REG, REG
mov     REG, MEM
push    REG
mov     REG, MEM
push    REG
mov     REG, REG
and      REG, 0FFFFh
shr       REG, 10h     
push    0FFFFFFFFh
push    REG
mov     REG, MEM
call       OFFSET
cmp     MEM, 0
jnz        OFFSET

(b) An exemplary basic block and its normalized version

Figure 12: Basic block normalization
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In [29] David and Yahav replace an offset with the string and take the string into

comparison if the offset points to a string. But we consider only integers. The reason

is that strings can easily be modified without difficulty. A malware author could

easily evade those string based detection techniques by changing the strings inside

the source code without changing the functionality. However, the integers are more

related to the functionality, which makes them a better target in reverse engineering.

3.3 Instruction Comparison

Inspired by the recent work in [29], we use a similar strategy when comparing in-

structions. As depicted in Algorithm 1, for two normalized instructions, if they have

different mnemonics, then their matching score is 0 regardless of their operands. Oth-

erwise, we give them a score for identical mnemonic and continue to compare their

operands. If their corresponding operands are the same after normalization, then we

give them an additional score for each matching operand. Notice that mnemonics rep-

resent the low-level machine operations and carry more information than operands,

thus we should give a higher score to identical mnemonic. At the same time, to

avoid the information carried by operands from getting neglected, this score could

not be overly high. Constants also carry much information from the source. When

comparing two constant operands, we further compare their literal values. If their

literal values are the same, we then give them an additional score. During our exper-

iments we found that it is appropriate to give score 1, 2 and 3 to identical operand,

mnemonic and constant respectively. Using these score values, we can allow those

important parts of instructions to match, and at the same time, without getting mis-

led by this score strategy. Following this strategy, we can calculate that the score of

comparing push eax with push ebx is 3, as both are push REG after normalization,

while the score of comparing push 0 with push 1 is only 2 as the literal value of their
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operands is not the same.

Algorithm 1: Compare two instructions

Input: Two normalized instructions
Output: The matching score of two instructions

1 Function CompIns(ins1,ins2)
2 score = 0
3 if ins1.Mnemonic == ins2.Mnemonic then
4 n = num of arguments(ins1)
5 score += IDENTICAL MNEMONIC SCORE
6 for i = 0; i < n; + + i do
7 if operand(ins1)[i] == operand(ins2)[i] then
8 if type(operand(ins1)[i]) == CONSTANTS then
9 score += IDENTICAL CONSTANT SCORE

10 else
11 score += IDENTICAL OPERAND SCORE
12 end

13 end

14 end

15 else
16 score = 0
17 end
18 return score

19 end

Instead of comparing original instructions, we choose to compare the normalized

instructions. The first advantage is more resistance to register reassignment, which is

very common in compiler optimization. Second, we want to do a fuzzy matching. This

is different from what David and Yahav did in [29], where they use exact matching

when comparing operands. Besides, we allow partial matching. For example, we give

a score of 5 to instruction pair cmp [eax],0 and cmp ebx, 0, although they are two

types of instructions. The first instruction is comparing an immediate value with

a memory reference while the second with an register. The reason for us to allow

partial matching is because even for the same variable, compilers have the freedom

to represent it as a register variable or a memory variable. Allowing partial matching

can tolerate these differences.
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3.4 Basic Block Comparison

Inspired by the recent work in [29], we leverage the longest common subsequence

(LCS) method of dynamic programming [28] to compare two basic blocks. The LCS

problem is to find the longest subsequence which is common to both sequences. Sup-

pose we have two strings, s1 = “ABCAE” and s2 = “BAE”, and we want to find their

LCS. Dynamic programming can be applied to solve this problem efficiently. The

general idea is to break down the problem into smaller and simpler problems until

the answer becomes straightforward. Table 2 shows the memoization table when

using dynamic programming to calculate the length of the LCS of these two strings.

Table 2: The memoization table when calculating the LCS of two string, the high-
lighted cells show the backtrack path

Following the path highlighted in Table 2, we can obtain the longest common

subsequence of these two strings, “BAE”, and its length is 3, as denoted in the last

cell of the table.

Note that a basic block is also a sequence of assembly instructions. We then

leverage the LCS to calculate the similarity score of two basic blocks. We consider

every instruction as a letter and use the score strategy presented in Algorithm 1

to obtain the matching score. Notice that we do not draw any conclusion about

whether these two basic blocks are identical or should be matched according to this

score. Unlike the work in [29], we just use the similarity score as a guide for later use.

As shown in Algorithm 2, the output is the largest similarity score that these

two basic blocks can achieve with respect to the score strategy we are using. By
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push    REG
mov     REG, REG
mov     REG, MEM
mov     REG, MEM
lea       REG, MEM    
shr       REG, 20h     
push    0FFFFFFFFh
push    REG
mov     REG, MEM
call       OFFSET

push    REG
mov     REG, REG
mov     REG, MEM
mov     REG, MEM
lea       REG, MEM    
shr       REG, 20h     
push    0FFFFFFFFh
push    REG
mov     REG, MEM
call       OFFSET

push    REG
mov     REG, REG
mov     REG, MEM
mov     REG, 20h
and      REG, 0FFFFh
shr       REG, 10h     
push    0FFFFFFFFh
push    REG
mov     REG, MEM
call       OFFSET

Figure 13: Example of instruction alignment and the lines represent the mapping of
instructions that gives the highest similarity score

backtracking the memoization table, we can also obtain the mapping of instructions

between this two basic blocks. Some literatures such as [29] also denote this process

of leveraging dynamic programming to obtain the mapping, as “alignment”. After

this “alignment”, instructions that cannot be matched can be jumped over. This

jumping over instructions is our fuzzy matching at the basic block level. However,

for now this mapping is of no interest to us, as we only need the maximum similarity

score. Note that there may be different mappings that give us the same maximum

score, however, the maximum score is unique. In our algorithm, it is always in the

last cell of the memoization table.

push    0FFFFFFFFh
push    REG
mov     REG, MEM
call       OFFSET
cmp     MEM, 0
jnz        OFFSET

push    0FFFFFFFFh
push    REG
mov     REG, MEM
call       OFFSET
cmp     MEM, 0
jnz        OFFSET

push   0FFFFFFFFh
push    REG
mov     REG, MEM
call       OFFSET
cmp     MEM, 0
jnz        OFFSET

push    0FFFFFFFFh
push    REG
mov     REG, MEM
call       OFFSET
cmp     MEM, 0
jnz        OFFSET

Figure 14: Example of comparing a basic block with itself and the lines represent the
mapping of instructions that gives the highest similarity score
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A special case is to use Algorithm 2 to compare a basic block with itself. No

doubt that the highest score will be achieved only when every instruction is mapped

to itself as Figure 14 shows. We define that score as the “self” score of that basic

block. Intuitively, this score can be used to measure the information that a basic

block carries. A large basic block results in a high self score.

Algorithm 2: Calculate the similarity score of two basic blocks

Input: Two basic blocks BB1, BB2
Output: The similarity score of two basic blocks
/* M: the memoization table */

1 Algorithm CompBBs(BB1, BB2)
2 M = InitTable(|BB1|+ 1, |BB2|+ 1)
3 for i = 1; i <= |BB1|; + + i do
4 for j = 1; j <= |BB2|; + + j do
5 M [i, j] = Max(
6 CompIns(BB1[i], BB2[j]) +M [i− 1, j − 1],
7 M [i− 1, j],
8 M [i, j − 1])

9 end

10 end
11 return M [|BB1|, |BB2|]
12 end

3.5 Longest Path Generation

We have explained how to compare two basic blocks. For every basic block pair,

we can obtain a similarity score. The larger the score, the more similar these two

basic blocks are. However, this score is derived from the assembly code only, and is

thus not sufficient. For example, for one target basic block, we might find multiple

basic blocks that have the same similarity score with it. Even worse, we may end

up matching it with a wrong basic block simply because its assembly code is more

similar to the target by chance.

Inspired by the recent work in [56], we realize that path in the CFG is a robust
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feature, since path can record every selection the execution flow took when a branch

is encountered, and one path represents one complete particular execution. Notice

that the functionality of one path is spread across consisting nodes (basic blocks).

If we succeed in finding two paths that are equivalent in terms of functionality, it

would be trivial to further match their nodes. Again, we can treat the problem of

finding matching nodes as an alignment problem where dynamic programming can

be applied. Intuitively, one short path does not carry as much information as a long

path. Besides, the longer the path, the more matching nodes we could obtain by

aligning it with its matching path, which improves both the accuracy and efficiency

of neighborhood exploration process (Section 3.7). Thus, we choose the longest path.

We use depth first search to traverse the CFG, and then choose the path with the

largest number of nodes.

3.6 Path Exploration

After we obtained the longest path of the target function, the next step is to explore

the reference function, to try to find the best match of that path in the reference

function. We adopt the approach in [56] to do the exploration. In [56] Luo et al.

used a breadth-first search combined with dynamic programming to compute the

highest score of longest common subsequence of semantically equivalent basic blocks.

In our case, we leveraged their algorithm to find the corresponding path which has

the largest similarity score based on Algorithm 2.

The algorithm for path exploration is similar to the common dynamic program-

ming for computing the LCS of two strings. Since a path is also a sequence of basic

blocks, we can treat every basic block as a letter and use the Algorithm 2 as our score

strategy. However, there are two differences. First, the length of a string is constant,

thus when computing the LCS of two strings the length of the memoization table is
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also fixed. In path exploration, however, we do not know the length of the memo-

ization table in advance, so we set the initial length to one (Line 2 in Algorithm 3)

and add more rows on the run (Line 9 in Algorithm 3). Second, the letters in a given

string are sequential; every previous letter has at most one letter following it while

a node in a CFG may have multiple successors. That is why we need to combine

breadth-first search with the original dynamic programming.

We modified the algorithm in [56] to fit our needs. Given a longest path P from

the target function and the CFG G of the reference function, we always start from the

head node ofG (Line 5 in Algorithm 3). At the beginning of each iteration, we pop out

a node from the working queue Q as the current node (Line 7 in Algorithm 3). Then

we add a new row to the memoization table δ and update the table correspondingly

using function LCS (Line 10 in Algorithm 3). It is worth noting that when comparing

the current node with every node in path P , we require them to have the same in-

degree and out-degree to be matched (Line 22 in Algorithm 3). Otherwise we do

not allow them to match by giving them a score of 0 (Line 25 in Algorithm 3). The

motivation is that we want to quickly match the “skeleton” of the CFG first. If we

failed to match some nodes whose in-degree or out-degree have been changed, we can

leave them to the next step, neighborhood exploration. Also note that because of the

complexity of the CFG, there might be multiple paths that can lead the execution

flow to a certain node. To improve the efficiency, it is important to reduce the search

space and prune the unprofitable path. To this end, we use an array σ to store the

largest similarity score that we have achieved so far for each node. Every time after

updating the table δ for certain node, we continue to compare the obtained new score

with the largest score stored in σ (Line 11 in Algorithm 3). If the new score is larger,

we then update σ and insert every successor of this node to our working queue Q.

Otherwise we do not further explore its successors. The algorithm terminates after

Q is empty. The output is the memoization table δ.
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Algorithm 3: Path Exploration

Input: P : the longest path from the target function, G: the CFG of the
reference function

Output: δ: The memoization table
/* σ: the array that stores the largest LCS score for every node

in G */

1 Function PathExploration(P ,G)
2 δ = InitTable(1, |P |+ 1)
3 σ = InitArray(|G|)
4 Q = InitQueue()
5 Q.pushback(G1) //always start from the head node
6 while Q is not empty do
7 currNode = Q.front()
8 Q.pop front()
9 δ.AddNewRow() //always add a new row to δ

10 LCS(currNode,P ) //compare currNode with every node in P and
update the table δ

11 if σ(currNode) < δ(currNode, |P |) then
12 σ(currNode) = δ(currNode, |P |)
13 for each successor s of currNode do
14 Q.pushback(s)
15 end

16 end

17 end
18 return δ

19 end

20 Function LCS(u,P )
21 for each node v of P do
22 if SameDegree(u,v) then
23 sim = CompBB(u, v)
24 else
25 sim = 0
26 end
27 δ(u, v) = Max(
28 δ(parent(u), parent(v)) + sim,
29 δ(parent(u), v),
30 δ(u, parent(v)))

31 end

32 end
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(a) The CFGs of two versions of the same functions and the
grey nodes represent the longest path in the target CFG

(b) The memoization table

Figure 15: An example of path exploration for two CFGs
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Figure 15 presents an example. Figure 15a shows two simplified CFGs of two

functions from open source projects; the grey nodes denote the longest path we found

in the target CFG. These two functions are from the same source code. However

due to the noise introduced by the compiler, their structures are not isomorphism.

Basic block J in the target function consists of one “JMP” instruction, directing the

execution flow to the tail block “6”. Basic block 3 in the target CFG modifies the

value of a local variable in the stack. As can be seen from Figure 15a, basic block 3

does not have a corresponding basic block in the reference CFG because the compiler

used the register “ESI” to represent this variable in the reference function. Moreover,

the reference CFG has one more basic block R, that restores the original value of

“ESI”, and then directs the execution flow to the tail.

To do the path exploration, we first initialize the memoization table δ and array

σ. Then we insert the head node 1 of the candidate CFG to the working queue Q. We

compare node 1 with path P using the function LCS in Algorithm 3 and update the

memoization table correspondingly. Notice that here for the purpose of simplicity, we

assume that the matching score is either 1 or 0, while a true match has a score of 1,

otherwise 0. Since node 1 has two successors, node 6 and 2. We insert them into Q

and continue the exploration. Assume we visit node 6 first, then node 2. Node 6 has

no successor, we then update the table δ for node 6, and continue to work on node 2.

Node 2 has two successors, node 6 and node 4. We also insert them into our working

queue. We first work on node 6. Note that this is the second time we insert node

6 into Q. The first time its parent node is 1, and the corresponding partial path is

“1→6”, this time its parent node is 2 and the partial path is “1→2→6”. We allow the

same node to be inserted into Q as long as they represent different execution paths.

Node 6 has no successor. After we finish comparing node 6 with every node in path

P , the working queue Q has only one element: node 4. We then work on node 4. It

is worth noting that although node 4 in the reference CFG has a corresponding node
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(node 4) in the path P , the in-degrees of these two nodes are different. Thus, we give

them a matching score of 0. Then we put the successors of node 4 into Q. Now Q has

two elements, node 5, and node R (parent is node 4). We visit node 5 first, and put

its successor node R into Q. Now Q has two elements, node R from node 4 (partial

path “1→2→4→R”) and node R from node 5 (partial path “1→2→4→5→R”). Both

elements will lead us to node 6, but with different LCS scores. The one from node

4 (complete path “1→2→4→R→6”) will have a final score of 3 while the one from

node 5 (complete path “1→2→4→5→R→6”) gives us a score of 4.

We can then backtrack the memoization table δ to get the corresponding path

that has the largest sum of similarity score with the target longest path. However,

during our experiments we found that considering only the sum of the similarity score

may sometimes give undesirable results. We might wrongly match the target path

with a long path in the reference CFG. So we decided to normalize the similarity

score by taking the target and the found path into consideration. Recall that a path

is a sequence of basic blocks, and the self score of one basic block b can be calculated

as CompBB(b, b) using Algorithm 2. Then the self score of a path is the sum of self

scores of all the consisting basic blocks. We then normalize the score between the

target path P and the found path Pf using the following equation:

NormScore(P, Pf ) =
LCSScore

Score(P ) + Score(Pf )

where the LCSScore is the score obtained from the memoization table δ and Score()

is a function that returns the self score of the given path.

We then choose the path with the highest normalized score. By backtracking the

memoization table δ, we can obtain a mapping of basic blocks. In the example shown

in Figure 15 we can obtain 4 matching basic block pairs: basic block 1 with 1, 2 with

2, 5 with 5 and 6 with 6 in the target and reference, respectively.
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3.7 Neighborhood Exploration

While we can continue to extract more paths from the target function and match them

in the reference function, this is not efficient. First, the path exploration process takes

time. Besides, when we explore certain target path in the reference function, some

of the basic blocks may have already been matched in previous paths and we cannot

gain much by rematching them. Inspired by the work in [67], we decided to use a

greedy, localized fuzzy matching approach to extend the existing mapping. Because

we already have all the mappings from path exploration of the longest path, there is a

high chance that we can find the correct basic block mapping between two functions.

We first put every matching basic block pair obtained from path exploration into

a priority queue based on their similarity score. Then we choose the pair on the top,

namely the pair with the largest similarity score as our starting point to initialize the

search. We then explore the neighbors of the chosen basic block pair. Note that for

every basic block pair in the queue, the two basic blocks have the same in-degree or

out-degree. We first consider the successors of these two basic blocks if they have

the same out-degree. If they both have only one successor, then we match their

successors directly, unless it is inconsistent with the mapping we already have. If

they both have more than one successor, then we leverage the Hungarian algorithm

[63] to find the best mapping between the two sets of successors that maximize the

sum of the similarity score. Similarly, if the found mapping is inconsistent with the

mapping we already have, we discard the corresponding match but continue to check

other successors. We then do the same to their predecessors if they have the same

in-degree.

It is important to note that for these found mapping pairs, the corresponding basic

blocks in the pair do not necessarily have the same in-degree or out-degree. If they

have the same in-degree, we put them into the priority queue but only explore their

predecessors later, when they become the element with the highest priority (similarity
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score) in the queue. If they have the same out-degree, we explore their successors.

If neither their in-degree nor out-degree is the same, we still allow these two basic

blocks to be matched, however, we do not put them into the priority queue. In other

words, we do not explore their neighborhood, because the likelihood of them being a

correct match is relatively lower. By doing this, we achieve a fuzzy matching between

the basic blocks of two functions. At the same time, if we mismatched a pair of basic

blocks, we can make sure that the error would not propagate as we require the same

in-degree or out-degree when exploring the neighborhood. On the other hand, for

basic blocks that are correctly matched, we could explore their neighborhood in two

directions efficiently.

We continue to do this until the priority queue is empty, i.e., until there is no more

neighbors to be explored, or all the neighbors have different in-degree and out-degree

and can not be further explored. We then leverage the obtained matching basic

block pairs to calculate the similarity between the target function and the reference

function.

An assembly function can be looked at as a set of basic blocks, we then calculate

the self score of a function by adding the self scores of all the consisting basic blocks.

Given two functions, f and g, suppose γ is the set of all the matching basic block pairs

we obtained during path exploration and neighborhood exploration, the similarity of

these two functions can be calculated as follows:

Similarity(f, g) =
2
∑

∀(u,v)∈γ CompBB(u, v)

Score(f) + Score(g)

where u, v are basic blocks, u ∈ f , v ∈ g and Score() is a function that returns the

self score of the given function.

62



3.8 Filtering

We have introduced how to pairwise compare two functions. However, we still need to

address the scalability problem, especially when dealing with large data sets. Suppose

we have a function repository consisting of one million functions, to find similar

functions to a given target function, we have to compare the target function with

every function in the repository and rank the results. This is not efficient as a large

number of functions are not similar to the target and should not be compared.

To this end, we adopt a heuristic approach to prune the search space by excluding

functions that are not likely to be matched. We designed two filters, based on the

number of basic blocks and function fingerprint similarity threshold, respectively.

Filtering By Number of Basic Blocks

The reason to filter by number of basic blocks is straightforward. It is very unlikely

that a function with only one basic block can be matched to another function with

one hundred basic blocks. Thus we set a number threshold. If we require two CFGs

to be exactly the same, namely isomorphic, then the basic block numbers should

also be the same. Since BinSequence performs a fuzzy matching, which allows two

structurally-different functions to be matched, the numbers of basic block should be

allowed to be different. So we set up a threshold. This threshold should not be too

small, as we may rule out the correct match. On the other hand, the threshold should

not be too large. Otherwise we cannot save much time as not many functions can be

ruled out.

If the CFGs of two functions are isomorphic, they will have the same number of

basic blocks. Even when they were slightly changed due to noise introduced by the

compiler, the numbers are still very close. One thing that could change the basic

block number is function inlining, where the assembly code of a small function was

directly inlined in another function, to avoid the calling overhead. However, inlining
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only happens when the size of function is relatively small. So it will not significantly

change the number of basic blocks.

Assume the threshold is γ, given a target function f , those functions whose sizes

are between |f | − γ and |f |+ γ will pass this filter.

Filtering By Fingerprint Similarity

The next filter is based on the syntactic property of the code. For every function,

we use its normalized instruction set as its fingerprint. More specifically, we use the

same technique as introduced in Section 3.2 to normalize all the instructions inside

a function, to get the normalized instruction set. Given a target function, we then

calculate the Jaccard similarity (index) between the fingerprints of the target and

every function in the repository. If the Jaccard similarity is above a certain threshold,

we then continue to compare the function against the target. Otherwise we simply

discard it.

In order to avoid pairwise comparison of fingerprints, we leveraged minhashing

[18] and the banding technique [69]. Minhashing is a technique of using k different

hash functions to generate the minhash signature. The banding technique divides

the minhash signature into b bands of r rows each. Given a target function, we first

generate its fingerprint and the minhash signature of its fingerprint. We divide its

minhash signature into b bands of r rows, each. Then the candidate set should be all

the functions whose minhash signatures agree in all the rows of at least one band with

the signature of the target function. More generally, if we choose n hash functions, b

bands, r rows and n = br, the Jaccard similarity threshold t imposed by this banding

technique is approximately 1/b1/r [69].

In general, similar to the filter using number of basic blocks, this filter is lossy as

well. Some true matches may have significantly different normalized instruction set,

and consequently, fail to pass this filter. To address this problem, in our implemen-

tation, we choose b and r so that t = 1/b1/r equals to a relatively low value, e.g.,
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0.65, so that those functions that are true matches, but with low Jaccard similarity

could pass this filter and remain in the candidate set. After using these techniques, to

root out all the functions whose Jaccard similarity is above certain threshold, we only

need to first choose b and r so that the desired threshold is imposed by the banding

technique. and then select all the functions whose minhash signatures agree in all

the row of at least one band with the signature of the target function, which can be

achieved by one time lookup in the database.

3.9 Summary

We have presented the detailed design of our approach. Given a target function and

a repository of thousands or millions of functions, we first use the filtering process to

get a subset (candidate set) of promising functions from the repository that might

be similar to the target. The filtering process consists of two filters. The first filter

is based on the number of basic blocks, while the second is based on fingerprint

similarity. After the candidate set has been obtained, we then compare the target

function with each function in the candidate set using a fuzzy matching approach.

The fuzzy matching approach operates at three different levels: instruction level,

basic block level and control flow structure level. More specifically, we first generate

the longest path of the target function. Then we explore the reference function in the

candidate set to find the corresponding matching path, from which we can obtain the

initial mapping of basic blocks. We then improve the mapping through neighborhood

exploration in both the target and reference functions. The output is the mapping

of basic blocks and the similarity score of these two functions. Finally, we rank the

candidate functions based on their similarity scores.
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Chapter 4

Evaluation

We conducted extensive experiments to evaluate BinSequence in terms of accuracy,

performance and scalability. We also performed several experiments on practical

scenarios to demonstrate the effectiveness and efficiency of BinSequence when applied

to real-world use cases. All experiments were performed on a PC with an Intel Xeon

E31220 Quad-Core processor, 16 GB of RAM running Microsoft Windows 7 64-bit.

4.1 Function Reuse Detection

The first experiment is function reuse detection from a large repository. We first try

to perform function reuse detection between two versions of the same binary. In this

experiment, four different versions of zlib libraries [15], namely 1.2.5 through 1.2.8

were used. Since zlib is a well maintained library, we assumed functions with identical

function (symbolic) name across different versions should have the same or similar

functionality, and thus, should be matched. We also introduced one group of noise

functions, which are all the functions of 1,701 system dynamic library files obtained

from Microsoft Windows operating system. The total size of these files is around 1

GB and the total number of functions is 2,055,584. It took BinSequence 14 hours

and 52 minutes to import all these functions into the repository.
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Every time we use the previous version of zlib to match the next version of zlib.

For example, we first use zlib 1.2.5 as our target set, and put all the functions of

its successive version zlib 1.2.6 together with the two million noise functions into the

database. Then for every function (with at least four basic blocks) in zlib 1.2.5, we

use BinSequence to search for it. Only when the corresponding function in zlib 1.2.6 is

ranked the first, which means it has the highest similarity, we consider it as a correct

match. Otherwise we consider it as wrongly matched. We then do the same thing to

other versions of zlib.

For all the tests, we used three different fingerprint similarity thresholds: 0.6,

0.65 and 0.7. Using the techniques explained in Section 3.8, those functions whose

fingerprint similarity below these thresholds would be ruled out. Intuitively as we

increase the fingerprint similarity threshold, the number of functions that could pass

this filter would decrease. So we choose three different values to thoroughly study its

effect. The threshold for the number of basic blocks is set to 35 in this experiment.

If we want to tolerate more “noise”, we can also set this threshold to a larger value.

Table 3a shows the result. Recall that for every target function, we use two filters

to obtain a small candidate set from the whole database. The column “Candidate

Size” is the sum of the size of the candidate sets for every target function. Intuitively,

as we increase the similarity threshold, we end up with a smaller candidate set. As a

result, the processing time decreases. We expected that as we increase the fingerprint

threshold, the overall accuracy would drop (like zlib 1.2.5 in the table), or at the

best would stay the same (like zlib 1.2.6 in the table) because we would get a smaller

candidate set and the true match could have been ruled out. The zlib 1.2.7 was

a surprise. As we increased the fingerprint threshold from 0.6 to 0.7, the overall

accuracy increased from 96.52% to 98.26%. We looked into the reason. When the

fingerprint threshold is 0.6, there were two functions, whose true matches did not have

the largest similarity; instead, two other functions that happened to have similar code
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Version
Fingerprint Overall Candidate Time
Threshold Accuracy Size (per function)

1.2.5
0.6 96.26% 12346 2.806s
0.65 94.39% 2727 1.468s
0.7 91.59% 1911 0.897s

1.2.6
0.6 100% 16315 2.927s
0.65 100% 2848 1.558s
0.7 100% 1989 0.913s

1.2.7
0.6 96.52% 16312 2.884s
0.65 97.39% 2847 1.572s
0.7 98.26% 1988 0.918s

(a) Function reuse detection between different versions of zlib

Version
Fingerprint Overall Candidate Time
Threshold Accuracy Size (per function)

1.2.8
0.6 92.5% 3526 2.204s
0.65 92.5% 751 1.258s
0.7 92.5% 242 0.95s

(b) Function reuse detection between zlib and libpng

Table 3: Results for function reuse detection

and structure were ranked first. The true matches were ranked #2. As we increased

the fingerprint similarity threshold from 0.6 to 0.7, these two functions were ruled

out by the filter; as a result, those true matches become the ones with the highest

similarity. This also suggest that though our filters are in general lossy, however do

not necessarily always decrease the accuracy.

We also conducted function reuse detection between two different binaries: zlib

and libpng [11]. Libpng is a library for processing PNG image format files and it

is dependent on zlib library. As a result, part of the functions from zlib library are

reused by libpng. We first compiled zlib 1.2.8 and libpng 1.6.17 with the debugging

information attached. By manually checking both libraries, we identified 40 functions

that were user functions in zlib and were reused in libpng. We then used these 40

functions (with at least four basic blocks) in zlib as our target functions, and searched

for them in the repository. If the corresponding function in libpng is ranked first, we
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consider it as a correct match. As shown in Table 3b, we correctly identified 37 reused

functions for all the three different fingerprint thresholds, and the overall accuracy

was consistently 92.5%.

4.2 Patch Analysis

The next experiment is to use BinSequence to recover vulnerability information.

Nowadays as a result of the development of vulnerability mining techniques, more

vulnerabilities are being discovered everyday. After a vulnerability is reported to the

software vendor, they would release a security patch to fix it often without revealing

the details of the vulnerability or the part of code they have modified to the public.

By comparing the patched and unpatched version of the binaries, reverse engineers

can analyze and understand the vulnerability and the patch within hours. This kind

of technique is especially useful for Microsoft’s binaries as they release the patch reg-

ularly and the patched vulnerability are concentrated in small areas in the binary

[66].

We take a recently patched vulnerability, namely MS15-034 [12] as a case to study.

There is a vulnerability in HTTP.sys. When an attacker sends a specially crafted

HTTP request to an affected system, the HTTP protocol stack may parse it improp-

erly. As a result, the attacker may execute arbitrary code. Microsoft released a patch

MS15-034 to address this problem. In order to reveal the information of the vulner-

ability and the patch, we used BinSequence to compare the unpatched and patched

version of HTTP.sys. Since this is to find out which functions have been patched, we

only report functions whose similarity is not 1 after being patched, as similarity 1

means the function remains identical (after normalization) in the patched version.

In total, BinSequence identified 11 functions, whose similarity is not 1 between

the patched and unpatched version. We manually checked these 11 function pairs and
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found out that 6 functions were actually the same, but were disassembled differently

by IDA Pro. Table 4 lists the remaining 5 functions.

Function Similarity
UlpParseRange 0.971783

UlpBuildSingleRangeMdlChainFromSlices 0.915530
UlpBuildMultiRangeMdlChainFromSlices 0.849870

UlpDuplicateChunkRange 0.804167
UlAdjustRangesToContentSize 0.501853

Table 4: Patched functions

According to the analysis in [13], among these five function pairs three of them

are related to the vulnerability, namely UlpParseRange, UlpDuplicateChunkRange

and UlAdjustRangesToContentSize. We first take a look at the UlpParseRange

function. As shown in Figure 16a and 16b, both the pathched and unpatched versions

have 60 basic blocks. BinSequence successfully matched all the basic blocks. Among

all these pairs, 59 pairs have a similarity of 1, which means they remain the same

after being patched (after normalization). The only basic block pair highlighted in

red in Figure 16a and 16b shows where the patch took place, basic block number 45.

Figure 16c depicts the basic block 45 before and after the patch. We can clearly see

that the patched version was calling a function RtlUlongLongAdd while the unpatched

version does not. We can infer that the original function might contain an integer

overflow vulnerability. The patched version invokes the RtlULongLongAdd to fix it.

Moreover, we can see that their out-degrees of these two basic blocks have been

changed. The out-degree of the unpatched is 1 while the patched is 2. Despite this

structure change, our fuzzy structure matching approach still succeed in matching

these two basic blocks.

We continue to look at the UlpDuplicateChunkRange function. As depicted in

Figure 17a and 17b, the unpatched version has 31 basic blocks while the patched

has 37 basic blocks. BinSequence successfully matched all the 31 basic blocks in the
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(a) The UlpParseRange function
before patch

(b) The UlpParseRange function
after patch

id=45
sub eax,edi
sbb ecx,edx
add eax,1
adc ecx,0

mov [esi],eax
mov [esi+4],ecx

id=45
push esi
push 0

sub eax,edi
push 1

sbb ecx,edx
push ecx
push eax

call _RtlULongLongAdd@20
test eax,eax
jl loc_6F184

(c) The basic block 45 before and after patched, the out-degree
is 1 and 2, correspondingly

Figure 16: The UlpParseRange function
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(a) The UlpDuplicateChunkRange
function before patch

(b) The UlpDuplicateChunkRange
function after patch

Figure 17: The UlpDuplicateChunkRange function
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unpatched version to their counterparts in the patched version. Six basic blocks in

the patched version are not matched, thus, we can infer that they are inserted to

patch the vulnerability. Figure 18 shows the detail of the first three inserted basic

blocks. Basic block 9, 10, 11, 12 in the unpatched function are matched to basic

block 9, 10, 11, 15 in the patched function, respectively. Basic block 12, 13, 14 in

the patched are newly inserted. We can see that the inserted basic block 12 invokes

the RtlULongLongAdd function as well and makes one conditional jump based on the

return value. Our fuzzy matching approach successfully jumped over these inserted

basic blocks and matched the rest of control flow graphs.

id=11
mov eax,[ebp+var_14]
sub eax,[ebp+arg_8]

mov esi,[ebp+var_24]
sbb edi,[ebp+arg_C]

add [ebp+Length],eax
adc [ebp+var_8],edi

mov edi,[ebp+var_10]

id=9
mov eax,[ebp+arg_8]
cmp eax,[ebp+var_14]

jnb loc_56F60

id=10
mov eax,[ebp+var_14]
sub eax,[ebp+arg_8]

mov [ebp+var_1C],eax
mov eax,edi

sbb eax,[ebp+arg_C]
mov [ebp+var_18],eax

jmp loc_56F75

id=12
mov eax,[ebp+var_14]

add eax,esi
adc edi,[ebp+var_20]

mov [ebp+var_2C],eax
mov eax,ecx

add eax,[ebp+arg_8]
mov esi,edx

adc esi,[ebp+arg_C]
mov [ebp+var_34],eax

cmp esi,edi
ja loc_56FB8

(a) Before patch

id=11
sub ecx,[ebp+arg_8]
sbb eax,[ebp+arg_C]
add [ebp+Length],ecx
adc [ebp+var_8],eax

id=9
cmp [ebp+arg_8],ecx

jnb loc_573F9

id=10
sub ecx,[ebp+arg_8]
sbb eax,[ebp+arg_C]

mov [ebp+var_1C],ecx
mov [ebp+var_18],eax

jmp loc_57405

id=12
lea edi,[ebp+var_2C]

movs
movs
movs
movs

lea eax,[ebp+var_24]
push eax

push [ebp+var_20]
push [ebp+var_24]
push [ebp+var_28]
push [ebp+var_2C]

call _RtlULongLongAdd@20
test eax,eax

jge loc_5742C

id=13
or edx,0FFFFFFFFh

mov esi,edx
jmp loc_57432

id=14
mov esi,[ebp+var_24]
mov edx,[ebp+var_20]

id=15
mov ecx,[ebp+var_14]
add ecx,[ebp+arg_8]

mov eax,[ebp+var_10]
adc eax,[ebp+arg_C]

cmp eax,edx
ja loc_57493

(b) After patch

Figure 18: One of the patched parts of the UlpDuplicateChunkRange function
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4.3 Malware Analysis

Our next experiment is conducted on two well known malware, Citadel and Zeus.

We know that the Citedel is derived from Zeus [62]. We also know that Zeus uses

RC4 stream cipher function, and Citadel reused this function with modification [68].

Given the RC4 function in Zeus, our intention is to use BinSequence to identify the

reused RC4 function in Citadel.

We first disassembled Zeus using IDA Pro and extracted the RC4 function. We

then used it as our target function. We also disassembled Citadel and then compared

the target function with every function in Citadel, and ranked the results according to

the similarity score. Table 5 shows the top 3 functions that have the largest similarity.

Function Similarity
sub 42E92D 0.689474
sub 432877 0.429091
sub 430829 0.423913

Table 5: The result of searching RC4 function in Citadel

We manually checked the sub 42E92D function, and confirmed that this is the

modified RC4 function in Citadel. In total IDA Pro identified 794 assembly function

in Citadel. That is to say, we successfully identified the modified RC4 function from

these 794 functions.

Since 794 functions is a relatively small data set, so we put the RC4 function in

Citadel into those 2 million functions we used in Section 4.1 and redid the experi-

ment. Still, BinSequence ranked the modified RC4 function as first, from a function

repository with more than 4 million functions.

Figure 19a and Figure 19b show the RC4 function in Zeus and Citadel respec-

tively. Clearly we can see these two CFGs are by no means isomorphic, yet BinSe-

quence ranked the modified RC4 first with the highest similarity. Again, this result

demonstrates that our fuzzy matching approach is effective and accurate.
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(a) The RC4 function in Zeus (b) The modified RC4 function in Citadel

Figure 19: The RC4 function

We also looked into the differences between the RC4 functions of these two mal-

ware. Unlike Zeus, the RC4 function in Citadel has a MD5 hashed login key [68].

At the beginning of the RC4 function of Citadel, the strlen function is invoked to

calculate the length of this hashed login key. Following is a conditional jump instruc-

tion that direct the execution flow to two different branches based on the length of

the login key. Other than that, an additional encryption step is performed using this

hashed login key before generating the final encryption output. As a result, both the

control flow structure and the basic blocks of the RC4 in Citadel have been changed

compared to the RC4 function in Zeus. This is the reason why the similarity between

these two RC4 functions is only 0.689474, which is relatively low. In fact, most of the

functions in Zeus have counterparts in Citadel with a higher similarity. More specifi-

cally, for 373 (67%) functions in Zeus, Binsequence identified matches in Citadel with

a similarity of 1.0, which means they are exactly identical (after normalization) and
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513 (92.1%) functions with a similarity above 0.8. This also confirms that Citadel

reused most of the Zeus’s functions (functionality). Now when reverse engineering

Citadel, the human analyst can focus on those new components and functionality,

instead of reanalyzing these reused functions.

4.4 Bug Search

The next experiment is also a use case bug search. There is a heap-based buffer

overflow in resize context buffers function in libvpx library and Firefox uses this

library [5]. Our intention is to use the resize context buffers function in libvpx

as our target function and identify the buggy function in the repository if there is

any.

According to the vulnerability datasource [5], this bug only exists in Firefox be-

fore 40.0.0. So in the first experiment, we used Firefox 39.0.0 and 40.0.0 as the first

contains this vulnerability and the second does not. We compiled Firefox by our-

selves with debug symbols so that we can see the function name when disassembling

Firefox. Table 6 shows the results. BinSequence successfully ranked the vulnerable

resize context buffers function in Firefox 39.0.0 and its patched version in Firefox

40.0.0 as first.

Firefox Function Similarity Rank
39.0.0 resize context buffers 1.000000 1/149,784
40.0.0 resize context buffers 0.709524 1/152,618

Table 6: Search results for Firefox 39.0.0 and 40.0.0

In total Firefox 39.0.0 and 40.0.0 have 302,402 functions. By setting the basic

number number threshold to 35, and the fingerprint similarity threshold to 0.6, we

end up with a candidate set with a size of 5. The overall running time was 0.468s.

The reason that resize context buffers function in Firefox 39.0.0 has a sim-

ilarity of 1 with the target is that we used the same compiler and optimization
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level to compile both functions, as a result their code are highly similar. The

resize context buffers function in Firefox 40.0.0 has been patched, so their simi-

larity is no longer 1, but still it has the largest similarity with the target among these

152,618 functions.

We also downloaded different versions of Firefox from 33.0.0 to 40.0.0 from the

official web site [8] directly. We only considered the main version and ignore those

subversions like 33.0.1.

Firefox Function Similarity Rank
40.0.0 sub 116D3D02 0.427699 1/161,932
39.0.0 sub 1165C97B 0.657224 1/159,589
38.0.0 sub 1153BA02 0.657224 1/155,299
37.0.0 sub 1155BD63 0.657224 1/151,416
36.0.0 sub 115F7CB3 0.657224 1/152,032
35.0.0 sub 100CB36B 0.268199 1/142,304
34.0.0 sub 101800DA 0.268199 1/138,329
33.0.0 sub 108F3DA4 0.141892 1/135,621

Table 7: Search results for different versions of Firefox

In total there are 1,196,522 functions in these 8 versions of Firefox, and it took

0.271 second for BinSequence to finish the whole comparison. As the Table 7 shows,

BinSequence uniquely identified the equivalent buggy function in Firefox 36.0.0,

37.0.0, 38.0.0, 39.0.0. We manually checked the assembly and the source code and

confirmed the found functions indeed are the buggy functions. For Firefox 33.0.0

through 35.0.0, BinSequence found three functions with a relatively low similarity.

We found that these three versions of Firefox were using a different version of lib-

vpx. As a result, the buggy function actually does not exist in these three versions.

Still, BinSequence reported the ones with the highest similarity in the corresponding

project.
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4.5 Function Matching

In this experiment, we compare BinSequence with Diaphora [6], PatchDiff2 [14] and

BinDiff [3] for function matching. Both Diaphora and PatchDiff2 are IDA Pro plugins

for program diffing and BinDiff is the de facto standard commercial tool for comparing

binary files. All these tools can compare two versions of the same binary and create

a mapping of functions between them. It is worth noting that BinSequence is not

confined to comparing two binaries. In this experiment, given a target function in one

binary, we use BinSequence to compare the target with every function in the other

binary and match the target to the function with the largest similarity score.

Throughout this experiment, we continue to use zlib 1.2.8. However, we compile

it in release mode using two different compilers, namely MSVC 2010 and MSVC 2013.

The reason of choosing these two compilers is to introduce certain “noise” into the

code. We then use the functions in zlib 1.2.8 compiled by MSVC 2010 as out target

set, and functions compiled by MSVC 2013 as the candidate set. For every non-

empty function (with at least 4 instructions) in the target set, we use BinSequence

to find the matching function (with the highest similarity) in the candidate set. In

this experiment, all the function names of both binaries are stripped away. But we

use the function names in the program debug database as the ground truth, to verify

if the matching is correct.

Tool
Correctly

Unmatched Mismatched
Overall

Matched Accuracy
Diaphora [6] 105 10 29 72.92%

PatchDiff2 [14] 110 28 6 76.39%
BinDiff [3] 130 5 9 90.28%
BinSequence 135 0 9 93.75%

Table 8: Comparison with other tools

Table 8 shows the results. In total, our target set has 144 functions with more
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than 4 instructions. Diaphora correctly matched 105 functions. However, for 10 func-

tions, Diaphora failed to match them and categorized them to “Unmatched” group.

Moreover, Diaphora mismatched 29 functions. The overall accuracy for Diaphora is

about 72.92%. PatchDiff2 correctly matched 110 function and mismatched 6 func-

tions. For 28 functions, PatchDiff2 failed to find any match. Similarly, if BinDiff

failed to match one function with another, BinDiff will classify it into “Unmatched”.

As shown in Table 8, there are 5 functions that BinDiff failed to match. However,

Given one target function, BinSequence simply compares it with every function in

the candidate set and match it to the one with the highest similarity. As a result,

BinSequence has no “Unmatched” category.

We can see from Table 8 that BinSequence achieves the highest accuracy, 93.75%.

The reason is that BinSequence is performing a fuzzy matching, which can better

address the mutations introduced by different compilers. Also note that during the

whole comparison process, BinSequence did not take the call graph into consideration.

On the contrary, BinDiff would leverage call graph to match as many functions as

possible. By considering the control flow graph alone, BinSequence achieved a higher

accuracy than BinDiff. These results again, demonstrate the effectiveness of our fuzzy

matching approach.
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Chapter 5

Conclusion and Future Work

In this thesis we presented a fast, accurate and scalable binary code reuse detection

system named BinSequence. Unlike previous works, we focus on fuzzy matching that

operates at instruction level, basic block level and control flow structure level. To

enable BinSequence on large data sets, we designed two filters to save analysis effort by

ruling out functions that are not likely to be matched. Experiments were conducted

on sheer volume of executables, and the results strongly suggest that BinSequence

can achieve high quality function ranking.

We also applied BinSequence on many practical use case. By leveraging BinSe-

quence on both patched and unpatched executables, we succeeded in revealing the

vulnerability and the patch information. By performing function reuse detection, we

managed to identify the reused RC4 function in two real-world malware, Zeus and

Citadel. We also successfully identified the buggy function in various versions of Fire-

fox. The comparison of BinSequence with three state of the art tools also suggests

that our tool can achieve the best accuracy when compared with these tools. We be-

lieve that BinSequence can be of great help in many reverse engineering and security

scenarios.

However, during experiments we also observed several limitations. We now briefly
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introduce them and propose some solutions as future directions.

• Function inlining: If a target function is inlined in another function, then our

approach may not match these two functions. However, normally function in-

lining only happens to small functions. Consequently, their functionality are

straightforward, and it does not really help reverse engineers much to search

for them from a large function repository. On the other hand, if our target

function inlined another small function, then still there is a high chance that

BinSequence can match them since we are doing a fuzzy matching.

• Equivalent instructions: The compiler may use different instructions to accom-

plish the same functionality. For example, mov eax, 0 and xor eax, eax have

the same functionality but different mnemonics. However, they will be normal-

ized to different instructions by our approach. Future versions of BinSequence

may overcome this limitation by dividing instructions into different classes and

let instructions in the same class to be matched.

• Control flow flattening: When comparing functions, we take the structure of

their CFGs into consideration. So control flow flattening could pose a problem.

In fact, during experiments, we encountered two versions of the same function,

one with a size of 9 basic blocks while the other with only 1 basic block. For

example, the compiler can use one condition move instruction like cmovbe to

perform the job that originally requires two different branches in CFG. In that

case it is hard for us to match these two functions. Future work may involve

merging basic blocks, or spiliting one basic into multiple basic blocks, to achieve

a better matching for this case.

Besides, for now BinSequence relies on the longest path to generate matching basic

block pairs as starting points to initiate the neighborhood search. Future versions of

BinSequence may take more paths into account, or leverage other different techniques
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to generate more starting points more efficiently.

82



Bibliography

[1] Anubis. http://anubis.iseclab.org/. Accessed: 2015-11-11.

[2] Bagle trojan. https://en.wikipedia.org/wiki/Bagle_(computer_worm). Ac-

cessed: 2015-11-11.

[3] BinDiff. http://www.zynamics.com/bindiff.html. Accessed: 2015-11-11.

[4] Cosine distance. https://en.wikipedia.org/wiki/Cosine_similarity. Ac-

cessed: 2015-11-11.

[5] CVE-2015-4485. http://www.cvedetails.com/cve/CVE-2015-4485/. Ac-

cessed: 2015-11-11.

[6] Diaphora. https://github.com/joxeankoret/diaphora. Accessed: 2015-11-

11.

[7] FCatalog. http://www.xorpd.net/pages/fcatalog.html. Accessed: 2015-11-

11.

[8] Firefox. https://www.mozilla.org/. Accessed: 2015-11-11.

[9] IDA Pro. https://www.hex-rays.com/products/ida/. Accessed: 2015-11-11.

[10] Jaccard index. https://en.wikipedia.org/wiki/Jaccard_index. Accessed:

2015-11-11.

83



[11] Libpng library. http://www.libpng.org/. Accessed: 2015-11-11.

[12] MS15-034. https://technet.microsoft.com/en-us/library/security/

ms15-034.aspx. Accessed: 2015-11-11.

[13] MS15-034 analysis and remote detection. https://

community.qualys.com/blogs/securitylabs/2015/04/20/

ms15-034-analyze-and-remote-detection. Accessed: 2015-11-11.

[14] PatchDiff2. https://code.google.com/p/patchdiff2/. Accessed: 2015-11-11.

[15] Zlib library. http://www.zlib.net/. Accessed: 2015-11-11.

[16] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing

suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–

86, 2004.

[17] Allan J Albrecht and John E Gaffney Jr. Software function, source lines of

code, and development effort prediction: a software science validation. Software

Engineering, IEEE Transactions on, (6):639–648, 1983.

[18] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approx-

imate nearest neighbor in high dimensions. In Proceedings of the 47th Annual

IEEE Symposium on Foundations of Computer Science, pages 459–468, 2006.
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re-use. In Proceedings of the 37th Computer Software and Applications Confer-

ence, pages 492–501, 2013.

[66] Jeongwook Oh. Fight against 1-day exploits: Diffing binaries vs anti-diffing

binaries. In Blackhat technical Security Conference, 2009.

[67] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian

Rossow. Leveraging semantic signatures for bug search in binary programs.

In Proceedings of the 30th Annual Computer Security Applications Conference,

pages 406–415, 2014.

[68] Ashkan Rahimian, Raha Ziarati, Stere Preda, and Mourad Debbabi. On the

reverse engineering of the citadel botnet. In Foundations and Practice of Security,

pages 408–425. Springer, 2014.

[69] Anand Rajaraman, Jeffrey D Ullman, Jeffrey David Ullman, and Jeffrey David

Ullman. Mining of massive datasets, volume 77. Cambridge University Press,

2012.

[70] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone detection:

A systematic review. Information and Software Technology, 55(7):1165–1199,

2013.

[71] Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and eval-

uation of code clone detection techniques and tools: A qualitative approach.

Science of Computer Programming, 74(7):470–495, 2009.

[72] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and

Zhendong Su. Detecting code clones in binary executables. In Proceedings of the

18th international symposium on Software testing and analysis, pages 117–128,

2009.

90



[73] Madhu K Shankarapani, Subbu Ramamoorthy, Ram S Movva, and Srinivas

Mukkamala. Malware detection using assembly and api call sequences. Jour-

nal in computer virology, 7(2):107–119, 2011.

[74] Joe Tekli, Richard Chbeir, and Kokou Yetongnon. Efficient xml structural simi-

larity detection using sub-tree commonalities. In Proceedings of the 22nd Brazil-

ian symposium on Databases, pages 116–130, 2007.

[75] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM

(JACM), 23(1):31–42, 1976.

[76] Zheng Wang, Ken Pierce, and Scott McFarling. Bmat-a binary matching tool for

stale profile propagation. The Journal of Instruction-Level Parallelism, 2:1–20,

2000.

[77] Mark Weiser. Program slicing. In Proceedings of the 5th international conference

on Software engineering, pages 439–449, 1981.

[78] Wuu Yang. Identifying syntactic differences between two programs. Software:

Practice and Experience, 21(7):739–755, 1991.

91


