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ABSTRACT

Formal Analysis of Geometrical Optics using Theorem Proving

Muhammad Umair Siddique

Concordia University, 2015

Geometrical optics is a classical theory of Physics which describes the light propaga-

tion in the form of rays and beams. One of its main advantages is efficient and scalable

formalism for the modeling and analysis of a variety of optical systems which are used

in ubiquitous applications including telecommunication, medicine and biomedical de-

vices. Traditionally, the modeling and analysis of optical systems has been carried

out by paper-and-pencil based proofs and numerical algorithms. However, these tech-

niques cannot provide perfectly accurate results due to the risk of human error and

inherent incompleteness of numerical algorithms. In this thesis, we propose a higher-

order logic theorem proving based framework to analyze optical systems. The main

advantages of this framework are the expressiveness of higher-order logic and the

soundness of theorem proving systems which provide unrivaled analysis accuracy. In

particular, this thesis provides the higher-order logic formalization of geometrical op-

tics including the notion of light rays, beams and optical systems. This allows us

to develop a comprehensive analysis support for optical resonators, optical imaging

and Quasi-optical systems. This thesis also facilitates the verification of some of the

most interesting optical system properties like stability, chaotic map generation, beam

transformation and mode analysis. We use this infrastructure to build a library of

commonly used optical components such as lenses, mirrors and optical cavities. In
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order to demonstrate the effectiveness of our proposed approach, we conduct the for-

mal analysis of some real-world optical systems, e.g., an ophthalmic device for eye,

a Fabry-Pérot resonator, an optical phase-conjugated ring resonator and a receiver

module of the APEX telescope. All the above mentioned work is carried out in the

HOL Light theorem prover.
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Chapter 1

Introduction

1.1 Motivation

Light brings us the news of the universe.

- Sir William Bragg, The Universe of Light (1933)

Optics is one of the main fields of science and engineering incorporating the physical

phenomena and technologies that deal with the generation, manipulation, detection

and utilization of light. In the last few decades, optics has revolutionized our daily

life by providing new functionalities and resolving many bottlenecks in conventional

electronic systems. Recent advances in communication technology resulted in the de-

velopment of sophisticated devices such as multifunction routers and personal digital

assistants (PDAs); which brought additional challenges of high-speed, low-power and

huge bandwidth requirements. However, traditional electronics technology has al-

ready reached a point where addressing these issues is quite difficult if not impossible.

On the other hand, optics offers a promising solution to resolve these bottlenecks and

provides a better convergence of computation and communication, which is a key for
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coping with future communication challenges. Even though the complete replacement

of existing communication systems is not possible at this point, future communication

systems will employ such electronic-optics convergence as mentioned in the MIT’s first

Communications Technology Roadmap (CTR) [24].

The primary applications of optics have emerged in biomedical imaging [30],

communications [19], high-speed computing [76] and aerospace [72] to name just a

few (as shown in Figure 1.1). Interestingly, the 68th Session of the UN General

Assembly (on December 2013) proclaimed 2015 as the International Year of Light and

Light-based Technologies (IYL 2015) [6]. The main purpose of celebrating IYL is to

consider that the applications of light science and technology are vital for existing and

future advances in energy, information and communications, fibre optics, agriculture,

mining, astronomy, architecture, archaeology, entertainment, art and culture, as well

as many other industries and services [7]. As a result, optics being the mainstream

light based technology will gain more awareness about its problem-solving potential

among international policymakers and stakeholders.

Figure 1.1: Main Applications of Optics
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The designing of different optical systems depends heavily on the modeling

choices for the light and optical components (e.g., mirrors and lenses). In fact, light

can be modeled at different levels of abstraction such as geometrical, wave, elec-

tromagnetic and quantum optics. Geometrical optics characterizes light as a set of

straight lines or beams that linearly traverse through an optical system [18]. Wave

optics [85] and electromagnetic optics [85] describe the scalar and vectorial wave na-

ture of light, respectively. On the other hand, Quantum optics [34] characterizes light

as a stream of photons and helps to tackle situations where it is necessary to consider

both wave-like and particle-like behaviors of light. In general, each of these theories

has been used to model different aspects of the same or different optical components.

For example, a phase-conjugate mirror [47] can be modeled using the ray, electromag-

netic and quantum optics. The application of each theory is dependent on the type

of system properties which needs to be analyzed. The main focus of this thesis is

geometrical optics which is the foremost modeling approach in the design of a wide

class optical systems. Moreover, it provides a convenient way to analyze some im-

portant properties of optical systems such as stability of optical and laser resonators

used in reconfigurable wavelength division multiplexing [77] and measurement of the

refractive index of cancer cells [83]. Similarly, the conditions to produce chaotic maps

inside resonators [11], optical imaging in ophthalmic devices [37], coupling efficiency

of optical fibers [26] and beam transformation in telescopes [70] can also be analyzed

using the concepts of geometrical optics.

Optical systems are considered to be more complicated than many other types

of engineering systems. The optical systems development life-cycle involves the phys-

ical modeling of optical components, analysis, and production. This process is always
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subject to time, safety and cost-related constraints. Due to the delays and cost associ-

ated with the manufacturing process of optical systems, it is not practical to analyze

the impact of design parameters on the system behavior by successive fabrication

and characterization of prototypes only. Moreover, overall optical systems charac-

terization is also a time-consuming process and does not unveil all of the internal

behaviors of the system design under test, since all properties cannot be directly mea-

sured. Therefore, to develop an understanding of the operations of optical systems

and the corresponding dependence on the parameters, detailed mathematical models

and exhaustive analysis are required. One natural step is to identify some funda-

mental building-blocks (e.g., mirrors or lenses) used in practical optical systems and

then develop universal models characterizing the associated behaviors to process light.

Consequently, a significant portion of time is spent in the analysis and verification of

these models so that bugs in the design can be detected prior to the manufacturing

of the actual system. Even minor bugs in optical systems can lead to disastrous con-

sequences such as the loss of human lives because of their use in biomedical devices

(e.g., refractive index measurement of cancer cells [83]), or financial loss because of

their use in high budget space missions.

Traditionally, the analysis of geometrical optics has been done using paper-and-

pencil based proofs. This technique allows to manipulate physical equations character-

izing optical systems (or components) using manual paper-based reasoning. However,

the analysis of complex optical systems using this approach is error-prone, particularly

for the case of a large number of components and interconnections. Computer sim-

ulation is another state-of-the-art technique for the analysis of optical systems. The

main principal behind simulation is the utilization of efficient numerical algorithms to

assess the behavior of geometrical optics based models under certain initial conditions.
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Besides the huge memory and computational time requirements, simulation cannot

provide perfectly accurate results due to the discretization of continuous parameters

and inability to deal with infinitely many input samples. Another approach to analyze

optical systems is the use of computer algebra systems (CAS) (e.g., Mathematica [8]),

which provide the symbolic manipulation of complex physical equations. However,

the main focus of CASs is performance and user-friendliness which comes at the cost

of some drawbacks such as the underlying algorithms and computational procedures,

which often times rely on many approximations and heuristics1.

The above mentioned inaccuracy problems of traditional analysis methods are

impeding their usage in designing safety-critical and high-consequence optical systems,

where minor bugs can lead to fatal consequences both in terms of monetary loss and

human life risk. In particular, it is more important in the applications where failures

directly lead to safety issues such as in aerospace as compared to telecommunication

where failures can lead to safety problems through some secondary events. An example

of such a critical application is Boeing F/A-18E, for which the mission management

system is linked using an optical network [89].

Formal methods [45] are computer based reasoning techniques which allow ac-

curate and precise analysis and thus have the potential to overcome the limitations

of accuracy, found in traditional approaches. The main idea behind formal methods

based analysis of systems is to develop a mathematical model for the given system and

analyze this model using computer-based mathematical reasoning, which in turn in-

creases the chances for catching subtle but critical design errors that are often ignored

by traditional techniques. The two major formal methods techniques are model check-

ing and theorem proving (a brief overview of other formal methods techniques can be

1A critical overview of traditional analysis approaches (paper-and-pencil based proofs, simulation
and computer algebra systems) is provided in Section 1.2.
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found in [45]). Model checking [17] is an automated verification technique for sys-

tems that can be expressed as finite-state machines. On the other hand, higher-order

logic theorem proving [41] is an interactive verification technique, which is mainly

based on the notion of formal proofs in a logic (e.g., propositional logic , first-order

logic (FOL) or higher-order logic (HOL)). Another important formal verification tech-

nique is satisfiability modulo theories (SMT) [27] which deals with the satisfiability

of mathematical formulas. There is an increasing interest of integrating SMT solvers

with model checkers to verify real-world software and hardware systems. However,

model checking cannot be used to analyze hardware aspects of optical systems due

to the involvement of multivariate analysis and complex-valued parameters. On the

other hand, higher-order logic theorem proving can be applied in optics due to its

higher expressibility and the availability of some well-developed theorem proving sys-

tems. Moreover, SMT solvers can be used as decision procedures within theorem

proving tools [27] to provide an effective automation.

Nowadays, the use of formal methods for high risk and safety-critical systems

is recommended in different standards like the general IEC 61508 [58], DO178-C

[49] for aviation and ISO 26262 [50] for automotive. The increasing applications of

geometrical optics in safety-critical systems suggest applying formal methods in this

field as well. To the best of our knowledge, there is no work in the open literature

which tackles the analysis of geometrical optics by any formal methods technique.

To fill this gap, we propose in this thesis a higher-order logic theorem proving based

formal analysis framework for geometrical optics. The main challenging aspect of

this thesis is the interdisciplinary nature of the subject as it requires expertise in

the underlying physics, mathematical modeling, and formal methods. However, it

provides an efficient way for identifying critical design errors that are often ignored by
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traditional analysis techniques. More details about the proposed framework will be

presented in Section 1.3. We next provide a critical overview of the state-of-the-art

analysis techniques for geometrical optics.

1.2 Geometrical Optics Analysis Approaches

Due to the vast applications of geometrical optics in different fields of science and

engineering, many scientists and engineers use different approaches to analyze cor-

responding systems based on analytical and numerical models. In this section, we

provide an overview of these techniques and highlight their strengths and weaknesses.

1.2.1 Paper-and-Pencil based Proofs

The paper-and-pencil based proofs is a fundamental technique and a starting point to

build the model of a physical system and its associated properties using the underlying

physical concepts. Then paper-based mathematical reasoning is used to prove whether

the system model possesses the desired properties. Due to the analytical nature of

this technique, it is widely used by physicists to propose a variety of new optical

systems and their corresponding properties and applications. Indeed most of the

Optics literature is based on the paper-and-pencil based proofs, e.g., [57, 67, 66, 85].

However, paper-and-pencil based proofs have some serious limitations as described in

the following:

• Traditionally, these mathematical proofs are written in a way to make them eas-

ily understood by physicist or mathematicians. Usually the fundamental logical

steps are omitted and a significant amount of underlying context is assumed on

the part of the reader.
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• Many examples of erroneous paper-and-pencil proofs in Optics are available in

the open literature, a recent one can be found in the paper by Cheng [25] and

its identification and correction is reported by Naqvi [68]. The main problem

was in the derivation of the polarization vector that led to the erroneous final

electric and magnetic field expressions. Interestingly, we have also found a dis-

crepancy in the paper-and-pencil based proofs approach in [65] used to analyze

the stability of optical resonators. Particularly, the order of matrix multipli-

cation in Equations (16) and (24) in [65] should be reversed, so as to obtain

correct stability constraints.

• Different physicists rely on different fundamental physical assumptions which

leads to contrasting mathematical models of the same system. In other words,

these proofs cannot be traced down to some unique basic physical or mathemat-

ical rules.

In the last decade, many researchers have discussed the limitations and reliability

issues of paper-and-pencil based mathematical proofs (e.g., [21, 36, 16]). The proofs

involved in the analysis of optical systems are also mathematical in nature and raise

the similar questions of trusting them for safety-critical applications.

1.2.2 Computer Simulation

Nowadays computer simulation is a widely used technique to mimic the behavior of

complex optical systems due to the availability of a wide range of open-source tools

(e.g., reZonator [75] and LASCAD [59]) and commercial tools (e.g., Synopsys CODE

V [9], Radiant-Zemax [74] and FRED Optical Engineering Software [5]). The main

strength of these tools is the provision of a library of a wide class of optical components

and the automatic analysis of different properties such as the propagation of a ray
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through a series of optical systems, and imaging properties, etc. The theoretical

basis of these tools is to encode the mathematical equations corresponding to each

optical component and analysis procedures (e.g., ray tracing [86]) in a programming

language such as C++ or Fortran. Most of these tools provide the facility to write

user-defined components, functions and analysis utilities. The user-friendliness, better

visualization and strong automation offered in the above mentioned simulation based

optical design tools come at the cost of several problems, including:

• The analysis of optical and laser systems involves complex and vector analysis

along with transcendental functions, thus numerical computations cannot pro-

vide perfectly accurate results due to the heuristics and approximations (e.g.,

round-off errors) of the underlying numerical algorithms. Moreover, the com-

plexity of these tools increases exponentially with the size of input data, e.g.,

the stability of optical resonators requires to consider N round trips (back-and-

forth traversal of a ray) and N can be very large. In case of simulation, this

type of properties can only be verified for some particular values of N , rather

than for all N .

• The core of these tools contains thousands of lines of code characterizing the

mathematical models of optical components and numerical algorithms. Al-

though these codes are written by expert programmers, there is still a chance

of uncaught errors. One of the best-selling books on testing computer software

gives an indication about public bugs (which are encountered in a program af-

ter a programmer declares it as error-free) as one error per 100 statements [53].

Another study about the reliability of scientific software based on 100 differ-

ent codes from 40 different applications identifies that the C codes contained

approximately 8 serious static faults (caused by a programmer) for every 1000
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lines of executable code, while the Fortran codes contained approximately 12

serious faults per 1000 lines which can lead to serious failures [46].

1.2.3 Computer Algebra Systems

Computer algebra systems (CAS) deal with symbolic computations of mathemati-

cal expressions and provide a high degree of automation. Mainly computer algebra

systems consist of three main components: 1) user interface; 2) a programming lan-

guage and 3) simplifying procedures (e.g., FullSimplify in Mathematica [8]). The

most comprehensive and widely used computer algebra based optical design tool is

Optica [71] which provides a rich library of optical components, mirrors and light

sources. The main core of Optica is based on the kernel functions of Mathematica

and provides both symbolic and numerical computations. Some of the limitations of

computer algebra systems are described as follows:

• The internal design of computer algebra systems has a very little concept of

logical reasoning and some of the simplification procedures are ill-defined or im-

precise which implies that computations performed by computer algebra systems

are not reliable [39]. One simple example in Mathematica is the expression x
x

for which the simplification function Simplify[x/x] provides 1. However, this

is only true when x �= 0.

• Another source of inaccuracy in computer algebra systems is the presence of

unverified huge symbolic manipulation algorithms in their core, which are quite

likely to contain bugs and in case of commercial tools they are not even trans-

parent to users. Recently, a bug in the computation of some determinants with

big integers in Mathematica is discussed in [28], where the authors reported
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this bug to Wolfram Research Inc. (the developers of Mathematica) which was

acknowledged by the developers [28]:

“It does appear there is a serious mistake on the determinant operation you

mentioned. I have forwarded an incident report to our developers with the in-

formation you provided.”

It is important to note that the analysis of geometrical optics is heavily de-

pendent on matrix algebra and doing such an analysis using Optica (which relies on

Mathematica) can also suffer from similar errors as those mentioned above.

1.2.4 Theorem Proving

Theorem proving is a widely used formal methods technique which is concerned with

the construction of mathematical theorems by a computer program (called theorem

prover or proof assistant). Theorem proving systems have been employed in the past

to verify generic properties of a wide class of software and hardware systems. For

example, a hardware designer can prove different properties of a digital circuit by

describing its behavior by some predicates and applying Boolean algebra. Similarly,

a mathematician can prove the transitivity of real numbers using the fundamental

axioms of real number theory. These properties are described as theorems in a par-

ticular logic such as propositional logic, first-order logic (FOL) or higher-order logic

(HOL) [41], depending upon the expressibility requirements. For example, the use

of higher-order logic is advantageous over first-order logic in terms of the availability

of additional quantifiers and its high expressiveness. Moreover, higher-order logic is

expressive enough to describe almost all the known concepts from mathematics includ-

ing topological spaces, real numbers, multivariate calculus and higher transcendental

functions. Once such a mathematical theory is expressed inside a theorem prover, we
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say that it is formalized.

HOL theorem provers can be used to formalize mathematical theories with as

much accuracy as traditional paper-and-pencil based approach, but with a more pre-

cise control of the computer program which ensures that all the steps are consistent

and correct. This is achieved by defining a precise syntax of the mathematical sen-

tences by providing some axioms and inference rules which are the only ways to prove

the correctness of a sentence. For example, a theorem prover does not allow to con-

clude that “x
x
= 1” unless it is first proved that x �= 0, usually computer algebra

systems do not consider such subtlety when simplifying mathematical expressions

[39]. Indeed, theorem provers allow to check every logical inference all the way back

to the fundamental axioms of mathematics. There are two types of provers: auto-

matic and interactive. In an interactive theorem prover, significant user computer

interaction is required while automatic theorem provers can perform different proof

tasks automatically. The main downside of automatic theorem provers is their limited

expressiveness as they rely on decidable subsets of the underlying logic. This in turn

limits their usage in the domains where complicated mathematics is involved (e.g.,

multivariate calculus). Some prominent interactive theorem provers are HOL Light

[38], Isabelle/HOL [69], Coq [4], HOL4 [82] and PVS [73].

In the last two decades, theorem proving has been used to verify both hardware

and software systems, e.g., verification of digital hardware circuits [10], verification of

the floating point algorithms [40], verification of the digital signal processing (DSP)

designs [13], full-scale verification of the seL4 operating system [56] and verification

of the CompCert compiler [60]. The applications of theorem proving has gone beyond

the system verification with the increasing interest of formally verifying mathematics

which aims at developing mathematics with greater precision [16]. Large projects in
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this direction include the completed formal proofs of the Kepler conjecture (Flyspeck)

[35], the Odd Order Theorem [33] and the Four Color Theorem [32]. Considering

these encouraging applications of theorem proving based formal verification, it is

natural to think of applying it to physical systems (e.g., optics or quantum physics).

However, this interesting direction of research is largely unexplored and includes only

few formalizations which are reported in the open literature.

The first work towards the formal analysis of optical waveguides was reported

by Hasan et. al. [44] in 2009. The main target of this work was only one applica-

tion, i.e., the formalization of electromagnetic equations of a planar optical waveguide

and the verification of corresponding eigenvalues using the HOL4 theorem prover.

The main problem with this approach was the use of real-analysis to approximate

the complex-valued electromagnetic equations which limits its application to verify

many optical systems. The principle reason for this approximation was the unavail-

ability of complex-numbers and multivariate analysis in the HOL4 theorem prover.

Later on, this seminal work was generalized to build a formal analysis framework

for electromagnetic optics [55] using the formalization of complex-valued vectors in

the HOL Light theorem prover [54]. The utilization of this work was demonstrated

by the verification of the optical intensity for a simple two plane-mirror Fabry-Pérot

resonator. However, this work has some limitations as it does not provide the for-

malization of important optical components such as spherical and phase-conjugated

mirrors which are often used in practical optical systems (e.g., laser resonators, optical

fiber couplers, etc.). Moreover, this work does not provide a hierarchical formaliza-

tion of optical systems and it cannot be applied to systems composed of a series of

optical components. In [62], an interesting idea about the formalization of quantum

theory is reported. The authors provided the formalization of infinite-dimensional

13



linear algebra which is a foremost requirement to reason about quantum systems in

HOL. This foundational work has been used to formally reason about quantum optics,

including the formalization of coherent light, single-mode, multi-mode along with the

formal analysis of different quantum optical components and circuits such as the Flip

gate, CNOT gate, and Mach-Zehnder interferometer [61]. This formalization does not

provide the support to tackle real-world applications such as astronomical equipments

(e.g., telescopes) and optical devices used in ophthalmic medical technology (e.g., eye

vision correcting instruments).

While interesting, the above two pioneering projects on electromagnetic and

quantum optics handle low abstraction levels of optics and suffer from their application

to complex and real-world optical systems. On the other hand, geometrical optics

provides a high-level abstraction of light (in terms of rays and beams [86]) and it is

widely used to validate the behavioral properties of many critical optical systems, e.g.,

laser resonators, telescopes and optical imaging devices. The main motivation behind

this thesis is to fill the above mentioned gap by providing a comprehensive analysis

framework for geometrical optics.

The proposed formalization of geometrical optics is carried out in HOL Light due

to two main reasons: First, the formal analysis of geometrical optics is complementary

to the related work about electromagnetic and quantum optics. In fact, all three

approaches are parts of a larger project2 which aims at the formal verification of a wide

class of practical optical systems [12]. Secondly, an interesting common ground among

the three abstract notions of light (i.e., geometrical, electromagnetic and quantum)

is the complex-valued linear algebra for which HOL Light provides rich multivariate

analysis libraries [43]. Note that the formalization of geometrical optics presented in

this thesis is the first of its kind in any of theorem proving or other formal methods

2http://hvg.ece.concordia.ca/projects/optics/
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based systems.

1.3 Formal Framework for Geometrical Optics

The objective of this thesis is mainly targeted towards the development of a theorem

proving based analysis framework for geometrical optics that can handle the modeling

and analysis of real-world optical systems. In particular, we propose to develop a

framework in HOL Light characterizing:

• The ability to formally model the optical systems3 in a systematic way with no

restriction on the number of optical components.

• The ability to formally express the notions of light both as rays and beams

which are widely used abstractions at the level of geometrical optics.

• The ability to formally reason about the properties of rays and beams when they

traverse through an optical system. Essentially this includes the formalization

of commonly used mathematical models such as transforming an optical system

model into a matrix-model and composing small optical subsystems to build a

complicated system.

• The ability to use the developed infrastructure to analyze different types of

optical systems. Mainly, this includes the formalization of properties of interest

and reasoning support to verify them with respect to a given optical systems

model.

3In this thesis, we consider optical systems that can be modeled in the context of geometrical
optics, e.g., resonators, telescopes, etc. Moreover, we consider that all optical components in a system
are aligned with respect to a fixed optical axis.
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The proposed framework, given in Figure 1.2, outlines the above mentioned

characteristics and the main idea about the formal analysis of geometrical optics

within the sound core of a theorem prover.

Figure 1.2: Formal Framework for the Analysis of Geometrical Optics

The two inputs to the framework are the description of the optical system and

specification, i.e., the spatial organization of various components and their parame-

ters (e.g., radius of curvature of mirrors and distance between the components, etc.).

In order to construct a formal model of the given system in higher-order logic, we

provide a formalization of optical system structures that consist of definitions of op-

tical interfaces (e.g., plane and spherical) and optical components (e.g., thin lens and

thick lens). In this block, we also provide the formalization of the functions that help

to evaluate the validity of the parameters of the individual optical components and

hence the optical systems. We then provide the formalization of the physical concepts

of rays and Gaussian beams including necessary specifications about their physical
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behavior when they traverse through free space and different optical interfaces (e.g.,

the behavior of a ray when it incidences on a reflected plane interface).

Building on above fundamentals, we formally derive several models of geomet-

rical optics: 1) A matrix-model of the optical systems which is a composition of the

matrix models of individual optical components; 2) ABCD-law of transformation [86]

that describes the mathematical relation between input and output beams or rays;

3) Composed optical systems which allow to build complicated optical systems from

small or less complicated optical subsystems; 4) Quasi-optical systems, which deal

with the propagation of a beam of radiations that are used in a variety of critical

applications such as radars, commercial telescopes, remote sensing and radiometric

optical systems. Indeed, we provide the verification of necessary theorems which state

that a composed system inherits all the properties of an individual optical system.

Based on the above formalization infrastructures, we provide a generic approach

to formally model optical resonators, which are the building blocks of future commu-

nication systems, biomedical devices and chaos generating optical systems for energy

storage. Moreover, we also develop a reasoning support to reuse the derivation of

matrix-models for optical resonators. Finally, we provide the formalization of the

most frequently used properties which ensure that the given model of an optical sys-

tem satisfies some constraints or possess some particular physical behavior. Following

are the main properties, which can be analyzed using our proposed framework:

• Optical imaging deals with the observation of the image size, location, and

orientation of the rays inside an optical system using the notion of cardinal

points (i.e., pair of points on optical axis).

• Beam transformation provides the basis to derive the suitable parameters of

Gaussian beams for a given optical system.
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• Mode analysis deals with the evaluation of field distributions inside an optical

system.

• Stability ensures the confinement of rays within an optical cavity after N round-

trips.

• Chaotic map generation ensures that light rays inside an optical resonator

possess a chaos, i.e., the ray behavior shows an exponential sensitivity to slight

changes to the initial conditions or parameters of the involved optical compo-

nents.

We develop a library of frequently used optical components such as thin lenses,

thick lenses and mirrors. Such a library greatly facilitates the formalization of new

optical systems that are composed of these components. The output of the proposed

framework is the formal proof certifying that the system implementation meets its

specification. The verified systems will then also be available in the library for future

use either independently or as part of a larger optical system.

We demonstrate the strength of our proposed framework by conducting the

formal analysis of several important and widely used practical systems. In particular,

we present the formal analysis of an optical instrument (ophthalmic device) used

to compensate the ametropia of an eye. We then utilize the generic formalization of

Quasi-optical systems to formally analyze the receiver module of a real-world Atacama

Pathfinder Experiment (APEX) telescope4. Considering the importance of optical

resonators in many domains (e.g., micro-electromechanical system (MEMS), tuned

optical filters and optical bio-sensing devices), we formally analyze three application

architectures of Fabry Pérot (FP) resonators, i.e., non-symmetric, symmetric and two-

dimensional fiber rod lens (FRL) induced cavity. The other applications of optical

4http://www.apextelescope.org/
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resonators that we propose to analyze are the stability of a Z-shaped resonator and

the verification of chaotic map generation for a generic ring-resonator that is widely

used in optical phase conjugation. Note that all these mentioned applications are

chosen due to their wide use in real-world safety and mission critical domains such as

biomedical surgeries and space missions.

1.4 Thesis Contributions

The main contribution of this thesis is about the idea of applying formal methods (in

particular higher-order-logic theorem proving) for the analysis of geometrical optics.

We develop a formal framework on top of the trusted kernel of HOL Light theorem

prover which ultimately allows the precise analysis of safety-critical optical systems.

Our proposed approach can be considered as a complementary method to other state-

of-the-art but less accurate techniques like computer simulation, CAS and paper-

and-pencil based analysis. We list below the main contributions of this work with

references to related publications provided in the Biography section at the end of this

thesis.

• The formalization of the basic notions of optical system structures including

different interfaces (e.g., plane and spherical), light rays and corresponding ma-

trix models [Bio-Cf15, Bio-Cf19]. We use this infrastructure to formalize the

concepts of cardinal points of optical imaging systems [Bio-Cf10], which lead to

the formal analysis of an ophthalmic optical instrument [Bio-Cf6].

• The formalization of Gaussian beams and the paraxial Helmholtz equation and

the verification of the ABCD-law for composed optical systems. This develop-

ment allows us to formalize generic Quasi-optical systems along with the formal

19



analysis of a receiver module of the real-world Atacama Pathfinder Experiment

(APEX) telescope [Bio-Cf9, Bio-Jr5].

• The formalization of optical resonators and the verification of generic theorems

about the stability conditions in the context of geometrical optics [Bio-Cf14,

Bio-Cf16]. We also develop some automation tactics [Bio-Tr1] and conduct

the formal stability analysis of Fabry Pérot resonators [Bio-Jr2] along with the

verification of two-dimensional chaotic map generation inside a ring resonator

[Bio-Jr7].

1.5 Organization of the Thesis

The rest of this thesis is organized as follows: In Chapter 2, we provide some intro-

ductory concepts of geometrical optics including the abstractions of light such as rays

and beams. We then describe the mathematical treatment of rays and beams for the

propagation through an optical system. We also provide an overview of the HOL

Light theorem prover along with some of its useful features and notations.

In Chapter 3, we describe the formalization of ray optics and related concepts

such as optical interfaces, components, systems, ray model and the verification of

ray-transfer matrix transformation of any arbitrary optical system. We also present

the development of a component library which includes different types of mirrors

and lenses. This chapter also includes the HOL formalization of cardinal points of

optical imaging systems. In order to demonstrate the strength of the formalization of

ray optics, we present the formal modeling and analysis of an ophthalmic corrective

device which is used to treat ametropia of an eye.

In Chapter 4, we present the HOL formalization of light as a beam and related
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concepts. In particular, we describe the formalization of the q-parameters of Gaussian

beams, the formalization of paraxial Helmholtz equation along with the verification

that a Gaussian beam satisfies the paraxial Helmholtz equation and the formalization

of beam transformation for optical systems and corresponding ABCD-law. We also

provide a discussion about the analysis requirements for Quasi-optical systems. We

then use this infrastructure to conduct the formal analysis of a real-world APEX

telescope receiver.

In Chapter 5, we present a generic formalization of optical resonators and their

formal relation with optical systems. This includes the formalization of some useful

functions required to analyze the behavior of a ray inside a resonating optical system

and the derivation of equivalent matrix relations. This chapter also highlights the

development of a reasoning support to formally derive the stability conditions of

optical resonators along with the formalization of chaotic maps. Finally, we use our

formalization to verify the stability and chaos generation for Fabry-Pérot resonator

and ring-resonator, respectively.

Finally, Chapter 6 concludes this thesis by providing some remarks about the

developed framework including a description of some challenging aspects of our work

and potential future research directions.
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Chapter 2

Preliminaries

In this chapter, we provide a brief overview of geometrical optics. We start by de-

scribing the different notions of light and optical components in geometrical optics

along with the constituent modeling approach. We also provide an overview of the

HOL Light theorem prover. The intent is to introduce the basic theories along with

some notations that we use in the rest of this thesis.

2.1 Ray Optics

Ray optics describes the propagation of light as rays through different interfaces and

mediums. The main principle of ray optics is based on some postulates which can

be summed up as follows: Light travels in the form of rays emitted by a source; an

optical medium is characterized by its refractive index; light rays follow the Fermat’s

principle of least time [78]. Generally, the main components of optical systems are

lenses, mirrors and a propagation medium which is either a free space or some material

such as glass. These components are usually centered about an optical axis, around

which rays travel at small inclinations (angle with the optical axis). Such rays are
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called paraxial rays and this assumption provides the basis of paraxial optics which

is the simplest framework of geometrical optics. When a ray passes through optical

components, it undergoes translation, refraction or reflection. In translation, the ray

simply travels in a straight line from one component to the next and we only need

to know the thickness of the translation. On the other hand, refraction takes place

at the boundary of two regions with different refractive indices and the ray obeys the

law of refraction, called Paraxial Snell’s law [78]. Similarly, a ray follows the law of

reflection at the boundary of a reflective interface (e.g., mirror). For example, Figure

Figure 2.1 (a) shows a ray propagation through a free space of width d with refractive

index n, and Figure 2.1 (b) shows a plane interface (with refractive indices n0 and n1,

before and after the interface, respectively).

Figure 2.1: Behavior of a Ray at Plane Interface and Free Space

2.1.1 Modeling Approach

The change in position and inclination of a paraxial ray as it travels through an

optical system can be described by the use of a matrix algebra. This matrix formalism

(called ray-transfer matrices) of geometrical optics provides convenient, scalable and

systematic analysis of real-world complex optical and laser systems. This is due to
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the fact that each optical component can be described by a matrix. This helps to use

many linear algebraic properties for the analysis of optical systems.

For example, consider the propagation of a ray through a spherical interface

with radius of curvature R between two mediums of refractive indices n0 and n1, as

shown in Figure 2.2. Our goal is to express the relationship between the incident and

refracted rays. The trajectory of a ray as it passes through various optical components

can be specified by two parameters: its distance from the optical axis and its angle

with the optical axis. Here, the distances of the incident and refracted rays are y1

and y0, respectively, and y1 = y0 because the thickness of the surface is assumed to

be very small. Here, φ0 and φ1 are the angles of the incident and refracted rays with

the normal to the spherical surface, respectively. On the other hand, θ0 and θ1 are

the angles of the incident and refracted rays with the optical axis.

Figure 2.2: Spherical Interface

Applying paraxial Snell’s law at the interface, we have n0φ0 = n1φ1. We also have

θ0 = φ0 − β and θ1 = φ1 − β, where β is the angle between the surface normal and

the optical axis. Since sin(β) = y0
R
, then β = y0

R
by paraxial approximation. We can

deduce that:

θ1 =

(
n0 − n1

n1R

)
y0 +

(
n0

n1

)
θ0 (2.1)
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So, for a spherical surface, we can relate the refracted ray and incident ray by a matrix

using Equation (2.1) as follows:

⎡
⎢⎢⎣
y1

θ1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0

n0−n1

n1R
n0

n1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
y0

θ0

⎤
⎥⎥⎦

Thus the propagation of a ray through a spherical interface can be described by a

matrix generally called ABCD matrix [86]. Similarly, a general optical system with

an input and output ray vector can be described as follows:⎡
⎢⎢⎣
yn

θn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A B

C D

⎤
⎥⎥⎦
⎡
⎢⎢⎣
y0

θ0

⎤
⎥⎥⎦

where y0, θ0, yn and θn represent the starting and ending points of the ray.

Finally, if we have an optical system consisting of k optical components (Ck),

then we can trace the input ray Ri through all optical components using the compo-

sition of the matrices of each optical component as follows:

Ro = (Ck.Ck−1 · · ·C1).Ri (2.2)

We can write Ro = MsRi, where Ms =
∏1

i=k Ci. Here, Ro is the output ray and Ri is

the input ray. Similarly, a composed optical system that consists of N optical systems

inherits the same properties as of a single optical system as shown in Figure 2.3. This

is a very useful modeling notion for systems that consist of small subsystems, as we

can use already available infrastructure with minimal efforts.

2.1.2 Ray Tracing

The propagation of paraxial rays through an optical system is a very useful technique

to analyze optical systems. The activity of ray propagation through an optical system
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Figure 2.3: Optical System and Composed Optical System

is called ray tracing [85], which provides a convenient way for the design optimization

along with the assessment of different properties of optical components. Ray tracing

can be automated and hence it is a part of almost all optical system design tools

such as Radiant-Zemax [74]. There are two types of ray tracing: sequential and non-

sequential. In this thesis, we only consider sequential ray tracing with centered optical

components5, which is based on the following modeling criteria [85] :

1. The type of each interface (e.g., plane or spherical, etc.) is known.

2. The parameters of the corresponding interface (e.g., the radius of curvature in

the case of a spherical interface) are known in advance.

3. The spacing between the optical components and misalignment with respect to

optical axis are provided by the system specification.

4. Refractive indices of all materials and their dependence on wavelength are avail-

able.

5In some situations, optical components can be misaligned with respect to a fixed optical axis
[81]. We do not consider the effect of misalignment in this thesis.
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On the other hand, in case of non-sequential ray tracing the nature of each in-

terface is not predefined, i.e., at each interface, the ray can either be transmitted or

reflected. Non-sequential ray tracing is very expensive in terms of its huge compu-

tational time and it is only applied when the sequential ray tracing cannot be used.

It is sufficient to consider sequential ray tracing to evaluate the performance of most

imaging optical systems and hence the main reason of our choice [86].

Some typical applications of ray-tracing are the stability analysis of optical res-

onators [64], chaotic map generation [11], and the analysis of micro opto-electromechanical

systems [90].

2.2 Gaussian Beams

Although ray tracing is a powerful tool for the early analysis of many optical systems,

it cannot handle many situations due to the abstract nature of rays. It is important

to consider that whether light can travel in free space without the angular spread or

not. According to the wave nature of light, it is indeed possible that light can travel

in the form of beams which comes close to the spatially localized and non-diverging

waves [78]. The behavior of such an abstraction of light (beams) can be explained

using the notion of paraxial waves whose wave front normals (i.e., the locus of points

having the same phase) make very small angles with the axis of propagation. Such

wavefront normals are also called paraxial rays as shown in Figure 2.4.

One of the most commonly used method to construct a paraxial wave is to con-

sider a plane wave Ae(−jkz) (where j =
√−1, k = wave-number and z is the direction

of propagation) and modify its complex amplitude A, by making it a slowly varying

function of the position, i.e., A(x, y, z). Mathematically, the complex amplitude of a

paraxial wave becomes:
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Figure 2.4: The Wavefronts and Wavefront Normal of Paraxial Wave [78]

U(x, y, z) = A(x, y, z)e(−jkz) (2.3)

For a paraxial wave to be valid in the context of geometrical optics, it should

satisfy the paraxial Helmholtz equation [78], which is given as follows:

∇2
TA(x, y, z)− j2k

∂A(x, y, z)

∂z
= 0 (2.4)

where ∇2
T =

∂2

∂x2
+

∂2

∂y2
is the transverse Laplacian operator. In general, different

solutions can be found which satisfy Equation (2.4). For example, a paraboloidal

wave is a solution for which the complex envelope is given as:

A(x, y, z) =
A0

z
e

⎡
⎣−jk

x2 + y2

2z

⎤
⎦

(2.5)

where A0 ∈ C is a complex-valued constant.

Another solution of the Helmholtz equation provides the Gaussian beam [78]

which is obtained from the paraboloidal wave by a simple transformation. Indeed

the complex envelope of paraboloidal wave is a solution of the paraxial Helmholtz

equation, a shifted version is also a solution, i.e., replacing z by z − ζ in Equation
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(2.5):

A(x, y, z) =
A0

z − ζ
e

⎡
⎣−jk

x2 + y2

2(z − ζ)

⎤
⎦

(2.6)

where ζ ∈ C is a constant. Physically, it provides a paraboloidal wave centered about

the point z = ζ, rather than z = 0. The parameter ζ is very important and produces

different properties depending upon the variation of its value, e.g., ζ = −jzR, which

provides the complex envelope of a Gaussian beam that can be compactly described

as follows:

A(x, y, z) =
A0

q(z)
e

⎡
⎣−jk

x2 + y2

2q(z)

⎤
⎦

(2.7)

where q(z) = z + jzR is called the q-parameter of Gaussian beams. The parameter

zR ∈ R is known as the Rayleigh range.

In order to study the properties (e.g., phase and amplitude) of Gaussian beams,

the above mentioned complex valued q-parameter is expressed as
1

q(z)
=

1

z + jzR
.

In the optics literature, this expression is further transformed into a new form by

defining two real-valued functions R(z) and W (z), as follows:

1

q(z)
=

1

R(z)
− j

λ

πW 2(z)
(2.8)

where W (z) and R(z) are measures of the beam width and wavefront radius of cur-

vature, respectively (shown in Figure 2.5). Mathematically, these parameters can be

expressed as follows:

R(z) = z
[
1 + (

zR
z
)2
]

(2.9)

W (z) = w0

[
1 +

(zR
z

)2
] 1

2

(2.10)

The parameter w0 ∈ R represents the value of the beam width at z = 0 which is also

called beam waist size or beam waist radius. Finally, substituting Equation (2.8) in
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Figure 2.5: Gaussian Beam

Equation (2.7) and using Equation (2.3), we obtain the following complex amplitude

U(r) (where r = (x, y, z)):

U(r) = A0
w0

W (z)
e

⎡
⎣−

x2 + y2

W 2(z)

⎤
⎦
e

⎡
⎣−jkz−jk

x2 + y2

2R(Z)
+ jξ(z)

⎤
⎦

(2.11)

where ξ(z) = tan−1( z
zR
). The above equation is the main representation of Gaus-

sian beams and describes the important properties of light when it travels from one

component to another. For example, the optical intensity, I(x, y, z) = |U(r)|2 can be

expressed as follows:

I(x, y, z) = | A0

jzR
|2
(

w0

W (z)

)2

e

⎡
⎢⎢⎢⎢⎢⎣
−
k
λ

π
(x2 + y2)

W 2(z)

⎤
⎥⎥⎥⎥⎥⎦

(2.12)

Note that at each value of z, the intensity is a Gaussian function of the radial distance

which leads to the name Gaussian beams.

2.3 ABCD-Law of Beam Transformation

We can completely characterize a Gaussian beam by its q-parameter (q(z)), i.e., Equa-

tion (2.8) [78]. This provides a convenient way to study the behavior of a Gaussian
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Figure 2.6: Gaussian Beam Transformation

beam when it passes through an optical system. Indeed, it is sufficient to just consider

the variations of input q-parameter at each optical component. In paraxial geometri-

cal optics, an optical system is completely characterized by the 2× 2 transfer matrix

relating the position and inclination of the transmitted ray to the incident ray. Simi-

larly, it is important to find out the effect of an arbitrary optical system (characterized

by a matrix M of elements A,B,C,D) on the parameters of an input beam. This can

be described by the well-known ABCD-law of Gaussian beam transformation [85],

given as follows:

q0 =
A.qi + B

C.qi +D
(2.13)

where qi and q0 represent the input and output beam q-parameters, respectively. The

elements A,B,C, and D correspond to the final ray transfer matrix of a geometrical

optical system (which indeed represents the composition of the matrices of individual

optical components, as shown in Figure 2.6).

The main applications of beam transformation are in the analysis of laser cavities

[78], telescopes [70] and the prediction of design parameters for physical experiments

[66].
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2.4 HOL Light Theorem Prover

HOL Light (an acronym for a lightweight implementation of Higher-Order Logic)

[42] is an interactive theorem proving environment for the construction of mathemat-

ical proofs. The main implementation of HOL Light is done in Objective CAML

(OCaml), which is a functional programming language originally developed to auto-

mate mathematical proofs [2]. The main components of the logical kernel of HOL

Light (approximately 400 lines of OCaml code) are its types, terms, theorems, rules

of inference, and axioms. We present a brief overview of each of them as follows [36]:

• Types: The foundation of HOL Light is based on the notion of types and there

are only two primitive types, i.e., the Boolean type (:bool) and an infinite

type (:ind). The other types are generated from type variables :x ; :y ; . . . and

primitive types (Boolean or infinite) using an arrow →. For example, :bool

and :bool → x represent types. Note that a colon (:) is used to specify the

corresponding type.

• Terms: The terms are the basic objects of HOL Light and their syntax is based

on the λ-calculus. We can use λ-terms, also called lambda abstractions, e.g.,

λ.f(x) represents a function which takes x and returns f(x). The collection of

terms is constructed from variables x ; y ; . . . and constants 0; 1; . . . using the

λ-abstraction (λx.t). Each term has a type which can be represented by the

notation x : A, i.e., the type of term x is A.

• Inference Rules: Inference rules are procedures for deriving new theorems.

They are represented as OCaml functions. HOL Light has ten inference rules

and a mechanism for defining new constants and types. Some of the inference

rules are the reflexivity of equality, the transitivity of equality and the fact that
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equal functions applied to equal arguments are equal [42].

• Axioms: The kernel of HOL Light has three mathematical axioms: 1) axiom

of extensionality which states that a function is determined by the values that

it takes on all inputs; 2) an axiom of infinity which states that the type :ind

is not finite; and 3) an axiom of choice which states that we can choose a term

that satisfies a predicate.

• Theorems: A theorem is a formalized statement that is either an axiom or

can be deduced from already verified theorems by inference rules. A theorem

consists of a finite set Ω of Boolean terms called the assumptions and a Boolean

term S called the conclusion. For example, “∀x.x �= 0 ⇒ x
x
= 1” represents a

theorem in HOL Light.

A HOL Light theory consists of a set of types, constants, definitions, axioms

and theorems. HOL theories are organized in a hierarchical fashion and theories

can inherit the types, constants, definitions and theorems of other theories as their

parents. Proofs in HOL Light are based on the concepts of tactics and tacticals that

break goals into simple subgoals. There are many automatic proof procedures and

proof assistants available in HOL Light which help the user in directing the proof to

the end [42]. We list frequently used HOL Light notations and their corresponding

mathematical interpretations in Table 2.1. In the following, we present some examples

to show some definitions and theorems in HOL Light.

We consider a function which checks that a given pair (x, y) of real numbers

is ordered, i.e., x > y. We then use this function to ensure that every element of a

list of pairs is an ordered pair. We can define an ordered pair in HOL Light as follows:
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Example 2.1.


def is_ordered_pair = (λ((x:real),(y:real)). if x > y then T else F)

where the type of the function is ordered pair is (real × real) → bool.

We next use this function to define the list of ordered pairs as follows:

Example 2.2.


def ∀ L. list_of_ordered_pairs L ⇔ ALL is_ordered_pair L

where the type of the function list of ordered pairs is (real × real)list →
bool. Note that ALL is a HOL Light function from the list theory which ensures that

some function holds for every element of that list.

We can use this function to prove that the reverse of a list of ordered pairs

remains a list of ordered pairs.

Theorem 2.1.


 ∀ L. list_of_ordered_pairs L ⇒ list_of_ordered_pairs (REVERSE L)

where REVERSE is a HOL Light function that reverses a given list. The proof of

Theorem 2.1 is mainly based on induction on the length of the list L.

Theories in HOL Light provide some automated tactics which can prove some

intermediate lemmas and reduce the efforts to prove the main theorem. For exam-

ple, REAL FIELD and COMPLEX FIELD can prove basic field facts over real and complex

numbers. In HOL Light, such automation tactics can be composed to perform custom

tasks arise during the formalization of a specific theory. We conclude this chapter by

providing two examples: one for REAL FIELD and the other for COMPLEX FIELD as fol-

lows:
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Example 2.3.

REAL_FIELD ‘s pow 2 = b pow 2 − &4 * a * c ⇒
(a * x pow 2 + b * x + c = &0 ⇔
if a = &0 then

if b = &0 then

if c = &0 then T else F

else x = −−c / b

else x = (−−b + s) / (&2 * a) ∨
x = (−−b + −−s) / (&2 * a))‘;;

Example 2.4.

COMPLEX_FIELD ‘∀ (x:complex) u w. ¬(x = u) ∧ ¬(x = w) ⇒
Cx(&1) / (x − u) − Cx(&1) / (x − w) =

(u − w) / ((x − u) * (x − w))‘;;
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Table 2.1: HOL Light Symbols and Functions

HOL Symbol Standard Symbol Meaning

∧ and Logical and
∨ or Logical or
¬ not Logical negation
T true Logical true value
F false Logical false value
⇒ −→ Logical Implication
⇔ = Equality in Boolean domain
∀x.t ∀x.t for all x : t
λx.t λx.t Function that maps x to t(x)
num {0, 1, 2, . . .} Positive Integers data type
real All Real numbers Real data type

complex All complex numbers Complex data type
suc n (n+ 1) Successor of natural number
−− x −x Unary negation of x
exp x ex Exponential function (real-valued)
cexp x ex Exponential function (complex-valued)
sqrt x

√
x Square root function

abs x |x| Absolute function
a / b a

b
Division (a and b should have same type)

a pow b ab Real or complex power
Cx a R → C Typecasting from Reals to Complex
&a N → R Typecasting from Integers to Reals
A**B [A][B] Matrix-Matrix or Matrix-Vector multiplication
FST - Returns the first element of a pair
SND - Returns the second element of a pair

[a; b; · · · ] - List
APPEND - Appends two lists
CONS h t - Appends element h to list t
LAST - Returns the last element of a list
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Chapter 3

Formalization of Ray Optics

In Chapter 2, we provided an introduction to geometrical optics that shows that ray

optics is an important formalism to model optical systems and their corresponding

properties. This chapter covers in detail the higher-order logic formalization of optical

systems and ray optics6 which is a foundational part in our proposed framework

(Figure 1.2). The formalization consists of four parts: 1) fundamental concepts of

optical systems structures; 2) formalization of light rays; 3) verification of the ray-

transfer matrix model of any arbitrary optical system; and 4) formal development of

a component library. We use this infrastructure to formalize the cardinal points of

optical imaging systems along with the formal analysis of a visual optical system for

human eye.

3.1 Formalization of Optical Systems

Ray optics explains the behavior of light when it passes through a free space and

interacts with different optical interfaces. We can model free space by a pair of real

6The source codes of the formalizations and proofs presented in this chapter can be found in [87].
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numbers (n, d), which are essentially the refractive index and the total width, as shown

Figure 3.1: Optical Interfaces

in Figure 3.1 (a). We consider five optical interfaces, i.e., plane-transmitted, plane-

reflected, spherical-transmitted, spherical-reflected and phase conjugated mirror (PCM)

as shown in Figure 3.1 (b)-(f). In geometrical optics, we describe a spherical interface

by its radius of curvature (R). In HOL Light, we can use the available types (e.g.,

Real, Complex, etc.) to abbreviate new types. We use this feature to define a type

abbreviation for a free space as follows:

new_type_abbrev ("free_space", :real # real);;

where real # real corresponds to a pair of real numbers (R× R).
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In many situations, it is convenient to define new types in addition to the ones

which are already available in HOL Light theories. One common way is to use enu-

merated types, where one gives an exhaustive list of members of the new type. In

our formalization, we package different optical interfaces in one enumerated type def-

inition to simplify the formal reasoning process. We use HOL Light’s define type

mechanism to define a new type for optical interface, as follows:

interface = plane_transmitted |
plane_reflected |
spherical_transmitted real |
spherical_reflected real |
pcm |
unknown complex complex complex complex

Note that we also include unknown as a part of the type interface. The main

motivation of considering an unknown element is to tackle the cases where a full

description of an optical interface is not known in advance. Moreover, we parameterize

the unknown element by four complex numbers to consider some prior information such

as radius of curvature or aperture, etc. Note that this datatype can easily be extended

to many other optical interfaces if needed.

In HOL Light, define type considers the members of the type as constructors

and it returns a pair of theorems, one for induction, and one for recursion, as follows:

Theorem 3.1 (Interface Induction).


 ∀ P. P plane_transmitted ∧ P plane_reflected ∧
(∀ a. P (spherical_transmitted a)) ∧
(∀ a. P (spherical_reflected a)) ∧
P pcm ∧ (∀ a0 a1 a2 a3. P (unknown a0 a1 a2 a3))
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where the interface induction theorem states that a property P holds for all objects

of type interface if it holds for all the members of the type interface.

Theorem 3.2 (Interface Recursion).


 ∀ f0 f1 f2 f3 f4 f5.

∃ fn. fn plane_transmitted = f0 ∧ fn plane_reflected = f1 ∧
(∀ a. fn (spherical_transmitted a) = f2 a) ∧
(∀ a. fn (spherical_reflected a) = f3 a) ∧

fn pcm = f4 ∧
(∀ a0 a1 a2 a3. fn (unknown a0 a1 a2 a3) = f5 a0 a1 a2 a3)

where the interface recursion theorem states that given any five values f0, f1, f3, f4

and f5, we can always define a function mapping the five values plane transmitted,

plane reflected, spherical transmitted, spherical reflected and unknown to

those values, respectively.

We model an optical component as a pair of a free space and an optical interface

which can be of five different types as shown in Figure 3.1. Consequently, we define an

optical system as a list of optical components followed by a free space. In the following,

we provide the corresponding formal type abbreviations for optical components and

systems:

new_type_abbrev("optical_component",‘:free_space # interface‘);;

new_type_abbrev("optical_system",‘

:optical_component list # free_space‘);;

Note that the use of a list in the optical system type provides the facility to consider

a system with any number of optical components. We formally verify some theorems

which state that we can decompose the types free space, optical component and

optical system into their constituent components.
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Theorem 3.3 (Forall (∀) Theorems for Type Abbreviations).


 ∀P. (∀(fs:free_space). P fs) ⇔ (∀n d. P (n,d))


 ∀P. (∀(c:optical_component). P c) ⇔ (∀fs i ik. P (fs,i))


 ∀P. (∀(os:optical_system). P os) ⇔ (∀cs fs. P (cs,fs))

A value of type free space does represent a real space only if the refractive index

is greater than zero. In addition, in order to have a fixed order in the representation

of an optical system, we impose that the distance of an optical interface relative to

the previous interface is greater or equal to zero. We encode this requirement in the

following predicate:

Definition 3.1 (Valid Free Space).


def is_valid_free_space (n,d) ⇔ 0 < n ∧ 0 ≤ d

where the type of is valid free space is : free space → bool.

We also need to assert the validity of a value of type interface by ensuring

that the radius of curvature of spherical interfaces is never equal to zero. This yields

the following predicate:

Definition 3.2 (Valid Optical Interface).


def (is_valid_interface plane_transmitted ⇔ T) ∧
(is_valid_interface plane_reflected ⇔ T) ∧
(is_valid_interface (spherical_transmitted R) ⇔ ¬(0 = R)) ∧
(is_valid_interface (spherical_reflected R) ⇔ ¬(0 = R)) ∧
(is_valid_interface pcm ⇔ T) ∧
(is_valid_interface (unknown a b c d) ⇔ T)

where the type of is valid interface is : interface → bool.

We now assert the validity of an optical system structure by ensuring the validity

of every optical component in a system, as follows:
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Definition 3.3 (Valid Optical Component).


def ∀ fs i.

is_valid_optical_component (fs,i) ⇔
is_valid_free_space fs ∧ is_valid_interface i

Definition 3.4 (Valid Optical System).


def ∀ cs fs.

is_valid_optical_system (cs,fs) ⇔
ALL is_valid_optical_component cs ∧ is_valid_free_space fs

where ALL is a HOL Light library function which checks that a predicate holds for all

the elements of a list.

We conclude our formalization of optical systems by defining a function to re-

trieve the refractive index of the first free space in an optical system:

Definition 3.5 (Head Index).


def head_index ([],n,d) = n ∧
head_index (CONS ((n,d),i) cs,nt,dt) = n

where [] represents an empty list of optical components.

3.2 Formalization of Light Rays

One of the important requirements for the formal analysis of optical systems is the

formalization of rays which can specify the physical behavior of the light when it

passes through an optical system. We only model the points where it hits an optical

interface (instead of modeling all the points constituting the ray). So it is sufficient

to just provide the distance of each of these hitting points to the optical axis and

the angle taken by the ray at these points as shown in Figure 3.2. Consequently, we

should have a list of such pairs (distance, angle) for every component of a system.

42



Figure 3.2: Ray Model as Sequence of Points

In addition, the same information should be provided for the source of the ray.

For the sake of simplicity, we define a type for a pair (distance, angle) as ray at point

as follows:

new_type_abbrev("ray_at_point",‘:real # real‘);;

new_type_abbrev("ray",

‘:ray_at_point # ray_at_point # (ray_at_point # ray_at_point) list‘);;

where the first ray at point is the pair (distance, angle) for the source of the ray,

the second one is the one after the first free space, and the list of ray at point pairs

represents the same information for the interfaces and free spaces at every hitting

point of an optical system.

Once again, we specify what is a valid ray by using some predicates. First of

all, we define the behavior of a ray when it is traveling through a free space. This

requires the position and orientation of the ray at the previous and current points of

observation, and the free space itself. This is shown in Figure 3.1(a).

Definition 3.6 (Behavior of a Ray in Free Space).


 is valid ray in free space (y0,θ0) (y1,θ1) ((n,d):free space) ⇔
y1 = y0 + d * θ0 ∧ θ0 = θ1
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We next define the valid behavior of a ray when hitting a particular interface.

This requires the position and orientation of the ray at the previous and current inter-

faces, and the refractive indices before and after the component. Then the predicate

is defined by case analysis on the interface type as follows:

Definition 3.7 (Behavior of a Ray at Given Interface).


 C1:(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1

plane transmitted ⇔ y1 = y0 ∧ n0 * θ0 = n1 * θ1) ∧
C2:(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1

(spherical transmitted R) ⇔ let φi= θ0 + y1
R

and φt = θ1 + y1
R

in

y1 = y0 ∧ n0 * φi = n1 * φt) ∧
C3:(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1

plane reflected ⇔ y1 = y0 ∧ n0 * θ0 = n0 * θ1) ∧
C4:(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1

(spherical reflected R) ⇔ let φi = y1

R
- θ0 in y1 = y0 ∧

θ1 = -(θ0 + 2 * φi))∧
C5:(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 pcm

⇔ y1 = y0 ∧ θ1 = -θ0) ∧
C6:(is valid ray at interface (y0,θ0) (y1,θ1) n0 n1

(unknown a b c d) ⇔ y1 = a*y0 + b*θ0 ∧ θ1 = c*y0 + d*θ0)

where each case C1-C6 states some basic geometrical facts about the distance to the

axis, and applies paraxial Snell’s law and the law of reflection [85] to the orientation

of the ray as shown in Figure 3.1.

Finally, we can recursively apply these predicates to define the behavior of a ray

going through a series of optical components in an arbitrary optical system, given as

follows:
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Definition 3.8 (Valid Ray Behavior in an Optical System).


 ∀ sr1 sr2 h h’ fs cs rs i y0 θ0 y1 θ1 y2 θ2 y3 θ3 n d n’ d’.

C1 : (is valid ray in system (sr1,sr2,[]) (CONS h cs,fs) ⇔ F) ∧
C2 : (is valid ray in system (sr1,sr2,CONS h’ rs) ([],fs) ⇔F)∧
C3 : (is valid ray in system ((y0,θ0),(y1,θ1),[]) ([],n,d) ⇔

is valid ray in free space (y0,θ0) (y1,θ1) (n,d)) ∧
C4 : (is valid ray in system ((y0,θ0),(y1,θ1),

CONS ((y2,θ2),y3,θ3) rs) (CONS ((n’,d’),i,ik) cs,n,d) ⇔
(is valid ray in free space (y0,θ0) (y1,θ1) (n’,d’) ∧
is valid ray at interface (y1,θ1) (y2,θ2) n’

(head index (cs,n,d)) i)) ∧
(is valid ray in system ((y2,θ2),(y3,θ3),rs) (cs,n,d))

where the first two cases (C1 and C2) describe the two situations where the length of

the ray and optical system are not the same. The case C3 describes the situation when

the optical system only consists of a free space. The last case recursively ensures the

valid behavior of ray at each interface of the optical system. The behavior of a ray

going through a series of optical components is thus completely defined.

3.3 Ray-Transfer Matrices of Optical Components

The main strength of ray optics is its matrix formalism [85], which provides an efficient

way to model all optical components in the form of a matrix. Indeed, a matrix

relates the input and the output ray by a linear relation. For example, in case of free

space, the input and output ray parameters are related by two linear equations, i.e.,

y1 = y0 + d ∗ θ0 and θ1 = θ0, which further can be described as a matrix (also called

ray-transfer matrix of free space). We verify this ray-transfer-matrix of free space as
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follows:

Theorem 3.4 (Ray-Transfer-Matrix for Free Space).


 ∀ fs y0 θ0 y1 θ1. is valid free space fs ∧
is valid ray in free space (y0,θ0) (y1,θ1) fs) ⇒⎡
⎢⎣ y1

θ1

⎤
⎥⎦ = free space matrix fs **

⎡
⎢⎣ y0

θ0

⎤
⎥⎦

The first assumption ensures the validity of free space and the second assumption

ensures the valid behavior of ray in free space. The proof of Theorem 3.4 is mainly

based on the rewriting with the definitions (e.g., is valid free space) and properties

of matrices. We prove the ray-transfer matrices of all optical interfaces (Definition

3.3), as listed in Table 3.1. The availability of these theorems in our formalization is

quite handy as it helps to reduce the interactive verification efforts for the applications.

The proof steps for these theorems are quite similar to each other and mainly require

rewriting with some properties of vectors and matrices. In order to make the proof of

these theorems automatic, we build a tactic common prove which is mainly based on

the simplification with the above mentioned definitions and the application of matrix

operations.

Out next goal is to formally prove that any optical interface can be described

by a general ray-transfer-matrix relation. Mathematically, this relation is described

in the following theorem:

Theorem 3.5 (Ray-Transfer-Matrix any Interface).


 ∀ n0 n1 y0 θ0 y1 θ1 i. is valid interface i ∧
is valid ray at interface (y0,θ0) (y1,θ1) n0 n1 i ∧

0 < n0 ∧ 0 < n1 ⇒

⎡
⎢⎣ y1

θ1

⎤
⎥⎦ = interface matrix n0 n1 i **

⎡
⎢⎣ y0

θ0

⎤
⎥⎦
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Table 3.1: Ray-Transfer Matrices of Optical Components

Component HOL Light Formalization

Plane Interface (Reflection)

 ∀ n d y0 θ0 y1 θ1. 0 < n0 ∧ 0 < n1 ∧
is valid ray at interface (y0,θ0) (y1,θ1)
n0 n1 plane reflected ⇒[
y1
θ1

]
=

[
1 0

0 1

]
**

[
y0
θ0

]

Plane Interface (Transmission)

 ∀ n d y0 θ0 y1 θ1. 0 < n0 ∧ 0 < n1 ∧
is valid ray at interface (y0,θ0) (y1,θ1)
n0 n1 plane transmitted ⇒[
y1
θ1

]
=

[
1 0

0 n0
n1

]
**

[
y0
θ0

]

Spherical Interface (Reflection)

 ∀ n d y0 θ0 y1 θ1 R. 0 < n0 ∧ 0 < n1 ∧
(is valid interface (spherical reflected R) ∧
is valid ray at interface (y0,θ0) (y1,θ1)
n0 n1 (spherical reflected R) ⇒[
y1
θ1

]
=

[
1 0

−2
R

1

]
**

[
y0
θ0

]

Spherical Interface (Transmission)

 ∀ n d y0 θ0 y1 θ1 R. 0 < n0 ∧ 0 < n1 ∧
(is valid interface (spherical transmitted R) ∧
is valid ray at interface (y0,θ0) (y1,θ1)
n0 n1 (spherical transmitted R) ⇒[
y1
θ1

]
=

[
1 0

n0−n1
R∗n1

n0
n1

]
**

[
y0
θ0

]

Phase Conjugated Mirror

 ∀ n d y0 θ0 y1 θ1. 0 < n0 ∧ 0 < n1 ∧
is valid ray at interface (y0,θ0) (y1,θ1)
n0 n1 pcm ⇒[
y1
θ1

]
=

[
1 0

0 −1

]
**

[
y0
θ0

]

Unknown

 ∀ n d y0 θ0 y1 θ1 a b c d. 0 < n0 ∧ 0 < n1 ∧
is valid ray at interface (y0,θ0) (y1,θ1)
n0 n1 (unknown a b c d) ⇒[
y1
θ1

]
=

[
a b

c d

]
**

[
y0
θ0

]

47



where interface matrix accepts the refractive indices (n0 and n1) and interface (i),

and returns corresponding matrix of the system. In the above theorem, both assump-

tions ensure the validity of the interface (i) and behavior of ray at each interface,

respectively. We prove this theorem using the case splitting on interface i.

3.4 Formalization of Composed Optical Systems

We can trace the input ray Ri through an optical system consisting of n optical

components by the composition of ray-transfer matrices of each optical component as

described in Equation 2.2. It is important to note that in this equation, individual

matrices of optical components are composed in a reverse order. We formalize this

fact with the following recursive definition:

Definition 3.9 (Optical System Model).


def system_composition ([],fs) = free_space_matrix fs ∧
system_composition (CONS ((n′,d′),i) cs,n,d) =

system_composition (cs,n,d) **

interface_matrix n′ (head_index (cs,n,d)) i **

free_space_matrix (n′,d′)

where the type of system composition is : optical system → R2x2, i.e., it takes an

optical systems and returns a (2 × 2) matrix. The function system composition is

defined by two cases, i.e., if an optical system consists of only free space, it returns the

corresponding matrix and if an optical system consists of a list of optical components

(cs), it returns the product of corresponding matrices in a reversed order. Here,

(n′, d′) represents the second free space in the system.

Our next goal is to verify the generalized ray-transfer-matrix relation for an

arbitrary optical system which is valid for any optical and ray. We verify this relation
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in the following theorem:

Theorem 3.6 (Ray-Transfer-Matrix for Optical System).


 ∀ sys ray. is valid optical system sys ∧

is valid ray in system ray sys ⇒

let (y0,θ0),(y1,θ1),rs = ray in

let yn,θn = last ray at point ray in⎡
⎢⎣ yn

θn

⎤
⎥⎦ = system composition sys **

⎡
⎢⎣ y0

θ0

⎤
⎥⎦

where the parameters sys and ray represent the optical system and the ray, respec-

tively. The function last ray at point returns the last ray at point of the ray in

the system. Both assumptions in the above theorem ensure the validity of the optical

system and the good behavior of the ray in the system. We prove this theorem using

induction on the length of the system and by using previous results and definitions.

The above described model and corresponding ray-transfer matrix relation only

hold for a single optical system consisting of different optical components. Our main

requirement is to extend this model for a general system which is composed of n

optical subsystems as shown in Figure 3.3. We formalize the notion of a composed

optical system as follows:

Definition 3.10 (Composed Optical System Model).


def composed_system [] = I ∧
composed_system (CONS sys cs) =

composed_system cs ** system_composition sys

where I represents the identity matrix and the function composed system accepts a

list of optical systems :(optical system)list and returns the overall system model

by the recursive application of the function system composition (Definition 3.9).
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We define the validity of a composed optical system by ensuring the validity of each

involved optical system as follows:

Figure 3.3: Ray Propagation through Composed Optical Systems

Definition 3.11 (Valid Composed Optical System ).


def ∀ sys:(optica_system)list.

is_valid_composed_system sys ⇔ ALL is_valid_optical_system sys

In order to reason about composed optical systems, we need to give some new

definitions about the ray behavior inside a composed optical system. One of the

easiest ways is to consider n rays corresponding to n optical systems individually and

then make sure that each ray is the same as the one applied at the input. This can

be done by ensuring that the starting point of each ray is equal to the ending point

of the previous ray as shown in Figure 3.3. We encode this physical behavior of ray

as follows:

Definition 3.12 (Valid General Ray).


def (is_valid_genray [] ⇔ F) ∧
(is_valid_genray (CONS h t) ⇔
last_single_ray h = fst_single_ray (HD t) ∧
is_valid_genray t)
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where fst single ray, last single ray and HD provide the first and last single

ray at a point and the first element of a list, respectively. On the similar lines, we

also specify the behavior of a ray when it passes through each optical systems by a

function is valid gray in system. Finally, we verify that the ray-transfer-matrix

relation holds for composed optical systems which ensures that all valid properties for

a single optical system can be generalized to a composed system as well.

Theorem 3.7 (Ray-Transfer-Matrix for Composed Optical System).


 ∀ sys cray.

is valid composed system sys ∧

is valid gray in system cray sys ∧

is valid genray cray ⇒

let (y0,θ0) = fst single ray (HD cray) in

let (yn,θn) = last single ray (LAST cray) in⎡
⎢⎣ yn

θn

⎤
⎥⎦ = composed system sys **

⎡
⎢⎣ y0

θ0

⎤
⎥⎦

where sys and cray represent a list of optical systems ((optical system)list) and

a list of rays ((ray)list), respectively.

This concludes our formalization of optical system structures and rays along with

the verification of important properties of optical components and optical systems.

3.5 Optical Imaging and Cardinal Points

Optical systems capable of being utilized for imaging (can record or transform objects

to an image) are called optical imaging systems. Mainly these systems are divided

into two main categories, i.e., mirror-systems (also called catoptrics, which deal with
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reflected light rays) and lens-systems (also called dioptrics, which deal with refracted

light rays). Examples of such systems are optical fibers and telescopes, for the first

and second case, respectively.

An optical imaging system has many cardinal points which are required to ana-

lyze imaging properties (e.g., image size, location, and orientation, etc.) of the optical

systems. These points are the principal points, the nodal points and the focal points,

which are situated on the optical axis. Figure 3.4 describes a general optical imaging

system with an object point P0 with a distance x0 from the optical axis (called the

object height). The image is formed by the optical system at point P1 with a distance

x1 from the optical axis (called the image height). The refractive indices of object

space and image space are n and n′, respectively. The points F and F ′ are the foci

in the object space and the image space, respectively. The points N and N ′ are the

nodal points in the object and image space. Finally, the points U and U ′ are the unit

or principal points in the object and image space, respectively [85].

Figure 3.4: Cardinal Points of an Optical System [85]
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3.5.1 Formalization of Cardinal Points

We consider a general optical imaging system as shown in Figure 3.5. In this context,

the first and the last points of the ray represent the locations of the object and image.

As shown in Figure 3.5, the object (P0) is located at a distance of d0 from the optical

system and image (P1) is formed at the distance of dn. The object and image heights

are y0 and yn, respectively. The ratio of the image height to the object height is called

lateral magnification which is usually denoted by β. A ray in the object space, which

intersects the optical axis in the nodal point N at an angle θ intersects the optical

axis in the image space in the nodal point N ′ at the same angle θ′. The ratio of θ

and θ′ is called angular magnification. In our formalization, this corresponds to the

angle of the first single and last single ray, respectively. For the sake of generality, we

formalize the general notion of optical systems as shown in Figure 3.5, as follows:

Definition 3.13 (General Optical System Model).


def ∀ni do sys nt dn.

gen_optical_system sys do dn ni nt = [[],ni,do; sys; [],nt,dn]

Here, the overall system consists of 3 sub-systems, i.e., free space with (ni, d0), a

general system sys and another free space (nt, dn).

Figure 3.5: General Optical System
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Our next step is to verify the ray-transfer matrix relation of general optical systems

by using Theorem 3.7, as follows:

Theorem 3.8 (Matrix for General Optical System).


 ∀ sys cray d0 dn ni nt A B C D.

is valid optical system sys ∧ 0 < ni ∧ 0 < nt ∧
is valid genray cray ∧

system composition sys =

⎡
⎢⎣A B

C D

⎤
⎥⎦ ∧

is valid gray in system (gen optical system sys d0 dn ni nt) ⇒
let (y0,θ0) = fst single ray (HD cray) and

(yn,θn) = last single ray (LAST cray) in⎡
⎢⎣ yn

θn

⎤
⎥⎦ =

⎡
⎢⎣A+ Cdn (Ad0 + B+ Cd0dn + Ddn)

C Cd0 + D

⎤
⎥⎦**

⎡
⎢⎣ y0

θ0

⎤
⎥⎦

Next, we formalize the notion of image and object height, image and object

angle, lateral and angular magnification, as follows:

Definition 3.14 (Lateral and Angular Magnification).


 ∀ ray.object height ray = FST (fst single ray (HD ray))


 ∀ ray.image height ray = FST (last single ray (LAST ray))


 ∀ ray.object angle ray = SND (fst single ray (HD ray))


 ∀ ray.image angle ray = SND (last single ray (LAST r))


 ∀ ray.lateral magnification ray =
image height ray

object height ray


 ∀ ray.angular magnification ray =
image angle ray

object angle ray

where object height and image height accept a ray and return the lateral distance

of the image and object from the optical axis, respectively. Similarly, image angle
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and object angle return the image and object angles, respectively.

The location of all the cardinal points can be found on the optical axis as shown

in Figure 3.4. In case of general optical systems (Figure 3.5), these can be defined

using the distances do and dn, by developing some constraints.

Principal Points

In order to find principal points, the image has to be formed at the same height as of

the object in the object space, i.e., the lateral magnification should be one. This means

that all the rays, starting from a certain height, will have the same height regardless

of the incident angle. Mathematically, this leads to the fact that the second element

of the 2×2 matrix, representing the optical system has to be 0. We package these

constraints into the following predicate:

Definition 3.15 (Principal Points Specification).


 ∀ (sys:optical system list).

principal points spec sys ⇔
(∀ ray.is valid gray in system ray sys ∧ is valid genray ray ⇒
(let M = composed system sys and

yn = image height ray and

y0 = object height ray in

y0 �= 0 ∧ M(2,1) �= 0 ⇒
M(1,2) = 0 ∧ lateral magnification ray = 1))

The function principal points spec accepts an arbitrary composed system sys

and ensures that for any ray, the constraints hold as described above. Here, M(i,j)

represents the elements of a square matrix M. Now we can define the principle points

as the pair of points (dU ,dU ′) which satisfy the above constraints as follows:
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Definition 3.16 (Principle Points of a System).


 ∀ (sys:optical system list) dU dU’ ni nt.

principal points (dU,dU’) sys ni nt⇔
principal points spec (gen optical system sys dU dU’ ni nt)

We use the reasoning support developed in the last section to prove the analytical

expressions for the principal points of the general optical system described in Figure

3.5.

Theorem 3.9 (Principal Points of a General Optical System).


 ∀ni nt sys.

is valid optical system sys ∧ 0 < ni ∧ 0 < nt ⇒
let M = system composition sys in

(principle points

((
M(2,2)

M(2,1)
∗ (M(1,1) − 1)− M(1,2)), (

1−M(1,1)

M(2,1)
)) sys ni nt)

Nodal Points

The second cardinal points of an optical system are the nodal points N (in the object

space) and N ′ (in the image space) as shown in Figure 3.4. A ray in the object space

which intersects the optical axis in the nodal point N at an angle θ intersects the

optical axis in the image space at the nodal point N ′ at the same angle θ′, which

implies that the angular magnification should be 1. We encode these constraints as

follows:

Definition 3.17 (Nodal Points Specification).


 ∀ (sys:optical system list).

nodal points spec sys ⇔
(∀ ray.is valid gray in system ray sys ∧ is valid genray ray ⇒
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(let M = composed system sys and

y0 = object height ray and

yn = image height ray and

θ0 = object angle ray and

θn = image angle ray in

y0 = 0 ∧ yn = 0 ∧ θ0 �= 0∧ M(2,1) �= 0 ⇒
M(1,2) = 0 ∧ angular magnification ray = 1))

The function nodal points spec accepts an arbitrary composed system sys and en-

sures that for any ray the constraints hold as described above. Consequently, we

can define the nodal points as the pair of points (dN ,dN ′) which satisfies the above

constraints as follows:

Definition 3.18 (Nodal Points of a System).


 ∀ (sys:optical system list) dN dN’ ni nt.

nodal points (dN,dN’) sys ni nt⇔
nodal points spec (gen optical system sys dN dN’ ni nt)

The corresponding analytical expressions for the Nodal points of a general op-

tical system are proved in following theorem:

Theorem 3.10 (Nodal Points of General System).


 ∀ ni nt sys.

is valid optical system sys ∧ 0 < ni ∧ 0 < nt ⇒
let M = system composition sys in

(nodal points ((
1−M(2,2)

M(2,1)
), (

M(1,1)

M(2,1)
∗ (M(2,2) − 1)− M(1,2))) sys ni nt)
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Focal Points

The focal points F (in the object space) and F ′ (in the image space) have two prop-

erties: A ray starting from the focus F in the object space is transformed into a ray

which is parallel to the optical axis in the image space. Similarly, a ray which is

parallel to the optical axis in the object space intersects the focus F ′ in the image

space. We define the following predicate using the above description:

Definition 3.19 (Focal Points Specification).


 ∀ (sys:optical system list).

focal points spec sys ⇔
(∀ ray.is valid gray in system ray sys ∧ is valid genray ray ⇒
(let M = composed system sys and

y0 = object height ray and

yn = image height ray and

θ0 = object angle ray and

θn = image angle ray in

M(2,1) �= 0 ⇒
(θn = 0 ∧ y0 = 0 ⇒ M(1,1) �= 0) ∧
(θ0 = 0 ∧ yn = 0 ⇒ M(2,2) �= 0)

Finally, we can define the focal points (dF ,dF ′) as follows:

Definition 3.20 (Focal Points of a System).


 ∀(sys:optical system list) dF dF’ ni nt.

focal points (dF,dF’) sys ni nt⇔
focal points spec (gen optical system sys dF dF’ ni nt)

We also verify the corresponding analytical expressions for the focal points in

the following theorem:
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Theorem 3.11 (Focal Points of General System).


 ∀ ni nt sys. is valid optical system sys ∧ 0 < ni ∧ 0 < nt ⇒
let M = system composition sys in

(focal points ((
−M(2,2)

M(2,1)
), (

−M(1,1)

M(2,1)
)) sys ni nt)

This completes the formalization of cardinal points of optical systems. Theorems

3.9, 3.10 and 3.11 are powerful results as they simplify the calculation of cardinal

points to just finding an equivalent matrix of the given optical system.

3.5.2 Ray Optics Component Library

In this section, we present the summary of the formal verification of the cardinal

points of widely used optical components. Generally, lenses are characterized by their

refractive indices, thickness and radius of curvature in case of a spherical interface.

Some of the components are shown in Figure 3.6, i.e., refracting spherical interface,

thick lens, ball lens and plano convex lens. Note that all of these components are

composed of two kinds of interfaces, i.e., plane or spherical and free spaces of different

refractive indices and widths. We use the infrastructure developed in the previous

sections to formalize these components and verify the transfer-matrix relation for each

model. Consequently, we can easily derive the cardinal points using already verified

theorems. Here, we only present the formalization of thick lens and the verification of

its principal points. A thick lens is a composition of two spherical interfaces separated

by a distance d as shown in Figure 3.6 (b). We formalize thick lenses as follows:

Definition 3.21 (Thick Lens).


 ∀ R1 R2 n1 n2 d. thick lens R1 R2 n1 n2 d =

([(n1,0),spherical transmitted R1;

(n2,d),spherical transmitted R2],(n1,0))
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Figure 3.6: Frequently used Optical Components [85]

where n1 represents the refractive index before and after the first and the second

interface, respectively. Whereas n2 represents the refractive index between the two

spherical interfaces which have the radius of curvatures R1 and R2, respectively.

We then verify the general expression for the principal points of a thick lens in

the following theorem.

Theorem 3.12 (Principal Points of Thick Lens).


∀ R1 R2 n0 n1 d. R1 �= 0 ∧ R2 �= 0 ∧ 0 < n1 ∧ 0 < n2 ∧
(d * (n1 - n2) �= -n2 * (R1 - R1)) ⇒
(let dU = (n * d * R1) / (n2 * (R2 - R1) + (n2 - n1) * d) and

dU’ = -(n * d * R2) / (n2 * (R2 - R1) + (n2 - n1) * d) in

principal points (dU,dU’) (thick lens R1 R2 n1 n2 d) n1 n1)

Here, the first four assumptions are required to verify the validity of the thick lens

structure and the last assumption specifies the condition about thick lens parameters
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which is required to verify the principal points dU and dU’. Similarly, we verify the

principal points for other optical component as given in Table 3.2. Moreover, we also

formalize some other optical components such as thin lens and parallel plate where

complete details can be found in the source code [87].

Table 3.2: Principal Points of Some Optical Components

Optical Component Principal Points

Spherical Interface (Transmitted)
dU = 0 ∧ dU ′ = 0

Spherical Interface (Reflected)
dU = 0 ∧ dU ′ = 0

Ball Lens
dU = −R ∧ dU ′ = −R

Meniscus Lens
dU = R

nL−1
∧ dU ′ = − R

nL−1

Plano Convex Lens
dU = 0 ∧ dU ′ = − d

nL

3.6 Application: Formal Modeling and Analysis of

a Visual Optical System

Human eye is a complex optical system which processes light rays through different

biological layers such as cornea, iris and crystalline lens which is located directly

behind the pupil. There are different eye diseases; some of them are age related

and others are caused by the malfunctioning of some tissues inside the eye. Myopia

(or near-sightedness) is a commonly found eye disease which is caused due to the

wrong focus of the incoming light inside the eye. In general, myopia is considered

as a significant issue due to its high prevalence and the risk for vision-threatening

conditions as described in the guidelines by the American Optometric Association [1].
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The most commonly used method to avoid this problem is by the use of correc-

tive lenses or eye surgery [1]. Mathematically, different conditions for myopia can be

analyzed using geometrical optics and cardinal points [37]. In our work, we consider

a general description of a visual optical system of the eye and an optical instrument,

as proposed in [37]. In particular, the authors derived the expressions for the axial

locations of cardinal points using a paper-and-pencil based approach. However, we

intend to model the proposed system in HOL and perform the analysis using our

formalized theory of cardinal points. An outline of the complete system in shown in

Figure 3.7. The visual optical system of an eye is described by S and an optical device

is represented by SD. The parameter SG is a homogeneous gap of length zG between

SD and the eye, SE is the combination of SD and SG. Similarly, SC is the combination

of SE and S. The points Q0 and Q1 are the incident and emergent special points of

S and QC0 and QC1 are the corresponding cardinal points (can be either principal,

nodal and focal points) of SC . When we place SD in front of the eye, it causes Q0

to be displaced at QC0 and Q1 at QC1. The parameters n0 and n1 represent the re-

fractive indices. In this design, the entrance plane T0 is located immediately anterior

to the first surface of the tear layer on the cornea and the exit plane T1 is located

immediately anterior to the retina of the eye. Our main goal is to formally derive the

cardinal points for this systems description. We proceed by the formal model which

consists of three main subsystems:

• The visual optical system of the eye S.

• Homogeneous distance SG: it can be modeled using a free space of width zG.

• Any corrective optical device SD: it can be a contact lens or some surgical

equipment.
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Figure 3.7: Visual Optical System for an Eye [37]

The corresponding HOL Light definition is as follows:

Definition 3.22 (Model of the Optical Corrective Setup for Myopia).


 ∀ system eye zG device.

eye corrective system n0 n1 zG =

let device = unknown AD BD CD DD and

eye model = unknown A B C D in

[(n0, 0); device; (n0, ZG); eye model], (n1, 0)

where we model optical device (SD), homogenous gap ( SG), and model of the eye (S)

by unknown AD BD CD DD, (n0, ZG) and unknown A B C D, respectively. We now derive

the general expressions for the cardinal points as follows:

Theorem 3.13 (Cardinal Points of Visual Optical System).


 ∀ zG n0 n1.

0 < n0 ∧ 0 < n1 ⇒

let

⎡
⎢⎣Ac Bc

Cc Dc

⎤
⎥⎦ =

system composition (eye corrective system n0 n1 zG) in

principle points ((Dc
Cc
∗ (Ac − 1)− Bc), (

1−Ac
Cc

))

n0 n1 (eye corrective system n0 n1 zG) ∧
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nodal points ((1−Ac
Cc

), (Ac
Cc
∗ (Dc − 1)− Bc))

n0 n1 (eye corrective system n0 n1 zG) ∧
focal points ((−Dc

Cc
), (−Ac

Cc
))

n0 n1 (eye corrective system n0 n1 zG)

Given the structure of the corrective device, we can easily find the location of

QC0 and QC1, i.e., cardinal points which help to estimate the shifts in the cardinal

points of the visual system of eye. Furthermore, different decisions about the diagnoses

of a disease can be made based on the equivalent composed system. For example, the

element Ac is the direct measure of the myopia of the eye, i.e., the eye is myopic,

emmetropic or hyperopic if Ac is negative, zero or positive, respectively [37]. Note

that the derived expressions for the cardinal points (Theorem 3.13) are more general

than those derived in [37]. Indeed, authors of [37] used the assumption that the

determinant of corresponding matrix of optical instrument and visual optical system

is always equal to 1. However, this assumption is only valid for a class of optical

systems [85]. We can obtain similar expressions by Theorem 3.13 if we consider this

assumption. In our analysis, all expressions are derived in a general form which can

be directly used for a particular corrective device and parameters of an eye without

re-doing manual derivations.

3.7 Summary and Discussions

In this chapter, we proposed a higher-order logic formalization of ray optics in HOL

Light. We started with the formalization of basic optical system structure which

included formal definitions of new datatypes for optical interfaces, optical components

and optical systems. We also formalized the constraints to ensure the valid structure
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of an optical system. We then specified the physical behavior of a light ray for any

arbitrary optical system. We used this infrastructure to verify the classical result of

geometrical optics which states that any optical system can be transformed into a

matrix model. It is important to note that our formalization of optical systems and

light rays is generic and we can model optical systems and rays of any length.

We also formalized the notion of composed optical systems and verified that

composed systems inherit the same linear algebraic properties as for the case of a

single optical system. Consequently, we formalized the notion of cardinal points of

an optical system. Indeed, we verified generic expressions for the cardinal points

(principal, nodal and focal), i.e., Theorems 3.9, 3.10 and 3.11. Interestingly, the

availability of such a formalized infrastructure significantly reduced the time required

to verify the cardinal points of the frequently used optical components (e.g., thin lens,

thick lens, parallel plate and ball lens). Finally, we presented the formal analysis of a

vision corrective biomedical device to analyze the myopia or nearsightedness.

Apart from the formalization of a number of concepts of ray optics and optical

imaging systems, another contribution of our work is to bring out all the hidden as-

sumptions about the physical models of lenses and mirrors which otherwise are not

mentioned in the optics literature (e.g., assumptions given in Theorem 3.12 are not

stated in [85]). Moreover, we automatized parts of the verification task by introducing

new tactics. Some of these tactics are specialized to verify (or simplify) the proofs re-

lated to our formalization of ray optics (e.g., VALID OPTICAL SYSTEM TAC [87]). How-

ever, some tactics are general and can be used in different verification tasks involving

matrix/vector operations. An example of such tactic is common prove, which allowed

us to verify the ray-transfer matrices in our development. The core formalization

described in this chapter took around 2000 lines of HOL Light code including formal
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definitions, lemmas and theorems. The availability of this infrastructure allowed us

to analyze a vision corrective device in less than 50 lines of HOL Light code which

demonstrates the effectiveness of our formalization presented in this chapter.

In the optics literature, many systems other than geometrical optics can also

be modeled based on the transfer-matrix approach. Some examples of such systems

are periodic optical systems [81], frequency division multiplexing/demultiplexing [22]

and photonic signal processing applications [91]. The formalization process described

in this chapter can be used as a guideline for the formal analysis of above mentioned

systems. It may require some modifications about new datatypes for underlying com-

ponents and corresponding physical behavior. Indeed, we used our experience to

formally verify the transmissivity and reflectivity of 2-D lattice photonic filters [80].

In this chapter, we only considered the ray nature of light and developed cor-

responding reasoning support. Despite the many applications of ray tracing, some of

the optical systems can only be analyzed using the notion of light beams. In the next

chapter, we will use the infrastructure developed in this chapter to formalize Gaussian

beams and associated models of optical systems.
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Chapter 4

Formalization of Gaussian Beams

In this chapter, we present the higher-order logic formalization of light as a beam and

related concepts described in Chapter 2. In fact, this chapter extends the reasoning

support for optical systems by augmenting the formalization of Gaussian beams to ray

optics models developed in the previous chapter. We can divide the formalization of

Gaussian beams7 into three parts: 1) formalization of the q-parameters of Gaussian

beams and verification of some related properties; 2) formalization of the paraxial

Helmholtz equation along with the verification that an envelope of a Gaussian beam

satisfies the paraxial Helmholtz equation; and 3) formalization of the Gaussian beams

transformation for optical systems and the formal verification of the complex ABCD-

law. We then use this infrastructure to build the formal reasoning support for Quasi-

optical systems along with the formal analysis of a real-world telescope receiver.

7The source codes of the formalizations and proofs presented in this chapter can be found in [87].
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4.1 Formalization of q-Parameters

In the optics literature, Gaussian beams are defined in different forms depending

upon the application of the beam transformation. They are generally characterized

by the corresponding q-parameter, i.e., (q(z) = z+jzR). Furthermore, Rayleigh range

(zR =
πw2

0

λ
), can be described by two parameters, i.e., value of the beam width at z = 0,

(w0) and wavelength (λ). Thus, the q-parameter can be completely characterized by

a triplet (w0, λ, z) and hence the Gaussian beam. We define the Rayleigh range and

q-parameter in HOL Light as follows:

Definition 4.1 (Rayleigh Range and q-parameter).


∀ w0 lam. rayleigh range w0 lam =
πw20
lam


∀ z w0 lam. qq (z,w0,lam) = z + j (rayleigh range w0 lam)

where j represents the imaginary unit
√−1.

One of the most important definitions of the q-parameters is given in the form

of R(z) and W (z) which are the measures of the beam width and wavefront radius of

curvature, respectively. Mathematically, we describe them as follows:

1

q(z)
=

1

R(z)
− j

λ

πW 2(z)
(4.1)

R(z) = z
[
1 + (

zR
z
)2
]

(4.2)

W (z) = w0

[
1 +

(zR
z

)2
] 1

2

(4.3)

We formally define R(z) and W (z) as follows:

Definition 4.2 (Wavefront Radius and Beam Width).


∀ z w0 lam. RR z w0 lam = z

[
1+

(
rayleigh range w0 lam

z

)2
]


∀ z w0 lam. WW z w0 lam = w0

[
1+

(
rayleigh range w0 lam

z

)2
] 1

2
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where the functions RR and WW are both of type R→R→R→R, which take three

parameters z, w0 and lam and return a real number corresponding to Equations (4.2)

and (4.3), respectively. Next, we use these definitions to verify Equation (4.1) as

follows:

Theorem 4.1 (q-Parameter Alternative Form).


∀ z w0 lam. 0 < w0 ∧ 0 < lam ∧ z �= 0

1

qq(z, w0, lam)
=

1

RR z w0 lam
− j

lam

π(WW z w0 lam)2

The proof of this theorem mainly involves complex analysis and some properties of

qq, RR, WW and rayleigh range, which we list here:

Lemma 1 (Properties).


 ∀ z w0 lam.

z �= 0 ∧ (rayleigh range w0 lam)2 = z2 ⇒ (RR z w0 lam) �= 0


 ∀ z w0 lam.

0 < w0 ∧ 0 < lam ∧ 0 ≤ z ⇒ 0 < WW z w0 lam


 ∀ z w0 lam.

0 < w0 ∧ 0 < lam ⇒ qq (z, w0, lam) �= 0


 ∀ z w0 lam.

0 < w0 ∧ 0 < lam ⇒ 0 < rayleigh range z w0 lam

The alternative form of the q-parameter proved in Theorem 4.1, is quite helpful

to verify the general form of Gaussian beams (Equation (2.11)). Moreover, we can

also derive the general expression for the intensity of Gaussian beams (Equation 2.12)

using this alternative form. We describe the verification details in the next section.
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4.2 Formalization of Paraxial Helmholtz Equation

In this section, our main focus is to formalize the Paraxial Helmholtz Equation and

verify that a Gaussian beam satisfies this equation. We then formally derive the

general form of Gaussian beams and their intensity from the definition of paraxial

wave. Mathematically, the Paraxial Helmholtz Equation is described as a partial

differential equation as follows:

∇2
TA(x, y, z)− j2k

∂A(x, y, z)

∂z
= 0 (4.4)

Our first step is to formalize the notion of transverse Laplacian operator (∇2
T =

∂2

∂x2 +
∂2

∂y2
) for arbitrary functions as follows:

Definition 4.3 (Laplacian).


 ∀ f x y.

laplacian f (x, y) = higher complex derivative 2 (λx. f (x, y)) x +

higher complex derivative 2 (λy. f (x, y)) y

where higher complex derivative represents the nth-order complex derivative of a

function:


 higher_complex_derivative 0 f = f ∧
(∀n. higher_complex_derivative (SUC n) f =

complex_derivative (higher_complex_derivative n f))

We use laplacian to formalize the Paraxial Helmholtz Equation (i.e., Equation (4.4))

as follows:

Definition 4.4 (Paraxial Helmholtz Equation).


 Paraxial Helmholtz eq A (x,y,z) k ⇔
laplacian(λ(x, y). A (x, y, z)) (x, y) −
2jk complex derivative (λz. A (x, y, z)) z = 0
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where Paraxial Helmholtz eq accepts a function U of type ((C×C×C)→C), a triplet

(x,y,z) and a wave number k and returns the Paraxial Helmholtz equation. Next,

we formalize the paraxial wave, given in Equation (2.3), as follows:

Definition 4.5 (Paraxial Wave).


 ∀ A x y k z.

paraxial wave A x y z k = A(x, y, z) exp(−jkz)

where A:((C×C×C) →C) represents the complex amplitude of the paraxial wave.

The function cexp represents the complex-valued exponential function in HOL Light.

We need to define the q-parameter based amplitude of the paraxial wave, given

in the following equation:

A(x, y, z) =
A0

q(z)
e

⎛
⎝−jk

x2 + y2

2q(z)

⎞
⎠

(4.5)

The corresponding HOL definition is given as follows:

Definition 4.6 (q-parameters Based Solution).


 ∀ A0 k x y z w0 lam.

q parameter amplitude A0 z x y k w0 lam =

A0

qq (z, w0, lam)
exp(

−jk(x2 + y2)

2qq (z, w0, lam)
)

where A0 is a complex-valued constant. The function qq represents the q-parameter

as described in Definition 4.1.

Now equipped with above described formal definitions, an important require-

ment is to verify that the q-parameters based solution (Definition 4.6) satisfies the

paraxial Helmholtz equation (Definition 4.4). In other words, this is the main condi-

tion for a paraxial wave to be valid in the context of geometrical optics. We establish

this result in the following theorem:
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Theorem 4.2 (Helmholtz Equation Verified).


 ∀ A0 x y z w0 lam k.

0 < w0 ∧ 0 < lam ⇒
Paraxial Helmholtz eq (λ(x, y, z).

q parameter amplitude A0 z x y k w0 lam) (x, y, z) k

where both assumptions ensure that the value of qq (q-parameter) is not zero. The

proof of this theorem is mainly based on three lemmas about the complex differentia-

tion of q parameter amplitude with respect to the parameters x, y and z. The proof

of these lemmas is mainly done using the automated tactic called COMPLEX DIFF TAC

(already available in HOL Light and developed by Harrison), which can automat-

ically compute the complex differentiation of complicated functions. Indeed, this

tactic saves a lot of time of user interaction while proving theorems which involve

complex differentiation.

Our next step is to derive the expression representing paraxial wave as a Gaus-

sian beam which is described in the following equation:

U(r) =
A0

jzr

w0

W (z)
e

⎛
⎝−

x2 + y2

W 2(z)

⎞
⎠
e

⎛
⎝−jkz−jk

x2 + y2

2R(Z)
+ jξ(z)

⎞
⎠

(4.6)

where ξ(z) = tan−1( z
zR
). The above equation is the main representation of Gaus-

sian beams and describes the important properties of light when it travels from one

component to another. Even many laser applications utilize Equation (4.6) as the

mathematical model of a laser beam [81]. The formal representation of this equation

is given as follows:

Theorem 4.3 (Gaussian Beam).


 ∀ x y z w0 lam A0 k.

0 < w0 ∧ 0 < lam ∧ z �= 0 ⇒
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paraxial wave (λ(x, y, z).

q parameter amplitude A0 z x y k w0 lam) x y z k =

let Ac =
A0

j(rayleigh range w0 lam)
in

Ac
w0

WW z w0 lam
exp

[
− x2 + y2

(WW z w0 lam)2

]

exp

[
−jkz− jk

x2 + y2

2(RR z w0 lam)
+ j arctan

(
z

rayleigh range w0 lam

)]

where atn represents the inverse tangent function in HOL Light. The proof of this

theorem mainly requires two lemmas: 1) expressing the q−parameter in equivalent

form (Equation 4.6); and 2) expressing atn as an argument of cexp. The first lemma

can be discharged by Theorem 4.3 and we present the statement of the second lemma

here:

Lemma 2 (Arctan as an Argument of exp).


 ∀ z w0 lam.

0 < w0 ∧ 0 < lam ⇒ exp

[
j arctan

(
z

rayleigh range w0 lam

)]
=

(jz + rayleigh range w0 lam)√
z2 + (rayleigh range w0lam)2

The proof of this lemma mainly involves the properties of transcendental functions in

HOL Light. Finally, we define the intensity of a paraxial wave as follows:

Definition 4.7 (Beam Intensity).


 ∀ A x y z k.

beam intensity A x y z k = ‖ (paraxial wave A x y z k)2 ‖

where A:((C×C×C) →C) represents the complex amplitude of the paraxial wave.

The function norm, represents the complex norm of a function in HOL Light. We use

the above definition to verify the general expression for the intensity of a Gaussian

beam (Equation (2.12)) in the following theorem:
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Theorem 4.4 (Intensity of Gaussian Beam Intensity).


 ∀ A0 x y z k w0 lam.

0 < w0 ∧ 0 < lam ∧ z �= 0 ⇒
beam intensity (λ(a, b, z).

q parameter amplitude A0 z a b k w0 lam) x y z k

‖ A0

j(rayleigh range w0 lam)
‖2

(
w0

WW z w0 lam

)2

exp

⎡
⎢⎣− k

lam

π
(x2 + y2)

(WW z w0 lam)2

⎤
⎥⎦

The proof of this theorem is mainly based on Theorem 4.3 and properties of complex

numbers.

We conclude here the formalization of the Paraxial Helmholtz Equation. The

main significance of this section was to verify the validity of Gaussian beams in the

paraxial regime, which is a classical result in the literature of geometrical optics [78].

Moreover, we have been able to verify a generic expression for the intensity of a

Gaussian beam. We discuss the concepts behind the propagation of Gaussian beams

in optical systems along with their HOL formalization in the next section.

4.3 Formalization of Beam Transformation

In our formalization of q-parameter of Gaussian beams, we consider that the size of

the beam waist radius w0 and its location z is already provided by the physicists

or optical system design engineers. Indeed these two parameters are sufficient to

compute the beam width W (z) and wavefront radius of curvature R(z) because the

wavelength λ is fixed throughout the design life-cycle. Mathematically, this notion

can be represented as a transformation w0, z → W (z), R(z).

Our goal is to formalize the physical behavior of a Gaussian beam when it passes

through an optical system. We only model the points where it hits an optical interface
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(e.g., spherical or plane interface). It is evident from the previous discussion that the

q-parameter is sufficient to characterize a Gaussian beam. Furthermore, λ is fixed

(i.e., refractive indices are the same) which leads to the requirement of considering

only two parameters, i.e., w0 and z. So we just need to provide the information about

(z,w0) at each interface. Consequently, we should have a list of such pairs for every

component of a system. In addition, the same information should be provided for the

source of the beam. We define a type for a pair (z, w0) as single q. This yields the

following type definition:

new_type_abbrev("single_q",‘:real # real‘);;

new_type_abbrev("beam",‘:single_q # single_q #

(single_q # single_q) list‘);;

where the first single q is the pair (z, w0) for the source of the beam, the second

one is the one after the first free space, and the list of single q pairs represents the

same information for the interfaces and free spaces at every hitting point of an optical

system.

The transmission of a Gaussian beam in an optical system depends on the

nature of components used in that system. It is known that a Gaussian beam remains

a Gaussian beam when it is transmitted through a series of optical components aligned

with an optical axis [78]. However, only the beam waist and curvature are modified so

that the beam is only reshaped as compared to the input beam. If a Gaussian beam

is subject to transmission in free space of width d, only one parameter is modified,

i.e., z becomes z+ d. When a beam transmits through a plane interface it only scales

with respect to the refractive indices of input and output planes. However, in case of

transmission through a spherical interface (Figure 4.1 (a)), the beam width remains

the same but the output beam has to satisfy the lens formula, i.e., 1
q2

= 1
q1
− 1

f
, where
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Figure 4.1: Behavior of Gaussian Beam at Different Interfaces

q1, q2 and f are the input and output beam q-parameters and the focal length of the

spherical interface, respectively. For the case of the reflection from a plane interface,

the input Gaussian beam bounces back without any change in its curvature (Figure

4.1 (c)). On the other hand, the reflection from a curved interface results into a

modified lens formula, i.e., 1
q2

= 1
q1
+ 1

f
with no alteration in the beam width as shown

in Figure 4.1 (b).

We specify the valid behavior of a beam using some predicates. First of all, we

define the behavior of a beam when it is traveling through a free space. This requires

the position of the beam at the previous and current point of observation, and the

free space itself.

Definition 4.8 (Beam in Free Space).


 is valid beam in free space

(z, w0) (z′, w′0) (n0, d) ⇔ w′0 = w0 ∧ z′ = z + d
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where (z, w0) and (z′, w′0) represent the single q at two points. The pair (n0, d)

represents a free space with refractive index n0 and width d.

Now we specify the valid behavior of a beam at plane and spherical interfaces

as follows:

Definition 4.9 (Beam at Plane Interface).


 (is valid beam at plane interface (z, w0) (z′, w′0) lam n n′

plane transmitted ⇔
z′ = z

n′

n
∧ w′0 = w0

√
(
n′

n
) ∧ 0 < n ∧ 0 < n′) ∧

(is valid beam at plane interface (z, w0) (z′, w′0) lam n n′

plane reflected ⇔
z′ = z ∧ w′0 = w0 ∧ 0 < n ∧ 0 < n′)

where is valid beam at plane interface accepts two single q, wavelength lam

and two refractive indices n and n′ before and after the plane interface (transmitted

and reflected), and returns the physical behavior of the beam described above (as

shown in Figure 4.1). Similarly, we formally specify the physical behavior of the

beam at spherical interface in the following definition:

Definition 4.10 (Beam at Spherical Interface).


 is valid beam at spherical interface (z, w0) (z′, w′0) lam n n′

(spherical transmitted R) ⇔
valid single q (z, w0) ∧ valid single q (z′, w0′) ∧
0 < n ∧ 0 < n′ ∧ −n− n′

nR
=

1

qq (z, w0, lam)
1

RR z′ w′0 lam
=

n′

n

1

RR z w0 lam
+

n− n′

n′R
∧

(WW z′ w′0 lam) =

√
n′

n
(WW z w0 lam) ∧

is valid beam at spherical interface (z, w0) (z′, w′0) lam n n′
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(spherical reflected R) ⇔
valid single q (z, w0) ∧ valid single q (z′, w0′) ∧
0 < n ∧ 0 < n′ ∧ qq (z, w0, lam) �= R

2
1

RR z′ w′0 lam
=

1

RR z w0 lam
− 2

R
∧ (WW z′ w′0 lam) = (WW z w0 lam)

where valid single q ensures that w0 is positive and z is not equal to zero.

Note that we describe separately the valid behavior of a beam at plane and spher-

ical interfaces for the sake of convenience and finally we combine them into one defini-

tion called is valid beam at interface. On the same lines, we also define the behav-

ior of a beam through an arbitrary optical system (i.e., is valid beam in system).

In order to ensure the correctness of our definitions and to facilitate the formal

analysis of practical systems, we verify three classical results of Gaussian beams the-

ory: (1) Complex ABCD law for each optical interface (i.e., free space, spherical and

plane for both reflection and transmission); (2) Complex ABCD law for an arbitrary

optical system; and (3) composed optical systems as follows:

Theorem 4.5 (ABCD-Law for Interface).


 ∀i ik z w0 z′ w′0 lam n n′.

is valid beam at interface (z, w0) (z′, w′0) lam n n′ i ∧
is valid interface i ∧ 0 < lam ⇒

let

⎡
⎢⎣A B

C D

⎤
⎥⎦ = (interface matrix n n′ i ik) in ⇒

qq (z′, w′0, lam) =
Aqq (z, w0, lam) + B

Cqq (z, w0, lam) + D

where is valid beam at interface ensures the valid behavior at each interface i.

The function is valid interface ensures that each interface i is indeed a valid in-

terface. The assumption 0 < lam is required to ensure that wavelength is greater than

zero. Finally, the function interface matrix represents the corresponding matrix of
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each optical component. We next verify the complex ABCD law for an arbitrary

optical system as follows:

Theorem 4.6 (ABCD-Law for Optical System).


 ∀sys beam lam A B C D.

is valid beam in system beam lam sys ∧

is valid optical system sys ∧ 0 < lam ∧⎡
⎢⎣A B

C D

⎤
⎥⎦ = system composition sys ⇒

let (z, w0), (z
′, w′0), rs = beam in

let (zn, w0n) = last single beam beam in

qq (zn, w0n, lam) =
Aqq (z, w0, lam) + B

Cqq (z, w0, lam) + D

where is valid beam in system ensures the valid behavior of the beam in optical

system sys. The function is valid system ensures the validity of the optical systems

structure. Finally, the function system composition represents the corresponding

matrix of the optical system. We prove Theorem 4.6 by induction on sys and the

length of beam along with some complex arithmetic reasoning. Similarly, we verify

the complex ABCD law for the composed systems where a system is composed of

multiple optical systems, given as follows:

Theorem 4.7 (ABCD-Law for Composed System).


 ∀c sys gbeam lam A B C D.

is valid gbeam in c system gbeam lam c sys

∧ is valid gen beam gbeam ∧
is valid composed system c sys ∧ 0 < lam ∧
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⎡
⎢⎣A B

C D

⎤
⎥⎦ = composed system c sys ⇒

let (z, w0), (z
′, w′0) = beam origin gbeam in

let (zn, w0n) = beam end gbeam in

qq (zn, w0n, lam) =
Aqq (z, w0, lam) + B

Cqq (z, w0, lam) + D

This concludes our formalization of the Gaussian beam transformation for ar-

bitrary optical systems. In this section, we mainly specified the physical behavior

of beams when passing through free space and interacting with different optical in-

terfaces. We used this infrastructure to verify the ABCD-law which describes the

relation between input and output beam parameters. It is important to note that

the matrix elements of the ABCD-law and ray-transfer matrices remain the same for

optical components which indicates the relationship among ray optics and Gaussian

optics. In the next section, we use this development to formalize and build a reason-

ing support for widely used Quasi-optical systems which involve the prorogation of

Gaussian beams.

4.4 Formalization of Quasi-Optical Systems

Quasioptics [31] deals with the propagation of a beam of radiations which is reason-

ably well collimated (i.e., rays are parallel and their spread is minimal during the

propagation, e.g., laser light) and the wavelength is relatively small along the axis

of propagation. At a first glance, this looks a restrictive notion of light but it has

extraordinarily diverse applications ranging from compact systems in which all com-

ponents are only a few wavelengths in size to antenna feed systems that illuminate an

aperture of thousands or more wavelengths in diameter (e.g., space receiving stations)

[31]. It is important to note that ray optics deals with light beams (essentially rays)
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with wavelength λ → 0 and no diffraction effects, whereas quasioptics is concerned

with the wavelength λ � system dimenions with diffraction effects. In practice, qua-

sioptics is based on the Gaussian beam theory which provides a convenient formalism

to analyze the behavior of a beam and to perform accurate calculations for real optical

and laser systems. Some of the successful applications of quasioptics are in critical do-

mains, e.g., millimeter wave lengths to a variety of commercial and military problems

such as radars, remote sensing, materials measurement systems [31], radio frequency

and radiometric optical systems [23].

4.4.1 Design Requirements for Quasi-Optical Systems

In optical engineering, the high level modeling and analysis of quasi-optical systems

is an important design criterion in order to avoid unnecessary design revisions due

to high manufacturing costs and critical applications. Given the quasi-optical system

design and performance specification, i.e., the information about the size of the overall

system, operating frequencies and coupling requirements, we can break the design

procedure of such systems into four steps as shown in Figure 4.2.

• Determination of system architecture and quasi-optical components:

The system architecture means the arrangement of optical components (lenses

or mirrors), their nature (i.e., reflective or transmissive) and ability to process

frequency bands. In industrial settings, this initial decision is of central im-

portance because of the fact that the choice of the components can only be

considered correct after executing all the steps mentioned in Figure 4.2.

• Beam Waist Radius: The beam waist radius provides the suitable measure

to evaluate how each component modifies the Gaussian beam. In practice, there

are many useful quasi-optical components for which the beam waist radius is

81



Figure 4.2: Quasi-Optical System Design Flow [31]

not important from the application viewpoint (e.g., polarization rotators, which

rotates the polarization axis of the light beams [31]). So one of the important

design criterion is the identification of all the components in the system for

which the beam waist radius is critical.

• Beam Waist Location: The coupling of a Gaussian beam among two optical

components is very critical to increase the overall performance of systems such

as laser resonators [78] and feed horns [31]. This can be done by the indication

of the beam waist location along with the beam waist radius of the Gaussian

beam at the input and output of each quasi-optical component.

• Evaluation and Verification: Finally, the last step is to evaluate and verify

that the selected architecture of quasi-optical system meets the performance

specification, i.e., Gaussian beam waist radius and location are suitable for cor-

rect operation. Moreover, in some practical situation it is compulsory to evaluate

the magnification which is a ratio of minimum beam waist of input and output
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Gaussian beam.

We next present the formalization of an arbitrary quasi-optical system along

with the derivation of the generalized expressions for the beam waist radius and

location of output Gaussian beam. Then we can use our formalization to perform the

verification and evaluation as shown in Figure 4.2.

4.4.2 Gaussian Beams in Quasi-Optical Systems

The generalized properties of beam transformation through a quasi-optical system

can be analyzed using the complex ABCD law as described in the previous section.

We consider a generic case in which a quasi-optical system is modeled as an arbitrary

ABCD matrix as shown in Figure 4.3. The input waist radius w0in of the Gaussian

beam is at a distance din from the input reference plane, and the output waist, having

the waist radius wOout , is located at distance dout from the output reference plane. In

this situation, the whole system is composed of three subsystems, i.e., a free space

(ni, din), a quasi-optical system (which can be modeled as an ABCD matrix), and

another free space, i.e., (n0, dout). Our main goal is to derive the generic expression

for the beam waist radius and its location as these are the two critical requirements

in the design and analysis of quasi-optical systems as described in Figure 4.2. To this

aim, we require three steps: (1) building a formal model of the quasi-optical system

described in Figure 4.3 and then verifying the equivalent matrix; (2) deriving the com-

plex ABCD law using the previous step; and (3) computing the general expressions

for the output beam width radius and its location, i.e., w0out and dout, respectively.

We formally model the quasi-optical system described in Figure 4.3 as follows:
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Figure 4.3: Generalized Qausi Optical System

Definition 4.11 (Quasi-Optical System Model).


 ∀ ni din sys n0 dout.

quasi optical system sys din dout ni n0 = [[ ], ni, din; sys; [ ], n0, dout]

where sys represents the quasi-optical system, the parameters ni and n0 represent

the refractive index at the input and output, respectively. We next verify the equiva-

lent matrix relation when the system is represented as an arbitrary ABCD-matrix as

follows:

Theorem 4.8 (Matrix of Quasi-Optical System).


 ∀ sys din dout ni n0 A B C D.

system composition sys =

⎡
⎢⎣A B

C D

⎤
⎥⎦ ⇒

composed system (quasi optical system sys din dout ni n0) =⎡
⎢⎣A+ Cdout Adin + B+ Cdindout + Dddout

C Cdin + D

⎤
⎥⎦

The proof of this theorem involves rewriting the definitions of quasi optical system

and composed system along with the corresponding matrices of the input and output

84



free spaces.

Consequently, we verify the ABCD-law of for the quasi-optical system model

(Definition 4.11) as follows:

Theorem 4.9 (Quasi-optical System (ABCD)).


 ∀ sys din dout ni n0 gbeam lam A B C D.

is valid gbeam in c system gbeam lam

(quasi optical system sys din dout ni n0) ∧
is valid gen beam gbeam ∧ 0 < lam ∧
is valid composed system (quasi optical system sys din dout ni n0) ∧⎡
⎢⎣A B

C D

⎤
⎥⎦ = system composition sys ⇒

let (z, w0), (z
′, w′0) = beam origin gbeam in

let (zn, w0n) = beam end gbeam in

qq (zn, w0n, lam) =
Aqq (z, w0, lam) + B

Cqq (z, w0, lam) + D

where the first assumption ensures the valid behavior of the beam when it propagates

through the quasi-optical system. The proof of this theorem is a direct consequence

of Theorem 4.7.

Our next step is to verify the general expressions for the output beam waist

radius. Here, one important point is to ensure that we are only interested in the

Gaussian beam waist at the input which means that the real part of the input q-

parameter should be 0. We include this requirement in the verification of the following

main theorem:

Theorem 4.10 (Beam Waist Radius and Location).


 ∀ sys gbeam din dout lam ni n0 w0in w0out z zn A B C D.

[H1] sys constraints (quasi optical system sys din dout ni n0) ∧
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[H2]

⎡
⎢⎣A B

C D

⎤
⎥⎦ = system composition sys ∧

[H3] (z, w0in) = beam origin gbeam ∧ (zn, w0out) = beam end gbeam ∧

[H4] Re(qq (z, w0in, lam)) �= 0 ∧ Re(qq (zn, w0out, lam)) �= 0 ∧

(Cdin + D)2 + (C rayleigh range w0in lam)2 �= 0 ⇒

dout = −(Adin + B)(Cdin + D) + AC(rayleigh range w0in lam)2

(Cdin + D)2 + (C(rayleigh range w0in lam)2)
∧

w0out
2 =

(AD − BC) w0in
2

(Cdin + D)2 + (Cw0in2
π

lam
)2

where the first assumption [H1] packages three conditions as system constraints, i.e.,

the validity of the composed optical system architecture, the validity of the general

beam and the valid behavior of a general beam in the composed system. The second

assumption [H2] ensures that the composed system can be described by an arbitrary

matrix. Finally, the third and fourth assumptions (i.e., [H3] and [H4]) ensure that

the real part of q-parameters are zero and the values dout and w0out are finite. The

proof of Theorem 4.10 is mainly based on Theorem 4.9 and involves the properties

of complex numbers (mainly, equating the real and imaginary parts of the input and

output q-parameters).

Note that the expressions obtained in Theorem 4.10 can be applied to any quasi-

optical system, and to any Gaussian beam parameters. The given system itself can be

arbitrarily complicated, and the analysis reduces the problem of obtaining its overall

ABCD matrix from a cascaded representation of its constituent optical components.

We apply these results to verify a real-world optical system in the next section.
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4.5 Application: APEX Telescope Receiver

The Atacama Pathfinder EXperiment (APEX) 8 is a single dish (12-metre diameter)

telescope for millimeter and sub-millimeter astronomy, which operates since its first

inauguration in 2005 [70]. The main mission of the APEX is to conduct the astronom-

ical study of cold dust and gas in our own milky way and in distant galaxies. Recent

observations based on APEX reveal the cradles of massive star-formation throughout

our galaxy [3]. Besides these interesting aspects of the APEX telescope, the other

main function is radiometry which helps to provide reliable weather forecasts and

environmental dynamics. One of the main modules of the APEX is the Swedish Het-

erodyne Facility Instrument (SHeFI) receiver which was installed in 2008. In [70], the

authors used a Quasi-optics based model for the SHeFI receiver to derive the condi-

tions in terms of beam parameters using a paper-and-pencil based proof approach.

Furthermore, these constraints are used to optimize (i.e., minimization of dimensions

and distortions) the telescope design for all optical components. In this thesis, we

propose to formally analyze the SHeFI receiver within the sound core of HOL Light

by using our formalization of Gaussian beams and quasi-optical systems. The main

component of the SHeFI receiver is the optical system which is designed to provide

the coupling of the SHeFI channels and other instruments within the telescope. The

optical layout of the receiving cabin is shown in Figure 4.4. The Points O1, O2, and O3

represent focal points, traced from the original Cassegrain focal point [70]. Here, M8s

and M10 are ellipsoidal mirrors with focal distances f2 and f1 [70], respectively. In this

situation, the Gaussian beams transformation is the best possible way to understand

the processing of light in the receiver module of the APEX telescope [70].

The main goal is to verify the system magnification which is a ratio of the

8http://www.apex-telescope.org/
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Figure 4.4: Optical Layout of the APEX Telescope Facility Receiver [70]

output and input beam waist radius, i.e.,
w0out

w0in
. This can be done by using already

verified theorems about the Gaussian beam transformation in an arbitrary Quasi-

optical system. We analyze one module of the receiving system, i.e., the gray shaded

region in Figure 4.4. Indeed this can be considered as the quasi-optical system with

the input and output distances L1 and L2 and a thin lens inside as shown in Figure

4.3. Our problem is mainly reduced to the derivation of the equivalent matrix relation

for the thin lens and then utilize Theorems 4.9 and 4.10. A thin lens is represented

as the composition of two transmitting spherical interfaces such that any variation of

the beam parameters is neglected between both interfaces. So, at the end, a thin lens

is the composition of two spherical interfaces with a null width free space in between.

We formalize a thin lens as follows:

Definition 4.12 (Thin Lens).


 ∀ R1 R2 n0 n1. thin lens R1 R2 n0 n1 =

([(n0,0),spherical transmitted R1;(n1,0),

spherical transmitted R2],(n0,0))

where R1, R2, n1, n2, represent the radius of curvatures of two interfaces and the
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refractive indices of the input and output planes, respectively. We prove that a thin

lens is indeed a valid optical system if the corresponding parameters satisfy some

constraints:

Theorem 4.11 (Valid Thin Lens).


 ∀ R1 R2 n0 n1. R1 �= 0 ∧ R2 �= 0 ∧ 0 < n0 ∧ 0 < n1 ⇒
is valid optical system (thin lens R1 R2 n0 n1)

The proof of this theorem is done automatically by our developed tactic, called

VALID OPTICAL SYSTEM TAC. Next, we verify the matrix relation of thin lens as follows:

Theorem 4.12 (Thin Lens Matrix).


 ∀ R1 R2 n0 n1. R1 �= 0 ∧ R2 �= 0 ∧ 0 < n0 ∧ 0 < n1 ⇒

system composition (thin lens R1 R2 n0 n1) =

⎡
⎢⎣ 1 0

n1 − n0

n0
(
1

R2
− 1

R1
) 1

⎤
⎥⎦

At this point, we have all the necessary ingredients to analyze the module of

interest of the SHeFI receiver as shown in Figure 4.4. We reuse the definition of

generalized quasi-optical system (Definition 4.11) to define the module as follows:

Definition 4.13 (SheFI Receiver Module).


 ∀ R1 R2 L1 L2 n1 n2.

SHeFI receiver model L1 L2 n1 n2 R1 R2 =

quasi optical system (thin lens R1 R2 n1 n2) L1 L2 n1 n2

Finally, we verify the system magnification of the SheFI receiver module as

follows:

Theorem 4.13 (APEX Beam Waist).


 ∀ gbeam L1 L2 lam n1 n2 R1 R2.

SHeFI constraints gbeam L1 L2 lam n1 n2 R1 R2 ⇒
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let f = − 1(
n2 − n1

n1

1

R2
− 1

R1

) and

(z, w0) = beam origin gbeam and

(zn, w0n) = beam end gbeam in

(1 − L1
1

f
)2 − (

1

f
(rayleigh range w0in lam))2 �= 0 ⇒

w0out
2

w0in
2

=
1(

1 − L1
1

f

)2

−
(
1

f
(rayleigh range w0in lam)

)2

where SHeFI constraints ensures the validity of SHeFI receiver model and beam

parameters. We verify the above expression using Theorems 4.12 and 4.10. Note

that Theorem 4.13 is in a general form and can further be utilized to reason about

different cases such as the input and output distances (L1 and L2) are equal to f , or

2f , in order to maximize or minimize the magnification depending upon the practical

requirements. We can easily evaluate the real values of the parameters provided

by physicists and optical engineers. Another benefit of our approach as compared to

paper-and-pencil based derivations (used in [70]) is to identify all assumptions without

which the expression for magnification does not hold.

4.6 Summary and Discussions

The mathematical modeling and analysis of many optical systems is based on the

notion of Gaussian beams due to their important properties and accurate character-

ization of light radiations. In this chapter, we proposed the formalization of Gaus-

sian beams in higher-order logic. In particular, we started with the formalization

of q-parameters which are sufficient to represent an arbitrary Gaussian beam. We

then verified that a Gaussian beam is a solution of the Paraxial Helmholtz Equation.

This required us to formalize the notion of transverse Laplacian operator along with

90



the verification of some lemmas about the complex-valued derivatives in HOL Light.

Moreover, we formally derived the generic expression for the intensity of Gaussian

beams.

We discussed our modeling approach to describe the transformation of Gaussian

beams in an optical system. We also formalized some functions specifying the valid

behavior of Gaussian beams at each optical interface. We then used these functions to

formalize the beam transformation in a series of optical systems. Indeed, we formally

proved that the classical ABCD-law of beam transformation is valid in the context

of geometrical optics. Building on top of this infrastructure, we formalized widely

used quasi-optical systems [31] and formally derived their generic properties related

to the beam parameters. Consequently, this allowed us to analyze a cost and safety

critical application, i.e., the receiver module of the the APEX telescope. The analysis

application carried out in our work is accurate due to the inherent soundness of

HOL theorem proving. Note that SHeFI constraints are not mentioned in [70],

without which Theorem 4.13 cannot be proved. This improved accuracy comes at the

cost of time and efforts spent, while formalizing the underlying theory of Gaussian

beams. But the availability of such formalized infrastructure significantly reduced

the time required to analyze quasi-optical systems and APEX telescope application.

For example, the core formalization of Gaussian beams presented in this chapter took

around 2000 lines of HOL Light code. Whereas the analysis of the application, i.e., the

modeling and verification of system magnification of the APEX receiver module took

less than 100 lines of HOL Light code and a couple of man-hours. This reduction in

the number lines of codes demonstrates the utility of our formalization for real-world

applications.

In this chapter and Chapter 3, we formalized two notions of light, i.e., rays
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and Gaussian beams. We also built a reasoning support by verifying some neces-

sary theorems to reason about real-world applications. Moreover, we applied each

formalization (i.e., rays or beams) to a particular type of optical systems. Indeed,

the analysis of vision correcting device can be performed using ray optics whereas the

analysis of telescopic receiver requires the concepts of Gaussian beams. Interestingly,

there is another type of optical systems called optical resonators that can be analyzed

using both ray optics and Gaussian beams, depending upon the properties of interest.

In the next chapter, we cover in detail the formalization of optical resonators and

corresponding properties of interest.
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Chapter 5

Formal Analysis of Optical

Resonators

In this chapter, we develop a higher-order logic formalization of optical resonators

and related properties9. The formalization is done in such a way that theorems (e.g.,

ray-transfer-matrices and ABCD-Law) proved in Chapters 3 and 4 remain valid for

any optical resonator structure. We can divide the contributions of this chapter into

four parts: 1) The generic formalization of optical resonators and their formal relation

with optical systems; 2) The development of a formal framework to verify the stability

conditions of optical and laser resonators; 3) The formalization of chaotic maps and

verification of some theorems describing the conditions (relation among the resonator

parameters) to generate chaos inside an optical resonator; 4) The applications of our

formalization which include the formal stability analysis of a Fabry-Pérot resonator

and a Ring resonator.

9The source codes of the formalizations and proofs presented in this chapter can be found in [87].
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5.1 Optical Resonators

The use of optics yields smaller components, high-speed communication and huge

information capacity. This provides the basis of miniaturized complex engineering

systems including digital cameras, high-speed internet links, telescopes and satellites.

Optoelectronic and laser devices based on optical resonators [78] are fundamental

building-blocks for new generation, reliable, high-speed and low-power optical sys-

tems. Typically, optical resonators are used in lasers [81], refractometry [83] and re-

configurable wavelength division multiplexing-passive optical network (WDM-PON)

systems [77]. An optical resonator usually consists of mirrors or lenses which are con-

figured in such a way that the beam of light is confined in a closed path as shown in

Figure 5.1. In general, resonators differ by their geometry and components (interfaces

and mirrors) used in their design. Optical resonators are broadly classified as stable or

unstable. Stability analysis identifies geometric constraints of the optical components

which ensure that light remains inside the resonator. Both stable and unstable res-

onators have diverse applications, e.g., stable resonators are used in the measurement

of the refractive index of cancer cells [83], whereas unstable resonators are used in

laser oscillators for high energy applications [81]. In the last few decades, there is an

increasing interest in studying the chaotic behavior of optical resonators [11]. In fact,

chaotic optical resonators have been used for secure and high-speed transmission of

messages in optical-fibre networks [14] and efficient light energy storage [79].

The analysis of optical resonators involves the study of infinite rays, or, equiva-

lently, an infinite set of finite rays. Indeed, a resonator is a closed structure terminated

by two reflected interfaces and a ray reflects back and forth between these interfaces.

For example, consider a simple plane-mirror resonator as shown in Figure 5.2. Let

m1 be the first mirror, m2 the second one, and f the free space in between. Then
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Figure 5.1: Optical Resonators

the analysis involves the study of the ray as it goes through f , then reflects on m2,

then travels back through f , then reflects again on m1, and starts over. So we have

to consider the ray going through the “infinite” path f,m2, f,m1, f,m2, f,m1, . . . , or,

using regular expressions notations, (f,m2, f,m1)
∗. In case of stability analysis, the

main purpose is to ensure that this infinite ray remains inside the cavity. On the other

hand, in case of chaos generation, the main idea is to reproduce a particular pattern

infinitely many times. This is equivalent to consider that, for every n, the ray going

through the path (f,m2, f,m1)
n remains inside the cavity. This allows to reduce the

study of an infinite path to an infinite set of finite paths.

Figure 5.2: Ray Behavior Inside the Resonator
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Our formalization (which is inspired by the optics literature), fixes the path

of any considered ray. Since we want to consider an infinite set of finite-path rays,

we should thus consider an infinite set of optical systems. This has been naturally

achieved by optics engineers by “unfolding” the resonator as many times as needed,

depending on the considered ray. For instance, consider again the above example of

a plane-mirror resonator: if we want to observe a ray going back and forth only once

through the cavity, then we should consider the optical system made of f,m1, f,m2;

however, if we want to study the behavior of rays which make two round-trips through

the cavity, then we consider a new optical system f,m1, f,m2, f,m1, f,m2 as shown

in Figure 5.2; and similarly for more round-trips.

In our formalization, we want the user to provide only the minimum information

so that HOL Light generates automatically the unfolded systems. Therefore, we do

not define resonators as just optical systems but we define a dedicated type for them.

In their most usual form, resonators are made of two reflecting interfaces and a list

of components in between. We thus define the following type:

new_type_abbrev("resonator",

‘:interface # optical_component list # free_space # interface‘);;

Note that the additional free space in the type definition is required because the

optical component type only contains one free space (the one before the interface,

not the one after). For example, we can model the two mirror resonator (i.e., two

plane mirrors and free space fs) of Figure 5.2 as follows:

Example 5.1 (Two Mirror Plan Resonator).


 ∀ fs.two mirror res fs = (plane,[],fs,plane):resonator

We formally prove that a variable of type resonator can be decomposed into its con-

stituents, i.e, interfaces, free space and a list of optical components:
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Theorem 5.1 (Optical Resonator Decomposition).


 ∀P. (∀res. P res) ⇔ (∀i1 cs fs i2. P (i1,cs,fs,i2))

Similar to the ray optics formalization (Chapter 3), we introduce a predicate to ensure

that a value of type resonator indeed models a real resonator:

Definition 5.1 (Valid Optical Resonator).


 ∀i1 cs fs i2.

is valid resonator ((i1,cs,fs,i2):resonator)⇔
is valid interface i1 ∧ ALL is valid optical component cs ∧
is valid free space fs ∧ is valid interface i1

In our formalization, we develop a tactic VALID RESONATOR TAC which can au-

tomatically verify the validity of an optical resonator [87]. We now present the for-

malization about the unfolding of a resonator as mentioned above. The first step in

this process is to define a function round trip which returns the list of components

corresponding to one round-trip in the resonator:

Definition 5.2 (Round Trip).


def ∀i2 i1 cs fs.

round_trip (i1,cs,fs,i2) =

APPEND cs (CONS (fs,i2)

let cs′,fs1 = optical_components_shift cs fs in

MAP (λa. sign_cor_interface a)

(REVERSE (CONS (fs1,i1) cs′))))

where APPEND is a HOL Light library function which appends two lists and REVERSE

reverses the order of elements of a list. The function optical component shift

cs fs shifts the free spaces of cs from right to left, introducing fs to the right;
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the leftmost free space which is “ejected” is also returned by the function. This

manipulation is required because unfolding the resonator entails the reversal of the

components for the return trip. The function sign cor interface takes care of the

correct sign of radius of curvature of spherical interfaces, i.e., R of convex and -R

for concave interface. Similarly, we can define the notion of half round trip which is

important in the study of chaotic optical resonators.

Definition 5.3 (Half Round Trip).


def ∀fs2 i1 cs fs1 i2.

half_round_trip (i1,cs,fs1,i2) fs2 =

APPEND (APPEND [fs2,i1] cs) [fs1,i2],&1,&0

We can now define the unfolding of a resonator as follows:

Definition 5.4 (Unfold Resonator).


 unfold resonator ((i1,cs,fs,i2):resonator) N =

list pow (round trip (i1,cs,fs,i2)) N,(head index (cs,fs),0)

where list pow L n concatenates n copies of the list L. The argument N represents

the number of times we want to unfold the resonator. Note that the output type is

optical system, therefore all the functions and theorems of Chapter 3 can be used

for an unfolded resonator.

We verify a key property which states that optical components shift always

produces a valid structure of a given optical resonator if the list of components and

free space are valid. The formal statement of this property is given in the following

theorem:
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Theorem 5.2 (Valid Optical Component Shift).


 ∀cs fs.

ALL is_valid_optical_component cs ∧
is_valid_free_space fs

⇒ (let cs′,fs′ = optical_components_shift cs fs in

ALL is_valid_optical_component cs′ ∧ is_valid_free_space fs′)

In Section 3.1, we described the functions head index and system composition which

provide the refractive index of the next optical element and composition of the ma-

trices of optical components, respectively. Here, we provide two properties of these

functions which are important to reason about optical resonators:

Theorem 5.3 (Head Index for Round Trip).


 ∀i1 cs fs i2.

head_index (round_trip (i1,cs,fs,i2),fs) =

head_index (cs,fs)

Theorem 5.4 (System Composition Append).


 ∀cs1 cs2 fs.

system_composition (APPEND cs1 cs2,fs) =

system_composition (cs2,fs) **

system_composition (cs1,head_index (cs2,fs),&0)

where Theorem 5.3 states that retrieving head index does not depend on the two

reflecting interfaces of a resonator whereas Theorem 5.4 describes the application of

system composition if the system is made of two appended component lists.

It is important to note that unfold resonator provides the unfolded resonator

structure which has the same type as of an optical system. Since an optical systems
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can be described by a matrix, unfolding a resonator is equivalent to multiplying that

matrix n-times. We prove this fact in the following theorem:

Theorem 5.5 (Unfold Resonator Matrix).


 ∀n res.

system_composition (unfold_resonator res n) =

system_composition (unfold_resonator res 1) pow n

We mainly prove this this theorem using the induction on n along with some other

already proved theorems (e.g., Theorem 5.1).

This concludes our formalization of optical resonators. In summary, we formal-

ized the basic notions for optical resonators which included the new type definition

and corresponding validity constraints and helper functions such as round trip and

unfolding of an optical resonator. The notable feature of our formalization is its

generic nature, as we can model optical resonators with any number of optical com-

ponents composed by the basic types of interfaces formalized in Section 3.1. In the

next sections, we present the formalization of resonator stability and chaotic maps.

5.2 Formalization of Optical Resonator Stability

Optical resonators are usually designed to provide high quality-factor and little at-

tenuation [78]. One of the most important design requirements is the stability, which

states that the beam or ray of light remains within the optical resonator even af-

ter N round-trips as shown in Figure 5.3 (a). The stability of a resonator depends

on the properties and arrangement of its components, e.g., curvature of mirrors or

lenses, and distance between them. In order to determine whether a given optical

resonator is stable, we need to analyze the ray behavior after many round trips. To

model N round trips of light in the resonator, engineers usually “unfold” N times
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the resonator description, and compute the corresponding ray-transfer matrix. From

the results presented in the previous section, it follows that it is equivalent to take

the ray-transfer matrix corresponding to one round-trip and then raise it to the N th

power, as shown in Figure 5.3 (b).

Figure 5.3: (a) Optical Resonator Types (b) Resonator Matrix After N Round-trips

We can now formally define the notion of stability. For an optical resonator

to be stable, the distance of the ray from the optical axis and its orientation should

remain bounded whatever is the value of N . This is formalized as follows:

Definition 5.5 (Resonator Stability).


 ∀ res.is stable resonator res ⇔ (∀(r:ray). ∃y θ. ∀N.
is valid ray in system r (unfold resonator res N) ⇒
(let yn,θn = last single ray r in abs(yn) ≤ y ∧ abs(θn) < θ))

where res and abs represent an optical resonator and absolute value of a real number,

respectively. Note that in our definition of stability, a ray is not explicitly provided

which implies that a resonator has be to stable for any injected ray.

For an arbitrary optical resonator, proving that a resonator satisfies the abstract

condition of Definition 5.5 does not seem trivial at first. However, if the determinant

of a resonator matrix M is 1 (which is the case in practice), optics engineers have
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known for a long time that having −1 < M11+M22

2
< 1 is sufficient to ensure that the

stability condition holds [78]. The obvious advantage of this criterion is that it is

immediate to check. This can actually be proved by using Sylvester’s Theorem [84],

which states that for a matrix M=
[
A B
C D

]
such that | M |= 1 and −1 < A+D

2
< 1, the

following holds:

⎡
⎢⎢⎣
A B

C D

⎤
⎥⎥⎦

N

=
1

sin(θ)

⎡
⎢⎢⎣
A sin[Nθ]− sin[(N − 1)θ] B sin[Nθ]

C sin[Nθ] D sin[Nθ]− sin[(N − 1)θ]

⎤
⎥⎥⎦

where θ = cos−1[A+D
2

]. This theorem allows to prove that stability holds under the

considered assumptions: indeed, N only occurs under a sine in the resulting matrix;

since the sine itself is comprised between −1 and 1, it follows that the components

of the matrix are obviously bounded, hence the stability. We formalize Sylvester’s

theorem as follows:

Theorem 5.6 (Sylvester’s Theorem ).


 ∀ N A B C D.

∣∣∣∣∣∣∣
A B

C D

∣∣∣∣∣∣∣ = 1 ∧ −1 < A+D
2

∧ A+D
2

< 1 ⇒

let θ = acs(A+D
2
) in⎡

⎢⎢⎣
A B

C D

⎤
⎥⎥⎦
N

= 1

sin(θ)

⎡
⎢⎢⎣
A ∗ sin[Nθ]− sin[(N− 1)θ] B ∗ sin[Nθ]

C ∗ sin[Nθ] D ∗ sin[Nθ]− sin[(N− 1)θ]

⎤
⎥⎥⎦

We prove Theorem 5.6 by induction on N and using the fundamental properties of

trigonometric functions, matrices and determinants. This allows to derive now the

generalized stability theorem for any resonator as follows:
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Theorem 5.7 (Stability Theorem).


 ∀ res. is valid resonator res ∧
(∀ N. let M = system composition (unfold resonator res 1) in

det M = 1 ∧ -1 <
M1,1+M2,2

2
∧ M1,1+M2,2

2
< 1) ⇒

is stable resonator res

where Mi,j represents the element at column i and row j of the matrix. The for-

mal verification of Theorem 5.7 requires the definition of stability (Definition 5.5)

along with Theorem 5.6 (Sylvester’s theorem) and Theorem 5.5. We also require to

prove that an unfolded resonator remains structurally valid, as given in the following

theorem:

Theorem 5.8 (Valid Unfold Resonator).


 ∀ res. is_valid_resonator res ⇒
(∀ n. is_valid_optical_system (unfold_resonator res n))

Note that our stability theorem (Theorem 5.7) is quite general and can be used

to verify the stability of almost all kinds of optical resonators. In the next section,

we present the formalization of chaotic maps and chaos generation inside optical

resonators.

5.3 Formalization of Chaos in Optical Resonators

Chaos is a special behavior which is usually observed in dynamical systems where the

output response posses a sensitive behavior for minor changes in the initial conditions

or system parameters. A chaotic map is a dynamic function that exhibits chaotic

behavior. Generally, chaotic maps can be discrete-time or continuous-time. In recent
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times, chaotic behaviors have been studied in almost all fields of science and engineer-

ing, e.g., electrical circuits, chemical, biological and mechanical systems. In optics,

the phenomena of chaos is concerned with the dynamic nature of light. For example,

chaos can be found in the output of a laser diode and the fluctuations of light inside

an optical cavity or resonator [79]. Even though chaotic systems are unpredictable

but they can be used for many important performance improvements, e.g., chaos in

optical systems has been used for secure and high-speed transmission of messages in

optical-fibre networks [14], efficient light energy storage [79] and fast random number

generation [88].

In this section, our main focus is to formalize the notion of chaos in optical res-

onators. The main idea behind this is to find the conditions in terms of the parameters

of the resonators so that the trapped light follows some chaotic map. For example,

Duffing Map and Tinker Bell Map are two important two-dimensional discrete-time

chaotic maps [11], given as follows:

yn+1 = θn

θn+1 = −βyn + α(θn)
3

(5.1)

yn+1 = (y0 + α) ∗ yn + (−θn + β) ∗ θn
θn+1 = (2 ∗ θn + γ) ∗ yn + δ ∗ θn

(5.2)

Equation (5.1) represents the Duffing Map while Equation (5.2) represents the Tinker

Bell Map. Note that yn and θn are the scalar state variables and α, β, γ, and δ

represent the map parameters.

The half round trip of an optical resonator provides the ray path from one termi-

nating optical interface to the other as formalized in Definition 5.3. Mathematically,

an optical resonator is considered to be chaotic if a ray follows a particular chaotic

map after every half round trip. We formalize the notion of chaotic resonator as
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follows:

Definition 5.6 (Chaos in Resonator).


 ∀ res map fs. is chaos in resonator res map fs ⇔
(∀ ray. is valid ray in system ray (half round trip res fs)

⇒ (let y0, θ0 = fst single ray ray

and yn, θn = last single ray ray in

map (y0, θ0) (yn, θn)))

where resonator, map and fs represent an optical resonator (:resonator), a chaotic

map (:A → bool) and a free space, respectively. Our definition of chaotic resonator

is general and can be used to model any kind of optical resonator and any type

of corresponding two-dimensional chaotic map. We formalize the Duffing Map and

Tinker Bell Map in HOL Light as follows:

Definition 5.7 (Duffing Map).


 ∀ y0 θ0 y1 θ1 α β.

duffing map (y0, θ0) (y1, θ1) α β ⇔
y1 = θ0 ∧ θ1 = −β ∗ y0 + (α − θ0 ∗ θ0) ∗ θ0

Definition 5.8 (Tinker Bell Map).


 ∀ y0 θ0 y1 θ1 α β γ δ.

tinker bell map (y0, θ0) (y1, θ1) α β γ δ ⇔
y1 = (y0 + α) ∗ y0 + (−θ0 + β) ∗ θ0
θ1 = (2 ∗ θ0 + γ) ∗ y0 + δ ∗ θ0

We next formally derive the Duffing Map generation conditions for an arbitrary

optical resonator. We start by proving that a Duffing Map can be represented in a

matrix-vector form as follows:
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Theorem 5.9 (Duffing Map Matrix Form).


 ∀ y0 θ0 y1 θ1 α β.

duffing map (y0, θ0) (y1, θ1) α β ⇔⎡
⎢⎣ y1

θ1

⎤
⎥⎦ = duffing map matrix α β θ0 **

⎡
⎢⎣ y0

θ0

⎤
⎥⎦

where duffing map matrix is defined as follows:

Definition 5.9 (Duffing Matrix).


 ∀ α β θ0.

duffing map matrix α β θ0 =

⎡
⎢⎢⎣

0 1

−β (α − θ0 ∗ θ0)

⎤
⎥⎥⎦

Finally, we can prove the chaos generation inside an optical resonator in the following

theorem:

Theorem 5.10 (Duffing Map Conditions).


 ∀ res fs α β.

(∀ θ0. system composition (res half round trip res fs) =

duffing map matrix α β θ0) ∧
is valid free space fs ∧
is valid resonator res ⇒
is chaos in resonatorres (λ(y0, θ0) (y1, θ1).

duffing map (y0, θ0) (y1, θ1) α β) fs

where the first assumption ensures that the ray-transfer matrix of a half round trip

should be equivalent to the matrix of Duffing Map, i.e., ray after each half round

trip should follow the duffing map. The second and third assumptions ensure the

valid architecture of a given resonator (res). We mainly prove this theorem using
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Theorem 3.6 which states that any optical system can be described by a matrix and

the following theorem, stating the validity of a half round trip of a resonator:

Theorem 5.11 (Valid Half Round Trip).


 ∀ fs res.

is_valid_free_space fs ∧
is_valid_resonator res ⇒
is_valid_optical_system (half_round_trip res fs)

We conclude here the formalization for chaos generation in optical resonators.

Note that the conditions derived in (Theorem 5.10) are general and can be utilized for

arbitrarily complex optical resonators. We demonstrate the use of this formalization

in the next section.

5.4 Applications

In this section, we consider two real-world optical resonators namely the Fabry Pérot

resonator with a fiber rod lens and a ring resonator. We utilize our formalization of

optical resonators, stability and chaos in optical resonators to formally verify the sabil-

ity conditions for the Fabry Pérot resonator and chaotic map generation conditions

for the ring resonators.

5.4.1 Formal Stability Analysis of Fabry Pérot Resonator

In order to bring optics technology to the market, a lot of research has been done

toward the integration of low cost, low power and portable building blocks in optical

systems. One of the most important such building blocks is the Fabry Pérot (FP)

resonator [78]. Originally, this resonator was used as a high resolution interferometer
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in astrophysical applications. Recently, the FP resonator has been realized as a mi-

croelectromechanical (MEMS) tuned optical filter for applications in reconfigurable

Wavelength Division Multiplexing [77].

Due to diverse applications of FP resonators, different architectures have been

proposed in the open literature. The main limitation of traditional designs is the

instability of the resonators which prevents their use in many practical applications

(e.g., refractometry for cancer cells). Recently, a state-of-the-art FP core architecture

has been proposed which overcomes the limitations of existing FP resonators [65, 63].

In the new design, cylindrical mirrors are combined with a fiber rod lens (FRL) inside

the cavity, to focus the beam of light in both transverse planes as shown in Figure

5.4 (a). The fiber rod lens is used as light pipe which allows the transmission of

light from one end to the other with relatively small leakage. Building a stable FP

resonator requires the geometric constraints to be determined in terms of the radius

of curvature of mirrors (R) and the free space propagation distance (dfree space) using

the stability analysis.

The design shown in Figure 5.4 (a) has a 3-dimensional structure. We can

still apply the ray-transfer-matrix approach presented in Section 5.2 to analyze the

stability by dividing the given architecture into two planes, i.e., XZ and YZ planes.

Now, the stability problem becomes a couple of planar problems which are still valid

since the ray focusing behaviors in both directions (XZ and YZ) are decoupled. This

is merely a consequence of the decomposition of Euclidean space vectors into a basis.

This can be seen in Figures 5.4 (b) and 5.4 (c), where the resonator is divided into

two cross-sections.
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Figure 5.4: FP Resonator with FRL (a) 3-Dimensional Resonator Design (b) Cross-
Section view in the XZ Plane (c) Cross-Section view in the YZ Plane [65]

Stability Constraints in XZ-Plane

In the XZ cross-section (Figure 5.4 (b)), the focusing is done by the curved mirrors.

The fiber rod lens acts as a refracting slab with width df and refractive index nf . A

ray that makes a round-trip in the cavity undergoes (from left to right) the following

steps:

• Propagation through free space of length dx and refractive index 1.

• Refraction from free space to the fiber rod lens.

• Propagation within the fiber rod lens of length df and refractive index nf .

• Refraction from the fiber rod lens to free space.

• Reflection from the spherical interface.

We formally model this system as follows:
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Definition 5.10 (Formal Model of FP-FRL in XZ Plane).


def ∀nf df dx R.

fp_frl_resonator_xz R dx df nf =

spherical_reflected R,

[(1,dx),plane_transmitted; (nf,df),plane_transmitted],

(1,dx),spherical_reflected

The function fp frl resonator xz takes following parameters: radius of curvature

of mirror (R), free space length (dx), length of fiber rod lens (df) and refractive

index (nf) and returns an optical resonator. We check the validity of the model

fp frl resonator xz under realistic geometric constraints, such as the fact that the

refractive index (nf) and lengths of free space propagation (dx and df) should be

greater than 0.

Theorem 5.12 (Validity of FP-FRL in XZ-Plane).


 ∀R dx df nf.

¬(R = 0) ∧ 0 < dx ∧ 0 < df ∧ 0 < nf ⇒
is_valid_resonator (fp_frl_resonator_xz R dx df nf)

We next verify the equivalent matrix expression of the FP resonator in the XZ

plane as follows:

Theorem 5.13 (Matrix for FP-FRL in XZ-Plane).


 ∀ R dx df nf. 0 < dy ∧ 0 < df ∧ 0 < nf ⇒
system composition (fp frl resonator xz R dx df nf) =⎡

⎢⎢⎣
1− 2 ∗ (df + 2∗dx∗nf)

nf∗R 2 ∗ dx + df
nf

−2
R

1

⎤
⎥⎥⎦

The verification of this theorem is mainly based on rewriting with the definitions
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followed by an automated simplification tactic common prove described in Section

3.3. The following theorem is then easy to prove by making use of the results already

obtained in Sections 3.4 and 5.2.

Theorem 5.14 (Ray-Transfer-Matrix Model in XZ-Plane).


 ∀ R dx df nf. R �= 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf ⇒
(∀ ray.is valid ray in system ray (fp frl resonator xz R dx df nf)

⇒ let (y0,θ0),(y1,theta1),rs = ray in

(yn,θn) = last single ray ray in⎡
⎢⎣ yn

θn

⎤
⎥⎦ = system composition (fp frl resonator xz R dx df nf)**

⎡
⎢⎣ y0

θ0

⎤
⎥⎦)

where last single ray is a function that takes a ray as input and returns the last

pair (distance from the optical axis y and the orientation θ) of the ray. Finally, we

formally verify the stability of the FP resonator in the XZ plane as follows:

Theorem 5.15 (Stability in XZ-Plane).


 ∀ R dx df nf. R �= 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf

0 <
2 ∗ dx+ df

nf
R

∧
2 ∗ dx+ df

nf
R

< 2 ⇒
is stable resonator (fp frl resonator xz R dx df nf)

where the first four assumptions just ensure the validity of the model description. The

following two provide the intended stability criteria. The verification of Theorems 5.15

requires Theorems 5.14 and 5.7 along with some fundamental properties of matrices

and arithmetic reasoning.

Stability Constraints in YZ-Plane

In the YZ cross-section (Figure 5.4 (c)), the curved mirrors become straight mirrors

and the fiber rod lens acts as a converging lens. In this case, a ray that makes a
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round-trip in the cavity undergoes (from left to right) the following steps:

• Propagation through free space of length dy and refractive index 1.

• Refraction through the curved interface with radius of curvature
df
2
.

• Propagation through a free space of length dy.

• Refraction through the curved interface with radius of curvature −df
2
.

• Propagation through free space of length dy and refractive index 1.

• Reflection from the plane interface.

We formally model this system description as follows:

Definition 5.11 (FP-FRL Resonator in YZ-Plane).


def ∀dy nf df.

fp_frl_resonator_yz dy nf df =

plane_reflected,

[(1,dy),spherical_transmitted (df / 2);

(nf,df),spherical_transmitted (−df / 2)],(1,dy),

plane_reflected

where the function fp frl resonator yz takes as parameters the free space of length

(dy), the length of fiber rod lens (df) and the refractive index (nf) and returns an opti-

cal resonator. We verify that fp frl resonator yz indeed represent a valid resonator

architecture as follows:

Theorem 5.16 (Validity of FP-FRL in YZ-Plane).


 ∀dy nf df.

0 < dy ∧ 0 < df ∧ 0 < nf ⇒
is_valid_resonator (fp_frl_resonator_yz dy nf df)
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We next verify the equivalent matrix expression for the FP resonator in the YZ

plane as follows:

Theorem 5.17 (Matrix for FP-FRL in YZ-Plane).


 ∀ dy df nf. 0 < dy ∧ 0 < df ∧ 0 < nf ⇒
system composition (fp frl resonator yz dy df nf) =⎡

⎢⎢⎣
−df∗(−2 + nf) + 4∗dy∗(−1 + nf))

df ∗ nf

(df + 2∗dy) ∗ (df − 2∗dy∗(−1 + nf))
df ∗ nf

4 − 4∗nf
df ∗ nf

−df∗(−2 + nf) + 4∗dy∗(−1 + nf)
df ∗ nf

⎤
⎥⎥⎦

Finally, we formally verify the stability of the FP resonator in the YZ plane as follows:

Theorem 5.18 (Stability in YZ-Plane).


 ∀ dy df nf. 0 < dy ∧ 0 < df ∧ 0 < nf

0 < 1 − 2

nf
+ (4 ∗ dy

df
) ∗ (1− 1

nf
) ∧ 1 − 2

nf
+ (4 ∗ dy

df
) ∗ (1− 1

nf
) < 1

⇒ is stable resonator (fp frl resonator yz dy df nf)

The first three assumptions just ensure the validity of the model description. The

two following ones provide the intended stability criteria. The formal verification of

Theorem 5.18 requires Theorems 5.17 and 5.7 along with some fundamental properties

of matrices.

It is important to note that for the case of the FP resonator with fiber rod lens,

we have obtained two sets of stability constraints, i.e., one in the XZ plane (Theorem

5.15) and another in the YZ plane (Theorem 5.18). In fact, the resonator can be

stable in one plane and unstable in the other. Therefore, the stability constraints in

both planes have to be satisfied. In real-world scenarios, the most fundamental step is

to find the allowable values of the parameters associated with the resonators such as

radius of convergence and the width of free space. The verification of above theorems

has been done in a generic form, i.e., we derive the stability constraints for arbitrary
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values of R, dx, df and nf . This is one of the main advantages of theorem proving

based stability analysis of optical resonators.

Automated Tactic for Stability Ranges

We further demonstrate the strength of our approach by the verification of stability

constraints used as the guidelines for the fabrication of FP resonators, reported in

[64]. In the design, it is considered that dx = dy = d and the values of nf and

df are fixed and equal to 1.47 and 125μm, respectively. The main goal is to find

the ranges of d where the resonator is stable in both planes. We developed a tactic

(STABILITY PROVE TAC) which can automatically verify that the resonator is stable

under the given range of parameters. For example, one particular case given as follows:

Input:

STABILITY_PROVE_TAC ‘

(d IN real_interval (#27.5 * #0.000001,#35 * #0.000001)

==> is_stable_resonator (FP_XZ_RES d))‘;;

Output:

CPU time (user): 4.878

val it : thm =

|- d IN real_interval (#27.5 * #0.000001,#35 * #0.000001)

==> is_stable_resonator (FP_XZ_RES d)

Table 5.1 provides the typical dimensional ranges, corresponding to different

practical situations: in the first case, stability is not reached at all, in the second case,

we have stability along the X axis and instability along the Y axis, in the third case,

we have instability along the X axis and stability along the Y axis. In the fourth case,

we fulfill the stability conditions along both X and Y axis.

114



Table 5.1: Stability Ranges for FP Resonator

R(μm) d(μm) Stability in XZ Plane Stability in YZ Plane

140 133 < d NO NO
140 (27.5, 35) YES NO
140 (97.5, 132.9) NO YES
140 (38, 97) YES YES

5.4.2 Chaos Generation Conditions for Ring Resonators

In the last few decades, optical phase conjugation (OPC) has been widely studied

in lasers and nonlinear optics [20]. Physically, an OPC describes the relation among

light beams propagating in opposite directions with reversed wave front and identical

transverse amplitude distributions. The main applications of phase conjugation are

the high-brightness laser oscillator/amplifier systems, laser target-aiming systems,

long distance optical fiber communications with ultra-high bit-rate. In this section,

we consider a ring resonator based OPC [11] which mainly involves the study of two-

dimensional chaotic maps. This is usually done by placing an intracavity element

which is responsible of generating a particular chaotic map whose state is determined

by its previous state. Our main intent is to formally show that the introduction of a

specific element within a ring-phase-conjugated resonator can produce a Duffing Map

inside the resonator.

The architecture of ring-phase conjugated resonator consisting of two plane mir-

rors, a phase conjugate mirror along with an unknown optical element is shown in

Figure 5.5. As described in Section 3.1, our datatype for optical interfaces is general

and we can model an unknown element by a matrix [a,b,c,d]. The half round-trip of

a ray is based on the following steps:

• Propagation through free space of length L
2
and refractive index n.
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• Propagation through an unknown element which has parameters, a, b, c and d.

• Propagation through free space of length L
2
and refractive index n.

• Reflection from plane mirror.

• Propagation through free space of length L and refractive index 1.

• Reflection from phase conjugated mirror (PCM).

• Propagation through free space of length L and refractive index 1.

Figure 5.5: Phase Conjugated Ring Resonator

We formally define the structure of a phase-conjugated ring resonator as follows:

Definition 5.12 (Phase Conjugated Ring Resonator).


def ∀ a b c d n L.

ring_resonator a b c d L n =

plane_reflected,

[(n,L/2),unknown a b c d; (n,L/2),plane_reflected],(n,L),

pcm
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where a, b, c and d represent the parameters of the unknown component whereas n

and L represent the refractive index and length of the free space, respectively. We

first verify the validity of the ring resonator as follows:

Theorem 5.19 (Valid Ring Resonator).


 ∀ n L.

0 < n ∧ 0 ≤ L ⇒
is_valid_resonator (ring_resonator a b c d L n)

The proof of this theorem is automatically done by the tactic VALID RESONATOR TAC

[87].

At this point, we have already developed the formal model of the ring resonator

along with the verification of its structural constraints. Our ultimate goal in the

analysis of this resonator is to formally derive the conditions on a, b, c and d, so

that the rays inside the resonator follows the duffing map. This leads to the following

theorem:

Theorem 5.20 (Chaos Generating Conditions for Ring Resonator).


 ∀ n L α β.

( ∀ θ0. a = − (3∗β∗L)
2

∧
b = 1

4
∗ (4+ 6 ∗ α ∗ L+ 9 ∗ β ∗ L ∗ L− 6 ∗ L ∗ θ0 ∗ θ0) ∧

c = β ∧ d = −α− 3
2
∗ L ∗ β + θ0 ∗ θ0) ⇒

is chaos in resonator (ring resonator a b c d L n)

(λ(y0, θ0) (y1, θ1).duffing map (y0, θ0) (y1, θ1) α β) (n, L)

The proof of this theorem is mainly based on Theorems 5.10 and 5.19.

In this application, we formally proved that the introduction of a particular

map generating device in a ring optical phase-conjugated resonator can generate a

ray with the behavior of a specific two-dimensional chaotic map (e.g., Duffing Map).
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In particular, we explicitly derived the conditions on the unknown component [a,b,c,d]

which are necessary to produce the Duffing Map inside the resonator. The procedure

described in this section can be used to derive similar conditions for other chaotic

maps such as Tinker Bell Map.

5.5 Summary and Discussions

In this chapter, we described the formalization of optical resonators in HOL Light. We

discussed the classical structure of optical resonators along with some analysis tech-

niques. We used the ray optics theory to formalize the notions of optical resonators

and some commonly used functions, e.g., round trip and unfolding of the resonator.

We then formalized two important concepts, i.e., stability and chaotic maps gener-

ation in optical resonators. In particular, we developed a procedure to verify the

stability constraints for arbitrary optical resonators. Similarly, we formalized the no-

tion of chaotic resonators and some commonly used two-dimensional chaotic maps,

i.e, Duffing Map and Tinker Bell Map. In order to strengthen theorem proving based

analysis of optical resonators, we formally verified generic theorems stating impor-

tant physical and mathematics concepts. For example, we proved that unfolding of

a resonator is equivalent to composing the ray-transfer matrix of the round trip of

that resonator. We verified the generic stability theorem which is valid for any type of

optical resonator in the context of geometrical optics. On the similar lines, we verified

the generic conditions to produce Duffing Map inside an optical resonator.

We demonstrated the use of our formalization by analyzing some real-world op-

tical resonators: 1) The stability analysis of a two-dimensional FP resonator with

fiber rod lens. This included a detailed verification of the stability constraints in XZ

and YZ plane. We also automatized the procedure for the verification of the stability
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ranges for FP resonators. 2) Formal verification of the chaos generating conditions for

optical phase-conjugated ring resonator. Mainly, we verified the analytical expressions

for the parameters of the unknown component in ring resonators which are required

to produce a Duffing Map. Moreover, we formally analyzed a couple of other impor-

tant resonator architectures such as FP resonators with curved mirrors and Z-shaped

resonators. For the sake of conciseness, we omitted the details of the analysis of these

two resonators where more details can be found in the source code of our develop-

ment [87]. The overall development presented in this chapter took around 1500 lines

of HOL code which has been significantly reduced as compared to our initial develop-

ment. The main reason behind this reduction is the development of automated tactics

and our experience of formalizing geometrical optics (Chapter 3). Interestingly, the

formal analysis of the applications required very less time and verification efforts as

compared to the original formalization of optical resonators, stability and chaotic res-

onators. For example, the analysis of the phase-conjugated ring resonators took only

20 lines of HOL Light code which demonstrates the strength of our formalization.

It is important to note that all the theorems in our formalization are verified

under universal quantification of systems parameter (e.g., radius of curvature and

width of free space) unlike the other numerical approaches (e.g., reZonator [75], a

numerical analysis software for resonators) where the results hold only for specific

values of these parameters. The main benefit of formal proofs is that all the underlying

assumptions can be seen explicitly and proof-steps can be verified mechanically using

a theorem prover. In spite of the fact that our approach requires significant time to

formalize the underlying theories of optics, we believe that our formal development

can replace some time consuming simulations and error-prone paper-and-pencil based

proofs. For example, verification of the optical resonator stability is time consuming
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because of the involvement of infinite set of rays. On the other hand, resonator

stability can be verified in a very short time using the infrastructure developed in

this chapter. Lastly, it is worth mentioning that the formal stability analysis of the

FP resonator with fiber rod lens allowed us to find some discrepancy in the paper-

and-pencil based proof approach presented in [65]. Particularly, the order of matrix

multiplication in Equations (16) and (24) in [65] should be reversed, so as to obtain

correct stability constraints. This is one of the main strengths of theorem proving

where the soundness is assured for every step during the proof of system properties.

At this point, we have covered all parts of our proposed framework (Figure 1.2)

for the analysis of geometrical optics. In the next chapter, we conclude this thesis

and highlight some future research directions.

120



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Optical systems are widely used in safety-critical applications such as aerospace,

telecommunication and biomedical systems. The verification of such systems is usually

performed by informal techniques (e.g., numerical simulation and paper-and-pencil

based proofs) which may result in erroneous designs. In the last decade, formal meth-

ods have been used to overcome the above mentioned limitations for the verification

of a variety of hardware and software systems. However, the use of formal methods,

in particular theorem proving, in the analysis of optical systems is very rare and does

not support the notions of geometrical optics. In this thesis, we proposed to lever-

age upon the soundness and accuracy of higher-order-logic theorem proving for the

analysis of geometrical optics. The main contribution of the proposed framework for

geometrical optics is two-fold: First, the facility to formally model optical systems

in a systematic way without any restriction on the number of optical components.

Second, the development of an infrastructure to reason about the properties of rays

and beams including the formalization of commonly used mathematical models for
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optical components.

Towards the development of the proposed framework, we formalized the notions

of rays and beams along with fundamental optical interfaces and components. We

then formalized the mathematical concepts behind the propagation of ray and beams

in arbitrarily complex optical systems. We used this infrastructure to build the dedi-

cated HOL theories of optical resonators, optical imaging systems and Quasi-optical

systems. During the course of this formalization, we have also made efforts to provide

effective automation using derived rules and tactics, so that the application to a par-

ticular system does not involve the painful manual proofs often required for interactive

(higher- order logic) theorem proving systems.

We demonstrated the strength of our proposed framework by conducting the

formal analysis of several important and widely used practical systems. To illustrate

the use of our framework in the domain of biomedical systems, we carried out the

formal analysis of an optical instrument (ophthalmic device) used to compensate the

ametropia of an eye. Optical resonators are widely used in micro-electromechanical

system (MEMS), tuned optical filters and optical bio-sensing devices. Considering

these critical applications, we formally analyzed three application architectures of

Fabry Pérot resonators, i.e., non-symmetric, symmetric and two-dimensional fiber

rod lens (FRL) induced cavity. Moreover, we formally verified the chaos generating

conditions of a generic optical phase-conjugated ring resonator. Finally, we utilized

the generic formalization of quasi-optical systems to analyze the receiver module of

the real-world Atacama Pathfinder Experiment (APEX) telescope.

The formal analysis of geometrical optics along with the above mentioned real-

world applications provide some thoughtful indications: theorem proving systems have

reached to the maturity, where complex physical models can be expressed with less
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efforts than ever before; and formal methods can assist in the verification of futuristic

optical systems which are largely becoming the part of critical applications such as

military setups, biomedical surgeries and space missions. Indeed the use of formal

methods is more important in the applications, where failures directly lead to safety

issues such as in aerospace and biomedical devices. For example, the mission man-

agement system of Boeing F/A-18E is linked using a optics technology [89]. However,

the question of the utilization of higher-order-logic theorem proving in an industrial

settings (particularly, physical systems) still persists due to the huge amount of time

required to formalize the underlying theories. We believe that an important factor

is the gap between the theorem proving and engineering communities which limits

its usage in industrial settings. For example, it is hard to find engineers (or physi-

cists) with theorem proving background and vice-versa. One of the several solutions

to tackle this issue is the continuous formal development of optics theories including

the libraries of the most frequently used optical components and devices which can

ultimately reduce the cost of using formal methods (particularly theorem proving) as

an integral part of the physical systems design and verification. The work presented

in this thesis can be considered as a one step towards this goal with more efforts

to follow in the same or closely related disciplines such as quantum optics, photonic

signal processing and optoelectronics.

6.2 Future Work

Geometrical optics is the most fundamental theory of optics which can be used to

study some important physical aspects of optical and laser systems. Indeed, almost

all optical design analysis tools provide the facility to analyze geometrical optics based

models. The formalization and verification results, presented in this thesis, can be
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used as a complementary approach to less accurate numerical programs and traditional

paper-and-pencil based proofs. In the following, we list some future research directions

based on our experience and lessons learned during the course of this thesis:

• The work presented in this thesis involves interactive proofs where we needed

to supply most of the proof steps to the HOL Light theorem prover. Moreover,

sometimes we needed to do the similar proof steps for different theorems which

was a cumbersome activity. Recently, a learning-assisted automated reasoning

support, HOLyHammer (HH) [51] has been developed for HOL Light, which

can also be applied to our formalization to see the future of such automation

tools for optics and physics formalization. Indeed, we already performed some

experiments to evaluate its efficiency on the formalization of ray optics [52].

The performance of HH was 45% (217 problems solved out of 482 problems) in

the fully automated mode when the relevant premises are chosen automatically

by machine learning, and seven different combinations of premise selection and

automated theorem provers (ATPs) were needed for this [52]. We believe that

developing a dedicated automated reasoner for optics formalization is an inter-

esting direction of research. This can further open the door to interdisciplinary

research among the formal methodists and physicists.

• The use of higher-order logic theorem proving only ensures the accuracy of the

analysis steps as every formal proof can be traced back to the fundamental

axioms and inference rules of mathematics. However, the formal analysis of

real-world systems involves mathematical models which usually represent an

approximated behavior of physical phenomena. In order to formally treat the

approximations made by physicists, we need to consider non-standard analysis

and asymptotic notations. For example, small angle approximation (or paraxial
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approximation) entails that sin(θ) ≈ θ, and it can be treated using asymptotic

notations. Interestingly, both non-standard analysis [29] and asymptotic no-

tations [15] are available in Isabelle/HOL [69]. Our work can be extended by

using these concepts which will bring more rigor to the formal models of optical

systems. Similar concepts can also be used to formally prove that ray optics

models are approximations of wave and electromagnetic optics models.

• It is possible to improve the traditional stability analysis method by handling

infinite paths of rays by working directly with all possible paths of a ray, and

thus avoiding the use of unfolding. In particular, this requires a more general

treatment of optical interfaces without explicitly mentioning their behavior, i.e.,

transmitted or reflected. This is a very interesting direction of research since it

would even go beyond what optics engineers currently do.

• In the optics literature, many systems other than geometrical optics can also be

modeled based on the transfer-matrix approach. Some examples of such systems

are periodic optical systems [81], frequency division multiplexing/demultiplexing

[22] and polarization based optical systems [86]. The formalization process de-

scribed in this thesis can be used as a guide for the formal analysis of above

mentioned systems. It may require some modifications about new datatypes for

underlying components and corresponding physical behavior. For example, the

analysis of polarization requires the formalization of different types of polarizers

(e.g., linear polarizer for x and z direction) along with the formalization of Jones

and Muller calculus [48].
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