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Abstract

Secure Protocols for Privacy-preserving Data Outsourcing, Integration, and Auditing

Gaby Dagher, Ph.D.

Concordia University, 2016

As the amount of data available from a wide range of domains has increased tremendously in recent

years, the demand for data sharing and integration has also risen. The cloud computing paradigm

provides great flexibility to data owners with respect to computation and storage capabilities, which

makes it a suitable platform for them to share their data. Outsourcing person-specific data to the

cloud, however, imposes serious concerns about the confidentiality of the outsourced data, the pri-

vacy of the individuals referenced in the data, as well as the confidentiality of the queries processed

over the data. Data integration is another form of data sharing, where data owners jointly perform

the integration process, and the resulting dataset is shared between them. Integrating related data

from different sources enables individuals, businesses, organizations and government agencies to per-

form better data analysis, make better informed decisions, and provide better services. Designing

distributed, secure, and privacy-preserving protocols for integrating person-specific data, however,

poses several challenges, including how to prevent each party from inferring sensitive information

about individuals during the execution of the protocol, how to guarantee an effective level of privacy

on the released data while maintaining utility for data mining, and how to support public auditing

such that anyone at any time can verify that the integration was executed correctly and no partic-

ipants deviated from the protocol. In this thesis, we address the aforementioned concerns by pre-

senting secure protocols for privacy-preserving data outsourcing, integration and auditing. First, we

propose a secure cloud-based data outsourcing and query processing framework that simultaneously

iii



preserves the confidentiality of the data and the query requests, while providing differential privacy

guarantees on the query results. Second, we propose a publicly verifiable protocol for integrating

person-specific data from multiple data owners, while providing differential privacy guarantees and

maintaining an effective level of utility on the released data for the purpose of data mining. Next,

we propose a privacy-preserving multi-party protocol for high-dimensional data mashup with guar-

anteed LKC -privacy on the output data. Finally, we apply the theory to the real world problem

of solvency in Bitcoin. More specifically, we propose a privacy-preserving and publicly verifiable

cryptographic proof of solvency scheme for Bitcoin exchanges such that no information is revealed

about the exchange’s customer holdings, the value of the exchange’s total holdings is kept secret,

and multiple exchanges performing the same proof of solvency can contemporaneously prove they

are not colluding.
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Chapter 1

Introduction

1.1 Motivation

Sharing and integrating interrelated data from different sources has become critical in many contexts,

such as sharing data between scientific researchers, identifying fraudulent insurance claims, epidemic

monitoring and forecasting, and fighting terrorism. Data sharing and integration enables individuals,

businesses, organizations and government agencies to perform better data analysis, make better

informed decisions, and provide better services. In a recent report 1 that analyzes the services of

the health and human services agencies, it is estimated that the U.S. government loses $342 billion

every year in improper payments due to the lack of integration of patient information with other

key data such as quality and cost.

One common approach for data sharing is data outsourcing to the cloud. The cloud computing

paradigm is a new computing platform that enables data owners to have access to large-scale com-

putation and storage at an affordable price. Data-as-a-service (DaaS) is one of the cloud computing

services that facilitates the hosting and managing of large-scale databases on the cloud. DaaS is a
1http://www.businesswire.com/news/home/20150817005163/en/Health-Human-Services-Agencies-Squander-

342B-Annually
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compelling service for data owners, as they no longer need to invest in hardware, software and oper-

ational overhead. Despite all these benefits, data owners are reluctant to adopt the DaaS model, as

it requires outsourcing their person-specific data to an untrusted cloud service provider, which raises

several major concerns. The first concern is how to protect the confidentiality of the data while

being stored on the cloud. More specifically, how to prevent the cloud service provider (and other

tenants who share the cloud resources, services and physical infrastructure) from gaining access to

the raw data. The second concern is how to enable the cloud to process queries on the stored data

while revealing nothing about the queries to the cloud. The third concern is how to protect the pri-

vacy of the individuals whose personal information is stored in the outsourced data, and ensure that

the query results cannot be used to either identify an individual or to reveal sensitive information

about him. Typically, the data is de-identified before it is uploaded to the cloud such that direct

identifying information about the individuals has been removed. However, the de-identification the

data does not prevent record/attribute linkage attacks, as was shown in the cases of AOL [BZ06]

and Netflix [NS08]. Hence the strong demands for advanced privacy protection techniques, such as

privacy-preserving data publishing (PPDP), a mechanism for publishing person-specific data such

that useful information can be obtained from the published data while preserving the privacy of

individuals.

On the other hand, integrating person-specific data in a distributed environment for the purpose

of sharing the resulting dataset raises several concerns, some of which are analogous to the those

in data outsourcing. The first concern is about protecting the privacy of the individual in the

data being integrated such that the resulting integrated data cannot be used by any party to learn

sensitive information about individuals. The second concern is how to make sure the integration

process is secure and privacy-preserving. That is, how to ensure that all data owners adhere to their

integration instructions while not being able to learn any useful information about other parties’

data. The third concern is how to perform the integration such that the integrated data maintains

certain level of useful information for data mining and analysis.
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Table 1: Summary of the thesis contributions

Protocols

Data Sharing Model Adversarial Model Data Type Privacy Model

Data
Outsourcing

Data
Integration

Semi-
Honest

Malicious with
Public Verifiability

Relational
Data

Set-Valued
Data

Differential
Privacy

LKC
Privacy

SecDM (Chapter 4) � � � �
SecSVD (Chapter 5) � � � �
Fusion (Chapter 6) � � � �
Provisions (Chapter 7) � �

In the context of data sharing and integration, especially when dealing with person-specific data,

it is often required to have an auditing mechanism in place to verify the correct execution of the

data sharing and integration protocol. For example, the U.S. Health Information Technology for

Economic and Clinical Health Act (HITECH) requires the Department of Health & Human Services

(HHS) to periodically audit covered entities and business associates to ensure their compliance with

the HIPAA Privacy, Security, and Breach Notification Rules 2. During the execution of a protocol in

untrusted environment, participants must prove they are following the protocol at each step. This

auditing mechanism is called private verifiability, where the produced proofs may only convince

the other participants in the protocol by being contingent on their interactions and/or individual

secrets. On the other hand, public verifiability, a higher standard than private verifiability, enables

any internal or external party at any time to verify that the protocol was executed correctly.

1.2 Contributions

To address the aforementioned challenges related to person-specific data sharing and integration,

we study the problem of privacy-preserving data outsourcing, integration, and auditing and propose

protocols for achieving that securely. Table 1 summarises different characteristics of the proposed

protocols. The key contributions of this thesis are summarized as follows.

1.2.1 SecDM: Secure and Privacy-preserving Data Outsourcing

Recall that Data-as-a-service (DaaS) is a cloud computing service that emerged as a viable option

to businesses and individuals for outsourcing and sharing their collected data with other parties.
2http://www.hhs.gov/ocr/privacy/hipaa/enforcement/audit/
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Although the cloud computing paradigm provides great flexibility to consumers with respect to

computation and storage capabilities, it imposes serious concerns about the confidentiality of the

outsourced data as well as the privacy of the individuals referenced in the data.

In Chapter 4 of this thesis, we formulate and address the problem of querying encrypted data

in a cloud environment such that query processing is confidential and the result is differentially

private. Unlike other work in the literature [BAAD14][GLM+13a][WAEA11][Yon14][TH13] for data

outsourcing, our solution maintains the privacy and utility properties of the outsourced data while

simultaneously ensuring data confidentiality, query confidentiality, and privacy-preserving results.

More specifically, we propose a framework where the data provider uploads an encrypted index

of her anonymized data to a DaaS service provider that is responsible for answering range count

queries from authorized data miners for the purpose of data mining. To satisfy the confidentiality

requirements, we leverage attribute based encryption to construct a secure kd-tree index over the

differentially private data for fast access. We also utilize the exponential variant of the ElGamal

cryptosystem to efficiently perform homomorphic operations on encrypted data. Experiments on

real-life data demonstrate that our proposed framework can efficiently answer range queries and is

scalable with increasing data size. Note that while comminution and network latency costs should

be taken in accounts for practicality [DCFG+14], we focus in this thesis on computational costs

when generating our experimental results.

1.2.2 SecSVD: Secure and Privacy-preserving Set-Valued Data Data In-

tegration with Public Verifiability

Privacy-preserving data integration is a mechanism that enables multiple data owners to securely

integrate their data for the purpose of data mining. Applying such a mechanism on set-valued

data in a malicious environment, however, involves several challenges, including how to handle the

high-dimensional nature of set-valued data, how to prevent malicious parties from inferring sensitive

information during the integration process, how to guarantee an effective level of privacy on the
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released data while maintaining utility, and how to enable independent public verifiability of the

protocol.

In Chapter 5 of this thesis, we propose the first publicly verifiable protocol for integrating person-

specific set-valued data from two or multiple data owners, while providing ε-differential privacy guar-

antee and maintaining an effective level of utility on the released data. Our proposed approach can

handle both horizontally and vertically partitioned data, and is secure in the malicious adversarial

model with dishonest majority.

1.2.3 Fusion: Secure and Privacy-preserving Relational Data Integration

In the last decade, several approaches concerning private data release for data mining have been

proposed. Data integration, on the other hand, is a mechanism for merging data from several data

providers. Fusing both techniques to generate mashup (integrated) data in a distributed environment

while providing privacy and utility guarantees on the output involves several challenges. That is,

how to ensure that no unnecessary information is leaked to the other parties during the integration

process, how to ensure the mashup data is protected against certain privacy threats, and how to

handle the high-dimensional nature of the data while guaranteeing high data utility.

In Chapter 6 of this thesis, we propose Fusion, a privacy-preserving multi-party protocol for

high-dimensional data integration with guaranteed LKC -privacy for the purpose of data mining.

Our contribution is twofold. First, we design a secure and distributed protocol for evaluating an in-

formation gain-based score function. Second, we propose a hieratical approach for high-dimensional

data integration where the resulting dataset is LKC -private. Experiments on real-life data demon-

strate that the anonymous mashup data provide better data utility, the approach can handle high

dimensional data, and it is scalable with respect to the data size.
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1.2.4 Provisions: Secure and Privacy-preserving Data Auditing in Bitcoin

Bitcoin exchanges function like banks, securely holding their customers’ bitcoins on their behalf.

Several exchanges have suffered catastrophic losses with customers permanently losing their sav-

ings. A proof of solvency demonstrates that the exchange controls sufficient reserves to settle each

customer’s account.

In Chapter 7 of this thesis, we propose Provisions, a privacy-preserving proof of solvency whereby

an exchange does not have to disclose its Bitcoin addresses; total holdings or liabilities; or any

information about its customers. Provisions is the first protocol to enable Bitcoin exchanges to

provide a proof of reserves with a corresponding proof of liabilities and prove their solvency in a

complete privacy-preserving manner. We also propose an extension which prevents exchanges from

colluding to cover for each other’s losses. We have implemented Provisions and it offers practical

computation times and proof sizes even for a large Bitcoin exchange with millions of customers.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows:

• Chapter 2 introduces two recent privacy models, and several cryptographic primitives involving

public encryption schemes with homomorphic properties, commitments, verifiable mixing, and

zero knowledge proofs.

• Chapter 3 provides an in-depth literature review of the state-of-the-art techniques for privacy-

preserving data publishing, confidentiality in data outsourcing, searching on encrypted data,

and interactive and non-interactive privacy-preserving data mining.

• Chapter 4 studies the problem of secure and privacy-preserving data outsourcing. We propose

a secure cloud-based data outsourcing and query processing framework that simultaneously

preserves the confidentiality of the data and the query requests, while providing differential
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privacy guarantee on query outputs. The results of this chapter are currently under review

in [DFMC].

• Chapter 5 studies the problem of secure and privacy-preserving set-valued data integration

with public verifiability. We propose a publicly verifiable protocol for integrating person-

specific data from multiple data owners, while providing differential privacy guarantee and

maintaining an effective level of utility on the released data for the purpose of data mining.

The results of this chapter are currently under review in [DCF].

• Chapter 6 studies the problem of secure and privacy-preserving relational data mashup. We

propose a multi-party protocol for high-dimensional data mashup with guaranteed LKC -

privacy on the output data. The results of this chapter have been published in [DIAF15][ADFH14].

• Chapter 7 studies the problem of secure and privacy-preserving data auditing in Bitcoin.

We propose a cryptographic proof of solvency scheme for Bitcoin exchanges such that no

information is revealed about the exchanges customer holdings, the value of the exchanges

total holdings is kept secret, and multiple exchanges performing the same proof of solvency

can contemporaneously prove they are not colluding. The work in this chapter is a collaborative

effort with a team from the computer science department at Stanford University. The results

of this chapter have been published in [DBB+15b].

• Chapter 8 concludes the thesis and provides a look ahead.
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Chapter 2

Background

In this chapter, we present some background for the research presented in this thesis. We first

introduce the data privacy models in Section 2.1, and then introduce the cryptographic primitives

in Section 2.2.

2.1 Privacy Models

In [Dal77], Dalenius provided the following definition for protecting the privacy of individuals in

published person-specific data.

Definition 1 Privacy Protection [Dal77]. Access to the published data should not enable the

attacker to learn anything extra about any target victim compared to no access to the database,

even with the presence of any attacker’s background knowledge obtained from other sources. �

As a result, different privacy models have been proposed in the literature, e.g., K-anonymity [Sam01a]

[Swe02b], �-diversity [MKGV07], and LKC-Privacy [MFHL09], to provide different levels of privacy

protections based on the degree of the background knowledge of the attacker. However, Dwork et

al. [DMNS06] later proved that with the presence of any attacker’s background knowledge, absolute

privacy protection cannot be achieved. In this section, we will present two of the main privacy

8



protection models, namely, differential privacy [DMNS06] and LKC-privacy [MFHL09], where the

former makes no assumptions on the attacker’s prior knowledge, and the latter assumes a bound on

the number of attributes L previously known to the attacker. Note that these privacy models will

be later utilized in the remaining of the thesis to provide privacy guarantees on the output data of

our proposed protocols.

2.1.1 Differential Privacy [DMNS06]

Differential privacy is a privacy model introduced by Dwork et al. for the purpose of preserving

data confidentiality without making no assumptions about the attacker’s background knowledge.

Differential privacy provides a strong guarantee that the presence or the absence of an individual

will not significantly affect the final output of any function.

Definition 2 ε-Differential Privacy. Given any two datasets D1 and D2 that differ on at

most one record, a sanitizing mechanism M achieves ε-differential privacy if for any output D̂ ∈

Range(M):

Pr[M(D1) = D̂] ≤ eε × Pr[M(D2) = D̂] (1)

where the probabilities are taken over the randomness of M . �

Definition 3 Global Sensitivity [DMNS06]. Given a query function f : D → Rd that maps

dataset D to a vector of d reals, the global sensitivity of f is:

S(f) = max
D1,D2

||f(D1) − f(D2)||1 (2)

where D1 and D2 are any two neighbouring datasets that differ on at most one record. �

To achieve differential privacy when using query function f , the principal approach is to perturb

the true output of f by adding to it random noise that is adjusted based on S(f). In [DMNS06],

the authors proposed generating the noise according to the Laplace distribution, Lap(λ), where the

probability distribution function is Pr(x|λ) = 1
2λ e

|x|
λ , the mean is 0, and the standard deviation is

λ which is determined based on the global sensitivity S(f) and the privacy parameter ε.
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Theorem 2.1.1 [DMNS06]. For any function f : D → Rd that maps datasets to reals, the

privacy mechanism M :

M(D) = f(D) + Lap(S(f)/ε) (3)

satisfies ε-differential privacy. �

2.1.2 LKC-Privacy [MFHL09]

Let L be the maximum number of values of quasi-identifier attributes QID of the adversary’s

background knowledge on any individual in a data table T . Let S be a set of sensitive values. A

data table T satisfies LKC-privacy if, and only if, for any values of quasi-identifier attributes of the

adversary’s background knowledge on an individual qid with |qid| ≤ L,

1. |T [qid]| ≥ K, where T [qid] is the group of records in T containing qid and K > 0 is a minimum

anonymity threshold, and

2. ∀s ⊆ S, P (s|qid) ≤ C, where P (s|qid) is the confidence with which the adversary can infer

that the target victim has sensitive value s, and 0 < C ≤ 1 is a maximum confidence threshold.

LKC-privacy is a generalized privacy model of K-anonymity [Sam01a][Swe02b], confidence bound-

ing [WFY07], and �-diversity [MKGV07], which gives the flexibility to the data providers to employ

these traditional privacy models.

2.2 Cryptographic Primitives

In this section, we introduce the fundamental building blocks for the cryptographic protocols that

will be presented this thesis.

2.2.1 Verifiable Mix Network [JJR]

A mix network allows a list of encrypted messages to be jointly shuffled and re-randomized such

that no participant knows the permutation mapping the inputs to outputs. A verifiable mix network
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produces a publicly verifiable transcript proving that the output list is correct (i.e., the messages

were only reordered, not modified nor replaced).

2.2.2 Exponential ElGamal [CGS97]

ElGamal [EG85] is a public key encryption scheme based on the hardness of computing discrete loga-

rithms (and a stronger assumption called decisional Diffie-Hellmen). Exponential ElGamal [CGS97]

is a variant that is additively homomorphic and suitable for short messages. Exponential ElGamal

consists of the following algorithms:

KeyGen(). A 2048-bit safe prime p is chosen randomly such that p = α · q + 1 for a 256-bit prime

q and some integer α (parameter sizes comply with current NIST recommendations [BR11]).

Let g be a generator of the multiplicative subgroup Gq. The private key x is chosen randomly

from Z
∗
q and the public key y is computed as y = gx mod p (henceforth, assume all operations

are done mod p).

Enc(m, y, r). To encrypt a short message m with public key y, choose random integer r from Z
∗
q

and compute the ciphertext as c = 〈c1, c2〉 = 〈gr, gmyr〉.

Dec(c, x). To decrypt ciphertext c with private key x, first compute gm = c2 ·c−x
1 and solve for m

(recall it is short) using a lookup table of pre-computed values or appropriate algorithm (such

as Pollard’s rho).

Exponential ElGamal is additively homomorphic, meaning a given encrypted message Enc(m, y, r) =

〈c1, c2〉 can be added to a second encrypted message Enc(m′, y, r′) = 〈c′
1, c′

2〉 without decryption:

Enc(m + m′, y, r + r′) = 〈c1 · c′
1, c2 · c′

2〉. Enc(m, y, r) can also be multiplied by a constant a homo-

morphically: Enc(am, y, ar) = 〈ca
1 , ca

2〉.

2.2.3 Distributed Exponential ElGamal Decryption [Bra06]

Given ElGamal ciphertext (α, β), where the secret key x ∈ Zp is shared between n parties, each

participant Pi from P1, . . . , Pn publishes βxi , where xi is a private key share of Pi. The plaintext
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can then be derived by computing: α/
∏n

i=1 βxi . Note that Distributed Key Generation (DKG)

protocol [Ped91] can be utilized to create the shared secret key, where each participant only knows

its own share of the secret key.

2.2.4 Mix and Match [JJ00]

Mix and Match is a multi-party protocol for obliviously evaluating an encrypted input against

a plaintext lookup table, where all values are encrypted (with an encryption scheme as above).

The output is a ciphertext corresponding to the lookup table, and no participant knows the actual

looked up value. In the mix phase, the participants use a verifiable mix network to blind and

perform row-wise permutation of the lookup table in a distributed fashion. In the matching phase,

the participants determine in a distributed fashion whether two given ciphertexts are equal using

a primitive called plaintext equality test (PET). More specifically, given two ElGamal ciphertexts

(α1, β1) and (α2, β2), the participants jointly evaluate whether the underlying plaintexts for (α1, β1)

and (α2, β2) [denoted by (α1, β1) ≡ (α2, β2)] are equal as follows:

1. Each participant Pi performs the following:

(a) Select zi ∈U Zp, where ∈U denotes uniform and random selection.

(b) Compute (αi, βi) = (αzi , βzi) and broadcast it.

2. All participants jointly apply the Distributed Exponential ElGamal Decryption protocol to

decrypt (γ, δ) = (Πn
i=1αi, Πn

i=1βi). If plaintext (γ, δ) is equal to 0, then (α1, β1) ≡ (α2, β2);

otherwise, (α1, β1) �≡ (α2, β2).

2.2.5 Bulletin Board [Ben87]

A bulletin board is an append-only public broadcast channel where participants of a protocol coor-

dinate their actions and publish their proofs. At the conclusion of the protocol, the contents of the

bulletin board can be considered a transcript of an execution of the protocol.
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2.2.6 Multiparty Coin Tossing [BOO10]

A coin tossing protocol allows a random bitstring to be jointly generated by a set of participants

such that no participant knows the resulting bitstring, and a single honest participant is sufficient

for ensuring the ensuing bitstring follows a uniform random distribution.

2.2.7 Non-Interactive Zero-Knowledge Proofs (NIZKP) [Sch91] [CP92]

Zero knowledge proofs are used for proving that a given statement is true without revealing any

information about the statement itself beside that it is true. A protocol is zero-knowledge proof if

it satisfies the following properties:

• Completeness: if the statement is true, the honest prover can convince the honest verifier of

this fact.

• Soundness: if the statement is false, a malicious prover cannot convince an honest verifier that

the statement is true, except with some small probability.

• Zero-knowledge: if the statement is true, a malicious verifier learns nothing but this fact.

Zero knowledge proofs can be adapted from basic Σ-protocols such as the Schnorr proof of

knowledge of a discrete logarithm [Sch91] or the Chaum-Pedersen proof of representation of a Diffie-

Hellman tuple [CP92], using Fiat-Shamir [FS90] to compile into a non-interactive zero-knowledge

protocol (NIZKP). If one wishes to avoid the random oracle model, any alternative Σ-protocol to

NIZKP compilation [HL10] is sufficient. Note that many protocols we use internally utilize NIZKPs,

including Mix and Match, verifiable mix networks, and multiparty coin tossing.

2.2.8 Cut-and-Choose [Rab79]

When an efficient zero-knowledge proof is not admissible, we can utilize the more general technique

of a cut-and-choose protocol. In a non-interactive setting, a participant wishing to demonstrate

a value is well-constructed (without revealing how they were constructed) will construct a large
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number of candidate values and then utilize a public source of randomness, i.e., a beacon [CH10],

to randomly select a subset for auditing purposes. The participant will show how each candidate

in the subset was constructed, inferring belief that the remaining candidates were also constructed

correctly.

2.2.9 Pedersen Commitments [Ped92]

A commitment scheme enables someone to commit to a chosen message while keeping it hidden to

others, with the capability to reveal the message later. Pedersen commitment to a message m ∈ Zq

is defined as com = gm · hr where g and h are fixed public elements of G and the quantity r is

chosen at random in Zq. The generators g and h are chosen once in a way that ensures no one knows

their relative discrete logarithm. Pedersen commitments are perfectly hiding and computationally

binding.
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Chapter 3

Literature Review

In this chapter, we first present an overview of privacy-preserving data publishing (PPDP) and

survey various PPDP research proposals in the context of set-valued data in both non-interactive

and interactive settings. Next, we survey confidentiality in data outsourcing for both centralized

and distributed environments. Afterwards, we provide an in-depth literature review about searching

on encrypted data that covers searchable encryption, functional encryption and secure function

evaluation. Finally, we present the state of art in computations with public verifiability.

3.1 Privacy-Preserving Data Publishing

3.1.1 Overview

Privacy-preserving data publishing (PPDP) is a data release mechanism where useful information

can be obtained from the released data while the privacy of individuals in the data is reserved.

A common PPDP approach is anonymization. Several privacy models have been proposed in the

literature for providing different types of privacy protection. For example, the (α, k)-anonymity

model [WLFW06] applied generalization and suppression techniques to protect against record and

attribute linkages. The ε-differential privacy model [Dwo06] aimed at protecting against table linkage

15



and probabilistic attacks by ensuring that the probability distribution on the published data is

the same regardless of whether or not an individual record exists in the data. Mohammed et

al. [MCFY11] proposed a generalization-based anonymization algorithm in a non-interactive setting

for releasing differentially private records for data mining. Cormode et al. [CPS+12] proposed a

framework for using spatial data structures to provide a differentially private description of the data

distribution. Xiao et al. [XXY10] proposed another framework that uses kd-tree based partitioning

for differentially private histogram release. These frameworks support range queries while providing

privacy guarantee.

Another PPDP approach for privacy protection is anatomization. Xiao and Tao [XT06] proposed

the anatomy method that partitions the data vertically in order to disassociate the relationship

between the quasi-identifier (QID) attributes and the sensitive attributes (ST), while satisfying the

�-diversity privacy requirement. This approach generates two tables: a QID table that contains

all quasi-identifier attributes, and an ST table that contains all sensitive attributes. Both tables

contain an anatomy group attribute (GID) such that all records belonging to the same anatomy

group will have the same GID value in both tables. If an anatomy group has an � distinct set of

sensitive values where each value exists exactly once in the group, then the probability of linking a

record to a sensitive value using GID value is 1/�. Since the anatomy approach only considers the

single association between QID attributes and ST attributes, Jiang et al. [JGWY10] proposed a new

approach based on anatomy that considered the functional dependencies among the data attributes

in a single table. This approach splits the table into several sub-tables according to the functional

dependencies such that the decomposed sub-tables satisfy the privacy requirement of �-diversity for

each sensitive association. Nergiz and Clifton [NC11] proposed another decomposition approach

using anatomy for query processing on outsourced data that consists of multi-relational tables.

In the rest of this chapter, we will survey privacy-preserving data publishing in the context of

set-valued data in both non-interactive and interactive settings.
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3.1.2 Non-Interactive Privacy-Preserving Data Publishing on Set-Valued

Data

In this related line of work, the raw data is first anonymized while maintaining an effective level of

data utility, and then released for the purpose of data mining and analysis.

Centralized Environment

Several approaches have been proposed to anonymize set-valued data [TMK08, HN09, TMK11,

CMF+11] where the data is hosted by one party. Terrovitis et al. [TMK08] proposed a km-

anonymization model based on a bottom-up global generalization, where m is the maximum number

of items an adversary might know in any given transaction. He and Naughton [HN09] removed the

constraint on the background knowledge of the adversary to provide a k-anonymity privacy guarantee

by proposing a greedy algorithm based on a top-down local generalization. Terrovitis et al. [TMK11]

improved the efficiency of [TMK08] by proposing optimization methods, namely Local Recoding

Anonymization (LRA) and Vertical Partitioning Anonymization (VPA), which are based on global

recoding. Chen et al. [CMF+11] argued that k-anonymity does not provide a sufficient privacy

guarantee when applied on set-valued data, instead proposing a probabilistic top-down algorithm

that utilizes context-free taxonomy tree to release set-valued data satisfying differential privacy. Al-

though data anonymization has been studied extensively on relational data [FWCY10], set-valued

data is typically high-dimensional so solutions for relational data are ineffective due to the curse of

high dimensionality [Don00].

Distributed Environment

To the best of our knowledge, no work has been done on anonymizing set-valued data from differ-

ent sources for the purpose of data release. However, there is a related line of work on relational

data [JX09, JC06, MAFD14, AMFD12]. Jiang and Clifton [JC06] proposed an algorithm for secure

integration of vertically partitioned data between two parties while satisfying k-anonymity. Jurczyk
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and Xiong [JX09] proposed a multi-party framework for horizontally partitioned data over n parties,

where n > 2. The output is an integrated and anonymized data satisfying l-site-diversity, where l

represents the minimal number of partitions to which records in each equivalence class belong. Al-

hadidi et al. [AMFD12] and Mohammed et al. [MAFD14] proposed two-party protocols for securely

generating integrated data satisfying ε-differential privacy from horizontally partitioned data and

vertically partitioned data, respectively. Unlike our protocol that supports both horizontally and

vertically partitioned data in the malicious adversarial model, the aforementioned approaches han-

dle data that is either horizontally or vertically partitioned, in the semi-honest adversarial model.

Mohammed et al. [MFD11] proposed a method for integrating vertically-partitioned relational data

in the malicious setting; however, this method satisfies the k-anonymity privacy model and it is not

publicly verifiable.

3.1.3 Interactive Privacy-Preserving Data Publishing on Set-Valued Data

This is another related line of work where the data owners jointly compute a data mining function

on their private data, and learn the correct output and nothing else.

Centralized Environment

There have been serval works concerned with privacy-preserving data mining on a single set-valued

data [BLST10, LQSC12, WCH+07, GLM+13b]. Bhaskar et al. [BLST10] and Li et al. [LQSC12]

proposed two different approaches for mining frequent itemsets from set-valued data such that the

output data satisfy differential privacy. Wong et al. [WCH+07] and Giannotti et al. [GLM+13b]

focused on the problem of secure association rule mining on a set-valued data in an outsourcing

environment. In [WCH+07], the authors proposed an encryption scheme based on substitution

cipher techniques in order to non-deterministically map each item in a transaction to a set of n

items, but no formal privacy guarantee was provided. The authors in [GLM+13b] proposed an

encryption scheme for data transformation that satisfies item k-anonymity, i.e., each item in the

outsourced set-valued data is indistinguishable from at least k-1 items.
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Distributed Environment

Kantarcioglu and Clifton [KC04] proposed a multi-party approach for privacy-preserving mining

of association rules on horizontally partitioned set-valued data. Using commutative encryption to

design a secure two-party protocol for division computation, Zhang et al. [ZRZ+13] proposed a two-

party approach for privacy-preserving association rule mining on set-valued data. These methods

cannot be applied to our problem as they do not provide any formal privacy guarantee on the output

data. Wahab et al. [WHZ+14] recently proposed a multi-party approach for mining association rules

while satisfying the differential privacy model. However, this approach requires a trusted central

authority and assumes that all parties operate is the semi-honest setting. There have been several

works about privacy-preserving data mining on relational data that guarantee certain level of privacy

on the output. For instance, Dwork et al. [DKM+06] proposed a method for answering count queries

on a horizontally partitioned data in a malicious multi-party environment, by returning noisy counts

that satisfy differential privacy. Narayan and Haeberlen [NH12] proposed a protocol for a semi-honest

two and multiple party environment where the answers to SQL-style count queries are noisy counts

satisfying differential privacy. These approaches are not applicable to the problem in Chapter 5 as

they are neither designed to handle high dimensional data, nor support public verifiability.

3.2 Confidentiality in Data Outsourcing

Another area related to our work is confidentiality in data outsourcing, where data is stored and

managed by one or more untrusted parties that are different from the data owner. Queries are

executed on the data while keeping the data confidential and without revealing information about

the queries.

3.2.1 Centralized Environment

A commonly used mechanism for ensuring data confidentiality is encryption. Some approaches

proposed to process queries over encrypted data directly. However, such approaches do not provide
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a good balance between data confidentiality and query execution. For example, methods in [HILM02]

[HMT04] attach range labels to the encrypted data, thus revealing the underlying distributions of the

data. Other methods depend on order-preserving encryption [AKSX04][EAAG06]; however, these

methods reveal the data order and are subject to inference and statistical attacks. Homomorphic

encryption, on the other hand, is a promising public cryptosystem that allows query execution on

encrypted data [GZ07a][Gen09]; however, its high computation cost makes it prohibitive in practice.

In Chapter 4, we employ the exponential variation of ElGamal [CGS97] encryption scheme in one

area of our solution by taking advantage of its additive homomorphism property. We show that

this scheme is efficiently employed because the encrypted message is small enough for the scheme to

remain practical.

Instead of processing queries directly over encrypted data, some approaches have proposed us-

ing indexing structures for fast data access and efficient query execution [WCL+10][WL06][GZ07b].

Some indexing schemes have constraints on the type of queries they support. For example, hash-

based indexing [DVJ+03] and privacy homomorphism [HIM04] only support equality queries, whereas

bucket-based indexing [HILM02] and character-oriented indexing [WDWS04][WWS05] support equal-

ity queries as well as partially supporting range queries. To support both equality queries and range

queries, a category of approaches propose using disk-based indexes such as B-tree [BM70] and B+-

tree [Com79] and spatial access indexes such as kd-tree [Ben75] and R-tree [Gut84]. Our work in

Chapter 4 fits in this category because we utilize an encrypted kd-tree index for efficient and secure

traversal. Wang et al. [WAEA11] proposed a framework based on B+-tree index for query processing

on relational data in the cloud. However, in order to protect data confidentiality against the cloud,

the proposed solution generates a superset of the result and requires the client (querying user) to

perform predicates evaluation in order to compute the final result. Hu et al. [HXRC11] proposed a

framework based on R-tree index for secure data access and processing of k-nearest-neighbor (kNN)

similarity queries. However, the proposed approach partitions the R-tree index constructed over the

outsourced data into two indexes, one is hosted by the cloud and the other is hosted by the client.
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In addition, a high communication bandwidth is required to achieve access confidentiality. Recently,

Wang and Ravishankar [WR13] proposed a framework for performing half-space range queries using

an R̂-tree index that is encrypted using Asymmetric Scalar-product Preserving Encryption (ASPE)

scheme [WCKM09]. Their method ensures data confidentiality and requires low communication and

storage overhead on the client side. However, it does not provide a privacy guarantee, nor does it

provide full confidential query processing because it leaks information on the ordering of the mini-

mum bounding box of the leaf nodes and requires result postprocessing because it introduces false

positives. Barouti et al. [BAAD14] proposed a protocol for secure storage of patient health records

on the cloud, while allowing health organizations to securely query the data. The proposed protocol,

however, does not provide privacy guarantees on the query results, while requiring high communi-

cation overhead on the client side. Blass et al. [BNVH12] proposed a confidential pattern counting

protocol for clouds using MapReduce. The authors propose an efficient somewhat homomorphic

encryption scheme that preserve the confidentiality of the data and the queries. However, similar

to [BAAD14], the proposed approach does not provide privacy guarantees on the query results.

3.2.2 Distributed Environment

In a distributed data outsourcing environment, the data is partitioned and outsourced to a set of

independent and non-colluding servers. To ensure data and query confidentiality, a distributed pro-

tocol is needed to securely process the query without disclosing the data in each of the outsourcing

servers. Such protocols typically use secure multiparty computation (SMC) [Yao82][Gol04], a cryp-

tographic technique that computes a secure function from multiple participants in a distributed

network. For example, Shaneck et al. [SKK09] proposed an approach for computing kNN queries on

horizontally partitioned data, Vaidya and Clifton [VC05] proposed an approach for secure answering

of top k queries on vertically partitioned data while satisfying k-anonymity, whereas Rastogi and

Nath [RN10] and Shi et al. [SCR+11] addressed the problem of private aggregation of time-series

data such that the outcome statistic is differentially private.
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3.3 Searching on Encrypted Data

3.3.1 Searchable Encryption (SE)

Searchable encryption (SE) [SWP00] [DRD08] [BTHJ12] [JJK+13] allows encrypted data hosted

remotely by a third party to be searched by the host on behalf of the data owner while allowing the

former to learn as little information as possible about the underlying plaintext data. Depending on

whether it uses public symmetric encryption or public key encryption, SE schemes can be respectively

split into either searchable symmetric encryption or public key encryption with keyword search. SE

assumes that the encrypted data generated by the data owner and then stored on untrusted remote

server (e.g. cloud). The user who is interested in obtaining some information from the data generates

a trapdoor for the server to use for searching the data. Depending on the number of the data owners

and users, SE can be divided into four categories: single owner & single user, single owner &

multi-user, multi-owner & single user, and multi-owner & multi-user.

Single Owner & Single User (SOSU)

This setting is the most suitable for data outsourcing, where the data owner encrypts the data and

creates trapdoors that will be sent to the host to conduct the search. Several SE schemes have been

proposed to support searching on a single keyword [SWP00][Goh03][CM05][CGKO06][VLSD+10]

[CK10][KPR12]. Song et al. [SWP00] used sequential scan to propose the first usable SE scheme.

The approach is to encrypt each word separately, and then enclose a hash value with specific pattern

in the ciphertext. The search is performed by the server by extracting the hash value and verify that

its pattern matches the pattern of the search keyword. In [Goh03][CM05], the authors constructed

an index per each search document, where the former uses Bloom filters [Blo70] and the latter

uses a set of bits each of which represents on search keyword stored in advance in a lookup table.

Rather than indexing each document, the authors in [CGKO06][VLSD+10] proposed different SE

schemes that create an index per each search keyword, where inverted indexes and pseudo-random

functions are used respectively. Chase and Kamara [CK10] also utilized inverted indexes to propose
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SE schemes for searching on matrix-structured data and labeled data, while supporting the concept

of controlled disclosure such that access is granted only to part of a data. Kamara [KPR12] later

extended [CGKO06] by proposing a scheme that supports sub-linear search time, compact indexes

and efficient data update.

On the other hand, several SE schemes have also been proposed to support searching on mul-

tiple keywords [GSW04][BKM05][BLL06][WWP08a][CJJ+13][ABCK09][LWW+10]. Assuming the

existence of keyword fields in the search documents, Golle et al. [GSW04] was the first to propose

a SE scheme for conjunctive keyword search with amortized linear cost. Ballard et al. [BKM05]

used Shamir’s threshold secret sharing to construct a scheme that is linear w.r.t. the number of

search documents. Byun et al. [BLL06] later proposed a more efficient scheme with respect to com-

munication and storage costs using bilinear mapping. Wang et al. [WWP08a] proposed the first

SE scheme for conjunctive keyword search without assuming the existence of keyword fields using

also bilinear mapping. Based on [CGKO06], Cash et al. [CJJ+13] recently proposed an efficient

(sub-linear) scheme for searching on unstructured and encrypted data. The proposed approach rep-

resents a trade-off between privacy and efficiency, where information about data access patterns is

leaked to the server while the underlying data and queries remain confidential. To support more

advanced search queries on encrypted data such as fuzzy search, Adjedj et al. [ABCK09] utilized

locality sensitive hashing to reduce the dimensionality of biometric data and propose a symmetric

searchable encryption scheme for biometric identification. The approach in [LWW+10] proposed by

Li et al. also supports fuzzy search, where edit distance is used to measure the similarity between

keyword semantics and to consequently determine the closest files to the search query.

Single Owner & Multi-User (SOMU)

This setting is more suitable for data sharing, where the data owner encrypts the data and then share

it with other parties who will be able to create trapdoors and perform their own search. A natural

way to achieve that is to extend an existing SOSU approach and make it suitable for multi-users.

In [CGKO06], the authors described how broadcast encryption can be used to extend their SOSU
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scheme (described earlier) to support a searchable symmetric encryption for multi-users in the SOMU

setting. The search documents are first encrypted using the according to the SOSU scheme, and

then the users receive the key for generating the trapdoors via broadcast encryption. The proposed

construction does not require authentication, and supports revocation of users such that revoked

user cannot anymore conduct searches on the encrypted documents. Proxy re-encryption [BBS98]

allows a party to decrypt on behalf of another party by enabling a third party to convert a ciphertext

for one party to another without obtaining any knowledge about their secret keys. In [RVBM09],

Raykova et al. constructed a SOMU scheme by introducing re-routable encryption, a stronger notion

of proxy encryption that protects the identities of the parties involve. The authors utilized Bloom

filters to build the search structures, where for each search document a Bloom filter index is created.

They also assumed the existence of a query router server, that performs user authentication, as well

as queries and results transformation. Yang et al. [YLW11] utilized symmetric bilinear mapping

to propose a scheme for data outsourcing with multi-users. Each user is issued a unique key for

generating its own queries, while the cloud maintain a list of helper keys for all authorized users.

Given a user’s search query and his helper key, the cloud constructs a common key based on bilinear

mapping to search the encrypted index. The proposed scheme supports query unforgeability, where

neither the cloud nor other users can construct a valid query on behalf of a user. It also supports

efficient user revocation, where the revocation process does not require key renewal for non-revoked

users, nor requires update to the encrypted index.

Multi-Owner & Single User (MOSU)

In this setting, there exist several data owners, each of which encrypts its own data to target a

certain recipient. Most of the schemes we will review next are based on public key encryption.

With respect to searching on a single keyword, some MOSU schemes in the literature [BDCOP04]

[BSNS08][ABC+08] were constructed based on identity based encryption [Coc01][BF03]. Boneh et

al. [BDCOP04] proposed the first MOSU scheme by considering the scenario where an email sender

encrypts its email with the public key of the receiver, while allowing the routing email server to
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search for a specific keyword in the encrypted email before it forwards it to the receiver. Using its

private key, the receiver generates a trapdoor for a search keyword and sends it to the mail server

via a secure channel, where the latter uses it to perform the search while learning nothing about

the underlying text except of whether or not it contains the search keyword. This system is called

non-interactive public key encryption with keyword search, as it allows for keyword search without

requiring any interaction between the sender and the receiver. The server, however, can store all the

trapdoors it receives from the receiver, and conduct search by itself on future emails. To address

this issue, Baek et al. [BSNS08] proposed a MOSU scheme that enables search keywords that are

used frequently to be refreshed by attaching attaching a time period to them. The shorter the time

period is, the more secure can be obtained. This scheme also removes the need for a secure channel

between the server and the receiver in [BDCOP04] by maintaining a private/public key pair, where

the sender uses the public keys of the receiver and the server for encryption, while the the receiver

encrypts its trapdoors using the public key of the server and sends them through public channels.

Several SE schemes have also been proposed in the literature to support searching on multiple

keywords [BSNS08][PCL05][HL07][BCK09][SVLN+10]. Baek et al. [BSNS08] extended [BDCOP04]

(discussed above) to support conjunctive keyword search. In [PCL05], Park et al. enabled the hosting

server (proxy) to decrypt the documents containing desired search keywords without having access to

the user’s private decryption key. The server, however, cannot decrypt other documents that do not

contain the search keywords. In [HL07], Hwang et al. provided a conjunctive keyword search scheme

that optimizes the storage and communication overhead of both the server and the user. To support

more advanced search queries, Bringer et al. [BCK09] used Bloom filters with storage [BKOSI07]

to propose a fuzzy search scheme for biometric identification over encrypted person-specific data.

The approach separates the stored data on the server from its indexes, while using locality-sensitive

hashing functions to allow for error-tolerance. Based on hidden vector encryption [BW07], Sedghi et

al. [SVLN+10] used symmetric bilinear pairings of prime order to propose an effluent MOSU scheme

that supports wildcard search while accepting keywords over any alphabet.
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Multi-Owner & Multi-User (MOMU)

To search on a single keyword, Bellare et al. [BBO07] proposed a MOMU scheme where the encryp-

tion algorithm is deterministic to achieve higher efficiency. To be able to conduct the search, a deter-

ministic hash of the plaintext is attached to the ciphertext. The scheme is length-preserving, where

each ciphertext and its corresponding plaintext both have the same length. In [BDDY08], Bao et al.

constructed a scheme for the scenario where a group of data owners, each of which has its private key,

can encrypt their documents separately and send them to the hosting server, while each data owner

can generate their own trapdoors and send them to the server to search on all existing documents.

The proposed scheme allows for dynamic data owner enrollment, provides transparent user revoca-

tion, and supports query unforgeability. Several schemes, including [HL07] [WWP09] [WWP08b],

were proposed in the literature in the MOMU setting that support searching on multiple keywords.

No MOMU schemes, however, have been proposed so far to support an advanced level of search

queries such as fuzzy or symmetric search.

3.3.2 Functional Encryption (FE)

Functional encryption (FE) [BSW11] is a recent public-key encryption paradigm that enables both

fine-grained access control and selective computation on encrypted data. In FE system, there exists

a master secret key MSK that is held by a trusted authority. Let x = (I, m) be the encryption of

message m and its access control I, and let f be a function to be evaluated over x. The trusted

authority uses MSK to derive a secret key SKf that is associated with the function f . Given x,

anyone can evaluate f [x] using secret key SKf .

Depending on whether or not the access control index is public, most of the functional encryp-

tion systems belong to one of the following two classes: predicate encryption, which includes

anonymous identity-based encryption (A-IBE), hidden vector encryption (HVE), and inner product

predicate (IPP), and predicate encryption with public index, which includes identity-based en-

cryption (IBE) [Coc01][BF03], attribute-based encryption (ABE) [BSW07], and predicate encryption
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(PE) [BW07]. In this review, we focus on ABE since it supports fine-grained access control that

can be utilized to handle not only keywords but also numerical ranges. Sahai and Waters [SW05]

introduced attribute-based encryption as a new concept of public encryption schemes that allow data

owners to encrypt their data while setting a policy indicating who can decrypt this data. There are

two types of attribute-based encryption schemes: key-policy attribute-based encryption (KP-ABE),

and cipher-policy attribute-based encryption (CP-ABE). In the key-policy attribute based encryption

schemes [GPSW06][OSW07][KSW08][LDLW14], the message is encrypted and a ciphertext with a set

of attributes is generated. The decryption of the message is achieved using a secret key with an access

structure if the access structure is satisfied by the set of ciphertext attributes. On the other hand,

with regard to cipher-policy attribute-based encryption schemes [BSW07][LS08][Wat11][HSM+14],

a set of attributes is associated with a secret key, while an access structure (ciphertext policy) is

associated with a ciphertext. The decryption of the message is achieved using a secret key with a

set of attributes if the secret key’s attribute set satisfies the access structure associated with the

ciphertext.

3.3.3 Secure Function Evaluation (SFE)

Assume f is a function to be executed between a set of parties with individual inputs. Using secure

function evaluation (SFE), each party learns only the output of the function and is otherwise assured

the confidentiality of their individual inputs. Yao [Yao86] introduced the first two-party protocol for

SFE, which was later generalized to secure multi-party computation by Goldreich et al. [GMW87].

Our protocols follow the line of research utilizing threshold homomorphic cryptosystems to provide

SFE. This paradigm, also known as computing on encrypted data, was introduced by Franklin and

Harber in the semi-honest model for two/multi party protocols [FH94], and extended to the malicious

model by Cramer et al. [CDN01] for the multiparty setting, and Schoenmakers and Tuyls [ST04]

for the two-party setting. Jakobsson and Juels [JJ00] provided a general protocol in the malicious

model that is adaptable to both settings.
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3.4 Public Verifiability

To ensure a protocol executes correctly in the presence of malicious adversaries, participants must

prove they are following the protocol at each step. Often such proofs are convincing to the other

participants in the protocol and contingent on their interaction or individual secrets. A publicly

(or universally) verifiable protocol produces a transcript proving correct execution that is verifi-

able by anyone at any time. In the database community, verifiability has been studied in the

areas of data authentication [Tam03][DBP07], data streams [CCM09][CKLR11], and public audit-

ing [WCW+13][WLL12]. In verifiable computation, a single data owner delegates a computationally

heavy task to the cloud while being able to verify the results [BGV11][CKV10][GGP10][GKR08].

Outside of databases, public verifiability is an important property for a number of cryptographic

protocols, including voting schemes [Ben87][CGS97], auction schemes [LKM01][DLL13], and mix

network schemes[PZ12][JJR].
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Chapter 4

Secure and Privacy-preserving

Data Outsourcing

4.1 Introduction

In recent years, there has been a considerable effort to ensure data confidentiality and integrity of

outsourced databases on the cloud. Several research proposals suggest encrypting the data before

moving it to the cloud [GZ07a, PRZB11]. While encryption can provide data confidentiality, it is less

effective in deterring inference attacks. This reality demands new privacy-enhancing technologies

that can simultaneously provide data confidentiality and prevent inference attacks due to aggregate

query answering. Privacy-preserving data publishing (PPDP) is the process of anonymizing person-

specific information for the purpose of protecting individuals’ privacy while maintaining an effective

level of data utility for data mining. Different PPDP privacy models provide different types of

privacy protection [FWCY10]. Differential privacy [Dwo06] is a recently proposed privacy model that

provides a provable privacy guarantee. Differential privacy is a rigorous privacy model that makes no

assumption about an adversary’s background knowledge. A differentially-private mechanism ensures

that the probability of any output (released data) is equally likely from all nearly identical input
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data sets and thus guarantees that all outputs are insensitive to any individual’s data.

In this chapter, we propose a cloud-based query processing framework that simultaneously pre-

serves the confidentiality of the data and the query requests, while providing differential privacy

guarantee on the query results to protect against inference attacks. Let us consider the following

real-life scenario. Population Data BC (PopData) 1 is a non-profit organization (data bank) re-

sponsible (among other things) for storing and managing patient-specific health data received from

several hospitals, health organizations and government agencies in the Province of British Colom-

bia, Canada. PopData utilizes explicit identifiers to integrate the data, and then de-identifies the

integrated data by separating the explicit identifiers from the rest of the data contents. Data miners

interested in querying the data initially sign a non-identifiability agreement to prevent them from

releasing research data that can be used to re-identify individuals. When PopData receives a data

mining query, it first authenticates the data miner, verifies that she is working on an approved re-

search project, and then executes the query on the de-identified data and returns the result back to

the data miner. Similar organizations can be found in other countries, e.g., the National Statistical

Service 2 in Australia.

A major concern in this scenario is data privacy. Although the data is de-identified, data min-

ers can still perform (or accidentally release a research results that can leads to) record/attribute

linkage attacks and re-identification of individuals, as was shown in the cases of AOL [BZ06] and

Netflix [NS08]. On the other hand, to minimize the workload on PopData, cloud services can be used

to store, manage, and answer queries on the integrated data. However, this rises two other concerns.

One concern is data confidentiality, where the outsourced patient-specific data must be stored in a

protected way to prevent the cloud from answering queries from unauthorized data miners, and to

protect against potential multi-tenancy problems due to the sharing of services, resources, and phys-

ical infrastructure between multiple independent tenants on the cloud [DWC10]. Another concern

is query confidentiality, where the cloud should be able to execute query requests from authorized
1PopData: https://www.popdata.bc.ca/
2Statistical Data Integration Involving Commonwealth Data: http://statistical-data-integration.govspace.gov.au/
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Figure 1: Security requirements for data outsourcing.

data miners without the ability to know what attributes and attribute values are specified in each

query.

As shown by [BDMN05], count queries can be quite useful for data mining and statistical analysis

applications where miners focus on extracting new trends and patterns from the overall data and

are less interested in particular records.

Figure 1 illustrates the overall process of our proposed framework. Each data owner (e.g. hospital,

health center) submits its raw data to the data bank (data provider). The data bank first integrates

all data together, and then applies a PPDP privacy model on the integrated data such that explicit

identifiers of record owners are removed, while other attributes (including sensitive attributes) are

anonymized and retained for data analysis. Next, the data bank encrypts the anonymized data and

upload it to the service provider (public cloud). Data miners authenticate themselves to the data

bank and then submit their encrypted count queries to the cloud. The cloud securely processes each

query, homomorphically computes the exact noisy count, and then sends the encrypted result back

to the data miner. The proposed framework, named SecDM, achieves data privacy by supporting

any privacy algorithm whose output is a contingency table data. Attribute-base Encryption (ABE)

and ElGamal schemes are used to achieve data and query confidentiality. While our framework

protects the confidentiality of individual query (data access), we provide a detailed security analysis
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in Section 4.5.3. We analyze in Section 4.4.4 the benefit of outsourcing the data to a service provider

as compared to having the data bank handle the user queries directly and show that the processing

overhead on the data bank is almost 10 times less than the overhead on the service provider.

The intuition of our solution is to generate a kd-tree index for efficient traversal and secure

access on the anonymized data, where the index tree is encrypted using attribute based encryption

and stored on the public cloud. When a data miner desires to query the outsourced data, she sends

her proof of identity to the data provider with her query and receives an encrypted version of her

query, namely, system query, which she sends to the cloud for processing. The cloud uses the system

query to traverse the encrypted kd-tree index and securely compute the total count representing

the privacy-preserving answer to the query. The cloud then sends the answer back to the data

miner, who in turn decrypts the encrypted results using a decryption key provided originally by the

data provider. Our framework protects the confidentiality of each individual query by its predicates

hidden from the cloud. However, it does not hide the search pattern of the queries. We provide

formal definition of framework properties as well as detailed security analysis in Section 4.5.3.

The contributions of this chapter can be summarized as follows:

Contribution 1. To the best of our knowledge, this is the first work that proposes a com-

prehensive privacy-preserving framework for query processing in a cloud computing environment.

The proposed framework maintains the privacy and utility properties of the outsourced data while

simultaneously ensuring data confidentiality, query confidentiality, and privacy-preserving results.

Previous work [BAAD14][GLM+13a][WAEA11][Yon14][TH13] satisfies only a subset of the afore-

mentioned security features.

Contribution 2. To ensure efficient data access while maintaining data confidentiality, we

present an algorithm for constructing an encrypted kd-tree index that hides the data from the cloud

while allowing for confidential query processing. We utilize attribute based encryption in a unique

way to handle range predicates on numerical attributes.

Contribution 3. Most existing work on the problem of data outsourcing in cloud computing
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environments either requires the query issuer to have prior knowledge about the data and sub-

sequently requires storage and communication overhead [WAEA11], or yields results that require

postprocessing on the query issuer’s side [HILM02], or both [HXRC11]. In contrast, data miners

in our proposed framework are considered “lightweight clients” as they are not required to have or

store any information about the data, nor are they required to perform post-processing on the results

(except for decrypting the results). The communication complexity with the cloud is constant with

respect to the size of the dataset and the query type.

Contribution 4. SecDM has two major steps, namely index construction and query processing.

It has linear time complexity on both steps w.r.t. the number of attributes, and it is sub-linear

w.r.t. the data size on query processing. Extensive experiments on real-life data further confirm

these properties.

In Table 2, we summarize the features of the representative approaches in the areas related to our

work, including our proposed solutions. Unlike the other approaches, our proposed solution ensures

data and query confidentiality and privacy-preserving results while assuming that the client has no

prior knowledge about the data being queried and its structure. No further interaction is required

between the cloud and the client once the latter has submitted her query to the cloud, and no local

refinement is required by the client on the final result.

The results of this chapter are currently under review in TCC [DFMC].

4.2 Preliminaries

The framework presented in this chapter utilizes two main components: anonymous ciphertext-policy

attribute based encryption (ACP-ABE) scheme [NYO08], and DiffGen Algorithm [MCFY11] for data

anonymization. In this section, we first introduce the ACP-ABE scheme and define its properties

and main functions, and then we introduce DiffGen and explain how it works.
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4.2.1 Anonymous Ciphertext-Policy Attribute Based Encryption (ACP-

ABE)

In this chapter, we utilize CP-ABE to preserve the confidentiality of the data mining queries and

the outsourced data (i.e. the data index hosted on the cloud). Our proposed framework requires the

CP-ABE scheme to support attributes with multiple values, including the wildcard functionality (to

indicate that certain attributes are not relevant to the ciphertext policy), while hiding the details of

the access structures associated with ciphertexts. A good candidate satisfying the aforementioned

properties is the CP-ABE scheme proposed in [NYO08]. This scheme is secure under the Decisional

Bilinear Diffie-Hellman (DBDH) assumption [Jou00] and the Decision Linear (D-Linear) assump-

tion [BBS04], constructed in the multi-valued attribute setting, supports wildcards, and allows the

access structure to be expressed in conjunctive normal form (i.e. conjunction - AND of disjunctions -

OR). It also prevents the decryptor from obtaining information about the access structure by hiding

what values for each attribute is specified in the conjunction of all the attributes.

Given a set of attributes {A1, . . . , Ai, . . . , An}, where each attribute Ai has a domain Ω(Ai) =

{vi,1, . . . , vi,j , . . . , vi,|Ω(Ai)|}, the scheme can be constructed according to the following four algo-

rithms:

Setup(1λ). A trusted authority first runs Gen(1λ) to generate a tuple [p,G,GT , g ∈ G, e], where

G,GT are cyclic groups, e : G1 × G2 → GT is a bilinear map, and ω∈
R
Z

∗
p. For each at-

tribute Ai : 1 ≤ i ≤ n, generate values {ai,j , bi,j ∈
R
Z

∗
p} and point Ai,j ∈

R
G for each

attribute value vi,j ∈ Ω(Ai) : 1 ≤ j ≤ |Ω(Ai)|. The algorithm outputs public key PK =

〈Y, p,G,GT , g, e, {(Ai,j)ai,j , (Ai,j)bi,j }1≤i≤n
1≤j≤|Ω(Ai)|〉, where Y = e(g, g)ω. It also outputs master

secret key MSK = 〈ω, {ai,j , bi,j}1≤i≤n
1≤j≤|Ω(Ai)〉.

KeyGen(MSK, L). This algorithm takes MSK and a set of attribute values L = {v1,t1 , . . . , vi,ti
, . . . , vn,tn

},

where vi,ti ∈ Ω(Ai), and outputs a user’s secret key SKL = 〈D0, {Di,0, Di,1, Di,2}1≤i≤n〉, where

D0 = gω−s, Di,0 = gsi(Ai,j)ai,ti
.bi,ti

.λi , Di,1 = gai,ti
.λi , Di,2 = gbi,ti

.λi , and si, λi ∈
R

Z
∗
p for

1 ≤ i ≤ n such that s =
∑n

i=1 si. This algorithm will be used to encrypt user queries and
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generate corresponding system queries that will be executed against the encrypted data on the

cloud.

Enc(PK, M, W ). This algorithm takes public key PK and access structure W = {W1 ∧ . . . ∧

Wi ∧ . . . ∧, Wn}, and encrypts a message M ∈ GT . The result is a ciphertext:

CT = 〈C̃, C0, {Ci,j,1, Ci,j,2}1≤i≤n
1≤j≤Ω(Ai)〉, where r ∈

R
Z

∗
p, C̃ = MY r, and C0 = gr. If vi,j ∈

Wi, then [Ci,j,1, Ci,j,2] = [(Ai,j)bi,j .ri,j , (Ai,j)ai,j .(r−ri,j)] (well-formed group elements), where

ri,j ∈
R
Z

∗
p. If vi,j /∈ Wi, then Ci,j,1, Ci,j,2 ∈

R
Z

∗
p (mal-formed group elements).

Dec(CT, SKL). This algorithm decrypts ciphertext CT using user’s secret key SKL as follows:

M = C̃.
∏n

i=1
e(C′

i,1,Di,1)e(C′
i,2,Di,2)

e(C0,D0).
∏n

i=1
e(C0,Di,0)

, where [C ′
i,1, C ′

i,2] := [Ci,j,1, Ci,j,2] if Li = vi,ji
.

In the rest of the chapter we will refer to the ACP-ABE scheme as A, and to the Exponential

ElGamal scheme as G.

4.2.2 DiffGen Algorithm

Mohammed et al. [MCFY11] proposed data anonymization algorithm for acheiving differential pri-

vacy in the non-interactive setting based on the generalization technique. The general idea is to

anonymize the raw data D by a sequence of specializations, starting from the topmost general state.

A specialization, written v → child(v), where child(v) denotes the set of child values of v, replaces

the parent value v with child values. The specialization process can be viewed as pushing the cut of

each taxonomy tree downwards. A cut of the taxonomy tree for an attribute Ai ∈ Apr, denoted by

Cut(TAi), contains exactly one value on each root-to-leaf path. The specialization starts from the

topmost cut and pushes down the cut iteratively by specializing a value in the current cut.

DiffGen presented in Algorithm 1 first generalizes the raw data and then adds noise to achieve ε-

differential privacy. Initially, all values in Apr are generalized to the topmost value in their taxonomy

trees (Line 1), and Cuti contains the topmost value for each attribute Apr
i (Line 2). At each iteration

DiffGen uses exponential mechanism to select a candidate v ∈ ∪Cuti for specialization, where ∪Cuti

is the set of all candidate values for specialization (Line 7). Candidates are selected based on their
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ALGORITHM 1: (DiffGen)
Input: Raw data set D, privacy budget ε, and number of specializations h.
Output: Anonymized data set D̂

1: Initialize every value in D to the topmost value;
2: Initialize Cuti to include the topmost value;
3: ε′ ← ε

2(|Apr
n |+2h) ;

4: Determine the split value for each vn ∈ ∪Cuti with probability ∝ exp( ε′
2Δu u(D, vn));

5: Compute the score ∀v ∈ ∪Cuti;
6: for l = 1 to h do
7: Select v ∈ ∪Cuti with probability ∝ exp( ε′

2Δu u(D, v));
8: Specialize v on D and update ∪Cuti;
9: Determine the split value for each new vn ∈ ∪Cuti with probability ∝ exp( ε′

2Δu u(D, vn));
10: Compute the score for each new v ∈ ∪Cuti;
11: end for
12: return each leaf node with count (C + Lap(2/ε))

score values, and different utility functions can be used to determine the scores of the candidates.

Once a candidate is determined, DiffGen splits the records into child partitions. The split value

of a categorical attribute is determined according to the taxonomy tree of the attribute. Since

the taxonomy tree is fixed, the sensitivity of the split value is 0. Therefore, splitting the records

according to the taxonomy tree does not violate ε-differential privacy. For numerical attributes, a

split value cannot be directly chosen from the attribute values that appear in the data set D because

the probability of selecting the same split value from a different data set D′ not containing this value

is 0. In this context, DiffGen uses the exponential mechanism again to determine the split value

for each numerical candidate vn ∈ ∪Cuti (Lines 4 and 9). Then, the algorithm specializes v and

updates ∪Cuti (Line 8). It also calculates the scores of the new candidates due to the specialization

(Line 10). Finally, the algorithm outputs each leaf partition along with their noisy counts (Line 12)

(see [MCFY11] for more details).

4.3 Problem Formulation

In this section we formally define the research problem. First, we present an overview of the prob-

lem of confidential query processing, with privacy guarantee on outsourced data in the cloud in

Section 4.3.1. Next, we define the input components in Section 4.3.2. We then describe the trust

37



and adversarial model in Section 4.3.3. Finally, we present the problem statement in Section 4.3.4.

4.3.1 Problem Overview

In this chapter we examine a cloud computing model consisting of three parties: data provider, data

miner, and service provider. The data provider, for example, represents a data bank that owns an

integrated patient-specific database. The data miner represents a user who is interested in querying

the data for the purpose of performing analytical data mining activities such as classification analysis.

The service provider is a public (untrusted) party that facilitates access to IT resources, i.e., storage

and computational services.

The data provider desires to make its data available to authorized data miners. Due to its limited

resources, the data provider outsources the database to a service provider capable of handling the

responsibility of answering count queries from data miners. To prevent the disclosure of patients’

sensitive information, the data provider anonymizes its data and generates a set of records that

satisfy ε-differential privacy. Even though the outsourced data is anonymized, the data provider

wants to protect the data against the service provider so it cannot answer queries on the data from

untrusted (unauthorized) data miners. The service provider, however, should be able to process

count queries from authorized data miners confidentially and return results that provide a certain

privacy guarantee.

4.3.2 System Inputs

In this section we give a formal definition of the input components, namely, differentially private data

and user count queries. Without loss of generality, we assume that the input data is anonymized

using an ε-differential privacy model [Dwo06], although our approach supports other privacy mod-

els that produce contingency-like tables based on generalization and suppression. We choose ε-

differential privacy because it provides a strong privacy guarantee while being insensitive to any

specific record. We first describe how to generate ε-differentially private records from a relational
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[18-65)

[18-45) [45-65)

AgeJob
[18-99)
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Canada 30KEngineer
USA 45KLawyer

USA 75KLawyer
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30
55
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18
30
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USA 45KEngineer 30

Canada 45KDancer 65

Country SalaryJob Age

3
2

4
5
6
7

1

8

PID

Coronary Artery
Valve Repair

Plastic
Coronary Artery

Urology
Valve Repair

Plastic

Valve Repair

Surgery

Figure 2: A raw data table D and its taxonomy trees.

data, then we explain how to transform the data using taxonomy trees, and finally we define the

types of count queries the user can submit.

Differentially Private Data

In this section we review how a data provider can generate ε-differentially private records. We utilize

the differentially private anonymization algorithm (DiffGen) [MCFY11] to maximize the data utility

for classification analysis. Suppose a data provider owns an integrated patient-specific data table

D = {AI , Apr, Acls}, where AI is an explicit identifier attribute such as SSN or Name for explicitly

identifying individuals that will not be used for generating the ε-differentially private data; Acls is a

class attribute that contains the class value; and Apr is a set of k predictor attributes whose values are

used to predict the class attribute Acls. We require the class attribute Acls to be categorical, whereas

the predictor attributes in Apr are required to be either categorical or numerical. Furthermore, we

assume that for each predictor attribute Ai ∈ Apr a taxonomy tree TAi is used in order to specify the

hierarchy among the domain values of Ai. Figure 2 shows a raw data table D with four attributes,

namely, Country, Job, Age, and Salary and the taxonomy tree for each attribute.

The data provider’s objective is to generate an anonymized version D̂ = {Âpr, NCount} of the

data table D, where Âpr is the set of k generalized predictor attributes, and NCount is the noisy

count of each record in D̂. The objective of the data miner is to build a classifier to accurately

predict the class attribute Acls by submitting count queries on generalized predictor attributes Âpr.
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Cuti = {Any_Country, Any_Job, [18-65), [18-99]}

Cuti = {Any_Country, Professional,Artist, [18-65), [18-99]}

Any_Count. Artist [45-65) [18-99)Any_Count. Artist [18-45) [18-99)

Any_Count. Prof. [45-65) [18-99)Any_Count. Prof. [18-45) [18-99)

Any_Count. Professional [18-65) [18-99) Any_Count. Artist [18-65) [18-99)

Any_Count. Any_Job [18-65) [18-99)
Country Job Age Salary

Any_Job {Professional, Artist}

[18-65) {[18-45), [45-65)}

Figure 3: Algorithm DiffGen for generating ε-differentially private data with noisy counts.

Table 3: Differentially-private data table D̂

ˆCountry ˆJob Âge ˆSalary NCount
Any Country Professional [18-45) [18-99) 4
Any Country Professional [45-65) [18-99) 2
Any Country Artist [18-45) [18-99) 1
Any Country Artist [45-65) [18-99) 5

Example 1 Consider the raw data set in Figure 2. Initially, the algorithm creates one root par-

tition containing all the records that are generalized to 〈 Any Country, Any Job, [18-65), [18-99)

〉. ∪Cut(TAi) includes {Any Country, Any Job, [18-65), [18-99)}. Let the first specialization be

Any Job → {Professional, Artist}. The DiffGen algorithm creates two new partitions under the root,

as shown in Figure 3, and splits data records between them. ∪Cut(TAi) is updated to {Any Country,

Professional, Artist, [18-65), [18-99)}. Suppose that the next specialization is [18-65)→ {[18-40),

[40-65)}, which creates further specialized partitions. Finally, the algorithm outputs the equivalence

groups of each leaf partition with their noisy counts as shown in Table 3. �

Input Data Transformation

We simplify the representation of the ε-differentially private records D̂ = {Âpr, NCount} by mapping

the values of each attribute to their integer identifiers from the corresponding attribute’s taxonomy

tree.

Numerical Attributes. The domain of each numerical attribute Âi ∈ Âpr, consists of a set of

ranges that are pair-wise disjoint and can be represented as a continuous and ordered sequence of

ranges. We define an order-preserving identification function IDop that assigns an integer identifier
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Any_Job (id=1)

Professional (id=2)

Lawyer (id=5)Engineer (id=4) Writer (id=8)Dancer (id=6) Singer (id=7)

Civil (id=10)Software (id=9) Electrical (id=11)

Solution Cut

Job

Artist (id=3)

Figure 4: Taxonomy tree TJob for attribute Job.

Table 4: Transformed data table D̂

ˆCountry ˆJob Âge ˆSalary NCount
1 2 1 1 4
1 2 2 1 2
1 3 1 1 1
1 3 2 1 5

to each range r = [rmin, rmax] such that for any two ranges rj and rl, if rmax
j < rmin

l , then

IDop(rj) < IDop(rl). For example, if the domain of the generalized attribute Âge is Ω(Âge) =

〈[18, 45), [45, 65)〉, then IDop([18, 45)) = 1 and IDop([45, 65)) = 2.

Categorical Attributes. The domain of each categorical attribute Âi ∈ Âpr consists of the

set of values Cut(TAi). We define a taxonomy tree identification function IDt such that for any

two nodes vi, vj : vj �= vi, if vi is a parent of vj , then IDt(vi) < IDt(vj). If vi is the root node,

then IDt(vi) = 1. Figure 4 illustrates the taxonomy tree TJob for attribute Job, where each node is

assigned an identification value.

Having defined the mapping functions IDop and IDt, we now transform the ε-differentially

private records D̂ by mapping the values in the domain of each attribute to their identifiers. That

is, for each numerical attribute Âi ∈ Âpr, we map each range r ∈ Ω(Âi) to its corresponding

identification value IDop(r). Similarly, for each categorical attribute Âi ∈ Âpr, we map each value in

v ∈ Ω(Âi) to its identification value from the taxonomy tree IDt(v). Table 4 shows the differentially

private data D̂ after the transformation.

41



User Count Queries

The goal of the data miners is to build a classifier based on the noisy count of a query over the gen-

eralized attributes Âpr. Therefore, they submit count queries to be processed on the ε-differentially

private data D̂ and expect to receive a noisy count as a result to each submitted query. We denote

by user count query any data mining’s count query, and it is formally defined as follows:

Definition 4 (User Count Query.) A user count query u over D̂ is a conjunction of predicates

P1 ∧ ... ∧ Pm where each predicate P = (Âi Op si) expresses a single criterion such that Âi ∈ Âpr,

Op is a comparison operator, and si is an operand. If Âi is a categorical attribute, then Op

corresponds to the equality operator “ = ” and si is a value from the taxonomy tree TAi . If Âi

is a numerical attribute, then si is a numerical range [smin
i , smax

i ] such that if smin
i = smax

i then

Op ∈ {>, ≥, <, ≤, =} ; otherwise, Op is the equal operator (=). �

In general, a user count query u can be either exact, specific, or generic depending on whether

it corresponds to an exact record (equivalence class), or whether it partially intersects with one

or more records in the ε-differentially private data D̂. Note that both specific and generic queries

correspond to range queries in the literature. The following is a formal definition of each type of a

user count query.

Definition 5 (Exact User Count Query.) A user count query u is exact if for each predicate

P = (Âi Op si) ∈ u, si ∈ Ω(Âi). �

Definition 6 (Specific User Count Query.) A user count query u is specific if for each predicate

P = (Âi Op si) ∈ u:

1. If Âi is categorical, then si ∈ Ω(Âi).

2. If Âi is numerical, then si ∈ Ω(Âi) or there exists exactly one range r ∈ Ω(Âi) where si ∩ r �= φ

and si �= r. �

Definition 7 (Generic User Count Query.) A user count query u is generic if for each predicate

P = (Âi Op si) ∈ u:
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1. If Âi is categorical, then si ∈ TAi .

2. If Âi is numerical, then ∃ rj , rl ∈ Ω(Âi) such that si ∩ rj �= φ, si ∩ rl �= φ, and rj �= rl. �

Example 2 The following are examples of user count queries over the ε-differentially private data

D̂ presented in Table 3:

Exact: u1 = ( ˆJob = “Artist”) ∧ (Âge = [45 − 65))

Specific: u2 = ( ˆJob = “Artist”) ∧ (Âge = [50 − 57))

Generic: u3 = ( ˆJob = “Lawyer”) ∧ (Âge = [30 − 70))

Observe that the queries conform neither to the structure nor to the data in D̂. That is, attributes

ˆCountry and ˆSalary are missing, the value “Lawyer” is not in the domain Ω( ˆJob), and the range

[30, 70] spans beyond the values covered by all ranges in Ω(Âge). All these issues will be addressed

in section 4.4.3 when the data miner submits her user count query for preprocessing. �

4.3.3 Adversarial Model

SecDM consists of three parties: data provider (data bank), data miner, and service provider (cloud).

In our security analysis, the adversary can statically corrupt, in honest-but-curious (HBC) [KMR]

fashion, the service provider or the data miner, but not both. The service provider adversary

tries to gain access to the contents of the anonymized data, and during query execution tries to

infer information about the count queries and their results. On the other hand, the data miner

adversary tries to link sensitive information to patients by attempting to gain information about the

anonymized records identified by each of her queries, their count values, and the percentage of each

query count. We assume the computational power of each adversary is bounded by a polynomial

size circuit. We also assume that a protocol is in place to provide secure pair-wise communications

between parties in the SecDM framework.
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4.3.4 Problem Statement

Given ε-differentially private data D̂, the objective is to design a framework for outsourcing D̂ to an

untrusted service provider P that can answer exact, specific, and range count queries from authorized

data miners on D̂. The framework must provide three levels of security: (1) data confidentiality,

where D̂ is stored in an encrypted form such that no useful information can be disclosed from D̂ by

unauthorized parties; (2) confidential query processing, where P is capable of processing the queries

on D̂ for classification analysis without inferring information about the queries or the underlying

anonymized data; and (3) privacy preservation, where the result of each query provides a certain

privacy guarantee.

4.4 Solution: SecDM Framework

In this section we first present an overview of our proposed privacy-preserving framework for confi-

dential query processing on ε-differentially private data in the cloud, and then we elaborate on the

key steps of the algorithm, including constructing a secure index, securing the data for outsourcing,

and executing count queries while preserving their privacy.

4.4.1 Solution Overview

The objective of our solution is to provide a secure framework that enables data providers to out-

source their ε-differentially private data D̂ to a service provider (public cloud) such that the confiden-

tiality of the outsourced data is protected, while the service provider is capable of securely answering

count queries from authorized data miners without being able to infer any information about the

queries and their results, as illustrated in Figure 5. Our framework consists of five algorithms:

Algorithm 2 - Secure Index Construction (buildIndex): For an efficient data retrieval, a

secure kd-tree index is constructed over all categorical and numerical attributes in D̂, where each

non-leaf node is encrypted using the ACP-ABE scheme A.

Algorithm 3 - Leaf Node Construction (constLeafNode): Utilized by the buildIndex
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Secure Index 
Construction

 differential 
privacy

Data Provider

Encrypted
Index

Anonymized Data

Public Cloud

Service Provider

Hospital

Health Centre

Data Owner

Integrated Patient-
specific Data

(a) The setup phase, where the data provider anonymizes the integrated patient-specific data and generates
a kd-tree index over the anonymized data for efficient search and retrieval and uploads the index to the
cloud.

(1) ID + Count Query Request

Service 
Provider

(2) User
Authentication

(3) Query 
Preprocessing

(6) Secure Index 
Traversal

(7) Compute Total 
Noisy Count

(9) Decrypt 
Total Count 
using G.x

(8) Encrypted
(Total Count) 

Data Provider Data Miner

(b) The query processing phase, where authorized users interested in mining the patient-specific data obtain
system count queries from the data provider and then submit the queries to the cloud for processing. The
cloud confidentially process the queries and sends the privacy-preserving results back to the users.

Figure 5: SecDM: A Privacy-preserving framework for confidential count query processing on the
cloud.
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procedure to construct the leaf nodes in the kd-tree index. Each leaf node contains a noisy count

encrypted using Exponential ElGamal and a set of tags to be utilized during query execution for

determining the exact percentage that should be used of the noisy count of each reported leaf node.

Algorithm 5 - Query Preprocessing (qPreprocess): A user (data miner) desiring to query

the outsourced data first submits a query u to the data provider that preprocess the query and

sends back three components: an encrypted version of the query in the form of a secret key SKu

using anonymous ciphertext-policy attribute based encryption scheme A, a set of ADT tokens for

producing accurate count results, and a decryption key G.x. The user then submits the encrypted

query SKu and the ADT tokens to the service provider.

Algorithm 7 - Index Traversal (traverseIndex): The service provider utilizes the user’s

secret key SKu in order to securely traverse the index tree and determine the leaf nodes satisfying

SKu.

Algorithm 8 - Total Count Computation (compTCount): Using the set of ADT to-

kens, the service provider computes the percentage of the noisy count of each reported leaf node,

homomorphically add all counts together, and then sends the encrypted result to the user.

4.4.2 Secure Index Construction

Given the ε-differentially private data D̂ with kc categorical attributes and kn numerical attributes,

the data provider constructs an encrypted index on all attributes in D̂ in order to support efficient

and secure processing of multi-dimensional range count queries over the k-dimensional data, where

k = kc + kn. That is, it constructs a balanced kd-tree [Ben75] index, where every internal (non-leaf)

node is a k-dimensional node that splits the space into two half-spaces, and each leaf node stores a

noisy count corresponding to a record in D̂.

The kd-tree index is constructed with the procedure Secure Index Construction (buildIndex)

presented in Algorithm 2. BuildIndex is a recursive procedure that has four input parameters: D̂,

depth i, PK, and y. The first input parameter D̂ is the set of records for which the kd-tree will
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ALGORITHM 2: buildIndex: Secure Index Construction
Input: Shuffled ε-differentially private data D̂
Input: split dimension i
Input: ACP-ABE public key PK
Input: Exponential ElGamal public key y
Output: kd-tree index T

1: if |D̂| = 1 then
2: LeafNode ← constLeafNode(D̂, y);
3: return LeafNode;
4: end if
5: cut ← median(Âi, D̂);
6: split(D̂, Âi, cut, D̂1, D̂2);
7: vleft ← buildIndex(D̂1, (i + 1) mod k, PK, y);
8: vright ← buildIndex(D̂2, (i + 1) mod k, PK, y);
9: create empty node v;

10: v.split dim ← Âi ; v.split value ← cut;
11: v.lc ← vleft ; v.rc ← vright;
12: v.genCT (PK);
13: return kd-tree index T ;

be constructed, where each record represents a point in the k-dimensional space. The columns in

D̂ are shuffled a priori to randomize the order of the attributes. The second input parameter i

represents the depth of the recursion that determines the split dimension. It ranges between 1 and

k, where 1 is the initial value. The third input parameter PK is the public key of the anonymous

ciphertext-policy attribute based encryption scheme A, which will be used to secure each internal

node in the index tree. To generate this key a security parameter λ is passed to the setup algorithm:

A.Setup(1λ) ⇒ (PK, MSK). The last parameter y is the public key of the Exponential ElGamal

scheme used to encrypt the noisy counts in the leaf nodes. The function median (Line 5) determines

the median value of the domain Ω(Âi), where Âi is an attribute from D̂. The function split (Line

6) then uses a hyperplane that passes through the median value in order to split D̂ into two subsets

of records, D̂1 and D̂2. Note that the median value is chosen for splitting to ensure a balanced

tree where each leaf node is about the same distance from the root of the tree. BuildIndex calls

itself (Lines 7-8) using D̂1 and D̂2 as inputs in order to determine the left and right children nodes

respectively. When the procedure terminates (Line 13), it returns the kd-tree index T . Next, we

will discuss how internal nodes (Lines 9-12) and leaf nodes (Line 2) are constructed.
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Internal Nodes Construction

Each internal (non-leaf) node v in the kd-tree index corresponds to one dimension (attribute)

Âi ∈ D̂ : 1 ≤ i ≤ k of the k-dimensional space, where the splitting hyperplane is perpendicular to

the axis of dimension Âi, and the splitting value cut is determined by the median function (Line

4). Node v has two child nodes, namely, lc and rc, where all records containing values smaller or

equal to the cut value with regard to Âi will appear in the left subtree, whose root is v.lc, and

all records containing values greater than the cut value with regard to Âi will appear in the right

subtree, whose root is v.rc. Furthermore, node v consists of two ciphertexts, v.CTleft and v.CTright,

where the encrypted message in v.CTleft is a pointer (Ptr) to the child node v.lc, and the encrypted

message in v.CTright is a pointer to the child node v.rc. The intuition is as follows: The service

provider must use the key SKu provided by the user to be allowed to securely traverse the kd-tree

index and compute the answer to the user query u. The structure of SKu and how it is built is

discussed in Section 4.4.3. At any node v in the kd-tree, if SKu satisfies the access structure of the

ciphertext v.CTleft, the ciphertext is decrypted and a pointer to the child node v.CTleft is obtained.

Similarly, if SKu satisfies the access structure of v.CTright, the ciphertext is decrypted and a pointer

to v.CTright is obtained. If SKu satisfies both access structures, then two pointers are obtained,

indicating that both left and right subtrees must be traversed.

Access Structure. The ciphertexts in each node are generated using the anonymous ciphertext-

policy attribute based encryption scheme A, where each ciphertext has an access structure W . Each

numerical attribute Âi ∈ D̂ is represented in the access structure of a ciphertext by two attributes,

Âmin
i and Âmax

i , where Ω(Âmin
i ) = Ω(Âmax

i ) = Ω(Âi). On the other hand, each categorical attribute

is mapped to one attribute in the access structure of a ciphertext. Below is the formal definition of

an access structure of a ACP-ABE ciphertext.

Definition 8 (Ciphertext Access Structure W .) Given ε-differentially private data D̂ and a

node v from the kd-tree index over D̂, the access structure of a ciphertext of v is the conjunction
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W = [WÂ1
∧ ... ∧ WÂi

∧ ... ∧ WÂk
]. If Âi is a categorical attribute, then WÂi

corresponds either to

the wildcard character “ ∗ ” or to a disjunction of values from Ω(Âi), where “WÂi
= ∗” means that

attribute Âi should be ignored. If Âi is a numerical attribute, then WÂi
= WÂmin

i
∧ WÂmax

i
, where

WÂmin
i

and WÂmax
i

each corresponds to either the wildcard character “ ∗ ” or a disjunction of values

from Ω(Âi). �

Note that for a given node v, the access structure of the left and right ciphertexts is mainly

concerned with the splitting dimension v.split dim, and the split value v.split value over D̂1 or D̂2,

where D̂1, D̂2 ⊆ D̂. If v.split dim is a categorical attribute Âi, then WÂi
in the access structure

of v.CTleft should correspond to the disjunction of all values val ∈ {Ω(Âi) ∪ {1}} such that val ≤

v.split value and for val = 1, where 1 represents “Any” value. Similarly, WÂi
in the access structure

of v.CTright should correspond to the disjunction of all values val ∈ {Ω(Âi) ∪ {1}} such that

val > v.split value or for val = 1. On the other hand, if v.split dim is a numerical attribute Âi,

then WÂmin
i

in the access structure of v.CTleft should correspond to the disjunction of all values

val ∈ Ω(Âi) for all val ≤ v.split value, and WÂmax
i

in the access structure of v.CTright should

correspond to the disjunction of all values val ∈ Ω(Âi) such that val > v.split value. Regardless of

whether Âi is categorical or numerical, all values in {W \ WÂi
} should correspond to “ ∗ ”.

Example 3 Given D̂ from Table 4, and given node v from kd-tree index:

a) If v.split dim = Job (categorical) and v.split value = 2, then the access structure of the left

and right ciphertexts can be represented as follows:

WL = (Country = ∗) ∧ (Job = 1 ∨ Job = 2) ∧ (Agemin = ∗) ∧ (Agemax = ∗) ∧ (Salarymin =

∗) ∧ (Salarymax = ∗).

WR = (Country = ∗) ∧ (Job = 1 ∨ Job = 3) ∧ (Agemin = ∗) ∧ (Agemax = ∗) ∧ (Salarymin =

∗) ∧ (Salarymax = ∗).

b) If v.split dim = Age (numerical) and v.split value = 1, then the access structure of the left

and right ciphertexts are:

WL = (Country = ∗) ∧ (Job = ∗) ∧ (Agemin = 1) ∧ (Agemax = ∗) ∧ (Salarymin = ∗) ∧ (Salarymax =
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∗).

WR = (Country = ∗)∧ (Job = ∗)∧ (Agemin = ∗)∧ (Agemax = 2)∧ (Salarymin = ∗)∧ (Salarymax =

∗). �

In procedure buildIndex presented in Algorithm 2, each internal node v is created after deter-

mining its children nodes Vleft and vright (Lines 9-12), where function genCT is responsible for

creating the left ciphertext CTleft and the right ciphertext CTright of the node by calling twice the

ACP-ABE algorithm A.Enc() and passing as parameters the public key PK of A, a pointer to the

child node to be encrypted, and the values in the access structure (without the attribute names):

v.CTleft ← A.Enc(PK, Ptr(v.lc), WL);

v.CTright ← A.Enc(PK, Ptr(v.rc), WR);

For each attribute Âi in W that is assigned a wildcard, e.g. (Country = ∗), A.Enc() generates

a random (mal-formed) group elements [Ci,j,1, Ci,j,2] for each value in Ω(Âi). On the other hand,

for each attribute in W assigned specific values, e.g. (Job = 1 ∨ Job = 2), A.Enc() generates a

well-formed group elements for each value specified, i.e. for value 1 and for value 2, and random

group elements for each remaining value in Ω(Job). As a result, all ciphertexts CT generated by

A.Enc() in the kd-tree index contain the same number of group elements regardless of the access

structure.

Leaf Nodes Construction

In procedure buildIndex, as the multi-dimensional space is being recursively partitioned a leaf node

is created whenever the number of the records being partitioned reaches 1 (Lines 1-2 ). Procedure

Leaf Node Construction (constLeafNode), presented in Algorithm 3, is responsible for generating the

leaf nodes. It takes as input a ε-differentially private record R and Exponential ElGamal’s public

key y and outputs a leaf node l. After creating an empty node l (Line 1), the noisy count of record

R is encrypted using Exponential ElGamal encryption scheme G and stored in node l (Line 2). We

choose the Exponential ElGamal cryptosystem due to its additive homomorphism property, which
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ALGORITHM 3: constLeafNode: Leaf Node Construction
Input: ε-differentially private record R
Input: Exponential ElGamal’s public key y
Output: leaf node l

1: create empty node l;
2: l.NCount ← G.Enc(R.NCount, y, r);
3: for each numerical attribute Âi ∈ D̂ do
4: l ← genTAG(R.Âi);
5: end for
6: return l;

ALGORITHM 4: indexUpload: kd-Tree Index Upload
1: The Data Provider submits the kd-tree index T to the Service Provider;
2: The Service Provider receives T ;

allows for homomorphically adding encrypted noisy counts together in an efficient way.

For each numerical range value R.Âi in R, a deterministic and hiding commitment function

genTAG() is utilized to commit R.Âi and randomly generate a unique tag (Line 3-4). Applying

genTAG() to the same value will always generate the same tag (deterministic). Moreover, the cor-

respondence between each tag and its value is kept secret (hiding). As we will see in Section 4.4.3,

using a deterministic function to generate tags for the numerical range values enables the service

provider during query execution to compute the exact percentage of the noisy count of each reported

leaf node with respect to the query being processed.

Once the kd-tree index T has been created, it is submitted to the service provider according to

Algorithm 4. While Algorithm 4 is trivial, it is required in Section 4.5.3 to prove by simulation the

security of the framework.

4.4.3 Confidential Query Processing

In this section, we illustrate how user count queries are executed in order to determine their exact

ε-differentially private answers while preserving the confidentiality of the data as well as the queries.

First, we explain how the user query is preprocessed and transformed into a system query. Next,

we discuss how the service provider securely traverses the kd-tree index, computes the total count,
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and then sends the result back to the user.

Query Preprocessing

Upon the receipt of a user’s count query u, the data provider first transforms u into a conjunction

of subqueries that specify a single-value equality condition over each attribute Âi ∈ D̂. Next, it

generates a system count query SKu using algorithm A.KeyGen() from ACP-ABE scheme. If an

attribute Âi in D̂ is not specified by the user in u, then it will be considered in SKu as if the user

is asking for (Âi = ∗). The following is the formal definition of a system count query:

Definition 9 (System Count Query.) Given ε-differentially private data D̂ with k attributes

and a user query u = P1 ∧ ... ∧ Pm | P = (Âi Op si), a system count query over D̂ is a ACP-ABE

user’s secret key SKu representing k subqueries {qÂ1
, ..., qÂk

} such that:

• If Âi is a categorical attribute, then Âi is represented in SKu as a tuple of group elements

[Di,0, Di,1, Di,2]

• If Âi is a numerical attribute, however, it is represented in SKu as two tuples of group elements

[Dmin
i,0 , Dmin

i,1 , Dmin
i,2 ] and [Dmax

i,0 , Dmax
i,1 , Dmax

i,2 ], where each tuple corresponds to the minimum

and maximum bound of the range subquery qÂi
, respectively. �

The total number of group element tuples in a system query SKu is: |SKu| = kc + 2 × kn, where

kc and kn are the number of categorical and numerical attributes in D̂. |SKu| is independent of the

user query u. We refer the reader to Section 4.2.1 for more details on how an ACP-ABE secret key

is generated.

Procedure Query Preprocessing (qPreprocess) presented in Algorithm 5 illustrates how a system

count query SKu is constructed based on a user’s count query u. Once the user has been authen-

ticated successfully using user identification token UIT (Line 2), the next step is to determine the

attribute-value pairs in SKu. For each categorical attribute Âi ∈ D̂, if predicate (Âi, Op, si) exists

in the user count query u and si is in the domain of Âi, then the subquery (Âi, si.ID) is added to q,
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ALGORITHM 5: qPreprocess: Query Preprocessing
Input: ε-differentially private data D̂
Output: system count query SKu

Output: set of attribute distribution tokens N
1: The Data Provider receives user identification token UIT and user count query u from Data

Miner
2: if user authentication is successful using UIT then
3: q ← {}; ADT ← {};
4: for each categorical attribute Âi ∈ D̂ do
5: if (Âi, Op, si) ∈ u and si ∈ Ω(Âi) then
6: q ← q ∪ (Âi, si.ID);
7: else if (Âi, Op, si) ∈ u and si /∈ Ω(Âi) then
8: n ← findSCS(si);
9: q ← q ∪ (Âi, n.ID);

10: else if (Âi, Op, si) /∈ u then
11: q ← q ∪ (Âi, 1);
12: end if
13: end for
14: for each numerical attribute Âi ∈ D̂ do
15: if (Âi, Op, si) ∈ u then
16: (vi,1, vi,2) ← compMinMax(Ω(Âi), si, Opi);
17: q ← q ∪ (Âmin

i , vi,1) ∪ (Âmax
i , vi,2);

18: N ← N ∪ genADT (Ω(Âi), vi1, vi2);
19: else
20: q ← q ∪ (Âmin

i , 1) ∪ (Âmax
i , rangemax);

21: end if
22: end for
23: SKu ← A.KeyGen(MSK, q);
24: return SKu, N ;
25: end if

ALGORITHM 6: queryRequest: System Count Query Request
1: The Data Provider sends the following to the Data Miner:

• System count query SKu corresponding to user count query u

• Set of attribute distribution tokens N
• Exponential ElGamal decryption key x

2: The Data Miner receives SKu, N , and x from Data Provider;
3: The Data Miner sends SKu and N to Service Provider;
4: The Service Provider receives SKu and N from Data Miner;

where si.ID is the identifier of the categorical value si in Âi’s taxonomy tree TÂi (Lines 5-6); oth-

erwise, if si is not in the domain of Âi, then function findSCS(si) (Line 8) is utilized to determine

the position of si in Âi’s taxonomy tree with regard to the solution cut. If si is below the solution

cut, then there exists exactly one node n on the path from si to the root, such that n ∈ Ω(Âi). We
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call such a node the Solution Cut Subsumer (SCS) of si, and the subquery (Âi, n.ID) is then added

to q (Line 9). If si is above the solution cut or u does not have any predicate that corresponds to a

categorical attribute Âi ∈ D̂, then the subquery (Âi, 1) is added to q (Lines 10-11), where 1 means

“ANY” value of Âi corresponding to the root node of Âi’s taxonomy tree TÂi .

On the other hand, if Âi is a numerical attribute and predicate (Âi, Op, si) exists in u, then

the values vi,1 associated with Âmin
i and vi,2 associated with Âmax

i are determined by the func-

tion compMinMax (Line 15). When Op is the equal operator (=), if si is a single value, then

vi,1 = vi,2 = Range(si), where Range(si) is a function that returns the identifier of the range in

Ω(Âi) containing si; otherwise, if si is a range, then vi,1 = Range(Lowerbound(si)) and vi,2 =

Range(Upperbound(si)). If Op = “ ≥ ”, then vi,1 = Range(si) and vi,2 is the identifier of the high-

est range in Ω(Âi). Conversely, if Op = “ ≤ ”, then vi,1 = 1 and vi,2 = Range(si). If predicate

(Âi, Op, si) does not exist in u for numerical attribute Âi (Lines 19-20), then vi,1 = 1 and vi,2 is the

identifier of the highest range rangemax ∈ Ω(Âi).

Example 4 Given Table 3 and Table 4, the following are three different users’ queries and their

corresponding subqueries in the access structure of the system count query:

a) u = (Age = 50) ⇒ q = (Agemin, 2), (Agemax, 2).

b) u = (Age = [40 − 70]) ⇒ q = (Agemin, 1), (Agemax, 2).

c) u = (Age ≤ 35) ⇒ q = (Agemin, 1), (Agemax, 1). �

Function genADT (Line 18) is used to generate attribute distribution tokens (ADT) for each

numerical attribute Âi from D̂. Two ADT tokens, ADTmin and ADTmax, are created for each

numerical attribute for the purpose of computing the percentages of the noisy counts of the reported

leaf nodes upon query execution in order to determine the final answer (total count) of the query.

Each ADT token consists of two parts: tag and value. Assuming that r is the range for which the

ADT token is constructed, then ADT.tag = genTAG(r) and ADT.value is the percentage of the

partial overlap between query u and range r.
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Figure 6: ADT query overlap.

Example 5 Assume that in ε-differentially private data D̂, Ω(Âge) = {[18 − 30), [30 − 45), [45 −

55), [55 − 65)}, Ω( ˆSalary) = {[30 − 45), [45 − 60), [60 − 70)}, and user count query u = (Country =

“US”) ∧ (Job = “Engineer”) ∧ (Age = [25 − 49]) ∧ (Salary = [47 − 70]). Figure 6 illustrates the

equivalence classes of all records (numbered from 1,1 to 4,3), the query u (dark gray rectangle), and

the set of leaf nodes identified by u (six light gray rectangles). The range Age = [25 − 49] spans

over three ranges: [18 − 30), [30 − 45), and [45 − 55). Since [25 − 49] fully spans over [30 − 45),

no ADT token is required for [30 − 45). However, since [25 − 49] partially overlaps with ranges

[18 − 30) and [45 − 55), ADTmin and ADTmax should be created. For range value [18 − 30),

ADTmin.tag = genTAG([18 − 30)) and ADTmin.value = 30−25
30−18 = 42%. Similarly, for range value

[45 − 55], ADTmax.tag = genTAG([45 − 55)) and ADTmax.value = 50−45
55−45 = 50%. On the other

hand, Salary = [47 − 70] partially overlaps with ranges [45 − 60) and [60 − 75) and ADTmin and

ADTmax must be created. For range value [45 − 60), ADTmin.tag = genTAG([45 − 60)) and

ADTmin.value = 60−47
60−45 = 87%. Similarly, for range value [60 − 75], ADTmax.tag = genTAG([60 −

75)) and ADTmax. value= 70−60
75−60 = 67%. �

Once the set of attribute-value pairs q have been determined, the system count query SKu is

then generated by encrypting q with ACP-ABE master secret key MSK using algorithm A.KeyGen

(Line 23). Next, the data provider sends the following back to the user: secret key SKu, the set of
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ALGORITHM 7: traverseIndex: kd-tree Index Traversal
Input: kd-tree index root node v
Input: system count query SKu

Output: set of leaf nodes R
1: if v is a leaf node then
2: return v;
3: else
4: if A.Dec(v.CTleft, SKu) then
5: R ← R ∪ traverseIndex(v.lc, SKu);
6: end if
7: if A.Dec(v.CTright, SKu) then
8: R ← R ∪ traverseIndex(v.rc, SKu);
9: end if

10: end if
11: return R;

ADT tokens N , and ElGamal decryption key G.x that will be used eventually to decrypt the final

result of the query.

kd-tree Index Traversal

To execute a query u on D̂, the data miner sends a system count query SKu and a set of ADT

tokens N to the service provider. The service provider uses the secret key SKu to securely traverse

the kd-tree index and identify the set of leaf nodes satisfying u, while it uses N to adjust the noisy

count of each identified leaf node in order to compute an accurate final answer to the query.

Procedure kd-tree Index Traversal (traverseIndex) presented in Algorithm 7 illustrates how the

tree is traversed recursively to answer queries. It takes two input parameters: the root node v of the

kd-tree index and a system count query SKu. If v is an internal node, then the algorithm attempts

to decrypt the left ciphertext v.CTleft and the right ciphertext v.CTright by separately applying the

decryption function Dec from A, with the decryption key SKu, in order to determine whether it

needs to traverse the left subtree, right subtree, or both. If the values of the attributes associated

with SKu satisfy the access structure of v.CTleft, then the decryption of v.CTleft is successful and

the procedure traverseIndex calls itself while passing the left child node v.lc as input parameter

(Line 4-5). Similarly, if the values of the attributes associated with SKu satisfy the access structure

of v.CTright, then the decryption is successful and the procedure traverseIndex calls itself while
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Figure 7: (a) Access structure of root node v. (b) Generating system count query SKu from user
count query u.

passing the right child node v.rc as input parameter (Line 7-8). When the algorithm reaches a

leaf node v, then v is returned (Lines 1-2). Procedure traverseIndex eventually returns the set R

containing all leaf nodes satisfying SKu (Line 11).

Example 6 Given Example 5, assume that v is the root node where v.split dim = Age (Â3) and

v.split value = 2 (range[30 − 45)). Figure 7.(a) illustrates the access structure of v.CTleft and

v.CTright. Figure 7.(b) shows the system count query (secret key) SKu that was generated from

the user query u such that Age = [50 − 60] equates to Âmin
3 = 3 and Âmax

3 = 4.

Since Âmin
3 = 3 from SKu is not in the access structure of v.CTleft, then the decryption is

unsuccessful, and the left subtree will not be traversed. However, Âmax
3 = 4 from SKu is in the

access structure of v.CTright, then the decryption is successful and the procedure traverseIndex

traverses the right subtree, whose root node is v.rc. �

Computing Total Noisy Count

Having identified the set of leaf nodes R satisfying user count query u, the next step is to compute

the final answer to the count query.

Procedure Total Count Computation (compTCount) presented in Algorithm 8 illustrates how

the total noisy count is computed. It takes as input a set of leaf nodes R and a set of attribute
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ALGORITHM 8: compTCount: Total Noisy Count Computation
Input: set of leaf nodes R
Input: set of attribute distribution tokens N
Output: ciphertext of total count 〈r, s〉

1: 〈r, s〉 ← 〈1, 1〉 // initialization
2: for each leaf node lj ∈ R do
3: 〈rj , sj〉 ← lj .NCount;
4: for each token ADTi ∈ N do
5: if ADTi.tag ∈ lj then
6: 〈rj , sj〉 ← 〈rADTi.value

j , sADTi.value
j 〉; // scalar multiplication

7: end if
8: end for
9: 〈r, s〉 ← 〈r.rj , s.sj〉; // homomorphic addition

10: end for
11: return 〈r, s〉;

ALGORITHM 9: queryResult: User Count Query Result
Input: Exponential ElGamal decryption key x
Output: Query result ciphertext of total count 〈r, s〉

1: The Data Miner receives ElGamal encrypted result 〈r, s〉 from Service Provider;
2: resu = G.Dec(〈r, s〉, x); // Total noisy count decryption
3: return resu;

distribution tokens N . For each leaf node lj , if there is an ADT token ADTi whose tag matches

any of the tags in lj , then a percentage of the encrypted noisy count 〈rj , sj〉 is computed by raising

rj and sj to the value associated with ADTi (Lines 5-6). To homomorphically add two noisy

counts together, their first ciphertexts are multiplied together, and the same is done for their second

ciphertexts (Line 9). The output of procedure compTCount is the encrypted total count 〈r, s〉 (Line

11).

Computing Query Result

Once ciphertext 〈r, s〉 has been computed, the service provider returns the ciphertext to the user

as the final result. As per Algorithm 9, when the data miner receives the encrypted result 〈r, s〉,

she uses Exponential ElGamal’s private key G.x to decrypt the ciphertext and determine the exact

noisy count resu such that resu satisfies differential privacy.
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4.4.4 Discussion

SecDM allows data miners to reuse previously generated system queries and eliminates the need to

interact with the data provider to generate the same ones again. However, this comes at the expense

of requiring the user to interact with two parties (the data provider and the service provider), and

to perform public key decryption operations on the results encrypted using Exponential ElGamal.

In some scenarios where query reusability is not required, our framework can be easily modified

to have all communications go through the data provider, as in the Centralized SecDM (C-SecDM)

framework illustrated in Figure 8. Observe that in C-SecDM, the data miner does not have access

to Exponential ElGamal’s decryption key G.x, as the decryption is performed by the data provider,

and the total count result is then sent in clear text to the data miner via a secure channel.

(1) ID + Count 
Query Request

Service 
Provider

(2) User
Authentication

(3) Query 
Preprocessing

(5) Secure Index 
Traversal

(6) Compute Total 
Noisy Count

Data Provider Data Miner

(8) 
Decrypt 
Result

Figure 8: Centralized SecDM (C-SecDM) framework.

To analyze the benefit of outsourcing the data to a service provider versus having the data

provider handle the user queries directly, we measured the processing overhead of specific count

queries on the data provider and the service provider when the number of queries ranges from 200

to 1000. We choose specific count queries to perform the experiment because they represent the

worst-case scenario, where the number of nodes traversed in the kd-tree index is minimized and the
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number of ADT tokens is maximized. Figure 9 illustrates the results of our experiment, where we

observe that the processing overhead on the proxy server is almost 10 times less than the overhead

on the service provider regardless of the number of the queries.
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Figure 9: Performance comparison w.r.t. # of queries.

To present a practical framework we choose Exponential ElGamal to encrypt the noisy counts

because this encryption scheme supports efficient homomorphic addition and integer multiplication

operations. These operations are utilized by the cloud to adjust the noisy count of each identified

leaf node in the kd-tree index tree using ADT tokens and then to compute the total count. However,

in each ADT token, ADT.value must be stored in clear text, which reveals the percentage each noisy

count should be multiplied by, without reveling the actual value of the noisy count or its adjusted

value. Rather than using Exponential ElGamal, we could have used other encryption schemes that

support multiple homomorphic additions and multiplications. However, such schemes are inefficient

and will render our solution impractical.

Shabtai et al. [SER12] and Shmueli et al. [STW+12] indicate that the anonymization approach

should be chosen carefully in a multiple-release outsourcing scenario (or data update) since it nor-

mally differs from the one used in a single-release outsourcing scenario. However, this is out of the
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scope of this chapter.

4.5 Protocol Analysis

4.5.1 Complexity Analysis

Proposition 1 The runtime complexity for constructing a kd-tree index from a differentially private

data with d equivalent classes and k attributes using Algorithm 2 and Algorithm 3 is bounded by

O(k × d × log d) operations.

Proof. Constructing a kd-tree with d points (equivalent classes) requires O(d×log d) [dBCvKO08].

Each node consists of two ciphertexts, each of which requires O(kc +2×kn) = O(k), where kc and kn

are number of categorical attributes and numerical attributes respectively. Therefore, the required

number of operations is O(k × d × log d).

Proposition 2 The runtime complexity for executing a system query SKu over a kd-tree index

with d leaf nodes using Algorithm 7 and Algorithm 8 is bounded by O(
√

d + r × k) operations, where

r = |R| and R is the set of reported (reached) leaf nodes.

Proof. Since SKu is an axis-parallel rectangular range query, the time required to traverse a

kd-tree and report the points (equivalent classes) stored in its leaves is O(
√

d+ r) [dBCvKO08]. For

each reported leaf node, O(2 × kc) = O(k) time is required to compute the total noisy count. As a

result, the number of operations required to traverse the tree and answer SKu is O(
√

d + r × k).

4.5.2 Correctness Analysis

The correctness proof is twofold. First, we prove that Algorithm 7 identifies all the leaf nodes

satisfying the user count query u. Second, we prove that Algorithm 8 produces the exact total count

answer to u, and the answer is differentially private.

Proposition 3 Given a user count query u = P1 ∧ ...∧Pm, Algorithm 7 produces a set R containing

all leaf nodes satisfying u.
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Proof. To prove the correctness of Algorithm 7 we prove partial correctness and termination.

1. Partial Correctness. We provide a proof by induction.

Basis. When u includes no predicate for any of the attributes in D̂, then each categorical attribute

in SKu is assigned the value 1 (the identifier of the root node of the corresponding taxonomy tree),

whereas for each numerical attribute Âi ∈ D̂, Âmin
i = 1 (the lowest range identifier) and Âmax

i is

assigned the highest range identifier in Ω(Âi). When SKu is used to traverse the kd-tree index,

all internal nodes will be traversed until the leaf nodes are reached. That is, if the current node

v is internal, A.Dec(v.CTleft, SKu) and A.Dec(v.CTright, SKu) will always be true because the

attributes in SKu will always satisfy the access structure in v.CTleft and v.CTright, and pointers to

the left child node and right child node will always be obtained.

Induction Step. Assume that traversing the kd-tree index using SKu produces the correct set

of leaf nodes R satisfying u. We show that if a new predicate P = (Âi Op si) is added to u such

that ú = u + P, then traversing the kd-tree index using SKú produces the correct set of leaf nodes

Ŕ satisfying ú. We observe that Ŕ ⊆ R. To complete the proof in this step, we assume that P

corresponds to a categorical attribute; however, the same analogy can be applied to a numerical

attribute’s predicate. When v is an internal node and v.split dim = Âi, if si.ID ≤ v.split value

then A.Dec(v.CTright, SKu) will evaluate to false, and no recursive call of procedure traverseIndex

over node v.rc will be executed. This behaviour is correct because in this case the subtree whose root

is v.rc includes the leaf nodes that do not satisfy P, and hence there is no need to search the subtree

rooted at v.rc. The same logic can be used to reason about the case when si.ID > v.split value.

2. Termination. Each recursive call on a child node partitions the space of the parent node in

half. This shows that the algorithm strictly moves from one level to a lower level in the kd-tree

index while reducing the search space by half until all leaf nodes satisfying u are reached.

Proposition 4 Given a set of leaf nodes R generated by a system count query SKu and a set of

attribute distribution tokens N , the output of Algorithm 8 is the exact noisy count answer corre-

sponding to SKu.
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Proof. To prove the correctness of Algorithm 8, we prove partial correctness and termination.

1. Partial Correctness. We provide a proof by induction.

Basis. When N = φ, the inner loop will never be executed. In this case, procedure compTCount

will go through all the leaf nodes in R and add together all corresponding noisy counts by utilizing

the homomorphic addition property of Exponential ElGamal. This is correct because if no ADT

token was originally generated, then the user query is an exact query, and 100% of the noisy count

of each leaf node in R must be used.

Induction Step. Assume that for N = {ADT1, ..., ADTl}, procedure compTCount computes the

exact noisy count answer to the user count query u. We show that if a new token ADTl+1 for

numerical attribute Âi is added such that Ń = N ∪ ADTl+1 = {ADT1, ..., ADTl+1}, where Ń

corresponds to the system count query SKú, then procedure compTCount computes the exact noisy

count answer to the user count query ú. Without loss of generality, we assume that the set of

leaf nodes R remains the same. Since ADTl+1 is for numerical attribute Âi, then ADTl+1.value

represents the percentage of the partial intersection between query ú and attribute Âi by definition.

If ú is a generic query, then not all leaf nodes in R will contain a tag that corresponds to ADTl+1.tag.

However, the noisy count of each leaf node l containing a tag that matches ADTl+1.tag must be

adjusted by multiplying l.NCount with ADTl+1.value.

2. Termination. We denote by n the initial number of leaf nodes in R. If n > 0 then we enter

the outer loop. We also denote by m the initial number of ADT tokens in N . If m > 0 then we enter

the inner loop such that after each iteration, the variable m is decreased by one, and it keeps strictly

decreasing until m = 0 where the inner loop terminates. Similarly, the outer loop will terminate as

n keeps strictly decreasing until it reaches 0; at that stage the algorithm terminates.

Proposition 5 The noisy count answers satisfy ε-differential privacy.

Proof. The proposed query processing algorithms operate on a differentially private data table

and do not have access to the raw data. Because the input table is differentially private, the

computed noisy count answers based on the input data table is also differentially private. Note that
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any post-processing does not violate the ε-differential privacy [KL10].

4.5.3 Security Analysis

The proposed framework is sound since all adversaries are non-colluding and semi-honest, accord-

ing to our adversarial model. In the rest of this section, we focus on proving that the protocol is

confidentiality-preserving. We also illustrate the accessibility of the keys in the framework, and show

that all keys are properly distributed between the parties.

Privacy by Simulation. Goldreich [Gol04] defines the security of a protocol in the semi-honest

adversarial model as follows.

Definition 10 (Privacy w.r.t. Semi-honest Behavior) [Gol04]. Let f : ({0, 1}∗)m �→

({0, 1}∗)m be an m-ary deterministic polynomial-time functionality, where fi(x1, . . . , xm) is the

ith element of f(x1, . . . , xm). Let Π be an m-party protocol for computing f . The view of the i-th

party during an execution of Π over x = (x1, . . . , xn) is viewΠ
i (x) = (xi, ri, mi,1, . . . , mi,t), where ri

equals the contents of the ith party’s internal random tape, and mi,j represents the jth message that

it received. For I = {i1, . . . , il} ⊆ {1, . . . , m}, viewΠ
I (x) = (I, viewΠ

i1(x), . . . , viewΠ
il

(x)). We say that

Π securely computes f in the presence of static semi-honest adversaries if there exist probabilistic

polynomial-time algorithm (simulator) S such that for every I ⊆ {1, . . . , m}:

{S(I, (xi1 , . . . , xil
), fI(x))}x∈({0,1}∗)m

c≡ {viewΠ
I (x)}x∈({0,1}∗)m

where c≡ denotes computational indistinguishability. �

According to Definition 10, it is sufficient to show that we can effectively simulate the view

of each party during the execution of the SecDM protocol given the input, output and acceptable

leaked information of that party, in order to prove that our protocol is secure. We achieve that by

simulating each message received by a party in each algorithm. The algorithm can then be utilized

to simulate the rest of the view.
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First, we define the concepts query distribution and query processing threshold.

Definition 11 (Query Distribution.) The distribution of the data mining queries, denoted by

U , is the set of all possible queries, where each query consists of kc + 2 × kn integers, each of which

maps to a value in the domain of a categorical or numerical attribute. �

Definition 12 (Query Processing Threshold.) Query processing threshold, denoted by α, is

the maximum number of queries allowed to be processed on a kd-tree before the latter is replaced

by a new shuffled and re-encrypted kd-tree submitted by data provider to the service provider. �

Definition 13 (Privacy-preserving Data Outsourcing Framework). Let F be a framework

that enables a service provider (cloud) to answer queries from data miners on hosted (outsourced)

data. F is a privacy-preserving framework if the following properties hold:

1. Correctness. For any user query u ∈ U , the cloud returns resu to the data miner such resu

is the correct answer to u.

2. Data Confidentiality. A semi-honest adversary E , statically corrupting the service provider,

cannot learn anything more about the hosted data from an accepted transcript of F than she

could given only the total number of numerical and categorical attributes, and the size of each

attribute’s domain.

3. Query Confidentiality. A semi-honest adversary E , statically corrupting the service provider,

cannot learn anything about the query.

4. Differentially Private Output. For all u ∈ U , resu satisfies differential privacy. �

Definition 14 (α-Privacy-preserving Data Outsourcing Framework). An outsourcing frame-

work F is α-privacy-preserving if it satisfies all properties in Definition 13 except that the cloud

learns the search pattern of at most α number of queries. �

Theorem 4.5.1 SecDM, as specified in Protocols 2–8, is an α-privacy-preserving data outsourcing

framework.
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Proof. We proved in Section 4.5.2 Property 1 (correctness) and Property 4 (differentially private

output).

To prove Property 2 (data Confidentiality) and Property 3 (query Confidentiality), we build a

simulator S that generates a view that is statistically indistinguishable from the view of E in real

execution.

In Algorithm 4 - Line 2, the service provider receives kd-tree index T from the data

provider.

Simulation :

1. Supplied with k, the total number of attributes in D̂, and the size of each at-

tribute’s domain |Ω(Âi)| : 1 ≤ i ≤ k, the simulator S generates attribute domains

Ω(Â′
1), Ω(Â′

2), . . . , Ω(Â′
k) such that each domain Ω(Â′

i) consists of |Ω(Âi)| distinct val-

ues, e.g., 1, 2, . . . , |Ω(Âi)|.

2. S constructs a contingency table D̂′ with k columns each of which represents one attribute

Â′
i, and n records each of which represents one possible combination of attribute values

such that n =
∏k

i=1 |Ω(Â′
i)|.

3. Supplied with the total number of numerical attributes kn and categorical attributes kc in

D̂ such that kn +kc = k, the size of each attribute’s domain, and the security parameter of

ACP-ABE, S runs A.Setup(1λ) to generate public key PK ′ and master secret key MSK ′.

Similarly, given the security parameter of ElGamal, S runs G.KeyGen() to generate public

key y′ and secret key x′.

4. Given D̂′, split dimension i = 1, PK ′ and y′, S runs Algorithm 2 and Algorithm 3 to

construct a balanced kd-tree T ′ over D̂′:

(a) In Line 12 of Algorithm 2, n random group elements are generated for each ciphertext

CTleft or CTright of each internal node v.
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(b) In Line 2 of Algorithm 3, a random ElGamal ciphertext, e.g., encryption of ‘0’, is

assigned to the encrypted NCount of each leaf node l.

Indistinguishability Argument : T ′ is computationally indistinguishable from T .

First, we construct a hybrid tree called T ′′, and then show the relation between T ′′ and real the

kd-tree T , and between T ′′ and the simulated kd-tree T ′.

1. Let T ′′ be a kd-tree index over D̂′′ = D̂ constructed using Algorithm 2 and Algorithm 3,

where:

(a) The ACP-ABE ciphertexts CTleft and CTright of each internal node are random

group elements, as per Step 4a above.

(b) The noisy count NCount in each leaf node is a random ElGamal ciphertext, as per

Step 4b above.

2. T ′′ is computationally indistinguishable from T , denoted by T ′′ c≡ T , because:

(a) The ACP-ABE ciphertexts in the internal nodes of the kd-tree are IND-CPA-secure

under the decisional bilinear diffie-hellman (DBDH) assumption [Jou00] and the de-

cision linear (D-Linear) assumption [BBS04].

(b) Since ElGamal is IND-CPA-secure, the distribution of the ciphertext (output) space

is independent of the key/message. Therefore, encrypting any message with a random

factor is sufficient to generate a computationally indistinguishable NCount.

3. T ′′ is statistically indistinguishable from T ′, denoted by T ′′ s≡ T ′, because:

(a) D̂′′ s≡ D̂′, where there is one-to-one correspondence between the equivalent classes in

D̂′′ and the records in D̂′.

(b) The random coins used in ACP-ABE encryption in Algorithm 2 are drawn from the

same distribution.
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(c) The random coins used in ElGamal encryption in Algorithm 3 are drawn from the

same distribution.

4. From Steps (2) and (3), we conclude that T ′ c≡ T .

In Algorithm 6 - Line 4, the service provider receives system count query SKu and

a set of attribute distribution tokens N .

Simulation :

1. S obtains α sample queries Ū = {u′
1, u′

2, . . . , u′
α} from U .

2. For each query u′
i ∈ Ū , S constructs a query pair (SKu′

i
, N ′

i ) as follows:

• S runs A.KeyGen(MSK ′, u′
i) to construct system count query SKu′

i
.

• S constructs a set N ′
i containing 2 × kn ADT tokens, where ADT.value for each

token is a randomly generated ElGamal ciphertext, e.g., encryption of ‘0’.

3. Up to α times, each time a data miner in the real world submits a query, S submits to

the service in the simulation world a different query pair from the set of pairs generated

in Step 2.

Indistinguishability Argument :

1. Given any real system query SKu, SKu′
i

c≡ SKu because:

(a) u′
i

s≡ u.

(b) SKu′
c≡ SKu since |SKu′ | = |SKu| = kc + 2 × kn group element tuples, and the

ACP-ABE scheme is IND-CPA-secure.

2. Given any real ADT set N , N ′
i

c≡ N because:

• |N ′
i | = |N | = 2 × kn.

• The ADT.value of each token in N ′
i is computationally indistinguishable from the

ADT.value of any real token due to the IND-CPA-secure property of ElGamal.
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Discussion. The threshold parameter α can range between 1 and ∞. To better understand the

impact of revealing α queries to S, we analyze the security when α = 1 and α > 1.

Case 1 : α = 1. This represents the highest security level of our protocol, where one system

query is executed per one kd-tree. Since the kd-tree index is constructed by Algorithm 2 as a balanced

tree and since each path contains all attributes, then no correlation can be established between any

two attributes and the attributes are protected when evaluated for splitting the k-dimensional space.

As for the data mining query, the service provider cannot determine what attributes are included

in the query, nor know what values or ranges the data miner is interested in. Since Algorithm 7

yields how many leaf nodes (equivalent classes) identified, this reveals how general the query is. In

general, the more leaf nodes identified by a query, the more general the query is. The revealing of

the number of identified leaf nodes, however, won’t help the service provider better guess the final

result of the query since it cannot access the encrypted noisy counts.

Although setting α to 1 provides the highest security w.r.t. query search pattern, it is impractical

due to the cost of reconstructing the kd-tree. We refer the reader to solution construction scalability

in Section 4.6.2 for more details about the cost of reconstructing the kd-tree.

CASE 2 : α > 1. While our proposed framework supports confidential access to the data,

executing multiple queries on the same kd-tree index reveals the search pattern of the queries,

where the service provider is able to determine the number of leaf nodes that overlap between the

queries. Let u and u′ be two user queries that satisfy the same set of leaf nodes l = {l1, . . . , lr}, and

let collision set denote the set of all unique queries that could satisfy l. The size of the collision set

can be determined as follows:

|collision set(l)| =
r∏

i=1

k∏
j=1

|li.Range(Âj)| : Âj is numerical,

where |li.Range(Âj)| denotes the size of the range of attribute Âj in the equivalent class repre-

sented by leaf node li. Note that since the noisy counts are encrypted using ElGamal, the position

of the attributes in the tree is hidden and is shuffled every time the kd-tree is constructed, disclosing
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the search pattern on the differentially private data reveals nothing about the final (noisy) result

of each query, nor about the attributes/values in each query. The smaller the value of α is, the

less overlap between queries is revealed. Several techniques have been proposed in the literature to

address the problem of private search pattern, such as [WSC08]; however, it is out of the scope of

this chapter.

Note that each time the data provider generates a shuffled and re-encrypted kd-tree, a different

ACP-ABE master secret key MSK should be used to prevent the service provider from processing

new queries on the old tree.

In our model, we assume the data miner can have access to the entire differentially-private

dataset. The data privacy is guaranteed by differential privacy. Therefore, there is no need to

simulate the view of the data miner.

Key Accessibility. Protecting the data distributed between different parties from unauthorized

access is an essential part of securing the SecDM framework. We must ensure that all keys are

properly distributed such that no party can decrypt any data it is not supposed to have access to

in plaintext. Table 5 illustrates the accessibility of each key by each party in SecDM.

Observe that the data provider is the generator of all encryption keys in the system and maintains

full control over them. The service provider, on the other hand, has no access to Exponential

ElGamal’s private key, G.x, that would have allowed her to fully decrypt the contents of each leaf

node in the kd-tree index. Moreover, not having access to the ACP-ABE master secret key A.MSK

prevents the service provider from being able to determine the access structures of the ciphertexts in

each internal node of the kd-tree index. As for the user (data miner), not having access to A.MSK

prevents her from bypassing authentication and creating her own system count queries.
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Table 5: Key accessibility w.r.t. all parties in SecDM framework

Encryption
Scheme

Key Data Bank Service
Provider

Data
Miner

G private key x generator, full
Control

no access read access

G public key y generator, full
Control

read access read access

A master secret key
MSK

generator, full
Control

no access no access

A public key PK generator, full
Control

read access read access

A user secret key SKu generator, full
Control

read access read access

4.6 Performance Evaluation

In this section we evaluate the performance of the SecDM framework. First, we discuss the imple-

mentation details, and then we present the experimental results that include solution construction

scalability, the scalability of query processing with respect to the number of records, and the effi-

ciency with respect to the size of the queries.

4.6.1 Implementation and Setup

The SecDM framework is implemented in C++. Experiments were conducted on a machine equipped

with an Intel Core i7 3.8GHz CPU and 16GB RAM, running 64-bit Windows 7. The index tree

is implemented according to the kd-tree description in [dBCvKO08]. Both of the cryptographic

primitives, ACP-ABE and Exponential ElGamal, were implemented using MIRACL3, an open source

library for big number and elliptic curve cryptography. To implement ACP-ABE, we chose Boneh-

Lynn-Shacham (BLS) pairing-friendly curve from [BLS01]: Y 2 = X3 + b, where b =
√

w +
√

m,

m = {−1, −2}, and w = {0, 1, 2}. The chosen elliptic curve has a pairing embedding degree of 24

and a AES security level of 256. The pairing e : G1 × G2 → GT is a type 3 pairing where G1 is

a point over the base field, G2 is a point over an extension field of degree 3, and GT is a finite

field point over the k-th extension, where k = 24 is the embedding degree for the BLS curve. To
3 MIRACL: https://certivox.org/display/EXT/MIRACL
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implement Exponential ElGamal we randomly choose the message space and calculation modulus p

to be a large 2048-bit prime for which q = (p − 1)/α is a 256-bit prime. Since Exponential ElGamal

depends on the multiplicative order of g and having a large collection of ciphertexts, we choose g to

be a generator of the multiplicative subgroup Gq such that order(g) = q − 1.

We utilize a real-life adult data set [BL13] in our experiments to illustrate the performance of

SecDM framework. The adult data set consists of 45,222 census records containing six numerical

attributes, eight categorical attributes, and a class attribute with two levels: “ ≤ 50K” and “ >

50K”. A further description of the attributes can be found in [FWY07a]. Since the maximum

number of attributes is 14, we assume that the number of attributes in a query can range from 2 to

14, and the average number of attributes in a query is 8. We generate ε-differentially private records

using the DiffGen algorithm, where the privacy budget ε = 1, the number of specializations is set

to 8, 10, or 12, and choose the utility function Max(D, v) to determine the score of each candidate

v during the specialization process.

4.6.2 Experimental Results

Scalability

Solution Construction Scalability There are three major phases involved in constructing the

SecDM framework: data anonymization using the DiffGen algorithm, data preprocessing, and kd-

tree index construction; the latter can be further divided into two subphases: internal nodes construc-

tion and leaf nodes construction. According to procedure buildIndex in Algorithm 2, the complexity

for constructing SecDM is dominated by the number of ε-differentially private records, which in turn

is impacted by the number of raw data records and the setting of the number of specializations for

the DiffGen algorithm. The objective is to measure the runtime of each construction phase to ensure

its capability to scale up in terms of records size.

Figure 10 depicts the runtime of each of the construction phases, where the number of data

records ranges from 20,000 to 100,000 records, and the number of specializations is set to 8. We
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Figure 10: Scalability of framework construction w.r.t. # of records.

observe that the runtime of each phase grows linearly as the number of records increases. We also

observe that the overall construction runtime scales up linearly as well, as it takes 47 sec to construct

the framework for a data set with 20,000 records, 72 sec for 40,000 records, 96 sec for 60,000 records,

106 sec for 80,000 records, and 121 sec for 100,000 records. Since each phase of the algorithm, as

well as the overall construction time, grow linearly with respect to the total number of records, this

suggests the construction of SecDM is scalable with regard to the data size.

Query Processing Scalability One major contribution of our work is the development of a

scalable framework for query processing on anonymized data in the cloud. Since the number of

specializations during the anonymization process impacts the total number of anonymized records,

we study the runtime for answering different types of user count queries under a different number

of specializations, while the number of raw data records ranges from 20,000 to 100,000. Given the

three user count query types, Exact, Specific, and Generic, we randomly create 500 queries of each

type, and report the average runtime, where the average number of attributes in each query is 8.

Figures 11a, 11b, and 5b depict the processing runtime of each type of user count queries when

the number of specializations is set to 8, 10, and 12, respectively. In Figure 11a, we observe that the

processing runtime of each query type grows linearly as the number of raw data records continues to
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increase at the same rate. That is, the processing runtime grows from 4.8 sec for 20,000 records to

6 sec for 100,000 records when the query type is exact; from 6.5 sec for 20,000 records to 8.5 sec for

100,000 records when the query type is specific; and from 12.4 sec for 20,000 records to 31.2 sec for

100,000 records when the query type is generic. Similarly, in Figures 11b and 5b we observe that the

processing runtime of each query type is linear with regard to the number of raw data records for all

three types. The increase in the number of specializations leads to a higher number of anonymized

records, thus explaining the increase in the average query processing runtime for each query type in

Figures 11a, 11b, and 5b.

Note that performance is affected by the total number of attributes (dimensions) in the data.

For the purpose of this work, the kd-tree index is sufficient for the Adult dataset with 14 attributes.

However, for higher dimensionality, another data structure, such as x-tree, might be needed to

preserve practicality in high dimensional data.

Efficiency

To demonstrate the efficiency of our SecDM framework we measure the impact of the number of

attributes in a query on the processing time needed by the cloud to process the query and by the

user to decrypt the result. We split the query processing phase into two subphases: tree traversal

and compute NCount. We assume the number of specializations is 8, while the number of raw data

records is 100,000. We create 500 queries of each query type, and report the average runtime.

Figures 12a, 12b, and 12c depict the processing runtime of exact, specific, and generic queries,

respectively, when the average number of attributes in a query ranges from 2 to 14. We observe

that the most dominant phase with regard to the processing runtime is the tree traversal phase,

whereas the resulting decryption phase is the least dominant. The total processing runtime of each

query type decreases linearly as the number of attributes per query increases. That is, the total

runtime decreases from 31.8 sec to 0.9 sec when the number of attributes per query increases from

2 to 14 for exact queries, decreases from 37.2 sec to 1 sec when the number of attributes per query

increases from 2 to 14 for specific queries, and decreases from 78.8 sec to 10.4 sec when the number
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of attributes per query increases from 2 to 14 for generic queries. The total processing runtime

improves as the number of attributes increases because adding more attributes to a query makes

it more restrictive and, consequently, requires fewer nodes to be traversed in the kd-tree index.

Assuming the average noisy count value for each anonymized record is 10,000, we observe that the

decryption phase, which involves decrypting Exponential ElGamal ciphertexts, is very small (less

than 2 sec) and barely sensitive to the increase in the number of attributes per query.
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Figure 12: Efficiency w.r.t. the number of attributes per a query for exact, specific, and generic
queries.

4.7 Summary

In this chapter, we propose a privacy-preserving framework for confidential count query processing

in a cloud computing environment. Our framework maintains the privacy of the outsourced data
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while providing data confidentiality, confidential query processing, and privacy-preserving results.

Users (data miners) of the system are not required to have prior knowledge about the data, and

incur lightweight computation overhead. The framework also allows for query reusability, which

reduces the communication and processing time. We perform several experimental evaluations on

real-life data, and we show that the framework can efficiently answer different types of queries and

is scalable with regard to the number of data records.
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Chapter 5

Secure and Privacy-preserving

Set-Valued Data Integration with

Public Verifiability

5.1 Introduction

Set-valued data, a set of items selected from a pre-defined domain, is commonly associated with

stored objects (e.g. persons, products) in databases such as web search logs, market basket, and

passengers’ transit records [TMK08][HN09]. Integrating related data from different sources enables

businesses and government agencies to perform better data analysis and make better decisions.

The vast majority of the literature about distributed data integration and publishing deals with

semi-honest adversaries [MAFD14][JC06][GLM+13b][NH12], where each participant is assumed not

to deviate from the protocol, while trying to infer information from the other parties, even if deviating

enables them to infer more information. Although this assumption may be suitable in some cases,

it is often unrealistic. By contrast, designing protocols that are secure against malicious adversaries
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provides assurance that the protocol will execute correctly and that secret inputs will stay secret

regardless of the behaviour of the other participants. However, it generally comes at a cost in

performance. As just one example, Kantarcioglu and Kardes [KK07] show that the secure dot

product protocol is 700 times slower in the malicious model than it is in the semi-honest.

To ensure that a distributed protocol executes correctly, participants must prove they are follow-

ing the protocol at each step. Such proofs may only convince the other participants in the protocol

by being contingent on their interactions or individual secrets. A publicly (or universally) verifiable

protocol produces a transcript proving correct execution that is verifiable by anyone at any time.

In the database community, verifiability has been mainly studied in the areas of data authentica-

tion [Tam03, DBP07], data streams [CCM09, CKLR11], and public auditing [WCW+13, WLL12].

In verifiable computation, a single data owner delegates a computationally heavy task to the cloud

while being able to verify the results [BGV11, CKV10, GGP10, GKR08]. Outside of databases,

public verifiability is an important property for a number of cryptographic protocols (e.g., voting

schemes [Ben87, CGS97]). Public verifiability also adds an additional performance cost. As one

example, the publicly verifiable voting protocol for complex scoring rules in [TRN08] is estimated

to take 10 000 hours to produce a verifiable tally.

For data integration, public verifiability enables any third party to verify the data is properly

protected (auditors, data holders, individuals in the data set) and properly integrated (data miner)

in a non-interactive fashion, offline and at any time. We are the first to study public verifiability for

this application. We answer open questions surrounding the achievability of public verifiability for a

complex, full-featured integration protocol. We present a flexible protocol that supports horizontally

and vertically partitioned data, two and multiples parties, and differentially private outputs. The

result is a feasible but expensive protocol: we estimate 389 hours (single-threaded) to integrate

datasets of 600 records and 10000 distinct items. We show public verifiability is achievable and

believe improving its performance is a promising research direction.

Let us consider the following scenario to illustrate the threat model. An Australian government
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agency uses a set of principles to govern the process of Commonwealth person-specific data inte-

gration for statistical and research purposes1. Data custodians (agencies) collect, store and manage

datasets on behalf of data providers. For each integration project, an integrating authority – a single

trusted organisation specialized in data privacy and security – is appointed to handle the reception

of the related and de-identified datasets from data custodians, and the running of the integration

process to generate a dataset that prevents disclosure attacks against individuals. The integrating

authority might outsource part of the integration process to a third-party, while adhering to the

data integration principles and maintaining full responsibility for complying with the confidentiality

requirements specified by the data custodians. To ensure transparency in each integration project,

the government conducts scheduled audits and periodically publishes detailed information about the

project. Similar agencies can be found in other countries, e.g., Population Data BC (PopData) 2 in

Canada.

A major concern in this scenario is data privacy, where for each integration project, data custo-

dians (on behalf of data providers) must fully trust the appointed integrating authority with their

data, and must trust that the involved third-parties will not collude together trying to learn sensitive

information about individuals from the data. Although the data is de-identified, attacks such as

record/attribute linkage and re-identification of individuals can still be achieved (e.g., GIC [Swe02b],

AOL [BZ06], Netflix [NS08]). The following example illustrates this privacy threats when straight-

forwardly integrating distributed set-valued data.

Example 7 Let Alice, Bob, and Carol represent three data custodians owning person-specific

datasets DS1, DS2, and DS3, respectively. Each transaction corresponds to an individual, and has a

unique identifier (TID) and a set of distinct items from the item universe Univ = 〈I1, I2, I3, I4〉, as

shown in Table 6. These parties are interested in integrating DS1, DS2, and DS3 to build a classifier.

Straightforward integration is achieved by grouping items together by TID, and then removing du-

plicate items. Integrating transactions DS1.T2, DS2.T2, and DS3.T2 together results in a transaction
1Statistical Data Integration Involving Commonwealth Data: http://statistical-data-integration.govspace.gov.au/
2PopData: https://www.popdata.bc.ca/
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Table 6: Sample set-valued datasets

(a) Alice: DS1

TID Items
T1 {I1, I4}
T2 {I2}

(b) Bob: DS2

TID Items
T1 {I2}
T2 {I2, I3, I4}
T3 {I1}
T4 {I1, I3}

(c) Carol: DS3

TID Items
T1 {I3}
T2 {I2, I4}
T3 {I1, I2}
T4 {I4}
T5 {I1, I2, I3, I4}
T6 {I1}

with the set of items {I2, I3, I4} after removing the duplicates of I2 and I4. However, since I2 exists

only once in DS1 (in transaction T2), Alice can use her knowledge of the duplicates to conclude that

the integrated transaction corresponds to T2, and to determine with 100% certainty that I4 exists

in both DS2.T2 and DS3.T2. �

Another concern in this scenario is high-dimensionality. Set-valued data is high dimensional by

nature, and therefore, any approach on set-valued data must ensure scalability with respect to the

number of distinct items in the data. That is why existing approaches designed for relational data,

e.g. Mohammed et al. [MAFD14], are not suitable to handle set-valued data. Our proposed protocol

grows at a logarithmic rate with respect to the number of dimensions. For example, increasing the

number of dimensions by 20,000 (from 20,000 to 100,000 distinct items) increases the overall runtime

on average by only 8 hours.

Another concern in the motivating scenario is audit malfeasance. Although the government

performs periodic auditing to protect against errors and corruptions by individuals and ensure

the correctness of the integration process, such administrative verifiability does not protect against

wrongdoing by government officials or entities responsible for conducting the audit.

In this chapter, we address the aforementioned concerns by proposing a privacy-preserving multi-

party protocol for integrating person-specific set-valued data in a malicious environment with dis-

honest majority. Our protocol supports public verifiability — a stronger version of administrative

verifiability — where any internal or external party at any time can independently verify the cor-

rectness of the performed integration. We take the single-party algorithm for differential privacy
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recently proposed by Chen et al. [CMF+11] as a basis to our approach and extend it to the multi-

party setting. We adopt differential privacy [DMNS06], a rigorous privacy model that provides a

provable privacy guarantee while making no assumption about the background knowledge of the

adversary. Our contributions are summarized as follows:

Contribution 1. We propose a distributed protocol, named SecSVD, for integrating high-

dimensional set-valued data and releasing integrated differentially private data with an effective

utility for data mining. The complexity of our approach is logarithmic with respect to the number

of distinct items (dimensions) in the item universe.

Contribution 2. Our proposed approach supports public verifiability, where any interested

party can fully verify the integrity of an execution of the protocol, independently ensuring that the

output satisfies differential privacy. To our knowledge, this is the first work to construct a publicly

verifiable protocol for data integration.

Contribution 3. While most data integration protocols only provide security against semi-

honest (passive) adversaries, we show that our proposed protocol is secure against fully malicious

active adversaries. Further, we do not require an honest majority; this enables both two-party and

multi-party settings, where the data is distributed among n parties such that n ≥ 2.

Contribution 4. Unlike most of the existing works in the literature that assume the data

is partitioned either horizontally [JX09, AMFD12, KC04, ZRZ+13] or vertically [JC06, MAFD14,

DKM+06], our proposed solution supports a more general data model where the data can be parti-

tioned horizontally or vertically, or both. In the case of vertical partitioning, our solution supports

items overlap between transactions corresponding to the same individual but belong to different

data owners.

In Table 7, we summarize the main features of the representative approaches in the areas related

to our work, including our proposed protocol.

The results of this chapter are currently under review in PoPETs [DCF].
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5.2 Preliminaries

5.2.1 Centralized Protocol for Publishing Set-Valued Data via Differen-

tial Privacy

Chen et al. [CMF+11] proposed a single-party top-down partitioning approach using context-free

taxonomy tree to produce anonymized set-valued data in a centralized environment. We present a

secure multi-party version in Section 5.3.

Next, we summarize the approach in [CMF+11]. The algorithm first constructs a context-

free taxonomy tree that will be utilized during the anonymization process to ensure utility of the

anonymized set-valued data. The tree is constructed from a universe of items, where each internal

node is a set of its leaf nodes (items). Figure 13 presents an example of a context-free taxonomy

tree.

Figure 13: A context-free taxonomy tree for item universe {I1, I2, I3, I4}.

Next, all data records are generalized into one partition, and the root node of the taxonomy

tree is assigned to the partition as a common representation called hierarchy cut. A hierarchy cut

typically consists of one or more taxonomy tree nodes.

Definition 15 Record Generalization [CMF+11]. A set-valued record R can be generalized to

a hierarchy cut HCut if:

1. Every item in R can be generalized to a node in HCut.

2. Every node in HCut generalizes some items in R. �

For example, according to the context-free taxonomy tree in Figure 13, if R = {I1, I2} then R
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can be generalized to HCut1 = {I1,2} and HCut2 = {I1,2,3,4}, but not to HCut3 = {I{1,2}, I{3,4}}.

Next, a top-down partitioning process based on the taxonomy tree is applied in order to generate

disjoint sub-partitions with more specific hierarchy cuts. For each sub-partition p, a Laplace noise

is generated based on its allocated privacy budget. If the noisy count of p is smaller that threshold

thres1 =
√

2C × height(p.HCut)/p.α, where C is a given constant and α is the partitioning budget,

then p is considered “empty” and not further partitioned. Otherwise, the p is considered “non-empty”

and it is further split into sub-partitions with more specific hierarchy cuts. The splitting stops when

no further sub-partitions can be generated. Each partition whose hierarchy cut is a single leaf node

from the taxonomy tree is called a leaf partition. To reduce the impact of noise, a leaf partition p′

is considered non-empty if its noisy count is greater or equal threshold thres2 =
√

2C ′/(ε/2 + p′.B̃),

where C ′ is a constant ∈ [1, C], ε is the total privacy budget and B̃ is the allocated budget.

Privacy Budget Allocation. Half of the total privacy budget, ε/2, is used to guide the parti-

tioning process, whereas the other half is added to the leaf partitions to obtain their noisy counts. For

each partition, the privacy budget assigned to its partitioning operation depends on the maximum

number of partitioning operations needed to reach leaf partitions.

Theorem 5.2.1 [CMF+11] Given taxonomy tree T , the maximum number of partitioning operations

of a partition p with hierarchy cut HCut is:

|InternalNodes(HCut)| = Σui∈HCut|InternalNodes(ui, T )|,

where |InternalNodes(ui, T )| is the number of internal nodes of the sub-tree of T rooted at ui. �

Since sub-partitions are disjoint, the privacy budget of a partitioning operation is further assigned

in full to each resulting sub-partitions, due to the parallel composition property [McS09].

5.2.2 Encryption Scheme

Our protocol requires an additively homomorphic encryption scheme that allows ciphertexts to be

re-randomized without private information. It must also admit distributed key generation (DKG)
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and distributed decryption, enabling participants to use key shares to perform a decryption oper-

ation. Finally it must allow the key holders to transfer a ciphertext from their key to any other

key without decrypting the ciphertext (proxy re-encryption). The best candidate is exponential

ElGamal [CGS97]: it is fast when implemented over elliptic curves, distributed key generation is

straightforward (unlike Paillier) [Bra06], and decryption is feasible for our plaintext space. In the

rest of the thesis, we denote the encryption of message m as �m� for brevity.

5.2.3 Mix and Match Protocol

Mix and Match Protocol could alone realize our entire protocol given that lookup tables are sufficient

for implementing general computing. However, such approach will be expensive, i.e., the complexity

will be exponential in the number of input variables. Our protocol is designed to use small single-

input lookup tables sparingly. Like our overall protocol, Mix and Match itself is publicly verifiable,

secure against malicious adversaries, and secure with a dishonest majority.3

5.3 Solution: SecSVD Protocol

In this section, we first present an overview of our differentially private set-valued data release

protocol, and then elaborate on the key components of our protocol.

5.3.1 Solution Overview

Given p ≥ 2 data owners P1, P1, . . . , Pp respectively owning set-valued datasets DS1, DS2, . . . ,

DSp, where items in all datasets are drawn from an item universe Univ = 〈I1, I2, . . . , In〉, and given a

privacy budget ε agreed upon by the data owners, the objective of our proposed solution is to securely

generate an integrated and sanitized set-valued dataset OutDS for data mining purposes such that

(1) no unnecessary information is disclosed about the individual datasets during the integration
3Note that security against a dishonest majority is not explored by the authors themselves [JJ00] but the bound

follows solely from the bound on the DKG. As in any case of a dishonest majority, causing the protocol to terminate
early without a result becomes possible.
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process, (2) communications between all parties are secure under the malicious adversarial model,

(3) OutDS satisfies ε-differential privacy, and (4) OutDS is encrypted such that only the data miner

receiving the dataset can decrypt it. Our solution consists of two main protocols:

Protocol 5.1 - Data Preparation. The data owners jointly run this protocol to construct

a context-free taxonomy tree TaxTree which will be later utilized to construct the anonymized set-

valued data. Moreover, this protocol enables the data owners to securely merge their datasets

into one encrypted dataset MixDS such that all items and records in the dataset are shuffled and

randomized.

Protocol 5.2 - Secure Distributed Differentially Private Set-Valued Data Release.

This protocol represents our distributed differentially private set-valued data anonymization ap-

proach based on generalization. Using the context-free taxonomy tree TaxTree generated by Sub-

Protocol 1.1, the data owners jointly run this protocol to partition MixDS using a top-down par-

titioning algorithm, where Laplace noise is used on each partition to non-deterministically decide

whether child partitions should be created. The result is OutDS, a set-valued differentially private

dataset encrypted under the data miner’s public key.

5.3.2 Adversarial Model

Our protocol protects against computationally-bounded malicious adversaries who are are not trusted

to execute the steps of the protocol correctly. Adversaries are static (i.e., parties are corrupted be-

fore the start of the protocol). Privacy and integrity can be realized while up to (p − 1) out of

p data owners are corrupted and colluding together. The protocol guarantees completeness as it

always produce the desired result (differentially private data); however, fairness is not guaranteed

since malicious parties can stop participating and cause the protocol to halt. Data miners may also

be corrupted; however, we assume that data owners and miners cannot be simultaneously corrupt.

While this assumption is not ideal and can be removed with an exponentially-expensive solution, we

utilize it in our protocol as a trade-off for efficiency. (We do not prove that efficiency requires such
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a non-collusion assumption—this is an interesting open problem).

5.3.3 Data Model

Most approaches concerning the problem of privacy-preserving data integration and publishing

assume that the distributed data is partitioned either horizontally [Tas14, AMFD12] or verti-

cally [JC06, AMFD12]. In this chapter, we adopt a broader and more realistic view by assuming

that the data can be a mix of horizontal and vertical partitioning. That is, multiple data owners

might own data about the same set individuals, with a possibility of item overlap between records

referencing the same individual.

5.3.4 Auxiliary Functions

To simplify the presentation of our cryptographic protocols, we define a set of general auxiliary

functions that will be used throughout the remainder of the chapter. Construction 5.1 illustrates

how the auxiliary functions can be constructed.

Auxiliary Functions

Given a vector of binary ciphertexts V = 〈�v1�, �v2�, . . . , �vn�〉, all participants use Mix and
Match to jointly generate and evaluate lookup tables for the following helper functions:

1.

n-AND(V ) :=
{

�0� : 0 ≤ ∑n
i=1 vi < n

�1� :
∑n

i=1 vi = n

2.

n-OR(V ) :=
{

�0� :
∑n

i=1 vi = 0
�1� : 1 ≤ ∑n

i=1 vi ≤ n

3.

NOT(�v�) :=
{

�0� : v = 1
�1� : v = 0

4.
n-NOT(V ) := 〈�v̄1�, �v̄2�, . . . , �v̄n�〉 : �v̄i� := NOT(�vi�)

Construction 5.1: Auxiliary functions we construct for the protocol

88



5.3.5 Data Preparation

As a precursor to our protocol, we assume the p data owners generate a public key and p shares of

the decryption key such that all p data owners must participate in any decryption operation.

Data preparation is an initial step that involves constructing an encrypted context-free taxonomy

tree TaxTree to help generate a sanitized set-valued data while guaranteeing utility for data mining

tasks such as counting queries and frequent itemsets mining [CMF+11]. It also involves securely

merging all datasets into one encrypted dataset MixDS where values are blinded and columns and

rows are randomly shuffled to prevent possible record linkage by the data owners. Protocol 5.1 is

evaluated to construct TaxTree and MixDS as follows:

TaxTree Construction (Steps 1-2). The data owners jointly apply the Verifiable Mix Network

protocol on Univ and generate a universe of mixed item names MixUniv such that the items are

shuffled and randomized. Given MixUniv, and a fan-out value f that is agreed upon by the data

owners, TaxTree is then constructed by evaluating Sub-Protocol 1.1, where each leaf node is a single

item from MixUniv, and each non-leaf node represents a set of items from MixUniv.

Example 8 Given item universe Univ = 〈I1, I2, I3, I4〉 for the datasets presented in Table 6, let

MixUniv = 〈A1, A2, A3, A4〉 be the universe of the shuffled and randomized items under random

permutation π, where A1 = �Iπ(1)� = �I4�, A2 = �Iπ(2)� = �I1�, A3 = �Iπ(3)� = �I2�, and A4 =

�Iπ(4)� = �I3�. Given fan-out value f = 2, Figure 14 illustrates a context-free taxonomy tree TaxTree

constructed according to Sub-Protocol 1.1, where A{1,2,3,4}= {A1,A2,A3,A4}, A{1,2} = {A1, A2},

and A{3,4} = {A3, A4}. �

Generating a shuffled and randomized context-free taxonomy tree MixUniv hides the hierarchy cut

and the complementary cut of each partition from the data owners (as we will see in Section 5.3.6).

MixDS Construction (Steps 3-6). Given DS1, DS2, . . . , DSp, Sub-Protocol 1.2 is first evaluated

to merge all datasets into one encrypted dataset EncDS. Specifically, each data owner transforms

each person-specific record in his dataset into a vector of |Univ| = n binary ciphertexts, each of

which indicates whether or not the corresponding item from Univ exists in the record. That is, the
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Figure 14: A context-free taxonomy tree TaxTree for the datasets presented in Table 6.

first ciphertext in the vector corresponds to the first item in Univ, the second ciphertext corresponds

to the second item, etc. For each item in Univ, if the item exists in a record, then its corresponding

ciphertext is set to �1�; otherwise, it is set to �0�. Next, the data owners jointly merge their encrypted

datasets, where the merging process is dependent on how the distributed datasets are partitioned. If

the datasets are vertically partitioned, then |DSk| = d : 1 ≤ k ≤ p and each dataset contains records

about the same set of individuals, with possible item overlaps. In this case, for each individual, the

corresponding ciphertext vectors from all encrypted datasets are homomorphically merged together

to output a vector of n binary ciphertexts, each of which corresponds to an item from Univ. For

each item in Univ, if the item exists in at least one of the individual’s ciphertext vectors, then its

corresponding ciphertext in the output vector is set to �1�; otherwise, it is set to �0�. On the other

hand, if the datasets are horizontally partitioned, i.e., each dataset DSk : 1 ≤ k ≤ p contains records

about different set of individuals, then the encrypted datasets are simply appended together to

construct EncDS.

Finally, the data owners jointly apply the Verifiable Mix Network protocol on the columns and

rows in EncDS to generate a shuffled and randomized dataset MixDS. The columns are shuffled

using the same random permutation applied on the items in TaxTree to maintain the correspondence

between the items in TaxTree and the columns in MixDS.

Example 9 Table 8.a illustrates the output dataset EncDS of Sub-Protocol 1.2 when evaluated on
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Data Preparation

Prior to the generation of the differentially private set-valued data, the following steps are
performed:

1. All participants (data owners) jointly apply the Verifiable Mix Network protocol on all
items I1, I2, . . . , In in Univ, and generate shuffled and randomized item names MixUniv =
�Iπ(1)�, �Iπ(2)�, . . . , �Iπ(n)�, where π is a random permutation on n elements such that no
single participant knows the permutation. For ease of reference, we refer to the first item
�Iπ(1)� as A1, second item �Iπ(2)� as A2, etc.

2. Build a context-free taxonomy tree TaxTree according to Sub-Protocol 1.1.

3. Generate EncDS according to Sub-Protocol 1.2.

4. All participants jointly apply the Verifiable Mix Network protocol on all columns
I1, I2, . . . , In in EncDS, and generate shuffled and re-randomized columns corresponding to
Iπ(1), Iπ(2), . . . , Iπ(n), where π is the same random permutation used in Step 1 above.

5. All participants jointly apply the Verifiable Mix Network protocol on all rows
EncT1, EncT2, . . . , EncTd in EncDS, and generate shuffled and re-randomized rows
EncTπ′(1), EncTπ′(2), . . . , EncTπ′(d), where π′ is a random permutation on d elements such
that no single participant knows the permutation. For ease of reference, we refer to the first
row EncTπ′(1) as R1, the second EncTπ′(2) as R2, etc.

6. Output a shuffled and re-randomized dataset MixDS.

Protocol 5.1: Data Preparation

Context-Free Taxonomy Tree

To construct a context-free taxonomy tree TaxTree from item universe MixUniv =
〈A1, A2, . . . , An〉 given fan-out f :

1. Partition MixUniv into n/f partitions, each of which contains f items. If n is not divisible
by f , smaller groups can be created.

2. Group the items from each partition into one node.

3. Group each f adjacent nodes into an upper level node.

4. Step (c) is repeated from one level to an upper level until a single root is reached.

Sub-Protocol 1. 1: Context-Free Taxonomy Tree, adapted from [CMF+11]

the datasets in Table 6. Table 8.b illustrates dataset MixDS generated by permuting columns and

rows in EncDS according to random permutation π and π′ respectively such that all ciphertexts have

been randomized. �
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PartTree Construction

An initial partition Part is created, where HCut is set to the root of TaxTree, CCut = φ, and ABudget = ε/2,
where ε is the global privacy budget. The partitioning tree PartTree is constructed as follows:
1. Securely assign to Part the records in MixDS as follows:

(a) If Part is the initial partition, then all records in MixDS are assigned to Part by default, and all
ciphertexts in Recs are set to �1�:

Recs := 〈�r1�, �r2�, . . . , �rd�〉 = 〈�1�, �1�, . . . , �1�〉

(b) Otherwise, Part is either an internal partition or a leaf partition:

i. Determine the set of TaxTree nodes DifNodes that exists in Part.HCut but not in
Parent(Part).HCut.

ii. For each record Rj ∈ MixDS for 1 ≤ j ≤ d, the participants securely determine whether R can be
assigned to Part according to Definition 17 by utilizing the functions from Construction 5.1. If all
conditions in Definition 17 are satisfied, then ciphertext Recs〈j〉 is set to �1�; otherwise, it is set
to �0�:
◦ A := Parent(Part).Recs〈j〉,
◦ B := n-OR(CV(α1)), n-OR(CV(α2)), . . . , n-OR(CV(α|DifNodes|),
◦ C := n-NOT(n-OR(CV(β1)), n-OR(CV(β2)), . . . , n-OR(CV(β|CCut|))

Recs〈j〉 = �rj� := n-AND(A, B, C) (4)

where DifNodes = {α1, α2, . . . , α|DifNodes|}, CCut = {β1, β2, . . . , β|CCut|}, and CV(N) is a function
that returns the ciphertexts from record Rj corresponding to the items represented by the leaf
nodes from the subtree of TaxTree rooted at node N .

2. Securely compute the true number of records assigned to Part by homomorphically adding together all
ciphertexts in Recs:

�T Count� :=
d∑

j=1

Recs〈j〉 = �r1� + �r2�, . . . , �rd�

3. All participants evaluate the function LapNoise from Sub-Protocol 2.2 to generate an encrypted random noise
�LNoise� satisfying Laplace distribution, and then homomorphically add the result to �T Count� × 10D to
determine the encrypted noisy count �NCount�:

�NCount� := �T Count�×10D +LapNoise(Budget) : Budget :=

{
Part.P Budget : Part is internal partition
Part.ABudget : Part is leaf partition

4. All participants jointly decrypt �NCount�, and then compute NCount ×
10−D to determine the decimal and differentially private noisy count.

5. If Part is an internal partition and NCount is greater than or equal to the noise size threshold thres1 =√
2C × height(HCut)/P Budget, where C is a constant used for pruning empty partitions as early as possi-

ble [CMF+11]:

(a) Randomly select a partitioning node P Node from the set of non-leave nodes in HCut with the largest
height in TaxTree. Let l ≤ f be the number of child nodes of P Node in TaxTree, then there are 2l

possible combinations of child nodes: Combs = {comb1, comb2, . . . , comb2l }.

(b) Expand Part over P Node by generating 2l − 1 non-overlapping child partitions such that for any child
partition CParti : 1 ≤ i ≤ 2l:
◦ HCut := {Parent(CParti).HCut \ P Node} ∪ combi

◦ CCut := Combs \ combi

◦ ABudget := Parent(CParti).ABudget + L : L :={
−Parent(CParti).P Budget : CParti is internal partition
ε/2 : CParti is leaf partition

(c) Recursively apply Sub-Protocol 2.1 starting from Step 1 on each generated child partition CParti = Part.

6. Otherwise, if Part is an internal partition but NCount < thres1, then Part is considered empty partition,
NCount := 0, and no further partitioning on it is performed.

7. Terminate the partitioning process once no further partitioning is possible on any partition.

Sub-Protocol 2. 1: PartTree Construction
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Secure Data Integration

The purpose of this protocol is to securely integrate the datasets from all participants into one
encrypted dataset:

1. Each participant Pk : 1 ≤ k ≤ p encrypts his dataset DSk under the data owners’ distributed
public key by representing each transaction Tk

j as a binary vector of n ciphertexts:

EncTk
j = 〈�xk

j,1�, �x
k
j,2�, . . . , �xk

j,n�〉 : �xk
j,i� =

{
�0� : Ii /∈ Tk

j

�1� : Ii ∈ Tk
j

for 1 � i � n and 1 � j � |DSk|. The outputs are encrypted datasets
{EncDS1, EncDS2, . . . , EncDSp}, each of which represents a binary matrix of ciphertexts with
size |DSk| × n. Pk also proves knowledge of each ciphertext using Non-Interactive Zero-
Knowledge Proofs [FS87].

2. The procedure for merging together the encrypted datasets depends on the partitioning
nature of the underlying data:

(a) Vertically Partitioned Data. The function Merge is applied to merge EncDS1,
EncDS2, . . . , EncDSp together into one encrypted dataset EncDS by applying the func-
tion n-OR on the corresponding ciphertexts from the input datasets:

Merge(EncDS1, EncDS2, . . . , EncDSp) = EncDS =

⎡⎢⎢⎢⎣
�x1,1� �x1,2� . . . �x1,n�
�x2,1� �x2,2� . . . �x2,n�

...
...

. . .
...

�xd,1� �xd,2� . . . �xd,n�

⎤⎥⎥⎥⎦
where �xj,i� = n-OR(�x1

j,i�, �x
2
j,i�, . . . , �xp

j,i�) for 1 � j � d and 1 � i � n.
(b) Horizontally Partitioned Data. The encrypted datasets EncDS1, EncDS2, . . . ,

EncDSp are appended together to construct EncDS such that |EncDS| =
∑p

k=1 |EncDSk|.
3. Output EncDS, which has the same structure regardless of whether the underlying data is

horizontally or vertically partitioned.

Sub-Protocol 1. 2: Secure Data Integration

5.3.6 Secure Distributed Differentially-private Set-valued Data Release

Protocol

Given the integrated dataset MixDS, the context-free taxonomy tree TaxTree, and a privacy budget

ε, the goal is to securely generate an encrypted and sanitized set-valued data OutDS from MixDS

that satisfies ε-differential privacy.

The general idea of our solution is to initially assign all records in MixDS to a data structure

called partition, and then apply a top-down partitioning process using TaxTree to recursively assign
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Table 8: Integrated dataset of the sample datasets in Table 6

 

 

TID I1 I2 I3 I4

    

 

TID A1 A2 A3 A4

    

π' 

(a)  : the output 
of Sub-Protocol 1.2  

(b)  : the output after 
Step 6 of Protocol 1 

Note: all ciphertexts in  have been re-randomized.  

π 

Secure Distributed Differentially Private Set-Valued Data Release

1. Construct PartTree according to Sub-Protocol 2.1.

2. For each leaf partition Part in PartTree:

(a) If NCount is greater than or equal to the noise size threshold thres2 =
√

2C ′/ABudget,
where C ′ is a constant for minimizing the effect of noise agreed upon by all participants:

i. All participants jointly run the Distributed Proxy Re-encryption protocol (it doesn’t
use a proxy despite the name) to re-encrypt each item Ai = �Iπ(i)� ∈ HCut and
the noisy count NCount under the data miner’s public key without revealing the
underlying values to any of the participants.

ii. Add the pair of re-encrypted HCut and NCount to the output dataset OutDS.
(b) Otherwise, if NCount < thres2, then Part is considered empty partition such that

NCount := 0.

3. Release the sanitized dataset OutDS to the data miner over a secure channel.

Protocol 5.2: Secure Distributed Differentially Private Set-Valued Data Release

the records into disjoint partitions in a noisy way until no further partitions can be created. The

output of the partitioning process is a partitioning tree PartTree, where the root partition is called

the initial partition, the partitions with at least one child partition are called internal partitions,

and the partitions with no child partitions are called leaf partitions. Next, we formally define the

structure of a partition.

Definition 16 Partition. A partition Part is a tuple:
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Hierarchy Cut
(HCut)r1

A{1, 2, 3, 4}[1]

Available Budget
(ABudget)

ε/2

r2 r3 r4 r5 r6

[1] [1] [1] [1] [1]

Assigned Records (Recs)

{A{3, 4}}[0] [0] [0] [0] [0] [0] ε/3{¬A{3, 4}}[0] [0] [1] [0] [0] [1] ε/3 {A{1, 2}, A{3, 4}}[1] [1] [0] [1] [1] [0] ε/3

{A1}[0] [0] [0] [0] [0] [1] 0 0 {¬A1}[0] [0] [0] [0] [0] [0] 0 1 {A1, A2}[0] [0] [1] [0] [0] [0] 0 4

{A2, A{3,4}}[0] [1] [0] [0] [0] [0] ε/6{A1, A{3,4}}[0] [0] [0] [0] [0] [0] ε/6 {A1, A2, A{3,4}}[1] [0] [0] [1] [1] [0] ε/6

{A2, A3}[0] [0] [0] [0] [0] [0] 0 2 {A2, A4}[0] [0] [0] [0] [0] [0] 0 1 {A2, A3, A4}[0] [1] [0] [0] [0] [0] 0 0

{A1, A2, A3}[0] [0] [0] [1] [0] [0] 0 3 {A1, A2, A4}[0] [0] [0] [0] [0] [0] 0 0 {A1, A2, A3, A4}[1] [0] [0] [0] [1] [0] 0 1

Noisy Count
(NCount)

Expand A{1, 2}

Complementary Cut
(CCut)

Ø

Øε/3ε/3

5ε/6 5ε/65ε/6

ε/6

2ε/3 2ε/32ε/3

2ε/3 2ε/3 2ε/3

Øε/6

{A{1, 2}} {¬A{1, 2}} ε/6

{¬A2} {A2}

ε/6

Partitioning Budget
(PBudget)

ε/6

Ø

{¬A2} {¬A1}

{¬A4} {¬A3} Ø

{¬A4} Ø{¬A3}

The partitioning noisy counts are not shown. Only the noisy counts of the leaf nodes are displayed.
The complementary cut (CCut) is shown in negative form indicating that any record assigned to the partition should not satisfy the negative cut.
The gray fields HCut and NCount, in the leaf nodes, indicate the differentially private data (OutDS) to be returned to the data miner.

Empty 
Partitions

Figure 15: PartTree: ε-differentially private partitioning tree of MixDS.

[HCut, CCut, Recs, ABudget, PBudget, NCount], where:

• Hierarchy cut (HCut) and complementary cut (CCut) are two set of nodes from TaxTree.

• Recs = 〈�r1�, �r2�, . . . , �rd�〉 is a binary vector of d ciphertexts, where d = |MixDS|. If a record

Rj ∈ MixDS for 1 ≤ j ≤ d is assigned to Part, then �rj� is set to �1�. All ciphertexts in Recs

are initially set to �0�.

• ABudget is the available privacy budget.

• PBudget = ABudget/|InterNodes(HCut)| is the partitioning privacy budget, where |InterNodes(HCut)|

is the total number of all non-leaf nodes from each subtree of TaxTree rooted at each node in

HCut.

• NCount is the noisy count generated using Laplace mechanism. �

Jointly executed by all data owners, Sub-Protocol 2.1 illustrates how the partitioning tree

PartTree is constructed in a differentially private manner. When the initial partition is created,

only half of the global privacy budget ε is allocated to it to guide the partitioning process. The

other half of the privacy budget will be assigned to each leaf partition to generate its noisy count.

When a partition is expanded over a node from its hierarchy cut HCut, 2l − 1 child partitions are

created, where l < f is the number of child nodes of the partitioning node from TaxTree. The same

95



available privacy budget is allocated to each child partition, which is possible due to the parallel

composition property [McS09] since the child partitions will be assigned disjoint set of records from

MixDS.

Example 10 Figure 15 illustrates the partitioning tree PartTree of dataset MixDS from Table 8.b.

Let Part be the partition where HCut = {A{1,2}, A{3,4}}, Recs = 〈�1�, �1�, �0�, �1�, �1�, �0�〉,

ABudget = ε/3, and PBudget = (ε/3)/2 = ε/6, where |InterNodes({ A{1,2}, A{3,4} })| = 2.

Since internal nodes {A{1,2} and A{3,4}} are at the same height in TaxTree, either node can be

used for partitioning (expanding) Part. Assume that we randomly select A{1,2} which has l = 2

children in TaxTree, then a maximum of 2l − 1 = 3 partitions can be created. As illustrated in

Figure 15, Part1.HCut = {A1, A{3,4}}, Part2.HCut = {A2, A{3,4}}, Part3.HCut = {A1, A2, A{3,4}},

and Part1.ABudget = Part2.ABudget = Part3.ABudget = Part.ABudget − Part.PBudget = ε/3 −

ε/6 = ε/6. �

The data owners utilizes the functions from Construction 5.1 on each record from MixDS to

securely determine which record should be assign to a partition. The following definition specifies

the conditions for successful record assignments.

Definition 17 Record-Partition Assignment. A record R can be assigned to a non-initial par-

tition Part if the following conditions hold:

1. Every item in DifNodes exists in R, where DifNodes is the set of nodes from TaxTree that exist in

Part.HCut but not in the hierarchy cut of its parent Parent(Part).HCut.

2. Every item in Part.CCut does not exist in R.

3. R has already been assigned to Parent(Part). �

Note that HCut could have been used instead of DifNodes in the first condition of Definition 17.

However, verifying the nodes in DifNodes is sufficient since the remaining nodes that exist in HCut

but not in DifNodes will be automatically verified by the third condition of the definition. This

optimization eliminates the need to verify each bit in R, where |R| = |Univ| = n, against Part in

order to determine if R should be assigned to Part.
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Distributed Laplace Noise Generation

LNoise ← LapNoise(Budget):

1. Determine the partial noise �Xk� from each participant Pk : 1 ≤ k ≤ p:

(a) All participants run the Multiparty Coin Toss protocol to generate a uniformly random
bitstring s.

(b) Pk generates l independent and identically gamma-distributed random variables deter-
ministically derived from s:
γi,k = Gamma(p, 1/Budget) for 1 ≤ i ≤ l

(c) Pk convert each gamma variable γi,k into integer value γ̄i,k:
γ̄i,k = γi,k × 10D, where D is the number of decimal places (precision) agreed upon by
all parties.

(d) Pk encrypts each integer value and broadcasts the set of ciphertexts:
Γk = {�γ̄1,k�, �γ̄2,k�, . . . , �γ̄l,k�}

(e) The rest of the participants use a random beacon to randomly choose (l −2) ciphertexts
from Γk.

(f) All participants jointly decrypt all chosen ciphertexts, and verify that Steps 1b-d are
correct.

(g) If the test is successful, then the partial random noise from Pk is homomorphically
computed as follows:
�Xk� = �γ̄i′,k� − �γ̄i′′,k�, where �γ̄i′,k� and �γ̄i′′,k� are the two ciphertexts that were not
chosen in Step 1e.

2. Homomorphically compute the encrypted Laplace noise �LNnoise� (multiplied by 10D):

�LNoise� =
p∑

k=1

�Xk�

Sub-Protocol 2. 2: Laplace Noise Generation
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       = homomorphic addition. 
All ciphertexts have been re-randomized. 

Figure 16: Using Mix and Match to verify whether record R1 should be assigned to partition Part.

Example 11 Let Part be the partition from Figure 15, where:

Part.HCut = {A1, A{3,4}} and Part.CCut = {A2}. Consequently, DifNodes := {A1, A{3,4}}\{A{1,2}, A{3,4}} =

{A1}.

Giving record R1 from Table 8.b, Figure 16 illustrates how to use the Verifiable Mix and Match

protocol to securely verify whether record R1 should be assigned to partition Part. �

Since the rows in MixDS and items in TaxTree are both encrypted (randomized) and shuffled, data

owners cannot use Part.HCut or Part.CCut to infer which records is assign to which partition in each

level of PartTree. Recall that A1 corresponds to ciphertext �Iπ(1)�, A2 corresponds to ciphertext

�Iπ(2)�, etc.

Distributed Laplace Noise Generation. To verify in a non-deterministic way whether or not a

partition is empty, a count query is issued for its noisy count by homomorphically adding a Laplace

noise to the true number of records assigned to the partition. To securely generate Laplace noise in

a distributed fashion, the data owners run Sub-Protocol 2.2, which is based on the following Lemma.

Lemma 1 Laplace Distribution [KKP01]. Let Lap(λ) be a random variable satisfying a Laplace

distribution with probability distribution function Pr(x|λ) = 1
2λ e

|x|
λ . Then:

1. The distribution of Lap(λ) is infinitely divisible.
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2. ∀r ≥ 1, Lap(λ) =
∑r

i=1[γ1,i − γ2,i], where γ1,i = Gamma(r, λ) and γ2,i = Gamma(r, λ) are inde-

pendent and identically distributed random variables satisfying gamma distribution with probability

distribution function Pr(x|k, λ) = (1/λ)1/k

Γ(1/k) x
1
k −1e

−x
λ , where x ≥ 0 and Γ(1/k) is the gamma function

evaluated at 1/k. �

The general idea is to take advantage of the infinite divisibility of Laplace distribution, and

have each data owner generate a random partial noise based on two gamma-distribution random

variables. According to Lemma 1, the shape parameter r = p (number of parties), and the inverse

scale parameter λ = 1
privacy budget . Several algorithms exist in the literature for generating random

gamma variables, e.g. [MT00] and [AD74], where at least two variables must be drawn from the

uniform distribution in order to generate one gamma variable. Cut-and-Choose is used to ensure

that each data owner has used the bitstring (randomness) generated by the Multiparty Coin Tossing

protocol to construct its gamma variables. All partial noises are converted to integers according to

the decimal precision value D agreed upon by all parties, before they are encrypted using Exponential

ElGamal. The encrypted noises are then homomorphically added together to construct a random

variable satisfying Laplace distribution that is multiplied by 10D.

5.4 Protocol Analysis

5.4.1 Complexity Analysis

Proposition 6 Complexity. The average runtime complexity of our proposed protocol is bounded

by O(logf n × d2) operations, where d is the number of records and n is the number of columns in

EncDS.

Proof. The generation of EncDS from Sub-Protocol 1.2 requires O(n×d). The shuffling of EncDS

also requires O(n × d) [SHKS12]. As a result, Protocol 5.1 takes O(n × d) operations to generate

MixDS. The shuffling of n items in Univ and the construction of TaxTree with fan-out f requires

O(n) operations. In Sub-Protocol 2.1, 2n distinct partitions might be created in the worst-case
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scenario. However, since it is impossible in practice to have |MixDS| = d = 2n records to fill out all

the partitions, we argue that the average-case complexity reflects a more accurate measure of our

protocol’s performance. Given that the mean of Laplace distribution is 0, the noise in the average

case is cancelled out, while assuming that the records are assign evenly between all partitions at the

same level in PartTree (worst case). The number of levels in PartTree is (log2 d/f), and the total

number of partitions in all levels is
∑log2 d/f

i=0 2i×f = O(d), where O(logf n) operations are applied

on each partition. Since all records in MixDS are validated against each partition in PartTree for

assignment, then the required number of operations is O(logf n × d2).

Discussion. The analysis shows that our approach is suitable for high-dimensional data since the

complexity is logarithmic with regard to the number of dimensions. On the other hand, it is quadratic

with respect to the number of records. This is due to the security protections of our protocol, where

no information can be inferred by malicious adversaries either during data integration or during the

partitioning process. Lowering record complexity while maintaining the same level of security is a

non-trivial open problem.

5.4.2 Security Analysis

Proposition 7 Integrity. The overall protocol is sound under the malicious adversarial model.

Proof. All steps in our solution are publicly verifiable, which prevents a compromised data owner

from deviating from the correct computation without detection. If detected, honest data owners will

not proceed, preventing the completion of the protocol (as the decryption operations throughout the

protocol, including the last step, require all participants). Table 9 illustrates the publicly verifiable

primitive of each security-sensitive step in each proposed protocol and sub-protocol. We inherit

integrity against a dishonest majority from our building blocks (and we can provide robustness

against dishonest minority by adjusting the threshold of the decryption operation).

We must also ensure that all inputs to the protocol are correctly formed. In the setup phase, where

the data owners interact together to construct the public key, the distributed key generation (DKG)
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Table 9: The publicly verifiable primitives involved in each security-sensitive step of the proposed
protocol

P. V. Primitive Construction
1

Protocol
1

Sub-Protocol
1.1

Sub-Protocol
1.2

Protocol
2

Sub-Protocol
2.1

Sub-Protocol
2.2

Mix Network 1, 4, 5†

Mix and Match 1 − 4 1.b
NIZKP 1
Homomorphic Operation 2 2, 3 2
Public Encryption 1.a‡

Distributed Decryption 4
Cut-and-Choose 1
Distributed Proxy
Re-encryption 2.a.i

Cleartext Operation∗ 2, 3, 6 3 1 − 4
1, 2.a.ii,
2.b, 3 5 − 7

† The shuffling in Step 2 and 5 is performed at the same time to ensure that the same random permutation π is used.
‡ All participants agree on one randomness value for encryption so that anyone can verify the ciphertexts by regenerating
them.
∗ Cleartext operations involve steps that do not require a secret, such as sub-protocol calls and broadcasting an output.

protocol ensures that the output is uniformly distributed at random [GJKR07]. In the case of data

encryption, each ciphertext must be from 〈Gq × Gq〉 such that the data owners are able to check

the independency of the ciphertexts. When operations of mixing (shuffling & re-randomization),

distributed proxy re-encryption, and plaintext equality test are performed, each data owner inputs

a random exponent from Z
∗
q for blinding. As long as there is at least one exponent that is uniformly

distributed at random, the addition of all exponents is also random. Finally, during the generation

of a uniformly random bitstring using the Coin Toss protocol, the same property holds: as long as

there is at least one honest data owner, then the result is uniformly random.

Proposition 8 Privacy-preserving. The overall protocol is privacy-preserving.

Proof. To prove that our protocol is privacy-preserving, we show that the data is protected

throughout the protocol execution.

Input Data. Each data owner Pi encrypts his data, proves knowledge of it, and then inputs it to

the protocol. The proof is zero-knowledge, where Pi proves that he knows the underlying plaintexts

of the encrypted data without revealing any information about the plaintexts.

Encrypted Data. While encrypted, the data is protected under the CPA-security of the en-

cryption scheme (e.g., DDH for ElGamal) and the proof is zero-knowledge. The adversary cannot

decrypt items arbitrarily, as the decryption key is (n, n)-shared between all data owners, requiring
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the adversary to corrupt every data owner to be successful (in which case, all the inputs are al-

ready known). Moreover, applying verifiable mixing on the columns and rows of the encrypted data

removes any correspondence between ciphertexts and the original items/records.

Decrypted Data. The underlying data remains encrypted throughout the protocol except in

two areas: within Mix and Match (during plaintext equality tests) and within proxy re-encryption.

However, both subprotocols are verifiable and already provide protection against a malicious adver-

sary.

5.4.3 Correctness and Utility Analysis

Proposition 9 Correctness. Given p ≥ 2 set-valued datasets with record and item overlaps, the

proposed protocol generates ε-differentially private set-valued data.

Proof. We first show that our protocol can handle record and item overlaps, and then show that

the released data is ε-differentially private.

Data Overlap. If data about the same individual exists in more than one dataset (record over-

lap), then Step 2.a of Sub-Protocol 1.2 is applied to generate one integrated record for that individual.

Function n-OR is used to set the total number of occurrences of an item to one if the item exists in

more than one record for the same individual (item overlap).

ε-Differentially Private Data Generation. Sub-Protocol 2.1 performs the same sequence of

partitioning operations as the algorithm in [CMF+11], except that our protocol is in a distributed

setting. Since [CMF+11] generates ε-differentially private set-valued data, we prove the correctness

of Sub-Protocol 2.1 by only proving the correctness of the different steps:

• Record-Partition Assignment. Verifying that every item in DifNodes exists in R, and R has

already been assigned to Parent(Part), is equivalent to verifying that every item in HCut

exists in R. Moreover, verifying that every item in Part.CCut does not exist in R ensures that

the same record is not assigned to more than one sibling partition.
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• Noise Generation. In Sub-Protocol 2.2, even though LNnoise is differentially private, the par-

tial noise �Xk� from Pk is not; hence the use of Cut-and-Choose protocol to allow for encrypted

partial noises while ensuring they are random variables satisfying gamma distribution. More-

over, since the total noise LNnoise of a leaf partition is equal to LapNoise(ε/2), the output is

guaranteed to be ε/2-differentially private.

5.5 Performance Evaluation

5.5.1 Experimental Results

In this section, we verify the utility loss of the anonymized dataset OutDS based on frequent itemset

mining, a common data mining technique for extracting knowledge from set-valued data.

We utilize the publicly available dataset MSNBC 4, a real-life web log dataset that have been

used for testing several data mining approaches [LQSC12] [EVK05]. It consists of 989, 818 records

and 17 distinct items, where the average number of items per record is 1.72 items. We also utilize

STM5, a real-life dataset that lists the subway and bus stations visited by passengers in Montréal

city within a week. It consists of 1, 210, 096 records and 1, 012 distinct items, where the average

number of items per record is 64 items.

Let ω be the number of top frequent itemsets. Our goal is to compute the sets Fω(EncDS) and

Fω(OutDS) that contains the ω top frequent itemsets from EncDS and OutDS, respectively. We

measure the similarity between the two sets in order to determine the utility loss (UL) in OutDS

dataset due to anonymization as follows:

UL(OutDS) = 1
ω

×
∑

Ii∈Fω(OutDS)

1 − Sup(Ii, Fω(OutDS))
Sup(Ii, Fω(EncDS)) ,

4MSNBC dataset: https://archive.ics.uci.edu/ml/datasets.html
5STM dataset: http://www.stm.info/en/
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(b) STM dataset

Figure 17: Utility loss for frequent itemset mining with respect to privacy budget and top frequent
itemsets.

where Sup(Ii, Fω(OutDS)) and Sup(Ii, Fω(EncDS)) represent the support of frequent itemset

Ii ∈ Fω(OutDS) in Fω(OutDS) and Fω(EncDS), respectively.

Figure 22 illustrates the utility loss for frequent itemset mining with respect to different privacy

budgets and different number of top frequent itemsets ω. We observe that for both datasets: MSNBC

in Figure 17a and STM in Figure 17b, the utility loss is directly affected by the the privacy budget.

That is, the more privacy budget is allocated, the less the utility loss is. This is because a higher

privacy budget leads to a more accurate partitioning, and less noise is added to the count of each

partition at the leaf level. On the other hand, with regard to ω, we observe that the more top

frequent itemsets we consider, the more the utility loss is. This due to the fact that considering

more top frequent itemsets leads to more false positives in OutDS, as well as to more false negatives

in the itemsets being dropped. However, even when ω = 100, the utility of our approach is over 60%

in both datasets, and over 70% except in STM dataset when ε = 0.5.

5.5.2 Cost Estimation

We assume all ciphertexts are generated using exponential ElGamal. We count the modular ex-

ponentiation operations to estimate the cost of the protocol. We only report our cost analysis of

Protocol 2.1 as it dominates the analysis. Modular exponentiations are mainly required when a

partition is being constructed and when a record is validated against a partition.

• Partition Construction. The total number of modular exponentiations required for generating one
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ciphertext is 5, where 2 exponentiations are required to perform the operation, 1 to generate the

proof, and 2 to verify the proof. Given that each partition consists of d binary ciphertexts, where

d = |MixDS|, the total cost of constructing a partition is 5 × d.

• Record-Partition Assignment. To determine the cost of assigning a record to a partition, we

calculate the modular exponentiations required by Equation 4 in Protocol 1. More specially, we

calculate the modular exponentiations required by the plaintext equality test (PET) on the Mix

and Match truth tables, assuming that all tables were created offline. Given p data owners, one

PET requires 15 × p exponentiations, where 3 × p are required to perform the operation, 4 × p

to generate the proof, and 8 × p to verify the proof [SHKS12]. Table 10 illustrates the average

number of modular exponentiations for the Mix and Match truth tables, where each table contains

two columns, and PET is performed on the ciphertexts in the first column.

Table 10: Average cost of PET on Mix and Match truth tables

Table # of Rows Modular Exponentiations

n-AND(V ) |V | + 1 |V |+1
2 × 15 × p

n-OR(V ) |V | + 1 |V |+1
2 × 15 × p

NOT(�v�) 2 2
2 × 15 × p = 15 × p

n-NOT(V ) 2 × |V | 2×|V |
2 × 15 × p = 15 × |V | × p

The average number of n-OR(V ) operations in part B or C of Equation 4 is f/2. Since the number

of items in DifNodes decreases by f times at every partitioning step, the function CV(N) returns

on average logf n ciphertexts. So the cost of Equation 4 in terms of modular exponentiations is

(f × ( (logf n)+1
2 × 15 × p) + 15 × f

2 × p + (f+1)+1
2 × 15 × p) � (8 × logf n + 24) × f × p.

Given that all records will be evaluated against each partition, and 2d partitions are expected to

be created on average, the total cost for constructing PartTree is (16 × logf n + 58) × f × p × d2.

Assuming that the cost for one exponential operation is 2 ms, Table 11 and Table 12 illustrate the

estimated runtime of our protocol w.r.t. the number of records and the number of distinct items

(universe size), respectively.

105



Table 11: Estimated Performance of Protocol 2.1 (Hours) w.r.t. # of records, where # of parties is
3 and fan-out is 2.

Dataset 200 400 600 800 1000

MSNBC 16 66 148 263 411
STM 29 116 261 464 726

Table 12: Estimated Scalability of Protocol 2.1 (Hours) w.r.t. # distinct items, where # of records
is 600, # of parties is 3 and fan-out is 2.

20K 40K 60K 80K 100K
344 363 374 382 389

We observe from Table 11 that our protocol can be practical when the number of records is

relatively small, while the number of dimensions is high. It shows, for instance, that integrating

3 datasets with up to 400 records and 1012 distinct items takes less than 5 days (116 hours) to

complete. One example where our protocol can be utilized is in medical research labs that perform

tests on new drugs and need to integrate their data in a privacy-preserving manner. In such case,

the number of participants is typically small, whereas the number of symptoms to be tracked is

large. We also observe from Table 12 that our proposed protocol grows at a logarithmic rate with

respect to the number of dimensions. It shows that when the number of dimensions is 20,000, and

then gradually increases by 20,000 distinct items at each step, up to 100,000 dimensions, the average

increase of runtime per step is only 8.25 hours. Recall that the costs are expensive due to the support

of public verifiability. We hope that this work inspires researchers to further study the problem of

data integration with public verifiability and propose more efficient and practical solutions.

5.6 Summary

In this chapter, we propose a protocol for secure set-valued data integration, where the output is

a ε-differentially private data with an effective level of data utility for data mining. Our proposed

protocol is the first in the literature to support public verifiability in the context of data integration.

The protocol also supports a more general distributed data model, and is efficient for handling

high-dimensional data. We show that the protocol is secure in the malicious adversarial model with
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dishonest majority.
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Chapter 6

Secure and Privacy-preserving

Relational Data Integration

6.1 Introduction

As the amount of data available from wide range of domains has increased tremendously in recent

years, the demand for data sharing and integration has also risen. The integration of related data

from different sources enables businesses, organizations and government agencies to perform better

data analysis and make better decisions. In this chapter, we present Fusion, a protocol that en-

ables multiple data providers to engage in a privacy-preserving integration process to generate a

anonymous mashup data with high information utility for data mining tasks such as classification

analysis. Throughout the integration process, a score function needs to be computed between the

parties to guide the process. Therefore, we propose a secure protocol for evaluating the score function

in a distributed setting. Figure 18 presents an example of a distributed environment for privacy-

preserving data integration. The challenges of mashing-up data from different data providers in a

privacy-preserving manner are summarized as follows.

A major challenge is privacy concerns. Data providers are often reluctant to share their data
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Figure 18: Privacy-preserving distributed data integration.

due to privacy concerns. We distinguish between two types of concerns. The first is to allow data

providers to evaluate functions on the collective data while ensuring that no party learns more

information about other parties’ data, other than what is revealed in the final mashup data.

Example 12 Consider the data in Table 13, where three data providers: P1, P2 and P3, owns

different set of attributes about the same individuals, and P2 owns the Class attribute. Assume

that the parties are building a classifier and need to compute information gain [Qui93] for each

attribute. P2 can directly compute the information for attribute Sex since it knows the class values.

However, P1 and P3 should be able to compute the information for each of their attributes while

the class values remain private (only known to P2). �

The second concern is to ensure the final mashup data is anonymized such that potential linkage

attacks are thwarted. The adversary can perform two types of linkage attacks: record linkage, where

an individual can be linked to a record if the record is very specific, and attribute linkage, where a

frequent sensitive value can be inferred about an individual.

Example 13 In Table 13, if the adversary knows 〈44, 12th, Female〉 about an individual, then the

adversary can link the individual to record #7 and sensitive value s2. On the other hand, if the

adversary knows 〈Bachelor, Male〉, then he infers sensitive value s2 about the individual with 67%
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Table 13: Raw data owned by providers P1, P2 and P3

UID
Data Provider P1 Data Provider P2 Data Provider P3

Age Education Class Sex Sen Salary
1 54 11th Yes Male s2 65K
2 26 Bachelor No Male s1 37K
3 39 7th No Female s2 51K
4 67 Master Yes Female s2 55K
5 32 Bachelor Yes Male s2 87K
6 59 Doctorate No Female s1 107K
7 44 12th No Female s2 26K
8 29 Bachelor Yes Male s2 77K
9 53 9th No Female s2 29K
10 46 Master Yes Female s1 72K

probability. �

Another major challenge is data utility. The anonymous mashup data should preserve as much

information as possible for the targeted data mining tasks such as classification or cluster analysis.

However, since each data provider can own several attributes, each of which is considered a dimen-

sion, the resulting mashup data is usually high-dimensional. Many anonymization approaches, such

as k-anonymity [Sam01a], generate useless anonymous data when applied on high-dimensional data

due to the curse of high dimensionality [Don00]. Therefore, choosing the appropriate anonymization

approach is critical for maintaining high data quality.

The contributions of this chapter can be summarized as follows:

Contribution #1. We present a secure protocol for the distributed evaluation of an information

gain-based score function, and show that the protocol is privacy-preserving.

Contribution #2. We present a multi-party protocol that applies a hierarchal approach to

anonymize high-dimensional data and generate mashup data satisfying LKC-privacy [MFHL09].

Contribution #3. We performed experimental evaluation on real-life data in different dis-

tributed settings. Extensive experimental results suggest that the mashup data provides better data

utility, and our approach is scalable w.r.t. the number of records as well as the number of attributes.

The results of this chapter have been published in [DIAF15] and [ADFH14].
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6.2 Preliminaries

6.2.1 Privacy Model

In recent years, several privacy models [Swe02a][Sam01b] have been proposed to prevent linkage

attacks against published data. In the problem studied in this chapter, each data provider can own

many attributes and the result is often a high-dimensional mashup table. Therefore, we choose LKC-

privacy [MFHL09], a privacy model that was originally designed for preventing linkage attacks on

high-dimensional data, i.e., data with a large number of attributes. The authors in [MFHL09] have

shown that LKC-privacy yields better utility for data mining in the anonymized data in comparison

to the traditional privacy models.

Let T be an attribute table in the form of T = (A1, . . . , Am, Sen), where each record contains

information about a unique individual. QID = {A1, . . . , Am} is a set of quasi-identifier attributes,

such as sex and age, that may identify an individual if some combinations of QID values are specific

enough. Sen is a sensitive attribute that contains some sensitive information about the individuals

in the table, such as salaries or diseases. We assume that the an adversary looking to identify the

record or sensitive value about an individual in T has a limited prior knowledge qid. More specif-

ically, the adversary knows values from at most L attributes in QID, where |qid| ≤ L. Given qid,

the adversary can identify the set of records in T that satisfy qid, denoted by T [qid], and launch

two privacy attacks:

Record Linkage Attack. If the number of records |T [qid]| is small, the adversary can dis-

tinguish the individual’s record, and consequently, the sensitive value. For example, if qid =

〈44, 12th, Female〉 in Table 13, then T [qid] = {UID#7}, |T [qid]| = 1 and Sen = s2.

Attribute Linkage Attack. If the number of records |T [qid]| is large, the adversary can still infer

the sensitive value s with confidence Pr(s|qid) = |T [qid∧s]|
|T [qid]| , where T [qid∧s] denotes the set of records

containing both qid and s. For example, if qid = 〈Bachelor, Male〉, then T [qid ∧ s2] = {UID#5, 8}

and T [qid] = {UID#2, 5, 8}. Accordingly, Pr(s2|qid) = 2
3 = 67%.

To prevent such privacy attacks, LKC-privacy requires that in the anonymized table, for every
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Figure 19: Taxonomy trees: TAge, TEducation, TSex and TSalary for ∪QID attributes in Table 13,
and the union cut ∪Cut of the LKC anonymous Table 14.

qid : |qid| ≤ L, qid is shard by at least K records, and the percentage of each sensitive value in every

group cannot exceed a certain value C. LKC-privacy guarantees that the probability of a successful

record linkage to be ≤ 1/K and the probability of a successful attribute linkage to be ≤ C.

6.2.2 Encryption Scheme

The requirements of the encryption scheme is to: 1) support homomorphic addition, 2) allow for

re-randomization of ciphertexts without the need for private information, 3) admit distributed key

generation (DKG), and 4) allow for distributed decryption where participants use key shares to

perform a decryption operation. We choose Exponential ElGamal [CGS97] as it is fast when imple-

mented over elliptic curves, distributed key generation is straightforward, and decryption is feasible

for our plaintext space. For the purpose of this chapter, we assume that the secret key x of Elgamal

scheme is shared according to (2, n)-threshold between the participants, where any two participants

can jointly decrypt Elgamal encrypted messages.

6.2.3 Taxonomy Tree [FWY07b]

A taxonomy tree of an attribute A, denoted by TA, is a context-specific hierarchical structure that

classifies the items in the attribute’s domain. In a taxonomy tree for a categorical attribute, the leaf

nodes are the domain items, and the non-leaf nodes represent more generalized concepts of their

children. On the other hand, in a taxonomy tree for a numerical attribute, the root node represents

the full numerical range of the attribute, and the children nodes represent an optimal split of the

parent range. We assume for each attribute A ∈ ∪QID, a context-specific taxonomy tree is defined.

Figure 19 presents taxonomy trees for the ∪QID attributes in Table 13.
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6.3 Problem Formulation

In this section we formally define the research problem. First, we present an overview of the problem

of privacy-preserving data integration with privacy guarantees on output data in Section 6.3.1.

Next, we describe the utility measures in Section 6.3.2. We then describe the adversarial model in

Section 6.3.3. Finally, we present the problem statement in Section 6.3.4.

6.3.1 Problem Overview

This chapter addresses the problem of integrating distributed person-specific data while preserving

both privacy and information utility on the final mashup data. Each party involved in the protocol

represents a data provider who is interested in integrating its data with other providers’ data without

leaking any unnecessary information. The mashup data is then released to the public for data mining.

We assume that the data being integrated is in the form of a relational table that is vertically

partitioned into sub-tables, each of which is owned by one data provider. Let P1, P1, . . . , Pp be

the group of data providers participating in the protocol. Each party Pi : 1 ≤ i ≤ p owns a table

in the form of Ti = (UID, EIDi, QIDi, Seni, Class). UID is a system-generated unique identifier

of an individual, and is shared by all data providers. EIDi is a set of explicit identifiers containing

information that can explicitly identify an individual, and should be removed before the protocol is

executed. QIDi is a set of quasi-identifier attributes, each of which is either categorical or numerical.

QIDi attributes cannot be removed as they are useful for the data mining task, and each attribute

can be shared by any number of data providers. We denote by ∪QID =
⋃p

i=1 QIDi the union of all

quasi-identifier attributes owned by the parties. Seni is a set of sensitive attributes containing some

sensitive information about the individuals, and it is shared between all data providers. Class is a

categorical target class attribute for classification analysis. We assume that only one data provider

owns (have knowledge to) this attribute. The result of the integration is an anonymous mashup data

that satisfies an LKC-privacy requirements agreed upon by all the parties. Note that increasing the

anonymity threshold K, increasing the prior knowledge threshold L, or decreasing the confidence
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Table 14: LKC anonymous mashup data, for L = 2, K = 2 and C = 50%, w.r.t. sensitive value s1

UID Age Education Class Sex Sen Salary
1 [1-99) Secondary Yes Any Sex s2 [10K-70K)
2 [1-99) University No Any Sex s1 [10K-70K)
3 [1-99) Secondary No Any Sex s2 [10K-70K)
4 [1-99) University Yes Any Sex s2 [10K-70K)
5 [1-99) University Yes Any Sex s2 [70K-125K)
6 [1-99) University No Any Sex s1 [70K-125K)
7 [1-99) Secondary No Any Sex s2 [10K-70K)
8 [1-99) University Yes Any Sex s2 [70K-125K)
9 [1-99) Secondary No Any Sex s2 [10K-70K)
10 [1-99) University Yes Any Sex s1 [70K-125K)

threshold C imposes a higher level of privacy protection, which in general would result in a lower

information utility (data quality) of the anonymized data.

6.3.2 Data Utility Measures

Our idea for generating anonymous mashup data is to anonymize the raw data by performing a

sequence of specializations, starting from the topmost general state. To specialize a value v, denoted

by v → child(v), we replace v by its children values child(v). The specialization process can be

viewed as pushing the cut of each taxonomy tree downwards. A CutA of a taxonomy tree TA

contains exactly one value on each root-to-leaf path. We denote by ∪Cut =
⋃

A∈∪QID CutA the

union of all cuts. In Figure 19, the dashed curve represents ∪Cut (also referred to as solution cut) of

the LKC anonymous Table 14. The specialization starts from the topmost cut and pushes down the

cut iteratively by specializing a value in the current cut until no further specialization that satisfies

the LKC-privacy requirements is possible. We define two utility measures to help us determine at

each level the best value v for specialization.

UM1: Classification Analysis

We utilize information gain [Qui93] to measure the quality of specialization on a value v for the

purpose of classification analysis. Construction 6.1 illustrates how the score function Score(v) can

be computed.

At any level during the specialization process, the score of every valid attribute for specialization
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Classification Analysis

Let T [v] be the set of records in T that are generalized to v. The score for a specialization on
a value v can be determined as follows:

1. Compute the entropy of T [v]:

E(T [v]) = −
∑

cls∈Class

|T [v ∧ cls]|
|T [v]| × log2( |T [v ∧ cls]|

|T [v]| ) (5)

where |T [v ∧ cls]| denotes the records in T [v] with class value cls.

2. Given that |T [v]| = Σc|T [c]|, where c ∈ child(v), compute the entropy of T [c] for each
c ∈ child(v):

E(T [c]) = −
∑

cls∈Class

|T [c ∧ cls]|
|T [c]| × log2( |T [c ∧ cls]|

|T [c]| ) (6)

3. Compute the score of specializing T [v] on value v:

Score(v) = E(T [v]) −
∑

c∈child(v)

|T [c]|
|T [v]|E(T [c]) (7)

Construction 6.1: Utility Measure for Classification Analysis

can be computed according to Construction 6.1, and then the value with the highest score is chosen

to perform the actual specialization.

UM2: General Analysis

We utilize discernibility cost [SR92] to measure the quality of specialization on a value v when the

data mining task is unknown. The discernibility cost penalizes each record that is indistinguishable

from the rest of the records in a group, and the penalty cost equals the size of the group. That is,

each record in an equivalence class qid is penalized by |T [qid]|, and the total penalty cost of the class

is |T [qid]|2. Hence, the score for specialization on v considers all qid combinations that contain v:

Score(v) =
∑
qid

|T [qid]|2 : v ∈ qid (8)

Similar to the utility measure for classification analysis, we choose the specialization that yields

the highest score.
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6.3.3 Adversarial Model

Fusion is secure in the semi-honest adversarial model [KMR], where each party is trusted to follow

the protocol, but during the execution, tries to infer information from other parties. All parties are

assumed to be non-colluding and their computational powers are polynomially bounded.

6.3.4 Problem Statement

Let P1, . . . , Pp, where p > 2, be a group of data providers respectively owning vertically-partitioned

data tables T1, . . . , Tp, where any quasi-identifier attribute can be shared by any number of data

providers, all sensitive attributes are shared between all data providers and the Class attribute is

only owned by one provider. Let L, K and C be the prior knowledge threshold, the anonymity

threshold and the confidence threshold values agreed upon by all parties. The objective of our work

is to propose a protocol for generating an anonymous mashup data table T̂ such that (1) T̂ satisfies

LKC-privacy requirements, (2) no party learns unnecessary information about other parties’ data

than what is in T̂ (which is LKC-private), (3) T̂ preserves an effective level of information utility

for data mining purposes, and (4) the protocol is scalable with respect to high-dimensional data.

6.4 Solution: Fusion Protocol

6.4.1 Solution Overview

This section introduces a multi-party protocol, named Fusion, for integrating distributed person-

specific data while preserving both privacy and information utility on the final mashup data. The

main idea is to anonymize the raw data by generalizing all raw data records to a topmost general

state, and then perform a sequence of specializations such that in each specialization step we choose

the specialization with the highest score to maintain the highest possible information utility. The

specialization process continues until there is no more specialization that satisfies the LKC-privacy

requirements. Our solution consists of two main protocols:
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Distributed Specialization Score (DSS)

Let Pcls be the party that owns the Class attribute. We assume that each party already received
from Pcls the class values encrypted under the data providers’s distributed public key, as shown
in Table 15.

1. Following Construction 6.1, Pcls directly computes the score for each valid specialization
of every attribute in ∪QID it owns.

2. For each valid specialization v → child(v) of every attribute in ∪QID owned by Pk : 1 ≤
k ≤ p (except Pcls), Pk does the following:

(a) Choose a party randomly and then together execute Sub-Protocol 1.3 to compute
�E(T [v])�.

(b) For each c ∈ child(v), it randomly chooses another party and then together execute
Sub-Protocol 1.3 to compute �E(T [c])�.

(c) Homomorphically compute the score of specialization over v as follows:

�Score(v)� = 10d × (�E(T [v])� −
∑

c∈child(v)

|T [c]|
|T [v]| × �E(T [c])�)

= 10d × �E(T [v])� −
∑

c∈child(v)

⌈10d × |T [c]|
|T [v]|

⌉
×�E(T [c])� (9)

where d is the number of decimal places (precision) agreed upon by all parties.
(d) Request one of the parties to partially decrypt �Score(v)�, and then uses its own share

of the secret key to fully decrypt the ciphertext and obtain Score(v).

3. All parties engage in a secure circuit evaluation process using Yao’s Protocol [Yao82] to
determine which party has the specialization value with the highest score.

Protocol 6.1: Distributed Specialization Score

Protocol 6.1 - Distributed Specialization Score (DSS). Since Class attribute is only

owned by one party, this protocol enables all parties to securely determine at each specialization

step the best value for specialization.

Protocol 6.2 - Hierarchal High-dimensional Data Integration (HHDI). This protocol

presents a distributed hierarchical approach for integrating high dimensional data from multiple data

providers, while preserving the data quality for the data mining tasks. The output of this protocol

is an LKC-anonymous mashup data.

117



Input: Principle party Pi, assisting party Pj , potential specialization value x
Output: Encrypted entropy of T (x)

1. Pi chooses random integer r from Z
∗
q , and then for each ciphertext �cls� ∈ T [x].�Class�,

where T [v].�Class� denotes the set of ciphertexts from the encrypted �Class� attribute
that corresponds to the group of records generalized to v, it performs the following:

(a) Blind �cls� by exponentiating in r: �cls�r = �clsr�.
(b) Partially decrypt �clsr� using its own share of the secret key.

2. Pi sends the set of partially decrypted ciphertexts to Pj through a secure channel.

3. Using its own share of the secret key, Pj decrypts the set of ciphertexts and obtains a set
of blinded class values.

4. Pj computes the entropy E(T [x]) according to Equation 5 from Construction 6.1.

5. Pj computes the integer value �E(T [x]) × 10d�, encrypts it using the distributed public
key, and then sends the ciphertext ��E(T [x]) × 10d�� to Pi through a secure channel.

Sub-Protocol 1. 3: Compute Encrypted Entropy

6.4.2 Multi-Party Protocol for Computing Specialization Score

In this section, we present a multi-party protocol for securely determining the best value for spe-

cialization. As we discussed in Section 6.3.2, Construction 6.1 can be used to compute the score

of each valid specialization, and then the specialization that yields the highest score is selected. In

distributed settings, however, different QID attributes are owned by different parties and the Class

attribute is owned by only one party. Therefore, a secure protocol is required to compute the scores

and determine the best specialisation while ensuring no extra information is leaked to the parties.

Protocol 6.1 explains how the data providers can securely determine the winner candidate for

specialization. As we will see in Section 6.4.3, the table T is constructed from the leaf partitions of

the specialization tree. Pcls, the party that owns the Class attribute, can independently compute

the score of its own valid specialization values. On the other hand, any other party that has a valid

specialization value must utilize the other parties to achieve that. The intuition is to ask different

parties to compute different parts of the each score, and then the party owning the specialization
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value puts things together by homomorphically computing the total score. Sub-Protocol 1.3 illus-

trates how Pi (the party owning the specialization value v) and Pj (assisting party) compute the

entropy of T [x]. The idea is for Pi to blind the class ciphertexts corresponding to T [x] using a

random number, decrypt them using its secret decryption share, and then send them to Pj who

in turn decrypts, counts the equivalent classes, and then computes the entropy. Using the same

random number to blind each class ciphertext (Step 1 of Sub-Protocol 1.3) ensures the decrypted

data is protected but the other party can still count and compute the entropy. We assume that at

the beginning of the protocol, all parties agreed on a parameter d for converting decimal values to

integers to be able to encrypt them. Observe that in Equation 9, we needed to multiply by 10d to

convert |T [c]|
|T [v]| to an integer while maintaining the scale between all computed scores. Pk can then

perform the multiplication: |T [c]|
|T [v]| × �E(T [c])�. The following example illustrates how to compute

the score of a specialization according to Protocol 6.1.

Example 14 Assume that all records in Table 15 are generalized to Any Education. Data provider

P1, who owns the attribute Education, wants to securely compute the score for the specialization

Any Education → {Elementary, Secondary, University} according to TEducation from Figure 19.

Step 1. To compute E(T [Any Education]), P1 blinds all ciphertexts in T [Any Education].�Class�

with a random number r1: �Y esr1�, �Nor1�, �Nor1�, �Y esr1�, �Y esr1�, �Nor1�, �Nor1�, �Y esr1�,

�Nor1�, �Y esr1�, partially decrypts them using its private key share, and the send them to P3

(randomly selected). P3 then decrypts the ciphertexts using its private key share to obtain the

blinded values: Y esr1 , Nor1 , Nor1 , Y esr1 , Y esr1 , Nor1 , Nor1 , Y esr1 , Nor1 , Y esr1 , and computes

− 5
10 × log2( 5

10 ) − 5
10 × log2( 5

10 ) = 1. It then computes the integer �1 × 10d� = �1 × 102� = 100, and

then sends the ciphertext �100� to P1.

Step 2. Since the minimum education value in any records T [Any Education] is 7th grade, then

no record can be specialized to Elementary. As a result, |T [Elementary]| = 0 and E(T [Elementary]) =

0. On the other hand, T [Secondary] = {UID#1, 3, 7, 9} (4 records can be specialized to Secondary).

Therefore, P1 blinds all ciphertexts in T [Secondary].�Class� with a random number r2: �Y esr2�,
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Table 15: Data owned by P1, P2 and P3 after P2 sends encrypted �Class� attribute to P1 and P3

UID
P1 P2 P3

Age Education �Class� Class Sex Sen Salary �Class�
1 54 11th �Y es� Yes Male s2 65K �Y es�
2 26 Bachelor �No� No Male s1 37K �No�
3 39 7th �No� No Female s2 51K �No�
4 67 Master �Y es� Yes Female s2 55K �Y es�
5 32 Bachelor �Y es� Yes Male s2 87K �Y es�
6 59 Doctorate �No� No Female s1 107K �No�
7 44 12th �No� No Female s2 26K �No�
8 29 Bachelor �Y es� Yes Male s2 77K �Y es�
9 53 9th �No� No Female s2 29K �No�
10 46 Master �Y es� Yes Female s1 72K �Y es�

�Nor2�, �Nor2�, �Nor2�, partially decrypts them, and then sends them to P2. P2 decrypts the ci-

phertexts and computes − 1
4 × log2( 1

4 ) − 3
4 × log2( 3

4 ) = 0.8112. It then computes �0.8112 × 102� = 81

and sends �81� to P1. Similarly, T [University] = {UID#2, 4, 5, 6, 8, 10} (6 records can be special-

ized to University). Therefore, P1 blinds all ciphertexts in T [University].�Class� with a random

number r3: �Nor3�, �Y esr3�, �Y esr3�, �Nor3�, �Y esr3�, �Y esr3�, partially decrypts them, and then

sends them to P3. P3 decrypts the ciphertexts and computes − 4
6 × log2( 4

6 ) − 2
6 × log2( 2

6 ) = 0.9183.

It then computes �0.9183 × 102� = 92 and sends �92� to P1.

Step 3. Since |T [Any Education]| = 10, |T [Secondary]| = 4 and |T [University]| = 6, P1

homomorphically computes the score for specializing on value Any Education as follows:

�Score(Any Education)� = 102 × �100� − � 102×4
10 � × �81� − � 102×6

10 � × �92� = �1240�. �

Proposition 10 Privacy. Protocol 6.1 is privacy-preserving.

Proof.To prove that Protocol 6.1 is privacy-preserving, we show that the data is protected

throughout the protocol execution.

Encrypted Data. While encrypted, all ciphertexts exchanged between the parties (encrypted

class attributes, entropies and scores) are protected under the CPA-security (Decisional Diffie-

Hellmen (DDH)) of ElGamal [EG85] encryption scheme. The adversary cannot decrypt items

arbitrarily, as the decryption key is (2, n)-shared between all data owners, requiring a collusion

with another party, which contradicts our non-colluding semi-honest adversarial model.

Decrypted Data. In Step 2 of Sub-Protocol 1.3, Pj receives a set of class attribute ciphertexts
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Hierarchal High-dimensional Data Integration (HHDI)

1. Pcls, the party that owns the Class attribute, encrypts the class values under the data
providers’ distributed public key, and then broadcasts the ciphertexts to the remaining
parties.

2. Create an initial partition such that:

• The hierarchy cut value HCut.A of every attribute A ∈ ∪QID is set to the root of
TA.

• All records are assigned to the partition.

3. Set the union cut ∪Cut to the hierarchy cut HCut of the initial partition.

4. For each value v ∈ ∪Cut from a taxonomy tree TA, PA determines whether v is valid for
specialization.

5. While there is at least one value v ∈ ∪Cut such that v is valid for specialization:

(a) All parties jointly run Protocol 6.1 to compute the specialization score for each valid
value in ∪Cut, and determine the party that owns the winning value w with the
highest score.

(b) The party owning w runs Sub-Protocol 2.3 to perform the specialization w →
child(w).

(c) For each value v ∈ ∪Cut from a taxonomy tree TA, PA verifies whether v is valid
for specialization.

6. The hierarchy cut HCut and the record count of each leaf partition constitute the anony-
mous data for release satisfying the LKC-private requirements.

Protocol 6.2: Hierarchal High-dimensional Data Integration

from Pi in order to decrypt and compute the entropy. Decrypting the ciphertexts enables Pj to

count the equivalent class values. However, since the decrypted data is blinded (exponentiated

with a random number), Pj cannot determine the actual class values due to the the hardness of

computing discrete logarithms. Moreover, using different random numbers for blinding different set

of class values prevents Pj from comparing two different set of blinded class values it has received

from two separate requests. Our protocol, however, leaks partial information about a score to each

assisting party, since entropies are computed by assisting parties in clear text. We argue that this

leakage is tolerable since assisting party Pj can determine neither to which attribute the computed

entropy belongs, nor what the underlying class values are.
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Perform Specialization

1. For each partition Part where w ∈ Part.HCut:

(a) For each child value v ∈ child(w), create a child partition CPart such that CPart.HCut
is the same as Part.HCut except that in the former, w is replaced by v.

2. Assign the records in Part to the child partitions according to Definition 18.

3. Update ∪Cut by replacing w by its children child(w).

Sub-Protocol 2. 3: Perform Specialization

6.4.3 Multi-Party Protocol for LKC-private Data Integration Release

Given the distributed data tables T1, . . . , Tp, the taxonomy trees for ∪QID, thresholds L, K and C,

the goal is to generate an integrated and anonymous data for data mining while satisfying LKC-

privacy. To ensure that no party learns unnecessary information about other parties’ data during

the integration process, we propose a hierarchal approach for specializing the data called Hierarchal

High-dimensional Data Integration (HHDI).

The general idea of our solution is to initially generalize and assign all records to a partition,

and then apply a top-down specialization process guided by the taxonomy trees to specialize the

records and assign then to disjoint child partitions until no further partitions can be created without

violating LKC-privacy. A partition is a data structure that consists of two components: HCut and

Recs. Hierarchy cut HCut is an ordered set of values 〈v1, . . . , v|∪QID|〉, where each value is from

a taxonomy tree TA of an attribute A ∈ ∪QID. Recs contains the unique identifiers UIDs of the

records assigned to the partition.

Definition 18 Record Generalization. A record R can be assigned to a partition Part if for each

attribute A ∈ ∪QID, R.A can be generalized to Part.HCut.A, where R.A and Part.HCut.A are the

values in R and Part.HCut that correspond to attribute A, respectively. �

Jointly executed by all data providers, Protocol 6.2 illustrates how the specialization process is

performed in order to generate the LKC-anonymous table. The parties coordinate their actions
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[1-99) Any_Education Any_Sex [10K-125K)
Age Education Sex Salary

Any_Education        {Elementary, Secondary, University}

P1 P2 P3

3 10
# of s1 # of Records

[1-99) University Any_Sex [10K-125K) 3 6[1-99) Secondary Any_Sex [10K-125K) 0 4

[1-99) University Any_Sex [70K-125K) 2 4[1-99) University Any_Sex [10K-70K) 1 2[1-99) Secondary Any_Sex [10K-70K) 0 4

[10K-125K)         {[10K-70K}, [70K-125K)}

Figure 20: Hierarchal high-dimensional data integration (HHDI) on the data in Table 13.

using a private broadcast channel called a bulletin board. Initially, all records are assigned to the

initial partition. This assignment satisfies Definition 18 since The HCut of the initial partition

contains the most general values (roots) of the taxonomy trees.

Example 15 Figure 20 illustrates the specialization process on Table 13 in order to generate an

LKC-anonymous table that satisfies L = 2, K = 2 and C = 50%. The root partition represents

the initial partition such that HCut = 〈[1 − 99), Any Education, Any Sex, [10K − 125K)〉 and

Recs = {UID#1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The union cut is also set to the most general values ∪Cut =

〈[1 − 99), Any Education, Any Sex, [10K − 125K)〉. �

To determine which valid value to specialize on, all parties jointly run Protocol 6.1. In general, a

specialization v → child(v) involves generating a child partition for each child value in child(v). The

cut of a taxonomy tree to which v belongs is pushed downwards, and v is replaced in the hierarchy

cuts of the newly generated partitions by its children values child(v). The party that owns the

winner value preforms the actual specialization according to Sub-Protocol 2.3.

Example 16 In Figure 20, the winner value for the first specialization is Any Education. There-

fore, part P1, which owns attribute Education, creates two partitions Part1 and Part2, Part1.HCut =

〈[1−99), Secondary, Any Sex, [10K−125K)〉 and Part1.Recs = {UID#1, 3, 7, 9}, and Part2.HCut =

〈[1−99), University, Any Sex, [10K −125K)〉 and Part2.Recs = {UID#2, 4, 5, 6, 8, 10}. P1 updates

the union cut: ∪Cut = 〈[1 − 99), Secondary, University, Any Sex, [10K − 125K)〉. �

A specialization is valid if after the child partitions are created, the leaf partitions as a whole

in the partitioning tree still satisfies LKC-privacy. The specialization process terminates when no

more valid specialization is available. The mashup data for the final release can be constructed from
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Table 16: Adult dataset, and the distribution of attributes among parties in each multiparty setting

Attribute Type Distributed Settings
3 parties 4 parties 5 parties

Age Numerical P2 P2 P2
Work-class Categorical P2 P3 P1
Final-weight Numerical P1 P1 P3
Education Categorical P2 P4 P3
Education-num Numerical P1 P4 P4
Marital-status Categorical P3 P3 P3
Occupation Categorical P3 P1 P4
Relationship Categorical P2 P1 P5
Race Categorical P2 P2 P4
Sex Categorical P1 P3 P2
Capital-gain Numerical P1 P1 P1
Capital-loss Numerical P1 P2 P5
Hours-per-week Numerical P3 P2 P1
Native-country Categorical P3 P4 P2

the hierarchy cut of the leaf partitions, where each hierarchy cut is duplicated |Recs| times (the

number of records assigned to the partition).

Example 17 The output of the specialization process in Figure 20 is: 〈[1 − 99), Secondary,

Any Sex, [10K − 705K)〉 ×4, 〈[1 − 99), University, Any Sex, [10K − 70K)〉 ×2, and 〈[1 − 99),

University, Any Sex, [70K − 125K)〉 ×4, which is equivalent to the records presented in the LKC-

anonymous Table 14. �

Based on LKC’s anti-monotonic property [FWCY10], once a specialization on a value becomes

invalid, further specializations on child(v) will always be invalid. This property significantly reduces

the partitioning space, while guaranteeing that the output is suboptimal.

6.5 Performance Evaluation

In this section we evaluate the performance of Fusion. First, we discuss the implementation details,

and then we present the experimental results that include mashup utility, attribute scalability and

record scalability.
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Figure 21: Utility of mashup w.r.t. anonymity threshold K.

6.5.1 Implementation and Setup

Fusion is implemented using SCAPI1, an open-source Java library for implementing secure multiparty

computation protocols. We utilize queue-based channels in the communication layer to allow for

asynchronous transfer of ciphertexts between parties, where ActiveMQ2 is used as the messaging

broker. The experiments were conducted on a machine equipped with an Intel Core i7 3.8GHz CPU

and 16GB RAM, running 64-bit Windows 7.

We utilize a real-life adult data set [BL13] in our experiments to illustrate the performance of

Fusion. The adult data set consists of 45,222 census records containing six numerical attributes,

eight categorical attributes, and a class attribute. Table 16 lists all the attributes and their types.

In our experiments, we model three different distributed settings: 3 parties, 4 parties and 5 parties.

We consider attribute Marital-status as the sensitive attribute, while we consider the remaining

attributes as quasi-identifiers. Table 16 illustrates the distribution of each attribute between parties

in each of the distributed settings.
1 SCAPI: https://scapi.readthedocs.org/
2 ActiveMQ: https://activemq.apache.org/
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Figure 22: Scalability with respect to (a) the number of attributes and (b) the number of records.

6.5.2 Mashup Utility

Rather than releasing an anonymous mashup data for classification analysis, each data provider

could release a classifier of its data. To determine the usefulness of our approach with respect

to classification analysis, we utilize C4.5 classifier [Sal94] to compare the classification error of the

mashup data with the classification error of the classifier of each party. We use 30,160 records (2/3)

to build (train) the classifiers, and 15,062 records (1/3) for testing.

Figure 21 depicts the classification error for each individual party, as well as for the mashup data.

The classification error is measured w.r.t. the anonymity threshold K, where K linearly increases

from 40 and 200. Our approach is robust w.r.t. L, since we found out that increasing the prior

knowledge of the adversary does not impact the data quality. The classification error for P1 is 17%,

P2 is 17.5% and P3 is 18.4%. On the other hand, the mashup classification error decreases from

18.8% to 16.3% as K increases from 40 to 200. Except when K = 40, we observe that all data

providers benefits from participating in integration process, where the maximum benefit is as much

as 2.1% and the minimum benefit is as low as 0.6%.

6.5.3 Scalability

We measure the scalability of Fusion with respect to the number of attributes (Attribute Scalability)

and the number of records (Record Scalability) in three distributed settings: 3 parties, 4 parties and
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5 parties.

Attribute Scalability

Figure 22a depicts the runtime from 3 to 13 attributes, for L = 3, K = 40, C = 100% and 45,222

records. We observe that the runtime grows sub-linearly when the number of attributes linearly

increases, regardless of the number of parties in the setting. We also observe that runtime decreases

as the number of parties increases. This is because adding more parties reduces the load on each

individual party.

Record Scalability

Figure 22b depicts the runtime from 200,000 to 1,000,000, for L = 3, K = 40, C = 100% and 13

attributes. We observe that it takes up to 195 minutes to run Fusion on a dataset with 1,000,000

records in a 3-party setting. This is mainly due to the fact that we perform a modular exponentiation

operation every time a ciphertext is blinded in Sub-Protocol 1.3. However, we also observe that the

runtime is still scalable w.r.t. the linear increase in the number of records, regardless of the number

of parties in the setting. Similar to Section 6.5.3, we observe that runtime decreases as the number

of parties increases.

6.6 Summary

In this chapter, we present a secure protocol for data integration in a distributed setting. The

protocol is privacy-preserving, while the output is a mashup data for data mining that satisfy LKC-

privacy. We empirically show that the mashup data contains higher information utility, and that the

protocol is scalable w.r.t. the number of records as well as the number of attributes in the mashup

data.
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Chapter 7

Secure and Privacy-preserving

Data Auditing in Bitcoin

7.1 Introduction

Digital currencies enable transactions that are electronically authorized, cleared and settled. After

decades of research [Cha82, CHL05, Bel11, Par11] and failed business ventures attempting to estab-

lish a digital currency, Bitcoin [Nak08] was proposed and deployed in 2009. While still in its infancy,

Bitcoin has achieved unprecedented success, enjoying a multi-billion dollar market capitalization

and deployment by large retailers. Bitcoin transactions can be executed at any time by any device

in the world with low (sometimes zero) fees.

Users can maintain security of their assets by managing the private keys used to control them.

However, managing cryptographic keys is difficult for many users [EBSC15]. Equipment failure,

lost or stolen devices, or Bitcoin-specific malware [LS14] could all result in the loss of one’s hold-

ings. Many users prefer to keep their holdings with online exchanges for a simple user experience
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similar to online banking—e.g., with passwords, account recovery, velocity limits and customer sup-

port. Exchanges, as their name suggest, also provide conversion services between bitcoin1 and other

currencies. Customers can ‘withdraw’ by instructing the exchange to send the stored bitcoin to a

Bitcoin address for which they manage the private key.

Unfortunately, storing assets with an exchange leaves users vulnerable to the exchange being

hacked and losing its assets. One of the most notorious events in Bitcoin’s short but storied history

is the collapse and ongoing bankruptcy of the oldest and largest exchange, Mt. Gox, which lost

over US$450M in customer assets. A number of other exchanges have lost their customers’ Bitcoin

holdings and declared bankruptcy due to external theft, internal theft, or technical mistakes [MC13].

While the vulnerability of an exchange to catastrophic loss can never be fully mitigated, a

sensible safeguard is periodic demonstrations that an exchange controls enough bitcoins to settle all

of its customers’ accounts. Otherwise, an exchange which has (secretly) suffered losses can continue

operating until the net withdrawal of Bitcoin exceeds their holdings. Note that while conventional

banks typically implement fractional reserve banking in which they only retain enough assets to cover

a fraction of their liabilities, the Bitcoin community is skeptical of this approach and exchanges are

generally expected to be fully solvent at all times.

A rudimentary approach to demonstrating assets is simply to transfer them to a fresh public key.

Mt. Gox did so once in 2011 in the face of customer skepticism, moving over B420k (then worth over

US$7 M) in a single large transaction. However, this demonstration undermined Mt. Gox’s privacy

by revealing which Bitcoin addresses they controlled. It was never repeated.

More importantly, a proof of reserves without a corresponding proof of liabilities is not sufficient

to prove solvency. A proof of liabilities might consist of an audit by a trusted accountant, as done for

example by Coinbase2 and Bitstamp3. This might be improved by allowing users to independently

verify they are in the dataset seen by the auditor, a step taken by Kraken4 and OKCoin5.
1Following convention, we refer to the protocol as ‘Bitcoin’ and the units of currency as ‘bitcoin’ or B.
2A. Antonopoulos, “Coinbase Review,” antonopoulos.com (Blog), 25 Feb 2014.
3E. Spaven, “Bitstamp Passes Audit Overseen by Bitcoin Developer Mike Hearn,” CoinDesk, 27 May 2014.
4N. Hajdarbegovic. “Kraken Bitcoin Exchange Passes ‘Proof of Reserves’ Cryptographic Audit,” CoinDesk, 24

Mar 2014.
5J. Southurst, “OKCoin Reveals BTC Reserves of 104% as China’s Exchanges Undergo Audits,” CoinDesk, 22
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The notion of a cryptographic proof of liabilities, verifiable by any party with no trusted auditor,

was first proposed by Maxwell [Wil14], although this initial proposal leaks information about the

number and size of customer accounts (see Section 7.2.2). These privacy issues (as well as those

inherent to a simple public proof of assets) have been cited by some exchanges (e.g., Kraken6) as a

reason to use a trusted auditor instead.

In this chapter we propose Provisions, a cryptographic proof of solvency scheme with the following

properties:

• no information is revealed about customer holdings

• the value of the exchange’s total total holdings is kept secret

• the exchange maintains unlinkability from its Bitcoin address(es) through an anonymity set

of arbitrary size

• multiple exchanges performing Provisions contemporaneously can prove they are not colluding

While the Maxwell proof of reserves is a straightforward use of a Merkle tree, a data structure

well known by Bitcoin community, Provisions employs somewhat heavier cryptography not found in

Bitcoin itself—e.g., homomorphic commitments and zero knowledge proofs. However, we demon-

strate that Provisions is efficient enough in practice even for the largest of today’s exchanges to

conduct a daily proof of solvency, being computable by a single server in a few hours and requiring

proofs which are less than 20 GB in size. Given this practicality and the strong privacy guarantees,

we hope it will become the norm for exchanges to regularly compute a Provisions proof of solvency

which might go a long way to restoring confidence in the Bitcoin ecosystem.

Limitations It is important to recognize that no proof of solvency (or any other type of audit) is

future proof, as exchanges can still be hacked at any time. Likewise, proving control of a quantity

of bitcoin does not guarantee the exchange itself will behave honestly in the future. It may simply

abscond with all of its customers funds after completing a Provisions proof. The best we can hope

Aug 2014.
6“Kraken Proof-of-Reserves Audit Process,” https://www.kraken.com/security/audit
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for is efficient enough proofs to enable frequent and continual monitoring of the financial health of

exchanges to quickly detect the loss of funds, which Provisions enables.

Provisions also requires customers to check individually that their balance has been included in

the proof of liabilities. This appears to be a fundamental limitation given our privacy goals that

a user’s account balance is not revealed to any other party. On the positive side, as long as some

users check and the exchange cannot predict confidently which users will check, it runs a high risk

of detection if it cheats (see Section 7.5.3).

Provisions is also limited to proving ownership of accounts with a full public key on the blockchain

(not unused pay-to-pub-key-hash or pay-to-script-hash addresses which haven’t yet be been used or

multi-sig addresses). Removing this limitation is an interesting challenge for future work.

The work in this chapter is a collaborative effort with a team from the computer science depart-

ment at Stanford University. The results of this chapter have been published in [DBB+15b].

7.2 Background

We assume the reader is familiar with Bitcoin [Nak08]. Bonneau et al. [BMC+15] provide an exten-

sive survey of Bitcoin, although a deep understanding is not needed for understanding Provisions.

The pertinent features are that each unit of bitcoin is usually redeemable by a specified public key7

and this information is maintained in a public data structure called the blockchain.

Note that the blockchain is an ever-growing log of transactions. Any proof of solvency will be

inherent to a single block, representing one snapshot of the state of the system. In the remainder of

the chapter we leave implicit the proof will be valid for a specific block number t. It is also possible

for the blockchain to fork (or “re-org”) in which case an apparently-valid proof at block t may not be

valid in the final block number t. As is standard with Bitcoin transactions, the defense against this

is to wait until a block is confirmed with high probability, typically after observing that 6 followup
7Technically, bitcoins are redeemable by a specific transaction script which can encode various spending conditions,

though in the vast majority of cases this is simply a public key signature and we will discuss Bitcoin as if this is the
only method.
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blocks have been published.

Bitcoin public keys which hold funds are interchangeably called accounts or addresses. We note

here that while we designed Provisions with Bitcoin in mind as it is the dominant cryptocurrency

today, it could easily be ported to similar cryptocurrencies which have the above properties.

A proof of solvency consists of two components. In the first, the proof of liabilities, the exchange

proves the total value of bitcoin it owes to each of its users. In the second, the proof of assets,

the exchange proves the total value of bitcoin it has signing authority over. If the latter amount is

greater than or equal to the former, the exchange is considered solvent.

7.2.1 Exchange Structure and Holdings

Nearly all large Bitcoin exchanges operate by pooling customers’ funds into a small number of

large accounts. Typically for security reasons the keys for some of these accounts are kept on

offline computers or in hardware security modules, requiring human action to authorize transactions

(commonly called cold storage).

One might ask why an exchange does not simply maintain a separate Bitcoin address for each

customer, enabling direct monitoring by each user of their funds on the public blockchain; a simple

mechanism that eschews the need for a more complicated cryptographic proof of solvency. By

itself, this scheme is not secure, as a malicious exchange might attempt to convince two users with

the same balance that a single address is holding funds for both of them (a variation of the clash

attack [VTK12] discussed later).

This model also has several key practical shortcomings. First, it prevents simple division of

money into hot and cold storage. Current exchanges can exist with a limited amount of money in

more vulnerable hot storage because, on aggregate, the number of withdrawals in a given day is

typically only a small amount of total holdings. This is similar to a large offline bank which does

not carry enough cash in ATMs to cover all customer accounts, keeping substantial assets in secure

(but less accessible) storage.8

8Executing Provisions will require computation using all of an exchange’s private keys, including those for assets in
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Figure 23: The Merkle tree from the Maxwell protocol [Wil14] for proof of solvency. When a
customer desires to verify their account (e.g. dashed line node), only two nodes need to be sent to
the customer (bold line nodes).

Second, pooling assets means that transfers between customers can be efficiently settled by

changing each customers’ account balance without executing a transaction on the Bitcoin blockchain

(incurring a transaction fee and a wait of around an hour for confirmation). Similarly, two exchanges

can aggregate multiple transactions between pairs of their customers into a single settlement payment

(referred to as netting). Minimizing reliance on the blockchain (especially for small transfers) is a

key benefit of exchanges. By contrast, maintaining a separate Bitcoin account for each customer

requires “hitting the blockchain” with every transaction.

Finally, although it is not typically advertised, exchanges offer a significant privacy benefit to

users as as pooling funds ensures that it is not easy for outside observers to link deposits and

withdrawals to the same individual [MPJ+13].

Thus, we consider the pooled assets model likely to persist and we have designed Provisions to

work in this model. If we combine these factors with maintaining the privacy of an exchange’s

addresses—proving that one owns (i.e., knows) a private key without disclosing which—zero knowl-

edge proofs appear inescapable.

cold storage. However, this can be done with human intervention at a predictable time and does not require network
access to the cold storage.
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7.2.2 Maxwell’s Proof of Liabilities

Maxwell proposed a protocol (summarized by Wilcox [Wil14]) that enables an exchange to prove

its total liabilities while allowing users to verify that their accounts are included in this total. The

exchange constructs a binary Merkle hash tree [Mer79] where each leaf node contains a customer’s

balance, as well as the hash of the balance concatenated with the customer id and a fresh nonce (i.e.,

a hash-based commitment). Each internal node stores the aggregate balance of its left child (lc) and

right child (rc), as well as the hash of its aggregate balance concatenated with the hash of its left

and right children. The root node stores the aggregate of all customers’ balances, representing the

total liabilities, and the exchange broadcasts the root node. This is illustrated in Figure 23.

When a customer wants to verify that their balance is included in the total liabilities declared by

the exchange, it is sufficient to send to the customer only part of the hash tree in order to perform

the verification. Specifically, the exchange sends to the customer her nonce and the sibling node of

each node on the unique path from the customer’s leaf node to the root node. The other nodes on

the path, including the leaf node itself, do not need to be sent to the customer because they will

have sufficient information to reconstruct them. The customer eventually accepts that their balance

is included iff their path terminates with the same root broadcast by the exchange.

While elegant, this protocol does not hide the value of the exchange’s total liabilities which is

published in the root node. While a rough sense of this value may be public knowledge, the exact

value may be sensitive commercial data. Furthermore, regular proofs will reveal precise changes in

the exchange’s holdings.

This protocol also leaks partial information about other customers’ balances. For example, if

a simple balanced tree is used then each customer’s proof reveals the exact balance of the sibling

account in the tree (although the account holder remains anonymous). More generally, each sibling

node revealed in a given users’ path to the root node reveals the total holdings of each customer in

that neighboring subtree. This could be mitigated somewhat by using an unbalanced tree so it is not

immediately clear how many customers are in any neighboring subtree, but the protocol inherently
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leaks some information. Provisions removes this problem entirely, revealing no information about

any users’ assets beyond the fact that the total is less than the exchange’s proven reserves.

7.2.3 Proof of Assets

Once an exchange establishes its total liabilities, it must prove it owns sufficient bitcoin to match

(or exceed) its liabilities. This proof of assets together with the proof of liabilities forms a proof

of solvency. Maxwell’s proof of assets does not preserve privacy. Instead, the exchange publicly

demonstrates control of a set of addresses holding at least as much bitcoin as the exchange’s total

liabilities. This demonstration of control might involve moving a challenge amount of bitcoin from

each account or signing a challenge message with the private key associated with each address.

Exchanges may be reluctant to do so for privacy and security concerns (revealing their internal

division of funds between accounts).

In Provisions, we enable the exchange to prove ownership of an anonymous subset of addresses

pulled from the blockchain. The total quantity of bitcoin across these addresses can then be deter-

mined, without being revealed, and proved to be equal or greater than the exchange’s total liabilities.

Control vs. Ownership

Any proof of assets, including Provisions, faces the inherent problem that the ability to use the

signing key of an address does not necessarily imply ownership of it. A malicious exchange may

collude with one or more bitcoin holders who agree to use their accounts to cover the exchange’s

liabilities. However, these partners may have no intention of ever making their holdings available to

the exchange’s customers.

An exchange might try consolidating its holdings into a single address to demonstrate that either

exchange or the colluder is risking their bitcoin by placing it under the other’s control. However,

there is no guarantee that the single address does not implement a shared access structure by a

threshold signature scheme [Gol14].

This problem is fundamental, as no system can cryptographically prove its intentions to return
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something of value to a given user if requested. This customer request will be made without cryp-

tographic authentication (e.g., password-authenticated) because by assumption exchange customers

are unwilling or unable to manage cryptographic keys. Otherwise, assets could be proved by sending

each customer’s bitcoins to a 1-out-of-2 multisig address redeemable by either the exchange or the

user [Wil14], providing a window for each customer to redeem their coins if desired. Again, we

assume this is impractical for most exchange customers.

Collusion Attacks

Another potential vulnerability is that a cabal of two or more malicious exchanges might collude by

using their own assets to participate in each other’s proof of assets, making each exchange appear

to control the total amount controlled by the cabal. With a public proof of assets, this would be

detected if done simultaneously (because the same addresses would appear in multiple exchanges’

proofs) while the transaction graph might reveal if assets are simply being moved around in a shell

game.

In Provisions, because the exchange’s addresses are kept confidential, detection of this attack

becomes more challenging. However, in Section 7.4.6 we show an extension to the basic Provisions

protocol which enables exchanges to prove that they are not using the same assets as other exchanges

running the protocol. To do so, they publish an additional value which is unlinkable to their real

Bitcoin address, yet is a deterministic function of (and requires knowledge of) their private key. Thus,

if any two exchanges attempt to use the same bitcoin address in separate executions of Provisions,

they can be detected.

This extension imposes a small performance cost (see Section 7.6.4) and a small impact on the

exchange’s privacy as it reveals the number of addresses to which the exchange knows the private

key (see Section 7.5.2). Thus we leave it as an extension for now, as it will only become beneficial

when multiple exchanges are implementing Provisions and are willing to synchronize their proofs.
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7.3 Preliminaries

7.3.1 Public Parameters

We let g and h be fixed public generators of a group G of prime order q. Our implementation

uses the elliptic curve secp256k1 [Cer00] as the group G; this is the group used for Bitcoin ECDSA

signatures. Note that this allows us to work with existing Bitcoin public and private keys, although

we do not actually perform any ECDSA signatures. While implemented over elliptic curves, we use

the more conventional multiplicative notation (e.g., y = gx instead of Y = xG).

7.3.2 Bitcoin Balance Lookups

We assume that the Bitcoin blockchain is universally agreed upon and all parties can use it to

compute the quantity of bitcoin owned by each address. More precisely, for a Bitcoin public key

y ∈ G we use bal(y) to denote the balance associated with y. We assume bal(y) is an integer between

0 and MaxBTC for all y. We can represent any bitcoin account with MaxBTC = 251—the rules of

Bitcoin limit the total currency supply to 21M B, each divisible into a maximum of 10−8 atomic

units called satoshis. Note that satoshis are the true units of currency in Bitcoin, with B1 = 108

satoshis simply a convention to provide more human-friendly accounting units. In the remainder of

this chapter when we speak of account balances we will always be working with satoshis.

7.3.3 Commitments

Provisions makes heavy use of Pedersen commitments [Ped92]. Recall that the commitment to

a message m ∈ Zq is defined as com = gm · hr where g and h are fixed public elements of G

and the quantity r is chosen at random in Zq. We use the standard g from secp256k1 and derive h

deterministically by hashing the string Provisions. Recall that Pedersen commitments are perfectly

hiding so that com reveals no information about m.
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7.4 Solution: Provisions Protocol

7.4.1 Protocol Overview

The objective of Provisions is to enable an exchange E to publicly prove that it owns enough bitcoin

to cover all its customers’ balances such that (1) all customer accounts remain fully confidential, (2)

no account contains a negative balance, (3) the exchange does not reveal its total liabilities or total

assets, and (4) the exchange does not reveal its Bitcoin addresses. Provisions consists of three main

protocols:

Protocol 7.1 - Proof of assets. In this protocol, the exchange selects a large set of public

keys PK from the blockchain that hold bitcoin to serve as an anonymity set for its own keys. The

exchange possesses the private keys to a subset of the public keys in PK. Next, the exchange creates

a commitment to its total assets and proves in zero-knowledge that the sum of balances held by the

public keys it owns (i.e. public keys for which it knows the secret key) is equal to the committed

value. This is done without revealing which public keys it owns.

Protocol 7.2 - Proof of liabilities. In this protocol, the exchange publishes a commitment to

each user’s account balance, revealing to each user individually the random factors used to commit

to the balance for their verification. For each committed balance, it also proves it is a small positive

integer. These committed values are summed homomorphically to produce a commitment to the

exchange’s total liabilities.

Protocol 7.3 - Proof of solvency. Using the commitments to its total assets and liabilities

produced by the above two protocols, the exchange will homomorphically compute a commitment

to their difference and prove in zero-knowledge that this final commitment is a commitment to

zero. This will prove that the total liabilities is exactly equal to the total assets (or, via a minor

modification, that it is strictly less than the total assets).
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7.4.2 Proof of Assets

We begin with Protocol 7.1 which lets the exchange E generate a commitment to its total assets

along with a zero-knowledge proof that the exchange knows the private keys for a set of Bitcoin

addresses whose total value is equal to the committed value.

The exchange E chooses a set of Bitcoin public keys

PK = {y1, . . . , yn} ⊆ G

that will serve as an anonymity set (we will discuss choosing this in Section 7.6). We let x1, . . . , xn ∈

Zq be the corresponding secret keys so that yi = gxi for i = 1, . . . , n.

Let S be the exchange’s own set of Bitcoin addresses for which it knows the private keys. The

anonymity set PK must of course be a superset of the exchange’s own Bitcoin addresses so that

S ⊆ PK.

We use the booleans si ∈ {0, 1} to indicate which accounts the exchange controls in PK. We

set si = 1 whenever the exchange knows the private key xi for Bitcoin public key yi ∈ PK. The

exchange’s total assets can then be expressed as

Assets =
n∑

i=1

si · bal(yi)

Finally, it will be convenient to define

bi = gbal(yi) for i = 1, . . . , n.

Given the set PK, a verifier can easily compute all the bi for itself using information in the Bitcoin

blockchain.

Proof of Assets Σ-Protocol

The exchange constructs Pedersen commitments to each si · bal(yi) for i ∈ [1, n] by choosing a

random vi ∈ Zq and computing

pi = hvi · bsi
i . (10)
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A homomorphic addition of these commitments yields a Pedersen commitment ZAssets to Assets:

ZAssets =
n∏

i=1

pi =
n∏

i=1

hvi · bsi
i = h(

∑n

i=1
vi)gAssets . (11)

It remains to prove in zero-knowledge that ZAssets is valid. To do so the exchange publishes a few

additional auxiliary values. For each i ∈ [1, n] the exchange chooses a random ti ∈ Zq and publishes

li = ysi
i hti ∈ G (12)

which is a Pedersen commitment for si. Equivalently, these li can be written as

li = gxi·sihti

which is a Pedersen commitment to the quantity xi · si ∈ Zq. By setting x̂i = xi · si the equation

can be written as

li = gx̂ihti (13)

Now, to prove that ZAssets is a commitment to the exchange’s assets the exchange needs to prove

that for every i ∈ [1, n] it knows si ∈ {0, 1}, vi, ti, x̂i ∈ Zq satisfying conditions (10), (12), and (13).

ZAssets can then be computed according to (11).

The exchange proves knowledge of the required values using the Σ-protocol presented in Proto-

col 7.1 along with a Σ-protocol to prove that each si is binary and known to the exchange. Proving

in zero-knowledge that a Pedersen commitment li is a commitment to a binary value is a standard

zero-knowledge proof.

The protocol can be made non-interactive using the standard Fiat-Shamir heuristic. It therefore

suffices to prove that the protocol is honest-verifier zero knowledge. This is captured in the following

theorem:

Theorem 1 The Σ-protocol in Protocol 7.1 is a honest-verifier zero knowledge proof of knowledge

of quantities

Assets and (si ∈ {0, 1}, vi, ti, x̂i ∈ Zq) for i ∈ [1, n]

that satisfy conditions (10),(11), (12) and (13) for all i ∈ [1, n].
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1. For i ∈ [1, n]

(a) E chooses u
(1)
i , u

(2)
i , u

(3)
i , u

(4)
i

$←− Zq.
(b) The exchange E sends to the verifier:

a
(1)
i = b

u
(1)
i

i hu
(4)
i , a

(2)
i = y

u
(1)
i

i

a
(3)
i = hu

(2)
i , a

(4)
i = gu

(3)
i

(c) The verifier replies with a challenge ci
$←− Zq

(d) E replies with:

rsi
= u

(1)
i + ci · si, Response for si

rti = u
(2)
i + ci · ti, Response for ti

rx̂i = u
(3)
i + ci · x̂i, Response for x̂i

rvi = u
(4)
i + ci · vi, Response for vi

(e) The verifier accepts if:

b
rsi
i hrvi

?= pci
i a

(1)
i Verify statement (10)

y
rsi
i hrti

?= lci
i a

(2)
i a

(3)
i Verify statement (12)

grx̂i hrti
?= lci

i a
(3)
i a

(4)
i Verify statement (13)

(f) Run a zero knowledge proof on li to prove knowledge of si ∈ {0, 1}
2. The verifier computes ZAssets =

∏n
i=1 pi Statement (11)

Protocol 7.1: Privacy-preserving proof of assets

(The proof of Theorem 1 is presented in the technical report [DBB+15a]).

The proof of knowledge convinces the verifier that ZAssets is a commitment to the exchange’s

total assets. More precisely, the verifier is convinced that

• ZAssets is a commitment to
∑n

i=1 si · bal(yi) ∈ Zq (by equation (11)), where si ∈ {0, 1}, and

• whenever si = 1 the exchange knows the corresponding private key xi ∈ Zq. To see why

observe that dividing equation (12) by (13) proves that when si = 1 the exchange knows

x̂i ∈ Zq such that gx̂i = yi, as required.
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That the proof is honest-verifier zero knowledge implies that nothing is revealed about the total

assets, the si, or the xi, as required.

Proof length. The proof is linear in the anonymity set size n, requiring about 13n elements in Zq.

This is feasible even for large anonymity sets. We will discuss practical parameters in Section 7.6.

7.4.3 Proof of Liabilities

Protocol 7.2 enables the exchange E to verifiably commit to its total liabilities and convince all

clients that their balances were included in the commitment.

To provide some intuition behind the design of Protocol 7.2, consider the mapping of real cus-

tomers to entries on LiabList. Each real customer should have an entry in LiabList (i.e., the mapping

is a function) and no distinct customers should be given the same entry (i.e., the mapping should be

injective). Perhaps it would be ideal if all entries would correspond to customers (i.e., the mapping

were surjective) however this property cannot be enforced—E can always add fake users to the list,

but we ensure that doing so can only increase E ’s apparent liabilities.9

If two users have the same balance, a malicious E might try to point both users to the same

entry—in the voting literature, this is called a clash attack [VTK12]. To ensure an injective map-

ping, customers are provided an ID in line 1e which commits10 to unique information about the

customer usernamei (which may include their username, email address, and/or account number).

The commitment is binding, preventing the exchange from opening a CID to distinct data for dif-

ferent users. It is also hiding, preventing an adversary who knows the email address of a potential

customer from determining if that customer is in LiabList (or if a user is known to be a customer,

which CID they correspond to).

The exchange can add arbitrary accounts to the list. However, as long as accounts can only

add to the total liabilities (e.g., E cannot commit to a negative balance and assign it to a fake
9It might be in E’s interest to include fake users with a zero (or tiny) balance to obscure the total number of

customers it truly has.
10Unlike the other commitments used in Provisions, the commitment scheme used to produce CIDi need only

be binding and hiding, not additively homomorphic. We use a simpler hash-based commitment scheme instead of
Pedersen commitments.
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To verifiably compute its liabilities, E does:

1. For each customer Ci : 1 ≤ i ≤ c:

(a) Represent each Ci’s balance Balancei as an m-bit binary number (where m =
�lg2 MaxBTC�):

BinBalancei = 〈xi,0, xi,1, . . . , xi,m−1〉 , (then Balancei =
∑m−1

k=0 xi,k · 2k)

(b) Compute and publish a Pedersen commitment to each xi,k in the group G using
generators g and h:

yi,k = gxi,k hri,k , ri,k
$←− Zq

(c) Compute a non-interactive proof of knowledge Πi of all ri,k and xi,k, and that every
xi,k is binary.

(d) Compute a commitment to Ci’s balance as yi =
∏m−1

k=0 (yi,k)(2k) ∈ G.
Then yi is a Pedersen commitment to Balancei because yi = gbalanceihri where ri =∑m−1

k=0 ri,k · 2k.
(e) Compute a fresh customer identifier CIDi by picking a random nonce ni and commit-

ting Ci’s username: CIDi
$← commit (usernamei, ni)

2. Homomorphically add the commitments to all customers balance into a single commitment
to the total liabilities:

ZLiabilities =
c∏

i=1

yi

3. Publish the commitment to total liabilities ZLiabilities and the list LiabList of all customers’
tuples:

LiabList = 〈CIDi, yi,0, . . . , yi,m−1, Πi〉 for i = 1, . . . , c.

4. Every client Ci, upon login, is privately given usernamei, ri and a string n′
i to open the

commitment CIDi. The client verifies that usernamei = open (CIDi, n′
i) and locates it in

LiabList. The client then verifies that its balance is included as follows:

(a) compute yi =
∏m−1

k=0 (yi,k)(2k) and verify that yi = gbalanceihri ,
(b) verify that ZLiabilities =

∏c
i=1 yi, and

(c) verify the proof Πi for i = 1, . . . , c.

Note that steps (b) and (c) can be carried out by any public auditor and need not be done
by every client.

Protocol 7.2: Privacy-preserving proof of liabilities
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user account), adding accounts is detrimental to a malicious E ’s goal as it could only increase its

apparent liabilities. Since negative numbers do not technically exist in modular arithmetic, the

precise requirement is that when added together, the sum will never cause a reduction mod q where

q ≈ 2256 for our group G =secp256k1.

To enforce this, E provides a range proof (adapted from [Mao98]) for each committed balance

showing it is from a ‘small’ interval between 0 and MaxBTC = 251. This makes it easy to ensure a

modular reduction will never occur, as long as the exchange has fewer than 2205 accounts.

The range proof works by providing a bit-by-bit commitment of the account balance in binary

representation, proving each bit is a 0 or 1 (using the proof of knowledge, mentioned above, twice

with conjunctive logic [CDS94]), and showing how many bits the number contains (an upper-bound

on its maximum value). This committed binary representation is homomorphically converted into

an integer and homomorphically summed.

Theorem 2 Protocol 7.2 is a honest-verifier zero knowledge proof of knowledge of quantities

Liabilities and

(xi,k ∈ {0, 1}, ri,k ∈ Zq) for i ∈ [1, c] and k ∈ [0, m − 1]

that satisfy the condition

ZLiabilities =
c∏

i=1

yi =
c∏

i=1

m−1∏
k=0

(yi,k)(2k) =
c∏

i=1

m−1∏
k=0

(gxi,k hri,k )(2k)

for all i ∈ [1, c] and k ∈ [0, m − 1].

(The proof of Theorem 2 is presented in the technical report [DBB+15a]).

This step leads to the bulk of the proof size (see Section 7.6). Zero-knowledge succinct non-

interactive arguments of knowledge (zk-SNARKs) [BSCG+13] can be used as an alternate version of

this protocol. The proof generated by this protocol, however, is significantly shorter (constant in the

number of users) at the expense of a large common reference string, the use of heavier cryptographic

tools and a trusted setup step.
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7.4.4 Customer Verification

We assume that customers each verify LiabList to confirm the existence of their accounts and the cor-

rectness of their balances yi and ID commitments CIDi. A malicious E which omits some customers

will only be detected if at least one of those customers checks, although this is an inherent limitation

given our privacy goals which require that only customers themselves can tell if their balance has

been included or not. This limit applies equally, for example, to Maxwell’s protocol.

The required checks from individual customers are fortunately quite lightweight. Each customer

Ci receives from E their usernamei, ri and ni. They then locate in LiabList, with a hint from E , their

tuple:

〈CIDi, yi,0, . . . , yi,m−1, Πi〉

Using ni, they can open their commitment CIDi and verify that it commits to usernamei. Next,

using ri the customer checks that yi is indeed a commitment to their true account balance Balancei.

This is shown in Step (4a) and is a simple calculation.

The other two verification steps, (4b) and (4c), can be carried out by any party—we assume a

public auditor will do so on behalf of most customers, so that individuals will typically not verify

the entire proof (though they are free do to so). We discuss the cost of verifying the entire proof

further in Section 7.6.

7.4.5 Proof of Solvency

1. E runs Protocol 7.1 to verifiably generate a commitment ZAssets to its total assets.

2. E runs Run Protocol 7.2 to verifiably generate a commitment ZLiabilities to its total assets
and a list LiabList of its liabilities.

3. E computes ZAssets · ZLiabilities
−1 = ZAssets−Liabilities.

4. E proves in zero-knowledge that ZAssets−Liabilities is a commitment to the value 0.

Protocol 7.3: Complete privacy-preserving proof of solvency
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Protocol 7.3 specifies how E can complete the proof of solvency given commitments to total

assets and liabilities from Protocols 7.1 and 7.2. The proof that ZAssets−Liabilities is a commitment

to 0 (line 4) is a simple Schnorr ZK proof of knowledge of the discrete log of ZAssets−Liabilities to the

base h, since ZAssets−Liabilities = g0hk for a value k known to the exchange and if ZAssets−Liabilities were

a commitment to any other value then computing its discrete log to the base h would reveal the

discrete log of h relative to g.

Variation for exchanges with a surplus If the exchange is actually running a surplus (total

assets are greater than total liabilities), this can easily be handled with a simple modification—the

exchange can create a commitment to its surplus, ZSurplus, and apply the same range proof used for

customer balances to prove that this is a small positive number. It then replaces line 3 in Protocol 7.3

with:

ZAssets · ZLiabilities
−1 · ZSurplus

−1

This approach reveals that a surplus exists. The exchange can also prove the magnitude of its

surplus if desired by opening the commitment ZSurplus. Alternatively, to hide even the existence of

any surplus, the exchange could simply move its surplus into a separate address which is not included

in the addresses S used in its proof of assets, or include the value of the surplus in a number of fake

customers’ accounts which will add to its apparent liabilities.

Variation for fractional-reserve exchanges Fractional reserve banking, in which an exchange

promises to keep assets equal to only a fraction ρ of its total liabilities instead of all of them, has been

frowned upon by many in the Bitcoin community and not seen significant deployment. However if

this approach becomes more popular in the future, it is easy to modify Provisions to handle this case

by modifying Protocol 7.3 to commit to a modified balance fi(Balancei) instead of the customer’s

true balance Balancei. Each user can then check during verification that fi was computed correctly

on their true balance. Simple fractional reserves could be implemented by defining fi(x) = ρ · x for

all users. It would also be straightforward to define fi(x) = ρi · x with a different ρi for each user if,
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for example, some users’ accounts are fully-guaranteed (ρi = 1) while others are only fractionally-

guaranteed (ρi < 1). Arbitrary other functions are possible, with a natural example from traditional

finance being guaranteeing a user’s assets up to some maximum value.

Finally, an exchange can also prove that it is running a surplus of proportion ρ by setting

fi(x) = (1 + ρ) · x, with a “fractional surplus” effectively being the inverse of a fractional reserve.

7.4.6 Proof of Non-Collusion

Recall from Section 7.2.3 that the privacy guarantees of Provisions introduce the risk that a cabal of

insolvent exchanges colluding by covering each exchanges’ individual liabilities with their collective

assets. In effect, the assets of a single Bitcoin address can be used in the proof of solvency for

multiple exchanges. This can be done by having the exchanges contribute to a set of joint NIZKPs

of their keys (e.g., using divertable ZK [BFP+01]).

The simplest defense is for each exchange to choose an anonymity set PK which is smaller than

the set of all public keys and where each exchange’s set is disjoint from the anonymity set of all other

exchanges. This ensures that each exchange is proving solvency using assets it owns and without

the help of other exchanges. The difficulty with this approach is that there may not be sufficiently

many addresses on the Bitcoin blockchain to accommodate strong privacy for all the exchanges. In

the long run, if exchanges come to collectively control the majority of all bitcoins, we would like

them to be able to use each other as an anonymity set.

Extension to Proof of Assets We can obtain a stronger defense by extending Protocol 7.1 with a

few additional steps. Our goal is to ensure that the assets of every Bitcoin address is used in at most

one proof of solvency. Recall that the exchange has a set of Bitcoin signing keys PK = {y1, . . . , yn}

where yi = gxi for i ∈ [1, n] . The exchange knows the secret keys xi for some subset of these public

keys. We use indicator variables s1, . . . , sn ∈ {0, 1} such that si = 1 when the exchange knows the

secret key xi and si = 0 otherwise.

We extend Protocol 7.1 to force every exchange to also compute the list L = {hx̂i =
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hxi·si for i ∈ [1, n]} which is randomly permuted and published. Note that when si = 1 the cor-

responding element in L is hxi and when si = 0 the corresponding element is simply 1 ∈ G, the

identity element. Thus L is a random permutation of the exchange’s Bitcoin public keys, but using

the base h instead of g.

We require the exchange to prove that L is correctly constructed (i.e., a permutation of

hx̂1 , . . . , hx̂n) using a zero knowledge proof used as a component of the Neff mix net [Nef01]. That

zero-knowledge proof is used to prove that a given list �2 = {hz1 , . . . , hzn} is a permutation and base

change of another given list �1 = {gz1 , . . . , gzn}. This Neff proof thus proves that the published list

L is constructed correctly. It is a simple and efficient proof, requiring 8n group elements (8 for each

account) and 4n additional exponentiations during construction and verification.

We show below that the list L reveals no information about the E ’s Bitcoin addresses beyond

the number of addresses ν controlled by E . Note that ν is not revealed by the basic protocol

(Protocol 7.1). We’ll return to the implications of making this information public in Section 7.5.2

but this is one reason (in addition to added complexity) why we present this as an optional protocol

extension.

Now, suppose two exchanges collude and use the same Bitcoin address y = gx in their proof of

solvency. Then hx will appear in the L list of both exchanges. In other words, the L lists of these

two exchanges will have a non-trivial intersection.

Since every exchange is required to publish its list L, an auditor can simply check that these lists

are mutually disjoint (ignoring the elements 1 ∈ G). If so, then the auditor is assured that every

Bitcoin address is used in at most one proof of solvency and this holds even if all the exchanges use

the same anonymity set PK.

An important security requirement is that all exchanges run the extension at the same time—

barring this, a simple attack is for exchanges to move bitcoins from one address to another in between

runs of the protocol so that the same funds can be used but with a different value for hx̂i = hxi·si in

each L (since xi will have changed). Fortunately, the blockchain already provides an easy method
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of synchronization. Exchanges simply need to agree on a common block number (say, every 240th

block to run the protocol daily) and all run the protocol based on the state of the blockchain up to

that block. No further synchronization is required; all exchanges can run the protocol and publish

their proofs independently and any assets used by more than one exchange will be detectable.

It remains to argue that the list L reveals no information about the exchange’s Bitcoin addresses

beyond the number of addresses. This follows directly from the Decision Diffie-Hellman (DDH)

assumption which is believed to hold in the secp256k1 group. DDH states that given the tuple

〈g, h, hx〉, the quantity gx is computationally indistinguishable from a random element of G. There-

fore, given the list L it is not possible to distinguish the n-bit string (s1, . . . , sn) ∈ {0, 1}n from a

random bit string of the same length.

7.5 Security Discussion

7.5.1 Security Definition

We now present a general definition of a privacy-preserving proof of solvency. We say a function ν(k)

is negligible if for all positive polynomials p(·), there is a sufficiently large k such that ν(k) < 1/p(k).

Let A and A′ denote mappings (y = gx) �→ bal(y) where A ⊆ A′, y is the public key corresponding

to a Bitcoin address with private key x and bal(y) is the amount of currency, or assets, observably

spendable by this key on the blockchain.

Let L denote a mapping ID �→ � where � is the amount of currency, or liabilities, owed by the

exchange to each user identified by the unique identity ID.

Definition 19 (Valid Pair) We say that A and L are a valid pair with respect to a positive integer

MaxBTC iff ∀ID ∈ L ,

1.
∑

y∈A A[y] − ∑
ID∈L L[ID] ≥ 0 and

2. 0 ≤ L[ID] ≤ MaxBTC. �
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Consider an interactive protocol ProveSolvency run between an exchange E and user U such that

1. outputProveSolvency
E (1k, MaxBTC, A, L, A′) = ø

2. outputProveSolvency
U (1k, MaxBTC, A′, ID, �) ∈ {Accept,Reject}

For brevity, we refer to these as outE and outU respectively.

Definition 20 (Privacy-Preserving Proof of Solvency) A privacy-preserving proof of sol-

vency is a probabilistic polynomial-time interactive protocol ProveSolvency, with inputs/outputs

as above, such that the following properties hold:

1. Correctness. If A and L are a valid pair and L[ID] = �, then Pr[outU = Accept] = 1.

2. Soundness. If A and L are instead not a valid pair, or if L[ID] �= �, then Pr[outU =

Reject] ≥ 1 − ν(k).

3. Ownership. For all valid pairs A and L, if Pr[outU = Accept] = 1, then the exchange

must have ‘known’ the private keys associated with the public keys in A; i.e., there exists an

extractor that, given A, L, and rewindable black-box access to E , can produce x for all y ∈ A.

4. Privacy. A potentially dishonest user interacting with an honest exchange cannot learn

anything about a valid pair A and L beyond its validity and L[ID] (and possibly |A| and

|L|); i.e., even a cheating user cannot distinguish between an interaction using the real pair A

and L and any other (equally sized) valid pair Â and L̂ such that L̂[ID] = L[ID]. �

Theorem 3 Provisions, as specified in Protocol 7.3, is a privacy-preserving proof of solvency.

(The proof of Theorem 3 is presented in the technical report [DBB+15a]).

7.5.2 Anonymity Sets

Although Theorem 3 is true, in the case that the protocol extension of Section 7.4.6 is used, the

number of Bitcoin addresses ν controlled by the exchange is revealed as well as the size of the
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anonymity set n = |PK| (which includes the ν addresses). For efficiency reasons, exchanges may

opt to use smaller anonymity sets than the set of all public keys on the blockchain; in particular, if

the number of keys grows unexpectedly in the future. In such a case, the exchange must be aware

that this might leak some meaningful information about what E ’s total assets are.

Specifically, the adversary can determine that E ’s assets consist of one of the
(

n
ν

)
subsets of

the anonymity set PK. We remark that E can easily control n and can also control ν (by splitting

accounts up or by padding ν with zero balance accounts). For practical instances,
(

n
ν

)
grows quickly—

e.g., ν = 25 and n = 250 already yields ≈ 2114 candidates. That said, we have no idea what

types of external information might be useful for eliminating unlikely or impossible totals from

this set (e.g., the adversary’s corruption of customers may provides them with a lower bound on

the total assets), or for whittling n down by eliminating addresses known or suspected not to be

controlled by the exchange. Research on deanonymizing Bitcoin addresses, e.g., through clustering

and reidentification [MPJ+13], has demonstrated that Bitcoin’s anonymity is limited (see [BMC+15]

for a survey).

If an exchange conducts proofs of solvency on a regular basis (or more than once), each anonymity

set should be based closely on the anonymity set used previously—choosing independent anonymity

sets could reveal the exchange’s addresses by intersecting the sets. Exchanges can remove addresses

from their anonymity set if the criteria for doing so is independent of whether the exchange owns

the address or not. For example, it might remove addresses once the balance is under a certain

threshold. However, generally, anonymity sets should grow over time with new addresses (some

owned by the exchange and some as cover) being added to the set.

We leave the process of developing and analyzing a heuristic for forming an anonymity set (in

terms of size of n and ν and the distribution of amounts across the ν accounts) as future work. For

the current state of Bitcoin at the time of writing, we show in Section 7.6 that it is reasonable for

all exchanges to choose an anonymity set equal to most available accounts, sieving out tiny “dust”

accounts.
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7.5.3 User Verification

Although Theorem 3 is true, it may fall short of an ideal level of user verification. Specifically, a

proof of solvency enables user verification, but it does not guarantee that users actually perform the

verification. Consider a malicious E that does not correctly include some set of users accounts—by

either omitting them or zeroing their balances. Assume the exchange has U users, F (for fraudulent)

entries, and that a random subset A ⊂ U of users choose to audit the correctness of LiabList. In this

case, the probability that an adversary will go undetected is
(

U−F
A

)
/
(

U
A

)
, which is closely bounded

from above by min[(1 − A/U)F , (1 − F/U)A] (cf. the probability of a malicious election authority

being caught modifying ballot receipts in a cryptographic voting system [CCC+08]). This probability

decreases close-to-exponentially in F and A. Due to the approximation, we conservatively conclude

the probability of being caught is high, instead of overwhelming.

Next, one might question the assumption that each customer is equally likely to verify LiabList.

However, it is reasonable that the distribution skews in the direction of customers with high bal-

ances (and thus more at stake) being more likely to check. This is actually beneficial, because the

probability of catching a malicious exchange does not depend on the amount of bitcoin zeroed out.

In other words, zeroing out the largest account is equivalent to zeroing out the smallest in terms of

being caught, yet the former action better benefits the adversary’s goal of lowering its liabilities.

We also note that Provisions as described does not provide dispute resolution. If a user finds

their account missing or balance incorrect, they do not have sufficient cryptographic evidence that

this is the case [KTV10]. The issue appears unsolvable cryptographically. Recall that the primary

motivation for users keeping funds with an exchange is to avoid needing to remember long-term

cryptographic secrets, therefore exchanges must be able to execute user orders and change their bal-

ance without cryptographic authentication from the user (e.g., password authentication). Resolving

this will likely require legal regulation. Users who dislike an exchange may also falsely claim that

verification of their accounts failed, and it is not possible to judge if the user or the exchange is

correct in this case based on a Provisions transcript alone.
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Lastly, we note that if a user does verify their account, they should use a verification tool other

than one provided by the exchange itself; such a tool could be automated to increase participa-

tion. All of the issues discussed in this remark deserve followup work to ensure that Provisions is

implemented in practice in such a way that users are likely to perform auditing and to do so correctly.

7.6 Performance Evaluation

7.6.1 Asymptotic Performance

Provisions scales linearly in proof size, construction and verification time with respect to its inputs:

the proof of assets scales with the size of the anonymity set and the proof of liabilities scales with

the number of customer accounts. The final proof of solvency given an encryption of the total assets

and an encryption of the total liabilities is constant and in practice is negligible. All of the linear

parts of the protocol can be run in parallel and require only associative aggregations to compute

homomorphic sums, meaning the protocol is straightforward to parallelize.

Specifically the proof of assets is linear in n, the number of public keys in the anonymity set,

regardless of the size of S, the total number of accounts actually owned by E , requiring 13n integers

from Zq in total. The proof of liabilities is linear with respect to the number of customers c. It is

dominated by m + 1 elements from Zq used to commit to each bit of each customer’s balance, where

m = �lg2 MaxBTC� = 51. If needed, an exchange could slightly reduce proof sizes by capping the

size of assets below or reducing precision. For example, with m = 32 the exchange could still include

accounts worth up to US$1 billion with precision to the nearest penny. However, we’ll assume full

precision is desired in our implementation.

Full verification of the protocol requires approximately equal time to the construction of the

proof. For customers opting to only validate their own balance’s correct inclusion in the proof and

trust a third party to run the full verification, verification is much simpler, the customer to check

their CID value with a single hash and check that yi is a correct commitment their balance which
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requires only m + 2 group operations.

7.6.2 Incremental Updates

As described in Section 7.1 the protocol is intended to be run often (e.g. daily) to give continued

proof of solvency. A natural question is whether it is possible to update the proof incrementally. We

will consider updates to the anonymity set, to the assets proof and to the liabilities proof separately.

The full set of addresses (anonymity set + owned addresses) used in the proof is public. As such

any newly created addresses by the exchange need to be published. To hide these new addresses

it is important to additionally add addresses to the anonymity set. As with the anonymity set

in general and discussed in Section 7.5.2 it is important to choose in such a way that the actual

addresses are indistinguishable from it. A proper implementation would for example add addresses

deterministically (e.g. all addresses with balances over X bitcoin).

The asset proof is almost perfectly separable, in that there is a separate and independent compo-

nent for each address in the full set of addresses. The components for new addresses and addresses

with changed balance need to be updated. However, it is not necessary to update the components

of all other addresses. This is especially useful for cold addresses, which do not have a private key

easily accessible. The set of addresses which are new or have changed balances is public on the

blockchain anyways and thus no additional information is leaked.

The liabilities proof mainly consists of a commitment to each customer’s balance and a proof that

said balance is within a range. For all new users and users whose balance changed the commitment

the proof needs to be redone. For the other users it is not technically necessary to redo the proof.

However, not changing the proofs for customers whose balance remained unchanged will leak how

many users were actively using their account between the two proofs. If the complete proof were

redone then this information would remain private. If an exchange were to accept this privacy leak

it could drastically reduce the size of the proof updates.
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7.6.3 Implementation and Setup

To test the performance of our protocol in practice we created a prototype implementation of our

protocol in Java 1.8. All cryptographic operations are performed using BouncyCastle,11 a standard

cryptographic library for Java which is also used by the popular bitcoinj implementation of Bitcoin

in Java. We performed tests on a commodity server with 2 E5-2680 v2 Xenon processors and 128GB

RAM. The max heap size of the JVM was set to the default 256MB. Our implementation assumes

a previously downloaded and verified blockchain, to enable efficient balance lookups and selection

of an appropriate anonymity set.

An exchange could achieve optimum anonymity by choosing the anonymity set PK to be the

entire set of unclaimed transaction outputs (called the UTXO set) which represents all potentially

active Bitcoin accounts. The size of the UTXO set has steadily increased throughout Bitcoin’s

history [BMC+15] and at the time of this writing contains approximately 17M addresses. However,

the vast majority of these are “dust” addresses holding only a tiny value. There are fewer than

500,000 addresses with a balance of more than 0.1 BTC, which collectively control 99.8% of all

bitcoin.12 Some of these addresses are unusable for the protocol because they do not have public

keys available (i.e., they are pay-to-pub-key-hash addresses with only a hash of the public key visible

in the block chain), others have questionable anonymity value as they have never been moved since

being mined and exchanges are not expected to be mining their own bitcoin directly. Thus, we

expect that fewer than a million addresses are available to be used in the anonymity set in practice

We tested our implementation with anonymity sets up to 500,000.

On the proof of liabilities side, Coinbase is thought to be one the largest exchanges and currently

claims roughly 2 million customers.13 We take as our goal supporting this number of users.
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Figure 24: Performance of Protocol 7.1 (proof of assets).
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Figure 25: Performance of Protocol 7.2 (proof of liabilities).
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7.6.4 Experimental Results

Our experiments confirm that Provisions should be practical even for large exchanges desiring strong

anonymity and full precision to represent customer accounts. Figure 24 shows proof sizes and

computation times for Protocol 7.1, the proof of assets, varying the anonymity set size n from 10 to

500,000. Figure 25 shows proof sizes and computation times for Protocol 7.2, the proof of liabilities,

varying the number of customers c from 1,000 to 2,000,000. We tested with m = 51, supporting

full precision of account balances. Reducing m would lead to proportional reductions in proof sizes

and construction times. Note that, given realistic parameters today, it appears that the proof of

liabilities is the more expensive protocol today for a large exchange.

We report numbers without the protocol extension from Section 7.4.6 to ensure assets are not

shared between colluding exchanges executing the protocol contemporaneously. This extensions

would increase the size and construction time of the proof of assets by about 4
13 ≈ 30%. Because the

proof of liabilities is likely much larger, this extension makes only a minor impact on performance.

We omit performance figures for Protocol 7.3 as this protocol is constant size and negligible

compared to Protocols 7.1 and 7.2. Similarly, verification time for individual clients depends only

m and not the anonymity set or number of other customers. In our implementation it took fewer

than 10 ms.

7.7 Summary

Stu Feldman has outlined a roadmap for technical maturity (as quoted in [Gee01]):

1. You have a good idea;

2. You can make your idea work;

3. You can convince a (gullible) friend to try it;

4. People stop asking why you are doing it; and
11https://www.bouncycastle.org/
12https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
13https://www.coinbase.com/about
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5. Other people are asked why they are not doing it.

Given the shaky track record of Bitcoin exchanges, the onus upon an exchange to perform some

kind of audit is nearing level 5. However, cryptographic solvency proofs, like the Maxwell protocol,

are lagging behind around level 3. Our belief is that the privacy implications of Maxwell are hindering

it—there are good reasons for an exchange not to reveal which addresses it controls, the scale of

its total holdings, or potentially leak information about large customers’ account sizes. Provisions

removes these barriers. While cryptographic proofs of solvency still have inherent limits, namely

that control of an address’ key at present does not guarantee the future ability to use that key to

refund customers, we believe that with Provisions there are no longer good reasons for an exchange

not to provide regular proofs of solvency to increase customer confidence.
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Chapter 8

Conclusion

In this thesis, we address the problem of secure data sharing while protecting the sensitive infor-

mation about the individuals referenced in the data. Inspired by real-life scenarios, we develop

multi-party protocols for sharing, integrating, and auditing relational and set-valued data for differ-

ent application scenarios. The proposed protocols consider security in the semi-honest and malicious

threat models, guarantee two privacy models, namely differential privacy and LKC -privacy, preserve

data utility for data mining, and support public verifiability for set-valued data integration and Bit-

coin exchange solvency.

8.1 Summary

We begin by studying the problem of secure and privacy-preserving data outsourcing. Motivated

by the process followed by Population Data BC (PopData) for sharing patient-specific health data

received from several hospitals, health organizations and government agencies, we propose a secure

cloud-based data outsourcing and query processing framework that simultaneously preserves the

confidentiality of the data and the query requests, while providing differential privacy guarantee

on query outputs. The framework is secure in the semi-honest adversarial model (Chapter 4).

Next, we study the problem of secure and privacy-preserving set-valued data integration with public
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verifiability. We propose a protocol for integrating person-specific data from two or more data

owners, while providing differential privacy guarantee and maintaining an effective level of utility on

the released data for the purpose of data mining. The protocol is secure in the malicious adversarial

model with dishonest majority while supporting public verifiability (Chapter 5). Next, we study

the problem of secure and privacy-preserving relational data integration. We propose a protocol for

high-dimensional data integration from three or more data owners, with guaranteed LKC -privacy on

the output mashup data. The protocol is secure in the semi-honest adversarial model (Chapter 6).

Finally, we study the problem of secure and privacy-preserving data auditing in Bitcoin. Motivated

by the collapse and ongoing bankruptcy of the oldest and largest exchange, Mt. Gox, which lost

over US$450M in customer assets, we propose a cryptographic proof of solvency scheme for Bitcoin

exchanges such that no information is revealed about the exchanges customer holdings, the value

of the exchanges total holdings is kept secret, and multiple exchanges performing the same proof of

solvency can contemporaneously prove they are not colluding. The protocol is secure in the malicious

adversarial model with public verifiability (Chapter 7).

In a nutshell, the main contribution of this thesis is to develop secure multi-party protocols for

different data sharing scenarios while ensuring different notions of privacy.

8.2 Looking Ahead

Due to the large size and high complexity of the data being collected everyday, the demand for

secure and privacy-preserving protocols for data sharing will continue to increase. We believe in the

future more researchers will focus on achieving public verifiability in the context of data integration

and outsourcing, so processes become more transparent and individuals gain more confidence about

the handling of their personal data. We also believe that technological solutions cannot fully solve

the problem of secure and privacy preserving data sharing, and there is a need for regulations and

policies that define frameworks and guidelines for data sharing.

Weitzner et al. [WABL+08] advocated that our society should focus on holding parties responsible
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for their data usage to offset the problem of security and privacy:

“Hide-it-or-lose-it perspective dominates technical and public-policy approaches to

fundamental social questions of online privacy, copyright, and surveillance. Yet

it is increasingly inadequate for a connected world where information is easily

copied and aggregated, and automated correlations and inferences across multi-

ple databases uncover information even when it is not revealed explicitly. As an

alternative, accountability must become a primary means through which society

addresses appropriate use.”

Future research in data sharing will also focus on information accountability, not as an alternative,

however, but as a complement to the technical and legislative solutions.
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