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ABSTRACT 

GPU-Accelerated Boundary Element Method for Stress Analysis of Underground Excavations 

Junjie Gu 

 

Stress analysis is one of the most important processes in designing an underground 

excavation. With the usage of numerical methods on a computer, such as the Boundary Element 

Method (BEM), the process of stress analysis can be made accurate. However, the computational 

implementation of stress analysis often requires considerable time and computational resources. 

For example, in the implementation of BEM, the finer the computational grid is, the longer time 

will take to compute the results. Based on the research of GPU-accelerated stress analysis in 

geomechanics (Zsaki, 2011), this thesis investigates one type of acceleration method, which used 

the parallel computing ability of modern graphics processing units (GPUs), for application to the 

traditional BEM algorithm. In this thesis, OpenCL was used as the framework to compile and 

execute programs on GPUs. By transferring and executing the most computational expensive 

parts of the traditional BEM code onto GPU, a respectable acceleration was achieved. 

Subsequently, with the application of a two-dimensional circular excavation example, the 

accuracy of the BEM algorithm implementation on a GPU was verified for both single-precision 

and double-precision calculations. In addition, two more excavation examples were taken into 

consideration to assess the accuracy and reduction in solution time. The performance for these 

three examples successfully verified the GPU-accelerating method and displayed an impressive 

acceleration effect with the speedup ratio of about 500 for single-precision and 15 for double-

precision. 
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1 Introduction 

For the majority of geotechnical projects, such as underground excavations in general and 

tunnels excavated in a rock mass in particular, the most important design element is to determine 

the stress distribution around them. Some stresses exist in the rock mass prior to excavation (e.g. 

in situ stresses), but the stability of an excavation is mainly governed by excavation-induced 

stresses during and after construction. Alongside stresses, the displacements, which will be 

induced by the process of excavation in the stressed rock are important for the stability as well. 

The method of determining the stress and displacement distributions is called stress analysis. 

Since the material in the underground excavation or tunnelling is rock, not all the stress analysis 

methods can be used. There are number of stress analysis methods that can be used in 

geomechanics. The boundary element method (BEM) is one among all the stress analysis 

methods that has considerably evolved in the past few decades. Some notable contributions to 

stress analysis using the BEM in geomechanics include determining stresses and displacements 

around long openings in a triaxial stress field with BEM (Brady and Bray, 1978), the computation 

of two-dimensional stress intensity factor (Blandford et al., 1981) and the introduction of 

elastostatic deformation field analysis using 3D mixed boundary elements (Cayol and Cornet, 

1997).  

With the usage of BEM algorithm on a computer, the process of stress analysis can be made 

accurate and efficient. For the computational implementation of stress analysis using BEM, the 

computational grid size for field quantities (such as stresses and displacements within the rock 

mass) should be as fine as possible, so that the solution results will be as accurate and detailed as 

they can be. However, as the computational grid size is increased, the computing time grows as 

well for a traditional BEM program. For example, the processing time for a small and simple 

circular excavation in rock, which was executed on a typical processor as of this writing (a dual 

core Intel CPU i3-3220) with the grid size of 5002 was up to 16 seconds; when the grid size was 

increased to 10002, the corresponding computing time reached 62 seconds; even further, when the 

grid size was further increased to 15002, the corresponding computing time was as long as 136 

seconds. It is not hard to guess how many hours the program will take if the grid size is increased 

up to tens or hundreds of thousands for a real project simulation. Therefore, to address the issue 
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of lengthy computation time, an acceleration method to the traditional BEM program is 

developed in this thesis. 

The proposed acceleration method is to implement the BEM algorithm running in parallel on 

a Graphics Processing Unit (GPU). By transferring the computationally intensively calculations 

from the serial device (Central Processing Unit, CPU) to the parallel device (GPU) using the 

OpenCL framework, a considerable acceleration can be achieved. Taking the same circular 

excavation as example, the execution of the parallel program on a NVIDIA GTX 650Ti GPU 

took only 0.0292 seconds for the grid size of 5002; the processing time for the grid size of 10002 

was 0.1073 seconds; and finally, the processing time for the grid size of 15002 was as fast as 

0.2378 seconds. From the test results, it was calculated that a speedup of the acceleration 

program over the traditional program was up to 580 for a circular excavation example. In 

addition, with the usage of the proposed acceleration method, we are able to analyze even larger 

and more complicated excavation problems with faster computers. Speedingup the solution time 

is always a present trend. Moreover, it is human nature to do accelerations on multiple problems, 

for the reason that people always wants to solve larger problems, no matter how fast our 

computers get. 

1.1 Thesis Objectives 

The objective of this thesis is to perform stress analysis using a BEM algorithm in a faster, 

more efficient way, through parallel computing on a GPU. To achieve this, the basic concepts of 

BEM will be introduced, in order to explain the implementation of the BEM algorithm with the 

traditional serial device CPU. From the implementation of the BEM algorithm, an analysis will 

be carried out to determine what will be the most computationally expensive parts of the BEM 

algorithm, so that acceleration can be performed on those specific parts. To develop the 

accelerated algorithm, concepts of parallel computing and the background of OpenCL will be 

introduced, so that the implementation of the BEM algorithm with the accelerated parallel device 

GPU can be expressed. Subsequently, the most important part is to verify the result and to 

analyze the acceleration performance, which is considerably valued in the development of any 

new algorithm and computational technique. 
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1.2 Thesis Outline 

As an introduction, Chapter 2 gives general background information on several common 

numerical stress analysis methods used in geomechanics, such as the finite difference method 

(FDM), the finite element method (FEM), the discrete element method (DEM) and the boundary 

element method (BEM). Subsequently, a detailed description of the BEM will be given, including 

its mathematical model, integral equations, and solution techniques. In addition, a discussion 

about CPU and GPU computing will be carried out for the clarification of some basic concepts 

like serial computing, parallel computing and GPGPU. An introduction to OpenCL will also be 

presented together with some other environments for programming GPUs. 

Chapter 3 will be devoted to the implementation of a BEM algorithm on a CPU and the 

acceleration implementation of the BEM algorithm on a GPU using OpenCL functions. The 

salient equations and the corresponding code segments will be presented to explain the 

programming implementation of the new, accelerated BEM algorithm. In addition, the usage of 

OpenCL will be presented in the parallel implementation of the BEM on a GPU. 

Chapter 4 introduces an example of a circular excavation, which will be used to verify the 

solution accuracy of the serial program and subsequently, the parallel program. From the 

performance achieved for the circular excavation case, comparisons of speedup will be made 

between the serial program and the parallel program. A discussion on further fine-tuning and 

optimizing acceleration performance of the parallel program will be carried out as well. 

Chapter 5 will present two practical tunnel excavation problems for GPU acceleration 

application: a horse-shoe shaped tunnel and a hydro-electric turbine power cavern. The results of 

the serial program and parallel program will be compared and the acceleration effect will be 

shown with the speedup ratio diagrams for these two cases. 

Finally, Chapter 6 summarizes the work done and concludes this thesis and gives 

recommendations for further study. 
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2 Literature Review -- Numerical Stress Analysis in Geomechanics and GPU 

Acceleration of Numerical Computation Using OpenCL 

Stress analysis in geomechanics acts an important role in designing a tunneling or an 

underground excavation. In the project of a tunneling or an excavation, there are generally two 

processes: design process and construction process. In the reference of a widely applied tunneling 

method, the New Austrian Tunneling Method (NATM), the design process follows three steps 

(Brown, 1981): first, with the controlled deformation of the rock mass around an excavation, 

calculate the strength in the rock mass and mobilize the strength to the maximum value; second, 

design initial support for safe tunneling construction; third, monitor the deformation of the initial 

support system for the safety of construction process. In the process of construction, NATM also 

gives practical information such as building the initial support system with combination of 

shortcrete and reinforcements (fiber, welded wire-mesh and steel arches), building the permanent 

support with concrete lining. 

 The importance of stress analysis mainly lies in the design process of an excavation, where 

several requirements must be met in the process of design (Hazegh and Zsaki, 2013): the local 

and overall stability of an excavation must be computed and the initial support system must be 

guaranteed; the induced displacements of an excavation must be designed within a controlled 

value and the effect to its nearby constructions must be under control. 

Because there were several unfortunate collapses in the past and was possible due to the 

error in design process (underestimating the stresses and displacements in critical regions of 

problem domains) and other unexpected ground conditions, that’s why we are doing the 

optimization research of stress analysis in geomechanics. 

2.1 Numerical Stress Analysis in Geomechanics 

Quite a few important problems in science and engineering can be classified as boundary 

value problems. The mathematical definition of these boundary value problems consists of a 

partial differential equation and certain constraints or conditions that need to be met. The partial 

differential equation models the physics of the problem in a region of interest R, and the 

boundary conditions are constraints specified on the boundary C. There are two types of 
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problems defined based on the boundary element technique: interior problems and exterior 

problems, as Figure 2.1a and Figure 2.1b shows. The difference between Figure 2.1a and Figure 

2.1b is that Figure 2.1a displays a region R bounded by an outside contour C, which represents 

interior problems; while in Figure 2.1b, the infinite plane R and its inside auxiliary contour C’ 

represent exterior problems.  

  

Figure 2.1: The contour C, contour C’ and the region R in boundary value problems. 

Generally, there are two ways to solve boundary value problems: analytical solutions and 

numerical solutions. Analytical solutions to boundary value problems can be easily derived when 

the region R is homogeneous, or when the geometry is simple, or when the boundary conditions 

are relatively straightforward and when the governing partial differential equations are linear 

(Crouch et al., 1983). However, analytical solutions cannot be found for most ‘real world’ 

problems. For example, geomaterials such as soils and rocks display non-linear behavior, or the 

problem domain may not be homogeneous or isotropic, or the geometry of the problem may be 

complex. Thus an approximate solution must be found using a numerical method on a computer.  

With the advancement of computer science and numerical computation, as applied to 

multiple fields, several numerical methods have attracted the interest of geomechanics 

researchers. These numerical methods are: the finite difference method (FDM), the finite element 

method (FEM), the infinite element method (IEM), the boundary element method (BEM), the 

discrete element method (DEM), and the discrete fracture network method (DFN). These 

methods can be classified into three types:  

1) Continuum methods, including FDM, FEM, IEM and BEM; 



6 
 

2) Discontinuum methods, including DEM, DFN; 

3) Hybrid continuum/discrete methods. 

The main theme of this thesis is the application of the BEM, therefore, a detailed explanation 

will be presented regarding to foundations and formulation of BEM. While, for better 

understanding of the BEM in the context of numerical stress analysis, a brief introduction of 

other most used numerical methods will be first presented in the following sections. 

2.1.1 Finite Difference Method (FDM) 

The FDM is the oldest numerical method applied to computer simulation (Peiró and Sherwin, 

2005). The fundamental feature of this method is the discretization of a solution domain into a 

difference grid, and replacing the continuum with the finite points on the grid. At the same time, 

the partial derivatives in the partial differential equations (PDE) are replaced by differences 

defined at grid points. In other words, this method approximates the solutions of PDEs with the 

values of a combination of linear functions. 

Based on the accuracy of the finite difference approximations, the method can be divided 

into several forms: first-order difference approximations, second-order difference approximations, 

and higher-order approximations. Based on the formation of the Taylor-series expansion, which 

is given in Equation (2.1), the method can be organized into three types: forward difference, 

backward difference and central difference. 

𝑢(𝑥) = ∑
(𝑥−𝑥𝑖)

𝑛

𝑛!
(
𝜕𝑛𝑢

𝜕𝑥𝑛
)
𝑖

∞
𝑛=0 ,       𝑢 ∈ 𝐶∞([0, 𝑋])  (2.1) 

(
𝜕𝑢

𝜕𝑥
)𝑖 ≈

𝑢𝑖+1−𝑢𝑖

∆𝑥
   forward difference  

(
𝜕𝑢

𝜕𝑥
)𝑖 ≈

𝑢𝑖−𝑢𝑖−1

∆𝑥
   backward difference  (2.2) 

(
𝜕𝑢

𝜕𝑥
)𝑖 ≈

𝑢𝑖+1−𝑢𝑖−1

2∆𝑥
  central difference 
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Figure 2.2: Geometric interpretation of first-order difference approximations. 

As an example, Equation (2.2) and Figure 2.2 show the first-order difference approximations 

of Taylor series expansion.  

In comparison with FEM and BEM, the FDM has several advantages (Jing and Hudson, 

2002): 

 The formation and solution of the equations are localized instead of global matrix system, 

thus handling memory and storage for computer operation becomes more efficient. 

 The solution of the PDEs is more direct and intuitive because there are no local trial 

functions to approximate the PDE. 

 Provides more straightforward simulation of complex constitutive material behaviour, such 

as plasticity and damage. 

More often than not, the regular grid systems cannot deal with fractures, complex boundary 

conditions and material heterogeneity, which makes the standard FDM unsuitable for modelling 

practical rock mechanics problems. 

2.1.2 Finite Element Method (FEM) 

After the FDM, the FEM appeared in the late 1960s and early 1970s, when the regular grids 

of traditional FDM could not satisfy essential requirements for continuum geomechanics 

problems (Jing and Hudson, 2002). Based on variational principles and weighted residual 

methods, the main technique of the FEM is to discretize a solution domain into finite arbitrary 
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units and by meeting the boundary value requirements, to solve approximate solutions of each 

unit.  

The following steps present a basic outline of the FEM method (Potts and Zdravkovic, 1999): 

1) Element discretization: the geometry of a boundary value problem is replaced by an 

equivalent finite element mesh, which is composed of small regions called finite elements. 

Key points on the element are called nodes. They can be defined on the element boundaries, 

or within the element as Figure 2.3 shows. 

2) Primary variable approximation: based on the node numbers and the variation rules, a 

primary variable (e.g. displacements, stresses etc.) is selected. Since the nodal values 

perform the variation, and the geometry of each element is regular, the rules of variation over 

a finite element can be established. 

3) Element equations: element equations can be derived by using an appropriate variational 

principle (e.g. Minimum potential energy). The standard element equation is as follows (for 

static equilibrium) : 

[𝐾𝐸]{∆𝑑𝐸} = {∆𝑅𝐸}   (2.3) 

where [𝐾𝐸] is the element stiffness matrix, {∆𝑑𝐸} is the vector of incremental element nodal 

displacements and {∆𝑅𝐸} is the vector of incremental element nodal forces. 

4) Global equations: this can be derived by combining element equations:  

[𝐾𝐺]{∆𝑑𝐺} = {∆𝑅𝐺} (2.4) 

where [𝐾𝐺]  is the global stiffness matrix, {∆𝑑𝐺}  is the vector of all incremental nodal 

displacements and {∆𝑅𝐺} is the vector of all incremental nodal forces. 

5) Boundary conditions: load and displacement conditions form the boundary conditions, which 

will modify the global equations. Loading conditions (e.g. line and point loads, pressures and 

body forces) affect {∆𝑅𝐺}, and the displacement conditions affect {∆𝑑𝐺}. 
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6) Solve the global equations: once the global stiffness matrix has been established and the 

boundary conditions added, it mathematically forms a large system of simultaneous 

equations. With appropriate numerical method (direct or iterative solvers), nodal values can 

be obtained by solving the global equations. 

 

 

Figure 2.3: Elements and nodes in FEM. 

Since its initial development, the FEM is perhaps the most popular numerical method in the 

fields of science and engineering (Jing and Hudson, 2002). The advantage of FEM is the 

flexibility in dealing with complex boundary conditions, material heterogeneity, and non-linear 

deformability. However, the fundamental assumption of this method is the continuum assumption, 

which means the FEM has a lot of limitations in treating large-scale deformation, sliding, and 

complete detachment of elements. 

2.1.3 Discrete Element Method (DEM) 

The DEM was proposed by Cundall and Strack (Cundall and Strack, 1979), and was 

originally applied to geotechnical mechanics. In contrast to FEM, which is limited to continuum 

problems, the DEM is dedicated to granular and discontinuous material problems. The main 

concept of this method is to discretize an object into a number of small, rigid particles and to 

compute the motion and effect of these particles. Based on Newton’s law of motion, the method 

builds the equations of motion for each particle, therefore the solutions of each particle equation 

leads to the derivation of the whole deformation and displacement field. The equations of 

Newton’s laws of motion are given as below: 
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𝑚𝑖
𝑑𝑣𝑖

𝑑𝑡
= ∑ (𝑓𝑐,𝑖𝑗 + 𝑓𝑑,𝑖𝑗) + 𝑚𝑖𝑔

𝑁
𝑗=1   (2.5) 

𝐼𝑖
𝑑𝜔𝑖

𝑑𝑡
= ∑ 𝑇𝑖𝑗

𝑁
𝑗=1   (2.6) 

where 𝑚𝑖  and 𝑣𝑖  are the mass and velocity of particle i, N is the number of particles in 

contact with current particle, 𝑓𝑐,𝑖𝑗 and 𝑓𝑑,𝑖𝑗 are the contact and viscous contact damping forces, 𝐼𝑖 

is the moment of inertia of particle i , 𝜔𝑖 is its angular velocity, and 𝑇𝑖𝑗 is the torque arising from 

contact forces, which will cause the particle to rotate (Lim, 2008). 

In recent years, the DEM became one of the most rapidly developing areas of computational 

mechanics (Jing and Hudson, 2002). In particular, with the advent of powerful computing 

facilities in many parts in the world, it is possible to perform accurate and complex computer 

simulations involving millions of particles. Due to the explicit representation of fracture, the 

DEM has allowed the exploration of many applications in rock engineering (Jing and Hudson, 

2002). This method can also be used to simulate a wide variety of granular flow and solid-fluid 

multi-phase systems (Lim, 2008). The DEM is superior to continuum-based methods, while the 

computational power limits the maximum number of particles and the duration of a virtual 

simulation (Kaixin and Lingtian, 2003). 

2.1.4 Boundary Element Method (BEM) 

The BEM is another continuum-based numerical method similar to FDM and FEM. The 

primary basis of the BEM is as follows: for a definition of a domain, only the boundary is divided 

into elements, and a combination of solutions will be chosen on these discrete boundary elements 

to satisfy the boundary conditions. 

Compared to other two widely applied numerical methods, FEM and FDM, the BEM has its 

advantages (Jing and Hudson, 2002): 

 Reduction of model dimension by one. 

 Smaller system of algebraic equation. 

 Simpler input data preparation. 

 Solutions inside the domain are continuous. 
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However, the BEM shows the weakness in dealing with heterogeneous or non-linear 

problems (Kythe, 1995).  

A representative BEM application is performed as follows: start with building a 

mathematical model, which consists of partial differential equations (PDE), then using the 

fundamental solutions of BEM to transfer PDEs into integral equations. After building the 

boundary integral equations from the integral equations, discretization of the boundary will be 

applied, and values on the boundary will be approximated by the values of the nodes and 

elements of each boundary element. Afterwards, solutions on the boundary can derive the 

solutions of interior/exterior points. A typical application of two-dimensional BEM linear 

elasticity problem is introduced in the following part of this section. 

2.1.4.1 Mathematical Model 

The linear elastic boundary value problems are characterized by a region R bounded by a 

contour C. Region R can either be finite or infinite. In order to analyze the stresses and 

displacements for an arbitrary point within the region R, an infinitesimal element, as Figure 2.4 

shows, is taken into consideration. In a Cartesian coordinate system, where the coordinates are 

denoted by x = (𝑥1, 𝑥2, 𝑥3), the equilibrium equations of stress are as follows: 

𝜎𝑖𝑗 = 𝜎𝑗𝑖 ,   𝑖, 𝑗 = 1,2,3,  (2.7) 

∂𝜎𝑖𝑗

∂x𝑖
+ 𝑏𝑖 = 0,   𝑖, 𝑗 = 1,2,3,  (2.8) 

where 𝑏𝑖 are the body forces. Corresponding to these stresses, the normal and shearing strains are 

defined as follows: 

 Normal strains: 𝜀𝑖𝑖 = 𝑢𝑖,𝑖,   𝑖 = 1,2,3, 

Shearing strains: 𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),   𝑖, 𝑗 = 1,2,3,   (𝑖 ≠ 𝑗)    (2.9) 

where (𝑢1, 𝑢2, 𝑢3) are translations along the (𝑥1, 𝑥2, 𝑥3) directions, respectively.  
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Figure 2.4: Stresses on an infinitesimal element. 

The strain-stress relations for an isotropic material are given by the generalized Hooke’s law: 

𝜀11 =
𝜎11−𝑣𝜎22−𝑣𝜎33

𝐸
,   𝜀12 =

𝜎12

𝐺
,   

𝜀22 =
−𝑣𝜎11+𝜎22−𝑣𝜎33

𝐸
,   𝜀23 =

𝜎23

𝐺
,  (2.10) 

𝜀33 =
−𝑣𝜎11−𝑣𝜎22+𝜎33

𝐸
,   𝜀31 =

𝜎31

𝐺
,  

where 𝐸 is the Young’s modulus, 𝐺 is the shear modulus, 𝑣 is the Poisson’s ratio (0< 𝑣<1/2). The 

equation relating 𝐺, 𝐸, 𝑣 is as follows: 

𝜇 =
𝐸

2(1+𝑣)
= 𝐺 , λ =

𝐸𝜀

(1+𝑣)(1−2𝑣)
 (2.11) 

where λ, 𝜇 are the Lame’s constants. 

There are three types of boundary conditions for linear elastic problems (Kythe, 1995): 

1) Essential conditions (Dirichlet-type): the displacement u is prescribed on the boundary C of a 
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region R, i.e., 

𝒖(𝒙) = 𝒖0(𝒙),    𝐱 ∈ R,  (2.12) 

2) Natural conditions (Neumann-type): the stresses are prescribed on the boundary C, i.e., 

𝒑(𝒙) = 𝒑0(𝒙),    𝐱 ∈ C,  (2.13) 

where p is the traction vector at a point x ∈ C, and n̂ is the unit outward normal at that point 

as Figure 2.5 shows. Since p = σ ∙ n̂, the following three equilibrium conditions are satisfied 

on the boundary: 

𝜎11𝑛1 + 𝜎21𝑛2 + 𝜎31𝑛3 = 𝑝1
0

𝜎12𝑛1 + 𝜎22𝑛2 + 𝜎32𝑛3 = 𝑝2
0

𝜎13𝑛1 + 𝜎23𝑛2 + 𝜎33𝑛3 = 𝑝3
0

},  (2.14) 

where 𝑛𝑖 = cos(𝑛, 𝑥𝑖). Equation (2.14) can also be written as 

𝑝𝑖 = 𝜎𝑖𝑗𝑛𝑗 = 𝑝𝑖
0,   𝑖, 𝑗 = 1,2,3.  (2.15) 

Thus, an equilibrium stress field is defined on a set of sufficiently continuous stress 

functions 𝜎𝑖𝑗, which satisfy Equation (2.8), (2.15) and the Hooke’s law 

𝜎𝑖𝑗 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 ,   𝑖, 𝑗, 𝑘 = 1,2,3.  (2.16) 

Substituting Equation (2.9) into (2.16), then substituting the equation into Equation (2.15), 

the natural conditions in terms of the displacement u can be written as 

λn̂∇ ∙ 𝑢 + 2𝜇
𝜕𝒖

𝜕𝑛
+ 𝜇(n̂ × 𝑐𝑢𝑟𝑙 𝒖) = 𝒑0(𝒙).  (2.17) 

3) Mixed conditions: a combination of the first two types which applied on different disjoint 

portions of the boundary where displacements are prescribed on one portion and stresses on 

the other. Another kind of mixed conditions is the Robin-type and is shown as follows: 

𝑎𝐮 + 𝑏𝐩 = 𝑐,  (2.18) 

where a,b,c are constants. 
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Figure 2.5: Surface tractions. (Kythe, 1995) 

2.1.4.2 Integral Equations and Fundamental Solutions 

The two-dimensional linear elastic boundary value problems are classified into two types: 

plane stress problems and plane strain problems (Crouch et al., 1983). Plane stress means that the 

stresses are restricted to a single plane, in which case 𝜎13 = 𝜎23 = 𝜎33 = 0. Plane strain means 

that the strains are restricted to a single plane, in which case 𝜀13 = 𝜀23 = 𝜀33 = 0. In both cases, 

there are eight components: stresses 𝜎11, 𝜎22, 𝜎12, strains 𝜀11, 𝜀22, 𝜀12, and displacements 𝑢1, 𝑢2. 

The formulation of two-dimensional elasticity problems is as follows: 

1) Equilibrium equations: 

𝜎𝑖𝑗,𝑖 + 𝑏𝑖 = 0,   𝑖, 𝑗 = 1,2.  (2.19) 

Boundary conditions: 

𝑝𝑖 = 𝜎𝑖𝑗𝑛𝑗 = 𝑝𝑖
0,   𝑖, 𝑗 = 1,2.  (2.20) 

2) Geometry equations: 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),   𝑖, 𝑗 = 1,2.  (2.21) 

3) Stress-strain relations can be written in the form: 

For a plane-strain case: 
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𝜀𝑖𝑗 =
1

2𝐺
[𝜎𝑖𝑗 − 𝑣𝜎𝑘𝑘𝛿𝑖𝑗],   𝑖, 𝑗, 𝑘 = 1,2.  (2.22) 

and 

𝜎𝑖𝑗 = 2𝐺 [𝜀𝑖𝑗 +
𝑣

1−2𝑣
𝜀𝑘𝑘𝛿𝑖𝑗] ,   𝑖, 𝑗, 𝑘 = 1,2.  (2.23) 

For a plane-stress case: 

𝜀𝑖𝑗 =
1

2𝐺
[𝜎𝑖𝑗 −

𝑣

1+𝑣
𝜎𝑘𝑘𝛿𝑖𝑗] ,   𝑖, 𝑗, 𝑘 = 1,2.  (2.24) 

and 

𝜎𝑖𝑗 = 2𝐺 [𝜀𝑖𝑗 +
𝑣

1−𝑣
𝜀𝑘𝑘𝛿𝑖𝑗] ,   𝑖, 𝑗, 𝑘 = 1,2.  (2.25) 

where 𝛿𝑖𝑗 = {
 0, 𝑖𝑓 𝑖 ≠ 𝑗
1, 𝑖𝑓 𝑖 = 𝑗

 is called the Kronecker delta. 

Substituting Equation (2.21) into (2.23), then combining with Equation (2.19), the 

equilibrium equation in terms of displacements for an isotropic plane strain case can be written as: 

λ𝑢𝑘,𝑘𝑖 + 𝐺(𝑢𝑖,𝑗𝑗 + 𝑢𝑗,𝑖𝑗) + 𝑏𝑖 = 0   (𝑖, 𝑗, 𝑘 = 1,2).  (2.26) 

In order to solve the elastic boundary value problem, the fundamental solution 𝑢𝑙𝑘
∗ (𝑃, 𝑄) 

should be derived first. Consider a homogeneous isotropic elastic solid with a region R and a 

boundary C. P and Q are two points in the region R. From Equation (2.26), the fundamental 

solution for the displacement satisfies the following equation: 

λ𝑢𝑙𝑘,𝑘𝑖
∗ (𝑃, 𝑄) + 𝐺[𝑢𝑙𝑖,𝑗𝑗

∗ (𝑃, 𝑄) + 𝑢𝑙𝑗,𝑖𝑗
∗ (𝑃, 𝑄)] + 𝛿(𝑃, 𝑄)𝛿𝑙𝑖 = 0  (𝑖, 𝑗, 𝑘, 𝑙 = 1,2).  (2.27) 

The fundamental solution 𝑢𝑙𝑘
∗ (𝑃, 𝑄)  represents the displacements at point Q due to a 

concentrated unit load at point P in the direction l. From solving Equation (2.27), the fundamental 

solutions for an isotropic plane strain case are: 

𝑢𝑙𝑘
∗ (𝑃, 𝑄) =

1

8𝜋𝜇(1−𝑣)
[(3 − 4𝑣) ln (

1

𝑟
) 𝛿𝑙𝑘 +

𝜕𝑟

𝜕𝑥𝑙

𝜕𝑟

𝜕𝑥𝑘
]

𝑝𝑙𝑘
∗ (𝑃, 𝑄) = −

1

4𝜋(1−𝑣)𝑟
[
𝜕𝑟

𝜕𝑛
{(1 − 2𝑣)𝛿𝑙𝑘 + 2

𝜕𝑟

𝜕𝑥𝑙

𝜕𝑟

𝜕𝑥𝑘
}

−(1 − 2𝑣)(
𝜕𝑟

𝜕𝑥𝑙
𝑛𝑘 −

𝜕𝑟

𝜕𝑥𝑘
𝑛𝑙)] }

 
 

 
 

.  (2.28) 
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For an isotropic plane stress case, the displacements and the tractions are: 

𝑢𝑙𝑘
∗ (𝑃, 𝑄) =

1+𝑣

4𝜋𝐸
[(3 − 𝑣) ln (

1

𝑟
) 𝛿𝑙𝑘 + (1 + 𝑣)

𝜕𝑟

𝜕𝑥𝑙

𝜕𝑟

𝜕𝑥𝑘
]

𝑝𝑙𝑘
∗ (𝑃, 𝑄) = −

1

4𝜋𝑟
[
𝜕𝑟

𝜕𝑛
{(1 − 𝑣)𝛿𝑙𝑘 + 2(1 + 𝑣)

𝜕𝑟

𝜕𝑥𝑙

𝜕𝑟

𝜕𝑥𝑘
}

−(1 − 𝑣)(
𝜕𝑟

𝜕𝑥𝑙
𝑛𝑘 −

𝜕𝑟

𝜕𝑥𝑘
𝑛𝑙)] }

 
 

 
 

.  (2.29) 

While in a three-dimensional medium, the fundamental solutions for an isotropic body are: 

𝑢𝑙𝑘
∗ (𝑃, 𝑄) =

1

16𝜋𝜇(1−𝑣)𝑟
[(3 − 4𝑣)𝛿𝑙𝑘 +

𝜕𝑟

𝜕𝑥𝑙

𝜕𝑟

𝜕𝑥𝑘
]

𝑝𝑙𝑘
∗ (𝑃, 𝑄) = −

1

8𝜋(1−𝑣)𝑟2
[
𝜕𝑟

𝜕𝑛
{(1 − 2𝑣)𝛿𝑙𝑘 + 3

𝜕𝑟

𝜕𝑥𝑙

𝜕𝑟

𝜕𝑥𝑘
}

−(1 − 2𝑣)(
𝜕𝑟

𝜕𝑥𝑙
𝑛𝑘 −

𝜕𝑟

𝜕𝑥𝑘
𝑛𝑙)] }

 
 

 
 

.  (2.30) 

where r is the distance from point P and point Q; 𝑛𝑗  are the direction cosines, and 𝛿𝑖𝑗  is the 

Kronecker delta. Note that for a spherical coordinate system, defined by 

𝑥1 = 𝑟 sin 𝜃 cos𝜙 ,
𝑥2 = 𝑟 cos 𝜃 sin𝜙 ,
𝑥3 = 𝑟 cos 𝜃 ,

}           0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋,  (2.31) 

where  
𝜕𝑟

𝜕𝑥𝑘
=

𝑟

𝑥𝑘
, and  

𝜕𝑟

𝜕𝑥𝑙
𝑛𝑘 −

𝜕𝑟

𝜕𝑥𝑘
𝑛𝑙 =

𝜕𝑟

𝜕𝑥𝑙

𝜕𝑥𝑘

𝜕𝑟
−

𝜕𝑟

𝜕𝑥𝑘

𝜕𝑥𝑙

𝜕𝑟
= 0.  (2.32) 

For a given two-dimensional elasticity boundary value problem: 

λ𝑢𝑘,𝑘𝑖 + 𝐺(𝑢𝑖,𝑗𝑗 + 𝑢𝑗,𝑖𝑗) = 0 in region R,  (2.33) 

𝑢𝑖 = 𝑢𝑖
0 on boundary 𝐶1,  

𝑝𝑖 = 𝜎𝑖𝑗𝑛𝑗 = 𝜆𝑢𝑘,𝑘𝑛𝑖 + 𝐺(𝑢𝑖,𝑗𝑛𝑗 + 𝑢𝑗,𝑖𝑛𝑗) = 𝑝𝑖
0 on boundary 𝐶2,  (2.34) 

where C = C1 ∪ C2 is the boundary of a region R. P and Q are two points in the region R, 𝑃′ and 

𝑄′ are two points on the boundary C. Multiplying the fundamental solution 𝑢𝑙𝑘
∗  with both sides of 

Equation (2.33), and performing integration within the region R, Equation (2.33) becomes: 
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∫
𝑅
[λ𝑢𝑘,𝑘𝑖 + 𝐺(𝑢𝑖,𝑗𝑗 + 𝑢𝑗,𝑖𝑗)]𝑢𝑙𝑘

∗ 𝑑𝑅 = 0  (2.35) 

Using Green’s theorems, the PDEs in the domain can be represented by PDEs on the 

boundary: 

∫
𝑅
𝑢𝑖,𝑖 𝑑𝑅 = ∫𝐶𝑢𝑖𝑛𝑖 𝑑𝐶 ,    𝑖 = 1,2  (2.36) 

After calculation, the integral relation between the displacements of point P ul(P), tractions 

of point 𝑄′ 𝑝𝑘(𝑄′) and displacements of point 𝑄′ 𝑢𝑘(𝑄′) yields: 

𝑢𝑙(𝑃) = ∫
𝐶
[𝑢𝑙𝑘
∗ (𝑃, 𝑄′)𝑝𝑘(𝑄

′) − 𝑢𝑘(𝑄′) ⋅ 𝑝𝑙𝑘
∗ (𝑃, 𝑄′)] 𝑑𝐶(𝑄′)  (2.37) 

2.1.4.3 Boundary Integral Equations 

Using Equation (2.37), displacements can be calculated for any point in a region. However, 

in order to solve the unknowns on the boundary, it’s necessary to formulate boundary integral 

equations. By choosing a point P in the region, when this point is on the boundary, the 

fundamental solution has a logarithmic singularity. Thus, considering a semicircle of radius ε 

surrounding the boundary point 𝑄′, and 𝑄′ is at the center of this semicircle. While 𝜃 being the 

internal angle (in radians) at the corner at node 𝑄′. Further, assuming that the boundary C of the 

region R is smooth, and that 𝐶 = 𝐶𝜀 + (𝐶 − 𝐶𝜀). Equation (2.37) can be written as 

𝑢𝑙(𝑃
′) = ∫

𝐶−𝐶𝜀
[𝑢𝑙𝑘
∗ (𝑃′, 𝑄′)𝑝𝑘(𝑄

′) − 𝑢𝑘(𝑄
′) ⋅ 𝑝𝑙𝑘

∗ (𝑃′, 𝑄′)] 𝑑𝐶(𝑄′)  

+∫
𝐶𝜀
[𝑢𝑙𝑘
∗ (𝑃′, 𝑄′)𝑝𝑘(𝑄

′) − 𝑢𝑘(𝑄′) ⋅ 𝑝𝑙𝑘
∗ (𝑃′, 𝑄′)] 𝑑𝐶(𝑄′)  (2.38) 

As ε → 0, the semicircle will reduce to the boundary point 𝑄′. Taking the limit of the first 

integral in Equation (2.38) yields: 

lim
ε→0

∫
𝐶−𝐶𝜀

[𝑢𝑙𝑘
∗ (𝑃′, 𝑄′)𝑝𝑘(𝑄

′) − 𝑢𝑘(𝑄
′) ⋅ 𝑝𝑙𝑘

∗ (𝑃′, 𝑄′)] 𝑑𝐶(𝑄′)   

= ∫
𝐶
[𝑢𝑙𝑘
∗ (𝑃′, 𝑄′)𝑝𝑘(𝑄

′) − 𝑢𝑘(𝑄
′) ⋅ 𝑝𝑙𝑘

∗ (𝑃′, 𝑄′)] 𝑑𝐶(𝑄′)  (2.39) 

Considering the second integral in Equation (2.38), when 𝑙 = 1, substituting the fundamental 

solution into the first part of second integral yields 
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lim
ε→0

∫
𝐶𝜀
𝑢𝑙𝑘
∗ (𝑃′, 𝑄′)𝑝𝑘(𝑄

′) 𝑑𝐶(𝑄′)  

= lim
𝜀→0

1

8𝜋𝐺(1−𝑣)
∫ [𝑝1(3 − 4𝑣) 𝑙𝑛

1

𝑟
+ 𝑝1(𝑟,1)

2 + 𝑝2𝑟,1𝑟,2]
𝛼

0
𝑟𝑑𝜃  

= lim
𝜀→0

1

8𝜋𝐺(1−𝑣)
∫ [𝑝1(3 − 4𝑣) 𝑙𝑛

1

𝜀
+ 𝑝1𝑐𝑜𝑠

2𝜃 + 𝑝2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃] 𝜀𝑑𝜃
α

0
  (2.40) 

in a spherical coordinate system. Applying the mean value theorems for integrals, Equation (2.40) 

can be written: 

lim
ε→0

3−4𝑣

8𝜋𝐺(1−𝑣)
∫ p1ε ln

1

ε
dθ

α

0
  

= lim
ε→0

3−4𝑣

8𝜋𝐺(1−𝑣)
ε ln

1

ε
p1(Qε

′ )  

= 0  (2.41) 

where Qε
′  is a point on the semicircle. And  

lim
𝜀→0

1

8𝜋𝐺(1−𝑣)
∫ (𝑝1𝑐𝑜𝑠

2𝜃 + 𝑝2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃)𝜀𝑑𝜃
α

0
  

= lim
𝜀→0

𝜀

8𝜋𝐺(1−𝑣)
[p1(Qε

′ ) ∫ cos2θdθ
α

0
+ p2(Qε

′ ) ∫ cos θ sin θ dθ
α

0
]  

= lim
𝜀→0

𝜀

16𝜋𝐺(1−𝑣)
[p1(Qε

′ ) (α +
1

2
sin 2α) + p2(Qε

′ )sin2α]  

= 0  (2.42) 

Thus, the value of Equation (2.40) is zero. 

The same value of the limit of the above integral as ε → 0 is obtained in the case when 𝑙 = 2. 

Hence, 

lim
ε→0

∫
𝐶𝜀
𝑢𝑙𝑘
∗ (𝑃′, 𝑄′)𝑝𝑘(𝑄

′) 𝑑𝐶(𝑄′) = 0  (2.43) 

For the second part of the second integral, note that 
𝜕𝑟

𝜕𝑛
= 1 and 

𝜕𝑟

𝜕𝑥𝑙
𝑛𝑘 −

𝜕𝑟

𝜕𝑥𝑘
𝑛𝑙 =

𝜕𝑟

𝜕𝑥𝑙

𝜕𝑥𝑘

𝜕𝑟
−

𝜕𝑟

𝜕𝑥𝑘

𝜕𝑥𝑙

𝜕𝑟
= 0, when ε → 0, there is: 
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lim
𝜀→0

∫
𝐶𝜀
𝑢𝑘(𝑄

′) ⋅ 𝑝𝑙𝑘
∗ (𝑃′, 𝑄′)𝑑𝐶(𝑄′)  

= lim
𝜀→0

∫
𝐶𝜀
−

𝑢𝑘

4𝜋(1−𝑣)𝑟
{
𝜕𝑟

𝜕𝑛
[(1 − 2𝑣)𝛿𝑙𝑘 + 2𝑟,𝑙𝑟,𝑘]  

−(1 − 2𝑣)(𝑟,𝑙𝑛𝑘 − 𝑟,𝑘𝑛𝑙)}𝑑𝐶  

= lim
𝜀→0

∫
𝐶𝜀
−

𝑢𝑘

4𝜋(1−𝑣)𝑟
{[(1 − 2𝑣)𝛿𝑙𝑘 + 2𝑟,𝑙𝑟,𝑘]}𝑑𝐶.  (2.44) 

When 𝑙 = 1, 

lim
𝜀→0

∫
𝐶𝜀
𝑢𝑘(𝑄

′) ⋅ 𝑝1𝑘
∗ (𝑃′, 𝑄′)𝑑𝐶(𝑄′)  

= lim
𝜀→0

{−
1

4𝜋(1−𝑣)
∫ [𝑢1(1 − 2𝑣) + 2𝑢1𝑐𝑜𝑠

2𝜃 + 2𝑢2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃]𝑑𝜃
𝛼

0
}  

= −
1

4𝜋(1−𝑣)
{𝑢1 [2(1 − 𝑣)𝛼 +

1

2
sin 2𝛼] + 𝑢2𝑠𝑖𝑛

2𝛼}.  (2.45) 

When 𝑙 = 2, 

lim
𝜀→0

∫
𝐶𝜀
𝑢𝑘(𝑄

′) ⋅ 𝑝2𝑘
∗ (𝑃′, 𝑄′)𝑑𝐶(𝑄′)  

= lim
𝜀→0

{−
1

4𝜋(1−𝑣)
∫ [2𝑢1 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + 𝑢2(1 − 2𝑣) + 2𝑢2𝑠𝑖𝑛

2𝜃]𝑑𝜃
𝛼

0
}  

= −
1

4𝜋(1−𝑣)
{𝑢1𝑠𝑖𝑛

2𝛼 + 𝑢2 [2(1 − 𝑣)𝛼 −
1

2
sin 2𝛼]}.  (2.46) 

Hence, 

lim
𝜀→0

∫
𝐶𝜀
𝑢𝑘(𝑄

′) ⋅ 𝑝𝑙𝑘
∗ (𝑃′, 𝑄′)𝑑𝐶(𝑄′)  

= (
lim
𝜀→0

∫𝐶𝜀
𝑢𝑘(𝑄

′)⋅𝑝1𝑘
∗ (𝑃′,𝑄′)𝑑𝐶(𝑄′)

lim
𝜀→0

∫𝐶𝜀
𝑢𝑘(𝑄

′)⋅𝑝2𝑘
∗ (𝑃′,𝑄′)𝑑𝐶(𝑄′)

)  

= −
1

4𝜋(1−𝑣)
(
𝑢1[2(1−𝑣)𝛼+

1

2
sin2𝛼]+𝑢2𝑠𝑖𝑛

2𝛼

𝑢1𝑠𝑖𝑛2𝛼+𝑢2[2(1−𝑣)𝛼−
1

2
sin2𝛼]

).  (2.47) 

Substituting Equation (2.43) and (2.47) into Equation (2.38), it becomes the boundary 

integral equation when ε → 0 
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𝐶𝑙𝑘(𝑃
′)𝑢𝑘(𝑃

′) = ∫
𝐶
[𝑢𝑙𝑘
∗ (𝑃′, 𝑄′)𝑝𝑘(𝑄

′) − 𝑢𝑘(𝑄
′) ⋅ 𝑝𝑙𝑘

∗ (𝑃′, 𝑄′)]𝑑𝐶(𝑄′),  (2.48) 

where 𝐶𝑙𝑘(𝑃
′) is a constant which depends on the geometry of the surface at the point P’:  

𝐶𝑙𝑘(𝑃
′) =

1

4𝜋(1−𝑣)
×  

(
4𝜋(1 − 𝑣) − {2(1 − 𝑣)𝛼 +

1

2
sin 2𝛼} −𝑠𝑖𝑛2𝛼

−𝑠𝑖𝑛2𝛼 4𝜋(1 − 𝑣) − {2(1 − 𝑣)𝛼 −
1

2
sin 2𝛼}

)  (2.49) 

For a smooth boundary surface where 𝛼 = 𝜋,  

𝐶𝑙𝑘(𝑃
′) = (

1

2
0

0
1

2

).  (2.50) 

 

2.1.4.4 Discretization and Solutions 

The goal of discretization is to divide the smooth boundary C  into n segments C𝑗 , 𝑗 =

1,2, … , 𝑛. The chords between two adjacent partition points are the boundary elements (Kythe, 

1995). By considering of the accuracy of calculation, there are constant, linear, quadratic and 

higher order boundary elements in the BEM. Different type of boundary elements will have 

different nodes. A constant element, as Figure 2.6 shows, has only one node, also called mid-

node, which is taken at the mid-point of each element. This mid-node will represent the boundary 

element in order to get the known and unknown values of u and p according to the prescribed 

boundary conditions. For this thesis, only the constant elements will be chosen to give a detailed 

explanation of how BEM applied, so that the values of u and p are assumed to be constant on 

each element and equal to their values at its mid-nodes. 
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Figure 2.6: Constant elements. 

For a given node 𝑃𝑖
′ on the boundary element 𝐶𝑖, the boundary integral equation (2.48) can 

be discretized to: 

𝐶𝑢𝑖 +∑(∫
C𝑗
𝑃∗(𝑃𝑖

′, 𝑄′)𝑑C(𝑄′))𝑢𝑗

𝑛

𝑗=1

 

= ∑ (∫
C𝑗
𝑈∗(𝑃𝑖

′, 𝑄′)𝑑C(𝑄′))𝑛
𝑗=1 𝑝𝑗,  (2.51) 

where 

𝐶 = (

1

2
0

0
1

2

),  (2.52) 

𝑃∗(𝑃𝑖
′, 𝑄′) = (

𝑝11
∗ (𝑃𝑖

′, 𝑄′) 𝑝12
∗ (𝑃𝑖

′, 𝑄′)

𝑝21
∗ (𝑃𝑖

′, 𝑄′) 𝑝22
∗ (𝑃𝑖

′, 𝑄′)
), 

𝑈∗(𝑃𝑖
′, 𝑄′) = (

𝑢11
∗ (𝑃𝑖

′, 𝑄′) 𝑢12
∗ (𝑃𝑖

′, 𝑄′)

𝑢21
∗ (𝑃𝑖

′, 𝑄′) 𝑢22
∗ (𝑃𝑖

′, 𝑄′)
),  (2.53) 

and 𝑢𝑖  is the nodal displacement of element 𝐶𝑖 , 𝑢𝑗  and 𝑝𝑗  are the nodal displacements and 

tractions in the element 𝐶𝑗.  

Let  
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𝐻̂𝑖𝑗 = ∫C𝑗
𝑃∗(𝑃𝑖

′, 𝑄′)𝑑C(𝑄′)

𝐺𝑖𝑗 = ∫
C𝑗
𝑈∗(𝑃𝑖

′, 𝑄′)𝑑C(𝑄′)
},   (2.54) 

then Equation (2.51) becomes 

𝐶𝑢𝑖 + ∑ 𝐻̂𝑖𝑗𝑢𝑗
𝑛
𝑗=1 = ∑ 𝐺𝑖𝑗𝑝𝑗

𝑛
𝑗=1 . (2.55) 

With a further step, Equation (2.51) can be written as 

∑ 𝐻𝑖𝑗𝑢𝑗
𝑛
𝑗=1 = ∑ 𝐺𝑖𝑗𝑝𝑗

𝑛
𝑗=1   (2.56) 

where H𝑖𝑗 = 𝐻̂𝑖𝑗 + 𝐶𝛿𝑖𝑗. (2.57) 

Moreover, the system of n equations in Equation (2.56) can be rewritten in a matrix form as 

𝐻𝑈 = 𝐺𝑃  (2.58) 

Note that G and H are coefficient matrixes, U and P consist 𝑁1 known values of u, 𝑁2 known 

values of q as well as 2𝑁 − (𝑁1 + 𝑁2) unknowns. Reordering all the unknowns of Equation 

(2.58) to the left side, the Equation (2.58) can be written as 

𝐴𝑋 = 𝐹  (2.59) 

where A is the coefficient matrix, and X is the vector of unknowns u and p. 

In order to solve for the ‘unknowns’ vector, the coefficients Hij and Gij should be calculated 

for the next step. It is not difficult to evaluate the integrals Hij and Gij for the constant element 

case. While for higher order elements they are much more complicated to compute so that the 

Gauss quadrature formulas will be used. 

When 𝑖 = 𝑗, 𝑃𝑖
′ is the mid-point of the boundary element 𝐶𝑖, 𝑄

′ is an arbitrary point on the 

element 𝐶𝑖. Where 𝑙𝑖 = √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 is the length of the element 𝐶𝑖. 

Thus the process is as follows: 

 Computation of 𝐻𝑖𝑖 

𝐻𝑖𝑖 is a 2 × 2 matrix: 
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𝐻𝑖𝑖 = (
𝐻𝑖𝑖
11 𝐻𝑖𝑖

12

𝐻𝑖𝑖
21 𝐻𝑖𝑖

22).  (2.60) 

Using rigid body considerations, the values of 𝐻𝑖𝑖 are as follows: 

𝐻𝑖𝑖 = (

1

2
0

0
1

2

).  (2.61) 

 Computation of 𝐺𝑖𝑖 

𝐺𝑖𝑖 is a 2 × 2 matrix as well: 

𝐺𝑖𝑖 = (
𝐺𝑖𝑖
11 𝐺𝑖𝑖

12

𝐺𝑖𝑖
21 𝐺𝑖𝑖

22).  (2.62) 

Using Equation (2.28) and (2.54), the value of 𝐺𝑖𝑖 can be evaluated analytically as follows: 

𝐺𝑖𝑖
11 =

𝑙i

8πG(1−v)
[(3 − 4𝑣) ⋅ (1 − 𝑙𝑛

𝑙𝑖

2
) + (𝑟,1)

2], 

𝐺𝑖𝑖
12 = 𝐺𝑖𝑖

21 =
𝑙i

8πG(1−v)
𝑟,1𝑟,2,  (2.63) 

𝐺𝑖𝑖
22 =

𝑙i

8πG(1−v)
[(3 − 4𝑣) ⋅ (1 − 𝑙𝑛

𝑙𝑖

2
) + (𝑟,2)

2]. 

When 𝑖 ≠ 𝑗, 𝑃𝑖
′ is the mid-point of the boundary element 𝐶𝑖, 𝑄

′ is an arbitrary point on the 

element 𝐶𝑗. 𝐻𝑖𝑗 and 𝐺𝑖𝑗 are 2 × 2 matrices, as before: 

𝐻𝑖𝑗 = (
𝐻𝑖𝑗
11 𝐻𝑖𝑗

12

𝐻𝑖𝑗
21 𝐻𝑖𝑗

22) , 𝐺𝑖𝑗 = (
𝐺𝑖𝑗
11 𝐺𝑖𝑗

12

𝐺𝑖𝑗
21 𝐺𝑖𝑗

22). 

The value of 𝐻𝑖𝑗 and 𝐺𝑖𝑗 can be evaluated from Equation (2.28), (2.54) and (2.57): 

𝐻𝑖𝑗
11 = −

1

4𝜋(1−𝑣)
∫
C𝑖

𝜕𝑟

𝜕𝑛
[1 − 2𝑣 + 2(𝑟,1)

2
]
𝑑𝐶

𝑟
,  

𝐻𝑖𝑗
12 = −

1

4𝜋(1−𝑣)
∫
C𝑖
[2

𝜕𝑟

𝜕𝑛
𝑟,1𝑟,2 − (1 − 2𝑣)(𝑟,1𝑛2 − 𝑟,2𝑛1)]

𝑑𝐶

𝑟
,  

𝐻𝑖𝑗
21 = −

1

4𝜋(1−𝑣)
∫
C𝑖
[2

𝜕𝑟

𝜕𝑛
𝑟,2𝑟,1 − (1 − 2𝑣)(𝑟,2𝑛1 − 𝑟,1𝑛2)]

𝑑𝐶

𝑟
,  
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𝐻𝑖𝑗
22 = −

1

4𝜋(1−𝑣)
∫
C𝑖

𝜕𝑟

𝜕𝑛
[1 − 2𝑣 + 2(𝑟,2)

2
]
𝑑𝐶

𝑟
,  (2.64) 

and 

𝐺𝑖𝑗
11 =

1

8πG(1−v)
∫
C𝑖
[(3 − 4𝑣) 𝑙𝑛

1

𝑟
+ (𝑟,1)

2] dC,  

𝐺𝑖𝑗
12 = 𝐺𝑖𝑗

21 =
1

8πG(1−v)
∫
C𝑖
𝑟,1𝑟,2dC, 

𝐺𝑖𝑗
11 =

1

8πG(1−v)
∫
C𝑖
[(3 − 4𝑣) 𝑙𝑛

1

𝑟
+ (𝑟,2)

2] dC.  (2.65) 

The unknown displacements and tractions of the boundary points can be evaluated by 

solving Equation (2.59). After the unknown values on the boundary were computed, the 

displacements at an interior/exterior point can be easily evaluated by using Equation (2.37), 

where (2.37) can be discretized with the following equation: 

𝑢𝑖 = ∑ (𝐺𝑖𝑗𝑝𝑗 − 𝐻𝑖𝑗𝑢𝑗)
𝑛
𝑗=1 .  (2.66) 

The stress components at an interior/exterior point can be computed from: 

σ𝑖𝑗 = ∫𝐶𝐷𝑘𝑖𝑗𝑝𝑘𝑑C − ∫𝐶𝑆𝑘𝑖𝑗𝑢𝑘𝑑C  

= ∑ 𝐷𝑘𝑖𝑗𝑝𝑘
𝑛
𝑗=1 − ∑ 𝑆𝑘𝑖𝑗𝑢𝑘

𝑛
𝑗=1 ,   𝑖, 𝑗, 𝑘 = 1,2  (2.67) 

where  

𝐷𝑘𝑖𝑗 =
1

4𝜋(1−𝑣)𝑟
[(1 − 2𝑣)(𝛿𝑖𝑘𝑟,𝑗 + 𝛿𝑗𝑘𝑟,𝑖 − 𝛿𝑖𝑗𝑟,𝑘) + 2𝑟,𝑖𝑟,𝑗𝑟,𝑘],  (2.68) 

𝑆𝑘𝑖𝑗 =
𝐺

2𝜋(1−𝑣)𝑟2
{2

𝜕𝑟

𝜕𝑛
[(1 − 2𝑣)𝛿𝑖𝑗𝑟,𝑘 + 𝑣(𝛿𝑖𝑘𝑟,𝑗 + 𝛿𝑗𝑘𝑟,𝑖) − 4𝑟,𝑖𝑟,𝑗𝑟,𝑘]  

+2𝑣(𝑟𝑖𝑟𝑘𝑛𝑗 + 𝑟𝑗𝑟𝑘𝑛𝑖) + (1 − 2𝑣)(𝛿𝑖𝑘𝑛𝑗 + 𝛿𝑗𝑘𝑛𝑖 + 2𝑟,𝑖𝑟,𝑗𝑛𝑘)  

−(1 − 4𝑣)𝛿𝑖𝑗𝑛𝑘}.  (2.69) 
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2.2 GPU Acceleration of Numerical Computing Using OpenCL  

Traditionally, the application of the BEM for a certain problem is implemented by a 

computer program. Most often, the computer program is run on a single CPU. Depending on the 

quantity of the exterior points in the problem domain, the time spent for the program execution 

can be lengthy. For example, more exterior points to be calculated, the higher accuracy the results 

will be, thereby the execution will take longer. In order to obtain a much accurate result in a 

reasonably short time, there are currently two approaches to accelerate the BEM program: to use 

a powerful CPU for the program execution, or to look for other hardware that can execute the 

BEM program.  

2.2.1 CPU Computing 

A central processing unit (CPU) is an important piece of hardware in a computer system. The 

main function of a CPU includes carrying out instructions of a computer program and performing 

data processing. Currently, most CPUs within a computer consist of an arithmetic logic unit 

(ALU), hardware registers and a control unit. The performance of a CPU depends on several 

factors, such as clock rate, instructions per clock, bandwidth etc. (Henning, 2000). Among these 

factors, the clock rate or execution frequency, which generally given in multiples of Hertz, leads 

the main role of CPU’s performance. However, during the past decade, it’s been proven that 

although increasing the frequency will obtain higher CPU’s performance, it has limitations due to 

power and heat dissipation constraints (Gaster et al., 2012). Therefore, another solution for 

obtaining higher performance has been proposed: to clone a single core multiple times on the 

chip, which lead to the creation of multi-core CPUs.  

For the traditional BEM program, the most time-consuming part in the process is the 

computation of the stresses and displacements for the whole interior/exterior points. Mapping the 

BEM program to a CPU, the busiest component is the ALU. While for most CPUs even a multi-

core CPU in a computer, the increased amount of ALU still cannot afford the high need of 

arithmetic calculations used by the BEM program. 

Besides multi-core CPUs within a computer, other powerful machines such as 

supercomputers or large-scale computer clusters can also be used to run BEM programs, and 
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definitely the results will be obtained accurately and in shorter time. However, these kinds of 

powerful machines are hard to reach for a practical civil engineer. Moreover, the cost of using 

supercomputers of computer clusters will be considerable for only performing a geomechanical 

evaluation. 

Incidentally, with the rapid development of the computational power of the modern GPU, 

acceleration of the program execution can be achieved through GPU computing. Based on the 

cost and the speed for a large-scale data-computing program, a modern GPU has great superiority 

over a same price CPU for the program acceleration. Thus, GPU computing can be considered a 

better choice for the BEM program acceleration. 

2.2.2 GPU Computing 

A graphics processing unit (GPU), also known as visual processing unit (VPU), is a 

specialized electronic circuit equipped on the video card or motherboard or certain CPUs that is 

used to generate 2D and 3D graphics, images and videos in its most basic form (Nickolls and 

Kirk, 2009). Compared to CPUs, the history of GPUs is much shorter. The term of GPU was first 

proposed by NVIDIA as they introduced the GeForce 256 in 1999, which was the first GPU in 

the world (The world's first GPU, 1999). The early GPU was a single-chip processor, which was 

built around the graphics pipeline, specialized in three-dimensional (3-D) applications to create 

lighting effects, smoke effects and transforms objects, but little else (Blythe, 2008). Over the past 

few years, the GPU has evolved from a fixed-function special-purpose processor into an 

advanced programmable processor with both application programming interface (APIs) and 

hardware, increasingly focusing on the programmable aspects of the GPU (Owens et al., 2008). 

The rapid enhancement in programmability and capability of GPU has drawn a great deal of 

public attention, which on the other hand, promotes the application of general-purpose computing 

on the GPU.  

Why people want to use a GPU for general computation? There are several reasons. First: 

performance. The GPU is designed for manipulating and processing graphics, therefore it has few 

characteristics such as large computational requirements, substantial parallelism and priority on 

throughput over latency. With these prominent characteristics, modern GPUs perform floating-

point calculations much faster than today’s CPUs. For example, NVIDIA revealed a performance 
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comparison between different NVIDIA GPUs and Intel CPUs (Cuda, 2015), as Figure 2.7 and 2.8 

show. Figure 2.7 displays the trend of floating-point operations performance for representative 

NVIDIA GPUs and Intel CPUs from 2002 to 2013; and Figure 2.8 displays the trend in 

representative NVIDIA GPUs and Intel CPUs’ increasing memory bandwidth between 2003 and 

2013. From Figure 2.7, it is clear that one of the fastest CPUs in a PC (Intel Ivy Bridge) can 

theoretically issue around 300 billion floating-point operations per second (300 gigaflops) in 

double precision calculations. However, NVIDIA’s Tesla K40 GPU can perform around 1450 

gigaflops in double precision calculations. Moreover, the peak memory bandwidth in Figure 2.8 

has increased to around 290GB/sec for NVIDIA Tesla K40 GPU, while the Intel Ivy Bridge has 

only reached to (CPU) 60 GB/sec. In conclusion, the modern GPU has greatly outpaced its CPU 

counterpart on the calculation performance.  

 

Figure 2.7: Floating-point operations per second for the CPU and GPU. (Cuda, 2015) 
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Figure 2.8: Memory bandwidth for the CPU and GPU. (Cuda, 2015) 

The second reason is load balancing. A CPU is designed to carry out instructions such as 

performing arithmetic, logical, control and input/output operations. If the CPU is overburdened, 

thus limits the application performance, it’s applicable to offload computational process to the 

GPU, which on the other hand accelerates the speed overall.  

Finally: development potential. Parallelism leads the future trend of computing. In recent 

years, a large number of CPU applications have been ported to GPUs based on GPUs’ excellent 

general-purpose computing performance. Looking toward the future, GPUs are on a much faster 

performance growth curve than CPUs. From Figure 2.7 and 2.8, a group of facts proves that: the 

Intel CPUs’ performance over the ten years (2003 to 2013) leading up to June 2013 increased 

from 4 gigaflops to 300 gigaflops, or about 30 gigaflops per year. NVIDIA GPUs, however, over 

the same period ending with the release of the GeForce 780 Ti, increased from 8 gigaflops to 

5400 gigaflops, a rate of 540 gigaflops per year. In other words, GPUs have passed CPUs in 

performance and will continue to outpace CPUs in the future.  
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How do general-purpose computing implement on the GPU? The scenario of mapping 

general-purpose computation onto the GPU by means of graphics hardware is intrinsically the 

same way as any standard graphics application. A graphics pipeline is a computational structure 

that GPUs take use of to process graphics. The pipeline is made up of several stages, and all 

geometric primitives pass through every stage. The input of the pipeline is a list of geometry, 

expressed as vertices in object coordinates, while the output is an image in a frame buffer. Figure 

2.9 displays a typical graphics pipeline. From figure 2.9, it’s clear that the vertex processor 

generates triangles, the rasterizer generates pixels displayed on the monitor, and fragment 

processor generates color for each fragment. The graphics pipeline contains four main stages: the 

geometry stage, the rasterization stage, the fragment stage and the composition stage (Owens et 

al., 2007). In the composition stage, fragments are assembled into an image of pixels.  

 

Figure 2.9: The graphic pipeline on modern GPUs. (Owens et al., 2007) 

In the traditional graphics pipeline, each stage conducts fixed-function operations but does 

little help for general-purpose computation. Later, with the effort of graphics vendors, the fixed-

function pipeline has been advanced into a more flexible programmable pipeline. The main 

change on this programmable pipeline is that fixed-function programs of the vertex stage and the 

fragment stage are replaced with user-defined programs. 

To conduct general-purpose computation on GPU, a graphics API and a stream-

programming model are needed. The stream-programming model will structure data into streams 

and express computation as arithmetic kernels that operate on streams. Using the graphics 

pipeline architecture, the GPGPU programming model can be constructed as follows (Owens et 

al., 2007): 
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1) Extract one or few parallel part(s) from the general-purpose program; this part is the 

kernel, which will execute on the GPU. 

2) Specify the range of computation / the size of the output stream to invoke a kernel.  

3) Use rasterizer to generate a fragment for every pixel. 

4) Execute the kernel fragment program on each generated fragment. 

5) The output of the kernel fragment program is a value (or vector of values) per fragment.  

 

2.2.3 The History of GPU Computing 

Before the first GPU was announced in 1999, there were only graphics accelerators equipped 

for PCs and computer workstations. The function of a graphics accelerator is partly separated 

from a CPU and that it simply accelerates graphics and it’s not programmable. Represented by 

Geometry Engine (GE), it would perform faster rendering operations, but they are the same ones 

as before. As graphics accelerators were replaced by GPUs, the old concept of graphics 

acceleration advanced to graphics processing (Fernando et al., 2004). Starting from 1999, the first 

GPU GeForce 256 supported specialized graphics operations such as transform and lighting 

(T&L), triangle setup and clipping, of which are originally supported by CPUs. Though the 

rendering engines of GeForce 256 were capable of processing a minimum of 10 million polygons 

per second (The world's first GPU, 1999), the programmability of most GPUs at that time was 

still limited to graphics-specific functions. Right after the introduction of GeForce 8 series, the 

new generic stream-processing unit GPUs became a more generalized computing device. Based 

on parallel computing of GPU, two programming platforms were announced around 2006: 

CUDA from NVIDIA and CTM from ATI. With parallel computing on GPU, general-purpose 

computing on GPU has widely adopted into different fields such as scientific image processing, 

linear algebra, machine learning, oil exploration, statistics, 3D reconstruction and even stock 

options pricing determination. For example, (Harris et al., 2003) simulated cloud dynamics on 

graphics hardware. (Zhao et al., 2011) proposed an efficient quasi-cyclic low-density parity-

check code (QC-LDPC Code, a linear error correcting code in information theory) decoder 
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simulator on GPU. (Krüger and Westermann, 2003) proposed a stream model of arithmetic 

operations in linear algebra that can be implemented on GPU. 

 

 

Figure 2.10: Process of GPU’s development. (A (brief) history of the graphics chip: From VGA to 

programmable, general-purpose streaming processor, 2007) 

Compared to CPU, the development of GPU is rather young, not to mention GPU computing. 

GPU computing was launched more than a decade ago while its application has been widely used 

because of its stream processing model and its parallelization computation. Multiple studies and 

research in different fields have proved that computing on GPUs leads a huge superiority than on 

CPUs. Moreover, with the rapid development on GPU’s property and hardware, the GPGPU 

holds a vast potential for future investment.  

2.2.4 Software Environments of GPGPU 

At beginning, the GPGPU was carried out using fixed-function, graphics-specific units (e.g. 

texture filters, blending, and stencil buffer operations) through graphics APIs. In the trend of 

pursuing higher-level shader programming, DirectX 9 presented a C-like interface by adopting 

the “high-level shading language” (HLSL). Cg from NVIDIA and the OpenGL Shading 

Language (GLSL) were other two shading languages, which had been used substantially (Owens 

et al., 2008). However, programming with these shading languages was still intractable because 

the mentioned three were inherently shading languages, through which the computation must be 

expressed in graphics terms. For common programmers, higher-level languages, which were 

designed straightforward for computation, need to be created. 
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The stream-programming model was introduced as well as parallel computing when 

developing GPGPU. Parallelism, which is to run two or more activities in parallel, has 

subsequently been proved a fruitfully method for obtaining higher performance. The stream-

programming model allows the streaming processor transferring data, matching the resources and 

communicating in parallel. Two early lauguages that treat the GPU as a streaming processor to 

build program models were Brook and Sh (Buck et al., 2004). Few years later, RapidMind 

commercialized Sh with the goal of multiple platforms including GPUs, the STI Cell broadband 

Engine, and multicore CPUs (Owens et al., 2008). 

In the last decade, BrookGPU is no more supported by its original developers in Stanford 

University. Instead, AMD generalized the use of the Brook language in streaming computations. 

With the SW environment to include the Close to Metal (CTM) and the Compute Abstraction 

Layer (CAL), AMD stream programming can be operated in their highly threaded parallel 

architecture. NVIDIA’s GPGPU programming system CUDA provides a higher lever interface 

than AMD’s CAL. But similar to Brook, CUDA uses a C-like syntax to write programs, which 

compile on the GPU. Two types of parallelism, data parallel and multithreading can be achieved 

through CUDA while Brook only supports one dimension of parallelism, data parallelism via 

streaming. IBM uses message-passing-based software to take advantage of its heterogeneous, 

non-coherent cell architecture. Its integrated libraries which written in VHDL with C or C++ 

provides a prioritized environment for the FPGA system (Bacon et al., 2012). 

Though each of these software environments largely enhanced the performance of 

programming on GPUs regarding to some specific areas, none of them made the goal of 

performing general-purpose computations for different hardware architectures. However, this 

problem can be evenly solved through the Open Computing Language (OpenCL). 

2.2.5 OpenCL for GPGPU 

The Open Computing Language (OpenCL) was defined and managed by the nonprofit 

technology consortium Khronos Group (Munshi, 2009). Actually, the OpenCL is an open 

standard for general purpose parallel programming across multiple processors such as CPUs, 

GPUs and so on. In other words, OpenCL is a heterogeneous programming framework, which 

consists of an applications programming interface (API) and a C-like programming language. 
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The language and its development environment import many conceptual frameworks from very 

successful, hardware specific environments such as CUDA, CAL, CTM. Combining their various 

characters, a hardware-independent software development environment was able to be built. The 

language supports different levels of parallelism and maps to multiple device systems effectively, 

for example, the homogeneous or heterogeneous, single- or multiple-device systems including 

CPUs, GPUs, FPGA and potentially other future devices (Gaster et al., 2012). 

The OpenCL standard supports both data-parallel and task-parallel programming models. 

Using the core language and correctly following the specification, any program designed for one 

vendor can execute on another’s hardware (Gaster et al., 2012). The host language and the device 

language make up the core language. The OpenCL specification is defined in four parts, or 

models, which are Platform model, Execution model, Memory model and Programming model 

(Munshi, 2009). The platform model defines relationship between the host and device. The 

execution model defines how the OpenCL environment is configured on the host and how kernels 

are executed on the device. The memory model defines the memory hierarchy for the data within 

the kernel. The programming model defines how the concurrency model is mapped to physical 

hardware (Gaster et al., 2012). 

There are other existing frameworks that are used in the research of fascinating parallel 

computing abilities of GPUs, such like NVIDIA’s CUDA and Direct Compute from Microsoft. 

However, CUDA is only available for NVIDIA’s GPUs, so that the acceleration method of BEM 

cannot be applied for ATI GPUs or other powerful devices. On the other hand, though Direct 

Compute support graphics cards from multiple vendors, it is only specific to Microsoft Windows, 

therefore it is not portable between host Operating Systems. Compared to these frameworks, 

OpenCL provides portability across various GPU devices, OS software, and multi-core 

processors (Du et al., 2012). OpenCL’s cross-platform, industry-wide support makes it an 

excellent programming model for developers to learn and use. That’s the reason that OpenCL is 

used in this thesis, to adapt the parallel computing acceleration method of BEM to multiple GPU 

devices, and different operating systems. 
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3 Methodology -- BEM Program Implementation on CPU and the Development 

of the GPU Acceleration Algorithm 

The practical implementation of the BEM solution running on both a serial processor (CPU) 

and a parallel processor (GPU) will be developed in this chapter. First, the serial implementation 

will be discussed, in reference to the previous chapter. The salient equations will be repeated and 

the corresponding code segments will be shown. Subsequently, the parallel implementation of the 

BEM algorithm will be presented, with references to the serial one, and a detailed explanation 

will be given to the usage of OpenCL. Concepts such as the data-parallel model, arithmetic 

optimization, and CPU-GPU transformation will be treated as well. After that, the parallel 

implementation, which runs on a GPU, will be described in detail. 

For the computer implementation of the serial algorithm, a program Serial.cpp was created to 

solve two-dimensional linear elastic boundary value problems. This program (see Appendix 1 for 

the source code) is the serial program, developed using traditional principles of programming, 

which executes on a CPU. In order to accelerate this program, another program, GPU.cpp (see 

Appendix 1 for the source code), was developed, which executes on a GPU. This program 

explores the parallel algorithm by using the OpenCL framework. Both of these programs use a 

common input file to compute the solution values of the displacement components and stresses 

components at exterior points. Similarly, both programs write out an output file, where the 

solution values will be recorded. 

3.1 Implementation of the BEM Algorithm on a CPU 

The flow of the serial program can be explained using the following flow chart, as shown in 

Figure 3.1: 
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Figure 3.1: Procedure of the BEM algorithm implementation on CPU. 

The serial program was implemented in the style of Kythe (1995). It contains a main 

function and several subroutine functions. The main function starts the program and calls the 

following subroutine functions: Sys11, Inter11, and Solve. Sys11 is the third step in 

the process as the flow chart (Figure 3.1) shows. It builds the matrix AX=B+F and it calls the 

subroutine functions Quad11 and Diag11 to compute the coefficient H and G. Solve is the 

fourth step in the process. It solves the matrix equations AX=B+F thus the unknown values of 

displacements and tractions of the boundary points are evaluated. Inter11 is the fifth step in the 

process, which computes two displacement components and three traction components of each 
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exterior point by using the data of the boundary points and by calling the subroutine functions 

Quad11 and Stress to calculate the coefficients H, G and D, S. 

Table 3.1: The definition of variables in the BEM program, after (Kythe, 1995). 

Variable Interpretation 

N 
Number of boundary elements (same as the number of nodes in 

this constant element case) 

L Number of exterior points where results are to be computed 

M Number of different surfaces 1 through 5 

Last Number of the last node on each different surface. 

mu Shear modulus μ 

nu Poisson’s ratio ν 

X, Y Coordinates of extreme points of the elements 

Xm,Ym Coordinates of the mid-nodes 

G 
Matrix defined in HU = B+GP. After boundary conditions are 

applied, the matrix A of AX = B+F is stored in this location. 

H Matrix defined in HU = B+GP 

Code 
Code=0 if displacements are prescribed, Code=1 if tractions are 

prescribed 

Bc Prescribed boundary conditions 

F 
Vector defined in AX = B+F, After solution, the values of the 

unknowns are located here 

Xi,Yi Coordinates of the interior points 

Dim Maximum dimension of the system of HU = B+GP 

Perp Perpendicular distance from the point (xp,yp) to the element j 

Xg,Yg (x,y)-coordinates of Gauss points ζi , i=1,2,3,4 

HL Half-length of the element Ci(=Li/2) 

nx,ny nx, ny  (components of the unit normal vector n) 

rx,ry,rn r,x , r,y , r,n (note that r,n = r,xnx +r,yny ) 
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The subroutine Sys11 can be summarized by the following algorithm: 

1. Compute the coordinates (Xm,Ym), m=1, … , N, which are the mid-nodes of the extreme 

nodes (xi,yi): 

𝑥𝑛+1 = 𝑥1, 𝑦𝑛+1 = 𝑦1; 

𝑋𝑚 =
𝑥𝑖+𝑥𝑖+1

2
, 𝑌𝑚 =

𝑥𝑖+𝑥𝑖+1

2
  for i=1 to N. 

The code is as follows: 

  X[N+1]=X[1]; 

  Y[N+1]=Y[1]; 

  for (i=1;i<=N;i++) { 

   Xm[i]=(X[i]+X[i+1])*0.5; 

   Ym[i]=(Y[i]+Y[i+1])*0.5; 

} 

2. Compute the matrices H and G: 

for i = j, call  Quad11; 

i ≠ j, call  Diag11. 

The code is as follows: 

 if (i-j) { 

  Quad11(Xm[i],Ym[i],X[j],Y[j],X[kk],Y[kk],&H[2*i-1][2*j-1], 

    &H[2*i-1][2*j],&H[2*i][2*j-1],&H[2*i][2*j], 

     &G[2*i-1][2*j-1],&G[2*i-1][2*j],&G[2*i][2*j]); 

   G[2*i][2*j-1]=G[2*i-1][2*j]; 

  }           

 else { 

  Diag11(X[j],Y[j],X[kk],Y[kk],&G[2*i-1][2*j-1], 

&G[2*i-1][2*j],&G[2*i][2*j]); 

  H[(2*i-1)][(2*j-1)]=0.5; 

  H[(2*i)][(2*j)]=0.5; 

  H[(2*i-1)][(2*j)]=0.0; 
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  H[(2*i)][(2*j-1)]=0.0; 

  G[(2*i)][(2*j-1)]=G[(2*i-1)][(2*j)]; 

 } 

3. Build the matrix AX = B + F : 

for j=1 to NN 

if Code(j) = 1, then for i = 1 to NN 

𝑡𝑒𝑚𝑝 = 𝐺𝑖𝑗;  𝐺𝑖𝑗 = −𝐻𝑖𝑗;  𝐻𝑖𝑗 = −𝑡𝑒𝑚𝑝 = −𝐺𝑖𝑗  

if Code(j) = 0, then for i = 1 to NN 

𝐺𝑖𝑗 = 𝜇,  

where NN=2N; temp is a temporary memory location; and if Code=1, the displacements were 

prescribed; if Code=0, the tractions were prescribed in the input file. As a result, the matrix A 

is in location G; F is not yet evaluated, but all known terms are in the location of H and U. 

The location H contains both known G and H, and the location U contains both known 

displacement values (U) and traction values (P). 

The code is as follows: 

 for (j=1;j<=NN;j++) {     

  if (Code[j]>0) { 

   for (i=1;i<=NN;i++) { 

    temp=G[i][j]; 

    G[i][j]=-H[i][j]; 

    H[i][j]=-temp; 

   } 

  } 

  else { 

   for (i=1;i<=NN;i++) {   

    G[i][j]*=mu; 

   } 

  } 
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4. Finally, 

𝐹𝑖 = 0.0   for  i =1 to NN 

𝐹𝑖 = 𝐹𝑖 + 𝐻𝑖𝑗 ⋅ 𝐵𝑐𝑗  for j=1 to NN 

The right side vector F now stores all known values in F. 

The code is as follows: 

 for(i=1;i<=NN;i++) { 

  F[i]=0.0; 

  for (j=1;j<=NN;j++) {    

              F[i]+=H[i][j]*Bc[j]; 

  } 

The subroutine Quad11 computes the off-diagonal elements of H and G by using the four-

point Gauss quadrature formula. 

In order to compute 𝐻𝑖𝑗  and 𝐺𝑖𝑗  ( 𝑖 ≠ 𝑗 ), two different nodes i and j are taken into 

consideration. (xp,yp) are the coordinates of the node i; ζk , k=1,2,3,4 are the Gauss points marked 

on the element with mid-node j;ζ=1 andζ=-1 are the extreme points with coordinates (xj, yj) and 

(xj+1, yj+1) respectively of the node j; m denotes the slope of the boundary element with node j; 

and Ra is the distance from node i to a Gauss pointζk , k=1,2,3,4. The coordinates of the Gauss 

points are denoted by (Xg, Yg). Denote Ax= (xj+1-xj)/2, Ay= (yj+1-yj)/2, Bx= (xj+1+xj)/2, and By= 

(yj+1+yj)/2, then m= (yj+1-yj)/ (xj+1-xj) =Ay/Ax=slope of the element C̃j.  

Or in a code form: 

 Ax=(X2-X1)*0.5f;  

 Bx=(X2+X1)*0.5f;  

 Ay=(Y2-Y1)*0.5f;  

 By=(Y2+Y1)*0.5f;  

 nx=(Y2-Y1)/(2.0f*sqrtf(Ax*Ax+Ay*Ay)); 
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 ny=(X1-X2)/(2.0f*sqrtf(Ax*Ax+Ay*Ay)); 

 slope=Ay/Ax; 

The equation of the element with node j is: 

 𝑚(𝑥𝑗 − 𝑥) − (𝑦𝑗 − 𝑦) = 0,  (3.1) 

where the distance 

Ra = √(xp − Xg)2 + (yp − Yg)2,  (3.2) 

and the half-length of the element C̃i:  

Li

2
= √Ax2 + Ay2 = HL.  (3.3) 

Denote Denom = 4𝜋(1 − 𝑣), a perpendicular distance from node i to the element j is given as  

perp =
|slope⋅𝑥𝑝−𝑦𝑝+(𝑦1−slope⋅𝑥1)|

√slope2+12
 if slope exist;  

or perp= |𝑥𝑝 − 𝑥1| if slope does not exist.  

Also, the directional derivative of ln (
1

𝑟
) = −

1

2
ln(𝑥2 + 𝑦2) in the direction of n̂ is given by 

Dn̂ln (
1

r
) = ∇f ∙ n̂ = −

𝑦

𝑥2+𝑦2
= −

𝑟,𝑥𝑛𝑥+𝑟,𝑦𝑛𝑦

𝑟2
= −

rx∙nx+ry∙ny

(Ra)2
 ,                      (3.4) 

where rx = (Xg − xp) Ra⁄ = cos α, ry = (Yg − xp) Ra⁄ = sin α.  

Then, by the four-point Gauss quadrature, Gij and Hij can be computed as: 

G𝑖𝑗
11 = ∫

C̃j
u∗ ds =

𝐻𝐿

2⋅Denom⋅𝜇
∑ [(3 − 4𝑣)ln (

1

Ra
)4

i=1 + rx2]Wi ,  (3.5) 

𝐺𝑖𝑗
12 = 𝐺𝑖𝑗

21 =
𝐻𝐿

2⋅Denom⋅𝜇
∑ (rx⋅ry)𝑊𝑖
4
i=1 ,  (3.6) 

G𝑖𝑗
22 =

𝐻𝐿

2⋅Denom⋅𝜇
∑ [(3 − 4𝑣)ln (

1

Ra
)4

i=1 + ry2]Wi,  (3.7) 

and 
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H𝑖𝑗
11 = ∫

C̃j
p∗ ds = −

perp⋅HL

2⋅Denom⋅𝜇
∑ [1 − 2𝑣 + 2 ⋅ 𝑟𝑥2]

𝑊𝑖

(Ra)i
2

4
i=1 ,  (3.8) 

𝐻𝑖𝑗
12 = −

HL

2⋅Denom⋅𝜇
∑ [

2⋅perp

(Ra)𝑖
(rx⋅ry) − (1 − 2𝑣)(rx ∙ ny − ry ∙ nx)]

𝑊𝑖

(Ra)𝑖

4
i=1 ,  (3.9) 

𝐻𝑖𝑗
21 = −

HL

2⋅Denom⋅𝜇
∑ [

2⋅perp

(Ra)𝑖
(rx⋅ry) − (1 − 2𝑣)(ry ∙ nx − rx ∙ ny)]

𝑊𝑖

(Ra)𝑖

4
i=1 ,  (3.10) 

H𝑖𝑗
22 = −

perp⋅HL

2⋅Denom⋅𝜇
∑ [1 − 2𝑣 + 2 ⋅ ry2]

𝑊𝑖

(Ra)i
2

4
i=1 .  (3.11) 

Or in a code form: 

for (i=1;i<=4;i++) { 

Xg[i]=Ax*Z[i]+Bx; 

Yg[i]=Ay*Z[i]+By; 

Ra=sqrtf((Xp-Xg[i])*(Xp-Xg[i])+(Yp-Yg[i])*(Yp-Yg[i])); 

rx=(Xg[i]-Xp)/Ra; 

ry=(Yg[i]-Yp)/Ra; 

(*G11)+=((3.0f-4.0f*nu)*logf(1.0f/Ra)+rx*rx)*W[i]*HL/(2.0f*Denom*mu); 

(*G12)+=rx*ry*W[i]*HL/(2.0f*Denom*mu); 

(*G22)+=((3.0f-4.0f*nu)*logf(1.0f/Ra)+ry*ry)*W[i]*HL/(2.0f*Denom*mu); 

(*H11)-=Perp*((1.0f-2.0f*nu)+2.0f*rx*rx)/(Ra*Ra*Denom)*W[i]*HL; 

(*H12)-=(Perp*2.0f*rx*ry/Ra+(1.0f-2.0f*nu)*(nx*ry-ny*rx))*W[i]*HL/(Ra*Denom); 

(*H21)-=(Perp*2.0f*rx*ry/Ra+(1.0f-2.0f*nu)*(ny*rx-nx*ry))*W[i]*HL/(Ra*Denom); 

(*H22)-=Perp*((1.0f-2.0f*nu)+2.0f*ry*ry)*W[i]*HL/(Ra*Ra*Denom); 

}  

The subroutine Diag11 computes the diagonal elements Gii of the matrix G, given by the 

following equations: 

𝐺𝑖𝑖
11 =

𝐿𝑖

8𝜋𝜇(1−𝜐)
[(3 − 4𝜈)(1 − 𝑙𝑛𝐿𝑖) +

𝑟1
2

𝐿𝑖
2],  (3.12) 

𝐺𝑖𝑖
12 =

𝐿𝑖⋅𝑟1𝑟2

8𝜋𝜇(1−𝜐)
= 𝐺𝑖𝑖

21,  (3.13) 

𝐺𝑖𝑖
22 =

𝐿𝑖

8𝜋𝜇(1−𝜐)
[(3 − 4𝜈)(1 − 𝑙𝑛𝐿𝑖) +

𝑟2
2

𝐿𝑖
2],  (3.14) 
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where 𝐿𝑖 = √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 = SR is the length of the element i. 

The corresponding code is as follows: 

Ax=(X2-X1)*0.5f; 

Ay=(Y2-Y1)*0.5f; 

SR=sqrtf(Ax*Ax+Ay*Ay); 

Denom=4.0f*pi*mu*(1.0f-nu); 

(*G11)=SR*((3.0f-4.0f*nu)*(1.0f-logf(SR))+(X2-X1)*(X2-X1)/(4*SR*SR))/Denom; 

(*G22)=SR*((3.0f-4.0f*nu)*(1.0f-logf(SR))+(Y2-Y1)*(Y2-Y1)/(4*SR*SR))/Denom; 

(*G12)=(X2-X1)*(Y2-Y1)/(4.0f*SR*Denom); 

The subroutine Solve uses the Gaussian elimination method to solve the linear systems of 

equations AX = B+F. Where the parameter found is a flag that used to provide interchange of 

rows when a zero diagonal element is present (pivoting). The solutions of the linear equations 

systems are stored in the array F[] when they return to the main function. 

The subroutine Inter11 computes the values of displacement components (𝑢𝑥, 𝑢𝑦 ) and 

stress components (𝜎𝑥, 𝜏𝑥𝑦 , 𝜎𝑦) at exterior points by using Equation (2.66) and (2.67), which are 

𝑢𝑖 = ∑ 𝐺𝑖𝑗𝑝𝑗 − ∑ 𝐻𝑖𝑗𝑢𝑗
𝑛
𝑗=0

𝑛
𝑗=1   (3.15) 

and 

σ𝑖𝑗 = ∑ 𝐷𝑘𝑖𝑗𝑝𝑘
𝑛
𝑗=1 − ∑ 𝑆𝑘𝑖𝑗𝑢𝑘

𝑛
𝑗=1 .  (3.16) 

The function Inter11 calls the subroutine function Quad11 to calculate the coefficients H 

and G when computing the displacement u; and it calls the subroutine function Stress to 

calculate the coefficients D and S for computing the traction p.  

The corresponding code is: 

for (j=1;j<=N;j++) { 

kk=j+1; 

Quad11(Xi[k],Yi[k],X[j],Y[j],X[kk],Y[kk],&H11,&H12,&H21,&H22, &G11,&G12,&G22); 

displ[2*k-1]+=F[2*j-1]*G11+F[2*j]*G12-Bc[2*j-1]*H11-Bc[2*j]*H12; 

displ[2*k]+=F[2*j-1]*G12+F[2*j]*G22-Bc[2*j-1]*H21-Bc[2*j]*H22; 
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Stress(Xi[k],Yi[k],X[j],Y[j],X[kk],Y[kk],&dx11,&dy11,&dx12,&dy12,&dx22,&dy22,&s 

x11,&sy11, &sx12,&sy12,&sx22,&sy22); 

stress[3*k-2]+=F[2*j-1]*dx11+F[2*j]*dy11-Bc[2*j-1]*sx11-Bc[2*j]*sy11; 

stress[3*k-1]+=F[2*j-1]*dx12+F[2*j]*dy12-Bc[2*j-1]*sx12-Bc[2*j]*sy12; 

stress[3*k]+=F[2*j-1]*dx22+F[2*j]*dy22-Bc[2*j-1]*sx22-Bc[2*j]*sy22; 

} 

The subroutine Stress computes the coefficients D and S that are required for calculating 

stress components of exterior points. Using four-point Gauss quadrature formula, coefficients D 

and S can be computed by 

𝐷𝑥11 =
𝑙

8𝜋(1−𝑣)
∑ [rx(1 − 2𝑣 + 2rx2)]4
𝑖=1

𝑊𝑖

𝑟𝑖
,  (3.17) 

𝐷𝑦11 =
𝑙

8𝜋(1−𝑣)
∑ [ry(2𝑣 − 1 + 2rx2)]4
𝑖=1

𝑊𝑖

𝑟𝑖
,  (3.18) 

𝐷𝑥12 =
𝑙

8𝜋(1−𝑣)
∑ [ry(1 − 2𝑣 + 2rx2)]4
𝑖=1

𝑊𝑖

𝑟𝑖
,  (3.19) 

𝐷𝑦12 =
𝑙

8𝜋(1−𝑣)
∑ [rx(1 − 2𝑣 + 2ry2)]4
𝑖=1

𝑊𝑖

𝑟𝑖
,  (3.20) 

𝐷𝑥22 =
𝑙

8𝜋(1−𝑣)
∑ [rx(2𝑣 − 1 + 2ry2)]4
𝑖=1

𝑊𝑖

𝑟𝑖
,  (3.21) 

𝐷𝑦22 =
𝑙

8𝜋(1−𝑣)
∑ [ry(1 − 2𝑣 + 2ry2)]4
𝑖=1

𝑊𝑖

𝑟𝑖
,  (3.22) 

and 

𝑆𝑥11 =
𝑙𝐺

4𝜋(1−𝑣)
∑ {2

ℎ

𝑟
rx[1 − 4(rx)2] + 4𝑣(rx)2nx + 2(1 − 2𝑣)[1 + (rx)2]nx −4

𝑖=1

(1 − 4𝑣)nx}
𝑊𝑖

𝑟𝑖
2 ,  (3.23) 

𝑆𝑦11 =
𝑙𝐺

4𝜋(1−𝑣)
∑ {2

ℎ

𝑟
ry[1 − 2𝑣 − 4(rx)2] + 4𝑣 ⋅ rx⋅ry⋅nx + 2(1 − 2𝑣)rx2⋅ny −4

𝑖=1

(1 − 4𝑣)ny}
𝑊𝑖

𝑟𝑖
2 ,  (3.24) 

𝑆𝑥12 =
𝑙𝐺

4𝜋(1−𝑣)
∑ {2

ℎ

𝑟
ry[𝑣 − 4(rx)2] + 2𝑣⋅rx⋅(rx⋅ny+ry⋅nx) + (1 −4

𝑖=1

2𝑣)(ny+2rx⋅ry⋅nx)}
𝑊𝑖

𝑟𝑖
2 ,  (3.25) 
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𝑆𝑦12 =
𝑙𝐺

4𝜋(1−𝑣)
∑ {2

ℎ

𝑟
rx[𝑣 − 4(ry)2] + 2𝑣⋅ry⋅(rx⋅ny+ry⋅nx) + (1 −4

𝑖=1

2𝑣)(nx+2rx⋅ry⋅ny)}
𝑊𝑖

𝑟𝑖
2 ,  (3.26) 

𝑆𝑥22 =
𝑙𝐺

4𝜋(1−𝑣)
∑ {2

ℎ

𝑟
rx[1 − 2𝑣 − 4(ry)2] + 4𝑣 ⋅ rx⋅ry⋅ny + 2(1 − 2𝑣)ry2⋅nx −4

𝑖=1

(1 − 4𝑣)nx}
𝑊𝑖

𝑟𝑖
2 ,  (3.27) 

𝑆𝑦22 =
𝑙𝐺

4𝜋(1−𝑣)
∑ {2

ℎ

𝑟
ry[1 − 4(ry)2] + 4𝑣(ry)2ny + 2(1 − 2𝑣)[1 + (ry)2]ny −4

𝑖=1

(1 − 4𝑣)ny}
𝑊𝑖

𝑟𝑖
2 .  (3.28) 

The code is as follows: 

FA=1.0f-4.0f*nu; 

AL=1.0f-2.0f*nu; 

Denom=4.0f*pi*(1.0f-nu);   

for (i=1;i<=4;i++) { 

Xg[i]=Ax*Z[i]+Bx; 

Yg[i]=Ay*Z[i]+By; 

Ra=sqrt(SQ(Xp-Xg[i])+SQ(Yp-Yg[i])); 

rx=(Xg[i]-Xp)/Ra; 

ry=(Yg[i]-Yp)/Ra; 

(*dx11)+=(AL*rx+2*cube(rx))*W[i]*SR/(Denom*Ra); 

(*dy11)+=(2*SQ(rx)*ry-AL*ry)*W[i]*SR/(Denom*Ra); 

(*dx12)+=(AL*ry+2*(SQ(rx))*ry)/(Denom*Ra)*W[i]*SR; 

(*dy12)+=(AL*rx+2*rx*SQ(ry))/(Denom*Ra)*W[i]*SR; 

(*dx22)+=(2*rx*SQ(ry)-AL*rx)/(Denom*Ra)*W[i]*SR; 

(*dy22)+=(AL*ry+2*cube(ry))/(Denom*Ra)*W[i]*SR; 

(*sx11)+=(2*Perp/Ra*(AL*rx+nu*2*rx-4*cube(rx))+4*nu*nx*SQ(rx)+ AL*(2*nx*SQ(rx)+2*nx)-
FA*nx)*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

(*sy11)+=(2*Perp/Ra*(AL*ry-4*SQ(rx)*ry)+4*nu*nx*rx*ry+AL*2*ny*SQ(rx)-
FA*ny)*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

(*sx12)+=(2*Perp/Ra*(nu*ry-4*SQ(rx)*ry)+2*nu*(nx*ry*rx+ny*SQ(rx))+ 
AL*(2*nx*rx*ry+ny))*2*mu/(Denom*SQ(Ra))*W[i]*SR; 
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(*sy12)+=(2*Perp/Ra*(nu*rx-4*rx*SQ(ry))+2*nu*(nx*SQ(ry)+ny*rx*ry)+ 
AL*(2*ny*rx*ry+nx))*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

(*sx22)+=(2*Perp/Ra*(AL*rx-4*rx*SQ(ry))+4*nu*ny*rx*ry+AL*2*nx*SQ(ry)-
FA*nx)*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

(*sy22)+=(2*Perp/Ra*(AL*ry+2*nu*ry-4*cube(ry))+4*nu*ny*SQ(ry)+ AL*(2*ny*SQ(ry)+2*ny)-
FA*ny)*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

} 

This concludes the presentation of the serial algorithm’s implementation. 

3.2 Parallelization of the Serial Algorithm and Its Arithmetic Optimization 

In order to accelerate the serial implementation, a careful analysis is needed to determine 

which part in the program takes relatively the most time. For the subroutine function Sys11, 

which consists of 2N loops to build the matrix AX=B+F, where 2N is the two times the number 

of boundary elements. As a result, a grid of 2N is to be computed. Similarly, for the subroutine 

function Solve, a number of 2N loops will be executed to solve the matrix, which is the same 

number as in subroutine Sys11. However, for the subroutine function Inter11, a number of L 

loops will be executed to compute the displacements and tractions of the exterior points, where L 

is the total number of the exterior points. In this case, L can be a large number, easily in excess of 

10002, depending on how detailed and accurate the result are sought in determining the response 

of a rock mass far from an excavation. In other words, if it is desired to have a relatively high 

accuracy of the result, then a relatively large number of L should be chosen. Generally, a variable 

grid will be used in computing the response of a rock mass, and the grid size may be from 102 to 

10002. In order to find out the relationship between the grid size and the time for the execution, a 

group of tests were conducted. Figure 3.2 shows the trend of processing time with the variation of 

exterior point size for subroutine functions Sys11, Solve and Inter11. From Figure 3.2, it is 

clear that the processing time of subroutine functions Sys11 and Solve is relatively unaffected 

by the number of exterior points, while the processing time for subroutine function Inter11 

shows a quadratic trend with the increase of the exterior grid size. As a result, the subroutine 

function Inter11 has a high possibility of taking much more time compared to other subroutine 

functions Sys11 and Solve. Thus, the acceleration on the subroutine function Inter11 will be 

the most beneficial in speeding up the BEM algorithm.  
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Figure 3.2: Variation of exterior point size versus processing time of subroutine functions Sys11, Solve 

and Inter11. 

Though the subroutine function Inter11 displays the data-intensive character, which fits 

the role of GPU Computing, the question arises if it is possible to run it efficiently in parallel on a 

GPU. From Equations (3.15) and (3.16), it is clear that each exterior point computed in the 

subroutine function Inter11 is independent from all other points. This is the key, thus for each 

point on the computing grid, the process follows the same sequence: calling subroutine function 

Quad11 to calculate the coefficients H and G; computing the displacements using the same 

equation; calling subroutine function Stress to calculate the coefficients D and S; and 

computing the tractions using the same equation. Because all the unknown values of the 

boundary points have already been solved in the previous subroutine function Solve, the 

coefficients H and G can be easily computed only by using the data of boundary points and the 

current exterior point; similarly, the coefficients D and S only depend on the data of boundary 

points and current exterior point. Therefore, the process of computing one exterior point is 

independent from computing any other exterior points. In the serial program, the exterior points 

can be assumed to be computed in a consecutive sequence, where the next points will not start to 

be computed until the previous point is finished. While in the parallel GPU program, the exterior 

points can be assumed to be computed in parallel, organized in large blocks. A number of blocks 
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can be computed at the same time. Thus, this organization of exterior point computation meets 

the requirements that the parallelization works well for the subroutine function Inter11. 

In conclusion, the potentially high arithmetic intensity and high data parallelism make the 

GPU an attractive platform to run the subroutine function Inter11 compared to other parts of 

the serial program. 

3.3 Implementation of BEM Algorithm on a GPU 

The GPU implementation program follows a similar procedure like the serial one, while the 

main difference is that the computing of the L loops in the subroutine function Inter11 will be 

executed on GPU instead of CPU. The process of how the GPU implementation program 

executes with OpenCL can be explained using the flowchart of Figure 3.3. 

In the GPU program, the main function starts the program and it calls the following 

subroutine functions: Sys11, Solve and Inter11GPU. The subroutine functions Sys11, Solve 

remain the same operations as in the serial program. While in the subroutine function 

Inter11GPU, the OpenCL environment is set up on the host CPU to prepare the execution of 

kernels on the device GPU. In the kernel there are three subroutine functions: Helper, 

Quad11_Helper and Stress_Helper. The subroutine function Helper is used to compute the 

displacements and tractions at exterior points. It calls the other subroutine functions 

Quad11_Helper and Stress_Helper to help compute the coefficients D and S. After that, all 

the results are transferred back to the host, which is the CPU, and the result will be written to the 

output. The following section is comprised of two parts: explanation of the OpenCL environment 

setup and the creation of the kernel.  
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Figure 3.3: Procedure of the GPU program. 

3.3.1 Explanation of the OpenCL Environment Setup 

The process of setting up and executing the OpenCL environment usually follows a fixed 

pattern. Generally, the pattern includes 12 steps: 

1) Discover and initialize the compute platforms; 

2) Discover and initialize the compute devices; 
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3) Create an OpenCL context; 

4) Create a command queue; 

5) Create memory buffers; 

6) Write host data to device buffers; 

7) Create the program and compile it; 

8) Create the kernel and set the kernel arguments; 

9) Configure the work-item structure; 

10) Enqueue the kernel for execution (this executes the compute kernel); 

11) Read the output buffer back to the host; 

12) Release OpenCL resources. 

The detailed explanation of each step is as follows: 

STEP 1: Discover and initialize the compute platforms 

Platforms are the implementations of the OpenCL API. The first two steps can be 

summarized as the Platform Model. The Platform Model defines the interaction of the host and 

devices and provides hardware model for devices. In the Platform Model, there is a single host 

connected to one or more devices. In the GPU program, the CPU is the host and the GPU is the 

only OpenCL device. The OpenCL application submits commands from the host CPU to execute 

computations on the processing elements within a device GPU.  

The API function clGetPlatformIDs() is used to discover and initialize the compute platforms. 

It will be called twice by the application. First, the API function clGetPlatformIDs() is used to 

obtain the list of available platforms on the system. After finding the available platforms, we can 

allocate space for each platform to hold the platform information. Then the function 

clGetPlatformIDs() will be called for the second time to fill in the platforms. Note that the 

unsigned int pointer status is a flag to check the output of each OpenCL API call. The code 

is as follows: 

cl_int status; 
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cl_uint numPlatforms=0; 

cl_platform_id* platforms=NULL; 

status=clGetPlatformIDs(0,NULL,&numPlatforms); 

platforms=(cl_platform_id*)malloc(numPlatforms*sizeof(cl_platform_id)); 

status=clGetPlatformIDs(numPlatforms,platforms,NULL); 

 

STEP 2: Discover and initialize the compute devices 

The API function clGetPlatformIDs() is used to discover the number of devices present. 

Similar to the API function clGetPlatformIDs(), the API function clGetDeviceIDs() will also be 

called twice by the application. In the first call, the number of devices present will be passed to 

the argument &numDevices. Then it will allocate enough space for each device. Then the API 

function clGetDeviceIDs() will be called for the second time to fill in the devices. Note that the 

device_type argument can be used to limit the devices to GPUs only (CL_DEVICE_TYPE_GPU), CPUs 

only (CL_DEVICE_TYPE_CPU), and all devices (CL_DEVICE_TYPE_ALL). In the GPU program, the GPU 

was chosen as the only OpenCL device, so the device_type argument was set to 

CL_DEVICE_TYPE_GPU. The corresponding code is as follows: 

cl_uint numDevices=0; 

cl_device_id* devices=NULL; 

status=clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,0,NULL,&numDevices); 

devices=(cl_device_id*)malloc(numDevices*sizeof(cl_device_id)); 

status=clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,numDevices,devices,NULL); 

 

STEP 3: Create an OpenCL context 

In OpenCL, a context is an abstract container that exists on the host. A context is used for 

coordinating the host-device interaction, for managing objects such as command-queues, memory, 

projects and kernel objects and for tracking the programs and kernels when executing. The API 

function clCreateContext() is used to create a context and associate it with the devices: 

cl_context context=NULL; 

context=clCreateContext(NULL,numDevices,devices,NULL,NULL,&status); 
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STEP 4: Create a command queue 

A command queue is used on a host to request action by the device. Once the host decides 

which devices to work with and a context is created, one command queue needs to be created for 

each device. By submitting commands to a proper command queue, the host can communicate 

with an abstract device. The API function clCreateCommandQueue() is used to create a command 

queue and associate it with a device: 

cl_command_queue queue; 

queue=clCreateCommandQueue(context,devices[0],0,&status); 

 

STEP 5: Create memory buffers 

Memory buffer is one type of memory objects that stores data on an OpenCL device. Images 

are the other type of memory objects. A buffer object stores a one-dimensional collection of 

elements whereas an image object is used to store a two- or three-dimensional texture, frame-

buffer or image. In other words, buffers are equivalent to arrays in C where data elements are 

stored serially in memory. Images are designed as opaque objects that improve performance like 

data padding and other optimizations.  

Buffer objects are described by cl_men objects. The API function clCreateBuffer() is used to 

allocates the buffer and it returns a memory object. Note that before creating a buffer, we need to 

define the size of the buffer and a context in which the buffer will be allocated. Besides, the caller 

can supply flags that specify that the data is read-only, write-only, or read-write. In the GPU 

program, d_Xi, d_Yi, d_X, d_Y, d_F and d_Bc are input memory buffers because the data in these 

buffers are transferred to the device; d_displ and d_stress are output buffers because the data in 

those buffers are transferred from the device back to the host. The code is as follows: 

// storage size for buffers  

const int sizeXY=52; 

const int sizeBcF=101; 

size_t datasizeXY=sizeof(float)*sizeXY; 

size_t datasizeBcF=sizeof(float)*sizeBcF; 

size_t datastress=sizeof(float)*3*(L+1); 
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size_t datadispl=sizeof(float)*2*(L+1); 

size_t dataXiYi=sizeof(float)*(L+1); 

//Create memory buffers 

cl_mem d_Xi; 

cl_mem d_Yi; 

cl_mem d_X; 

cl_mem d_Y; 

cl_mem d_F; 

cl_mem d_Bc; 

cl_mem d_displ; 

cl_mem d_stress; 

// input buffers 

d_Xi=clCreateBuffer(context,CL_MEM_READ_ONLY,dataXiYi,NULL,&status); 

d_Yi=clCreateBuffer(context, CL_MEM_READ_ONLY,dataXiYi,NULL,&status); 

d_X=clCreateBuffer(context,CL_MEM_READ_ONLY,datasizeXY,NULL,&status); 

d_Y=clCreateBuffer(context,CL_MEM_READ_ONLY,datasizeXY,NULL,&status); 

d_F=clCreateBuffer(context,CL_MEM_READ_ONLY,datasizeBcF,NULL,&status); 

d_Bc=clCreateBuffer(context,CL_MEM_READ_ONLY,datasizeBcF,NULL,&status); 

// output buffers 

d_displ=clCreateBuffer(context,CL_MEM_WRITE_ONLY,datadispl,NULL,&status); 

d_stress=clCreateBuffer(context,CL_MEM_WRITE_ONLY,datastress,NULL,&status); 

 

STEP 6: Write host data to device buffers 

The API function clEnqueueWriteBuffer() is used to write host data to an OpenCL buffer. 

Note that the argument blocking_write is set to CL_FALSE to allow the function return before the 

write operation has completed. The code is as follows: 

status=clEnqueueWriteBuffer(queue,d_Xi,CL_FALSE,0,dataXiYi,Xi,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_Yi,CL_FALSE,0,dataXiYi,Yi,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_X,CL_FALSE,0,datasizeXY,X,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_Y,CL_FALSE,0,datasizeXY,Y,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_F,CL_FALSE,0,datasizeBcF,F,0,NULL,NULL); 
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status=clEnqueueWriteBuffer(queue,d_Bc,CL_FALSE,0,datasizeBcF,Bc,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_displ,CL_FALSE,0,datadispl,displ,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_stress,CL_FALSE,0,datastress,stress,0,NULL,NULL); 

 

STEP 7: Create and compile the program 

The OpenCL C code, which is written to run on an OpenCL device, is the parallel program. 

An OpenCL program consists of a set of kernels that are identified as functions declared with the 

__kernel qualifier in the program source. In the GPU program, the API function 

clCreateProgramWithSource() is used to create a program object. After the program is created, it 

will be compiled at runtime through an API call clBuildProgram(). The code is as follows: 

cl_program program; 

program=clCreateProgramWithSource(context,1,&source,NULL,&status); 

status=clBuildProgram(program,1,devices,NULL,NULL,NULL); 

 

STEP 8: Create the kernel and set the kernel arguments 

An OpenCL kernel is a function declared in a program. As described before, a kernel is 

identified by the _kernel qualifier applied to any function in a program. By extracting the kernel 

from the cl_program, a cl_kernel object can be used to execute kernels on a device. The API 

function clCreateKernel() is used to create a kernel. The name of the kernel “helper” is passed to 

the function, along with the program object.  

cl_kernel kernel=NULL; 

kernel=clCreateKernel(program,"helper",&status); 

Before the kernel can be actually executed, it needs to be dispatched through an enqueue 

function. Thus, each kernel argument must be specified individually using a call to the API 

function clSetKernelArg(). The code is as follows: 

status=clSetKernelArg(kernel,0,sizeof(int),&L); 

status|=clSetKernelArg(kernel,1,sizeof(int),&N); 

status|=clSetKernelArg(kernel,2,sizeof(float),&nu); 

status|=clSetKernelArg(kernel,3,sizeof(float),&mu); 
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status|=clSetKernelArg(kernel,4,sizeof(cl_mem),&d_Xi); 

status|=clSetKernelArg(kernel,5,sizeof(cl_mem),&d_Yi); 

status|=clSetKernelArg(kernel,6,sizeof(cl_mem),&d_X); 

status|=clSetKernelArg(kernel,7,sizeof(cl_mem),&d_Y); 

status|=clSetKernelArg(kernel,8,sizeof(cl_mem),&d_F); 

status|=clSetKernelArg(kernel,9,sizeof(cl_mem),&d_Bc); 

status|=clSetKernelArg(kernel,10,sizeof(cl_mem),&d_displ); 

status|=clSetKernelArg(kernel,11,sizeof(cl_mem),&d_stress); 

 

STEP 9: Configure the work-item structure 

The unit of concurrent execution of the kernel is a work-item. In other words, the kernel will 

be queued for execution on each work-item of the device. In the OpenCL runtime, the number of 

work-items is decided by the number of the input and output arrays. For the GPU program, the 

kernel will be executed for each one of the exterior points to compute its displacement 

components and stress components. Thus the number of the work-item will be set to the number 

of exterior points. 

Since OpenCL can dispatch vast numbers of work-items and supports execution in fine-

grained work-items, it is valid to have concerns about scalability. In order to achieve scalability, 

the work-items can be divided to smaller, equally sized workgroups. When a kernel is executed, 

the number of work-items is specified as an n-dimensional range, which is NDRange for short. 

The global_work_size parameter specifies the number of work-items in each dimension of the 

NDRange, and local_work_size specifies the number of work-items in each dimension of the 

workgroups. For example, a model with 1002 exterior points, the code is as follows: 

size_t globalWorkSize[1]; 

size_t localWorkSize[1]; 

globalWorkSize[0]=10000; 

localWorkSize[0]=1000; 

 

STEP 10: Enqueue the kernel for execution 
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Executing a kernel on a device requires enqueuing a command through a call to an enqueue 

function clEnqueueNDRangeKernel(). The clEnqueueNDRangeKernel() will return immediately after the 

command is enqueued in the command queue and likely before the kernel has even started 

execution. Thus the function clFlush() can be used to block execution on the host until all of the 

commands in a command queue have been removed from the queue. The code corresponding to 

this is: 

status=clEnqueueNDRangeKernel(queue,kernel,1,NULL,globalWorkSize,localWorkSize,0,NULL,NULL
); 

clFlush(queue); 

 

STEP 11: Read the output buffer back to the host 

Similar to the function clEnqueueWriteBuffer() in step 6, a call to clEnqueueReadBuffer() is 

used to transfer data back from an OpenCL buffer to the host: 

clEnqueueReadBuffer(queue,d_displ,CL_TRUE,0,datadispl,displ,0,NULL,NULL); 

clEnqueueReadBuffer(queue,d_stress,CL_TRUE,0,datastress,stress,0,NULL,NULL); 

 

STEP 12: Release OpenCL resource 

A series of clRelease functions are used to release OpecnCL resources to clean up: 

clReleaseMemObject(d_Xi); 

clReleaseMemObject(d_Yi); 

clReleaseMemObject(d_X); 

clReleaseMemObject(d_Y); 

clReleaseMemObject(d_F); 

clReleaseMemObject(d_Bc); 

clReleaseMemObject(d_displ); 

clReleaseMemObject(d_stress); 

clReleaseKernel(kernel); 

clReleaseProgram(program); 

clReleaseCommandQueue(queue); 

clReleaseContext(context); 
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3.3.2 Creation of the Kernel 

The creation of kernel can be thought of as instance of a parallel map operation. In the GPU 

program, the keyword __kernel is added to the beginning of the functions helper, 

Quad11_Helper and Stress_Helper to declare that they are kernel functions. Similar to C 

functions, they have a return type of void. The pointers in the argument list are required to specify 

the address space. In the function helper, all input and output memory buffers are declared in 

global memory, which are qualified with the keyword __global. That is because the global 

memory is visible to all compute units on the device. It is required by the OpenCL API that any 

data transferred from the host to the device or back from the device to the host must reside in 

global memory. When an OpenCL device begins executing a kernel, it provides intrinsic 

functions to identify the work-items. The call get_global_id(0) is used to specify the position of 

each work-item. Thus, for example, the code of the function helper is as follows: 

__kernel void helper(int L, 

int N, 

float nu, 

float mu, 

__global float* Xi, 

__global float* Yi, 

__global float* X, 

__global float* Y, 

__global float* F, 

__global float* Bc, 

__global float* displ, 

__global float* stress) 

{ 

const int idx=get_global_id(0); 

int idxPlus1; 

int j,kk; 

float dx11,dy11,dx12,dy12,dx22,dy22,sx11,sy11,sx12,sy12,sx22,sy22; 

float H11,H12,H21,H22,G11,G12,G22; 

idxPlus1=idx+1; 

if (idxPlus1<L+1) { 
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for (j=1;j<=N;j++) { 

kk=j+1; 

Quad11_Helper(Xi[idxPlus1],Yi[idxPlus1],X[j],Y[j],X[kk],Y[kk],nu,mu,&H11,&H12,&H21

,&H22,&G11,&G12,&G22); 

displ[2*idxPlus1-1]+=F[2*j-1]*G11+F[2*j]*G12-Bc[2*j-1]*H11-Bc[2*j]*H12; 

displ[2*idxPlus1]+=F[2*j-1]*G12+F[2*j]*G22-Bc[2*j-1]*H21-Bc[2*j]*H22; 

Stress_Helper(Xi[idx+1],Yi[idx+1],X[j],Y[j],X[kk],Y[kk],nu,mu,&dx11,&dy11,&dx12,&d

y12,&dx22,&dy22,&sx11,&sy11, &sx12,&sy12,&sx22,&sy22); 

stress[3*idxPlus1-2]+=F[2*j-1]*dx11+F[2*j]*dy11-Bc[2*j-1]*sx11-Bc[2*j]*sy11; 

stress[3*idxPlus1-1]+=F[2*j-1]*dx12+F[2*j]*dy12-Bc[2*j-1]*sx12-Bc[2*j]*sy12; 

stress[3*idxPlus1]+=F[2*j-1]*dx22+F[2*j]*dy22-Bc[2*j-1]*sx22-Bc[2*j]*sy22; 

} 

} 

} 

 

From the code, we can see that the function helper is similar to the function Inter11 in 

the serial program. They both call other functions to help compute the coefficients H, G and D, S. 

While the difference between them is that the inner loop for (j=1;j<=N;j++) in the function 

Inter11 has been replaced by the loop counter of work-items in the function helper: 

idx=get_global_id(0). Besides, the two help functions Quad11_Helper and Stress_Helper 

are executed on the GPU device as well to avoid needless data transferring between the host and 

the device. 

3.4 Conclusions 

This chapter started with the introduction of the implementation of a BEM program on a 

CPU device of a computer. The subsequent analysis of this BEM program regarding which is the 

most promising part to accelerate, revealed that the execution of the subroutine function 

Inter11 on the OpecnCL device GPU helps the most, since it is computation-bound. Then a 

detailed acceleration implementation through OpenCL functions was introduced together with 

setting up the OpenCL environment and the creation of the kernel. 
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4 GPU Acceleration Verification and Performance Analysis 

This chapter will consider the results of stress analysis and investigate the performance of 

both the serial implementation of the BEM program (on a CPU) and the parallel implementation 

of the BEM program (on a GPU). As a test case, a two-dimensional linear elastic problem was 

used, as follows. Consider the case of a circular excavation subjected to internal pressure 

embedded in an infinite medium, as shown in Figure 4.1. A practical scenario that can be 

represented using this model would be a pressurized supply tunnel for hydro-electric power 

generation. The rock mass properties used were Shear Modulus of G=94500MPa, Poisson Ratio 

v=0.1, the internal pressure was 100kPa. The units in Figure 4.1 were in meters. The input file is 

given in Appendix 2. 

 

Figure 4.1: Circular excavation in an infinite medium (Kythe, 1995). 

The information on the computer hardware, which implements the serial and parallel BEM 

code, is shown in Table 4.1. It should be noted that all sample executions of the code were done 

on this computer. Therefore, it is possible that the acceleration performance may be somewhat 

different for other CPUs and GPUs. 
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Table 4.1: Computing device parameters. 

Device CPU GPU 

Chipset Manufacturer: Intel NVIDIA 

Chipset Model: Core i3-3220 GTX650Ti 

Processor Speed: 3.30GHz 941MHz 

Processor Memory: 8GB 4GB 

 

In the following sections, results will be presented for the implementation of the serial and 

parallel programs for this test case. After collecting the results from each program execution, 

comparisons will be made of the accuracy of the results between serial program and parallel 

program. Then, performance analysis will be conducted regarding to what degree the speedup can 

be made of the acceleration parallel program over the traditional serial program. Studies will also 

be focused on the double precision floating-point implementations of the serial program and 

parallel program. Comparisons of the accuracy and the performance between the single precision 

floating-point implementations and double precision floating-point implementations will be 

presented afterward. In addition, a further study regarding optimizing acceleration performance 

by changing the workgroup structure will be investigated. 

4.1 Verification of Results 

Results in the output files of serial and parallel programs were recorded in the same form, as 

follows: 

Exterior point displacements 
   

Xi        Yi Displacement X Displacement Y 
 

(    4.000000,    0.000000) 0.001202 0 
 

(   14.333333,    0.000000) 0.000335 0 
 

(   24.666666,    0.000000) 0.000195 0 
 

(    4.000000,   11.666667) 0.000126 0.000369 
 

(   14.333333,   11.666667) 0.000202 0.000164 
 

(   24.666666,   11.666667) 0.000159 0.000075 
 

(    4.000000,   23.333334) 0.000034 0.0002 
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(   14.333333,   23.333334) 0.000092 0.00015 
 

(   24.666666,   23.333334) 0.000103 0.000097 
 

… 
   

Exterior point stresses 
   

Xi        Yi X XY  Y 

(    4.000000,    0.000000) -56.834614 0.000006 56.823196 

(   14.333333,    0.000000) -4.423013 0 4.423013 

(   24.666666,    0.000000) -1.493453 0 1.493453 

(    4.000000,   11.666667) 4.717086 -3.665452 -4.717086 

(   14.333333,   11.666667) -0.540047 -2.605036 0.540047 

(   24.666666,   11.666667) -0.774224 -0.943421 0.774224 

(    4.000000,   23.333334) 1.528786 -0.540025 -1.528787 

(   14.333333,   23.333334) 0.547795 -1.080868 -0.547795 

(   24.666666,   23.333334) -0.043754 -0.786964 0.043754 

…    

 

In order to gain valuable insight into result verification, a group of results will be collected 

from executions of both serial and parallel programs. By changing the grid size of exterior points, 

solution results will be computed for each grid size. For the circular excavation case, a set of 

exterior point numbers will be taken into execution. The grid size will be varied from 1002 to 

15002, with increments of 1002. For each grid size, the serial and parallel program will be 

executed and to create an output file, which contains the solution results. Then, a comparison can 

be made for every exterior point between the serial program and GPU accelerated program. 

Taking the point (4.000000, 0.000000) in the grid of 1002 as an example, the solution results are 

shown in Table 4.2: 
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Table 4.2: Solution results of point (4.000000, 0.000000) in the 1002 grid. 

   Displacement X Displacement Y X XY Y 

Serial 0.001202 0.000000 -56.834614 0.000006 56.823196 

GPU 0.001202 0.000000 -56.834629 0.000008 56.823200 

Absolute 

difference 
0 0 0.000015 0.000002 0.000004 

 

It can be observed from Table 4.2 that for the exterior point (4.000000, 0.000000), the 

absolute difference at stress X is 0.000015, the absolute difference at stress XY is 0.000002 and 

the absolute difference at stress Y is 0.000004. Based on these comparisons, an assumption is 

brought out that solution values computed on CPU have little difference with the values 

computed on GPU. In order to prove this assumption, we need to calculate the maximum 

difference between the serial solution and GPU solution for all the exterior points, thus the L-

infinity (L∞) Norm measurement (Cadzow, 1973) is taken into consideration. The L∞ Norm is 

defined by 

‖𝑥‖∞ = 𝑚𝑎𝑥[|𝑥(1)|, |𝑥(2)|,⋯ , |𝑥(𝑛)|].  (4.1) 

In the comparison, each vector has a difference between the serial solution and the parallel 

solution for every single exterior point. Applying the difference into the L∞ Norm measurement, 

we can calculate the maximum absolute difference for vectors Displacement X, Displacement Y, 

X, XY and Y respectively for all the exterior points. Measurement is worked out through 

various exterior point model sizes, from 1002 to 15002, and the data collected is shown in Table 

4.3. 

If the numbers in Table 4.3 just give an idea of the difference between the serial solutions 

and the parallel solutions, the bar chart in Figure 4.2 presents a more visual demonstration of the 

previous assumption. The bar chart in Figure 4.2 is drawn from Table 4.3. From the bar chart in 

Figure 4.2, we can observe that the differences in vectors Displacement X and Displacement Y are 

at the lowest level, which was 0.000001m, where the solution value was 0.000102m; the greatest 

difference belongs to the vector X, which was 7.2E-05MPa, where the solution value was 

−53.445778MPa. Comparing the differences to the solution values, it is clear that the difference 

will not affect the accuracy of the solution results. To conclude, the assumption is proved that the 
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solution results computed from the accelerated parallel program on GPU have little difference 

with the traditional solution results in serial program. 

 

Figure 4.2: Bar chart of L∞ Norms reflecting differences in solution vectors for various model sizes. 

 

Table 4.3: L∞ Norms of difference between serial solution and parallel solution. 

Single precision L∞ Norm 

Model size Displacement X Displacement Y X XY Y 

100² 0.000001 1E-06 4.2E-05 1.5E-05 8E-06 
200² 0.000001 1E-06 4.2E-05 1.5E-05 1.2E-05 

300² 1E-06 1E-06 4.2E-05 1.7E-05 1.5E-05 

400² 1E-06 1E-06 5.4E-05 1.5E-05 1.9E-05 

500² 1E-06 1E-06 7.2E-05 2.3E-05 1.6E-05 
600² 1E-06 1E-06 4.9E-05 1.9E-05 1.6E-05 

700² 1E-06 1E-06 5.8E-05 2.5E-05 2E-05 
800² 1E-06 1E-06 5.4E-05 1.9E-05 1.9E-05 
900² 1E-06 1E-06 5E-05 2.1E-05 1.9E-05 

1000² 1E-06 1E-06 7.2E-05 2.3E-05 1.9E-05 

1100² 1E-06 1E-06 4.2E-05 1.9E-05 2E-05 
1200² 1E-06 1E-06 5.4E-05 2.4E-05 1.9E-05 
1300² 1E-06 1E-06 5.4E-05 2.3E-05 2.3E-05 
1400² 1E-06 1E-06 5.8E-05 2.5E-05 2E-05 

1500² 1E-06 1E-06 7.2E-05 2.3E-05 1.9E-05 
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4.2 Performance Analysis 

The performance of the accelerated parallel program running on a GPU is the most essential 

concept in this thesis. Theoretically, the parallel program based on GPU will have a much greater 

performance than the traditional serial program. In other words, parallel program will run faster 

than serial program when computing same number of exterior points for the same test case. Since 

it is verified in the previous section that the accuracy of the accelerated parallel program is as 

credible as the traditional serial program, comparison of the performance between these two 

programs will be carried out in this section.  

The performance of a program can be measured in an easy way, which is through its 

execution speed (the time it takes to compute the results). In order to verify that the parallel 

program run faster than serial program, the circular excavation test case was taken as an example. 

In this case, boundary conditions (for example: traction component or displacement component) 

of boundary points are known in advance. In order to obtain the factor of safety of this circular 

excavation, we need to compute the stress components and displacement components for 

arbitrary points surrounding the circular excavation in the rock mass.  

For the beginning of the performance comparison, the traditional BEM program was used to 

compute the data at field points, which the program execution time depends on the number of 

field points. Executing the serial program with the input file of the circular excavation case, the 

execution time will be recorded by an intrinsic time function. By varying the number of field 

points from 1002 to 15002 with an increment of 1002, an upward stretching plot of the execution 

time is presented, as Figure 4.3 shows. For accuracy and repeatability considerations, this data is 

the average of 10 executions of the program. From Figure 4.3, it is observed that the processing 

time of computing field points for model size 1002 is 0.6949 seconds, which takes the least time; 

and the processing time for model size 15002 takes longest time, which is 136.9145 seconds. 
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Figure 4.3: Processing time of computing field points in serial for the circular excavation case. 

Then, the second step of the performance measurement was done, to execute the parallel 

program for the circular excavation case. Similar to the previous scenario of executing serial 

program, the variation of the computing field point model size was from 1002 to 15002, with an 

increment of 1002. For each model size, the program was executed for 10 times, as well. The 

average number of these 10 runs was taken and a plot of processing time versus model size was 

drawn, as Figure 4.4 shows. From Figure 4.4, it is seen that the processing time of GPU 

computing the field points for model 1002 was 0.0037 seconds, and the processing time for model 

15002 was 0.2378 seconds, which was the longest time in this group of tests. Comparing it to the 

serial processing time for the same sized models, either the 0.0037 seconds for 1002-sized model 

or the 0.2378 seconds for 15002-sized model in GPU executions are much faster than the 0.6949 

seconds for 1002-sized model and 136.9145 seconds for 15002-sized model in serial executions. It 

is clear from this data that the GPU computing is much faster than the traditional serial 

computing on a CPU. 

In order to present the effect of acceleration for GPU computing in an intuitive way, we can 

take the ratio of serial computing time over GPU computing time as the ordinate axis and the 

model size (square root of the number of points) as the abscissa axis to draw a plot. Figure 4.5 

shows the plot, which displays the relationship between GPU speedup and the model size. From 

Figure 4.5, it is evident that the effect of accelerating for GPU computing has shown an upward 

trend with the increasing of model size. The basic speedup ratio of GPU computing over serial 
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computing is 187.81 when the model size is 1002 field points. The highest speedup ratio reaches 

579.43 for the field point model size of 10002. Moreover, a stable asymptotic effect can be 

achieved around 570 of the speedup ratio when the size of the field points is larger than 4002.  

 

Figure 4.4: Processing time of computing field points on GPU for the circular excavation case. 

 

 

Figure 4.5: Speedup of GPU computing over serial computing for the circular excavation case. 
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4.3 Performance Testing Using Double-Precision Floating Point Numbers 

In spite of the remarkable speedup of the GPU computing over the serial computing in the 

former performance test, another group of trial runs was done to take into consideration the 

difference between single-precision floating point numbers replaced with double-precision 

floating point numbers, since single-precision in numerical computing sometimes cannot provide 

sufficient accuracy compared to double-precision. The objective of this group of tests was to 

prove that the speedup of the GPU computing over the serial computing is also practical for 

double-precision numerical computation. 

To start this group of tests, a result verification is needed. Double-precision solutions are 

computed from both serial program and parallel program, so that comparisons can be made 

between serial solutions and parallel solutions. Similar to the previous scenario where verified 

results in single precision, the L∞ Norm measurement was used again to measure the difference 

between serial double-precision solutions and the parallel ones. The maximum absolute 

difference for solution vectors Displacement X, Displacement Y, X, XY and Y were calculated 

respectively by using the L∞ Norm measurement. Because of the memory limitation of the GPU 

computation capability, the computational model size was restricted to 8002 field points. 

Therefore, the exterior point model size was varied from 1002 to 8002, with increments of 1002. 

After calculating, the results of measurement were collected and displayed in Table 4.4, which 

shows the maximum absolute differences for five vectors for different model size executions. 

Based on Table 4.4, a bar chart was drawn to give a clearer view of the differences between 

double-precision serial solutions and double-precision parallel solutions. As Table 4.4 and Figure 

4.6 show, solution results computed from the double-precision serial program are exactly the 

same (within machine precision) as the solution results from double-precision parallel program 

when computing Displacement X and Displacement Y for the model size smaller than 5002; while 

the maximum difference was only 0.000002MPa for larger models (for the stress values), where 

the solution value was −55.098878MPa. These measurement results have convincingly 

demonstrated the accuracy of the parallel program in double-precision. 
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Table 4.4: L∞ Norms of differences between double precision serial solutions and double-precision parallel 

solutions. 

Double precision L∞ Norm 

Model size Displacement X Displacement Y X XY Y 

100² 0 0 2E-06 2E-06 2E-06 

200² 0 0 2E-06 2E-06 2E-06 

300² 0 0 2E-06 2E-06 2E-06 

400² 0 0 2E-06 2E-06 2E-06 

500² 1E-06 1E-06 2E-06 2E-06 2E-06 

600² 1E-06 1E-06 2E-06 2E-06 2E-06 

700² 1E-06 0.000001 2E-06 2E-06 2E-06 

800² 1E-06 1E-06 2E-06 2E-06 2E-06 

 

 

Figure 4.6: Bar chart of L∞ Norms reflecting differences in double-precision solution vectors for various 

model sizes. 

After verifying the accuracy of the solution results, the performance analysis can be 

continued to see whether the parallel program can accelerate the traditional serial program even 

in double-precision. The single-precision floating point input data in the serial program were 

transferred into double-precision floating point format. Then the input file of the circular 

excavation case was used to execute the serial program. By varying the model size of the exterior 

points, the serial program was executed. For accuracy and repeatability considerations, the 

program was executed for 10 times for each model size, and an average number of the execution 
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time was taken. The model size of the exterior points was varied from 1002 to 15002, with 

increments of 1002. A two-dimensional plot was drawn with the model size as the abscissa and 

the processing time as the ordinate, as shown in Figure 4.7. From the upward extended stretching 

plot, it is evident that the lowest point was at (100, 0.4296), meaning the serial program takes the 

shortest time (0.4296 seconds) when the exterior point number is 1002; and the highest point was 

at (1500, 85.3708), meaning the processing time of serial program was 85.3708 seconds, when 

the exterior point number was 15002. 

 

Figure 4.7: Processing time of serial program in double-precision vs. square root of model size. 

The following step of this group of performance tests was to measure the speed of the 

parallel program. By varying the number of the exterior points, the parallel program was 

executed for several times and the speed of each execution was measured. Similar to serial 

program, the parallel program was executed 10 times of each model size for accuracy and 

repeatability considerations. An average execution time was taken as the final processing time for 

each model size. However, due to the limitations of computing capability of the current GPU 

device, the model size was restricted to be less than 8002. So the varying model size was adjusted 

from 1002 to 8002, with increments of 1002. Figure 4.8 displays an upward-stretching plot drawn 

from the test results, which reflects the relation between the processing time of parallel program 

in double-precision and the model size. It is clear in Figure 4.8 that the execution of parallel 

program takes the least time (0.0343 seconds) when computing 1002 exterior points and the 

longest time (1.7586 seconds) when computing 8002 exterior points. 
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Figure 4.8: Processing time of parallel program in double-precision vs. square root of model size. 

The speedup of GPU computing over serial computing in double-precision can be expressed 

with a plot, which is shown in Figure 4.9. The plot describes the relation between the speedup 

ratio of serial program processing time and the parallel program processing time and the model 

size. It is shown in Figure 4.9 that the lowest speedup is 12.52 when the model size is 1002; the 

highest speedup is around 15 for other models, with the speedup declining for larger model sizes.  

 

Figure 4.9: Speed up of parallel program over serial program both in double-precision for the circular 

excavation case. 
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Compared to the steady speedup of 570 in single-precision, the 15-times speedup in double-

precision is kind of unimpressive at first. Though the speedup of this group of tests is not as 

significant as the previous one, it does prove that the parallel computing on GPU can accelerate 

the traditional serial computing even in double-precision. On the other hand, the accuracy 

verification between single-precision and double-precision shows obvious difference. From Table 

4.3 and Figure 4.2, it is observed that the biggest difference in single-precision solutions is 7.2E-

05. However, the biggest difference in double-precision solutions is only 0.000002, which can be 

found from Table 4.4 and Figure 4.6. The accuracy difference between single-precision and 

double-precision has precisely proved that double-precision improves accuracy in numerical 

computation as compared to single-precision. The reason that caused this performance result may 

come from the computing device. For most CPUs, the double-precision computation ability is 

better (more efficient) than the single-precision. On the contrary, most GPU devices show 

remarkable computation ability in only single-precision instead of double-precision. This is by 

design, since the primary purpose of a GPU is to accelerate 3D graphics, for which single-

precision is sufficient, so for that purpose there is no benefit to design circuitry for efficient 

double-precision computation. 

4.4 OpenCL Performance Optimization for Work-item Structures 

In the previous sections, the feasibility of accelerating performance through parallel 

computing was presented and analyzed. But the acceleration performance was perhaps not the 

optimum with single-precision and double-precision. One question arose on whether there are 

other factors that may affect the acceleration performance. Therefore, a further study concerning 

acceleration performance evaluation was brought forward. 

It is mentioned in Chapter 3, that there are two parameters in the functions where the 

OpenCL environment is set up, that can be investigated in further detail. These two parameters 

are local_work_size and global_work_size. The global_work_size parameter specifies the number of 

work-items in each dimension of the NDRange, and local_work_size specifies the number of 

work-items in each dimension of the workgroups. Organizing work-items into smaller, equally-

sized workgroups leads to achieving scalability. The workgroups divides the global index space 

to exactly even spans and provides more coarse-grained distributions of the index space. The 
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advantages for work items within a workgroup are that: barrier operations to synchronize can be 

achieved and space address memory can be shared among work items identified with same work-

group ID.  

A hypothesis was build that the workgroup size can affect the acceleration performance. In 

order to verify this hypothesis, a number of tests were conducted by executing the single-

precision circular excavation case.  

The first test of trial run was for the model size of 1002. Because the number of work-items 

was decided by the number of the input and output arrays in the OpenCL runtime, so that the 

global_work_size parameter was 1002. According to the OpenCL runtime specifications, the 

global_work_size must be evenly divided by the local_work_size; in other words, the workgroup 

number must be an integer. Table 4.5 lists several applicable local_work_size, with their 

corresponding workgroup numbers.  

Table 4.5: Applicable local_work_size and corresponding workgroup numbers for model size of 1002. 

Global work 

size 
Local work size 

Workgroup 

number 

10000 100 100 

10000 200 50 

10000 250 40 

10240 256 40 

10000 400 25 

10000 500 20 

10240 512 20 

10000 625 16 

10000 1000 10 

10240 1024 10 
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Figure 4.10: Processing time of parallel program versus local work size for model size of 1002. 

After applying the local_work_size into the function and executing the parallel program 

respectively, a number of processing times were recorded. Based on these numbers, a scatter 

diagram of local work size versus processing time was drawn, as Figure 4.10 shows. From the 

diagram, it is shown that there are fine distinctions of the processing time when the local work 

size are different. The program’s performance was a little faster at the local work size of 256, 500, 

1000 and 1024. 

Same trial executions were implemented for the model sizes of 3002, 5002, 7002, 10002 and 

15002 as well. A set of plots reflects the local work size versus processing time for different 

model sizes, as shown in Figure 4.11. From the five diagrams, it can be discovered that the all the 

scatter diagrams have a same shape, which means that the parallel program keeps a stable 

performance. It is observed from the diagrams that the program runs faster at local work size 256, 

512 and 1024 than others. If we sum all the processing time and keep the local work size the 

same, another diagram can be generated (Figure 4.12), which shows the overall processing time 

versus local work size. Form Figure 4.12, it is clear that the shortest processing time summation 

were 0.462 seconds, 0.466 seconds and 0.465 seconds when the local work size were 256, 512 

and 1024, respectively.  
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Figure 4.11: Processing time of parallel program versus local work size for different model sizes. 
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Figure 4.11 (continued): Processing time of parallel program versus local work size for different model 

sizes. 
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Figure 4.12: Overall processing time of parallel program versus local work size for model size of 1002, 

3002, 5002, 7002, 10002 and 15002. 

In conclusion, the workgroup structure does affect the acceleration performance of parallel 

program, though the effect is not as severe as the difference between parallel program and serial 

program. For a recommendation, the parameter local_work_size can be set to a proper number of 

a power of 2, such as 256, 512 and 1024, in further studies. 

4.5 Conclusion 

This chapter has presented a detailed execution of the BEM code for a two-dimensional 

circular excavation case, which was implemented for both the traditional serial program on CPU 

and the accelerated parallel program on GPU. Through the solution results of the circular 

excavation case from these two programs, the accuracy of the parallel program has been verified. 

At the same time, the accuracy of the double-precision implementation has been verified as well. 

Followed by the presentation of diagrams, which show how much speedup the parallel program 

can get over the serial one, and for both the single- and the double-precision formats. Later, a 

study of whether the workgroup structure can affect the acceleration performance has been 

developed, from which it was concluded that a proper local_work_size parameter was about 256 

or 512 or 1024. 
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5 Application of GPU Acceleration to Practical Problems 

In Chapter 4, the speedup of using parallel computing on a GPU was demonstrated for a 

particular example; a circular excavation. This chapter will present the implementation results of 

two other practical problems to see how much of a speedup they can achieve. First of all, an 

introduction of the two problems will be given. After that, both the traditional serial program and 

the GPU-accelerated parallel program will be executed for these problems respectively. Similar 

to the previous chapter, metrics will be used to assess the solution results and record the 

processing speed. Based on these results, performance analysis will be conducted on the 

acceleration effects. 

5.1 Sample Problems 

The first model problem considered (Case 1) is a two-dimensional horseshoe shaped 

excavation, representing a tunnel, excavated from a rock mass. As Figure 5.1 shows, the 

coordinates of the boundary nodes are given in the input file of this case (please see Appendix 2), 

with the units in meters, as well as relevant traction or displacement components of the boundary 

nodes. The rock mass properties used were Shear Modulus G=94500MPa, Poisson Ratio v=0.1. 

The displacement components and vector components of the rock mass around this excavation 

are needed to be computed.  

 

Figure 5.1: Horseshoe shaped excavation (Case 1). 
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Among the great majority of rock engineering works and underground excavations, a tunnel 

shaped as horseshoe is very common, for example, the Frejus road tunnel which links the city of 

Modane in France and the city of Bardonnechia in Italy was built using this horseshoe shape; the 

Sidi Mezghiche tunnel was constructed with a horseshoe shaped cross-section, close to the city of 

Sidi Mezghiche in Algeria (Panet, 1996). But before these kinds of projects being construction, a 

safety evaluation of stresses and displacements must be performed. This evaluation is done using 

the application of the numerical computations to solve the displacements and stresses in the 

project area. The traditional serial BEM program is one of the procedures to solve the problem. 

Based on the solution results worked from the serial program for the horseshoe shaped case, a 

layout plan of the displacements of the exterior points for model size of 1002 and 5002 are shown 

in Figure 5.2 and 5.3, respectively. From the figures, it can be found that the largest 

displacements are around the excavation (orange/red area). Using a finer grid, a more accurate 

solution results can be obtained. However, if the finer the grid size is chosen, the longer the 

processing time will be for the traditional serial BEM program. That’s why we are seeking an 

acceleration procedure with the parallel computing on GPU, since efficiency values a lot in 

today’s consulting engineering offices. From Figure 5.8, it can be found that the parallel 

computing processing time of Case 1 for the grid size of 5002 was only 0.0333 seconds; while in 

Figure 5.7, the traditional serial computing processing time was as long as 18.0872 seconds for 

the same grid size.  
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Figure 5.2: Layout plan of the displacements of exterior points for model size of 1002. 
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Figure 5.3: Layout plan of the displacements of exterior points for model size of 5002. 

Similarly, the second problem (Case 2) is a two-dimensional underground cavern; the cross-

section of the cavern is shown in Figure 5.4. The coordinates of the boundary nodes are shown on 

the figure, with the units in meters. Values of the traction components or displacement 
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components of the boundary nodes are given in the input file of this case as well (please see 

Appendix 2). Other parameters of rock mass properties used were Shear Modulus G=94500MPa, 

Poisson Ratio v=0.1, the internal pressure was 1MPa. In order to work out the factor of safety for 

this cavern, we need to calculate the displacements and stresses in the rock around the cavern.  

 

Figure 5.4: Underground cavern (Case 2). 

A practical usage of Case 2 is represented by underground hydroelectric power stations. 

More and more underground caverns were excavated in recent years with the general 

considerations in advantages of underground caverns, for example: economy, safety of operation, 

and protection against damage and water conservation. Several studies were developed of the 

rock mass behaviour to check the stability of underground caverns. (Dhawan et al., 2004) used 3-

D FEM to simulate underground caverns in Koyna hydroelectric project which is located in 

Maharashtra of India; (Franco et al., 1997) investigated the rock mass conditions of underground 

caverns in the Serra da Mesa Hydroelectric Power Plant which located in the Tocantins River in 

Brazil, with operating laboratory and in-situ tests; (Xia et al., 2007) studied the stability of an 
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underground power cavern constructed in Xiaolangdi Multipurpose Dam Project of China, using 

FEM. 

In this chapter, 2-D stress analysis for underground cavern (Case 2) was conducted with the 

traditional serial BEM program and the accelerated parallel BEM program. From the results of 

these two programs, layout plans of the shear strengths (XY) of exterior points in Case 2 were 

generated in Figure 5.5 and 5.6. Figure 5.5 shows the layout plans of the shear strengths for 1002-

sized exterior points and Figure 5.6 shows the layout plans of the shear strengths for 5002-sized 

exterior points. It can be found in Figure 5.5 that the most overstressed points were distributed in 

the upper boundary of this cavern (in orange and red area), while the clearer details can be found 

in Figure 5.6 that almost all the points near the boundary of the caver were overstressed. The 

difference between the 1002-sized model and the 5002-sized model is so obvious, that it 

demonstrated the necessity in having a larger-sized model in stress analysis. Therefore, an 

acceleration method for executing the stress analysis with a relatively large-sized model seemed 

important as well. 
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Figure 5.5: Layout plan of the shear strengths of exterior points for model size of 1002 in Case 2. 
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Figure 5.6: Layout plan of the shear strengths of exterior points for model size of 5002 in Case 2. 

 



84 
 

5.2 Performance of GPU Acceleration for Practical Problems 

In this section, the performance of both the serial and the parallel program will be 

demonstrated for Case 1 and 2. The objective of this section is to verify the acceleration effect of 

the parallel program over the traditional serial program; therefore all the executions will be done 

using single-precision floating point numbers. In addition, the parameter local_work_size in the 

parallel program is set to 1024, since it was demonstrated in Chapter 4 that such number appears 

to be optimum to keep the parallel program with the highest performance. 

The performance analysis for Case 1 will be presented first. The traditional serial program 

was executed with the input file of Case 1. By varying the model size of the number of exterior 

points, for example, from 1002, 2002 … 15002 with the increments of 1002, the serial program 

was executed for each model size, and the execution time was recorded. After ten times 

executions for each model size, an average number of the processing time was calculated for 

accuracy and repeatability considerations. Based on these values of processing time, a plot, which 

reflects the relation of processing time and square root of model size, can be drawn, as Figure 5.7 

shows. It was observed in the plot that the relation of processing time and square root of model 

size has an exponential function shape. The processing time takes longer as the model size 

increases. That is because the processing time is connected to the size of computing grid in serial 

computing. The next process is to execute the parallel program for the various model sizes and to 

record the speed for each execution. Similar to the serial execution, the model size considered 

were from 1002, 2002 … 15002 with the increments of 1002; and for each model size the program 

was executed ten times for accuracy and repeatability considerations. According to the average 

values of processing time, a line was drawn, as seen in Figure 5.8, which reflects the relation of 

the processing time and the square root of model size. The processing time increases with the 

growing model size. While the longest time for the model size 15002 was 0.2697 seconds, which 

is faster than the 156.9863 seconds for the same model size for the serial case. 
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Figure 5.7: Processing time of serial computing vs. square root of model size for horseshoe shaped 

excavation (Case 1). 

 

 

Figure 5.8: Processing time of parallel computing vs. square root of model size for horseshoe shaped 

excavation (Case 1). 

 

The speedup of the parallel program over the serial program for Case 1 can be expressed as 

the ratio of the parallel processing time over the serial processing time. The relation of the 

speedup ratio to the square root of model size was drawn with a line in Figure 5.9. The shape of 

this line is like an exponential function, and the trend keeps rising as the model size increase. The 

lowest speedup ratio for Case 1 was 215.43 for model size of 1002, while the highest speedup 
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ratio was 582.08 for the model size of 15002. A steady, asymptotic speedup was reached around 

560 for the model size of 4002 field points and larger ones.  

 

Figure 5.9: Speedup of the parallel computing over the serial computing for the horseshoe shaped 

excavation (Case 1). 

The process of verifying the acceleration effect of parallel program over serial program for 

Case 2 followed the same procedure as for Case 1. The model size of computing exterior points 

(or field points) was varied from 1002, 2002 to 15002, with 1002 increments. For each model size, 

the serial program was executed for 10 times to get a more accurate number for the processing 

time. From the 10 numbers of each model size, an average number was calculated as the final 

value of the processing time. Thus, a line was generated in Figure 5.10, which shows the 

variation of processing time versus square root of model size for Case 2. The processing time 

shows an upward trend with the increase in the model size. The shortest processing time was 

0.9109 seconds when the model size was 1002; and the longest processing time was 190.9998 

seconds when the model size was 15002. The next step was to execute the parallel program with 

the input file of Case 2. The model size was varying from 1002 to 15002 with every 1002, as 

before. Also, the parallel program was run 10 times for each model size to count the processing 

times. After an average processing time was calculated for each model size, the line was drawn, 

0

100

200

300

400

500

600

700

0 500 1000 1500

R
at

io
 o

f 
S

er
ia

l 
ti

m
e 

o
v
er

 G
P

U
 t

im
e

sqrt(Model Size)



87 
 

as seen in Figure 5.11. The line shows the variation of the processing time and the square root of 

model size. From Figure 5.11, it can be observed that the shortest processing time was 0.0034 

seconds when the model size was 1002; and the longest processing time was 0.3225 seconds 

when the model size was 15002.  

 

Figure 5.10: Processing time of serial computing vs. square root of model size for cavern (Case 2). 

 

 

Figure 5.11: Processing time of parallel computing vs. square root of model size for cavern (Case 2). 
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of model size is shown in Figure 5.12. The line in Figure 5.12 displays an upward trend with the 

increase of the model size. For the model size of 1002, the speedup ratio was 267.91, which is the 

smallest acceleration performance; while the highest speedup was 594.16 when model size was 

10002. A stable acceleration performance was achieved with the speedup ratio at around 580 for 

model sizes 4002 and larger. 

 

Figure 5.12: Speedup of the parallel computing over the serial computing for the cavern (Case 2). 

In conclusion, the acceleration performance for the horseshoe shaped excavation case (Case 

1) and the underground cavern (Case 2) was successfully demonstrated. For Case 1, the steady 

speedup was about 560 for model sizes 4002 and larger; for Case 2, the steady speedup was 

achieved around 580 for model sizes 4002 and larger. 
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6 Conclusions and Recommendations 

This thesis was devoted to the study, development and analysis of an acceleration method 

using GPUs for computing, in parallel, the stresses and displacements around underground 

excavations using the BEM. An acceleration parallel algorithm was developed, which executed 

on a GPU using the OpenCL framework, based on the traditional serial BEM algorithm for 

computing field quantities. After a number of practical testing examples using the traditional 

serial BEM approach and the accelerated parallel BEM version, some conclusions were derived 

in the following section. Several recommendations are brought out as well for the future work. 

6.1 Conclusions 

The results from the traditional serial BEM algorithm and the accelerated parallel BEM 

algorithm tests can be summarized as follows: 

1) Solution results from the accelerated parallel BEM algorithm have accuracy comparable to 

that of the serial algorithm for both single and double-precision computation. The maximum 

absolute difference of the solution results between the parallel program with single-precision 

and the serial program with single-precision was found to be quite low (7.2E-05). Similarly, 

the maximum absolute difference of the solution results between parallel program with 

double-precision and the serial program with double-precision was even smaller (2E-06). 

Thus there is no substantial loss of accuracy of running stress analysis on GPUs. 

2) The accelerated parallel BEM algorithm has an impressive speedup over the serial 

implementation. For single-precision performance, the highest speedup ratio was up to 

594.16 (for the cavern case). With finer computing grid size, the acceleration effect was even 

more pronounced. A stable speedup ratio was reached at 550 when the computing grid size 

was 4002 and finer (e.g. more field points). For double-precision performance, the highest 

speedup ratio was 15.35; and a stable speedup ratio of around 14 was achieved. 

3) On the GPUs, the size of workgroups (e.g. the number of concurrent threads) can affect the 

execution times. It was found that for the BEM algorithm, the values for the parameter 

local_work_size can be set to a power of 2, such as 256, 512 or 1024, for a better acceleration 
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performance in the accelerated parallel BEM program with the OpenCL environment. The 

parameter global_work_size in the accelerated parallel BEM program must be set as a number 

equal or larger than the total number of the computing grid size, according to the 

requirements in OpenCL documentation. 

4) In order to use the parallel computing capacity of the GPU, a powerful discrete graphics card 

is needed, instead of some integrated graphics card, which built inside a laptop, for example. 

It is anticipated that dedicated OpenCL cards could achieve an even greater speedup, see 

item 4 in the next section. 

5) The acceleration method based on the parallel computing ability of GPUs is perfectly 

applicable to the BEM. This is because the independence of the BEM algorithm in 

computing quantities at the exterior points, as demonstrated in Chapter 3.  

6) The performance speed of the traditional serial BEM program is most affected by the 

computing grid size. The processing time of the traditional serial program shows a quadratic 

upward trend with the increase of computing grid size. 

7) The syntax in OpenCL is similar to C++, and the programming of OpenCL functions follows 

a fixed pattern, which makes it simple to master for programmers. 

6.2 Recommendations for Future Work 

In this thesis, the acceleration method of the traditional serial BEM algorithm was developed 

exploiting the massively parallel computing ability of modern GPUs. With the fast advancement 

of the computing and programming ability of GPUs in the past two decades, more and more 

research interest will be attracted into the acceleration performance. Therefore, several 

recommendations based on the study in this thesis could be given: 

1) The practical problems used in this thesis are only two-dimensional examples. More complex 

real-world problems for underground excavations in 3D could benefit from the acceleration 

of a 3D BEM program, if suitable algorithms are developed.  

2) In this thesis, the performance of the accelerated parallel BEM program using double-

precision floating point numbers was limited with a computing grid size of 8002. This was 
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because the current NVIDIA GTX 650Ti GPU is not the most powerful device compared the 

newly developed ones. Perhaps further research may be focused on the performance using 

double-precision as more sophisticated equipment with a more powerful GPU device 

becomes available. 

3) The platform, which executed the program on GPU was via OpenCL. Although the OpenCL 

is easy for programmer to handle, there are other platforms that can program the GPU, such 

as CUDA from NVIDIA. In a future research, comparisons can be made with the results and 

performance between different platforms. 

4) Dedicated OpenCL cards, such as NVIDIA’s Tesla GPUs could achieve an even greater 

speedup, which should be investigated in the future. 
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Appendix 1 

 

Serial BEM Code: 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <time.h> 

#include "cbox11.h" 

 

int main() 

{ 

clock_t start, end; // performance timing 

double timeSamples[10];  

/*[The lengths of arrays has been increased by one, first one is not used ]*/ 

int Code[101],Dim,NN; 

float X[52],Y[52],Xm[51],Ym[51],*Xi,*Yi,Bc[101],F[101]; 

float G[101][101],H[101][101],D,*stress,*displ; 

Dim=100; /*[Dim = Max dimension of the system AX = F]*/ 

int i,j; // model field point sizes 

int Lx=100; 

int Ly=100; 

L=Lx*Ly; 

size_t interiorPointsSizeT=(L+1)*sizeof(float); 

Xi=(float*)malloc(interiorPointsSizeT); 

Yi=(float*)malloc(interiorPointsSizeT); 

stress=(float*)malloc(3*interiorPointsSizeT); 

displ=(float*)malloc(2*interiorPointsSizeT); 

Input11(Xi,Yi,X,Y,Code,Bc); /*[ Read Data ]*/ 

for (i=0;i<Ly;++i) {   

for (j=0;j<Lx;++j) { 

Xi[Ly*i+j+1]=4.0f+(35.0f-4.0f)*j/Lx; 

Yi[Ly*i+j+1]=0.0f+(35.0f-0.0f)*i/Ly;  

}  
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} 

Sys11(X,Y,Xm,Ym,G,H,Bc,F,Code,Dim); /*[ Compute matrices G and H and form the system AX = F  

]*/  

NN=2*N; /*[Solve the system AX = F ]*/  

Solve(G,F,&D,NN,Dim); 

 

for (int ii=0;ii<1;ii++) { 

start=clock(); 

Inter11GPU(Bc,F,Code,Xi,Yi,X,Y,stress,displ); /*[ Compute stress and displacement at 

interior points ]*/ 

end=clock(); 

timeSamples[0]=(double)(end-start)/CLOCKS_PER_SEC; 

printPerfStats(timeSamples);  

} 

Out11(Xm,Ym,Bc,F,Xi,Yi,stress,displ); /*[Output solution at boundary nodes and interior 

Points ]*/ 

free(Xi); 

free(Yi); 

free(stress); 

free(displ); 

return (0); 

} 

 

void Input11(float* Xi, float* Yi, float X[52], float Y[52], int Code[101], float Bc[101])  

{ 

int i,lnsize,Lo; //NN,Dim,k,j 

FILE *infile,*outfile; 

char line1[100]; // Title[80], 

lnsize=120; 

printf("\nEnter the name of the input file:"); 

scanf("%12s", inname); 

printf("\nEnter the name of the output file:"); 

scanf("%12s", outname); 

infile=fopen(inname,"r"); 

outfile=fopen(outname,"w"); 

fgets(line1,lnsize,infile); 
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fprintf(outfile,"%s \n",line1); 

fprintf(outfile,"Input \n"); 

fscanf(infile,"%d %d %d",&N,&Lo,&M);  

fprintf(outfile,"\nNumber of Boundary Elements = %2d \n",N); 

fprintf(outfile,"Number of Interior Points = %2d \n",L); 

for (i=1;i<=5;i++) { 

fscanf(infile,"%d",&Last[i]);  

} 

fscanf(infile,"%f %f",&mu,&nu); 

fprintf(outfile, "\nShear Modulus = %10.4f \n",mu); 

fprintf(outfile,"Poisson Ratio = %10.4f \n",nu); 

if (M>0) { 

fprintf(outfile,"Number of different Boundaries = %d\n\n",M); 

for (i=1;i<=M;i++) { 

fprintf(outfile,"Last node on  boundary%2d = %2d\n\n",i,Last[i]);  

}  

} 

/*[ Read coordinates of extreme points ]*/ 

fprintf(outfile,"\nCOORDINATES OF EXTREME POINTS OF THE BOUNDARY ELEMENTS\n"); 

fprintf(outfile,"\n\nPoint      X        Y\n"); 

for (i=1;i<=N;i++) { 

fscanf(infile,"%f %f",&X[i],&Y[i]); 

fprintf(outfile,"%2d  %10.4f \t %10.4f \n",i,X[i],Y[i]);  

} 

/*[Read boundary conditions in Bc vector. If Code[i] = 0, the Bc[] value is a prescribed 

displacement; if Code[] = 1, the Bc[] value is a prescribed traction. ]*/  

fprintf(outfile,"\nBoundary Conditions\n\n"); 

fprintf(outfile," Prescribed Value   Prescribed Value\n"); 

fprintf(outfile,"Node   X-direction Code Y-direction Code\n"); 

for (i=1;i<=N;i++) {  

fscanf(infile,"%d %f %d %f",&Code[2*i-1],&Bc[2*i-1],&Code[2*i],&Bc[2*i]); 

fprintf(outfile,"%2d \t %10.4f \t\t %2d \t %10.4f \t\t %2d\n",i, Bc[2*i-1],Code[2*i-

1],Bc[2*i],Code[2*i]);  

}       

for (i=1;i<=80;i++) { 

fprintf(outfile,"*");  
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} 

fprintf(outfile,"\n"); 

fclose(infile); 

fclose(outfile); 

} 

 

void Inter11GPU(float Bc[101], float F[101], int Code[101], float* Xi, float* Yi, float X[52], 

float Y[52], float* stress, float* displ)  

{ 

int NN,i,j,k,kk,found; 

float temp,dx11,dy11,dx12,dy12,dx22,dy22,sx11,sy11,sx12,sy12,sx22,sy22; 

float H11,H12,H21,H22,G11,G12,G22; 

found=0; 

// [ Enter all displacements in  Bc and all tractions in F ] 

NN=2*N; 

for (i=1;i<=NN;i++){   

if (Code[i]>0) { 

temp=Bc[i]; 

Bc[i]=F[i]; 

F[i]=temp;  

} 

else { 

F[i]*=mu;  

}  

} 

// [ Compute stress and displacement at interior points] 

if (L) { 

for (k=1;k<=L;k++) { 

displ[2*k-1]=0.0f; 

displ[2*k]=0.0f; 

stress[3*k-2]=0.0f; 

stress[3*k-1]=0.0f; 

stress[3*k]=0.0f; 

for (j=1;j<=N;j++) { 

// assumption is that M=1, e.g. there is only one excavation 

kk=j+1; 
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Quad11(Xi[k],Yi[k],X[j],Y[j],X[kk],Y[kk],&H11,&H12,&H21,&H22,&G11,&G12,&G22); 

displ[2*k-1]+=F[2*j-1]*G11+F[2*j]*G12-Bc[2*j-1]*H11-Bc[2*j]*H12; 

displ[2*k]+=F[2*j-1]*G12+F[2*j]*G22-Bc[2*j-1]*H21-Bc[2*j]*H22; 

Stress(Xi[k],Yi[k],X[j],Y[j],X[kk],Y[kk],&dx11,&dy11,&dx12,&dy12,&dx22,&dy22,

&sx11,&sy11,&sx12,&sy12,&sx22,&sy22); 

stress[3*k-2]+=F[2*j-1]*dx11+F[2*j]*dy11-Bc[2*j-1]*sx11-Bc[2*j]*sy11; 

stress[3*k-1]+=F[2*j-1]*dx12+F[2*j]*dy12-Bc[2*j-1]*sx12-Bc[2*j]*sy12; 

stress[3*k]+=F[2*j-1]*dx22+F[2*j]*dy22-Bc[2*j-1]*sx22-Bc[2*j]*sy22;  

}  

}  

} 

} 

 

void Out11(float Xm[51], float Ym[51], float Bc[101], float F[101], float* Xi, float* Yi, 

float* stress, float* displ)  

{ 

FILE *outfile; 

int i,k;  

outfile=fopen(outname,"a"); 

fprintf(outfile,"\nResults:\n\n Boundary Nodes\n\n"); 

fprintf(outfile," X   Y Displ X Displ Y  Traction X  Traction Y\n"); 

for (i=1;i<=N;i++) { 

fprintf(outfile,"(%10.4f, %10.4f)\t %10.4f\t %10.4f\t %10.4f\t 

%10.4f\n",Xm[i],Ym[i],Bc[2*i-1],Bc[2*i],F[2*i-1],F[2*i]);  

} 

if (L) {  

fprintf(outfile,"\nInterior point displacements\n\n"); 

fprintf(outfile,"  Xi   Yi Displacement X  Displacement Y\n"); 

for (k=1;k<=L;k++) { 

fprintf(outfile,"(%12.6f,%12.6f) \t %12.6f \t %12.6f\n",Xi[k],Yi[k],displ[2*k-

1],displ[2*k]);  

} 

fprintf(outfile,"\nInterior point stresses\n\n"); 

fprintf(outfile,"   Xi     Yi   Sigma X    Tau XY   Sigma Y\n"); 

for (k=1;k<=L;k++) { 

fprintf(outfile,"(%12.6f,%12.6f)\t %12.6f \t  %12.6f \t%12.6f\n", Xi[k],Yi[k], 



101 
 

stress[3*k-2],stress[3*k-1],stress[3*k]);  

}  

} 

fclose(outfile); 

} 

 

void Quad11(float Xp, float Yp, float X1, float Y1, float X2, float Y2, float* H11, float* H12, 

float* H21, float* H22, float* G11, float* G12, float* G22)  

{ 

float Ax,Ay,Bx,By,nx,ny,sgn,Denom,Ra,rx,ry,slope,Perp; 

float Z[]={0.0f,0.86113631f,-0.86113631f,0.33998104f,-0.33998104f}; 

float W[]={0.0f,0.34785485f,0.34785485f,0.65214515f,0.65214515f}; 

float Xg[5],Yg[5],HL; 

int i; 

Ax=(X2-X1)*0.5f; // /2.0; 

Bx=(X2+X1)*0.5f; // /2.0; 

Ay=(Y2-Y1)*0.5f; // /2.0; 

By=(Y2+Y1)*0.5f; // /2.0; 

nx=(Y2-Y1)/(2.0f*sqrtf(Ax*Ax+Ay*Ay)); 

ny=(X1-X2)/(2.0f*sqrtf(Ax*Ax+Ay*Ay)); 

if (Ax) { 

slope=Ay/Ax; 

Perp=fabsf((slope*Xp-Yp+Y1-slope*X1)/sqrtf(slope*slope+1.0f));  

}   

else { 

Perp=fabsf(Xp-X1);  

} 

// [ Determine the direction of the outward normal ] 

sgn=(X1-Xp)*(Y2-Yp)-(X2-Xp)*(Y1-Yp); 

if (sgn<0.0f) { 

Perp=-Perp;  

} 

(*H11)=0.0f; 

(*H12)=0.0f; 

(*H21)=0.0f; 

(*H22)=0.0f; 



102 
 

(*G11)=0.0f; 

(*G12)=0.0f; 

(*G22)=0.0f; 

// [ Compute coefficients of the matrices G and H ]        

Denom=4.0f*pi*(1.0f-nu); 

HL=sqrtf(Ax*Ax+Ay*Ay); 

for (i=1;i<=4;i++) { 

Xg[i]=Ax*Z[i]+Bx; 

Yg[i]=Ay*Z[i]+By; 

Ra=sqrtf((Xp-Xg[i])*(Xp-Xg[i])+(Yp-Yg[i])*(Yp-Yg[i])); 

rx=(Xg[i]-Xp)/Ra; 

ry=(Yg[i]-Yp)/Ra; 

(*G11)+=((3.0f-4.0f*nu)*logf(1.0f/Ra)+rx*rx)*W[i]*HL/(2.0f*Denom*mu); 

(*G12)+=rx*ry*W[i]*HL/(2.0f*Denom*mu);   

(*G22)+=((3.0f-4.0f*nu)*logf(1.0f/Ra)+ry*ry)*W[i]*HL/(2.0f*Denom*mu); 

(*H11)-=Perp*((1.0f-2.0f*nu)+2.0f*rx*rx)/(Ra*Ra*Denom)*W[i]*HL; 

(*H12)-=(Perp*2.0f*rx*ry/Ra+(1.0f-2.0f*nu)*(nx*ry-ny*rx))*W[i]*HL/(Ra*Denom); 

(*H21)-=(Perp*2.0f*rx*ry/Ra+(1.0f-2.0f*nu)*(ny*rx-nx*ry))*W[i]*HL/(Ra*Denom); 

(*H22)-=Perp*((1.0f-2.0f*nu)+2.0f*ry*ry)*W[i]*HL/(Ra*Ra*Denom);  

} 

} 

 

void Diag11(float X1, float Y1, float X2, float Y2, float* G11, float* G12, float* G22)  

{ 

float Ax,Ay,SR,Denom; 

Ax=(X2-X1)*0.5f; // /2; 

Ay=(Y2-Y1)*0.5f; // /2; 

SR=sqrtf(Ax*Ax+Ay*Ay); 

Denom=4.0f*pi*mu*(1.0f-nu); 

(*G11)=SR*((3.0f-4.0f*nu)*(1.0f-logf(SR))+(X2-X1)*(X2-X1)/(4*SR*SR))/Denom; 

(*G22)=SR*((3.0f-4.0f*nu)*(1.0f-logf(SR))+(Y2-Y1)*(Y2-Y1)/(4*SR*SR))/Denom; 

(*G12)=(X2-X1)*(Y2-Y1)/(4.0f*SR*Denom); 

} 

 

void Solve(float A[101][101], float B[101], float* D, int N, int Dim)  

{ 
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int N1,i,j,k,l,k1,found;  

float c; 

found=2; /*[ found is a flag which is used to check if any non zero coeff is found ]*/  

N1=N-1; 

for (k=1;k<=N1;k++) { 

k1=k+1; 

c=A[k][k]; 

if ((fabs(c)-tol)<=0.0f) { 

found=0; 

for(j=k1;j<=N;j++)  { /*[Try to Interchange rows to get Nonzero ]*/ 

if ((fabs(A[j][k])-tol)>0.0f) { 

for (l=k;l<=N;l++) { 

c=A[k][l]; 

A[k][l]=A[j][l]; 

A[j][l]=c;  

} 

c=B[k]; 

B[k]=B[j]; 

B[j]=c; 

c=A[k][k]; 

found=1; /*[ coeff is found ]*/ 

break;  

}  

}  

} 

if (!found) { 

printf("Singularity in Row %d 1",k); 

(*D)=0.0f;           

return;  

}  /*[ If no coefficient is found the control is  transferred to main ]*/ 

/*[ Divide row by diagonal coefficient ]*/   

c=A[k][k]; 

for (j = k1;j<=N;j++) { 

A[k][j]/=c;  

} 

B[k]/=c;   
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/*[ Eliminate unknown X[k] from row i ]*/ 

for (i=k1;i<=N;i++) { 

c=A[i][k]; 

for (j=k1;j<=N;j++) { 

A[i][j]-=c*A[k][j];  

} 

B[i]-=c*B[k]; 

}  

} 

/*[ Compute the last unknown ]*/ 

if ((fabs(A[N][N])-tol)>0.0f) { 

B[N]/=A[N][N]; 

/*[Apply back substitution to compute the remaining unknowns  ]*/ 

for (l=1;l<=N1;l++) { 

k=N-l; 

k1=k+1; 

for (j=k1;j<=N;j++) { 

B[k]-=A[k][j]*B[j];  

}  

} 

/*[Compute the value of the determinent ]*/ 

(*D)=1.0f; 

for (i=1;i<=N;i++) { 

(*D)*=A[i][i];  

}  

} 

else{ 

printf("Singularity in Row %d 2",k); 

(*D)=0.0f;  

} 

return;  

} 

 

void Stress(float Xp, float Yp, float X1, float Y1, float X2, float Y2, float* dx11, float* 

dy11, float* dx12, float* dy12,float* dx22, float* dy22, float* sx11, float* sy11, float* sx12, 

float* sy12, float* sx22, float* sy22)  
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{ 

float Xg[5],Yg[5],Z[5],W[5];  /*[dimension increased by 1]*/ 

float Ax,Bx,Ay,By,nx,ny,slope,Perp,sgn,SR,FA,AL,Denom,rx,ry,Ra; 

int i; 

Z[1]=0.86113631f; 

Z[2]=-Z[1]; 

Z[3]=0.33998104f; 

Z[4]=-Z[3]; 

W[1]=0.34785485f; 

W[2]=W[1]; 

W[3]=0.65214515f; 

W[4]=W[3]; 

Ax=(X2-X1)*0.5f; // /2.0; 

Bx=(X2+X1)*0.5f; // /2.0; 

Ay=(Y2-Y1)*0.5f; // /2.0; 

By=(Y2+Y1)*0.5f; // /2.0; 

SR=sqrt(Ax*Ax+Ay*Ay); 

nx=(Y2-Y1)/(2.0f*SR); 

ny=(X1-X2)/(2.0f*SR); 

if (Ax) { 

slope=Ay/Ax; 

Perp=fabsf((slope*Xp-Yp+Y1-slope*X1)/sqrtf(slope*slope+1.0f));  

} 

else { 

Perp=fabsf(Xp-X1);  

} 

/*[Determine the direction of the outward normal ]*/ 

sgn=(X1-Xp)*(Y2-Yp)-(X2-Xp)*(Y1-Yp); 

if (sgn<0.0f) { 

Perp=-Perp;  

} 

(*dx11)=0.0f; 

(*dy11)=0.0f; 

(*dx12)=0.0f; 

(*dy12)=0.0f; 

(*dx22)=0.0f; 
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(*dy22)=0.0f; 

(*sx11)=0.0f; 

(*sy11)=0.0f; 

(*sx12)=0.0f; 

(*sy12)=0.0f; 

(*sx22)=0.0f; 

(*sy22)=0.0f; 

/*[ Compute displacement and stress coefficients ]*/ 

FA=1.0f-4.0f*nu; 

AL=1.0f-2.0f*nu; 

Denom=4.0f*pi*(1.0f-nu);   

for (i=1;i<=4;i++) { 

Xg[i]=Ax*Z[i]+Bx; 

Yg[i]=Ay*Z[i]+By; 

Ra=sqrt(SQ(Xp-Xg[i])+SQ(Yp-Yg[i])); 

rx=(Xg[i]-Xp)/Ra; 

ry=(Yg[i]-Yp)/Ra; 

(*dx11)+=(AL*rx+2*cube(rx))*W[i]*SR/(Denom*Ra); 

(*dy11)+=(2*SQ(rx)*ry-AL*ry)*W[i]*SR/(Denom*Ra); 

(*dx12)+=(AL*ry+2*(SQ(rx))*ry)/(Denom*Ra)*W[i]*SR; 

(*dy12)+=(AL*rx+2*rx*SQ(ry))/(Denom*Ra)*W[i]*SR; 

(*dx22)+=(2*rx*SQ(ry)-AL*rx)/(Denom*Ra)*W[i]*SR; 

(*dy22)+=(AL*ry+2*cube(ry))/(Denom*Ra)*W[i]*SR; 

(*sx11)+=(2*Perp/Ra*(AL*rx+nu*2*rx-4*cube(rx))+4*nu*nx*SQ(rx) +AL*(2*nx*SQ(rx)+2*nx)-

FA*nx)*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

(*sy11)+=(2*Perp/Ra*(AL*ry-4*SQ(rx)*ry)+4*nu*nx*rx*ry+AL*2*ny*SQ(rx)-

FA*ny)*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

(*sx12)+=(2*Perp/Ra*(nu*ry-4*SQ(rx)*ry)+2*nu*(nx*ry*rx+ny*SQ(rx))+ 

AL*(2*nx*rx*ry+ny))*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

(*sy12)+=(2*Perp/Ra*(nu*rx-4*rx*SQ(ry))+2*nu*(nx*SQ(ry)+ny*rx*ry)+ 

AL*(2*ny*rx*ry+nx))*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

(*sx22)+=(2*Perp/Ra*(AL*rx-4*rx*SQ(ry))+4*nu*ny*rx*ry+AL*2*nx*SQ(ry)-

FA*nx)*2*mu/(Denom*SQ(Ra))*W[i]*SR; 

(*sy22)+=(2*Perp/Ra*(AL*ry+2*nu*ry-4*cube(ry))+4*nu*ny*SQ(ry)+ AL*(2*ny*SQ(ry)+2*ny)-

FA*ny)*2*mu/(Denom*SQ(Ra))*W[i]*SR;  

} 
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} 

 

void Sys11(float X[52], float Y[52], float Xm[51], float Ym[51], float G[101][101], float 

H[101][101], float Bc[101], float F[101], int Code[101], int Dim)  

{ 

float temp; 

int i,j,k,NN,kk,found; 

found = 0; 

/*[Compute coordinates of the mid-nodes  ]*/ 

X[N+1]=X[1]; 

Y[N+1]=Y[1]; 

for (i=1;i<=N;i++) { 

Xm[i]=(X[i]+X[i+1])/2.0; 

Ym[i]=(Y[i]+Y[i+1])/2.0;  

} 

if ((M-1)>0) { 

Xm[Last[1]]=(X[Last[1]]+X[1])/2.0;   

Ym[Last[1]]=(Y[Last[1]]+Y[1])/2.0; 

for (k=2;k<=M;k++) { 

Xm[Last[k]]=(X[Last[k]]+X[Last[k-1]+1])/2.0; 

Ym[Last[k]]=(Y[Last[k]]+Y[Last[k-1]+1])/2.0;  

}  

} 

for(i=1;i<=N;i++) { 

for(j=1;j<=N;j++) { 

if((M-1)>0.0) {       

if (!(j-Last[1])) {  

kk=1;  

} 

else { 

found=0; 

for (k=2;k<=M;k++) {  

if (!(j-Last[k])) { 

kk=Last[k-1]+1; 

found=1; 

break;  
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}  

} 

if(!found) { 

kk=j+1;  

}  

}  

} 

else { 

kk=j+1;  

} 

if (i-j) { 

Quad11(Xm[i],Ym[i],X[j],Y[j],X[kk],Y[kk],&H[2*i-1][2*j-1],&H[2*i-1][2*j], 

&H[2*i][2*j-1],&H[2*i][2*j],&G[2*i-1][2*j-1],&G[2*i-1][2*j],&G[2*i][2*j]); 

G[2*i][2*j-1]=G[2*i-1][2*j];  

} 

else { 

Diag11(X[j],Y[j],X[kk],Y[kk],&G[2*i-1][2*j-1],&G[2*i-1][2*j],&G[2*i][2*j]); 

H[(2*i-1)][(2*j-1)]=0.5; 

H[(2*i)][(2*j)]=0.5; 

H[(2*i-1)][(2*j)]=0.0; 

H[(2*i)][(2*j-1)]=0.0; 

G[(2*i)][(2*j-1)]=G[(2*i-1)][(2*j)];  

}  

}  

} 

/*[Reorder the columns of equation and form system matrix A which is stored in G]*/ 

NN=2*N;  

for (j=1;j<=NN;j++) {     

if (Code[j]>0) { 

for (i=1;i<=NN;i++) { 

temp=G[i][j]; 

G[i][j]=-H[i][j]; 

H[i][j]=-temp;  

}  

} 

else { 



109 
 

for (i=1;i<=NN;i++) {   

G[i][j]*=mu;  

}  

}  

} 

/*[ Form the right-side vector F which is stored in F]*/ 

for(i=1;i<=NN;i++) { 

F[i]=0.0; 

for (j=1;j<=NN;j++) {    

F[i]+=H[i][j]*Bc[j];  

}  

} 

} 

 

void printPerfStats(const double* timeSamples)  

{ 

printf("CPU running time to compute field quantities at interior 

points:%f\n",timeSamples[0]); 

} 

 

 

 

Parallel BEM Code: 

Noted that the code of functions Input, Sys11, Solve, Quad11 and Diag11 is the same with 

the code in Serial BEM program, thus the code will not be presented here. 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <time.h> 

#include "cbox11.h" 

#ifdef __MACH__ 

#include <OpenCL/opencl.h> 

#else 

#include <CL/cl.h> 
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#endif 

clock_t start, end; // performance timing 

double timeSamples[10]; 

size_t statGlobalWorkSize; 

size_t statLocalWorkSize; 

char statOpenCLDevice[256]; 

 

int main() 

{ 

int Code[101],Dim,NN; 

float X[52],Y[52],Xm[51],Ym[51],*Xi,*Yi,Bc[101],F[101]; 

float G[101][101],H[101][101],D,*stress,*displ; 

Dim=100; /*[Dim = Max dimension of the system AX = F]*/ 

int i,j; 

Lx=100; 

Ly=100; 

L=Lx*Ly; 

interiorPointsSizeT=(L+1)*sizeof(float); 

Xi=(float*)malloc(interiorPointsSizeT); 

Yi=(float*)malloc(interiorPointsSizeT); 

stress=(float*)malloc(3*interiorPointsSizeT); 

displ=(float*)malloc(2*interiorPointsSizeT); 

Input11(Xi,Yi,X,Y,Code,Bc); /*[ Read Data ]*/ 

// compute interior points locations 

for (i=0;i<Ly;++i) {   

for (j=0;j<Lx;++j) { 

Xi[Ly*i+j+1]=4.0f+(35.0f-4.0f)*j/Lx; 

Yi[Ly*i+j+1]=0.0f+(35.0f-0.0f)*i/Ly;  

}  

} 

L=Lx*Ly; 

for (int ij=0;ij<1;ij++) { 

start=clock(); 

/*[ Compute matrices G and H and form the system AX = F  ]*/  

Sys11(X,Y,Xm,Ym,G,H,Bc,F,Code,Dim); 

end=clock(); 



111 
 

timeSamples[0]=(double)(end-start)/CLOCKS_PER_SEC; 

char function_name[15] = "Sys11"; 

printPerfStats(timeSamples,function_name);  

} 

for (int ik=0;ik<1;ik++) { 

start=clock(); 

/*[Solve the system AX = F ]*/  

NN=2*N;  

Solve(G,F,&D,NN,Dim); 

end=clock(); 

timeSamples[0]=(double)(end-start)/CLOCKS_PER_SEC; 

char function_name[15] = "Solve"; 

printPerfStats(timeSamples,function_name);  

} 

for (int ii=0;ii<1;ii++) { 

start=clock(); 

/*[ Compute stress and displacement at interior points ]*/ 

Inter11GPU(Bc,F,Code,Xi,Yi,X,Y,stress,displ); 

end=clock(); 

timeSamples[0]=(double)(end-start)/CLOCKS_PER_SEC; 

char function_name[15] = "inter11GPU"; 

printPerfStats(timeSamples,function_name);  

} 

/*[Output solution at boundary nodes and interior Points ]*/  

Out11(Xm,Ym,Bc,F,Xi,Yi,stress,displ); 

free(Xi); 

free(Yi); 

free(stress); 

free(displ); 

printf("final statistics:\n"); 

printf("number of interior points:%i\n",L); 

printf("OpenCL device:%s\n",statOpenCLDevice); 

printf("globalWorksize:%i\n",(int)statGlobalWorkSize); 

printf("localWorksize:%i\n",(int)statLocalWorkSize); 

printf("buffer CPU->GPU:%f\n",timeSamples[7]); 

printf("OpenCL solution:%f\n",timeSamples[8]); 
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printf("buffer GPU->CPU:%f\n",timeSamples[9]); 

printf("total interior point solution 

time:%f\n",timeSamples[7]+timeSamples[8]+timeSamples[9]); 

return (0); 

} 

 

void Inter11GPU(float Bc[101], float F[101], int Code[101], float* Xi, float* Yi, float X[52], 

float Y[52], float* stress, float* displ)  

{ 

int NN,i,k; 

float temp; 

// [ Enter all displacements in  Bc and all tractions in F ] 

NN=2*N; 

for (i=1;i<=NN;i++) { 

if (Code[i]>0) { 

temp=Bc[i]; 

Bc[i]=F[i]; 

F[i]=temp;  

} 

else { 

F[i]*=mu;  

}  

} 

// initialize output (stress and displacement) arrays 

for (k=1;k<=L;k++) { 

displ[2*k-1]=0.0f; 

displ[2*k]=0.0f; 

stress[3*k-2]=0.0f; 

stress[3*k-1]=0.0f; 

stress[3*k]=0.0f;  

} 

// [ Compute stress and displacement at interior points] 

const int sizeXY=52; 

const int sizeBcF=101; 

// storage size for buffers 

size_t datasizeXY=sizeof(float)*sizeXY; 
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size_t datasizeBcF=sizeof(float)*sizeBcF; 

size_t datastress=sizeof(float)*3*(L+1); 

size_t datadispl=sizeof(float)*2*(L+1); 

size_t dataXiYi=sizeof(float)*(L+1); 

// OpenCL setup 

cl_int status; 

// OpenCL platform 

cl_uint numPlatforms=0; 

cl_platform_id* platforms=NULL; 

status=clGetPlatformIDs(0,NULL,&numPlatforms); 

platforms=(cl_platform_id*)malloc(numPlatforms*sizeof(cl_platform_id)); 

status=clGetPlatformIDs(numPlatforms,platforms,NULL); 

// OpenCL devices 

cl_uint numDevices=0; 

cl_device_id* devices=NULL; 

status=clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,0,NULL,&numDevices); 

devices=(cl_device_id*)malloc(numDevices*sizeof(cl_device_id)); 

status=clGetDeviceIDs(platforms[0],CL_DEVICE_TYPE_GPU,numDevices,devices,NULL); 

char buffer[256]; 

status=clGetDeviceInfo(devices[0],CL_DEVICE_NAME,sizeof(buffer),buffer,NULL); 

printf("code running on: %s\n",buffer); 

strcpy(statOpenCLDevice,buffer); 

cl_context context=NULL; 

context=clCreateContext(NULL,numDevices,devices,NULL,NULL,&status); 

//Create command queue 

cl_command_queue queue; 

queue=clCreateCommandQueue(context,devices[0],0,&status); 

//Create memory buffers 

cl_mem d_Xi; 

cl_mem d_Yi; 

cl_mem d_X; 

cl_mem d_Y; 

cl_mem d_F; 

cl_mem d_Bc; 

cl_mem d_displ; 

cl_mem d_stress; 
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// input buffers to OpenCL kernels 

d_Xi=clCreateBuffer(context,CL_MEM_READ_ONLY,dataXiYi,NULL,&status); 

d_Yi=clCreateBuffer(context, CL_MEM_READ_ONLY,dataXiYi,NULL,&status); 

d_X=clCreateBuffer(context,CL_MEM_READ_ONLY,datasizeXY,NULL,&status); 

d_Y=clCreateBuffer(context,CL_MEM_READ_ONLY,datasizeXY,NULL,&status); 

d_F=clCreateBuffer(context,CL_MEM_READ_ONLY,datasizeBcF,NULL,&status); 

d_Bc=clCreateBuffer(context,CL_MEM_READ_ONLY,datasizeBcF,NULL,&status); 

// output from OpenCL kernels, e.g. the solution 

d_displ=clCreateBuffer(context,CL_MEM_WRITE_ONLY,datadispl,NULL,&status); 

d_stress=clCreateBuffer(context,CL_MEM_WRITE_ONLY,datastress,NULL,&status); 

// determine how much time is needed to transfer buffers from CPU to GPU 

start=clock(); 

// write host data to device buffers 

status=clEnqueueWriteBuffer(queue,d_Xi,CL_FALSE,0,dataXiYi,Xi,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_Yi,CL_FALSE,0,dataXiYi,Yi,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_X,CL_FALSE,0,datasizeXY,X,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_Y,CL_FALSE,0,datasizeXY,Y,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_F,CL_FALSE,0,datasizeBcF,F,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_Bc,CL_FALSE,0,datasizeBcF,Bc,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_displ,CL_FALSE,0,datadispl,displ,0,NULL,NULL); 

status=clEnqueueWriteBuffer(queue,d_stress,CL_FALSE,0,datastress,stress,0,NULL,NULL); 

end=clock(); 

timeSamples[7]=(double)(end-start)/CLOCKS_PER_SEC; 

const char* filename="helper.cl"; 

const char* source=readSource(filename); 

// determine how muc time it takes to run build & run the OpenCL program on GPU 

start=clock(); 

cl_program program; 

program=clCreateProgramWithSource(context,1,&source,NULL,&status); 

status=clBuildProgram(program,1,devices,NULL,NULL,NULL); 

cl_kernel kernel=NULL; 

kernel=clCreateKernel(program,"helper",&status); 

//Set kernel arguments 

status=clSetKernelArg(kernel,0,sizeof(int),&L); 

status|=clSetKernelArg(kernel,1,sizeof(int),&N); 

status|=clSetKernelArg(kernel,2,sizeof(float),&nu); 
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status|=clSetKernelArg(kernel,3,sizeof(float),&mu); 

status|=clSetKernelArg(kernel,4,sizeof(cl_mem),&d_Xi); 

status|=clSetKernelArg(kernel,5,sizeof(cl_mem),&d_Yi); 

status|=clSetKernelArg(kernel,6,sizeof(cl_mem),&d_X); 

status|=clSetKernelArg(kernel,7,sizeof(cl_mem),&d_Y); 

status|=clSetKernelArg(kernel,8,sizeof(cl_mem),&d_F); 

status|=clSetKernelArg(kernel,9,sizeof(cl_mem),&d_Bc); 

status|=clSetKernelArg(kernel,10,sizeof(cl_mem),&d_displ); 

status|=clSetKernelArg(kernel,11,sizeof(cl_mem),&d_stress); 

//Configure the work-item structure 

size_t globalWorkSize[1]; 

size_t localWorkSize[1]; 

// two parameters to vary 

globalWorkSize[0]=L; 

localWorkSize[0]=1000; 

statGlobalWorkSize=globalWorkSize[0]; 

statLocalWorkSize=localWorkSize[0]; 

//Enqueue the kernel for execution 

status=clEnqueueNDRangeKernel(queue,kernel,1,NULL,globalWorkSize,localWorkSize,0,NULL,NULL)

; 

clFlush(queue); 

end=clock(); 

timeSamples[8]=(double)(end-start)/CLOCKS_PER_SEC; 

// determine how much time is needed to transfer buffers from CPU to GPU 

start=clock(); 

//Read the output buffer back to the host 

clEnqueueReadBuffer(queue,d_displ,CL_TRUE,0,datadispl,displ,0,NULL,NULL); 

clEnqueueReadBuffer(queue,d_stress,CL_TRUE,0,datastress,stress,0,NULL,NULL); 

end=clock(); 

timeSamples[9]=(double)(end-start)/CLOCKS_PER_SEC; 

//Release OpenCL resources 

clReleaseMemObject(d_Xi); 

clReleaseMemObject(d_Yi); 

clReleaseMemObject(d_X); 

clReleaseMemObject(d_Y); 

clReleaseMemObject(d_F); 
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clReleaseMemObject(d_Bc); 

clReleaseMemObject(d_displ); 

clReleaseMemObject(d_stress); 

clReleaseKernel(kernel); 

clReleaseProgram(program); 

clReleaseCommandQueue(queue); 

clReleaseContext(context); 

} 

 

char* readSource(const char* kernelPath)  

{ 

cl_int statusread; 

FILE *fp; 

char *source; 

long int size; 

int i; 

printf("\nProgram file is: %s\n", kernelPath); 

fp = fopen(kernelPath, "rb"); 

if(!fp) { 

printf("Could not open kernel file\n"); 

exit(-1);  

} 

statusread = fseek(fp, 0, SEEK_END); 

if(statusread != 0) { 

printf("Error seeking to end of file\n"); 

exit(-1);    

} 

size = ftell(fp); 

if(size < 0) { 

printf("Error getting file position\n"); 

exit(-1);    

} 

rewind(fp); 

source = (char *)malloc(size + 1);    

for (i = 0; i < size+1; i++) { 

source[i]='\0';  
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} 

if(source == NULL) { 

printf("Error allocating space for the kernel source\n"); 

exit(-1);    

} 

fread(source, 1, size, fp); 

source[size] = '\0'; 

fclose(fp); 

return source; 

free(source); 

} 

 

void printPerfStats(const double* timeSamples,char function_name[]) 

{ 

printf("performance timing statistics\n"); 

outfile=fopen(outname,"a+"); 

if(strcmp(function_name,"inter11GPU")==0) { 

fprintf(outfile,"GPU running time to compute stress and displacement at interior 

points:%f\n",timeSamples[0]); 

printf("GPU running time to compute stress and displacement at interior 

points:%f\n",timeSamples[0]);  

} 

else if(strcmp(function_name,"Sys11")==0) { 

fprintf(outfile,"CPU running time to Compute matrices G and H and form the system AX = 

F:%f\n",timeSamples[0]); 

printf("CPU running time to Compute matrices G and H and form the system AX = 

F:%f\n",timeSamples[0]);  

} 

else if(strcmp(function_name,"Solve")==0) { 

fprintf(outfile,"CPU running time to Solve the system AX = F :%f\n",timeSamples[0]); 

printf("CPU running time to Solve the system AX = F :%f\n",timeSamples[0]);  

} 

fclose(outfile); 

} 
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Kernel file: helper.cl 

//#define pi  3.1415926 

# define SQ(x)  ((x)*(x)) 

# define cube(x) ((x)*(x)*(x)) 

 

void Quad11_Helper(float Xp, float Yp, float X1, float Y1, float X2, float Y2, float nu,float 

mu, float* H11, float* H12, float* H21, float* H22, 

                   float* G11, float* G12, float* G22)  

{ 

float Ax,Ay,Bx,By,nx,ny,sgn,Denom,Ra,rx,ry,slope,Perp; 

float Z[]={0.0f,0.86113631f,-0.86113631f,0.33998104f,-0.33998104f}; 

float W[]={0.0f,0.34785485f,0.34785485f,0.65214515f,0.65214515f}; 

float Xg[5],Yg[5],HL; 

int i; 

float pi=3.1415926f;  

Ax=(X2-X1)*0.5f; 

Bx=(X2+X1)*0.5f; 

Ay=(Y2-Y1)*0.5f; 

By=(Y2+Y1)*0.5f; 

nx=(Y2-Y1)/(2.0f*sqrt(Ax*Ax+Ay*Ay)); 

ny=(X1-X2)/(2.0f*sqrt(Ax*Ax+Ay*Ay)); 

if (Ax) { 

slope=Ay/Ax; 

Perp=fabs((slope*Xp-Yp+Y1-slope*X1)/sqrt(slope*slope+1.0f));  

} 

else { 

Perp=fabs(Xp-X1);     

} 

// [ Determine the direction of the outward normal ] 

sgn=(X1-Xp)*(Y2-Yp)-(X2-Xp)*(Y1-Yp); 

if (sgn<0.0f) { 

Perp=-Perp;     

} 

(*H11)=0.0f; 

(*H12)=0.0f; 
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(*H21)=0.0f; 

(*H22)=0.0f; 

(*G11)=0.0f; 

(*G12)=0.0f; 

(*G22)=0.0f; 

// [ Compute coefficients of the matrices G and H ] 

Denom=4.0f*pi*(1.0f-nu); 

HL=sqrt(Ax*Ax+Ay*Ay); 

float dummy1=(3.0f-4.0f*nu); 

float dummy2=1.0f/(2.0f*Denom*mu); 

float dummy3; 

float dummy4; 

float dummy5=(1.0f-2.0f*nu); 

float dummy6=1.0f/(2.0f*Denom*mu); 

float dummy7; 

float dummy8; 

float dummy9; 

float dummy10; 

// i=1 

Xg[1]=Ax*Z[1]+Bx; 

Yg[1]=Ay*Z[1]+By; 

Ra=sqrt((Xp-Xg[1])*(Xp-Xg[1])+(Yp-Yg[1])*(Yp-Yg[1])); 

dummy3=1.0f/Ra; 

dummy4=log(dummy3); 

rx=(Xg[1]-Xp)*dummy3; 

ry=(Yg[1]-Yp)*dummy3; 

dummy7=HL/(Ra*Denom); 

dummy8=1.0f/(Ra*Ra*Denom); 

dummy9=rx*rx; 

dummy10=ry*ry; 

(*G11)+=(dummy1*dummy4+dummy9)*W[1]*HL*dummy2; 

(*G12)+=rx*ry*W[1]*HL*dummy6; 

(*G22)+=(dummy1*dummy4+dummy10)*W[1]*HL*dummy2; 

(*H11)-=Perp*(dummy5+2.0f*dummy9)*dummy8*W[1]*HL; 

(*H12)-=(Perp*2.0f*rx*ry/Ra+dummy5*(nx*ry-ny*rx))*W[1]*dummy7; 

(*H21)-=(Perp*2.0f*rx*ry/Ra+dummy5*(ny*rx-nx*ry))*W[1]*dummy7; 
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(*H22)-=Perp*(dummy5+2.0f*dummy10)*W[1]*HL*dummy8; 

// i=2 

Xg[2]=Ax*Z[2]+Bx; 

Yg[2]=Ay*Z[2]+By; 

Ra=sqrt((Xp-Xg[2])*(Xp-Xg[2])+(Yp-Yg[2])*(Yp-Yg[2])); 

dummy3=1.0f/Ra; 

dummy4=log(dummy3); 

rx=(Xg[2]-Xp)*dummy3; 

ry=(Yg[2]-Yp)*dummy3; 

dummy7=HL/(Ra*Denom); 

dummy8=1.0f/(Ra*Ra*Denom); 

dummy9=rx*rx; 

dummy10=ry*ry; 

(*G11)+=(dummy1*dummy4+rx*rx)*W[2]*HL*dummy2; 

(*G12)+=rx*ry*W[2]*HL*dummy6; 

(*G22)+=(dummy1*dummy4+ry*ry)*W[2]*HL*dummy2; 

(*H11)-=Perp*(dummy5+2.0f*rx*rx)*dummy8*W[2]*HL; 

(*H12)-=(Perp*2.0f*rx*ry/Ra+dummy5*(nx*ry-ny*rx))*W[2]*dummy7; 

(*H21)-=(Perp*2.0f*rx*ry/Ra+dummy5*(ny*rx-nx*ry))*W[2]*dummy7; 

(*H22)-=Perp*(dummy5+2.0f*ry*ry)*W[2]*HL*dummy8; 

// i=3 

Xg[3]=Ax*Z[3]+Bx; 

Yg[3]=Ay*Z[3]+By; 

Ra=sqrt((Xp-Xg[3])*(Xp-Xg[3])+(Yp-Yg[3])*(Yp-Yg[3])); 

dummy3=1.0f/Ra; 

dummy4=log(dummy3); 

rx=(Xg[3]-Xp)*dummy3; 

ry=(Yg[3]-Yp)*dummy3; 

dummy7=HL/(Ra*Denom); 

dummy8=1.0f/(Ra*Ra*Denom); 

dummy9=rx*rx; 

dummy10=ry*ry; 

(*G11)+=(dummy1*dummy4+rx*rx)*W[3]*HL*dummy2; 

(*G12)+=rx*ry*W[3]*HL*dummy6; 

(*G22)+=(dummy1*dummy4+ry*ry)*W[3]*HL*dummy2; 

(*H11)-=Perp*(dummy5+2.0f*rx*rx)*dummy8*W[3]*HL; 
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(*H12)-=(Perp*2.0f*rx*ry/Ra+dummy5*(nx*ry-ny*rx))*W[3]*dummy7; 

(*H21)-=(Perp*2.0f*rx*ry/Ra+dummy5*(ny*rx-nx*ry))*W[3]*dummy7; 

(*H22)-=Perp*(dummy5+2.0f*ry*ry)*W[3]*HL*dummy8; 

// i=4 

Xg[4]=Ax*Z[4]+Bx; 

Yg[4]=Ay*Z[4]+By; 

Ra=sqrt((Xp-Xg[4])*(Xp-Xg[4])+(Yp-Yg[4])*(Yp-Yg[4])); 

dummy3=1.0f/Ra; 

dummy4=log(dummy3); 

rx=(Xg[4]-Xp)*dummy3; 

ry=(Yg[4]-Yp)*dummy3; 

dummy7=HL/(Ra*Denom); 

dummy8=1.0f/(Ra*Ra*Denom); 

dummy9=rx*rx; 

dummy10=ry*ry; 

(*G11)+=(dummy1*dummy4+rx*rx)*W[4]*HL*dummy2; 

(*G12)+=rx*ry*W[4]*HL*dummy6; 

(*G22)+=(dummy1*dummy4+ry*ry)*W[4]*HL*dummy2; 

(*H11)-=Perp*(dummy5+2.0f*rx*rx)*dummy8*W[4]*HL; 

(*H12)-=(Perp*2.0f*rx*ry/Ra+dummy5*(nx*ry-ny*rx))*W[4]*dummy7; 

(*H21)-=(Perp*2.0f*rx*ry/Ra+dummy5*(ny*rx-nx*ry))*W[4]*dummy7; 

(*H22)-=Perp*(dummy5+2.0f*ry*ry)*W[4]*HL*dummy8; 

} 

 

void Stress_Helper(float Xp, float Yp, float X1, float Y1, float X2, float Y2, float nu, float 

mu, float* dx11, float* dy11,float* dx12, float* dy12,  float* dx22, float* dy22, float* sx11, 

float* sy11, float* sx12, float* sy12, float* sx22, float* sy22)  

{ 

float Xg[5],Yg[5],Z[5],W[5]; 

float Ax,Bx,Ay,By,nx,ny,slope,Perp,sgn,SR,FA,AL,Denom,rx,ry,Ra; 

int i; 

float pi=3.1415926f; 

Z[1]=0.86113631f; 

Z[2]=-Z[1]; 

Z[3]=0.33998104f; 

Z[4]=-Z[3]; 
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W[1]=0.34785485f; 

W[2]=W[1]; 

W[3]=0.65214515f; 

W[4]=W[3]; 

Ax=(X2-X1)*0.5f; 

Bx=(X2+X1)*0.5f; 

Ay=(Y2-Y1)*0.5f; 

By=(Y2+Y1)*0.5f; 

SR=sqrt(Ax*Ax+Ay*Ay); 

nx=(Y2-Y1)/(2.0f*SR); 

ny=(X1-X2)/(2.0f*SR); 

if (Ax) { 

slope=Ay/Ax; 

Perp=fabs((slope*Xp-Yp+Y1-slope*X1)/sqrt(slope*slope+1.0f));     

} 

else { 

Perp=fabs(Xp-X1);  

} 

sgn=(X1-Xp)*(Y2-Yp)-(X2-Xp)*(Y1-Yp); 

if (sgn<0.0f) { 

Perp=-Perp;  

} 

(*dx11)=0.0f; 

(*dy11)=0.0f; 

(*dx12)=0.0f; 

(*dy12)=0.0f; 

(*dx22)=0.0f; 

(*dy22)=0.0f; 

(*sx11)=0.0f; 

(*sy11)=0.0f; 

(*sx12)=0.0f; 

(*sy12)=0.0f; 

(*sx22)=0.0f; 

(*sy22)=0.0f; 

FA=1.0f-4.0f*nu; 

AL=1.0f-2.0f*nu; 
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Denom=4.0f*pi*(1.0f-nu); 

// i=1 

Xg[1]=Ax*Z[1]+Bx; 

Yg[1]=Ay*Z[1]+By; 

Ra=sqrt( (Xp-Xg[1])*(Xp-Xg[1]) + (Yp-Yg[1])*(Yp-Yg[1]) ); 

rx=(Xg[1]-Xp)/Ra; 

ry=(Yg[1]-Yp)/Ra; 

(*dx11)+=(AL*rx+2.0f*(rx*rx*rx))*W[1]*SR/(Denom*Ra); 

(*dy11)+=(2.0f*(rx*rx)*ry-AL*ry)*W[1]*SR/(Denom*Ra); 

(*dx12)+=(AL*ry+2.0f*((rx*rx))*ry)/(Denom*Ra)*W[1]*SR; 

(*dy12)+=(AL*rx+2.0f*rx*(ry*ry))/(Denom*Ra)*W[1]*SR; 

(*dx22)+=(2.0f*rx*(ry*ry)-AL*rx)/(Denom*Ra)*W[1]*SR; 

(*dy22)+=(AL*ry+2.0f*(ry*ry*ry))/(Denom*Ra)*W[1]*SR; 

(*sx11)+=(2.0f*Perp/Ra*(AL*rx+nu*2.0f*rx-4.0f*(rx*rx*rx))+4.0f*nu*nx*(rx*rx)+ 

AL*(2.0f*nx*(rx*rx)+2.0f*nx)-FA*nx)*2.0f*mu/(Denom*(Ra*Ra))*W[1]*SR; 

(*sy11)+=(2.0f*Perp/Ra*(AL*ry-4.0f*(rx*rx)*ry)+4.0f*nu*nx*rx*ry+ AL*2.0f*ny*(rx*rx)-

FA*ny)*2.0f*mu/(Denom*(Ra*Ra))*W[1]*SR; 

(*sx12)+=(2.0f*Perp/Ra*(nu*ry-4.0f*(rx*rx)*ry)+2.0f*nu*(nx*ry*rx+ny*(rx*rx))+ 

AL*(2.0f*nx*rx*ry+ny))*2.0f*mu/(Denom*(Ra*Ra))*W[1]*SR; 

(*sy12)+=(2.0f*Perp/Ra*(nu*rx-4.0f*rx*(ry*ry))+2.0f*nu*(nx*(ry*ry)+ny*rx*ry)+ 

AL*(2.0f*ny*rx*ry+nx))*2.0f*mu/(Denom*(Ra*Ra))*W[1]*SR; 

(*sx22)+=(2.0f*Perp/Ra*(AL*rx-4.0f*rx*(ry*ry))+4.0f*nu*ny*rx*ry+ AL*2.0f*nx*(ry*ry)-

FA*nx)*2.0f*mu/(Denom*(Ra*Ra))*W[1]*SR; 

(*sy22)+=(2.0f*Perp/Ra*(AL*ry+2.0f*nu*ry-4.0f*(ry*ry*ry))+4.0f*nu*ny*(ry*ry)+ 

AL*(2.0f*ny*(ry*ry)+2.0f*ny)-FA*ny)*2.0f*mu/(Denom*(Ra*Ra))*W[1]*SR; 

// i=2 

Xg[2]=Ax*Z[2]+Bx; 

Yg[2]=Ay*Z[2]+By; 

Ra=sqrt( (Xp-Xg[2])*(Xp-Xg[2]) + (Yp-Yg[2])*(Yp-Yg[2]) ); 

rx=(Xg[2]-Xp)/Ra; 

ry=(Yg[2]-Yp)/Ra; 

(*dx11)+=(AL*rx+2.0f*(rx*rx*rx))*W[2]*SR/(Denom*Ra); 

(*dy11)+=(2.0f*(rx*rx)*ry-AL*ry)*W[2]*SR/(Denom*Ra); 

(*dx12)+=(AL*ry+2.0f*((rx*rx))*ry)/(Denom*Ra)*W[2]*SR; 

(*dy12)+=(AL*rx+2.0f*rx*(ry*ry))/(Denom*Ra)*W[2]*SR; 

(*dx22)+=(2.0f*rx*(ry*ry)-AL*rx)/(Denom*Ra)*W[2]*SR; 
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(*dy22)+=(AL*ry+2.0f*(ry*ry*ry))/(Denom*Ra)*W[2]*SR; 

(*sx11)+=(2.0f*Perp/Ra*(AL*rx+nu*2.0f*rx-4.0f*(rx*rx*rx))+4.0f*nu*nx*(rx*rx) 

+AL*(2.0f*nx*(rx*rx)+2.0f*nx)-FA*nx)*2.0f*mu/(Denom*(Ra*Ra))*W[2]*SR; 

(*sy11)+=(2.0f*Perp/Ra*(AL*ry-4.0f*(rx*rx)*ry)+4.0f*nu*nx*rx*ry+AL*2.0f*ny*(rx*rx)-

FA*ny)*2.0f*mu/(Denom*(Ra*Ra))*W[2]*SR; 

(*sx12)+=(2.0f*Perp/Ra*(nu*ry-4.0f*(rx*rx)*ry)+2.0f*nu*(nx*ry*rx+ny*(rx*rx)) 

+AL*(2.0f*nx*rx*ry+ny))*2.0f*mu/(Denom*(Ra*Ra))*W[2]*SR; 

(*sy12)+=(2.0f*Perp/Ra*(nu*rx-4.0f*rx*(ry*ry))+2.0f*nu*(nx*(ry*ry)+ny*rx*ry) 

+AL*(2.0f*ny*rx*ry+nx))*2.0f*mu/(Denom*(Ra*Ra))*W[2]*SR; 

(*sx22)+=(2.0f*Perp/Ra*(AL*rx-4.0f*rx*(ry*ry))+4.0f*nu*ny*rx*ry+AL*2.0f*nx*(ry*ry) 

-FA*nx)*2.0f*mu/(Denom*(Ra*Ra))*W[2]*SR; 

(*sy22)+=(2.0f*Perp/Ra*(AL*ry+2.0f*nu*ry-4.0f*(ry*ry*ry))+4.0f*nu*ny*(ry*ry)+ 

AL*(2.0f*ny*(ry*ry)+2.0f*ny)-FA*ny)*2.0f*mu/(Denom*(Ra*Ra))*W[2]*SR; 

// i=3 

Xg[3]=Ax*Z[3]+Bx; 

Yg[3]=Ay*Z[3]+By; 

Ra=sqrt( (Xp-Xg[3])*(Xp-Xg[3]) + (Yp-Yg[3])*(Yp-Yg[3]) ); 

rx=(Xg[3]-Xp)/Ra; 

ry=(Yg[3]-Yp)/Ra; 

(*dx11)+=(AL*rx+2.0f*(rx*rx*rx))*W[3]*SR/(Denom*Ra); 

(*dy11)+=(2.0f*(rx*rx)*ry-AL*ry)*W[3]*SR/(Denom*Ra); 

(*dx12)+=(AL*ry+2.0f*((rx*rx))*ry)/(Denom*Ra)*W[3]*SR; 

(*dy12)+=(AL*rx+2.0f*rx*(ry*ry))/(Denom*Ra)*W[3]*SR; 

(*dx22)+=(2.0f*rx*(ry*ry)-AL*rx)/(Denom*Ra)*W[3]*SR; 

(*dy22)+=(AL*ry+2.0f*(ry*ry*ry))/(Denom*Ra)*W[3]*SR; 

(*sx11)+=(2.0f*Perp/Ra*(AL*rx+nu*2.0f*rx-4.0f*(rx*rx*rx))+4.0f*nu*nx*(rx*rx) 

+AL*(2.0f*nx*(rx*rx)+2.0f*nx)-FA*nx)*2.0f*mu/(Denom*(Ra*Ra))*W[3]*SR; 

(*sy11)+=(2.0f*Perp/Ra*(AL*ry-4.0f*(rx*rx)*ry)+4.0f*nu*nx*rx*ry+AL*2.0f*ny*(rx*rx) 

-FA*ny)*2.0f*mu/(Denom*(Ra*Ra))*W[3]*SR; 

(*sx12)+=(2.0f*Perp/Ra*(nu*ry-4.0f*(rx*rx)*ry)+2.0f*nu*(nx*ry*rx+ny*(rx*rx)) 

+AL*(2.0f*nx*rx*ry+ny))*2.0f*mu/(Denom*(Ra*Ra))*W[3]*SR; 

(*sy12)+=(2.0f*Perp/Ra*(nu*rx-4.0f*rx*(ry*ry))+2.0f*nu*(nx*(ry*ry)+ny*rx*ry) 

+AL*(2.0f*ny*rx*ry+nx))*2.0f*mu/(Denom*(Ra*Ra))*W[3]*SR; 

(*sx22)+=(2.0f*Perp/Ra*(AL*rx-4.0f*rx*(ry*ry))+4.0f*nu*ny*rx*ry+AL*2.0f*nx*(ry*ry) 

-FA*nx)*2.0f*mu/(Denom*(Ra*Ra))*W[3]*SR; 

(*sy22)+=(2.0f*Perp/Ra*(AL*ry+2.0f*nu*ry-4.0f*(ry*ry*ry))+4.0f*nu*ny*(ry*ry) 
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+AL*(2.0f*ny*(ry*ry)+2.0f*ny)-FA*ny)*2.0f*mu/(Denom*(Ra*Ra))*W[3]*SR; 

// i=4 

Xg[4]=Ax*Z[4]+Bx; 

Yg[4]=Ay*Z[4]+By; 

Ra=sqrt( (Xp-Xg[4])*(Xp-Xg[4]) + (Yp-Yg[4])*(Yp-Yg[4]) ); 

rx=(Xg[4]-Xp)/Ra; 

ry=(Yg[4]-Yp)/Ra; 

(*dx11)+=(AL*rx+2.0f*(rx*rx*rx))*W[4]*SR/(Denom*Ra); 

(*dy11)+=(2.0f*(rx*rx)*ry-AL*ry)*W[4]*SR/(Denom*Ra); 

(*dx12)+=(AL*ry+2.0f*((rx*rx))*ry)/(Denom*Ra)*W[4]*SR; 

(*dy12)+=(AL*rx+2.0f*rx*(ry*ry))/(Denom*Ra)*W[4]*SR; 

(*dx22)+=(2.0f*rx*(ry*ry)-AL*rx)/(Denom*Ra)*W[4]*SR; 

(*dy22)+=(AL*ry+2.0f*(ry*ry*ry))/(Denom*Ra)*W[4]*SR; 

(*sx11)+=(2.0f*Perp/Ra*(AL*rx+nu*2.0f*rx-4.0f*(rx*rx*rx))+4.0f*nu*nx*(rx*rx) 

+AL*(2.0f*nx*(rx*rx)+2.0f*nx)-FA*nx)*2.0f*mu/(Denom*(Ra*Ra))*W[4]*SR; 

(*sy11)+=(2.0f*Perp/Ra*(AL*ry-4.0f*(rx*rx)*ry)+4.0f*nu*nx*rx*ry+AL*2.0f*ny*(rx*rx) 

-FA*ny)*2.0f*mu/(Denom*(Ra*Ra))*W[4]*SR; 

(*sx12)+=(2.0f*Perp/Ra*(nu*ry-4.0f*(rx*rx)*ry)+2.0f*nu*(nx*ry*rx+ny*(rx*rx))+ 

AL*(2.0f*nx*rx*ry+ny))*2.0f*mu/(Denom*(Ra*Ra))*W[4]*SR; 

(*sy12)+=(2.0f*Perp/Ra*(nu*rx-4.0f*rx*(ry*ry))+2.0f*nu*(nx*(ry*ry)+ny*rx*ry) 

+AL*(2.0f*ny*rx*ry+nx))*2.0f*mu/(Denom*(Ra*Ra))*W[4]*SR; 

(*sx22)+=(2.0f*Perp/Ra*(AL*rx-4.0f*rx*(ry*ry))+4.0f*nu*ny*rx*ry+AL*2.0f*nx*(ry*ry) 

-FA*nx)*2.0f*mu/(Denom*(Ra*Ra))*W[4]*SR; 

(*sy22)+=(2.0f*Perp/Ra*(AL*ry+2.0f*nu*ry-4.0f*(ry*ry*ry))+4.0f*nu*ny*(ry*ry) 

+AL*(2.0f*ny*(ry*ry)+2.0f*ny)-FA*ny)*2.0f*mu/(Denom*(Ra*Ra))*W[4]*SR; 

} 

 

__kernel void helper(int L, int N, float nu, float mu, __global float* Xi, __global float* Yi, 

__global float* X, __global float* Y, __global float* F, __global float* Bc, __global float* 

displ, __global float* stress)  

{ 

const int idx=get_global_id(0); 

int idxPlus1; 

int j,kk; 

float dx11,dy11,dx12,dy12,dx22,dy22,sx11,sy11,sx12,sy12,sx22,sy22; 

float H11,H12,H21,H22,G11,G12,G22; 
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idxPlus1=idx+1; 

if (idxPlus1<L+1) { 

for (j=1;j<=N;j++) { 

kk=j+1; 

Quad11_Helper(Xi[idxPlus1],Yi[idxPlus1],X[j],Y[j],X[kk],Y[kk],nu,mu,&H11,&H12,&H21

,&H22,&G11,&G12,&G22); 

displ[2*idxPlus1-1]+=F[2*j-1]*G11+F[2*j]*G12-Bc[2*j-1]*H11-Bc[2*j]*H12; 

displ[2*idxPlus1]+=F[2*j-1]*G12+F[2*j]*G22-Bc[2*j-1]*H21-Bc[2*j]*H22; 

Stress_Helper(Xi[idx+1],Yi[idx+1],X[j],Y[j],X[kk],Y[kk],nu,mu,&dx11,&dy11,&dx12,&d

y12,&dx22,&dy22,&sx11,&sy11,&sx12,&sy12,&sx22,&sy22); 

stress[3*idxPlus1-2]+=F[2*j-1]*dx11+F[2*j]*dy11-Bc[2*j-1]*sx11-Bc[2*j]*sy11; 

stress[3*idxPlus1-1]+=F[2*j-1]*dx12+F[2*j]*dy12-Bc[2*j-1]*sx12-Bc[2*j]*sy12; 

stress[3*idxPlus1]+=F[2*j-1]*dx22+F[2*j]*dy22-Bc[2*j-1]*sx22-Bc[2*j]*sy22;  

}     

} 

} 
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Appendix 2 

 

Input file of circular excavation case: 

32  10  1 32 0 0 0 0  94500  0.1 

-0.294051 -2.98555  -0.870854 -2.87082   

-1.41419 -2.64576  -1.90318 -2.31903   

-2.31903 -1.90318  -2.64576 -1.41419   

-2.87082 -0.870854  -2.98555 -0.294051   

-2.98555  0.294051  -2.87082  0.870854   

-2.64576  1.41419  -2.31903  1.90318   

-1.90318  2.31903  -1.41419  2.64576   

-0.870854  2.87082  -0.294051  2.98555   

0.294051  2.98555  0.870854  2.87082   

1.41419  2.64576  1.90318  2.31903   

2.31903  1.90318  2.64576  1.41419   

2.87082  0.870854  2.98555  0.294051   

2.98555 -0.294051  2.87082 -0.870854   

2.64576 -1.41419  2.31903 -1.90318   

1.90318 -2.31903  1.41419 -2.64576   

0.870854 -2.87082  0.294051 -2.98555  

1  -19.509   1  -98.0785  1  -38.2683   1  -92.388   

1  -55.557   1  -83.147   1  -70.7107   1  -70.7107   

1  -83.147   1  -55.557   1  -92.388    1  -38.2683   

1  -98.0785  1  -19.509   1  -100.      1  0. 

1  -98.0785  1   19.509   1  -92.388    1  38.2683   

1  -83.147   1  55.557    1  -70.7107   1  70.7107   

1  -55.557   1  83.147    1  -38.2683   1   92.388   

1  -19.509   1   98.0785  0  0.         1  100.   

1  19.509  1  98.0785  1  38.2683  1  92.388   

1  55.557  1  83.147   1  70.7107  1  70.7107   

1  83.147  1  55.557   1  92.388   1  38.2683   

1  98.0785  1  19.509  1  100.     0   0. 

1  98.0785  1  -19.509  1  92.388  1  -38.2683   

1  83.147  1  -55.557  1  70.7107  1  -70.7107   
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1  55.557  1  -83.147  1  38.2683  1  -92.388   

1  19.509  1  -98.0785  0  0.  1  -100.   

 

 

Input file of horse-shoe shaped excavation (Case 1): 

37  10  1 37 0 0 0 0  94500  0.1 

0.0 0.0 -0.438808773237683 0.530856358525801 

-0.740057824344047 1.15021943626385 -0.886755359531386 1.82315438559223 

-0.870626981725536 2.51170466573667 -0.692582403567252 3.1770329614269 

-0.362664135550676 3.78161178117382 0.100518956482631 4.29134017562727 

0.670841274603381 4.67746718363242 1.31613408936182 4.91821351502455 

2 5 2.68386591063818 4.91821351502455 

3.32915872539662 4.67746718363242 3.89948104351737 4.29134017562727 

4.36266413555068 3.78161178117382 4.69258240356725 3.1770329614269 

4.87062698172554 2.51170466573667 4.88675535953139 1.82315438559223 

4.74005782434405 1.15021943626385 4.43880877323768 0.5308563585258 

4 0 3.76470588235294 0.0 

3.52941176470588 0.0 3.29411764705882 0.0 

3.05882352941176 0.0 2.82352941176471 0.0 

2.58823529411765 0.0 2.35294117647059 0.0 

2.11764705882353 0.0 1.88235294117647 0.0 

1.64705882352941 0.0 1.41176470588235 0.0 

1.17647058823529 0.0 0.941176470588235 0.0 

0.705882352941176 0.0 0.470588235294117 0.0 

0.235294117647058 0.0 

0 0.0   1 -0.637118966 1 -0.899270907   1 -0.437392084 

1 -0.977053435 1  -0.212994333 1  -0.999725779  1 0.023417251 

1 -0.966009117 1 0.258507998 1 -0.877805222  1 0.479017738 

1 -0.740089185 1 0.672508734 1 -0.560628809  1 0.82806723 

1 -0.349546461 1 0.936919032 1 -0.118748129   1 0.992924409 

1 0.118748129 0 0.0 1 0.349546461  1 0.936919032 

1 0.560628809 1 0.82806723 1  0.740089185  1 0.672508734 

1 0.877805222 1 0.479017738 1 0.966009117   1 0.258507998 

1 0.999725779 1 0.023417251 1 0.977053435   1 -0.212994333 

1 0.899270907 1 -0.437392084 1  0.770765479  1 -0.637118966 
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0 0.0   1 -1.0 1 0.0 1 -1.0 

1 0.0 1 -1.0 1 0.0  1 -1.0 

1 0.0   1 -1.0 1 0.0  1 -1.0 

1 0.0 1 -1.0 1 0.0  1 -1.0 

1 0.0 1 -1.0 1 0.0  1 -1.0 

1 0.0   1 -1.0 1 0.0  1 -1.0 

1 0.0 1 -1.0 1 0.0  1 -1.0 

1 0.0 1 -1.0 1 0.0  1 -1.0 

1 0.0 1 -1.0 

 

 

Input file of underground cavern (Case 2): 

46  10  1 46 0 0 0 0  94500  0.1 

0.0 0.0 0.0 0.899999999999998 

0.0 1.8 0.0 2.7 

0.0 3.6 0.0 4.5 

0.0 5.4 0.0 6.3 

0.0 7.2 0.0 8.1 

0.0 9.0 0.0369349782145871 9.46930339512069 

0.14683045111454 9.92705098312484 0.326980427434897 10.3619714992186 

0.572949016875158 10.7633557568774 0.878679656440358 11.1213203435596 

1.23664424312258 11.4270509831248 1.63802850078136 11.6730195725651 

2.07294901687516 11.8531695488855 2.53069660487931 11.9630650217854 

3.0 12.0 3.46930339512069 11.9630650217854 

3.92705098312484 11.8531695488855 4.36197149921864 11.6730195725651 

4.76335575687742 11.4270509831248 5.12132034355964 11.1213203435596 

5.42705098312484 10.7633557568774 5.6730195725651 10.3619714992186 

5.85316954888546 9.92705098312484 5.96306502178541 9.46930339512069 

6.0 9.0 6.0 8.125 

6.0 7.25 6.0 6.375 

6.0 5.5 6.0 4.625 

6.0 3.75 6.0 2.875 

6.0 2.0 5.0 2.0 

4.0 2.0 4.0 1.0 

4.0 0.0 3.0 0.0 
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2.0 0.0 1.0 0.0 

1 -1.0 1 0.0 1 -1.0 1 0.0 

1 -1.0 1 0.0 1 -1.0 1 0.0 

1 -1.0 1 0.0 1 -1.0 1 0.0 

1 -1.0 1 0.0 1 -1.0 1 0.0 

1 -1.0 1 0.0 1 -1.0 1 0.0 

1 -0.996917334 1 0.078459096 1 -0.97236992 1 0.233445364 

1 -0.923879533 1 0.382683432 1 -0.852640164 1 0.522498565 

1 -0.760405966 1 0.649448048 1 -0.649448048 1 0.760405966 

1 -0.522498565 1 0.852640164 1 -0.382683432 1 0.923879533  

1 -0.233445364 1 0.97236992  1 -0.078459096 1 0.996917334  

1 0.078459096 1 0.996917334 1 0.233445364 1 0.97236992   

1 0.382683432 1 0.923879533  1 0.522498565 1 0.852640164  

1 0.649448048 1 0.760405966 1 0.760405966 1 0.649448048  

1 0.852640164 1 0.522498565 1 0.923879533 1 0.382683432  

1 0.97236992 1 0.233445364 1 0.996917334 1 0.078459096  

1 1.0 1 0.0 1 1.0 1 0.0 

1 1.0 1 0.0 1 1.0 1 0.0 

1 1.0 1 0.0 1 1.0 1 0.0 

1 1.0 1 0.0 1 0.0 1 -1.0 

1 0.0 1 -1.0 1 1.0 1 0.0 

1 1.0 1 0.0 1 0.0 1 -1.0 

1 0.0 1 -1.0 1 0.0 1 -1.0 

1 0.0 1 -1.0 1 0.0 1 -1.0 

 


