Login | Register

Biological motion perception and the animate-inanimate distinction in typically-developing children and children with Autism Spectrum Disorder

Title:

Biological motion perception and the animate-inanimate distinction in typically-developing children and children with Autism Spectrum Disorder

Wright, Kristyn (2015) Biological motion perception and the animate-inanimate distinction in typically-developing children and children with Autism Spectrum Disorder. PhD thesis, Concordia University.

[img]
Preview
Text (application/pdf)
Wright_PhD_F2016.pdf - Accepted Version
1MB

Abstract

The present dissertation had two main objectives. The first objective was to investigate the development of naïve biological reasoning among typically-developing (TD) children and children with high-functioning Autism Spectrum Disorder (HF-ASD). Secondly, the potential link between biological motion understanding and the ability to form the animate-inanimate (A-I) distinction in both TD and HF-ASD children was evaluated. The first study examined the development of the A-I distinction among typically-developing 4- and 5- year-old children, and established that around 5 years of age children are able to form taxonomic A-I categories. Interestingly, when given the opportunity to form categories based on either taxonomic or thematic rules many children switched to categorizing thematically.
The second study examined another aspect of naïve biology, namely the ability to identify biological motion among TD children and children with HF-ASD. This study was the first to compare point-light and schematic presentations of biological motion. The point-light biological motion task required children to identify degraded motion of a human, a cat, a bicycle, and a truck. The schematic biological motion task tested whether children associate expansion-contraction motion with the animate category. Across both motion identification tasks children with HF-ASD were unimpaired in identifying biological motion.
The final study investigated the development of naïve biology among children with HF-ASD and also sought to determine whether motion perception is linked to the formation of A-I concepts. Children with HF-ASD were unimpaired in their ability to form broad A-I categories. In contrast to what has been found during the infancy period, TD preschool children did not prioritize motion cues when forming A-I categories. Rather, it is hypothesized that pre-school children rely on more global representations of naïve biology that include other non-obvious attributes of animates. Similarly, among children with HF-ASD no relationship between prioritization of attention to biological motion and children’s ability to form the A-I distinction was found. However, children with HF-ASD who engaged more in the active process of visually comparing biological and non-biological motion were better at forming A-I categories. Taken together, the results of these studies indicate that children with HF-ASD were unimpaired on multiple aspects of naïve biological reasoning, specifically, A-I taxonomic category formation and the identification of biological motion. Additionally, the results of this research also suggest that while TD infants rely on motion cues to guide the formation of A-I categories, school-aged children use more global representations of naïve biology that include other perceptual cues and features.

Divisions:Concordia University > Faculty of Arts and Science > Psychology
Item Type:Thesis (PhD)
Authors:Wright, Kristyn
Institution:Concordia University
Degree Name:Ph. D.
Program:Psychology
Date:14 December 2015
Thesis Supervisor(s):Poulin-Dubois, Diane
Keywords:Autism Spectrum Disorder, biological motion, animate-inanimate distinction, categorization
ID Code:980883
Deposited By: KRISTYN WRIGHT
Deposited On:09 Nov 2016 20:20
Last Modified:18 Jan 2018 17:52

References:

Annaz, D., Campbell, R., Coleman, M., Milne, E., & Swettenham, J. (2012). Young children with autism spectrum disorder do not preferentially attend to biological motion. Journal of Autism and Developmental Disorders, 42(3), 401–8. doi:10.1007/s10803-011-1256-3

Annaz, D., Remington, A., Milne, E., Coleman, M., Campbell, R., Thomas, M. S. C., & Swettenham, J. (2010). Development of motion processing in children with autism. Developmental Science, 13(6), 826–38. doi:10.1111/j.1467-7687.2009.00939.x

Arterberry, M. E., & Bornstein, M. H. (2001). Three-month-old infants’ categorization of animals and vehicles based on static and dynamic attributes. Journal of Experimental Child Psychology, 80(4), 333–46. doi:10.1006/jecp.2001.2637

Arterberry, M. E., & Bornstein, M. H. (2002). Infant perceptual and conceptual categorization: the roles of static and dynamic stimulus attributes. Cognition, 86(1), 1–24. doi:doi:10.1016/S0010-0277(02)00108-7

Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia, 47(13), 3023–3029. doi:10.1016/j.neuropsychologia.2009.05.019

Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33(6), 717–746. doi:10.1068/p5096

Bardi, L., Regolin, L., & simion, F. (2010). Biological motion preference in humans at birth: role of dynamic and configural properties. Developmental Science, 14(2), 353-359.

Baron-Cohen, S. (1989). Are autistic children “Behaviorists”? An examination of their mental-physical and appearance-reality distinctions. Journal of Autism and Developmental Disorders, 19, 579–600. doi:10.1007/BF02212859

Baron-Cohen, S. (1997). Are children with autism superior at folk physics? In H. M. Wellman & K. Inagaki (Eds.), New Direction for Child Development Series (Vol. 1997, pp. 45–54). Jossey-Bass Inc. doi:10.1002/cd.23219977504

Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 37–46.

Baron-Cohen, S., Leslie, A. M., & Frith, U. (1986). Mechanical, behavioural and intentional understanding of picture stories in autistic children. The British Psychological Society, 4, 113–125.

Baron-Cohen, S., Leslie, A. M., & Frith, U. T. A. (1985). Does the autistic child have a “theory of mind?” Cognition, 21, 37–46.

Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., Clubley, E. (2001). The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5-17.

Barrett, H. C., & Kurzban, R. (2006). Modularity in cognition: framing the debate. Psychological Review, 113(3), 628–647. doi:10.1037/0033-295X.113.3.628

Bertenthal, B. I., & Pinto, J. (1994). Global processing of biological motions. Psychological Science, 5(4), 221–225. doi:10.1111/j.1467-9280.1994.tb00504.x.

Binnie, L. M., & Williams, J. M. (2002). Intuitive psychological, physical and biological knowledge in typically developing preschoolers, children with autism and children with Down’s syndrome. British Journal of Developmental Psychology, 20(3), 343–359. doi:10.1348/026151002320620361

Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47–73. doi:10.1146/annurev.psych.57.102904.190152

Blake, R., Turner, L. M., Smoski, M. J., Pozdol, S. L., & Stone, W. L. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151–7. doi:10.1111/1467-9280.01434

Blaye, A., & Bonthoux, F. (2001). Thematic and taxonomic relations in preschoolers: The development of flexibility in categorization choices. British Journal of Developmental Psychology, 19, 395–412.

Bornstein, M. H., & Arterberry, M. E. (2010). The development of object categorization in young children: hierarchical inclusiveness, age, perceptual attribute, and group versus individual analyses. Developmental Psychology, 46(2), 350–65. doi:10.1037/a0018411

Callanan, M. A. (1985). How parents label objects for young children: The role of input in the acquisition of category hierarchies. Child Development, 56(2), 508–523.

Carey, S. (1985). Conceptual change in childhood. Conceptual change in childhood. Cambridge, Massachusetts: Bradford Books: MIT Press.

Centelles, L., Assaiante, C., Etchegoyhen, K., Bouvard, M., & Schmitz, C. (2013). From action to interaction: Exploring the contribution of body motion cues to social understanding in typical development and in autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(5), 1140–50. doi:10.1007/s10803-012-1655-0

Chang, D. H. F., & Troje, N. F. (2008). Perception of animacy and direction from local biological motion signals. Journal of Vision, 8, 1–10. doi:10.1167/8.5.3.Introduction

Chang, D. H. F., & Troje, N. F. (2009). No characterizing global and local mechanisms in biological motion perception. Journal of Vision, 9(5), 3–10. doi:10.1167/9.5.8.

Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231–9. doi:10.1016/j.tics.2012.02.007

Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., & Rose, D. (2005). The perception of emotion from body movement in point-light displays of interpersonal dialogue. Perception, 34(10), 1171–1180. doi:10.1068/p5203

Cleary, L., Looney, K., Brady, N., & Fitzgerald, M. (2013). Inversion effects in the perception of the moving human form: A comparison of adolescents with autism spectrum disorder and typically developing adolescents. Autism: The International Journal of Research and Practice. doi:10.1177/1362361313499455

Congiu, S., Schlottmann, A., & Ray, E. (2010). Unimpaired perception of social and physical causality, but impaired perception of animacy in high functioning children with autism. Journal of Autism and Developmental Disorders, 40(1), 39–53. doi:10.1007/s10803-009-0824-2

Cook, J., Saygin, A. P., Swain, R., & Blackmore, S.J. (2009). Reduced sensitivity to minimum-jerk biological motion in autism spectrum conditions, Neuropsychologia, 47: 3275-3278.

Corsello, C., Hus, V., Pickles, A., Risi, S., Cook, E. H., Leventhal, B. L., & Lord, C. (2007). Between a ROC and a hard place: decision making and making decisions about using the SCQ. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 48(9), 932–40. doi:10.1111/j.1469-7610.2007.01762.x

Constantino, J., & Gruber, C. (2005). The Social Responsiveness Scale. Los Angeles: Western Psychological Services.

Csibra G. (2008). Goal attribution to inanimate agents by 6.5-month-old infants. Cognition, 107, 701-717. doi: 10.1016/j.cognition.2007.08.0001

Csibra G, Gergely G, Biro S, Koos O, Brockbank M. (1999). Goal attribution without agency cues: The perception of ‘pure reason’ in infancy. Cognition. 72:237–267.

Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception & Psychophysics, 44(4), 339–347. doi:10.3758/BP03210415

Daehler, M., Lonardo, R., & Bukatko, D. (1979). Matching and equivalence judgments in very young children. Child Development, 50(1), 170–179.

Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507. doi:10.1016/j.neuron.2005.10.018

David, N., Schultz, J., Milne, E., Schunke, O., Schottle, D., Munchau, A., … Engel, A. (2013). Right temporoparietal gray matter predicts accuracy of social perception in the autism spectrum. Journal of Autism and Developmental Disorders, 44(6), 1433–1466. doi:10.1007/s10803-013-2008-3

Dawson, G., Bernier, R., & Ring, R. (2012). Social attention: A possible early indicator of efficacy in autism clinical trials. Journal of Neurodevelopmental Disorders, 4(1), 11.

Dawson, G., Meltzoff, A., Osterling, J., Rinaldi, J., & Brown, E. (1998). Children with autism fail to orient to naturally occurring social stimuli. Journal of Autism and Developmental Disorders, 28(6), 479–85. doi:10.1023/A:1026043926488

Dawson, G., Webb, S. J. & McPartland, J. (2005). Understanding the nature of face processing impairment in autism: Insights from behavioural and electrophysiological studies. Developmental Neuropsychology, 27, 403-424.

Dawson, G., Webb, S. J., Schellenberg, G. D., Dager, S., Friedman, S., Aylward, E., et al. (2002). Defining the broader phenotype of autism: Genetic, brain, and behavioral perspectives. Development and Psychopathology, 14, 581–611.

Denney, N.W. & Ziobrowski, M. (1972). Developmental changes in clustering criteria. Journal of Experimental Child Psychology, 13: 275-282.

Elliott, C. (2007). Differential Ability Scale, 2nd edition: Introductory and technical handbook. San Antonio, TX: The Psychological Corporation.

Elsabbagh, M., Fernandes, J., Webb, S., Dawson, G., Charman, T., Johnson, M. (2013). Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biological Psychiatry, 74(3), 189-194. doi: 10.1016/j.biopsych.2012.11.030

Erickson, J. E., Keil, F. C., & Lockhart, K. L. (2010). Sensing the coherence of biology in contrast to psychology: Young children’s use of causal relations to distinguish two foundational domains. Child Development, 81(1), 390–409. doi:10.1111/j.1467-8624.2009.01402.x

Falck-Ytter, T., Rehnberg, E., & Bölte, S. (2013). Lack of visual orienting to biological motion and audiovisual synchrony in 3-year-olds with autism. PloS One, 8(7), e68816. doi:10.1371/journal.pone.0068816

Fletcher-Watson, S., Leekam, S. R., Benson, V., Frank, M. C., & Findlay, J. M. (2009). Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia, 47(1), 248–57. doi:10.1016/j.neuropsychologia.2008.07.016
Fodor, J. (1983). The modularity of mind. Cambridge, Massachusetts: MIT Press.

Freitag, C. M., Konrad, C., Häberlen, M., Kleser, C., von Gontard, A., Reith, W., … Krick, C. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46(5), 1480–94. doi:10.1016/j.neuropsychologia.2007.12.025

Gastgeb, H. Z., Strauss, M. S., & Minshew, N. J. (2006). Do individuals with autism process categories differently? The effect of typicality and development. Child Development, 77(6), 1717–29. doi:10.1111/j.1467-8624.2006.00969.x

Gelman, S. (1988). The development of induction within natural kind and artifact categories. Cognitive Psychology, 20, 65–95.

Gelman, S., & Coley, J. D. (1990). The importance of knowing a dodo is a bird: Categories and inferences in 2-year-old children. Developmental Psychology, 26(5), 796–804. doi:10.1037//0012-1649.26.5.796

Gelman, S., Coley, J. D., Rosengren, K. S., Hartman, E., Pappas, A., & Keil, F. C. (1998). Beyond labeling: The role of maternal input in the acquisition of richly structured categories. Monographs of the Society for Research in Child Development, 63(1), Serial No.253.

Gelman, S., & Koenig, M. (2003). Theory-based categorization in early childhood. In D. Rakison & L. Oakes (Eds.), Early category and concept development - Making sense of the blooming buzzing confusion. New York, NY: Oxford University Press.

Gelman, S., & Markman, E. (1986). Categories and induction in young children. Cognition, 23(3), 183–209. doi:doi:10.1016/0010-0277(86)90034-X

Gelman, S., & Opfer, J. E. (2002). Development of the Animate – Inanimate Distinction. In U. Goswami (Ed.), Blackwell Handbook of Childhood Cognitive Development (pp. 151–166). Blackwell Publishers Ltd.

Gelman, S., & Spelke, E. (1981). The development of thoughts about animate and inanimate objects: implications for research on social cognition. In J. H. Flavell & L. Ross (Eds.), Social Cognitive Development: Frontiers and Possible Futures (pp. 43–66). Cambridge, UK: Cambridge University Press.

Geurts, H.M., Corbett, B., Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Science, 13(2), 74-82. doi: 10.1016/j.tics.2008.11.006.

Gottfried, G. M., & Gelman, S. (2005). Developing domain-specific causal-explanatory frameworks: the role of insides and immanence. Cognitive Development, 20(1), 137–158. doi:10.1016/j.cogdev.2004.07.003

Grossman, E. D., Blake, R., & Kim, C.-Y. (2004). Learning to see biological motion: brain activity parallels behavior. Journal of Cognitive Neuroscience, 16(9), 1669–79. doi:10.1162/0898929042568569

Happé, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25. doi:10.1007/s10803-005-0039-0

Hayes, P. (1979). The naive physics manifesto. In D. Michie (Ed.), Expert systems in the micro-electronic age. Edinborough: University Press.

Heider, F., & Simmel, M. (1944). An experimental study of apparent behavior. The American Journal of Psychology, 57(2), 243–259.

Herrington, J. D., Baron-Cohen, S., Wheelwright, S. J., Singh, K. D., Bullmore, E. T., Brammer, M., & Williams, S. C. R. (2007). The role of MT+/V5 during biological motion perception in Asperger Syndrome: An fMRI study. Research in Autism Spectrum Disorders, 1(1), 14–27. doi:10.1016/j.rasd.2006.07.002

Hohmann, T., Troje, N., Olmos, A., & Munzert, J. (2011). The influence of motor expirtese and motor experience on action and actor recognition. Journal of Cognitive Psychology, 23(4), 403–415. doi:10.1080/20445911.525504.

Hubert, B., Wicker, B., Moore, D. G., Monfardini, E., Duverger, H., Da Fonséca, D., & Deruelle, C. (2007). Brief report: Recognition of emotional and non-emotional biological motion in individuals with autistic spectrum disorders. Journal of Autism and Developmental Disorders, 37(7), 1386–92. doi:10.1007/s10803-006-0275-y

Inagaki, K., & Hatano, G. (1987). Young children's spontaneous personification as analogy. Child Development, 58, 1013-1020.

Inagaki, K., & Hatano, G. (1996). Young children’s recognition of commonalities between animals and plants. Child Development, 67(6), 2823–2840. doi:10.2307/1131754

Inagaki, K., & Hatano, G. (2006). Young children’s conception of the biological world. Current Directions in Psychological Science, 15(4), 177–181. doi:10.1111/j.1467-8721.2006.00431.x

Jarrold, C. (2003). A review of research into pretend play in autism. Autism, 7(4), 379–390. doi:10.1177/1362361303007004004

Jipson, J. L., & Gelman, S. (2007). Robots and rodents: Children’s inferences about living and nonliving kinds. Child Development, 78(6), 1675–1688.

Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201–211.

Johnson, C., & Rakison, D. H. (2006). Early categorization of animate/inanimate concepts in young children with autism. Journal of Developmental and Physical Disabilities, 18, 73-89.

Kagan, J., Moss, H., & Sigel, I. E. (1963). Psychological significance of styles of conceptualization. In J. Wright & J. Kagan (Eds.), Basic Cognitive Processes in Children. Monographs of the Society for Research in Child Development.

Kaiser, M. D., Delmolino, L., Tanaka, J. W., & Shiffrar, M. (2010). Comparison of visual sensitivity to human and object motion in autism spectrum disorder. Autism Research, 3(4), 191–195. doi:10.1002/aur.137

Kaiser, M. D., & Pelphrey, K. (2012). Disrupted action perception in autism: Behavioral evidence, neuroendophenotypes, and diagnostic utility. Developmental Cognitive Neuroscience, 2(1), 25–35. doi:10.1016/j.dcn.2011.05.005

Kaiser, M. D., & Shiffrar, M. (2013). Variability in visual perception of human motion as a function of observers autistic traits. In K. Johnson & M. Shiffrar (Eds.), People Watching: Social, perceptual and neurophysiological studies of body perception. New York, NY: Oxford University Press.

Klin, A., & Jones, W. (2006). Attributing social and physical meaning to ambiguous displays in individuals with higher-functioning autism spectrum disorders, Brain: Cognition, 61(1), 40-53.

Klin, A., & Jones, W. (2008). Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism. Developmental Science, 11(1), 40–6. doi:10.1111/j.1467-7687.2007.00608.x

Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59(9), 809–816. doi:10.1001/archpsyc.59.9.809

Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459(7244), 257–61. doi:10.1038/nature07868

Klinger, L., & Dawson, G. (2001). Prototype formation in autism. Development and Psychopathology, 13, 111–124.

Koldewyn, K., Whitney, D., & Rivera, S. M. (2010). The psychophysics of visual motion and global form processing in autism. Brain: A Journal of Neurology, 133(2), 599–610. doi:10.1093/brain/awp272

Koldewyn, K., Whitney, D., & Rivera, S. M. (2011). Neural correlates of coherent and biological motion perception in autism. Developmental Science, 14(5), 1075–88. doi:10.1111/j.1467-7687.2011.01058.x

Landry, R., & Bryson, S. (2004). Impaired disengagement of attention in young children with autism. Journal of Child Psychology and Psychiatry, 45(6), 1115-1122.

Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., … Rutter, M. (2000). Autism Diagnostic Observation Schedule (ADOS). Journal of Autism and Developmental Disorders, 30(3), 205–23. doi:10.1007/BF02211841.

Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.

Maestro, S., Muratori, F., Cavallaro, M. C., Pei, F., Stern, D., Golse, B., & Palacio-espasa, F. (2002). Attentional skills during the first 6 months of age in autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 41(10), 1239–1245. doi:10.1097/01.CHI.0000020277.43550.02

Mak, B., & Vera, A. H. (1999). The role of motion in children’s categorization of objects. Cognition, 71(1), B11–B21. doi:10.1016/S0010-0277(99)00019-0

Mangold (2014): INTERACT 14 User Guide. Mangold International GmbH (Ed.)

Mandler, J. (1991). Prelinguistic primitives. In Annual Proceedings of the Berkeley Linguistics Society (pp. 414–425).

Mandler, J., Bauer, P. J., & McDonough, L. (1991). Separating the sheep from the goats: Differentiating global categories. Cognitive Psychology, 23(2), 263–298. doi:10.1016/0010-0285(91)90011-C

Mandler, J. M. (1992). How to build a baby: II. Conceptual primitives. Psychological Review, 99(4), 587–604.

Mandler, J. M. (2012). On the spatial foundations of the conceptual system and its enrichment. Cognitive Science, 36(3), 421–51. doi:10.1111/j.1551-6709.2012.01241.x

Margett, T. E., & Witherington, D. C. (2011). The nature of preschoolers’ concept of living and artificial objects. Child Development, 82(6), 2067–82. doi:10.1111/j.1467-8624.2011.01661.x

Markman, E. M. (1989). Categorization and naming in children: Problems of induction. In Categorization and naming in children: Problems of induction. Cambridge, Massachusetts: The MIT Press.

Markman, E. M., Cox, B., & Machida, S. (1981). The standard object-sorting task as a measure of conceptual organization. Developmental Psychology, 17(1), 115–117. doi:10.1037//0012-1649.17.1.115

Massey, C. M., & Gelman, R. (1988). Preschooler’s ability to decide whether a photographed unfamiliar object can move itself. Developmental Psychology, 24(3), 307–317. doi:10.1037//0012-1649.24.3.307

Mather, G., & Murdoch, L. (1994). Gender discrimination in biological motion displays based on dynamic cues. Proceedings of the Royal Society of London, Series B: Biological Sciences, (273-279). doi:10.1098/rspb.1994.0173.

Mervis, C. B., & Crisafi, M. A. (1982). Order of acquisition of subordinate-, basic-, and superordinate-level categories. Child Development, 53(1), 258–266.

Michotte, A. (1963). The Perception of Causality. New York: Basic Books.

Miller, L., & Saygin, A. (2013). Individual differences in the perception of biological motion: Links to social cognition and motor imagery. Cognition, 128, 140-148. doi: 10.1016/j.cognition.03.013

Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43(2), 255–63.

Montepare, J. M., & Zebrowitz-McArthur, L. (1988). Impressions of people created by age-related qualities of their gaits. Journal of Personality and Social Psychology, 55(4), 547. doi:10.1037/0022-3514.55.4.547

Moore, D. G., Hobson, R. P., & Lee, A. (1997). Components of person perception: An investigation with autistic, non-autistic retarded and typically developing children and adolescents. British Journal of Developmental Psychology, 15(4), 401–423. doi:10.1111/j.2044-835X.1997.tb00738.x

Morita, T., Slaughter, V., Katayama, N., Kitazaki, M., Kakigi, R., & Itakura, S. (2012). Infant and adult perceptions of possible and impossible body movements: an eye-tracking study. Journal of Experimental Child Psychology, 113(3), 401–14. doi:10.1016/j.jecp.2012.07.003

Mottron, L., Dawson, G., Soulières, I., Hubert, B., Burack, J. (2006). Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27-43.

Murphy, P., Brady, N., Fitzgerald, M., & Troje, N. F. (2009). No evidence for impaired perception of biological motion in adults with autistic spectrum disorders. Neuropsychologia, 47(14), 3225–35. doi:10.1016/j.neuropsychologia.2009.07.026

Naigles, L., Keley, E., Troyb, E., & Fien, D. (2013). Residual difficulties with categorical induction in children with a history of autism, Journal of Autism and Developmental Disorders, 43(9), 2048-61.

Opfer, J. E., & Gelman, S. A. (2011). Development of the animate-inanimate distinction. In U. Goswami (Ed.), The Wiley-Blackwell Handbook of Childhood Cognitive Development (pp. 213–238). Wiley-Blackwell.

Oosterling, I., Rommelse, N., de Jong, M., Jan van der Gag, R., Swinkles, S., Roos, S., Visser, J., & Buitellar, J. (2009). How useful is the Social Communication Questionnaire in toddlers at risk for autism spectrum disorder? Journal of Child Psychology and Psychiatry, 51(11)1260-1268. doi: 10.1111/j.1469-7610.2010.02246.x

Parron, C., Da Fonseca, D., Santos, A., Moore, D. G., Monfardini, E., & Deruelle, C. (2008). Recognition of biological motion in children with autistic spectrum disorders. Autism, 12(3), 261–74. doi:10.1177/1362361307089520

Pauen, S. (2002). The global-to-basic level shift in infants’ categorical thinking: First evidence from a longitudinal study. International Journal of Behavioral Development, 26(6), 492–499. doi:10.1080/01650250143000445

Pavlova, M. (2011). Biological motion processing as a hallmark of social cognition. Cerebral Cortex, 22(5), 981–95. doi:10.1093/cercor/bhr156

Pavlova, M. (2013). The development of biological motion processing in normalcy and pathology. In K. Johnson & M. Shiffrar (Eds.), People Watching: Social, perceptual and neurophysiological studies of body perception. New York, NY: Oxford University Press.

Pavlova, M., Krägeloh-Mann, I., Sokolov, A., & Birbaumer, N. (2001). Recognition of point-light biological motion displays by young children. Perception, 30(8), 925–933. doi:10.1068/p3157

Peterson, C. C., & Siegal, M. (1992). Domain specificity and everyday biological, physical, and psychological thinking in normal, autistic, and deaf children. New Directions in Child Development, (75), 55–70.

Poulin-Dubois, D., Crivello, C., & Wright, K. (2015). Biological Motion Primes the Animate/Inanimate Distinction in Infancy. Plos One, 10(2), 1–12. doi:10.1371/journal.pone.0116910

Poulin-Dubois, D., Frenkiel-Fishman, S., Nayer, S., Johnson, S. (2006). Infant’s Inductive Generalization of Bodily, Motion, and Sensory Properties to Animals and People. Journal of Cognition and Development, 7: 431–453. doi: 10.1207/s15327647jcd0704_1

Premack, D. (1990). Infants theory of self-propelled objects. Cognition, 36, 1–16.

Quinn, P. (2000). Perceptually Based Approaches to Understanding Early Categorization. Infancy, 1(1), 29–30.

Quinn, P., & Eimas, P. (1997). A reexamination of the perceptual-to-conceptual shift in mental representation. Review of General Psychology, 1(271-287).

Quinn, P., Eimas, P., & Rosenkrantz, S. (1993). Evidence for representation of perceptually similar natural categories by 3-month-old and 4-month-old infants. Perception, 22, 463–475.

Quinn, P., & Johnson, M. H. (2000). Global-before-basic object categorization in connectionist networks and 2-month-old infants. Infancy, 1(1), 31–46.

Rakison, D. (2003). Parts, category, and the animate-inanimate distinction in infancy. In D. Rakison & L. M. Oakes (Eds.), Early Category and Concept Development - Making sense of the blooming buzzing confusion (pp. 152–192). New York, NY: Oxford University Press.

Rakison, D., & Butterworth, G. (1998). Infants’ use of parts in early categorization. Developmental Psychology, 34, 49–62.

Rakison, D. H., & Poulin-Dubois, D. (2001). Developmental origin of the animate-inanimate distinction. Psychological Bulletin, 127(2), 209–228.

Ray, E., & Schlottmann, A. (2007). The perception of social and mechanical causality in young children with ASD. Research in Autism Spectrum Disorders, 1(3), 266–280. doi:10.1016/j.rasd.2006.11.002

Rhodes, M., & Gelman, S. A. (2009). Five-year-olds’ beliefs about the discreteness of category boundaries for animals and artifacts. Psychonomic Bulletin & Review, 16(5), 920–924. doi:10.3758/PBR.16.5.920

Rhodes, M., & Gelman, S. A. (2010). A developmental examination of the conceptual structure of animal, artifact, and human social categories across two cultural contexts. Cognitive Psychology, 59(3), 244–274. doi:10.1016/j.cogpsych.2009.05.001.A

Rogers, S. & Dawson, G. (2010). Early Start Denver Model for young children with autism: Promoting language, learning and engagement. Guilford Press, New York: NY.

Rosch, E., Mervis, B., Gray, W., Johnson, D., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.

Rosch, E., & Mervis, C. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 605, 573–605.

Rosengren, K. S., Gelman, S. A., Kalish, C. W., & McCormick, M. (1991). As time goes by: Children’s early understanding of growth in animals. Child Development, 62(6), 1302–1320.

Rostad, K., Yott, J., & Poulin-Dubois, D. (2012). Development of categorization in infancy: Advancing forward to the animate-inanimate level. Infant Behavior & Development, 35(3), 584–95. doi:10.1016/j.infbeh.2012.05.005

Ruenson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an informational bias for person-and-action perception: Expectation, gender recognition, and deceptive intention. Journal of Experimental Psychology: General, 112(4), 585–615. doi:10.1037/0096-3445.112.4.585

Rutherford, M. D., Pennington, B. F., & Rogers, S. J. (2006). The perception of animacy in young children with autism. Journal of Autism and Developmental Disorders, 36(8), 983–992. doi:10.1007/s10803-006-0136-8

Rutherford, M. D., & Troje, N. F. (2012). IQ predicts biological motion perception in autism spectrum disorders. Journal of Autism and Developmental Disorders, 42(4), 557–565. doi:10.1007/s10803-011-1267-0

Rutter, M., Bailey, A., & Lord, C. (2003). Social Communication Questionnaire. Los Angeles CA Western Psychological Services. Los Angeles, CA: Western Psychological Services.

Sasson, N. J., Elison, J. T., Turner-Brown, L. M., Dichter, G.S., & Bodfish, J.W. (2011). Brief report: Circumscribed attention in young children with autism. Journal of Autism and Developmental Disorders, 41(2), 242- 247. doi: 10.1007/s10803-010-1038-3.

Sasson, N. J., Touchstone, E.W. (2013). Visual attention to competing social and object images by preschool children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(3), 584-592. doi: 10.1007/s10803-013-1910-z.

Saygin, A. P., Cook, J., & Blakemore, S.-J. (2010). Unaffected perceptual thresholds for biological and non-biological form-from-motion perception in autism spectrum conditions. PloS One, 5(10), e13491. doi:10.1371/journal.pone.0013491

Schlottmann, A., Allen, D., Linderoth, C., & Hesketh, S. (2002). Perceptual causality in children. Child Development, 73(6), 1656–77.

Schlottmann, A., & Ray, E. (2010). Goal attribution to schematic animals: Do 6-month-olds perceive biological motion as animate? Developmental Science, 13(1), 1–10. doi:10.1111/j.1467-7687.2009.00854.x

Schlottmann, A., Surian, L., Ray, E. (2009). Causal perception of action-in-reaction sequences in 8- to 10- month-olds. Journal of Experimental Child Psychology, 103(1), 87-107.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime users guide. Pittsburgh: Psychology Software Tools Inc.

Schultz, J., & Bulthoff, H. (2013). Parametric animacy percept evoked by a single moving dot mimicking natural stimuli. Vision, 13(4), 1–19. doi:10.1167/13.4.15.doi

Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: the role of expertise. Psychonomic Bulletin & Review, 16(1), 170–5. doi:10.3758/PBR.16.1.170

Shic, F., Bradshaw, J., Klin, A., Scassellati, B., Chawarska, K. (2011). Limited activity monitoring in toddlers with autism spectrum disorder. Brain Research, 1380(22), 246-254.

Shulman, C., Yirmiya, N., & Greenbaum, C. W. (1995). From categorization to classification: A comparison among individuals with autism, mental retardation, and normal development. Journal of Abnormal Psychology, 104(4), 601–9.

Sigel, I. (1953). Developmental trends in the abstraction ability of children. Child Development, 24(2), 131–44.

Sigel, I. E., Anderson, L. M., & Shapiro, H. (1966). Categorization behavior of lower- and middle-class negro preschool children: Differences in dealing with representations of familiar objects. Journal of Negro Education, 35(3), 218–229.

Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 809–813. doi:10.1073/pnas.0707021105

Simons, D. J., & Keil, F. C. (1995). An abstract to concrete shift in the development of biological thought: the insides story. Cognition, 56(2), 129–163. doi:10.1016/0010-0277(94)00660-D

Snow, A., & Lecavalier, L. (2008). Sensitivity and specificity of the Modified Checklist for Autism in Toddlers and the Social Communication Questionnaire in preschoolers suspected of having pervasive developmental disorders. Autism, 12(6), 627-644.

Soulières, I., Mottron, L., Giguère, G., & Larochelle, S. (2011). Category induction in autism: Slower, perhaps different, but certainly possible. Quarterly Journal of Experimental Psychology, 64(2), 311-327.

Starkey, D. (1981). The origins of concept formation: Object sorting and object preference in early infancy. Child Development, 52(2), 489–497.

Sugarman, S. (1983). Children's early thought; Developments in classification. Cambridge University Press. Cambridge: UK.

Swettenham, J., Baron-Cohen, S., Charman, T., Cox, A., Baird, G., Drew, A., … Wheelwright, S. (1998). The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants. Journal of Child Psychology and Psychiatry, 39(5), 747–753. doi:10.1017/S0021963098002595

Swettenham, J., Remington, A., Laing, K., Fletcher, R., Coleman, M., & Gomez, J.-C. (2013). Perception of pointing from biological motion point-light displays in typically developing children and children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 43(6), 1437–1446. doi:10.1007/s10803-012-1699-1

Tager-Flusberg, H. (1985a). Basic level and superordinate level categorization by autistic, mentally retarded, and normal children. Journal of Experimental Child Psychology, 40(3), 450–69.

Tager-Flusberg, H. (1985b). The conceptual basis for referential word meaning in children with autism. Child Development, 56(5), 1167–78.

Thoermer, C., Sodian, B., Vuori, M., Perst, H., & Kristen, S. (2012). Continuity from an implicit to an explicit understanding of false belief from infancy to preschool age. British Journal of Developmental Psychology, 30(1), 172–187. doi:10.1111/j.2044-835X.2011.02067.x

Thomson, J., & Baccus, W. (2012). Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex. NeuroImage, 59(1), 625-634.

Trauble, B., Pauen, S., & Poulin-Dubois, D. (2014). Speed and direction changes induce the perception of animacy in 7-month-old infants. Frontiers in Psychology, 5(October), 1–8. doi:10.3389/fpsyg.2014.01141

Tremoulet, P. D., & Feldman, J. (2000). Perception of animacy from the motion of a single object. Perception, 29(8), 943–951. doi:10.1068/p3101

Troje, N. (2008). Biological motion percetion. In A. Basbaum, A. Kaneko, G. Shepherd, & G. Westheimer (Eds.), The senses: A comprehensive reference (Vol. 2, pp. 231–238). San Diego: Academic Press.

Troje, N. F. (2002). Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. Journal of Vision, 2(5), 371–87. doi:10:1167/2.5.2

Troje, N. F. (2013). What is biological motion? Definition, stimuli, and paradigms. In M. D. Rutherford & V. A. Kuhlmeier (Eds.), Social Perception: Detection and interpretation of animacy, agency, and intention (pp. 13–36). Cambridge, Massachusetts: MIT Press.

Troje, N. F., & Westhoff, C. (2006). The inversion effect in biological motion: Effects of structural and kinematic cues. Current Biology, 67(4), 667–675. doi:10.3758/BF03193523

Uyeda, K. M., & Mandler, G. (1980). Prototypicality norms for 28 semantic categories. Behavior Research Methods & Instrumentation, 12(6), 587–595.

Van Overschelde, J. P., Rawson, K. a, & Dunlosky, J. (2004). Category norms: An updated and expanded version of the Battig and Montague (1969) norms. Journal of Memory and Language, 50(3), 289–335. doi:10.1016/j.jml.2003.10.003

Vangeneudgen, J., Peelen, M., Tadin, D., & Battelli, L. (2014). Distinct neural mechanisms for body form and body motion discriminations.Journal of Neuroscience, 34(2), 574-585.

VPixx Technologies (VPixx). Saint-Bruno, Quebec, Canada.

Vygotsky, L. S. (1962). Piaget’s theory of child language and thought. In Thought and Language (pp. 9–24). MIT Press.

Waxman, S., & Gelman, R. (1986). Preschoolers’ use of superordinate relations in classification and language. Cognitive Development, 1(2), 139–156. doi:10.1016/S0885-2014(86)80016-8

Waxman, S. R., & Namy, L. L. (1997). Challenging the notion of a thematic preference in young children. Developmental Psychology, 33(3), 555–67.

Webb, S. J., Jones, E. J. H., Merkle, K., Namkung, J., Toth, K., Greenson, J., … Dawson, G. (2010). Toddlers with elevated autism symptoms show slowed habituation to faces. Child Neuropsychology, 16, 255–78. doi:10.1080/09297041003601454
Wellman, H. (1990). The child’s theory of mind. Cambridge, Massachusetts: MIT Press.

Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains. Annual Review of Psychology, 43, 337–375.

Wellman, H. M., & Gelman, S. A. (1998). Knowledge acquisition in foundational domains. In W. Damon (Ed.), Handbook of Child Psychology (Volume 2., pp. 523–573). Hoboken, NJ: John Wiley & Sons Inc.

Woodward, A. L. (1998). Infants selectively encode the goal of an actor’s reach. Cognition, 69, 1–34.

Wright, K., Poulin-Dubois, D., & Kelley, E. (2015). The animate-inanimate distinction in preschool children. British Journal of Developmental Psychology, 33(1), 73-91.

Yoon, J. M. D., & Johnson, S. C. (2009). Biological motion displays elicit social behavior in 12-month-olds. Child Development, 80(4), 1069–75. doi:10.1111/j.1467-8624.2009.01317.x
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top