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Abstract

Spectral Descriptors for Data Clustering and Classification

Ramandeep Kaur Grewal

Spectral descriptors have received much attention in recent years due in large part to their versatility

as well as their ability to capture either local or global geometric information of data. While the over-

whelming majority of work on spectral descriptors has concentrated primarily on image/shape retrieval

and object recognition, the goal of this work is to introduce efficient algorithms for data classification

and clustering in the spectral graph-theoretic setting. In addition to exploiting the dependence among

the features of spectral descriptors, we perform clustering and classification on sparse codes, thereby

seamlessly capturing the similarity between these features.

Unlike classification in which objects are assigned to predefined classes, clustering is different

in the sense that the number (and labels) of clusters or the cluster structure are not known in ad-

vance. In this thesis, we propose a spectral graph-theoretic clustering and classification framework,

called GraphFDD, which uses the Fermi density descriptor (FDD) in conjunction with graph regular-

ized sparse coding. We also propose a unified framework for data clustering using the spectral graph

wavelet descriptor, which has a strong discriminative power and good performance in capturing neigh-

borhood information. To further enhance the effectiveness of the proposed algorithms, we not only

optimize the parameters, but also determine the proper matching normalization technique.

To assess the performance of the proposed algorithms, we use several validity measures and in-

dices, including the average clustering accuracy, normalized mutual information, confusion matrix

and classification accuracy. Our experiments on different standard benchmarks not only show that the

proposed approaches outperform state-of-the-art methods, but also provide attractive scalability and

robustness in terms of computational efficiency.
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1
Introduction

1.1 Framework and Motivation

Recent advances in graph theory, which models pairwise relations between objects, have sparked a

flurry of research activity in diverse fields with applications ranging from image processing, computer

graphics and transportation networks to bioinformatics and social networks. With the extensive growth

in industry, databases have become more and more complex, which has led to significant challenges

in management and summary of data. The major difficulty is how to manage large and complex data

sets. It is also difficult to retrieve data based on similarity and dissimilarity between features. To tackle

problems related to big data, there are proven techniques in data mining such as clustering, classifi-

cation and anomaly detection. Moreover, mathematical techniques are also introduced mainly dimen-

sionality reduction methods, multidimensional scaling, sub-sampling, Principal Component Analysis

(PCA) and sparse coding [1]. The main challenge in this field is to design an appropriate method that

helps improve clustering and classification results. In this research, graph-theoretic frameworks are

presented and described for classification and clustering using spectral descriptors. While this work

focuses primarily on clustering and classification, the proposed approaches are fairly general and can

be used to tackle other data mining problems.
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1.1.1 Spectral Graph Theory

Graph theory is the study of graphs, which basically mathematical structures and a way of storing a set

of points and lines. Graphs are used to model pairwise relations between objects and it is defined as

G = (V, E), where V = {v1, . . . ,vm} is the set of vertices, E = {eij} is the set of edges. The number

of vertices is considered as order of graph and number of edges is known as size of graphs.Each edge

eij = [vi,vj ] connects a pair of vertices {vi,vj}. Two distinct vertices vi,vj ∈ V are adjacent

(denoted by vi ∼ vj or simply i ∼ j) if they are connected by an edge, i.e. eij ∈ E [2, 3].

Spectral graph theory uses the eigenvalues and eigenvectors of matrices associated with the graph,

such as the adjacency matrix, the Laplacian matrix, or the normalized Laplacian matrix, to provide

information about the graph. These matrices are typically sparse, meaning that a large number of the

matrix elements are zeros. We use matrices to store graphs in computers because it is an easy and

efficient way [2].

Data Matrix: We may represent a data set Z = {z1, . . . , zn} by an m× n data matrix Z defined as

Z = (z1, . . . , zn) =

⎛⎜⎜⎜⎜⎜⎜⎝
z11 z12 · · · z1n

z21 z22 · · · z2n
...

...
. . .

...

zm1 zm2 · · · zmn

⎞⎟⎟⎟⎟⎟⎟⎠ (1.1)

where each column zi is a m-dimensional vector, called a data point, observation, or instance. In

other words, Z is a cloud of n points in the m-dimensional space. Each entry zij of the data matrix

Z is called a feature, variable, or attribute. Representing a data set in the form of a matrix allows

computations to be performed efficiently.

Neighborhood Graph: A data set Z = {z1, . . . , zn} with pairwise dissimilarities can be trans-

formed into a neighborhood graph G by modeling the local neighborhood relationships between the

data points. Each data point serves as a vertex on the neighborhood graph and connectivity between

vertices is governed by the proximity of neighboring data points.

Adjacency Matrix: It is a square matrix whose elements indicates the adjacency of nodes or ver-

tices. It contains the information regarding the representation of the graph which explains the connec-

tions between nodes and it is also known as connection matrix. The adjacency matrix W =
(
wij

)
of a

2



neighborhood graph constructed from a point cloud Z of n data points and it is defined as

wij =

⎧⎪⎨⎪⎩
1 if j ∈ Ni

0 o.w.
(1.2)

where Ni denotes the κ-neighborhood of zi, with κ denoting the number of neighbors [2].

Degree Matrix: It is a diagonal matrix D = (di) whose elements are given by

di =

n∑
j=1

wij , i = 1, . . . , n (1.3)

where di is degree of data point zi.

Laplacian Matrix: It is defined as L = D − W, where D is the degree matrix and W is the

adjacency matrix. The Laplacian is n × n symmetric matrix of neighborhood graph. Its sum of rows

and columns, is zero [2]. There are several methods for normalizing the Laplacian matrix. The details

are provided in Section 3.2.1.

1.1.2 Data Mining

Data mining is the process of discovering useful information ir knowledge from data. This relatively

new discipline is popular in many fields such as medical, fraud detection, science and technology [4].

Core components of data mining include:

1. Clustering

2. Classification

3. Anomaly Detection

4. Association Rule Learning

5. Visualization

1. Clustering: It is a technique used for statistical data analysis. It is also known as unsupervised

learning approach which means having unlabeled data in a data-set. A collection of data objects

which has similar properties is considered into same group and unrelated to other groups, is the

process of clustering. It is basically based on the concept of high intra-class similarity and low

3



inter-class similarity. For clustering, there is no need of prior knowledge of data and its classes.

This technique is very popular these days in many fields like biology, marketing, earth-quake

studies, city-planning, climate and economic science. In this era, clustering is an important

tool for the field of data mining which has further approaches mainly partitioning, hierarchical,

density based and frequency pattern-based. There are some challenges to clustering algorithms

like robustness, sensitivity, outlier detection, accuracy and scalability. So, it is still an active

area in research [4–6]. The popular type of clustering is K-means clustering.
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FIGURE 1.1: Examples of clustering

2. Classification: It is also known as supervised learning approach. In this method, the whole data

is divided into two parts: one is for training set and another for testing set. Prior knowledge of

data is required to build a classifier based on the training set of data. After learning the model

with training data, then perform testing to classify the remaining data points into appropriate

classes and calculate their accuracy [4].

3. Anomaly detection: It is also an important method used for the detection of anomalies or the

false data which is also known as outlier detection. This method is of great significance to many
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applications such as fraud detection, cancer diagnostics and virus detection [7, 8]. Outliers or

anomalies are basically data points that are very different from other data points. The funda-

mental algorithms of clustering and anomaly detection form the basis for the vibrant field of

data science. The main goal of anomaly detection algorithms is to differentiate anomalies from

normal instances [5, 9].

4. Association Rule Learning: It is an interesting method for analysis of relationships between

unrelated data. The idea behind this learning comes from Market Basket Analysis (MBA) which

means analysis of items in the super-stores based on everyday sale. Then find the correlations

and associations between the items usually brought together by the customers. For example, a

customer comes to buy eggs and milk also probable to buy bread or cereal together. So, we can

find the correlation with the analysis of different shopping baskets of customers. This learning

is useful in promotional pricing, web data mining and also for intrusion detection. Amazon and

Netflix also engage in data mining to improve the experience of shopping [6].

5. Visualization: It helps in analysis of data using visual objects. It makes data more understand-

able and easy to access with the help of graphs, plots, charts and tables. But for large data and

data with large number of dimensions, it is very hard to visualize distances. So, there is a need

of dimensionality reduction methods to reduce the number of dimensions. Multidimensional

scaling (MDS) is basically used to address these issues and helps visualize data points based on

their pairwise distances [10].
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FIGURE 1.2: Spectral multidimensional scaling

In this thesis, we focus on clustering and classification methods that make use of spectral descriptors

and spectral graph theory. However, to date, no comparison has been conducted in the literature,
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when spectral descriptors are chosen for data mining methods. Our motivation is to design efficient

algorithms that would help improve the overall performance. For algorithm design, the first step is

to select an appropriate spectral descriptor and the second step is to design efficient clustering and/or

classification methods.

1.2 Literature Review

A great number of spectral-based approaches for clustering and classification have been proposed in

recent years. But the vast majority of these algorithms have a limited performance due to several rea-

sons: (1) There is not a proper use of spectral descriptors with the existing algorithms. (2) Investigation

of proper matching normalization approaches with different methods. (3) Performance comparison in

terms of parameter sensitivity. In this section, we discuss related work and recent progresses pertinent

to graph theory, spectral theory, clustering, classification and dimensionality reduction methods.

1.2.1 Spectral Descriptors

In the literature, there are many research efforts that have keen interest in spectral graph theory. Many

research efforts have been conducted on that uses eigenvalues and eigenvectors of matrices which are

associated with the graph [11,12]. The information of graph is obtained from the spectra or eigenvalues

of associated matrices. In [13], author discuss the properties of eigenfunctions. Early research work

have been centered on matrices such as adjacency matrix, Laplacian matrix or normalized Lapalcian

matrix based on associated graphs [14–16]. Moreover, significant efforts have been invested on

random walks on graphs and eigenanalysis of Laplacian matrices [2, 17].

In recent years, the evolution of graphs is adopting new optimization techniques for supervised and

unsupervised learning. On the other hand, there are many spectral descriptors have been proposed

in recent researches. Many surveys have been conducted on different spectral descriptors and signa-

tures [18–20]. Scale-Invariant Feature Transform (SIFT) was introduced as image descriptor in early

years.

The recent surge of interest in the spectral analysis has resulted in a plethora of spectral shape sig-

natures that have been successfully applied to a wide range of tasks, including object recognition and

deformable shape analysis [19, 21–23], medical imaging [24] and multimedia protection [25]. Spec-

tral descriptors are basically feature vectors which are further divided into two types: local descriptor

6



and global descriptor. Local descriptor is applied to each point of shapes but global descriptor is used

to define the whole shape or image [3]. Global point signature is referred to local descriptor, able to

capture useful information of different data sets and can perform classification, segmentation and clus-

tering operations on different data sets [22,24,26]. But this local descriptor has a problem of switching

of eigenfunctions [3, 26]. After that, another signature was proposed by [27] that is wave kernel sig-

nature. The wave kernel signature is based on characterization of points in a surface with average

probabilities of each particle and measure in different energy levels [26, 27]. Heat kernel signature

(HKS) is also a local descriptor and helps to perform multi-scale matching between different points

in a shape and based on heat diffusion in particles. HKS was proposed for segmentation and shape

skeletonization [26, 28, 29]. Scale invariant heat kernel signature is logarithmically sampled using

fourier transform magnitude and it is enhanced version of heat kernel signature [26,30,31]. A spectral

graph wavelet framework was presented for designing of descriptors for local and global geometry

of shapes. The cubic spline generating kernel is used for shape retrieval [23]. The Fermi density de-

scriptor (FDD) has solid background of quantum theory and it is able to differentiate anomalies from

normal instances in a local structure [9, 32]. Hao et al. [9] provides future direction to apply FDD

for data clustering and classification. So, our motivation in this research is to use the FDD descriptor

for data clustering and classification to achieve better performance. The details of all descriptors are

provided in Chapter 2. We provide a comprehensive review of recent descriptors and compare the

recent descriptors with the combination of different algorithms to achieve better understanding. An

intuitive approach is to use spectral descriptors for supervised and unsupervised learning.

1.2.2 Classification and Cluster Analysis

The last decade has witnessed the growth of popularity of clustering and classification methods. Both

techniques have their great impact in many applications such as pattern recognition, education, busi-

nesses and so on [6]. The key benefit to use these methods is that domain experts can be comfortable

even without or less knowledge of machine learning [33]. The popular method of clustering, K-means

clustering algorithm was proposed in [34]. In [35], authors had shown remarkable results with their

proposed robust clustering algorithm where warping of data points is used to find the spatial informa-

tion and then K-means is used for clustering. In this algorithm, noise data points are divided separately

into another cluster. It works well with small data sets. In [36], a generalized maximum marginal clus-
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tering method was developed for large-scale data sets, inexpensive and able to choose the appropriate

kernel functions. The idea is to divide data points into K clusters to minimize the sum of squares

within-cluster. In clustering, the main desirable feature is robustness. A spectral clustering method

was proposed in [37] to provide more stable results.

A survey of clustering approaches is provided in [38–40]. A recent engagement of Amazon and

Netflix in data mining proves the surge of interest in all kind of businesses. Netflix problem was

computation of high dimensional data that is really hard. Singular Value Decomposition (SVD) was

introduced for dimensionality reduction. Moreover, the author showed that data mining and quantum

mechanics have relation to each other [6].

The main problems with clustering algorithms are noise and parameter selection for scaling. A new

algorithm, aggregated heat kernel was defined by the integration of time scaling parameters of heat

kernel in [33]. Author has shown the combination of diffusion maps with the spectral clustering and

used Laplace-Beltrami normalization approach instead of graph Laplacian normalization for manifold

recovery. Previously, in [41] diffusion distance is applied to provide more robustness.

Quantum mechanics has been applied to the field of anomaly detection in data sets [32]. Authors

proposed descriptor for detection of anomalies with the knowledge of local density of data points and

also used five different normalization approaches. Moreover, they analyzed performance with distribu-

tion functions like Maxwell-Boltzmann Distribution, Bose-Einstein Distribution, Heat Diffusion and

Gaussian Distribution and found best results with FDD [32]. In [9], same authors published their work

with two descriptors, local anomaly descriptor and fermi density descriptor. They formulated FDD to

achieve more stability of local density measurement with the addition of a smoothing parameter.

Classification is also a vibrant research area essential to many applications such as text catego-

rization, intrusion detection, gene expression data analysis [42]. The classification method, bag-of-

features model which is based on computation of histogram representation from visual words, used

for object recognition [43]. After that many extensions of bag-of-features model have also been pro-

posed [44–46]. The popular one is spatial pyramid matching [47]. Authors of [48], proposed another

classification algorithm using naive-bayes assumption which is simple and efficient. Then, another

method random forest was proposed as multi-way classifier in [49]. The main problem with these al-

gorithms, was difficulty in classifying high dimensional data. So, dimensionality reduction techniques

have been introduced in this research area.
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1.2.3 Dimensionality Reduction and Sparse Coding

Most of real-world data has high dimensionality. To manage high dimensional data properly, we need

to reduce the dimensions into useful or meaningful representation of data [50]. Previously, classical

scaling [51] and factor analysis [51] techniques were used for dimensionality reduction. After that,

simple principal component analysis was proposed in the literature [52].

Next to classical dimensionality reduction methods, sparse coding has gained huge popularity in

machine learning and image processing in the last decade. Sparse representations of images make

encoding process very efficient, interpretable and reduce the computational cost. Many authors have

already published their work for many applications such as visual areas, image restoration, classifi-

cation of signals, neuroscience, face recognition, image denoising, image classification and cluster-

ing [53–62].

Some researchers tried sparse coding with other methods such as PCA, linear spatial pyramid

matching and locality-constrained linear coding [43, 63, 64]. Another approach which is based on

sparse coding, with some modifications and addition of smooth operator was proposed, graph reg-

ularized sparse coding. It is also shown that the performance with graph regularized sparse coding

is improved for classification and clustering in comparison of original sparse representations. The

resulted representations considers geodesics of manifolds of data and used graph Laplacian as a regu-

larization parameter in this method [65].

Inspired by the advantages of various spectral descriptors, our motivation in this research is to apply

these descriptors with the combination of graph regularized sparse coding to enhance the performance

for clustering and classification tasks. Moreover, motivated by the lack of a systematic comparison of

different descriptors for data mining methods, this research presents a comparative study of important

descriptors. Extensive experimental results has been shown with different state-of-the-art methods.

Fermi density descriptor with graph regularized sparse coding improves the performance and results

are shown to be more accurate and robust. In addition, we propose a spectral graph wavelet signature

for data clustering. The overall results have been shown with comparison of different state-of-the-art

methods on different benchmarks in terms of various evaluation measures.
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1.3 Thesis Overview and Contributions

The organization of this thesis is as follows

� Chapter 1 contains a brief introduction of concepts, a literature review, and provides summary

of relevant topics and review of functionalities that are surveyed during research.

� In Chapter 2, we comprehensively review different shape descriptors and analyze different

clustering and classification algorithms. Then, we propose a spectral graph-theoretic clustering

and classification framework, called graph Fermi density descriptor (GraphFDD), which uses

the Fermi density signature in conjunction with graph regularized sparse coding. Extensive

experiments and evaluations have been conducted on different data-sets for image classification

and clustering. The evaluations and results are carried out in terms of accuracy and normalized

mutual information measures.

� In Chapter 3, we present a spectral graph wavelet signature for data clustering. Extensive

experimental results demonstrate the much better performance of the proposed algorithm in

comparison of existing methods. The evaluations and experiments are conducted on different

text datasets to demonstrate the robustness and effectiveness of the proposed algorithm.

� In Chapter 4, we provide the contributions and the concluding results drawn from the research

work and propose several future research directions that are related to our work.
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2
Sparse Coding for Clustering and Classification

This chapter presents a comprehensive review of various spectral descriptors and analysis of differ-

ent algorithms used for clustering and classification techniques. Sparse coding and graph regularized

sparse coding, both algorithms have gained an increasing amount of popularity and interest of re-

searchers in recent years. Inspired by performance of popular algorithms, we investigate classification

and clustering results on different image and text benchmarks. In this chapter, we present the classi-

fication and clustering algorithms using fermi density descriptor and graph regularized sparse coding.

We compare different descriptors, more specifically wave kernel signature, heat kernel signature, scale

invariant heat kernel signature, global point signature with our proposed work. Moreover, we inves-

tigate the performance of different baseline methods such as simple K-means, principal component

analysis, sparse coding and graph regularized sparse coding algorithms with our proposed GraphFDD

algorithm. Comparison of various algorithms is evaluated using accuracy and normalized mutual in-

formation measures. Extensive experiments are carried out on different benchmarks to assess the

performance of different algorithms.

2.1 Introduction

Over last decade, sparse coding has been successfully applied to a variety of machine learning and

image processing applications. Sparse coding is a family of unsupervised algorithms [66] that are
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essentially employed for learning an overcomplete set of bases, where an image or shape can be

represented by a high-dimensional but sparse feature vector. The goal of sparse coding is to represent a

feature vector by a linear combination of a sparse set of basis vectors. Sparse representations of images

make the encoding process very efficient, interpretable and reduce the computational cost [53–55].

Other applications of sparse coding include visual areas, image restoration, classification of signals,

neuroscience, face recognition, data compression, image classification and clustering [3, 56–61].

Some researchers tried sparse coding with other methods such as dimensionality reduction, PCA

and so on [63]. In recent years, various coding schemes have been proposed in the literature, and have

proven to be effective in a wide range of computer vision tasks. Wang et al. [64] introduced locality-

constrained linear coding, which enforces locality instead of sparsity. In [65,67], the graph regularized

sparse coding, also known as the Laplacian sparse coding, was proposed. This coding scheme takes

into account the geometric structure of the data space by using a graph Laplacian regularizer in an

effort to preserve the locality of the features to be encoded. Unlike sparse coding in which each

feature is encoded independently, the graph regularized sparse coding encodes similar features with

similar sparse codes, thereby preserving the locality information of the features to be encoded.

On the other hand, there are many spectral descriptors have been proposed in last decade which have

their own properties. While spectral signatures have received much attention in nonrigid 3D shape

analysis [19, 21–23], view-based methods, on the other hand, have also been successfully applied to

3D shape recognition and retrieval. The details are provided in next section. So, our effort is to apply

these descriptors for data mining tasks.

More recently, FDD descriptor was proposed in [9] for anomaly detection. The descriptor has a

number of attractive properties that makes it suitable for addressing other data mining problems. It is

computationally efficient, robust to noise, and possesses good discriminative capabilities.

Motivated by the advantages of graph regularized sparse coding and FDD, our inspiration in this

research is to apply FDD with the combination of graph regularized sparse coding to enhance the

performance of classification and clustering algorithms. Moreover, a comparison between different

descriptors has been shown in our research. Extensive experimental results has been shown with

different state-of-the-art methods. Our proposed GraphFDD improves the performance and results

are shown to be more accurate and robust. In addition, results have been shown with comparison of

different state-of-the-art methods on different image and text benchmarks in terms of accuracy and
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normalized mutual information.

2.1.1 Contributions

The contributions in this chapter may be summarized as follows:

(i) We present a comprehensive survey of different spectral descriptors and analyze different related

clustering and classification algorithms.

(ii) We propose novel clustering and classification algorithms using graph regularized sparse coding

and the Fermi density descriptor.

(iii) We systematically evaluate the proposed algorithms on several data sets and assess their perfor-

mance in comparison with existing methods.

(iv) We evaluate the proposed algorithms using several metrics, including accuracy, confusion ma-

trix and normalized mutual information.

The rest of this chapter is organized as follows. Section 2.2 briefly reviews different spectral descrip-

tors and Section 2.3 provides some background of sparse coding. In Sections 2.4 and 2.5, we introduce

our GraphFDD algorithms for data clustering and classification, and we discuss in detail their main

algorithmic steps. Experimental results on various data sets and comparison with existing techniques

are presented in Section 2.6.

2.2 Spectral Descriptors

Several spectral descriptors are good at capturing local features and more stable for local neighbor-

hood density measurement, while other descriptors are usually defined on the entire shape or image

and defined to capture global neighborhood density. Moreover, most point signatures can easily be

aggregated to form global descriptors by integrating over the entire surface of the shape. We provide

the brief overview of recently proposed spectral descriptors and their important features.

2.2.1 Wave Kernel Signature

The wave kernel signature (WKS) is well suited for characterization of points on surface of objects.

It is more discriminative in nature and able to contain local and global information of each point in

13



different shapes. WKS is more accurate, informative and robust than heat kernel signature. It helps

to clearly differentiate between different scales and frequencies. WKS is based on characterization of

point in a surface with average probabilities of each particle and measure in different energy levels.

The wave function ϕ(z, t) of quantum particle for non-rigid deformation of shape is expressed as

ψE(z, t) =

∞∑
l=1

eiλltϕl(z)fE(λl), (2.1)

where time t = 0, E is energy of given particle and fE is initial distribution. The approximate energy

probability distribution f2
E with E expectation value. To measure particle at point z, the probability is

|ψE(z, t)|2. So, the average probability is defined as

PE(z) = lim
T→∞

1

T

∫ T

0
|ψE(z, t)|2 =

∞∑
l=1

ϕl(z)
2fE(λl)

2 (2.2)

WKS is able to capture information from different frequencies. So, properties of different shapes are

fully dependent on value of f2
E . In WKS, time scale parameter is not considered because it is not

directly interpreted in shapes. Energy parameter is used in wavelet kernel signature instead of time

parameter. The n dimensional feature vector with different probabilities is represented as

WKS(z) = (Pe1(z), Pe2(z), · · · , Pen(z)) , (2.3)

where ei = logEi is logarithmic energy scale. WKS uses band pass filters and has more stability

under non-isometric perturbations of different shapes. It can detect feature correspondence in case of

noisy data [26, 27].

2.2.2 Global Point Signature

The global point signature (GPS) is based on global structure of objects. It is able to capture adequate

information of different shapes and can perform classification, segmentation and clustering operations

on different data sets. GPS is not used for partial matching because of its global nature. GPS on a

point z is defined as infinite-dimensional vector and the feature map is represented as

GPS(z) =
(
ϕ2(z)√

λ2
,
ϕ3(z)√

λ3
, . . . ,

ϕl(z)√
λl

, . . .

)
(2.4)

GPS has many properties like it is invariant under isometric deformations of different shapes, more

robust for topological changes, good power of discrimination between objects. There are some prob-

lems with GPS descriptor. The major disadvantage is switching of eigenfunctions when values of two
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eigenvectors are very close to each other. The other problem is lack of dealing with degenerate meshes

[22, 26].

2.2.3 Heat Kernel Signature

The heat kernel signature (HKS) is a point signature that has many properties: stability under pertur-

bation of shapes, concise, informative, arrange information about the geometry of different shapes.

This signature is based on calculation of dissipation of heat that transfers from one point to another

over time. This is local descriptor and helps to perform multi-scale matching between different points

in a shape. The heat diffusion process is defined as

ΔMu(z, t) = −∂u(z, t)

∂t
, (2.5)

where ΔM is the Laplace-Beltrami operator, u satisfy condition of Dirichlet boundary u(z, t) = 0 for

all z ∈ ∂M and t is heat diffusion time. The heat kernel pt(zi, zj) is defined as

pt(zi, zj) =
∞∑
l=1

e−λltϕl(zi)ϕl(zj) (2.6)

The heat kernel pt(zi, zj) describes the transferred heat from one point zi to another point zj and

pt(zi, zi) is the remaining amount of heat at point zi after t time scale. HKS for each point z is

defined as

HKS(z) = (pt1(z, z), pt2(z, z), . . . , ptn(z, z)) , (2.7)

where HKS is n-dimensional feature vector and t1 to tn are time scales. HKS characterizes time scale

parameter and neighborhood size of z which gives ability of partial matching [26, 29].

2.2.4 Scale Invariant Heat Kernel Signature

The scale invariant heat kernel signature (SIHKS) is a local descriptor which is extension of heat

kernel signature. It has many features like discrimination between normal and noisy data, isometric

deformations and scaling. SIHKS is based on logarithmically sampled scale using fourier transform

magnitude. Because of important properties in heat kernel signature, SIHKS is designed from HKS

with some modifications. HKS has major disadvantage of scale sensitivity. SIHKS is designed to

overcome this disadvantage using local normalization of HKS.

15



In SIHKS, dependency of h is removed from scale factor and new discrete function is used with

logarithmic time. So, hτ = h(z, ατ ) is formed with time t = ατ , where τ is a scale variable. The heat

kernel of scaled shape is p′(τ) = a−2p(τ + 2 logα a) and the differential after logarithm is defined as

d

dτ
log p′(τ) =

d

dτ
(−2 log a+ log p(τ + 2 logα a)

=
d
dτ p(τ + 2 logα a)

p(τ + 2 logα a)
·

(2.8)

The other function p̃ is defined, where p̃′(τ) = p̃(τ + 2 logα a) scaling function is obtained. The

discrete time fourier transform is given as

F
[
p̃′
]
(ω) = H̃ ′(ω) = H̃(ω)e−jω2 logα a

|H̃ ′(ω)| = |H̃(ω)|.
(2.9)

SIHKS is formed with scale invariant property which gives ability to compute descriptors on each

point in different shapes. It is defined as

SIHKS(z) =
(
|H̃(ω1)|, |H̃(ω2)|, . . . , |H̃(ωn)|

)
. (2.10)

So, SIHKS is basically another version of HKS and able to overcome the disadvantage of HKS [26,

30].

2.3 Sparse Coding

Sparse coding refers to a class of unsupervised techniques for learning sets of overcomplete bases

in an effort to represent data efficiently. The objective of sparse coding is to represent an input data

point (e.g., signal) as a linear combination of a small number of learned atoms or basis vectors that

capture salient features or patterns in the input data. More precisely, consider a set of n data points

x1, . . . ,xn, arranged in a p× n data matrix X = (x1, . . . ,xn) ∈ R
p×n, where each column vector xi

is a p-dimensional data point. Sparse coding allows us to represent each data point as xi = Vui, i =

1, . . . , n, where V = (v1, . . . ,vk) ∈ R
p×k is a p × k dictionary or vocabulary matrix, and ui is a

sparse vector of coefficients, which is the ith column of the coefficient matrix U = (u1, . . . ,un) ∈
R
k×n, also known as the sparse codes matrix. Sparse coding may be written as an optimization

problem (also referred to as the sparse coding problem)

min
U

n∑
i=1

‖xi −Vui‖22 + λ

n∑
i=1

‖ui‖1. (2.11)
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We can interpret the first term of the sparse coding objective function as a reconstruction term which

tries to force the algorithm to provide a good representation of xi (i.e. it ensures that the sparse

representations Vui are as close as possible to the original data points xi). The second term is a

sparsity penalty, which forces our representation of xi to be sparse. The regularization parameter λ is

a positive scaling constant that determines the relative importance of these two contributions (i.e. it

balances sparsity against reconstruction error).

The vocabulary matrix V is usually overcomplete, meaning that there are fewer rows than columns

(i.e. p < k), and can thus capture a large number of patterns in the input data. Intuitively, an overcom-

plete dictionary matrix transforms a low-dimensional vector into a high-dimensional sparse vector.

That is, every data point is now encoded as a sparse vector that is of higher dimensionality than the

original representation. Both V and U are unknown and can found by solving the joint optimization

problem

min
U,V

n∑
i=1

‖xi −Vui‖22 + λ
n∑

i=1

‖ui‖1

s.t. ‖vr‖2 ≤ 1, r = 1, . . . , k

(2.12)

which is often referred to as the sparse modeling problem. The constraint ‖vr‖2 ≤ 1 is used to

prevent the dictionary from having large values, which could lead to arbitrarily small values of ‖ui‖1.

In matrix form, the sparse modeling problem may be written as

min
U,V

‖X−VU‖2F + λ‖U‖1,1

s.t. ‖vr‖2 ≤ 1, r = 1, . . . , k

(2.13)

where ‖U‖1,1 =
∑k

r=1‖ur‖1 with ur the rth row of U, and ‖·‖F is the Frobenius norm. If the p× k

dictionary matrix V is of rank k, then rank(VU) = rank(U).

The objective function of the sparse modeling problem (2.13) is convex in U (when V is fixed) and

convex in V (when U is fixed), but not jointly convex in (U,V). So the sparse coding problem can

be solved by minimizing over one variable while keeping the other one fixed. Fixing V, the sparse

modeling problem reduces to the sparse coding problem, which is an 
1-regularized least squares

problem (also known as the Lasso or basis pursuit), and can be solved via the feature-sign search al-

gorithm [68]. On the other hand, fixing U, the sparse modeling problem reduces to the 
2-constrained

least squares problem, which can be efficiently solved using the Lagrange dual [65, 68].
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2.4 Proposed Clustering Approach

In this section, we give a detailed description of our new clustering method that makes use of fermi

density descriptor [9] and graph regularized sparse coding [65]. Each point or image in the dataset

is first represented by a FDD descriptor. Then, the FDD descriptors are mapped to high-dimensional

sparse codes via graph regularized sparse coding. The flow chart of the proposed GraphFDD frame-

work is depicted in Figure 3.1. The last stage of the proposed approach is to perform cluster analysis

on the sparse codes using a clustering algorithm (e.g., K-means). The K-means algorithm is arguably

one of the most popular and effective clustering methods. In a nutshell, K-means assigns each data

point to the cluster having the nearest centroid.

Dataset Sparse Codes Clustering Result
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FIGURE 2.1: Flowchart of the proposed clustering approach.

Fermi Density Descriptor FDD was designed for detection of anomalies and it is based on quantum

mechanics approach for the detection of objects in low density regions. This descriptor has solid

background of physics and helps to differentiate anomalies from normal instances in a local structure.

FDD is originated from Fermi-Dirac distribution (FD) which is defined as

fFD(λ) =
1

1 + e(λ−μ)/T
, (2.14)
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where μ is obtained from ∑
λ

1

1 + e(λ−μ)/T
= n/2 (2.15)

FDD is given in terms of eigenvalues and eigenfunctions :

FDD(z) =
1

C

n∑
k=1

(
1

1 + e(λk−μ)/T

)2

ϕk(z)
2, (2.16)

where

C =

n∑
k=1

(
1

1 + e(λk−μ)/T

)2

(2.17)

For each point z ∈ Z , the FDD descriptor is defined as a p-dimensional feature vector x ∈ R
p after

eigendecomposition. Fermi-dirac distribution is used to derive value of μ [9, 32]. It should be noted

that the FDD descriptor is a compact yet discriminative representation of an image, and possesses

many attractive properties including stability and robustness to parameter tuning. So, basically this is

a local descriptor which contains good properties like robustness to noise and with the best choice of

different parameters, we found the better performance of this descriptor in conjunction with graph reg-

ularized sparse coding method. We have performed our comparison with different related descriptors

in our research.

Graph Regularized Sparse Coding In contrast to dimensionality reduction methods, an overcom-

plete dictionary may be regarded as a linear operator that maps (or embeds) a low-dimensional dense

vector into a high-dimensional sparse vector. Concretely, given n data points x1, . . . ,xn, we may

construct a neighborhood graph G with n vertices, where each vertex represents a data point, as illus-

trated in Figure 2.2. More specifically, the κ-nearest neighbor graphs are built by connecting every

pair of data point xi and xj by an undirected edge if xj is among the κ-nearest neighbors of xi. The

κ-neighborhood of xi is denoted by N κ
i . Furthermore, we assume that the neighborhood graphs are

symmetrically defined, i.e. xj by N κ
i iff xi by N κ

j . For the sake of generality, we simply denote the

neighborhood of a data point xi by Ni.

The neighborhood graph G is then embedded into a high-dimensional space R
k (k > p) by the

coefficient matrix U, where each column ui of U is a k-dimensional vector that yields the embedding

coordinates of the ith data point xi. The adjacency matrix W = (wij) of G is an n× n matrix whose

elements are given by

wij =

⎧⎪⎨⎪⎩
1 if j ∈ Ni

0 o.w.
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FIGURE 2.2: Point cloud of 150 points (left); κ-nearest neighborhood graph with
κ = 3 (right).

where Ni denotes the κ-neighborhood of xi, and each element wij represents the similarity between

a vertex pair (xi,xj). The Laplacian matrix of G is L = D−W, where D = diag(d1, . . . , dn) with

di = W1 =
∑n

j=1wij , i = 1, . . . , n. The coefficient matrix U may be obtained by minimizing the

following objective function

1

2

n∑
i=1

n∑
j=1

wij‖ui − uj‖2 = tr(ULU
ᵀ
), (2.18)

which measures the smoothness of the coding vectors in U with respect to the graph topology. That

is, neighboring data points in G will be assigned or encoded by sparse codes that are more likely to be

close, so as to reduce the differences in (2.18). The closer this value to zero, the more similar are the

sparse codes at neighboring graph vertices. Incorporating (2.18) into the sparse modeling objective

function yields

min
U,V

‖X−VU‖2F + γ tr(ULU
ᵀ
) + λ

n∑
i=1

‖ui‖1

s.t. ‖vr‖2 ≤ 1, r = 1, . . . , k

(2.19)

which is referred to as the graph regularized sparse coding (GSC) problem [65]. Similar to sparse

coding, the optimization problem (2.19) can be solved using the feature-sign search algorithm [65]

to learn the sparse codes (i.e. the matrix U). The second term (i.e. Laplacian penalty term) of the

objective function of the graph regularized sparse coding problem plays a crucial role not only in

explicitly taking into consideration the correlation between sparse codes, but also in preserving the

locality of features to be encoded. In other words, two features or data points xi and xj that are close

to each other in the original feature space (i.e. adjacent in G) are encoded as sparse codes ui and uj
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that are more likely to be close to each other in the sparse codes space. Such a locality-preserving

property is of paramount importance in classification and clustering tasks.

Proposed Algorithm Clustering of images or texts creates data groups or clusters, which are formed

in such a way that images in the same cluster are very similar, while images in different clusters are

very dissimilar. In other words, the main objective of cluster analysis is to group images or text into

similar and distinct clusters.

As we mentioned before, GSC method has good discriminative power and it explicitly handles

the manifold structure of data space. On the other hand, fermi density descriptor also have strong

connection with physics and it has high ability to discriminate normal data from anomalies. So, our

basic idea is to combine fermi density descriptor with GSC to get better performance in terms of data

clustering.

The proposed algorithm consists of seven main steps. In starting three steps, we have to calculate

affinity matrix, diagonal matrix and graph laplacian using normalization techniques or no normaliza-

tion. Fourth step is to compute generalized eigenvectors and eigenvalues. The fifth step is to represent

each data point in a dataset by the FDD descriptor, which is a normalized feature vector consisting of

low-level features. More specifically, let Z be a dataset of n data points with m dimensions, where

each data point is represented by a p-dimensional FDD descriptor xi, i = 1, . . . , n. The n FDD de-

scriptors can be arranged in a p× n data matrix X = (x1, . . . ,xn) ∈ R
p×n. The task in clustering is

then to identify clusters of data points and assign each point to one of these clusters.

In the sixth step, the FDD descriptors are mapped to high-dimensional mid-level feature vec-

tors (sparse codes) via graph regularized sparse coding, resulting in a sparse codes matrix U =

(u1, . . . ,un) ∈ R
k×n whose columns are the k-dimensional sparse codes. In the last step, the K-

means algorithm is performed on the sparse codes to partition the data matrix U into K mutually

exclusive clusters. To assess the performance of the proposed framework, we used clustering eval-

uation measures and indices, which will be discussed in more detail in the next section. The main

algorithmic steps of our GraphFDD approach are summarized in Algorithm 1.
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Algorithm 1 GraphFDD Algorithm Steps
Input: Dataset Z = {z1, . . . , zn} is an m× n input data
Output: n-dimensional vector y containing cluster indices of each data point

1: Compute the n× n affinity matrix W =
(
wij

)
, where

wij = exp

(
− ||zi − zj ||2

2σ2

)
(2.20)

2: Compute the diagonal matrix D = diag(d1, . . . , dn) with

di = W1 =
n∑

j=1

wij , i = 1, . . . , n (2.21)

3: Compute the graph Laplacian L = D−W.
4: Compute the eigenvalues λl and eigenvectors ϕl of L.
5: Compute the p-dimensional FDD descriptor xi of each data point zi, i = 1, . . . , n and arrange all

these signatures in a p× n data matrix X.
6: Solve the graph regularized sparse coding problem (2.19) to find the k×n data matrix U of sparse

codes, where k > p.
7: Perform K-means algorithm on U to find the n-dimensional vector y of cluster indices.

2.5 Proposed Classification Approach

In this section, we give a detailed description of our proposed classification method that makes use

of fermi density descriptor [9, 32] and graph regularized sparse coding [65]. Each point or image in

the dataset is first represented by a FDD. Then, the FDD signatures are mapped into high-dimensional

sparse codes via graph regularized sparse coding. The flow chart of the proposed GraphFDD for

classification framework is depicted in Figure 2.3. The last stage of the proposed approach is to

perform classification on the sparse codes using a classification algorithm. Multiclass support vector

machines (SVMs) are arguably the most popular and effective supervised learning methods used for

classification. Broadly speaking, supervised learning algorithms consist of two main steps: training

step and test step. In the training step, a classification model (classifier) is learned from the training

data by a learning algorithm (e.g., SVMs). In the test step, the learned model is evaluated using a set

of test data to predict the class labels for the classifier and hence assess the classification accuracy.

Multiclass Support Vector Machines SVMs are supervised learning models that have proven ef-

fective in solving classification problems. They are based upon the idea of maximizing the margin, i.e.

maximizing the minimum distance from the separating hyperplane to the nearest example. Although
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FIGURE 2.3: Flowchart of the proposed Classification framework.

SVMs were originally designed for binary classification, several extensions have been proposed in

the literature to handle the multiclass classification. The idea of multiclass SVM is to decompose the

multiclass problem into multiple binary classification tasks that can be solved efficiently using binary

SVM classifiers. One of the simplest and most widely used coding designs for multiclass classifica-

tion is the one-vs-all approach, which constructs K binary SVM classifiers such that for each binary

classifier, one class is positive and the rest are negative. In other words, the one-vs-all approach re-

quires K binary SVM classifiers, where the lth classifier is trained with positive examples belonging

to class l and negative examples belonging to the remaining K−1 classes. A new test example is then

assigned to the class with the largest value of the decision function for the binary problem of the lth

class versus the rest, where l = 1, . . . ,K.

Proposed Algorithm Text or image classification is a supervised learning method that assigns dif-

ferent images or data points in a dataset to target classes. The main objective of classification is to

accurately predict the target class for each data point in the dataset. Our proposed classification algo-

rithm consists of three main steps. The first step is to represent each image or data point in a dataset

by the FDD descriptor, which is a normalized feature vector consisting of low-level features. More

specifically, let Z be a dataset of n data points or images where each data point is represented by a

p-dimensional FDD xi, i = 1, . . . , n. The n FDD descriptors can be arranged in a p× n data matrix
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X = (x1, . . . ,xn) ∈ R
p×n.

In the second step, the FDD descriptors in the data matrix X are mapped to high-dimensional mid-

level feature vectors (sparse codes) via graph regularized sparse coding, resulting in a sparse codes

matrix U = (u1, . . . ,un) ∈ R
k×n whose columns are the k-dimensional sparse codes. In the third

step, a one-vs-all multiclass linear SVM classifier is performed on the sparse codes to find the best

hyperplane that separates all data points of one class from those of the other classes. The task in

multiclass classification is to assign a class label to each input example (sparse code). More precisely,

given a training data of the form Utrain = {(ui, yi)}, where ui ∈ R
k is the ith example (i.e. sparse

code) and yi ∈ {1, . . . ,K} is its ith class label, we aim at finding a learning model that contains the

optimized parameters from the SVM algorithm. Then, the trained SVM model is applied to a test data

Utest, resulting in predicted labels ŷi of new data. These predicted labels are subsequently compared

to the labels of the test data to evaluate the classification accuracy of the model.

To assess the performance of the proposed classification framework, we employed two commonly-

used evaluation criteria, the confusion matrix and classification accuracy, which will be discussed

in more detail in the next section. The main algorithmic steps of our GraphFDD for classification

approach are summarized in Algorithm 2.

Algorithm 2 GraphFDD algorithm for classification
Input: Dataset Z = {z1, . . . , zn} is an m× n input data
Output: n-dimensional vector ŷ containing predicted class labels of each data point

1: Compute the p-dimensional FDD descriptor xi of each data point zi, i = 1, . . . , n, and arrange
all these signatures in a p× n data matrix X.

2: Solve the graph regularized sparse coding problem (2.19) to find the k×n data matrix U of sparse
codes, where k > p.

3: Perform SVM on U to find the n-dimensional vector ŷ of predicted class labels.

2.6 Experimental Results

To access the performance of our proposed work, we conducted experiments on different benchmarks:

USPS, COIL20, Ecoli, Glass, MSRC and VOC. We experimentally compare our algorithm with dif-

ferent spectral descriptors and related algorithms also. We performed our work for classification and

clustering methods. For evaluation of results, we used evaluation measures: accuracy, confusion ma-

trix and normalized mutual information score. We also show that the new algorithm can significantly
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improves accuracy and normalized mutual information score.

2.6.1 Settings

Comparing Signatures: We compared the proposed method with other spectral signatures which

have been proposed in recent years, including WKS, HKS, GPS and SIHKS. It turns out that FDD

with graph regularized sparse coding has high performance in comparison of other signatures.

Complexity: For implementation of our algorithms, we selected MATLAB 8.4.0 (R2014b) installed

on 64 bit operating system with an Intel Core i7-4510U running at 2.60 GHz and 8 GB RAM. We

have performed our experiment for classification and clustering with image and text data sets. The

effectiveness of graph regularized sparse coding with FDD descriptor is validated by comparison with

related algorithms. On the other hand, runtime (in seconds) of proposed algorithm is about 91.95s.

Parameter Selection: First of all, we have chosen the best parameters for all different signatures.

FDD has two parameters of scaling: Gaussian scale (σ) and T . The scale σ is defined for local

sensitivity and T is for environmental temperature. For HKS, we fixed the value of α, τ and time

scale (t0) parameters. Same parameters are chosen for SIHKS, α and τ . For GPS descriptor, we

selected value of number of eigenvectors and eigenfunctions. We ignored the first eigen-pair because

it does not contain any information. For evaluation of results with different algorithms, we set the

other parameters like number of clusters, number of neighbors and number of eigenvectors for the

starting computation before spectral descriptors in every algorithm. The optimal parameters settings

of different algorithms in our experiments are shown in the Table 2.1. For fair comparison, we used the

same parameters that have been employed in the baseline methods, and in particular the dimensions of

the underlying signatures. The choice of these parameters has been found to perform well on different

datasets.

WKS GPS HKS SIHKS FDD
N = 100 l = 14 t0 = 0.01 F = 193 σ = 1
σ = 0.05 α = 2 T = 15 T = 1000

T = 15 τ = 1/16
τ = 1/4 α = 2

TABLE 2.1: Optimal parameter selection for spectral descriptors.
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Datasets: We conduct experiments using different image datasets and text datasets for evaluation of

results: USPS, COIL20, Ecoli, Glass, MSRC and VOC. USPS is a handwritten image dataset which

consists 9298 images of 16 × 16 size. This dataset contains images which corresponds to different

digit value. MSRC data set consists of 4324 images and VOC dataset consists 5011 images. These two

datasets having similar classes. So based on those 6 semantic classes, authors of [69] combined these

two datsets and constructed a MSRC vs VOC dataset which consists 1269 images for training from

MSRC data set and a test set of 1530 images from VOC data set. So, we evaluated our experiments

with MSRC vs VOC data set to speed up the evaluation of results. COIL20 dataset contains images of

20 objects of size 32 × 32 and every object has 72 images. Ecoli dataset which contains the class of

localization site of protein. Glass dataset having the information of different types of glasses. Table

2.3 documents the statistics of different benchmark datasets.

Dataset Type Number of images/ instances Features

USPS Digit 9298 256
MSRC Photo 1269 240
VOC Photo 1530 240
COIL20 Photo 1440 1024
Ecoli Text 336 8
Glass Text 214 10

TABLE 2.2: Datasets used in experiments.

Performance Evaluation Measures: We evaluated the image classification performance using two

evaluation measures: Accuracy (AC) and confusion matrix.

In practice, the available data (which has classes) U for classification is usually split into two disjoint

subsets: the training set Utrain for learning, and the test set Utest for testing. The training and test sets

are usually selected by randomly sampling a set of training instances from U for learning and using

the rest of instances for testing. The performance of a classifier is then assessed by applying it to

test data with known target values and comparing the predicted values with the known values. One

important way of evaluating the performance of a classifier is to compute its confusion matrix (also

called contingency table), which is a K ×K matrix that displays the number of correct and incorrect

predictions made by the classifier compared with the actual classifications in the test set, where K is

the number of classes.
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Another intuitively appealing measure is the classification accuracy, which is a summary statistic

that can be easily computed from the confusion matrix as the total number of correctly classified

instances (i.e. diagonal elements of confusion matrix) divided by the total number of test instances.

Alternatively, the accuracy of a classification model on a test set may be defined as follows

Accuracy =
Number of correct classifications

Total number of test cases
=

|u : u ∈ Utest ∧ ŷ(u) = y(u)|
|u : u ∈ Utest| , (2.22)

where y(u) is the actual (true) label of u, and ŷ(u) is the label predicted by the classification algorithm.

A correct classification means that the learned model predicts the same class as the original class of

the test case. The error or misclassification rate is equal to one minus accuracy.

Clustering Evaluation Measure: Unlike classification, where it is easy to measure accuracy using

labeled test data, for clustering we do not know what the correct clusters are, given a dataset. A com-

monly used evaluation method for clustering is based on ground truth, where classification datasets

are used to evaluate the quality of clustering algorithms. Using such a dataset for cluster evaluation,

we make the assumption that each class corresponds to a cluster. After clustering, we compare the

cluster memberships with the class memberships to determine how good the clustering is. Normalized

Mutual Information (NMI) is used for evaluation of clustering performance of our proposed algorithm.

On the other hand, given two sets of clusters C = {Cr} and C′ = {C ′
r} that are obtained from

the ground truth and a clustering algorithm, the normalized mutual information (also called entropy

correlation coefficient) is defined as

NMI(C, C′) =
2I(C, C′)

H(C) +H(C′)
, (2.23)

where I(C, C′) is the mutual information of C and C′, H(C) is the entropy of C and H(C′) is the entropy

of C′. Note that NMI is a measure of similarity, ranging from 0 to 1. A value of 0 means that the two

sets of clusters are independent, while a value of 1 indicates that the two sets are identical. Larger

NMI values indicate better clustering solutions [3, 65].

2.6.2 Classification

We evaluated graph regularized sparse coding method for image classification on the aforementioned

datasets. We performed the average comparison with support vector machines (SVM), sparse coding,

PCA and our proposed method. The evaluation results shows the efficiency of new method with
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multiclass SVM. A one-vs-all multiclass SVM is first trained on the training data to learn the model

(i.e. classifier), which is subsequently used on the test data with known target values in order to predict

the class labels. Figure 2.4 shows the samples of different datasets.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

50 100 150 200 250 300

10

20

30

40

50

60

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

50 100 150 200 250

20

40

60

80

100

120

FIGURE 2.4: Samples of different datasets.

Figures 2.6 and 2.5 displays the confusion matrices for different datasets on the test data. These

10 × 10 confusion matrices for USPS data set and 20 × 20 confusion matrices for COIL20 data set,

show how the predictions are made by the model. Its rows correspond to the actual (true) class of the

data (i.e. the labels in the data), while its columns correspond to the predicted class (i.e. predictions

made by the model). The value of each element in the confusion matrix is the number of predictions

made with the class corresponding to the column for instances with the correct value as represented

by the row. Thus, the diagonal elements show the number of correct classifications made for each

28



class, and the off-diagonal elements show the errors made. As shown in figure, the proposed approach

was able to more accurately classify different images in the test data as compared to other baseline

methods. Such a good performance strongly suggests that GraphFDD captures well the discriminative

features of the different images or data points.

For USPS dataset, we chose 6514 training images and 2784 testing images. For COIL20, we use

training 1024 images and testing 420 images and for MSRC vs VOC dataset, MSRC images as training

and images of VOC dataset as testing. For text datasets, we choose one-third part for testing among

all data points in a dataset.

There are some important parameters that are selected for our experimental results to

improve the overall performance of the algorithms. The number of basis vectors are

[32, 64, 128] and found that 128 shows the best results. The graph regularization parameter

(γ) is selected as [0.01, 0.02, 0.1, 0.2, 1.0, 10, 100] and sparsity regularization parameter (λ) is

[0.01, 0.02, 0.1, 0.2, 0.3, 0.4, 0.5] for experiments. Then we found the best results with 1.0 value of

graph regularization parameter and 0.1 value of sparsity regularization parameter.

Following the common practice in classification tasks, we repeated the experimental process 10

times with different randomly selected training and test data in an effort to obtain reliable results,

and the accuracy for each run was recorded. The classification accuracy results are summarized in Ta-

ble 2.3, which shows the average results of the state-of-the-art classification methods and the proposed

framework. As can be seen, GraphFDD achieves better performance than simple SVM, sparse coding

(SC), PCA and GSC.

TABLE 2.3: Classification accuracy results on different datasets. Boldface numbers
indicate the best classification performance.

Classification Methods

Dataset SVM SC PCA GSC GraphFDD

USPS 94.18 89.04 90.81 94.20 97.05

MSRC vs VOC 42.42 41.63 41.6 42.25 43.18

COIL20 95.35 90.1 88.2 91.2 96.10

Ecoli 92.08 93.25 92.50 94.70 95.14

Glass 93.60 93.65 93.01 93.90 94.05

Moreover, the best performance is shown by the proposed method which ensures that this method

has high capability of discrimination between different kind of images. With the high performance of

29



GraphFDD method for classification, we also decide to use this method for clustering results.
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FIGURE 2.5: Confusion matrices for USPS dataset.

2.6.3 Clustering

We conducted extensive experiments for clustering on two benchmarks, USPS and COIL20, to eval-

uate the performance of our proposed approach. The effectiveness of our method is validated by

performing a comparison with different baseline algorithms. For data clustering, we compare the five

algorithms: K-means algorithm, PCA, SC, GSC and our proposed GraphFDD algorithm. In addition,
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FIGURE 2.6: Confusion matrices for COIL20 dataset.

we applied FDD descriptor with PCA and SC algorithms and also perform comparison with PCA +

FDD algorithm and SC + FDD algorithm.

Clustering Validation: The quality of cluster structure is usually analyzed using the silhouette plot,

which is a bar plot of all the silhouette values ranked in descending order, where the length of the ith

bar is equal to the ith silhouette value, as shown in Figure 2.7. The silhouette value si at the ith data

point is given by

si =
bi − ai

max(ai, bi)
, i = 1, . . . , n (2.24)

where ai is the average dissimilarity of the ith data point to all other data points in the same cluster, and

bi is the average dissimilarity of the ith data point to all other data points in the neighboring cluster.

In words, the silhouette value measures how well a data point has been clustered by comparing its

dissimilarity within its cluster to its dissimilarity with its nearest neighbor. A silhouette value ranges

from -1 to 1. A silhouette value close to zero indicates that the ith data point has been arbitrarily

clustered, i.e. it lies between two clusters. When si is close to -1, the ith data point is poorly clustered

(i.e. its dissimilarity with other data points in its cluster is much larger than its dissimilarity with data

points in the nearest cluster). A silhouette value close to 1 indicates that the data point is well-clustered

(i.e. its dissimilarity with other data points in its cluster is much smaller than its dissimilarity with

data point in the nearest cluster). A useful summary statistic for clustering is the so-called silhouette

coefficient, which is the maximum average silhouette value across all the number of clusters. A
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value of silhouette coefficient in the range of 0.6 to 1 may be interpreted as an indication of a strong

clustering structure.
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FIGURE 2.7: silhouette plot (left) for COIL20 using K-means algorithm with K = 20
and silhouette plot (right) for USPS using K-means algorithm with K = 10

2.6.4 Parameter Sensitivity

The proposed GraphFDD approach depends on four main parameters that affect its clustering perfor-

mance. The first two parameters are the regularization parameter (γ) of the Laplacian penalty term and

the regularization parameter (λ) of the sparsity penalty term. The third one is the number of κ-nearest

neighbors, which is used to define the neighborhood graph for computing the Laplacian penalty term.

The fourth parameter is the number k of basis vectors, i.e. the dimension of the sparse codes.

Moreover, we compared the proposed work with different methods. First of all, we choose

the best parameters for clustering to gain further insight into performance variation between

different methods. We performed our results with different number of basis vectors are

[32, 64, 128] and found that 128 shows the best results. The graph regularization parameter

(γ) is selected as [0.01, 0.02, 0.1, 0.2, 1.0, 10, 100] and sparsity regularization parameter (λ) is

[0.01, 0.02, 0.1, 0.2, 0.3, 0.4, 0.5] for experiments.
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FIGURE 2.8: Clustering results with different baseline methods on COIL20 dataset.

We also choose number of clusters (K = [7, 8, 10, 12, 15, 17, 18, 19, 20, 25, 30]) and found best

performance with K = [20] which is consistent with number of classes in COIL20 dataset. In addi-

tion, we found the best results with 1.2 value of graph regularization parameter, 0.2 value of sparsity

regularization parameter for different K on COIL20 dataset.

Clustering results with different number of clusters are shown in Figures 2.8 and 2.9 and found that

our algorithm outperforms among other methods.

33



K-M
ea

ns SC

Gra
ph

FDD
GSC

PCA

N
o
rm

a
liz

e
d
 M

u
tu

a
l I

n
fo

rm
a
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K-M
ea

ns SC

Gra
ph

FDD
GSC

PCA

N
o
rm

a
liz

e
d
 M

u
tu

a
l I

n
fo

rm
a
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) K = 6 (b) K = 10

K-M
ea

ns

SC+F
DD

Gra
ph

FDD
GSC

PCA+F
DD

N
o
rm

a
liz

e
d
 M

u
tu

a
l I

n
fo

rm
a
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K-M
ea

ns

SC+F
DD

Gra
ph

FDD
GSC

PCA+F
DD

N
o
rm

a
liz

e
d
 M

u
tu

a
l I

n
fo

rm
a
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) K = 6 (d) K = 10

FIGURE 2.9: Clustering results with different baseline methods on USPS dataset.

For USPS image dataset, we found best performance with 1.1 value of graph regularization parame-

ter of laplacian penalty term, 0.3 value of sparsity regularization parameter on USPS dataset. The best

performance is obtained with K = [10] in USPS dataset. In addition, performance of our proposed

work is satisfactory for wide range of values of different parameters.

Table 2.4 lists the results of proposed algorithm with different values of parameters. As can be seen

in the table, the proposed GraphFDD approach yields the best results.
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Clustering Methods

Dataset Parameters K-means SC + FDD PCA + FDD GSC GraphFDD

USPS γ = 0.01 0.620 0.731 0.731 0.630 0.801

USPS γ = 0.1 0.562 0.705 0.748 0.781 0.821

USPS γ = 1.1 0.601 0.660 0.655 0.606 0.850

USPS λ = 0.01 0.650 0.554 0.520 0.510 0.757

USPS λ = 0.1 0.651 0.654 0.721 0.731 0.792

USPS λ = 0.3 0.620 0.635 0.485 0.642 0.883

COIL20 γ = 0.01 0.641 0.628 0.642 0.647 0.691

COIL20 γ = 0.1 0.681 0.684 0.693 0.694 0.720

COIL20 γ = 1.2 0.680 0.804 0.632 0.857 0.899

COIL20 λ = 0.01 0.590 0.623 0.642 0.640 0.680

COIL20 λ = 0.1 0.601 0.621 0.688 0.696 0.719

COIL20 λ = 0.2 0.715 0.732 0.701 0.741 0.806

TABLE 2.4: Clustering results in terms of NMI. Boldface numbers indicate the best
performance.

Moreover, we investigate our evaluation with different number of iterations (N ). Even it affects

the overall performance of proposed algorithm as well as different state-of-the-art methods. We have

performed our experiment with different number of iterations [5, 10, 15, 20, 25, 30, 45, 50, 75, 100]. In

addition, new algorithm also shows better results with more number of repeats or iterations as shown

in Figure 2.10.

To systematically demonstrate the performance of GraphFDD algorithm, we tested with different

values of the number of nearest neighbors. We also examine the performance of existing descriptors

such as WKS, SIHKS, HKS, GPS with the proposed GraphFDD method. The comparison results with

other descriptors are shown in Table 2.5.

To summarize, the GraphFDD algorithm has most robust performance in terms of both evaluation

measures. It can also be observed that the number of clusters also affects the results. As expected,

the GPS descriptor shows the least performance and the proposed method performs the best in both

datasets, indicating the consistency of the results.
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FIGURE 2.10: Clustering results for different number of iterations.

Clustering Methods

K Dataset WKS HKS SIHKS GPS GraphFDD

2 USPS 0.402 0.483 0.402 0.354 0.608

4 USPS 0.485 0.503 0.338 0.285 0.585

8 USPS 0.382 0.526 0.464 0.355 0.752

10 USPS 0.506 0.624 0.552 0.421 0.804

12 USPS 0.426 0.482 0.490 0.295 0.693

16 USPS 0.518 0.395 0.368 0.291 0.681

20 USPS 0.680 0.659 0.600 0.340 0.708

2 COIL20 0.364 0.346 0.402 0.253 0.583

4 COIL20 0.385 0.402 0.486 0.295 0.621

8 COIL20 0.421 0.426 0.472 0.315 0.638

12 COIL20 0.411 0.484 0.500 0.350 0.687

16 COIL20 0.442 0.495 0.486 0.379 0.742

20 COIL20 0.582 0.528 0.624 0.450 0.826

TABLE 2.5: Comparison with other spectral descriptors, where K denotes the number
of clusters. Boldface numbers indicate the best performance.
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3
Spectral Graph Wavelets for Data Clustering

Feature descriptors have become an increasingly important tool in the field of data mining. Features

can be extracted and subsequently used to design robust signatures for retrieval, correspondence, clas-

sification and clustering. The latter will be the focus of this chapter. More specifically, we propose a

spectral approach for data clustering using spectral graph wavelet signature (SGWS) and the K-means

algorithm. SGWS is a efficient descriptor that was originally designed for local as well as global

geometry of 3D shapes. We evaluated the proposed approach using standard clustering evaluation

measures, including normalized mutual information (NMI) and Area Under Curve (AUC). Experi-

mental results on different benchmarks demonstrate the much better performance of our framework in

comparison with other methods.

3.1 Introduction

Clustering, also known as unsupervised learning, is performed on the basis of proximity or dissim-

ilarity measure. The dissimilarity measure is basically used to quantify the degree of ‘closeness’ of

two data points. The smaller the dissimilarity within a cluster is, the better the clustering results are.

There is no need of prior knowledge of data and/or its classes. There are, however, some challenges

in clustering algorithms like robustness, sensitivity, outlier detection, accuracy and scalability [5].

The spectral graph wavelet framework was presented for designing of descriptors for local and
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global geometry of shapes. The cubic spline generating kernel is used for shape retrieval. The SGWS

signature is multi-resolution, compact, highly discriminative, and parameter-insensitive in nature [23].

The main problems with the vast majority of clustering algorithms are parameter selection for scaling

and noise. To overcome these problems, Hao et al. [33]. They combined diffusion maps with spectral

clustering and used a Laplace-Beltrami normalization approach instead of graph Laplacian normaliza-

tion for manifold recovery. On the other hand, quantum mechanics have been applied in the field of

anomaly detection in data sets [32] using the Fermi density descriptor.

Inspired by the effectiveness of SGWS in 3D shape retrieval, we propose a data clustering approach

based on the SGWS descriptor and the K-means algorithm.

3.1.1 Contributions

The main contributions in this chapter may be summarized as follows:

(i) We present a novel clustering algorithm based on the SGWS descriptor.

(ii) We analyze different related clustering algorithms on different high and low dimensional data

sets.

(iii) We perform a comprehensive experimental comparison using various evaluation measures, in-

cluding AUC score, mean silhouette plot, Calinski-Harabasz method and NMI metric.

The rest of this chapter is organized as follows. In Section 3.2, we provide some background of cluster-

ing algorithms and our motivation for this research. Then, we briefly describe different normalization

methods. In Section 3.3, we propose our algorithm for data clustering using the SGWS descriptor.

Section 3.4 provides an explanation of different data sets and various evaluation measures that are

used in experimental results. Extensive experiments on different data sets and comparison with other

algorithms are provided in Section 3.5.

3.2 Background and Motivation

There are numerous clustering algorithms proposed in the field of data mining for solving of challenges

faced in big data. But every algorithm has its own advantages and disadvantages. Our motivation in

this research is to utilize the advantages of existing algorithms and try to lessen the disadvantages of
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previously implemented algorithms. Next, we provide the brief overview of various normalization

methods.

3.2.1 Normalization Methods

There are some normalization methods which have their own impact on clustering results. Normal-

ization is basically a preprocessing task to employ before applying clustering on data sets. It helps

equalize or scale the weight of different kinds of attributes. Some attributes may have more variations

than others. For example, savings in a bank and age of the customers. Age attribute has less variation

than the saving attribute. Age attribute ranges between 30 to 70 but savings in an account can range

from 100 dollar to thousands [32, 70].

We used different normalization methods in our work in an effort to further improve the clustering

results, as listed below:

1. No-normalization (NN): It is independent on diagonal elements of affinity matrix. It is without

the normalization of attributes, directly applied

LNN = D−W, (3.1)

where LNN is the Laplacian matrix without normalization, D is the degree matrix and W is

affinity matrix or similarity matrix.

2. Random Walk Normalization (RW): Random walk matrix is a transition matrix which is basi-

cally used for computation of long term probability.

LRW = I−D−1W, (3.2)

where D−1 is the inverse degree matrix having values reciprocal of values in the degree matrix.

3. Symmetric Normalization (SM): Symmetric matrix has stable locality

LSM = I−D−1/2WD−1/2. (3.3)

4. Fokker-Plank Normalization (FP): FP and Laplace-Beltrami normalization are basically used

for non-uniform entries. FP is defined as

LFP = I−D−1W̃1, (3.4)
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where W̃1 = D−1/2WD−1/2.

5. Laplace-Beltrami Normalization (LB): This is also a popular kind of normalization which is

useful in multidimensional datasets having non-uniform entries.

LLB = I−D−1W̃2, (3.5)

where W̃2 = D−1WD−1.

These different variants of graph Laplacians have their own properties and impact on the clustering

results [32, 70].

3.2.2 Spectral Clustering

Spectral clustering is one of the most popular methods for data clustering. This is primarily due to the

fact that spectral clustering methods have significant effect in capturing the manifold structure. But

they are sensitive to noise and do not provide promising results for high dimensional data sets.

Algorithm 3 Spectral clustering algorithm
Input: Z = {z1, . . . , zn} is an m× n input data and k is number of clusters
Output: n-dimensional vector y containing cluster indices of each data point

1: Compute the n× n affinity matrix W =
(
wij

)
, where

wij = exp

(
− ||zi − zj ||2

2σ2

)
(3.6)

2: Compute the diagonal matrix D = diag(d1, . . . , dn) with

di = W1 =

n∑
j=1

wij , i = 1, . . . , n (3.7)

3: Compute the graph laplacian using LNN, LRW or LSM.
4: Find the first k eigenvectors of graph laplacian and form the eigenvector matrix E by stacking

eigenvectors in columns.
5: Re-normalize the rows of matrix E.
6: Perform K-means on the normalized E.

The other main problem with spectral clustering is the selection of the scaling parameter. Moreover,

few outliers affect the overall performance of spectral clustering [33, 70, 71].
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3.2.3 Aggregated Heat Kernel

The strong base of this method is the important properties of the heat kernel. The aggregated heat

kernel method is a slight modification of the traditional heat kernel that uses the time scale parameter.

This time scale parameter embedded into the heat kernel and integrates the total time from 0 to ∞.

The aggregated heat kernel matrix H = (hij) is defined as

hij =

∫ ∞

t=0
ht(i, j)dt =

n∑
l=1

1

λl
ϕilϕjl, (3.8)

where ht(i, j) is the heat kernel. For large t, the heat kernel covers the large area around a given data

point and for small value of t, coverage of neighborhood of a given data point is also small. So, the

value of t affects the results from local to global structure.

Algorithm 4 Aggregated heat kernel algorithm
Input: Z = {z1, . . . , zn} is an m×n input data, k is number of clusters and γ is smoothing parameter
Output: n-dimensional vector y containing cluster indices of each data point

1: Compute the n× n affinity matrix W =
(
wij

)
, where

wij = exp

(
− ||zi − zj ||2

2σ2

)
(3.9)

2: Compute the diagonal matrix D = diag(d1, . . . , dn) with

di = W1 =
n∑

j=1

wij , i = 1, . . . , n (3.10)

3: Compute the graph laplacian using LFP, LRW or LLB.
4: Compute eigenvalues λl and eigenvectors ϕl of L.
5: Construct H = (hij) matrix, where

hij =

n∑
l=2

1

r + λl
ϕilϕjl (3.11)

6: Find the first k eigenvectors of H using normalization method.
7: Re-normalize the rows of eigenvector matrix E.
8: Perform K-means on the normalized E.

The heat kernel has its own weaknesses like the best selection of time scale parameter t and sensi-

tivity to noise [33]. We have already discussed FDD in the last chapter in which FDD was applied to

anomaly detection [9, 32]. Moreover, we applied FDD to data clustering in our research to perform
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a comparison with our proposed clustering algorithm. To improve the robustness and accuracy, we

propose a new method for data clustering.

3.3 Proposed Approach

In this section, we give a detailed description of our clustering method that makes use of SGWS

descriptor. Each data point in the dataset is first represented by a SGWS descriptor. The flow chart of

the proposed framework for data clustering is depicted in Figure 3.1. The last stage of the proposed

approach is to perform cluster analysis on the signatures using a clustering algorithm (e.g., K-means).

The K-means algorithm is arguably one of the most popular and effective clustering methods. In a

nutshell, K-means assigns each data point to the cluster having the nearest centroid.
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FIGURE 3.1: Flowchart of the proposed approach.

3.3.1 Spectral Graph Wavelet Signature

SGWS was designed for 3D shape retrieval and also for extracting useful geometric features from

shapes. Our goal is to employ SGWS in data clustering using different benchmarks. The idea of

multi-resolution SGWS comes from the spectral graph wavelet transform (SGWT), which is based on

two functions: scaling function and wavelet function [23, 72].

For the wavelet function, the spectral graph coefficients of a function f are given by:
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Wf (t, zj) = 〈ψt,zj , f〉 =
n∑

�=1

g(tλ�)f̂(
)ϕ�(zj), (3.12)

where g be a kernel function, ψt,zj is a version of mother wavelet function at t scale and at zj vertex.

The spectral graph wavelet is defined as

ψt,zj (zi) =
n∑

�=1

g(tλ�)ϕ�
∗(zj)ϕ�(zi), (3.13)

and g(tλ�) can modulate the graph wavelet ψt,zj but only for λ� and value of λmax is important

to implement practically. The λmax is the upper bound of eigenvalues. For scaling function, the

coefficients are

Sf (zj) = 〈ωzj , f〉 =
n∑

�=1

h(λ�)f̂(
)ϕ�(zj), (3.14)

where ωzj is scaling function. It is given by

ωzj (zi) =
n∑

�=1

h(λ�)ϕ�
∗(zj)ϕ�(zi), (3.15)

which is used for modulation of wavelets. The kernel g should satisfy g(0) = 0 and limx→∞ g(x) = 0

as a band-pass filter and the function h should satisfy h(0) > 0 and h(x) → 0 as x → ∞ to act as

a low-pass filter. The spectral graph wavelet signature formed from the combination of this scaling

and graph wavelet where level of resolution (r) helps to modulate whole spectrum. For each point z,

SGWS signature is defined as a p-dimensional feature vector after eigendecomposition.

SR(z) = {sr(z) | r = 1, . . . , R}, (3.16)

where R is resolution parameter, r is level of resolution and sr(z) is signature which is defined as

sr(z) = {Wδz(tb, z) | b = 1, . . . , r} ∪ {Sδz(z)}. (3.17)

The coefficients in spectral graph wavelet signature are defined as

Wδz(tb, z) =

n∑
�=1

g(tλ�)ϕ
2
� (z) and Sδz(z) =

n∑
�=1

h(λ�)ϕ
2
� (z). (3.18)
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Moreover, the cubic spline wavelet and scaling function kernels has been chosen from the following

equations:

g(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2 if x < 1

−5 + 11x− 6x2 + x3 if 1 ≤ x ≤ 2

4x−2 if x > 2

(3.19)

and

h(x) = γ exp

(
−

(
x

0.6λmin

)4
)
, (3.20)

respectively, where λmin = λmax/20, γ is set such that h(0) has the same value as the maximum value

of g. Both maximum and minimum scales are set to t1 = 2/λmin and tr = 2/λmax.

SGWS is having a pyramid structure at different resolution levels and the signature consists only two

elements at resolution level r = 1. One is scaling coefficient Sδz(z) and other is wavelet coefficient

Wδz(t1, z). On second level, wavelet coefficients of spectral graph are increased means there are

two elements for wavelet function, Wδz(t1, z) and Wδz(t2, z). The signature sr(z) consists of three

elements. Hence, if the resolution is set to R = 2, then the signature SR(z) is composed of a total of 5

elements. So, basically SGWS is having a resolution level r = 1 to R as shown in Figure 3.2 [23,72].

Wδz (t1, z) Sδz (z)

Sδz (z)

Sδz (z)

Wδz (t1, z)

Wδz (t1, z)

Wδz (t1, z)

Wδz (t2, z)

Wδz (t2, z)

Wδz (t2, z)

Wδz (t3, z)

Wδz (tr, z)

Sδz (z)

r = R

r =2

r=1

r = 3

FIGURE 3.2: SGWS at different levels of resolutions.
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3.3.2 Proposed Clustering Framework

The SGWS has several interesting properties. First, it has high efficiency of capturing information

even with less number of observations. Second, it is of band-pass nature and useful to analyze macro

structures which are difficult to capture from different shapes. This descriptor has high discriminative

power, which is helpful in comparison different classes of data in a benchmark. Subsequent to inves-

tigate these special properties of SGWS, it is introduced as a robust algorithm for clustering of data

with different normalization techniques.

The proposed algorithm consists of six main steps. In starting three steps, we calculate affinity

matrix, diagonal matrix and graph laplacian using one of normalization technique (LNN, LRW, LSM,

LFP or LLB). Next step is to compute generalized eigenvectors and eigenvalues. The fifth step is to

represent each data point in a dataset by the SGWS signature, which is a normalized feature vector.

More specifically, let Z be a dataset of n data points with m dimensions, where each data point is

represented by a p-dimensional SGWS descriptor xi, i = 1, . . . , n. The n SGWS descriptors can be

arranged in a p × n data matrix X = (x1, . . . ,xn) ∈ R
p×n. The task in clustering is then to identify

clusters of data points and assign each point to one of these clusters.

In the last step, the K-means algorithm is performed on the data matrix X into K mutually exclusive

clusters. To assess the performance of the proposed framework, we used several clustering evaluation

measures and indices, which will be discussed in more detail in the next section. The main algorithmic

steps of our SGWS approach for data clustering are summarized in Algorithm 5.

This algorithm works very well for the formation of clusters and gives promising results for clus-

tering of data on different benchmarks: Ecoli, Glass, Pima and Yeast. It is required to carefully set the

parameters for the greatest outcomes. This descriptor is closely related to HKS and AHK but for data

clustering, it yields better performance than both of these descriptors.

Relation to HKS and AHK : Heat Kernel function is based on heat diffusion theory and having

properties like symmetric in nature, multi-scale and is highly related to markov chain. In a given time

scale, it explains the transferred heat from the source. It is low pass filter and is not able to provide

multiresolution on HKS [26, 29]. AHK has also powerful features of heat kernel. It is symmetric

and multi-scale but still multiresolution strategy is not possible in AHK [33]. So, SGWS has robust

performance and high stability as compared to HKS and AHK .
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Algorithm 5 Proposed Algorithm: SGWS Clustering
Input: Dataset Z = {z1, . . . , zn} is an m × n input data, k is number of clusters, σ is scaling

parameter
Output: n-dimensional vector y containing cluster indices of each data point

1: Compute the n× n affinity matrix W =
(
wij

)
, where

wij = exp

(
− ||zi − zj ||2

2σ2

)
(3.21)

2: Compute the diagonal matrix D = diag(d1, . . . , dn) with

di = W1 =
n∑

j=1

wij , i = 1, . . . , n (3.22)

3: Compute the graph laplacian L using one of normalization method (LNN, LRW, LSM, LFP or LLB),
where

• LNN = D−W,

• LRW = I−D−1W,

• LSM = I−D−1/2WD−1/2,

• LFP = I−D−1W̃1 where W̃1 = D−1/2WD−1/2,

• LLB = I−D−1W̃2 where W̃2 = D−1WD−1.

4: Compute first l eigenvectors ϕl and corresponding eigenvalues λl of L.
5: Compute the p-dimensional SGWS signature xi of each data point using resolution level r and

arrange all these signatures in a p× n data matrix X..
6: Perform K-means algorithm on X to find the n-dimensional vector y of cluster indices.

3.4 Evaluation Measures

For evaluation of results, we used different measures in our experiments, including NMI, AUC, Calin-

skiharabasz method and Mean Silhouette Value (MSV).

3.4.1 Data sets

The datasets used for evaluating our approach as listed in Table 3.1: Ecoli dataset which contains the

class of localization site of protein. Glass dataset having the information of different types of glasses.

Pima dataset is basically pima indian diabetes data set having all female patients with more than 21

years. Yeast data set also based on prediction of cellular localization sites of proteins.
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Dataset Number of instances Number of attributes

Ecoli 336 8
Glass 214 10
Yeast 1484 8
Pima 768 8

TABLE 3.1: Different datasets used in evaluation.

3.4.2 Mean Silhouette Value

As shown in Figure 3.3, the maximum average silhouette value across all the number of clusters in

different datasets is in the range of 0.68 to 1, which may be interpreted as an indication of a strong

clustering structure [73].

3.4.3 Calinski-Harabasz Criterion

Two of the key tasks in cluster analysis are to decide on the appropriate number of clusters and on

how to notify a good cluster from a bad one. The appropriate number of clusters can be estimated

using the Calinski-Harabasz criterion, as depicted in Figure 3.4, which shows that the optimal number

of clusters on different data sets using K-means clustering algorithm. This method is also known as

Variance Ratio Criterion (VRC) which means cluster evaluation is performed with the calculation of

variances within the cluster and between the clusters [3, 74].

3.4.4 Area Under Curve

The area under curve (AUC) is a criterion used for comparison of different clustering algorithms. The

Receiver Operating Characterstics (ROC) helps visualize the results and shows the trade-offs between

the True Positive Rate (TPR) and False Positive Rate (FPR). The True Positive Rate (TPR), also known

as sensitivity or recall, is defined as

TPR =
TP

TP + FN
, (3.23)

and the False Positive Rate (FPR), also known as fall-out, is defined as

FPR =
FP

FP + TN
, (3.24)

where TP = True Positive, FN = False Negative, TN = True Negative and FP = False Positive.
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FIGURE 3.3: Mean silhouette value to find the optimal k.

Therefore, AUC considers all possible threshold values and is better for classification and clustering

results [75–77].

3.5 Experimental Results

With the outcomes of extensive experiments we compare different descriptors on four benchmarks:

Ecoli, Glass, Pima and Yeast. To assess the performance of our proposed algorithm, we conduct

extensive experiments for data clustering using NMI and AUC evaluation measures. Results also
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FIGURE 3.4: Calinski-Harabasz results.

show that the proposed algorithm can significantly increase the clustering performance in comparison

of related spectral descriptors. Moreover, we start our experiment with small datasets: twocircles,

threecirclesjoined, fourclouds, fisheriris etc., then we applied the important findings on large datasets:

Ecoli, Glass, Pima and Yeast. In our experimental results, we closely follow the theoretical original

works and select the parameters for the optimal performance of our proposed algorithm.
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FIGURE 3.5: Clustering results on small datasets.

3.5.1 Settings

Comparing Signatures and Methods: There are some classical signatures, including WKS, HKS,

GPS, SIHKS and FDD. We have selected these signatures because of their high popularity in recent

years. Moreover, we have performed our comparison with popular clustering methods such as spectral

clustering and AHK.

Complexity: For implementation of our algorithms, we selected MATLAB 8.4.0 (R2014b) installed

on 64 bit operating system with an Intel Core i7-4510U running at 2.60 GHz and 8 GB RAM. Initially,

we have performed our experiment on small data sets like fisheriris, two circles, three circles joined

etc. then on large data sets. Experiments on large data sets with different evaluation measures are

listed in Section 3.4. Even for large data sets, proposed algorithm has shown significant results with

effectiveness and efficiency (which is about 30 sec) of the algorithm.

Parameter Selection: For fair comparison, we have chosen the best parameters for aforementioned

signatures. For evaluation of results, we need to set the other parameters like number of clusters

(k), number of neighbors (kn) and number of eigenvectors (l) for the starting computation before
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spectral descriptors in every algorithm. The optimal parameters settings of different algorithms in our

experiments are shown in the Table 3.2.

WKS GPS HKS SIHKS FDD SGWS AHK

N = 100 l = 14 t0 = 0.01 F = 191 σ = 1 l = 10 γ = 0.02

σ = 0.05 α = 2 T = 15 T = 1000 kn = 15 l = 10

T = 15 τ = 1/16

τ = 1/4 α = 2

TABLE 3.2: Optimal parameter selection for different descriptors.

3.5.2 Comparison of average performance

We evaluate our proposed SGWS algorithm for data clustering as well as other popular descriptors

WKS, HKS, SIHKS, GPS, AHK and FDD with the different data sets. To gain further insight into

performance variation between different descriptors, the AUC and NMI results are shown for different

parameters. For our new algorithm, ecoli data set shows best result for k = [6, 7], glass data set for

k = [3, 4], yeast for k = [5, 8] and pima for k = [5, 6]. Figure 3.6 and Figure 3.7 explains the best

AUC and NMI results of each method corresponding to different number of clusters (k) in different

benchmarks.
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FIGURE 3.6: (a)-(b) AUC value for Ecoli dataset for k = 6 and 7. (c)-(d) AUC value
for Glass dataset for k = 3 and 4. (e) AUC value for Yeast dataset for k = 8. (f) AUC
value for Pima dataset for k = 5.

In Table 3.3 and Table 3.4, we document the close results of our new algorithm in a theoretical

view and found that our proposed algorithm has higher AUC and NMI results. Even, we found that

other algorithms has scaling parameters like AHK and FDD, these algorithms shows almost opposite

results with change in value of scaling parameters. But our proposed work does not have this kind of

dependency of scaling parameters which affects overall performance of the algorithm. WKS shows

the least performance with normalized mutual information measure. FDD has good performance but
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Spectral Descriptors

Dataset WKS GPS HKS SIHKS FDD SGWS AHK

Ecoli, k=6 0.432 0.235 0.232 0.720 0.153 0.889 0.509
Ecoli, k=7 0.462 0.457 0.254 0.123 0.892 0.998 0.552
Glass, k=3 0.465 0.535 0.307 0.257 0.253 0.853 0.452
Glass, k=4 0.432 0.505 0.642 0.749 0.653 0.983 0.524
Yeast, k=8 0.443 0.503 0.763 0.355 0.837 0.975 0.637
Pima, k=5 0.220 0.524 0.267 0.841 0.447 0.867 0.556

TABLE 3.3: Average results with different algorithms.
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FIGURE 3.7: (a)-(b) Normalized Mutual Information on Ecoli dataset.

Spectral Descriptors

Dataset WKS GPS SIHKS HKS FDD SGWS AHK

Ecoli, k=6 0.393 0.434 0.520 0.521 0.733 0.827 0.690
Ecoli, k=7 0.330 0.450 0.454 0.523 0.788 0.898 0.728
Glass, k=3 0.351 0.335 0.561 0.492 0.653 0.808 0.633
Glass, k=4 0.211 0.305 0.422 0.489 0.643 0.829 0.714
Yeast, k=5 0.410 0.403 0.501 0.480 0.737 0.781 0.687
Yeast, k=8 0.421 0.392 0.516 0.492 0.629 0.805 0.637
Pima, k=5 0.390 0.384 0.487 0.481 0.630 0.898 0.690

TABLE 3.4: Average results using NMI on different data sets for different k.

it does not have stable results. It has fluctuating results with change in data set and with different

parameters. SIHKS has drastic change in result with pima, k = 5 (AUC 0.841).
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FIGURE 3.8: (a)-(b) Normalized Mutual Information on Glass dataset. (c) Normalized
Mutual Information on Yeast dataset. (d) Normalized Mutual Information on Pima
dataset.

The parameter determination helps to find the appropriate results and proper discrimination of data

from different classes in a data set. The other crucial parameters are number of nearest neighbors (kn)

and number of eigenvectors (l). To study the influence of kn and l, we changed value of kn from 10 to

100 and number of eigenvectors from 10 to 50. Experimentally, we find that the better performance is

obtained when value of kn is between [5, 7, 10, 15, 17] for different data sets and even with different

number of clusters k and eigenvectors l. However, kn = 15 and l = 10 yields best performance with

the proposed algorithm on ecoli dataset (AUC .993 and NMI .798) and FDD gives the second highest

results but WKS shows least performance in terms of AUC (.146) with these parameters. With increase
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in number of l parameters, all other algorithms except SGWS show their worst performance. For kn

= 8 and l = 15, WKS has approximately doubled performance but FDD works worst with this value.

Even, with these parameter values, we achieved good performance with glass data set either. On yeast

data set, we changed values of kn = 10 and l = 10 and for pima data set, kn = 8 and l = 12 to get better

performance of different algorithms. For glass and pima data sets, GPS gives bad performance but

WKS works fine. Therefore, Figures 3.10 and 3.9 shows best results of our method using AUC score.

Our proposed algorithm is very hands-on and effective on many data sets.
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FIGURE 3.9: (a)-(b)AUC value for Ecoli dataset for different kn and l. (c)-(d)AUC
value for Glass dataset for different kn and l.

Table 3.5 and Table 3.6 documents the results in terms of AUC and NMI using different number
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FIGURE 3.10: (a) AUC value for Yeast dataset for different kn and l. (b) AUC value
for Pima dataset for different kn and l.

of eigenvectors and number of neighbors. Figure 3.11 shows best results of our proposed method in

terms of NMI.

Spectral Descriptors

Dataset WKS GPS HKS SIHKS FDD SGWS AHK

Ecoli, kn=15, l=10 0.146 0.264 0.531 0.410 0.840 0.993 0.520
Ecoli, kn=8, l=15 0.275 0.553 0.353 0.323 0.256 0.801 0.350
Glass, kn=15, l=10 0.485 0.236 0.507 0.294 0.470 0.753 0.454
Glass, kn=8, l=15 0.342 0.244 0.846 0.398 0.373 0.970 0.729
Yeast, kn=10, l=10 0.581 0.505 0.868 0.367 0.510 0.913 0.534
Pima, kn=8, l=12 0.590 0.253 0.760 0.410 0.860 0.977 0.650

TABLE 3.5: Average results with kn and l parameters.

Spectral Descriptors

Dataset WKS GPS HKS SIHKS FDD SGWS AHK

Ecoli, kn=15, l=10 0.381 0.340 0.543 0.436 0.743 0.798 0.660
Ecoli, kn=8, l=15 0.350 0.425 0.498 0.569 0.756 0.760 0.380
Glass, kn=15, l=10 0.523 0.435 0.431 0.537 0.686 0.709 0.390
Glass, kn=8, l=15 0.334 0.443 0.447 0.588 0.735 0.780 0.624
Yeast, kn=10, l=10 0.380 0.439 0.482 0.493 0.684 0.830 0.338
Pima, kn=8, l=12 0.432 0.489 0.557 0.531 0.790 0.910 0.590

TABLE 3.6: Average results with kn and l parameters using NMI.
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FIGURE 3.11: (a) Normalized Mutual Information on Ecoli dataset for different l and
kn. (b) Normalized Mutual Information on Glass dataset for different l and kn. (c)
Normalized Mutual Information on Yeast dataset for different l and kn. (d) Normalized
Mutual Information on Pima dataset for different l and kn.

To systematically demonstrate the performance with different number of neighbors, we found that

the evaluation results are not so good with number of corresponding neighbors more than 20.

To guarantee not to favour any method, we tested with different parameters for each algorithm in

our experiments and shows the finest results with every method. SIHKS and HKS performs almost

same in terms of NMI evaluation measure because of their same multiscale nature. We found that

WKS shows least performance because it does not represent large scale dimensions well. GPS also

have average results because of its global nature but it does not have the best performance as our
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proposed algorithm.

To summarize, SGWS algorithm has most robust performance in terms of both evaluation measures

and simple parameters selection. Next, we examine the behaviour of our algorithm with different

normalization methods. We have already introduced our selection of laplacians but now we analyze

the purpose of different laplacians on different datasets. Experimentally, we demonstrate the results

using AUC and NMI with different normalization techniques.

To examine the influence of different normalization techniques, we set the other parameters with

their best results for each data set and the proposed algorithm outperforms in comparison of state-of-

the-art methods. The smaller datasets are usually more sensitive to scaling parameters. That is the

reason, we chose small datasets also for our experimental evaluations.

Compared to other approaches, the SGWS algorithm shows best stability in random walk nor-

malization and no normalization, as demonstrated in both NMI and AUC score. This property of

proposed algorithm is derived from wavelet and scaling function of SGWS. FDD also shows high

quality performance due to inherent properties from quantum mechanics. We test with different lapla-

cians LNN,LRW,LSM,LFP and LLB to preserve the density differences between data points. SGWS

algorithm has the most robust performance on parameter-tuning which is extremely important for

clustering the results and reliable analysis of different data sets. Ecoli and yeast data set shows the

best performance with laplace beltrami and no normalization but glass and pima data sets has better

performance with random walk normalization with other parameters tuning. WKS shows the least

performance with different laplacians also which is consistent with the results with other parameters

k, l and kn. HKS shows best results with laplace beltrami on pima data set but it gives least results

with other data sets. Surprisingly, GPS gives good results with glass data set using LLB. FDD works

well on ecoli data set with LRW and second highest with LNN also but gives worst performance with

other laplacians such as LNN on yeast dataset.
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FIGURE 3.12: Comparison of algorithms with different Normalization techniques.

Hence, different Laplacians LNN,LRW,LSM,LFP and LLB play an essential role in the design of

our proposed algorithm. Figure 3.15 and Figure 3.14 show that our algorithm yields the best results

using normalized mutual information measure with different normalized Laplacians, as summarized

in Table 3.7 and Table 3.8. Moreover, comparison of the proposed algorithm with various other state-

of-the-art methods such as Bose-Einstein (BE) distribution, Maxwell-Boltzmann (MB) distribution

and spectral clustering (SC) are shown in Figure 3.16.

For some data sets and sensitive parameter tuning, FDD also works well but our method can main-

tain similar performance due largely to its insensitivity to the scaling parameters. The major advan-

tages of our proposed algorithm are stability and robustness. The other important property is reliability
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TABLE 3.7: Average results with different normalization techniques using AUC. Bold-
face numbers indicate the best clustering performance.

Spectral descriptors

Dataset Normalization method WKS GPS HKS SIHKS FDD SGWS AHK

Ecoli LNN 0.329 0.504 0.101 0.554 0.802 0.959 0.253
Ecoli LLB 0.334 0.423 0.524 0.566 0.760 0.947 0.450
Ecoli LRW 0.318 0.524 0.456 0.280 0.802 0.903 0.555
Ecoli LSM 0.284 0.386 0.436 0.301 0.810 0.890 0.205
Ecoli LFP 0.276 0.360 0.458 0.250 0.630 0.767 0.440
Glass LNN 0.442 0.452 0.040 0.402 0.651 0.650 0.3524
Glass LLB 0.496 0.806 0.421 0.714 0.820 0.905 0.420
Glass LRW 0.319 0.320 0.411 0.423 0.832 0.841 0.467
Glass LSM 0.583 0.525 0.452 0.519 0.525 0.654 0.346
Glass LFP 0.374 0.320 0.324 0.340 0.530 0.587 0.283
Yeast LNN 0.270 0.418 0.440 0.489 0.456 0.602 0.235
Yeast LLB 0.513 0.320 0.450 0.670 0.451 0.671 0.227
Yeast LRW 0.267 0.280 0.262 0.671 0.702 0.702 0.350
Yeast LSM 0.356 0.405 0.355 0.551 0.701 0.808 0.152
Yeast LFP 0.435 0.503 0.325 0.255 0.501 0.606 0.504
Pima LNN 0.350 0.339 0.387 0.396 0.701 0.721 0.402
Pima LLB 0.461 0.421 0.442 0.350 0.650 0.758 0.421
Pima LRW 0.550 0.321 0.367 0.391 0.760 0.821 0.331
Pima LSM 0.422 0.490 0.488 0.510 0.526 0.523 0.436
Pima LFP 0.363 0.320 0.352 0.340 0.452 0.608 0.360

in data analysis, and also simplicity in the sense that no prior knowledge is needed to use our algorithm

for clustering. In comparison with other approaches, extensive experimental results and evaluations

have demonstrated stable and robust performance of the proposed SGWS algorithm.
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FIGURE 3.13: ROC with different Normalization techniques.
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FIGURE 3.15: NMI for different datasets with different normalization techniques.
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TABLE 3.8: Average results with different normalization techniques using NMI. Bold-
face numbers indicate the best clustering performance.

Spectral descriptors

Dataset Normalization method GPS WKS HKS SIHKS FDD SGWS AHK

Ecoli LNN 0.485 0.580 0.882 0.300 0.621 0.989 0.450
Ecoli LLB 0.449 0.620 0.708 0.350 0.724 0.740 0.380
Ecoli LRW 0.350 0.381 0.486 0.427 0.501 0.628 0.459
Ecoli LSM 0.355 0.260 0.273 0.328 0.760 0.800 0.340
Ecoli LFP 0.281 0.275 0.340 0.524 0.654 0.698 0.440
Glass LNN 0.431 0.350 0.281 0.522 0.388 0.621 0.351
Glass LLB 0.452 0.400 0.467 0.500 0.715 0.820 0.329
Glass LRW 0.310 0.921 0.355 0.302 0.600 0.975 0.651
Glass LSM 0.380 0.341 0.491 0.521 0.704 0.704 0.500
Glass LFP 0.283 0.297 0.485 0.502 0.510 0.640 0.441
Yeast LNN 0.401 0.412 0.460 0.480 0.710 0.768 0.431
Yeast LLB 0.410 0.320 0.562 0.255 0.522 0.750 0.451
Yeast LRW 0.430 0.460 0.522 0.520 0.700 0.818 0.421
Yeast LSM 0.380 0.418 0.534 0.571 0.511 0.852 0.705
Yeast LFP 0.451 0.400 0.300 0.553 0.618 0.770 0.450
Pima LNN 0.364 0.479 0.541 0.580 0.690 0.872 0.386
Pima LLB 0.221 0.450 0.520 0.620 0.705 0.760 0.426
Pima LRW 0.356 0.410 0.887 0.350 0.710 0.990 0.316
Pima LSM 0.300 0.146 0.380 0.461 0.200 0.550 0.187
Pima LFP 0.296 0.421 0.340 0.480 0.708 0.759 0.250
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4
Conclusions and Future Work

This thesis has presented novel clustering and classification algorithms for data clustering and classi-

fication using spectral descriptors. Extensive experimental results and evaluations have demonstrated

the stability, robustness and high performance of our proposed approaches compared the existing

methods. Section 4.1 provides the contributions and the concluding results drawn from the research

work. In Section 4.2, suggestions for future research directions are discussed.

4.1 Contributions of the Thesis

4.1.1 Sparse Coding for Data Clustering and Classification

We have presented a comprehensive survey of different shape descriptors and analyze different cluster-

ing and classification algorithms. It turn out that FDD works very well with the combination of graph

regularized sparse coding algorithm. We have introduced our work for image clustering and classifi-

cation. To further enhance the effectiveness of our proposed GraphFDD algorithm, we have explored

the best parameters such as number of clusters, nearest neighbors, graph regularization and sparsity

regularization parameters. The proposed work outperforms state-of-the-art methods in terms of accu-

racy, confusion matrix and NMI measures. Extensive experiments and evaluations have demonstrated

on five benchmarks for image and data classification and on two benchmarks for image clustering.
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4.1.2 Spectral Graph Wavelets for Data Clustering

We have developed a new clustering algorithm with strong robustness and remarkable performance.

This algorithm is based on the SGWS descriptor, which is multi-resolution, discriminative and com-

pact in nature. Extensive experimental results have demonstrated the significant performance of the

proposed algorithm in comparison with other popular spectral descriptors.

4.2 Future Research Directions

Several interesting research directions, motivated by this thesis, are discussed below:

4.2.1 Classification and Anomaly Detection

In the current form, SGWS descriptor is proposed for data clustering and it has been shown the best

performance on various text benchmarks. The main advantage of our proposed algorithm is that our

work is generic and can be extended on other problems such as classification and anomaly detection

that are modeled on graphs. In the future, we plan to apply the proposed approach to classification and

anomaly detection. In addition, the proposed GraphFDD also yields good performance for clustering

and classification but much more extensive experiments are still required to validate this conjecture.

Another future direction is to investigate GraphFDD for anomaly detection.

4.2.2 Sparse Coding

We intend to explore SGWS with sparse coding techniques in our future work. Our potential research

direction is to explore our work with sparse coding and graph regularized sparse coding. Moreover,

we can apply this signature for supervised learning with dimensionality reduction techniques. An

important avenue of future research lies in investigating the use of the proposed approaches in tackling

other data analysis problems efficiently and in the most flexible manner. Even, we will try to extend

our work with other real world applications and with other image or text benchmarks.

4.2.3 Semi-supervised Learning

In the current work, we focus on supervised and unsupervised methods. Immediate future work will

be concentrated on semi-supervised learning, which is a new type of learning based on labeled and
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unlabeled examples. Additionally, designing semi-supervised algorithms using appropriate signatures

for many real-time applications is a promising future work direction that we plan to explore.
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