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ABSTRACT 

 

A Data-Driven Decision Model  

for Combined Sewer Overflow Management 

using the Low-Impact Development Rapid Assessment Method 

 

Noah Saber-Freedman 

 

Mitigating the frequency and severity of Combined Sewer Overflows (CSOs) represents a 

significant engineering and economic challenge in urban stormwater management (SWM). Low-

Impact Development (LID) methods are a decentralized approach for dealing with this 

challenge. Current methods for estimating CSO mitigation efficacy and informing choices about 

infrastructure solutions are typically based on simulation of the storm sewer network for 

municipalities. The recent public availability of rainfall and CSO data represents a potential 

opportunity to improve the quality of these estimates, as well as reducing the time it takes to 

generate them.  

 

A novel decision support model is presented which solves a Mixed Integer Program (MIP) 

formulation of the Low-Impact Development Rapid Assessment (LIDRA) method algorithmically 

to identify priority catchment areas for intervention with LID infrastructure, as well as the optimal 

extent of investment, subject to different budgetary constraints. The reliability of the model is 

improved by means of a Monte Carlo simulation. 

 

This method is demonstrated with an open dataset from the city of Spokane, Washington, 

but it is generalizable to other municipalities where storm and CSO data is available. 
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1.  INTRODUCTION 

 

1.1 Background 

 

Securing investment in stormwater sewers is challenging for municipalities, and it is 

particularly difficult to make decisions about which regions of a given municipality should be 

prioritized for intervention in the absence of sound data. Further, even if abundant data is 

available, care must still be taken to operationalize said data in the context of informing 

decisions about municipal infrastructure spending.  

 

Despite their critical importance, sewers are largely invisible to the public, making 

renovations and improvements a less-than-popular prospect for municipal governments. Indeed, 

regardless of their necessity, the financial and environmental costs of renovating sewer 

infrastructure can be seen as unpalatable – or even unnecessarily hazardous – as in the recent 

case of Montreal’s renovation of the southeast interceptor  (CBC News, 2015). This unpopularity 

exacerbates the real environmental and public health costs associated with inefficient urban 

stormwater and wastewater infrastructure by making discussion of its construction, repair, or 

improvement taboo. Consequently, this places an increase in importance on reducing 

infrastructure spending and increasing the efficiency of any notional stormwater management 

system. 

 

1.2 Problem Statement 

 

Combined Sewer Overflow (CSO) is a frequent issue for Combined Sewer (CS) systems. 

When a rainfall arrives that exceeds the design capacity for the sewer system, discharges of 

effluent into a receiving water are a result. These discharges, which contain elevated levels of 
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contaminants and pathogens when compared to the discharges from dedicated Stormwater 

Sewers (SS), represent an increased health and environmental risk to municipalities and 

ecosystems. Figure 1 shows a simple representation of the difference between these two 

systems: 

 

Figure 1: Comparison of Separate and Combined Sewer Systems 

 

This thesis attempts to answer two questions of interest to municipal planning professionals 

who deal with Combined Sewer (CS) systems: 

 

- “Where should municipal sewer infrastructure funds be disbursed?” 

and, 

- “What is the extent of the infrastructure spending that will achieve the best 

results?” 
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Answering these two questions is important for both the efficient management of the health 

and environmental risks due to CSOs, as well as making the best use of limited municipal 

infrastructure budgets. These questions are answered by selecting Low-Impact Development 

(LID) as the type of Stormwater Management (SWM) solution, as the LID approach is a 

decentralized, cost-effective method for SWM which presents some major advantages over 

more conventional SWM approaches. 

 

1.3 Thesis Contribution 

 

This thesis demonstrates a method that, given data on the time of onset and volumes of 

CSOs for a large number of catchment areas under a municipal jurisdiction, and data on the 

time of onset and depth of storms covering those catchment areas, will identify the catchment 

area which will respond most favourably to a set infrastructure investment. In addition, the 

method identifies the optimal extent of investment within that budget cap to minimize waste.  

 

The method works by first solving an Integer Programming (IP) problem to compare storms 

and CSOs in order to determine a critical parameter for each shed, the minimum depth to CSO. 

Next, these solutions are used as inputs into a Mixed Integer Programming (MIP) problem which 

describes the response of a CS system to rainfall, with the output being the maximization of the 

effects of LID intervention given cost and space constraints. The reliability of the model is tested 

with Monte Carlo methods and the introduction of random variates as input data. 

 

Such an approach presents two immediate advantages. One of the advantages of this 

approach is that, unlike most of the sewer infrastructure risk management approaches currently 

in use, it does not require the surveying and simulation of a complete municipal sewer system, 
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but only needs information about the stormwater inputs and CSO volume outputs. 

Consequently, this means that the method can be applied to new municipalities with relative 

rapidity, making it useful for feasibility studies.  

 

Another advantage is in scope: several decision support models currently in use are able to 

identify the ideal mix of CSO mitigation solutions for a given catchment area, but there exist very 

few models that identify the preferred catchment area for intervention from a set of catchment 

areas are under consideration. By taking a broader view of where infrastructure intervention 

should be done, rather than which interventions should be done, this method identifies 

otherwise hidden opportunities for municipalities to maximize the impact of their potentially-

limited infrastructure budgets.  
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2.  LITERATURE REVIEW 

 

2.1 Combined Sewer Overflows 

 

CS systems are a municipal sewer system design approach which integrates the domestic 

wastewater (WW) system with the SWM system for a given municipality. It is an approach 

which, at least initially, reduces infrastructure costs by avoiding the construction of two disparate 

piping networks  (Field, Sullivan, & Tafuri, 2004), but the relative benefits of the two design 

approaches are still under debate  (Toffol, Engelhard, & Rauch, 2007). With CS systems, there 

is a risk that when a storm occurs which exceeds their design capacity, a CSO event can follow, 

typically at a designed outfall into a receiving water body.  

 

Much study has been done on the subject of environmental loading due to CSOs. Urban 

stormwater runoff typically contains significant concentrations of priority contaminants 

commonly found in raw sewage, as measured by the Five-Day Biochemical Oxygen Demand 

(BOD5), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS), as well as 

nutrients such as Ammonia Nitrogen (NH4-N), and Phosphorus (P)  (Lee & Bang, 2000) 

(Gasperi & al., 2008) (Gupta & Saul, 1996). The latter two substances are an issue as they can 

cause environmental problems such as eutrophication  (Field, Sullivan, & Tafuri, 2004). Taebi 

and Droste have compared pollution loads in urban runoff and sanitary wastewater  (Taebi & 

Droste, 2004), and CSO discharge can contain elevated levels of nutrients when compared to 

the discharge of separate sewer systems (Brombach, Weiss, & Fuchs, 2005). There is also the 

possibility of the presence of pathogens, such as fecal coliforms and Giardia  (Davis & Cornwell, 

2008), being passed directly to receiving waters.  
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More recently, substances in the category of Contaminants of Emerging Concern, which 

include endocrine-disrupting substances such as the estrogens from birth control pills excreted 

in human urine  (Richardson & Ternes, 2005) (Battaglin & Kolpin, 2009) are presenting a 

significant issue for aquatic ecosystems. Finally, there is an increased concern about the effects 

of changing climate on municipal infrastructure, which may potentially exacerbate the 

aforementioned issues  (Yazdanfar & Sharma, 2015).  

 

In short, the environmental contaminant loading due to urbanization is detected in water 

quality, and this loading represents a significant infrastructure engineering challenge (Elliott & 

Trowsdale, 2007). 

 

2.2 LID Systems 

 

Traditional SWM approaches involve the use of centralized engineering solutions  (Field, 

Sullivan, & Tafuri, 2004) but recent work has seen the rise of LID methods for dealing with 

stormwater. The premise of LID - also called Sustainable Urban Drainage Systems (SUDS)  

(Elliott & Trowsdale, 2007) - is to mimic the pre-development hydrological properties of a region 

(Dietz & Clausen, 2008) (Montalto, et al., 2007).  

 

Overall, LID decreases peak discharge depth and volume, while increasing the lag time and 

runoff threshold when compared with more traditional SWM approaches (Hood, Clausen, & 

Warner, 2007). There is some evidence that some LID methods, like constructed wetlands, may 

remove some of the aforementioned emerging contaminants (Cahill, 2012). This suggests that 

there may be a potential gain in efficacy from adopting alternative urban stormwater/wastewater 

management approaches  (Matamoros, Garcia, & Bayona, 2008). LID design typically 
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emphasizes distributed interventions like rainwater catchment cisterns, green roofs, permeable 

pavement, and rain gardens  (Montalto, et al., 2007).   

 

Rainwater catchment cisterns are storage vessels which buffer the volumetric capacity of 

the sewer system. They detain water on its path from the roofs of buildings to the CS system. 

The stored water can also be used for irrigation, or other uses (Jones & Hunt, 2009). Cisterns 

can provide a ready source of non-potable water for reuse, which is particularly important in 

regions where water must be imported  (Appan, 1999). 

 

Green roofs, also known as “vegetated roof systems”, consist of vegetation that is grown on 

the roofs  (Cahill, 2012). Green roofs are a LID SWM approach with the advantage of 

transforming contaminants as well as retain stormwater (Mulligan, 2002). They also have the 

advantage of contributing to the thermal control of the building due to the evaporative cooling of 

transpiration via the vegetation  (Cahill, 2012). Installing a green roof, however, can present a 

significant engineering challenge, as the weight of the vegetation can contribute substantially to 

the structural load on the building. 

 

Permeable pavement is a LID SWM method consisting of a pervious medium above a 

storage reservoir  (Cahill, 2012). For smaller storms, water avoids the sewer system completely, 

but an overflow control structure is important for avoiding ponding on the surface of the road 

during larger storms. 

 

Rain gardens are a distributed stormwater detention method that reduce runoff volume and 

mitigate peak discharge rates  (Cahill, 2012), and, like green roofs, they have the added bonus 

of being a bioremediation method, transforming contaminants into less harmful forms in the soil 

matrix  (Mulligan, 2002). A typical design for a rain garden consists of a bed of planting mix, 
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typically 18 inches in depth and sloped on the sides, above a drainage bed of gravel or washed 

sand  (Cahill, 2012). A riser with a domed grate and a sump is typically installed to put an upper 

limit on the ponding depth. Plants are grown in the soil medium in order to keep the soil in place, 

to conceal the water that pools in the garden, and to improve the extent of transformation of 

undesirable contaminants that are washed into the garden.  One of the advantages of rain 

gardens is that they are rather pretty to look at, and this gives them a measure of flexibility as an 

infrastructure intervention. Rain gardens constructed as ditches with a high length-to-width ratio 

are frequently referred to as bioswales. A diagram of a rain garden can be seen in Figure 2  

(Oregon State University, 2016). For the purposes of the method described here, rain gardens 

are used to estimate the cost of the project, as well as the total land surface area to be 

repurposed. 

 

 

 

Figure 2: Design of a Rain Garden 
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2.3 LID Modelling 

 

A number of modelling approaches exist for assessing the efficacy of LID approaches for a 

region (Yazdanfar & Sharma, 2015), including Chiew and McMahon’s Model for Urban 

Stormwater Improvement Conceptualisation (MUSIC), Palmstrom and Walker’s P8-UCM, the 

Probabilistic Urban Rainwater and Wastewater Reuse Simulator (PURRS) of Coombes, Haith’s 

RUNQUAL, the Source Loading and Management Model (SLAMM) of Pitt, and the Low-Impact 

Development Rapid Assessment method (LIDRA). The latter method, developed by Montalto et 

al.  (Montalto, et al., 2007), seeks to evaluate the effect of LID SWM solutions for dealing with 

CSOs. 

 

LIDRA is based on the well-known Rational Method of hydrology  (Bedient, Huber, & Vieux, 

2008) (Yazdanfar & Sharma, 2015) (Montalto, et al., 2007), and parameterizes the effect of LID 

technology application as a change in the dimensionless Runoff Coefficient 𝐶, which takes a 

value between 0 and 1. Higher values of 𝐶 indicate a reduced permeability – and, therefore, 

greater runoff volumes. Importantly, LIDRA’s governing equations feature the parameter 𝑑𝑡, 

which corresponds to “the cumulative depth of rainfall preceding a CSO”  (Montalto, et al., 

2007). Typically, CSO mitigation estimates are based on a simulated sewer response to a 

known rainfall. This means that the sewer system for a given municipality must be modelled by 

a pipe flow simulation software package like EPANET (USEPA, 2015) in order to produce 

values for 𝑑𝑡 from known or simulated rainfall inputs  (Montalto, et al., 2007)  (Toffol, Engelhard, 

& Rauch, 2007). Estimating 𝑑𝑡, as described here, is faster than modelling the entire system 

when storm and CSO data are abundant. 
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Even with the availability of abundant data, finding this critical value 𝑑𝑡 is not always a 

straightforward affair; even though many municipalities keep excellent records of rainfall and 

CSO volumetric flow rates and durations, these records are often decoupled from one another 

and therefore a critical independent variable used in the LIDRA method may not be readily 

available. Since a definitive causal relationship between storms and CSOs is not known for 

each CSO in the set of events, and therefore the value 𝑑𝑡 is not immediately available, a Greedy 

Local Search Algorithm (GLSA) is used to derive a value of 𝑑𝑡 for each CSO in the record so 

that the minimum 𝑑𝑡, indicated by 𝑑𝑡,𝐶𝑒𝑥, can then be determined for each CSO-shed.  

 

The following approach is presented with the caveat that correlation does not indicate 

causation, but that correlationary data nevertheless retains some predictive power. 

 

2.4 Costs and Benefits 

 

Houle et al. rightly point out that the effective communication of LID cost is critical to 

ensuring its implementation  (Houle & al., 2013). Their analysis of the cost-benefit relationship 

for LID methods includes volumetric storage and retention, as well as a discussion of 

contaminant removal for TSS, phosphorus, and nitrogen. They compare maintenance costs for 

LID with maintenance costs for conventional SWM and show that maintenance costs were lower 

for “bioretention and subsurface gravel wetland”  (Houle & al., 2013), which motivates the 

selection of the rain garden solution as the means by which system costs are estimated in this 

work. 

 

Ariratnam and MacLeod note that when it comes to big infrastructure projects, everybody 

wants to build and nobody wants to maintain  (Ariratnam & MacLeod, 2002). They perform an 

economic analysis with benefit-cost ratio with the inclusion of the effect of interest, and the 
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expected probability of deficiency. This probability of deficiency, first introduced in a report 

prepared for the city of Edmonton and openly discussed in the literature, is a statistical 

measure. This measure has some advantages, as it makes it possible to estimate the rate at 

which the sewer system must be repaired, but it doesn’t give good localization for where the 

failures are likely to occur. Wirahadikusumah et al. discuss methods for assessing sewers for 

rehabilitation, discussing sophisticated survey methods involving robots and ground-penetrating 

radar  (Wirahadikusumah & al., Assessment technologies for sewer system rehabilitation, 

1998), approaches which require time and skilled operators. Costs are not indicated in the 

aforementioned work. 

 

Modelling sewer infrastructure can be a complex and costly affair for large networks, and 

gaining access to information about the condition of sewer pipes can be a significant project. 

Cahill presents some straightforward cost estimates for LID infrastructure design purposes  

(Cahill, 2012). These cost estimates are useful for estimates such as the one described in this 

paper. The use of rapid assessment methods like LIDRA is intended to save time and money for 

municipalities that have access to good-quality data about their CSO parameters. Finally, it 

should be reiterated that LID presents significant advantages when compared with conventional 

SWM methods both in terms of efficacy and cost  (Houle & al., 2013). 

 

2.5 Decision Models 

 

 Budgetary constraints on municipalities necessitate judicious CSO mitigation 

infrastructure spending. It therefore follows that prioritization of CSO-sheds is a useful tool for 

municipal infrastructure policy and planning. There exist many decision support models for 

prioritizing infrastructure investment for existing, conventional sewers  (Halfawy, Dridi, & Baker, 

2008)  (Wirahadikusumah, Abraham, & Castello, Markov decision process for sewer 
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rehabilitation, 1999)  (Fenner & Sweeting, 1999), but scholarly literature describes 

comparatively few decision support tools available for LID infrastructure.  

 

Ahammed, Hewa, and Argue discuss a model  (Ahammed, Hewa, & Argue, 2012) 

comparing LID technologies with Analytic Hierarchy Process  (Saaty, 1990), a decision model 

based on expert judgment. This approach, however, doesn’t make recommendations about 

specific geographic regions for infrastructure investment. Nielson and Turney presented a 

conference paper  (Nielson & Turney, 2010) discussing optimization analyses for CSO control 

with green infrastructure in the city of Indianapolis, IN. Again, this method focusses comparing 

different solutions within one watershed. Finally, Sample et al. discuss decision support systems 

for SWM from a Geographic Information System (GIS) standpoint  (Sample & al., 2001), and 

uses a linear program to evaluate LID SWM for a hypothetical study area. Lee, Heaney, and Lai 

perform a similar analysis  (Lee, Heaney, & Lai, 2016). 

 

There seems to be a need for methods that rapidly compare CSO-sheds for LID 

infrastructure investment priority instead of simply comparing different LID technologies within a 

single catchment area, use real data instead of simulation modelling or expert opinion as 

decision variables, and treat real regions of interest instead of hypothetical study areas. It is 

hoped that the approach described in this thesis serves to fill that gap. 

 

2.6 Algorithmic Solutions of IP and MIP Problems 

 

There are many different forms that IP and MIP can take, and some of the forms are 

common and well-studied. The maximum cardinality matching problem, for example, is a 
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common IP problem where the solution is a matching, 𝑀, on a graph, 𝐺, consisting of vertices 

𝑉, and edges 𝐸 (Wolsey, 1998). Examples of 𝑀 are shown in Figure 3. 

 

Figure 3: Three Examples of a Matching M on a Graph G 

 

An interesting property of the maximum cardinality matching problem is that it – and its 

inverse, the minimum cardinality matching problem – is a problem in the set 𝒫, the set of 

problems for which an algorithm exists that will solve the problem to optimality in polynomial 

time (Wolsey, 1998). Some graphs can be divided into two sets of vertices which do not have 

edges between them. These types of graphs are called bipartite graphs, and are also well-

studied (Glover, 1967). Graphs with more than one partition can also be constructed. 

 

Nonlinear MIPs, however, are in the set 𝒩𝒫, for which algorithms that solve the problem to 

optimality in polynomial time have not been shown to exist (Wolsey, 1998). Consequently, for 

problems in the set 𝒩𝒫, a solution can be found algorithmically, but there is no way to know if 

that solution is a global optimum.  

 

There are several types of algorithms for solving IP and MIP problems (Wolsey, 1998). With 

a judicious selection of algorithm – informed by the structure of the problem – very strong 

solutions can be found in a relatively short period of time. For problems in the set 𝒫, such as the 

maximum cardinality matching problem on a bipartite graph, there exist algorithms that can find 

the global optimum in polynomial time by examining local optimality criteria. For problems not in 
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𝒫, however, finding a global optimum is not a certainty, and creative methods must be used to 

determine a solution.  

 

Greedy Local Search Algorithms (GLSA) start with an incumbent solution, typically the trivial 

solution: 

𝑥𝑖 = 0: ∀𝑥 ∈ 𝑋 

where: 

𝑥 = An integer decision variable. 

Equation 1: The Trivial Solution to an Integer Programming Problem 

 

and proceed by checking to see whether an adjacent solution in the solution space improves 

the value of the objective function over the incumbent. If such a solution exists, the new solution 

is accepted as the new candidate solution for the new optimal solution (Selman & Kautz, 1993). 

The algorithm checks again to see if an adjacent solution exists that improves the objective 

function, and so on. Left to run for an arbitrarily long period of time, the GLSA will eventually 

stop when there exist no adjacent solutions that improve the value of the objective function over 

the incumbent. If the problem is in the set 𝒫, then the solution is a global optimum (Wolsey, 

1998). 

 

MIPs of the kind featured in this thesis are, as stated, not in 𝒫. Therefore, different 

algorithms must be used to determine feasible solutions and optima. One such approach, which 

can be used for MIPs of is to simply enumerate a subset of feasible solutions and test each one 

(Revelle, Whitlach, & Wright, 2004). This is time consuming, but feasible when the datasets are 

not too large. Consider that, the data spans 𝑆 CSO events in 𝑇 CSO-sheds. Further, if the 
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continuous variable 𝐶𝑝 is discretized by breaking it up into 𝑅 portions, then the number of 

possible solutions is, at, most, 

|𝑄̃| = 𝑅 ∗ ∑ 𝑆𝑖

𝑇

𝑖

 

 Where: 

 |𝑄̃| = The cardinality of the candidate solution set 𝑄̃ that solves the LIDRA MIP; 

 𝑅 = The resolution of the search; 

 |𝑆| = The number of CSO events in the ith shed; 

 𝑇 = The number of CSO sheds.  

Equation 2: The Cardinality of a Candidate Solution Set 

 

In the case of the data used in this thesis, the resolution is 100, and the total number of 

CSO events is 3513, so the upper bound on the cardinality of the set of candidate solutions is 

351300. This is a number of variables that most modern personal computers to can manage 

quickly, making this a useful approach for many municipalities where information technology 

budgets are limited. 

 

Finally, it should be noted that although the IP and MIP problems and their solution 

algorithms are discussed separately, they need not be constructed or solved separately. 

Splitting the matching problem and the decision model into two problems was done in the 

interests of modularity. 

 

2.7 Monte Carlo Methods 
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If the data is subject, as it is in the case of this thesis, to some kind of stochastic process, 

then it is possible that decisions made on the basis of the information to date will not be optimal 

for future scenarios. This attempt to reduce the sensitivity of the model to outliers in the CSO 

and storm input data is what makes it robust. Since the LIDRA MIP is solved by an exhaustive 

search of a discretized candidate solution space, care must be taken to ensure that the model is 

not sensitive to outliers in the data, as oversensitivity to outliers in the storm and CSO inputs 

can cause one single freak event to dominate the selection of the model outputs. Such a 

sensitivity mean the model outputs no longer represent the ‘true’ best option. Improving the 

ability of the model to withstand the effect of outliers, and in turn, to provide better results, is 

accomplished by applying Monte Carlo methods, also known as Monte Carlo simulation. 

 

Monte Carlo methods compare results based on repeated random sampling of data, and as 

such, give useful insight when the data or the model has some inherent uncertainty (Kammen & 

Hassenzahl, 1999). In cases where the data has an element of uncertainty associated with it – 

in this case, the weather, or the production of wastewater in households – it can be very useful 

to have information about the shape of the distribution of possible outputs for the decision 

models that depend on that data. By “playing the game” (Clemen & Reilly, 2001) multiple times, 

such a distribution can be developed. 

 

The value of applying a Monte Carlo method can be the difference between making a 

decision based on signal and noise.  
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3. EXPLORATORY DATA ANALYSIS 

 

In 2008, the city of Spokane, WA, published the Spokane Regional Stormwater Manual 

(SRSM). The document states that it is intended to “protect water quality, prevent adverse 

impacts from flooding, and control stormwater runoff to levels equivalent to those that occurred 

prior to development”  (City of Spokane, City of Spokane Valley, Spokane County, 2008).  The 

SRSM goes on to describe design guidelines for several LID CSO-reduction methods specially 

tailored to the needs of Spokane. In addition to this document, Spokane has done an excellent 

job of cataloguing their rainfall and CSO data since 2001, resulting in a rich dataset of 763 CSO-

producing storms spanning over 13 years as of this writing.  

 

The data was initially made available in excel spreadsheet format and in comma-separated 

value format. The availability of a policy and engineering design document, in addition to the 

excellent data on storms and CSOs, make Spokane an ideal candidate for developing methods 

of the kind described in the present report. The storm data consists of storm depth 

measurements from rain gauges for storms where CSOs were known to occur, and the CSO 

data contains measurements of total volume (in gallons), volumetric flow rate (in gallons per 

minute), and duration (in minutes) of the various CSOs for the 27 CSO-sheds in the area. The 

geographic delineations of these CSO-sheds can be seen in Figure 6. It should be noted that 

two CSO-sheds with less than 5 recorded CSO events were excluded, bringing the total number 

of CSO-sheds in the record to 24 and the total number of CSO events in the record to 3325. 

Finally, including the CSO-shed Area in the computations lowered the number of sheds to 21 

and the number of CSO events to 3198.  

 

3.1 Storm Data 
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The storm dataset contains a set of 763 CSO-causing storms recorded between December 

21, 2001 at 11:03 and December 19, 2012 at 15:09. The maximum recording from any rain 

gauge for any storm was 83.52 inches – a very large value, which may be present in the data 

due to mismeasurement or a typographical error in the data entry. Average (across rain gauges) 

depth of CSO-causing rainfall had a minimum value of 0.020 inches, and a maximum of 7.593 

in., with a mean value of 0.2677 in. and a standard deviation of 4.604 in.  

 

It is important to note that the markedly low minimum value of the CSO-causing storms – as 

low as 0.01in. in many of the cases – could be due to CSOs triggered not by precipitation but by 

the spring melt. This case is reflected in the data on precipitation rates: The minimum rate of 

precipitation is recorded at 0.0001 hundredths of an inch per hour, with a maximum of 151.85 

in./100*hr. and a mean precipitation rate of 0.2135 in./100*hr. The corresponding standard 

deviation for precipitation rate was computed to be 5.497 in./100*hr.  

 

The duration of CSO-causing storms had a mean value of 2.526 days, spanning a range 

from 1.001 days to 20.170 days, with a standard deviation of 1.907 days. Density histograms of 

the base-ten logarithm of storm depth, duration, and intensity are indicated in Figures 4, 5, and 

6, respectively. 
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Figure 4: Histogram of Storm Depth (Log-10) 

 

Figure 5: Histogram of Storm Duration (Log-10) 
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Figure 6: Histogram of Storm Intensity (Log-10) 

 

3.2 CSO Data 

 

Table 1 indicates the mean, standard deviation, and maximum values of CSO flows for each 

CSO shed. Note that for CSO-shed #20 (CSO20 in the tables), not enough data was available 

to generate a useful summary. In these cases, the R script which produced these summary 

tables produced non-numeric outputs. These non-numeric outputs have been replaced by a 

dash character in the tables. 

Table 1: CSO Summary Statistics 

  Mean of Recorded Values 
Standard Deviation of Recorded 

Values 
Maximum of Recorded Values 

CSO 
Shed 

Count 
Total Flow 

(gal) 
Duration 

(min) 
Flow Rate 

(gpm) 
Total Flow 

(gal) 
Duration 

(min) 
Flow Rate 

(gpm) 
Total Flow 

(gal) 
Duration 

(min) 
Flow Rate 

(gpm) 
CSO02 18 2334 125 35.37 6321 134.3 97.88 27159 540 418 

CSO03C 22 6088 167.4 41.61 8061 123.1 47.28 33757 480 174 
CSO06 299 166400 280.5 680.4 270400 424.9 939.9 1779061 4500 6330 
CSO07 125 27480 151 298 53930 168.1 591.1 443561 940 4470 
CSO10 109 13570 135.8 105.6 25760 136.3 208.1 113746 725 1250 
CSO12 324 122800 272.3 533.7 227100 349.7 1051 2242467 2220 10900 
CSO14 152 7887 379 33.1 18780 505.6 100.3 130749 2990 811 
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CSO15 96 19950 151.1 120.5 43600 177 203.8 307765 1025 1310 
CSO16B 56 31960 201.7 189.6 55360 439.6 239.6 311780 3030 1030 
CSO19 5 134.7 363.3 1.823 59.18 288.6 2.82 203 595 5.08 
CSO20 2 77740 45 1730 - - - 77739 45 1730 

CSO22B 15 10340 35.77 486.8 28520 28.49 1427 104476 100 5220 
CSO23 198 67380 157.7 383.8 99070 197.3 334 618655 1755 1440 

CSO24A 226 377700 290.9 1039 847200 382.2 1749 7875001 2930 13100 
CSO24B 114 8849 344.9 59.38 31860 660.1 170 238168 3755 1360 
CSO25 202 20550 110.5 236.1 37430 132.4 388.3 214474 795 3350 
CSO26 280 658600 185.1 2973 1118000 225.3 2885 8933946 1710 20700 

CSO33A 89 4212 112.5 45.73 8993 132 56.33 76628 595 301 
CSO33B 78 882400 58.05 12710 1295000 57.37 13000 8159760 345 58400 
CSO33C 79 6491 96.92 77.1 17740 142.4 130.3 142477 810 756 
CSO33D 268 18260 386 68.4 42920 725.3 79.52 515733 6885 436 
CSO34 217 662300 189.1 2798 1180000 242.5 3032 8444710 1985 15500 
CSO38 114 8084 351.4 28.8 34800 494.2 69.57 272392 3710 377 
CSO39 45 13240 178.1 187.8 22940 276.1 219.5 123636 1310 727 
CSO40 102 8338 199.4 51.74 22280 292 103.4 142766 1675 732 
CSO41 131 29250 160.3 209 69840 383.1 298.6 544853 4085 2240 
CSO42 11 183 114.4 6.267 36.17 144.6 1.981 221 455 7.45 

 

 

3.3 CSO-Shed Area Data 

 

Measurements for the different CSO-sheds were made by importing a PDF document of the 

CSO-shed delineation for the city of Spokane (Figure 2) into AutoCAD, fixing the scale to match 

the scale of the drawing, tracing the CSO-shed boundaries with the line tool, and measuring the 

areas. This gives the areas in Table 2.  

Table 2: CSO-Shed Areas 

 
x Area (ha.) 

1 CSO02 26.05 

2 CSO06 170.39 

3 CSO07 42.70 

4 CSO10 19.53 

5 CSO12 126.38 

6 CSO14 25.11 

7 CSO15 43.72 

8 CSO23 57.91 

9 CSO24A 658.09 

10 CSO24B 25.21 

11 CSO25 7.44 

12 CSO26 215.64 

13 CSO33A 23.61 



22 
 

14 CSO33B 392.44 

15 CSO33C 5.53 

16 CSO33D 17.26 

17 CSO34 687.43 

18 CSO38 25.34 

19 CSO39 17.84 

20 CSO40 19.93 

21 CSO41 31.43 

22 CSO42 10.91 

 

The SRSM gives the value of 𝐶𝑒𝑥 as 0.36 for the entire system (City of Spokane, City of 

Spokane Valley, Spokane County, 2008). 

 

A map of the delineations of the CSO sheds in Spokane is visible in Figure 7: 



23 
 

 

Figure 7: Rain Gauge and CSO-Shed Delineation for Spokane, WA. 
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3.4 Budget Data 

 

Finally, to frame the scale of the difficulty in making decisions about how sewer 

infrastructure expenditure is to be allocated, Figure 8 indicates the utilities division of the 2016 

City of Spokane Program Budget  (City of Spokane, 2016). The total budgetary allocation for 

Environmental Projects, Wastewater Capital Projects, Wastewater Collections and 

Maintenance, Wastewater Management Riverside Park Water Reclamation Facility, Water & 

Hydroelectrical Services, Water/Wastewater Debt Service Fund, and the Water/Wastewater 

Revenue Bond Fund amounts to a total of $165.375M.  

 

 

Figure 8: Spokane Municipal Budget, 2016 - Utilities Division 

 

 

The research question is hereby restated: given the data described in this section, where 

should infrastructure planning professionals spend their LID investment dollars, and how many 

of those dollars should they spend? 
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4. METHODS 

 

The prioritization of CSO-sheds for LID targeting is based on LIDRA. In order to apply 

LIDRA, however, a missing parameter must first be determined. This is done by applying a 

GLSA to the storm and CSO datasets. All computation was done in the R scripting language. 

The methods section begins by describing LIDRA, and follows by describing the GLSA used to 

generate its inputs. 

 

4.1 Low-Impact Development Rapid Assessment (LIDRA) 

 

LIDRA is based on the rational method of hydrology, a widely-used approach for modelling 

runoff. It is based on the following equation, which is written for a specific watershed and storm: 

 

𝑄𝑝 = 𝐶𝑖𝐴 

  

Where: 

 

𝑄𝑝 = Peak Flow [L3/T]; 

𝐶 = Runoff Coefficient, variable with land use [unitless]; 

 𝑖 = Intensity of rainfall of chosen frequency for a duration  

equal to time of concentration 𝑡𝑐 [L/T]; 

 𝑡𝑐 = Equilibrium time for rainfall occurring at the most  

remote portion of the basin to contribute flow at the outlet [T]; 

 𝐴 = Area of Watershed [L2]. 

Equation 3: The Rational Method for Predicting Surface Flow from a Rainfall 

 

This equation represents volumetric flow through a control volume with the input 𝑖 entering 

at the top, the output 𝑄 exiting through the sides. For the sake of completeness, an additional 
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complementary output 𝑄′ can be described, exiting through the bottom, and having the 

properties: 

𝑄′ = (1 − 𝐶)𝑖𝐴 

Equation 4: The Rational Method (Complement Groundwater Flow) 

 

A mass flow diagram for computing 𝑄 via the rational method is given in Figure 9: 

 

 

Figure 9: The Rational Method 

 

The parameter of interest here is 𝐶, which represents the relative quantity of water flowing 

over the ground (Bedient, Huber, & Vieux, 2008), and has a value between 0 and 1, by 

definition. LIDRA parameterizes the extent of a change in LID stormwater management 

applications as a change in the value 𝐶, where “𝐶𝑒𝑥 is the dimensionless runoff coefficient 

corresponding to the existing level of imperviousness of the CSO-shed”, and “𝐶𝑝 is the 

composite runoff coefficient corresponding to a potential level of LID implementation in the 
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sewershed”. An engineer should hope that 𝐶𝑝 winds up being less than 𝐶𝑒𝑥. Figure 10 is a 

graphical representation of the effect of a change in 𝐶 on 𝑄: 

 

 

Figure 10: The Effect of a Change in the Runoff Coefficient C on Runoff Q 

 

Next, LIDRA substitutes the parameter 𝑖 for a ratio of depth to time, as follows: 

 

𝑄𝑡 = 𝐶𝑒𝑥

𝑑𝑡,𝐶𝑒𝑥

𝑡
𝐴 

 

Where: 

 

𝑄𝑡 = Peak runoff flow rate caused by rainfall of  

duration 𝑡 and depth 𝑑𝑡,𝐶𝑒𝑥 [L3/T]; 

 𝑑𝑡,𝐶𝑒𝑥 = Cumulative depth of rainfall preceding a CSO [L]. 

Equation 5: LIDRA Equation for Flow in the Initial Condition 
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 Isolating 𝑑𝑡,𝐶𝑒𝑥 yields the following expression: 

 

𝑑𝑡,𝐶𝑒𝑥 =  
𝑄𝑡𝑡

𝐴𝐶𝑒𝑥
 

Equation 6: LIDRA Equation for Depth in the Initial Condition 

  

And therefore: 

 

𝑑𝑡,𝐶𝑝 =  
𝑄𝑡𝑡

𝐴𝐶𝑝
 

Equation 7: LIDRA Equation for Depth in the Final Condition 

  

Finally, LIDRA expresses 𝑑𝑡,𝐶𝑝 as a function of the ratio of values of 𝐶: 

 

𝑑𝑡,𝐶𝑝 =  
𝐶𝑒𝑥

𝐶𝑝
𝑑𝑡,𝐶𝑒𝑥 

Equation 8: Modified LIDRA Equation for Depth in the Final Condition 

 

It is Equation 6 which is of use here, as once 𝐶𝑒𝑥 and 𝑑𝑡,𝐶𝑒𝑥 are known, then 𝑑𝑡,𝐶𝑝 can be 

computed simply by varying the value 𝐶𝑝.  

 

For every existing Storm-CSO pair, a value of 𝑑𝑡,𝐶𝑒𝑥 can be determined. In the method 

described in this paper, however, the parameter of greatest interest is the minimum 𝑑𝑡,𝐶𝑒𝑥 value 

in each CSO-shed. The intention is to observe how 𝑑𝑡 rises when 𝐶 decreases, and then to 

observe how many CSOs with the property: 

 

𝑑𝑡 <  𝑑𝑡,𝐶𝑝 

Equation 9: CSO Mitigation Condition 
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are excluded from the record. This estimated reduction in CSO events ∆𝑓 corresponds to an 

estimated reduction in the CSO volume ∆𝑉𝐶𝑆𝑂, and this ∆𝑉𝐶𝑆𝑂 reduction value is of the greatest 

interest to urban SWM professionals  (Cahill, 2012). 

 

That said, before LIDRA can be implemented, the parameter 𝑑𝑡,𝐶𝑒𝑥 must be determined for 

each CSO-shed in Spokane. This is described in the following sections. 

 

4.2 Formulation of the Time-To-CSO IP 

 

The parameter 𝑑𝑡,𝐶𝑒𝑥 is not measured directly during storm or CSO events, and must be 

determined in some way. This was accomplished using an Integer Programming (IP) problem, 

which matches storms with the CSO events that preceded them. The IP takes the form of the 

minimum cardinality matching problem on a bipartite digraph. 

 

Let the graph 𝐺(𝑉𝑐 , 𝑉𝑠, 𝐸𝑡) denote a bipartite digraph, where the vertices 𝑉𝑐 are individual 

CSO events, the vertices 𝑉𝑠 are individual storms, and 𝐸𝑡 are the edges between them, 

weighted by 𝑡, the time between events. The graph has the particular property that no edges 𝐸𝑡 

exist between CSOs and storms that occur afterwards. A solution of this IP is a matching, 𝑀, on 

the set of edges 𝐸𝑡 that represent links between the CSOs and the storms which occur 

immediately prior.  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑌 =  ∑ 𝑡𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
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∑ 𝑥𝑖𝑗 = 1

𝑖

∶  ∀𝑖 ∈ 𝑉𝑐 

𝑥𝑖𝑗  𝜖 𝔹 

Where: 

𝑡𝑖𝑗 = The time between the ith CSO and the jth storm [T]; 

𝑥𝑖𝑗 = Binary variable indicating if the edge 𝑒𝑖𝑗 ∈ 𝐸𝑡, from the ith CSO to  

the jth storm is in the solution set 𝑀; 

 

Figure 10 shows a bipartite digraph for which the IP is formulated: 

 

Equation 10: The Time-to-CSO IP 

 

 

Figure 11: A Bipartite Graph 
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Matchings have been shown to be part of the set of solutions P, for which a global optimum 

can be found in polynomial time. Note that not every storm need cause a CSO, only that each 

CSO must have a storm. This is exceptionally good news, as it means that a Greedy Local-

Search Algorithm (GLSA) will find a global optimum for input. The IP is all-but-trivial, as the 

matching M will consist of only those edges with an end in 𝑉𝑐𝑖 where 𝑡𝑖𝑗 is minimum with respect 

to all the other edges with an end on that same vertex. In fact, the only real task here is defining 

the edges on the graph, as, for a well-defined bipartite digraph, where the vertices in the 

problem space lead backwards in time from CSOs to storms, any constraint indicating that a 

CSO cannot be caused by a storm that came after it is redundant. Once the time between 

CSOs and their preceding storms has been determined, computing the depth to CSO is a 

straightforward operation, as will be shown.  

 

4.3 Algorithmic Solution of the Time-to-CSO IP 

 

As mentioned, determination of the parameter 𝑑𝑡 is not always a straightforward affair. Here, 

an algorithm is presented which pairs CSOs with storms and computes 𝑑𝑡. First, some basic 

assumptions about the nature of the data are discussed, then the GLSA is introduced.  

 

The guiding assumptions behind the attempt to pair CSOs with storms are: the start time for 

a storm must precede the start time for a CSO, all storms were large enough to cover the 

entirety of the CSO-shed where measurements were taken, and that the rainfall was constant 

over the duration of the storm. Taking these assumptions in hand results in a simplified model, 

but the results still yield usable values for 𝑑𝑡. 

 

Generally speaking, greedy algorithms are algorithms that “always [take] the best 

immediate, or local, solution while finding an answer. Greedy algorithms find the overall, or 
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globally, optimal solution for some optimization problems, but may find less-than-optimal 

solutions for some instances of other problems.”  (Black, 2005). In this case, the GLSA is 

implemented as follows: 

 

First, as discussed in Section 3.2, each CSO is paired with the storm immediately prior. 

Once each storm a storm is paired with each CSO event, the parameters for the LIDRA method  

(Montalto, et al., 2007) are computed as follows: time to CSO 𝑡 is computed as the difference 

between the time of storm onset and the time that the CSO began. 

 

𝑡 =  𝑡𝐶𝑆𝑂  − 𝑡𝑠𝑡𝑜𝑟𝑚 

 

 Where: 

𝑡 = Time to CSO [T]; 

 𝑡𝐶𝑆𝑂 = Date and Time of CSO [T]; 

 𝑡𝑠𝑡𝑜𝑟𝑚 = Date and Time of Storm [T]. 

Equation 11: Time to CSO 

 

 

Next, the depth to CSO 𝑑𝑡 is computed by linear interpolation as follows: 

 

𝑑𝑡 =  𝑡
𝐷

𝑇
= 𝑡𝑖 

 

Where: 

 𝑇 = Storm Duration [T]; 

 𝐷 = Storm Depth [T]; 

 𝑖 = Storm Intensity [L/T]. 

Equation 12: Computation of dt by Linear Interpolation 
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Finally, the lowest value of 𝑑𝑡 is identified for each shed, and these values become the 

values 𝑑𝑡,𝐶𝑒𝑥 for each shed. 

 

A flowchart representing the algorithm can be found in Figure 12: 

 

 

Figure 12: Flowchart of the Greedy Local Search Algorithm 

 

4.4 Formulation of the LIDRA MIP 

 

Finding the optimal shed and extent of investment involved formulating a MIP to maximize 

the amount of CSO volume reduced over the available record. This MIP was later solved 

algorithmically. The representation of the problem as an MIP is given as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒:  𝑍 =  ∑ 𝑥𝑖 ∑ 𝜃𝑖𝑗𝑣𝑖𝑗

𝑖,𝑗𝑖

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
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∑ 𝑥𝑖𝑘𝑖 ≤ 𝐾

𝑖

 

∑ 𝑥𝑖

𝑖

= 1 

𝑠 ∗ 𝑚𝑎𝑥(𝜃𝑖𝑗𝑣𝑖𝑗) ≤ 𝐴𝑖  

𝑘𝑖 = 𝜅 ∗ 𝑚𝑎𝑥(𝜃𝑖𝑗𝑣𝑖𝑗) 

𝜃𝑖𝑗 = 1 𝑖𝑓 𝑑𝑖𝑗 ≤ 𝛿𝑖 ,  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝛿𝑖 =
𝐶𝑒𝑥

𝐶𝑝
𝑚𝑖𝑛(𝑑𝑖) 

Where: 

𝐴𝑖   =  The area of the ith shed [L2]; 

𝐶𝑒𝑥  =  The runoff coefficient, prior to intervention [unitless]; 

𝐶𝑝  =  The runoff coefficient, after intervention [unitless]; 

𝑑𝑖𝑗   =  The depth to CSO for the jth CSO in the ith shed [L]; 

𝐾  =  The total budget of the project [$];  

𝑘𝑖  =  The cost of implementing the solution in the ith shed [$]; 

𝑠  =  The area per unit volume of stormwater storage [L2/L3]; 

𝑣𝑖𝑗  =  The volume of the jth CSO in the ith shed [L3]; 

𝑥𝑖  =  Binary decision variable indicating if ith CSO-shed is in the solution set; 

𝛿𝑖  =  The minimum depth to CSO in the ith shed [L]; 

𝜃𝑖𝑗  =  Binary variable indicating if the jth CSO in the ith shed  

is below the minimum depth to CSO; 

𝜅  =  The cost per unit volume of stormwater storage [$/L3]; 

𝑣, 𝐶, 𝐾, 𝐴, 𝑢,  𝑑, 𝛿 𝜖 ℝ 

𝑥, 𝜃 𝜖 𝔹  

Equation 13: The LIDRA MIP 
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 The optimization function is the total volume of CSO reduction. In the case that the 

nontrivial solution exists, 𝑥𝑖 is 1 where i denotes the optimal CSO shed for LID investment, and 

the total CSO volume captured by LID infrastructure is ∑ 𝜃𝑖𝑗𝑣𝑖𝑗𝑖,𝑗 .  

The first constraint is a cost constraint on the problem, indicating that any proposed LID 

intervention does not exceed a set budget, indicated by 𝐾. Here, 𝑘𝑖, the total cost of CSO 

storage in the ith shed, is given by the unit cost of CSO storage, denoted by the constant 𝜅, and 

the largest measured CSO in captured by the intervention, given by max (𝜃𝑖𝑗𝑣𝑖𝑗).  

The following constraint is a constraint on the area occupied by intervention. This constraint 

indicates that the total area devoted to CSO storage, computed by the product of the storage 

coefficient 𝑠 and the largest volume of CSO stored in the ith shed, cannot exceed the area of the 

ith CSO-shed, indicated by 𝐴𝑖. 

𝜃𝑖𝑗 is a binary decision variable indicating whether the jth CSO in the ith shed is captured by 

LID intervention. By definition, the jth CSO in the ith shed is captured if the depth to CSO for that 

event, 𝑑𝑖𝑗, is less than the minimum depth to CSO after intervention. The minimum depth to 

CSO for the ith shed after intervention, 𝛿𝑖, is the product of the minimum depth prior to 

intervention, min (𝑑𝑖), and the ratio of the unitless runoff coefficient prior to intervention, 𝐶𝑒𝑥, to 

the unitless runoff coefficient after intervention, 𝐶𝑝. Note that since 𝐶𝑒𝑥 > 𝐶𝑝, 𝛿𝑖 > min (𝑑𝑖). 

The final constraint forces the system to select only one shed for intervention. If the 

constraint is relaxed, the solution may include a set of sheds for infrastructure investment. This 

would cause the final project budget to approach its cap 𝐾, and the total volume 𝑍 would 

increase, but it is possible that the cost-benefit ratio of the project would decrease. 

Solution of the MIP yields a single CSO shed for targeting, the maximum capacity of CSO 

that the new system will accommodate, the cost to install the system, and the land area devoted 
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to LID infrastructure. As will be shown in the results, this MIP problem is sensitive to changes in 

the budget, 𝐾, and it is robust with respect to the CSO volumes 𝑣𝑖𝑗 and their corresponding 

depths 𝑑𝑖𝑗. 

 

4.5 Algorithmic Solution of the LIDRA MIP 

 

An algorithm is used to generate a solution to the MIP described in Section 3.4. The 

algorithm maps the problem space numerically, by computing a large number of potential 

solutions to the MIP, and then selecting the best one via exhaustive search of the enumerated 

candidate solutions. The first step is to define the resolution of the search, and subsequently to 

compute a range of values of 𝐶𝑝 as fractions of 𝐶𝑒𝑥 in the following fashion: 

 

𝐶𝑝 =  
1

𝑅
𝐶𝑒𝑥 

  

Where: 

  𝑅 = The resolution (User-Defined, Unitless) 

    The implementation described here uses a value of 20. 

Equation 14: Computation of Cp 

 

Figure 13 is a graphical representation of the discretized solution space, where solutions 

exist at the points. 
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Figure 13: Discretized MIP Solution Space (Two Decision Variables Shown) 

 

Values of 𝑑𝑡,𝐶𝑝 are subsequently computed for each CSO-Shed using their previously-

determined values of 𝑑𝑡,𝐶𝑒𝑥 and Equation 6. CSO events with smaller depth-to-CSO values are 

then discarded as in Equation 7, and the difference in the number of CSO events, the total 

discharge volume, and the total CSO duration is recorded at each level of 𝐶𝑝. Table 3 indicates 

some values of 𝐶𝑝 tested in the method. 

Table 3: Runoff Coefficients 

 
%Cex Cp 

1 1 0.36 

2 0.95 0.342 

3 0.9 0.324 

4 0.85 0.306 

5 0.8 0.288 

6 0.75 0.27 

7 0.7 0.252 

8 0.65 0.234 

9 0.6 0.216 

10 0.55 0.198 

11 0.5 0.18 

12 0.45 0.162 

13 0.4 0.144 

14 0.35 0.126 
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15 0.3 0.108 

16 0.25 0.09 

17 0.2 0.072 

18 0.15 0.054 

19 0.1 0.036 

20 0.05 0.018 

 

 

Cost and design parameters for rain gardens were used to estimate the cost of 

infrastructure intervention. 

 

Figure 14: Idealized Rain Garden 

 

Cahill gives a cost estimate for a rain garden between $12.50 and $17.50 per square foot  

(Cahill, 2012), so the mean value of $15/sq.ft was used for these computations. Cahill also 

recommends that rain gardens be dug to a depth of between 2 feet and 3 feet, so a mean value 

of 2.5 feet was used for the depth. Cahill also recommends that soil and gravel medium with 

average void space 0.4 be used. Therefore, the cost per cubic volume of stormwater storage is 

estimated as: 
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𝑉𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝐴𝑏𝑒𝑑 ∗ 𝑑𝑏𝑒𝑑 ∗  𝜙 

𝑉𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 30" ∗  0.0254 
𝑚

𝑖𝑛.
 ∗ 0.4 ∗  𝐴𝑏𝑒𝑑 

𝑉𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 0.3048 𝑚 ∗ 𝐴𝑏𝑒𝑑 

𝐴𝑏𝑒𝑑 =
𝑉𝑠𝑡𝑜𝑟𝑎𝑔𝑒

0.3048
= 𝑉𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ∗ 3.281

𝑚2

𝑚3
 

and: 

𝐶𝑜𝑠𝑡 = 𝐴𝑏𝑒𝑑 ∗ 15
$

𝑓𝑡2
∗ 10.76

𝑓𝑡2

𝑚2
= 𝑉𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ∗ 3.281

𝑚2

𝑚3
∗ 161.46

$

𝑚2
 

𝐶𝑜𝑠𝑡 = 𝑉𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ∗ 529.75
$

𝑚3
 

 

Where: 

𝑉𝑠𝑡𝑜𝑟𝑎𝑔𝑒  = Volume of stormwater to be stored [L3]; 

𝐴𝑏𝑒𝑑  = Area of land to be converted to rain garden [L2]; 

𝑑𝑏𝑒𝑑  = Depth of rain garden [L]; 

𝜙   = Soil void ratio, estimated at 0.4. 

Equation 15: Derivation of Stormwater Storage Cost 

 

An idealized rain garden is shown in figure 14. 

 

4.6 Benefit-Cost Analysis 

 

Finally, the benefit-cost ratio computed for each solution in the space by the following ratio: 

 

𝐵𝐶𝑅 =  
∆𝑉

𝐶𝑜𝑠𝑡
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Where: 

𝐵𝐶𝑅  = Benefit-Cost Ratio; 

∆𝑉 = Total change in CSO Volume over the period of data collection [L3]; 

𝐶𝑜𝑠𝑡 = The cost of system implementation [$]. 

Equation 16: Benefit-Cost Analysis 

 

The BCR is computed for every CSO-shed at its optimal value of 𝐶𝑝. A normalized BCR is 

also computed, where: 

𝑛𝐵𝐶𝑅 =  
𝐵𝐶𝑅

max (𝐵𝐶𝑅)
 

 

Note that, at optimality, 𝑛𝐵𝐶𝑅 is unity. 

 

4.7 Demonstration of Robustness with Monte Carlo Methods 

 

 The advantage of applying Monte Carlo methods is twofold: in the case of large 

datasets, such as the one from Spokane, the method can be tested to see if its outputs are 

robust. The following procedure was done to assess the behavior of the model when 

randomness was introduced. 

 The gamma distribution is a common distribution used in hydrology to model the 

frequency of storms of a certain size. Following this logic, a gamma distribution function was fit 

to the parameter 𝑑𝑡,𝐶𝑝 using the MASS package (Ripley, 2016) for the R scripting language. The 

shape and rate constants for these gamma distribution functions are shown in Table 4: 
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Table 4: Shape and Rate Constants for GDF fitting dtCp 

Shed Shape Constant Rate Constant 

CSO02 0.462150949228492 1.37755922194204 
CSO06 0.734669250585028 1.64646503700817 
CSO07 0.781042923879469 1.22078542991454 
CSO10 0.652194978664841 0.937738400912821 
CSO12 0.725411291705688 1.48510788228932 
CSO14 0.688839519200932 1.07761305999719 
CSO15 0.684094226631234 1.03531642264169 
CSO23 0.679180921213085 1.15263582632527 

CSO24A 0.821982645042825 1.57205695357716 
CSO24B 0.649652756325846 0.883539842310734 
CSO25 0.667764905673663 1.03151324658415 
CSO26 0.683376134357938 1.16442030383645 

CSO33A 0.861234009424313 0.828077647638232 
CSO33B 0.967471244690295 1.35375133456719 
CSO33C 0.73576420003766 0.796064918317537 
CSO33D 0.699900185069065 1.16589023161657 
CSO34 0.921408578259018 1.90456382010835 
CSO38 0.83709176599359 1.26507118628418 
CSO39 0.6105406208408 0.688687292092215 
CSO40 0.551970686123125 1.02294241448893 
CSO41 0.747928960385467 1.00875203194555 

 

Next, the CSO volume 𝑉𝐶𝑆𝑂 was seen to be predicted by the depth to CSO 𝑑𝑡,𝐶𝑝 by a linear 

regression that passed through the origin, with a coefficient of correlation 𝑅2 on the order of 

about 0.35 for all CSO sheds. The slopes of the regression lines for each shed are: 

Table 5: Slope of the Linear Regression comparing dt and V 

 Shed Slope 

1 CSO02 2333.61111111111 
2 CSO06 166873.802047782 
3 CSO07 26598.243902439 
4 CSO10 13691.4299065421 
5 CSO12 122837.928125 
6 CSO14 7887.35810810811 

7 CSO15 20007.9891304348 
8 CSO23 65741.0816326531 
9 CSO24A 377715.696428572 
10 CSO24B 8849.23636363636 
11 CSO25 20717.5204081633 
12 CSO26 651840.97080292 
13 CSO33A 4143.96470588235 
14 CSO33B 886743.386666667 
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15 CSO33C 6490.82051282051 
16 CSO33D 18204.3320754717 
17 CSO34 662532.683962264 
18 CSO38 8005.06363636364 
19 CSO39 13241.6136363636 
20 CSO40 8420.12121212121 
21 CSO41 29245.503875969 

 

Finally, randomness was introduced to the system by generating a new set of random 

variates 𝑣′ from 𝑑𝑡 with a normal distribution using the standard deviation of the original 𝑣 values 

seen in Table 5 and the following equation: 

𝑣′𝑖𝑗 = 𝑁((𝑚𝑖 ∗ 𝑑′𝑖𝑗 ), 𝜎𝑣𝑖) 

Where: 

𝑣′𝑖𝑗 = The simulated volume of the jth event in the ith shed [L3]; 

𝑚𝑖 = The slope of the linear regression between 𝑑𝑡 and 𝑣  

for the jth event in the ith shed [L2]; 

 𝑑′𝑖𝑗  = The simulated depth-to-CSO for the jth event in the ith shed [L]; 

 𝜎𝑣𝑖 = The standard deviation of the CSO volumes in the ith shed [L3]; 

 𝑁() = The normal distribution function. 

Equation 17: Generation of Simulated CSO Volumes 

 

As the number of CSO events on record is different for each CSO shed, the number of 𝑑𝑡 

and 𝑣′ random variate pairs computed was equal to the original number of CSOs recorded for 

each shed during the period of observation. The difference in the means of the random variates 

and the original values was close to 0, indicating that the method for producing 𝑣′ described in 

this section was an unbiased estimator of 𝑣. Figure 15 gives a representation of how this looks: 
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Figure 15: Estimation of CSO Volume from Depth-To-CSO, with randomness 

 

At this point, a Monte Carlo process was initiated. The model was run 100 times at different 

budget levels, and the frequency that each shed was selected as the optimum shed was 

recorded, and the resulting value of the objective function was recorded. This led to some 

surprising results, as will be discussed. 
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5. RESULTS 

 

5.1 Minimum Depth-to-CSO 

 

The very first insight gained by the method is the estimation of the parameter 𝑑𝑡,𝐶𝑒𝑥, the 

minimum depth to CSO prior to intervention. The distribution of those initial values can be seen 

in the histogram in Figure 16, and some summary statistics are available in table 5. Note that 

most of the CSO-sheds have a very low value for 𝑑𝑡,𝐶𝑒𝑥, indicating that in most cases, the effect 

of LID implementation will be observed after only a modest investment. This is promising news 

for any infrastructure planner on a limited budget. 

 

 

Figure 16: Histogram of dtCex 

 

Table 6: Summary Statistics for dtCex 

Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

0 0.001680 0.008392 0.027 0.01967 0.4302 
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5.2 System Behaviour, Deterministic Case 

 

Figure 17 indicates the variation of CSO volume with 𝐶𝑝.  

 

Figure 17: Change in Volume Reduction with Cp 

 

Figure 18 indicates how the maximum CSO volume captured changes with each shed. This 

Note that in Figures 17 and 18, both the total and the maximum captured 𝑉𝐶𝑆𝑂 increase as 𝐶𝑝 

decreases.  
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Figure 18: Max CSO Volume Prevented with Cp 

 

The height of the curve on the graphs for cost of implementation and area occupied by LID 

infrastructure are scalar multiples of the heights of the curves on the graphs in Figure 18, and 

are therefore not included. Figures 24 through 45 give a much clearer picture of the effects of 

LID application, indicating the predicted change in cumulative CSO volume and frequency over 

the record with 𝐶𝑝 for each CSO-shed in the analysis. These figures can be found in Appendix 

A. Note that figures with more discontinuities in the curve indicate a greater number of CSOs in 

the region over the course of the analysis. The curves clearly show the relationship that as 𝐶𝑝 

decreases, the CSO volume over the course of the record will also decrease.  
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Scatterplots of the the cost-benefit ratio for reduction in the various CSO sheds are shown in 

Figures 19 and 20 for both volume and frequency. Both scatterplots are produced in the 

environment where LID funds are abundant, with a value of $100M. 

 

Figure 19: Scatterplot of Benefit-to-Cost Ratio (Volume) 

 

Note that most of the BCR values are close to the origin. The point at the top left is the 

optimum shed CSO12, using $42.9M to stop 20.4x106 m3 of CSO from reaching the receiving 

water. The point at the bottom right is CSO33B, using $11.1M to reduce the total flow by a less-

impressive 393 153 m3. 
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Figure 20: Scatterplot of Benefit-to-Cost with Cp (Frequency) 

 

Reducing the frequency of CSO events is not nearly as interesting as reducing the total 

volume, but Figure 20 still serves some illustrative purposes. The winning shed, in this case, is 

CSO02, spending $17.3k to reduce the total flow by 6 events from 18, or exactly 33%. CSO33B 

is in the bottom-right, spending $11.1M to reduce the total number of CSO events by 72 from 

196, or just under 37%. 

 

5.3 Solutions at Optimality, Deterministic Case 
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The selection of the optimal shed and the extent of intervention was sensitive to changes in 

the budget 𝐾. The solution at optimality for different values of 𝐾 will be given in the following 

table. The resolution of the search 𝑅 was fixed at a value of 100: 

Table 7: Optimality in the Deterministic Case 

Budget $1M $2M $3M $4M $5M $7.5M $10M 

Shed CSO14 CSO38 CSO39 CSO23 CSO33D CSO33D CSO33D 
BCR 9.93 14.19 17.62 40.57 47.90 147.10 147.1 

𝑪𝒑 0.0144 0.0036 0.0036 0.054 0.0504 0.0072 0.0072 

𝑽𝒔𝒕𝒐𝒓𝒂𝒈𝒆 (𝒎𝟑) 18 550 29 235 52 099 74 502 95 863 145 998 145998 

∆𝑽𝑪𝑺𝑶(𝒎𝟑) 170 024 245 868 30 5050 52 8961 624 507 2 518 464 2518464 

𝑨𝒈𝒂𝒓𝒅𝒆𝒏(𝒎𝟐) 5654.04 8910.83 15 879.77 22 708.21 29 219.04 44 500 44500 

Cost ($) 912 618 1 438 296 2 563 154 3 665 332 4 716 245 7 182 775 7 182 775 

 

Note the dependency on the budget 𝐾 up to $5M, at which point CSO33D dominates. 

 

Figure 21: Histogram of CSO Volumes for CSO33D 
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Figure 22: Histogram of dt for CSO33D 

 

It is likely that this is because, as shown in Figure 9, CSO33D has a very large number of 

CSOs – the second most out of all CSO sheds under inspection, next to CSO12. There 

appears, by inspection, to be nothing immediately remarkable about the distribution of its values 

for the depth to CSO 𝑑𝑡 as shown in Figure 10, its mean 𝑑𝑡, or the value of its initial minimum 

depth to CSO 𝑑𝑡,𝐶𝑒𝑥.  

 

5.4 Robust Analysis with Monte Carlo Methods 

 

An analysis was performed with Monte Carlo methods to determine the behavior of the 

system with uncertainty. In this case, the system was run for 100 repetitions at different budget 

levels and resolution 100. Values of the decision variables at optimality are the means of the 

values optimal shed over the runs where they were optimal. 
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Table 8: Optimality with Randomness 

Budget $1M $2M $3M $4M $5M $7.5M $10M 

Shed CSO38 CSO33D CSO26 CSO06 CSO12 CSO24A CSO23 
BCR 93.23 147.04 79.92 141 910.8 178.51 1334.06 76.44 

𝑪𝒑 0.01296 0.0036 0.0036 0.00409 0.0124 0.01842 0.00405 

𝑽𝒔𝒕𝒐𝒓𝒂𝒈𝒆 (𝒎𝟑) 16 425.72 19 914.74 50580.52 56 722.03 58 286.63 114 018.3 80 603.14 

∆𝑽𝑪𝑺𝑶(𝒎𝟑) 1 397 144 4 145 338 5 309 578 13 509 820 13 377 400 16 599 056 8 441 993 

𝑨𝒈𝒂𝒓𝒅𝒆𝒏(𝒎𝟐) 5006.56 6070.01 15 416.94 17 288.87 17 766.68 34752.78 24 567.84 

Cost ($) 808 108 979 760 2 488 449 2 790 597 2 867 720 5 609 446 3 965 494 

 

Looking at the histograms in Figure 23 and the data in Table 7, a few things are apparent. 

First, the result obtained in the deterministic case was never the same as the result obtained 

when randomness was introduced. This means that at each value of the budget – and quite 

possibly, everywhere between – the signal in the data that indicated the optimal solution was 

not strong enough to withstand the noise brought in by the randomness.  

 

Even CSO33D, which was selected for LID intervention in the three deterministic run 

conditions where budget was highest, only appeared once in the case where randomness was 

introduced – and even then, it was in a lower-budget case.  
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Figure 23: Histograms of Monte Carlo Results 

 

 

These results indicate that it is perilous to accept without skepticism the outputs of decision 

models based on data where there is some level of uncertainty. 
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6. DISCUSSION 

 

There are several components to this assessment method. The availability of data, the use 

of an algorithm for determining 𝑑𝑡,𝐶𝑒𝑥 for each CSO in the record, the MIP formulation of LIDRA 

and the algorithm used to solve it, and the Monte Carlo simulation are all factors that determine 

the priority of CSO-sheds for LID infrastructure investment, and the extent of that investment. 

Therefore, it is important to consider how manipulating the components of the system are likely 

to affect the model. Each will be discussed in turn, in terms of possibilities for future research. 

 

6.1 The Availability of Data 

 

The assessment approach described in this manuscript is demonstrated with the help of a 

large data set. This data set spans over 13 years, and consists of 763 CSO-causing storms and 

a total of 3239 CSO events. This work could not have been compiled without this data, but what 

is to be done in municipalities which have not acquired a similar record? Without data, 

municipalities are forced to base their decisions on the outputs from urban stormwater 

numerical modelling packages, which may be costly to implement and hard to verify. 

Municipalities curious about urban stormwater infrastructure decisions should install CSO 

measurement systems as soon as possible in order to increase the quality of the decisions they 

make with public funds! 

 

Basing infrastructure spending decisions on data will almost always be preferable to 

estimates, but if only a modest amount of data is available, then statistical methods can still 

potentially be used to supplement the recorded values with random variates. If a municipality 

has a small amount of data, say, two years’ worth of CSO and storm recordings, then urban 

infrastructure planning professionals could model the available data with an appropriate 

distribution curve, in a manner similar to that which was demonstrated in Section 4.7. Then, 
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once the curve has been fit, random variates could be generated to supplement the existing 

data. Infrastructure planning professionals have the choice of either simulating storm and CSO 

records, or simulating 𝑑𝑡,𝐶𝑒𝑥 values directly, as demonstrated.  

 

6.2 Determining the Minimum Depth to CSO 

 

The assessment approach described in this manuscript makes use of a GLSA to generate a 

matching on the bipartite graph of CSOs and storms. From this matching, values for the 

minimum depth to CSO, 𝑑𝑡, are computed as LIDRA inputs. It is important to note here that this 

matching constitutes a correlation, and therefore, no causal inferences can be made about the 

relationship between CSOs and storm. That said, correlationary data retains a great deal of 

predictive power, and so the question arises as to how to improve the quality of these 

predictions. 

 

GLSA algorithms are simple to implement, but they are imperfect. What, then, are the 

features of the data set that could potentially degrade the quality of the 𝑑𝑡 values generated in 

the algorithm, and how can the algorithm for generating the 𝑑𝑡 values be improved? 

 

Note that the GLSA works by finding the storm immediately prior to each CSO, and records 

the time between storm onset and CSO onset as the edge weighting 𝑡. Consider, however, that 

it is possible for multiple discrete storm events to occur with an inter-arrival time less than this 

value 𝑡. Consider also that there exists a lag time between the arrival of the storm and the 

measurement of the CSO. This is an issue, because then the GLSA would then select the most 

recent storm despite the possibility that the storm which prompted the CSO is the one 

immediately prior to the one selected – the actual CSO surge would still be on its way. The 
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likelihood of this failure case of the GLSA could be avoided by taking the initial value 𝑡, and 

checking to see if another storm occurred within the window: 

 

𝑊 = [𝑡𝐶𝑆𝑂 − 2𝑡, 𝑡𝐶𝑆𝑂 − 𝑡] 

Equation 18: Window for CSO-storm pairing metaheuristic condition 

 

In this case, the value  𝑑𝑡 could be improved by using a metaheuristic which drops the CSO 

event entirely. In this case, the algorithm would avoid using CSO-storm data in situations where 

many discrete storms occurred. A consequence of this, however, would be a reduction of the 

number of 𝑑𝑡 values as LIDRA inputs. This would result in a reduction of decision confidence, 

which could be exacerbated in the case of a small dataset. 

 

Another possibility for GLSA failure is the case of CSO events not prompted by storms. This 

case can occur in the event of the spring melt, which is a significant issue in Spokane. 

Thankfully, the Spokane storm data used in this demonstration indicated these Dry Overflow 

(DO) events in the storm record, which allowed the GLSA to generate 𝑑𝑡 values for these CSOs. 

 

A third possibility for GLSA failure is CSO events caused by the combined effect of storms 

and spring melt, where the hydraulic loading on the sewer system is some combination of 

rainfall and meltwater. In this case, the computation of 𝑑𝑡 by interpolation fails, as the value of 

the storm depth value 𝐷 and the rainfall intensity: 

  

𝑖 = 𝐷/𝑇 

Equation 19: Average Rainfall Intensity 
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no longer represent the hydraulic load on the sewer. How, then, is 𝑑𝑡 to be accurately produced 

for these CSO cases? Decoupling the two sources of load may be impossible, it is hypothesized 

that a large standard deviation in 𝑑𝑡 could indicate the confounding variable of spring melt. If 

these cases were removed from the ranking analysis on the basis of a standard deviation cutoff 

value, and if a between-groups comparison of the with and without spring melt cases were 

conducted, it would be interesting to see if the ranking outputs were to change or not – and, if 

so, to reveal the sensitivity of the ranking with respect to the standard deviation cutoff value. 

 

6.3 LIDRA Algorithm Resolution 

 

The LIDRA algorithm described in this manuscript is based on several user-defined values, 

one of which is the resolution of the search 𝑅. In this demonstration, 𝐶𝑒𝑥 gets the value 0.36 

given in the Spokane Regional Stormwater Manual (City of Spokane, City of Spokane Valley, 

Spokane County, 2008) and 𝑅 was arbitrarily selected to be 100.  

 

𝑅 can be varied to give different results, and a brief discussion of the sensitivity of the 

results to a change in resolution follows. The hypothesis is that an increased resolution 

improves the estimate of the area of land to be converted rain garden, and therefore improves 

the estimate of the cost, up to a point. A few examples of the variation of the results with 𝑅 are 

presented, with the budget set to $5M:  

 

Table 9: Sensitivity of the LIDRA Algorithm to Resolution 

Resolution 10 20 50 75 100 250 500 

Shed CSO38 CSO33D CSO33C CSO39 CSO33D CSO33A CSO26 
BCR 0.304 44.55 12.37 17.52 47.90 6.297 12.72 

𝑪𝒑 0.0036 0.054 0.0072 0.0047 0.0504 0.00144 0.292 

𝑽𝒔𝒕𝒐𝒓𝒂𝒈𝒆 (𝒎𝟑) 2326 95 863 30 256 52 099 95 863 76 628 86 009 

∆𝑽𝑪𝑺𝑶(𝒎𝟑) 5657 580 775 21 192 299 957 624 507 352 237 101 453 

𝑨𝒈𝒂𝒓𝒅𝒆𝒏(𝒎𝟐) 708.96 29 219 9 222 15 879 29 219.04 23 356 26 215 

Cost ($) 11 434 4 716 246 1 488 528 2 563 154 4 716 245 3 769 926 4 231 450 
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Clearly the system is sensitive to changes in resolution, as the algorithm selects different 

sheds at nearly every resolution investigated! The choice of resolution itself is not so simple. 

The total reduction in CSO is highest for the case where 𝑅 = 100, and so is the benefit-cost 

ratio. There appears to be no obvious relationship between the resolution and the quality of 

results – which is a surprise, as one would expect that a more fine-grained search would always 

give better results. It appears that it is possible for better solutions to “slip between the cracks” 

at higher resolutions. There is no difference, however, between the second and third cases – so 

it appears that the algorithm has found the optimum with maximum precision. It is conceivable 

that in certain cases, the algorithm may pick an entirely different shed for intervention – although 

that is certainly not happening with the inputs from Spokane.  

 

Finally, increasing 𝑅 has an effect on the amount of time it takes to compute these results: 

𝑅 = 20 results in 4.71s of run time, 𝑅 = 200 results in 10.17s of run time, and 𝑅 = 200 results in 

46.27s of run time. With very large datasets at high resolution, such as in the case of simulated 

rainfall and CSO models, or a bootstrapped dataset, this run time may increase a great deal. 

 

6.4 Selection of Decision Variables 

 

It is important to remember, after all, that the reduction in CSOs is a means to an end: the 

reduction of negative environmental impact from stormwater loading in the urban environment. 

Montalto et al base their LIDRA model on a reduction in CSO hours  (Montalto, et al., 2007), but 

it should be noted that it’s the dose that makes the poison: the environmental impact of CSO 

events is determined by the species and rate of contaminant loading  (Mulligan, 2002). If the 

contaminant concentration is assumed to be constant for all time across all CSO outfalls, then 

the reduction of CSO volume is a more important goal than the reduction of CSO duration. 
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Therefore, the prioritization of CSO-sheds in this manuscript is dictated by a reduction in CSO 

discharge volume. 

 

Future work could investigate the environmental impact of different prioritization criteria: total 

CSO duration, number of CSO events, or average CSO flow rate, and the sensitivity of the 

receiving body (Lau, Butler, & Schütze, 2002) (Eganhouse & Sherblom, 2001). Comparisons of 

these decision variables would have to take into account the transportation and fate of 

environmental contaminant loads. Other possibilities are measuring the concentration of 

environmental contaminants at the CSO outfalls to add new decision variables to the model. 

Including these variables would represent an improvement to the decision model. 

 

As discussed, rain gardens are not the only LID infrastructure solution, and while space is 

not at a premium in larger, less-populated areas like CSO24A or CSO33B, there may be little 

area to devote to rain gardens in CSO26, the priority shed at selected by the Monte Carlo 

simulation given the $3M budgetary constraint. In CSO26, green roofs and permeable 

pavement may represent much more effective means of controlling CSOs. These approaches 

all have different costs associated with them, as well as different effects on 𝐶. Therefore, a 

model that attempts to solve the system for a mix of different LID solutions may produce better 

results in terms of the ratio of benefit to cost. 

 

Finally, since this method is faster to implement than physically modelling of a municipal 

sewer system, it can be used as a feasibility study before hiring a consultant to perform the 

analysis. 

 

6.6 Alternate Decision Models 
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Other decision models exist for comparing decisions on a cost-benefit basis. For example, 

Data Envelopment Analysis (DEA) compares efficiencies across a range of decision-making 

units (DMUs) in a set, ranking them in terms of relative efficiency  (Charnes, Cooper, & Rhodes, 

1978). In this case, CSO39 would be assigned the value 1, and other sheds would be given 

values somewhere between 0 and 1. An approach like this, if combined with the selection of 

multiple LID solutions, would be able to make further recommendations on improving the 

amenability of CSO sheds to LID solutions. With the benefit of LIDRA and abundant storm and 

CSO data, the AHP-based decision support model of Ahammed, Hewa, and Argue  (Ahammed, 

Hewa, & Argue, 2012) could be improved beyond the level of depending simply on expert 

testimony.  

 

The inclusion of other LID SWM solutions, as mentioned, may also be used in such a model. 

It would be very useful for infrastructure planning professionals to have a versatile tool which 

would be easy to deploy that would quickly give the best mix of LID solutions for each CSO-

shed in a municipality, as well as simply suggesting priority regions for intervention. 

 

6.7 Robustness of the Results 

 

Comparing the results in the deterministic case with those outputs of the Monte Carlo 

simulation, it is easy to see that the inclusion of random variables makes for a more robust 

model. This is good advice for anyone attempting to make decisions based on data where there 

is an element of uncertainty inherent in the data. Most decisions, in fact, are made without 

perfect information, and so developing models that can be hardened against finicky data is an 

important priority when building decision support models.  
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Without the use of Monte Carlo methods, it would be very easy to select the wrong shed. 

Comparing the benefit-cost ratios of the sheds in the deterministic and Monte Carlo conditions, 

the benefit-cost ratios are markedly higher in all-but-one of the cases. This result indicates that, 

without the use of Monte Carlo methods, the signal in the data is not strong enough to withstand 

the noise!  

 

6.8 Benefit-Cost Analysis 

 

As a final note, an interesting pattern was noted in the results. For every optimal shed, the 

benefit-cost ratio was the highest of all the other sheds. This is interesting because the model 

was not designed to favour high cost-benefit ratios – the emergence of this result may be a 

consequence of the data, the model, or some combination of the two.  

 

Further research is needed to determine why this is the case, but it is hypothesized that this 

behavior is governed by the CSO volumes, which are gamma-distributed. Higher volumes are 

rare, and therefore, the largest CSO volume captured in a given shed at a given 𝐶𝑒𝑥 is so much 

larger than the next-smallest volume that the larger volume determines the optimal shed 

completely. This would drive up the benefit-cost ratio rapidly for the winning shed. 
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7. CONCLUSION 

 

 

This thesis has described a path from data to decision-making for urban stormwater 

infrastructure improvement. The described case of two large datasets, a simple algorithm, a 

well-known LID modelling tool, and the introduction of randomness gives a useful estimate of 

CSO reduction targeting for SWM professionals. This method can help planners avoid the costly 

error of targeting the wrong CSO regions, instead selecting those regions where taxpayer 

dollars will do the most good.  

 

The method also represents a useful starting point for future research. Much work can be 

performed on the subjects of supplementing and improving the decision variable datasets, 

improving the algorithm which performs and describes the matchings on these datasets, 

selecting new LID and environmental impact assessment methods, and improving the 

robustness of the model with respect to variation in data. In an age where publicly-available 

data is all but abundant, it is important to use that data to inform decision making in the context 

of engineering for the public good. 

 

It bears repeating that the results of data-driven prioritization of CSO-shed targeting for LID 

application described in this manuscript are intended to be predictive – and that therefore, 

experimentation is required to ensure that these predictions are accurate. It is thus 

recommended that LID is applied on a trial basis in one or two CSO-sheds. Then, once a 

sufficient amount of time has passed and an additional post-LID CSO event record is produced, 

the CSO records can be compared between the pre-LID and post-LID conditions to see whether 

the reduction in CSO corresponds to the prediction. If that is the case, then the approach 

described in this manuscript will be shown to be a useful tool for communities worldwide. 

  



63 
 

Endnotes 
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Figure 24: Predicted Change to CSO Parameters in CSO02 
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Figure 25: Predicted Change to CSO Parameters in CSO06 

 

  



71 
 

 

Figure 26: Predicted Change to CSO Parameters in CSO07 
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Figure 27: Predicted Change to CSO Parameters in CSO10 
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Figure 28: Predicted Change to CSO Parameters in CSO12 
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Figure 29: Predicted Change to CSO Parameters in CSO14 
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Figure 30: Predicted Change to CSO Parameters in CSO15 
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Figure 31: Predicted Change to CSO Parameters in CSO23 
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Figure 32: Predicted Change to CSO Parameters in CSO24A 
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Figure 33: Predicted Change to CSO Parameters in CSO24B 
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Figure 34: Predicted Change to CSO Parameters in CSO25 
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Figure 35: Predicted Change to CSO Parameters in CSO26 
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Figure 36: Predicted Change to CSO Parameters in CSO33A 
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Figure 37: Predicted Change to CSO Parameters in CSO33B 
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Figure 38: Predicted Change to CSO Parameters in CSO33C 
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Figure 39: Predicted Change to CSO Parameters in CSO33D 
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Figure 40: Predicted Change to CSO Parameters in CSO34 
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Figure 41: Predicted Change to CSO Parameters in CSO38 
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Figure 42: Predicted Change to CSO Parameters in CSO39 
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Figure 43: Predicted Change to CSO Parameters in CSO40 
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Figure 44: Predicted Change to CSO Parameters in CSO41 

 

 



90 
 

 

Figure 45: Predicted Change to CSO Parameters in CSO42 

 


