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Abstract 

Application of Rhamnolipid and Microbial Activities for Improving the 

Sedimentation of Oil Sand Tailings  

Soroor Javan Roshtkhari, PhD. 

 Concordia University, 2016 

 

Densification of oil sand tailings deposited in the tailing ponds and recovering water from them 

are two major challenges issues in the oil sands surface mining industry. A small increase in the 

tailing settlement rate (which normally is very slow) can improve the densification of tailings 

and significantly, reduce water consumption and the volume of tailing ponds. Currently most of 

the industrial methods for consolidation of oil sand tailings are based on clay particle 

flocculation methods which use different kinds of agents such as calcium sulfate (gypsum), and 

polymeric flocculants. In this work, rhamnolipid (JBR 425) was investigated as a flocculating 

agent and microbial activities by performing the sedimentation experiments to increase the 

sedimentation of fine tailing particles. It has been found that rhamnolipid increased 

sedimentation by improving the hydrophobic interaction between the particles. The feasibility of 

in situ biosurfactant production by indigenous microorganisms, Bacillus subtilis strain and two 

microbial strains isolated from weathered oil was investigated and it was found that all strains 

could produce very low amounts of biosurfactant. A mixed culture of two microbial strains 

isolated from weathered oil increased the sedimentation. Different concentrations of rhamnolipid 

together with these two microbial strains at 23 ºC  ºC could lead to significant increases in 

sedimentation (by a maximum factor of 3.04), increases in the concentration of larger particles 

(by a maximum factor of 1.9), particle mean diameter (by a maximum factor of 2.11) and 
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flocculation in the tailings samples amended with them compared to the control. Rhamnolipid 

(0.5%) together with these two microbial strains at 15 ºC  ºC showed significant increases in 

sedimentation (by a factor of 5.1), the concentration of larger particles (by a factor of 2.63), 

particle mean diameter (by a factor of 2.70) and flocculation in the tailings samples compared to 

the control. while the zeta potential is still negative. According to the pH measurements (during 

the 50 days) increase in the ionic strength (I) of the pore water and reduction in the thickness of 

the DDL of clay particles is not responsible for increasing the sedimentation as dissolution of 

MFT carbonate minerals and releasing divalent cations could not occur  at pH higher than 7.5. 

However there might be a small amount of CH4 production at 15 ºC
o
C in the deeper layer of 

mud. This means that the mechanism of flocculation in these cases could be probably due to 

increasing the hydrophobicity of the particles, due to the interaction of biosurfactant and high 

molecular weight microbial organic compounds through a bridging mechanism with clay 

particles, and to due to forming transient canals from small amounts of CH4 production. Using 

rhamnolipid as a flocculating agent could bring the remaining oil and also a small amount of 

insoluble heavy metals from the tailing sediment into the water. Dissolved heavy metal ions and 

rhamnolipid in water could be removed through micellar- enhanced ultrafiltration (MEUF) 

process (between 30% for Cd and 100% for V, and 97.5% for rhamnolipid). This work shows the 

potential of using rhamnolipid and microbial culture in order to increase the oil sand 

sedimentation through flocculation and microbial activity in a more environmental friendly and 

densification process. 
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1. INTRODUCTION 
Global demand for unconventional energy sources such as coal bed methane, heavy oil, and 

bitumen has grown in recent years. Bitumen is extracted from oil sands exist naturally as a 

mixture of bitumen, sand, clay and water. Bitumen can be upgraded to crude oil which is the 

main natural resource for energy. Canadian oil sands are mainly located in the Athabasca region 

in Alberta, with the rest in Peace River and Cold Lake (Government of Alberta 2008). There are 

two methods for bitumen production from oil sands; surface mining (truck and shovel open pit 

mining) and in situ separation of the bitumen (Patterson 2012). Two to four barrels of fresh 

water are required per barrel of oil produced from the surface mining method (Alberta Energy 

2010).  

"Tails" or "tailings" are the by-products from the extraction of bitumen from the sand by surface 

mining method which are pumped into tailings ponds for storage (Fig 1-1). This tailing 

suspension is a mixture of process affected water, sand, clays, salts, metals, residual bitumen 

and hydrocarbon diluents. It has been reported that between 1992 and 2008, the extent of 

tailings ponds grew by 422% while the extent of mine pits, facilities, and infrastructure grew by 

383% (Timoney and Lee 2009). The government regulated the tailing ponds (Bordenave et al. 

2010; Government of Alberta 2010; WWF 2010). In February 2009, the Alberta Energy 

Resources Conservation Board issued Directive 074 with aggressive criteria for managing 

tailings (Government of Alberta 2013). According to it, companies are required to reduce 

tailings and provide target dates for closure and reclamation of ponds. The Directive also lays 

out timelines for operators to process fluid tailings at the same rate they produce them (which 

will eliminate growth in fluid tailings). According to the Alberta government's Tailings 

Management Framework, industry must have effective bird deterrence systems (are designed to 

prevent birds from landing on the ponds) in place under the government's approval requirements 

for tailings ponds. All tailings ponds are constructed with groundwater monitoring and seepage 

capture facilities. Where seepage is detected, government requires a recapture system to return 

the process-affected water to the pond (Government of Alberta 2013). 
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Figure 1-1 Schematic Diagram of a Tailings Pond (Government of Alberta 2013) 

 

In the pond there are different layers according to the weight of the material for settling to the 

bottom of the pond. The toxic water forms the top layer which can be recycled into the 

extraction process (Mamer 2007; Masliyah 2007).  

In oil sands there are specific definitions of “fines” and “sand” (BGC Engineering Inc 2010; 

ERCB 2009; OSRIN 2013; Sobkowicz 2012). Fines are defined as minerals which include silt 

(2μm-0.05 mm), and clay (<2 μm) smaller than about 44 μm (BGC Engineering Inc 2010; 

ERCB 2009; OSRIN 2013; Sobkowicz 2012). Coarse sand is defined as mineral solids with 

particle sizes greater than 44 μm (BGC Engineering Inc 2010; ERCB 2009) or a soil particle 

between 0.05 mm and 2.0 mm in diameter (OSRIN 2013).  

Coarse sand grains (larger than 44 microns) settle out quickly. Thin fine tailings (TFT) which 

are a combination of fines and water with less than 30% solids will start immediately. TFT will 

settle and within two or three years a layer of mature fine tailings (MFT) develops which is a 

mixture of fine clay particles (under 44 microns in size) and water, with approximately 30%-

60% solids and has a consistency similar to yogurt. Complete settling of MFT is very slow 

(Mamer 2007; Masliyah 2007; WWF 2010) (almost a century). Figure 1-2 shows the 

segregation of tailings within a tailings pond. 
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Figure 1-2. Segregation of tailings within a tailings pond (Mamer 2007) 

 

The more active clays, perhaps somewhat degraded by weathering or the action of caustic soda, 

and coated with bituminous residues appear to be the main cause of the gel-like structure 

formation in the tailings and for the ion exchange mechanism in the tailings ponds (Chalaturnyk 

et al. 2002). The fundamentals of the formation of low density fine tailings deposits are still 

poorly understood, despite enormous research efforts (BGC Engineering Inc 2010). 

It is known that clay minerals, in the presence of caustic soda, possess an enhanced negative 

surface charge which promotes dispersion of the particles, inhibiting their sedimentation and 

consolidation (Mikula et al. 2009). Dispersion of the clays, which is necessary for efficient 

bitumen extraction by flotation, prevents rapid dewatering (sedimentation and consolidation) of 

the tailings clays. Adding sodium ions (as caustic soda) to the oil sands extraction process 

exacerbates this undesirable condition as far as tailings disposal is concerned. The dispersant 

effect of these monovalent sodium ions can be counteracted and controlled to some extent by the 

addition of divalent calcium ions. This cation exchange process and the affinity of calcium ions 

for the clay surface play an important role in many  tailings treatment strategies (Mikula et al. 

2009). 

In a study which investigates the methanogens and sulfate-reducing bacteria in oil sands fine 

tailings waste, Holowenko et al. (2000) stated that generally the temperature of the fine tailings 

(found at depths greater than 5m) does not fluctuate significantly, averaging between 11°C and 

15°C year round (Holowenko et al. 2000). Their samples were collected from the large tailings 

pond (Mildred Lake Settling Basin) on the Syncrude Canada Ltd. lease near Fort McMurray, 
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Alberta. Temperature also increases with depth due to a lack of surface cooling and retention of 

heat at 30-60˚C by deposited tailings (about 22˚C at depth 20 m and 16.9˚C at depth 10 m) 

(Penner and Foght 2010). Siddique at al. (2014) assumed 20 °C, for the tailings pond in situ 

temperature. (Foght and Dunfield (2013) report that the in situ temperature of MFT  was ~12–

20°C  all year round at a depth of between10 m-25 m (Foght and Dunfield 2013). According to a 

study by Wells (2011), which investigated the long term in-situ behaviour of oil sands fine 

tailings in the Suncor Pond 1A, the in situ temperature of MFT was between 13.1°C-17°C at a 

depth of between 10.8-37.8 m year round. Temperature (thermodynamic effects) is one of 

several factors which may influence the species dominant in the MFT. For example, acetogens 

often compete better with hydrogenotrophic methanogens for limiting H2 at low temperatures 

(<15°C), whereas at moderate temperatures (>20°C) hydrogenotrophic methanogens partner with 

syntrophic bacteria to oxidize fatty acids (Kotsyurbenko et al. 2004). 

Suncor currently has eight oil sands tailings ponds covering a total area of 2,689 hectares. Most 

are close to 46 metres in depth (Suncor Energy 2011). Figure 1-3 shows the typical depth for 

each layer in the tailing pond. 

 

Figure 1-3. Different depths of tailing layers within a tailings pond (adapted from (MacKinnon 

1989) 

As of 2008, about 750 million cubic meters of MFT exist within the tailings ponds. If there is no 

change in tailings management, the inventory of fluid tailings is forecast to reach one billion 

cubic meters in 2014 and two billion in 2034 (Houlihan and Haneef 2008). Now more than 170 

km
2
 of tailings ponds exist in Alberta and the government is trying to significantly reduce these 
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tailings ponds by strict legislation for limiting fresh water intake and increasing the recycling of 

water from tailings (Government of Alberta 2010; Masliyah 2007; WWF 2010). Toxic impacts 

of tailing ponds can affect ecosystems and human health. It means that there is an urgent need 

for the attention of the world's scientific community and systematic study (Timoney and Lee 

2009).  

An increase in the tailings settlement rate can increase the efficiency of water recycling and 

reduce the volume of tailings ponds. The large volume of MFT requiring safe containment and 

the vigilant management of capping waters represents a significant management challenge and 

liability for the industry (BGC Engineering Inc 2010). It means that management and increase in 

the sedimentation of oil sand tailings is an important environmental and economical issue.  

There are many methods in order to treat tailings ponds and increase sedimentation. These 

methods can be natural, physical or chemical/biological. Natural treatments include freeze-thaw 

technology and plant dewatering (the planting of grasses, shrubs or trees). Plants  may assist in 

dewatering (plant transpiration) and consolidation by the fibrous roots that withdraw water for 

growth (BGC Engineering Inc 2010). However the high salinity of tailings can inhibit 

establishment and healthy growth. Physical methods include centrifugation, filtration, 

electrophoresis and electro-coagulation (BGC Engineering Inc 2010). In chemical/biological 

methods, densification can be achieved by addition of agents such as calcium sulfate (gypsum), 

sodium silicate, organic flocculants, inorganic coagulants, oxidizing and reducing agents and 

most recently carbon dioxide and some microbial activity such as methanogenesis (Bordenave et 

al. 2010; Masliyah 2007). These methods will be discussed in the next chapter.  

Currently most of the industrial methods for oil sand tailings densification are based on clay 

particle flocculation (BGC Engineering Inc 2010). The flocculation process refers to the 

macroscopic aggregation of suspended particles into loosely packed flocs by addition of 

polymeric flocculants (Crittenden 2005; Hunter 2001b). Microbial densification is a low cost 

method for increasing sedimentation (Quagraine et al. 2005; Siddique et al. 2007). Methane 

formation (methanogenesis) by anaerobic microbes can improve tailings densification. 

1.2 Statement of the Problem 
The polymeric flocculation methods which are now the most effective method for oil sand 

tailings sedimentation and the microbial densification methods have their own limitations which 
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will be discussed in the next chapter. The performance of the flocculants is an important issue in 

flocculation based methods. However the recycle water quality, startup and operational costs, 

experienced operators and careful operational control, in some cases should be considered (BGC 

Engineering Inc 2010). In the microbial activity and methanogenesis method, methane and 

carbon dioxide emissions (up to 104 m
3
 day

−1
 for methane) from tailing ponds should be 

controlled as they are greenhouse gases (Fedorak et al. 2003; Voordouw 2013). 

It has been reported that surface active agents (surfactants) can be applied for increasing 

sedimentation and dewatering. Surfactants can reduce surface and interface tension by forming 

molecular film at the interface of air and water or two liquid phases (i.e. oil/water). There are 

some surfactants which are produced by living natural sources (i.e., from a plant, animal or 

microorganism) and known as biosurfactants (Chhatre et al. 1996; Mulligan 2005).  

In most of the work which has been done on increasing sedimentation and dewatering, the effect 

of synthetic surfactants on flocculation and dewatering of different clay particles was 

investigated. They showed great ability for dewatering slurries when they are combined with 

polymers as flocculants. They can change surface wetting characteristics of particles and lead to 

an increase in flocculation and dewatering. 

Biosurfactants have more advantages over synthetic surfactants such as low or non-toxicity and 

biodegradability. They are also more economic than the other surface active agents in some 

cases due to high efficiency. In addition to these advantages which make them attractive for 

many environmental applications and protection, they have potential to decrease the 

environmental impacts of oil sands (Banat et al. 2000; Mulligan 2005; Rahman et al. 2002a; 

Rodrigues et al. 2006; Urum and Pekdemir 2004; Xu et al. 2011). Rhamnolipids (RLs) are the 

most intensively studied biosurfactants. Many studies show their potential for remediation of oil 

contaminated soil and water (Mulligan 2014). 

1.3 Objectives  
In this work the main objective is to evaluate the use of biosurfactants (rhamnolipid) as 

flocculating agents and microorganisms (by inoculation or naturally present) together with 

rhamnolipid biosurfactant to enhance the sedimentation in tailing ponds, which could reduce the 

need for fresh water and tailings ponds volume, and understanding the mechanism of 

sedimentation within this approach. The sub objectives of this work are:  
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-To determine the effect of various parameters on sedimentation of amended samples and  the 

kinetic rate of sedimentation with rhamnolipid and microbial cultures.  

-To determine the relation between biosurfactant/microbial flocculation and the clay portion.  

-To determine the effect of the treatment of the remaining sediment and recovered water and to 

evaluate Micellar Enhanced Ultrafiltration as a treatment of the water for potential recycling. 

- To evaluate the potential for in situ biosurfactant production. 
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2. LITERATURE REVIEW 

2.1. Alberta's Oil Sand 
 

Alberta’s oil sands deposits have 171.3 billion barrels of remaining oil reserves (Government of 

Alberta 2010). From these reserves 34 billion barrels are recoverable through mining (ERCB 

2010).  Oil sands production is expected to increase from 2.3 million barrels per day in 2014 to 

4 million barrels per day in 2024(Alberta Energy 2015). 

Commercial extraction of oil sands began in 1967 by Great Canadian Oil Sands (GCOS) on the 

banks of the Athabasca River north of Fort McMurray. Today four operators (Suncor, Syncrude, 

Shell and Canadian Natural Resources Ltd.) extract and process bitumen from oil sands in a 

region in Northern Alberta. In addition to the existing government policies, the Government of 

Alberta also released a 20-year strategic plan for the oil sands industry in February 2009 

(Government of Alberta 2010). Furthermore, a number of organizations (including the Alberta 

Environment, the Alberta Sustainable Resource Development (SRD), the Energy Resources 

Conservation Board (ERCB), Canada’s Oil Sands Innovation Alliance (COSIA) and others) 

have been formed to monitor the environmental impacts and to ensure an efficient development 

of oil sands resources. For example COSIA is an alliance of oil sands producers focused on 

accelerating the pace of improvement in environmental performance in Canada's oil sands. 

Through COSIA, participating companies capture, develop and share the most innovative 

approaches and best thinking to improve environmental performance in the oil sands, focusing 

on four Environmental Priority Areas (EPAs) (tailings, water, land and greenhouse gases) 

(Alberta Energy 2010; Government of Alberta 2006; https://www.cosia.ca). 

2.1.1. Oil production methods 

In both surface mining and in situ separation of the bitumen methods, produced bitumen needs 

to be upgraded to the lighter hydrocarbon fluid before going to refining units (CAPP 2009). In 

the upgrading units, the viscosity and the sulfur, nitrogen, and metal contents will decrease 

(Humphries 2008; Hyndman and Luhning 1991; Isaacs 2007). 
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Figure 2-1. Schematic flow chart of bitumen production (Shell Canada 2016) 

 

2.1.2. Separation processes 

There are two main industrial processes for bitumen extraction: the Clark Hot Water Extraction 

(CHWE) and the Steam-Assisted Gravity-Drainage (SAGD). CHWE is the original extraction 

process and is used by the majority of the oil sands industry as the standard extraction process 

from surface mining (Hyndman and Luhning 1991). SAGD is the most commonly used in in-

situ operations (Chow et al. 2008). Cyclic Steam Stimulation (CSS) is another in-situ extraction 

process used in the industry in Cold Lake, Alberta areas (Chow et al. 2008). 

2.1.2.1 Clark Hot Water Extraction (CHWE) process  

In open-pit mined oil sands sites after mining, crushing and slurring, the oil sands slurry is 

delivered through hydro transport pipelines with warm recycled process water and small 

amounts of air (Isaacs, 2007). The tar-like bitumen is extracted from the ore with hot water and 

chemicals such as NaOH and steam (Holowenko et al., 2000). The Clark Hot Water Extraction 

(CHWE) process for bitumen extraction was patented in 1929 by Dr. Karl Clark and has been in 

commercial use since 1967 (Chow et al. 2008). Mixing heated water (heated to between 35 and 

80 degrees Celsius) with crushed ore and NaOH led to reduction of the viscosity of the bitumen 

and the mechanical shear helps to separate the bitumen from the sandy slurry (Chow et al. 2008; 

Isaacs 2007). This extraction is an iterative process and separated bitumen floats to the top of the 
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mixture and is skimmed off and the remaining sand slurry is sent to the tailing ponds (Alberta 

Chamber of Resources 2004; Chow et al. 2008; Patterson 2012). The CHWE process works 

based on the fact that the coarse Athabasca sands are hydrophilic (grains of sand in the ore 

attract a thin film of water) while the bitumen in the ore is hydrophobic and repels wetted 

surfaces. 

2.1.2.2 Steam-Assisted Gravity-Drainage (SAGD) 

About 80% of the oil sands resource is deposited underground at a depth that is not feasible for 

open pit mining and needs to be recovered by in situ extraction. Roger Butler and his colleagues 

at Imperial Oil developed the Steam-Assisted Gravity-Drainage (SAGD) for bitumen recovery 

from oil sands in the late 1970s (Chow et al. 2008). This technology was first employed in Cold 

Lake (Masliyah 2007).  

In this process a pair of horizontal wells is drilled, with a separation of 5 m to each other, one 

above the other (Masliyah 2007). The upper well injects steam, and the loosened bitumen is 

collected in the lower production well (Isaacs 2007). Expanding solvents also can combine with 

the steam in the injection process. This new technology is called Expanding Solvents Steam-

Assisted Gravity-Drainage (ES-SAGD) (Chow et al. 2008; Patterson 2012). 

2.2. Oil Sands Tailings Properties 

2.2.1 Oil sands tailing clays and their properties 

Bitumen remaining in the tailings stream can cause major issues with respect to settlement of 

solids (BGC Engineering Inc 2010; Irwin Wislesky et al. 2013). It is believed that illite and 

mixed layers of clays are largely responsible for the processing and compaction problems in oil 

sands extraction and fine tailings disposal (BGC Engineering Inc 2010). Existence of these 

particles makes the tailing pond a colloidal system and strongly inhibits the settling of particles. 

Oil sands tailings contain a significant amount of clay particles (Masliyah 2007). 

Clay particles are electrically charged and the process of cation exchange is an important 

phenomenon of clays. There are different types of interactions between particles in a colloidal 

system. These interactions are closely related to the surface properties of particles. Interaction of 

charged species in an electrolyte solution is usually explained by the formation of an electrical 

double layer. The electrical double layer is formed near the charged surface which attracts 
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oppositely charged ions in the solution. Forming this layer makes the whole system  electrically 

neutral (Fuerstenau 1982). 

The net interaction between the particles resulting from the attraction and repulsion between the 

particles is responsible for the stability of the system (Masliyah and Bhattacharjee 2005). The 

repulsive net interaction makes the system stable and particles stay as dispersions, while the 

attractive net interaction makes the system unstable and the particles will coagulate. The 

repulsion between particles comes from the presence of an electrical double layer while the 

attraction is due to van der Waals forces (Masliyah and Bhattacharjee 2005). Compressing the 

electrical double layer, which favors sedimentation of oil sands tailings, might be considered for 

increasing the overall attraction between clay particles. Zeta potential (ζ) is used for estimating 

the degree of electrical double layer charge (Figure 2-2). 
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Figure 2-2. Schematic representation of the electrical double layer and its corresponding electrical 

potential profile (http://www.highbeam.com/doc/1G1-223907507.html) 

In the Stern layer, the ions are believed to be bound to the particle surfaces (Masliyah and 

Bhattacharjee 2005). The potential in the Stern layer decreases linearly from the particle surface 

due to the presence of counter ions (Masliyah and Bhattacharjee 2005). The potential decreases 

exponentially away from the slipping plane (Masliyah and Bhattacharjee 2005). The slipping 

plane refers to the plane that the ions and the ion bearing solution move around the particles 

(Masliyah and Bhattacharjee 2005). The slipping plane is known as the zeta potential (ζ) 

(Masliyah and Bhattacharjee 2005). The potential within the double layer region, including the 
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zeta potential, depends on the type of electrolytes and their concentrations (Masliyah and 

Bhattacharjee 2005). 

2.2.2 Toxic impacts of oil sands tailing ponds 

Pollution from the oil sand industries can affect the ecosystem and human health (Timoney and 

Lee 2009). However its extent is a subject of growing international concern. The contamination 

levels into the natural and industrial sources still cannot be quantitatively determined accurately 

(Timoney and Lee 2009).  

The most abundant polycyclic aromatic hydrocarbons (PAHs) in the Syncrude Aurora North 

tailings pond correspond closely with the Muskeg River PAHs whose concentration increased 

the most downstream of the pond(Timoney and Lee 2009). C2 phenanthrene/anthracene were 

the most abundant PAHs in the Aurora North tailings pond, C3 dibenzothiophene was the 

second, C2 dibenzothiophene was the fourth, and C2 fluorene was the sixth most abundant PAH 

in the tailings pond. Sediments from the lower Athabasca River and its delta have been found to 

be toxic to several species of invertebrates (RAMP 2001) and contain high levels of PAHs and 

metals (RAMP 2006). 

Tailings pond seepage can introduce toxins into the ecosystem. The Suncor's Pond 1 (also 

known as Tar Island Pond One) seepage increases the concentration of C2 naphthalene, barium, 

beryllium, boron, strontium, thallium, titanium, and uranium in the sediment pore water of the 

Athabasca River by a factor of 2-4 fold which exceeds maximum ambient concentrations. The 

concentration of beryllium, chromium, manganese, strontium, vanadium and naphthenic acids at 

an Athabasca River surface water site were found to exceed either water quality guidelines or 

maximum ambient (rivers, lakes or groundwater ) concentrations (Komex 2005; Timoney and 

Lee 2009). It has been quantified that seepage into ground water hydraulically connected to the 

Athabasca River is about 5.5-5.7 million L/day (Barker et al. 2007; Hunter 2001a). 

As part of an assessment of the ecological risk posed by Tar Island Pond One, (Komex 2005) 

chemicals of potential ecological concern were identified. These were arsenic, ammonia, 

barium, chromium, bismuth, iron, lithium, manganese, naphthenic acids, selenium, strontium, 

tin, vanadium, zinc, methylnaphthalene and C2 naphthalene (Komex 2005).  
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Birds 

Large numbers of birds die each year due to exposure to tailings ponds (Timoney and Lee 2009) 

(43 species and 51 taxa of birds have died so far). Development of the Athabasca tar sands can 

change migration patterns and have a serious threat to migratory birds and to the Peace-

Athabasca Delta (Schick and Ambrock 1974). During the spring migration, waterfowl and 

shorebirds were attracted to the warm effluent in tailings ponds while natural water bodies are 

still frozen (Timoney and Lee 2009).  A variety of deterrents have been used to discourage water 

birds from landing in tailings ponds such as floating and beach effigies, propane scare cannons, 

and sound-producing systems (Boag and Lewin 1980; Golder-Associates-Ltd 2000; Ronconi 

and Cassady St. Clair 2006; Timoney and Ronconi 2010). 

Some birds that land in the tailings ponds become oiled and a proportion of the oiled birds later 

die (Timoney and Ronconi 2010). It was observed that at least 16,000 birds were flying over one 

tailings pond during this time (Ronconi and Cassady St. Clair 2006) and at (natural) McClelland 

and Kearl Lakes, 1,154 and 2,700 ducks by single-day counts (Ronconi 2006). Tailing ponds 

require effective systems to deter birds (Ronconi and Cassady St. Clair 2006).  

Waterfowl and shorebirds are the most affected by the tailing ponds. However there are  birds of 

prey, gulls, passerines, and other groups that die due to tailing ponds impacts (Dyke et al. 1976; 

Gulley 1980; Ronconi 2006; Sharp et al. 1975). The annual bird mortality due to tailings pond 

exposure is not known with certainty, but it has been estimated to range from 458 to 5,037 birds 

(Timoney and Ronconi 2010).  

Air 

The main source of releases of volatile organic compounds (VOCs), such as benzene, xylene, 

ammonia, and formaldehyde and hydrogen sulphide is the evaporation from tailings ponds. 

Methane production due to the bacterial activities in tailings ponds also can lead to an increase 

in greenhouse gas levels. This may impact tailings reclamation options (Holowenko et al. 2000). 

It has been reported that the pond at the Mildred Lake Settling Basin (MLSB), produces a large 

amount of methane; as 60-80% of the gas flux across the pond’s surface, is due to methane 

(Holowenko et al. 2000). 
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Fish and aquatic life 

Leakage of toxins from tailings ponds may be a concern for decades if not for centuries. 

Four metals commonly exceed fish protection threshold effects levels in the Athabasca River for 

walleye and lake white fish which are aluminum, selenium, silver, and vanadium (RAMP 2006). 

Of these metals, selenium may present the largest risk to fish health. Selenium can contribute to 

reproductive failure, deformities, and death among aquatic organisms and water birds, and can 

adversely affect people (CRBSCF 1999). Athabasca River natural bitumen and oil-refining 

wastewater pond sediments caused significant risk for fish (Colavecchia et al. 2004). Increases 

in mortality, hatching alterations malformations, and reduced size were observed in fish which 

were exposed to Athabasca River PAHs (Colavecchia et al. 2006; Colavecchia et al. 2007; 

Tetreault et al. 2003). 

Humans 

Increased levels of PAHs in sediment, of arsenic in water and sediment, and of criteria air 

contaminants such as VOCs, and sulphur dioxide are concerns.  Arsenic is a known carcinogen 

linked with human bile duct, liver, urinary tract, and skin cancers, vascular diseases, and Type II 

diabetes (Guo 2003). Aquatic biota and the people who depend upon aquatic life for food are 

exposed to both arsenic and PAHs. Co-exposure to arsenic and the PAH benzo(a)pyrene can 

increase rates of genotoxicity 8-18 times above rates observed after exposure to either 

carcinogen in isolation (Fischer et al. 2005; Maier et al. 2002). Exposure to environmental 

contaminants such as arsenic and PAHs, particularly in “country foods”, is a plausible factor for 

the apparent elevated rates of human cancers and other diseases in Fort Chipewyan (Chen 2009; 

Timoney and Lee 2009). 

2.3 Technologies for Treatment of Oil Sands Tailings 

2.3.1 Chemical/biological treatment 

These methods are mainly based on clay particle coagulation and flocculation. 

2.3.1.1 Tailings coagulation  

Coagulation is the process in which destabilization is achieved by the addition of a coagulant. 

Coagulants which are added into the tailings pipeline cause particle destabilization by reducing 

particle charges and/or compressing electrical double layers, forming doublets, triplets, etc., 

upon collision driven by Brownian motion (Hunter 2001b), allowing the particles to come closer 
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together and form large clumps (BGC Engineering Inc 2010). There are different chemicals, 

both organic and inorganic which can be used for coagulation of the clays. Depending on the 

each coagulant aid, various changes in pH, salinity, cation and anion levels, buffering capacity 

and toxicity have been observed. Each coagulant aids also can impact water quality. The most 

common coagulants are mineral salts including aluminum sulfate, ferric chloride, lime, calcium 

chloride, and magnesium chloride. 

Whole tailings coagulation technology is not very robust for operating oil sands plants because 

of the low initial solids content in the tailing stream which leads to segregation of coarse 

particles (>44 µm) from the whole tailings and fines particles flowing into a pond. However 

coagulation can be developed to CT technology using cycloned sand which increases the solid 

content and reduces segregation (BGC Engineering Inc 2010). In this technology recycled water 

quality is also an important concern as coagulant and chemical reagents can induce impacts 

(BGC Engineering Inc 2010). 

2.3.1.2 Tailings flocculation 

The most efficient way to remove the solids in the oil sands tailing is by flocculation. Using 

flocculants can treat MFT without adding divalent ions (BGC Engineering Inc 2010). 

Flocculants cause chemical bonding of colloids and form flocs. In the flocculation technique 

polymeric materials are used as flocculants. They form bridges between individual particles and 

(bridging) help particles aggregate(Suncor Energy 2011). Flocculants carry active groups with a 

charge which will counterbalance the charge of the particles (charge neutralization). 

Most bridging flocculants carry either a positive (cationic) or a negative (anionic) charge. These 

charges serve two purposes: (a) They provide a means of adsorption onto the particle surface by 

electrostatic attraction and (b) They cause the polymer molecule to extend and uncoil due to 

charge repulsion along the length of the polymer chain, so that the molecule is more nearly 

linear and can therefore accommodate more particles (Moss and Dymond 1978). 

A polymer is considered nonionic if less than 1% of the monomer units are charged. In aqueous 

systems, polymers function as flocculants primarily by the bridging mechanism. Hence, they 

must be of high or very high molecular weight for practical applications (Tripathy and Ranjan 

De 2006). Polyacrylamide is the most important nonionic polymer (Tripathy and Ranjan De 
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2006). In general, the higher the molecular weight, the better the flocculation and the faster the 

sedimentation rate (Moss and Dymond 1978).  

It is essential to monitor the particle size distribution before and after the flocculation. A high 

concentration of nano to sub micron particles before the flocculation process and a much lower 

concentration of large flocculates after the process occurs (http://www.anms.ca/products/tailing-

ponds-of-oil-sands). Generally, flocs produced by polymers are much stronger than those formed 

by coagulation; the particles are held together with elastic bonds, not merely by weak Van der 

Waals forces (BGC Engineering Inc 2010). Three groups of flocculants are currently available: 

mineral (silica, bentonite, alum, ferric hydroxide), natural (starch derivatives) and synthetic 

(polyacrylamides) (BGC Engineering Inc 2010; Tripathy and Ranjan De 2006).  

Ongoing research is focusing on various kinds of polymeric flocculants. Polymeric materials 

used as flocculant aids are mostly water-soluble linear polymers of very high molecular weight. 

Polymeric flocculants are widely used in water treatment (BGC Engineering Inc 2010; 

Crittenden 2005; Tripathy and Ranjan De 2006). A cationic hybrid polymer was found to be 

more effective than the corresponding organic flocculants (Yang et al. 2004). Use of anionic 

polyacrylamide in flocculation of lime treated oil sands tailings has been reported by (Hamza et 

al. 1996).  

The performance of flocculants has a significant effect on this technology. Wang et al. (2010) 

compared two polymer aids for settling and filtration of oil sands tailings: commercial 

Magnafloc 1011 (Percol 727) polymer (a high molecular weight, anionic co-polymer of 

acrylamide and acrylates (Sworska et al. 2000a; Sworska et al. 2000b) and an in-house 

synthesized Al-PAM polymer. Both polymers increase tailings sedimentation, but Al-PAM was 

very effective as a filtration aid which showed its potential as an oil sands tailings disposal 

approach that can eliminate tailings ponds (Alamgir et al. 2012; Wang et al. 2010). In the 

flocculation method for tailing densification, recycle water quality also is a concern (BGC 

Engineering Inc 2010). This technology also has high operational costs (BGC Engineering Inc 

2010). 

2.3.1.3 Thickening process 

Thickened Tailings (TT) technology, which is currently used exclusively by Shell and Syncrude 

is also known as paste technology (BGC Engineering Inc 2010; Fair 2008). After extraction, 
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instead of the tailings going straight to the tailings area, they go to a thickening plant. In this 

process, at the thickening plant, a flocculent or thickener is added to bind the particles together 

which leads to rapid settling and sedimentation of suspended fines before they reach the tailings 

pond (BGC Engineering Inc 2010; Shell 2012). 

A large amount of producing water which is suitable for recycle to the extraction process is 

drained off at the plant. The drain off water is still warm so it does not need to be re-heated to 

the same degree as normal tailings water. In this way energy can be saved, resulting in reduction 

of imported energy costs and greenhouse gas emissions (BGC Engineering Inc 2010; Shell 

2012), The sediment which remains without water is called thickened tailings (BGC 

Engineering Inc 2010; Masliyah 2007; Shell 2012). This process yields a density of about 30% 

solids content and the typical residence time in a thickener is half an hour (Devenny 2009), 

while it takes a few years to achieve 30% solid content through gravity settlement of TFT in a 

tailings pond. Thickened tailings can be disposed of in a disposal area, where they are again 

spread in layers, and allowed to consolidate with less land disturbance and high potential for 

land reclamation (BGC Engineering Inc 2010; Shell 2012). 
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Figure 2-3 Thickened Tailings (TT) technology consists of (a) adding a flocculent at the 

thickening plant which leads to rapid sedimentation and (b) draining off the producing warm 

water at the plant while (c) remaining thickened tailings can be disposed of in a disposal area 

(Shell 2012). 

 

Higher densities can be achieved by applying super flocculating agents. However the effect of 

the super floc which remains in the recycled water and consequently in the extraction process 

should be considered (Devenny 2010). However this technology has low imported energy costs 

but still needs high startup and operational costs, and experienced operators and careful 

operational control. Bitumen accumulation in the thickener feed well can impair flocculation 

efficiency. 

There are some challenges in the TT technology. It generally includes the thickener feed 

preparation process, thickener type selection and thickening process, flocculant selection and 

flocculation process, understanding the mechanism of dewatering in order to increase its rate, 

thickened tailings transport (conveyor and positive displacement pump), deposition and 

consolidation and the strategy for reuse of thickener overflow water. Recycled water quality and 

impacts on the environment and plant operation need more studies. Cost also should be 

competitive relative to other tailings management technologies (BGC Engineering Inc 2010; 

Yuan and Lahaie 2013). 

2.3.1.4 Composite/Consolidated tailings (CT) 

Consolidated Tailings (CT) technology is used by Syncrude, Suncor and CNRL (Mamer 2007; 

Syncrude) for treatment of MFT. It was developed at the University of Alberta (Caughill et al.  

et al. 1993). In this process gypsum (containing calcium ions) is added to the mixture of MFT 

and coarse sand tailing sediments to produce a mixture with a sedimentation rate which is much 

quicker (BGC Engineering Inc 2010; Caughill et al. 1993). After adding gypsum the mixture is 

pumped to a pond, where it densifies over time and becomes solid and releases clear water 

which can be recycled (BGC Engineering Inc 2010).  
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Figure 2-4. Consolidated Tailings (CT) technology (BGC Engineering Inc 2010) 

 

This mature technology is relatively low cost and flexible for tailings management (BGC 

Engineering Inc 2010). There are some challenges in CT technology. It requires a large 

containment area until it solidifies (containment area is expensive) and also a large amount of 

sand while the energy efficiency is low. 

The calcium ion concentration in the recycle water is high and can be harmful to the extraction 

process (BGC Engineering Inc 2010). There are H2S emissions by anaerobic reduction of SO4
-2 

with the residual bitumen in the tailings (BGC Engineering Inc 2010). 

2.3.1.5 Drying tailings reduction operations (TRO) 

There is also a possibility to use MFT drying as a tailings technology. MFT drying is known as 

Tailings Reduction Operations (TRO) and is used by Suncor (Mamer 2007). In TRO, a polymer 

flocculent is added to the MFT and the process is similar to CT. The MFT/flocculent mixture is 

then deposited in thin layers (10-15 cm thick). Under self-weight consolidation (aided by a high 

proportion of sand grains), particle-free water is released from the deposit leaving the fines 

solids and some water trapped within the voids of the coarse solids matrix. After about a month, 

the sediment is like “solid earth” and can be reclaimed in place or moved for final reclamation 

(MacKinnon 1989) and dry landscape. TRO will reduce the need to build more tailings ponds, 

and also it is quicker in reclamation than CT (a few weeks are required compared to around 30 

years) (Mamer 2007).  
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2.3.1.6 In-situ biological treatment 

This technology is based on inoculation or enhancement of microbial metabolism in the tailing 

ponds to increase MFT or fine tailing densification and sedimentation. It is clear that microbial 

action and metabolism of resident hydrocarbons can catalyze hydrocarbon biodegradation 

(Quagraine et al. 2005; Siddique et al. 2007) in the tailing ponds. However it can produce a 

large amount of methane (up to 104 m
3
 day

−1
) and carbon dioxide emissions which are not 

desirable, but biological methane formation (methanogenesis) by anaerobic microbes can 

improve tailings densification and increase its rate (Fedorak et al. 2003; Voordouw 2013).  

The rising of gas bubbles in the tailings can produce channels which make it easy for water to 

drain due to excess pore pressures within the tailings (Guo 2009). However this is a low cost 

technology, but the generation of methane from oil sands tailings ponds which is a greenhouse 

gas should be controlled. 

It has been reported that microbial cells and exopolysaccharides or extracellular polymeric 

substances (EPS) can improve the clay aggregation and flocculation (Li et al. 2007). EPS are 

compounds secreted by microorganisms into their environment. These compounds are important 

in biofilm formation and cell attachment to surfaces. There are also interactions between soil 

bacteria and clay particles which can form clay aggregates with the appearance of 'hutches' 

housing the bacteria (Lünsdorf et al. 2000). 

There are different classes of microorganisms growing in the tailings ponds that contribute to 

increased tailings aggregation and sedimentation. In addition to methanogen bacteria, sulfate-

reducing bacteria (SRB) and nitrate-reducing bacteria (NRB) have also been found in tailing 

ponds environment (Holowenko et al. 2000; Salloum et al. 2002). The tailings pond microbial 

communities are dynamic and change rapidly when the input of fresh tailings and/or gypsum is 

stopped (Golby et al. 2012). 

Bordenave et al. (2010) observed that microbial cells can absorb the clay particles on their 

surfaces and within the EPS, causing the aggregation of fine particles. In this way the tailings 

sedimentation under gravity will increase (Bordenave et al. 2010). According to their report, the 

active cultures of M. barkeri (methanogen) or Thauera sp. strain N2 (NRB) show strong bonds 

to clay particles and an increase in sedimentation. Nitrate addition also can reduce methane 

production by methanogenic bacteria. These observations show the potential for increasing 
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tailing sedimentation by using microbial biomass to aggregate and reduce methane production 

by in situ addition of nitrate (Bordenave et al. 2010). 

Addition of calcium ions in the form of Ca(NO3)2 and lactate to tailing pond samples can 

increase the densification rate by 15% (v/v). Lactate significantly boosted microbial activity 

with increased methanogenesis, sulfate reduction or nitrate reduction (Brown et al. 2013). 

In one study, the adhesion to a sandy soil and a clay loam soil of a series of Lactobacillus strains 

with various cell surface characteristics were investigated (Huysman and Verstraete 1993). 

Bacterial cell surface hydrophobicity, as determined by the bacterial adherence to octane and 

polystyrene, was the major parameter influencing the adhesion to the sandy soil. The cell 

surface charge of the bacteria was of minor importance in the adhesion to the sandy soil 

(Huysman and Verstraete 1993). It has been reported that the attachment to the benthos is 

facilitated by the common action of both coflocculation and hydrophobic interactions. EPS also 

can help the bacteria to adhere to the surface and can serve as flocculants to bind small clay 

particles (Rehm 2009). 

Ramos-Padron et al. (2010) found that methanogenesis was inhibited in laboratory incubations 

by nearly 50% when sulfate was added at pond-level concentrations. It suggests that in situ 

sulfate reduction can significantly reduce methane emissions. The  sulfide emissions by SRB 

activity in the gypsum treated pond are also limited as they are highly soluble and will oxidize in 

surface waters which suggests that the production of hydrogen sulfide might be a self-limiting 

process, which will begin to decrease after a period of time (Chen et al. 2013; Ramos-Padrón et 

al. 2010; Voordouw 2013). 

2.4. Biosurfactants 
Surface active agents (surfactants) are amphiphilic chemical compounds. They have a 

hydrophobic chain or tail and a hydrophilic head group. The hydrophobic tail is the hydrocarbon 

(linear or branched) portion and the hydrophilic part is polar or ionic portion of a surfactant. The 

hydrophobic portion may concentrate at the air water interface or into the oil phase, while the 

hydrophilic portion orients towards the bulk water. They can produce molecular films at the 

interface of air and water or two liquid phase with different polarity and hydrogen bonds (i.e. 

oil/water) and reduce the surface and interface energy (surface and interface tension) (Mulligan 

2005). 
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Figure 2-5. Surfactant monomers form a spherical micelle in aqueous solution (Pasquali 2010) 

Surface tension is dependent on the surfactant concentration as long as the surfactant 

concentration is below the Critical Micelle Concentration (CMC) (Figure 2-6). In other words, 

the CMC is the minimum concentration necessary to initiate micelle formation. Efficient 

surfactants have low CMC. It means that small amounts of surfactant can reduce surface 

tension. The CMC is dependent on pH, temperature and ionic strength.  

 

 
 

Figure 2-6. Surface tension, interfacial tension and solubilization as a function of surfactant 

concentration (CMC represents critical micelle concentration)(Mulligan 2005)(p.184). 

 

There are different types of surfactants. Generally they can be classified based on their head 
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group charge into four classes: Cationic surfactants, anionic surfactants, nonionic surfactants 

and amphoteric and zwitter-ionic surfactants (which have both cationic and anionic charges in 

the same molecule) (Mulligan 2014). Surfactants which are produced from living natural 

sources (i.e., from a plant, animal or microorganism) are known as biosurfactants (Chhatre et al. 

1996; Mulligan 2005).  

Microbial biosurfactants are produced either on the surfaces of microbial cells or excreted 

extracellularly (Mulligan 2005). Some biological substances which have high emulsifying 

activity but cannot reduce surface tension are also categorized with biosurfactants. Their 

classification is based mainly on the categorization of their microbial origin and their chemical 

composition. In this way they can be classified as glycolipids, fatty acids, phospholipids, surface 

active antibiotics, polymeric microbial surfactants (biosurfactants which are a combination of 

many chemical types), and particulate surfactants (Chhatre et al. 1996).  

Most biosurfactants are anionic or neutral; only a few of them which contain amine groups are 

in cationic form (Mulligan et al. 2001). The hydrophobic part of biosurfactants is composed of a 

long chain of fatty acids, hydroxy fatty acids or α-alkyl-β-hydroxy fatty acids. The hydrophilic 

part can be a carbohydrate, amino acid, cyclic peptide, phosphate, carboxylic acid or alcohol. As 

mentioned in Table 2-1, there are a wide range of microorganisms that can produce these 

compounds (Mulligan 2005). 
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Table 2-1. Type and microbial origin of biosurfactants (Mulligan 2005)(p. 185) 

 

 

The CMC of biosurfactants  varies from 1 mg/l to 20 mg/l depending on solution ionic strength  

and their molecular weights are in the range of 500 -1500 Daltons (Da) (Mulligan 2005). 

The increasing demand for surfactants is mainly supplied by chemical surfactants. Many 

chemical surfactants have high toxicity, are not degradable and accumulate in the environment. 

Their production and their by-products also have significant impacts on environment. 

Considering these problems, biosurfactants offer advantages over synthetic surfactants. Interest 

in biosurfactants has been steadily increasing in recent years due to their derivation from 
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renewable resources, diversity, environmentally friendly nature, possibility of large-scale 

production, low or non-toxicity, biodegradability, excellent surface activity, possible reuse 

through regeneration, selectivity, performance under extreme temperature and pH conditions, 

and potential applications in environmental protection (Banat et al. 2000; Mulligan 2005; 

Rahman et al. 2002a; Rodrigues et al. 2006; Urum and Pekdemir 2004; Xu et al. 2011). 

Most microbial-derived biosurfactants are produced from hydrocarbon substrates (Syldatk and 

Wagner 1987). They can also be produced from carbohydrates which are very soluble. 

Biosurfactants are very effective for in situ reduction of interfacial surface tension of oil and 

water, the oil viscosity, water removal from the oil, and release of bitumen from oil sands 

(Mulligan 2014). For this purpose, emulsan which is a high molecular weight biosurfactant has 

been commercialized (Mulligan 2014). 

Enhancing solubilization and biodegradation, soil treatment (in situ and ex situ), and water and 

waste treatment are environmental applications of biosurfactants. Among different types of 

biosurfactants, rhamnolipids, sophorolipids and surfactin which have low molecular weights are 

well studied (Mulligan 2014). Their research trends and applications are reviewed in detail by 

Mulligan (2014).  

2.4.1 Rhamnolipid biosurfactant 

Rhamnolipids (RLs), the glycolipid biosurfactants produced mainly by Pseudomonas 

aeruginosa, are the most intensively studied biosurfactants (Lang and Wullbrandt 1999; 

Soberón-Chávez et al. 2005). They are the only biosurfactants thus far that have been approved 

by US Environmental Protection Agency for use in food products, cosmetics and 

pharmaceuticals (Nitschke and Costa 2007). 

Pseudomonas aeruginosa species has the ability to produce four different rhamnolipid analogs 

(R1-R4) (Mulligan 2005; Syldatk et al. 1985). They have a glycosyl head group, in this case a 

rhamnose moiety, and a 3(hydroxyalkanoyloxy)alkanoic acid (HAA) fatty acid tail (Cabrera-

Valladares et al. 2006; Ochsner et al. 1994). Specifically there are two main classes of 

rhamnolipids, mono-rhamnolipids and di-rhamnolipids; consisting of one or two rhamnose 

groups respectively (Figure 2-7) (Rahim et al. 2001).  
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Figure 2-7. Rhamnolipids type I or mono-rhamnolipids contain one rhamnose group while 

rhamnolipids type II or di-rhamnolipids; contain two rhamnose groups (Mulligan 2005)(p.185) 

Rhamnolipids are also heterogeneous in the length and degree of branching of the HAA moiety 

(Desai and Banat 1997) which varies with the growth media used and the environmental 

conditions (Matsufuji et al. 1997; Mulligan 2005). They are anionic and are capable of  reducing 

water surface tension from 72 mN/m to 29 mN/m (Mulligan 2005). 

2.4.2 Rhamnolipid important environmental applications 

Rhamnolipids have the potential to decrease the environmental impacts of oil sands as many 

studies have shown their potential for remediation of oil contaminated soil and water. 
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2.4.2.1 Enhancing solubilization and biodegradation of petroleum hydrocarbon and PAH 

Rhamnolipid can enhance diesel-contaminated soil remediation by enhancing biomass 

production and diesel biodegradation (Whang et al. 2008). Vasefy and Mulligan (2008) used 

rhamnolipid with two commercial biological products which contain bacteria consortia and 

nutrients (which can enhance biodegradation rate) to investigate the effectiveness of 

rhamnolipid on the biodegradation of weathered light crude oil, heavy oil, heavy crude oil and 

diesel fuel which spilled on saline water. Rhamnolipid solutions showed 65% removal of diesel 

fuel, 70% of light crude oil, and 59% of heavy crude oil (Vasefy and Mulligan 2008). 

Rhamnolipid can enhance bioremediation of refinery oil sludge (Ju et al. 2011). It has been 

reported that rhamnolipid can stimulate hydrocarbon biodegradation when P. aeruginosa and a 

rhodococcal strain  were inoculated into a soil contaminated with an oily sludge (Cameotra and 

Singh 2008). Pseudomonas strain isolated from the marine environment could reduce the crude 

oil amount by 83% (Mehdi and Giti 2008). Washing of oil-based drill cuttings (petroleum 

exploration and production wastes) by a rhamnolipid before biodegradation by a mixed culture 

can result in a significant decrease of organic content (however the rhamnolipid concentration 

should be at a certain level) (Yan et al. 2011). 

Rhamnolipid addition can enhance ex situ bioremediation of gasoline-contaminated soil 

(Rahman et al. 2002b). Rhamnolipid addition can enhance degradation of phenanthrene by P. 

aeruginosa as it solubilized  the phenanthrene and increased its bioavailability (García-Junco et 

al. 2001). A significant increase in the solubility of phenanthrene under a range of pH and 

salinities by adding rhamnolipid also has been reported (Yin et al. 2009). So it has potential for 

bioremediation of crude oil. Straube et al. (2003) showed that the biosurfactant produced by P. 

aeruginosa strain 64 in the soil enabled PAH biodegradation (Straube et al. 2003).  

2.4.2.2 Soil treatment (in situ and ex situ) and removal of heavy metals and organics 

Rhamnolipids can enhance the release of low solubility compounds from soil and other solids. 

They have the ability to enhance washing of a crude oil contaminated soil (Urum et al. 2003). 

They increase oil release from the beaches in Alaska after the Exxon Valdez tanker spill (three 

times as much as water do alone) (Harvey et al. 1990). However the removal efficiency varied 

according to contact time and biosurfactant concentration (Mulligan 2014). 

Hydrocarbon removal from sandy loam soil has been reported. Hydrocarbon type and 

rhamnolipid concentration can change removal degree (from 23% to 59%) (Scheibenbogen et al. 
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1994). 5 g/L of rhamnolipids can remove 10% more hydrocarbons from a sandy loam soil than a 

slit loam soil. Rhamnolipid is more effective than SDS (Dyke et al. 1993). They could remove 

oil from contaminated sandy soil while the composition of the aromatic and paraffinic oil did 

not change and could be recycled (Santa Anna et al. 2007). 

Rhamnolipids are more effective than synthetic surfactants for desorption of phenanthrene from 

marine sediment (Zhu et al. 2011) and washing of low level and high TPH-contaminated soil 

(Lai et al. 2009). Styrene also could be removed from contaminated soil by rhamnolipid (Guo 

and Mulligan 2006). A mixture of rhamnolipid and synthetic surfactants and biosurfactants 

show the ability to be used for environmental remediation applications or enhanced oil recovery 

(Nguyen et al. 2008). The anionic nature and complexation ability of rhamnolipids enable them 

to remove metals from soil and ions such as cadmium, copper, lanthanum, lead, and zinc 

(Herman et al. 1995; Mulligan 2014; Ochoa Loza 1998; Tan et al. 1994). 

2.4.2.3 Dispersing oil in oil contaminated water and water treatment 

Rhamnolipid can act as biodispersant for oil biodegradation and solubilization (Mulligan 2014). 

It has been reported that chemical and biosurfactants were also intercalated with layered double 

hydroxides (LDHs) to remove organic pollutants from water (Chuang et al. 2010). 

Rhamnolipids can be useful for oil spills since they could be less toxic and degrade more than 

synthetic surfactants (Lang and Wagner 1987). They facilitate emulsification of oil and then oil 

can be then remove by demulsification or remediate by biodegradation (Nakata and Ishigami 

1999). Three different studies showed that emulsifier produced by P. aeruginosa SB30, 

rhamnolipids produced by isolated bacteria and rhamnolipids together with ethanol and octanol 

could effectively disperse oil into fine droplets and in this way increase biodegradation (Chhatre 

et al. 1996; Holakoo and Mulligan 2002).  

Rhamnolipid also can significantly increase the low molecular weight heavy metal removal 

from water when combined with ultrafiltration (El Zeftawy and Mulligan 2011). Micellar- 

enhanced ultrafiltration (MEUF) which use the micellar properties of surfactant solutions to 

effectively remove low molecular weight dissolved ions (i.e. copper) and/or organics (i.e. 

benzene molecules) has shown the potential for wastewater treatment (Ridha and Mulligan 

2011). 
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2.4.3 Surfactants and flocculation 

Adsorption of surfactants on the particle surface can change surface wetting characterization of 

particles which leads to an increase in flocculation and dewatering of clay slurries. In a study 

performed by Besra et al. (2003) the influence of surfactants on settling rate, flocculation and 

dewatering of clay particles was investigated. They applied surfactants (anionic sodium dodecyl 

sulphate (SDS), cationic cetyl trimethyl ammonium bromide (CTAB) and non-ionic Triton X 

100) on kaolin suspensions and cationic polyacrylamide (PAM-C) flocculant. The results show 

that pre-treating the kaolin with surfactants can further increase or decrease the settling rate 

depending on the type of surfactant used. However, the flocs which formed in the presence of 

surfactants show better filtration and dewatering behavior and low cake moisture in comparison 

with PAM-C alone. It has been argued that simultaneous addition with surfactants might reduce 

the entrapment of excess water in the smaller flocs and increase the hydrophobicity due to 

adsorption of surfactants (Besra et al. 2003). 

Hydrophobic agglomeration is originated from the hydrophobic attraction between particles, 

which is essentially different from electrolyte coagulation and polymer flocculation. It is applied 

to mineral processing in floc-flotation process to improve the recovery of mineral fines (Yang 

and Song 2014). Linag et al., (2016) show that Polyethylene oxide (PEO) is an efficient 

flocculant for the settling of various minerals including coal, quartz, and phyllosilicate through 

hydrophobic flocculation (Liang et al. 2016).   

Enhancement in filtration dewatering due to surfactants has been also reported by Singh et al. 

(1998). They investigated vacuum filtration of clean coal slurries and flocculated slurries with 

cationic, anionic and nonionic surfactants. All surfactants significantly reduced the filter cake 

moisture. They find that surface tension by itself does not give much indication of the 

effectiveness of surfactants as dewatering agents. It is believed that the wetting characteristics of 

the coal surface were changed due to the surfactant adsorption. These changes enhance  the 

filtration dewatering characteristics (Singh et al. 1998).  

Flocculation and sedimentation of aqueous kaolin suspension was investigated by another study 

performed by Nasim and Bandyopadhyay (2012). They used different molecular weight poly- 

vinyl alcohols (PVA) as new eco-friendly flocculants and performed sedimentation experiments 

at different pH and presence of different surfactants in the suspension media. Results show that 
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sedimentation is strongly dependent on pH, molecular weights of PVA and the type of 

surfactants. However in their cases, the presence of surfactants delayed sedimentation but it can 

lead to less residual turbidity. The best performance was achieved by using low molecular 

weight PVA at pH 4 in the presence of a cationic surfactant (Nasim and Bandyopadhyay 2012). 

The effect of sodium oleate and sodium dodecyl sulfate (SDS) as anionic surfactants at different 

suspension pH, surfactant concentrations, stirring speeds, and flocculation times on shear 

flocculation of colemanite mineral has been investigated by Ucbeyiay et al. (2011). It was 

observed that sodium oleate has shown more effective flocculation than SDS and the colemanite 

particles could be flocculated by oleate in a broad pH range. They also report that the 

flocculation degree will increase in the presence of some inorganic salts (cations). Flocculation 

behavior of colemanite mineral was determined to be dependent on the pH, cation concentration, 

type of surfactant and inorganic salt (Ucbeyiay Sahinkaya and Ozkan 2011).  

According to the literature using biosurfactnat for enhancing the sedimentation of oil sand 

tailings has not been done before. Considering the significant potential of biosurfactant for 

environmental application this would lead to developing a more environmentally friendly 

densification method for oil sands tailings without having the limitations of other methods, 

without producing large amounts of CH4 and taking advantage of the biosurfactants for 

remaining water and sediment bioremediation. The remaining sediment will have a lower 

concentration of heavy metals and hydrocarbons as it extracts the remaining oil from the 

sediment into the water. Oil in the recycled water at the top of sediment can be dispersed in to 

fine drops and be ready for microorganisms for biodegradation. 

2.4.4 Micellar enhanced ultrafiltration (MEUF) 

Ultrafiltration has been used to purify and concentrate both surfactin and rhamnolipids from 

culture supernatant fluids by Mulligan and Gibbs (1990) using commercially available 

membranes in a one-step method (Mulligan and Gibbs 1990).  It suggests that purification could 

be achieved for large volumes directly from culture medium (Baker and Chen 2010). At 

concentration above the critical micelle concentration (CMC) surfactant molecules tend to form 

micelles which can be isolated from the bulk solution by high molecular weight cut off 

membranes due to their larger size (Baker and Chen 2010; Mulligan and Gibbs 1990; Witek-

Krowiak et al. 2011). In this way the concentrate contained biosurfactant micelles and proteins 
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while the permeate contained the lower molecular weight impurities such as mineral salts, free 

amino acids, peptides and small proteins (Baker and Chen 2010; Mulligan and Gibbs 1990; 

Witek-Krowiak et al. 2011). 

Micellar enhanced ultrafiltration (MEUF)  (a surfactant-based version of ultrafiltration 

membrane (Ghosh and Bhattacharya 2006)) has been used for the removal of copper, chromate, 

zinc, nickel, cadmium, selenium and arsenate from aqueous phase (Bade and Lee 2011; Ghosh 

and Bhattacharya 2006; Gzara and Dhahbi 2001; Samper et al. 2009). This process works based 

on the increasing the size of pollutant molecules by forming a complex with anionic or cationic 

surfactant micelles at the critical micelle concentration (CMC). Anionic or cationic pollutants 

(such as heavy metal ions) can be bonded to the surface of opposite charged micelles due to the 

electrostatic forces (Rahmanian et al. 2010). The ultrafiltration membrane could isolate micelles 

and bound pollutants from the solution while the unbound ions and surfactant monomers pass 

through the ultrafiltration membrane to the permeate side (Abbasi-Garravand and Mulligan 

2014; Bade and Lee 2011; Chaudhari and Marathe 2010; Landaburu-Aguirre et al. 2010). It has 

been reported that rhamnolipid as the biosurfactant could remove more than 99% of heavy 

metals such as zinc, nickel, and cadmium (El Zeftawy and Mulligan 2011), 100% of copper 

(Ridha 2010) and  96% of chromium from water in the MEUF system (Abbasi-Garravand and 

Mulligan 2014). There are high concentrations of biosurfactant in the retentate. Separation of 

surfactant from the bulk solution is an important concern for reuse purposes and economizing the 

MEUF process (Bade and Lee 2011). Characteristics and concentration ratio of surfactant and 

metals, pH, flow rate, and membrane pore size would affect the efficiency of heavy metals 

removal by MEUF (Abbasi-Garravand 2012). 

 In an oil sand tailing sedimentation approach, water quality is a very important concern. MEUF 

process can be applied for separation of biosurfactant and heavy metals from recycled water after 

oil sand tailing sedimentation as there are high level of heavy metals in recycled water. Using 

rhamnolipid for increasing the sedimentation will also bring more heavy metals from remaining 

sediment into the recycled water. For this propose the change of heavy metal concentrations and 

biosurfactant concentration in the recycled water needs to be investigated. 
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3. MATERIALS AND METHODS 

3.1 Origin of the Oil Sand Tailings 

The tailings pond sample was provided by Maria Demeter (Lab Manager / Environmental 

Engineering Technologist), Civil & Environmental Engineering Department, University of 

Alberta. It is a by product of the extraction of bitumen from oil sand which was prepared by 

Industrial Hygiene. Tailings samples were provided in 20 L plastic pail and stored at room 

temperature. It is comprised of bitumen (1-2 wt%), naphtha (<0.1 wt%), clay (30-60 wt%), and 

water with the pH in the range of 7.3-7.8. The clay content of 30-60 wt% shows that the samples 

are taken from mature fine tailing layer from the depth below 10 m of the tailing pond (Foght 

and Dunfield 2013).  

3.2 Rhamnolipid 

Rhamnolipid biosurfactant (JBR 425 from Jeneil Biosurfactant Co., USA) was used to 

investigate its effect on oil sands tailings. It is a mixture of two forms of rhamnolipid, at 25 wt% 

in water, with the CMC value of 30 mg/l at the lowest surface tension of 28 mN/m (Abbasi-

Garravand 2012; Clifford et al. 2007; Wang and Mulligan 2009).  

 

3.3 Microbial Cultures 

A Bacillus subtilis strain and cultures of two microbial strains isolated (by growing on R2A 

nutrient agar medium (Sigma-Aldrich, for microbiology) and Bushnell Hass medium by one of 

my colleagues in the lab for her own research) from weathered oil (including light crude oil, 

diesel and biodiesel/B 100) were used for this study (Saborimanesh and Mulligan 2015). 

Characterization of the natural microbial communities was conducted by pyrosequencing of 16S 

rRNA. Characterization of bacteria isolated from the BD, D and L oil by 16S rRNA 

pyrosequencing showed that the Firmicutes was the dominant phylum in biodiesel (100%) and 

diesel (53%). The Actinobacteria was dominant in the diesel (47%) and the Proteobacteria 

(97%) and Actinobacteria (3%) were the two dominant phyla in the light crude oil 

(Saborimanesh and Mulligan 2015). The strains used in this study  belongs to Firmicutes and 

Proteobacteriaphyla and were identified as orders of Bacillales and Sphingomonadales 

(Saborimanesh and Mulligan 2015). The microbial cultures were grown aerobically in 25 ml of 
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medium containing mineral salts of nitrogen (sodium nitrate) and phosphorus (monobasic and 

dibasic potassium phosphates) at C:N:P ratio of 100:10:1 (Cookson 1995), at 37ºC for 24 hours 

without shaking (Youssef 2006).  

 

3.4 Experimental Approach  

The effect of rhamnolipids and microbial cultures on sedimentation was evaluated through 

sedimentation experiments. The feasibility of biosurfactant production was evaluated through 

batch experiments. The sedimentation experiments were performed in cylinder glass tubes 

however the real tailing ponds could have different shape which could induce the effect in 

sedimentation. 

3.4.1 Sedimentation experiments 

In a suspension of solid particles smaller particles have slower sedimentation rate. In addition to 

particle size, density and concentration, and fluid viscosity, other less obvious factors affect the 

sedimentation rate. When the effects of mutual interference are negligible, free settling 

conditions are said to prevail. Density also has a direct relationship with sedimentation rate as 

dense particles settled more rapid than less dense particles (Troy 2005).  

The tailings densification process includes consolidation and sedimentation processes near the 

bottom and top of a tailings column, respectively (Eckert et al. 1996). The sedimentation process 

can be easily monitored as the downward movement of the boundary between clear liquid and 

suspended tailings. Its rate of movement, the ‘‘hindered settling velocity” (Eckert et al. 1996), is 

orders of magnitude smaller than the Stokes’ single particle settling velocity (35 cm/day for a 2 

micron diameter particle with a density of 2.65 g/cm
3
 (Bordenave et al. 2010); tailings 

sedimentation rates in the experiments (about 0.1 cm/day) were much smaller than this and the 

mean diameter of particles in this work even after adding the rhamnolipid and microbial culture 

is not greater than 2.32 micron). In this way, the sedimentation (S) was determined according to 

the following equation (Bordenave et al. 2010): 

S(%)=1-h/H 

where h is the position of the boundary and H is the total height of the liquid column 
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(Bordenave et al. 2010). 

Each test was repeated three times (triplicate) and the average data are reported. 

3.4.1.1 Sedimentation Experiments at 23 ºC 2 o
C 

All the sedimentation experiments were performed with 13-15 g of tailings diluted in 5 mL of 

deionized water in 20 mL glass tubes (15 cm) closed with a compressed layer of paper towel in 

order to prevent liquid evaporation. However there are still small amounts of liquid lost due to 

evaporation but it resembles the aerobic conditions at the surface of actual tailing ponds 

Sedimentation experiments were performed at room temperature (23 ºC 2 o
C).  

3.4.1.1.1 Sedimentation experiments at different rhamnolipid concentrations 

Five ml of rhamnolipid at different concentrations (0.5%, 1%, 2%) were added into the glass 

tubes containing a diluted tailing sample. Five ml of deionized water were added to a 20 mL 

glass diluted tailing sample tube as control. Sedimentation tubes were homogenized by 10 

repeated inversions and were left without agitation at room temperature. Sedimentation (S) was 

measured every 5 days in unshaken tubes over a period of 25 days. All experimental pH values 

were adjusted by NaOH (0.1N) to 8.  

3.4.1.1. 2 Sedimention experiments by microbial cultures 

Sedimentation experiments were also performed with diluted tailing pond samples inoculated 

with cultures of the biosurfactant producer Bacillus subtilis strain, and a mixed culture of two 

microbial strains isolated from weathered oil. Five mL of microbial culture were added to the 

diluted tailing pond samples. Sedimentation tubes with diluted tailings samples and 5 mL of 

deionized water served as the control. pH was adjusted to 8 by adding 0.1N NaOH. Six 

homogenized sedimentation tubes were incubated at room temperature (23 ºC 2  
o
C) and the 

measurement of the sedimentation in unshaken tubes was performed every 10 days for a period 

of 50 days. 

3.4.1.1.3 Sedimentation experiments by rhamnolipid and microbial cultures 

The sedimentation of tailings pond samples was evaluated in the presence of microbial cultures 

and rhamnolipid. One mL of mixed culture of two microbial strains isolated from weathered oil 

and 5 mL rhamnolipid biosurfactant at different concentrations (0.5%, 1%) were added to the 
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diluted tailing pond samples. Sedimentation tubes with diluted tailings samples and 6 mL of 

deionized water served as the control. pH of the samples were adjusted 8 by adding NaOH 

(0.1N). Homogenized sedimentation tubes were incubated at room temperature (23 ºC 2  ºC) 

and measurement of the sedimentation in unshaken tubes was performed every 10 days over a 

period of 50 days. 

 

3.4.1.2 Sedimentation Experiments at 15 ºC 2 o
C 

3.4.1.2.1 Sedimentation experiments by rhamnolipid and microbial cultures 

These experiments were performed in four 500 mL glass columns. 100 ml rhamnolipid at 0.5% 

concentrations, 100 ml of deionized water and 10 ml of  mixed culture of two microbial strains 

isolated from weathered oil (grown previously aerobically in 25 ml of NB medium) were added 

to  200 g of oil sand tailing pond samples (three columns). A sedimentation column with 200 g 

tailings samples and 210 mL of deionized water served as the control. The columns were 

covered with a paper towel in order to prevent liquid evaporation. pH of the samples were 

measured at the starting time. Homogenized sedimentation columns were incubated at 15ºC

o
C and measurement of the sedimentation in unshaken columns was performed every 10 days 

over a period of 50 days. 

3.4.2 Feasibility of in situ biosurfactant production 

The feasibility of biosurfactant production by the indigenous microorganisms of oil sand tailings 

pond, the biosurfactant producer Bacillus subtilis strain, and two microbial strains isolated from 

weathered oil was evaluated through batch experiments.   

3.4.2.1 Indigenous microorganisms of oil sand tailings pond 

In this set of experiments there are two batches: control batches and nutrient amended batches. 

The control batches are tailings and deionized water only, and were performed to evaluate the 

natural ability of tailings to produce biosurfactants. 

The nutrient amended batches were performed to improve the natural biosurfactant production 

in tailings. In this approach mineral salts of nitrogen (sodium nitrate) and phosphorus 

(monobasic and dibasic potassium phosphates) were added to the tailings to attain a C:N:P ratio 

2
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of 100:10:1 (Cookson 1995; Jalali 2007). A buffer solution was added to maintain a constant pH 

in accordance with that of the control batches. The concentration of added phosphorus was 

doubled to account for its precipitation (Jalali 2007; Walworth and Reynolds 1995). For each 

batch, approximately 20 g of tailings and 100 mL of deionized water were placed in a 250 mL 

Erlenmeyer flask. Foam stoppers were used to fit the flasks top in order to prevent the entry of 

microorganisms and dust into the samples while allowing aeration. Flasks and media were 

sterilized by autoclaving at 121 ºC for 20 min before each experiment run. Aeration was 

achieved by rotating the flasks at 200 rpm on an orbital shaker (Thermolyne AROS 160) for 50 

days. Samples covering days 0, 5, 15, 30, 45 and 50 were taken to measure the surface tension. 

All tests were performed in triplicate.   

3.4.2.2 Bacillus subtilis strain and two microbial strains isolated from weathered oil 

In this set of experiments there were two batches: tailings and deionized water batches 

inoculated with 5 mL of microbial culture of biosurfactant producer Bacillus subtilis strain and 

tailings and deionized water batches inoculated with 5 mL of two microbial strains isolated from 

weathered oil. For each batch, approximately 20 g of tailings and 100 mL of deionized water 

were placed in a 250 mL Erlenmeyer flask. Foam stoppers were used to fit the flasks top in 

order to prevent the entry of microorganisms and dust into the samples while allowing aeration. 

Flasks and media were sterilized by autoclaving at 121 ºC for 20 min before each experiment 

run. Aeration was achieved by rotating the flasks at 200 rpm on an orbital shaker (Thermolyne 

AROS 160) for 50 days. Samples covering days 0, 5, 15, 30, 45 and 50 were taken to measure 

the surface tension. All tests were performed in triplicate.  

 

3.5 Analysis 

Settled tailings and tailing process water in each set of experiments were separated using a 

pipette in order to perform analysis on them. The analytical procedures are described in the 

following subsections. 
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3.5.1 Settled tailings 

3.5.1.1 Particle size distribution 

Fines are defined as mineral particles smaller than 44 μm. The fines to solids ratio was the 

weight percent of fines in the whole solid mass. The size distribution of tailings was measured 

using a Horiba model LA-950V2 laser scattering particle size analyzer which uses Mie 

Scattering (laser diffraction) to measure particle size in the span of 0.01-3000 µm 

(http://www.horiba.com). 

Light scattered from the particles is dependent on their size. It has been shown that bigger 

particles scatter incident light at lower angles when compared with scattered light from finer 

particles. So by carefully calculating the intensity of the scattered light, the percentage of 

different particles size particles and their respective quantities can be estimated 

(http://www.horiba.com). 

This equipment has a standard centrifugal pump to suspend and circulate the particles in the cell. 

Both the circulation and the agitation speeds were adjusted to 5. The in-built 130 watt ultrasonic 

probe delivers highest dispersing capability during the measurements. Both the ultrasonic power 

and the ultrasonic times were adjusted to 5. Dried tailings samples from all parts of the sediment 

column (Rock crystal with refractive index (R): 1.540) were dispersed in deionized water 

(Water with Refractive Index (R): 1.333) before introducing them into the particle size analyzer.   

3.5.1.2 Zeta potential measurement 

The zeta potential (or electrophoresis mobility) of the oil sands tailings particles in a diluted 

suspension (after using rhamnolipid and/or microbial cultures, and before it) was measured by 

Zeta-Meter System 3.0+ (USA). It works based on energizing the electrodes and watching and 

tracking one of the colloid particles (which are placed in a viewing chamber called an 

electrophoresis cell) as it moves across a grid in the microscope.  

The cell was filled with the sample (about 20 ml). Electrodes were inserted and were connected 

to the Zeta-Meter 3.0+ unit. The specific conductance of the sample was determined and 

according to it the appropriate voltage would be selected. The electrodes were energized and 

moving colloids across a grid were watched in the microscope. One moving colloid was tracked 

by simply pressing a button and holding it down while the colloid moves across the grid. When 



39 
 

the button was released, the colloid’s zeta potential (or electrophoretic mobility) was instantly 

displayed  (http://www.somatco.com/ZM3-U-G_D390-2.pdf). Fifteen measurements were done 

for each sample and the average value is presented. 

3.5.1.3 Organic matter content 

The organic matter content of the settling tailings was determined by the weight loss on ignition 

method (Rowell 1994), as well as the digestion by hydrogen peroxide (H2O2) method (American 

Public Health Association (APHA) 1998). 

Loss on ignition (LOI) method 

Loss on ignition (LOI) is a simple method to determine total organic content of a given soil, 

presented in percent. Loss on ignition provides an estimation of organic content and is most 

useful for determining the organic content of sandy soils (Brickner 2013). Soils containing high 

percentages of clay or silt particles may fracture at high temperatures, resulting in the loss of 

some structural water (Brickner 2013; Rowell 1994). 

The loss on ignition was determined using a standard method described in D.E. Rowell’s Soil 

Science: Methods and Applications (1994). Tailings samples were oven-dried overnight in an 

oven set at 105ºC. Then the oven-dried tailings were ground with a mortar and pestle to ensure 

an even consistency. A small ceramic crucible was weighed and 5 g of oven dried tailings were 

placed in it. The weight of oven-dried sample together with small ceramic crucible was recorded  

as initial “oven-dried” mass of the sample and the sample was then placed in a furnace at 550ºC 

for a minimum of 4 hours. Sample was cooled in a desiccator and then weighed to determine the 

amount of mass lost in the furnace (record the change in mass (mass LOI)). The loss on ignition 

was calculated with the following relationship (Brickner 2013): 

LOI (%) = (Mass LOI / Initial “oven-dried” mass) x 100% 

Hydrogen peroxide (H2O2) digestion method 

A clean and dry beaker was weighed. Five g of dry settling tailings were added to the beaker. 

Under the fume hood, 10 mL aliquots of a 30% hydrogen peroxide (H2O2) solution were added 

to the beaker. It started to bubble. Adding of H2O2 was continued until the bubbling stopped. The 

beaker was left under the fume hood over night and was weighed again. The difference between 

the initial weight and final weight is the weight of organic matter.  
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The difference in weight was divided on the initial weight of the soil and multiplied by 100 to 

give the percentage of organic matter. It can be represented with the following relationship: 

Organic Matter (%) = [(initial sample weight - final sample weight)/initial sample weight] x 

100% 

3.5.1.4 Heavy metal contents and ICP-MS analysis 

To determine the heavy metal content, the settled tailings were prepared by digestion using an 

EPA method 3050b (1996). 1-2 g sample (wet weight) or 1 g sample (dry weight) of settled 

tailing sample was transferred to a 250 ml beaker (digestion vessel). Ten mL of 1:1 HNO3 were 

added and mixed with the sample. The beaker was covered with an elevated watch glass to 

prevent sample contamination from the fume hood environment and was placed on the hot plate 

for solution evaporation. The hot plate was located in a fume hood and was previously adjusted 

to provide evaporation at a temperature of approximately 95°C ± 5°C and refluxed for 10 to 15 

minutes without boiling (EPA 1996).  

The sample was allowed to cool and 5 mL of concentrated HNO3 were added. The cover was 

replaced, and refluxed for 30 minutes. If brown fumes are generated, this step was repeated 

(addition of 5 mL of concentrated HNO3) over and over until no brown fumes are given off by 

the sample (indicating the complete reaction with HNO3). Using a watch glass, the solution was 

heated at 95°C ± 5°C without boiling for two hours. 

Then the sample was cooled, and 2 mL of water and 3 mL of 30% H2O2 were added (for samples 

which contain rhamnolipid and microbial culture 10 mL of H2O2 were added to make sure that 

all organic matter is removed). The vessel was covered with a watch glass and was returned to 

the heat source for warming and to start the peroxide reaction (care must be taken to ensure that 

losses do not occur due to excessively vigorous effervescence). It was heated until effervescence 

subsides and then was cooled. Addition of 30% H2O2 in 1 mL aliquots with warming was 

continued until the effervescence is minimal or until the general sample appearance was 

unchanged. 

The sample was covered with a watch glass and heating the acid-peroxide digestate was 

continued at 95°C ± 5°C without boiling for two hours. After cooling, the sample was diluted to 

100 mL with deionized water. Particulates in the digestate then were removed by filtration 
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through Whatman No. 41 filter paper (EPA 1996). The prepared sample solution was analyzed 

by Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) (Agilent 7500ce). 

3.5.2 Tailings process water 

3.5.2.1 Surface tension measurement 

The surface tension of the filtered supernatant was measured using a Fisher Scientific 

Tensiometer. This device works based on the ASTM method D1331-89 (ASTM 2006) which 

employs the du Noüy ring method for direct results with no calculations (McInerney et al. 

1990). The method involves slowly lifting a ring, often made of platinum-iridium, from the 

surface of a liquid. The force required to separate the ring from the liquid's surface is measured 

and related to the liquid's surface tension. The accuracy of this method is ±0.25 mN/m. The 

device was calibrated as instructed by the manufacturer and its accuracy checked by measuring 

the surface tension of deionized water at room temperature and comparing it to the 72 mN/m 

which is reported in the literature (Mulligan 2005). The reduction in surface tension is related to 

the biosurfactant concentration below the defined CMC.  The CMC can be used as an indicator 

for biosurfactant production levels. Above the CMC the surface tension does not change with 

rhamnolipid concentration. The concentration in this range was determined by serial dilution 

which brings the concentration below the CMC (Figure 3-1). This figure shows the surface 

tension versus rhamnolipid concentration and its CMC (Abbasi-Garravand and Mulligan 2014). 

Below the CMC the concentration was determined according to the Figure 3-1 which was 

obtained by (Abbasi-Garravand 2012). 
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Figure 3-1. Surface tension versus rhamnolipid concentration and its CMC (Abbasi-Garravand 

and Mulligan 2014)  

 

3.5.2.2 Total petroleum hydrocarbon and gas chromatography analysis 

Total petroleum hydrocarbon in the tailing process water was determined using the EPA 

standard method 1664 (n-hexane extractable material) (EPA 2010). This method uses n-hexane 

and a separatory funnel to extract relatively non-volatile hydrocarbons from water, waste water, 

and aqueous wastes. 

For extraction, 4 mL of the filtered process water and 2 mL of n-hexane (Sigma-Aldrich, 95%) 

were transferred to a 60 mL separatory funnel. The mixture was vigorously shaken for two 

minutes and then allowed to settle for 10 minutes until the two phases were completely 

separated. The water was then eluted through the stopcock into a 100 mL Erlenmeyer flask and 

the process repeated three times. The collected hexane was dried over 2 g of sodium sulfate 

(granular anhydrous ACS grade) to remove residual water, and filtered through a Whatman 

No.40 filter. The extracts were then transferred to a 20 mL amber vial and stored at 4°C until the 

time of analysis by gas chromatography (GC). Liquid/liquid extraction blanks (only deionized 

water with hexane in a separatory funnel) were prepared using the same procedure. 

Gas chromatography analysis 

Extracted samples were analyzed by a CP-3800 VARIAN gas chromatograph equipped with a 

Flame Ionization Detector (GC-FID) with auto sampler. Chromatographic separations were 

conducted using a DB-5 fused silica column with 30 m long, an inner diameter of 0.25 mm, 0.25 

μm film thicknesses and the temperature range of 60°C to 325°C. Helium was used as the carrier 

gas at a constant flow rate of 2 mL/min and makeup gas flow rate of 30 mL/min. Hydrogen gas 

and air flow rates were 30 mL/min and 300 mL/min, respectively in the FID detector. Injector 

and detector temperatures were kept constant at 250°C. One μL of the sample was injected to 

the column in the split/splitless mode. The oven temperature program was set at 50°C for 2 

minutes, increased to 250°C at a rate of 8°C/min, and held at 250°C for 6 minutes (total run time 

of 33.25 minutes). The total petroleum hydrocarbon was determined from the area under the 

GC-FID chromatogram. 
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3.5.2.3 Heavy metal contents 

The heavy metal content of the process water was determined using an Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS) (Agilent 7500ce). For the determination of dissolved 

analytes in supernatant waters, approximately 1 ml was taken from filtered supernatant using a 

pipette. This sample was diluted 100 times to bring the concentration of metals into the 

measuring range of the machine. An appropriate volume of 1:1 HNO3:H2O  was added to adjust 

the acid concentration of the aliquot to approximate a 1% (v/v) nitric acid solution (e.g., add 0.4 

mL 1:1 HNO3 to a 20 mL aliquot of sample) (EPA 2007).  

For samples which contain rhamnolipid, acid digestion was done in order to make sure that 

rhamnolipids were removed from the samples. For the acid digestion according to the EPA 

method 200.8 (2007), a 100 mL (±1 mL) aliquot from a well mixed, acid preserved sample was 

transferred to a 250 mL beaker. 2 mL 1:1 HNO3 and 2.0 mL of 1:1 hydrochloric acid (HCl:H2O)  

was added to the beaker containing the measured volume of sample (the concentration of 

hydrochloric acid was doubled due to rhamnolipid presence in the solution). The beaker was 

covered with an elevated watch glass and placed on the hot plate for solution evaporation in the 

fume hood for two hours and reflux for 30 minutes without boiling (about 20 mL of solution 

was remained in the beaker).  

The sample was allowed to cool and was transferred to a 50 mL volumetric flask and then water 

was added to bring the volume to 50 mL. Then the sample was allowed to settle overnight, or 

was centrifuged until clear. Any possible particulates in the solution were removed by filtration 

through Whatman No. 41 filter paper. In order to adjust the chloride concentration 10 mL of the 

prepared solution were pipetted into a 50 mL volumetric flask diluted to volume with deionized 

water and mixed (EPA 2007). The prepared sample solution was analyzed by Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS) (Agilent 7500ce). 

3.5.2.4 Heavy metal, rhamnolipid and hydrocarbon removal by Ultrafiltration System 

The concept of MEUF is that heavy metals are attached to the surface of the micelle in the 

process water. The QuixStand BenchTop System (Figure 3-2) (M series from A/G Technology 

Corporation) was used for separation of Cu from the liquid. The system included a feed 

reservoir, peristaltic recirculation pump, inlet pressure gauge, hollow fiber cartridge (Xampler 

cartridge), retentate outlet, outlet pressure gauge, sampling valve, and backpressure valve. The 
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peristaltic pump that was included in the ultrafiltration system to pump the fluid was purchased 

from Watson-Marlow Company (313 S) (Abbasi-Garravand 2012). 

The hollow fiber cartridge which was used in a QuixStand BenchTop (Ultrafiltration System) 

was purchased from A/G Technology Corporation. A bundle of polysulfone fibers which are 

parallel inside a plastic housing forms the cartridge. Molecular Weight Cut-Off (MWCO) is an 

important parameter in classification of ultrafiltration membranes. Ultrafiltration membranes are 

classified based on molecular weight cut-off which is the molecular weight of a dissolved 

particle when its rejection coefficient is 90% (Abbasi-Garravand 2012). Typically molecular 

weights of dissolved particle or micelles range from 1000 to 100000 Da (Abbasi-Garravand 

2012) . The MWCO that was used in the experiments was 10,000 MWCO (Abbasi-Garravand 

2012) as in the solution there are biosurfactant (with molecular weights in the range of 500 -

1500 Dalton) and high molecular weight microbial organics.  

 

Figure 3-2. QuixStand BenchTop System flow diagram (GE Healthcare, 2004) 

The feed solution was the process water from sedimentation experiments at 15 ºC 2  ºC. The 

feed solution in the reservoir was pumped by a peristaltic pump into the ultrafiltration 

membrane and the retentate solution was returned to the feed reservoir after exiting the 

cartridge. Samples were gathered from the permeate, retentate and feed for measuring the 

concentration of heavy metals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 
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and oil content by gas chromatography (GC). All experiments were done in 23 ºC 2  ºC for 1 

hour at outlet pressure 1-2 psi (6.89-13.79 kPa), inlet pressure 11-12 psi (75.84-82.74 kPa) (and 

pump speed about 35%. The control solutions were process water from the control 

sedimentation experiment (no rhamnolipid and microbial culture). The flow loop was flushed by 

passing the distilled water through the system after each experiment. Each test was repeated 

three times and the average was used as the final result. 
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4. RESULTS AND DISCUSSION 

4.1 Tailing Characteristics 

4.1.1 Particle size distribution 

Using the particle size analyzer, the particle size of dried settling oil sand tailings samples 

dispersed in deionized water was measured. The measured particle diameters based on 

cumulative% (90%) and the mean diameter, were respectively 4.36 μm and 1.10 μm. This result 

means that the tailing samples contain a majority of the fines clay particles which take longer to 

settle.  

In another study it has been mention that the fine tailings of Syncrude’s caustic extraction 

process consists of 94% fines, 76% clay minerals and 24% rock forming minerals (Islam 2014). 

Generally, for the CHWE process, about half of the fine tails are in the clay-size range (<2 μm) 

with more than 90% of the material being silt or clay-size particles (Jeeravipoolvarn 2005). 

Jeeravipoolvarn, (2005) reported that the mature fine tailings are generally composed of 5% 

sands, 45% of silt size particles and 50% of clay size particles.  

4.1.2 Zeta potential measurement 

Using the zeta meter, the zeta potential of dried settling tailings resuspended in deionized water 

was determined as -42.1 mV at the pH range of 7.3-7.8. It has been reported that the zeta 

potential of oil sand tailings from disposal pond in Fort McMurray was in the range of -25 mV 

to -27 mV between pH 6 and pH 8 (Guo 2012). The difference might be due to the difference in 

composition of tailings.  

4.1.3 Organic matter content 

The organic matter content determination of the tailings using hydrogen peroxide digestion 

method and ignition method was determined to be 1 wt% and 2.3 wt% respectively. These 

values contain the natural organic matter content and the residual hydrocarbon remained in the 

tailings.  

There is a difference between these two values as the majority of the mass loss in the range of 

250-550
o
C temperature is due to the decomposition of all residual organics (in the form of 

hydrocarbons, carbon dioxide, carbon monoxide and water) and possibly tightly bound water 
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(Jalali 2007; Kaminsky 2008). This temperature range is consistent with the dehydroxylation of 

kaolinite but overlaps with the decomposition of the residual organics and the decomposition of 

carbonates (such as siderite (FeCO3)). Hence, it was not possible to exactly determine the 

amount of mass loss correlating to each possible source (Kaminsky 2008). It might be possible 

to determine the nature of the organic content of tailings sample by doing incremental LOI in 

the future work (Brickner 2013). Incremental LOI could be done with measurement of the 

amount of material lost taken at 110ºC, 440ºC and 550ºC as the destruction of any inorganic 

carbonates (such as siderite (FeCO3) and calcite (CaCO3)), that may be present in the sample 

(Brickner 2013; Kaminsky 2008), at the temperature below 440ºC is avoided (Schumacher 

2002).  

4.2 Results of Sedimentation Experiments 

4.2.1 Role of rhamnolipid, microbial cultures, and mixture of rhamnolipid and microbial cultures 

in tailings sedimentation (at 23 ºC± 2 ºC) 

The potential of rhamnolipid to increase sedimentation was analyzed by comparing 

sedimentation of diluted tailing pond samples amended with different concentrations of 

rhamnolipids (0.5%, 1%, and 2%). The presence of rhamnolipid increased the sedimentation 

compared to the control under the experimental conditions (Fig. 4.1). Increasing the rhamnolipid 

concentrations can increase sedimentation and according to the student’s t-test there is a 

significant increase in sedimentation at p < 0.05 for the 2% rhamnolipid (The calculated t 

exceeds the critical value (2.5681>2.228)). However after a longer time, rhamnolipid 

concentrations of 1% have shown approximately the same amount of sedimentation compared 

with 2%.  
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Figure 4-1. Sedimentation of oil sand tailings at different concentrations of rhamnolipid over time 

and kinetic model for sedimentation  

As it is seen in Figure 4-1 the sedimentation rate is faster at first and then it became slower. First 

rapid sedimentation rate, primarily is governed by gravitational and frictional forces (Carstensen 

and Su 1970b). At a particular, well-reproducible point, the rate changes abruptly, and further 

sedimentation appears to be governed by forces over and above those just mentioned 

(Carstensen and Su 1970b). (Michaels and Bolger 1962)  have reported a linear pattern for 

sedimentation rates for dilute suspensions (< 1 %).  (Haines and Martin 1961)  also show that 

very concentrated suspensions follow yet another pattern. Suspensions of “intermediate” 

concentration, however, have a downward curvature, i.e., the sedimentation boundary moves 

downward with greater and greater velocity until a certain critical height, Ha, is reached, at 

which time (to) the rate decreases abruptly (Carstensen and Su 1970a). Results for kinetics of 

sedimentation suggest a linear kinetics for samples amended with 1% rhamnolipid, 0.5% 

rhamnolipid and control and logarithm kinetic for samples amended with 2% rhamnolipid.  

The role of microbial cultures to increase sedimentation was analyzed by comparing 

sedimentation of diluted tailing pond samples inoculated with cultures of the biosurfactant 

producer Bacillus subtilis strain, and a mixed culture of two microbial strains isolated from 
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weathered oil (Fig. 4-2).  The presence of a mixed culture of two microbial strains isolated from 

weathered oil increased the sedimentation compared to the control but according to the student’s 

t- test this increase is not  at p < 0.05 as the absolute calculated t value is smaller than critical 

value (0.5394<2.228). However, the sedimentation tubes inoculated with the Bacillus subtilis 

strain gave almost the same sedimentation amount as the control. 

  

Figure 4-2. Sedimentation of oil sand tailings inoculated with cultures of biosurfactant producer 

Bacillus subtilis  strain, and a mixed culture of two microbial strains isolated from weathered oil 

over time and kinetic model 

Results for kinetics of sedimentation suggest a linear kinetics for sedimentation of oil sand 

tailings inoculated with cultures of biosurfactant producer Bacillus subtilis  strain, and a mixed 

culture of two microbial strains isolated from weathered oil (Figure 4-2). 

The results of the cell surface hydrophobicity (CSH) in the control showed that the isolated 

bacteria recovered from the biodiesel had hydrophilic properties (negative CSH, tendency to 

interact with the hydrophilic compounds), while the isolated bacteria recovered from the diesel 

and light crude oils had hydrophobic properties (positive CSH, tendency to interact with the 

hydrophobic compounds). For example, the hydrophobicity values of -50%, 16% and 2% were 

obtained following 1 h of incubation of bacterial cells on the biodiesel, diesel and light crude oil, 

respectively (Saborimanesh and Mulligan 2015). This result and other studies on the effect of 

hydrocarbons on the bacterial cell surface properties bacteria show that they are capable of 

modifying their cell surface structures based on the availability and the compositions of 
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hydrocarbons (Bouchez Naïtali et al. 1999; Kaczorek et al. 2008; Krasowska and Sigler 2014; 

Prabhu and Phale 2003) The cell surface hydrophobicity is modified in order to help the 

microorganisms avoid contact with toxic compounds (Bouchez Naïtali et al. 1999; Kaczorek et 

al. 2008; Krasowska and Sigler 2014; Prabhu and Phale 2003; Torres et al. 2011) or to uptake 

food (e.g., hydrocarbons) Kaczorek et al. 2008, Krasowska and Sigler 2014). For example, some 

bacteria release vesicles (which have an intercellular structure and an outer membrane of a lipid 

bilayer) from the outer membrane (Baumgarten et al. 2012; Bouchez Naïtali et al. 1999; 

Kaczorek et al. 2008; Krasowska and Sigler 2014; Prabhu and Phale 2003), some release 

lipopolysaccharide (LPS) to change the cell surface hydrophobicity (Al-Tahhan et al. 2000), and 

some form an exopolysaccharide (EPS) matrix to create a stable environment and optimal 

conditions for growth (exopolymer microdomains as a structural agent for heterogeneity within 

microbial biofilms) (Rehm 2009).   

 In one study, the adhesion to a sandy soil and a clay loam soil of a series of Lactobacillus 

strains with various cell surface characteristics were investigated (Huysman and Verstraete 

1993). Bacterial cell surface hydrophobicity, as determined by the bacterial adherence to octane 

and polystyrene, was the major parameter influencing the adhesion to the sandy soil. The cell 

surface charge of the bacteria was of minor importance in the adhesion to the sandy soil 

(Huysman and Verstraete 1993). It has been reported that the attachment to the benthos is 

facilitated by the common action of both coflocculation and hydrophobic interactions. EPS also 

can help the bacteria to adhere to the surface and can serve as flocculants to bind small clay 

particles (Rehm 2009). 

Sedimentation of tailings amended with different concentrations of rhamnolipid (0.5% and 1%) 

and two microbial strains isolated from weathered oil were compared in order to evaluate the 

role of adding microbial cultures in sedimentation of tailing pond samples (Fig. 4-3). All of 

these show an increase in sedimentation compared to the control. According to the student’s t- 

test this increase is significant at p < 0.05 except for samples amended with 0.5% rhamnolipid. 

Microbial cultures together with rhamnolipid can increase the sedimentation of tailings 

compared to the amount of sedimentation of tailings amended only with rhamnolipid. Adding 

microbial cultures results in more sedimentation at a lower concentration of rhamnolipid (0.5% 

compared to 1%). Results for kinetics of sedimentation suggest linear kinetics sedimentation 

(Figure 4-3). 
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 Figure 4-3. Sedimentation of oil sand tailings at different concentrations of rhamnolipid (0.5% 

and 1%) and two microbial strains isolated from weathered oil over time and kinetic model for 

sedimentation 

 

4.2.2 Role of mixture of rhamnolipid and microbial cultures in tailings sedimentation (at 15 ºC  

ºC) 

Sedimentation of tailings amended with the rhamnolipid (0.5%) and two microbial strains 

isolated from weathered oil were compared to the control at 15 ºC  ºC in order to evaluate 

the role of lower temperature in sedimentation of tailing pond samples (Fig. 4-4). These results 

show an increase in sedimentation compared to the control and according to the student’s t- test 

this increase is significant at p < 0.05 (the absolute calculated t value is greater than critical value). It 

means that microbial cultures together with rhamnolipid can significantly increase the 

sedimentation of tailings even at lower temperature. Results for kinetics of sedimentation 

suggest a logarithmic kinetics for sedimentation (Figure 4-4). Table 4-1 summarizes the results 

of student’s t- test at p < 0.05 and n=6 (number of sampling points) for sedimentation in 

different samples. Table 4-2 summarizes the results of kinetic rates for sedimentation for 

different samples. The analytical calculated results are very close to the experimental data.   
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Figure 4-4. Sedimentation of oil sand tailings at 15 ºC ± 2 ºC using rhamnolipid (0.5%) and two 

microbial strains isolated from weathered oil over time and kinetic model for sedimentation  

Table 4-1  Results of student’s t- test at p < 0.05and n=6 (number of sampling points) for 

sedimentation in different samples 

Samples Critical value      t 

25 days at 23 ºC oC 

0.5% rhamnolipid 2.228 0.8148 

1% rhamnolipid 2.12 1.5104 

2% rhamnolipid 2.228 2.5681 

50 days at 23 ºC oC Bacillus subtilis  strain 2.228 
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a mixed culture of two microbial strains isolated from weathered oil 2.228 -0.5394 

0.5% rhamnolipid 1.943 0.466 

1% rhamnolipid 1.943 2.3108 

0.5% rhamnolipid and two strains isolated from weathered oil 1.943 -2.206 

1% rhamnolipid and two strains isolated from weathered oil 1.943 2.2937 

50 days at 15 ºC oC 0.5% rhamnolipid and two strains isolated from weathered oil 2.015 -3.6237 

 

Table 4-2  Results of kinetic model for sedimentation for different samples  

Samples 

Kinetic rate 

(sedimentation%/day) 

 

Final sedimentation (%) 

 

Experimental Analytical 

25 days at 23 

ºC oC 

0.5% rhamnolipid 0.2705 6.67 6.76 

1% rhamnolipid 0.541 12.98 13.52 

2% rhamnolipid 5.9252 16.49 16.98 

50 days at 23 

ºC oC 

Bacillus subtilis  strain 0.1391 6.67 6.96 

a mixed culture of two microbial strains 

isolated from weathered oil 
0.1831 8.77 9.15 

0.5% rhamnolipid 0.2099 9.82 10.94 

1% rhamnolipid 0.3879 16.50 19.39 

0.5% rhamnolipid and two strains 

isolated from weathered oil 
0.4989 23.51 24.95 

1% rhamnolipid and two strains isolated 

from weathered oil 
 0.4364 20 21.82 

50 days at 15 

ºC oC 

0.5% rhamnolipid and two strains 

isolated from weathered oil 
6.9565 28.67 26.94 

 

 

4.2.3 Particle size distribution 

a) at room temperature (23 ºC  ºC) 

Using the particle size analyzer, the particle aggregation and flocculation were evaluated. Dried 

settling tailings samples from sedimentation experiments using microbial cultures and different 
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concentrations of rhamnolipid were dispersed in deionized water. Figure 4-5 shows the particle 

size distribution using four different sedimentation agents: 1% rhamnolipid, 0.5% rhamnolipid, 

1% rhamnolipid and microbial cultures, and 0.5% rhamnolipid and microbial cultures. The 

measured particle diameter based on cumulative% (90%) and the mean diameter are respectively 

5.83, 4.85, 7.20, 8.30 μm and 1.31, 1.16, 1.81, 2.32 μm for the four different sedimentation 

agents. These values are actually the diameters of the flocculation of tailings particles.  
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Figure 4-5. Particle size distribution of the settled oil sand tailings from sedimentation 

experiments using microbial cultures and different concentrations of rhamnolipid dispersed in 

deionized water  

Compared to the measured particle diameter based on cumulative% (90%) (4.36 μm) and 

particle mean diameter (1.10 μm) of control experiments which were simply composed of 

deionized water and tailings without any sedimentation agents, one can conclude that both 

rhamnolipid and microbial cultures mixed with oil sand tailings can improve effectively the 

aggregation and flocculation of tailings particles. The tailings are comprised of a high 

concentration of smaller and lower concentrations of larger particles before the flocculation 

process and a relatively high concentration of large flocculates after the flocculation process. 
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Comparing the size distribution and mean diameter of particles obtained from tailings samples 

and rhamnolipid inoculated with microbial cultures and tailing samples with non inoculated 

rhamnolipid, shows that the microbial culture can improve particle aggregation and flocculation 

and relatively increase the concentration of larger particles when mixed with rhamnolipid.  

It seems that microbial cultures can work better at the lower rhamnolipid concentration as 

mixing tailings with microbial cultures and 0.5% rhamnolipid was more effective for particle 

flocculation and aggregation than those of 1% rhamnolipid probably due to antimicrobial effect 

of rhamnolipid which inhibits the microbial growth and EPS production.   

a) at the lower temperature (15 ºC  ºC) 

Figure 4-6 shows the particle size distribution using 0.5% rhamnolipid and microbial cultures as 

the sedimentation agents at 15 ºC  ºC. The measured particle diameter based on cumulative% 

(90%) and the mean diameter are respectively 7.03μm and 2.11μm. These values are actually the 

diameters of the flocculation of tailings particles. 

 

Figure 4-6. Particle size distribution of the settled oil sand tailings from sedimentation 

experiments using microbial cultures and 0.5% rhamnolipid dispersed in deionized water  

Compared to the measured particle diameter based on cumulative% (90%) (2.67 μm) and 

2

2



58 
 

particle mean diameter (0.78 μm) of control experiments which were simply composed of 

deionized water and tailings without any sedimentation agents, one can conclude that  

rhamnolipid and microbial cultures mixed with oil sand tailings can improve effectively the 

aggregation and flocculation of tailings particles in this case. It seems that lowering the 

temperature did not result in a large change in measured particle diameter based on cumulative% 

(90%) and particle mean diameter and flocculation compared to the result of particle size 

distribution at room temperature. The results at lower temperature showed the strong potential 

of using rhamnolipid and microbial culture according to the site condition temperature. 

4.2.4 Zeta potential measurement 

a) at room temperature (23 ºC  ºC) 

The results of zeta potential measurement of dried settling tailings samples (gained from 

sedimentation experiments using microbial cultures and different concentrations of rhamnolipid) 

resuspended in deionized water are presented in Figure 4-7. The zeta potential remained 

negative and decreased after adding rhamnolipid and decreased more by increasing the 

concentrations of anionic rhamnolipid. However adding microbial culture and rhamnolipid 

together slightly increased the zeta potential but still remained negative.  
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Figure 4-7. Zeta potentials of different dried settling tailings samples suspended in deionized 

water (23 ºC ± 2 ºC) (MO is used for defining the microbial cultured amended samples) 

 

b) at lower temperature (15 ºC± 2 ºC) 

The results of zeta potential measurement of dried settling tailings samples at 15 ºC ± 2o
C 

(gained from sedimentation experiments using microbial cultures and 0.5% rhamnolipid) 

resuspended in deionized water are presented in Figure 4-8.  

 

Figure 4-8. Zeta potential of dried settling tailings samples resuspended in deionized water (15 ºC 

± 2 ºC) (MO is used for defining the microbial cultured amended samples) 

The results of zeta potential and particle size distribution (at 23 ºC ± 2 ºC and 15 ºC ± 2ºC) 

supported the idea that rhamnolipid has potential to be used as flocculating agents for oil sand 

tailings sedimentation. It is well known that the particle hydrophobicity has a significant effect 

on flocculation (Song et al. 2000; Song et al. 2001; Ucbeyiay Sahinkaya and Ozkan 2011; 

Warren 1992). Increased surface hydrophobicity, which is dependent on increasing the 

concentration of surfactant could increase flocculation of clay particles (Ucbeyiay Sahinkaya 

and Ozkan 2011). The rhamnolipid anions adsorb on the oil sand tailings surfaces, rendering the 

surfaces hydrophobic and resulting in the flocculation of oil sand clay particles due to the 

hydrocarbon chain association (Ucbeyiay Sahinkaya and Ozkan 2011) when the rhamnolipid 

adsorption layers on particles contact each other.  
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The increase in negative zeta potential should give rise to the increase of the energy barrier, 

preventing the particle aggregation. However, the increase in the surface charge by the 

rhamnolipid adsorption on the particle surfaces did not lead to a decrease in the flocculation of 

tailing particles and even led to improving their flocculation which means that the rhamnolipid 

adsorption onto the tailing particle surfaces improved the hydrophobic interaction between the 

particles much more strongly than the electrical double layer repulsion. 

These results also show that the rhamnolipid together with microbial culture had a stronger 

activity than rhamnolipid by itself. Rhamnolipid (which is a biosurfactant produced by 

Pseudomonas aeruginosa) mixed with microbial culture showed strong flocculating activity, 

while zeta potential still remained negative. It means that the mechanism of flocculation is not 

charge neutralization. 

Microbial activity can increase MFT by microbial cells and/or EPS secreted by microbial cells 

(Bordenave et al. 2010) and/or biogenic gas production (Bressler et al. 2010; Fedorak et al. 

2003). Macromolecules (such as EPS) could be viewed as naturally produced flocculants 

(Tenney and Stumm 1965). Addition of macromolecules to stabilize inorganic dispersions 

(kaolinite, silica, or alumina) could increase flocculation (Chen 2007). Yu et al. (2010) showed 

that EPS causes aggregation of particles through a bridging mechanism which can be viewed as 

the result of the interaction of naturally produced, high molecular weight, and long chain 

organics with kaolin clay particles in the way that the macromolecules bridge the individual clay 

particles into an aggregate. 

It is possible that the strong flocculating activity of rhamnolipid mixed with microbial culture 

was probably due to the biosurfactant and high molecular weight microbial organics. 

Bioflocculants with high molecular weights involved more adsorption sites, stronger bridging, 

and higher flocculating activity (Yu et al. 2009). 

Another possible reason for the strong flocculating activity of rhamnolipid mixed with microbial 

culture could be due to the change in chemistry of pore water as a result of microbial 

metabolism. Siddique et al. (2014) showed that microbial metabolism could alter the chemistry 

of pore water that in turn influences the consolidation of clay particle suspensions (Siddique et 

al. 2014). They showed that dissolution of MFT carbonate minerals (presumably 

calcite/dolomite) increased Ca
2+

 and Mg
2+

 concentrations in pore water. They also observed a 



61 
 

relatively higher concentration of HCO3
−
 in the pore water of amended MFT, presumably due to 

dissolution of biogenic CO2 in pore water and/or dissolution of carbonate minerals (Morse et al. 

2007). The dissolution of entrapped CO2 reduced pore water pH, thereby dissolving carbonate 

minerals and releasing divalent cations (Figure 4-9). 

 

Figure 4-9. Dissolution of biogenic CO2 in tailings decreases pore water pH by producing 

hydronium ion (H3O
+
). Increased H3O

+ 
dissolves carbonate minerals such as CaMg(CO3)2 and 

releases calcium (Ca
2+

) and magnesium (Mg 
2+

) (Siddique et al. 2014) 

The effect of benthic bacterial activity on dissolution of carbonate mineral in marine sediments 

has been described (Moulin E. 1985). It also has been described that increased atmospheric CO2 

is responsible for acidification and consequently dissolution of marine carbonate minerals 

(Morse et al., 2007).   

Siddique et al. (2014) calculated the ionic strength (I) and thickness of the diffuse double layer 

(DDL) of clay particles and find that increased (I) of the MFT decreased DDL of clay particles, 

lower MFT pH dissolved carbonate minerals and changed pH-dependent charges on clays, 

leading to consolidation of MFT. If the ionic strength (I) was not high enough to reduce the 

thickness of the DDL of clay particles and cause flocculation as a result of double layer 

compression. The other mechanism which can be considered for the flocculation is  bridging. 

Cations such as Ca
2+

 stimulate flocculating activity by neutralizing and stabilizing the negative 

charge of functional groups and by forming bridges between particles (Yu et al. 2009). 

Therefore, the negatively charged rhamnolipid could flocculate suspended clay particles by 

absorbing onto the surfaces of neighboring negatively charged clay particles via cation bridging 

and also it could be by hydrophobic interactions. 
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4.2.5 pH measurement 

In order to understand better the role of the microbial culture in this work, the pH of samples 

was measured. The results show slight reduction in pH for all samples amended with a mixture 

of rhamnolipid and microbial culture (~7.5 for 1% rhamnolipid and microbial culture, and ~7.6 

for 0.5% rhamnolipid and microbial culture) at room 23 ºC  ºC. This range of pH means that 

dissolution of biogenic CO2 and H3O
+
 concentration is not significant to support the possibility 

of dissolution of MFT carbonate minerals and releasing divalent cations. 

Figure 4-10 shows the pH change during the time for samples at 15 ºC  ºC. The pH slightly 

increased with time. Methanogenesis in MFT might be responsible for the observed pH increase 

as CO2 was consumed (Siddique et al. 2014). Gas production resulted in ebullition of bubbles 

dominated by CH4 (due to the poor solubility of CH4 in water), creating transient channels for 

escape of pressurized pore water, particularly in the MFT near the mud line (Siddique et al. 

2014). 

 

Figure 4-10. pH change over time for samples at 15 ºC ± 2 ºC  

All these findings support that during this experiment's time (50 days) at 23 ºC  ºC  and 15 

ºC  ºC there could not be any significant change in ionic strength (I) of the pore water and 

the thickness of diffuse double layer (DDL) of clay particles due to dissolving carbonate 

minerals and releasing divalent cations. So flocculation is not a result of double layer 

compression or cation (such as (Ca
2+

)) bridging between particles. However there is the 

possibility of an increase in the consolidation due to small amounts of CH4 production at 15 ºC
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 ºC as the higher column provides a thicker layer of mud compared to the 15 cm glass tubes 

used at 23 ºC  ºC. However in this case rhamnolipid mixed with the microbial culture could 

improve the hydrophobic interactions and increase the flocculation.  

4.2.6 Total petroleum hydrocarbon and gas chromatography results 

Total petroleum hydrocarbon in the tailings process water gained from the sedimentation 

experiments using microbial cultures and different concentrations of rhamnolipid at 23 ºC  ºC 

were evaluated through GC analysis and expressed as total petroleum hydrocarbon relative to 

the control (Table 4-3).  

Table 4-3. Relative total petroleum hydrocarbons (wt/wt) to the control in the tailings process 

water gained from sedimentation experiments using microbial cultures and different 

concentrations of rhamnolipid  

 Control 
1% 

rhamnolipid 

0.5% 

rhamnolipid 

1% rhamnolipid and 

two microbial 

strains isolated from 

weathered oil 

0.5% rhamnolipid and 

two microbial strains 

isolated from weathered 

oil 

Total petroleum 

hydrocarbon relative 

to the control (wt/wt) 

1 

RSD: 23.8% 

1.43 

RSD: 21.2% 

1.12 

RSD: 23.2% 

1.32 

RSD: 25.2% 

1.07 

RSD: 20.4% 

 

In the presence of rhamnolipid the concentrations of hydrocarbon in the supernatant water is 

high which means that the remaining settled sediment contains lower concentrations of 

hydrocarbons. Higher concentrations of rhamnolipid could extract more hydrocarbons from 

sediments. It means that the remaining oil was extracted by rhamnolipid from the tailings 

sediment into the water. The presence of bacterial culture did not show any large changes in 

hydrocarbon concentration compared to the samples which contains only rhamnolipid without 

bacterial cultures. 

4.2.7 Heavy metal contents and ICP-MS analysis in settled tailings and tailing process water  

a) at room temperature (23 ºC± 2 ºC) 

The metal contents of the settled tailings (gained from the sedimentation experiments using 

microbial cultures and different concentrations of rhamnolipid) and tailing process water 

2

2

2
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(supernatant) were evaluated through ICP-MS analysis.  Al, Si, Fe are naturally structural 

soluble metals. Initial concentrations of vanadium, copper, zinc, arsenic, selenium, silver, 

cadmium, and lead in the oil sand tailings are shown in Figure 4-11. The concentrations of these 

heavy metals in the remaining dry sediment and supernatant are shown in Figures 4-12 and 4-

13. 
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Figure 4-11. Initial concentration of heavy metals in the oil sand tailings sediment for each 

sample before sedimentation process 

 

Figure 4-12. Concentration of heavy metals in the remaining dry sediment in the experiments 

using microbial cultures and different concentrations of rhamnolipid  
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Figure 4-13.  Concentration of heavy metals in the supernatant in the experiments using microbial 

cultures and different concentrations of rhamnolipid  

In order to understand the distribution of heavy metals in the supernatant (liquid phase) and 

remaining dry sediment we can define a K value as K= heavy metal concentration in the liquid 

phase (ppbl)/ heavy metal concentration in the sediment (ppbs). The values for each heavy metal 

in the experiments using microbial cultures and different concentrations of rhamnolipid are 

shown in Figure 4-14.  
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Figure 4-14. K values (heavy metal concentration at liquid phase (ppbl)/ heavy metal 

concentration in the sediment (ppbs) for each heavy metal in the experiments using microbial 

cultures and different concentrations of rhamnolipid 

Except for vanadium and selenium, higher concentrations of heavy metals in the supernatant 

(higher K values) were achieved in the presence of rhamnolipid compared to the control. Except 

for copper which shows higher concentrations in the liquid phase for all experiments, the 

concentration of heavy metals in recycled water at the top of the sediment is lower than the 

concentration of heavy metals in the settled tailings. It means that rhamnolipid can bring small 

amounts of insoluble metals from the sediments to the supernatant and the remaining dry 

sediment still has relatively high concentrations of harmful heavy metals which are problematic. 

b) at lower temperature (15 ºC  ºC) 

The concentrations of vanadium, copper, zinc, arsenic, selenium, silver, cadmium, and lead in 

the supernatant at 15 ºC  ºC  are shown in Figures 4-15. This supernatant is used as the feed 

for the ultrafiltration system.  
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Figure 4-15. Concentration of heavy metals in the supernatant at in the experiments using 

microbial cultures and 0.5% of rhamnolipid at 15 ºC
o
C   

The concentrations of heavy metals and rhamnolipid in the permeate were measured after 

ultrafiltration. R is defined as the rejection percent and is calculated according to the following 

relation (Abbasi-Garravand 2012): 

R (rejection %)= (1-Cp/Cs)*100% 

Where Cs is the concentration in the supernatant (feed) and Cp is the concentration in the 

permeate. This rejection percent can be determined for heavy metals and for rhamnolipid. The 

concentrations of rhamnolipid were determined according to its relation with surface tension 

from Figure 3-1 for the supernatant (feed) solution and the permeate solution. The 

concentrations of rhamnolipid in the supernatant (feed) and permeate were around 800 mg/l and 

20 mg/l respectively which gives a 97.5% of rejection for rhamnolipid. The ratio of total 

petroleum hydrocarbon in the permeate to total petroleum hydrocarbon in the supernatant (feed) 

is 0.57 which gives a 43% of rejection for hydrocarbon. Figure 4-16 shows the heavy metal 

rejection for supernatant (feed) amended with 0.5% rhamnolipid and microbial culture after 

doing ultrafiltration. The concentrations of heavy metals, hydrocarbon and rhamnolipid are low 

in the permeate after ultrafiltration while they are high in the supernatant (feed). It means that 

micelles form and just a few free monomers of rhamnolipid and heavy metals can pass through 

the membrane to the permeate. Hydrocarbon molecules (composed mostly of naphthenic acids 
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molecules) which are not soluble in water will also align in the micelle with the hydrophobic 

part inside and polar part outside. This enables more efficient solubilization of hydrocarbon in 

the biosurfactant micelles resulting in higher retention of hydrocarbon (Sirshendu and Sourav 

2012)  

 

 

Figure 4-16 Heavy metal rejection after the ultrafiltration of the supernatant in the experiments 

using microbial cultures and 0.5% of rhamnolipid at 15 ºC ± 2 ºC    

4.3 Results of In Situ Biosurfactant Production Using Indigenous 

Microorganisms of Oil Sand Tailings Pond, Bacillus subtilis Strain, and Two 

Microbial Strains Isolated From Weathered Oil 

4.3.1 Surface tension measurement 

Surface tension measurement can be applied to determine the biosurfactant concentration 

indirectly as there is a relation between biosurfactant concentration below the CMC and the 

surface tension of sample. In order to demonstrate biosurfactant production, the surface tension 

of filtered supernatant from each set of batch experiments was measured. Figure 4.17 shows the 

results for surface tension for each batch type over time. 
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Figure 4-17. Surface tension values of filtered supernatant over time for each batch  

The initial surface tension for all samples was about 64 mN/m. This value reduced to about 63 

mN/m for indigenous microorganisms of oil sand tailings pond in the control experiment and 

was lowered to 55 mN/m after 50 days for indigenous microorganisms of oil sand tailings pond 

in the presence of nutrients which means that the amount of produced biosurfactant by 

indigenous microorganisms is very low. Bacillus subtilis strain and two microbial strains 

isolated from weathered oil reduced the surface tension of supernatant to the value of 61 mN/m 

and 63 mN/m respectively after 50 days which means a very low amount of biosurfactant could 

be produced by them. However with a longer time it is possible to achieve more biosurfactant 

production. 

4.4 Mechanism of Sedimentation Using Rhamnolipid and Microbial Culture 

 Using rhamnolipid by itself can increase the sedimentation as the rhamnolipid anions adsorb on 

the oil sand tailings surfaces, rendering the surfaces hydrophobic and resulting in the 

flocculation of oil sand clay particles due to the hydrocarbon chain association when the 

rhamnolipid adsorption layers on particles contact each other (Figure 4-18 ).  
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Figure 4-18. Aggregation of clay particles by rhamnolipid adsorption and increase in 

hydrophobicity 

Microbial activity can increase sedimentation by microbial cells and/or EPS secreted by 

microbial cells. Exopolysaccharides or extracellular polymeric substances (EPS) are compounds 

secreted by microorganisms into their environment (Lünsdorf et al. 2000). Formation of 

exopolysaccharide (EPS) matrix help them to create a stable environment and optimal 

conditions for growth (exopolymer microdomains as a structural agent for heterogeneity within 

microbial biofilms) (Rehm 2009) as they can modify their cell surface hydrophobicity according 

to the availability and the composition of hydrocarbons. In this way their attachment to the clay 

particle is facilitated by the common action of both coflocculation and hydrophobic interactions. 

EPS can help the bacteria to adhere to the surface and causes aggregation of particles through a 

bridging mechanism in the way that the macromolecules bridge the individual clay particles into 

an aggregate (Figure 4-19). 
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Figure 4-19. Aggregation of clay particles by microbial cells and/or EPS secreted by microbial 

cells (http://www.slideshare.net/vikkis/rhs-year-2-week-2-presentation-2012) 

Using rhamnolipid together with microbial culture had a stronger activity than rhamnolipid by 

itself. This was mainly due to the improvement of hydrophobic interactions by microbial culture 

and by rhamnolipid adsorption on the clay particle and high molecular weight microbial 

organics interaction with clay particles as bioflocculants with high molecular weights involved 

more adsorption sites, stronger bridging, and higher flocculating activity (Figure 4-20). Besides 

these, there is also the possibility of a small increase in consolidation due to small amounts of 

CH4 production.  

 

Figure 4-20. Aggregation of clay particles rhamnolipid together with microbial cell and/or EPS 

secreted by microbial cells 

4.5 Using Rhamnolipid and Microbial Cultures Compared to the Other 

Sedimentation Approaches 

Compared to the tailings coagulation technique and flocculation technique using polymeric 

materials as flocculating agents (such as Thickened Tailings (TT) and flocculation technique), 

this method is more environmental friendly. This method does not require a large containment 

area (containment area is expensive) or large amounts of sand (in contrast to the Consolidated 

Tailings (CT) and drying Tailings Reduction Operations techniques (TRO)). This method will 

not produce high level of H2S (in contrast to using gypsum as coagulant which emit H2S due to 

the anaerobic reduction of SO4
-2

 with the residual bitumen in the tailings) and CH4 and CO2 
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(compared to the use of methanogenic anaerobic microbes) as the mechanism of sedimentation 

in this case is increasing the particle hydrophobicity.  

Based on the clay content (between 30-60w%), it can be considered that there is an average of 

45wt% clay  in each sample. Based on the results from the sedimentation experiment by this 

approach at about 46% sedimentation it would become completely dry and the kinetics for 

sedimentation rate suggest that it will take at about 720 days (or about 2 years). It means that 

this approach is not as fast as the TRO approach (which takes few weeks are required (Mamer 

2007)) but it is faster than CT (which takes around 30 years (Mamer 2007)) and the TT 

approach (which takes a few years (BGC Engineering Inc 2010; Shell 2012)).  

Regarding the recycled water quality, this method could reduce the water quality concerns 

compared to the other methods. However biosurfactant will bring the remaining oil and heavy 

metals from the sediment to the water but in the longer period the microbial strain can improve 

the further biodegradation of remaining oil in the recycled water while biosurfactant can 

improve their efficiency. After sedimentation also rhamnolipid could help removing the heavy 

metals and oils through ultrafiltration method which could reduce the recycled water treatment 

cost and environmental impact. In this way the remaining sediment also will have less heavy 

metal and oil contents.  

5. CONCLUSIONS 

The results obtained from sedimentation tests and particle size distribution analysis indicate that 

presence of rhamnolipid at different concentrations (0.5%, 1% and 2%) at 23 ºC ± 2 ºC could 

increase the sedimentation and the sedimentation would be increased by increasing the 

rhamnolipid concentrations. A mixed culture of two microbial strains isolated from weathered oil 

increased the sedimentation while the Bacillus subtilis strain at 23 ºC ± 2 ºC gave almost the same 

sedimentation amount as the control. Different concentrations of rhamnolipid (0.5% and 1%) 

together with these two microbial strains could lead to significant increases in sedimentation at 

23 ºC ± 2 ºC (by a factor of 3.04 and 2.59 for 0.5% and 1% rhamnolipid respectively), increase 

the concentration of larger particles (by a factor of 1.9 and 1.65 for 0.5% and 1% rhamnolipid 

respectively), particle mean diameter (by a factor of 2.11 and 1,65 for 0.5% and 1% rhamnolipid 
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respectively) and flocculation in the tailings samples amended with them compared to the 

control. 

Microbial cultures can work better in the lower rhamnolipid concentration (0.5%) probably due 

to antimicrobial effect of rhamnolipid which inhibits the microbial growth and EPS production. 

However it is not proven yet. The experiments performed at 15 ºC± 2 ºC using rhamnolipid 

(0.5%) together with these two microbial strains shows significant increases in sedimentation (by 

a factor of 5.1) the concentration of larger particles (by a factor of 2.63) particle mean diameter 

(by a factor of 2.70) and flocculation in the tailings samples amended with them compared to the 

control. 

The results of zeta potential and particle size distribution at 23 ºC ± 2 ºC  and 15 ºC ± 2 ºC 

supported the idea that rhamnolipid have potential to be used as flocculating agents for oil sand 

tailings sedimentation. According to the results of zeta potential measurement, rhamnolipid 

adsorption on the particle surfaces increase the negative surface charge while it improved the 

hydrophobic interaction between the particles much more strongly than the electrical double 

layer repulsion. Mixing microbial cultures with rhamnolipid slightly increased the zeta potential 

which  still remained negative. A higher activity than rhamnolipid by itself was shown. It means 

that the mechanism of flocculation is not charge neutralization and probably it is due to the 

interaction of the biosurfactant and high molecular weight microbial organics through a bridging 

mechanism with clay particles in the way that the macromolecules bridge the individual clay 

particles into an aggregate. According to the pH measurements there are not enough change in 

chemistry of pore water as a result of microbial metabolism which could lead to increase the 

ionic strength (I) of the pore water and reduce the thickness of the DDL of clay particles during 

the 50 days. Strong flocculating activity of rhamnolipid mixed with microbial culture could not 

be as a result of double layer compression or by cation (such as Ca
2+

) bridging but there might be 

small amount of CH4 production at 15 ºC ± 2 
o
C in the deeper layer of mud which could create 

transient channels for escape of pressurized pore water and increase the consolidation of tailings. 

However rhamnolipid mixed with microbial cultures could improve the hydrophobic interactions 

and increase the flocculation in this way. 

According to the heavy metal analyses,  rhamnolipid as a flocculating agent could bring higher 

amount of insoluble heavy metals (except for vanadium and selenium) from the sediments to the 
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supernatant compared to the control. However (except for copper) these amounts are small and 

the remaining dry sediment still have the relatively high concentrations of harmful heavy metals. 

Ultrafiltration was applied to the supernatant of settled tailing samples  which lead to significant 

removal of heavy metals and rhamnolipid (between of 30% for Cd and 100% for V, and 97.5% 

for rhamnolipid). 

According to the hydrocarbon analyses, rhamnolipid also could extract the remaining oil from 

the tailing sediment into the water. However after 50 days the remaining treated sediment still 

has a high level of oil content. In situ biosurfatctant production was investigated and surface 

tension measurements shows that indigenous microorganisms (even in the presence of 

nutrients), Bacillus subtilis strain and two microbial strains isolated from weathered oil could 

produce a very low amount of biosurfactant. 

These results show the potential of using rhamnolipid and microbial culture in order to increase 

the oil sand sedimentation through flocculation and microbial activity without producing large 

amounts of CH4 while taking advantage of the biosurfactants for remaining water and sediment 

bioremediation as the significant contribution of the bacteria which were used in this study in 

the biodegradation was reported (Saborimanesh and Mulligan 2015). Using a micellar 

ultrafiltration system would reduce amount of heavy metals and oil in the remaining water 

significantly. This work shows the potential of using rhamnolipid together with mixed microbial 

culture to develop a more environmentally friendly and economical oil sands tailings 

densification method without having the limitations of other methods. 

6. FUTURE STUDIES 

-Investigation of the possibility of in situ biosurfactant production by these microbial strains 

over a longer period.  

- Investigation of oil biodegradation in recycled water over a longer period by these microbial 

strains and rhamnolipid. 

- Investigation of increasing the heavy metal and oil removal efficiency from the recycled water 

by Micellar Enhanced Ultrafiltration. 



76 
 

- Investigation of the effect of other biosurfactants and their combination with other microbial 

strains in sedimentation and recycle water quality.  

7. CONTRIBUTION TO KNOWLEDGE 

-The results of this work show the potential of using rhamnolipid and microbial culture isolated 

from weathered oil in order to increase the oil sand sedimentation through flocculation and 

microbial activity at 23 ºC  ºC  and 15 ºC  ºC (which is close to the condition of oil sand 

tailing ponds) without producing large amounts of CH4. 

-Experimental data for different concentrations of rhamnolipid and microbial activity proposed 

kinetic models which could analytically calculate the rate of the sedimentation through this 

method in oil sand tailing ponds. 

-The mechanism of their effect which could lead to development of the method for application 

in oil sands tailing ponds is proposed.  

-The potential of rhamnolipid for sediment bioremediation by extracting the remaining oil and 

heavy metals from the sediment has been demonstrated. 

-It also shows the potential of using biosurfactants for recycled water treatment through Micellar 

Enhanced Ultrafiltration (a surfactant based ultrafiltration method) for separation of heavy 

metals and rhamnolipid from the recycled water.  

-It suggested the possibility of in situ biosurfactant production for oil and sedimentation. 

 

  

2 2
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