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Abstract

Automated Estimation, Reduction, and Quality Assessment of Video Noise from Different

Sources

Meisam Rakhshanfar, Ph.D.

Concordia University, 2016

Estimating and removing noise from video signals is important to increase either the visual

quality of video signals or the performance of video processing algorithms such as compression or

segmentation where noise estimation or reduction is a pre-processing step. To estimate and remove

noise, effective methods use both spatial and temporal information to increase the reliability of

signal extraction from noise. The objective of this thesis is to introduce a video system having

three novel techniques to estimate and reduce video noise from different sources, both effectively

and efficiently and assess video quality without considering a reference non-noisy video. The first

(intensity-variances based homogeneity classification) technique estimates visual noise of different

types in images and video signals. The noise can be white Gaussian noise, mixed Poissonian-

Gaussian (signal-dependent white) noise, or processed (frequency-dependent) noise. The method

is based on the classification of intensity-variances of signal patches in order to find homogeneous

regions that best represent the noise signal in the input signal. The method assumes that noise is

signal-independent in each intensity class. To find homogeneous regions, the method works on the

downsampled input image and divides it into patches. Each patch is assigned to an intensity class,

whereas outlier patches are rejected. Then the most homogeneous cluster is selected and its noise

variance is considered as the peak of noise variance. To account for processed noise, we estimate

the degree of spatial correlation. To account for temporal noise variations a stabilization process is

proposed. We show that the proposed method competes related state-of-the-art in noise estimation.

The second technique provides solutions to remove real-world camera noise such as signal-

independent, signal-dependent noise, and frequency-dependent noise. Firstly, we propose a noise

iii



equalization method in intensity and frequency domain which enables a white Gaussian noise filter

to handle real noise. Our experiments confirm the quality improvement under real noise while white

Gaussian noise filter is used with our equalization method. Secondly, we propose a band-limited

time-space video denoiser which reduces video noise of different types. This denoiser consists of: 1)

intensity-domain noise equalization to account for signal dependency, 2) band-limited anti-blocking

time-domain filtering of current frame using motion-compensated previous and subsequent frames,

3) spatial filtering combined with noise frequency equalizer to remove residual noise left from tem-

poral filtering, and 4) intensity de-equalization to invert the first step. To decrease the chance of

motion blur, temporal weights are calculated using two levels of error estimation; coarse (block-

level) and fine (pixel-level). We correct the erroneous motion vectors by creating a homography

from reliable motion vectors. To eliminate blockiness in block-based temporal filter, we propose

three ideas: interpolation of block-level error, a band-limited filtering by subtracting the back-signal

beforehand, and two-band motion compensation. The proposed time-space filter is parallelizable to

be significantly accelerated by GPU. We show that the proposed method competes related state-of-

the-art in video denoising.

The third (sparsity and dominant orientation quality index) technique is a new method to assess

the quality of the denoised video frames without a reference (clean frames). In many image and

video applications, a quantitative measure of image content, noise, and blur is required to facili-

tate quality assessment, when the ground-truth is not available. We propose a fast method to find

the dominant orientation of image patches, which is used to decompose them into singular values.

Combining singular values with the sparsity of the patch in the transform domain, we measure the

possible image content and noise of the patches and of the whole image. To measure the effect of

noise accurately, our method takes both low and high textured patches into account. Before analyz-

ing the patches, we apply a shrinkage in the transform domain to increase the contrast of genuine

image structure. We show that the proposed method is useful to select parameters of denoising

algorithms automatically in different noise scenarios such as white Gaussian and real noise. Our

objective and subjective results confirm the correspondence between the measured quality and the

ground-truth and proposed method rivals related state-of-the-art approaches.
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Chapter 1

Introduction

1.1 Noise sources

Even most modern video capturing devices introduce random noise and video denoising is still

an important feature in many video systems. Video signals may originate from different capturing

sources such as consumer electronics devices (e.g., TV, cinema, or mobile phones), medical devices,

or remote-sensing devices. Different video cameras produce different types of noise. A widely used

sensor in video camera, specially in consumer electronics is the CCD (Charge-coupled device)

sensor. Figure 1.1 illustrates a typical CCD camera pipeline. Noise is mostly added to the image

[1–6] in the sensor layer mostly due to lack of photons. Noise at the sensor layer is modeled

as summation of different types of noise (e.g., fixed pattern noise, dark current noise, shot noise,

amplifier noise, and sampling noise) see [6]. Captured image at the sensor-layer becomes processed

through a capturing pipeline to be displayed or stored. Noise characteristics change through the

capturing pipeline as the noise becomes spatially correlated and compressed.

Noise at the sensor layer (before any digital processing) is additive and signal-dependent, how-

ever, when the dependency to signal is minor, noise can be modelled as additive and white Gaussian

noise (WGN). Many noise reduction methods propose solutions to remove WGN in videos [7–19]

and images [20–23]. For reduction, characteristics of noise should be estimated. Many methods are

developed to estimate the variance of WGN in the images [24–35]. Noise in this and related work

is additive.
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Video or image noise after processing becomes spatially correlated (frequency-dependent),

however, when the spatial correlation is minor noise can be assumed as white (equally distributed

in all frequencies).

Figure 1.1: Typical digital camera imaging pipeline.

1.2 Applications

The most important application of video noise reduction is improving the visual quality. CCD

cameras are integrated into mobile devices such as phones, tablets and laptops. Due to cost and

size constraints, small lens and low-quality cameras are often used which introduce unpleasant

noise. Video noise reduction helps the user to have a better experience in watching video signals.

It also improves the compression rate resulting in less storage or higher channel capacity. Video

noise reduction can be used to improve still image quality as well. In low light conditions we can

produce a single image with higher quality by taking several photos in burst mode and denoising

them. Video noise estimation and reduction is also used in post-production not only for removing

noise but also for renoising. In movie production, consecutive sequences are captured in different

lighting conditions. To integrate those sequences noise should be completely removed and added

again (renoise) with same level and property to keep the consistency and avoid quality discontinuity.

The important role of noise estimator in renoising applications is extracting noise property from one

source to be added to another denoised source. One new application of video denoising is in video

rendering. In video rendering the synthetic 3-D scene is created based on geometry, viewpoint,
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texture, lighting, and shading information of the virtual scene. In video rendering number of sample

points (or iterations) defines the quality of image and less iteration produces more noise. This is a

tedious task and it takes several hours to create a high quality and high-resolution frame. A solution

to increase the speed is using less number of iterations but video denoising to improve the quality.

One important application of no-reference image quality assessment (NR-IQA) is the quality control

of output [36–42]. In the development process of a computer vision software, NR-IQA method can

be used to quantify the quality of the output and if the quality is less than an expected value the

control system can report a failure or initiate correction. Another important application of NR-IQA

is in automatic setting of camera parameters. Digital cameras often constantly capture images and

check their quality to find the optimal point. Focal length, ISO and shutter speed are the parameters

that usually are automatically found. NR-IQA methods are used for this matter. Another application

of NR-IQA is in the burst-mode image capture in the mobile phones, where the image with the

highest quality along all burst images should be selected.

1.3 Motivation

Several video denoising approaches are known to restore videos that have been degraded by ran-

dom noise. Recent advances in estimation and reduction of noise have achieved remarkable results,

however, the simplicity of their noise source model makes them impractical for real video noise.

Mostly, noise is assumed a) white Gaussian and b) accurately pre-estimated. When the noise is

overestimated the chance of information loss (blur) increases. One essential objective of all video

denoising methods is to prevent blur. When the properties of the noise deviate from whiteness,

the efficiency of algorithms that are designed for white noise degrades. In practice, noise is often

spatially-correlated or non-white. For methods that handle spatially correlated noise (SCN), input

parameter should be tuned according to the video content to achieve desirable results. Data sampled

at the sensor layer becomes processed in a long capturing pipeline. Demosaicing, color correction,

filtering, and quantization are examples of processing in the capturing pipeline which change the

noise properties. In addition to noise properties, in the development of a video denoising software,
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computation cost and modularity should be considered. Computationally or memory-wise expen-

sive methods are not practical. Hardware such as graphics processing unit (GPU) can be used to

accelerate the heavy processing operations, however, algorithms should be highly parallelizable to

benefit from this. In video processing applications a trade-off between performance (e.g., quality)

and cost (e.g., speed) is desired. A modular system, i.e., a system with functionality independent

modules, helps to adjust the performance-cost point by changing certain components or parame-

ters. For instance motion estimation/compensation complexity can be adjusted according to the

hardware/timing budget. Optical flow motion estimation are the pioneers algorithms but time con-

suming; on the other hand, block-matching approaches are fast but they introduce blocking artifacts

(blockiness). The human visual system easily recognizes the blockiness and perceives it as non-

natural content, thus, we aim at denoising algorithm with the least possible blockiness. Here, are

the list of other problems and motivations to do this research.

1.4 Requirement for an effective video denoising system

Complete model: To handle a wide range of real types of noise we need to use a comprehensive

noise model that can detect the noise characteristics such as power, type and non-uniformity

model. Most existing denoising algorithms deal with grayscale video signals or propose

the same processing procedure for chrominance channels. In real-world cases which the

chrominance channels are usually subsampled, this is not efficient.

Automated framework: We require a framework that is fully automated. Conventional methods

need manual intervention, such as defining or verifying the input values and formats or noise

profiles. Many parameters should be estimated in order to have an accurate model of noise. In

noise estimation, parameters such as the level of noise in all channels spatially and temporally,

degree of spatial correlation in all channels, the model of noise variation over the intensities,

scene change, frame replication, format of the input, and noise boundaries based on the meta-

data is estimated. Based on these estimates, the noise reduction is accomplished. This makes

the framework much more complicated than the conventional noise reduction methods that

estimate a single value for noise variance for grayscale channel using only spatial information.
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Error sensitivity: Unlike the frameworks where a user selects or verifies the input parameters, the

automated framework is not always reliable. We require a system that works automatically for

all selected test dataset, however, the dataset is limited and there is possibility of estimation

error which should be taken into account. Thus, by using a wide variation of test points we

aim for a system that detects estimation error and compensate that.

Modularity: A modular framework, i.e., a framework with functionally independent modules, pro-

vides the feature to adjust the performance-cost point by changing certain components or

parameters. For instance, many video denoising algorithm use a motion estimation and com-

pensation engine that is independent to their main algorithm and can be adjusted according to

the hardware and timing budget. Instead of one-piece sophisticated framework, we require a

modular system with many components that each provide high quality and as needed they can

be replaced by lower quality but faster equivalents. Our system design can provide reasonable

variation of speed versus quality that can be tuned based on the hardware resources.

Quality assessment: Most of the denoising approaches use PSNR as the ground-truth to measure

the quality and adjust algorithm parameters. We require both objective and subjective eval-

uation for parameter adjustment and quality assessments. A no-reference quality assessment

method is required to provide results that correspond with human perception. We require

objective measures at the first level of assessment, however, many undesired artifacts such

as blocking, posterization, ringing cannot fully be detected by quantitative measures such as

PSNR. Thus, we require to verify the results by subjective evaluation as well. Using a wide

variation of datasets and extensive subjective and objective experiments our system should

automatically find the optimal denoising point.

Reliability: The degree of reliability and effectiveness of the system should be proportional to

number and diversity of test data that it can handle automatically. Ineffective frameworks

handle special cases such as simple motion and noise. Real test data is required to make

a system sufficiently effective. Unlike conventional denoising methods that are tuned for

specific data and noise, we should consider special cases such as handling replicated frames,

noise overestimation and HDR formats. Although it makes the system more complex and
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slower, we should address two challenging HDR problems, high-precision and extreme non-

uniformity of the noise.

Speed: Processing time is a factor that is not considered in most of the pioneer methods. For some

of the state-of-the-art methods it takes several hours to process a one-minute high-resolution

video clip. Parallel processing (e.g., GPU and vector processor) is an important feature to

accelerate the processing. In addition to finding a reasonable speed-quality point algorithm-

wise, we require a system with highest possible parallel units.

Quality control: In the development of a denoising software, having the control on the quality,

speed, and memory is essential. In multi-platform implementation such as CPU-GPU im-

plementation, we need to have a parity between platforms so they produce identical results.

We have implemented test units that automatically test all sub-modules individually for both

CPU and GPU and under three operating systems (Windows, Mac OS, and Linux) and reports

implementation errors, memory speed and quality of output.

1.5 Summary of contributions

The contributions of this thesis are 1) an automated solution for video denoising that comprises es-

timation and reduction of three types of noise: additive white Gaussian noise, Poissonian-Gaussian

(white signal-dependent) noise, and processed Poissonian-Gaussian (spatially correlated signal-

dependent) noise, and 2) a method to assess the quality of the image using sparsity and dominant

orientation of patches when no reference (clean) frame exists. So far we have published three

papers [43–45] to video noise estimation, video noise reduction, and no-reference image quality

assessment. Two journal papers (one on noise estimation [TIP-13994-2015] and one on quality

assessment [TIP-14249-2015]) are under review. Three patents [46–48] were filed regarding to

noise estimation, reduction, and quality assessment. The details of contribution for each method is

provided in the each related chapter.
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1.6 Research and system evolution

We have started our research considering simplified noise model additive and white Gaussian noise

(WGN) and studied related state-of-the-art noise estimation methods. We selected the pioneers in

providing practical solution and analyzed their flaws and improved them. However, when we were

provided with real-noise data from industry (where the noise was signal-dependent and spatially

correlated) we realized our method model is inaccurate. Consequently, we modified our framework

and developed an intensity-variance based classification methods that uses connectivity of patches

to estimate the noise. We developed that method to estimate the power of noise before and after

processing and also the noise level function (NLF). When we analyzed more data, we realized our

model is accurate for specific type of correlated noise. To solve this problem we developed a method

to estimate the degree of processing (spatial correlation) of the noise in different image scales. As

we processed more data, we faced more problems such as noise estimator could find only the noise

level function below a certain baseline (which is estimated based on the target cluster). However, in

special cases, noise level in certain intensities is higher than the baseline. The goal was to fix this

problem without changing the efficiency of noise estimator in normal cases, which we were able to

handle that. Another spatial case was sequences with two identical consecutive frames, which that

by detecting identical frame and exclude them from estimation and reduction process. The HDR

contents were also problematic, where the dependency of noise to signal is extreme and our model

based on limited slope is not suitable. We have developed a forward and backward tone-mapping to

balance the noise level function in this case.

For noise reduction we started the research with a state-of-the-art fast recursive temporal fil-

ter (RTF) under WGN and we attempted enhancing it by addressing its flaws. The first step was

combining of block and pixel based error detection to address motion blur. The second step was

developing a collaboration of symmetric temporal filtering (STF) and spatial filter since noise re-

duction by RTF is not uniform reduced temporally and spatially. The first implementation of spatial

filter was based on partial differential equations, however, the results was not satisfactory which

led us to implementing a dual-domain spatial filter. The speed and quality of implemented video
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filter was satisfactory under WGN, however, under spatially correlated noise the artifacts were un-

pleasant. Three main artifacts were blocking, posterization, and ringing (i.e., frequency- domain

artifacts). For solving the blocking we firstly used the idea of deblocking that is used in most of

the video decoders. The problem with deblocking is that it leaves the stripes of filtering effect at

the edges of blocks which was undesired. Thus, we proposed the two-band motion compensation.

Although this solution eliminates most of blocking, we enhanced the visual quality by developing a

band-limited temporal filtering in order to exclude the very low frequency (LF) content that is very

likely to be signal. We used the same (excluding the very LF content from processing) idea in the

spatial filtering to address the posterization. We solved the ringing effect by using two iteration spa-

tial domain filtering. In the first we find the sharp results that has the ringing, in the second iteration

we use the first iteration to steer (guide) the second iteration. In analyzing new video dataset we

realized when there is a large translational motion and the resolution is high (e.g., 1920×1080) the

results of motion estimation for some blocks are not reliable. However, the motion was translational

and not complex to estimate. The reason was in pyramid (multi-resolution) motion estimation the

error from the top of pyramid propagated to the bottom and creates many erroneous motion vectors.

To address that we developed a method to find the reliable motion vectors and create a homography

based on that and correct the motion faulty motion vectors. The challenges in homography creation

were how to define reliable motion vectors and how to relate the blocks to different reliable motion

vectors.

For testing the quality of denoised videos where the reference was not available we started using

a NR-IQA to assess our quality. However, we realized the selected NR-IQA tends to select blurry

results as higher quality. Therefore, we decided to develop a method for more reliable blind quality

assessment. In developing a NR-IQA, we started with an entropy based idea that was working

based on scattering the image structure and measuring the amount of entropy that is increased.

In addition of being slow, the performance of this method degrades as the noise becomes more

spatially correlated. Thus, developed a new method based on the sparsity and dominant direction of

the patches which is better corresponds to human visual system compared to other methods.

In the development procedure of noise estimation, noise reduction and NR-IQA algorithms we

faced the following main implementation issues.
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Memory optimization: Memory consumption in computer video processing and vision algorithms

is less taken into account. However, this should be considered in our application since the

input video can be high-resolution (e.g., 4K ultra high definition) and the memory resource is

limited. Assuming the processing is done in a 4 byte floating point with radius of 5 frames,

for a 4K (3840×2160) color video we need more than one GigaByte of memory just to store

temporal data. As an example, for the noise estimator we reduced the memory usage by

finalizing the processing in the luma channel and reuse the same allocated memory for chroma

channels.

GPU implementation : The GPU implementation is not as straightforward as CPU and the de-

bugging is very challenging. The processing is done in parallel and in addition of dividing

the algorithm into separate parallel units many parameters (e.g., cache size, number of lo-

cal workers, number of global workers) should be investigated to reach the maximum speed.

One of the challenging problems was implementing the motion estimation on the GPU. As

an example to accelerate the motion estimation we experimented three different implemen-

tations. In the first idea, we assigned one thread per block to compute the block matching

cost in parallel. The approach is easy to implement and debug. However, since the location

of matching blocks are random, the memory access is not continuous and the performance

decreases significantly. The more complex idea was assigning multiple threads per block to

compute the block matching criteria. This improves the results, however, the acceleration rate

is not desirable. To reach maximum bandwidth of continuous memory access, we developed

even more complex idea that parallel threads compute the 3 cost for each block at the same

time. Another problem was that some GPUs they cannot handle vector processing unless they

are correctly aligned in the memory. Assuming there are 4 values that we want to add a con-

stant to them with one operand. The vector operations will work only when the first element

is located in the memory with the offset of zero otherwise the code cannot be executed.

Asymmetric temporal filtering: Our temporal denoising filter is developed based on a symmetric

temporal filtering. We use forward motion estimation data to guide the backward motion

estimation which increases the total motion estimation speed. However, for generality our
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framework should support asymmetric window which we needed to solve the problem of all

combination of forward and backward frames. The major challenge was when the number of

the backward frames was larger than forward. In this case, there is no pre-estimated motion

vector to guide the backward motion and the motion should be estimated without any guide.

Automated testing: One of the challenges in developing a video processing software is the debug-

ging. We need to assure that by modifying the code we do not introduce any problem such

as degrading the results, slowing down the algorithm, or consuming an unexpected amount

of memory. This procedure should be done for all platforms and operating systems which is

tedious to be done manually. We have developed an automated testing system that checks all

modules individually for all platforms and generates the results and compare it with expected

(or previous) results and reports the problems.

1.7 Thesis structure

The rest of thesis is structured in 7 chapters as follows: chapter 2 presents our model for the noise

variance and the noise level function; chapter 3 discusses related methods to noise estimation (sec-

tion 3.1), noise reduction (section 3.2), and NR-IQA (section 3.3); chapter 4 presents the proposed

noise estimation where section 4.2 presents the details of algorithm, section 4.3 discusses appli-

cation specific adaptation, and section 4.4 demonstrates objective and subjective results; chapter 5

explains our method for transforming a WGN filter to handle SDSCN where sections 5.2 and 5.3

present our solutions to address signal and frequency dependency, and section 5.4 provides exper-

imental results; chapter 6 presents the proposed band-limited time-space video filter where sec-

tion 6.2 discusses our proposed temporal filtering, section 6.3 explains our proposed dual-domain

spatial filtering, section 6.4 discusses application oriented adaptation of our video filter, and sec-

tion 6.5 gives objective and subjective results; chapter 7 presents our proposed NR-IQA method

where section 7.3 presents the details of algorithm and section 7.4 demonstrates objective and sub-

jective results; chapter 8 provides conclusion and directions for future work.
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Chapter 2

Noise Modeling

2.1 Noise variance

The input noisy video frame (or still image) I can be modeled as, I = Iorg + nd + ng + nq,

where Iorg, nd, ng, and, nq are the noise-free image, white signal-dependent noise, white signal-

independent noise, and, quantization noise respectively. With modern camera technology nq can

be ignored since it is very small compared to no = nd + ng. nd and ng are assumed zero-mean

random variables with variances σ2d(I) and σ2g , respectively. (For simplicity of notation, we use the

symbol I to refer to either a whole image or to an intensity of that image; this will be clear from the

context). The NLF of the image intensity I can be assumed,

σ2(I) = σ2d(I) + σ2g . (1)

We define σ2o = max(σ2(I)) as the peak of σ2(I). We also define the normalized noise level

function Ω̃(I) as

σ2(I) = σ2o · Ω̃(I) , Ω̃(I) ≤ 1. (2)

When a video application, e.g., motion detection, requires a single noise variance, the best de-

scriptive value is the maximum level, since a boundary can be effectively designated to discriminate

between signal and noise. If σ2d(I) = 0 then Ω̃(I) = 1 and σ2(I) = σ2g and is WGN. In this case

σ2o is the variance of WGN. If the video application requires σ2(I), our method estimates it with
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notation of Ω(I).

Although noise at the sensor layer (i.e., no) is white, it often becomes non-white due to post-

capture processing. A processing module P(·) such as interpolation, quantization, and filtering is

applied on the image to increase the resolution or decrease the entropy. P(·) makes its input I

spatially correlated and the observed image I ′ becomes processed as

I ′ = P(I) = P(Iorg + no) = Iorg + np, (3)

where np contains the correlated Poissonian-Gaussian noise and the distortion noise. By distortion

noise we mean image structure that is destructed by P(·). In video capturing pipeline, usually the

inter-frame information is processed. Meaning, the post-capture processing P(·) is applied on the

difference between the reference frame and motion-compensated adjacent frame. Assuming the

motion is ideally compensated, the difference contains mostly noise. In this case we can assume

that np = P(no). If P(I) = I (i.e., there is no processing) then np is white. Depending on

σ2d(I) = 0 or P(I) = I , 4 types of noise can be defined, 1) WGN when σ2d(I) = 0 and P(I) = I ,

2) signal-dependent white noise (SDWN) when σ2d(I) 6= 0 and P(I) = I , 3) signal-independent

spatially correlated noise (SISCN) when σ2d(I) = 0 and P(I) 6= I , 4) signal-dependent spatially

correlated noise (SDSCN) when σ2d(I) 6= 0 and P(I) 6= I . In this thesis by signal-dependent noise

(SDN) we mean SDWN and by spatially correlated noise (SCN) we mean SISCN. Let us consider

σ2p as the peak of the variance of np along the all intensities. In (17), we estimate σ2p as the peak of

the level function of the observed video noise np. Under SDWN where P(I) 6= I , σ2p is in fact the

peak variance σ2o . Under SISCN and SDSCN, the peak variance σ2o is estimated from σ2p using (4).

When SDWN becomes processed, we model the resulting image as I ′ = Iorg+np with np as the

SDSCN and peak variance σ2p . We model the before in-camera processing image I as I = I ′ + nγ

with nγ as the distortion noise and peak variance σ2γ . We thus differentiate here between SDWN

no, SDSCN np, and distortion noise nγ , where no = np + nγ . Let 1 ≤ γ ≤ γmax be the degree

(power) of processing on σ2o . We estimate,

σ2o = γ · σ2p. (4)
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γ = 1 means P(I) = I and the observed noise is SDWN; γ ≤ γmax means I was moderately

processed, as shown in Figure 4.6 of section 4.2.4. Estimation of γ is based on the some assump-

tion between LF and HF noise. Theoretically, as γ increases its estimation becomes harder since

noise and image signal becomes similar. If γ > γmax the estimation error becomes intolerable.

Practically, based on our method for estimation of γ γmax = 3.5 (see Figure 4.6). Heavily pro-

cessed means the nature of SDWN was heavily changed resulting in large σ2γ compared to σ2p , i.e.,

σ2γ ≫ σ2p since the mean absolute difference of I and I ′ is large. Processing technologies such

as Bayer pattern interpolation, noise removal, bit-rate reduction, and resolution enlargement, are

being increasingly embedded in digital cameras. For example, spatial filtering is used to decrease

the bit-rate. Accurate data about in-camera processing is not available, in many cameras, how-

ever, processing can be bypassed manually, which allows to explore statistical properties of noise

before and after processing. Our study shows that the low-power high frequency components of

the noise (compared to noise power) are eliminated. As a result, low-frequency (LF) and impulse

shaped noise remains. Fig. 2.1 shows parts of two images taken under the same condition in raw

and processed image mode. This figure also shows the frequency spectrum of noise in both modes.

We studied the noise using homogeneous image regions that we manually selected from 35 images

taken by 7 different cameras (Canon EOS 6D, Fujifilm x100, Nikon D700, Olympus E-5, Panasonic

LX7, Samsung NX200, Sony RX100). As we can see, filtering changes the frequency spectrum

of the noise and makes it processed (frequency-dependent). In many video processing applications,

estimation of the noise level before the in-camera filtering is desirable for accurate processing. Such

estimation is challenging since some of noise frequency components are removed and calculation

of the pre-processing (original) noise level by its current power (e.g., variance of homogeneous

patches) is no longer accurate.

Often in the video capturing pipeline, built-in cameras or codecs filters make the noise pro-

cessed and the whiteness property (i.e., independent and identically distributed frequency domain

coefficients) is no longer realistic. These built-in filters are usually considered to reduce the bit-

rate and not to remove the noise. Since most of the entropy is taken by high-frequency (HF) noise

components, bit-rate adaptive codecs remove some part of (usually low-power) HF noise and leave

undesired LF noise. Fig. 2.2 shows a part of homogeneous frame corrupted with real video noise
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Figure 2.1: Images captured with the same camera in raw (a) and processed mode (b). Average of noise

frequency magnitude of 35 different images taken by 7 cameras in raw (c) and processed mode (d).

and its power spectral density (PSD). Figure 2.3 shows an example of 1-D frequency spectrum for

moderately and heavily processed. In case of heavily processed noise (i.e., γ > γmax) the differ-

ence between power of LF and HF is significant and most of noise energy is concentrated in the LF

components. By downsampling the image noise becomes more uniform in frequency domain (see

Figure 2.4). Thus, the moderately processed noise model γ ≤ γmax can be applied on the downsam-

pled image and σp can be estimated in downsampled scale. In sections 4.2 and 5.3 we show how we

estimate and use σp in different scales (resolutions) in the denoising process. The statistical prop-

erties of noise at the finest scale is different to coarse scale. In processed noise condition, at finest

scale, noise is spatially correlated and as the scale becomes coarser noise becomes less correlated

and closer to white. We employ this property to treat LF and HF differently employing different

image scales using the fact that image signal and noise can be represented in different frequencies

by decomposing image into a different scales. Figure 2.5 shows an example of 2-D SCN in three

scales. Noise in coarsest scale can be assumed as white noise since the energy (magnitude) of noise

is equally distributed in all frequencies.

2.2 Noise level function

A better adaptation of video processing applications to noise can be achieved by considering the

NLF instead of a single value. However, as there is no guarantee that pure noise (signal-free) pixels

14



Figure 2.2: The left column (a) shows the part of a real noisy frame which is heavily processed and the right

column (b) shows its frequency spectrum.

Figure 2.3: Example for 1-D spectrum of (a) moderately processed versus (b) heavily processed noise.

are available for all intensities, NLF estimation is challenging. The NLF strongly depends on camera

and capture settings [6] as illustrates in Fig. 2.6.

Let the input noisy image I be divided into MI sub-intensity classes. A piecewise linear func-

tion, see Fig. 2.6(c), can approximate the NLF in intensity class l as follow,

σ2l (I) = al · σ2repl(I − Irepl) + σ2repl , (5)

where l ∈ {1, . . . ,MI}, I ∈ {Imin
l , Imax

l }. Imin
l and Imax

l define the class boundaries, σ2repl is a

representative point of σ2l (I) and Irepl is its corresponding intensity. σ2repl can be, for example, the

median of σ2l (I). al represents the slope of a line approximating the NLF in the class l as illustrated

in Fig. 2.6(c). If MI is appropriately selected, |al| does not exceed amax ≥ max(|al|), which we

estimated experimentally in analyzing different images and cameras. With max(|I − Irepl |) = 1
MI

,

Figure 2.4: Spatially correlated noise becomes less correlated by downsampling.
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Figure 2.5: (a) Spectral density of heavily processed noise, (b) is (a) is downscaled by 2 using 3×3 anti-

aliasing filter, and (c) is (b) downscaled by 2 using 3×3 anti-aliasing filter. (c) can be assumed as WGN.

σ2repl , and |al| ≤ amax,

σ2l (I) ≤ σ2maxl
= σ2replamax ·max(|I − Irepl |) + σ2repl . (6)

The patches with variances greater than σ2maxl
do not fit in the NLF curve and should be rejected

as non-homogeneous patches. This can thus be used to target homogeneous patches, as shown in

section 4.2.2, where we use amax to locate patches that fit into the linear approximation of NLF. In

section 4.2.5 we propose an approximation of the NLF.

16



Figure 2.6: NLF approximation:(a) and (b) show two sample images and their NLF in RGB channels.(c)

shows piecewise linear modeling of NLF.
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Chapter 3

Related Work

In this chapter we review related works on video noise estimation, video noise reduction, and no-

reference quality assessment.

3.1 Noise estimation

WGN estimation techniques can be categorized into filter-based, transform-based, edge-based, and

patch-based methods. Filter-based techniques [25, 26] first smooth the image using a spatial filter

and then estimate the noise from the difference between the noisy and smoothed images. In such

methods, spatial filters are designed based on parameters that represent the image noise. Transform

(wavelet or discrete cosine transform DCT) based methods [10, 11, 27, 28, 49–51] extract the noise

from the diagonal band coefficients. [50] proposed a statistical approach to analyze the DCT filtered

image and suggested that the change in kurtosis values results from the input noise. They proposed

a model using this effect to estimate the noise level in real-world images. Although the global pro-

cessing makes transform-based methods robust, their edge-noise differentiation lead to inaccuracy

in low noise levels or high structured images. [50] aims to solve this problem by applying a block-

based transform. [51] uses self-similarity of image blocks, where similar blocks are represented in

3-D form via a 3-D DCT transform. The noise variance is estimated from high-frequency compo-

nents assuming image structure is concentrated in low frequencies. Edge-based methods [6, 29, 30]
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select homogeneous segments via edge-detection. In patch-based methods [32–35], noise estima-

tion relies on identifying pure noise patches (usually blocks) and averaging the patch variances.

Overall local methods that deal with subsets of images (i.e. homogeneous segments or patches) are

more accurate, since they exclude image structures more efficiently. Using a single patch as a refer-

ence makes [24] less accurate high noise some noise levels [31] adds particle filter to make it more

robust and reduce the processing time. [32] utilizes local and global data to increase robustness.

In [33], a threshold adaptive Sobel edge detection selects the target patches, then averages the

convolutions over the selected blocks for accurate estimation. Based on principal component anal-

ysis [34] first finds the smallest eigenvalue of the image block covariance matrix and then estimates

the noise variance. Gradient covariance matrix is used in [35] to select “weak” textured patches

through an iterative process to estimate the noise variance. Patch size is critical for patch-based

methods. A smaller patch is better for low level of the noise, while, larger patch makes the es-

timation more accurate in higher noise level. For all patch sizes, estimation is error prone under

processed noise; however by taking more low frequency components into account, larger patches

are less erroneous. By adapting the patch size in these estimators to image resolution, it is more

likely to find noisy (signal-free) patches, which consequently increases the performance. Logically

finding image subsets with lower energy under WGN conditions leads to accurate results. How-

ever, under SDWN conditions underestimation normally occurs. Under WGN, [33–35] outperform

others, however noise underestimation under signal-dependent noise makes them impractical for

real-world applications.

SDWN estimation methods express the noise as a function of image brightness. The main

focuses of related work is to first simplify the variance-intensity function and second to estimate

the function parameters using many candidates as fitting points. In [52, 53], the NLF is defined as

a linear function σ2(I) = aI + b and the goal is to estimate the constants a and b. Wavelet domain

[52] and DCT [53] analysis are used to localize the smooth regions. Based on the variance of

selected regions, each point of curve is considered to perform the maximum likelihood fitting. [54]

estimates noise variation parameters using maximum likelihood estimator. This iterative procedure

brings up the initial value selection and convergence problems. The same idea is applied in [6]

by using a piecewise smooth image model. After image segmentation, the estimated variance of
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each segment is considered as an overestimate of the noise level. Then the lower envelope variance

samples versus mean of each segment is computed and based on that the noise level function by

a curve fitting is calculated. After image segmentation, the estimated variance of each segment is

considered as an overestimate of the noise level. Then the lower envelope variance samples versus

mean of each segment is computed and based on that, the noise level function by a curve fitting is

calculated. In [55], particle filters are used as a structure analyzer to detect homogeneous blocks,

which are grouped to estimate noise levels for various image intensities with confidences. Then, the

noise level function is estimated from the incomplete and noisy estimated samples by solving its

sparse representation under a trained basis. The curve fitting using many variance-intensity pairs,

requires enormous computations, which is not practical for many application especially when the

curve estimation is needed to be presented as a single value. As a special case of SDWN with zero

dependency, WGN cases are not examined in these NLF estimation methods. In [56], a variance

stabilization transform (VST) converts the properties of the noise into WGN. Instead of processing

the “Gaussianized” image and inverting back to Poisson model, a Poisson denoising method is

applied to avoid an inverted VST.

Spatially correlated noise (SCN) is not yet an active research and few estimation methods exist.

In [57], first, candidate patches are selected using their gradient energy. Then, the 3-D Fourier

analysis of current frame and other motion-compensated frames is used to estimate the amplitude

of noise. A wider assumption is in [58] by considering both frequency and signal dependency. In

this method, the similarity between patches and neighborhood is the criterion to differentiate the

noise and image structure. Using the exhaustive search, candidate patches are selected and noise is

estimated in each DCT coefficient. [43] assumes noise is white Gaussian or white signal-dependent

but it does not estimate the NLF.

3.2 Video noise reduction

Video noise reduction methods utilize the correlation between pixels temporally and spatially to

extract signal and remove noise. They fall into three general groups, temporal, spatial, and spatio-

temporal filters. Most of temporal and spatio-temporal filters utilize motion estimation to increase
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their efficiency. In this section we review the related work for main components of video noise

reduction.

3.2.1 Temporal and time-space filters

Temporal and time-space video filters can be classified based on two criteria 1) how the temporal

information is fed into the filter and 2) what domain (transform or pixel) the filter use. According

to the first criterion, filters can be classified into two categories: filters that operate on the original

frames (prior and posterior) [8, 12, 14, 15] and ones use already filtered frames [7, 9, 17, 18]. The

former use symmetric temporal window and the latter use a recursive framework. Recursive tempo-

ral filters (RTF) [9, 13, 59] are widely used due to the simplicity of their structure using few previous

denoised frames. Using only previous frames, RTF does not introduce lag and recursive structure

makes it efficient when there is no motion or accurately estimated. However, it takes several frames

for a RTF to become effective. Besides, depending on when the sequence starts it produces different

results. In some applications, (e.g., post-production) exact results need to be reproducible regard-

less of start time. Symmetric temporal filter (STF) [8, 12, 44] are more complex but address these

problems.

The second criterion divides video filters into transform or pixel domain. Many high-performance

transform (e.g., Wavelet or DCT) domain methods [8, 9, 11–16, 19, 60, 61] have been introduced to

achieve a sparse representation of the video signal. High performance video denoising algorithm

VBM3D [8] groups a 3-D data array which is formed by stacking together blocks found similar

to the currently processed one. [15] is an advanced VBM3D by going a step further by propos-

ing the VBM4D which stacks similar 3-D spatio-temporal volumes instead of 2-D blocks to form

four-dimensional (4-D) data arrays. In [12], based on the spatio-temporal Gaussian scale mixture

(ST-GSM) model, local correlation between the wavelet coefficients of noise-free video sequences

across both space and time is captured. Then the Bayesian least square estimation is applied to ac-

complish the video denoising. Computation of these methods is costly. Moreover, the noise model is

oversimplified which makes them unsuitable for real-world (such as consumer electronics) applica-

tions. A recently developed RF3D [61] made a wide assumption by proposing a denoising method

for jointly corrupted by non-white random noise and fixed-pattern noise. The signal is extracted
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based on both spatial and temporal correlations on a 3-D spatiotemporal transform domain.

Pixel-domain video filtering approaches [17, 18, 59, 62–68], utilizing motion estimation tech-

niques, are generally faster by performing pixel-level operations. In such methods, a 3-D window

of blocks along the temporal axis or the estimated motion trajectory is utilized for filtering of each

pixel value. In Pixel-domain the challenges are the blocking artifacts and how to use the spatial

information. Block-based temporal approaches are simple to implement but they create blocki-

ness. The blockiness is more intensified when the motion compensation also is also block-based.

In some video filters such as [65, 68] spatial information is not employed to keep the framework

simple and fast, however, the residual noise makes the noise reduction inconsistent over the frame

especially in complex motion. Multi-hypothesis motion-compensated filter (MHMCF) presented in

[65] uses linear minimum mean squared error (LMMSE) of non-overlapping block to calculate the

averaging weights. Its coarse (low-resolution) estimation of error using large blocks (e.g., 16×16),

leads to motion blur and blocking artifacts in complex motion. [69] applies MHMCF to color video

denoising, where the video denoising is performed in a noise adaptive color space different from

traditional YUV color space. This leads to a more accurate estimation, however, due to chroma

subsampling in codecs, noise adaptive color space is not realistic in many applications. [18] used

the same scheme of color conversion in [69] but all channels are taken into account to increase the

reliability of weight estimation. [68] simplifies the temporal motion to global camera motion. They

perform the denoising by estimating the homography flow and applying the temporal aggregation

using the multi-scale fusion. Another class of pixel-domain video filter use spatial filters when the

temporal information is not reliable. In [59] hard decision is used to combine temporal and bilateral

filter. Computational costly non-local mean is used in [67] by employing random K-nearest neigh-

bor blocks where temporal and spatial blocks are treated in the same way. Authors of [66] used the

complex BM3D [20] filter as the spatial support. [70] combined the outputs of wavelet-based local

Wiener and adaptive bilateral filtering to be used as the backup spatial filter. In [67], noise assumed

to be structured (non-white) but the motion is considered to be accurately estimated. [44] proposes

a high-performance video filter to handle signal-dependent noise but it assumes that noise is white.
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3.2.2 Spatial filtering

Spatial filters can be divided into three categories pixel domain, transform domain, and hybrid

framework. One of the classic method which is equivalent to solving anisotropic heat diffusion

equation (a second-order linear PDE) is anisotropic diffusion. To keep sharp edges, anisotropic

diffusion can be performed using gradient of pixels, where in low gradient pixels, they get blurred

with neighboring pixels [22] and in high gradient pixels edges are preserved and a monotonically

decreasing function defines the blurring factor. A more sophisticated way of choosing this function

is discussed in [71]. Compared to simple Gaussian filtering, anisotropic diffusion smooths out noise

while keeping edges. However, it tends to over blur the image and sharpen the boundary with many

texture details lost. More advanced partial differential equations (PDEs) have been developed so

that a specific regularization process is designed for a given (user-defined) underlying local smooth-

ing geometry [72], preserving more texture details than the classical anisotropic diffusion methods.

Bilateral filtering is an alternative way of adapting Gaussian filtering to preserve edges [21], where

both space and range distances are taken into account. The relationship between bilateral filtering

and anisotropic diffusion is derived in [73]. A fast bilateral filtering algorithm is also proposed in

[74]. Bilateral filtering has been widely adopted as a simple algorithm for denoising, for example,

video denoising in [75]. However, it cannot handle impulse-shaped noise, and it also has the ten-

dency to over smooth and to sharpen edges. If both the scene and camera are static, we can simply

take multiple pictures and use the mean to remove the noise. This method is impractical for a sin-

gle image, but a temporal mean can be computed from a spatial mean as long as there are enough

similar patterns in the single image. Similar patterns can be found to a query patch and take the

mean or other statistics to estimate the true pixel value, for example, in [76]. A more complicated

formulation of this approach is through sparse coding of the noisy input [77]. Non-local methods

are an exciting innovation and work well for texture-like images containing many repeated patterns.

However, compared to other denoising algorithms that have n2 complexity, where n is the image

width, these algorithms have n4 time complexity, which is unaffordable for real-world applications.

In transform domain (wavelet) filtering methods, natural image is decomposed into multi-scale-

oriented sub-bands and highly kurtotic marginal distributions is observed [78, 79]. To enforce the
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marginal distribution and have high kurtosis, low-amplitude values is suppressed while retaining

high-amplitude values, a technique known as coring [80, 81]. In [82] the joint distribution of

wavelets was found to be dependent. A joint coring technique is developed to infer the wavelet co-

efficients in a small neighborhood across different orientation and scale sub-bands simultaneously.

The typical joint distribution for denoising is a Gaussian scale mixture (GSM) model [83]. In addi-

tion, wavelet-domain hidden Markov models have been applied to image denoising with promising

results [84, 85]. Although the wavelet-based method is popular and dominant in denoising, it is hard

to remove the ringing artifacts of wavelet reconstruction. In other words, wavelet based methods

tend to introduce additional edges or structures in the denoised image. Besides, these methods are

not well adapted to signal-dependent noise yet. In video application residual noise left after filter-

ing varies pixel to pixel. This fact makes the wavelet-domain spatial filters not suitable to remove

residual noise, since a single threshold cannot be defined to suppress noisy coefficients.

BM3D [20] and DDID [23] are the state-of-the-art methods which offer hybrid architecture by

combining both pixel and transform domains. BM3D used a combination of 3D block matching

and wavelet shrinkage, however, this implementation due to complexity is not trivial. DDID, on the

other hand, proposes simple structure by combining bilateral filtering for the pixel domain filtering

and short-time Fourier transform for the transform domain filtering (wavelet shrinkage). Although

the DDID implementation is very simple, the computation time is excessive and not practical for

video applications.

3.2.3 Motion estimation

Motion estimation is widely used in video enhancement and compression standards and can roughly

divided into block-matching and optical flow techniques. Optical flow techniques are computation-

ally complex and are less used in denoising methods. State-of-the-art optical flow algorithm [86]

integrates the local method [87] into the global total variation framework [88]. [89] proposes a vari-

ational approach based on a theory for warping. [90] uses median filtering to denoise the flow after

every warping step to improve accuracy.

Block-matching algorithms are fast and efficient under noise and used frequently in denoising
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techniques. It is used to find a block which is most similar to a current block within a prede-

fined search area in a reference frame, and it affects the enhancer performance and the overall

computation time. The straight forward method to accomplish this procedure is full-search block

matching algorithm (FSBMA), but it requires lots of operations due to its high complexity. The

reduction of the number of search steps in order to increase the overall speed is required. The

fast FSBMA, including the successive elimination algorithm [91–93], partial distortion elimination

[94], the winner-update algorithm [95], and the advanced diamond search algorithm (DSA) [96]

are proposed to reduce the computational heavy overload of FSBMA while maintaining its quality.

In addition, in order to enhance the accurateness of DSA, several new algorithms, such as motion

vector (MV) field adaptive search technique (MVFAST) [97], and enhanced predictive zonal search

(EPZS) [98] are proposed. MVFAST is an improved DSA in both motion error and speed up by

initially considering a small set of predictors. In DSA, only a large moving diamond pattern was

considered, while MVFAST also presented a smaller moving diamond. PMVFAST uses basically

the same architecture and patterns as MVFAST does, but a significant difference of PMVFAST

compared to MVFAST is the way the small versus the large diamond is selected. Unlike MVFAST

where motion was characterized as low, medium, or high by considering the largest motion vector

candidate, PMVFAST improves the overall speed of the algorithm by using the large diamond less

often. Furthermore, EPZS that improves upon PMVFAST by considering several other additional

predictors in the generalized predictor selection phase of PMVFAST. EPZS also selects a more ro-

bust and efficient adaptive threshold calculation whereas, the pattern of the search is considerably

simplified. However, the early termination of the search procedure leads to the poor performance.

An architecture, which combines PMVFAST and EPZS, is developed, and it can be configured to

support different search patterns, and independent sum of absolute difference (SAD) computations

[99].

Another reduced computational complexity architectures are introduced by decreasing the num-

ber of computations using the hierarchical motion vector search algorithms (HMVSA), including

three-step search (TSS) [100], and four-step search [101], which separate the estimation process into

several levels, and the numbers of levels is fixed. Although HMVSA is a fast method, it is less ac-

curate than FSBMA, especially when the motion field is large and complex. An advanced HMVSA
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is developed to solve this problem, multi-resolution motion estimation algorithm (MMEA), which

is based on initial coarse estimation and then refine it. In [102] propose a method to detect and

correct the outlier MVs at the end of each pass. Conventional MMEAs are usually implemented in

two types. In one variable search, the area at each level is used [103] and MV candidate is obtained

from a large search area at the coarse level and the candidate becomes the search center of the next

level, which has a smaller search area. A larger search area corresponds to a more accurate MV, but

the extent of motion may increase with the search area. Therefore, the first MV candidate does not

guarantee an accurate estimate, and yields an incorrect result at the next levels. Although [104, 105]

apply a constant search area to partially solve this problem, the MVs may be less robust against

noise. These MMEAs fall easily into the local minimum by choosing single MV candidate, so sev-

eral algorithms that combine the scheme with a multiple MV candidate search have been proposed

[106–108]. Due to multiple MV candidates for local searches at each level their performance is

close to FSBMA, however they have a high computational cost. MMEA start with an initial coarse

estimation and then refine it. They are efficient in both small and large motions since motion vector

(MV) candidates are obtained from the coarse levels and the candidate becomes the search center

of the next level. The problem of these methods is that the error propagates into finer levels when

estimation falls into local minima in a coarse level. Therefore, a procedure to detect the failures and

compensate them is essential, as we address in the proposed method.

3.3 No-reference image quality assessment

Image and video quality suffers from noise, blur, and compression artifacts. During the capturing

process, noise from different sources is added to image and video content. It is essential to reduce

the noise for enhancing the quality, reducing the bit-rate, or improving the performance of subse-

quent image processing tasks. Blur may be introduced to an image either during capture or due to

processing such as denoising. In order to evaluate the performance of a denoiser or a deblurrer, a

quantitative measure of quality is required. In many practical cases where the reference image is not

available, the role of quality measurement techniques is more highlighted. During the development
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process of image enhancement algorithms, the importance of no-reference image-quality assess-

ment (NR-IQA) becomes clear. The effect of changing the parameters, or the algorithm (e.g., in an

optimizing process), should be studied and the output quality needs to be verified. Subjective eval-

uation is tedious, especially when the test dataset is large. Thus, an automated quality measurement

is necessary. Although it seems not possible to build an image-quality assessment that replaces

the human visual system in all situations, many assessment methods are designed and successful

at achieving reliable results at least in confined conditions (e.g., limited range of noise and image

structure). NR-IQA techniques aim to distinguish image structure (e.g., salient geometric features)

from distortion (e.g., noise and blur) and quantify the overall image distortion without a ground-

truth according to visual perception [109], sharpness, and noise. As a consequence, parameters of

image or video processing methods, such as noise estimation, noise removal, and deblurring can be

optimized based on overall quality. By measuring the quality of the final output, with a recursive

procedure, quality of current output is compared with previous outputs to find the optimal point.

In addition of parameter selection, NR-IQA methods can be used to classify images based on their

quality. As an example, among several captured images, such as in the burst mode, the one with the

highest quality can be selected as the image of interest.

Many NR-IQA methods have been introduced, however, presenting a technique that works on

a large set of data and distortion type (e.g., noise, blur, and compression artifact) is still an open

problem. In this thesis, we propose a sparsity and dominant orientation based (SDQI) method that

can be used 1) to optimize parameters of image enhancement algorithms and 2) to verify the quality

of enhancement algorithms. We assume noise may have different types such as Gaussian or pro-

cessed (non-white). To do this, we quantify the genuine image content based on the sparsity of local

gradients using singular value decomposition (SVD) and discrete Fourier transform (DFT). SVD is

applied to find the orientation dominancy of the image gradient patches. For a more accurate esti-

mation of orientation, a shrinkage (i.e., suppressing the small coefficient) in the transform domain

is first applied on the gradient image. To address multi-orientation patches, where one orientation

is not dominant, we employ DFT to detect image structure, which increases the reliability of signal

detection. To compute the SVD, instead of recursive matrix operations, we propose a faster method

simpler to implement.
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The diversity of NR-IQA methods using various image processing principles makes them diffi-

cult to be categorized. Based on their applications some focus on specific types of distortion (e.g.,

white Gaussian noise) and others consider different potential distortions. In [110], the unbiased

risk estimate is proposed to calculate the distortion cost (e.g., mean squared error, MSE) for the

enhancement application. It assumes the noise is additive and WGN, and accurate estimation of

the noise variance is available. The technique proposed in [111] detects both noise and blur in one

step based on the image anisotropy and measures the visual quality based on the variance of the

entropy. The optimal performance of this method is achieved when the degradation is globally uni-

form and in the case of non-uniform noise or blur its performance decreases. [112] presents two

separate pipelines for estimation of noise and blur. The noise is assumed to be WGN implying the

high-frequency part of the noise exists, which is not accurate under real (e.g., processed non-white)

noise. [38, 39, 42, 113–115] are developed to substitute human visual system to classify images

(e.g., detection of blurred versus non-blurred in digital photography). Based on their applications,

these methods are designed to be more sensitive to blur and less to noise. Thus, their performance

decreases in the presence of the noise because the detection of edge versus high-frequency noise

becomes challenging. Just noticeable blur (JNB) [38] is introduced to express the presence of blur

around an edge using Sobel operator on local patches. [39] computes the cumulative probability

of blur detection (CPBD) by classifying the blocks into edges and smooth areas. [37] developed

a blind image quality assessment (BIQI) method, which utilizes support vector machine classifier

to define the quality index (QI) based on subband coefficients of wavelet transform. The image is

first ranked in each category of the degradations: JPEG and JPEG2000 compression, white noise,

Gaussian blur, and fast fading; the final QI is estimated by combining all ranks. Blind/referenceless

spatial quality evaluator (BRISQUE) [42] is a less computational complex method compared to

[37] where, instead of wavelet, it employs Gaussian filter to extract low and high-frequency image

components. Local phase coherence (LPC) of the wavelet image coefficients is employed in [40]

to evaluate the image sharpness. The authors assume blur affects the LPC relationship near sharp

image features and the degradation of LPC strength is employed to compute the image sharpness.

The authors of [116] assess the image blur using a combination of natural scene statistics, multi-

resolution decomposition, and machine learning. Based on training a probabilistic support vector
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machine, blur is measured using gradient histogram features. In [41], the method S3 evaluates the

sharpness by combining both spectral (Fourier domain) and spatial (pixel domain) sharpness mea-

surements. Spectral measure is based on the slope of the local magnitude spectrum and spatial

measure is based on local maximum total variation. In [45], pixel scattering is used to determine the

image content, relying upon the fact that the noisier or blurrier the image is, the less entropy change

is made by scattering the pixels. Its performance decreases as the noise properties deviate from

WGN since entropy becomes inaccurate for measuring the quality. MetricQ [36] is a local method

that made a wider noise assumption. SVD of the local gradient is employed to exploit the sharpness

and noise of patches. SVD is used to estimate the dominant direction and its perpendicular direction

and energy of both are considered to estimate the quality of each patch based on estimated signal to

noise ratio. The average of quality values of patches that contain relative high quality is considered

as output quality. Although MetricQ addresses other types of noise in addition of WGN, such as

processed noise, the impact of noise in quality measurement is less emphasized by excluding noisy

patches from the process.
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Chapter 4

Homogeneity Classification Based Noise

Estimation

4.1 Overview

Noise measurement is required in many image and video processing techniques, e.g., enhancement

and segmentation, as adapting their parameters to the noise level can significantly improve their ac-

curacy. Noise is added to an image from different sources [1–3] such as sensor (fixed pattern noise,

dark current noise, shot noise, and amplifier noise), post-filtering (processed noise), and compres-

sion (quantization noise). In digital cameras, noise is signal-dependent due to physical properties

of sensors and frequency-dependent due to post-capture filtering or Bayer interpolation. As dis-

cussed in the chapter 2, we assume image and video noise is additive and we classify it into: WGN,

both frequency and signal-independent, signal-dependent white SDWN or (Poissonian-Gaussian),

signal-independent but spatially correlated SISCN (or processed WGN), and signal-dependent and

spatially correlated SDSCN (or processed Poissonian-Gaussian). SDSCN statistically is frequency

and signal dependent, i.e., non-white Gaussian for a particular intensity.

Many noise estimation approaches assume the noise is Gaussian, which is not accurate in prac-

tical video applications, where video noise is signal-dependent. Techniques that estimate signal-

dependent noise, on the other hand, do not handle Gaussian noise. Furthermore, noise estimation

approaches rely on the assumption that high frequency components of the noise exist, which makes
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them fail in real-world non-white (processed) noise. This is even more problematic in approaches

using small patches (e.g., 5 × 5 pixels) [31–35, 52] because the probability to find a small patch

with a variance much less than the noise power is higher than in large patch. We propose a method

to estimate image and video noise of different types: WGN, SDWN, SISCN, and SDSCN. Our

method also estimates the noise level function (NLF) of these noises. We do so by classification of

intensity-variances of image patches in order to find homogeneous regions that best represent the

noise. We assume the noise variance is a piecewise linear function of intensity in each intensity

class. To find noise representative regions, noisy (signal-free) patches are first nominated in each

intensity class. Next, clusters of connected patches are weighted where the weights are calculated

based on the degree of similarity to the noise model. The highest ranked cluster defines the peak

noise variance and other selected clusters are used to approximate the NLF. The more information,

such as temporal data and camera settings, we incorporate, the more reliable the estimation be-

comes. To account for processed noise, (i.e., remaining after in-camera processing), we consider

the ratio of low to high frequency energies. We address noise variations along video signals using

a temporal stabilization of the estimated noise. Objective and subjective simulations demonstrate

that the proposed method well outperforms, both in accuracy and speed, known noise estimation

techniques. Our contribution is a method 1) operating on an image or a video signal in gray-scale

or color space; 2) estimating the variance of WGN, SDWN, SISCN, and SDSCN automatically; 3)

estimating the noise level function NLF, i.e., the relation between the noise variance and the inten-

sities of the input noisy signal; 4) relating the input noisy signal and its down-sampled version to a)

differentiate noise from image structure, b) adapt the patch size for intensity classification, and c)

accelerate the estimation; 5) ranking noise representative regions (clusters) based a) on intra-frame

(spatial) features including intensity, spatial relation (connectivity and neighborhood dependency),

low-high frequency relation, size, and margins, and b) on inter-frame (temporal) features including

temporal difference between patch signal in neighboring frames and difference between current es-

timate and estimates from previous frames; 6) integrating capture settings, if available as metadata,

and user input of offline applications such as post production. 7) measuring the level of spatial

correlation and adapt the input estimation parameter to that.

In the following, section 4.2 presents the proposed method and section 4.4 gives objective and
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subjective results.

4.2 Proposed noise estimation method

The proposed method is based on the classification of intensity (or color) variances of signal patches

(blocks) in order to find homogeneous regions that best represent the noise. We assume that noise

variance is linear, with limited slope, to the intensity in a class. To find homogeneous regions, the

method works on the down-sampled input image and divides it into patches. Each patch is assigned

to an intensity class, whereas outlier patches are rejected. Clusters of connected patches in each class

are formed and some weights are assigned to them. Then, the most homogeneous cluster is selected

and the mean variance of patches of this cluster is considered as the noise variance peak of the input

noisy signal. To account for processed noise, an adjustment procedure is proposed based on the ratio

of low to high frequency energies. To account for noise variations along video signals, a temporal

stabilization of the estimated noise is proposed. The block diagram in Figure 4.1 shows our noise

estimator within one image or video frame without temporal considerations. Figure 4.2 shows how

the method is stabilized using temporal processing in video. The proposed noise estimation based

on intensity-variance homogeneity classification (IVHC) can be summarized as in Algorithm 1. In

the remainder of this section, section 4.2.1 builds homogeneous patches; section 4.2.2 classifies

patches; section 4.2.3 builds clusters of connected patches and estimate the noise peak variance;

section 4.2.4 estimates parameters of processed noise; section 4.2.5 approximates the NLF; section

4.2.6 temporally stabilizes the estimate; sections 4.2.7 and 4.2.8 compute intra-frame and inter-

frame weights; section 4.3.1 extends the method to camera settings and user input.

4.2.1 Homogeneity guided patches

Homogeneous patches are image blocks B̃i of size We×We where here i is the single index of the

block, where the blocks are scanned column-wise,

B̃i =

{

Ĩ(x, y)

∣

∣

∣

∣

i

Nr
≤ x ≤ i

Nr
+We − 1 ,mod(i,Nr) ≤ y ≤ mod(i,Nr) +We − 1

}

, (7)
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Figure 4.1: Intra-frame block diagram of the proposed estimator operating spatially within one image or

video frame. It±1 is either preceding or subsequent frame ( see section 4.2.8) and is used only for video

frame.

where Ĩ(x, y) is the downsampled version of the input noisy image at the spatial location (x, y),

mod() is the modulus after division, and Nr is the image height (number of rows). After decom-

posing the image into non-overlapped patches, the noise ni of each patch can be described as

B̃i = Ḃi+ni, where B̃i is the observed patch corrupted by independent and identically-distributed

(i.i.d) zero-mean Gaussian noise ni, and Ḃi is the original non-noisy image patch. The variance

σ2(B̃i) of a patch represents the level of homogeneity H̃i of B̃i,

H̃i = σ2(B̃i) =

∑

(

B̃i − µ(B̃i)
)2

W 2
e − 1

; µ(B̃i) =

∑

B̃i

W 2
e

, (8)

where
∑

B̃i is the summation of pixels of B̃i. A small H̃i expresses high patch homogeneity. Un-

der SDWN conditions, noise is i.i.d for each intensity level. If an image is classified into classes of
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Figure 4.2: Block diagram of the proposed estimator operating spatio-temporally in a video signal. The noise

estimator block is shown in Figure 4.1

Algorithm 1 IVHC based noise estimation

1: Downscale the noisy image I to Ĩ & divide Ĩ into Re×Re patches: (10).

2: Assign each patch a class number: (9).

3: Find the target connected clusters in each class in Ĩ : (11).

4: Find the corresponding cluster Φ̈(l, k) in I remove outliers: (14).

5: Calculate weights for the clusters: ω1(l, k) · · ·ω11(l, k).
6: Find the noise-representative cluster Φ̂: (16).

7: Compute the noise variance σ2
p of selected cluster Φ̂: (17).

8: Estimate the noise level function Ω(.): (20).

9: Estimate the in-camera processing degree γ: (19).

10: Compute the pre-filter noise σ2
o : (4).

11: Stabilize the estimates σ2
p, Ω(.), and γ temporally: (21).

patches with same intensity level, the H̃i homogeneity model can be applied to each class. Assum-

ing MI intensity classes, L̃l represents the patches of the lth intensity class,

L̃l =
{

B̃i

∣

∣

∣ Imin
l ≤ µ(B̃i) ≤ Imax

l

}

, l ∈ {1 :MI} . (9)

For MI = 4, Imin
l = {0, 0.17, 0.4, 0.82} and Imax

l = {0.2, 0.45, 0.84, 1} are vectors defining lower

and upper bounds of class intensity. It is possible that a patch belongs to two intensity classes and

therefore clusters can overlap (see Figure 4.3).

4.2.2 Adaptive patch classification

Images contain statistically more low frequencies than high frequencies. But small image patches

show more high frequencies than low frequencies. Thus small patches have the advantage of better

signal-noise differentiation. Large image patches, on the other side, are less likely to fall in the local
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minima especially when noise is processed. To benefit from both, we propose image downscaling

with rate Re with a Re×Re grid averaging as the block-based averaging filter,

Ĩ(x, y) =
1

R2e

Re−1
∑

i,j=0

I(xRe + i, yRe + j), (10)

where I and Ĩ are the observed and down-sampled images. This gives small patches in Ĩ and

large patches in I . Furthermore, the processed noise converges to white in the down-scaled image.

Other desirable effects of downscaling are: 1) noise estimation parameters can be fixed for a lowest

possible resolution of the images (note that Re varies depending on the input image resolution) and

2) since the down-scaled image contains more low frequencies, the signal to noise ratio is higher.

Assuming L̃ represents the set of patches in Ĩ; we binary classify the patches of the lth intensity

class in Ĩ into L̃l =
{

L̃0l , L̃
1
l

}

, where L̃1l are the target patches as

L̃1l =
{

B̃i

∣

∣

∣ H̃i ≤ H̃th(l) , B̃i ∈ L̃l

}

. (11)

(11) uses the homogeneity values H̃i and a threshold value H̃th(l) to binary classify L̃l. Assuming

the maximum value of the slopes al of the NLF in (5) is amax. We define H̃th(l) as,

H̃th(l) = amaxH̃med(l) + c
e
b, (12)

where c
e
b = 1 and amax = 3. To calculate H̃med(l) we first divide L̃l into three sub-classes, then we

find the minimum H̃i in each sub-class and finally we find the median of the three values. When

class l contains overexposed or underexposed patches, H̃med(l) becomes very small. Therefore, the

offset ceb is considered to include noisy patches. Figure 4.3 shows sample target patches and their

connectivity with MI = 4. Spatial information from horizontal and vertical connectivity can be

used to form patch clusters as explained next.

4.2.3 Cluster selection and peak variance estimation

Due to complexity of noise and image structure, the variance based classification (11) by itself does

not describe the noise in the image. In addition to statistical analysis, we use a spatial analysis
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Figure 4.3: Target patches: different intensity classes are shown with different colors; each class consists of

several clusters of different sizes.

to extract a more reliable noise descriptor. We use connectivity of patches in both horizontal and

vertical directions to form clusters of similar patches. Next, for each cluster of connected patches

in the down-sampled image Ĩ , we first find the corresponding connected patches Bi (with size of

ReWe×ReWe) from the cluster Φ̈(l, k) in the input noisy image I and then eliminate the outliers

of cluster based on their mean and variance. Finally, we assess each cluster (after outlier removal)

based on the intra- and inter-frame weights ω1 to ω11. Φ̈(l, k) represents the kth cluster of connected

patches in the class l before outlier removal.

Outlier removal

The removal of outliers in each cluster is based on Euclidean distance of both the mean and the vari-

ance. For each cluster the patch with higher probability of homogeneity is defined as the reference

patch and patches out of certain Euclidean distance are removed. Assuming Φ̈(l, k) represents the

kth cluster of connected patches in the class l before outlier removal, we define the reference value

of variance and mean of each cluster as,

σ2ref (l, k) = min{σ2Bi
} , Bi ∈ Φ̈(l, k), µref (l, k) = mean [Bref (l, k)] ,

Bref (l, k) = arg min
Bi∈Φ̈(l,k)

{σ2Bi
}, (13)
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where Bref (l, k) is the patch with the minimum variance in Φ̈(l, k) and its variance σ2ref (l, k) and

mean µref (l, k) are considered references. By defining two intervals using two thresholds, the

cluster after outlier removal is,

Φ(l, k) =
{

Bi

∣

∣ |σ2Bi
− σ2ref (l, k)| ≤ T

e
σ(l, k)∧

|µBi
− µref (l, k)| ≤ T

e
µ(l, k) ∧Bi ∈ Φ̈(l, k)

}

(14)

where T
e
σ(l, k) and T

e
µ(l, k) are the variance and the mean thresholds that are directly proportional

to σ2ref (l, k) as,

T
e
σ(l, k) = c

e
σ · σ2ref (l, k); T

e
µ(l, k) = c

e
µ ·

σref (l, k)

Re ·We
, (15)

where c
e
σ = 3 and c

e
µ = 4. These parameters are selected based on the maximum possible slope

amax.

Cluster ranking

For each outlier-reduced connected cluster Φ(l, k), we first compute the weights ωj(l, k) and then

select the final homogeneous cluster Φ̂ by examining up to 11 criteria such as low and high fre-

quency relationship, size of cluster, and variation noise power in each cluster. Based on each crite-

rion we assign a weight to each cluster and the summation of all weights define the highest ranked

cluster as

Φ̂ = argmax
Φ(l,k)

( 11
∑

j=1

ωj(l, k)

)

. (16)

We define the weights in section 4.2.7. We define the peak noise level σ2p in the input noisy image

as the average of the patch variances in the cluster ranked highest Φ̂, i.e., best represents random

noise,

σ2p =

∑

σ2Bi

Np{Φ̂}
, Bi ∈ Φ̂, (17)

whereNp{Φ̂} is the number of patches in Φ̂. σ2p is the peak variance because we give higher weights

to cluster with higher variances. Estimates of {0 ≤ ωj(l, k) ≤ 1} are proposed in sections 4.2.7-

4.2.8. Figure 4.4 shows selected clusters in the different intensity classes of Figure 4.3.
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Figure 4.4: Highest-ranked clusters in different intensity classes, MI = 4.

4.2.4 Moderately processed noise estimation

In processed images, the assumption that the noise is frequency-independent in each homogeneous

cluster is incorrect. In such situations, the variance of selected cluster σ2p (17) does not represent the

true level of the noise in the unprocessed noisy image because some frequency components of the

noise have been removed. In many applications such as enhancement, the level of the unprocessed

(original) noise is required. To estimate this original noise, the relation between low and high

frequency components is necessary to trace the deviation from whiteness because we assume that

the degree of noise removal in high frequency and low frequency is different. Let ĒLF represents

the variance of low-pass filtered pixels of Φ(l, k) and ĒHF represents the median of the power of

high-pass filtered pixels of Φ(l, k). We define,

Er =
ĒLF

ĒHF

=
c
e
e · Var {hlp ∗ Φ(l, k)}

Median {|hhp ∗ Φ(l, k)|2}
(18)

where ∗ is convolution, hlp is a 3×3 moving average filter, and hhp = 1 − hlp a high-pass filter. 1

has zero elements except one at the center. With the given low-pass filter, according to the median

of Chi-squared distribution c
e
e = 8(1 − 2

9)
3 = 3.7. The ratio Er increases with spatial filtering

occurs. We select ĒHF as the median energy because high-frequency noise after filtering has an

impulse shape and is divided into high and low levels. In many cameras, the filtering process is

optional which allowed us to study the effect of this filtering on processed noise. Figure 4.5 shows

the low-to-high ratio of homogeneous regions in different raw and processed images. The more
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noise deviates from whiteness, the higher Er is.

Figure 4.5: Low-to-High frequency power ratio of homogeneous regions in raw and processed images taken

by 7 different cameras (Canon EOS 6D, Fujifilm x100, Nikon D700, Olympus E-5, Panasonic LX7, Samsung

NX200, Sony RX100). Homogeneous regions are manually selected.

To approximate the processing degree γ of (4), we have studied the effect of applying anisotropic

diffusion [22] and bilateral filters [21] on synthetic WGN. Figure 4.6 shows the relation between

ĒLF and ĒHF and how Er relates to γ. We propose linear approximation of γ as

γ = 1.4Er. (19)

We temporally stabilized γ as in section 4.2.6. As shown in Fig. 4.6(b) at γ ≈ 3.5, the approximation

becomes less accurate.

Figure 4.6: Relation between the filter strength and low-to-high average frequency power ratio (a). Linear

approximating γ using the low-to-high ratio (b).
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4.2.5 Noise level function approximation

We estimate the NLF based on the peak noise variance σ2p of the selected cluster Φ̂ defined in (17)

and employ other outlier-removed clusters Φ(l, k) to approximate the NLF. First, we set all the

initial NLF curve Ω̂(.) to σ2p , which means the noise level is identical in all intensities (Gaussian).

Then, we update the Ω̂(.) based on Np{Φ(l, k)} the size (i.e., number of patches) and on σ2(l, k)

the average of the variances of cluster Φ(l, k). We assign a weight (confidence) Γ(l, k) to σ2(l, k):

the larger Np{Φ(l, k)} is, the better σ2(l, k) represents the noise at intensity µ(l, k), meaning the

closer Γ(l, k) should be to 1. The point-wise NLF Ω̂(.) is then,

Ω̂ (µ (l, k)) = min

(

σ2p,
1

Γ(l, k)
· σ2(l, k)

)

. (20)

Γ(l, k) = 1− exp(−Np{Φ(l,k)}
c
e
Γ

) meaning clusters with smaller number of patches, are less reliable.

c
e
Γ = 5 calculated numerically: let the large clusters with 15 (or more) patches be completely

reliable, i.e., Γ(l, k) = 1, then from the 3σ rule c
e
Γ = 5. Finally, the continuous NLF Ω(.) can be

approximated from Ω̂(.) by applying a regression analysis, e.g., curve fitting as illustrated in Fig. 4.7

using polyfit of Matlab. Under WGN, Ω̂(µ(l, k)) is constant equal to σ2p . Under SDSCN, Ω̂(µ(l, k))

is reduced by factor γ but the normalized NLF shape is not altered. Thus, with σ2o = γ · σ2p as in

(4) under SDWN in each cluster the proposed method can estimate the NLF whether the noise is

processed or white.

Figure 4.7: Illustration of NLF approximation.
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4.2.6 Estimate temporal stabilization

In many video applications, instability of noise level is intolerable, unless the temporal coherence

between frame is very small e.g., a scene change. Let ζt−1,t represent the similarity between the

current It and previous frame It−1; 0 ≤ ζt−1,t ≤ 1. ζ determines how the statistical properties

of new observation (i.e., image) are related to previous observations. Consider a process (such as

median) Oi(σ
2
t−i, ..., σ

2
t−1, σ

2
t ) to filter out outliers from the set of current σ2t and previous estimates

{σ2t−i}. When ζt−1,t = 1, the accurate estimate should be Oi(σ
2
t−i, ..., σ

2
t−1, σ

2
t ); when ζt−1,t = 0,

the accurate estimate is σ2t itself. So we propose the following linear stabilization,

σ̄2t = Oi(σ
2
t−i, ..., σ

2
t−1, σ

2
t ) · ζt−1,t + (1− ζt−1,t) · σ2t (21)

where, σ̄2t is the stabilized final noise variance in It. Note σ2t in (21) is σ2p in (17) at time t. The

stabilization process can be performed on both γ and the NLF to get γ̄2t and Ω̄t(.).

4.2.7 Intra-frame weighting

Noise in low frequencies

Image signal is more concentrated in low frequencies, however noise is equally distributed. Down-

sampled versus input images can be exploited to analyze noise in the low-frequency components.

The variance of finite Gaussian samples follows a scaled chi-squared distribution. But here we

utilize an approximation benefiting the normalized Euclidean distance,

ω1(l, k) = exp(−ce1 ·
(σ2(l, k)−R2e · σ̃2(l, k))2

(σ2(l, k))2
), (22)

where exp(.) symbolizes the exponential function, σ2(l, k) and σ̃2(l, k) are the average of variances

of the input and down-sampled patches in the cluster after outlier removal Φ(l, k). The positive

constant ce1 (e.g., 0.4) varies depending on the Re and the We. Low values of ω1(l, k) account for

image structure, which the signal is concentrated in low frequencies.
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Noise in high frequencies

The dependency of neighboring pixels is another criterion to extract image structure. The median

absolute deviation (MAD) in the horizontal, vertical and diagonal directions expresses this depen-

dency as

τi = median {|Bi(m,n+ 1)−Bi(m,n)|,

|Bi(m+ 1, n)−Bi(m,n)|,

|Bi(m+ 1, n+ 1)−Bi(m,n)|} ,

(23)

where 0 ≤ m,n ≤ Re ·We − 2. According to half-normal distribution σ2Bi
= 2erf−1(0.5) · τ2i =

1.1τ2i , where erf−1 is the inverse error function. We profit from this property to extract the likelihood

function of neighborhood dependency. Assuming for each Φ(l, k), τ(l, k) is the average of τi of the

blocks in the Φ(l, k). Under WGN we define the following likelihood function,

ω2(l, k) = exp(−ce2 ·R2e
(σ2(l, k)− 1.1τ2(l, k))2

(σ2(l, k))2
). (24)

For a Gaussian random variable, ce2 can be computed by numerical analysis, however, we considered

a more relaxed value c
e
2 = 0.2 to handle both unprocessed and processed noise. Low values of

ω2(l, k) mean a strong neighboring dependency, which is a hint of image structure. In case of white

noise, we analyze the MAD versus variance to estimate if the patch contains structure. Thus, in final

estimation step we use 1.1τ2(l, k) instead of σ2(l, k) for patches with structure.

Size of the cluster

The target patches are more concentrated in homogeneous regions and the size of the homogeneous

region should be large enough to precisely represent the noise statistics. Therefore, larger cluster has

a higher probability of presenting the homogeneous regions. However, a linear relationship between

cluster size and the corresponding weight is not advantageous, since once it is past a certain size,

sufficient noise information can be obtained. We propose the following the weight for the size of

the cluster,

ω3(l, k) = 1− exp(−ce3 ·
Np{Φ(l, k)}
Np{I}

), (25)
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where Np{Φ(l, k)} and Np{I} are the number of patches in Φ(l, k) and the input image, respec-

tively. We compute c
e
3 numerically: assuming we divide the image into a grid of 5×5 and each

grid unit, containing 4% of the image, is large enough to give ω3(l, k) = 1; with the 3σ rule,

c
e
3 =

3
0.04 = 75.

Variance of means and variance of variances

In a homogeneous cluster with relatively large number of pixels in each patch, the normalized value

of the variance of variances σ̈2(l, k) and variance of means µ̈(l, k) of {Bi ∈ Φ(l, k)}, should be

small. And so we propose,

ω4(l, k) = ω3(l, k)exp(− σ̈
2(l, k)

σ4(l, k)
), (26)

ω5(l, k) = ω3(l, k)exp(− µ̈(l, k)

σ2(l, k)
), (27)

where

σ̈2(l, k) =

∑
(

σ2Bi
− σ2(l, k)

)2

(Np{Φ(l, k)})2 − 1
, µ̈(l, k) =

∑

(µBi
− µ(l, k))2

(Np{Φ(l, k)})2 − 1
.

In equations (26) and (27) ω4(l, k) and ω5(l, k) are directly proportional to ω3(l, k). Without this,

it is probable to assign high values to ω4(l, k) and ω5(l, k) when the cluster has a small number

of patches even though it is not homogeneous. Uniformity of mean and variance describes cluster

homogeneity and leads to high value of ω4(l, k) and ω5(l, k).

Intensity margins

Excluding the intensity extremes from the estimation procedure can be problematic when the signal

margins are informative. For instance, the elimination of dark intensities in an underexposed image

leads to the removal of the majority of data and, consequently, inaccurate estimation. We propose

thus negative weights to margins,

ω6(l, k) = −(
max(µ(l, k)− IH, 0)

1− IH
+

max(IL − µ(l, k), 0)
IL

), (28)
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where IH = 0.9 and IL = 0.06.

Variance margins

There are cases where underexposed or overexposed image parts with very low variances are not

observed in the intensity margins. On the other hand, extremely high variances signify image struc-

ture. For consumer electronic related applications, the PSNR usually is not below a certain value

(e.g., 22dB). Thus, similar to intensity margins, variance margins also affect the homogeneity char-

acterization. We propose thus the following weight,

ω7(l, k) = −exp

(

−σ
2(l, k)

σ2min

)

− exp

(

−δ(l, k)
σ2max

)

, (29)

where δ(l, k) = max(σ2(l, k)− σ2max, 0) , σ2min = 5 and σ2max = 200 are variance margins.

Maximum noise level

Under SDWN, the maximum noise level distinguishes the signal and noise boundary. Hence, the

maximum noise level and the corresponding intensity can be used to estimate the NLF. As a result,

the Φ(l, k) with the maximum level of the noise should be ranked higher. However, some consider-

ation should be taken into account in order to exclude clusters containing image structures for this

weighting procedure. The basic assumption that noise variance slope is limited helps to restrict the

maximum level of noise in each intensity class. So,

σ2peak(l) = min
{

amaxmedian
[

σ2(l, k)
]

, max
[

σ2(l, k)
]

} , (30)

where σ2peak(l) is the expected peak of noise in the class l. By outlining a valid noise variance

interval, the weight can be defined as follows,

ω8(l, k) = exp






−

[

σ2peak(l)− σ2(l, k)
]2

σ4(l, k)






. (31)
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Clipping factor

Due to bit-depth limitations, the intensity values of the input images are clipped in low and high

margins. We propose a weight according to 3σ bound,

ω9(l, k) = exp(− µ2
clip

2σ2(l,k)
)− 1;

µclip = max [µ(l, k) + 3σ(l, k)− 1, 0]+

max [µ(l, k)− 3σ(l, k), 0] ,

(32)

where 1 and 0 are maximum and minimum intensity. If all pixels are in the 3σ bound, µclip = 0.

4.2.8 Inter-frame weighting

Utilizing only spatial data in video signals may lead to estimation uncertainty, especially in pro-

cessed noise, where the relation between low and high frequency components deviates from WGN,

which in turn makes structure and noise differentiation more challenging. Another issue to consider

in video is robust estimation over time especially in joint video noise estimation and enhancement

applications.

Temporal error weighting

Assume B(i,t) is ith patch in the noisy frame It at time t, and B(i,t+m) is corresponding patch in the

adjacent noisy frame at time t +m, where m = ±1. Based on which adjacent frame (previous or

following) has less temporal error for whole frame m is set to −1 or +1. Assuming the noise level

does not change through time the matching (or temporal consistency) factor can be defined as,

ω10(l, k) =
∑

exp

(

−
(

σ(Bi,t) − σ(Bi,t+m)

)2

σ2(Bi,t)

)

, (33)

where B(i,t) ∈ Φt(l, k), and Φt(l, k) is the kth connected cluster of class l in It. Since the ho-

mogeneity detection is applied on the input noisy image, there is no guarantee that the temporal

B(i,t+m) is also homogeneous. Therefore, high temporal error of few patches should not signifi-

cantly affect ω10(l, k). For this, we analyze each patch error and aggregate all matching degrees.

This is more reliable than assessing the aggregated variances.
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Previous estimates weighting

In video applications, noise estimation should be stable through time and coarse noise level jumps

are only acceptable when there is a scene (or lighting) change. Therefore, the cluster with the

variance closer to previous observation is more likely to be the target cluster. Assuming σ2t−1 is the

estimated noise σ2p for previous frame, we define the following to add temporal robustness,

ω11(l, k) = ζt−1,texp

(

− [(σt−1 − σ(l, k)]
2

σ2t−1

)

, (34)

where 0 ≤ ζt−1,t ≤ 1 measures scene change estimated at patch level. Assuming the tempo-

rally matched patches have the mean error less than 2σ2max/(W
2
e ), the ratio of temporally matched

patches to the whole patches defines the ζt−1,t. Note that (34) guides the estimator to find the most

similar homogeneous region in It−1.

4.3 Application specific adaptation

In the course of our research and development, there were application (industrial) specific aspects

of estimation requiring solutions. We developed the following solutions to these issues.

4.3.1 Camera settings and user input

For a specific digital camera, the noise type and level can be desirably modeled using camera pa-

rameters such as ISO, shutter speed, aperture, and flash on/off. However, creating a model for each

camera requires excessive data processing. Also such (meta) data can be lost for example, due to

format conversion and image transferring. Thus, we cannot only rely on the camera or capturing

properties to estimate the noise; however, these data, if available, can support the selection of homo-

geneous regions and thereby increase estimation robustness. Assuming based on camera settings we

can find the range of noise level, patch selection threshold H̃th(l) in (12) can be modified according

to this range. We can also use variance margin weights in (29) to reject out of range values. We will

show related results in the experimental section.

In some video applications such as post-production, users require manual intervention to adjust
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the noise level for their specific needs. Assuming user knowledge about the noise level can define

the valid noise range, the variance margin used in (29) can be used to reject the out of range clusters.

4.3.2 Heavily processed noise

In section 4.2.4 we presented a method to estimate the processing degree γ for moderately processed

noise. With moderately processed noise model we can estimate the amount of original noise level

before processing. This model is useful in removing moderately processed noise by applying a

WGN filter on the original image scale. However, if the noise is heavily processed, we need to

apply the WGN filter on the different image scales. In chapter 2, we explained that if we downscale

the image the noise becomes less spatially correlated and we use this feature to remove noise. For

heavily processed noise, we need the knowledge of inter-scale noise statistics. Assuming we have

detected the homogeneous region Φ(l, k) contains no signal, we model the noise using three values,

the STD of pixel values in homogeneous region σp, γ̂0 deviation from whiteness at the original

resolution, and γ̂1 deviation from whiteness at the downscaled by 2 resolution. In sections 5.3 and

6.2.6 we have explained how we use these parameters to adapt our filters to SCN. To define γ̂0 and

γ̂1, let us assume a 3×3 Gaussian filter ha as the anti-aliasing filter in the downsampling process.

We downscale Φ(l, k) by 2 and 4 and compute their STDs as σp,1 and σp,2. We define γ̂0 and γ̂1 as,

γ̂0 =
σp,1

σp
√

∑

h2a
, γ̂1 =

σp,2

σp,1
√

∑

h2a
. (35)

If the noise is WGN γ̂0 = γ̂1 = 1. If the noise is processed, γ̂0 > 1 and if the noise of downscaled

image is also processed (i.e., the radius of spatial correlation is higher than 1) γ̂1 > 1.

4.3.3 Tone-mapping of high dynamic range video

The assumption that absolute slope NLF is smaller than amax is not accurate for HDR images. Due

to nature of HDR capturing, the level of noise rapidly changes in the intensity domain. Thus, we

propose a forward tone-mapping before noise estimation to equalize the noise level. After apply-

ing the noise estimation and reduction, we apply the backward tone-mapping to get the original

histogram. Typical tone-mapping algorithms use the minimum and maximum value of pixels to
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estimate the tone-mapping function. It is common that the minimum and maximum value changes

significantly between frames and different tone-mapping function lead to tone shift between frames

which makes the temporal data useless. Besides most of the typical tone-mapping algorithms are

not easily invertible and consequently cannot be used for denoising purposes. We have analyzed a

large set of HDR data and we concluded that the mean of the frame is a reliable value to estimate

the tone-mapping function and if there is a temporal coherency between the frames, mean does not

significantly change. We propose a simple tone-mapping function using a gamma correction with

a fixed value (12 ) followed by a scaling based on the mean of the image. For an input image I we

propose the following tone-mapping function

Ï = I
1
2

c
e
tm

MEAN(I
1
2 )
, (36)

where Ï is the tone-mapped output cetm is extracted experimentally and set to 0.4.

4.3.4 Adapting algorithm constants to noise types

The proposed algorithm includes constants that are defined to give the best results when the noise

is not heavily processed. If we adapt those constants to the degree of spatial correlation we can

increase the estimation accuracy. This degree does not need to be accurate since we use it only to

tune the parameters of algorithm that provides an accurate estimation. In order to pre-estimate the

degree of processing, we propose to first find the patch with minimum variance and maximum noise

in HF as in ω2. With both criteria, the patch is likely to include only noise. Then we calculate ω2 for

that patch and denote it as ω̂2. ω̂2 is the pre-estimated degree of processing and ω̂2 ≪ 1 is a hint for

heavily processed noise. The important constant, which becomes adaptive to pre-estimated degree

of processing, is ceµ in the outlier removal (15). When the noise in a cluster becomes processed, the

variance of patch decreases while its mean remains unchanged and the relation between mean and

variance deviates from our model. We propose to use ω2 of the hint patch, thus we modify c
e
µ = 4

to 4
ω̂2

to adapt the constant to pre-estimated degree of processing.
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4.4 Experimental results

In the following sections, we first discuss the parameter selection and then we evaluate the quality of

the proposed estimation of WGN, SDWN, SDSCN, and NLF separately, and we show how camera

settings and user input improve the estimation. We also discuss implementation issues.

4.4.1 Parameter selection

The down-sampling rate Re is a function of image resolution. For example, Re = 2 for low reso-

lution (less than 720p) and Re = 3 for higher resolutions. As a result, noise estimation parameters

become resolution independent. We have set the down-sampled patch size We to 5. The higher the

number of classes MI is, the better the NLF can be approximated. The downside is, however, too

small classes and invalid statistics, such as σ2repl . Experimentally, best value for MI is either 3 or

4. We used MI = 4. All constant parameters used in the proposed weights are given directly after

their respective equations, and we have used the same set of values in all results in this work.

The proposed homogeneous cluster selection can be performed either on one channel of a color

space or on each channel separately. Normally the Y channel is less manipulated in capturing pro-

cess and therefore noise property assumptions in it are more realistic. Our observation confirms that

adapting the estimation to Y channel leads to better video denoising. We, therefore, use estimated

target cluster in the Y as a guide to select corresponding patches in chroma. Utilizing these patches,

we calculate the properties of chroma noise, i.e., σ2p and γ according to (17) and (19). Due to space

constraint, simulation results here are given for the Y channel.

Target patches in (11) can be recalculated in a second iteration by adapting the H̃min(l) to σ2p

(estimated in first iteration). A finer estimation can be performed by limiting the bound meaning

smaller value for amax. The rest of the method is the same as in the first iteration. The complexity

of a second iteration is very minor and much less than the first one since patch statistics are already

computed. However, our tests show that a second iteration improves the estimation results slightly,

not justifying iterative estimation.
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4.4.2 White Gaussian noise (WGN)

We have selected six state-of-the-art approaches Yang2010 [33], [34, 35, 50], Tian2012 [32], and

Ghazal2011 [31] and evaluated their performance on 14 test images as in Fig.4.8. We generated

noisy images by adding a zero-mean WGN to the ground-truth, with 4 levels of standard deviation,

from 4 to 16 with the step of 4 and we run 10 Monte-Carlo experiments for each noise level. Table

4.1 demonstrates mean of absolute errors of related and proposed method which outperforms. The

average variance of the error for our method compared to related methods is similar and is not

given here. Method [34] and [35] give the closest results. Fig.4.9 also shows examples of selected

homogeneous clusters.

Figure 4.8: Test images for WGN experiment: Lena, Barbara, Boat, Peppers, and ten images from the

TID2008 database.

Table 4.1: WGN: Absolute estimation error averaged over test images in Fig. 4.8.

Noise STD Ref [33] Ref [34] Ref[35] Ref[50] Ref [32] Ref [31] Ours

4 0.69 0.25 0.23 0.80 0.82 0.51 0.22

8 0.46 0.17 0.15 0.72 0.50 0.33 0.15

12 0.31 0.15 0.15 0.93 0.73 0.33 0.14

16 0.22 0.16 0.24 1.21 0.78 0.42 0.15

Figure 4.9: Homogeneity selection under WGN σ = 8 (a) and σ = 4 (b).
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We also tested the proposed method in video signals and Fig. 4.10 shows average result of noise

estimation with and without using temporal data for the first 100 frames of two sequences. Collab-

oration of inter-frame weighting (33), (34) and temporal stabilization (21) improves the estimation.

In this figure, we also compare to [35] as closest related work from Table 4.1.

Figure 4.10: Stability of the proposed method in video signals under WGN σ = 8 with and without tem-

poral weights. We give the mean of absolute error (MAE) over 100 frames of the Stefan and Flower se-

quences. Both inter-frame weighting (33), (34) and estimate stabilization (21) led to better estimate compared

to Liu2012 [35].

4.4.3 Signal-dependent white noise

To evaluate the performance of the proposed estimation of SDWN, we tested six state-of-the-art

approaches Yang2010 [33], [34, 35, 50], Tian2012 [32], and Ghazal2011 [31] on seven real-world

test images see Fig.4.11, intotree from SVT HD Test Set, tears from Mango Blender and 5 other

real-world noisy images that were taken in raw mode, where noise is visibly signal-dependent. To

objectively evaluate the SDWN estimator without a reference frame, we combine the denoising

method BM3D[20] with noise levels provided from ours and related estimators. The output perfor-

mance is verified through the no-reference quality index MetricQ [36]. Table 4.2 compares MetricQ

of denoised images with a higher value indicating better quality. The proposed method yields higher

quality than related methods, where [32] and [50] achieve closest results. IVHC avoids underesti-

mation by selecting the cluster with higher variance. Fig.4.12 shows examples of selected homoge-

neous clusters and Fig.4.13 shows visual comparison of noisy and noise-reduced image parts. As
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can be seen, by using IVHC noise is better removed.

Table 4.2: MetricQ comparison of SDWN removal.

Image Ref [33] Ref [34] Ref[35] Ref[50] Ref [32] Ref [31] Ours

Church 10.35 7.90 10.10 8.41 10.69 10.70 11.08

Intotree 9.34 7.71 7.24 8.98 10.56 10.06 11.49

Painting1 22.48 17.19 20.37 25.20 22.26 21.57 25.27

Painting2 19.58 15.62 16.86 20.14 20.67 20.11 21.83

Office 12.08 10.01 10.18 11.93 11.60 10.61 13.10

Room 11.06 9.56 10.31 11.18 10.84 10.01 12.49

Tears 12.05 11.09 10.89 11.22 12.23 12.02 14.14

Average 13.85 11.30 12.28 13.87 14.12 13.58 15.63

Figure 4.11: Real-world images corrupted with SDWN: room (1296×968), painting1 (1296×968), painting2

(1296×968), church (1296×968), intotree (1920×1080), tears (1600×1080) and office (1400×1080).

Figure 4.12: Examples of homogeneity selection for real SDWN.

We have also evaluated our SDWN estimator to denoise video signals using BM3D. Fig. 4.14

confirms the better quality of our method compared to closest related methods (from Table 4.2) for

150 frames of the intotree sequence.

4.4.4 Signal-dependent spatially correlated noise

If the observed noise is SDSCN, downscaling has the effect of converging it to white. This in turn

leads to better patch selection under processed noise. Moreover, since our method uses a large patch
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Figure 4.13: Real-noise removal examples using BM3D. (a) original. (b) noise estimated using [33]. (c)

noise estimated using IVHC. Noise is left in (b) while it is efficiently removed in (c).

Figure 4.14: MetricQ of real noise removal using different noise estimators Yang2010 [33], Tian2012 [32],

Ghazal2011 [31] and ours for Intotree sequence.

size, it leads to include more low frequencies and more realistic estimation. Fig. 4.15 shows better

performance of the proposed method with γ adjustment in (4), and compared to the related method

[35] (which we selected since it is closest to our method under σ = 8 in Table 4.1). To evaluate our

method under real-world processed noise, we chose 6 images (4 from iPhone 5 and 2 from iPhone

6) and apply BM3D[20] using noise levels provided by [34], [35], and proposed IVHC. Table 4.3

and Fig. 4.16 show that objectively and subjectively noise is better removed based on IVHC.

Table 4.3: Real-world processed noise removal using BM3D for 6 images captured by smartphones.

Method: Ref [34] Ref [35] Ours

Average MetricQ: 13.95 15.34 18.77
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Figure 4.15: Processed synthetic noise in Stefan video: σ2
p and σ2

o = γσ2
p in PSNR (original WGN σ = 8

then filtered by bilateral filter [21]) compared to Liu2012 [35].

Figure 4.16: Real-world processed noise removal using BM3D: (a) original image has MetricQ=14.61 , (b)

denoised based on [35] has MetricQ=15.77, (c) denoised based on [34] has MetricQ=18.15, and (d) denoised

based on IVHC has MetricQ=23.32. Noise is much better removed in (d).

4.4.5 Noise level function

We applied the proposed NLF estimation on images with synthetic and real SDWN. The ground-

truth for real SDWN images has been extracted manually (i.e., subjectively extracted homogeneous

regions). Two state-of-the-art methods [6] and [52] are selected for comparison. Fig. 4.17 shows

NLF results and Table 4.4 shows the root mean squared error (RMSE) and the maximum error

comparison. Proposed IVHC has a better performance of finding the noise level peak especially

when the level is greater in higher intensities (e.g., Intotree signal).
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Figure 4.17: Estimated NLF for SRx100II (a), Intotree (b), Salpha77 (c) and Sintel (d). Noise in (a) and (b) is

real and in (c) and (d) synthetically added. Liu2008 [6], Foi2008 [52], and ours are compared to ground-truth.

Table 4.4: RMSE and maximum of error of NLF in noisy images SRx100II (real), Intotree (real), Salpha77

(synthetic) and Sintel (synthetic).

Image Ref [6] Ref [52] Ours

Liu2008 Foi2008

RMSE MAX RMSE MAX RMSE MAX

SRx100II 3.41 7.29 3.30 5.47 1.99 3.35

Intotree 11.17 17.87 7.31 9.95 4.10 6.04

Salpha77 4.40 7.45 3.38 5.63 2.52 3.89

Sintel 3.88 7.44 3.49 6.03 3.55 5.59

Average 5.71 10.01 4.37 6.77 3.04 4.72

4.4.6 Camera settings and user input

The more image information is provided, the more reliable estimation can be performed. Capturing

properties if available as a meta-data can be useful for guiding the cluster selection procedure.

To test this, we have selected 10 highly-textured images taken by a mobile camera (Samsung S5)

in the burst mode without motion. First, we manually found the ground-truth peak of the noise

by analyzing the homogeneous patches and temporal difference of burst mode captured images.

Second, we applied our noise estimator using only Intra-frame weights and the estimated PSNR

when compared the ground-truth show an average estimation error of 1.2 dB. In the last step, we

have adapted both the patch selection threshold H̃th(l) in (12) and variance margin weight ω7(l, k)
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in (29) to the meta-data brightness value and ISO. This led to more reliable estimation with average

error of 0.34dB in PSNR.

Performance of image and video processing methods improves if expertise of their users can

be integrated. Our method easily allows for such integration, for example, if the user of an offline

application can define possible noise range, the proposed variance margin (29) can be used to reject

the out of range clusters.

4.4.7 Implementation issues

The source codes of [33–35, 50] was obtained from the authors’ websites. All, but [33], are im-

plemented using Matlab combined with MEX functions. [33] is a pure MEX code. We have im-

plemented [32], [31], and our method using Matlab combined with MEX functions. For a fair

comparison to [33], we have implemented our method using pure MEX functions. We measured

the processing time of related methods using a 3.07 GHz, i7 CPU. Table 4.5 shows the results. The

proposed method is significantly faster than the related methods (in both Matlab and MEX). This is

mainly because our method deals with down-sampled images.

Table 4.5: Average of elapsed time in seconds to process 10 HD (1920×1080) frames from intotree sequence.

Ref [34] Ref[35] Ref[50] Ref [32] Ref [31] Ours Ref [33] Ours

Matlab Matlab Matlab Matlab Matlab Matlab Mex Mex

17.70 7.65 9.73 21.01 10.06 0.98 1.15 0.03

4.5 Conclusion

Noise estimation methods typically assume video noise is white Gaussian. This thesis bridges

the gap between the relatively well studied white Gaussian noise and the more complicated white

signal-dependent and non-white processed types. We proposed a noise estimation method that

widens noise assumptions based on the classification of intensities (or color) and on the extraction

of weights using statistical noise property and homogeneous regions in the images. The classifica-

tion of intensities into connected clusters of homogeneous patches allowed us to well approximate

the noise level function. We estimated the degree of processed versus white noise as a ratio of low
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to high frequency energies in the input image. Another important feature of our method is its use of

both the input noisy image and its down-scaled version. This allowed better differentiation of noise

and structure and fast processing. We have shown that the developed visual noise estimation method

robustly handles different type of visual noise: white Gaussian, white Poissonian-Gaussian, and pro-

cessed (non-white) that are visible in real-world video signals. Our simulation results showed the

superiority of the proposed method both in accuracy and speed.

For the real-world experiment, simulation results have been tested for very challenging se-

quences. Simulation results in this thesis are given for the gray-level format of test video sequences.

However, we have tested our method on color sequences and it also outperforms related work.
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Chapter 5

Transformation of WGN Filter to

Handle SDSCN

5.1 Overview

Recent advances in video denoising [8–10, 12, 15, 17–19] oversimplifies noise model assuming

WGN, however, as discussed in the chapter 2 noise is often signal-dependent spatially correlated

(SDSCN). This led us to the problem of how we can use these effective methods to remove SD-

SCN. Thus, we propose an approach that converts a WGN filter into a filter which able to remove

SDSCN. This approach comprises four steps; 1- equalization of noise level in the intensity domain,

2- equalization of noise in the frequency domain using the property of the noise in different image

scales, 3- remove the resulting noise using any WGN denoiser, and de-equalization to get the origi-

nal histogram. Our approach removes the SDSCN using any WGN filter. To make the noise WGN

we convert SDSCN to WGN by equalizing the noise in both intensity and frequency domains (see

Figure 5.2). We use an invertible transform to map pixel intensity into another histogram where

noise becomes signal-independent. Thus, we can apply a WGN filter to remove noise and then con-

vert back the intensities into the original histogram as shown in the Figure 5.1. In order to address

the non-uniformity of the noise level in frequency domain we propose a multi-scale WGN filtering.

In the following, section 5.2 discusses our proposed method to equalize the noise level in the

intensity domain, section 5.3 explains our proposed noise level equalizer in the frequency domain,
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Figure 5.1: The proposed approach to address signal-dependent and spatially correlated noise.

Figure 5.2: Noise level equalization in both intensity and frequency domains.

and section 5.4 presents simulation results to validate our approach.

5.2 Noise level equalization (SDSCN to SCN)

We propose an invertible transform that maps the intensity values to another histogram where the

noise becomes signal-independent. The forward transform (noise equalizer) equalizes the level

of noise for all intensities. The inverse transform de-equalizes the pixel intensities to create the

same histogram as the original input. Once the noise is equalized, we can use signal-independent

denoising algorithms to remove signal-dependent noise optimally (see Figure 5.1).

Let us consider a noise equalizer ν(I) that maps the intensity value I to a noise equalized

Iq = ν(I). ν(·) should be invertible (Figure 5.1), i.e., ν−1(ν(I)) = I where ν−1(·) is the de-

equalizer. The NLF Ω(I) defines the variation of noise variance and we define Ω∗(I) =
√

Ω(I)

as a functions defines the STD of noise (see Figure 5.3). Let us consider a linear function for both

ν(I) and Ω∗(I) as ν(I) = cνI and Ω∗(I) = cΩI where cν and cΩ are constants and ν−1(I) = I
cν

is
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the de-equalizer functions. Then,

Figure 5.3: Principle of noise level equalizer. The slope of intensity mapping function changes the noise

level.

Ω∗(ν(I)) = Ω∗(cνI) = cνΩ
∗(I). (37)

Assuming we divide the whole intensity range into small intervals where both ν(I) and Ω∗(I) can

be assumed as linear function of I for each interval. Then cν and cΩ becomes local slopes. In this

case, (37) means the slope of ν(·) defines the STD of noise at intensity I . We use this property to

define the noise equalizer. Considering
∂ν(I)
∂I

as the slope of ν(I) at the intensity I and our objective

is to have a fixed noise level for all intensities we can write,

Ω∗(ν(I)) =
∂ν(I)

∂I
Ω∗(I) = σ∗eq. (38)

where, σ∗eq varies according to Ω∗ curve and represents the STD of the noise after equalization. (38)

can be rewritten as,

ν(I) =

∫ I

0

σ∗eq
Ω∗(I)

dI, (39)

and the slope of ν(I) becomes
σ∗eq
Ω∗(I) . As described in chapter 2 we use σp = MAX(Ω∗(I)) as the

input parameter of WGN filter. Thus, our objective is to equalize the noise and at the same time keep

the noise level at σp. That is σ∗eq = σp. Since Ω∗(I) > 0, ν(I) is strictly increasing and therefore

invertible, however, a definite form of the integral in the (39) is not available. In many cases such

as our proposed noise estimator, Ω∗(I) is estimated numerically and thus ν(I) can be estimated

numerically as well. We use a piecewise linear model to describe the Ω∗(I). We divide the intensity

interval, [0, 1] into Neq equal sub-interval and for each we model the Ω∗(I) as a linear function. Let

us consider the zi = Ω∗( i
Neq

) where 0 ≤ i ≤ Neq. For ith interval the line becomes aiI + bi where,
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ai = (zi+1 − zi)Neq and bi = zi − (zi+1 − zi)i. Thus for each interval the equalization function

(39) becomes,

ν(I) =

∫

σ∗eq
Ω∗(I)

dI = (40)

σ∗eq ×















1
ai

ln(aiI + bi) + Ci, if |ai| > T
r
eq

( ai
2zizi+1

)(I − i
Neq

)2 + 1
zi
(I − i

Neq
) + Ci, otherwise

zi ≤ I ≤ zi+1,

where ln(·) is the natural logarithm function and T
r
eq is constant. When ai = 0 or very small, for

instance |a| ≤ T
r
eq then ( 1

zi
≈ 1

zi+1
) the and logarithmic function can be approximated due to the

fact that,

lim
ai→0

ln( zi+1
zi
)

ai
=
zi+1 − zi
aizi

. (41)

To define Ci in (40), we consider two conditions, the zero point and the continuity. Since the

equalizer should not add any offset so ν(0) = 0, and C0 can be defined according to (40) Ci =

− ln(bi)
ai

when |ai| > T
r
eq and Ci = 0 otherwise. Since Ω∗(·) is continuous, ν(·) is continuous.

From the continuity condition the last point of each interval should be equal to first interval of next

interval as follows,

ln(ai+1
i

Neq
+ bi+1) + Ci+1 = ln(ai

i

Neq
+ bi) + Ci, |ai|, |ai+1| > T

r
eq, (42)

Thus, Ci+1 can be calculated from Ci. Starting from C0, all Ci can be calculated. To define T r
eq we

consider the case that ln can be linearly approximated i.e., ln(aiI + bi) ≈ ln(bi) +
aiI
bi

or aiI
bi
≤ 0.1

or
|zi+1−zi|

zi
= ai

Neqzi
≤ 0.1. In our NLF model we assume a limited slope ai (see chapter 2). This

forces the zi to have values higher than a limit. We consider this limit as
σp

2.5 (equal to 8dB lower

than σp). Thus,

T
r
eq =

Neqσp
25

. (43)

Figure 5.4 shows a random noise level function Ω∗(I) (top left) and the equalizer derivative (top

right) which is
σ∗eq
Ω∗(I) and the corresponding equalizer, ν(I) compared to a neutral mapping which

does not change the input, i.e. ν(I) = I .
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Figure 5.4: Top left is a random NLF Ω∗(I) with Neq = 8. Top right is the derivative of equalizer function

and bottom is the corresponding equalizer function compared to a neutral mapping.

The inverse equalizer function ν−1(I) of (40) is,

ν−1(Iσ∗eq) =















exp(Iai−Ciai)−b(k)
ai

, if |ai| > T
r
eq

I−ν( i
Neq

)

[ν( i+1
Neq

)−ν( i
Neq

)]Neq
+ i

Neq
, otherwise

ν(zi) ≤ I ≤ ν(zi+1), (44)

where ν−1(ν(I)) = I .

In computing the forward noise equalizer we start from the subsampled Ω∗(I), i.e., zi and we

compute the ai and bi. Using the zero-point and continuity conditions we find the Ci. Considering

that i = ⌊NeqI⌋ then we can compute ν(I) via (39). The backward (inverse) de-equalizer, however,

is more complex since finding the i requires to check all the points to meet the ν(zi) ≤ I ≤ ν(zi+1).

Firstly, we should compute the ν(zi) (or use the already computed in the forward) and search for

the i that lies between µ(zi) and ν(zi+1). Since ν(zi) is strictly increasing this search requires

log2(Neq) operations. By increasing the Neq the complexity of search increases, however, the ln(·)

and exp(·) are less used considering |ai| ≤ T
r
eq condition for all point. Note that T r

eq increases as

Neq increases. In our implementation, we use Neq = 8 which is sufficient for non-HDR images

since the slope of the NLF is not large.

62



5.3 Noise frequency equalization to handle SCN

Noise in Iq is SCN. In order to denoise Iq, denoiser should treat the noise differently in different

frequencies. In pixel domain, HF components of an image is represented in fine image scale (or

high resolution) and LF ones in coarse scale (or low resolution). We assume noise in coarsest

scale is white and the energy (here magnitude) of noise is equally distributed in all frequencies.

We use this property to equalize the noise power in all other scales. Assuming a transform can

equalize the noise power for all intensities and frequencies, we can use a WGN filter to remove

the transformed noise. Assuming noise is equalized for all intensities, we now propose a method

to transform SCN to WGN. Let us assume we decompose the image I l into downsampled LF I l+1

and HF I l − I l+1 (see Figure 5.5). In SCN the energy of noise is mostly concentrated in the LF.

Assuming the STD of LF noise, which is WGN, is σp,l+1, we suppress the noise in I l+1 using a

WGN filter I l+1WG = WGD(I l+1, σp,l+1). Thus, I l+1WG + I l − I l+1 will contain only HF noise. In

order to make the noise frequency level equalized, we need to restore back part of LF noise as

I le = I l + gl
[

I l+1WG − I l+1
]

, 0 ≤ gl ≤ 1, (45)

where I le is the image with equalized noise power in frequency components and gl is the restoration

factor of multi-scale filtering. WGD(·) can be any spatial or temporal filter such as those we pro-

posed in sections 6.2 and 6.3. Figure 5.5 shows the pyramid of noise equalization using two levels

of decompositions in 1-D. A heavily processed noise can be decomposed into different moderately

processed noises and we can use a WGN filter to remove each of these noises. The problem is now

to first find gl in (45) to obtain I le and second to find the STD of noise in the I le to remove noise in

I le afterward.

Figures 5.6 and 5.7 shows the block diagram of proposed SCN removal using WGN filter using

one and two levels of decompositions. To find STD of noise σe,l, assuming we decompose the

image into lmax scales where lmax contains WGN. For each scale l, we require the STD of noise σe,l.

This requires calculating lmax STDs which are calculated based on {γ̂0, γ̂1, . . . , γ̂lmax−1}, γ̂l ≥ 1 as

discussed in section 4.3.2. Downsampling rate defines how the spectrum is divided into LF and HF.

In order to have maximum information in both LF and HF bands, we propose dividing the spectrum
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Figure 5.5: Example for noise frequency equalization. Highly frequency-dependent noise (left) is decom-

posed to three (right and middle-bottom) less frequency-dependent noise.

equally with downscaling by 2. In 1-D downsampling, depending on the starting index (i.e., 0 or 1)

results in two different options. In 2-D downsampling, depending on the starting index (horizontally

or vertically), 4 possibilities exist. We take all information into account by rearranging the 4 images

according to Figure 5.8. Figure 5.9 shows the downsampled and rearranged Lena. At each level

level of γ̂l defines the degree of spatial correlation for noise at the lth scale of image. In practice

after maximum 2 level of decomposition, noise becomes white, thus we consider lmax = 2. The

parameters of noise frequency equalizer becomes σp, γ̂0 , and γ̂1 (see Figure 5.1).

Figure 5.6: Proposed SCN filter using WGN filter using 1 levels of decompositions.

To find γ̂l, let us first define the downsampling process. SCN has a LF nature and downsampling

process decreases the dependency to frequency (see chapter 2). We define the ha as the anti-aliasing

filter used for our downsampling process. We use 3×3 Gaussian filter (G-blur) for this purpose.

Optimal sigma value for G-blur depends on the cut-off frequency and correlation of signal pixels.

Our experiments show sigma of 0.75 is an optimal value. Assuming the noise is WGN in the lth

scale with power of σ2p,l, the noise variance of downsampled image becomes σ2p,l
∑

h2a. We define
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Figure 5.7: Proposed SCN filter using WGN filter using 2 levels of decompositions.

Figure 5.8: Downsampling and rearranging an 8×8 image. (a) shows original pixel positions. (b) shows pixel

positions for 4 different downsampled (by 2) images. (b) shows pixel positions for 16 different downsampled

(by 4) images.

the γ̂l as a ratio between expected value (if the noise is WGN) and observed value as

γ̂l =
σp,l+1

σp,l
√

∑

h2a
. (46)

If the noise is white, σ2p,l+1 = σ2p,l
∑

h2a and γ̂l = 1 and as the noise becomes more spatially

correlated γ̂l increases.

In order to find gl, we consider two margin constraints. In case of WGN all of filtering should

Figure 5.9: Downsampling and rearranging in for 2 scales (a) original image, (b) downsampled by 2 and

rearranged, and (c) downsampled by 4 and rearranged.
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be accomplished in finest scale, thus when γ̂l = 1 then gl = 0. For when the noise is spatially

correlated (by a G-blur h) according to (46) γ̂l =

√∑
[h∗ha]2√∑

h2
√∑

h2a
. In this case the anti-aliasing

filter ha is applied on the noise that is already processed. When h = ha most of noise power is

concentrated in the scale l+1 and to equalize the noise, all of noise in this scale should be removed,

i.e., gl = 0. Now we define gl using linear approximation as

gl = MIN(
1− (γ̂l)

−1

1−
∑

h2a√∑
[ha∗ha]2

, 1), (47)

where
∑

h2a√∑
[ha∗ha]2

= 0.56.

After applying (45) noise in I le is WGN. We need to find the power of equalized noise in I le to

set the second input parameter of WGN filter WGD(I le). Here also we utilize two margins. When

noise is WGN then σe,l = σp,l. When the noise is extremely correlated by ha, gl = 1 and the noise

power originally was
σ2
p,l∑
h2a

. Assuming WGD(·) is ideal, the noise at I le is equal to applying the filter

ha − ha ∗ ha to original WGN noise. ha − ha ∗ ha has the peak of frequency response 0.25. This

means if the noise is WGN with STD of 1 filtered by ha then σe,l = 0.25. However, the original

STD is assumed to be
σ2
p,l∑
h2a

. Thus, σe,l =
σp,l

4
√∑

h2a
. Since WGD(·) can not be ideal we consider

1.2σp,l

4
√∑

h2a
.We then estimate the input parameter of WGD(·), noise STD σe,l at lth scale as

σe,l = [crw + (1− c
r
w)(γ̂l)

−1]σp,l, (48)

where c
r
w = 0.4. In case of γ̂l = 1 noise is WGN and the input should be the STD of WGN, i.e.,

σe,l = σp,l. Since the number of taps in ha is small (3×3) and introduces aliasing, to compensate

for that we propose a second lowpass filtering before equalization and we modify (45) as

I le = I l + gl · ha ∗
[

I l+1WG − I l+1
]

, 0 ≤ gl ≤ 1, (49)

5.4 Experimental results

In this section we provide the experimental results for proposed SCN and signal-dependent noise

removal approach using WGN filter.
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5.4.1 Noise level equalization (SDSCN to SCN)

In order to test noise level equalization idea we have chosen 5 different NLF. Figure 5.10 shows

the 5 different NLFs used in these experiments. We added signal-dependent noise with peak value

σp = 12 to 16 images ( Lena, Barbara, Peppers and 13 images from TID2008) using 5 NLFs

in Figure 5.10. We used a high performance spatial filter DDID for denoising. The algorithm

of DDID has a pixel based operation and for each pixel different noise value can be considered

which makes the algorithm suitable for our experiments. We used three different ways to denoise

the noisy images. Firstly, we used the maximum level of the noise σp = 12. Secondly, we used

a per-pixel adapted noise meaning for each pixel it uses the noise level according to its intensity.

Finally, we used the Figure 5.1 approach with equalizer and de-equalizer. The input noise in this

case assumed to be uniform σp. Figure 5.11 shows the PSNR of three different denoising ways for

5 different NLFs. In average using equalizer increases the PSNR compared to adapted noise. These

experiments verify that noise equalization can be used to address the signal-dependency without

degrading the quality.

Figure 5.10: 5 different NLFs used to test the performance of noise equalizer. Ωeq = 0.75 for all cases except

for (c) which is Ωeq = 0.72.

5.4.2 Handling SCN

In order to test our proposed SCN removal we have considered 3 state-of-the-art denoising methods,

BM3D, VBM3D, and RF3D and we have compared the results. We have conducted two experiments

for still image and video denoising. For still image experiments we have selected first frame from
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Figure 5.11: PSNR results for denoising of synthetic signal-dependent noise using different NLFs in Figure

5.10. In average using equalizer increases the PSNR compared to adapted noise. Horizontal axis is image

number.

10 video sequences (see Figure 5.12) and we added SCN. To generate SCN we have filtered WGN

using 3×3 Gaussian blur using two different sigma 0.55 and 0.65 and two different STD 15 and 20.

We tuned the key input parameter of BM3D (noise STD) to find the highest performance. For our

method the input parameters, however, are fixed and computed as described in the section 5.3. For

instance the when sigma is 0.65 and STD is 20 σp = 9.1, γ̂0 = 1.6 and γ̂1 = 1. In this experiments

the proposed method is used the BM3D as the WGN filter (see figure 5.7). Figure 5.13 compares the

PSNR results for dataset-1. For both noise profile and all videos the proposed filter provide results

with higher quality in PSNR since it can better remove SCN. Figure 5.15 compares the visual results

for the SCN with sigma of 0.65.

The same experiment has been repeated for 10 video sequences Bus, Flower, Foreman, News,

ParkJoy, Rush hour, Soccer, Stefan, Stem, and Tennis. We compared the denoising result of video

denoiser VBM3D and proposed filter using VBM3D as the denoiser. VBM3D is tuned to provide

highest possible quality in PSNR. We have added two different SCN with same statistics as the

previous experiment. Figure 5.16 compares the average PSNR of 150 frames of 10 videos from

dataset Figure 5.14. For all cases the proposed filter better removes SCN and provides higher

PSNR. We have also tested the result of proposed filter that uses VBM3D as WGN filter compared
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to RF3D that is designed to remove SCN. For RF3D we have changed the input parameter which is

the power spectral density (PSD) of noise to reach the highest quality (PSNR). Figure 5.17 compares

the results for 150 frames. The SCN in this experiment is the same as Figure 5.16 (b).

Figure 5.12: Still image dataset-1. First frame of 10 videos Akiyo, Coastguard, Flower, Foreman, Hall, News,

Sean, Stefan, Tennis, and Bus.

Figure 5.13: (a) average PSNR for denoised first frames using tuned BM3D and proposed under SCN (WGN

with STD of 15 denoised by G-blur with sigma of 0.55). Average PSNR is 34.2dB for tuned BM3D and

33.6dB for proposed (b) PSNR for denoised frames using tuned BM3D and proposed under SCN (WGN

with STD of 20 denoised by G-blur with sigma of 0.65). Average PSNR is 31.7dB for tuned BM3D and

32.8dB for ours.

Figure 5.14: First frame of our video dataset used in synthetic noise video experiments.
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Figure 5.15: SCN removed by (a) tuned BM3D with PSNR=34.3dB (b) proposed with PSNR=36.7dB.

Figure 5.16: (a) average PSNR for denoised 150 frames of each using tuned VBM3D and proposed under

SCN (WGN with STD of 15 denoised by G-blur with sigma of 0.55). Average PSNR is 34.6dB for tuned

VBM3D and 35.06dB for proposed (b) PSNR for denoised frames using tuned VBM3D and proposed under

SCN (WGN with STD of 20 denoised by G-blur with sigma of 0.65). Average PSNR is 33.0dB for tuned

BM3D and 34.2dB for ours.

5.5 Conclusion

Many advances in removing WGN from videos encouraged us to develop a method that uses WGN

filter to remove real noise which is often signal-dependent spatially correlated (SDSCN). We pro-

pose an approach that converts SDSCN to WGN using noise level equalization in both intensity and

frequency domain. After this conversion, we use WGN filter to remove WGN and we apply de-

equalization to get the original histogram. We use an invertible transform to map pixel intensity into

another histogram where noise becomes signal-independent. In order to equalize the non-uniformity

of the noise level in frequency domain we propose a multi-scale WGN filtering. Our results show

that the proposed method is effective in removing SDSCN for many tested temporal, spatial and

spatio-temporal denoising methods.
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Figure 5.17: PSNR results under SCN noise for video sequences (a) Foreman (with the average PSNR of

34.4dB for tuned VBM3D, 35.3dB for tuned RF3D, and 36.0dB for proposed), and (b) News (with the average

PSNR of 36.39dB for tuned VBM3D, 37.30 for tuned RF3D, and 39.60dB for proposed using VBM3D as

WGN filter). SCN is the WGN filtered by G-blur with sigma of 0.65.
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Chapter 6

Band-Limited Anti-Blocking

Time-Space Filtering of Noise From

Different Sources

6.1 Overview

In chapter 5, we proposed an approach to enable WGN filter to reduce SDSCN. Our approach

can use any WGN filter, however, powerful video denoising techniques are either computationally

complex or introduce blockiness due to block-based processing. To address this, we propose a fast

band-limited anti-blocking temporal filter followed by a spatial filter to remove SDSCN. Our filter

is band-limited which decreases the blocking artifact and increases the effectiveness of temporal

filtering. Our temporal filter supports both recursive and symmetric temporal structure, however,

for high-quality denoising, we propose using STF because of the following reasons. In high-quality

applications (e.g., post-production) where processing lag (i.e., non-causal filter) and time is not

critical but the quality is, it is essential to use maximum possible information such as data of forward

frames (frames in future time). Another problem of recursive filter (RTF) is that depending on the

starting point in time, the results will be different for a specific frame which is not acceptable in

post-production application. Finally, in order to accurately estimate the amount of reduced noise
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Figure 6.1: Simplified block diagram of proposed automated video denoiser system: noise estimation (chap-

ter 4), transform SDSCN to WGN (chapter 5), and temporal and spatial filter (chapter 6).

after RTF, we need to store the temporal weights for many (theoretically infinite) previous frames

which is not practical. The temporal information is not always useful (e.g., when motion estimation

fails), thus we propose a spatial filtering to remove the residual noise left after temporal filtering. We

use a combination of small-kernel and large-kernel pixel-domain and frequency-domain approaches

to efficiently remove noise.

Figure 6.1 shows a simplified block-diagram for our automated video noise estimation and re-

duction. Our fast video denoiser comprises 1) SDSCN to SISCN transform, 2) motion estimation

between the current frame and symmetric preceding and subsequent frames, 3) motion-compensated

filtering using LMMSE estimator, 4) spatial filtering to remove residual noise left from temporal

filtering , and 5) intensity de-equalization. We benefit from the speed of block-matching motion

estimators, however, to minimize the blocking artifacts we utilize both band-limited filtering tech-

nique and two-band motion compensation. We also propose a procedure to correct the erroneous

motion vectors by creating a homography from reliable motion vectors.

Our contribution is a time-space denoiser that 1) operates on a video signal in gray-scale or

color space; 2) removes WGN, SDWN, SISCN, and SDSCN; 3) has an anti-blocking system in

motion compensation and temporal error detection; 4) uses a fast dual (pixel and transform) domain

spatial filter to estimate and remove residual noise of the temporal filter; 5) in-loop handles possible

noise overestimation; 6) uses reliability factors to calculate weights in temporal filter; 7) corrects

the erroneous motion vectors by creating a homography from reliable motion vectors; and 8) uses

two-band motion compensation to eliminate blocking. The proposed band-limited time-space video

filter BLTSF can be summarized as in Figure 6.2 and as in Algorithm 2.
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Algorithm 2 Band-limited time-space filter BLTSF

1: Estimate the MVs in 2R preceding, and subsequent frames.

2: Use the back-signal bt to find fore-signal Dt+m and motion-compensate one ~Dt+m.

3: Compute the coarse-level error probability using (71).

4: Compute the pixel-level motion error δ̂m and the estimator weights via (73).

5: Filter spatially the residual noise according to temporal reduction factor λ using (86).

Figure 6.2: Block diagram of proposed time-space filter.

In the remainder of this chapter, section 6.2 discusses our proposed band-limited recursive and

symmetric WGN and SCN temporal filtering, section 6.3 explains our proposed dual-domain WGN

spatial filtering, section 6.4 presents application oriented adaptation of our filter, and section 6.5

gives objective and subjective results.

6.2 Band-limited anti-blocking temporal filter

In this section propose a band-limited anti-blocking temporal filter. To simplify the explanation, we

first assume a recursive filter under WGN. Then, in section 6.2.5, we extend our approach to STF

and in section 6.2.6 we modify our method to handle all noise types.

6.2.1 Recursive temporal filter principal

Recursive temporal filters have the advantage of using the information of many previous frames in a

less complex structure compared to symmetric temporal filters. Linear minimum mean squared error
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(LMMSE) filters are efficient temporal filters which use blocks of current frame and motion com-

pensated and previously filtered frames to remove noise. The output is computed in pixel-domain

by combining the multiple temporal predictions and the current noisy observation. The objective is

to estimate the noise-free frame Gt from a noise-contaminated frame Ft at time t utilizing temporal

information. LMMSE based RTF usesR previous filtered frames in a recursive structure. Assuming

~Gt−m is a motion-compensated Gt, LMMSE based RTF are defined as,

Gt =

R
∑

m=1
wm · ~Gt−m + w0Ft

R
∑

m=0
wm

+ F̄t, m > 0, w0 = 1; (50)

where wm is the averaging weights defined for each pixel and F̄t is an offset adjustment. In block-

based RTF, weights are calculated based on block-based temporal error, i.e., temporal difference

between current frame and denoised previous frames. Considering Bi as ith block in the Ft and

~Bm,i as its corresponding motion compensated block from Gt−m. The block-based motion error is

defined based on sum of squared error as,

δm,i = MAX

(

∑ |Bi − ~Bm,i|2
W 2

r σ
2
p

− 1, 0

)

, (51)

where sigmap is the STD of WGN. In an ideal case with perfect motion estimation |Bi − ~Bi|

contains only noise. In this case, the expected value of
∑ |Bi − ~Bi|2 is σ2p (considering that ~Bi is

already filtered and noise-free). MVs are not always accurate and the higher the δm, the lower wm

becomes. δm is a 2-D matrix defines one value per block. In order to map the block matrix δm to

the entire image, block-based approaches assign the value of each block to the corresponding pixels

inside the block. This operation is equivalent to an interpolation using box-shaped kernel. Let us

consider the operation BXIn(·) as a box-shaped interpolation, with interpolation factor of n (i.e.,

each pixel becomes a rectangle with size of n), then temporal weight in block-based approach is

defined as,

wm =
1

BXIWr(δm)
, w0 = 1, (52)
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where δm is a matrix presents δm,i for all blocks and Wr is the size of block. Wr a compromise

between the number of pixels considered in error detection and accuracy of its spatial occurrence

(spatial resolution). We set Wr = 16. The offset adjustment is,

F̄t =
R
∑

m=1

wmēm, ēm,i =
∑

(Bi − ~Bm,i) (53)

where ēm is a matrix presents ēm,i for all blocks.
∑

(Bi − ~Bm,i) is the summation of temporal error

(Bi − ~Bm,i) for all pixels of block Bi. F̄t offset guarantees that the average value for each block

does not vary after filtering. In (52) only the power of error
∑ |Bi − ~Bm,i|2 is taken into account.

If a motion is accurately estimated both mean and power of error should be relatively small. Our

experiments show that power criteria is not enough for efficient detection of error. We define the

error based on the mean of error as

δ̄m = MAX

( |ēm|
2Wrσp

− 1, 0

)

. (54)

The expected value of |ēm| is 2Wrσp√
π

, however, a less sensitive function to |ēm| is considered because

the we use multiple criteria to detect error. By adding mean criteria (54) to (52) is modified as

wm =
1

BXIWr(δm + δ̄2m)
, w0 = 1. (55)

In (52) pixels inside the block Wr×Wr are considered. In order to have an efficient filtering Wr

should be relatively large e.g., Wr ≥ 16. The downside is motion error is detected coarsely which

decreases the efficiency when in a block MVs are accurate for subset of pixels and erroneous for the

rest. This leads to lack of filtering for subset with accurate MV and motion blur for erroneous MV. A

solution can be increasing the resolution of error detection by decreasing theWr, however, using less

number of pixels makes the error detection less reliable. To benefit from both we use information

of two levels, pixel-level and block-level to detect the motion error. Fine error detection exploit the

pixel-level error in order to define the role of each pixel in temporal filtering. To efficiently extract

the neighborhood dependency of pixels, we apply a low-pass filter on the absolute of difference

76



frames (reference and motion-compensated) to compute the em as

em = hpr ∗
∣

∣

∣
Ft − ~Gt−m

∣

∣

∣
, (56)

where hpr is a 5×5 Gaussian filter with sigma of 1.2. We define the pixel-level error δ̂m as

δ̂m = MAX

(

e2m
crpσ

2
p

− 1, 0

)

. (57)

where c
r
p = 3. Although pixel-level error detection is advantageous to represent high resolution

error, few pixels cannot desirably extract the temporal error. Our idea is to combine pixel and

coarse-level errors by integrating the coarse-level temporal reliability with pixel-level error. We

modify (58) as

wm =
1

BXIWr(δm + δ̄2m) + δ̂m + cro

, w0 = 1, (58)

where c
r
o is a constant. An important drawback of recursive filtering is when the propagation of

error from previous times to proceeding time. This is due to assigning high weights to ~Gt−m. In

order to decrease this effect we consider the constant cro = .1 that prevents wm from getting high

values.

6.2.2 Smooth filter weight

δm and δ̄2m are calculated for each block which creates discontinuity in wm at the edge of blocks

in (58). Pixel based δ̂m decreases the discontinuity effect when δm + δ̄2m values are close at the

edge of blocks. But when δm + δ̄2m values are significantly different, weight discontinuity creates

blocking artifacts. In order to compensate discontinuity, we propose a method that guarantees the

smooth change of weights between pixels. Let us assume instead of a block-based summation in

the calculating
∑ |Bi − ~Bi|2 and |∑(Bi − ~Bi)| we use a continuous moving average with size of

Wr×Wr. Theoretically, moving average eliminates blockiness and by using the same number of

pixels, the efficiency is equal or higher (due to spatial homogeneity). However, moving average

filters have the drawback of assigning equal weights to all pixels in a block although a pixel can

be spatially far from the center. If we use a Gaussian filter with larger center coefficient, then we
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need a larger kernel ( i.e., larger Wr) in order to have a same processing gain. In order to address

blockiness but using smaller kernel size we propose using smaller block Wq =
Wr

4 integrated with

a Gaussian filter. Let us consider a block-based approach uses average of Wq×Wq blocks for error

detection. In order to have the same processing gain compared to aWr×Wr a Gaussian filter should

average the result of surrounding blocks Wq×Wq. The averaging factor of such a filter should be

at least 16 to compensate the impact of using small block with 1
16 number of pixels. Considering a

Gaussian blur, at least a 5×5 kernel size is required. Let us denote this filter as hsr then
∑

h2sr =
1
16

which leads to a Gaussian filter with sigma of 1.2. Thus, we modify (51) and (54) as

δm = MAX

(

hsr ∗
∑ |B − ~Bm|2
W 2

q σ
2
p

− 1, 0

)

, δ̄m = MAX

(

4|hsr ∗ ēm|
2Wqσp

− 1, 0

)

, (59)

By using smaller block size Wq, spatial location of error can be more accurately detected and at

the same time less blockiness appears by smooth filtering hsr. We also propose to use smooth

interpolation instead of box-shaped interpolation BXIn(·). We use bilinear interpolation which

modifies (58) as

wm =
1

BLIWq(δm + δ̄2m) + δ̂m + cro

, (60)

where BLIWq(·) is a bilinear interpolation process with interpolation rate of Wq. Figure 6.3 shows

an example of block-based error detection used in MHMCF compared to smooth weight estimation

in proposed.

The only part in the (50) that is still block-based is F̄t. We modify (53) by using a 15×15

Gaussian filter hrr with sigma of 4 as

F̄t = hrr ∗

R
∑

m=1
wm · (~Gt−m − Ft)

R
∑

m=0
wm

, (61)

6.2.3 Band-limited filtering

In the proposed temporal weight calculation (60), weights are calculated spatially continuous (i.e.,

without sharp jump). However, it does not completely solve the blockiness problem since the motion
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Figure 6.3: Temporal error detection for a Foreman video frame using (a) MHMCF that uses 16×16 blocks

(b) the proposed smooth approach.

compensation is block-based. We propose a combination of two methods, band-limited temporal

filtering and two-band motion compensation to minimize the blockiness. We first introduce our

band-limited filtering. The LMMSE based filter (50) can be rewritten as,

Gt =

R
∑

m=1
wm · (~Gt−m − Ft)

R
∑

m=0
wm

+ Ft + F̄t, m > 0, w0 = 1; (62)

In an ideal case with perfect motion estimation ~Gt−m − Ft contains only noise. However, MVs are

not always accurate. The more signal exists in ~Gt−m − Ft, the lower the wm and the less effective

(62) becomes. By removing signal from ~Gt−m − Ft prior to temporal filtering the performance

(62) increases. Since the blocking artifact is the result of MV discontinuity, in case that ~Gt−m − Ft

contains only noise no blocking will be appear. Inspired from this fact, we propose extracting signal

prior to temporal filtering. One way can be applying a highly efficient spatial filter on Ft, however,

spatial filters tend to keep sharp edges, even when they are noisy (trapped noise problem). Another

way is to apply a strong lowpass filter on the Ft. In order to remove noise lowpass filter size should

be large enough. This creates the problem of edge spread problem meaning the edge will be spread

spatially to far places. We propose an intermediate solution using both ideas by applying an edge-

stopping spatial filter on a coarse (blurred) approximation of Ft which decreases the edge spread

problem and the chance of keeping noise in the sharp edges. Assuming F 2
t is a downscaled F 2

t

using the 4×4 block-based averaging; we apply an edge-stopping spatial filter on F 2
t which creates

a coarse and noised removed approximation of Ft and contains LF only signal. In order to suppress

the aliasing and release the trapped noise in the edges we apply a small kernel 3×3 Gaussian filter
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hbr after edge-stopping spatial filter. In order to map the filtered F 2
t results to original resolution

we use the bilinear interpolation BLI4(·). We use the term back-signal for spatially filtered and

interpolated F 2
t . Back-signal contains LF components is excluded from temporal processing which

makes the temporal filter band-limited since it has no impact on the LF. Assuming ESS(·, ·) is an

edge stopping spatial filter taking two input parameters; the input image and the STD of noise, we

compute the back-signal bt as in

bt = BLI4(b̂t) , b̂t = ESS(F 2
t ,
σp
2
) ∗ hbr, (63)

Theoretically, STD of noise in F 2
t is

σp

4 since each pixel of F 2
t is the average of 16 Ft pixels.

Generally spatial filters are designed to compromise between blur and noise but in (63) a noise-free

back-signal is required and blur is not applicable. Thus, the noise removal strength is increased by

factor of 2, i.e.,
σp

2 . ESS(·, ·) keeps the edges intact although they contain noise. However, using

inter-frame information noise of strong edges can be removed temporally. Thus, we release the

trapped noise and leave it for temporal filter to remove it. The role of hbr in (63) is to blur the edges

and untie the noise from the edges. Once we obtained back-signal, we subtract it from the Ft and

Gt−m before compensating the motion. The target of filtering becomes the band-limited fore-signal

Dt = Ft − bt which contains image details and noise without very strong LF components. Prior to

motion compensation of Gt−m, we subtract its back-signal signal bt−m. We obtain the fore-signal

for previous frames as Dt−m = Gt−m − bt−m and we compensate the motion to create ~Dt−m. We

modify (62) to a band-limited temporal filter as

Gt =

R
∑

m=1
wm · ( ~Dt−m −Dt)

R
∑

m=0
wm

+ Ft + F̄t, m > 0, w0 = 1; (64)

Assuming the MC(F ) is the motion compensation process that compensates the frames F based

on the estimated vectors then ~Dt−m = MC(Dt−m). ~Dt−m − Dt has less signal compared to

(~Gt−m−Ft) which improves the performance of temporal filter and creates less artifacts. Since the

size of F 2
t is 16 times (4 in each dimension) smaller compared to Ft, generating and storing b̂t for
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the radius of R is not expensive speed-wise and memory-wise. Thus, we can save and reuse them

to increase the speed. We use a three iteration bilateral filter with radius of 2 as edge-stopping filter

ESS(·, ·) explained in section 6.3. By back-signal subtraction temporal error (~Gt−m−Ft) becomes

~Dt−m −Dt in (56).

6.2.4 Motion estimation and compensation

Block-matching motion estimation

Block matching motion estimation approaches are fast and high-performance under noise, which

makes them suitable for denoising procedure. We use a fast multi-resolution block-matching ap-

proach to perform the motion estimation. In this approach, For each two consecutive frame, a

Gaussian pyramid is generated and MVs are estimated in each level of resolution and the results of

the previous level are used to set the initial search point. We start from Ft = F 0
t and continue the

downscaling process, until we reach a small number of pixels per image (e.g., 64x64). Then, using

a block-matching technique we estimate the motion from the coarsest resolution to finest. For all

levels, we use a three step search (TSS) [100]. In the final step, we check the validity of estimated

vector by comparing the cost of estimated MV and the homography of MVs created from reliable

MVs. We consider sum of absolute difference (SAD) as the cost function and the block with the

least SAD is used to compute MV.

Homography-based motion correction

Block-matching motion estimation methods have the tendency to fall into local minima. This affects

the performance of motion estimation especially when the motion is not complex (e.g., translational

motion) which should be perfectly estimated. To address this problem, we propose detection of

faulty MVs based on three steps: 1- detection of reliable MVs, 2- homography creation by expansion

of reliable MVs to the whole frame, and 3- detection of the faulty MVs.

At first step we find the reliable MVs. To do so we use three criteria; 1) compensation gain

2) power of error and 3) repetition. We define a MV as reliable when it meets all three criteria.

Assuming Bi is a particular block inside the reference frame Ft and ~Bm,i is the corresponding
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motion-compensated block of Ft−m, we define the motion compensation gain gcmp as

gcmp =
W 2

r VAR(Bi)
∑

[Bi − ~Bm,i]2
, (65)

where VAR(BFt) is the variance of reference block Bi and Wr is size of block. For a block that

contains only WGN the expected value of gcmp is 0.5. We set a threshold Tcmp = 2 so only MVs

that gcmp ≥ Tcmp meet the first criterion. The second criterion is the power of temporal difference

∑

[Bi− ~Bm,i]
2. We define a threshold Tr

ptd and remove the MVs that
∑

[Bi− ~Bm,i]
2 is higher than

Tr
ptd. To find Tr

ptd we look into those blocks which met the gain condition and we find the one

with minimum power of error. Assuming the minimum power of error for all blocks that met the

first criterion is êmin, we define the threshold Tr
ptd = 4êmin and remove MVs with the power of

error higher than this value. The third criterion is the repetition of MVs. MVs that are not repeated

are likely to be outliers. To check the repetition, for each MVs that passed the first two conditions

we check the neighborhood MVs with radius of 2. MVs meet the third criterion that are repeated

inside the neighborhood at least three times. At this point we have defined the reliable MVs that

meet all three criteria. In the second step, we create the homography based on reliable MVs. To

create the homography of MVs we diffuse reliable MVs to unreliable neighbours and we continue

this procedure until all blocks are assigned with a reliable MV. At the final step, we compare the

costs from homography and initially estimated MVs (using TSS) to find the which one has the least

cost.

Two-band motion compensation

In spite of the performance and speed of block-matching algorithms, the discontinuity of MVs cre-

ates undesirable blocking artifacts which makes them less practical. This problem is more exposed

under the processed noise where the original noisy frame is smooth and the blocking edges are more

apparent. To address this problem we propose an efficient two-band motion compensation method.

Assuming we decompose an image into a smooth LF and sharp HF bands in which LF band contains

no strong edges. A perfect motion compensation of LF band should not contain any edges, however,

discrete MVs create sharp edges from LF band. Instead of block-based compensation we propose a
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method that guarantees that LF band of motion compensated frame also contains no edges. At the

first step we decompose the input image F into LF (F̂ l
t = Ft ∗ hmc) and HF (F̂ h

t = F − F̂ l
t ) using

a Gaussian filter hmc. Motion compensation has the property of

MC(Ft) = MC(F̂ l
t ) + MC(F̂ h

t ). (66)

Ideally, MC(F̂ l
t ) should be smooth similar to F̂ l

t , however, discontinuity of MVs creates sharp

edges in border of blocks which is not desirable. If we separate hmc into two lowpass filters such

that hmc = ĥmc ∗ ĥmc, we propose the two-band motion compensation as,

~Ft =
[

MC(Ft ∗ ĥmc)
]

∗ ĥmc + MC(F̂ h
t ). (67)

If MV is continuous the direct motion compensation (66) and proposed (67) becomes equal i.e.,

~Ft = MC(Ft). Otherwise, we make sure that [MC(Ft ∗ ĥmc)] ∗ ĥmc has been smoothed by ĥmc.

We use a 5×5 moving average filter for ĥmc which makes the hmc a 9×9 low-pass filter.

Speed optimization of motion estimation

Temporal filtering window in STF includes 2R + 1 frames which requires R forward and R back-

ward and total 2R motion estimation per frame. This is very time-consuming when R >> 1. To

reach the speed efficiency we define performing only one motion estimation per frame and compute

the other MVs from that. Assuming Vt,t+1 represents the MVs between two adjacent frames Ft and

Ft+1 where Ft is the reference frame. We calculate the other MVs for subsequent frames as

Vt,t+m =

t+m−1
∑

k=t

Vk,k+1 ; 1 < m ≤ R. (68)

Since we do not perform a sub-pixel motion estimation for Vt,t+1, sub-pixel displacement can be

accumulated and create a pixel displacement on Vt,t+m for m > 1. To compensate that we perform

another motion estimation with small search radius (less than 4 pixels) using Vt,t+m in (68) as the

initial search position. To reach the maximum speed in our framework we compute the backward

MVs, i.e., MVs between Ft and preceding frames Ft−m, based on forward estimated MVs. We
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store all the forward estimated MVs within the radius of R and we reuse them in the future time.

Figure 6.4 shows the stored MVs (MV bank) for R = 5. At the time t forward motion estimation

in the past, i.e., Vt−m,t with 1 ≤ m ≤ R defines the motion between frame reference frame Ft and

preceding frames Ft−m.

Figure 6.4: MVs stored in the MV bank within the radius R = 5. The estimated MVs in the past t − R ≤
t ≤ t− 1 is used at time t.

To convert forward MVs in the past, i.e., Vt−m,t to backward MVs in the time t, i.e., Vt,t−m

we estimate the motion inversely. The only challenge is that block-matching algorithm is not a

one-to-one function meaning two MVs may point to same location. Therefore, the inverse motion

estimation operation may leave some blocks without MVs assigned to them. In this case, we use

valid MVs of neighbor blocks to assign a MV to them. At the end of inverse operation we create

homography and reconfirm the estimated MVs as described in section 6.2.4.

6.2.5 Extension to symmetric temporal filter

Unlike RTF that uses the previous denoised frames for filtering, in STF the noisy frames in past

and future are used. Same as proposed band-limited RTF we propose to use fore-signal Dt+m =

Ft+m − Bt+m and its motion-compensated ~Dt+m to apply temporal filtering. The LMMSE based

motion-compensated averaging in STF is based on filtering along temporal window with radius of

R is defined as,

Gt =

R
∑

m=−R
wm · ( ~Dt−m −Dt)

R
∑

m=−R
wm

+ Ft + F̄t, w0 = 1. (69)

We propose to use R = 5 for maximum quality; however, 1 ≤ R ≤ 5 can be selected depending on

the application, pipeline delay, and hardware limits. In calculation of weights in the RTF the basic
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assumption is that the previous frames are noise-free. In the STF we assume the proceeding and

subsequent frames are noisy with the same characteristics. Thus, the wight calculation procedure

becomes different. However, we use the same concept of using three criteria using in the RTF, coarse

(block-level) power of temporal error, coarse mean of temporal error, fine (pixel-level) temporal

error. Similar to (59) the temporal power of error under WGN for block of data can be calculated as

δm = MAX

(

hsr ∗
∑ |B − ~Bm|2
2W 2

q σ
2
p

− 1, 0

)

, δ̄m = MAX

(

4|hsr ∗ ēm|
2
√
2Wqσp

− 1, 0

)

, (70)

The constant 2 is considered since both B and ~Bm are noisy. Based on the coarse level errors δm

and δ̄m, we compute the reliability of block-based temporal Pb based on both power and mean of

error as

Pb = exp

(

− δ̄
2
m

2

)

· 1

1 + δ2m
, (71)

With the pixel-level error detection we define the role of each pixel in temporal filtering at a finer

resolution.

δ̂m = MAX

(

e2m
BLIWq(Pb)σ2p

− 1, 0

)

, em = hpr ∗
∣

∣

∣
Dt − ~Dt+m

∣

∣

∣
, (72)

and we define the temporal weights as

wm =
1

1 + δ̂m
, (73)

6.2.6 Modification to handle SDSCN

As described in the section 5.2, we handle signal-dependency of noise by equalizing and de-

equalizing process at the beginning and end of filtering pipeline. Thus, after equalization we assume

noise is signal-independent. According to noise model in the chapter 2 and SCN estimation system

in the section 4.3.2, the input parameters for video denoiser are 1- the power of the noise at the

original scale σ2p , degree of spatial correlation at the original scale γ̂0, and scale 1 (downscaled by

2) γ̂1. Under SCN, block-level error detection based on power of error, i.e, δm in (59) and (70), and

pixel-level error, i.e, δm in (57) and (72) are still valid since they are computed based on the power

of the error. However, block-level error detection based on the mean of error i.e, δ̄m in (59) and (70)
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is not valid. Under SCN, mean of error, cannot be calculated by only σp. According to the (46) the

STD of the noise at the downscaled by 4 scale I2 is

σp,2 = σp
∑

h2a · (γ̂0 · γ̂1). (74)

However the expected value for WGN is σp,2 = σp
∑

h2a. When the noise becomes spatially

correlated, although, the power of noise changes, the mean of block-level noise remains intact.

Assuming noise at the downscaled by 4 scale is WGN, we modify (59) and (70) to compute the

block-level error mean as

δm = MAX

(

hsr ∗
∑ |B − ~Bm|2

2W 2
q σ

2
p(γ̂0 · γ̂1)

− 1, 0

)

, δ̄m = MAX

(

4|hsr ∗ ēm|
2
√
2Wqσp(γ̂0 · γ̂1)

− 1, 0

)

. (75)

6.3 Dual-domain fast spatial noise filter

Spatial filters use the spatial correlation between pixels in order to estimate original value of pixel

from a noise contaminated pixel. We assume noise is WGN, however, we consider that noise after

temporal filtering is not uniformly reduced. For each pixel, based on the temporal error, different

amount of filtering takes places and our spatial filter handles a varying noise level for each pixel

(per-pixel noise level). We also propose a modification to our spatial filter to support SDSCN.

6.3.1 Principle

In most cases, where the temporal information is reliable most of processing is accomplished by

temporal filter. Thus, using a time-consuming spatial filter is less justified and not needed. We have

analyzed many pixel and transform domain methods such as iterative pixel-domain (e.g., anisotropic

diffusion), large-kernel pixel-domain (e.g., bilateral filtering), small kernel transform-domain (e.g.,

DCT3×3), and large-kernel transform-domain (e.g., DFT16×16) methods. Our experiments show

that the relation between efficiency and complexity in the spatial filtering in not linear. Figure

6.5 shows the MSE-complexity relation between different spatial filters. The slope of efficiency

decreases as the complexity increases and the ideal MSE versus complexity curve can be obtained.

Our objective is to design a filter that, first, fits on the ideal filtering curve and, second, looks natural
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with minimum filtering artifacts. We have considered artifacts such as posterization, hammered

surface, and ringing in the efficiency evaluation.

Figure 6.5: MSE-complexity curve and the hypothetical ideal denoising curve. We used 25dB noisy images

of dataset in Figure 5.12.

Table 6.1 compares advantages and disadvantage of different spatial filtering methods. Small

kernel transform domain are fast the most effective methods in preserving edges (see DCT3×3 in

Figure (6.5). Assuming DCT 3(·) and DCT −13 (·) compute the 3×3 DCT of two dimensional pixels

values. Assuming x and y are arbitrary position in the input image I , we define the DCT shrinkage

as

S1p = DCT −13
(

DCT 3(Ip) ·
[

1− exp(
|DCT 3(Ip)|2

cdctσ2p

])

, Ip = I(x :x+2, y :y+2), (76)

where S1p = S1(x :x+2, y :y+2) is part of shrunk output S1 starts and ends at the spatial positions

(x, y) and (x+2, y+2). cdct is a constant defines the shrinkage strength which is set to 1.8. When

the magnitude of DCT coefficient is large compared to noise variance σ2p the shrinkage has no effect

otherwise it suppresses the noisy coefficients. Using a small neighborhood processing DCT 3(·)

is unable to remove LF noise. In order to remove LF noise we need to expand the considered

neighborhood. We have employed the concept of bilateral filtering to remove LF noise. Let us first

introduce bilateral and steered bilateral filtering.
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Bilateral filtering [21] calculates the denoised high-contrast values for a pixel p using a bilateral

kernel. Bilateral kernel is defined over a square neighborhood window Np centered around every

pixel p with window radius r.

Ĩp =

∑

q∈Np
kp,qAq

∑

q∈Np
kp,q

, (77)

kp,q = e
− |p−q|2

2σ2s e
− (Ip−Iq)

2

crσ
2
n . (78)

The parameters σs and cr shape the spatial and range kernels respectively and σn is the STD of

noise. Ĩp is the filtered output. In steered (or joint) bilateral, averaging weights kp,q are calculated

from a guide image. Steered bilateral filtering calculates the denoised high-contrast value Jp for a

pixel p using a joint bilateral filter. The Steered bilateral filter uses the guide image J to filter the

noisy image I as

Ĩp =

∑

q∈Np
kp,qAq

∑

q∈Np
kp,q

, (79)

kp,q = e
− |p−q|2

2σ2s e
− (Jp−Jq)

2

crσ
2
n . (80)

Weights are calculated using euclidean distance of both intensity difference and spatial difference.

However, there are two differences between proposed methods and bilateral filter (77). First, we

use subset of pixels iteratively in order to decrease complexity. Second, we decrease the strength

of filtering as we increase the radius. Figure 6.7 shows pattern that is used in the proposed bilateral

filtering. The 3×3 at the center pixels denoted by 1 are handled by DCT shrinkage and the 3 other

iterations denoted by 2 to 4 are handled by iterative spatial filter. Assuming Sr−1
x,y is the center pixel

of input image Sr−1 and r is the spatial radius, we define the proposed bilateral filtering as

Sr
x,y =

∑

[ukx,kyS
r−1
(x+kxr,y+kyr)

] + Sr−1
x,y

1 +
∑

ukx,ky
, kx, kr ∈ {−1, 0, 1} , r ∈ {2, 4}, (81)

ukx,ky = exp

(

−
r2|k2x + k2y|2

cblt

)

· exp(−
|Sr

x,y − Sr
x+kxr,y+kyr

|2

21−rσ2p
), (82)

where Sr−1
x,y and Sr

x,y are the input and output of proposed bilateral filter with radius r at the spatial

location of x, y. As the filter proceed to higher r the noise power decreases and we have considered
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the factor 21−r to scale σ2p . The output of proposed pixel-domain filtering, Sr
x,y is fast and efficient

in removing noise keeping high-contrast edges, however, it has three drawbacks, 1) removing low-

contrast edges (texture blur), 2) introducing posterization, and 3) introducing hammered surface. In

order to address low-contrast texture blur, we use DFT shrinkage to reconstruct destroyed textures.

DFT is a powerful tool to detect textures since repeated pattern are appeared as a powerful DFT

coefficient. In order to detect weak textures the size of processing window (kernel size) should

be large enough, e.g., 16×16. Other than size the difference between DFT and DCT shrinkage

is that DCT is applied on the input image but DFT is applied on the estimated noise (difference

between noisy input and denoised output). This means the destroyed weak textures are extracted

from estimated noise and added back to denoised image. Assuming DFT 16 and DFT −116 are the

two dimensional 16×16 DFT and inverse DFT transforms we define the DFT shrinkage as

S5p = DFT −116

(

DFT 16(Ip − S4p) ·
[

exp(162
cdftσ

2
p

|DFT 16(Ip − S4p)|2

])

+ S4p ,

Ip = I(x :x+15, y :y+15) , S4p = S4p(x :x+15, y :y+15), (83)

where cdft is a constant and the higher value makes the shrinkage stronger. In order to increase the

efficiency for both shrinkage operations (76) and (83) we use overlapped blocks with half size of

the block, i.e., 1 and 8. cdft set to 4 and 1 for strong and weak DFT shrinkage.

Table 6.1: Advantages and disadvantages different spatial filtering methods.

Method Advantage Disadvantage

Iterative pixel domain Fast Posterization

Minor edge blur Hammered surface

No ringing & blocking Texture blur

Large-kernel pixel domain No Posterization Slow

No hammered surface Edge blur

No ringing & blocking Texture blur

Small kernel transform domain Minor edge blur Hammered surface

Fast Texture blur

No ringing & blocking LF noise

Large kernel transform domain Texture preservation Slow

Minor edge blur Ringing & blocking

No hammered surface Impulse blur

Block-matching & Texture preservation Very Slow

non-local mean No Posterization Blur
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Iterative approaches are efficient in keeping the strong edges but introduce posterization and

hammered surface. Posterization happens when gradient of continuous shades converts into few

value of discrete shades. Figure 6.6 shows the iterative pixel domain filtering compared to one it-

eration large kernel filter for a one dimension noisy gradient. In iterative approach, pixel values in

different regions converge to a single value and create undesirable edges between different regions.

Anisotropic processing (using pixel based edge-stopping) also convert noise into structure like pat-

terns similar to hammered surface. In order to handle this problem we need to exclude the gradient

of continuous shades (very LF content) from the filtering. This can be done by a large kernel bilat-

eral filter (e.g., radius of 7) (see Figure 6.6). However, large kernel bilateral filter is costly since it

accesses all surrounding pixels in a large neighbourhood. Instead, we propose a faster method that

has the same efficiency. Since the goal is to exclude very LF contents from filtering, we replace

large kernel bilateral filter by, 1) downscale by 4 and apply small kernel bilateral filter (e.g., radius

of 2, and 2) upscale the results by 4. Let us assume the LF content is denoted by S̄, we exclude S̄

from filtering process by applying the proposed filter on the I − S̄. Let us denote proposed filter

(i.e., DCT shrinkage+iterative bilateral+strong DFT shrinkage) as S1−5(·), the output of proposed

filter is defined as S1−5(I − S̄) + S̄ which is denoted as proposed with one iteration in Figure 6.5.

Figure 6.6: Posterization effect due to small kernel iterative filtering. Large kernel single iteration filters

address this problem.

In the proposed single iteration method, the hammered surface and ringing artifacts are often

visible. In order to solve this problem we propose a two iteration filtering. We have removed the

unnecessary steps of second iteration and modified the proposed two iteration spatial filtering by
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Figure 6.7: Proposed pattern for pixel-domain spatial filtering. The first iteration is a 3×3 DCT shrinkage. In

the next steps, indicated pixels are considered for iterative bilateral.

adding two steps 1) adding a weak DFT shrinkage on the S1−5(I − S̄) to minimize the hammered

surface effect, and 2) apply a steered bilateral before the strong DFT shrinkage to address the ringing

artifact. Frequency-domain processing, using a weak DFT shrinkage, provides a smooth denoising

(no hammered effect) and because of being weak it does not introduce blur and ringing. However, it

leaves some noise that is removed by proposed S1−5(·). The proposed two iteration spatial filtering

is summarized in Algorithm 3. When there is per-pixel noise level, for instance when spatial filter

is used to remove residual noise remained after temporal filter the input noise level σ2p will have a

per-pixel value. For pixel-domain operation such as (81) this can be done by noise level of each

pixel as σ2p , however, for transform domain that uses block of pixels we need to use the per-block

noise level. In this case, we use the average noise of block as the per-block noise level.

Algorithm 3 Proposed two iteration spatial filtering

1: Downscale the image by 4 and apply a single iteration bilateral filter.

2: Upscale results of previous step by 4 and subtract it by original image.

3: Apply a weak DFT (16×16) shrinkage of results previous step.

4: Apply a DCT shrinkage (3×3) on the results of previous step.

5: for r = 2:4 do

6: Iterative bilateral filtering using Figure 6.7 pattern with radius r.

7: end for

8: Apply a steered bilateral on the original noisy using results of previous step as the guide.

9: Apply a strong DFT (16×16) shrinkage on results previous step and add it to results of step 7.
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6.3.2 Modification to handle SCN

We use the concept of described in the section 5.3 in order to handle SCN. As described in the

section 5.3 to address SCN noise we use WGN filter in three different scales (see Figure 5.7).

Since the processing is accomplished for three scales with same resolution, the processing time

becomes tripled. In order to increase the speed, we propose instead of using all downscaled images

with different starting indexes, we only consider the downscaled image with starting index of 0 for

both row and column and use interpolation operation to map the downscaled to images to original

resolution. Let use assume İ l+1 is the downscaled image with starting index of 0. We modify the

(45) as

I le = I l+1 + gl · ha ∗
[

BLI2

(

WGD(İ l+1, σp,l+1)
)

− I l+1
]

0 ≤ gl ≤ 1, (84)

where BLI2 is the bilinear interpolation with rate of 2.

6.3.3 Integration to temporal filter

Noise after temporal filtering is not uniformly reduced since for each pixel based the error different

amount of temporal averaging takes place. Although noise is assumed spatially correlated, we

assume noise is temporally independent and identically distributed. Thus, the power of the noise

after temporal filtering in (69) is reduced by factor of λ as

λ =

R
∑

m=−R
w2m

(
R
∑

m=−R
wm)2

, (85)

Since λ > 0 noise is not fully removed especially when wm is small (i.e., high temporal error).

We use space-domain to remove residual noise based on power of the noise. Since λ is can be

different for each pixel, we consider a spatial filter which handles per-pixel noise level to be in-

tegrated to our proposed video denoising pipeline. Let us denote the SCN optimized spatial filter

as SPF(Gt, σp, γ̂0, γ̂1, λ) which takes the temporally filtered Gt and 4 other inputs, noise descrip-

tor parameters σp, γ̂0, γ̂1 and temporal filtering factor λ. Then, the output of proposed time-space

algorithm becomes,
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Ĝt = SPF(Gt, σp, γ̂0, γ̂1, λ). (86)

6.4 Application specific adaptation

In the course of our research and development, there were application (industrial) specific aspects

of denoising requiring solutions. We developed the following solutions to these issues.

6.4.1 Color video denoising

In denoising of color videos both luminance and chroma channels should be denoised. As shown

in the [69] in denoising, the optimal color conversion can be found according to the noise at each

channel. However, the main assumption is that noise is WGN in all channels and all channels have

the same visual importance. However, practically both noise and content in chrominance channels

are subsampled and the importance of luminance channel in the visual quality is much more than

chrominance. Thus, we use YCbCr color conversion that is used in most of video and image codecs.

A simple way of denoising chroma channels is applying the same time-space filter on all channels.

In order to gain speed we propose an optimization with using the same motion vectors estimated

for the luminance channels and weights calculated in (73) to apply temporal filtering. This provides

a reliable temporal filtering in most cases, however, the only problematic case happens when the

temporal data is reliable for the luminance channel is unreliable for chrominance channel. These

inaccurate weights lead to motion blur in chrominance channel. To compensate this problem we

propose detecting the motion blur by considering the difference between original frame and filtered

one. If the difference is higher than expected value we compensate the error by restoring the original

pixel and we use the spatial filter instead to remove noise. With the same procedure of calculating

(73) we find the reliability of chroma filtering. The only difference is instead of using difference

between two frames we use the difference between original noisy and filtered frame. Assuming

Ft,cb is an original chrominance channel and Gt,cb is the temporal output, we use Ft,cb−Gt,cb to find

the reliability of temporal filtering according to (73). Assuming the ŵcb is the reliability we modify

the Gt,cb by adding (Ft,cb − Gt,cb)(1 − ŵcb) to it. When the temporal filtering is reliable (i.e., ŵcb)

93



the output does not change and when the temporal filtering is unreliable (i.e., ŵcb = 0) the output

becomes Ft,cb.

6.4.2 Detection of noise power overestimation

Video noise filter often assume that noise has been accurately pre-estimated. Due to difficulty

of differentiation between noise and image structure, noise overestimation is possible. We utilize

coarse-level analysis to detect local noise overestimation. In (58) we use the local temporal error

power and we propose to use that for local noise power assessment and detect noise power overesti-

mation in (72). Due to high coherence between reference frame Dt and motion-compensated ~Dt±1,

there is a high chance to have a temporal difference ( ~Dt−m − Dt) containing only noise due to ac-

curacy of MVs. Thus, we can first detect the noise level overestimation at the coarse-level analysis,

during the processing of ~Dt±1, and then correct it for processing of ~Dt+m when |m| > 1. Since the

motion is larger and more complex at |m| > 1, the introduced motion blur/artifact are significantly

stronger than |m| = 1. By correcting the noise level for |m| > 1 under overestimation situation,

the potential motion blur can considerably decrease. To correct the overestimated noise we use the

already computed average power of temporal difference in (58) for large number (equivalent to Wr)

pixels. If the motion is accurately estimated it represents the average power of temporal noise. This

means, if hsr ∗
∑ |B − ~Bm|2 is less than the expected error (

W 2
r σ

2
p

8 ) the noise is overestimated. In

such case, we consider it as overestimated and we replace (
W 2

r σ
2
p

8 ) by hsr ∗
∑ |B − ~Bm|2 that is

calculated for the adjacent temporal frame. Thus, we store the computed hsr ∗
∑ |B − ~Bm|2 for ad-

jacent temporal frames in the Noise power bank to be used in processing other motion-compensated

frame.

6.4.3 Image naturalization and edge preserving

Our filter reduces the posterization and ringing artifacts significantly, however, according to our

subjective evaluation, the result that contain slight high-frequency noise are more appealing since

they look more natural. Thus, at the end of filtering pipeline we add the high-frequency noise to the

output. As an optional filtering tool this high frequency noise can be done non-uniformly by adding

more high-frequency to the edges and less to the non-edge pixels. We have implemented an edge
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detection algorithm using Canny edge detector to detect the edges and deactivates the filtering for

those edges. Although the edges may look noisy but the overall image looks sharper.

6.4.4 Burst mode optimization

We did some experiments for analyzing the burst photography, i.e., denoising the images taken

by phone in the burst mode using the phone. In some phones we have access to raw data (see

Figure 1.1). We started analyzing the noise in the both raw and JPEG files. The problem for the

raw processing is that we need to perform other processing tasks such as demosaicing and white-

balancing. Thus, we performed our analyses on the JPEG files. Since the processing resources

are limited in the phone we search for less complex solutions. Our first idea was using metadata

(exposure time and brightness value) to estimate the noise. We implemented a novel approach by

using metadata that is stored in the (exchangeable image file format). We used 20 images taken

in different condition to the calibrate the function that maps the metadata to an approximate noise

value for specific phone.

Another idea was simplifying the motion estimation engine. We assumed that motion is burst

mode image is small and simple (mostly translational). We have tested two ideas to decrease the

amount of processing, block subsampling and pixel subsampling. In block subsampling our idea is

to choose a subset of blocks with image features and do the motion estimation only for those blocks

and create the homography. To do that we tested 2 ideas; First idea is feature extraction based on

accurate motion estimation. Meaning, as we do the motion estimation in different resolutions we

eliminate the blocks that motion estimation does not improved the signal to noise ratio. As we

grow the resolution more blocks will be eliminated and at the highest resolution only few blocks

remains. If the image is highly structured and the motion is simple this is an effective method.

The second idea is fixing the complexity by setting the searching blocks to a constant number.

This approach works better in the more complex motions with less image structure. The block

subsampling approach is less efficient when image feature are concentrated in specific part of image.

This situation makes the process of homography creation impossible. In pixel subsampling our idea

is to use a subset of pixels for each block to compute the cost. We used this idea utilizing both small

and large blocks and our experiments show using large blocks are more efficient. Pixel subsampling
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is also more effective compared to block subsampling in low textured part of image. Therefore, we

used pixel subsampling with large block for the motion estimation. We were able to denoise 4K

image using 5 images on the Samsung S5 phone in 700ms.

6.4.5 Impulse noise removal

In consumer electronics applications the impulse noise such as salt and pepper is improbable. We

have tested the effect of impulse noise in our framework. Since the proposed framework tends to

keep the sharp edges, impulse noise which is similar to sharp edges cannot be removed. Thus, we

used a 3×3 median filter to remove impulse noise. We have analyzed the where in the pipeline is

better to place the median filter (where options are at the beginning, after temporal filtering, and

at the end) and the experiment results show the beginning of the pipeline provides the best results.

Impulse noise should be excluded from temporal filter since it degrades the effectiveness of temporal

filtering. In order not to blur the edges we apply the 3×3 median filter only on the pixels that are

corrupted by impulse noise. To detect corrupted pixels, for each pixel we find the pixel with closest

value in the 3×3 neighborhood and indicate it if the difference is higher than threshold (e.g., 50).

6.5 Experimental results

To validate our denoising system, we have run the whole system and its sub-systems and algorithms

on related dataset and examined their main parameters as discussed in the remainder of this section.

For video experiments under synthetic noise we used ten 352×288 videos (except for 352×240

Tennis) (dataset Figure 5.14). The presented time-space video filter has been implemented and

tested (without automated noise estimation) the results have been compared to state-of-the-art video

denoising methods; DDID [23], BM3D [20], MHMCF [17], STGSM [12], VBM3D [8], VBM4D

[15], and RF3D [61]. Different experiments have been conducted using synthetic and real noise.

For the synthetic noise experiments, two noise types WGN, and processed WGN has been tested.
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Table 6.2: WGN (PSNR = 30dB): Average error in PSNR (dB) for 150 frames.

DDID BM3D MHMCF STGSM VBM3D VBM4D RF3D Ours Ours

[23] [20] [17] [12] [8] [15] [61] R=2 R=5

Bus 33.79 34.15 32.61 33.89 34.64 34.15 35.62 35.10 35.52

Flower 33.45 33.46 33.21 34.60 35.70 35.40 35.73 34.99 35.68

Foreman 37.29 37.01 35.01 37.03 38.28 38.07 38.20 37.92 38.37

News 37.30 37.92 37.29 39.51 41.75 41.02 41.88 40.16 41.12

Parkjoy 34.76 32.56 32.56 34.35 34.10 33.98 33.27 34.10 34.42

Rushhour 38.38 38.53 35.08 38.29 39.89 39.66 39.65 38.81 39.41

Soccer 34.10 36.08 34.17 36.21 36.68 36.58 37.72 37.07 37.44

Stefan 34.51 34.63 33.24 35.68 35.84 35.35 36.06 35.61 36.00

Stem 34.37 34.09 32.51 34.15 36.05 35.63 35.67 35.34 35.80

Tennis 31.88 33.74 34.14 34.00 36.22 35.70 32.02 35.65 35.85

Average 34.58 34.82 33.77 35.42 36.42 36.07 35.76 36.13 36.57

MSE based

Table 6.3: WGN (PSNR = 25dB): Average error in PSNR (dB) for 150 frames.

DDID BM3D MHMCF STGSM VBM3D VBM4D RF3D Ours Ours

[23] [20] [17] [12] [8] [15] [61] R=2 R=5

Bus 30.54 30.74 28.97 30.76 31.33 30.95 32.16 31.90 32.43

Flower 29.66 29.62 29.49 31.49 32.68 32.35 32.34 31.89 32.58

Foreman 34.87 34.52 32.16 34.87 35.96 35.64 35.78 35.21 35.66

News 34.24 34.66 33.83 37.06 38.92 37.94 38.72 36.90 37.91

Parkjoy 31.23 28.93 28.93 31.42 31.90 30.80 30.31 30.93 31.31

Rushhour 35.39 35.36 31.96 36.01 37.13 36.83 36.82 35.91 36.49

Soccer 31.22 33.25 30.92 33.81 33.18 33.52 34.45 33.97 34.30

Stefan 31.29 30.95 29.68 32.67 32.58 32.23 32.50 32.43 32.99

Stem 31.15 30.60 28.89 31.25 33.12 32.68 32.53 32.13 32.66

Tennis 28.54 30.77 30.72 31.27 33.31 32.58 30.69 32.61 32.93

Average 31.32 31.44 30.29 32.60 33.48 33.01 32.96 33.01 33.52

MSE based

6.5.1 Time-space filter applied to WGN

We have evaluated the performance of BLTSF under the synthetic WGN. WGN with two PSNR

level of 30dB and 25dB has been added to the gray-scale original frames and we denoised the noisy

frames using state-of-the-art methods and the proposed with two temporal radii; R = 2 and R = 5.

All the input parameters are according to STD of WGN are set. For RF3D we used a flat PSD since

the noise is WGN. Table 6.2 and 6.3 demonstrate the average error in PSNR of filtered frames for

all videos. The proposed method achieves competitive results in comparison with other methods.

6.5.2 Time-space filter applied to synthetic SCN

We have conducted many experiments to evaluate the performance of proposed method under pro-

cessed noise. In the experiments we added synthetic processed noise to (dataset Figure 5.14)) and
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we compared the denoising results of state-of-the-art filters with the proposed with two radii; R = 2

and R = 5. To generate processed noise, we analysed noise characteristics in real videos. To have

a more realistic noise characteristic in addition of SCN we consider the effect of quantization. In

practice noise becomes spatially correlated in both pixel and frequency domain. Thus, in addition

of pixel-domain blurring (Gaussian filter) we use a DCT domain quantizer. We use a DCT based

quantization by dividing the image into 8×8 blocks and using the quantization table defined in the

JPEG standard [117]. Figure 6.8 shows the block diagram of processed noise generation.

Based on how much noise is spatially correlated we define two noise profiles with different

level of spatial correlation. First SCN (profile-1) was generated by processing the WGN with STD

of 12 using 3×3 G-Blur with sigma of 0.55 and compressed with JPEG quantization table with QF

= 90. This noise profile generates noisy frames with PSNR = 32.6dB. Second SCN (profile-2) we

processed the WGN (with STD of 17) using 3×3 G-Blur with sigma of 0.65 and QF = 75. This

profile generates also noisy frames with PSNR = 32.6dB. Accordingly we set the input parameters

of algorithm, σp = 6 and γ1 = 0.65, and γ2 = 1 for the profile-1 SCN, and σp = 6 and γ1 = 0.55,

and γ2 = 1 for SCN. Figure 6.9 shows the a sample of these noise profiles in both pixel domain

and frequency domain. For other methods we varied the input noise STD to the value that leads

to highest PSNR. For the RF3D [61], the input parameter is the power spectral density (PSD). We

used two-dimensional Gaussian lowpass filter with different sigma σpsd to define the PSD with

the highest PSNR. Table 6.4 and 6.5 compares the results under both SCN, profile-1 and profile-2.

Although noise power is the same for both noise profiles, PSNR of profile-1 is higher than heavily

processed noise for all method. This shows as the noise gets more correlated and structured the

performance of all methods decreases. In average ours gives the highest PSNR followed by RF3D.

Under heavily processed noise our method outperforms all for all videos except for the Flower. For

the state-of-the-arts the problem is for fixed noise profile we have to change the input parameters

to reach the highest PSNR but this is not case for the proposed method. For instance in Table 6.4,

in denoising of Tennis with RF3D we set σpsd = 80 which is almost a flat PSD which gives higher

PSNR (2.4dB) compared to σpsd = 4. Table. 6.6 compares the average of error in PSNR for all

methods when the noise profile and the input parameter (σi and σpsd) are set to a fixed value. σi

and σpsd are set to the values that gives the highest PSNR for most of test videos. Note that for
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computing the PSNR values, first the average error power (MSE) is computed and then the PSNR

is calculated for the average (MSE based average).

Figure 6.8: Block diagram of synthetic processed noise generation.

Figure 6.9: A sample of two synthetic noise profiles (a) and (c) are the pixel values of SCN according to

profile-1 and profile-2. (b) and (d) are their frequency spectrum.

Figure 6.10 shows the error curve in time for two video sequences Bus and Tennis under heavily

processed noise (Table 6.5). Figure 6.11 compares the visual results under heavily processed syn-

thetic noise for the frame 100 of Tennis. Performance of VBM3D and RF3D significantly decreases

under processed noise. MHMCF leaves noise and blocking when the motion is not accurately esti-

mated.

6.5.3 Time-space filter applied to real noise

We have evaluated the proposed filter on real noisy video sequences captured by a digital camera

under noisy conditions. For our method we obtained the σp, γ̂1, and γ̂2 by applying our noise

estimator as in chapter 4. For other methods the optimal input parameters differs based on the

motion and details of the video (see Tables 6.4 and 6.5). Thus, to have a fair comparison, we
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Table 6.4: SCN (profile-1): Average error in PSNR (dB) for 150 frames. The input of all methods are tuned

to give the highest PSNR. For ours the inputs are fixed (σp = 6, γ̂0 = 1.4, γ̂1 = 1).

DDID BM3D MHMCF STGSM VBM3D VBM4D RF3D Ours Ours

[23] [20] [17] [12] [8] [15] [61] R=2 R=5

Bus 34.24 34.47 34.30 33.65 34.84 34.46 36.45 36.09 36.46

σinp = 6 σinp = 6 σinp = 6 σinp = 6 σinp = 6 σinp = 6 σpsd = 4

Flower 34.80 34.67 35.34 34.82 36.45 36.09 37.06 36.37 36.81

σinp = 8 σinp = 6 σinp = 6 σinp = 6 σinp = 8 σinp = 8 σpsd = 4

Foreman 36.79 36.36 36.06 35.73 37.74 37.65 38.58 38.33 38.73

σinp = 8 σinp = 8 σinp = 6 σinp = 6 σinp = 8 σinp = 8 σpsd = 4

News 37.33 37.33 38.25 36.75 41.40 40.73 42.18 40.62 41.38

σinp = 8 σinp = 8 σinp = 6 σinp = 6 σinp = 8 σinp = 8 σpsd = 4

Parkjoy 35.32 35.25 35.01 34.03 34.76 34.73 34.83 35.49 35.79

σinp = 6 σinp = 6 σinp = 6 σinp = 6 σinp = 6 σinp = 6 σpsd = 10

Rushhour 37.64 37.46 36.20 36.54 39.13 38.97 39.78 39.10 39.61

σinp = 8 σinp = 8 σinp = 6 σinp = 6 σinp = 8 σinp = 8 σpsd = 4

Soccer 34.23 34.71 35.51 35.08 36.20 36.22 38.38 37.73 38.08

σinp = 6 σinp = 6 σinp = 6 σinp = 6 σinp = 6 σinp = 6 σpsd = 4

Stefan 35.31 35.34 34.96 34.87 36.19 35.62 36.61 36.50 36.80

σinp = 8 σinp = 8 σinp = 6 σinp = 6 σinp = 8 σinp = 8 σpsd = 4

Stem 34.74 34.66 34.22 33.72 36.14 35.75 36.50 36.22 36.59

σinp = 8 σinp = 8 σinp = 6 σinp = 6 σinp = 8 σinp = 8 σpsd = 4

Tennis 33.33 33.46 34.78 33.95 36.23 35.98 33.67 36.76 36.93

σinp = 6 σinp = 6 σinp = 6 σinp = 6 σinp = 6 σinp = 6 σpsd = 80

Average 35.17 35.20 35.32 34.79 36.55 36.28 36.83 37.08 37.44

MSE based

Table 6.5: Spatially correlated noise (profile-2): Average error in PSNR (dB) for 150 frames. The input of all

methods are tuned to give the highest PSNR. For ours the inputs are fixed (σp = 6, γ̂0 = 1.6, γ̂1 = 1).

DDID BM3D MHMCF STGSM VBM3D VBM4D RF3D Ours Ours

[23] [20] [17] [12] [8] [15] [61] R=2 R=5

Bus 33.21 33.23 34.19 32.57 33.52 33.26 33.75 35.35 35.64

σinp = 6 σinp = 6 σinp = 6 σinp = 4 σinp = 6 σinp = 6 σpsd = 2

Flower 33.85 33.59 35.09 33.38 35.26 34.93 37.24 35.90 36.18

σinp = 8 σinp = 8 σinp = 6 σinp = 6 σinp = 10 σinp = 10 σpsd = 2

Foreman 35.34 34.80 35.72 33.66 36.42 36.37 35.73 37.32 37.58

σinp = 10 σinp = 10 σinp = 6 σinp = 10 σinp = 12 σinp = 10 σpsd = 2

News 35.82 35.47 37.88 34.65 40.11 39.25 33.80 39.81 40.20

σinp = 10 σinp = 10 σinp = 6 σinp = 10 σinp = 12 σinp = 12 σpsd = 2

Parkjoy 34.02 33.80 34.84 32.80 33.60 33.53 34.11 34.84 35.01

σinp = 8 σinp = 8 σinp = 6 σinp = 4 σinp = 8 σinp = 8 σpsd = 10

Rushhour 35.97 35.53 35.84 34.78 37.66 37.46 34.34 38.10 38.38

σinp = 10 σinp = 10 σinp = 6 σinp = 10 σinp = 12 σinp = 12 σpsd = 2

Soccer 33.07 33.27 35.29 32.92 34.80 34.84 33.87 36.78 36.96

σinp = 6 σinp = 6 σinp = 6 σinp = 6 σinp = 8 σinp = 8 σpsd = 2

Stefan 34.09 33.91 34.80 32.87 34.83 34.41 33.86 35.84 36.01

σinp = 8 σinp = 8 σinp = 6 σinp = 4 σinp = 10 σinp = 8 σpsd = 2

Stem 33.54 33.37 34.09 32.59 34.76 34.48 35.60 35.53 35.79

σinp = 8 σinp = 8 σinp = 6 σinp = 4 σinp = 10 σinp = 8 σpsd = 2

Tennis 32.80 33.01 34.63 32.81 34.41 34.29 32.35 35.86 36.26

σinp = 4 σinp = 4 σinp = 6 σinp = 6 σinp = 6 σinp = 6 σpsd = 80

Average 34.04 33.91 35.13 33.24 35.18 34.97 34.29 36.32 36.58

MSE based
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Table 6.6: Fixed input parameters: Average error in PSNR (dB) for all videos under SCN.

DDID BM3D MHMCF STGSM VBM3D VBM4D RF3D Ours Ours

[23] [20] [17] [12] [8] [15] [61] R=2 R=5

SCN 34.99 35.13 35.32 34.76 36.35 36.10 35.89 37.08 37.44

profile-1 σinp = 8 σinp = 6 σinp = 6 σinp = 6 σinp = 8 σinp = 8 σpsd = 4

SCN 33.75 33.69 35.13 32.95 34.89 34.88 33.02 36.32 36.54

profile-2 σinp = 8 σinp = 8 σinp = 6 σinp = 4 σinp = 10 σinp = 10 σpsd = 2

Figure 6.10: Output PSNR of three denoisers under SCN (Table 6.5) for two videos (a) Bus and (b) Tennis.

changed the input parameters of other algorithms to reach the highest visual quality based on noise-

blur trade-off. Figures 6.12 and 6.13 show two examples of denoising for the leading methods

of Table 6.4 and 6.5. Normally, MHMCF introduces blocking artifacts and leaves noise since the

motion is often not accurately estimated. Block matching methods VBM3D VBM4D, and RF3D

tend to leave more LF noise compared to BLTSF and blur the textures under signal-dependent noise

such as in the roof and trees in the Figure 6.13.

6.5.4 Effect of motion estimation

We have analyzed the two proposed ideas to solve two problems: propagation of local minima

error and blockiness. To address the former, we proposed a homography-based motion correction

and for the latter we proposed two-band motion estimation and back-signal subtraction. We have

analyzed the effect of homography-based motion correction and we observed as the resolution of

the video (and thus the number of levels in the Gaussian pyramid) increases this effect becomes

more significant since the error in one block at lowest resolution causes error in large part of frame
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Figure 6.11: Visual result of synthetic SCN. (a) original frame, (b) noisy frame 32.6dB, (c) MHMCF 37.15dB

(d) VBM3D 35.46dB, (e) RF3D 32.89dB, and (f) proposed BLTSF 37.94dB.

in the highest resolution. To test this we selected a noise-free 1920×1080 video Sunflower and we

estimated the motion between two consecutive frames using proposed motion estimation with and

without homography-based motion correction. We computed the difference between reference and

motion compensated frame and measured the PSNR with 6.14 showing the results. Homography-

based motion correction significantly improved the PSNR.

To reduce the blocking artifacts, instead of a block-based, we proposed a two-band motion

compensation. Figure 6.15 compares the result of block-based and two-band motion compensation

approach for motion compensation of original frame of Foreman that is degraded with processed

noise (WGN filtered by G-Blur). It shows noticeable less blocking artifacts in the two-band method.

The goal of back-signal subtraction is mainly to reduce the blocking artifacts created by block-

based motion estimation which leads to a more natural denoising output. It also improves the

temporal processing when there is shift in the mean of signal (e.g., flickering). Theoretically, signal

decomposition leads to loss of data due to the fact that when the signal is separated into two parts, the

characteristic of each part is different compared to original signal. We have managed to minimize

the information loss by applying strong edge-stopping filter to extract the back-signal. Thus, the

back-signal subtraction improves the visual results especially when the motion is complex and the

frame contains powerful LF signal (gradients of shades). Figure 6.16 shows an example of back-

signal and fore-signal and how the back-signal subtraction reduces the blocking artifacts.

Our experiments show that in most cases by using back-signal subtraction the performance
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Figure 6.12: Denoising results of real processed noise (a), using (b) MHMCF (σi = 3), (c) VBM3D (σi = 7),

(d) VBM4D (σi = 7), (e) RF3D (σpsd = 1.45), and (f) BLTSF (σp = 7, γ̂0 = 1.6, γ̂1 = 1.1). Input

parameters of all methods are set to obtain best visual results, i.e., trade-off between noise and blur. For ours,

noise is automatically estimated. LF noise is better removed by BLTSF.

of temporal filter increases objectively and subjectively. It significantly decreases the blocking

artifacts. It increases also the effectiveness of temporal filtering which lead to less spatial filtering

and thus, less spatial domain artifacts (e.g., ringing and posterization). We have tested the effect of

back-signal subtraction using synthetic noisy videos under 25dB WGN and we compared the results.

Figure 6.17 shows the its effect on the PSNR for the output of temporal filter Gt. By excluding LF

signal from the process the temporal filter becomes more operative and performance improves.

Another important use case of back-signal subtraction is when the mean of signal fluctuates over

the time. This take places when the luminance source flickers or the white balancing system is not

stable. The white balancing system in the cameras is normally sensitive to the overall brightness

of the scene. When the overall brightness changes, although the scene change is small, a different

white balancing function will be applied compared to the previous frame. This changes the global

mean of the frame. In these cases back-signal subtraction helps by excluding the LF and mean shift

from from processing. To test the flickering effect, we have added a fixed value 5 to every other

noisy frame in the previous experiments. Figure 6.18 shows the effect of back-signal on the PSNR

for the output of temporal filter Gt.
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Figure 6.13: Denoising results of real camera noise (a), using (b) MHMCF, (c) VBM3D, (d) VBM4D, (e)

RF3D, and (f) proposed BLTSF. Input parameters of all methods are set to obtain the best visual results, i.e.,

noise-blur trade-off. For ours, noise is automatically estimated. BLTSF is able to remove noise in the sky and

keep the textures of roof and trees.

Figure 6.14: Effect of homography-based motion correction (HBMC) in multi-layer motion estimation

(MLME). We calculated the difference (in PSNR) between the current frame and the motion compensated

subsequent frame for the non-noisy sunflower video sequence.

6.5.5 Effect of spatial filter

Temporal information has an important role in our proposed noise removal method especially when

the majority of MVs are accurate. This makes using a complex spatial filter less justified especially

when the noise is processed, i.e., already spatially correlated. We have analyzed the effect of using

a high-performance complex spatial filter by using a significantly more complex DDID [23]. We

compared the performance of proposed and DDID spatial filters. Verified by Figure 6.19 in all tests

DDID improves the performance, however, it is significantly (150 times) slower.
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Figure 6.15: Two-band motion-compensation for a noisy Foreman frame. (a) block-based motion-

compensation. (b) proposed motion-compensation. Blocking artifacts are significantly reduced in (b).

6.5.6 Temporal filter applied to WGN

We have tested the proposed BLAB with recursive structure in comparison with two other state-of-

the-art methods MHMCF and CICIF. We have added WGN with STD of 15 to 10 videos (dataset

Figure 5.14) and created noisy frames. For all methods, we have set the block size Wr = 16

and temporal window R = 2. Figure 6.20 compares the PSNR results of denoised outputs for

10 videos sequences (dataset of Figure 5.14) averages over 150 frames. In all videos proposed

methods provides higher PSNR compared to CICIF. It also provides higher PSNR compared to

MHMCF except for Tennis video. In average proposed method provides 1.1dB and 0.6dB higher

PSNR compared to MHMCF and CICIF. Figure 6.21 also shows the PSNR curve for sequences

Foreman and Stefan which the proposed provides higher PSNR in average. Figure 6.22 also shows

the visual result for 20th frame of Foreman video. Using two-band motion compensation and back-

signal subtraction, the blocking artifacts is eliminated. Also by a reliable error detection, proposed

method better preserves the details.

6.5.7 Spatial filter applied to WGN

To test the performance of proposed spatial filter under WGN, we have added zero-mean WGN with

STD = 14.3 (PSNR = 25dB) to the ground-truth frames with Table 6.7 showing the MSE comparison

between bilateral filter [21] and non-local mean [118], DDID1 (only first iteration), DDID complete

[23], BM3D [20] and our algorithm. We used the first frame of 10 videos in this experiment. Results

show the proposed filter is reliable under WGN considering that according to our simulations the

proposed method is 910 times faster than DDID, 210 times faster than DDID1, and 83 times faster

than BM3D.
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Figure 6.16: Example of back-signal subtraction. The noisy frame is decomposed into (a) fore-signal and (b)

back-signal. (c) and (d) are the temporal difference when the original noisy frame and fore-signal are motion

compensated. Temporal artifacts is significantly reduced in (d).

6.5.8 Implementation issues

We have implemented the proposed framework on both CPU and GPU platforms using C++ and

OpenCL programming languages and we have run our method under MATLAB platform. Using

fast filtering operations, the proposed method is highly parallelizable and we gained a significant

acceleration employing GPU. We used an Intel i7 3.07GHz CPU and Nvidia GTX 970 GPU. For

a CIF video (352×288) the per frame processing time of BLTSF is 190ms under CPU and 21ms

under GPU. For other methods we used their MATLAB implementations that may not be speed-wise

optimized but the timings are 71 second for DDID, 1.29 second for BM3D, 240ms for MHMCF,

14.32 second for STGSM, 290ms for VBM3D, 290ms for VBM3D, 2.16 second for VBM4D, and

898ms for RF3D.

106



Figure 6.17: The effect of back-signal subtraction and two-band motion compensation on the performance of

temporal filter. For the (a) Foreman proposed leads to 0.18dB and 0.4dB higher PSNR in average compared

without back-signal subtraction (BSS) and single-band motion compensation. For the (b) Rushhour proposed

leads to 0.21dB and 0.35dB higher PSNR in average.

Figure 6.18: The effect of BSS on the performance of temporal filter when the mean of signal changes over

the time (flickering). For the (a) Foreman and (b) Rushhour back-signal subtraction (BSS) leads to 1.2dB and

1.3dB higher PSNR in average.

6.6 Conclusion

We have developed a time-space video denoising method that employs a fast block-matching motion-

estimation method, yet yields to competitive results compared to the state-of-the-art methods. We

propose a two-band motion compensation, smooth weight calculation and band-limited filtering to

address blocking created by motion estimation. It uses a two-scale motion error error detection

and adjusts the the noise level when it is overestimated which leads to less motion blur effects

compared to relevant methods. In addition, our A modular design provides the feature to adjust

the performance-speed point by changing certain components and parameters, such as motion-

estimation, temporal radius, and spatial filter. We have benefited from the parallelizable structure of
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Figure 6.19: Effect of using a costly spatial filter in BLTSF. For the (a) Foreman and (b) Rush-hour using

DDID [23] leads to 0.41dB and 0.42dB higher PSNR in average. Synthetic 25dB WGN is used (Table 6.3).

Table 6.7: MSE comparison under WGN.

Bilateral Non-local DDID1 DDID BM3D Ours

filter mean

Akiyo 79.70 20.54 21.99 13.28 12.65 17.81

Bus 118.09 74.26 72.87 58.03 55.91 59.61

Coastguard 112.20 66.29 58.84 50.40 49.22 56.33

Flower 118.68 108.91 87.52 69.77 67.85 72.27

Foreman 87.97 28.05 30.91 20.87 20.32 26.82

Hall 91.13 30.49 33.12 21.82 19.62 25.12

News 91.26 34.41 36.59 24.92 23.00 27.97

Sean 94.73 43.21 43.55 31.90 29.87 35.00

Stefan 122.79 65.02 67.57 51.20 47.50 52.30

Tennis 111.72 104.10 96.32 91.51 96.82 89.49

Average 102.83 57.53 54.93 43.37 42.27 46.27

our method and we accelerated that using GPU. We also presented a method to integrate temporal

filter to any spatial filter by considering the level of residual noise at each pixel. We presented a fast

but effective spatial filter to be used as a back-up for temporal filter to remove residual noise left

after temporal filtering.
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Figure 6.20: PSNR results averaged over 150 frames for 10 video sequences (dataset Figure 5.14) under

WGN with STD of 15. The average PSNR for all videos are 30.0dB for MHMCF, 30.4dB for CIFIC, and

31.1dB for proposed method.

Figure 6.21: PSNR result for video sequence (a) Foreman (with average PSNR of 32.1dB for MHMCF,

32.5dB for CIFIC and 33.2dB for proposed), and (b) Stefan (with average PSNR of 29.0dB for MHMCF,

29.7dB for CIFIC and 30.5 for proposed)

.
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Figure 6.22: Visual results for Foreman video. (a) Original (b) Noisy (c) MHMCF with PSNR 31.9dB, (d)

CICIF with PSNR 32.4dB, and proposed with PSNR of 33.2dB.
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Chapter 7

No-Reference Image Quality Assessment

7.1 Introduction

In this chapter, we present a no-reference image quality assessment, NR-IQA method based on

estimation of local image structure using orientation dominancy and patch sparsity. We propose a

fast method to find the dominant orientation of image patches, which is used to decompose them into

singular values. Combining singular values with the sparsity of the patch in the transform domain,

we measure the possible image content and noise of the patches and of the whole image. To measure

the effect of noise accurately, our method takes both low and high textured patches into account.

Before analyzing the patches, we apply a shrinkage in transform domain to increase the contrast of

genuine image structure. We assume noise can be real noise (SDSCN) as discussed in the chapter 2.

Our objective and subjective results confirm the correspondence between the measured quality and

the ground-truth. We show that the proposed method rivals related NR-IQA approaches.

Dissimilar to other methods that use SVD of the local gradient to detect image content our

method 1) applies a Fourier shrinkage prior to orientation detection, 2) takes the Fourier sparsity

of the patches into account, and 3) addresses the blur by considering the absolute power of image

signal.
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Figure 7.1: Block diagram of the proposed algorithm.

7.2 Overview of proposed quality assessment

The proposed method consists of three main steps. In the first step we compute the image gradient

and apply a local Fourier shrinkage on the gradient image to generate a better approximation of

the image signal. For speed consideration, we divide the gradient image into Wq×Wq overlapping

blocks and we use two dimensional DFT to apply the shrinkage. In the second step, we divide the

shrunk gradient image into non-overlapping patches of Nq×Nq and compute the dominant gradient

orientation for each patch using the SVD analysis. In the final step, we divide the original gradient

image into non-overlapping patches and we compute both SVD and DFT sparsity of each patch. We

combine the sparsity information to measure the local signal noise power and finally image quality.

The proposed NR-IQA method can be summarized as in Algorithm 4, and as in the block diagram

of Fig. 7.1.

Algorithm 4 Proposed SDQI

1: Compute the complex gradient map G from the input image I using (87).

2: Divide the gradient G into overlapping blocks of Wq×Wq and apply a Fourier shrinkage via (93).

3: Divide the shrunk gradient G̃ into non-overlapping patches of Nq×Nq and compute the dominant direc-

tion θ̃ for each patch via (97).

4: Divide the gradient G into non-overlapping patches of Nq×Nq and compute the local sparsities using

(90) (92).

5: Calculate quality value for each patch using (99).

6: Output the QI by averaging the local values via (102).
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7.3 Proposed method

7.3.1 Proposed image content model

Assuming a transform such as SVD decorrelates a signal into orthogonal coefficients; generally

most of the signal energy is represented in few coefficients creating a sparse representation of the

image [119]. We employ this feature to differentiate between signal and noise to detect the true

image content. Since the nature of the noise is random, it is unlikely to represent the noise in sparse

form especially when the noise is represented in all orthonormal coefficients (e.g., white noise).

Thus, the signal is more likely to be image content when it can be represented in a sparser form. We

use SVD and DFT to maximize the chance of detecting content by benefiting the advantages of both.

SVD is useful to detect single orientation signal, but cannot detect multi-orientation signals. On the

other hand, DFT is beneficial in finding multi-orientation signals, but mistakes spatially correlated

noise with signal.

High-frequency image components carries the edge information and the goal of a denoiser is to

preserve them while removing the noise. We use the image gradient to extract edge information. For

an image of interest I the gradients Gx, Gy, and the complex gradient image G can be calculated

as

Gx = (HT
s Hd) ∗ I, Gy = (HT

dHs) ∗ I, G = Gx + ,Gyג (87)

where ג =
√
−1, Hd = [−1 0 1], and ∗ denotes the two-dimensional convolution. Examples for Hs

are Hs =
1
2 [0 1 0] or the Sobel operator Hs =

1
8 [1 2 1]. Gradient orientations of the pixels on the

edges are similar, whereas on the noisy pixels are random. The similarity of gradient orientations

can be utilized to distinguish edge pixels and hence image content. We utilize SVD and DFT to find

this similarity as follows.

Sparse DFT

Let ẋ be a patch (block) of the gradient image G of size Nq ×Nq which rearranged into a column

vector with size of N2
q × 1; thus ẋ can be represented as a linear combination of orthonormal DFT
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dictionary (basis) matrices as

ẋ = Dα, (88)

where D is aN2
q ×N2

q DFT dictionary and α is aN2
q ×1 vector of complex numbers. The sparsity of

DFT means that most of the power of α is concentrated in few elements. If we sort the α according

to their magnitude from high to low to create α̂, we define ι as the set of numbers that meets,

ι =

{

n | n ∈ N ,

∑n
k=1 |α̂k|2

∑N2
q

k=1 |α̂k|2
≥ T

q
δ

}

, (89)

where 0 ≤ T
q
δ ≤ 1 is a constant, α̂k means the kth elements of α̂ and thus

∑N2

k=1 |α̂k|2 is the whole

energy of the patch. We define ιmin as the minimum number that contains T
q
δ energy of the signal,

ιmin = min(ι). For instance, when T
q
δ = 0.9, at least 90% of the energy of α is assigned to the

ιmin element. We then define the inverse sparsity degree of DFT as follows,

ξ−1 =
ιmin · T q

δ

∑N2

k=1 |α̂k|2
N2

q

∑ιmin

k=1 |α̂k|2
, (90)

The more sparse α is, the higher the ξ becomes. Fig. 7.2(b) shows an example of ξ for the image

Barbara with T
q
δ = 0.75.

Sparse SVD

Consider x a patch of gradient image G with size Nq×Nq is separated into real and imaginary part

forming a N2
q × 2 matrix ẋv = [ẋr ẋi]. ẋv can be decomposed into two singular values s1 and s2

[120, 121] as

ẋv =

[

Ur Ui

]







s1 0

0 s2













cosθ sinθ

−sinθ cosθ






, (91)

where [Ur Ui] is an orthonormal matrix, meaning UrU
T
i = 0, s1 ≥ s2 ≥ 0, and θ is a constant that

represents the dominant orientation of G. When the signal energy is concentrated in one direction

s1 ≫ s2, orientation dominancy or SVD sparsity happens. Consider the SVD sparsity factor β as

β =
s1
s2
≥ 1. (92)
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Figure 7.2: Sparsity of gradients in 8×8 patches for the image Barbara (a). (b) shows the DFT sparsity ξ
with T

q
δ = 0.75 and (c) shows SVD sparsity β. Brighter patches are sparser. SVD sparsity cannot detect

multi-orientation textures while DFT can.

The more the pixels of x are aligned in a single direction the higher the β becomes. On the other

hand, if x contains pixels with random directions, β becomes small. Fig. 7.2(c) shows an example

of β for the image Barbara. SVD sparsity locates single direction edges accurately but not image

content with multi-direction repeated textures, as highlighted in Fig. 7.2(a), while DFT can.

7.3.2 Fourier shrinkage

The objective of this step is to increase the contrast of edge signals by suppressing the noisy Fourier

coefficients. Assuming we divide the gradient image G into overlapping blocks of Wq×Wq and the

DFT coefficients α are computed, a shrinkage procedure suppresses the noisy α and increases the

contrast between signal and noise. We use the term patch to indicate an Nq×Nq image region and

block for an Wq×Wq one.

We assume α coefficients with a relative small magnitude are more likely to be noise, thus they

should be suppressed. We use the median of |α| as a reference point. Let Wq be an even number

and αmed =
1
2(|α̂[12W 2

q − 1]| + |α̂[12W 2
q ]|) is the median of |α|. In order to suppress small DFT
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Figure 7.3: Shrinkage withW = 16 changes the dominant orientation (angle of arrows). For a sample 32×32
part of Barbara (a) and (c), the shrinkage is applied which changed the dominant orientations of 8×8 patches

(b) and (d).

coefficients we propose modifying each DFT coefficient as

α̃ = α · exp

(

−c
q
α · α2med

|α|2
)

, (93)

where c
q
α is a constant. (93) suppresses (or shrinks) the small coefficient relative to αmed. If αmed

is small, i.e., α is sparse, the shrinkage has no effect. For each block, first α is computed and

suppressed to α̃ and then an inverse DFT is applied to obtain the modified (or the shrunk) gradient

map in pixel domain. Since we are using sliding windows with overlapping, the results of the

individual blocks are averaged to create the whole shrunk gradient map G̃. Let Oq be the size of

overlapping in pixels; G̃ at each position is calculated from the average ofW 2
q /(Wq −Oq)

2 blocks.

For example, when Oq =
Wq

2 the average of 4 blocks is required to calculate each pixels. Our idea

is to set Wq > Nq so a more global shrinkage on a larger block affects a local small patch. Fig.

7.3 shows how a global gradient shrinkage affects the dominant orientation, especially for smaller

patches. Since the noise is suppressed, dominant orientation can be estimated more accurately after

shrinkage.
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7.3.3 Dominant orientation

When the pixels are locally aligned in a single orientation, there is a high chance of image con-

tent presence. To exploit this property, we divide the shrunk gradient map G̃ into non-overlapping

patches of Nq×Nq and for each patch we form x̃v = [x̃r x̃i] by rearranging the real and imagi-

nary part of patch values to form a N2
q×2 matrix. The dominant orientation of the shrunk patch

θ̃ is computed to meet (91). Generally, algorithms for computing singular values are related to

eigenvalue computing of symmetric matrices. The QR algorithm [122] reduces rectangular matrix

to bidiagonal using a Householder reduction. Although these iterative matrix computations give

accurate results [123], their complexity makes them hard to implement. To compute the dominant

orientation θ̃, instead of iterative approaches, we propose a simpler solution. To meet the condition

UrU
T
i = 0 or equally s̃1Ur · s̃2UT

i = 0 in (91) we should have,

N2
∑

k=1

(x̃r[k]cosθ̃ + x̃i[k]sinθ̃)(−x̃r[k]sinθ̃ + x̃i[k]cosθ̃) = 0, (94)

where x̃r[k] and x̃i[k] are the kth element of x̃r and x̃i, respectively; it follows,

cosθ̃sinθ̃

N2
∑

k=1

(x̃2i [k]− x̃2r [k]) = (cos2θ̃ − sin2θ̃)
N2
∑

k=1

(x̃r[k]x̃i[k]). (95)

With cos(2θ̃) = (cos2θ̃ − sin2θ̃) and sin(2θ̃) = 1
2(cosθ̃sinθ̃),

tan(2θ̃) =
2
∑N2

k=1(x̃r[k]x̃i[k])
∑N2

k=1(x̃
2
i [k]− x̃2r [k])

, (96)

so, the dominant orientation θ̃ in x̃v can be computed as,

θ̃ =
1

2
tan−1

(

2
∑N2

k=1(x̃r[k]x̃i[k])
∑N2

k=1(x̃
2
i [k]− x̃2r [k])

)

, (97)

which is simpler to implement and faster compared to general iterative SVD computations. We use

dominant orientation θ̃ to compute SVD sparsity in (98).
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7.3.4 Patch sparsity analysis

We developed a solution using two criteria; orientation dominancy (SVD sparsity) and DFT sparsity;

we used them to analyze the likelihood of image signal presence in a patch. To exploit orientation

dominancy, we divide the original gradient map G into patches of Nq×Nq and we use θ̃ estimated

from shrunk gradient map G̃ to compute the orientation dominancy of G. Assuming x̃v is a N2
q×2

of a patch of shrunk gradient G̃ at a certain location and ẋv is the corresponding patch of G at the

same location; First, we compute the dominant orientation of shrunk patch θ̃ according to (97) for

x̃v and then we use it to calculate the modified singular values of ẋv, i.e., s̃1 and s̃2 as

s̃1 =

√

√

√

√

N2
∑

k=1

∣

∣

∣
ẋr[k]cosθ̃ + ẋi[k]sinθ̃

∣

∣

∣

2

s̃2 =

√

√

√

√

N2
∑

k=1

∣

∣

∣
ẋi[k]cosθ̃ − ẋr[k]sinθ̃

∣

∣

∣

2
. (98)

s̃1 and s̃2 are different from s1 and s2 the singular values of ẋv (see Fig. 7.3). In (98) we use θ̃ the

dominant orientation of shrunk patch instead of θ the dominant orientation of ẋv. s̃1 is the energy

of signal along the θ̃ and s̃2 is the energy of along the perpendicular direction (π/2 − θ̃). Fig. 7.4

illustrates how these energies are computed according to (98). Using (92), we define the sparsity of

SVD after shrinkage as β̃ = s̃1
s̃2

. When the singular values are sparse, i.e., s̃1 ≫ s̃2 (or β̃ ≫ 1), the

probability of image content presence is higher. Theoretically β ≥ 1; however, it is not guaranteed

that β̃ ≥ 1. β̃ ≤ 1 implies that the probability that the patch contains image signal is low. We

propose a likelihood function that maps this property to the local quality of the patch as

ψ =
(β̃ − 1− ǫ)
β̃ + β̃0

, (99)

where ǫ ≥ 0 and β̃0 ≥ 0 are computed in (100) and (101) based on s̃1 and ξ. ψ is a value indicating

the relative quality of the patch. In case β̃ ≤ 1, ψ becomes negative, implying that the patch contains

no useful signal. In related work [36], patches with small signal to noise ratio are rejected and the

effect of noise in noisy patches is not considered. Our idea is that ψ can be negative to highlight

the impact of noise in overall image quality. We can consider |ψ| as a probability that shows signal
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Figure 7.4: Example of computing the singular values for (a) a gradient patch. Samples are rotated to be

aligned in the dominant (b) and perpendicular (c) orientation. The energy s1 = 505.8 along the dominant

orientation is greater than the energy s2 = 267.9 along the perpendicular orientation.

presence in the case of ψ > 0 and noise existence in case of ψ < 0. Therefore, the effect of noise is

more considered in our algorithm. We propose to use the DFT sparsity of ẋv, i.e., ξ to compute the

ǫ,

ǫ = max(ξ−1 − ξ−1max, 0), (100)

where ξmax is a constant representing a relatively large value for ξ. When ξ ≥ ξmax, i.e., the DFT

is very sparse, ǫ = 0. On the other hand, when ξ is relatively small, ǫ becomes non zero. In this

case when β̃ is also relatively small (β̃ < ǫ), ψ becomes negative. In fact, ǫ is an adjustment to

increase the reliability by taking the DFT sparsity into account. Fig. 7.5 shows ψ with β̃0 = 0 for

different values of ǫ. In (99), only relative values of decomposed signal, i.e., ratios of high power

to low-power coefficients are considered. In a weak-textured patch, it is possible that the absolute

values s̃1 and s̃2 are small but their relative value β̃ is large. In order to detect blur and compression

artifacts, weak-textured patches should be addressed by ranking lower the smaller s1. We define β̃0

to adjust the quality of patch as

β̃0 =
c2β

c2β + s̃21
, (101)
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Figure 7.5: Quality of a patch ψ according to the SVD sparsity β̃ and DFT based adjustment ǫ.

where c
q
β is a constant. Smaller value of s̃1 compared to c

q
β leads to larger value of β̃0 and thus

smaller ψ. Increasing c
q
β makes ψ more sensitive to blur, but decreases the sensitivity to noise.

Thus, to define c
q
β , a suitable trade-off between noise and blur should be considered.(see section

7.4).

7.3.5 Quality index

In (99) we have defined ψ as a measure to quantify the probability of the signal presence in each

patch. Assuming the directional energy s̃1 is the signal of interest, we consider its expected value

as a measure for genuine image content. The expected energy of signal is computed by multiplying

s̃1 by its presence probability ψ. By aggregating all of genuine energies (i.e., expected values), we

compute the overall genuine energy for the entire image to quantify the quality of the image Q(I),

assuming the input image contains K patches,

Q(I) =
1

K

K
∑

k=1

s̃1[k]ψ[k], (102)

where s̃1[k] and ψ[k] are the s̃1 and ψ of the kth patch. Negative value of ψ implies presence of noise

without any signal. Thus, when ψ < 0, |ψ| is the probability of noise presence with no genuine

signal which leads to negative s̃1[k]ψ[k]. In theory, Q(I) can be negative which means the power

of noise is more than signal. In practice, only relative result of Q(I) is informative, therefore the

sign of Q(I) is important and a negative QI shows lower quality than a positive QI.
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7.4 Experimental results

To evaluate the performance of the proposed SDQI method, seven state-of-the-art approaches (BRISQUE

[42], CPBD [39], JNB [38], LPC [40], S3 [41], BIQI [37], and MetricQ [36]) have been compared

objectively and subjectively. All analyses are performed on the gray-level image, however, there is

no restriction for performing the algorithm on other channels.

7.4.1 Method parameters

We have run extensive simulations to set the algorithm’s parameters: Nq SVD patch size,Wq shrink-

age block size, and Oq shrinkage overlapping size, c
q
α of (93), T

q
δ of (89), ξmax of (100), and c

q
β of

(101). Nq should be small enough to contain a distinct orientation. Since the proposed algorithm

detects one dominant orientation a large patch may contain many different orientations which can-

not be accurately detected. However, for an accurate estimation of orientation, sufficient number

of pixels are required and a very small patch does not satisfy this condition. Considering that the

DFT operation is faster when Nq is power of 2, our experiments show that Nq = 8 is optimal for

the performance. We set the shrinkage window size Wq = 2Nq to process the image details more

globally before analyzing the patch. We set Oq =
Wq

2 and our experiments show that by increas-

ing the overlapping size (e.g., Oq =
3Wq

4 ) the performance slightly improves; however, it does not

justify the computational complexity (e.g., 4x). We have analyzed the effect of Fourier shrinkage

on the performance of the algorithm by altering c
q
α to change the shrinkage strength. For this, we

used the denoising methods BM3D [20] and bilateral filter [21] and we changed the noise removal

force, i.e., input standard deviation of noise σn, and measured the output QI. Fig. 7.6 shows the QI

of the proposed method with changing both σn and c
q
α. By increasing c

q
α, the ability of detecting

noise increases by providing lower QI for noisy image (σn = 0); however, the capability of detect-

ing blur decreases since the QI peak shifts towards higher σn. Thus, we set c
q
α = 4 as a balanced

trade-off to detect both noise and blur. By conducting extensive simulations we determined other

algorithm’s parameters T
q
δ = 0.75, ξmax = 8, and c

q
β = 20 that give the highest correspondence

with ground-truth quality metrics PSNR and MSSIM.
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Figure 7.6: The effect of Fourier shrinkage on the performance of the proposed algorithm. The noisy images

with added σa = 10 (28dB) are denoised by BM3D [20] (a) and (b) bilateral filter [21] using different input

σn. Increasing c
q
α increases the capability of detecting noise, but shifts the maximum QI to a blurrier result,

i.e., higher σn. cqα = 0 means no shrinkage.

7.4.2 Optimizing denoising parameters using NR-IQA

In image or video denoising, the goal is to remove noise without degrading the sharpness (i.e.,

introducing blur). Thus, finding an optimal point between noise and blur is the key to achieve the

highest quality. If the key denoising parameter p is not well selected, the output will be degraded

with either noise or blur. A NR-IQA which detects the genuine image content, such as edges of

physical objects, local sharpness, and textures, can be used to select such key parameter. Assuming

I is the observed noisy image and a filtering process outputs the filtered image Ip using the input

parameter p. As proposed by [36] by changing p and measuring the output quality using a NR-IQA,

the denoiser output can be optimized. In order to evaluate the performance of NR-IQA, we consider

that the ground-truth quality metric such as PSNR or MSSIM is available and denoted by Φ(·),

which measures the quality of the NR-IQA based denoiser output. Assuming QI(Ip) is the quality

index measured by a NR-IQA, the NR-IQA based denoiser output leads to the highest QI(Ip) as

Iopt = argmax
Ip

[QI(Ip)] , Φgtm = Φ(Iopt, Iref ), (103)

where Iopt is the output of NR-IQA based denoiser at highest QI, Iref is the reference image, and

Φgtm is its quality according to the reference and considered ground-truth. Due to imperfection of

NR-IQA, the output quality may deviate from maximum achievable quality. Fig. 7.7 is an example

of computing Φgtm for NR-IQA methods BIQI, MetricQ, and SDQI using Peppers contaminated
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Figure 7.7: Evaluation of NR-IQA methods in selecting the denoiser BM3D parameter for Peppers corrupted

with WGN 28dB (σa = 10) considering PSNR as the ground-truth quality metric.

with WGN with σa = 10 (PSNR = 28dB) and denoised using BM3D. Considering PSNR as the

ground-truth metric, the maximum of QI(Ip) does not coincide perfectly with maximum quality

(here, PSNR) for none of three methods. However, the methods that reach higher quality is more

desirable to be used as a denoising parameter selector. Fig. 7.8 shows a block diagram for optimiz-

ing the parameters of denoising (NR-IQA based denoiser). We use Φgtm to evaluate the NR-IQA

according to ground-truth metric (see Tables 7.3, 7.5 and 7.7).

In Fig. 7.8 only the maximum value of QI is taken into account, however, the behaviour of all

QIs with respect to ground-truth should also be examined. We consider two well-known correlation

factors, Spearman and Kendall rank order correlation coefficient (SROCC and KROCC) to evaluate

the performance of NR-IQA. We change the denoiser parameter and compute QI of denoiser output.

We then compute SROCC and KROCC using the set (one value for each parameter) of QI and the

corresponding ground-truth. Since SROCC, KROCC, and Φgtm do not necessarily match (compare

Table 7.2 and 7.3) we consider all of them for our evaluations. When the reference is available and

the degradation is noise or blur, many studies show a high correspondence between subjective and

objective measures such as PSNR and MSSIM (see [124]). Depending on the availability of the

reference image, in our simulations we have used subjective metric mean opinion scores (MOS),

and objective metrics, PSNR and MSSIM as the ground-truth.
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Figure 7.8: Optimizing the parameters of a denoiser using a NR-IQA method and finding the quality of output

based on the ground-truth quality metric.

Table 7.1: Correlation factors between MOS and considered NR-IQA methods for denoising of real images.

BRISQUE CPBD JNB LPC S3 BIQI MetricQ Ours

[42] [39] [38] [40] [41] [37] [36]

SROCC 0.36 0.27 0.30 0.59 0.30 0.50 0.66 0.93

KROCC 0.32 0.23 0.26 0.55 0.26 0.46 0.58 0.87

7.4.3 Real noise

To analyze the performance of the NR-IQA methods under real noise we have selected 25 real

noisy images and video frames (see Fig. 7.9). We applied BM3D [20] on each image and created

sets of denoised images with different levels of denoising. For video frames where the temporal

data was available we used VBM3D [8]. We have conducted a human subject study and asked the

participants in a pairwise comparison to vote for the image with the better visual quality. A total of

26 participants between the age of 20 and 55 participated in our experiments and we have obtained

the MOS for all images and calculated the SROCC and KROCC for the data set. Table 7.1 shows the

SROCC and KROCC result of each NR-QIA method. Our methods shows higher correlation with

MOS. In CPBD, JNB, and S3 noise is less taken into account and for all cases the noisier images

shows higher QI compared to denoised ones. BIQI and BRISQUE also tend to select noisier images

over the denoised ones. One the other hand, MetricQ and LPC tend to select blurrier images with

destructed details. Fig. 7.10 shows part of original and denoised images by different levels from

our real noisy dataset. BIQI and BRISQUE select the noisiest (left column) as the highest quality.

MetricQ selects the blurriest (third column) as the highest quality and ours selects the ones with

highest MOS.
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Figure 7.9: Samples of our image dataset corrupted with real noise.

7.4.4 Synthetic noise

We have evaluated the performance the NR-IQA methods by analyzing the behavior of each method

in finding the best balance between noise and blur in image denoising under synthetic WGN and

synthetic processed noise. We use both correlation factor (SROCC and KROCC) and Φgtm (quality

at maximum QI) to objectively evaluate the performance of NR-IQA methods (see Fig. 7.8). We

consider two well-known reference-based quality metrics PSNR and MSSIM [125] as the ground-

truth quality metric. We have considered the TID2013 [124] database as the ground-truth image and

added synthetic noise, then, we have varied the main parameter of the denoiser (here σn and σRF3D).

We have computed the correlation between ground-truth quality metric and computed QI. We have

considered two high-performance denoising methods BM3D and DDID [23] in these experiments.

We also considered the quality of NR-IQA output in these experiments. The PSNR and MSSIM

values at the maximum QI are measured and compared. The NR-IQA method that gives the highest

Φgtm, is more suitable to be used in a NR-IQA based denoiser design.

Synthetic WGN

In this experiment we added zero-mean WGN to the ground-truth images from TID2013. The

noisy images were generated by adding WGN with standard deviation σa of 10 (PSNR = 28dB).

For all synthetic noise tests using TID2013, we consider the standard deviation of noise σn as the

main parameter of the denoiser and we have varied that using 15 different levels of denoising from

relatively small (which leads to noisy results) to large values (which leading to blurry results). Table

7.2 compares the SROCC and KROCC between different NR-IQA methods. In case of BM3D as
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Figure 7.10: Original, part of original, and two denoised outputs using BM3D with two different levels. SDQI

selects the output with the highest MOS.
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Table 7.2: WGN: Correlation factor for TID2013 database.

BM3D DDID

Correlation with PSNR

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36] QUE [42] [39] [38] [40] [41] [37] Q [36]

SROCC 0.78 -0.28 -0.28 0.47 -0.28 0.58 0.50 0.57 0.75 -0.33 -0.33 0.42 -0.33 0.60 0.73 0.76

KROCC 0.66 -0.17 -0.18 0.38 -0.17 0.51 0.43 0.50 0.65 -0.22 -0.22 0.31 -0.23 0.51 0.65 0.69

Correlation with MSSIM

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36] QUE [42] [39] [38] [40] [41] [37] Q [36]

SROCC 0.73 -0.35 -0.35 0.49 -0.35 0.51 0.54 0.61 0.72 -0.37 -0.37 0.42 -0.37 0.55 0.73 0.76

KROCC 0.64 -0.19 -0.20 0.39 -0.19 0.47 0.46 0.53 0.63 -0.23 -0.23 0.31 -0.24 0.49 0.65 0.69

Table 7.3: WGN: Quality of NR-IQA based denoiser, Φgtm, averaged over images of TID2013 database.

BM3D DDID

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36] QUE [42] [39] [38] [40] [41] [37] Q [36]

PSNR 33.47 28.24 28.24 31.47 28.22 32.93 32.06 32.46 33.35 28.26 28.26 30.68 28.23 33.11 32.96 33.06

MSSIM 0.90 0.69 0.69 0.84 0.68 0.89 0.86 0.87 0.90 0.69 0.69 0.81 0.68 0.89 0.88 0.88

the denoiser, BRISQUE clearly outperforms other methods followed by BIQI and proposed SDQI.

In case of DDID as the denoiser, proposed method outperforms other methods followed by MetricQ

and BRISQUE. CPBD, JNB, and S3 are more sensitive to blur and less to noise which yield negative

correlations. Table 7.3 compares the Φgtm for NR-IQA methods averaged over TID2013 database.

BRISQUE achieves slightly higher PSNR and MSSIM as proposed method. The performance of

BRISQUE and BIQI is relatively higher when the noise is white, however, according to Table 7.1 it

degrades when the noise is non-white. It is worth noting that we have also tested the performance of

NR-IQA methods under signal-dependent noise. In this case the variance of noise is a function of

image intensity. We selected a ”close to reality” noise level function, i.e., variance of noise at each

intensity. We computed the average Φgtm and the results show QI values relatively similar to Table

7.3 for all eight methods.

We have considered the case that the adjustable parameter of the denoiser is not the standard

deviation of the noise. Fig. 7.11 shows the PSNR result of NR-IQA based denoiser using RF3D [61]

as the video denoiser. Input parameter of RF3D is the power spectral density (PSD) which is defined

by a 2D Gaussian lowpass filter with different sigma σRF3D. Proposed method can better, i.e., leads

to outputs with the higher PSNR, select the parameter of RF3D σRF3D compared to MetricQ.

127



Figure 7.11: Selecting the parameter of RF3D [61] video denoiser. (a) PSNR with different parameters for the

25dB Bus video. (b) PSNR of denoiser output when σRF3D is selected using MetricQ and proposed method.

Since noise is white, higher σRF3D (flat PSD) leads to higher quality.

Spatially correlated noise

Camera noise usually becomes manipulated due to processing such as filtering, lossy compression,

or demosaicing. Thus, in order to evaluate our method under this real conditions, we assume that

the noise is spatially correlated (similar to noise after demosaicing, upscaling, or filtering) and we

generated noisy images by adding filtered WGN to the ground-truth images from TID2013. Noisy

images were denoised using BM3D and DDID with 15 levels of denoising. We used 5×5 Gaussian

filter with sigma of 0.6 and σa = 20. Table 7.4 compares the SROCC and KROCC between

selected NR-IQA methods using PSNR and MSSIM as the ground-truth. For both BM3D and

DDID, proposed SDQI outperforms other methods followed by MetricQ and LPC. Table 7.4 results

corresponds with real noise results in Table 7.1. The performance of BRISQUE and BIQI degrades

as the noise deviates from whiteness and in some cases yield negative correlations. Similar to

WGN, CPBD, JNB, and S3 give negative correlations. Table 7.5 compares the average of Φgtm for

considered NR-IQA. Our method achieves more accurate results followed by BIQI in case BM3D

denoiser and MetricQ in case DDID denoiser. Comparing Table 7.4 and Table 7.2 gives an idea

about the sensitivity of methods to the high-frequency components of the noise. Performance of

BIQI and BRISQUE significantly decreases in this situation while SDQI shows stable performance.

Fig. 7.12 shows visual quality comparison, applying BM3D where the filter parameter σn is selected

using BIQI, MetricQ, LPC and proposed. BIQI leads to noisy results, however, MetricQ and LPC

yield blurry results which correspond to the results in Table 7.1.
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Figure 7.12: Visual comparison: selecting BM3D parameter for denoising images from TID2013 corrupted

with spatially correlated noise.
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Table 7.4: Spatially correlated noise: Correlation factor for TID2013 database.

BM3D DDID

Correlation with PSNR

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36] QUE [42] [39] [38] [40] [41] [37] Q [36]

SROCC -0.01 -0.24 -0.26 0.55 -0.27 0.49 0.53 0.63 -0.25 -0.29 -0.33 0.51 -0.34 0.43 0.73 0.76

KROCC 0.10 -0.20 -0.21 0.48 -0.24 0.41 0.47 0.57 -0.23 -0.26 -0.27 0.45 -0.31 0.38 0.66 0.70

Correlation with MSSIM

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36] QUE [42] [39] [38] [40] [41] [37] Q [36]

SROCC -0.15 -0.37 -0.40 0.52 -0.41 0.35 0.63 0.70 -0.32 -0.39 -0.42 0.48 -0.43 0.33 0.73 0.75

KROCC 0.01 -0.29 -0.31 0.46 -0.33 0.33 0.56 0.65 -0.28 -0.32 -0.34 0.42 -0.37 0.32 0.67 0.67

Table 7.5: Spatially correlated noise: Quality of NR-IQA based denoiser, Φgtm, averaged over images of

TID2013 database.

BM3D DDID

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36] QUE [42] [39] [38] [40] [41] [37] Q [36]

PSNR 29.89 28.60 28.41 30.69 28.21 31.16 30.77 31.23 28.88 28.63 28.40 29.95 28.21 30.99 31.57 31.65

MSSIM 0.78 0.72 0.71 0.83 0.70 0.84 0.84 0.85 0.74 0.72 0.71 0.80 0.70 0.83 0.86 0.86

Lossy compressed noise

Images are often lossy compressed. Thus, we repeated the above experiments by applying a lossy

compression on the noisy images. Noisy images were generated by adding WGN with σa = 10

to TID2013 database, then we compressed them using standard JPEG with quality factor (QF)

of 75, finally we denoised them using BM3D and DDID with 15 levels of denoising. Table 7.6

compares the SROCC and KROCC between selected NR-IQA methods using PSNR and MSSIM as

the ground-truth. For both BM3D and DDID, proposed SDQI outperforms other methods followed

by MetricQ and LPC. Similar to spatially correlated noise, the performance of BRISQUE and BIQI

degrades as the noise becomes lossy compressed and CPBD, JNB, and S3 give negative correlations.

Table 7.5 compares the average of Φgtm for considered NR-IQA methods using PSNR and MSSIM

as the ground-truth. The proposed SDQI is able to select a more accurate σn compared to other

methods, suggesting it being more suitable for denoising applications.

7.4.5 General quality assessment

We have tested our algorithm, independent of denoising in general degradation conditions. We have

added different types of distortion to TID2013 database. We have examined WGN with two levels

(σa = 5, 10), spatially correlated noise (SCN) with two levels (σa = 10, 20), WGN that is lossy
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Table 7.6: Lossy compressed noise: Correlation factor for TID2013 database.

BM3D DDID

Correlation with PSNR

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36] QUE [42] [39] [38] [40] [41] [37] Q [36]

SROCC 0.30 -0.39 -0.39 0.50 -0.39 0.33 0.58 0.65 0.32 -0.44 -0.44 0.38 -0.44 0.34 0.79 0.82

KROCC 0.30 -0.27 -0.28 0.42 -0.28 0.31 0.49 0.57 0.26 -0.34 -0.33 0.31 -0.34 0.32 0.71 0.75

Correlation with MSSIM

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36] QUE [42] [39] [38] [40] [41] [37] Q [36]

SROCC 0.27 -0.41 -0.42 0.49 -0.41 0.29 0.59 0.64 0.32 -0.44 -0.44 0.37 -0.44 0.32 0.76 0.78

KROCC 0.30 -0.27 -0.27 0.40 -0.27 0.30 0.49 0.56 0.27 -0.31 -0.30 0.29 -0.31 0.32 0.68 0.71

Table 7.7: Lossy compressed noise: Quality of NR-IQA based denoiser, Φgtm, averaged over images of

TID2013 database.

BM3D DDID

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36] QUE [42] [39] [38] [40] [41] [37] Q [36]

PSNR 31.64 27.91 27.92 31.01 27.90 31.70 31.66 31.92 31.73 27.91 27.95 30.23 27.90 31.85 32.39 32.42

MSSIM 0.86 0.69 0.69 0.83 0.69 0.86 0.85 0.86 0.86 0.69 0.69 0.79 0.69 0.86 0.88 0.88

compressed (i.e., WGN + JPEG), SCN that is lossy compressed (i.e., SCN + JPEG), Gaussian blur

with sigma of 1, and impulse noise with occurrence probability of 0.5%. Table 7.8 compares the

SROCC considering PSNR as the ground-truth and shows the average MSE. Note that KROCC

results are similar to SROCC results. The proposed method is the most successful in all distortion

types.

Table 7.8: SROCC values for NR-IQA distortions added to TID2013 database using the PSNR as the ground-

truth.

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours

QUE [42] [39] [38] [40] [41] [37] Q [36]

WGN5 1.00 -1.00 -1.00 0.58 -1.00 0.67 1.00 1.00

WGN10 1.00 -1.00 -1.00 0.58 -1.00 1.00 1.00 1.00

SCN10 -0.33 -0.75 -0.67 0.75 -0.92 0.42 1.00 1.00

SCN20 -0.50 -0.83 -0.92 0.83 -1.00 0.92 1.00 1.00

WGN7+JPEG 0.75 0.08 0.33 0.92 -0.83 0.92 -0.25 0.92

SCN5+JPEG 0.67 0.17 0.50 0.83 -0.92 0.50 -0.17 0.92

Gaussian blur 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Impulse noise 1.00 -0.83 0.33 0.75 -1.00 0.08 0.25 1.00
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Table 7.9: Elapsed time in seconds to process a full HD image.

BRIS- CPBD JNB LPC S3 BIQI Metric- Ours Ours

QUE[42] [39] [38] [40] [41] [37] Q[36] GPU

0.67 4.47 7.29 6.94 188.78 1.03 9.31 0.75 0.018

7.4.6 Implementation issues

The source codes of algorithms [36–42] were obtained from the author’s websites. In BIQI [37] and

BRISQUE [42] the maximum and minimum quality happens at 0 and 100 respectively. To obtain

the consistency with other methods which give higher QI for higher quality, we subtracted the QI of

these methods from 100. We implemented our method using MATLAB (MEX). We have tested the

acceleration factor of proposed SVD computation approach by comparing it to standard MATLAB

’svd’ function. For the patch size of Nq = 32 for instance, it shows a speedup by a factor of 1.9.

Our approach saves, for example, 0.2 seconds for calculating the SVD of a full HD image with

resolution of 1920×1080 with patch size of 8. We took the advantage of block-based operation to

utilize the ability of parallel processing and accelerated our implementation using capability of GPU

in parallel processing. We used OpenCL programming language to implement our method. Table

7.9 compared the speed of different methods to compute the QI of full HD image (1920×1080). For

all tests we used Intel 3.07 GHz, i7 CPU and NVIDIA GTX 970 GPU. Table 7.9 cannot fully reflect

the speed of algorithms since the implementations of the different algorithms may not be optimized.

However, computation time gives an idea about the lower bound of the speed.

7.5 Conclusion

In this thesis, we presented a new no-reference image quality assessment approach based on single

value decomposition and Fourier transform which are used to estimate the dominant orientation and

coefficient sparsity. We propose a fast and easy to implement method to calculate the SVD avoiding

recursive operations. Based on SVD analysis and Fourier sparsity, we measure local image structure,

noise, and blur, and integrate them to compute overall quality. Our method takes both noisy and

structured patches into account, therefore it measures the effect of noise more precisely compared

to state-of-the-art methods. To reach more accurate results, especially under heavy noise, we use
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a Fourier shrinkage to increase the contrast of image structure before analyzing the patches. We

have performed ample simulation using synthetic and real data to validate the performance of the

proposed method. We used white Gaussian and processed noise in our simulations to support our

claims. The proposed approach is fast and able to provide a more reliable estimation of image

quality under different degradations compared to state-of-the-art NR-IQA approaches.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Noise is present in video signal captured from different sources. Even modern high-quality captur-

ing devices introduce noise of different type. Noise estimation, reduction, and quality assessment

methods typically assume video noise is white Gaussian. This thesis bridges the gap between the

relatively well studied white Gaussian noise and the more complicated white signal-dependent and

non-white processed types. This thesis comprises novel approaches to estimate and reduce noise of

different sources and provide a solution to assess the image quality without accessing the reference

frame.

We proposed a noise estimation technique that widens noise assumptions based on the clas-

sification of intensities (or color) and on the extraction of weights using statistical noise property

and homogeneous regions in the images. The classification of intensities into connected clusters

of homogeneous patches allowed us to well approximate the noise level function. We estimated

the degree of processed versus white noise as a ratio of low to high frequency energies in the input

image. Another important feature of our technique is its use of both the input noisy image and its

downscaled version. This allowed better differentiation of noise and structure and fast processing.

We have shown that the developed visual noise estimation technique robustly handles different type

of visual noise: white Gaussian, white Poissonian-Gaussian, and processed (non-white) that are

visible in real-world video signals. Our simulation results showed the superiority of the proposed
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technique both in accuracy and speed. For the real-world experiment, simulation results have been

tested for very challenging sequences. Simulation results in this thesis are given for the gray-level

format of test video sequences. However, we have tested our method on color sequences and it

also outperforms related work. The main strength point of proposed technique compared to rival

methods is utilizing the connectivity of patches and temporal data.

Recent WGN filters are powerful. In order for them to remove real noise, we proposed a system

which enables a WGN filter to handle real noise by addressing the signal-dependency and spatial

correlation using noise equalization in intensity and frequency domain. Our simulation results show

that under real noise the quality of WGN filters significantly improves when they are used in our

framework.

We have also presented a time-space video denoising method that employs a fast block-matching

motion-estimation method and corrects the results employing homography creation. In order to ad-

dress blocking artifacts, we propose an interpolation of block-level error, back-signal subtraction,

and two-band motion compensation. We combines two levels of temporal error detection and adjusts

the noise level when it is overestimated which leads to less motion blur effects compared to relevant

methods. In addition, our modular framework provides the feature to adjust the performance-speed

point by changing certain components and parameters, such as motion-estimation, temporal radius,

and spatial filter. We have benefited from the parallelelizable structure of our method and we ac-

celerated that using GPU. Our solution is fast yet yields to competitive results compared to the

state-of-the-art methods. We show that the proposed system in the recursive framework is also

efficient and rivals relevant methods.

Our final contribution in this thesis was a new no-reference image quality assessment approach

based on single value decomposition and Fourier transform which are used to estimate the dominant

orientation and coefficient sparsity. We proposed a fast and easy to implement method to calculate

the SVD avoiding recursive operations. Based on SVD analysis and Fourier sparsity, we measure

local image structure, noise, and blur, and integrate them to compute overall quality. Our method

takes both noisy and structured patches into account, therefore it measures the effect of noise more

precisely compared to state-of-the-art methods. To reach more accurate results, especially under

heavy noise, we use a Fourier shrinkage to increase the contrast of image structure before analyzing
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the patches. We have performed ample simulation using synthetic and real data to validate the per-

formance of the proposed method. We used white Gaussian and processed noise in our simulations

to support our claims. The proposed approach is fast and able to provide a more reliable estimation

of image quality under different degradations compared to state-of-the-art NR-IQA approaches.

8.2 Future work

Noise estimation method uses an outlier removal based on one reference patch which is selected

based on variances. Two patches may have similar variances but different means. Since the com-

putations can be accomplished in different precisions (e.g., single or double floating point) the

reference block may become different with different mean which affects the selected cluster. For

future work we propose using a more efficient outlier removal to make the cluster selection more

stable.

Our proposed noise reduction compromised the quality in chroma channels to gain speed. In

special cases that chroma channels have most of information the quality is not satisfactory. We

propose to have an option to handle such rare cases to perform all processing of luminance channel

on the chroma as well. Our homography based motion correction can be improved by adding

the camera motion model to homography frame work. Algorithms such as RANSAC [126] based

on selected features can compute homography efficiently utilizing singular value of motion vector

matrix. Although these methods are computationally complex, they increase the quality specially

when the motion model is not complex (burst images). Another idea for future work can be utilizing

a method to sharpen straight lines. The problem with classic sharpening using highpass filters is that

it increases noise. However, we propose to sharpen the image for straight lines only which can be

detected through our proposed algorithm for dominant orientation detection in our NR-IQA method.

For future work, we also propose an algorithm to combine recursive and symmetric temporal filter

ideas to benefit from advantage of each. When the temporal information of previous frames is not

adequate (e.g., scene change or beginning of sequence) we can use forward noisy frame otherwise

we use backward denoised frames.

Our proposed NR-IQA may be suboptimal when there is not enough patches with dominant
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directions and random shaped structure image exist. One solution can be using homogeneity in-

formation to guide the NR-IQA. In this case, the level of noise does not have to be accurate since

proposed NR-IQA can work independent of noise level estimation. We also propose using temporal

and homogeneity data to guide the proposed NR-IQA. Temporal data can guide the NR-IQA to

better differentiate between noise and image structure.
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[72] D. Tschumperlé, “Fast anisotropic smoothing of multi-valued images using curvature-

preserving PDE’s,” Int. Journal of Computer Vision, vol. 68, no. 1, pp. 65–82, 2006.

142



[73] D. Barash, “Fundamental relationship between bilateral filtering, adaptive smoothing, and

the nonlinear diffusion equation,” Pattern Analysis and Machine Intelligence, IEEE Trans.

on, vol. 24, no. 6, pp. 844–847, 2002.

[74] S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal processing

approach,” in Computer Vision Europe Conf. on, pp. 568–580, Springer, 2006.

[75] E. Bennett and L. McMillan, “Video enhancement using per-pixel virtual exposures,” in ACM

Trans. on Graphics (TOG), vol. 24, pp. 845–852, ACM, 2005.

[76] S. Awate and R. Whitaker, “Higher-order image statistics for unsupervised, information-

theoretic, adaptive, image filtering,” in Computer Vision and Pattern Recognition, IEEE Com-

puter Society Conf. on, vol. 2, pp. 44–51, 2005.

[77] M. Elad and M. Aharon, “Image denoising via learned dictionaries and sparse representa-

tion,” in Computer Vision and Pattern Recognition, IEEE Computer Society Conf. on, vol. 1,

pp. 895–900, 2006.

[78] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,”

Pattern Analysis and Machine Intelligence, IEEE Trans. on, vol. 11, pp. 674–693, Jul 1989.

[79] D. Field, “Relations between the statistics of natural images and the response properties of

cortical cells,” Journal of the Optical Society of America A, vol. 4, no. 12, pp. 2379–2394,

1987.

[80] J. Rossi, “Digital techniques for reducing television noise,” SMPTE Journal, vol. 87, no. 3,

pp. 134–140, 1978.

[81] E. Simoncelli and E. Adelson, “Noise removal via bayesian wavelet coring,” in Image Pro-

cessing (ICIP), IEEE Int. Conf. on, vol. 1, pp. 379–382, 1996.

[82] E. Simoncelli, “Statistical models for images: Compression, restoration and synthesis,” in

Signals, Systems &amp; Computers, Conf. Record of the Thirty-First Asilomar Conf. on,

vol. 1, pp. 673–678, IEEE, 1997.

[83] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, “Image denoising using scale mix-

tures of gaussians in the wavelet domain,” Image Processing, IEEE Trans. on, vol. 12, no. 11,

pp. 1338–1351, 2003.

[84] M. Crouse, R. Nowak, and R. Baraniuk, “Wavelet-based statistical signal processing using

hidden markov models,” Signal Processing, IEEE Trans. on, vol. 46, no. 4, pp. 886–902,

1998.

[85] G. Fan and X. Xia, “Image denoising using a local contextual hidden markov model in the

wavelet domain,” Signal Processing Letters, IEEE, vol. 8, no. 5, pp. 125–128, 2001.
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