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Abstract

Fault-Tolerant Control with Applications to Aircraft Using Linear Quadratic De-

sign Framework

Bin Yu, Ph.D.

Concordia University, 2016

Safety is one of the major concerns in the aviation community for both manned aircraft

and unmanned aerial vehicles (UAVs). The safety issue of manned aircraft, such as com-

mercial aircraft, has drawn great attentions especially after a series of disasters in recent

decades. Safety and reliability issues of UAVs have also attracted significant attention due

to their highly autonomous feature towards their future civilian applications. Focusing on

the improvement of safety and reliability of aircraft, a fault-tolerant control (FTC) system

is demanded to utilize the configured redundancy in an effective and efficient manner to

increase the survivability of aircraft in the presence of faults/failures.

This thesis aims to develop an effective FTC system to improve the security, reliability, and

survivability of the faulty aircraft: manned aircraft and UAVs. In particular, the emphases

are focused on improving the on-line fault-tolerant capability and the transient performance

between faults occurrence and control re-configuration.

In the existing fault-tolerant literature, several control approaches are developed to pos-

sess fault-tolerant capability in recent decades, such as sliding mode control (SMC), model

reference adaptive control (MRAC), and model predictive control (MPC), just as examples.

Different strategies have their specific benefits and drawbacks in addressing different aspects

of fault-tolerant problems. However, there are still open problems in the fault-tolerant per-

formance improvement, the transient behavior management, consideration of the interaction

between FTC and fault detection and diagnosis (FDD), etc. For instance, MPC is recognized

as a suitable inherent structure in synthesizing a FTC system due to its capability of ad-

dressing faults via solving constraints, reforming cost function, and updating model on-line.

However, this on-line FTC capability introduces further challenges in terms of fault problem

formulation, on-line computation, transient behavior before reconfiguration is triggered, etc.

Designing an efficient FDD is also a challenge topic with respect to time response speed,

accuracy, and reliability due to its interaction with a fault-tolerant controller.

In the control design framework based on linear quadratic (LQ) cost function formula-

tion, faults can be accommodated in both passive and active way. A passive FTC system

is synthesized with a prescribed degree of stability LQ design technique. The state of the
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post-fault system is obtained through state-augmented extended Kalman filter (SAEKF),

which is a combined technique with state and parameter estimation. In terms of reconfig-

uration capability, MPC is considered as a favorable active FTC strategy. In addition to

MPC framework, the improvement of on-line computational efficiency motivates MPC to be

used to perform fault-tolerant flight control. Furthermore, a Laguerre-function based MPC

(LF-MPC) is presented to enhance the on-line fault-tolerant capability. The modification

is based on a series of Laguerre functions to model the control trajectory with fewer pa-

rameters. In consequence, the computation load is reduced, which improves the real-time

fault-tolerant capability in the framework of MPC. The FTC capability is further improved

for accommodating the performance degradation during the transient period before the con-

trol reconfiguration. This approach is inspired by exponentially increasing weighting matrix

used in linear quadratic regulator (LQR).

Two platforms are used to perform the evaluation of the designed FTC system. A quadro-

tor UAV, named the Qball-X4, is utilized to test FTC designed with exponentially increasing

weighing matrix LQ technique and FDD designed with SAEKF. The evaluation is conducted

under the task of trajectory tracking in the presence of loss of control effectiveness (LOE)

faults of actuators. The modified MPC is utilized to synthesize an active FTC system to

accommodate the elevator stuck fault of a Boeing 747-100/200 benchmark model. The ex-

ponentially increasing weighing matrix LQ technique is further implemented in LF-MPC

framework to improve the fault-tolerant capability before the control reconfiguration. A

time delayed FDD is integrated into the evaluation process to present the effectiveness of

the proposed FTC strategies. The designed FTC system is evaluated under the emergency

landing task in the event of failure of elevators.
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Chapter 1

Introduction

1.1 Motivation on Investigating Fault-Tolerant Con-

trol of Aerial Vehicles

Safety issue of aircraft is getting more and more attentions in recent decades due to a

series of disasters, such as the crash of McDonnell-Douglas DC-10, American Airlines Flight

AA191, Japan Airlines Flight JL123, United Airlines Flight UA 232, USAir Flight 427,

United Airlines Flight 585, and El Al Flight 1862 in 1992 [3–5]. The consequences of these

disasters introduce a great amount of loss, especially, with the expenses of individuals’ lives.

However, some disasters can be avoided if the faulty aircraft can be operated and landed

safely with assistance of remaining functional actuators manipulated in a proper way. The

1989 Sioux City DC-10 case is one example, in which the pilot saved 185 people’s lives

by performing their reconfiguration with asymmetric thrust from the remaining engines to

maintain the limited control in the presence of total hydraulic system failure. The ability of

reconfigurable control improves the survivability of aircraft in the presence of faults/failures,

which motivates the development of a system being capable of maintaining the stability and

a certain degree of performance in the presence of faults.

In addition to manned aircraft, unmanned aerial vehicles (UAVs) have drawn increasing

attentions during recent years, since they can be applied for both military and civil purposes

in an efficient and low cost manner, such as reconnaissance, search and rescue [6], forest fire

monitoring [7], pipeline monitoring [8], data collection [9], mapping [10], and product delivery

[11], respectively. The problems of safety, reliability, and high autonomous capability are
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naturally brought with the applications, which motivates the efforts to increase the reliability

and safety of the systems. Without any proper actions, faulty UAVs can lead to catastrophic

consequences, which may cause great danger to personnel on the ground when it is operated

in the environment with great population density. Therefore, UAVs are highly demanded to

possess fault-tolerant capability, which improves safety of UAVs not only in normal situation,

but also in abnormal cases.

The safety concerns of manned and unmanned aircraft promote the research of fault-

tolerant control (FTC) on aircraft with the same purpose of improving the safety, reliability,

and survivability in the event of abnormal situations. A FTC scheme is thereby proposed

to prevent the system breakdown using the configured redundancies [2, 12]. The design of

GARTEUR Reconfigurable Control for Vehicle Emergency Return (RECOVER) is devel-

oped to investigate and validate the performance of the newly designed fault-tolerant flight

control schemes when applied to a realistic, non-linear advanced flight control application.

Moreover, the National Aeronautics and Space Administration (NASA) has developed a

Generic Transport Model (GTM), which is a 5.5% scaled dynamic model of a Boeing 757,

to advance and validate new technologies for transport aircraft, thereby, reducing the loss

of control accidents resulting from adverse conditions [13–15]. These efforts and resources

also motivate this research of using the RECOVER benchmark model (Boeing 747) to in-

vestigate FTC strategies for manned/unmanned aircraft. Last but not least, a quadrotor

UAV platform named the Qball-X4 is available in Diagnosis, Flight Control and Simulation

(DFCS) Lab at Concordia University, which brings the direct motivation of this study to

test the FTC approach on the UAV platform.

1.2 Research Objectives and Main Contributions

The structure of a FTC system is well studied in the literature. In the framework of

FTC, a great amount of control approaches are developed to possess FTC capability in re-

cent decades, such as sliding mode control (SMC) [16–18], adaptive control (AC) [15, 19],

and model predictive control (MPC) [4, 20, 21]. Different fault-tolerant strategies have their

specific benefits and drawbacks in addressing different aspects of fault-tolerant problems.

Despite the developed FTC strategies, there are still open problems in the fault-tolerant

performance improvement [2, 22], such as the transient behavior management [23], the lim-

ited amount of recovery time [24], the post-fault information [25, 26], and consideration of
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the interaction between FTC and FDD [27, 28]. For instance, the reconfigurable property of

MPC for FTC has been extensively studied in recent two decades [29–31].

MPC is recognized as a suitable strategy in synthesizing a reconfigurable controller for

FTC due to the inherent capability of solving constraints, reforming cost function, and

updating model on-line. These updating and on-line solving properties can be combined

with faults. However, this on-line FTC capability introduces further challenges in terms of

fault problem formulation, on-line computation, transient behavior before reconfiguration

triggered, etc. These problems in the framework of MPC-based FTC system are not well

discussed, especially, on aircraft system. An efficient FDD is also a challenge topic with

respect to time response speed, accuracy, and reliability due to its interaction with a fault-

tolerant controller.

This research aims to find an effective FTC approach in the framework of linear quadratic

(LQ) programming to improve the safety, reliability, and survivability of aircraft in the event

of actuator faults/failure. The effectiveness of the designed FTC strategies are tested and

evaluated based on unmanned/manned aircraft: 1) the Qball-X4 quadrotor UAV platform

and 2) the RECOVER benchmark, which is a fixed-wing platform of a Boeing 747-100/200

benchmark model with more complexity compared to the Qball-X4 platform.

The contributions of this study are summarized as follows:

• Develop and implement an effective fault-tolerant controller within the framework of

LQ techniques: linear quadratic regulator (LQR) and MPC;

• Develop a fault detection and diagnosis (FDD) system using states-augmented ex-

tended Kalman filter to solve the FDD problem in the sensorless environment;

• Improve the performance of the designed FTC system with respect to on-line fault-

tolerant capability;

• Improve the transient performance before the control reconfiguration is triggered with

prescribed degree of stability design;

• Demonstrate the effectiveness of the proposed FTC strategy with FDD against loss of

control effectiveness (LOE) based on the Qball-X4 platform;

• Demonstrate the effectiveness of the proposed active FTC with the emergency task of

landing aircraft in the event of actuator faults based on the RECOVER benchmark

model, in which an imperfect FDD with time delay is included into the close-loop

evaluation.
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1.3 Literature Review

This section covers the basic concept for understanding the concept of a fault/failure

of aircraft. Categories of faults and the behaviors of different faults are illustrated for

the purpose of solving the consequences resulted from the faults. To address the faults

problems, the strategies to compensate the performance degradation are illustrated in two

main principles: passive FTC and active FTC [1, 2]. Passive FTC uses the robustness

margin to accommodate faults while active FTC reconfigures the control efforts with respect

to the post-fault systems. In general, a FDD unit is demanded in the process of control

reconfiguration. The active FTC structure is introduced in a schematic overview. Finally,

the state-of-the-art of FTC approaches with applications to aircraft are presented to further

develop an effective FTC system.

1.3.1 Fault Definition and Classification

A fault/failure is previously defined in literature [32], which is further promoted as uni-

fying terminology by the International Federation of Automatic Control (IFAC) technical

committee as follows [33–36]: “A fault is an unpermitted deviation of at least one charac-

teristic property or parameter of the system from the acceptable/usual/standard condition.

A failure is a permanent interruption of a system’s ability to perform a required function

under specified operating conditions. A failure can be treated as a severe sequence of a fault

in terms of the property of the abnormal condition.” Hence, the term fault/failure will be

considered as ‘fault’ in general in this thesis.

The classification of faults has different categories according to various criteria. In terms of

faults occurrence location, faults are categorized in three types: actuator faults, sensor faults,

and other component faults. In terms of time characteristic, faults are also characterized as

abrupt, incipient and intermittent as shown in Fig. 1.1. Abrupt faults occur instantaneously

perhaps due to hardware damage, which can be severe since the stability/performance of

the controlled system might be affected. Incipient faults represent slow parametric changes

as result of aging. These faults are more difficult to be detected compared to abrupt fault

since the symptom of this type of fault is not significant. Intermittent faults occur only at

some randomly intervals, for instance, due to partially damaged wiring [1].

Based on the classification, it is convenient to understand the properties or behaviors

of faults in the time sequence based on the fault occurrence location. This is particularly
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Figure 1.1: Fault classification with respect to time

important in addressing FTC problems with respect to the faulty components. In this

thesis, abrupt actuator faults are the main concerns, and corresponding FTC strategies are

implemented to accommodate the performance degradation due to these types of faults. In

general, actuator faults can be represented as partial, such as LOE, or total loss of control

(LOC), such as stuck, runaway, and floating of control surfaces. LOE of actuators means

performance deteriorates in terms of the actuator’s effectiveness, which might be caused by

partial loss of a control surface, or pressure reduction in hydraulic lines [37]. Stuck fault

is a failure condition when an actuator is lock at some fixed position and immovable. This

might be caused by a mechanical jam, due to the lack of lubrication. Float fault is a failure

condition when the control surface moves freely without providing any moment to aircraft.

This might be induced by the loss of mechanical link. Since there is not any forces/moments

generated from the floating control surface, the deflection of the control surface should be

coincident with angle of attack. Runaway (hardover) fault is a failure condition, where the

control surface moves to its maximum position limit or blowdown limit at its maximum rate.

It might not be the same position between the maximum physical deflection of the control

surface and the runaway position. This runaway fault might be induced by an electronic

component failure, in which case a large wrong signal is sent to the actuator leading the

control surface deflect to its maximum position. Runaway can be treated as a special stuck

failure at its extreme position. The described faults [38] are shown in Fig. 1.2 for a clear

overview, where tF is the fault occurrence time and δmax, δmin denote the maximum and

minimum value of the actuator, respectively.

The faults studied in RECOVER benchmark model with different FTC strategies are

listed in Table 1.1. The maneuver of operating reconfiguration is given in the second column

of Table 1.1. The criticality of the faults mostly depends on the control redundancy of

a system, which can be used to reconfigure the control maneuver. As listed in the table,

the remaining control surfaces/efforts can still be used to accommodate faults, while the
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Figure 1.2: Floating fault (a), stuck fault (b), runaway fault (c), and loss of control effec-
tiveness fault (d)

redundant parts are mostly in much more heavy duty mode than that in normal situation.

For example, if faults occur in aileron, the spoilers can still be used to accommodate faults by

the reconfiguration with assistance of FTC strategies. The spoilers work in a more aggressive

way than that in a fault-free situation.

Table 1.1: Failure modes and the relevant control effects

Fault mode Reconfiguration Criticality

No failure N/A N/A

Stuck or erroneous eleva-
tor

Stabilizer; Symmetric ailerons; Differential thrust Major

Stuck or erroneous
aileron

Ailerons (remaining); Spoilers Major

Elevator/stabilizer run-
away

Ailerons (remaining); Flaps; Thrust; Use of static
stability

Major

Stuck, erroneous or rud-
der runaway

Remaining surfaces; Asymmetric thrust Catastrophic

Loss of vertical tail sur-
face

Differential thrust; Differential speed brakes Catastrophic

Engine separation and
structural damage

Remaining surfaces; Remaining engines; Remain-
ing sensors

Catastrophic
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1.3.2 Fault-Tolerant Control Systems

A FTC system aims to improve the safety, reliability, and survivability of aircraft by

accommodating the performance degradation induced by various faults. Conventionally,

the fault-tolerant task of aircraft is performed with hardware redundancy. However, this

strategy brings great weight to aircraft introducing further challenges, such as strength of

structure, cost of aircraft, fuel efficiency. Moreover, it is not realistic to equip redundant

system components in some aircraft due to the space and weight limitations. FTC is an

effective way to reduce the above mentioned problems. In general, FTC systems are cate-

gorized into two types: passive and active FTC systems [2]. In a passive FTC system, a

fault is accommodated and compensated by a fixed control with its robustness property. In

most cases, faults to be accommodated in the passive FTC framework are known during the

design process. The philosophy of a passive FTC system is to make the controller robust

enough to resist all the pre-specified faults. Therefore, a passive FTC system only performs

well with respect to specific known faults and cannot address faults exceeding the robustness

margin efficiently. A passive FTC system has limited ability to accommodate faults due to

the non-flexible property. However, the benefit of this strategy is that less computational

burden is required to perform the fault-tolerant tasks. In this regard, it is a feasible method

to be implemented in a time-critical system. Compared to a passive FTC system, an active

FTC system is a more flexible control system to deal with various faults by the reconfig-

uration of controller. The essential of the reconfiguration is to utilize the redundancy of

the faulty parts to compensate the performance degradation induced by the fault/ failure of

components. The fault-tolerant task with control reconfiguration is usually performed with

the assistance of a FDD module. Although, active FTC strategy can address faults with

more complexity according to the updated fault information from a FDD unit. Meanwhile,

it also brings challenges in algorithms and implementations, such as the reconfiguration ap-

proaches, the FDD strategies, and the combination of FDD and reconfigurable control. Each

of the mentioned problems includes more specific challenges, such as reliability of algorithm,

uncertainty resistance, real-time performance, as well as other challenges presented in [2].

Based on the knowledge of passive FTC strategy philosophy, the passive FTC structure

is fixed without significant difference compared to conventional controller. Therefore, the

schematic diagram of an active FTC system of aircraft is only presented as shown in Fig. 1.3.

A FDD module, a reconfiguration mechanism, and a reconfigurable fault-tolerant controller

are combined together and cooperate functionally as an active FTC system marked in the

rectangular area in Fig. 1.3. Conventionally, the majority of the FDD research is only for
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Fault-tolerant Controller
Figure1.3:SchematicdiagramofanactiveFTCsystem

monitoringandfaultdetectionpurpose[34,39,40],notfortheapplicationofFTC.How-

ever,FDDiscriticaltotheperformanceofactiveFTC,asitisinthecontrolloopand

providestheinformationoffaults,whichdeterminesthereconfigurationofthefault-tolerant

controller. AnassumptionisgiveninmostofliteraturethatFDDprovidestheaccurate

informationforreconfigurablecontrol.Itisnotthecaseinreality.Therefore,thesynthesis

ofintegrated/combinedFDDandFTCstrategyisstillanactiveandchallengingproblem

duetotimedelayoftheFDD,uncertaintyofdiagnosedfaultinformation,faultyalarm,etc

[2]. Moreover,theFTCapproachismostlymodel-basedmethodology,whichusuallyneed

systemstatesobtainedfromobserver.Overall,twoproblemsinsynthesizingaFDDunitfor

themodel-basedFTCstrategiesaresummarizedas:theunmeasuredstatesandthefault

information.

FaultDetectionandDiagnosisApproaches

Faultsareinevitableandunpredictableinaircraftcomponents. Todetectthefaulty

components,thevotingschemewithhardwareredundancyisadoptedconventionally,which

isusuallycostlyduetousingextraexpensivesensors. Furthermore,forsomeUAVsand

mannedaircraft,multiple-hardwareredundancyishardtoimplementduetothelackofop-

eratingspace,unavailableenvironment,etc.Therefore,anincreasingnumberofresearches
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focus on the development of analytical redundancy to detect and diagnose faults. In some

sensorless environment, a FDD approach, which makes use of mathematical model of the

monitored component/system to diagnose faults, is appropriate and favorable to overcome

the cost problem and weight limitations of the conventional hardware voting method. Gen-

erally, FDD approaches fall into two categories: model-based and data-based schemes. Each

of the two schemes can further be categorized into two types: qualitative and quantitative

schemes.

The model-based FDD scheme is shown in Fig. 1.4. In particular, a quantitative model-

FDD module

Actuator Aircraft Sensor

Dynamic 
model

Feature 
generation

Fault 
diagnosis 

Normal 
behavior

Controls

Figure 1.4: Overview of a FDD scheme

based FDD is more favorable for the FTC system design since most FTC approaches are

model-based methods. In the framework of a quantitative model-based FDD, there are

three common used techniques exist to generate the residual: 1) state estimation approach,

2) parameter estimation, 3) parity space [2, 35, 41]. In addition to the three techniques

applying individually, combinations of these three techniques are more suitable to carry out

FDD tasks [2, 42, 43]. Several criteria are listed to evaluate FDD approaches: 1) ability

to handle different type of faults, 2) ability to provide quick detection, 3) isolation, 4)

identification, 4) suitable for FTC, 6) identifiability for multiple faults, 7) suitability to non-

linear systems, 8) robustness of noises and uncertainties, 9) computational complexity [2].

Based on the aforementioned criteria , the existing quantitative model-based approaches are

presented in Table 1.2.

It is shown that the combination of parameter identification and state estimation tech-
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Table 1.2: Quantitative model-based approaches regarding FDD evaluation criteria [2]

niques are more suitable for the application of FDD [2].

Fault-Tolerant Control Approaches

Table 1.3: Active fault-tolerant methods

Optimization LQ, H∞, linear matrix inequality (LMI), and model
predictive control (MPC)

Switching Multiple model (MM), gain scheduling (GS), linear
parameter varying (LPV), variable structure control
(VSC), sliding model control (SMC)

Matching Pseudo inverse (PI), eigenstructure assignment (EA)

Following Model following (MF), MPC

Compensation Additive compensation and adaptive compensation

In the literature, the FTC approaches fall into the following techniques: LQ, pseudo

inverse, gain scheduling, linear parameter varying, model reference adaptive control, eigen-

structure assignment, multiple-model, feedback linearization or dynamic inversion, H∞ ro-

bust control, model predictive control, variable structure/sliding mode control, and intelli-

gent control, which are summarized in Table 1.3 based on reconfiguration mechanisms for a

FTC system [2].

Various control methodologies have been exploited for the FTC system design of aircraft,
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such as MM [44], control allocation (CA) [16, 45, 46], SMC [17, 47–49], non-linear dynamic

inversion (NDI) [50], and MPC [4, 51]. MM method is an active FTC approach, which is

based on a finite set of linearized models that describe the system in different flight conditions,

such as, in the case of a faulty condition. A group of control laws are pre-designed based

on the known possible faults, and the key to this method is to develop a mechanism to

determine the global control action based on the multiple models. This method is highly

attractive for FTC while only a finite number of anticipated faults can be accommodated

effectively due to the finite number of models. SMC is another effective way to design a

fault-tolerant controller, which can accommodate structural failure by modifying the plant

dynamics. This approach is a robust control technique, which requires to tune the controller

to the point that can accommodate all priori known faults. The conservative method might

be not appropriate for the control of aircraft in a fault-free situation as the parameters are

tuned to balance the performance in both normal and faulty situations. Another drawback

of the method is that it only works for LOE faults. It cannot counteract the stuck, floating,

and runaway faults. CA is thereby proposed combing with SMC approach to overcome the

drawback [16]. EA is to place the eigenvalues of a linear system using state feedback and then

using the remaining degree of freedom to align the eigenvectors as accurately as possible. The

idea is to exactly assign some of the most dominant eigenvalues while minimizing the 2-norm

of the difference of eigenvalues between fault-free and faulty conditions. The drawback of

this method is that model accuracy is critical for the eigenvalue assignment. No uncertainty

from the model and FDD part is considered in EA process. NDI is an effective approach for

the control of a non-linear system with combination of other control techniques, such as CA,

adaptive control. With an appropriate modeling, a full-flight control system can be quickly

and efficiently developed. MPC is widely used in the industry due to that it is good at

dealing with multiple variables and handling the constraints [52–54]. It is compared among

these methods and indicated that MPC has the most suitable architecture with all kinds of

faults while changing the constraints, internal model, and the objective function [1, 4]. In

addition, MPC can be modified to be robust [55, 56], adaptive [57, 58], and computational

efficient [18, 59], which make MPC attractive in the application of FTC.

Particularly, the state-of-the-art of FTC evaluated in the GARTEUR benchmark model

[60] are depicted in Fig. 1.5, in which several FTC strategies are compared in terms of ro-

bustness, adaptive property, the ability to deal with the type of failures, the fault model,

and the designed model. As can be seen from Fig. 1.5, MPC presents attracting character-

istics for FTC purpose, marked by either filled dots or empty circles, compared to the other
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control methodologies, in terms of dealing with multiple faults, the capability of addressing

constraints, and the application of using linear/non-linear models.

Figure 1.5: State-of-the-art of FTC [1]

Basically, MPC is a form of control in which the current control action is obtained by

solving an optimization problem on-line at each sampling instant [61]. MPC gets great

success in the process industries in chemical plants and oil refineries. Due to its success in

the process industry and the advantages mentioned earlier, MPC is attracting more and more

attentions in aerospace with the development of the computational speed. From the design

point of view, MPC has several significant advantages, which include easy to be designed

with state space model, easy to be tuned by the engineer, handling the constraints, and

optimizing the objective function on-line with respect to timely information [53]. From the

FTC point of view, MPC has the inherent properties to match the requirements of FTC

[4]. Specially, faults for a system can be treated as constraints to the design of a fault-

tolerant controller. Once MPC adopts the linear model as internal model to predict the

future status of the system, the optimization problem can be solve in the LQ framework.

In this sense, both MPC and LQR are the optimal control methods which can solve the

problems formulated by the quadratic function. Considering that the LQ technique is a

relative mature and successfully used as a modern control method in flight control, such as

lateral autopilot control law of Boeing 767 and the Boeing version of Joint Strike Fighter [62],

LQR is considered as a favorable approach in designing a FTC system using the robustness of

LQR. In addition, LQR has inherent connection with MPC especially when the constraints

of MPC is not activated. This motives the design of MPC can borrow ideas from LQR
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technique to improve the fault-tolerant capability.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 introduces the modelling process of actuator

faults, the FDD approaches, and the basic concept of FTC strategy using LQ technique:

LQR and MPC. Chapter 4 presents the process of designing a FTC system and a FDD mod-

ule for a quadrotor UAV. The performance is investigated and validated by the Qball-X4

quadrotor platform. Chapter 5 introduces the non-linear model of a Boeing 747-100/200 air-

plane. The performance comparison between the linearized longitudinal model and nonlinear

model of Boeing 747-100/200 is also presented with respect to the control surface deflections

and thrusts. Chapter 6 synthesizes a FTC system with modified MPC to compensate the

performance degradation induced by actuator faults, which is evaluated by aircraft emer-

gency landing period. The FTC strategy is synthesized by Laguerre-function based MPC

(LF-MPC), in consequence, the on-line fault-tolerant capability improves benefited from

optimizing only a few coefficient parameters. Chapter 7 presents a LF-MPC based FTC

approach with a prescribed degree of stability to improve the transient performance after

abrupt fault occurrence. The degree of stability is obtained by modifying the cost function

with exponentially increasing weighing matrices, in which case the robustness of FTC is im-

proved without degrading the active fault-tolerant capability. Chapter 8 draws conclusions

of the thesis and presents future works based on the performed current research.
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Chapter 2

Fault Modeling and Fault-Tolerant

Control within LQ Framework

This chapter presents the mathematical model of various actuator faults, FDD approaches

with emphasizing Kalman filter based techniques, a FTC system schematic diagram, and the

FTC strategy in the framework of LQ technique. Section 2.1 introduces the basic knowledge

of fault modeling and presents the mathematical model of different types of actuator faults.

Section 2.2 introduces FDD techniques with a focus on Kalman filter related techniques.

Section 2.3 briefly introduces MPC algorithm and the fault-tolerant capability of MPC with

the consideration of physical constraints. More specifically, the LQ technique is introduced at

first due to its inherent connection with MPC. Based on the LQ framework and fault-tolerant

consideration, constraints of MPC are further discussed. A variant of MPC named LF-MPC

is introduced to function as an improved FTC strategy to accommodate the performance

degradation induced by actuator faults. The fault-tolerant problem is formulated in the form

of constraints in the LF-MPC framework and the control trajectory is approximated with a

modeling method to reduce the computational burden since less optimized parameters are

required to get control efforts. Section 2.4 summaries the contents of this chapter.

2.1 Fault Modeling

The considered modeling problem of actuators focuses on actuator faults. As discussed in

Chapter 1, actuator faults of aircraft are classified into two types in terms of their behavior:
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LOE of actuators and total actuator failures including stuck, runaway, and floating of control

surfaces, etc. The actuator fault ufm(k) at the time instant k is represented multiplicative

model form with respect to the normal input um(k) at the time instant k:

ufm(k) = um(k) + (I − ΣA)(ū− um(k)), (2.1)

where um(k) ∈ Rl×l is the system input vector; I ∈ Rl×l is the unit matrix; ΣA =

diag{σ1(k), σ2(k), . . . , σl(k)}, where l is the dimension of actuators and σi(k) ∈ [0, 1] is

defined as the control effectiveness: σi(k) = 0 means completely losing its effectiveness of

the ith actuator (i.e. failure); σi(k) = 1 represents 100% healthy of the ith actuator; and ū

is not a manipulated fault value.

For all σi(k) = 0, Eq. (2.1) is determined by the unknown fault value ū, which can be

used to denote actuator stuck, runaway, and floating faults:

ufi (k) = ūi. (2.2)

Eq. (2.2) can denote the stuck fault with fixed input signal ū.

If ū is the extreme (maximum/minimum) value of the acceptable input which is related

to the flight condition

ufi (k) = ūi =

{
umax

umin,
(2.3)

then, Eq. (2.3) can represent the runaway fault.

If ū is related to the flight condition

ufi (k) = ūi. (2.4)

Eq. (2.4) can be used to represent the floating fault. A multiplicative format of fault modeling

is convenient to express the partial LOE/LOC while it may cause the inconvenience of

calculating the effective factors. The additive formulation of fault modeling [1, 37] is suitable

for the application of FDD. Therefore, the expression in Eq. (2.1) is rewritten as Eq. (2.5)

for FDD purpose:

ufm(k) = um(k) + F (um(k))Γa(k) + (I − ΣA)ū, (2.5)
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where Γa(k) is [γa1 (k), γa2 (k), . . . , γal (k)], γai (k) = 1− σi(k) (i ∈ [1, l]), and

F (um(k)) =


−um1(k) 0 · · · 0

0 −um2(k) 0 0
...

...
. . .

...

0 0 0 −uml(k)

 . (2.6)

In Eq. (2.5), Γa(k) is defined as LOE factor and to be diagnosed for the fault-tolerant purpose.

2.2 Fault Detection and Diagnosis

In recent decades, all kinds of Kalman filter variants are developed and implemented to

estimate the states and/or parameters for the purpose of FDD. Two-stage Kalman filter

(TSKF) was proposed by [63] to estimate the constant bias of system model. An alternative

approach is to estimate the random bias [64]. Optimal TSKF [65], is proposed to estimate

the constant bias of the linear system under the noises with Gaussian distribution. The

variant of optimal TSKF is further modified by modeling the LOE factor as a bias to detect

and diagnose the LOE fault [37, 66–68]. Technically, TSKF is a method by augmenting

fault information into a state vector based on the linear model, which is in the category of

state-augmented Kalman filter (SAKF). The following subsections introduce the process of

synthesizing FDD with SAKF.

2.2.1 System Model

The dynamics of aircraft can be represented in state-space model in the following general

form: {
ẋt = ft(xt, ut)

yt = ht(xt),
(2.7)

where xt is the state of aircraft, ut is the control input, and yt is the output response of

aircraft. Linearizing Eq. (2.7) around the trim point(x0, u0), it can be obtained:{
ẋt ≈ Atxt +Btut

yt ≈ Ctxt,
(2.8)
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where

At=
∂f(xt,ut)

∂xt
|(x0,u0), Bt=

∂f(xt,ut)

∂ut
|(x0,u0), Ct=

dh(xt)

dxt
|x0. (2.9)

ThemodelinEq.(2.8)isalsoexpressedindiscreteform:

xm(k+1)=Amxm(k)+Bmul(k)

ym(k)=Cmxm(k),
(2.10)

wherexm(k)∈R
n,ym(k)∈R

m,andum(k)∈R
larethestate,theoutput,andtheinput

ofthelinearizedsystem,respectively;andAm,Bm,andCm arethestatematrix,theinput

matrix,andtheoutputmatrix,respectively.

2.2.2 FaultDetectionandDiagnosisSchemewithSAKF
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Asthemodel-basedFDDapproachpresentsadeepinsightintothedynamicsprocess

[2,35],themodel-basedFDDsystemistherebyaverysuitablemethodtodetectanddiagnose

thefaultwhendetailsofthepost-faultsysteminformationareneeded. Thestructureas

Figure2.1:SchematicoverviewofFDDinaFTCsystem

showninFig.2.1presentsaFTCsystemfocusingonaFDDunitthatsimultaneouslyprovides

thestateŝxm(k)tothereconfigurablecontrollerandthefaultinformationγ̂a(k)/̄u(k)tothe

reconfigurablemechanism.ThefollowingfocusesonthederivationofKalmanfiltertechnique

basedFDDstrategy,whichemphasizesontheideaofsimultaneouslyformalizingthefault
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information and the post-fault states.

The system with the consideration of bias is presented as:
xk+1 = Axk +Buk + Fbk + ωxk

bk+1 = bk + ωbk

yk = Cxk +Gbk + νk,

(2.11)

where xk ∈ Rn, yk ∈ Rm, and uk ∈ Rl are the state vector, the observation vector, and the

known inputs vector respectively, while bk ∈ Rp is the bias vector of unknown magnitude.

Matrices A, B, C, F , and G have the appropriate dimensions. The noise sequence ωxk , ωbk,

and νk are zero mean uncorrelated random sequences. k is the sampling time instant, and

k + 1 is the next sampling time instant. To detect bias using SAKF, Eq. (2.11) can be

reformulated in conventional state space model as shown in Eq. (2.12):

{
Xk+1 = ĀXk + B̄uk + ω̄k

yk = C̄Xk + νk,
(2.12)

where

Ā =

[
A F

0 Ip

]
, B̄ =

[
B

0

]
, C̄ = [C G], (2.13)

Xk =

[
xk

bk

]
, ω̄k =

[
ωxk
ωbk

]
, Ω̄ = E(ω̄kω̄Tj ) =

[
Ωx

0 Ωb

]
δkj, (2.14)

where δkj is the Kronecker delta. With the formulation in Eq. (2.12) the bias information can

be estimated with the system state at the same time. To solve the FDD problem, a similar

structure is applied to design FDD system to detect and diagnose the LOE of actuators

[66]. Instead of estimating the constant bias, the dynamics of LOE factors are diagnosed in

real-time by modifying the actuator fault expression.

The fault-free system is represented in Eq. (2.15):{
xk+1 = Axk +Buk + ωxk

yk = Cxk + νk.
(2.15)

With the consideration of post-fault scenarios, the post-fault system dynamics can be ex-
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pressed in Eq. (2.16): {
xk+1 = Axk +Bufk + ωxk

yk+1 = Cxk + νk.
(2.16)

For the convenience of detecting and diagnosing faults, Eq. (2.16) can be rewritten as:

xk+1 = Axk +Buk +Dk(uk)γ
a
k + ωxk , (2.17)

where Dk(uk) = BUk and

Uk = diag(−u1
k,−u2

k, · · · ,−ulk),

γak = [γa1
k , γ

a2
k , · · · , γalk ].

(2.18)

The dynamics of the LOE is expressed as the bias in a similar way as shown in Eq. (2.11)

except that the number of detected parameters has to equal the number of actuators since

each of them can be in faulty condition:

γak+1 = γak + ωrk. (2.19)

To adopt SAKF for FDD design, Eq. (2.15) is rewritten in the standard form as shown in

Eq. (2.20): {
Xk+1 = ÃXk + B̃uk + ω̃k

yk = C̃Xk + νk,
(2.20)

where

Ã =

[
A Dk(uk)

0 Ip

]
, B̃ =

[
B

0

]
, C̃ = [C G] (2.21)

Xk =

[
xk

γak

]
, ω̃k =

[
ωxk
ωγ

a

k

]
, Ω̃ = E(ω̃kω̃Tj ) =

[
Ωx 0

0 Ωγa

]
δkj. (2.22)

Remark 2.1. In comparison to the formulation in Eq. (2.12) and Eq. (2.20), it is noted that

the major difference is the state matrix. Ā is the time independent matrix, while Ã is time

dependent matrix because of the dependency of the time-varying control efforts, which makes

more challenges in the diagnosing process.
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2.3 Fault-Tolerant Control

This section introduces the detail mechanism of a FTC system by analyzing the process

of a fault-free system changing to a faulty system [12]. The system is fault-free until the

time instant tF and has afterwards a fault in one or several actuators. Hence, the whole set

of actuators I is healthy in time interval (0, tF ] and there is a subset IF of faulty actuators

in [tF ,∞). The whole set of actuators are composed of fault-free actuators and faulty

actuator and denoted by I = INUIF , where IN is the subset of the fault-free actuators, IF

is aforementioned faulty actuator set. After the time instant of tF , the post-fault system

behavior is described by:

ẋ(t) = Ax(t) +
∑
i∈IN

Biui(t) +
∑
i∈IF

βi(ui(t), θi), (2.23)

where βi(ui(t), θi) describes the contribution of the faulty actuator i. This vector may be

known with unknown parameters θi or complete unknown depending on the considered faults,

which are diagnosed by the FDD algorithms.

Two cases can be considered as far as the status of constraints are considered: 1) the fault

tolerance analysis is done for given faults. Therefore, constraints are known and a fault-

tolerant controller can be designed beforehand; 2) the analysis is done for any kind of fault

which might occur during the system operation. Therefore, constraints have to be identified.

The identification of the subset IF of faulty actuators is done by fault detection algorithms

and the functions βi(ui(t), θi), i ∈ IF is further identified by fault diagnosis algorithms, which

are included in a FDD module.

Based on the fault information known beforehand or detected on-line, two approaches are

applied for the fault-tolerant purpose. The first one applies the per-designed control law to

accommodate all the known faults either using passive FTC or active FTC depending on

the reconfiguration behavior. The other one applies the active FTC based on the real-time

calculation with respect to the fault information. In practice, the fault information is not

known until it is provided by the FDD system. To make the process clear three time windows

are presented: [0, tF ], [tF , tFT ], and [tFT ,∞), which correspond to the fault-free period, the

post-fault transient without fault-tolerant reconfiguration, and the post-fault period with

fault-tolerant reconfiguration, respectively. In the period [tF , tFT ], the control efforts are

calculated based on the fault-free case, while the control efforts are applied to the post-fault

system, which might introduce instability of the controlled system. To address the problem,
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one way is to design a passive FTC system to accommodate the performance degradation

before applying reconfigurable control. The other is from FDD point of view to detect and

diagnose faults as fast as possible to reduce the post-fault transient period. It is noticed

that the time delay of FDD cannot be avoidable, no matter what advanced techniques are

applied. One suitable FTC paradigm is to improve the FTC capability with the combina-

tion of increasing the transient performance and reducing FDD time delay before performing

the efficient reconfiguration control efforts. This FTC diagram can be implemented in the

framework of LQ design. In particular, the transient performance can be improved with

exponentially increasing weighing matrix in the LQ design process. The control reconfigu-

ration problem can be further addressed in a more flexible structure using MPC by on-line

solving new constraints. Furthermore, the on-line FTC capability can be further enhanced

within the framework of LF-MPC by reducing the optimized parameters without decreasing

the control horizon.

2.3.1 Fault-Tolerant Control in the Framework of LQ Design

For the general and fixed horizon optimal control problem, two components are considered

1) the objective function, 2) the dynamics constraints. Suppose the system dynamics are

represented as follows: {
ẋ(t) = f(x(t), u(t))

x(t0) = x0,
(2.24)

where the following cost function is minimized to get the control u(.) with the given time

horizon [t0, tf ] under the dynamics constraint as shown in Eq. (2.24):

J(u(.), x0, t0, tf ) =

∫ tf

t0

L(x(t), u(t), t)dt+ φ(x(tf )), (2.25)

where the first term is the running cost which is used to penalize the transient state deviation

and control effort and the second term is the final cost which is used to penalize the finite

state. Define the Hamiltonian function:

H(x(t), u(t)) = L(x(t), u(t)) + λTf(x(t), u(t)). (2.26)
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The solution will be given by: 

λ̇ = −Hx = −∂L
∂x
− λT ∂f

∂x

ẋ = f(x(t), u(t))

Hu = −∂L
∂u
− λT ∂f

∂u
= 0

λT (tf ) =
∂φ

∂x
(x(tf ))

x(t0) = x0

,

where Hx = ∂H
∂x

, Hu = ∂H
∂u

.

In the LQ programming framework, the system can be represented in the form:

ẋ(t) = A(t)x(t) +B(t)u(t) (2.27)

= A(t)x(t) +
l∑

i=1

Bi(t)ui(t),

where x(t) ∈ Xn is the state vector and u(t) ∈ Ul is the control vector. ui(t) is the ith

control input. It is assumed that the pair (A(t), B(t)) is controllable. The following optimal

control problem is considered:

1) The quadratic objective function to be minimized is:

J(u(.), x0, t0, tf ) =

∫ tf

t0

[x(t)TQtx(t) + u(t)TRtu(t)]dt+ x(tf )
TSx(tf ). (2.28)

2) The optimal problem is subjected to the dynamics of the system presented in Eq. (2.27),

where Q(t) ∈ Rn×n and S ∈ Rn×n are symmetric positive semi-definite matrices, R(t) ∈ Rl×l

is symmetric positive definite matrix. x0 can be obtained from the measurement, and t0

and tf are known fixed values. The control objective is to drive the state x(t0) = x0 to

lim
tf→∞

x(tf ) = 0, especially, at the final time tf .

Theorem 2.1. The cost function Eq. (2.28) is minimized using the control:

u∗(t) = −R(t)TBT (t)P (t)x(t), (2.29)

where P (t) ∈ Rn×n is the solution to the following so-called continuous time Riccatti Differ-
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ential Equation (CTRDE):{
− Ṗ (t) = AT (t)P (t) + P (t)A(t)− P (t)B(t)R−1(t)BT (t)P (t) +Q(t)

P (tf ) = S.
(2.30)

The minimum cost achieved using the above control is:

J∗(x0, t0, tf ) = min
u(.)

J(u, x0)) = xT0 P (t0)x0. (2.31)

Consider now the case when the system is time invariant, i.e, A(t) = A, B(t) = B in

Eq. (2.27) and Q(t) = Q, R(t) = R in Eq. (2.28) are constant matrices. The terminal cost

is negligible provided that the time is infinite. Therefore the cost function becomes:

J(u(.), x0) =

∫ ∞
0

[xT (t)Qx(t) + uT (t)Ru(t)]dt. (2.32)

Remark 2.2. LQ technique can be used to synthesize a real-time controller based on the

most updated system information to solve non-linear problems.

Remark 2.3. The control strategies can be reformed with the consideration of the minimum

cost. However, in general, the cost function is tend to obtain the the control efforts. The

cost function value itself is not directly linked to the controlled system, especially to a com-

plex system, such as aircraft system. Further efforts should be carried out in terms of the

relationship between the cost function values and the physical meaning.

Remark 2.4. The terminal cost decreases with the increasing of the optimization time hori-

zon. Meantime, the increasing of the terminal cost also decreases the time horizon in a

specific manner. This is of paramount in the framework on-line optimization such as MPC.

2.3.2 Philosophy of MPC

MPC is a form of a control scheme in which the current control effort is obtained at each

time intervals by solving a finite horizon open-loop optimal control problem. Essentially, the

current control to the system is the first control of the obtained optimal control sequence

in the optimization process. Fig. 2.2 shows the working scheme of MPC. In general, the

time line is divided into 3 intervals: past, present, and future. The idea of MPC is to

generate controls based on the past and current information with considering the future
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Figure2.2: MPCworkingscheme

status. Givenareference,thecontrolobjectiveistodrivethecontrolledsystemtofollow

thereferenceorsimplytostabilizethesystem. Thepastmeasurementandmodelofthe

controlledsystemareincludedinthepastinformation. Thecontrolsateachintervalare

obtainedbyoptimizingacostfunctionbasedontheopen-loopsystemmodelandthecurrent

measurement.Ingeneral,thefirstcontrolukobtainedfromtheoptimizedcontrolsequence

[uk,uk+1,···,uk+p]isappliedintothecontrolledsystem.Therestofcontroleffortsinthe

controlsequencearediscarded.Sincethecontroleffortsareobtainedateachoptimization

intervalandtherearedifferencesbetweenmeasurementsandpredictions,thecontrolaction

obtainedinthenextintervalisalwaysnotthesameasitwasobtainedinthelastcontrol

sequence.IotethatthecontrolhorizonNcislessgreaterthanthepredictioncontrolhorizon

Np.ItcanbeprovedthatwiththesameNpinoptimizationformulationsubjectedtothe

samedynamicsandotherconstraints,theoverallcostdecreaseswhenNcincreases.

2.3.3 Fault-TolerantControlUsing MPC

MPCisproposedinsolvingfaultproblemofasystemwithdifferenttypesofinternal

models,suchasnon-linear model[69–71],piecewiseaffine model[72–74],fuzzy method

[75,76].Non-linearMPCisapromisingresearchtopic,butstillnotwelldevelopedlimiting

itsapplicationsonthehighsampleratesystem.LinearMPCalgorithmitselfcomestobe
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a relative mature technique in terms of the structure and feasibility. While it is still in the

development in terms of challenges, such as, on-line computational efficiency, robustness,

and feasibility. It is more challenging to deal with the aforementioned challenges in the

presence of faults. From the application point of view, MPC is still not widely used in the

fast sampling rate system despite its success in the low-sampling process control area. The

thesis aims to synthesize an effective FTC system by utilizing the most recent development

technique in obtaining the optimized control trajectory. The linearized model is applied as

an internal model to synthesize a FTC system. The system shown in Eq. (2.10) is used to

derive internal model of MPC:{
x(k + 1) = Ax(k) +B∆u(k)

y(k) = Cx(k) + rs,
(2.33)

where x(k) = [(xm(k)− xm(k− 1))T ym(k)T ]T , ∆u(k) = [um(k)− um(k− 1)], and A, B, and

C = [0 Im] are the state matrix, the input matrix, and the output matrix, respectively. rs

is the reference command to the system. The block diagram for designing an active FTC

system with MPC is given in Fig. 2.3.

Figure 2.3: Block diagram for designing an active FTC system with MPC
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The predictive state vector can be obtained by using the control trajectory:

x(k + 1|k) = Ax(k) +B∆u(k)

x(k + 2|k) = Ax(k + 1|k) +B∆u(k + 1|k)

= A2x(k) + AB∆u(k) +B∆u(k + 1|k)

...

x(k +Np|k) = ANpx(k) + ANp−1B∆u(k)

+ ANp−2B∆u(k + 1|k) + · · ·

+ ANp−NcB∆u(k +Nc − 1|k)

+ (ANp−Nc−1 + ANp−Nc−2 + · · ·

+ I)B∆u(k +Nc|k),

where Np and Nc are the prediction and control horizons, respectively, which determine the

smoothness of the predictive control trajectory, and ∆u(k + Nc) = 0. This leads to the

predictive output trajectory Y = [y(k + 1|k)T , y(k + 2|k)T , . . . , y(kNp|k)T ]T . Finally, the

predictive output can be formalized as:

Y = Fx(k) + Φ∆U, (2.34)

where

F =


CA

CA2

CA3

· · ·
CANp

 ,

Φ =



CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

...
...

...
...

CANp−1B CANp−2B CANp−3B · · · CANp−NcB


.

(2.35)
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The cost function is

J = (Rs − Y )TQ(Rs − Y ) + ∆UTR∆U

=

Np∑
i=1

(rs(k + i|k)− y(k + i|k))TQi(rs(k + i|k)− y(k + i|k))

+
Nc−1∑
j=0

(∆u(k + j|k)TRj∆u(k + j|k)),

where Rs is the reference with Rs = [rs(k + 1)T , rs(k + 2)T , · · · , rs(k + Np)
T ]T . Q and

R are the block diagonal matrices with Qi(i ∈ [1, Np]) and Rj(j ∈ [1, Nc]), respectively.

Qi ∈ Rm×m and Rj ∈ Rl×l are the semidefinite matrix and the definite matrix, respectively,

to balance the state and the input in the cost function.

The control trajectory in fault-free condition can be solved based on the cost function

with dynamics constraints, which is denoted as:

∆U =
(
ΦTΦ +R

)−1 (
ΦTRs − ΦTFx(k)

)
. (2.36)

The receding horizon control strategy is used, thereby the real output control effort can be

obtained from:

∆u = [I 0 · · · 0][ΦTΦ +R]−1(ΦTRsr(k)− ΦTFx(k)). (2.37)

Constraints On the Slew Rates and the Amplitudes of Actuators

The incremental variation of control signals is the changing rate of a control variable,

which is tightly related to the property of actuators. Suppose that the upper limit of a

changing rate is ∆umax and the lower limit is ∆umin, the boundary of a control change

∆u(k) at the time instant k can be expressed as follows:

∆umin ≤ ∆u(k) ≤ ∆umax (2.38)

with
∆u(k) = [∆u1(k)∆u2(k) · · ·∆ul(k)],

∆umin = [∆u1min∆u2min · · ·∆ulmin ],

∆umax = [∆u1max∆u2max · · ·∆ulmax ].

(2.39)
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For a specific actuator, the property of actuators can be known before the controller design.

Specially, the upper limit and the lower limit deflection of an airfoil should be considered as

constraints to the control signal, which can be expressed in the following expression:

umin ≤ u(k) ≤ umax (2.40)

with
u(k) = [u1(k) u2(k) · · · ul(k)],

umin = [u1min u2min · · · ulmin ],

umax = [u1max u2max · · · ulmax ].

(2.41)

Constraints on the Outputs

The constraints about the control signals are due to the physical dynamics or the limi-

tation of actuators. However, the constrains on the outputs are due to the consideration of

the control performance.

The output constraints are specified as:

ymin ≤ y(k) ≤ ymax, (2.42)

where ymin and ymax are the minimum and maximum value of the outputs. The output

constraints are related to the performance, which are not as serious as that about control

signal. Usually a slack variable sv > 0 is added to the constraints for feasibility purpose as

shown in (2.42).

ymin − sv ≤ y(k) ≤ ymax + sv (2.43)

with
y(k) = [y1(k) y2(k) · · · yn(k)],

ymin = [y1min(k) y2min(k) · · · ynmin(k)],

ymax = [y1max(k) y2max(k) · · · ynmax(k)].

(2.44)

Note that n is the dimension of the outputs.

The control trajectory is generated in the form:

∆U =
[
∆uT (k),∆uT (k + 1), · · · ,∆uT (k +Nc − 1)

]T
. (2.45)
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The solutions to solve actuator faults can be concluded as:

xm(k + 1) = Amxm(k) +Bmu
f (k)

= Amxm(k) +Bmu(k) +Bm(I − ΣA)(ū− u(k)))

ym(k) = y(k)

= Cmxm(k)

u(k) ∈ (umin, umax)

∆u(k) ∈ (∆umim,∆umax)

y(k) ∈ (ymin, ymax).

(2.46)

2.3.4 MPC Using Laguerre Functions

A well-known problem of MPC is that MPC has heavy a computational burden and the

numerical problem when the predict horizon is large [77]. A Laguerre function based MPC is

presented to reduce the computational burden by approximating the finite control trajectory

with fewer optimization parameters. The control vector that is optimized in the design of a

predictive controller is ∆U :

∆U = [∆u(k)T ,∆u(k + 1)T , · · · ,∆u(k +Nc − 1)T ]T , (2.47)

where ∆U ∈ RlNc . At the time instant k, any element within the control trajectory ∆U can

be represented using the discrete δ-function in conjunction with ∆U :

∆u(k + i) = [δ(i), δ(i− 1), · · · , δu(i−Nc + 1)]∆U, (2.48)

where 
δ(i) = diag([δ1(i) δ2(i) · · · δl(i)]) = diag([1 1 · · · 1]︸ ︷︷ ︸

l

) i = 0

δ(i) = diag([0 0 · · · 0]︸ ︷︷ ︸
l

) i 6= 0.
(2.49)

The δ is used to capture the control trajectory.

The idea of approximating control trajectory is proposed in literature [53] to use a dis-

crete polynomial function (a set of Laguerre functions) to approximate the control sequence

[∆u(k + i),∆u(k + i − 1), · · · ,∆u(k + i − Nc + 1)] in order to reduce the optimization

parameters, which is critical character for the application of real-time FTC.
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The basic design framework is to replace ∆u(k + i) with L(i)Tη shown as:

∆u(k + i) = L(i)Tη (2.50)

with LT (i) = diag([L1(i)T , L2(i)T , · · · , Ll(i)T ]) (i ∈ [1, Nc]), η = [ηT1 ηT2 · · · ηTl ]T .

Specially, the Lq(i) = [l1q(i) l2q(i) · · · lNq(i)]T (q ∈ [1, l]) can be calculated iteratively

by:

Lq(i+ 1) = AqlLq(i), (2.51)

with Lq(0)=
√
βq[1 − αq α2

q − α3
q · · · (−1)Nq−1α

Nq−1
q ], βq = 1− α2

q (αq ∈ [0, 1)). Nq is the

number of approximation factors of the qth actuator. Aql can be calculated off-line with the

parameters αq, Nq, Nc

Aql =



αq 0 · · · 0

βq αq · · · 0

−αqβq βq · · · 0
...

...
...

...

(−αq)Nq−2βq (−αq)Nq−3βq · · · αq


. (2.52)

The system is represented using the expression shown in Eq. (2.50)
x(k + j|k) = Ajx(k) +

j−1∑
p=0

Aj−p−1BL(p)Tη = Ajx(k) + φ(j)Tη

y(k + j|k) = Cx(k + j|k) = CAjx(k) + Cφ(j)Tη,

(2.53)

where φ(j)T =
j−1∑
p=0

Aj−p−1BL(j)T ( j ∈ [1, Np]).

It is shown that the ∆u(k+ i) is replaced by the L(i)Tη, thus the parameter η is the only

optimized parameters vector instead of ∆U . Note that the dimension of η is smaller than

that of ∆U . L(i) is determined by Eq. (2.51). By replacing ∆U , the formulation of cost

function is denoted as:

J =

Np∑
j=1

(r(k + j|k)− y(k + j|k))TQj(r(k + j|k)− y(k + j|k)) + ηTRη. (2.54)
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By substituting Eq. (2.53) into the cost function Eq. (2.54), the cost function changes to

J = ηT (

Np∑
j=1

φ(j)Qφ(j) +RL)η + 2ηT (

Np∑
j=1

φ(j)QAj)x(k) +

Np∑
j=1

xT (k)(AT )jQAjx(k). (2.55)

The cost function to be optimized can finally reduced as the following by dropping the

constant terms:

J = ηT (

Np∑
j=1

φ(j)Qφ(j) +RL)η + 2ηT (

Np∑
j=1

φ(j)QAj)x(k). (2.56)

Constrains on the Slew Rates

Due to the physical constraints of an actuator, the slew rates should not exceed the

actuator’s limitations. The lower and upper limits on ∆u(k) are ∆umin and ∆umax:

∆umin ≤ ∆u(k + i) ≤ ∆umax (2.57)

Eq. (2.57) can be rewritten with η based on Eq. (2.50):

∆umin ≤ LT (i)η ≤ ∆umax, (2.58)

where LT (i) = diag([LT1 (i) LT2 (i) · · · LTl (i)]).

Constrains on the Amplitudes

It is similar to get the constrains on the amplitudes of the control signal. The increment

of the control signal in a predictive control interval is

u(i) =
i−1∑
p=0

∆u(p), (2.59)

then the inequality constraint for the future time i ( i = 1, 2, · · · , Nc) is expressed as:

umin ≤ SL(i)η + u(k − 1) ≤ umax, (2.60)
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where

SL(i) = diag([
i−1∑
j=0

L1(j)T ,
i−1∑
j=0

L2(j)T , · · ·
i−1∑
j=0

Ll(j)
T ]), u(k − 1) is the previous control

signal vector.

Constrains on the Outputs

The performance constraints at the prediction time instant k + i can be shown as:

ymin(i) ≤ CAjx(k) + Cφ(i)Tη ≤ ymax(i). (2.61)

2.3.5 Constraints with Respect to Actuators Limitations and Per-

formance of System Output

Define
SL = [SL(0)T SL(1)T · · ·SL(Nc)

T ]T ,

∆Umax = [∆uTmax ∆uTmax · · ·∆uTmax]T

∆Umin = [∆uTmin ∆uTmin · · ·∆uTmin]T ,

LT = [L(0)T L(1)T · · · L(Nc)
T ]T ,

U(k − 1) = [u1(k − 1)T u2(k − 1)T · · · ul(k − 1)T ]T ,

Cφ = [(Cφ(1)T )T (Cφ(2)T )T · · · (Cφ(Np)
T )T ]T .

(2.62)

In the prediction horizon Nc scope, the constraints about η is shown as:M1

M2

M3

 η ≤
N1

N2

N3

 (2.63)

where

M1 =

[
LT

−LT

]
, N1 =

[
∆Umax

−∆Umin

]
,

M2 =

[
SL

−SL

]
, N2 =

[
Umax − U(k − 1)

Umin + U(k − 1)

]
,

M3 =

[
Cφ

−Cφ

]
, N3 =

[
Ymax − Fx(k)

−Ymin + Fx(k)

]
.

(2.64)
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Overall, the active FTC system using LF-MPC based technique design is to solve Eq. (2.56)

subjected to dynamics constraints and constraints shown in Eq. (2.63) for both fault-free

and post-fault scenarios.

2.4 Summary

This chapter introduces an active FTC system within LQ framework and extended Kalman

filter. The FTC system is presented in the form of a schematic diagram, which aims to present

the relative function of each module. Specifically, state estimation and fault diagnosis prob-

lems are solved simultaneously through the combination of state and parameter estimation

approach using SAKF. The FTC strategy is analyzed with respect to the system situation

impacted by the faulty actuators. Furthermore, the fault-tolerant strategy in the framework

of LQ design is presented. MPC and LF-MPC algorithms are also illustrated in terms of

addressing constraints with application to FTC.

31



Part I

Application to a Rotary-Wing

Unmanned Aerial Vehicle
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Chapter 3

Modeling of the Qball-X4

3.1 Introduction

The Qball-X4 is a platform for the evaluation of the newly designed fault-tolerant con-

troller on the rotary-wing platform. It is available at Diagnosis, Flight Control & Simulation

(DFCS) Lab in the Department of Mechanical and Industrial Engineering of Concordia Uni-

versity. This chapter introduces the Qball-X4 platform and the dynamics of a quadrotor

UAV. Section 3.2 briefly presents the system description of the Qball-X4 platform. Sec-

tion 3.3 presents the dynamics of the Qball-X4 with an emphasis on the dynamic model in

height. The corresponding coordinates are also illustrated for the modeling purpose. Section

3.4 draws a summary.

3.2 System Description

The Qball-X4 shown in Fig. 3.1 is a rotary-wing platform suitable for a wide variety of

UAVs research applications. The Qball-X4 is a quadrotor helicopter with 4 rotors fitted

with 10-inch propellers. It is enclosed within a protective carbon fiber cage. The Qball-X4

is equipped with on-board sensors, Quanser’s on-board avionics data acquisition card, and

the embedded Gumstix computer. The on-board sensors include an inertial measurement

unit (IMU) proving altitude (roll, pitch, and yaw) information and sonar for detecting the

relative distance. The controller can be designed and implemented in the Matlab/Simulink

environment, and then downloaded and executed on the on-board embedded micro-computer.
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Figure 3.1: The quadrotor helicopter (Qball-X4)

Figure 3.2: Qball-X4 platform communication scheme

The connection between the host and the target is wirelessly connected through WiFi as

shown in Fig. 3.2 and the parameters about the Qball-X4 for using to design controllers

are listed in Table 3.1 [78]. In addition to the IMU information for the attitude control,

the OptiTrack motion tracking system is used for the controller to position the Qball-X4 as

indoor positioning system.

Remark 3.1. There is no extra sensor available to directly detect the actuator information.

34



Table 3.1: Qball-X4 parameters

Parameter Description Value

K Thrust gain 120
ω Motor bandwidth 15 rad/s
L Distance from motor to CG 0.2 m
Kφ Thrust-to-moment gain 0.023
m Mass 1.4 Kg
g Gravity 9.81 m/s2

Jx Moments of inertia about x 0.03Kg.m2

Jy Moments of inertia about y 0.03Kg.m2

Jz Moments of inertia about z axis 0.04 Kg.m2

The hardware configuration introduces challenges in the design of a FDD unit for actuators.

3.3 Modeling of the Qball-X4

The dynamics of the Qball-X4 UAV are discussed in this section. More specifically, the

Qball-X4 dynamics are studied in a hybrid coordinate system: 1) inertial frame and 2) body

frame, which are used to express the linear dynamics and the angular dynamics, respectively

[79].

The inertial frame is assumed to be coincident with the body frame at the initial state. The

most general axis system is known as a body frame (oxbybzb) as shown in Fig. 3.3. The origin

point o of the axes is fixed at a convenient reference point, which is coincident with the center

of gravity (CG). Euler angles are defined based on the inertial frame and the body-frame.

The procedural rotation process is depicted in Fig. 3.4 [80]. (ox0y0z0) is the navigation frame

based on the initial definition of the positioning system, (ox1y1z1), (ox2y2z2), and (ox3y3z3)

are the transient axes to the body frame. Euler angles ψ, θ, φ are defined in the rotation

process in the following sequence: (ox0y0z0) → (ox1y1z1) → (ox2y2z2) → (ox3y3z3). Note

that (ox3y3z3) is coincident with the body frame (oxbybzb).

The derivation process of the quadrotor dynamics can be found in [79, 81] with the results
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bx
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Figure3.3:BodyframeoftheQball-X4

Figure3.4:Eulerangles

asshowninEq.(3.1):






mẍ=uz(cφsθcψ+sφsψ)−kxẋ

mÿ=uz(cφsθsψ−sφcψ)−kyẏ

mz̈=uz(cφcθ)−mg−kzż

Jxṗ=up+(Jy−Jz)qr−JTqΩ−kpp

Jyq̇=uq+(Jz−Jx)pr−JTpΩ−kqq

Jżr=ur+(Jx−Jy)pq−krr,

(3.1)

wherex,y,andzarethecoordinatesofthequadrotorintheinertialframewiththeoriginal

pointattheCG;misthemassofthequadrotor;Jx,Jy,andJzaretheinertialmoments

aboutx,y,andzdirections,respectively;φ,θ,andψaretheroll,pitch,andyawEuler

angleswithrespecttothetransientcoordinatesmentionedabove;p,q,andraretheangular
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velocities in the body-fixed frame. kx, ky, kz, kp, kq, and kr are the drag coefficients and

are treated as constant. JT is the inertial moment of each motor and Ω is the overall speed

of propellers. By neglecting the drag terms at low speed condition, Eq. (3.1) is simplified

further by: 

mẍ = uz(cφsθcφ + sφsψ)

mÿ = uz(cφsθsψ − sφcψ)

mz̈ = uz(cφcθ)−mg

Jxṗ = up + (Jy − Jz)qr − JT qΩ

Jy q̇ = uq + (Jz − Jx)pr − JTpΩ

Jz ṙ = ur + (Jx − Jy)pq,

(3.2)

with 

Ω = −Ω1 − Ω2 + Ω3 + Ω4

uz = T1 + T2 + T3 + T4

up = L(T3 − T4)

uq = L(T1 − T2)

ur = τ1 + τ2 − τ3 − τ4,

(3.3)

where Ωi is the ith propeller’s speed. The sign of up is defined by the sign of the difference

between thrust T3 and T4, respectively; while the sign of uq is defined with sign of the

difference between T1 and T2. Ti (i = 1, 2, 3, 4) is the thrust generated by the ith motor of

4 equipped motors. L is the distance from the center of motor to CG. τi is the torque from

the ith motor. The angular velocities in the inertial frame (Euler rates) can be related to

those in the body frame as follows:ψ̇θ̇
φ̇

 =

1 sφtθ cφtθ

0 cφ −sφ
0 −sφ/cφ cφcθ


pq
r

 . (3.4)

Note that the initial position of the Qball-X4 may not be coincident the navigation frame.

This may affect the control performance if according to the assumptions φ = 0, θ = 0, and

ψ = 0 at the initial states. When the Qball-X4 takes off on the ground, the assumption of

φ = 0 and θ = 0 hold; However ψ = 0 may not hold. To overcome the flaw, the taking-off

direction of the Qball-X4 is arbitrarily specified to have a fixed relationship to the navigation

frame or the difference should be compensated. The relationship of inertial frame and the
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navigation frame is presented as:

xIyI
zI

 =

 cθIC 0 sθIC
0 1 0

−sθIC 0 cθIC


 cφIC sψIC 0

−sψIC cφIC 0

0 0 1


xcyc
zc

 (3.5)

with θIC = −π/2, ψIC = −π/2, where (xI , yI , zI) is coincident with (x0, y0, z0). (xc, yc, zc)

stands for the navigation frame given by the position systems. Therefore, the arbitrary

direction of the Qball-X4 xI faces to the zc direction, yI is coincident with Xc, and zI is

coincident with Zc.

The lifts are generated with actuators and propellers controlled by the electrical speed

controller (ESC) using pulse width modulation (PWM) signal. The dynamics of the actuator

related to PWM input are the following as shown in Fig. 3.5:

vi =


0.05ω

s+ ω
, uPWM > 1

uPWM

s+ ω
, 0.05 < uPWM < 1

0, uPWM < 0.05

(3.6)

v

 PWM 0.05

0.05

Figure 3.5: Actuator dynamics

As can be seen in Fig. 3.5, there is a dead zone between 0 and 0.05 in a DC motor

actuator. This dead zone leads to the non-linearity of actuators. However, the non-linearity

problem due to the dead zone can be solved easily by shifting the coordinator. Let ui(t) =

uPWMi
(t)− 0.05, substituting the term in Eq. (3.6), the non-linear dynamics of the actuator

changes to linear representation:

vi(t) =
ω

s+ ω
ui(t), 0 < ui < 0.05 (3.7)
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The transfer function between the lift generated by each actuator and corresponding PWM

input is: Ti(t) =
Kω

s+ ω
ui(t)

τi = Kψui,

(3.8)

where ui(t)(i = 1, 2, 3, 4) is the PWM input in ith channel of actuators, Kψ is the torque

coefficient. xz(t) = [z(t) ż(t) νz(t)] is defined as the state vector related to height directional

motion, ẋz(t) = [ż(t) z̈(t) ν̇z(t)] = [vz(t) v̇z(t) ν̇z(t)], the dynamics of the Qball-X4 in the

fault-free case are represented as in Eq. (3.9):

ẋz(t) = f(xz(t)) +Bcu(t). (3.9)

The mathematical model of the Qball-X4 with actuator faults can be expressed in Eq. (3.10):

ẋz(t) =f(xz(t)) +Bcu
f (t) (3.10)

=f(xz(t)) +Bc(u(t) + (I − ΣA)(ū− u(t))),

where

f(xz(t)) =

0 1 0

0 0 1
m
∗ cφcθ

0 0 −ω


 z(t)

ż(t)

νz(t)

+

 0

−g
0

 , (3.11)

Bc =

 0 0 0 0

0 0 0 0

Kω Kω Kω Kω

 . (3.12)

3.4 Summary

This chapter presents the rotary-wing platform available for testing the newly designed

FTC system. The configuration of the Qball-X4 platform is introduced in terms of the

computing resources, sensors, the positioning system, etc. The available hardware resources

are significant in the FTC system design process since some sensor information can not

be assumed in the real application. The dynamics of the Qball-X4 are illustrated and the

dynamics in height are obtained for the fault-tolerant controller and the FDD unit design in

the next chapter.
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Chapter 4

Fault-Tolerant Control with

Application to a Quadrotor UAV

4.1 Introduction

This chapter develops a new approach of a FTC system for a quadcopter using LQ tech-

nique in synthesizing a fault-tolerant controller and state-augmented extended Kalman filter

(SAEKF) technique to carry out FDD task. The fault-tolerant controller is designed using

improved LQ technique with a prescribed degree of stability. The FDD unit is synthesized

with the combination of parameter identification and state estimation techniques in the

framework of extended Kalman filter. The emphases of the chapter are 1) the fault-tolerant

controller with the improved LQ technique using an increasing exponential weighting ma-

trix; 2) the new SAEKF framework as a FDD module for FTC, which provides state and

fault information in both fault-free and post-fault situations, with application to a quadro-

tor UAV; 3) the FDD approach design with the consideration of the system’s non-linearity.

The organization of this chapter is as follows. Section 4.2 presents the scheme of FTC for

the Qball-X4. Section 4.3 presents the derivation process of SAEKF with the considera-

tion of the non-linearity in height channel. Section 4.4 details the validation process and

the performance with trajectory tracking task under three different scenarios in simulation

environment. Section 4.5 draws conclusions of this chapter.
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4.2 Fault-Tolerant Control Design Using LQ Technique

LQ is a modern control technique which is applied for the model flight control system

[62]. However, no simple relation exists between the two weighting matrix Q and R and the

close-loop eigenvalues of the post-fault system. In general, the weights are usually determined

through trial and error. A remedy method combines the LQ technique with the time-varying

weighting matrix together to get prescribed degree of stability of the controlled system for

FTC design. To this end, an exponentially weighted matrix is introduced to balance the

states and control input along the optimization window. Asymptotic stability is achieved

through exponential data weighting and modification of the weight matrices.

The idea of using exponential data weighting is mentioned in [53, 82]. The discrete

counterpart to eλαw t for all t > 0 is the geometric sequence eλαw jTs [j = 0, 1, 2, · · · ]. The

discretized model is obtained from Eq. (3.10):{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k).
(4.1)

The classical cost function is set as:

J0 =
1

2

∞∑
k=0

x(k)TQx(k) + u(k)TRu(k). (4.2)

For the FTC design, the exponential weighting matrix is introduced. Therefore, the cost

function with exponential weighting matrix is denoted as:

J =
1

2

∞∑
k=0

e−2kλαwTsx(k)TQx(k) + e−2kλαwTsu(k)TRu(k), (4.3)

where Ts is the sample time of the controller, λαw < 0 is the parameter to tune the weighting

matrix. Define αw = eλαwTs , the cost function in Eq. (4.3) changes to

J =
1

2

∞∑
k=0

α−2k
w x(k)TQx(k) + α−2k

w u(k)TRu(k). (4.4)

Theorem 4.1. Subject to the same system in Eq. (4.1), the optimal solutions of controls by

minimizing the cost function in Eq. (4.4) has a αw degree of stability than that of controls by
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minimizing the cost function in Eq. (4.2).

Define x̂(k) = α−kw x(k) and ˆu(k) = α−kw u(k), then Eq. (4.4) changes to

J =
1

2

∞∑
k=0

x̂(k)TQx̂(k) + û(k)TRû(k), (4.5)

subject to

x̂(k + 1) =
A

αw
x̂(k) +

B

αw
û(k). (4.6)

The system’s controller is the solution of the Riccati equation in Eq. (4.7) minimizing cost

function Eq. (4.5) subjected to Eq. (4.6).

A

αw
[P − P B

αw
(R +

BT

αw
P
B

αw
)−1B

T

αw
p]
A

αw
+Q− P = 0. (4.7)

The designed controller using exponential weighting matrix LQ technique is K = (R +

αw−2BTPB)−1α−2
w BTPA. With the designed feedback controller, the closed-loop system

turns to

x̂(k + 1) = α−1
w (A−BK)x̂(k). (4.8)

Substituting x̂(k) by αkwx(k), Eq. (4.8) can be rewritten by:

x(k + 1) = (A−BK)x(k). (4.9)

As the system in Eq. (4.8) is designed to be stable,

|λmax(α−1
w (A−BK))| < 1, (4.10)

where λmax is the maximum eigenvalue of the closed-loop system. Recall that λαw < 0, so

αw < 1. The actual close-loop system has eigenvalues

|λmax(A−BK)| < αw. (4.11)

Therefore, the designed controller K has at least αw degree of stability, which makes it

superior for the design of FTC system.

Remark 4.1. For designing FTC with exponential weighting matrix, the appropriate pa-
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rameter αw can guarantee the stability of the controlled system with a prescribed degree of

stability in addition to tune the values of weighting matrices Q and R.

4.3 Fault Detection and Diagnosis Design with SAEKF

Kalman filter variants can be used to address the actuator fault detection problem as

aforementioned. However, this technique relies on the linear model, which is not the real

case for the application of aircraft. To address the non-linearity, non-constant fault, and

post-fault state estimation problems, this section proposes SAEKF, which is capable of

providing the up-to-date post-fault states of the system and the magnitude or behavior of

the faults. The non-linear dynamic model is discretized as Eq. (4.12) with process noise ω(k)

and measurements noise ν(k) at the time instant k, respectively:{
x(k + 1) = f(x(k)) +Bu(k) + ω(k)

z(k) = Hx(k) + ν(k),
(4.12)

where x(k) = [xz(k) vz(k) νz(k)] ∈ R3 is the states vector of the system at the time instant k,

z(k) = xz(k) ∈ R1 represents the measurements at the time instant k, x(0) ∼ N(x(0), P x(0)),

ω(k) ∼ N(0, Qx) and ν(k) ∼ N(0, Rx) denote the process and the measurements noise with

Gaussian distribution, respectively, and

E(

[
ωk

νk

]
[ωj νj]) =

[
Ω 0

0 V

]
δkj. (4.13)

The states and measurements can be approximated with the model of the system as follows:{
x̂−(k) = f(x̂(k − 1)) +Bu(k − 1)

ẑ(k) = Hx̂−(k),
(4.14)

where x̂−(k) is the priori state estimate at k, x̂(k − 1) is a posteriori state estimate at the

time instant k − 1. Extended Kalman filter process can be summarized in Table 4.1 and

Table 4.2, where A = ∂f
∂x
|x(k)=xt(k) with xt(k) the equilibrium point of the system in hovering

condition.
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Table 4.1: EKF time update equations

x̂−(k) = f(x̂(k − 1)) +Bu(k − 1)
P−(k) = AP (k − 1)AT +Qx

Table 4.2: EKF measurement update equations

K(k) = P−(k)HT (HP−(k)HT +Rx)−1

x̂(k) = x̂−(k) +K(k)(z(k)−Hx̂−(k))
P (k) = (I −K(k)H)P−(k)

The post-fault system is presented as:
x(k + 1) = f(x(k)) +Bu(k) +BF (u(k))Γa(k) + ωx(k)

Γa(k + 1) = Γa(k) + ωγ
a

z(k) = Hx(k) + ν(k),

(4.15)

where x(k) is still the state vector, z(k) the measurement vector, u(k) the known control

input vector, Γa(k) denotes the actuator faults which are unknown and to be diagnosed. The

noise sequence ωx(k), ωγ
a
(k), and ν(k) are zero mean uncorrelated random sequences.

For identifying LOE factors, the augmented system is composed as in Eq. (4.16):
xe(k + 1) = fe(xe(k)) +Beu(k) +

[
ωx(k)

ωγ
a
(k)

]

ze(k) =

[
H 0

0 I

]
xe(k) + ν(k),

(4.16)

where xe(k + 1) = [x(k + 1)T Γa(k + 1)T ]T , xe(k) = [x(k)T Γa(k)T ]T , I ∈ Rm×m is identity

matrix, and

fe(xe(k)) =

[
f(x(k)) +B(F (u))Γa(k)

I

]
Be =

[
B

0

]
(4.17)

with xe(0) ∼ N(x̄e(0), Pe(0)), ω(k)x ∼ N(0, Qx), and ω(k)γ
a ∼ N(0, Qγa), where

xe(0) = [x(0)T ,Γa(0)T ]T , (4.18)

44



Pe(0) =

[
P x(0) P xΓa

P Γax P Γa(0)

]
,

[ωx(k)Tωr(k)T ν(k)]T ∼ N(0,

Q
x

QΓa

V

),

where xe(0) is the initial value of the augmented state vector with

E(xe(0)) = x̄e

E(x(0)− x̄(0))(x(0)− x̄(0)T ) = P x(0) > 0

Eγa(0) = γ̄a(0)

E(γa(0)− ¯γa(0))(γa(0)− γ̄a(0)) = P xγa(0).

(4.19)

The process in Table 4.1 and Table 4.2 with the augmented model is used to update the

estimate of the system states and the LOE factors simultaneously based on the updated

measurements.

4.4 Simulation Results

4.4.1 Test Scenarios

To investigate and validate the proposed framework with SAEKF for FDD purpose, the

test scenarios are adopted and described as follows: 1) the Qball-X4 takes off automatically

with fault-free duty and hovers in the pre-specified height; 2) the Qball-X4 continues to follow

a circular trajectory while different faults are injected into the four motors in the tracking

process; 3) the Qball-X4 lands automatically after the task of the trajectory tracking. The

fault scenarios include 1) Scenario 1: fault-free, 2) Scenario 2: 10% LOE, 3) Scenario 3:

20% LOE. Various algorithms (SAEKF, EKF, and KF for FDD) are used for evaluation and

comparison purpose as indicated in Table 4.3.

The reference trajectory starts from 1) zero height reference for 15s meaning the Qball-

X4 staying on the ground; 2) steps to the height in 1m; 3) after 10s, circulates in radians

r = 1m with angular rate at ω = 0.2rad/s with an abrupt LOE fault injected at 30s (keeping

circulating with angular rate at ω = 1rad/s for the comparison of the performance of the

proposed SAEKF with KF for FDD purpose); and 4) after that, keeps 1m height and finally
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Table 4.3: Tested fault scenarios

XXXXXXXXXXXXScenarios
Task

Trajectory tracking SAEKF EKF KFFDD

Fault-free X X X X
Abrupt 10% LOE X X X X
Abrupt 20% LOE X X X X

Xmeans that the task is finished or the algorithm is validated

lands on the nearly ground at 0.3m. The circular trajectory is illustrated in x and y direction:{
x = 1 + rsin(ω(t− t0) + φx)

y = rsin(ω(t− t0)),

where r is radians, ω denotes phase frequency, t0 is the start time of the circular trajectory,

and φx = −pi/2 and φy = 0 are phase shift in x and y directions, respectively.

4.4.2 Performance Evaluation

The effectiveness of the designed FTC system is illustrated by the FDD performance and

the tracking performance of following a reference trajectory. First, the FDD performance is

depicted by presenting the detection and diagnosis speed and accuracy of the FDD module.

Second, the FDD performance comparison of the proposed SAEFK and KF is illustrated

with scenarios of tracking circular trajectories with different frequency phrases. The sig-

nificant performance difference comes when the circular trajectory changes at fast angular

frequency. Third, an additional benefit of the SAEKF for state estimation is presented

through the comparison of the state estimation with EKF in fault-free and post-fault sce-

narios. At last, the tracking performance is given to show the tracking capability of the

designed controller even under the fault scenarios, and the control efforts are presented also

to show the task is fulfilled with the actuator constraints but different magnitudes under

three different scenarios.

FDD Performance Evaluation

The injected faults and FDD results for the three scenarios are shown in Fig. 4.1. The

dashed line is the injected fault with various magnitudes in 0% LOE (fault-free), 10% LOE,

20% LOE, respectively. The dotted line stands for the detected fault in fault-free scenario,
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Figure 4.1: Fault detection and diagnosis results

which is around zero in the whole trajectory tracking process. The dash-dot line represents

the detected and diagnosed fault in the 10% LOE fault scenario, which follows the injected

fault timely (in less than 2s) and accurately. The solid line stands for detected and diagnosed

fault, which is more serious than the first two scenarios, with magnitude in 20% LOE. It

shows that the response of the FDD module is considerably fast and accurate to detect and

diagnose faults.

FDD Performance Comparison between SAEKF and KF

As mentioned in the subsection 4.4.1, the performance comparison between the proposed

SAEKF and KF for FDD purpose is presented by tracking circular trajectory with two differ-

ent changing rates at 0.2rad/s and 1rad/s, respectively. To evaluate the FDD performance

for different fault magnitudes, the tests are carried out under three different fault scenarios.

As can be seen from Fig. 4.2(a), Fig. 4.2(b), and Fig. 4.2(c), both SAEKF and KF for FDD

perform well with three different fault at the abrupt fault occurring at 30s for the trajectory

tracking task at rate of 0.2rad/s. However, when the circular trajectory changes at a faster

rate 1rad/s. The performance of KF for FDD degrades significantly compared to the FDD
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performance of the proposed SAEKF methods. This indicates that the nonlinearity of the

system dynamics can not be ignored. Since when the circular trajectory changes at a faster

rate, the attitude angle changes aggressively. In consequence, the linearized model is not fit

for the real situation.

(a) Fault-free scenario (b) 10% LOE scenario

(c) 20% LOE scenario

Figure 4.2: FDD performance comparison between SAEKF and KF

State Estimation

To illustrate the necessity and additional benefit of using FDD for FTC design, the true

states (from the model as baseline reference), states obtained from Kalman filter, and states

obtained from SAEKF are illustrated and compared in three scenarios: fault-free, the 10%

LOE of actuator faults, and the 20% LOE of actuator faults scenarios. The overall compar-
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ison is summarized in Table. 4.4. The states includes xz, vz, and νz as shown in Eq. (3.9).

ePeak denotes the peak innovation value of the three mentioned states between the estimated

value (either from SAEKF or EKF) and true states. RMSE is the root-mean-square error

(RMSE) value of the three states between the estimated value and true states along the

whole test period. The performance of state estimation at fault-free scenarios is acceptable.

Table 4.4: Performance comparison between SAEKF and EKF with respect to: height,
velocity, and actuator parameter

Fault-free 10% LOE 20% LOE

Algorithm States ePeak RMSE ePeak RMSE ePeak RMSE

EKF
xz 0.02308 0.11386 0.12172 9.1615 0.26073 20.7592
vz 0.12694 1.0958 0.60177 43.311 1.3309 98.8362
νz 0.10623 0.0064661 0.10623 1.2406 0.10623 2.7836

SAEKF
xz 0.0025942 0.0046448 0.0025958 0.0049069 0.0025978 0.0051485
vz 0.017648 3.0726 0.084627 2.9843 0.19604 2.9027
νz 0.10623 0.007423 0.10623 0.015046 0.10623 0.022812

However, the performance of EKF for state estimation is degraded dramatically with the

magnitude of faults increasing: 1) RMSExz increases from 0.11386, to 9.1615, till 20.7592;

2) RMSEvz increases from 1.0958, to 43.311, until to 98.8362; 3) RMSEνz increases from

0.0064661, to 1.2406, until to 2.7836. In contrast, the performance of SAEKF stays the same

level in terms of three system states xz, vz, and νz under different fault scenarios.

As can be seen from Fig. 4.3(a), Fig. 4.3(b), and Fig. 4.3(c) for the three scenarios, the

height from Kalman filter and FDD block are convergent to the true height in the fault-free

case (see Fig. 4.3(a)). However, it is not the case in the other two fault scenarios. There exists

significant errors (see Fig. 4.3(b), Fig. 4.3(c)) between the filtered height from EKF and the

true states after the fault occurrence. The filtered height from the proposed FDD scheme is

still consistent with true height. This problem with EKF for the state estimation arises from

the modeling error when faults are not modeled in the state estimation process. However, the

estimated hight is reliable and robust to the actuator faults with augmented states related

to the faults. Note that with the increasing of LOE from 10% to 20%, the estimation from

EKF error also increases, while the estimation from SAEKF still matches the true height.

Therefore, the proposed SAEKF as FDD approach can give the right information of the states

of the system for both fault-free and fault scenarios. To further examine the performance,

the velocity (see Fig. 4.4(a), Fig. 4.4(b), and Fig. 4.4(c)) and parameter about actuator (see

Fig. 4.5(a), Fig. 4.5(b), and Fig. 4.5(c)) from Kalman filter and SAEKF are compared with
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(a) Fault-free scenario (b) 10% LOE fault scenario

(c) 20% LOE fault scenario

Figure 4.3: Height comparison: true height, height from EKF, and height from SAEKF

respected to the test scenarios. As can be seen from Fig. 4.4(a) and Fig. 4.5(a) in the fault-

free scenario, both EKF and SAEKF provide the trusty speed of the Qball-X4 and trusty

actuator parameter. However, the performance of EKF is deteriorated significantly when

the fault occurs, while the performance of the proposed SAEKF keeps in a robust manner

as shown in Fig. 4.4(b) and Fig. 4.5(b) for the 10% LOE and in Fig. 4.4(c) and Fig. 4.5(c)

for the 20% LOE scenarios. The performance of EKF for state estimation decreases when

the fault increases, while the performance of the proposed SAEKF is satisfactory.

Overall, the comparison results are summarized in Table 4.5. As can be seen from Ta-

ble 4.5, the proposed FDD approach estimates the right states, which are close to the true

states, in fault-free and post-fault scenarios.
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(a) Fault-free scenario (b) 10% LOE fault scenario

(c) 20% LOE fault scenario

Figure 4.4: FDD performance comparison of velocity of the Qball-X4

Performance and Assessment

Based on the scenarios described in Table 4.3, the tracking performance of the system is

presented in Fig. 4.6(a), Fig. 4.6(b), and Fig. 4.6(c). The dotted line is the reference trajec-

tory, and the solid line stands for the measurement trajectory for all the three scenarios. As

can be seen from Fig. 4.6(a), Fig. 4.6(b), and Fig. 4.6(c), the Qball-X4 completes the trajec-

tory tracking task under three different scenarios. In the fault-free case, the circular tracking

is considerable smooth. Compared to the fault-free scenario, there are fluctuations starting
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(a) Fault-free scenario (b) 10% LOE fault scenario

(c) 20% LOE fault scenario

Figure 4.5: FDD performance comparison of actuator parameter

at 30s on the circular tracking process with injected fault with the various magnitude: the

10% LOE and 20% of LOE, respectively. To get a deep insight of the controls in the process,

Fig. 4.7 is presented as comparison of control efforts before and after faults. The dotted line

is the control efforts in the fault-free case. The dash-dot line is the control efforts in the 10%

LOE fault scenario. And the solid line represents the control efforts in the third scenarios,

which is under the 20% LOE fault. It is evident that before the fault happens, the control

efforts in the three test scenarios are the same value. However, the control efforts increase

with the magnitude of LOE increasing to keep the desired performance as close as possible.
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Table 4.5: Summary of the comparison of states from: true, SAEKF, and EKF

hhhhhhhhhhhhhhhhhhhhSource

States in various scenarios Fault-free 10% LOE 20% LOE
height velocity actuator height velocity actuator height velocity actuator

True * * * * * * * * *
SAEKF X X X X X X X X X

EKF X X X ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
* is the true signal, X the well match between the estimation and true signal, and ⊗ the

inconsistent match of estimation with true signal.

(a) Fault-free scenario (b) 10% LOE fault scenario

(c) 20% LOE fault scenario

Figure 4.6: Performance of trajectory tracking task

Overall, the control efforts still keep in the range of actuator’s limitations.
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Figure 4.7: Control efforts in three scenarios before and after faults

4.5 Summary

This chapter develops a FTC scheme for a quadrotor UAV with the proposed FDD module

using SAEKF approach and controller using improved LQ technique. The test results of

the designed FTC shows that the proposed SAEKF can detect and diagnose faults timely

and accurately and has better performance compared to the variant of KF when the non-

linearity has to be considered. The additional benefit of using the proposed FDD is that it

can provide the trusty state estimation even in the faulty situation. With the overall tracking

performance of the system, the proposed FTC system works in a considerable good manner.

In addition, the improved LQ technique can be further developed with the combination of

MPC for FTC design.
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Part II

Application to a Fixed-Wing Aerial

Vehicle
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Chapter 5

Modeling of Boeing 747-100/200

5.1 Introduction

For the assessment of new fault-tolerant flight control techniques, a simulation benchmark

was developed based on the reconstructed and validated Flight 1862 aircraft model performed

in the Action Group as described in Section 5.2. The benchmark model of Flight 1862

aircraft was constructed based on the record data of a Boeing 747-200F freighter aircraft.

Section 5.3 presents a Boeing 747-100/200 non-linear model with an emphasis on longitudinal

motion model for the FTC design purpose. Since the primary objective of an airplane is

to safely land in the presence of faults and the lateral motion of a commercial airplane is

always designed with high degree of static stability, it is assumed that the airplane can be

landed safely if the system is longitudinally stable in the event of elevator faults. Based

on the stability recognition of longitudinal and lateral channels of a Boeing 747-100/200,

the linearized model of longitudinal channel is obtained by linearizing the non-linear model

around the trim conditions presented in Section 5.4. Furthermore, the model validation is

carried out by the performance comparison to non-linear model of a Boeing 747-100/200

based on each the available control effort. Section 5.5 summaries this chapter.

5.2 GARTEUR Benchmark Description

The GARTEUR RECOVER software package [1] is equipped with several simulation

and analysis tools, all centered around a generic nonlinear aircraft model for six-degrees-of-
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freedom non-linear aircraft simulations. The simulation of any specific aircraft with various

fault types is possible by just applying user-defined aircraft model and fault models. The

software architecture of the RECOVER simulation benchmark comprises a generic aircraft

model and aircraft specific modules including aerodynamics, flight control system, and en-

gines. The baseline flight control system model reflects the hydro-mechanical system ar-

chitecture of the Boeing 747-100/200 aircraft. All modeled control surfaces are subjected

to aerodynamic effects and mechanical limits throughout the flight envelope. The original

aircraft model of the RECOVER benchmark was based on the classical Boeing 747-100/200

aircraft (See Fig. 5.1) with a hydro-mechanical flight control system and the pilot cockpit

controls as inputs. A fly-by-wire version of the Boeing 747-100/200 aircraft was created for

Figure 5.1: Boeing 747-100/200 configuration and flight control surface arrangements

the FTC design and test purposes where all twenty-six aerodynamic control surfaces and

four engines can be controlled individually, which allows a newly designed FTC system to

have the capability to completely reconfigure the available flight control effectors. Mean-

while, the flexibility of utilizing all the control surfaces and engines also brings challenges

in configuring control resources with different FTC strategies. A schematic overview of the
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Scenario Reference 
Ttrajectory

Classic 
Autothrottle

Classic 
Autopilot

Sensors

Pilot Control to 
Actuators

Actuators

Engines

Turbulence

Airframe

Trim

IAS

ATT/LOC/GS

Calculate Trim Condition 

Actuator Faults

Engine Faults

Airframe Failures

AP Mode

Modern Controller

Boeing 747-100/200 
Model

AT Mode

GARTEURRECOVERbenchmarkispresentedinFig.5.2includingrelationshipsamong

differentcomponentsofthebenchmark.Thebasicaircraftmodelcontainsairframe,actu-

Figure5.2:SchematicoverviewoftheGARTEURRECOVERbenchmark

ator,engines,andturbulencemodels. Theinputofthismodelwasinitiallybasedonthe

pilot’scontrolinputs,whichhaveafixedlinkagetothecontrolsurfaces. Tocontrolthe

surfacesseparately,asrequiredforthereconfigurablecontrolalgorithms,thepilotcontrols

toactuatorsblockisseparatedfromthebaselineaircraftmodel.Abasicclassiccontroller

isavailableinthebenchmark,basedontheBoeing747-100/200classicautopilotincluding

autothrottle(AT)toserveasareferencefornewadaptivecontrolalgorithmdesigns.

ThenewlydesignedFTCsystemtobeevaluatedwiththebenchmarkmodel,istoreplace

theclassicautopilotandautothrottle. Thecontrolsurfacesshouldbedrivenseparately

orwithacertaincombinationbasedonthecontrolstrategies.Althoughthenewdesigned

FTCsystemdrivesthecontrolsurfacesdistinguishedtotheconventionalcontrolsystem,the

referencecommandstotheFTCsystemarestillthesame,suchasaltitudehold(ATT)mode,

localizercapturemode,glide-slope(GS)capture,andinstrumentairspeed(IAS).Inorder

tooperatethebenchmark,ascenarioandfailuremodelgeneratorisadded. Thescenario

consistsofcommandsfedintotheautopilotandautothrottle,whilethefailuresaredirectly

introducedintotheairframe,flightcontrolsystem,andpropulsionmodels.
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5.3 Boeing 747-100/200 Model in Longitudinal Direc-

tion

A Boeing 747-100/200 is a four-engines wide-body commercial jet airliner and cargo air-

craft with a range of 10, 000km and maximum level speed 975km/hr and design ceiling

of 137, 166m. High lift for low speed flight is obtained with wing triple-slotted flaps and

Krueger type leading edge flaps. The longitudinal control for aircraft is provided by a mov-

able stabilizer and 4 elevator segments. The lateral control is obtained with 5 spoiler panels,

an inboard aileron between the inboard and outboard flaps, and an outboard aileron which

only operates when flaps are down. The five spoiler panels on each wing which are used

for lateral control also operate symmetrically as speed-brakes in conjunction with the sixth

spoiler panels. Directional control is obtained with a two-segment rudder [83].

The benchmark model includes aircraft aerodynamic models and engines. In addition,

actuator and sensor characteristics are taken into account, together with models for wind,

atmospheric turbulence and faults. The aerodynamic forces and moments are defined in

terms of aerodynamic coefficients, which are given in the form of look-up tables. They are

functions of a wide set of parameters, such as pitch angle, angle of attack, true airspeed,

and altitude. The dimension of the aircraft output vector is 142. However, all these output

signals are not necessary to control the aircraft. The dynamical behavior of the aircraft is

described by the following nonlinear state representation:{
ẋNL = f(xNL(t), uNL(t))

yNL(t) = g(xNL(t), uNL(t)) + ν(t),
(5.1)

where xNL, uNL, yNL are the state, input, and output vectors of the full aircraft nonlinear

model. The signal vector ν stands for the measurement noise. More particularly, the model of

Boeing 747-100/200 can be formulated in the following equations with respected to dynamics

equations and kinematic equations. The force equations are:

α̇ =
−Fxsα + Fzcα +m(−pcαsβ + qcβ − rsαsβ)VTAS

mVTAScβ + CLα̇ q̄S
c̄

VTAS

β̇ =
−Fxcαsβ + Fycβ − Fzsαsβ +m(−psα + rcα)VTAS

mVTAS

V̇TAS =
1

m
(Fxcαcβ + Fysβ + Fzcβsα).

(5.2)
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The moment equations are: 
ṗ = (c1r + c2p)q + c3Mx + c4Mz

q̇ = c5pr − c6(p2 − r2) + c7My

ṙ = (c8p− c2r)q + c4Mx + c9Mz.

(5.3)

The kinematics equations are: 
φ̇ = p+ tθ(qsφ + rcφ)

θ̇ = qcφ − rsφ

ψ̇ = (qsφ + rcφ)
1

cθ
.

(5.4)

The navigational equations are:
ḣe = −(−usθ + vcθsφ + wcφcθ)

ẋe = ucψcθ + v(−cφsψ + cψsφsθ) + w(sφsψ + cφcψsθ)

ẏe = usψcθ + v(cφcψ + sψsφsθ) + w(−cψsφ + cφsφsθ).

(5.5)

The true airspeed is denoted in the body axes as:
u = VTAScαcβ

v = VTASsβ

w = VTASsαcβ.

(5.6)

The products and moments of inertia coefficients are given by:

c1 =
(Iyy − Izz)Izz − I2

xz

Γ
c2 =

(Ixx − Iyy + Izz)Ixz
Γ

c3 =
(Izz)

Γ
c4 =

Ixz
Γ

c5 =
Izz − Ixx
Iyy

c6 =
Ixz
Iyy

c7 =
1

Iyy
c8 =

Ixz
Iyy

c9 =
Ixx
Γ

Γ = IxxIzz − I2
xz.

(5.7)
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The forces and moments in body-axes for the Boeing 747-100/200 are given by:

Fx = q̄SCXb +
4∑
i=1

Tni −mgsθ

Fy = q̄SCYb + 0.0349[Tn1 + Tn2 − (Tn3 + Tn4)] +mgcθsφ

Fz = q̄SCZb − 0.0436
4∑
i=1

Tni +mgcθcφ

Mx = q̄Sb[Clb +
1

b
(CYb z̄cg − CZb ȳcg)−

c̄α̇

bVTAS
CZα̇b ȳcg]

+ 0.0436[Tn1yeng1 + Tn2yeng2 − (Tn3yeng3 + Tn4yeng4)]

My = q̄Sc̄[Cmb +
1

c̄
(CZbx̄cg − CXb z̄cg) +

c̄α̇

bVTAS
(Cmα̇b +

x̄cg
c̄
CZα̇b )]

+
4∑
i=1

Tnizengi

Mz = q̄Sb[Cnb +
1

b
(CXb ȳcg − CYbx̄cg) +

b̄β̇

VTAS
Cnβ̇b

]

+ Tn1yeng1 + Tn2yeng2 − (Tn3yeng3 + Tn4yeng4).

(5.8)

Since the aerodynamic coefficients are obtained directly in the wind coordinate and con-

structed in the stability coordinate, transformation of aerodynamic coefficients in stability

reference frame to body-fixed frame are considerable necessary and given by:CXbCYb
CZb

 =

−cα 0 sα

0 1 0

−sα 0 −cα


CDCY
CL

 , (5.9)

ClbCmb
Cnb

 =

cα 0 −sα
0 1 0

sα 0 cα


ClCm
Cn

 , (5.10)

where CL, CD, DY , Cm, Cl, Cn are aerodynamic coefficients available from [84].

The 12 rigid body states of the Boeing 747-100/200 aircraft can be divided into 6 longi-

tudinal and 6 lateral and directional states, which are all determined from the 6-degree of

freedom equations of motion. For the longitudinal channel, the states are pitch rate q, true

airspeed VTAS, angle of attack α, pitch angle θ, altitude he, and x-directional displacement
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xe; while for the lateral and directional channel, the states are roll rate p, yaw rate r, slide

slip angle β, yaw angle φ, roll ψ, and y-directional displacement ye. The control surface,

as aforementioned in RECOVER benchmark model description, comprises 4 ailerons (inner

and outer on each wing), 12 spoilers (2 inner spoilers and 4 outer spoilers on each wing), 2

rudder (upper and lower), 4 elevators (an inner and outer on each left and right elevator),

a horizontal stabilizer, and 4 engine thrust, which can be controlled individually for a new

FTC design compared to the configuration of the true Boeing 747-100/200 aircraft.

The body-axes longitudinal motion of the Boeing 747-100/200, not including flexible ef-

fects, can be described by the following differential equations with parameters [α̇ q̇ θ̇ V̇TAS ḣe]

[83–86]: 

α̇ =
−Fxsα + Fzcα

mVTAS
+ q

q̇ = c7My

θ̇ = q

V̇TAS =
1

m
[Fxcα + Fzsα]

ḣe = VTAScαsθ − VTASsαcθ = VTASsγ,

(5.11)

where α (rad) is angle of attack, q (rad/s) is pitch rate, VTAS (m/s) is true velocity, θ (rad/s)

is pitch angle, and he (m) is altitude. cα and cθ are cosine of α and θ, while sθ and sα are

sine of α and θ. The aerodynamic force along X-axis, Z-axis, and the pitching moment are

given by Fx, Fy, and My, respectively. The body-axes aerodynamic forces and moments are

given by:

Fx = −q̄S[CDcα − CLsα] +
4∑
i=1

Tni −mgsθ

Fz = −q̄SCDsα + CLcα − 0.0436
4∑
i=1

Tni +mgcθ

My = q̄Sc̄{Cm −
1

c̄
[(CDsα) + CLcα)x̄xg − (CDcα − CLsα)z̄cg] +

c̄α̇

VTAS
[Cmα̇ −

x̄cg
c̄
CLα̇cα]}

+
4∑
i=1

Tnizengi,

(5.12)

where CD, CL, and Cm are dimensionless aerodynamic coefficients about drag force, lift force

and pitch moment in wind axis; q̄ (N/m2) is flight dynamic pressure.
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Table 5.1: Trim condition for the model linearization

Variables Normal Value

Altitude 609.6m(2, 000ft)
True Airspeed 92.6m/s
Landing gear up

Mass 263, 000kg
Xcg 25%MAC
Ycg 0
Zcg 0

Flap setting 20deg

5.4 Performance of Linearized Model

The non-linear aircraft model can be linearized for the fault-tolerant controller design. The

linearized model with 12 states and 29 control inputs (25 control surfaces and 4 engines) is

obtained and represented in the state space form:{
ẋt = Alinxt +Blinut

yt = Clinxt
(5.13)

where Alin ∈ R12×12, Blin ∈ R12×29,

xlin ∈ R12 = [p q r VTAS α β φ θ ψ he xe ye]

ut ∈ R29 = [δair δail δaor δaol δsp1−12 δeir δeil δeor δeol δih δru δrl δfo δfi δTN1−4].
(5.14)

xlin is the state vector of the linearized model, ulin is the control input vector of a Boeing

747-100/200, and Blin comprises 6 sets:

Blin = [Blina Blinsp Bline Blinr Blinfp BlinTn
]

where Blina is related to 4 ailerons, Blinsp is related to 12 spoilers, Bline is related to 4

elevators and 1 horizontal stabilizer, Blinr is related to 2 rudders, Blinfp related to 2 flaps,

and BlinTn
is related to 4 engines. The 12 states can be classified into two sets: 6 longitudinal

states and 6 lateral states. The linearized model of the aircraft is under the flight condition

with trim value listed in Table 5.1.

For the longitudinal fault-tolerant control design, the state of the longitudinal motion is se-
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Table5.2:Flightconditionforthemodellinearization

FlightPathAngle(γ) 0deg
HeadingAngle(χ) 180deg

Yaw(ψ) 180deg
PitchAngle(θ) 5.1deg
Roll(φ) 0deg

lectedasxlong=[qVTASαβ]
T,andthecontrolsareselectedtobe4elevators[δeirδeilδeorδeol],

1horizontalstabilizerδih,and4individualthrust[δTN1δTN2δTN3δTN4],whicharecomprised

asulong=[δeirδeilδeorδeolδihδTN1δTN2δTN3δTN4]
T.

Toinvestigateandvalidatethatthecontrollawdesignisacceptable,thetimeresponses

ofnonlinearmodelandlinearizedmodelarecomparedwithrespecttothreetypesofcontrol

efforts:elevator,stabilizer,andthrust,respectively.

Thedeflectionofelevatorstartsat5sfromthetrimvalueof2degtothefinalvalue

of1deg
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whilealltheothercontrolsstayintrimvalues.Theelevatordeflectionprocessis

showninFig.5.3andtheperformanceispresentedinFig.5.4. Thedeflectionofhorizontal

Figure5.3:Elevatordeflectionsforcomparisonoflinearizedmodelandnonlinearmodel

stabilizerstartsat5sfromthetrimvalueof−2.9464degtothefinalvalueof−1.9464deg

whilealltheothercontrolsstayintrimvalues. Thestabilizerdeflectionprocessisshown

inFig.5.5andtheperformanceispresentedinFig.5.6.Thecontrolinputofthruststarts

alsoat5sfromthetrimvalueof5.4677×104tothefinalvalueof1.54677×105whileall

theothercontrolsstayintrimvalue. ThethrustinputisshowninFig.5.5andthetime

responsesofthenonlinearmodelandlinearizedmodelarepresentedinFig.5.8.
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Figure5.4:Performancewithelevatordeflectionsforcomparisonoflinearizedandnonlinear
model

Figure5.5:Stabilizerdeflectionsforcomparisonoflinearizedmodelandnonlinearmodel

Remark5.1.ThebluelinesinFig.5.4,Fig.5.6,andFig.5.8standforthetimeresponse

ofnonlinearmodelwithrespecttothecorrespondingcontrolinputs;whilethereddottedlines

arethetimeresponsesofthelinearmodel.Basedontheperformancecomparisonshownin

Fig.5.4,Fig.5.6,andFig.5.8,thelinearizedmodelisappropriatetoperformFTCcontrol

designforaircraft.
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Figure5.6:Performancewithstabilizerdeflectionsforcomparisonoflinearizedmodeland
nonlinearmodel

Figure5.7:Thrustinputforcomparisonoflinearizedmodelandnonlinearmodel

5.5 Summary

ThischapterintroducestheRECOVERbenchmarkmodelofaBoeing747-100/200as

theplatformtoevaluatethedesignedFTCstrategies.Theschematicdiagramofbenchmark

ispresentedtoillustratetheworkingschemeandtheconnectionsamongdifferentmodules.
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Figure5.8:Performancewiththrustinputforcomparisonoflinearizedmodelandnonlinear
model

Particularly,thenewfault-tolerantcontrolleristoreplacetheconventionalflightcontrol

systemfortheeffectivenessandperformanceevaluationoffault-tolerantcapability.Further

more,thehighfidelitynonlinearlongitudinalmodelofaBoeing747-100/200ispresentedto

illustratetheaircraftdynamics.Forthesakeoffault-tolerantcontrollerdesign,alinearized

modelisobtainedwithspecifictrimconditionsandflightconditions.Thelinearizedmodel

isverifiedbycomparingthetimeresponsebetweenlinearandnon-linearmodelrespectedto

thedifferentlongitudinalinputs:elevator,horizontalstabilizer,andtheengines.
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Chapter 6

Fault-Tolerant Control of Boeing

747-100/200 Using LF-MPC

6.1 Introduction

LOC during flight contributes one of the major factors for the flight accidents [1, 17].

Learning from previous experience, the faulty aircraft can land safely to avoid a fatal accident

by well-trained pilot and a FTC system could be helpful for the success of safe landing [1]. A

great amount of works have been done to explore the possibility of improving the survivability

of crippled aircraft. With the help of the RECOVER benchmark model of a Boeing 747-

100/200, a FTC system is designed and tested to achieve stability and a certain level of

performance requirements in the event of different faults/failures. The final goal of a FTC

system is to increase the survivability of aircraft and help the pilot to land aircraft for the

safety purpose.

MPC is widely used in the industry mainly because of its facets of dealing with multiple

variables and handling the constraints [52–54]. MPC was primarily applied to the relatively

slow process since this technique requires considerable computational effort to generate con-

trol signals. Benefiting from the rapid development of computational power, MPC can be

used for the fast sampling time system such as aircraft [4]. MPC possesses an inherent fault-

tolerant facet to address faults in non-complex and systematic way. A subspace predictive

control [51] is proposed for the design of a FTC system and validated based on a Boeing

747-100/200 benchmark model. This type of technique [51] is a data-driven approach, which
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utilizes the updated on-line estimation to deal with faults implicitly. However, this property

increases computational burden on the modeling of the predictor in addition to the cost of

the on-line optimization. An efficient alternative model predictive control approach named

LF-MPC is proposed and presented in this chapter used to design a FTC system. The idea

behind LF-MPC based FTC is to improve the on-line fault-tolerant capability with fewer

optimization parameters, which are used to model the whole control trajectory. Compared

to reducing control horizon in conventional manner, LF-MPC has moderate control efforts

and better stability performance. The advantages of the LF-MPC for FTC lie in preserv-

ing the architecture of MPC in addressing faults, reducing the computational cost without

decreasing the control window. The contributions of this chapter are 1) demonstrating the

effectiveness of a LF-MPC based FTC strategy, 2) designing a FTC landing system of air-

craft using the LF-MPC, 4) improving the on-line fault-tolerant capability with LF-MPC

technique, 4) formulating the fault problem in the framework of LF-MPC.

The objective of the FTC in this design is to stabilize a faulty aircraft and perform safe

landing of aircraft in the event of a major actuator fault/failure. The scenarios considered in

the validation process are inner elevators stuck at different landing phases, which have major

impacts on the stability of the longitudinal channel of aircraft. It is reasonable to assume

that the aircraft can land safely in the longitudinal channel with assistance of banking turn

maneuver, if the designed FTC system can stabilize aircraft and keep some performance

of trajectory tracking ability. The rest of this chapter is organized as follows. Section 6.2

illustrates the FTC design process. Section 6.3 presents the simulation results based on

the inner elevators stuck scenarios in level flight, descending, and climbing phases. At last,

section 6.4 summarizes this chapter.

6.2 Fault-Tolerant Control Design

This section introduces the design process of a fault-tolerant controller for the longitudinal

of aircraft. The FTC design objectives are listed as follows: 1) to provide an automatic pitch

stabilization for the aircraft in landing mode; 2) to achieve automatic trajectory tracking for

landing; 3) to fulfill automatic speed following task; 4) to preserve the task 1) , 2) , and 3)

and achieve safe landing in the presence of elevator stuck faults.

Due to the complexity of the control configuration of a Boeing 747-100/200, it is a chal-

lenging task to manage the redundancy configuration for FTC application. In [87], 4 elevators
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are controlled individually to compensate the trimmable horizontal stabilizer fault. The trim

condition is based on {
ẋt = Axt +But

yt = Cxt + vt,
. (6.1)

The longitudinal state vector here is [q VTAS α θ he], and the control input is [δe1−4 δih].

The 4 elevators are treated as 1 segment. The stabilizer is as the redundancy of the 4

elevators. This configuration utilizes the horizontal stabilizer as the redundancy of eleva-

tors, while the 4 elevators are not configured as redundancy for each other. Authors in

[86] choses 5 states [q VTAS α θ he] and two control inputs [δe δTn]. The stabilizer is not

selected as a control redundancy. The elevator faults are compensated by effectively manip-

ulating the thrust. Such a combination control prevents exploiting the existing freedom of

using healthy surfaces which can compensate the performance degradation induced by faulty

control surfaces. Authors in [88] argues the configuration of 5 states [q VTAS α θ he], but

[δe1−4 δih δEPR1−4 ]. The 4 elevators are still be controlled in a combined manner. Authors

in [16] utilizes the 4 elevators as 1 segment, 1 horizontal stabilizer, and 4 individual engines

δlong = [δe δs e1long e2long e3long e4long]. The longitudinal states are [q VTAS α θ he xe]. For the

controller design, the state for the longitudinal channel is chosen as q, VTAS, α, and θ. To

utilize the controls effectively, distinguished from the aforementioned control configurations,

the controls configuration are 4 elevators (δeir δeil δeor δeol), 1 horizontal stabilizer δih, and 4

thrust δTN1 δTN2 δTN3 δTN4. Particularly, δeir and δeil are grouped as one segment, δeor and

δeol are combined as one segment, δih is controlled independently, and δTN1−4 are controlled

as one segment. Based on the design objective and the control configuration analysis in the

literature, the longitudinal model for the design of a fault-tolerant controller is presented as:{
ẋlong = Axlong +Bulong

ylong = Cxlong,
(6.2)

where A ∈ R4×4 and B ∈ R4×4, xlong = [q VTAS α θ]T , and ulong = [δei δeo δih δTN1−4 ] .

[γ VTAS] are two parameters to be tracked. Since γ = θ − α, therefore, C is defined as:

C =

[
0 1 0 0

0 0 −1 1

]
. (6.3)
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Figure 6.1: Fault-tolerant control scheme using MPC

6.2.1 Fault-Tolerant Control Design Based on MPC

The proposed FTC scheme is presented in Fig. 6.1 with MPC as reconfigurable controller.

The reference signals are flight path angle γ and true airspeed VTAS. It is not necessary to

apply FDD to track references in a fault-free case. However, for the control reconfiguration

purpose, a fault-tolerant controller demands both the measurements of aircraft and fault

information available from FDD. The measurements are [q, VTAS, α, θ] and fault information

refers to the new limitations of faulty actuators. The discrete model used for the FTC design

purpose is obtained from Eq. (6.2):{
xk+1 = Adxk +Bduk

yk = Cdxk,
(6.4)

where xk ∈ Rn is the discrete state of the system, uk ∈ Rl is the control input, and yk ∈ Rm

is the output to be tracked. Taking a difference operation on both sides of Eq. (6.4), one

obtains:

xk+1 − xk = Ad(xk − xk−1) +Bd(uk − uk−1). (6.5)

Define ∆xk+1 = xk+1− xk, ∆xk = xk − xk−1, and ∆u(k) = uk − uk−1, which are incremental

variables with respect to xd and ud, then the state-space equation turns into:

∆xk+1 = Ad∆xk +Bd∆uk. (6.6)
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Note that the input to the space-space model is changed to ∆uk. To get the system output

yk, the augmented state is set to be [∆xTk e
T
k ]T , where ek = yk − rs, rs is the reference to be

tracked [VTAS γ]T , and superscript T stands for the matrix/vector transpose. The finalized

state model with input ∆uk and output yk is formulated as:

[
∆xk+1

ek+1

]
=

[
Ad 0

CdAd I

][
∆xk

ek

]
+

[
Bd

CdBd

]
∆uk

yk = [0 I]

[
∆xk

ek

]
+ rs.

(6.7)

Define x(k) = [∆xTk+1 e
T
k+1]T , ∆u(k) = ∆uk, the state model in Eq. (6.7) is rewritten as:{

x(k + 1) = Ax(k) +B∆u(k)

y(k) = Cx(k) + rs,
(6.8)

where

A =

[
Ad 0

CdAd I

]
, B =

[
Bd

CdBd

]
, C =

[
0 I

]
. (6.9)

In the framework of discrete LQR with new model as shown in Eq. (6.8), the cost function

to be optimized is formulated as:

J0(x(k),∆u(.), k) =
∞∑
i=0

x(k + i|k)TQx(k + i|k) + ∆u(k + i|k)TR∆u(k + i|k). (6.10)

The control trajectory is obtained by optimizing Eq. (6.10) subjected to the constraints of

system dynamics as shown in Eq. (6.8). The solution of this discrete-time regulator problem

is determined as ∆u(k) = −Kx(k), where K = (R + BTPB)−1BTPA, and P is obtained

through the algebraic Riccati equation (ARE):

AT (P − PB(R +BTPB)−1BTP )A+Q− P = 0. (6.11)

Discrete LQR has a fixed control gain, even if it is obtained with robustness design, which still

limits the capability of fault tolerance since the control effort can only be tuned off-line by

choosing the weighting matrices Q and R to adapt the physical limitations in nominal case.

This problem is well solved in the framework of MPC via composing the physical limitations

as constraints and solving the on-line optimization problem. MPC can be used to design a
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fault-tolerant controller based on the properties of reformulating constraints, updating the

inertial model, and redefining the cost function. Instead of two separate horizons, the cost

function of MPC is formulated in a uniform horizon for prediction and control as follows:

J(x(k),∆u(.), k) =

Np∑
i=1

x(k + i|k)TQx(k + i|k) +

Np−1∑
j=0

∆u(k + j|k)TR∆u(k + j|k), (6.12)

where Np stands for the prediction horizon and the control horizon. When Np → ∞,

Eq. (6.12) approximates Eq. (6.10).

Considering the relationship between discrete LQR and MPC with respect to the cost

function and an optimization process, the preliminary parameters of MPC in this chapter is

tuned based on discrete LQR technique.

Based on the state-space model shown by Eq. (6.8), the state vector is presented with

respect to the current state and the incremental control trajectory in the control horizon.

x(k + 1|k) = Ax(k) +B∆u(k)

x(k + 2|k) = Ax(k + 1|k) +B∆u(k + 1|k)

= A2x(k) + AB∆u(k) +B∆u(k + 1|k)

...

x(k +Np|k) = ANpx(k) + ANp−1B∆u(k)

+ ANp−2B∆u(k + 1|k) + · · ·

+B∆u(k +Np − 1|k)

(6.13)

The differences in the prediction horizon between the references and the system outputs

in the prediction horizon are obtained from:

E = Fx(k) + Φ∆U, (6.14)

where

E = [e(k)T e(k + 1)T · · · e(k +Np)
T ]T , (6.15)
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F =



CA

CA2

CA3

...

CANp


, (6.16)

Φ =



CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

...
...

...
...

CANp−1B CANp−2B CANp−3B · · · CB


. (6.17)

The cost function for the trajectory tracking is

J(x(k),∆u(.), k) = ETQE + ∆UTR∆U (6.18)

=

Np∑
i=1

(rs(k + i)− y(k + i|k))TQi(rs(k + i)− y(k + i|k))

+

Np−1∑
j=0

(∆u(k + j|k)TRj∆u(k + j|k)),

where rs(k + i) is the reference at time instant i of the prediction horizon. Q and R are

the block diagonal matrix with Qi(i ∈ [1, Np]) and Rj(j ∈ [0, Np − 1]) block, respectively.

Qi ∈ Rm×m is semidefinite diagonal matrix and Rj ∈ Rl×l is a definite diagonal matrix to

balance the state and the input in the cost function. Recall the nominal control, the cost

function is formulated in the form in Eq. (6.12). First considering the fault-free scenario, the

control problem can be addressed in the LQ framework and the control efforts are obtained

by solving Eq. (6.12) with dynamics constraints in Eq. (6.8):

∆U = (ΦTΦ + R̄)−1ΦTE. (6.19)

The receding horizon control strategy is applied, thereby the real incremental control effort

can be obtained:

∆u(k) = [I 0 · · · 0][ΦTΦ +R]−1ΦTE. (6.20)
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To simplify the cost function by dropping the constant values, the optimization problem

in Eq. (6.18) can be further simplified as:

Ju(x(k), u(.), k) = ∆UTEJ∆U + ∆UTFJ , (6.21)

where EJ = 1
2
(ΦTΦ + R̄) and FJ = −ΦTE.

Since faults can be treated as new constraints for the post-fault system, the faulty actu-

ators can be formulated as constraints of the system presented as:

M∆U ≤ N, (6.22)

where M and N are parameters to constrain the incremental control efforts. To solve the

optimization problem with actuator constraints as shown in Eq. (6.21) under constraints in

Eq. (6.22), Lagrangian multiplier is applied. Therefore, the new optimization cost function

becomes:

J(x(k), u(.), k) =
1

2
∆UTEJ∆U + ∆UTFJ + λT (M∆U −N). (6.23)

Note that only M∆U = N , which means aircraft is in post-fault condition, the cost function

can be formulated with constraints in Eq. (6.23). The control efforts are obtained as:

∆U =− E−1
J FJ − E−1

J MTλ

=(ΦTΦ + R̄)−1ΦTE − E−1
J MTλ.

(6.24)

Compared to Eq. (6.19), the post-fault control effort denoted by Eq. (6.24) comprises the

nominal and the correction terms:

Upostfault = Unominal + Ucorrection, (6.25)

where Unominal = (ΦTΦ+ R̄)−1ΦTE is the control without active constraints and Ucorrection =

E−1
J MTλ is the control under active constraints.

6.2.2 Fault-Tolerant Control Using LF-MPC

Based on the basic fault-tolerant facet of MPC illustrated in the previous section, this

section introduces a new approach for FTC in the framework MPC. This effort aims to

improve the on-line fault-tolerant capability by decreasing the computational burden with
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reduced optimization parameters. To this end, the trajectory modeling method is adopted,

which is used to model the control trajectory with a few parameters. The technique used in

the trajectory modeling is based on a series of Laguerre functions [53].

The advantages of LF-MPC based FTC strategy are summarized as follows: 1) improving

computational efficient by reducing the number of optimized parameters, which is critical

for the on-line fault-tolerant capability; 2) without sacrificing the stability of MPC in the

finite control horizon compared to purely by shortening the control horizon; 3) formalizing

the turning process without tunning control Nc.

The following focuses on the modeling of the optimized control trajectory using Laguerre

functions. The control vector that is optimized in the design of a predictive controller is as

follows:

∆U = [∆u(k)T ,∆u(k + 1)T , · · · ,∆u(k +Np − 1)T ]T , (6.26)

where ∆U ∈ RlNp×1. At the time instant k, any element within the control trajectory ∆U

can be represented using the discrete δ-function in conjunction with ∆U :

∆u(k + i) = [δ(i), δ(i− 1), · · · , δu(i−Np + 1)]∆U, (6.27)

where 
δ(i) = diag([δ1(i) δ2(i) · · · δl(i)]) = diag([1 1 · · · 1]︸ ︷︷ ︸

l

) i = 0

δ(i) = diag([0 0 · · · 0]︸ ︷︷ ︸
l

) i 6= 0.
(6.28)

The δ is used to capture the control trajectory. The idea proposed in [53] is to use a discrete

polynomial function (a set of Laguerre functions) to approximate the sequence [∆u(k +

i),∆u(k + i − 1), · · · ,∆u(k + i − Np + 1)] to reduce the optimization parameters, which is

the key for the on-line fault accommodation.

The basic design framework is to replace ∆u(k + i) by L(i)Tη shown as:

∆u(k + i) = L(i)Tη, (6.29)

with LT (i) = diag([L1(i)T , L2(i)T , · · · , Ll(i)T ]) (i ∈ [1, Np]), η = [ηT1 ηT2 · · · ηTl ]T .

More particularly, the Lq(i) = [l1q(i) l2q(i) · · · lNq(i)]T (q ∈ [1, l]) can be calculated

iteratively by:

Lq(i+ 1) = AqlLq(i), (6.30)
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with Lq(0)=
√
βq[1 − αq α2

q − α3
q · · · (−1)Nq−1α

Nq−1
q ], βq = 1− α2

q (αq ∈ [0, 1)). Nq is the

number of approximation factors of the qth actuator. Aql can be calculated off-line with the

parameters αq, Nq, Np:

Aql =



αq 0 · · · 0

βq αq · · · 0

−αqβq βq · · · 0
...

...
...

...

(−αq)Nq−2βq (−αq)Nq−3βq · · · αq


. (6.31)

The orthogonal property exists between elements in Lq(i):

∞∑
i=0

la(i)lb(i) = 0, a 6= b

∞∑
i=0

la(i)lb(i) = 0, a = b

. (6.32)

The predictive model in Eq. (6.13) is formulated as Eq. (6.33) with substitution Eq. (6.29):
x(k + j|k) = Ajx(k) +

j−1∑
p=0

Aj−p−1BL(p)Tη = Ajx(k) + φ(j)Tη

y(k + j|k) = Cx(k) = CAjx(k) + Cφ(j)Tη,

(6.33)

where

φ(j)T =

j−1∑
p=0

Aj−p−1BL(j)T , j ∈ [1, Np]. (6.34)

The incremental control ∆u(k + i) is replaced by the L(i)Tη, thus the parameter η ∈ Rl×Nq

is the only optimized parameter vector instead of the whole control trajectory ∆U ∈ Rl×Np .

Note that the dimension of η is much smaller than that of ∆U as Nq is far less greater than

Np. L(i) is determined by Eq. (6.30). Replacing ∆U with the approximation trajectory, the

formulation of cost function is represented as follows:

J0η(x(k), u(.), k) =

Np∑
j=1

(r(k+ j|k)− y(k+ j|k))TQj(r(k+ j|k)− y(k+ j|k)) + ηTRη. (6.35)
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Substituting Eq. (6.33) into the cost function Eq. (6.35), it is obtained that

J1η(x(k), u(.), k) = ηT (

Np∑
j=1

φ(j)Qφ(j)+RL)η+2ηT (

Np∑
j=1

φ(j)QAj)x(k)+

Np∑
j=1

xT (k)(AT )jQAjx(k).

(6.36)

The cost function to be optimized can be further simplified by dropping the constant:

Jη(x(k), u(.), k) = ηT (

Np∑
j=1

φ(j)Qφ(j) +RL)η + 2ηT (

Np∑
j=1

φ(j)QAj)x(k). (6.37)

Constraints Statement in the Framework of LF-MPC

Table 6.1 presents the control surface operating limits, which are used for the fault-tolerant

controller design.

1. Constraints on the slew rates

Due to the physical constraints of actuators, the slew rates should not exceed the actuators’

limitations as shown in Table 6.1. In particular, the incremental limitations are listed in the

last two columns of Table 6.1 with fully and half boost, respectively. The lower and upper

Table 6.1: Boeing 747-100/200 flight control surface operating limits (positive sign: surface
deflection down/spoiler panel up) [1]

Control surface Symbol Mechanical
limit
(deg)

Two hydraulic
system rate (Full
boost, deg/sec)

One hydraulic
system rate (Half
boost, deg/sec)

Inboard elevator δei +17/-23 +37/-37 +30/-26
Outboard elevator δeo +17/-23 +37/-37 +30/-26

Inboard aileron δai +20/-20 +40/-45 +27/-35
Outboard aileron δao +15/-25 +45/-55 +22/-45

Stabilizer ih +3/-12 +/-0.2 to +/-0.5 +/-0.1 to +/-0.25
Upper rudder δru +45 +75 0
Lower rudder δrl +45 +75 0
Spoiler #1-#4 δsp1−4 +20 +75 0
Spoiler #9-#12 δsp9−12 +20 +75 0
Spoiler #5,#8 δsp5, δsp8 +25/-25 +50/-50 +40/-40
Spoiler #6,#7 δsp6, δsp7 +25/-25 +50/-50 +40/-40
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limits on ∆u(k) are ∆umin and ∆umax, as shown in inequality (6.38):

∆umin ≤ ∆u(k + i) ≤ ∆umax. (6.38)

Inequality (6.38) can be rewritten with η based on Eq. (6.29):

∆umin ≤ LT (i)η ≤ ∆umax. (6.39)

2. Constraints on the amplitudes

The actuator magnitude limitations are presented in the mechanical limit column of Table

6.1. All the actuators should respect the limitations when performing the control task. It can

be denoted with the incremental controls by u(i) =
i−1∑
p=0

∆u(p), then the inequality constraints

for the future time i ( i = 1, 2, · · · , Np) are expressed as:

umin ≤ SL(i)η + u(i− 1) ≤ umax, (6.40)

where SL(i) = diag([
i−1∑
j=0

L1(j)T ,
i−1∑
j=0

L2(j)T , · · · ,
i−1∑
j=0

Ll(j)
T ]) and u(k − 1) is the previous

control signal vector. With the following definitions:

SL = [SL(0)T SL(1)T · · ·SL(Np − 1)T ]T

∆Umax = [∆uTmax ∆uTmax · · ·∆uTmax]T

∆Umin = [∆uTmin ∆uTmin · · ·∆uTmin]T

LT = [L(0)T L(1)T · · · L(Np − 1)T ]T

U(k − 1) = [u(k − 1)T u(k − 1)T · · · u(k − 1)T ]T ,

(6.41)

in the prediction horizon Np, the actuator constraints with respect to η are formulated as:[
M1

M2

]
η ≤

[
N1

N2

]
, (6.42)

where

M1 =

[
LT

−LT

]
, N1 =

[
∆Umax

−∆Umin

]
,M2 =

[
SL

−SL

]
,

N2 =

[
Umax − U(k − 1)

Umin + U(k − 1)

]
.

(6.43)
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Overall, the FTC strategy design using LF-MPC is to solve the cost function Eq. (6.37)

with respect to the constraints in Eq. (6.42) (fault-free and post-fault scenarios). Moreover,

actuator faults can be treated as constraints of the optimization problem, therefore, the

fault-tolerant controller is designed to solve the constraints problem in Eq. (6.42) subjected

to the system dynamics.

Remark 6.1. From the design process elaborated above, the MPC-based FTC strategy is

contributed from two control efforts: the nominal control effort and an additional correc-

tion term induced by the active constraints. The constraints are not only from the physical

limitations of fault-free actuators but also obtained based on the fault information, which is

available from a FDD module. LF-MPC has the same structure with conventional MPC but

the control effort optimization form. Instead of optimizing the whole control horizon, LF-

MPC optimizes a few coefficients which are used to model the control trajectory. Therefore,

it preserves the on-line optimization property of conventional MPC and increases the on-line

fault-tolerant capability by reducing the optimized parameters.

6.3 Simulation Results

The closed-loop system should satisfy the performance criteria during all the flight dura-

tion in both fault-free and post-fault conditions. The RMSE criteria for the airspeed VTAS

and the flight path angle γ are used to evaluate the performance of the designed FTC system

in the presence of inner elevators stuck fault as presented in Table 6.2. The safety margins

of parameters are marked on the top and bottom of each figures related to the parameters,

which constraints are listed in Table 6.1.

Typically, 3 main phases, including level flight, descending, and climbing, are included

in the landing period of longitudinal channel. Therefore, elevator stuck scenarios are tested

and evaluated based on the different flight phases when faults occur. The fault-free case

is also tested for the performance comparison purpose. Case 1 shows the landing period

in normal situation with the criteria mentioned above. There is no fault occurring in the

flight duration. Case 2 presents inner elevators stuck at the around trim position when

performing a level flight. Case 3 is the scenario when inner elevators stuck at a random

non-trim position while performing descending maneuverer. Case 4 illustrates the scenario

that the inner elevators of aircraft get stuck when it is in climbing phase. Overall, Case 1 is

the fault-free scenario, but the rest of scenarios perform that inner elevators stuck at random
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Table 6.2: Tracking performance evaluation

Stuck Scenarios Max Error γ (deg) Max Error VTAS (m/s) RMSE γ RMSE VTAS

Normal No Fault 0.76568 1.0015 0.19058 0.3998
Level Flight Level Flight 3.9086 2.3751 0.34656 0.50077
Descending Descending 5.3078 2.3164 0.44144 0.48727
Climbing Climbing 4.8358 5.6811 0.41676 0.87503

positions when aircraft performs straight and level flight, descending, and climbing actions.

Table 6.2 presents 4 scenarios of performance evaluation of the fault-tolerant controller

via the landing task of aircraft.

The maximum errors of γ and VTAS are 0.76568 deg and 1.0015 m/s in case 1, showing

the tracking performance of the designed FTC in performing the normal duty. Compared

to case 1, the rest of cases have larger maximum error with respect to flight path angle γ

and true velocity VTAS. In the whole evaluation time horizon, RMSE of γ and VTAS remain

the smallest in case 1, showing that the fault has influences on the tracking performance.

RMSE γ and RMSE VTAS in case 2, case 3, and case 4 has no significant changes, which

demonstrate that the designed controller can fulfill the FTC task of stabilizing the faulty

condition aircraft with degraded performance.

The following focuses on the evaluation of the landing performance with a fault-free and

3 faulty scenarios: inner elevators stuck at a random place when performing level flight,

descending, and climbing maneuvers, respectively. The FDD unit is integrated into the

evaluation process in terms of 2s time delay.

6.3.1 Fault-Free Scenario

There are no faults occurring in the whole landing period as shown in Fig. 6.2, in which

the vertical axis stands for the altitude of aircraft and the lateral axis stands for the distance

from the location where the simulation starts. The safe landing of aircraft with acceptable

performance illustrates the success of the designed FTC in performing the normal duty. This

landing performance is further illustrated via the tracking capability in terms of flight path

angle γ and true airspeed VTAS shown in Fig. 6.3(a) and Fig. 6.3(b), respectively.

To illustrate the performance of the landing from control efforts point of view, the elevator

deflections are presented in Fig. 6.4, where the plot with a box is the zoom in value of its

respected elevator deflection. In the control process, there are no significant fluctuations in
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Figure 6.2: Landing trajectory tracking in fault-free scenario

the deflections of inner elevators. The control efforts performance, as shown in Fig. 6.5(b)

about elevators, Fig. 6.5(c) about horizontal stabilizer, and Fig. 6.5(d) about thrusts, illus-

trate the smoothness of control efforts during the whole landing period, which indicate the

effectiveness and acceptable performance of the designed FTC in normal flight situation.

The objective of the landing in the fault-free case is achieved with the designed FTC.

6.3.2 Fault Scenarios in Landing Process

Elevator Stuck in Level Flight Phase

Fig. 6.6 shows the whole process of landing of aircraft under inner elevators stuck occurring

at 30s indicated by the red-dashed vertical line in Fig. 6.8(a) and Fig. 6.8(b). The inner

elevators stuck starts on the stage of straight flight phase of the landing period. It can be

seen from Fig. 6.6 there is a sharp fluctuation at the level flight phase, at which time the

stuck fault occurs. Further more, from Fig. 6.7 after the occurrence of faults, the inner

elevators are lock in a fixed places of a level flight condition without performing deflections

with respect to different flight situations. It indicates a constant pitch moment is placed on

aircraft, a counteraction is demanded to neutralize the influence and provide the mandatory

moment.

To be more specific, the tracking trajectory of the flight path angle as shown in Fig. 6.8(a)

and the true velocity as shown in Fig. 6.8(b) indicate the degradation of the tracking per-
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Figure6.3:Referencetrackingperformanceinfault-freescenario

Figure6.4:Innerelevatorsdeflectionsinfault-freescenario

formanceofthesetwoparameters.However,afterthetransientperiod,theflightpathangle

andtruevelocityreturntotrackthereferencesagainwithoutlosingperformancesignifi-

cantly.InadditiontothedeflectionsofinnerelevatorsstuckpresentedinFig.6.7andthe

trackingperformanceasshowninFig.6.8,thecontroleffortsofelevators,horizontalstabi-

lizer,andthrustsarepresentedinFig.6.9toillustratethecontrolprocessofthedesigned

FTCsysteminthewholelandingperiod.Beforethetimeinstant30s,theinnerelevators

followthedesiredvaluetomanipulateaircraftaltitudeandflightpathangle. Whileatthe

timeinstant30satwhichthefaultoccurs,theelevatorsstopfollowingthedemandedvalue

butarelockedinafixedplace.ItcanbeseenfromFig.6.9(a)thatafterthetimeinstant
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Figure6.5:Controlsinfault-freescenario:innerelevator,outerelevators,horizontalstabi-
lizer,andthrust

ofthefaultoccurs,thecommandfortheinnerelevatorschannelisfixedtobethesame

commandasinthestuckposition.However,thecommandfortheouterelevatorsincreases

dramatically.ThisillustratesthattheFTCsystemisolatesthestuckchannelanddrivesthe

restfunctionalelevatorsmoreaggressivelytocompensatetheLOCinducedbythestuckof

innerelevators.Thehorizontalstabilizerdropsatthetransienttimeoffaultoccurrenceand

maintainsatastablelevelafterthecontrolreconfiguration.Thereisnosignificantinfluence

onthethrustsinceitismainlyresponsibleforthetrueairspeed.
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Figure 6.6: Landing trajectory tracking with faults occurring at the levelel flight phase
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Figure 6.7: Inner elevators deflections with faults occurring at the level flight phase

Elevator Stuck in Descending Phase

Fig. 6.10 shows the whole process of landing under inner elevators stuck at 100s as shown

in Fig. 6.12(a) and Fig. 6.12(b).

It is clear that when faults occur the flight path angle changes significantly to a maximum

value of 4.8358 deg in Fig. 6.12(a) and the velocity drops by 5.6811m in Fig. 6.12(b). The

reason is that when a descending maneuver is performed a slight downward elevator maneuver

is required. However, the stuck elevators provide a sustainable relative upward moment

inducing aircraft nose up. After the transient time, the flight path angle and true velocity

are followed by the faulty aircraft again without losing performance significantly. To illustrate

85



0 100 200 300 400 500
−4

−3

−2

−1

0

1

2

3

4

¬ Inner Elevator Stuck

Time (s)

γ 
(
d
e
g)

Flight Path Angle

 

 

γ command

γ meas with λ=1

0 100 200 300 400 500

60

65

70

75

80

85

90

95

100

105

¬ Inner Elevator Stuck

Time (s)

V
T
A
S 
(
m/
s)

True Velocity

 

 

V
TAS
 command

V
TAS
 meas with λ=1

90

92

94

(a)Flightpathangletracking (b)Truevelocitytracking

Figure6.8:Trackingperformancewithfaultoccurringatthelevelflightphase

theprocessinmoredetails,thefaultofelevatorsstuckispresentedinFig.6.11.Beforethe

timeinstant100s,theinnerelevatorsfollowthedesiredcommandstoadjustthestateof

aircraft. Whileatthetimeinstant100s,theelevatorsarelockedinafixedplace.Thetracking

performancespresentedinFig.6.12(a)andFig.6.12(b)illustratethevalidityofthedesigned

fault-tolerantcontroller.Itisnoticedthatthecommandfortheinnerelevatorschannelis

fixedtobethesamecommandasinthestuckpositioninFig.6.13(a).However,itisobviously

thatthecommandfortheouterelevatorschangesdramaticallyduetothefaultsasshownin

Fig.6.13(b).Notethatintheeventofstucktransient,theouterelevators’commandabruptly

jumptotheextremevaluebutnotexceedthelimitationofactuators.Thisillustratesthatthe

designedFTCsystemcountstheactuatorlimitationswhenperformingthecontrolactions.

AfterashorttransientperiodwiththehelpofouterelevatorsasshowninFig.6.13(b)

andhorizontalstabilizershowninFig.6.13(c),thecontrolsignalsofouterelevatorsand

horizontalstabilizerreturntobemoderate.Itisclearthattobringaircrafttostablestatus

inthestucktransient,theouterelevatorsandhorizontalstabilizerworksmoreaggressively

thanthatinperformingnormalduty.

ElevatorStuckinClimbingPhase

Foradjustingthealtitudepurposeduringlandingphases,aircraftperformsclimbingma-

neuversinsomenecessarycircumstances.Therefore,thiskindofscenarioispresentedwith

faultoccurringduringtheclimbingmaneuverinordertovalidatetheeffectivenessofthe
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designed FTC system.

Fig. 6.14 shows the process of the flight path tracking during the landing with faults

occurring at the climbing phase. It indicates that the flight path tracking capability keeps

in an acceptable manner even when faults occur at the time instant 180s. In terms of the

two tracking parameters γ and VTAS shown in Fig. 6.16, significant deviations only exist

at the transient period. There is no significant performance degradation after the recovery

transient. The abrupt deviation of flight path angle is obtained from a constant pitch up

moment due to the stuck elevators while less pitch up moment is demanded. The conflict

of the demanded value and the stuck elevators deteriorates the tracking performance. The

recovered tracking performances of γ in Fig. 6.16(a) and VTAS in Fig. 6.16 indicate the

effectiveness of the designed fault-tolerant controller. The inner elevators stuck fault is

presented in Fig. 6.15 illustrating the inner elevators deflection process before and after fault

occurrence.

To elaborate the control process during the evaluation, all the control efforts are presented

in Fig. 6.17 in terms of elevators, horizontal stabilizer, and thrusts. Before the stuck occurs

the control demand for inner elevators varies with different flight path angles, while it keeps

the stuck value after the occurrence of faults, which indicates the designed FTC system

calculates the control efforts based on the available control capability. This is further illus-

trated by Fig. 6.17(b), in which the maximum values on the remaining functional elevators

are considered in the reconfiguration process. The stabilizer is reconfigured at a new trim

position after the fault occurrence.

6.4 Summary

The objective of this chapter is to safely land aircraft in the event of a major actuator

fault/failure. The proposed LF-MPC technique provides a systematic and efficient way

to synthesize a FTC system. The saturation of actuators in both fault-free and post-fault

scenarios are integrated into the FTC in a seamless way. The time delay of FDD information

is also integrated into the validation process. The simulation results of the non-linear aircraft

model illustrate the effectiveness and performance of the designed FTC system.
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Chapter 7

Fault-Tolerant Control of Boeing

747-100/200 Using Improved LF-MPC

7.1 Introduction

In Chapter 6, a LF-MPC based FTC system is implemented and validated on the bench-

mark model of a Boeing 747-100/200. As aforementioned, FTC design approaches can be

categorized into two types: passive and active FTC approaches [2]. The philosophy of pas-

sive FTC is to use the robust property control system to accommodate faults, in which the

controller remains the same without reconfiguration. The robustness of the passive FTC

can directly be implemented in the control system without extra on-line computational bur-

den. While active FTC adopts the strategy of redistributing control efforts in real time, in

which a FDD strategy is often included in the close-loop control system to provide the fault

information. Due to the updated fault information available from a FDD module and the

flexibility of active FTC in controls reconfiguration, active FTC can handle more complex

faults as compared to passive FTC. In consequence, a more complex design of active FTC is

demanded than that of passive FTC. It is notice that no matter what control techniques are

applied, the performance of the transient period between the fault occurrence and the recon-

figurable control action trigged cannot be compensated. This motivates the combination of

passive and active FTC strategies. This chapter focuses on improving the performance of de-

signed LF-MPC based FTC strategies during the transient period. Without the constraints

activated, the optimization process of MPC is identical to LQR when the internal model is

linear. This implies that the control design of MPC can borrow ideas from the well-known
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LQR technique. LQR technique is recognized as modern control technology, which presents

superior facet at handling multiple input and output system with robust property, such as

the control law design for Boeing 767 commercial transport and the Boeing version of Joint

Strike Fighter [62, 89]. Generally, the controller performance based on LQR design is deter-

mined by the cost functions under the system dynamics constraints. The optimized control

law can be tuned by the weighting matrices Q and R. Large values of Q in comparison to

R reflect the designer’s intent to drive the state to the origin or the tracking error to zero

quickly at the expense of large control action. While large values of R compared to Q reduce

the control action and decrease the stabilizing rate of the controlled system. However, there

is no directly link between the weighting matrix and the control performance in the tuning

process, which is also inherently a tuning challenging of MPC. To overcome the drawback,

the idea of the prescribed degree of stability is proposed in [82] by adopting exponentially

increasing weighting matrices in the cost function of continuous LQ problems. This idea is

further developed in literature [53, 90, 91] to improve the performance of MPC. Considering

the favorable properties of MPC for FTC design, the prescribed degree of stability is further

developed and implemented for FTC of a Boeing 747-100/200 airplane. The contributions

are 1) improving the transient performance resisting unpredicted faults with passive FTC

technique; 2) improving active FTC ability with the improved decay rate of states and the

updated fault information. The performance is investigated and validated throughout the

task of safe landing of aircraft in the event of faults. Inner elevators stuck are studied in

the evaluation with fault occurring at different landing phases: level flight, descending, and

climbing phases.

The rest of this chapter is organized as follows. Section 7.2 illustrates the active FTC

strategy and the process of designing active FTC with a prescribed degree of stability. Sec-

tion 7.3 presents the simulation results of the designed active FTC and the performance

comparison of the two control strategy with/without prescribed degree of stability, which

are validated on aircraft landing process. Section 7.4 draws the conclusion of this chapter.

7.2 Fault-Tolerant Control Using Improved LF-MPC

The design objective of this chapter is to improve FTC capability for aircraft on both

fault-free and post-fault scenarios. Passive FTC strategy is based on the robustness of the

controller and active FTC strategy is based on reconfiguration of controls. Therefore, to

94



improve the FTC performance, there are two approaches accordingly. The proposed LF-

MPC based approach focuses on improving 1) the transient performance through increasing

the robustness of the fault-tolerant controller, and 2) the on-line fault-tolerant capability in

the optimization process. Technically, the closed-loop performance of the predictive control

system is specified by the choice of weighting matrix Q and R matrices with specified cost

function when the constraints are not activated. Q and R are selected to tune the close-

loop response speed. The elements in Q and R are penalties to the corresponding states.

A smaller element in Q means less penalty on the corresponding state. A smaller element

in R corresponds to less weight on the corresponding controls, hence permitting a larger

change in the control increment, and resulting in a faster closed-loop response. With a

proper chosen Q and R, the performance of the predictive control system can be adjusted.

This is done by changing the eigenvalues in the unit circle. Therefore, the LF-MPC based

FTC capability can be improved by changing the eigenvalues of the closed-loop system and

solving constraints of the post-fault aircraft when it is activated. Particularly, the parameters

to be tracked on the landing process in this design are true airspeed VTAS and flight path

angle γ. By formating the eigenvalue of the incremental value of VTAS and γ, the stability

degree of VTAS and γ will be improved. With the consideration of the aforementioned time

window [0, tF ], [tF , FFT ], and [tFT ,∞] during the fault-tolerant process, the passive FTC

capability is mainly functional in the time interval of [0, tF ] and [tF , FFT ] before the control

reconfiguration. After the transient interval [tF , FFT ] , the FDD information is available and

control reconfiguration is performed with the LF-MPC based active FTC strategy by solving

new constraints on-line. The following focuses on the derivation process for improving the

transient performance in accommodating faults.

7.2.1 Internal Model

The state space system in the prediction process as shown in Eq. (6.13) is presented in a

iterative form as:

x(k + j + 1|k) = Ax(k + j|k) +B∆u(k + j|k), (7.1)

where k is the current time instant , j is the time instant in the prediction horizon starting at

k, x(k+j|k) is the state at the time instant j of the current prediction horizon, ∆u(k+j|k) is

the incremental control in the prediction horizon j, and A and B are systematic and control

matrices, respectively.
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7.2.2 Fault-Tolerant Control Design with a Prescribed Degree of

Stability

The stability of aircraft in longitudinal channel is guaranteed in the presence of the ac-

curacy of the model since the poles of the closed-loop system is in the unit circle by solving

ARE. However, to improve the performance and robustness of the control system for fault-

tolerant purpose, it is extremely hard to get the goals by just tuning Q and R matrices.

Therefore, the cost function with exponential data weighting matrix [53] is introduced to

solve the tuning problem in performance improvement and defined as follows:

J0(x(k),∆u(.), k) =

Np∑
j=1

λ−2jx(k + j|k)TQx(k + j|k) +

Np−1∑
j=0

λ−2j∆u(k + j|k)TR∆u(k + j|k),

(7.2)

M∆U ≤ N, (7.3)

subject to the state space equation, where M and N are parameters related to the constraints

of the controls ∆U (∆U = [∆u(k) ∆u(k + 1) · · ·∆u(k +Np − 1)]), and λ ∈ (0, 1].

Theorem 7.1. 1) The minimum solution of the cost function J0(x(k),∆u(.), k) shown by

Eq. (7.2) subject to the inequality constraints shown by Eq. (7.3) and dynamics constraints

shown by Eq. (7.1)can be found by minimizing:

Ĵ(x̂(k),∆û(.), k) =

Np∑
j=1

x̂(k + j|k)TQx̂(k + j|k) +

Np−1∑
j=0

∆û(k + j)R∆û(k + j) (7.4)

subject to

Mλ∆Û ≤ N, (7.5)

where x̂(k + j|k) and û(k + j) satisfy the following difference equation:

x̂(k + j + 1|k) =
A

λ
x̂(k + j|k) +

B

λ
û(k + j|k), (7.6)
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where Mλ and ∆Û are defined by:

Mλ = M


I 0 · · · 0 0

0 λI · · · 0 0

0 0 · · · λNp−1I 0

0 0 · · · 0 λNpI

 , (7.7)

∆ÛT = [λ−0∆u(k)T λ−1∆u(k + 1)T · · ·λ−Np+1∆u(k +Np − 1)T ]. (7.8)

2) With the proper choosing of λ < 1, the designed FTC system has the ability with guaranteed

stability.

Proof. 1) Defining x̂(k + j|k) = λ−jx(k + j|k) and ∆û(k + j|k) = λ−j∆u(k + j|k), the cost

function Eq. (7.2) J0(x(k),∆u(.), k) is rewritten using the notation x̂(k+j|k) and ∆û(k+j|k)

as follows:

Ĵ(x̂(k),∆û(.), k) =

Np∑
j=1

x̂(k + j|k)TQx̂(k + j|k) +

Np−1∑
j=0

∆û(k + j)R∆û(k + j), (7.9)

which is identical to Eq. (7.4).

x̂(k + j + 1|k) = λ−(j+1)x(k + j + 1|k) = λ−1Ax̂(k + j|k) + λ−1B∆û(k + j|k), (7.10)

which is identical to Eq. (7.6). To ensure the same constraints with the original constraints

shown by Eq. (7.3),

Mλ∆Û = M∆U. (7.11)

∆Û is defined in Eq. (7.8), therefore, Mλ equals to

Mλ = M


I 0 · · · 0 0

0 λI · · · 0 0

0 0 · · · λNp−1I 0

0 0 · · · 0 λNpI

 , (7.12)

which is identical to Eq. (7.7).
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2) One solves Eq. (7.4) and obtains the closed-loop system:

x̂(k + j + 1|k) = λ−1(A−BK)x̂(k + j|k), (7.13)

where K = (R + λ−2BTP∞B)−1λ−2BTP∞A, which is obtained from

AT

λ
[P∞ − P∞

B

λ
(R +

B

λ
P∞

BT

λ
)−1 B̄

T

λ
P∞]

A

λ
+Q− P∞ = 0. (7.14)

Therefore, the following is guaranteed:

|λ−1λmax(A−BK)| < 1. (7.15)

If λ < 1, then the maximum eigenvalue of the original system satisfies

|λmax(A−BK)| < λ < 1. (7.16)

Therefore, the prescribed degree of stability is guaranteed in the degree of λ, where the

variable λ is defined in continuous form in reference [82].

Remark 7.1. With the different cost functions, the constraints remain the same, which

implies that the fault-information formulated as constraints remains unchanged.

Remark 7.2. With the design of a prescribed degree of stability, the passive fault-tolerant

ability is improved. The active FTC strategy is still guaranteed with the inequality constants

solved on-line.

Remark 7.3. The controls is ∆U = −Kx(k) , where K = (ΦTΦ + R)−1(ΦTF ). F and Φ

are defined as:

F =



CA

CA2

CA3

...

CANp


, (7.17)
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Φ =



CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

...
...

...
...

CANp−1B CANp−2B CANp−3B · · · CANp−NcB


, (7.18)

The internal model has integral action for trajectory tracking purpose, therefore the maximum

eigenvalues of the system matrix A: λmax|A| ≥ 1. Thus, Am(m ∈ [1, Np]) induces the

numerical problem with m increasing.

The following effort focuses on the solution of numerical problem while keeping the pre-

scribed degree of stability design.

Theorem 7.2. Subject to the same system state equation by Eq. (7.1),

the optimal solution of ∆u(k + j|k) by minimizing the cost function Jαw defined as:

Jαw =

Np∑
j=1

α−2j
w x(k + j|k)TQαwx(k + j|k) +

Np−1∑
j=0

α−2j
w ∆u(k + j|k)TRαw∆u(k + j|k) (7.19)

is identical to the solution found by minimizing the cost function:

J =

Np∑
j=1

x(k + j|k)TQx(k + j|k) +

Np−1∑
j=0

∆u(k + j|k)TR∆u(k + j|k), (7.20)

where limNp →∞, Qαw and Rαw are selected according to:

γw =
1

αw
, (7.21)

Qαw = γ2
wQ+ (1− γ2

w)P∞, (7.22)

Rαw = γ2
wR. (7.23)

Proof. To prove the identical of the solutions, the identity of the two AREs for Eq. (7.19)

and Eq. (7.20) is presented. For a fixed initial condition x(k), the optimal solution to the

cost function, when constraints are not activated, is given by the ARE:

AT (P∞ − P∞B(R +BTP∞B)−1BTP∞)A+Q− P∞ = 0, (7.24)
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K = −(R + BTP∞B)−1BTP∞A. The optimal solution of the exponentially weighted cost

function shown by Eq. (7.19) is given by:

AT

αw
[P̄∞ − P̄∞

B

αw
(Rαw +

B

αw
P̄∞

BT

αw
)−1 B̄

T

αw
P̄∞]

A

αw
+Qαw − P̄∞ = 0. (7.25)

Define the Â = A
αw

and B̂ = B
αw

, ARE Eq. (7.25) becomes:

ÂT (P̂∞ − P̂∞B̂(Rαw + B̂T P̂∞B̂)−1)Â+Qαw − P̂∞ = 0. (7.26)

To prove the solution for ARE in Eq. (7.24) is identical to that for ARE Eq. (7.26), Eq. (7.24)

should be transfered to Eq. (7.26) by changing A to Â and B to B̂.

ÂT

γw
[P∞ − P∞

B̂

γw
(R +

B̂

γw
P∞

B̂T

γw
)−1 B̂

T

γw
P∞]

Â

γw
+Q− P∞ = 0. (7.27)

where γw = 1
αw

, which can be further transformed into:

ÂT (P∞ − P∞B̂(γ2
wR + B̂TP∞B̂)−1)Â+ γ2

wQ− γ2
wP∞ + P∞ − P∞ = 0. (7.28)

Compared ARE Eq. (7.25) to Eq. (7.28), if

Qαw = γ2
wQ+ (1− γ2

w)P∞, (7.29)

Rαw = γ2
wR, (7.30)

then Eq. (7.25) equals to Eq. (7.28) with solutions P̂∞ = P∞.

Remark 7.4. The purpose is to scale A with the transformation Â = A
αw

, where αw ≥
λmax|A|, then the λmax|Â| < 1, the state space in the optimization process is stable:

x̂(k + j + 1|k) = Âx(k + j|k) + B̂û(k + j). (7.31)

With the transformation of state space, the numerical problem is solved, which comes from

the unstable state space equation.

Theorem 7.3. Subject to the system state equation by Eq. (7.1), the optimal solution of

100



∆u(k + j|k) by minimizing the cost function Jαw defined by:

Jαw =
∞∑
j=1

α−2j
w xT (k + j|k)Qαwx(k + j|k) +

∞∑
j=0

α−2j
w ∆uT (k + j|k)Rαw∆u(k + j|k) (7.32)

is identical to the solution found by minimizing the cost with a prescribed degree of stability:

Jλ =
∞∑
j=1

λ−2jxT (k + j|k)Qx(k + j|k) +
∞∑
j=0

λ−2j∆uT (k + j|k)R∆u(k + j|k), (7.33)

where αw > 1, 0 < λ < 1, Qαw and Rαw are defined by

γw =
λ

αw
, (7.34)

Qαw = γ2
wQ+ (1− γ2

w)P∞,

Rαw = γ2
wR,

and P∞ is the solution of the ARE:

ÂT

γw
[P∞ − P∞

B̂

γw
(R +

B̂T

γw
P∞

B̂

γw
)−1 B̂

T

γw
P∞]

Â

γw
+Q− P∞ = 0, (7.35)

where the matrices Â = α−1
w A and B̂ = α−1

w B.

Proof. The optimal control of Eq. (7.33) is obtained from the ARE:

AT

λ
[P∞ − P∞

B

λ
(R +

BT

λ
P∞

B

λ
)−1B

T

λ
P∞)]

A

λ
+Q− P∞ = 0. (7.36)

Defining Â = α−1
w A, B̂ = α−1

w B and substituting A and B with Â and B̂, Eq. (7.36) turns

to be

αwÂ
T

λ
[P∞ − P∞

αŵ
λ

(R +
αwB̂

T

λ
P∞

αwB̂

λ
)−1αwB̂

T

λ
P∞)]

αwÂ

λ
+Q− P∞ = 0, (7.37)

Defining γw = λ
αw

and substituting γw into λ
αw
,Eq. (7.37) becomes:

AT

γw
[P∞ − P∞

B

γw
(R +

BT

γw
P∞

B

γw
)−1B

T

γw
P∞)]

A

γw
+Q− P∞ = 0. (7.38)
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Multiplying both sides of Eq. (7.38) with γ2
w, and letting

Qαw = γ2
wQ+ (1− γ2

w)P∞, (7.39)

Rαw = γ2
wR, (7.40)

the following ARE is found:

ÂT (P∞ − P∞B̂(Rαw + B̂TP∞B̂)−1B̂TP∞)Â+Qαw − P∞ = 0, (7.41)

which is the same ARE for the cost function as shown in Eq. (7.4). Based on Theorem 7.1,

the cost function Eq. (7.4) is identical to Eq. (7.32). Therefore, the ARE of Eq. (7.32) and

Eq. (7.33) are identical, which lead to the same control gain matrix.

Remark 7.5.

1. A prescribed degree of stability is embedded in the FTC design.

2. The optimization process is performed using the transformed variables, which solves

the numerical problem.

3. The active FTC strategy with described degree of stability is implemented based on

Theorem 7.3 and the on-line solving the inequality constraints.

7.3 Simulation Results

The objective is to improve the fault-tolerant performance when actuator faults of air-

craft occur during different phases of landing. The evaluation is performed with the same

scenarios carried out in Chapter 6 with the application of landing aircraft in the presence of

actuators stuck for comparison purpose. In the evaluation process, 4 scenarios are applied

to evaluate the performance of the proposed method in improving FTC capability. FTC

strategy without (λ = 1) and with a prescribed degree of stability (λ = 0.9) are performed,

where λ is the parameter of adjusting the robustness of the designed FTC system, and the

evaluation criteria are maximum error and RMSE about the difference between references

and measurements, which are flight path angle γ and true airspeed VTAS. The fault informa-

tion is assumed to be provided by an imperfect FDD with 2s time delay. The details of the

evaluation are shown in Table 6.2 and Table 7.1 with two different designed FTC strategies.
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Table 7.1: Tracking performance evaluation with FTC technique based on prescribed degree
of stability design

Stuck Scenarios Max Error γ (deg) Max Error VTAS (m/s) RMSE γ RMSE VTAS

Normal No Fault 0.7308 0.46369 0.18352 0.16024
Level Flight Level Flight 3.5217 1.9664 0.3095 0.25644
Descending Descending 4.555 1.3418 0.37445 0.22118
Climbing Climbing 3.7879 3.9069 0.32962 0.46312

7.3.1 Performance Comparison

Table 7.2: Tracking performance comparison in the landing period

Stuck Scenarios Max Error γ (deg) Max Error VTAS (m/s) RMSE γ RMSE VTAS

Normal No Fault 4.56 % 70.24 % 0.92 % 31.29 %
Level Flight Level Flight 9.90 % 10.46 % 0.95 % 6.25 %
Descending Descending 14.18 % 18.36 % 1.26 % 5.01 %
Climbing Climbing 21.67 % 36.69 % 1.80 % 8.52 %

Table 6.2 shows the FTC performance of compensating elevators stuck fault on aircraft

landing process with LF-MPC based FTC strategy without the prescribed degree of stability

design. More particularly, in the fault-free scenario, the designed FTC strategy performs in

an acceptable manner to fulfill the aircraft landing task. In the post-fault scenarios with fault

occurring at different landing phases: level flight, descending, and climbing, the designed

FTC strategy can still compensate the actuator faults. Table 7.1 illustrates the performance

of the newly designed FTC based on the same scenarios as described in Table 6.2. The FTC

strategy is based on the LF-MPC approach with a prescribed degree of stability design, which

can also accommodate faults in an acceptable performance and aims to improve the transient

performance of the FTC system. The performance comparison results are listed in Table 7.2

demonstrating the performance improvement with respect to two tracking parameters of γ

and VTAS.

In the fault-free case, the maximum errors about γ, the maximum error about VTAS, and

RMSE about γ, and RMSE VTAS as shown in Table 7.1 are smaller than that shown in

the Table 6.2, which imply the tracking performance in different landing phases using the

FTC strategy with a prescribed degree of stability is better than the FTC strategy without

prescribed degree of stability. The same conclusions are obtained with the criteria about

γ and VTAS in 3 post-fault scenarios with fault occurring at level flight, descending, and

climbing phases, respectively. It indicates that the active FTC strategy with a prescribed

degree of stability improves the fault-tolerant performance comparing to the active FTC
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strategywithoutprescribeddegreeofstability. Moredetailsofstuckfaultinvariouslanding

phasesarepresentedinthefollowingfigures.
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7.3.2 Fault-FreeScenario
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Figure7.1:Landingtrajectorytrackingperformancecomparisoninfault-freecase
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Figure7.2:Performancecomparisoninfault-freescenario:flightpathangleandtrueairspeed

Fig.7.1illustratesthetrackingperformancecomparisonbetweenactiveFTCstrategies

designwithandwithoutprescribeddegreeofstabilityinthefault-freescenario.Theblack
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bolddashedlineisthereferencetrajectoryinthelongitudinalplane. Thebluedash-dot

linestandsforthetrackingtrajectoryusingactiveFTCstrategydesignwithoutprescribed

degreeofstability.ThepurpledashedlinestandsforthetrackingtrajectoryusingactiveFTC

strategydesignwithprescribeddegreeofstability.ItisindicatedthatbothFTCapproaches

performinanacceptablemannertoperformthefault-toleranttask.Furthermore,flightpath

angleandtruevelocitytrackingprocessduringlandingperiodareillustratedinFig.7.2.In

particular,Fig.7.2(a)illustratestheperformanceimprovementofflightpathangletracking.

Fig.7.2(b)illustratestheperformanceimprovementintermsoftruevelocity.
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Figure7.3:Controleffortscomparisoninfault-freescenario:outerelevators,innerelevators,
horizontalstabilizer,andengines
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ThecontroleffortsshowninFig.7.3includeouterelevators,innerelevators,horizontal

stabilizer,andengines.ThecontroleffortsarecomparedbetweentwoactiveFTCstrategies

with/withoutprescribeddegreeofstabilitydesign. Thebluelinesstandforthecontrols

fromtheFTCsystemwithoutprescribeddegreeofstabilitydesign,whilethepurplelines

arethecontrolsfromFTCsystemwiththeprescribeddegreeofstabilitydesign.Thecontrol

effortsareveryclosetoeachotherinouterelevators,innerelevators,horizontalstabilizer,

andthrustswithtwodesignedFTCstrategiesduringlandingasshowninFig.7.3. Note

Figure7.4:Deflectionsofinnerelevatorsinfault-freescenario

thatthedeflectionsofinnerelevatorsshowninFig.7.4copeswiththedemandedshownin

Fig.7.3(b).

7.3.3 FaultScenariosinLandingProcess

LevelFlightCase

Fig.7.5illustratesthetrackingperformancecomparisonbetweentwoaforementioned

activeFTCstrategiesinthepresenceoffaults. Thepost-faultscenarioisinnerelevators

stuckatthelevelflightphaseoflandingperiod.Theblackbolddashedline,thebluedash-
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Figure7.5:Trajectorytrackingperformancecomparisonwithfaultsoccurringatthelevelel
flightphase
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Figure7.6:Performancecomparisonwithfaultsoccurringatthelevelelflightphase:flight
pathangleandtrueairspeed

dotline,andthepurpledashedlinearethesamedefinitionasinFig.7.1.Theredvertical

dashedlinemarksthetimeoffaultoccurrence.TheperformanceofFTCwithprescribed

degreeofstabilitydesignismorerobustthanthatwithoutprescribeddegreeofstability

design,particularlyatthetransientoffaultoccurrence.Fig.7.6illustratestheperformance

improvementabouttwotrackingparameters:flightpathangleγandtrueairspeedVTAS.

Fig.7.6(a)illustratestheperformanceimprovementofflightpathangletracking. Before
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the fault occurrence, the flight path angle follows the reference trajectory with both active

FTC strategies. Both FTC strategies can accommodate elevators stuck fault without the

tracking significant performance degradation. However, in the time transient after faults

occurrence, the active FTC with prescribed degree of stability design shown in purple line

has better performance with less oscillation compared to that without prescribed degree of

stability design shown in blue line, which implies the FTC with prescribed degree of stability

performs better. The similar performance improvement about true airspeed exits in transient

time with elevators stuck shown in Fig. 7.6(b). The true airspeed drops at the presence of

actuator fault. The active FTC with prescribed degree of stability design takes less time to

stabilize the faulty aircraft and maintain the desired true airspeed as shown in purple line.

Fig. 7.7 illustrates the detail of control efforts to accommodate inner elevators stuck

occurring at the level flight phase of landing period. All control efforts in longitudinal

channel are compared in terms of two active FTC strategies with/without prescribed degree

of stability design. The blue lines stand for the controls from the FTC system without

prescribed degree of stability design, while the purple lines are the controls from FTC system

with the prescribed degree of stability design. Before the occurrence of actuator faults, there

is no significant difference of the control efforts in terms of relevant control channels including

outer elevators, inner elevators, horizontal stabilizer, and thrusts with two designed FTC

strategies. In the presence of actuator faults, both two control strategies can accommodate

elevators stuck faults. However, the control efforts shown in the purple line in Fig. 7.7(a)

and Fig. 7.7(c) perturb less in the magnitude than that shown in blue line. There is no

significant variation in the thrust before and after faults as shown in Fig. 7.7(d). Note that

the controls of the inner elevators in Fig. 7.7(b) are consistent with the deflections of inner

elevators shown in Fig. 7.8 after faults occurrence with both two FTC strategies, which imply

that the stuck channels are isolated in the control efforts distribution.

Descending Case

Fig. 7.9 illustrates the tracking performance comparison between active FTC strategies

design with and without prescribed degree of stability. The scenarios is the post-fault sce-

nario with inner elevators stuck in the descending phase of landing period. The performance

of FTC with prescribed degree of stability design is more robust than that without pre-

scribed degree of stability design. The distinguish is clearly illustrated in term of flight path

angle γ and true airspeed VTAS shown in Fig. 7.10(a) and Fig. 7.10, respectively. Before the
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Figure7.7:Controleffortscomparisonwithfaultsoccurringatthelevelelflightphase:outer
elevators,innerelevators,horizontalstabilizer,andengines

faultoccurrence,theflightpathangletracksthereferencetrajectorywithbothactiveFTC

strategies.BothFTCstrategiescanaccommodateelevatorsstuckfaultwithoutthetracking

significantperformancedegradation.However,inthetimetransientafterfaultoccurrence,

theactiveFTCwithprescribeddegreeofstabilitydesignshowninpurplelineshowsbetter

performancewithlessoscillationcomparingtothatwithoutprescribeddegreeofstability

designshowninblueline,whichimpliesthattheFTCwithprescribeddegreeofstability

havebetterfault-tolerantcapabilityinimprovingtransientperformance.Thesimilarperfor-

manceimprovementabouttrueairspeedexitsintransienttimewithelevatorsstuckshown
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Figure7.8:Deflectionsofinnerelevatorswithfaultsoccurringatthelevelelflightphase

Figure7.9:Trajectorytrackingperformancecomparisonwithfaultsoccurringatdescending
phase

inFig.7.10(b).Thetrueairspeeddropsatthepresenceofactuatorfault.TheactiveFTC

withprescribeddegreeofstabilitydesigntakeslesstimetobringthefaultyaircraftbackto

thedesiredtrueairspeedcomparedtotheFTCwithoutprescribeddegreeofstabilitydesign.

Fig.7.11illustratesthedetailofcontroleffortstoaccommodateinnerelevatorsstuck
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Figure7.10:Performancecomparisonwithfaultsoccurringatdescendingphase:flightpath
angleandtrueairspeed

occurringattheclimbinglandingphase.Thecontroleffortsincludeouterelevators,inner

elevators,horizontalstabilizer,andengines.Thecontroleffortsarecomparedbetweentwo

activeFTCstrategieswith/withoutprescribeddegreeofstabilitydesign. Thebluelines

standforthecontrolsfromtheFTCsystemwithoutprescribeddegreeofstabilitydesign,

whilethepurplelinesarethecontrolsfromFTCsystemwiththeprescribeddegreeof

stabilitydesign.Beforetheoccurrenceofactuatorfaults,thecontroleffortsaresimilarin

outerelevators,innerelevators,horizontalstabilizer,andthrustswithtwodesignedFTC

strategies.Inthepresenceofactuatorfaults,bothtwocontrolstrategiescanaccommodate

elevatorsstuckfaults. However,thecontroleffortsinthepurplelineinFig.7.11(a)and

Fig.7.11(c)perturblessinthemagnitudethanthatshowninblueline.Thereisnosignificant

variationinthethrustbeforeandafterfaultsasshowninFig.7.11(d).Thecontrolsofthe

innerelevatorsshowninFig.7.11(b)arethesameastheinnerelevators’deflectionsshown

inFig.7.12afterfaultsoccurrencewithbothtwoFTCstrategies.

ClimbingCase

Fig.7.13illustratesthetrackingperformancecomparisonbetweenactiveFTCstrategies

designwithandwithoutprescribeddegreeofstabilitybasedonthescenarioofinnereleva-

torsstuckintheclimbingphaseoflandingperiod.Itcanbeseenthattheperformanceof

FTCwithprescribeddegreeofstabilitydesigndemonstratesabetterrobustinthetransient
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Figure7.11: Controleffortscomparisonwithfaultsoccurringatdescendingphase:outer
elevators,innerelevators,horizontalstabilizer,andengines

periodthanthatwithoutprescribeddegreeofstabilitydesign.Fig.7.14illustratestheper-

formanceimprovementinandirectwayintermsofflightpathangleγandtrueairspeed

VTAS. Fig.7.14(a)illustratestheperformanceimprovementofflightpathangletracking.

Beforethefaultoccurrence,thetrackingperformanceismaintainedwiththetwodesigned

activefault-tolerantcontroller.BothFTCstrategiescanaccommodateelevatorsstuckfault

withoutthetrackingsignificantperformancedegradation. However,focusingonthetran-

sientperiodafterfaultsoccurrence,theflightpathanglecontrolledbytheactiveFTCwith

prescribeddegreeofstabilitydesignshowninpurplelinehaslessoscillationcomparingto
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Figure7.12:Deflectionsofinnerelevatorswithfaultsoccurringatdescendingphase

Figure7.13: Trajectorytrackingperformancecomwithfaultsoccurringattheclimbing
phase

thatwithoutprescribeddegreeofstabilitydesignshowninblueline,whichimpliesthe

FTCwithprescribeddegreeofstabilityperformsbetterinthetransientperiod.Thesimilar

performanceimprovementabouttrueairspeedexitsintransienttimewithelevatorsstuck

showninFig.7.14(b).Thetrueairspeeddropsatthepresenceofactuatorfault.However,
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Figure7.14: Performancecomparisonwithfaultsoccurringattheclimbingphase:flight
pathangleandtrueairspeed

theactiveFTCwithprescribeddegreeofstabilitydesigntakeslesstimetostabilizethe

faultyaircraftandmaintainitstrackingperformance.

Fig.7.15illustratesthedetailofcontroleffortstoaccommodateinnerelevatorsstuck

occurringattheclimbinglandingphase.Thecontroleffortsincludeouterelevators,inner

elevators,horizontalstabilizer,andengines.Thecontroleffortsarecomparedbetweentwo

activeFTCstrategieswith/withoutprescribeddegreeofstabilitydesign. Thebluelines

standforthecontrolsfromtheFTCsystemwithoutprescribeddegreeofstabilitydesign,

whilethepurplelinesarethecontrolsfromFTCsystemwiththeprescribeddegreeof

stabilitydesign.Beforetheoccurrenceofactuatorfaults,thecontroleffortsareconsiderable

closetoeachotherinouterelevators,innerelevators,horizontalstabilizer,andthrustswith

twodesignedFTCstrategies.Inthepresenceofactuatorfaults,bothtwocontrolstrategies

canaccommodateelevatorsstuckfaults. However,thecontroleffortsinthepurplelinein

Fig.7.15(a)andFig.7.15(c)perturblessinthemagnitudethanthatshowninblueline.

ThereisnosignificantvariationinthethrustbeforeandafterfaultsasshowninFig.7.15(d).

NotethatthecontrolsofinnerelevatorsshowninFig.7.15(b)copeswiththedeflections

ofinnerelevatorsshowninFig.7.16indicatingthereconfiguredcontrolsobtainedfromthe

FTCstrategieswiththeconsiderationofthefaultyactuators.
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Figure7.15:Controleffortscomparisonwithfaultsoccurringattheclimbingphase:outer
elevators,innerelevators,horizontalstabilizer,andengines

7.4 Summary

ThischapterdevelopsandimplementsanactiveFTCstrategyusingLF-MPCwitha

prescribeddegreeofstability. Theperformanceisinvestigatedandvalidatedthroughthe

taskofaircraftlandingprocesswithfaultsoccurrenceatdifferentlandingphases. The

comparisonresultsbetweentheFTCwithtwodifferentdesignapproachesarepresentedto

demonstratetheeffectivenessoftheFTCusingLF-MPCwithaprescribeddegreeofstability.

Italsodemonstratesthatthetransientperformanceimprovementwiththenewlydesigned
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Figure7.16:Deflectionsofinnerelevatorswithfaultsoccurringattheclimbingphase

FTCwithprescribeddegreeofstabilitytechniquecomparingtothatwithouttheprescribed

degreeofstabilitydesign. Meanwhile,animperfectFDDwithtimedelayisalsoconsidered

intheevaluationprocess,whichdemonstratestheeffectivenessofthedesignedFTCina

morerealisticmannersincethetimedelayofFDDisinevitableintherealapplication.In

thedelayedtimeperiod,thereisnofaultinformationavailable,whichmightresultinserious

consequenceswithoutanyfurtheractions.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis proposes a fault-tolerant control (FTC) approach for aircraft in the control

design framework of linear quadratic (LQ) programming. The proposed approach adopts

LQ technique to address partial or total loss of control (LOC) problems due to the actuator

faults, in particular, loss of control effectiveness (LOE) of actuator faults of UAVs and total

failure of elevators of a Boeing 747-100/200 airplane.

In the process of solving LOE problem of unmanned aerial vehicles (UAVs), a state-

augmented extended Kalman filter (SAEKF), a combination of parameter identification and

state estimation techniques, is proposed and implemented to perform fault detection and

diagnosis (FDD) task. This approach provides fault information and post-fault system states,

in which the unknown fault parameters are estimated by an augmented state vector based

on non-linear aircraft model. The performance of diagnosing LOE faults is investigated

and validated without any dedicated sensor information. A robust LQ technique with a

prescribed degree of stability is implemented as a fault-tolerant controller.

Furthermore, a modified model predictive control (MPC) is implemented to perform FTC

for accommodating total failure of actuators of a Boeing 747-100/200 airplane. The modified

MPC is based on the modeling method, which is applied to approximate an optimal control

trajectory using a series of Laguerre functions. The objective aims to improve the on-line

fault-tolerant capability, which is critical for FTC, particularly in the framework of MPC.

The Laguerre-function based MPC (LF-MPC) possesses the facets of improving the on-
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line fault-tolerant capability and addressing constraints for both fault-free and post-fault

scenarios. The emergency task of aircraft in the event of faults is to land aircraft safely as

soon as possible. Therefore, the landing scenario is applied to validate the developed FTC

system. In addition to the fault scenarios, a fault-free scenario is also used to test the design

FTC system in performing a normal duty. Note that the fault information is assumed to be

provided by an imperfect FDD with time delay, which further illustrates the effectiveness of

the designed FTC system.

Using the FDD information, active FTC strategies satisfactorily perform in the reconfig-

uration of control efforts. In addition to the development of LF-MPC based fault-tolerant

controller, more efforts are carried out to improve the fault-tolerant capability of the de-

signed FTC system during the transient between fault occurrence and the activation of

reconfigurable controls. Therefore, the effort focuses on improving the fault-tolerant capa-

bility without any FDD information. To this end, a robust LQ technique is further developed

and implemented in the MPC framework for fault-tolerant application. The idea is to make

a nominal system more robust to compensate the performance deterioration in the transient

period before further actions are performed by an active FTC system. The performance of

the further developed FTC system is validated through comparing the two designed FTC

systems. The validation is performed based on the same landing scenarios without faults

and with faults occurring in different phases: level flight, descending, and climbing. In the

process of evaluation, the fault information is provided by an assumed FDD with time delay

for the robustness test.

Overall, all the validations demonstrate the effectiveness of the proposed FTC schemes,

especially the effectiveness in the emergency landing capability of the faulty aircraft.

8.2 Future Work

The objective of the work is to increase the reliability, survivability, and safety of areal

vehicles: manned and unmanned aircraft. Therefore the evaluation of the proposed scheme

and approaches should further be carried out in real-time platforms.

From the application point of view, as more and more UAVs, especially small UAVs,

are presented in the lower airspace. The safety issue is one of the major concerns in the

applications. Despite regulations made for the safety operation of UAVs, UAVs should

possess the capability of improving the safety and reliability in system level. In this sense,
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the application of the proposed approach on UAVs should be further performed under more

realistic constraints, such as environmental uncertainty.

For manned aircraft, it is not realistic to test the proposed approach on real commercial

aircraft in the near future. However, inspired by NASA generic transport model (GTM) of a

scaled Boeing 757 project, the proposed approaches can be further advanced and evaluated

in a scaled commercial aircraft.

From the algorithm point of view, LF-MPC improves the fault-tolerant capability by

reducing the number of optimized parameters. While it is still costly to optimize the re-

configurable control law at each time intervals. The trade-off of the computational cost and

the performance should be further investigated. As indicated in LQ framework, the pro-

posed FTC strategies perform as a normal controller in a fault-free case. A FTC system is

activated when FDD information and reconfigurable mechanism are ready. Therefore, the

proposed FTC can be used in a standby controller to accommodate faults. The selection of

cost function still need to be further investigated regarding the performance and physical

meaning. With the consideration of the reconfiguration process, a FDD unit plays a critical

role. The reliability of FDD and the integration of FDD with active FTC strategies are still

needed further research.

Overall, it is believe that in the LQ framework, more fault-tolerant facets can be explored

and advanced. The future work will focus on the real-time application and performance

improvement in the framework of LQ design.
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Appendix

FTC Test on Qball-X4 Platform

Based on the simulation results, experiments are carried out with the proposed FTC

technique validated in the Matlab/Simulink environment. The facilities about the testbed

are described in Chapter 3. The parameters of the Qball-X4 are listed in Table 3.1. The

fault scenario of 10% of the LOE fault is similar with the fault scenario simulated in the

Simulink environment but only including take-off, hovering, and landing. The first 10s is the

state on the ground with the rotor speeding. At the 10s time instant, a step command as a

reference for the demanded height feeds into the system. The Qball-X4 works under normal

duties until an abrupt 10% LOE occurs at the time instant 30s. The faulty Qball-X4 lands

at 40s successfully. The performance is depicted in Fig. 8.1. The dashed blue line is the

reference and the red line is the measurement. It can be seen that the proposed fault-tolerant

controller possesses the fault accommodation ability and can still work under the actuator

faults scenario.

As can be seen from Fig. 8.1, the Qball-X4 follows the height reference on the ground

and before 30s. The time response is fast with very little over shoot. The graph in the first

30s shows that the controller performs well in the fault-free mode. The measured height

drops in height not significantly showing that the fault has influence on the performance

of the Qball-X4. Since, the designed fault-tolerant controller successes accommodate the

performance degradation induced by actuator faults.
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Boeing 747-100/200 Series Operational Data and Geo-

metric Dimensions

Table 8.1: Boeing 747-100/200 operational data and geometric dimensions

Boeing 747-100/200 Boeing 747-200F

Wing area 511 m2 511 m2

Wing mean aerodynamic chord (MAC) 8.324 m2 8.324m2

Wing span 59.65 m 59.65 m
Length overall 70.66 m 70.66 m
Height overall 19.33 m 19.33 m

Engines Pratt Whitney JT9D-3 Pratt Whitney JT9D-7J
Takeoff thrust rating (standard day/sea level) 193 kN 222kN

Maximum takeoff weight 321,995 kg 377,842 kg
Maximum landing weight 255,782 kg 285,763
Maximum zero fuel weight 238,776 kg 267,619 kg
Maximum zero fuel weight 238.776 kg 267.619 kg
Load factor range flaps up −1.0/+ 2.5 −1.0/+ 2.5

Load factor range flaps down 0/+2 0/+2
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