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Abstract

Cooperative and Consensus-Based Control for a Team of

Multi-Agent Systems

Iman Saboori, Ph.D.

Concordia University, 2016

Cooperative control has attracted a noticeable interest in control systems

community due to its numerous applications in areas such as formation flying

of unmanned aerial vehicles, cooperative attitude control of spacecraft, ren-

dezvous of mobile robots, unmanned underwater vehicles, traffic control, data

network congestion control and routing. Generally, in any cooperative con-

trol of multi-agent systems one can find a set of locally sensed information, a

communication network with limited bandwidth, a decision making algorithm,

and a distributed computational capability. The ultimate goal of cooperative

systems is to achieve consensus or synchronization throughout the team mem-

bers while meeting all communication and computational constraints. The

consensus problem involves convergence of outputs or states of all agents to

a common value and it is more challenging when the agents are subjected to

disturbances, measurement noise, model uncertainties or they are faulty.

This dissertation deals with the above mentioned challenges and has de-

veloped methods to design distributed cooperative control and fault recov-

ery strategies in multi-agent systems. Towards this end, we first proposed a

transformation for Linear Time Invariant (LTI) muli-agent systems that fa-

cilitates a systematic control design procedure and make it possible to use

powerful Lyapunov stability analysis tool to guarantee its consensus achieve-

ment. Moreover, Lyapunov stability analysis techniques for switched systems

are investigated and a novel method is introduced which is well suited for de-

signing consensus algorithms for switching topology multi-agent systems. This

method also makes it possible to deal with disturbances with limited root mean

square (RMS) intensities. In order to decrease controller design complexity, a
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method is presented which uses algebraic connectivity of the communication

network to decouple augmented dynamics of the team into lower dimensional

parts, which allows one to design the consensus algorithm based on the so-

lution to an algebraic Riccati equation with the same order as that of agent.

Although our proposed decoupling method is a powerful approach to reduce

the complexity of the controller design, it is possible to apply classical pole

placement methods to the transformed dynamics of the team to develop and

obtain controller gains.

The effects of actuator faults in consensus achievement of multi-agent sys-

tems is investigated. We proposed a framework to quantitatively study actua-

tor loss-of-effectiveness effects in multi-agent systems. A fault index is defined

based on information on fault severities of agents and communication network

topology, and sufficient conditions for consensus achievement of the team are

derived. It is shown that the stability of the cooperative controller is linked to

the fault index. An optimization problem is formulated to minimize the team

fault index that leads to improvements in the performance of the team. A nu-

merical optimization algorithm is used to obtain the solutions to the optimal

problem and based on the solutions a fault recovery strategy is proposed for

both actuator saturation and loss-of-effectiveness fault types.

Finally, to make our proposed methodology more suitable for real life sce-

narios, the consensus achievement of a multi-agent team in presence of mea-

surement noise and model uncertainties is investigated. Towards this end, first

a team of LTI agents with measurement noise is considered and an observer

based consensus algorithm is proposed and shown that the team can achieve

H∞ output consensus in presence of both bounded RMS disturbance input and

measurement noise. In the next step a multi-agent team with both linear and

Lipschitz nonlinearity uncertainties is studied and a cooperative control algo-

rithm is developed. An observer based approach is also developed to tackle

consensus achievement problem in presence of both measurement noise and

model uncertainties.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the number of applications in which interactions between hu-

man and agents are not possible has been increased, and it motivated many

researchers to solve these types of complicated engineering problems and appli-

cations. Towards this end, one can transform the problem into a distributed

network of smaller and simpler autonomous subsystems which can operate

without humans involvement. The collective behaviors of animal groups in

nature, shown that distributed decisions made by each individual for its own

position, direction and speed of motion can make the whole group to behave

like a single entity, which has its own rules of motion and decision making.

Examples of such a collective behavior can be seen in birds formations, flocks

of birds, schools of fish and mammal herds, see Figure 1.1. Inspired by these

natural collective behaviors of animals in their groups, scientists and engi-

neers are encouraged to network group of systems to let them exchange their

information. Afterward, each agent use its locally available information and

a cooperative control strategy to react in such a way that the overall team

perform required tasks without a need to use external supervisor.

Cooperative control of multi-agent systems covers a wide range of appli-

cations such as autonomous underwater vehicles [2–4], unmanned aerial vehi-

cles [5–7], mobile robots [8–10], and satellite clusters [11–13]. However, each

of these areas has its own specific difficulties but some common underlying
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Figure 1.1: Collective behavior of animals groups. [1]

characteristics can be identified. Many practical and theoretical challenges

are involved in cooperative control of multi-agent systems. Instead of a single

system we have a system of subsystems which need to communicate together

while the communication bandwidths are limited. It is a difficult task to de-

termine which agents to communicate at each time and what to communicate.

Moreover there is a compromise between individual’s goals and the team goal.

In multi-agent systems, there are a number of research problems that have

resulted in development of many useful tools and theories. Among different

problems in the multi-agent systems research area, consensus problem is one

of the most favorable, which is to provide a distributed way, with minimal

2



computation and communication requirement to find the average of a shared

quantity in a network of agents or computational units. Here, agents are

usually coupled since they are performing the operation without directly in-

fluencing each other. Each agent in the team makes its own decisions by using

only limited data obtained by its own measurements or communication with

neighboring agents.

Despite dedication of a large body of works to study multi-agent networks

and cooperative control there are still unsolved problems in this area among

them are uncertainties and failure in the agents, limited communication and

actuation capability. Most of introduced consensus algorithms are focused on

systems with single-integrator or double integrator kinematics agents while

practical application usually consist of LTI and nonlinear dynamical systems.

Another important issue in control systems is the safety and reliability. In

many cases, the loss of performance or stability may cause serious damage,

especially in safety critical systems such as robots in hazardous areas, airplanes

and spacecraft. To avoid this problem, some methods are developed to design

fault tolerant controller for a single system, which maintains its performance

and stability in the event of malfunction in the components of systems.

In the case of cooperative systems, the occurrence of faults in any of team

members may affect the consensus achievement of the team. Hence, in the

same way, it is desirable to develop fault tolerant consensus algorithms. Actu-

ator fault is a common type of fault among different types of faults in systems

that can occur and they mainly include loss of effectiveness and saturation

faults. Clearly, there are many scenarios that the team consensus could not be

maintained in the case of occurrence of actuator faults in some members, but it

could be possible to recover the team consensus in some scenarios. Motivated

by these short comings the current thesis addresses a distributed consensus

algorithms for multi-agent teams in presence of disturbance signals, measure-

ment noise, and model uncertainties including Lipschitz nonlinearity. We are

also addressed consensus algorithms that could tolerate different actuators

faults.
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1.2 Literature Review

Cooperative control of autonomous multi-agent systems has been extensively

investigated in the past few years [14, 15] and the works in this field can be

categorized in two general areas [16]. The first category is consensus based

formation of mobile agents including mobile robots [17], unmaned arial vehicles

(UAVs) [18], satellites [19], aircrafts, autonomous under water vehicles (AUVs)

[20] and automated high way systems. The second category is non-consensus

based cooperative control algorithms such as task assignment [21], payload

transport [22], role assignment [23], air traffic control [24], and search and

timing. The consensus problem involves convergence of the outputs or states

of all the agents to a common value [25]. It implies that each agent has

access to other agents state, known as the neighboring agents by using either a

communication network or sensing devices [15], [26]. Depending on the amount

of data exchange between systems and the available data of the other systems,

centralized or distributed cooperative control strategies can be used [27]. The

centralize strategy relies on the assumption that each team member has the

access to all the other team members data and in the distributed strategy it is

assumed that it has only access to data of some neighboring team members.

Usually, it is preferred to use distributed algorithm to achieve consensus.

To model the agents communication network, agents are usually represented

by nodes in an undirected or directed graph and edges between the two nodes

represent the data exchanges between the corresponding agents.

Over the past decade the consensus problem has been studied extensively

in the literature due to its applications in numerous areas such as cooperative

control of unmanned aerial vehicles [28], formation of mobile robots [29], un-

manned undersea vehicles distributed control [30], and sensor networks [31],

among others and different aspects of the consensus achievement of multi-

agent systems has been investigated including consensus problem of first-order

or second-order integrators with fixed and switching graph topologies [32],

communication delay [33] , graph connectivity preservation [34], reference sig-

nals [35]

However, most of the work in this area have considered the agents dy-

namics as either first-order or second-order integrators [36–39]. Although, in
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these works interesting results have been obtained mostly in absence of distur-

bance signals and actuator faults. However, development and investigation of

consensus achievement of multi-agent systems with switching topologies and

directed information flow graphs in presence of disturbance signals, model un-

certainties, measurement noise, or actuator faults have not been investigated

extensively in the literature [40].

In the literature, both fixed [41] and switching [42] communication network

topologies are investigated and consensus problem under both directed [43]

and undirected [44] are studied. However, problems that consider directed

and switching communication networks are more general and more practical.

A number of interesting results have been published [45] by assuming that

all agents are healthy and no anomalies, faults, or failures are present in the

agents.

In following subsections, a detailed literature review on consensus achieve-

ment in teams is presented.

1.2.1 Consensus Achievement of Healthy Teams

The consensus of high-order integrator systems with time-delay and switching

in the communication network topologies is also addressed in [46].

In [47], the consensus of a leaderless team of high-order integrator agents is

investigated and necessary and sufficient conditions for convergence is studied.

Although, a large class of LTI systems including the single input systems can

be transformed into a collection of high-order integrators, this may not be

practical for all LTI systems.

An optimal consensus seeking in a network of multi-agent systems based on

the LMI approach is presented in [48] for a team of LTI systems. Although,

the agents can be heterogeneous, it is shown that in the proposed optimal

design procedure the solution of the Riccati equation does not guarantee the

consensus achievement and LMI formulation was used to achieve the consensus

seeking requirements.

In [49], a team of LTI agents is designed to accomplish consensus over a

common value for the agents’ output by using the cooperative game theory

and design requirements for the entire team are developed by using the LMI

5



formulation of the minimization problem.

A semi-decentralized controller is designed in [50] for a team of LTI agents

to accomplish cohesive motion with consensus on an agreed upon trajectory

in both leaderless and modified leader-follower structures.

The consensus problem of a team of homogeneous LTI agents with a fixed

topology directed information flow graph is addressed in [51]. To achieve

this goal a set LMIs which are dependent on the eigenvalues of the Laplacian

matrix should be solved. Since, the exact values of the Laplacian matrix

are depend on the overal structure of information fellow graph, it cannot be

computed based on the local and neighboring agents’ data and should be pre-

determined in a centralized manner. In [52], synchronization control in arrays

of identical output-coupled LTI systems is addressed and sufficient conditions

for the existence of a synchronizing control input are analyzed. It is shown that

for marginally stable systems that are detectable a synchronizing controller

exists if the directed information flow graph describing the communication is

fixed and connected. Here, the effects of disturbance in agents are not studied.

Consensus problem of homogeneous LTI system is investigated in [53] and

an LQR-based consensus algorithm is proposed for fixed topology information

flow graph. Again, the effects of disturbance in agents are not studied. The

H∞ consensus problem in a homogeneous team of LTI systems is addressed

in [54] for undirected and fixed topology flow graph. To achieve this goal, a

set of n − 1 LMIs, which are dependent on eigenvalues of the Laplacian ma-

trix should be solved. Here, n is the number of agents in the team. Again,

due to dependency of LMIs on eigenvalues of the Laplacian matrix, the con-

troller cannot be designed based on the local and neighboring agents’ data

and should be pre-determined in centralized manner. In [55], the consensus

problem of multi-agent team of LTI systems under fixed topology directed in-

formation flow graph is studied. To design the consensus algorithm knowing

the exact values of the Laplacian matrix eigenvalues is needed and the effect

of disturbances is not taken into account.

In [56], the consensus problem in a team of identical LTI agents with time-

delay is investigated and an algorithm is proposed based on the solution of

certain LMIs.
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In [57], an H∞ consensus algorithm for a team of homogeneous LTI systems

is proposed. The topology of the information flow graph is assumed to be

switching and a quadratic Lyapunov function is used to show the convergence

of the H∞ consensus algorithm. Although, the authors investigate consensus

in a switching topology of multi-agent systems, the switching strategy cannot

be arbitrary and should be pre-assigned.

An L2 − L∞ consensus control is proposed in [58] for a team of high-

order integrators with directed and switching topology information flow graph.

However, in that work the disturbance signal is limited to L2 signals and for

designing the consensus protocol a set of LMIs should be solved for all the

information flow graph topologies. This implies that details on all the infor-

mation flow graph topologies should be known a priori and before the design

of the controllers, which imposes in many cases impractical limitations and

constraints on the use of this strategy. Furthermore, the algorithm becomes

computationally infeasible if the number of network topologies is large.

In [59] a “practical consensus” protocol for a team of LTI systems with

directed information flow graphs is presented. In this work “practical consen-

sus” implies that the consensus error remains bounded in presence of an L2

or L∞ disturbance signal, however the communication network topology is as-

sumed to be fixed. The sufficient conditions to design the consensus protocol

is presented by a set of LMIs. Although, the disturbance signal could be an

L∞ signal, arbitrary switching in the network topologies are not considered.

H2 and H∞ consensus approaches have been investigated in [60] for a team

LTI systems. To design the consensus protocol the consensus problem is trans-

formed to design an H2 or H∞ controller by stabilizing n different LTI systems

that their dynamics depends on the eigenvalues of the network Laplacian ma-

trix. However, the communication network topology is assumed to be undi-

rected and fixed and the disturbance signals are assumed to be L2.

H∞ consensus control for a team of LTI multi-agent systems under undi-

rected information flow graph is addressed in [61], and based on the solutions

of two LMIs, a distributed output feedback protocol is proposed.

In [43], the authors solve the H∞ consensus problem for a team of LTI

multi-agent systems with a directed and fixed information flow graph topology.
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The H∞ robust control problem of an uncertain linear switched systems

with dwell time is presented in [62] and a bounded real lemma is proposed

based on the solutions of a set of LMIs. A quadratic Lyapunov function

is presented to guarantee the stability and H∞ performance of the overall

closed-loop system.

The algorithm, presented in [63], solves the H∞ consensus problem of a

homogeneous team of LTI systems under an undirected and fixed information

flow graph. To obtain the state-feedback gains of the distributed consensus

controller, a set of LMIs should be solved.

The disturbance rejection problem in the coordination control of a group

of autonomous LTI systems subject to external disturbances is studied in [64]

for a class of undirected network topologies, that are said to possess a desired

level of disturbance rejection. It is shown that the H∞ problem of the multi-

agent systems can be solved by analyzing the H∞ control problem of a set of

independent systems whose dimensions are equal to that of a single node. The

solution also depends on the network topology and certain criteria are derived

in terms of LMIs.

The L2 norm gain computation method for a switched linear system is

presented in [65], when the time interval between switchings is sufficiently large

and the stablizing and anti-stablizing solutions of a set of algebraic Riccati

equations for the systems being switched satisfy certain inequalities.

Sufficient conditions for the stability of linear switched system with dwell

time in presence of external disturbances is presented in [66]. To achieve this

goal, a piecewise quadratic Lyapunov function is considered, which is non-

increasing at the switching instants. A set of LMIs are presented to determine

this piecewise quadratic Lyapunov function.

In [67], the output consensus problem of a team of heterogeneous LTI

single-input single-output systems under a fixed information flow graph is

studied and the effects of a calss of model uncertainties is investigated. A

distributed controller with internal dynamics is proposed which is use only the

outputs of the agents.

The output-feedback consensus problem for a homogeneous team of LTI

systems in absence of external disturbance is studied in [68].The information
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flow graph topology is assumed to be switched fast enough and an averaging

approach is used to model the communication network.

In [69], an output-feedback distributed algorithm is presented to solve the

consensus problem of a team of identical LTI systems under a fixed topology

communication network and in absence of the disturbance. An LMI approach

is used to obtain the controller gains.

Beside numerous work in the literature such as [25], [70], [71], [35] address-

ing consensus algorithms for teams of single and double integrator by using

the common assumption that the underlying communication/sensing network

is connected for all time, i.e. there exists an expanding tree in the graph associ-

ated with the network. In some papers such as [72], [73], [74], the connectivity

preservation of the network while it achieves consensus is also considered.

In [34], [75] potential functions are proposed that increase but remains

bounded when two connected agents reach the sensing threshold. The main

shortcoming of these works is that there is no relationship between the agents

actuation capabilities and this bound. The reference [72] addresses the con-

nectedness issue in multi-agent rendezvous and the formation control problems

over dynamic interaction graphs by adding appropriate weights to the edges

in the graphs. The nonlinear feedback laws that are based on weighted graph

Laplacians are introduced and they are shown to be able to solve the ren-

dezvous and formation-control problems while ensuring connectedness. They

have also not considered any bound on the control inputs in their works. In [34]

a general class of distributed potential-based bounded control laws with con-

nectivity preserving property for single-integrator agents is proposed. The

main idea of the proposed approach is to design the potential function such

that when two agents are going to loose a connection the gradient of the po-

tential function lies in the direction of that edge in order to shrink it.

In [76] the rendezvous problem with connectivity preservation having double-

integrator dynamics using hysteresis functions are presented. A class of bounded

potential functions are constructed to guarantee the connectivity, but as in pre-

vious works they cannot define a specific bound based on the agents actuation

constraints.

In [77] a distributed control framework based on potential fields is presented
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for multi-agent flocking problem that simultaneously addresses the desired

velocity alignment as well as the connectivity preservation of the underlying

network that is necessary for alignment. Double integrator models of agents

and design of nearest neighbor control laws are presented.

A distributedH∞ consensus of multi-agent systems with a class of Lipschitz

like nonlinearity the agents dynamics is presented in [78]. The communica-

tion network topology is assumed to be undirected and fixed and sufficient

conditions to design the consensus algorithm are derived as a set of LMIs.

In [79], the consensus problem for a team of homogeneous third-order non-

linear systems under a fixed undirected flow graph is investigated. It is as-

sumed that the dimension of control input of each agent is three and the

nonlinearity function in agent’s dynamics satisfies a Lipschitz-like condition.

Although, the information flow graph is assumed to be undirected, the pro-

posed consensus algorithm solves the leader-follower consensus problem.

In [80], a consensus algorithm is developed for a team of heterogeneous

affine nonlinear systems with a switching topology information flow graph. It

is assumed that the dimension of the control input and states of each each

agent are the same. Moreover, the nonlinear function which maps the control

input to the state derivatives in the dynamics of the system is invertible.

Therefore, the approach is not general and cannot be applied to a large class

of real systems.

Consensus problem of a team of nonlinear systems by using a linear con-

sensus algorithm and feedback linearization technique is presented in [81]. The

main idea is that a diffeomorphism transformation exists so that the nonlinear

system can be transformed into the form of LTI systems by using feedback

linearization technique. Therefore, a consensus algorithm for the LTI systems

can then be applied to achieve consensus of the original nonlinear system that

is feedback linearized.

The work in [82] studies the decentralized consensus problem of a class

of nonlinear multi-agent systems with Lipschitz nonlinearity and undirected

communication topologies. To achieve this goal, a consensus algorithm is

presented which uses relative states of the neighboring agents to design a

controller. A set of n− 1 LMIs having the same dimension as that of a single
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agent should then be solved where n is the number of agents in the team.

The consensus problem for multi-agent systems having LTI and Lipschitz

nonlinear dynamics is addressed in [83]. Distributed relative-state consensus

algorithm using an adaptive law to adjust the coupling weights between the

neighboring agents are designed for both the LTI and Lipschitz dynamics,

under which consensus is achieved for undirected information flow graphs.

Since, directed graphs are not supported, an extension to the case with a

leader-follower is also presented. It is worth noting that in contrast to the

earlier results the proposed consensus algorithm is fully decentralized and there

is no need to use any global information.

In [84], the synchronization problem for a team of nonlinear systems is

investigated. Here, again the topology of information flow graph is assumed

to be fixed and undirected and nonlinear dynamics of agents is Lipschitz and

QUAD. The QUAD condition is an assumption on the nonlinear vector func-

tion f which satisfies (x−y)T [f(x)−f(y)]−(x−y)TΔ(x−y) ≤ −ω(x−y)T (x−y)

for some arbitrary Δ and ω.

A synchronization method for a class of second-order multi-agent systems

with a Lipschitz like nonlineary is studied in [85]. In their work, the multi-

agents team has a leader follower architecture and the proposed controller

uses an observer to estimate agents’ states based on their output variables

and finally by mean of Lyapunov analysis it is shown than the overall team is

synchronized in a finite-time.

Containment control of second-order Lipschitz nonlinear multi-agent sys-

tems is investigated in [86] and both static distributed controller for teams

with directed communication networks and adaptive controller for teams with

undirected network topologies are presented and it is analytically proved that

all followers will asymptotically converge to the convex hull which spanned by

states of the leaders.

In [87] a team of first-order nonlinear systems under both fixed and switch-

ing topology communication networks is considered and a consensus controller

design is proposed and finally necessary and sufficient conditions are presented.

In their work, the nonlinearity can be discontinues.

A cooperative containment control of a second-order linear multi-agents
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system with multiple leaders under directed and fixed topology communication

network in presence of unknown disturbance signal is presented in [88].

An adaptive distributed consensus algorithm for a class of multi-agent sys-

tems with bounded nonlinearities is proposed in [89]. Agents are modeled as

high-order systems, communication network is undirected, and it is assumed

that the nonlinearities are non-identical.

In [90] a distributed formation controller based on linear extended observers

for a team of second-order nonlinear systems is presented. In their work, it

is assumed that the team has a virtual leader and properties of dynamics

nonlinearity implies some limitations on acceleration and velocity of the agents.

A first-order nonlinear multi-agents system is studied in [91] and a con-

sensus algorithm based on sampled-data information is presented. To analyze

stability of their proposed algorithm first dynamics of sampled-data team is

converted to an equivalent nonlinear system with varying time delays and

time-delayed systems stability analysis tools are utilized.

A cooperative-learning algorithm for a team of identical nonlinear systems

with undirected communication network is presented in [92]. In their work,

radial basis function neural network is used to approximate dynamics nonlin-

earity and it is stated that if the agents exchange their RBFNN information

with each other and use it in their learning rules the overall learning perfor-

mance of the team will improve dramatically.

In [93] a cooperative learning algorithm for updating RBFNN weights for a

team of nonlinear systems is presented. In their work, dynamics of the agents

are identical but the reference signals are assumed to be different and tracking

performance of the agents is guaranteed.

Consensus achievement problem in a leaderless homogeneous team of agents

with Lipschitz nonlinearity under directed and switching topology communi-

cation network is studied in [94]. In their work, necessary and sufficient con-

ditions for designing a distributed consensus algorithm is presented as a set of

LMIs.
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1.2.2 Cooperative Fault Tolerant Consensus

Fault diagnosis and isolation (FDI) of single and multi-agent systems have

been extensively studied in the literature.

Among different actuator faults types, due to the physical limitation and

constraints of practical systems, saturation fault is probably among one of

the most common phenomena and its classical examples do include limits in

deflections of control surfaces of UAVs, the voltage limits on electrical motors

and flow rates of hydraulic actuators [95].

Fault detection and isolation (FDI) of single and multi-agent systems have

been extensively studied in the literature [96–103]. In [104], fault detection

problem in Markovian jump systems is studied. In [97], an adaptive observer-

based technique is used to detect occurrence and estimate the severity of ac-

tuator faults in LTI systems.

In [105], Kalman filter is used to diagnose and isolate the faults in the sys-

tem. To identify faults with very small amplitudes, a statistical local approach

is used in [98]. A robust decentralized actuator fault detection and estimation

technique based on sliding-mode observers is presented in [106].

Fault detection, isolation, and estimation of networked sensing systems

with incomplete measurements is investigated in [107]. In [99], a consensus

based overlapping decentralized fault detection and isolation approach is pre-

sented. Development, design and analysis of actuator fault detection and

isolation for a team of multi-agent systems is presented in [100]. In [102], a

decentralized robust fault detection and isolation filter design technique for a

non-homogeneous team of multi-agent systems is proposed.

In the area of fault tolerant cooperative control few work are available in

the literature.

A multi-agent team with partial information exchange is considered in [50]

and based on the solution of a set of LMIs, an optimal output consensus algo-

rithm is proposed for both leader-less and modified leader-follower structures.

The effect of the float fault in actuator of some of the agents is also investigated

and robustness of the proposed consensus method is demonstrated.

A cooperative hierarchical actuator fault accommodation for formation fly-

ing vehicles with absolute measurements is presented in [19]. The agents are
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modeled as LTI systems and it is assumed that local fault recovery module can

detect the loss-of-effectiveness actuator fault and partially recover the faulty

agent. Based on the solution of a set of linear matrix inequalities (LMI), a

decentralized formation level fault recovery module is designed to boost the

overall performance of the team.

A hierarchical actuator fault accommodation framework for formation fly-

ing satellites, which are modeled as double integrators, is proposed in [108].

A modified leader-follower problem for a team of double integrators is

studied in [109] and an optimal control-based approach is used to design a

semi-decentralized cooperative controller. Furthermore, the performance of

the team in presence of actuator float faults in some agents is investigated.

In [18], a multi-agent team of moving vehicles is considered and its per-

formance analysis in presence of actuator faults is investigated. The team

structure is assumed to be a modified leader-follower and its goal is to ac-

complish a cohesive motion. A semi-decentralized cooperative controller is

designed and is shown that occurrence of loss-of-effectiveness faults in the ac-

tuators does not deteriorate the stability nor the consensus seeking goal of the

team.

A connectivity preserving consensus algorithm in presence of actuator sat-

uration is presented in [110].

An output feedback consensus achievement algorithm for a team of LTI

system with switching communication topology based on the solution to a set

LMIs is presented in [111].

In [44], a hierarchical cooperative actuator fault accommodation in for-

mation flight of unmanned vehicles using relative measurements is addressed

for LTI systems and a centralized and decentralized consensus algorithms are

proposed.

The developed hierarchical design method in [44] consist of three mod-

ules, namely the low-level fault recovery (LLFR), the formation-level fault

recovery (FLFR) and the high-level (HL) fault recovery. In the LLFR stage

it is assumed that all actuator faults are detected by the FDI module and

their severites are estimated exactly. Using these estimates of fault severities,

an optimization problem is provided and based on its solution, the gains of
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the consensus algorithm are reconfigured. To guarantee the consensus achieve-

ment of low-level fault recovered multi-agent team, an LMI approach was used.

Since, in practice it is not possible to exactly estimate the fault severities, the

performance of the low-level recovered multi-agent team is then monitored by

a high-level module and the FLFR module is activated whenever a loss of per-

formance is detected at the low-level. In the FLFR step it is assumed that

only one of the estimated fault severities is inaccurate and it is shown that by

adjusting the parameters of the optimization problem, the consensus error of

the multi-agent team remains within a predefined bound.

A cooperative hierarchical actuator fault accommodation for formation fly-

ing vehicles with absolute measurements is also presented in [19, 112] and

in [113] using relative measurements. The agents are modeled as LTI systems

and it is assumed that local fault recovery module can detect the loss-of-

effectiveness actuator faults and partially recover the faulty agent. Based on

the solution of LMIs, a decentralized formation-level fault recovery module is

designed to enhance the overall performance of the team.

In [114] global consensus problem for second-order multi-agent systems is

studied and a cooperative algorithm is proposed which results in consensus

achievement of the team in presence of random directional communication

link failures.

1.3 General Problem Statement

The main objective of this work is to explore consensus-based cooperative con-

trol of multi-agent systems. A multi-agent system is a team of independent

autonomous systems that are employing a distributed control algorithm to

fulfill a common goal as an entity. Despite dedication of a large body of works

to study multi-agent networks and cooperative control there are still unsolved

problems and challenges in this area mainly maintaining the safety and reli-

ability of the team while dealing with actuator failures, model uncertainties,

measurement noise, and disturbances. In many cases, the loss of performance

or stability may cause serious damages, especially in safety critical systems

such as robots in hazardous areas, airplanes and spacecraft. To avoid this
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problem, some methods are developed to design fault tolerant controller, noise

and disturbances rejection methods, and robust controller against model un-

certainties for a single system, which maintains its performance and stability

in the event of malfunction in the components of system, environmental dis-

turbances, sensor noise and model uncertainties.

In the case of cooperative systems, the effectes of these parameters on any

of team members may affect the consensus achievement of the entire team.

Hence, in the same way, it is desirable to develop consensus algorithm that

are tolerant against faults and model uncertainties and also distributed distur-

bance and noise rejection methods. Actuator fault is a common type of fault

among different types of faults that can occur in systems.

Motivated by these short comings in this thesis we first study effects of

disturbances on consensus achievement of an LTI multi-agent system and our

objective is to propose a transformation and a framework which aids us me-

thodically design cooperative controllers in first place and makes it possible

to use powerful Lyapunov stability analysis tool to guarantee its consensus

achievements in the presence of disturbances while the communication net-

work topology is directed and switching. Next, effects of actuator faults in

consensus achievement of a multi-agent team is studied and the goal is to pro-

pose a novel consensus algorithm which can deal with actuator saturation and

preserves the connectivity of the communication network. The other objective

of this thesis is to propose a framework to quantitatively studies the effects

of actuator fault in consensus achievement of LTI multi-agent systems which

leads us to formulate an optimization problem and design a cooperative fault

recovery strategy to improve the performance of the team. The next problem

that we tackle in this work is to study consensus achievement of multi-agent

systems with measurement noise and uncertainties including Lipschitz non-

linearites in the presence of disturbances with directed switching networks.

Finally, a cooperative-adaptive consensus algorithm for a class multi-agent

systems with unknown nonlinearty under undirected and switching topology

communication network in presence of unknown disturbances is presented.
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1.4 Thesis Contribution

The main contributions of this thesis are presented as follows:

1. The main challenge to systematically design consensus algorithm for gen-

eral LTI multi-agents systems is that the controller should guarantee the

stability of overall team but at the same time it should not be asymptot-

ically stable. One of the contributions of this thesis is that we proposed

a transformation which lets us map dynamics of the multi-agent sys-

tem with a directed information flow graph to another LTI system. As

a result one can design an state feedback controller that asymptotically

stabilizes the transformed LTI system and use it as distributed consensus

algorithm. Consequently, it allows us to use classical controller design

techniques to perform stability analysis methods such as Lyapunov func-

tions, and there is no need to solve any set of LMIs in the cooperative

control design procedure. Although, using our proposed transformation,

it is possible to design the controller for transformed LTI system, however

dimensions of transformed LTI system for a team consisted of n agents

is n times larger than the dimensions of each agent. It could dramati-

cally increase the computational complexity of controller design. One of

the contributions of this work is to propose a method to use algebraic

connectivity of communication network and decouple dynamics of the

transformed system into two parts. This will let one deal with equations

with the same dimensions as each agents. It becomes more clear when

knowing that the time-complexity of solving an LMI is O(N6) [115],

and time-complexity of solving an algebraic Riccati equation (ARE) is

O(N4) [116], where N is dimension of the equations.

2. Dynamics of multi-agent systems with switching topology communica-

tion network even with LTI agents is no longer time invariant. Therefore,

design and stability analysis tool for LTI systems may not be useful. It

is more challenging when the effects of the disturbances are taken into

account. Developing a Lemma which lets us use Lyapunov functions to

analyze stability and disturbance attenuation performance of multi-agent

teams, is one of the main contributions of this thesis. It is worth noting
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that our proposed Lemma lets us design cooperative controllers and per-

form stability analysis for multi-agent systems with switching topologies

in the presence of either L2 and finite RMS disturbance signals.

3. One of the main contributions of this dissertation is to propose a frame-

work that lets us quantitatively measure effects of actuator faults of the

agents on the consensus achievement of multi-agent system. It is shown

that convergence of consensus algorithm is guaranteed as long as the

overall fault index of the team is within a bound. It will let us deal

with concurrent faults in multiple agents and since it also depends on

some controller parameters one can develop fault recovery algorithms

that force healthy agent to dedicate more control effort and compensate

for that of faulty agents. To achieve this goal, we formulate an opti-

mization problem that lets us design aforementioned recovery strategies

while consensus achievement of the team is guaranteed.

4. Another contribution of this thesis is in the development of distributed

consensus algorithm for teams of multi-agents with bounded RMS mea-

surement noise and model uncertainties including Lipschitz nonlinearity.

Here, we presents criterion for observer and controller gains that let us

extend our proposed methods for state-feedback cooperative control de-

sign and use it to systematically solve the consensus achievement problem

of multi-agent teams in presence of noise and uncertainties.

5. Finally, a cooperative-learning method is proposed which can be used

for cooperatively online-updating of a general function approximator pa-

rameters, including RBF neural networks. It means that, all agents will

exchange their learning information among each other and will use infor-

mation from neighboring agents in their learning rules. In addition, we

proposed a consensus algorithm based on aforementioned cooperative-

learning method for a team of nonlinear systems.
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1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 the back-

ground information about topics that are required in later chapters are pre-

sented. We start with algebraic graph theory and afterwards we present ma-

trix analysis methods for graphs. It is followed by preliminary definitions in

cooperative control and consensus achievement in multi-agents systems. Fur-

thermore, Kronecker product and its properties are presented. Finally this

chapter concludes by presenting Lyapunov stability analysis technique.

Chapter 3 the consensus problems with H∞ and weighted H∞ bounds for

a homogeneous team of Linear Time Invariant (LTI) multi-agent systems with

a switching topology and directed communication network graph are studied.

It begins with a brief preliminaries on algebraic graph theory and several lem-

mas that we have developed for this work. The formal problem statement of

the chapter is presented afterwards and it is followed by our proposed consen-

sus algorithm design methodology. Numerical simulations that support our

proposed theoretical results conclude the chapter.

Next, a cooperative actuator fault accommodation strategy is studied in

Chapter 4. The multi-agents system is considered to be a team of LTI multi-

agent systems and information flow graph is directed and switching topology.

The effects of two types of actuator faults, namely loss-of-effectiveness fault

and saturation fault are investigated and it is assumed that the faults can

simultaneously occur in more than one agent and the exact estimate of the

fault severities are not available.

Chapter 5 studies the disturbance attenuation properties of consensus achieve-

ment algorithms for a multi-agent team with output measurement noise and

teams of agents with model uncertainties including Lipschitz nonlinearity. The

communication network topology is assumed to be switching. The teams are

homogeneous and the information flow graph is directed and the effectiveness

of the proposed consensus algorithm is illustrated by performing numerical

simulations. Furthermore, a cooperative-adaptive consensus algorithm for a

team on multi-agent systems with unknown nonlinearity is proposed in this

chapter.
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Finally, conclusions and suggestions for future work are provided in Chap-

ter 6.
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Chapter 2

Background Information

In this thesis, we study consensus-based cooperative control of multi-agent

systems which consist of a group of dynamical systems with ability to exchange

information among each other. In the cooperative control our goal is to design

a distributed control strategy to allow each agent determines its control signal

only based on its own local information and limited information provided by

others, while the overall multi-agent system as a single entity performs its

desired objectives. Towards this end, having knowledge about information

flow path and its dynamics is important and graph theory is one of the best

ways to model it. Graph theory and algebraic graphs are deeply investigated

in the literature [1, 70, 117]. In section 2.1 some important definitions and

principal properties of algebraic graphs, which are required in remainder of

this thesis, will be presented from [1]. In algebraic graph theory, we associate

some matrices to each graph and therefore matrix analysis methods will help

us to have better understanding and a tool to integrate graph topology in

cooperative control design procedure. This topic is covered in section 2.2 and it

is followed by basic definition of cooperative control and consensus achievement

of multi-agent systems in section 2.3. Kronecher product of matrices and its

properties play an important role in stability analysis of cooperative control

strategies using Lyapunov stability analysis. In sections 2.4 and 2.5 these

topics are presented.
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Figure 2.1: Visual representation of a graph

2.1 Algebraic Graph Theory

A graph G mathematically is defined as a tuple of nodes or vertices set V and

edges or arcs set E . In our work, V is set of all agents. Now, let vi, vj denote

agents which are exchanging information and information flow from vi to vj.

We say that there is an edge from vi to vj and denote it as tuple (vi, vj) which

is an element of set E . To visually represent a graph, nodes are drawn as dots,

little circles, or numbers and whenever there is an edge from node vi to vj it

is shown by drawing an arrow vi to vj. Figure 2.1 shows visual representation

of a graph. In this thesis, we do not consider information flow from an agent

to itself and assume that underlying information graph is simple.

Definition 2.1. Graph G is simple if and only if for any node vi ∈ V, (vi, vi) /∈
E.

For each edge (vi, vj), node vi is called parent and vj is called child, and

we say that the edge is an outgoing edge of vi and an incoming edge of vj.

Definition 2.2. The in-degree of a node is defined as number of edges that

are incoming with respect to that node and the out-degree is the number of its

outgoing edges.

The neighboring set of node vi, which is denoted by Ni is defined as set of

all nodes vj with edges outgoing with respect to vj and incoming with respect

to vi. Cardinality of neighboring set of a node is equal to its in-degree.
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Definition 2.3. A balanced graph is a graph that in-degree and out-degree of

all its nodes are equal.

A graph is called bidirectional if for a pair of nodes any edge (vi, vj), there

exists edge (vj, vi), otherwise it is called directed graph or digraph. A graph is

weighted if one assigns a real positive number aij to any edge (vi, vj). If a graph

is bidirectional and for any pair of edges (vi, vj) and(vj, vi), the associated

weights aij and aji be equal, the graph is called to be undirected. A directed

path from node va to vb is a sequence of nodes va, v1, ..., vn, vb, such that edges

(va, v1), (v1, v2), ..., (vn, vb) exist, and the number of these edges is equal to the

length of the directed path. Node vi is connected to node vj if there exists a

directed path from node vi to node vj and the distance from node vi to vj is

defined as minimum length of all directed paths from vi to vj.

Definition 2.4. A loop is a directed path from a node to itself.

A graph is called strongly connected if all of its nodes are connected to

each other and it is called connected if it is also bidirectional. A bidirectional

graph is a tree if it is connected and only one path exists between any of its

two distinct nodes.

Definition 2.5. A graph is called directed tree if for all nodes except one node,

which is called root, has in-degree equal to one.

In other words, a graph is a (directional) tree if it is (strongly) connected

and has no loops. Graph G = {V , E} has a spanning tree GST = {V , EST}, if
GST is a directed tree and EST ⊆ E . In this case, there is a directed path from

the root node to any other node in the graph. A graph may have more than

one spanning tree and therefore more than one root node.

Definition 2.6. The set of roots of all spanning trees of a graph is called root

set or leader set of the graph.

Any strongly connected graph has a spanning tree and its nodes set is its

root set as well. Figure 2.2 and Figure 2.3 show two different spanning trees

of our example graph, that is presented in Figure 2.1. As it can be seen in

Figure 2.2, node 1 is the root of spanning tree and in Figure 2.3 it is node
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Figure 2.2: Spanning tree of a graph.
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Figure 2.3: Spanning tree of a graph.

2. There are also other spanning trees for this example graph and since it is

strongly connected, any of its node can be root of a spanning tree of the graph.

The structure of a weighted graph can be represented by a matrix, which is

A = [aij] and it is called adjacency or connectivity matrix. Here, aij denotes

the weight of edge (vi, vj). As mentioned earlier, in our work graph is simple

and therefore aii = 0. By using algebraic graph theory, one can study all the

properties of a graph by only looking at its associated adjacency matrix. Two

of these properties are weighted in-degree of node vi that is defined as follows:

degin(i) =
∑
j

aij

and its weighted out-degree which is defined as follows:

degout(i) =
∑
i

aij
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Graph diameter and in-volume of a graph are other important properties of a

graph.

Definition 2.7. Graph diameter refers to the longest directed path between

two of its nodes

Definition 2.8. In-volume of a graph is defined as summation of in-degrees

of all graph nodes.

A graph is called weighted balanced if in-degree and out-degree for all of its

node are equal and a graph is undirected if its adjacency matrix is symmetric.

If non-zero weights of a graph are 1, weighted in-degree and in-degree of a

node, weight out-degree and out-degree of a node, and weighted balanced and

balanced graphs are equivalent. Another matrix that we may assign to a

weighted graph is Laplacian matrix and it is one the most important matrices

in studying of multi-agent systems. It is denoted by L = D − A, where D
denotes diagonal weighted in-degree matrix. Therefore, summation of all rows

of a Laplacian matrix is zero. The adjacency and Laplacian matrices associated

with our example graph shown in Figure 2.1 are given as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1

1 0 0 0 0

0 1 0 0 0

1 0 1 0 0

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −1 0 −1

−1 1 0 0 0

0 −1 1 0 0

−1 0 −1 2 0

0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In order to study important properties of Laplacian matrix and to understand

how it can be used in the cooperative control design procedure, let us trans-

form Laplacian matrix into its normal Jordan form L = MJM−1, where M
denotes the transformation matrix. The main diagonal elements of matrix J
are eigenvalues of Laplacian matrix and columns of the transformation ma-

trix are their associated right eigenvectors [118]. If a Laplacian matrix has

a repeated eigenvalue λi, the size of its corresponding Jordan block is called

geometric multiplicity of eigenvalue λi and the summation of size of all its

Jordan block is said to be its algebraic multiplicity.
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Definition 2.9. An eigenvalue is called simple if its geometric and algebraic

multiplicity is equal to 1.

Without loss of generality, let us assume all eigenvalues of a Laplacian

matrix are ordered such that |λ1| ≤ |λ2| ≤ ... ≤ |λN |. For undirected graphs,

since Laplacian matrix is symmetric, all the eigenvalues are real number and

can be ordered as λ1 ≤ λ2 ≤ ... ≤ λN .

One of the key properties of Laplacian matrix is that 0 is one of its eigen-

values and vector 1 = [1, 1, ..., 1]T is its associated eigenvector and it can be

proven by using the fact that summation of all rows of Laplacian matrix is

equal to zero. Therefore, Laplacian matrix cannot be full rank and at the best

it can be N − 1. In fact rank of a Laplacian matrix is N − 1 if and only if its

associated graph has a spanning tree [25,119]. Considering the fact that main

diagonal elements of a Laplacian matrix are not negative and using Gersgorin

circle criterion, one can obtain more information about its eigenvalues. Gers-

gorin circle criterion explains that eigenvalues of a matrix M = [mij] ∈ �N×N

in complex plane are located in union of following circles [120]

{
Z ∈ C : |Z −mii| ≤

∑
i �=j

|mij|
}

In Laplacian matrix �ii =
∑

i �=j �ij and therefore the union of its Gersgorin

circles is a circle with radius Δ and its center is located on real number axis

at Δ, where Δ denotes maximum in-degree of associated graph nodes. Figure

2.4 depicts these circle in a complex plane. If we normalize adjacency matrix

of a graph, which means summation of all rows are equal to 1, eigenvalues of

Laplacian matrix are within a circle centered at 1 with radius of 1. In this

way it will be easier to compare eigenvalues of two different graph and study

effects of their topology on their eigenvalues.

As it can be seen in Figure 2.4 real part of all eigenvalues of Laplacian

matrix are not negative and therefore λ1 = 0 and λ2 �= 0 if and only if

its associated graph has a spanning tree. In fact λ2 is the most important

eigenvalue of this Laplacian matrix in designing cooperative control algorithm

and determine their performance and convergence rate. The larger value of

λ2, the faster convergence rate of the algorithm is.
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Figure 2.4: Union of Gersgorin circles for Laplacian matrix [1].

Definition 2.10. The second eigenvalue ,λ2, is called Fiedler eigenvalue of

Laplacian matrix and has an intrinsic relation with the graph topology and its

connectivity.

It is also known as algebraic connectivity of the graph [121]. There are

some upper and lower bounds of Fiedler eigenvalue for undirected graphs in

the literature [122–124]. Definition of some of aforementioned lower and upper

bounds are listed below:

λ2 ≤ N

N − 1
dmin (2.1)

λ2 ≥ 1

Diam(G)Vol(G) (2.2)

where dmin denotes minimum in-degree of graph nodes, Diam(G) denotes di-

ameter of graph G and Vol(G) denote in-volume of the graph.

There are also some useful inequalities Fiedler eigenvalue in case of directed

graphs, but those are more complicated [125, 126]. To show intrinsic relation

between eigenvalues of Laplacian matrix and its associated graph topology

and give a feeling about it a set of various types of graphs which are usually

appear in cooperative systems are presented in Figure 2.5 [1].

If the weight of existing edges of graphs shown in Figure 2.5 are set to 1,

the eigenvalues of resulting Laplacian matrices are presented in Table 2.1. As

it can be seen in Table 2.1

• for all of the graphs λ1 = 0,
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(d) Directed tree (formation graph)
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(f) Directed star
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(g) Undirected cycle (ring)

�

�

�

�

�

�� ��

�� ��

�� ��

(h) Directed cycle
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(i) Undirected path

Figure 2.5: Various graph topologies [1].

28



T
ab

le
2.
1:

E
ig
en
va
lu
es

of
L
ap

la
ci
an

m
at
ri
ce
s
of

gr
ap

h
s
p
re
se
n
te
d
in

F
ig
u
re

2.
5
[1
].

λ
1

λ
2

λ
3

λ
4

λ
5

λ
6

D
ir
ec
te
d
gr
ap

h
0

0.
77
93

1
2.
24
81

+
1.
03
40
i

2.
24
81

−
1.
03
40
i

2.
72
45

U
n
d
ir
ec
te
d
gr
ap

h
0

1.
38
2

1.
69
72

3.
61
8

4
5.
30
28

C
om

p
le
te

gr
ap

h
0

6
6

6
6

6

D
ir
ec
te
d
tr
ee

0
1

1
1

1
1

U
n
d
ir
ec
te
d
st
ar

0
1

1
1

1
6

D
ir
ec
te
d
st
ar

0
1

1
1

1
1

U
n
d
ir
ec
te
d
cy
cl
e

0
1

1
3

3
4

D
ir
ec
te
d
cy
cl
e

0
0.
5
+
0.
86
6i

0.
5
−

0.
86
6i

1.
5
+
0.
86
6i

1.
5
−

0.
86
6i

2

U
n
d
ir
ec
te
d
p
at
h

0
0.
26
79

1
2

3
3.
73
21

29



• all eigenvalues of undirected graphs are non-negative real numbers. How-

ever, it is possible to have a directed graph with all real eigenvalues,

• all non-zero eigenvalues of fully connected or complete graph with N

node are equal and are N [127]. It is easy to verify from inequality

(2.1) that the most connected graph has the maximum possible value of

λ2 = N ,

• Non-zero eigenvalues of directed trees are equal to 1 [128]. Since, directed

start is directed tree all of its eigenvalues are equal to 1 as well,

• Undirected start has an eigenvalue equal to N all other non-zero eigen-

values are equal to 1 [128],

• Eigenvalues of directed cycle are located evenly on a circle with radius

of 1 and center at 1 in complex plane.

2.2 Matrix Analysis of Graphs

As it is seen in previous section there is deep connection between graphs and

matrices and matrix analysis techniques are helpful to reveal different proper-

ties of graphs and their topology.

Definition 2.11. A row/column permutation matrix T , is a matrix square

matrix which has exactly one element equal to 1 in each row and column and

all other elements are equal to 0 [129].

Definition 2.12. Square matrix A is said to be reducible if there exist a

row/column permutation matrix T such that TAT T be a lower block triangular

matrix. A matrix is called irreducible if it is not reducible.

Theorem 2.1. Graph G with adjacency matrix A is strongly connected if and

only if A is irreducible [130].

Definition 2.13. Matrix A is called nonnegative and it is denoted by A 	 0

if all of its elements are nonnegative, and it is said to be positive if all of its

elements are positive. Positive matrices are denoted by A 
 0.
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Note that a positive matrix is not necessarily positive-definite matrix and

it is not required to be even be a square matrix.

Definition 2.14. A nonnegative matrix is a row stochastic matrix if all row

summation of its elements are equal to 1 and it is doubly stochastic if both

itself and its transpose are stochastic matrices.

Theorem 2.2. A nonnegative matrix is row stochastic if and only if it has an

eigenvalue equal to 1 and vector 1 = [1, 1, ..., 1]T be its associated eigenvector

[1].

Theorem 2.3. Stochastic matrix A ∈ �n× n has following properities [131]:

• ρ(A) = 1, where ρ(A) is spectral radius of the matrix.

• If A is adjacency matrix G, then rank(A) = n − 1 if and only if matrix

G has a spanning tree.

• If A is adjacency matrix G, then λ1 = ρ(A) = 1 is the only eigenvalue of

A with magnitude equal to 1, if graph G has a spanning tree and aii > 0

for all i.

Definition 2.15. A minor of matrix A ∈ �m×n is a the determinant of a k×k

matrix which is resulted by eliminating m − k rows and n − k columns of A,

and is denoted by [A]I,J where I ⊂ {1, 2, ...,m} and J ⊂ {1, 2, ..., n} are sets

of remaining rows and columns. [A]I,J is called a principal minor of matrix

A if sets I and J are equal [130].

Definition 2.16. A leading principal minor of a matrix A, is a principal

minor of A associated to a square upper-left sub-matrix of A.

Definition 2.17. Square matrix A ∈ �n× n is called an Z-matrix if all its

off-diagonal elements are nonpositive.

Definition 2.18. Square matrix M ∈ �n× n is called an M-matrix if it is a

Z-matrix and all its principal minors are non-negative and it is a non-singular

M-matrix if all its principal minors are positive.

Theorem 2.4. Consider Z-matrix M ∈ �n×n, following statements are equiv-

alent [130]:
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• M is a non-singular M-matrix.

• All leading principal minors of M are positive.

• Real part of all eigenvalues of M are positive.

• Matrix M is invertible and all elements of M−1 are nonnegative.

• There exist vectors v and w with all positive element such that all ele-

ments of vectors Mv and MTw be positive.

• There is a diagonal positive definite matrix S such that MS + SMT is

positive definite.

Theorem 2.5. Consider Z-matrix M ∈ �n×n, following statements are equiv-

alent [130]:

• M is a singular M-matrix.

• All leading principal minors of M are nonnegative.

• Real part of all eigenvalues of M are nonnegative.

• For any diagonal positive definite matrix B, matrix B +M is invertible

and all elements of (B +M)−1 are nonnegative.

• There exist vectors v and w with all positive element such that all ele-

ments of vectors Mv and MTw be nonnegative.

• There is a diagonal matrix S, which has all nonnegative elements, such

that MS + SMT is positive semidefinite.

Theorem 2.6. Irreducible M-matrix A ∈ �n×n satisfies following statements

[130]:

• rank(A) = n− 1

• There exist a vector with all positive elements v such that Av = 0

Theorem 2.7. For any singular but irreducible M-matrix A and positive con-

stant ε matrix A− diag{0, 0, ..., ε} is a nonsingular M-matrix [132].
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Corollary 2.1. Consider singular and irreducible M-matrix A ∈ �n×n and

nonnegative constants εi, for i = 1, ..., n, where at least one of εi > 0, then

matrix A− diag{ε1, ε2, ..., εn} is a nonsingular M-matrix [132].

2.3 Cooperative Control and Consensus Achieve-

ment

In this section the correlation between algebraic graph theory and cooperative

control of multi-agent is presented. To introduce multi-agent system we first

need to define agents.

Definition 2.19. An agent is a dynamical system with a state vector which

evolves through time based on its past value and a control input vector. Here,

the state of the agents is not dependent on any other agent, but control input

is a function of the agent and some other agents state vectors.

Since the state vector of agents are decoupled and the interaction between

agents are through their control inputs, basically without a common control

strategy and information exchange among different agents, they are completely

independent systems.

Definition 2.20. A multi-agent system is a set of agents that are exchange

information and collaborate to each other based on a common control strategy

to achieve a goal as a single entity which cannot be done by each agent alone.

The connection between multi-agent systems and algebraic graph theory

is their necessity to exchange information which can be best modeled by an

information flow graph G. Let label each agent with a number and let each

node in graph G represents an agent and each edge from node vi to node vj

shows information flow from agent i to agent j. Note that the exchanged

information can be whole state vector of agents (agent state) or a function of

that (agent output).

Definition 2.21. A multi-agent system is called homogenous multi-agent sys-

tems if the dynamics and the exchanged information of all agents are the same,

otherwise it is called heterogeneous multi-agent system.
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Definition 2.22. It is said that a multi-agent system follows a distributed

control strategy with topology G if the control input of each agent be a function

of its own state (or output) and states (or outputs) of other agents that are in

in-neighbor set of the agent in the graph.

In this thesis, distributed control strategy some times is also called coop-

erative control or multi-agent controller. It is also worth noting, the multi-

agent systems and notations here are mainly used in control systems commu-

nity [133, 134] and is different from those used by computer science commu-

nity [135]. In this sense the main concern of cooperative control strategies is

to solve consensus problem.

Definition 2.23. Consensus problem in multi-agent system is to find a dis-

tributed control strategy that cause all agents to agree on a common value for

a variable of interest. This value is usually called the consensus value and can

be state, output, etc of agents.

2.4 Kronecker Product and Its Properties

The Kronecker product of two matrices, namely A = [aij] ∈ �m×n and B =

[bij] ∈ �p×q is a mp × nq matrix, that is denoted by A ⊗ B and is defined as
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follows [136]:

A⊗B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q
...

...
. . .

...
...

...
. . .

...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq

a21b11 a21b12 · · · a21b1q · · · · · · a2nb11 a2nb12 · · · a2nb1q

a21b21 a21b22 · · · a21b2q · · · · · · a2nb21 a2nb22 · · · a2nb2q
...

...
. . .

...
...

...
. . .

...

a21bp1 a21bp2 · · · a21bpq · · · · · · a2nbp1 a2nbp2 · · · a2nbpq
...

...
. . .

...
. . .

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q
...

...
. . .

...
...

...
. . .

...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Some times for simplicity following notation is used to define Kronecker prod-

uct of two matrices:

A⊗ B =

⎡
⎢⎢⎢⎢⎢⎣

a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

⎤
⎥⎥⎥⎥⎥⎦ (2.3)

The Kronecker product has some interesting properties that are used in this

thesis, including [120]:

A⊗ (B + C) = A⊗ B + A⊗ C

(A+ B)⊗ C = A⊗ C + B ⊗ C
(2.4)

(αA)⊗ B = A⊗ (αB) = αA⊗ B (2.5)

(A⊗ B)⊗ C = A⊗ (B ⊗ C) (2.6)

(A⊗ B)T = AT ⊗ BT (2.7)
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(A⊗ B)⊗ (C ⊗D) = AC ⊗ BD (2.8)

And also if A and B are (semi-)positive definite matrices, then A ⊗ B is a

(semi-)positive definite matrix.

2.5 Lyapunov Stability Analysis

In this section essential definitions and theorems on Lyapunov stability anal-

ysis method, that will be used frequently in the remainder of the thesis, are

provided from [137].

Definition 2.24. Consider following autonomous system

ẋ = f(x) (2.9)

where x ∈ �n is the state vector of the systems and f : D → �n is locally

Lipschitz map from domain D ⊂ �n into �n. x̄ ∈ D is called an equilibrium

point of autonomous system (2.9), if f(x̄) = 0.

In this section it is assumed that f(0) = 0 and therefore, origin is an

equilibrium point of above autonomous system.

Definition 2.25. The origin is called a stable equilibrium point of system

(2.9), if for any ε > 0, there exist a δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0

Definition 2.26. An equilibrium point is called unstable if it is not stable.

Definition 2.27. An equilibrium point is said to be asymptotically stable if it

is stable and there exist a δ > 0 such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

Theorem 2.8. Origin is a stable equilibrium point of autonomous system (2.9)

if there exist a continuously differentiable function V : D → �, which is called

Lyapunov function, such that
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• V (0) = 0 and V (x) > 0 for all x ∈ D − {0},

• V̇ (x) ≤ 0 for all x ∈ D.

Theorem 2.9. Origin is an asymptotically stable equilibrium point of au-

tonomous system (2.9) if there exist a Lyapunov function V (x), such that

• V (0) = 0 and V (x) > 0 for all x ∈ D − {0},

• V̇ (x) < 0 for all x ∈ D − {0}.

Theorem 2.10. Origin is an asymptotically stable equilibrium point of linear

system

ẋ = Ax

if and only if real part of all eigenvalues of matrix A are negative. In that case

matrix A is said to be a Hurwitz matrix.

Theorem 2.11. Matrix A is a Hurwitz matrix if and only if for any symmetric

positive definite matrix Q there exist a symmetric positive definite matrix P

that satisfies the following equation, which is called Lyapunov equation.

PA+ ATP = −Q

Definition 2.28. Consider continuous function α : [0, a) → [0,∞). It is

called a class K function if it is strictly increasing function and α(0) = 0. If

a = ∞ and limr→∞ α(r) = ∞ then function α is said to belong to class K∞
functions.

Definition 2.29. Continuous function β : [0, a)× [0,∞) → [0,∞) is called a

class KL function if

• for each s ≥ 0, function β(r, s) is a class K function with respect to r,

• for each r ∈ [0, a) function β(r, s) is decreasing with respect to s, and

lims→∞ β(r, s) = 0

Definition 2.30. Origin is an equilibrium point of nonautonomous system

(2.10) at t = 0

ẋ = f(t, x) (2.10)
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if, for any t ≥ 0, f(t, 0) = 0 ,where function f : [0,∞)×D → �n is a piecewise

continuous in t and locally Lipschitz in x on [0,∞)×D, D ∈ �n, and 0 ∈ D.

Definition 2.31. Consider equilibrium point of nonautonomous systems (2.10)

at x = 0. it is called a

• stable equilibrium point of the system if, for each ε > 0 there exist a

t0 ≥ 0 and δ = δ(ε, t0) such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0

• unstable equilibrium point of the system if it is not stable,

• uniformly stable equilibrium point of the system if for any t0 ≥ 0 it is

stable,

• asymptotically stable equilibrium point of the system if it is stable and

there exist c = c(t0) > 0, such that for all ‖x(t0)‖ < c

lim
t→∞

‖x(0)‖ = 0

• uniformly asymptotically stable equilibrium point of the system if it is

uniformly stable and there exist c > 0, independent of t0, such that for

all ‖x(t0)‖ < c and for any η > 0

∃T = T (η) > 0 s.t. ‖x(t)‖ < η, ∀t ≥ t0 + T (η)

• globally uniformly asymptotically stable equilibrium point of the system

if it is uniformly stable, δ(ε) can be chosen such that

lim
ε→∞

δ(ε) = ∞

, and for any c, η > 0

∃T = T (c, η) > 0 s.t. ‖x(t)‖ < η, ∀t ≥ t0 + T (c, η)
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Throughout this thesis whenever origin is an uniformly stable or uniformly

asymptotically stable equilibrium point of a nonautonomous for simplicity we

said that system is stable or asymptotically stable.

Theorem 2.12. Consider nonautonomous systems (2.10). Its euilibrium at

origin is

• uniformly stable if and only if there exist a class K function α and c > 0

such that for any t0 ≥ 0 and ‖x(t0)‖ < c

‖x(t)‖ ≤ α(‖x(t0)‖), ∀t ≥ t0

• uniformly asymptotically stable if and only if there exist a class KL func-

tion β and c > 0 such that for any t0 ≥ 0 and ‖x(t0)‖ < c

‖x(t)‖ ≤ β(‖x(t0)‖ , t− t0), ∀t ≥ t0

• globally uniformly asymptotically stable if and only if for any x(t0) the

above inequality holds.

A special case of asymptotic stability that is used in this thesis is exponen-

tial stability concept.

Definition 2.32. Origin is an exponentially stable equilibrium of nonautonomous

system (2.10) if there exist c, k, and λ > 0 such that for all ‖x(t0)‖ < c fol-

lowing inequality holds:

‖x(t)‖ k ‖x(t0)‖ e−λ(t−t0)

Furthermore, if it holds for any x(t0), the origin is globally exponentially stable.

Theorem 2.13. Consider nonautonomous system (2.10), its equilibrium point

at origin is

• uniformly stable if there exist a continuously differentiable function V :

[0,∞)×D → �, which is called a Lyapunov function, such that for any

t ≥ 0 and any x ∈ D the following inequalities are satisfied:

W1(x) ≤ V (t, x) ≤ W2(x) (2.11)
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∂V

∂t
+

∂V

∂x
f(t, x) ≤ 0 (2.12)

where W1(x) and W2(x) are continuous positive definite function on D.

• uniformly asymptotically stable if there exist a Lyapunov function that

satisfies above mentioned assumptions, inequality (2.11) holds, and there

exist a continuous positive definite function W3(x) on D such that

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x)

• exponentially stable if there exist a Lyapunov function that satisfies above

mentioned assumptions, and positive constants k1, k2, k3 and a such that

the following inequalities hold

k1 ‖x‖a ≤ V (t, x) ≤ k2 ‖x‖a

∂V

∂t
+

∂V

∂x
f(t, x) ≤ k3 ‖x‖a

2.6 Summary

This chapter summarized some basic definitions and theorem that are required

in remainder of thesis. First, some useful definitions and properties of graphs

and algebraic graph theory was presented. It was followed by matrix analysis

and cooperative control of multi-agents systems, and finally stability analysis

methodology was presented.

In the next chapter we study the consensus problems withH∞ and weighted

H∞ bounds for a homogeneous team of LTI multi-agent systems with a switch-

ing topology and directed communication network graphs.
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Chapter 3

H∞ Consensus Achievement of

Multi-Agent Systems with

Directed and Switching

Topology Networks

In this chapter the consensus problem with H∞ and weighted H∞ bounds for

a homogeneous team of LTI multi-agent systems with a switching topology

and directed communication network graph are studied. Sufficient conditions

to design distributed controllers are proposed based on state feedback cor-

responding to bounded L2 gain and RMS bounded disturbances. Based on

the solution of an algebraic Riccati equation that circumvents the need to

solve Linear Matrix Inequalities (LMIs), a design methodology is proposed to

properly select the controller gains. The stability properties of the proposed

controllers are then investigated based on Lyapunov stability analysis. The

effectiveness of our proposed consensus algorithms are then illustrated by per-

forming simulations for diving consensus of a team of Unmanned Underwater

Vehicles (UUVs).

Towards this end, based on two quantitative measures of the Laplacian

matrices, a transformation is introduced and a novel method is proposed to

guarantee the H∞ performance of the overall system in presence of bounded

RMS disturbance signals. In our approach, a piecewise quadratic Lyapunov
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function is used which is determined by solving a set of algebraic Lyapunov

equations and an Algebraic Riccati Equation (ARE).

The main contributions of our work in the context of the mentioned in the

literature are as follows: (a) the communication network topology is directed

and can switch arbitrarily, (b) the proposed algorithms can solve the H∞
and the weighted H∞ consensus problems for disturbance signals that have

bounded RMS and are not limited to only L2 signals, (c) the existence of the

consensus algorithms are guaranteed if an LTI system can be state feedback

stabilized with a bounded L2 norm gain, and finally (d) there is no need to

solve any set of LMIs and instead the controllers can be designed by solving

an ARE. It is worth noting that the time complexity of solving an LMI is

O(n2p4) [115], where n is the number of agents in the team and p is the number

of states of each agent, therefore it is not always computationally feasible to

design a consensus algorithm for teams with large number of agents or agents

with large number of states by using these techniques. However, ARE can be

solved with time complexity of O(p4) [116] and the existence of a solution can

be guaranteed.

The remainder of the chapter is organized as follows. In Section 3.1, brief

preliminaries on algebraic graph theory and several lemmas that we have de-

veloped for this work are presented. The problem statement is provided in

Section 3.1 and the consensus algorithm design methodology is proposed in

Section 3.3. Section 3.4 provides numerical simulations that support our pro-

posed theoretical results, and finally Section 3.5 concludes the chapter.

3.1 Background and Preliminary Results

In this section, first we present some basic concepts and notations of algebraic

graph theory and switching systems which will be used for stability analysis

of our proposed consensus algorithms. More information on algebraic graph

theory is available in [70]. We then present some relevant preliminary results

of ours that will be used in development of the main result of this chapter in

Section 3.1.

Definition 3.1. The information flow digraph (directed graph) G(t) is defined
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as set G(t) = {V , EG(t)} with the node set V = {1, 2, ..., n} and the edge set

EG(t) = {(i, j)|i, j ∈ V}.
Here, any i ∈ V is called a node of graph G(t) and any 2-tuple (i, j), where i

and j are nodes of graph G(t), is called an edge of the graph between nodes i

and j if (i, j) ∈ EG(t).

Definition 3.2. The digraph G(t) is called strongly connected if and only if

for any there is a path between any two distinct nodes of the graph.

Definition 3.3. The edge between nodes i and j is undirected if and only if

for any i, j ∈ V where i �= j and (i, j) ∈ EG(t) then (j, i) ∈ EG(t), otherwise it

is called a directed edge.

Definition 3.4. The sequence of 2-tuples (i, k1), (k1, k2), ..., (kp, j), where i, k1,

k2, ..., kp, j are nodes of graph G(t) is called a path from node i to node j if all

of 2-tuples in the sequence are edges of the graph.

Definition 3.5. The digraph G(t) is an undirected graph if and only if all its

edges are undirected.

Assumption 3.1. Throughout this chapter, it is assumed that there is no edge

from a node to itself.

Definition 3.6. The communicating/sensing matrix of graph G(t), which is

denoted by S(G(t)), is defined as S(G(t)) = [sij(t)] ∈ �n×n, where:

sij(t) =

{
1 i �= j and (i, j) ∈ EG(t)
0 i = j or (i, j) /∈ EG(t)

Definition 3.7. The set of neighbors of the node i of graph G(t) is denoted by

Ni(G(t)) and is defined as follows

Ni(G(t)) = {j| (i, j) ∈ EG(t)}

Definition 3.8. The Laplacian matrix of graph G(t) is denoted by L(G(t))

43



and is defined as L(G(t)) = [�ij(t)] ∈ �n×n, where

�ij(t) =

⎧⎪⎪⎨
⎪⎪⎩

κi(t) i = j

− κi(t)
|Ni(G(t))| i �= j and j ∈ Ni(G(t))

0 i �= j and j /∈ Ni(G(t))
(3.1)

and |Ni(G(t))| is the cardinality of Ni(G(t)) and κi(t) is the degree of the ith

node.

Remark 3.1. In this chapter, we set κi(t) = |Ni(G(t))|.

Lemma 3.1. Since the row sum of the matrix L(G(t)) is zero, it has an eigen-

value at λ1 = 0 and its associated right eigenvector is 1 = [1, 1, ..., 1]T ∈ �n.

Let us define the set Γ as the collection of all digraphs with the node set

V . Since the number of all possible digraphs with the node set V is n(n− 1),

therefore let us define the set

IN = {1, 2, ..., n(n− 1)}

and the injective mapping function

F(i) : IN → Γ

Definition 3.9. The piecewise constant switching signal σ(t) is defined as the

following function

σ(t) : [0,∞) → Iσ,

where the set Iσ ⊂ IN .

Definition 3.10. Throughout this thesis, Gσ(t) is defined as Gσ(t) = F(σ(t)),

where σ(t) is a piecewise constant switching signal.

Remark 3.2. In the remainder of the chapter and for brevity, Gσ denotes Gσ(t)

and Lσ denotes L(Gσ).

Definition 3.11. The instant t >= 0 is a switching instant of piecewise con-

stant switching signal σ(t) if it is not continuous at t = t.
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Definition 3.12. The dwell times τ1, τ2, ... of piecewise constant switching

signal σ(t) are defined as τk = tk − tk−1 where t0 = 0 < t1 < t2 < ... denote

the switching instants of σ(t). The dwell times are periods of time when the

multi-agent team uses the information flow graph.

Definition 3.13. Function Nσ(T1, T2) indicates the number of switching in-

stances of σ(t) in the interval (T1, T2) and function Nσ(t) is defined as Nσ(t) =

Nσ(0, t).

Definition 3.14. [138] Consider piecewise constant switching signal σ(t),

τa > 0 and N0 ≥ 0. If for any T2 > T1 ≥ 0, the following inequality holds

Nσ(T1, T2) ≤ N0 +
T2 − T1

τa

then τa is called the average dwell time of switching signal σ(t). In this thesis

we set N0 = 0.

Below, we introduce and present several of our lemmas that will be used in

the remainder of the chapter for stability analysis of our proposed consensus

algorithms.

Lemma 3.2. Given any vectors x1, ..., xn ∈ �p and corresponding to the Lapla-

cian matrix L defined in (3.1) the following equation holds:

n∑
j=1

�ijxj −
n∑

j=1

�njxj =
n−1∑
j=1

hij(xj − xn) (3.2)

where hij = �ij − �nj and i, j = 1, ..., n− 1.

Proof. Knowing that for i ∈ V we have:

n∑
j=1

�ij = 0

one can conclude that:
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n∑
j=1

�ijxi −
n∑

j=1

�njxi

=
n−1∑
j=1

�ij(xi − xn) + xn

n∑
j=1

�ij −
n−1∑
j=1

�nj(xi − xn)− xn

n∑
j=1

�nj

=
n−1∑
j=1

(�ij − �nj)(xi − xn)

�

Lemma 3.3. Consider the matrix H which is defined as:

H = H(G) = [hij] ∈ �(n−1)×(n−1),

where hij = �ij − �nj as defined in Lemma 3.2. If the graph G has a directed

spanning tree, the real parts of all the eigenvalues of the matrix H are positive.

Proof. Knowing that L has zero row sums, 0 is an eigenvalue of L and since

it is diagonally dominant and has non-negative diagonal elements, it follows

from Greshgorin’s disc theorem that all the non-negative eigenvalues of L have

positive real parts. Furthermore, using Remark 1 in [15] and the fact that G
has a directed spanning tree, 0 is a simple eigenvalue [25]. Therefore L has

n− 1 nonzero eigenvectors with positive real parts and to complete the proof,

it is sufficient to show that all the nonzero eigenvalues of L are eigenvalues of

H.

Consider λ ∈ C as a nonzero eigenvalue of L and the vector y = [y1, ..., yn]
T ∈

C
n as its associated eigenvector. Let us define y∗ = [y1 − yn, ..., yn−1 −

yn]
T ∈ C

n−1. Since λ is a nonzero eigenvalue,therefore y∗ �= 0. Consider

w = [w1, ..., wn−1]
T ∈ C

n−1 and let w = Hy∗. We have to show that w = λy∗,
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that is

wi =
n−1∑
j=1

hijy
∗
j =

n−1∑
j=1

�ijy
∗
j −

n−1∑
j=1

�njy
∗
j

=
n−1∑
j=1

�ijyj −
n−1∑
j=1

�ijyn −
n−1∑
j=1

�njyj +
n−1∑
j=1

�njyn

=
n∑

j=1

�ijyj − yn

n∑
j=1

�ij −
n∑

j=1

�njyj + �njyn

n∑
j=1

�nj

=
n∑

j=1

�ijyj −
n∑

j=1

�njyj = λyi − λyn = λy∗i

This completes the proof of the lemma. �

Lemma 3.4. Consider the matrices Hσ = H(Gσ) as defined in Lemma 3.3.

If all the graphs Gσ for all σ ∈ Iσ have directed spanning trees, then for any

positive constant ε which satisfies the following inequality

0 < ε < 2 min
σ∈Iσ

{Re(λ(Hσ))}, (3.3)

there exist symmetric positive definite matrices PHσ , QHσ ∈ �n−1×n−1 such that

PHσHσ +HT
σ PHσ − εPHσ = QHσ > 0 (3.4)

Proof. From Lemma 3.3, it follows that the real part of all the eigenvalues of

H are positive. Let us select real constant ε such that satisfies the following

inequality (3.3). Therefore, the real part of all the eigenvalues of the matrix

Hσ − 1
2
εI are positive and it concludes the lemma [137].

�

Remark 3.3. In an undirected graph the term Re(λmin(Hσ)) is equal to and

in a directed graph is larger than or equal to the algebraic connectivity of the

graph [125]. In other words, ε is a measure of the minimum connectivity of all

the information flow graphs of the agents in the team and the smaller ε implies

that the graphs are less connected.

Lemma 3.5. Consider a piecewise constant switching signal σ(t) with an av-

erage dwell time τa. For any time T > 0, let us define N = Nσ(T ), t0 = 0,
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tN+1 = T and let 0 < t1 < t2 < ... < tN denote the switching instances of

σ(t). Consider a set of continuous, differentiable and positive definite func-

tions {Vi(x)|i ∈ Iσ}, and assume there exists μ > 1 such that for any i, j ∈ Iσ

Vi(x) ≤ μVj(x)

Let the function ξ(t) be defined as follows

ξ(t) = eδk(t−tk)

where k = Nσ(t) and δk =
ln(μ)

tk+1−tk
. Given the function Vi(x), let us now define

a piecewise continuous function Vσ = Vσ(t)(x). We can guarantee that:

part a) The following inequality holds for any δ̄ ≥ ln(μ)
τa

:

1

T

∫ T

0

ξ(t)
(
V̇σ + δ̄Vσ

)
dt+

1

T
Vσ(0)(x(0)) ≥ 0

part b) The following inequality holds:

1

T

∫ T

0

μ−Nσ(t)V̇σ(x, t)dt+
1

T
Vσ(0)(x(0)) ≥ 0

Proof. part a) From the definition of ξ(t) it is easy to verify that

1 ≤ ξ(t) < μ

and

lim
t→t−k+1

ξ(t) = μ

for any k = 0, ..., N . Let us define

1

T

∫ t−k+1

tk

ξ(t)
(
V̇σ + δ̄Vσ

)
dt = lim

τ→t−k+1

1

T

∫ τ

tk

ξ(t)
(
V̇σ + δ̄Vσ

)
dt

Since for any time t ∈ [tk, tk+1), k = 1, ..., N , the switching signal is σ(t) =

σ(tk), we have Vσ(.) = Vσ(tk)(.). In addition, in the time interval [tk, tk+1]

the topology of the information flow graph changes once. By considering that
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N0 = 0 and using Definition 3.14 one can conclude that τa ≤ tk+1 − tk. Given

that μ > 1, we have

δ̄ ≥ ln(μ)

τa
≥ ln(μ)

tk+1 − tk
= δk.

Therefore, by replacing ξ(t) from its definition into the above equation we

obtain:

1

T

∫ t−k+1

tk

ξ(t)
(
V̇σ + δ̄Vσ

)
dt

=
1

T

∫ t−k+1

tk

ξ(t)
(
V̇σ(tk) + δkVσ(tk)

)
dt+

1

T

∫ t−k+1

tk

ξ(t)(δ̄ − δk)Vσ(tk)dt

≥ 1

T

∫ t−k+1

tk

eδk(t−tk)
(
V̇σ(tk) + δkVσ(tk)

)
dt

=
1

T
e−δktk

∫ t−k+1

tk

d

dt

(
eδktVσ(tk)

)
dt

= lim
τ→t−k+1

eδk(t−tk)
1

T
Vσ(tk)(x(t))|τtk

=
1

T

(
μVσ(tk)(x(tk+1))− Vσ(tk)(x(tk))

)
(3.5)

Now, by using the above inequality , one obtains:

1

T

∫ T

0

ξ(t)
(
V̇σ + δ̄Vσ

)
dt

=
1

T

N∑
k=0

∫ t−k+1

tk

ξ(t)
(
V̇σ + δ̄Vσ

)
dt

≥ 1

T

N∑
k=0

(
μVσ(tk)(x(tk+1))− Vσ(tk)(x(tk))

)

= − 1

T
Vσ(t0)(x(t0)) +

1

T

N∑
k=1

(
μVσ(tk−1)(x(tk))− Vσ(tk)(x(tk))

)
+ μ

1

T
Vσ(tN )(x(tN+1))

≥ 1

T

(
μVσ(tN )(x(T ))− Vσ(0)(x(0))

)
Since Vσ(tN )(x(T )) ≥ 0, this concludes the proof of part a).
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part b) For any k = 0, ..., N , let us define

1

T

∫ t−k+1

tk

μ−Nσ(t)V̇σdt = lim
τ→t−k+1

1

T

∫ τ

tk

μ−Nσ(t)V̇σdt

We have:

1

T

∫ T

0

μ−Nσ(t)V̇σdt

=
1

T

N∑
k=0

∫ t−k+1

tk

μ−kV̇σdt

=
1

T

N∑
k=0

μ−k
(
Vσ(tk)(x(tk+1))− Vσ(tk)(x(tk))

)
≥ 1

T
μ−(N+1)Vσ(tN )(x(T ))− 1

T
Vσ(0)(x(0))

Since Vσ(tN )(x(T )) ≥ 0, this concludes the proof of part b). �

Lemma 3.6. Consider a set of vectors ω1, ..., ωn ∈ �q, then the following

inequality holds:
n−1∑
i=1

||ωi − ωn||2 ≤ n
n∑

i=1

||ωi||2

Proof. It is straightforward to see that we have

−ωT
i ωn − ωT

nωi ≤ (n− 1)ωT
i ωi +

1

n− 1
ωT
nωn (3.6)

By adding ωT
i ωi + ωT

nωn to both sides of the inequality (3.6), one obtains:

||ωi − ωn||2 ≤ nωT
i ωi +

n

n− 1
ωT
nωn

Therefore, we have:

n−1∑
i=1

||ωi − ωn||2 ≤ n
n−1∑
i=1

||ωi||2 + n||ωn||2

which concludes the proof of the lemma. �

Lemma 3.7. Consider a piecewise constant switching signal σ(t) with an av-

erage dwell time τa a set of continuous, differentiable and positive definite
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functions {Vi(x(t), t)|i ∈ Iσ}, where x(t) ∈ �p is the state of the following

system

ẋ(t) = f(x(t), t) (3.7)

Assume that the following conditions are satisfied

1. There exists real constant δ > 0 such that for ant t > 0 we have

V̇σ(t)(x(t), t) ≤ −δVσ(t)(x(t), t),

2. There exist real constants α1 > 0 and α2 > 0 such that for any t > 0 we

have

α1||x(t)||2 ≤ Vσ(t)(x(t), t) ≤ α2||x(t)||2,

3. There exists real constant μ > 0 such that for any t1 > 0 and t2 > 0 we

have

Vσ(t1)(x(t1), t1) ≤ μVσ(t2)(x(t2), t2)),

If the average dwell time τa ≥ ln(μ)
δ

, then system (3.7) is exponentially

stable.

Proof. For any given t > 0, we let N = Nσ(t), which is defined in Definition

3.13, t0 = 0 and 0 < t1 < t2 < ... < tN represent the switching instants of σ(t)

over the interval (0, t), as per Definition 3.12. During the time interval [tk, tk+

1), where 0 ≤ k ≤ N , the Lyapunov function Vσ is continuous. Therefore, for

any ζ ∈ [tk, tk + 1), by using condition 1 one can conclude that

Vσ(x(ζ), ζ) ≤ e−δ(ζ−tk)Vσ(x(tk), tk) (3.8)

Now, let us define Vσ(tk)(t
−
k+1) as follows

Vσ(tk)(x(t
−
k+1), t

−
k+1) = lim

t→t−k+1

Vσ(tk)(x(t), t)

Therefore, from condition 3 one can conclude that the following inequality

holds for any 0 ≤ k < N

Vσ(tk+1)(x(tk+1), tk+1) ≤ μVσ(tk)(x(t
−
k+1), t

−
k+1) (3.9)
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By using induction the following inequality is obtained from inequalities (3.8)

and (3.9)

Vσ(t)(x(t), t) ≤ μNe−δtVσ(0)(x(0), 0) = e−δt+ln(μ)NVσ(0)(x(0), 0).

Now, from condition 2 we know that α1||x(t)||2 ≤ Vσ(t)(x(t), t) and Vσ(0)(x(0), 0) ≤
α2||x(0)||2, one can conclude that the following inequality holds

||x(t)||2 ≤ α2

α1

e−δT+ln(μ)N ||x(0)||2 (3.10)

To show the exponential stability of system (3.7), we need to show that there

exist M∗,m∗ > 0 such that for ant t > 0, the following inequality holds [137]

||x(t)|| ≤ M∗e−m∗t||x(0)||

From Definition 3.13 one can conclude that N = Nσ(t) ≤ T
τa
. Therefore, by

using the fact that τa > ln(μ)
δ

, it can be concluded tha,t there exists δ∗ > 0

such that for any t > 0 we have

δ∗ ≤ δ − ln(μ)N

Therefore, inequality (3.10) results in:

||z(T )|| ≤
√

α2

α1

e−
1
2
δ∗T ||z(0)||

and this guarantees the exponential stability of the system (3.7) and concludes

the proof of the lemma. �

Now we are in a position to present the problem statement and main result

of the chapter.

3.2 Problem Statement

Consider a team of n homogeneous agents modeled as

ẋi = Axi + Bui + Bωωi i ∈ V (3.11)
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where xi ∈ �p is the state of the ith agent, A ∈ �p×p, B ∈ �p×m, Bω ∈ �p×q,

ωi ∈ �q is the external disturbance, ui ∈ �m is the control input to the ith

agent, and the matrix A is not Hurwitz (See Remark 3.5 below).

Assumption 3.2. The quantity RMS(ωi) corresponding to the disturbance ωi

that is defined below exists for all the agents and is finite, that is

RMS(ωi) =

√
lim
T→∞

(
1

T

∫ T

0

||ω2
i ||dt

)
< ∞ i ∈ V

Definition 3.15. The control ui is said to solve the consensus problem if

zi = xi − xn → 0 as t → ∞, ∀i ∈ {1, ..., n− 1} (3.12)

Remark 3.4. It should be emphasized that zi in the above definition will not

be used subsequently in the consensus design and there is no restriction in

specifically selecting and labeling the nth agent as the reference state. In other

words, zi will only be used subsequently as a tool for analysis and as a metric

representing the consensus error indication.

Remark 3.5. Note that the team reaches the trivial consensus solution xi = 0

in case the matrix A is Hurwitz. In this chapter, it is assumed that at least one

of the agent’s eigenvalues is on the imaginary axis and the team could then

achieve a non-trivial consensus solution. In multi-agent system applications

such as teams of deep-space spacecraft, unmanned aerial vehicles, unmanned

underwater vehicles and mobile robots, this assumption is valid in practice.

Definition 3.16. The control ui solves the consensus problem with an H∞
norm bound γρ if i) The control ui solves the consensus problem for ωi ≡ 0 for

i = 1, ..., n, and ii) If zi(0) = 0 for i = 1, ..., n− 1, then for any T > 0

1

T

n−1∑
i=1

∫ T

0

||zi||2dt < γ2
ρ

1

T

n∑
i=1

∫ T

0

||ωi||2dt (3.13)

Definition 3.17. The control ui solves the consensus problem with a weighted

H∞ norm bound γρ and rate α if

• i) The control ui solves the consensus problem for ωi ≡ 0 for i = 1, ..., n,

and
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• ii) If zi(0) = 0 for i = 1, ..., n− 1, then for any T > 0

1

T

n−1∑
i=1

∫ T

0

e−αt||zi||2dt < γ2
ρ

1

T

n∑
i=1

∫ T

0

||ωi||2dt (3.14)

Let us define the control signal ui as

ui = −
∑
j∈Ni

K(xi − xj) (3.15)

where K ∈ �m×p is the relative state control gain matrix that is to be selected

to achieve the given design specifications.

Consider the piecewise constant switching signal σ(t) : [0,∞) → Iσ and the

switching topology information flow digraph Gσ. Let us define Hσ = H(Gσ).

Assume that ∀t > 0, the digraphs Gσ have directed spanning trees. From

Lemma 3.4, it follows that for any real positive constant ε,

0 < ε < 2 min
σ∈Iσ

{Re(λ(Hσ))} (3.16)

there exist symmetric positive definite matrices PHσ , QHσ ∈ �n−1×n−1 such

that

PHσHσ +Hσ
TPHσ − εI = QHσ > 0.

Let us now define β1, β2 and μ as follows

β1 = min
i∈Iσ

λmin(PHi
),

β2 = max
i∈Iσ

λmax(PHi
),

μ =
β2

β1

(3.17)

To summarize, above we have defined all the parameters and matrices that

are associated with the multi-agent team and their fundamental properties

will now be used in the next section where our proposed consensus algorithm

is presented.
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3.3 Main Result

In this section, a design procedure for the consensus strategy of a multi-

agent team based on solution of an algebraic Riccati equation is proposed and

the main result of the chapter is presented as a theorem.

Theorem 3.1. Consider a team of n homogeneous agents where the dynamics

of each agent is governed by (3.11), and let the pair (A,B) be stabilizable and

consider a piecewise constant switching signal σ(t) with an average dwell time

τa. Assume all the graphs Gσ have directed spanning trees for σ ∈ Iσ and let ε

and μ be defined as in equations (3.16) and (3.17), respectively, and let γρ be

a positive constant. If there exists positive constant γ such that the following

linear system is state feedback stablizable with L2 gain bounded by γ

ẋi = Axi + Bui + Bωωi, xi(0) = 0

implying that ∫ ∞

0

||xi||2dt < γ2

∫ ∞

0

||ωi||2dt

then there exist symmetric matrices RA > 0 and QA > I such that the following

algebraic Riccati equation has a symmetric positive definite solution to PA

[139]:

PAA+ ATPA − PABR−1
A BTPA + γ−2PABωB

T
2 PA = −QA

By selecting the relative state cooperative control gain K as:

K =
1

ε
R−1

A BTPA (3.18)

then the distributed control law (3.15):

part a) solves the H∞ consensus problem for system (3.11) with a bound

γρ = γ

√
nμ2

1− kδ

for τa >
ln(μ)
kδδ

, where 0 < kδ < 1 and δ = λmin(QA)
λmax(PA)

, and

part b) solves the weighted H∞ consensus problem for system (3.11) with a
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bound γρ = γ
√
nμ and rate α = ln(μ)

τa
for τa >

ln(μ)
δ

, where δ = λmin(QA)
λmax(PA)

.

Proof. Let us define the augmented team state vector as x = [xT
1 , x

T
2 , ..., x

T
n ]

T ,

so that the model corresponding to the agents governed by (3.11) concatenated

together can now be rewritten in the following form:

ẋ = I ⊗ Ax− L⊗ BKx+ I ⊗ Bωω (3.19)

Let zi = xi − xn and ω̃i = ωi − ωn for i = 1, ..., n − 1, and define the vectors

z = [zT1 , ..., z
T
n−1]

T and ω̃ = [ω̃T
1 , ..., ω̃

T
n−1]

T ∈ �p(n−1). Using Lemma 3.2 we

have:

ż = I ⊗ Az−H ⊗ BKz+ I ⊗ Bωω̃ (3.20)

and

ẋn = Axn − B
n−1∑
j=1

�njKzj + Bωω̃n (3.21)

Now, by adding and subtracting I ⊗ 1
2
εBKz to the right hand side of

equation (3.20), it can be rewritten as

ż = I ⊗ (A− 1

2
εBK)z− (Hσ − 1

2
εI)⊗ BKz+ I ⊗ Bωω̃ (3.22)

Now, consider the following piecewise quadratic Lyapunov function

Vσ = Vσ(t)(z) = zTPHσ ⊗ PAz (3.23)

The time derivative of Vσ along the trajectories of the system (3.22) is given

by

V̇σ = zTPHσ ⊗
(
PAA+ ATPA

)
z− zTPHσ ⊗ PABR−1

A BTPAz

+ zTPHσ ⊗ PABωω̃ + ω̃TPHσ ⊗ Bω
TPAz− 1

ε
zTQHσ ⊗ (PABR−1

A BTPA)z

It is easy to verify that the following inequality holds:

zTPHσ ⊗ PABωω̃ + ω̃TPHσ ⊗ Bω
TPAz ≤ γ−2zTPHσ ⊗ PABBTPAz+ γ2ω̃TPHσ ⊗ Iω̃

(3.24)
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Since QHσ > 0 and PABR−1
A BTPA ≥ 0, using the above inequality we

obtain:

V̇σ ≤ −zTPHσ ⊗QAz+ γ2ω̃TPHσ ⊗ Iω̃

Therefore, for ω ≡ 0, we have:

V̇σ ≤ −zTPHσ ⊗QAz (3.25)

Knowing that −QA ≤ −λmin(QA)I = −δλmax(PA)I ≤ −δPA, and

δ =
λmin(QA)

λmax(PA)
,

we have:

V̇σ ≤ −δzTPHσ ⊗ PAz ≤ −δVσ (3.26)

It is easy to check that the following properties are satisfied:

1. V̇σ(t) ≤ −δVσ(t) for all t > 0 as per equation (3.26)

2. α1||z||2 ≤ Vσ(t) ≤ α2||z||2 for all t > 0, where α1 = β1λmin(PA) and

α2 = β2λmax(PA) as per equation (3.23)

3. Vσ(t̂1) ≤ μVσ(t̂2) for all t̂1, t̂2 > 0 as per Lemma 3.5.

Based on the above conditions and knowing the fact that τa >
ln(μ)
kδδ

≥ ln(μ)
δ

from Lemma 3.7 one can conclude the exponential convergence of z → 0 as

t → ∞. Therefore, the control law (3.15) can solve the consensus problem for

the multi-agent system (3.11) in absence of the disturbances.

part a) To show that the proposed algorithm solves the H∞ consensus

problem, based on Definition 3.16, we have to prove that it can solve the

consensus problem in absence of disturbances, as done above, and show that

in presence of the disturbance signals ωi the inequality (3.13) holds for any

T > 0 if zi(0) = 0, i = 1, ..., n. Towards this end, let us define tN+1 = T and

the function ξ(t) as ξ(t) = eδk(t−tk), where k = Nσ(t) and δk = ln(μ)
tk+1−tk

. We

now need to show that:

zT z− n−1μ−1γ2
ρω̃

T ω̃ +
γ2
ρ

nμβ2γ2

(
V̇σ + δ̄Vσ

)
< 0 (3.27)

57



By using the results in part a) of Lemma 3.5, the following inequality is ob-

tained:

1

T

∫ T

0

ξ(t)zT zdt− ξ(t)n−1μ−1γ2
ρω̃

T ω̃dt

≤ 1

T

∫ T

0

ξ(t)

(
zT z− γ2

ρ

nμ
ω̃T ω̃ +

γ2
ρ

nμβ2γ2

(
V̇σ + δ̄Vσ

))
dt < 0

By invoking Lemma 3.6, and knowing that 1 ≤ ξ(t) < μ, and using the above

inequality one obtains:

1

T

∫ T

0

||zi||2dt ≤ 1

T

∫ T

0

ξ(t)||zi||2dt

≤ μ−1

nT

∫ T

0

ξ(t)||ω̃i||2dt ≤ μ−1

T

∫ T

0

ξ(t)||ωi||2dt < 1

T

∫ T

0

||ωi||2dt

Therefore, the inequality (3.13) is satisfied. Now, by substituting V̇σ and Vσ

into the inequality (3.27), multiplying its left-hand side by nμβ2γ2

γ2
ρ

and noting

that δ̄PA = kδδPA ≤ kδλmin(QA)I ≤ kδQA, one obtains:

nμβ2γ
2

γ2
ρ

zT z− β2γ
2ω̃T ω̃ + V̇σ + δ̄Vσ

≤ nμ2γ
2

γ2
ρ

zTPHσ ⊗ Iz− γ2ω̃TPHσ ⊗ Iω̃ + V̇σ + kδδVσ

≤ zTPHσ ⊗
(
−QA + nμ2γ

2

γ2
ρ

I + kδδPA

)
z

≤ zTPHσ ⊗
(
−(1− kδ)QA + nμ2γ

2

γ2
ρ

I

)
z

≤ (1− kδ)z
TPHσ ⊗

(
−QA + nμ2 γ2

(1− kδ)γ2
ρ

I

)
z

Therefore, since γρ = γ
√

nμ2

1−kδ
and QA > I, the inequality (3.27) is satisfied

and this concludes the proof of part a).

part b) Based on Definition 3.17 and noting that the control law (3.15)

solves the consensus problem in absence of disturbance signals, one needs to

show that the inequality (3.14) holds for any T > 0 and zi(0) = 0, i = 1, ..., n

to prove that the algorithm solves the weighted H∞ consensus problem. We
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now need to show the validity of the following inequality:

||z||2 − γ2
ρ

n
||ω̃||2 + γ2

ρ

nβ2γ2
V̇σ < 0 (3.28)

By using the results in part b) of Lemma 3.5, one obtains:

1

T

∫ T

0

μ−Nσ(t)

(
||z||2 − γ2

ρ

n
||ω̃||2

)
dt

≤ 1

T

∫ T

0

μ−Nσ(t)

(
||z||2 − γ2

ρ

n
||ω̃||2 + γ2

ρ

nβ2γ2
V̇σ

)
dt < 0

Since Nσ(t) ≤ t
τa

and α ≥ ln(μ)
τa

, we have e−αt ≤ e−
ln(μ)
τa ≤ μ−Nσ(t) and by

invoking Lemma 3.6, one obtains:

1

T

∫ T

0

e−αt||z||2dt ≤ 1

T

∫ T

0

μ−Nσ(t)||z||2dt

<
1

T

∫ T

0

γ2
ρ

n
||ω̃||2dt ≤ 1

T

∫ T

0

γ2
ρ ||ω||2dt

which implies that the inequality (3.14) is satisfied. By substituting V̇σ into

the inequality (3.28) and multiplying its left-hand side by nβ2γ2

γ2
ρ

, one obtains:

nβ2γ
2

γ2
ρ

zT z− β2γ
2ω̃T ω̃ + V̇σ

≤ nμ
γ2

γ2
ρ

zTPHσ ⊗ Iz− γ2ω̃TPHσ ⊗ Iω̃ + V̇σ

≤ zTPHσ ⊗
(
−QA + nμ

γ2

γ2
ρ

I

)
z < 0

Therefore, since γρ = γ
√
nμ and QA > I, the inequality (3.14) is satisfied and

this concludes the proof of part b). �

3.4 Simulation Results

The effectiveness and performance capabilities of our proposed consensus de-

sign methodologies are now demonstrated through the following numerical

simulations. Towards this end, first the diving consensus problem of a team
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of four unmanned underwater vehicles (UUVs) is considered. These UUVs are

5.3 meters long and weigh 5.4 tons and their linearized diving dynamics can

be represented as ẋi = Axi + Bui + Bωωi, i = 1, ..., 4 [140], where:

A =

⎡
⎢⎢⎣

−0.7 −0.3 0

1 0 0

0 −ν0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0.035

0

0

⎤
⎥⎥⎦ , Bω =

⎡
⎢⎢⎣

0

0.1

0

⎤
⎥⎥⎦

and where xi = [qi, θi, di]
T , di denotes the depth, θi denotes the pitch angle,

qi denotes the pitch angular velocity, and ν0 denotes the nominal value of

the surge linear velocity and for simulations is set to 0.3m/s. The control

ui denotes the deflection of the control surface from the stern plane and ωi

denotes the external disturbances. The three digraphs associated with the

switching communication network of the team are shown in Fig. 3.1, where

the switching signal is changing every 20 seconds. The value of the constant

ε in Lemma 3.4 is set to minσ∈Iσ{Re(λ(Hσ))} = 1.382 and is computed based

on the network topologies shown in Fig. 3.1. Furthermore, the other design

parameters are selected as QHσ = QA = I, γρ = 10, β1 = 0.1577, β2 = 1.2633

and RMS(ωi) = 1.

The depth and the control effort of the agents are depicted in Figures

3.2 and 3.3 for the weighted H∞ scheme and in Figures 3.4 and 3.5 for the

H∞ scheme. Quantitative comparisons between the two control strategies

are shown in Table 3.1. It follows that the weighted H∞ design approach

can achieve the same minimum dwell time constraint by utilizing less control

effort, however the H∞ design approach has a faster settling time. It is worth

noting, the consensus error in Table 3.1 is dimensionless.

Second, to compare our proposed H∞ schemes with another work in the

literature, the method presented in [58] is chosen for comparison which can

be applied to multi-agent teams with directed and switching information flow

graphs. However, the method in [58] can only be applied to a multi-agent of

high-order integrators. Therefore, we consider a new team that consists of 3rd

order integrator agents. For such a team we take for each agent B = Bω =

[0, 0, 1]T with the same communication network topologies as depicted in Fig.

3.1. Moreover, the same feedback gain K = [2.2905, 4.5878, 3.4494] is used
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Table 3.1: The controller parameters and comparative performance of the
resulting two control strategies.

H∞ Performance Weighted H∞ Performance

RA 0.001 0.005

γ 0.2791 2.0397

kδ 0.85 -

δ 0.1356 0.1108

τa 18.05 18.78

K 34.9664 13.7931
37.7672 11.6912
-30.1026 -10.3274

Control effort (max) 17.64 deg 5.22 deg

Control effort (L2 norm) 90 22.29

Consensus error (RMS) 3× 10−4 3.5× 10−4

Settling time 11 sec 13 sec

(a) (b) (c)

Figure 3.1: Communication network digraphs for a team of 4 UUVs.

for the method in [58] and the one proposed in our work. The quantitative

comparison between the two methods is now provided in Table 3.2. This table

shows that the method proposed in [58] does lead to a less conservative γρ

but at the expense of significant increase in the computational time even for

a small team of 4 multi-agents in comparison to our proposed method. This

performance is as expected as we have stated in the Introduction section.

3.5 Summary

In this chapter, H∞ and weighted H∞ consensus problems for a team of ho-

mogenous LTI multi-agent systems are investigated subject to switching topol-

ogy and directed communication network graphs. A novel design procedure is
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Figure 3.2: Depth of the agents using the weighted H∞ method.

Figure 3.3: Control effort of the agents using the weighted H∞ method.
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Figure 3.4: Depth of the agents using the H∞ method.

Figure 3.5: Control effort of the agents using the H∞ method.
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Table 3.2: The comparison between our proposed H∞ method and the method
in [58].

Our H∞ Performance Method in [58]

γρ 7.1818 5.6664

Computational time (best case) 0.0014 sec 1.0462 sec

Computational time (worst case) 0.0076 sec 1.0748 sec

Computational time (average) 0.0018 sec 1.0532 sec

proposed based on the solution of an algebraic Riccati equation and sufficient

conditions are presented based on state feedback stabilizability of an LTI sys-

tem with a bounded L2 gain. The stability of the overall closed-loop switched

system is shown based on Lyapunov analysis. Finally, the effectiveness of our

proposed two consensus schemes are illustrated through simulations that are

applied to a switching network of four unmanned underwater vehicles as well as

a team of four 3rd order integrator multi-agent systems. The simulation results

also demonstrate that our proposed consensus algorithm design methodology

is quite computationally feasible in comparison to the methods proposed in

the literature.

In the next chapter we address cooperative actuator fault accommodation

strategy for a team of LTI multi-agent systems assuming the information flow

graph is directed and switching.
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Chapter 4

Actuator Fault Accommodation

Strategy for a Team of

Multi-Agent Systems Subject to

Switching Topology

In this chapter a cooperative actuator fault accommodation strategy is studied.

The multi-agents systems is considered to be a team of LTI multi-agent systems

and information flow graph is directed and switching topology. The effects

of two actuator fault types, namely loss-of-effectiveness fault and saturation

fault are investigated and it is assumed that the faults can simultaneously

occur in more than one agent and the exact estimate of the fault severities are

not available. However, the faults can be detected and isolated by an Fault

Detection and Isolation (FDI) module and it also can provide an inaccurate

estimate of the fault severities.

Our proposed fault accommodation strategy is based on a weighted con-

sensus algorithm in which the level of control effort that each agent contributes

to the consensus achievement of the team is proportional to its weight. In the

proposed weighted consensus algorithm, the agents control gains are selected

based on the solution of an algebraic Riccati equation (ARE) and whenever,

a fault is detected by an FDI module these control gains in our proposed

weighted consensus algorithm are modified based on inaccurate estimates of
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fault severities.

Due to the fact that in practice an FDI module cannot exactly estimate

the fault severities, the faulty agents could not contribute as much as the

healthy agents to the consensus achievement of the team. This consequently

could affect the overall team performance and mission reliability. To overcome

this drawback, the agents weights in our proposed consensus algorithm are

reconfigured to compensate for the lack of control effort in the faulty agents

by increasing the weight of healthy agents to allocate higher control efforts.

Towards this end, a non-convex optimization problem is formulated and a

steepest descent gradient algorithm is used to obtain a sub-optimal solution.

Based on this solution the agents weights are then reconfigured. Furthermore,

a method is also proposed to implement our recovery strategy for dealing with

actuator saturation.

In comparison to the work in the literature in our fault accommodation

strategy the dynamics of the agents is considered to belong to general LTI

systems, the faults in agents can occur simultaneously and in more than one

agent, and an accurate estimate of fault severity is not required. Furthermore,

in our proposed solution, the communication network is directed, the network

topology can switch arbitrarily, and the proposed recovery strategy can be

implemented even if the fault severity estimate of more than one agent is

inaccurate.

The remainder of the chapter is organized as follows. The model of multi-

agent systems and the information flow graph are presented in Section 4.1.

The problem statement and our proposed fault recovery strategy are devel-

oped and presented in Section 4.2. Section 4.3 provides numerical simulation

results that support our proposed theoretical results and compares the perfor-

mance of our proposed solution with the centralized and decentralized fault

recovery approaches that are available in the literature. Finally, the chapter

is concluded by a conclusions in Section 4.4.
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4.1 Multi-Agents System Model

Consider a team of n homogeneous multi-agent systems where each agent is

modeled as follows

ẋi = Axi + Bui i ∈ V = {1, 2, ..., n} (4.1)

where xi ∈ �p denotes the state of the ith agent, A ∈ �p×p, B ∈ �p×m and

ui ∈ �m denotes the control input of the ith agent.

Assumption 4.1. The pair (A,B) is controllable.

Throughout the chapter it is assumed that actuators may not function

ideally and their desired output value and actual control efforts supplied by

them may be different. Let us denote the desired output of the actuator of the

ith agent by u∗
i and its actual value by ui. In a healthy agent the real actuator

output is the same as its desired value, but in a faulty agent these quantities

are not the same and it can be represented as follows:

ui = uh
i + uf

i

where uh
i denotes amount of the control effort of the agent if it was healthy

and uf
i denotes the difference between ui and uh

i . Now, let us rewrite the

dynamical model of the multi-agent team as follows:

ẋi = Axi + Buh
i + Buf

i , i ∈ V (4.2)

In this chapter, the type of actuator faults that we consider belong to the

loss-of-effectiveness (LOE) and actuator saturation faults. The LOE fault can

be formally formulated as

ui = (I −Fi)u
∗
i (4.3)

where Fi is a diagonal matrix representing the unknown fault severity of the

actuators. In this chapter it is assumed that none of the actuators is fully

nonfunctional and therefore I − Fi > 0. To formally represent the actuator
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saturation fault let us define a diagonal matrix Ui as:

Ui = [Ui1, Ui2, ..., Uim]
T

where Ui1, Ui2, ..., Uim > 0 correspond to the positive saturation bound of the

ith agent actuator and m is the dimension of control input. Moreover, let us

denote ui = [ui1, ui2, ..., uim]
T and u∗

i = [u∗
i1, u

∗
i2, ..., u

∗
im]

T . For j = 1, ...,m the

relationship between uij and u∗
ij is now represented by:

uij =

⎧⎪⎪⎨
⎪⎪⎩

Uij if u∗
ij > Uij

u∗
ij if −Uij ≤ u∗

ij ≤ Uij

−Uij if u∗
ij < −Uij

(4.4)

Remark 4.1. In this chapter, it is assumed that an actuator fault is detected

and isolated by using an FDI module according to standard results in the lit-

erature [100]- [103] and only an approximate and inaccurate estimate of the

fault severity is available.

The agents have only access to measurements that are relative to their

neighboring agents for designing their distributed control strategies to achieve

consensus. In the case that the actual states of the agent can be measured,

one can construct the relative states. A formal definition of the consensus

achievement is presented next.

Definition 4.1. The control input ui solves the consensus problem if

||xi − xj|| → 0 as t → ∞, ∀i, j ∈ {1, ..., n} (4.5)

Remark 4.2. Consider the multi-agent system (4.2). Note that for any vector

signal x̄(t), one can write

||xi − xj|| = ||xi − x̄− xj + x̄|| = ||zi − zj|| ≤ ||zi||+ ||zj||

where

||zi|| = ||xi − x̄||.

Therefore, if ||zi|| → 0 as t → ∞, ∀i ∈ {1, ..., n} then the multi-agent system
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(4.1) achieves consensus.

To describe the set of neighboring agents and the information exchange

protocol of the team, let us define the information flow digraph (directed

graph) as G(t), the node set V and the edge set EG(t) as per Definition 3.1. In

this chapter, it is assumed that there is no node with an edge to itself. The set

of neighbors of an agent i is denoted by Ni(G(t)) as per Definition 3.7. The

Laplacian matrix L(G(t)) and the node degree κi defined as per Definition 3.8

and |Ni(G(t))| denotes the cardinality of Ni(G(t)).

Assumption 4.2. Throughout this chapter, it is assumed that the digraph

G(t) is always strongly connected. This implies that at any time any node can

be reached from any other node by a directed path in the graph.

Definition 4.2. We denote α(G(t)) by

α(G(t)) = min {real(λ(L(t)))|λ(L(t)) �= 0} . (4.6)

The quantity α(G(t)) in undirected graphs is equal to and in directed graphs

is larger that or equal to the algebraic connectivity of the graph [125]. In other

words, the smaller α(G(t)) then the less connected is the graph.

Since the information flow graph G(t) is always strongly connected, the

agents can reconstruct the Laplacian matrix of the communication graph on-

line by using distributed algorithms such as the one proposed in the Proposi-

tion 3.1 in [77]. Therefore, α(G(t)) can be computed and constructed on-line

and there is no need to determine it in advance and off-line.

Consider piece wise continuous signal σ(t) as per Definition 3.9 and func-

tion Nσ(T1, T2) as per Definition 3.13 and let τa be the average dwell time of

switching signal σ(t) as per Definition 3.14.

In the remainder of the chapter and for brevity, Gσ denotes Gσ(t) as per

Definition 3.10, Lσ = L(Gσ(t)), ασ = α(Gσ(t)) and Ni(t) = Ni(Gσ(t)).

Let us define the matrix Hσ, which in the remainder of the chapter will be

utilized for the stability analysis of our proposed algorithm, as:

Hσ = Lσ + 2
Δσ

n
11T (4.7)
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where 1 = [1, 1, ..., 1]T ∈ �n and Δσ denotes the maximum in-degree of all the

graph nodes over time. We are now in a position to state our first result.

Lemma 4.1. If the digraph Gσ is strongly connected, then the real parts of all

eigenvalues of the matrix Hσ which is defined by equation (4.7) are positive

and greater than or equal to α(G(t)).

Proof. Let G∗
σ be a graph that its corresponding Laplacian matrix L∗

σ is equal

to

L∗
σ =

[
Lσ 0

− 2
n
Δσ1

T 2Δσ

]

Since the graph Gσ is strongly connected, the graph G∗
σ has a directed spanning

tree. Using Remark 1 in [15], one can conclude that the real parts of all nonzero

eigenvalues of the matrix L∗
σ are positive, and λ = 0 is a simple eigenvalue of

L∗
σ.

It can be observed that λ = 2Δσ is an eigenvalue of L∗
σ and its eigenvector

is [0Tn 1]T . Now assume that λ �= 2Δσ ∈ C is an eigenvalue of L∗
σ, and the

vector [v1
Tv2]

T is its corresponding eigenvector, where v1 ∈ C
n and v2 ∈ C.

Since λ �= 2Δσ, therefore v1 �= 0, and since

L∗
σ

[
v1

v2

]
=

[
Lσv1

− 2
n
Δσ1

Tv1 + 2Δσv2

]
=

[
λv1

λv2

]

one can conclude that λ is also an eigenvalue of the matrix Lσ.

On the other hand, assume that λ ∈ C and v1 ∈ C
n is the eigenvalue and

the corresponding eigenvector of Lσ, respectively. According to Theorem 2

in [141], real(λ) < 2Δσ where it is always possible to define v2 as follows:

v2 =
2

n(2Δσ − λ)
1Tv1

Therefore, λ is an eigenvalue of L∗
σ and [v1

Tv2]
T is its associated eigenvector.

By applying Lemma 3.3 to L∗
σ one can now conclude proof of the lemma. �

Using Lemma 4.1, it follows that all eigenvalues of the matrix Hσ − ηασI

are in the right-half plane, where η < 1 is a positive constant. Therefore, there
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exist symmetric positive definite matrices PHσ , QHσ ∈ �n×n such that

PHσHσ +Hσ
TPHσ − 2ηαPHσ = QHσ > 0 (4.8)

We now define the parameters βσ1, βσ2 and μσ as follows:

βσ1 = λmin(PHσ),

βσ2 = λmax(PHσ),

μσ =
βσ2

βσ1

(4.9)

We are now in a position to define all the parameters and matrices that

are associated with the information flow graph. Their fundamental properties

will be used in the next section where our proposed consensus algorithm and

fault recovery strategies are presented.

4.2 Problem Statement and Main Results

In this section, first a weighted consensus algorithm is proposed for consensus

achievement of the multi-agent team (4.2) in presence of LOE actuator faults

and switching network topology. The proposed consensus algorithm is based

on the assumption that is presented in Remark 4.1 and uses inaccurate esti-

mates of the fault severities for implementing the desired control laws to the

actuators. To make our proposed algorithm more useful in real-world appli-

cations, the actuator faults could indeed occur in some agents simultaneously.

However, depending on how inaccurate the faults severities estimations are,

the consensus achievement of the multi-agent team could be affected. A fault

index is therefore defined here to quantitatively measure the effects of inac-

curate estimations. Subsequently, based on this fault index an optimization

problem and an algorithm to reconfigure the weights of the agents in the con-

sensus algorithm are proposed. Finally, below it is also shown how our active

fault recovery scheme can also be used to improve the consensus achievement

performance of multi-agent team in presence of actuator saturation.
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4.2.1 Weighted Consensus Strategy

Consider the multi-agent system (4.2) and let F̂i denote the estimate of the

fault severity of the ith agent and F̃i = Fi−F̂i denote the FD estimation error.

The objective of our proposed weighted consensus algorithm is to design the

desired control signal u∗
i for the i

th agent such that the actual actuator output

ui is the same as uh
i , that is

u∗
i = (I − F̂i)

−1uh
i (4.10)

For a healthy agent or when the fault severity is estimated accurately ui = uh
i .

Remark 4.3. In this chapter, it is assumed that none of the actuators is fully

non-functional and FDI module uses this fact, therefore all the matrices I−F̂i

are invertible. Unsurprisingly large values of fault severity estimations in some

actuators due to either high degrees of fault severities or estimation error, will

result in ill-conditioned matrices and makes recovery procedure ineffective.

However, in case of an inaccurate fault severity estimation that is of our

main interest here there is an error between ui and uh
i as given by uf

i according

to:

uf
i = −F̃i(I − F̂i)

−1uh
i

Let us also define a fault factor matrix Fi as given by

Fi = diag[fi1, ..., fim] = −F̃i(I − F̂i)
−1 (4.11)

Now we specify our proposed weighted consensus achievement algorithm

as follows:

uh
i = −Gi

∑
j∈Ni

K(xi − xj) (4.12)

where K ∈ �m×p is the relative state control gain matrix and

Gi =
κi

2ηασ|Ni(t)| (4.13)

is the weight associated with the ith agent and κi is the in-degree of the ith

node of the information flow graph. The value of κi is set to 1 for the healthy
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agents. Subsequently, we will propose a reconfiguration strategy in order to

adjust these values when the FDI module detects a fault in the team.

Definition 4.3. Associated with the faulty multi-agent team (4.2) we define

the team fault estimation error index as follows:

Findx =
n∑

i=1

||Fi||max

κi
√
μσ

ηασ

√
1 +

1

|Ni(t)| (4.14)

Now, we are in a position to present the main result of this section.

Theorem 4.1. Let the faulty multi-agent system (4.2) satisfies Assumption

4.1, and a piecewise constant switching signal σ(t) and the information flow

graph Gσ satisfy Assumption 4.2. Let ασ be defined as in equation (4.6) and

the team fault estimation error index Findx be defined as in equation (4.14).

Consider the positive definite matrix QA and let PA be the symmetric positive

definite solution of the following algebraic Riccati equation:

PAA+ ATPA − PABBTPA +QA = 0 (4.15)

Let the relative state cooperative control gain K in equation (4.12) be selected

as

K = BTPA (4.16)

Then there exist Fmax > 0 and τa > 0, such that if the team fault estimation

error index Findx satisfies Findx < Fmax and the average dwell time of σ(t) is

τa, the multi-agent system (4.2) achieves consensus.

Proof. Consider the augmented vectors x = [xT
1 , ..., x

T
n ]

T , uf = [ufT

1 , ..., ufT

n ]T

and the block-diagonal matrix F = diag[F1, ..., Fn]. The multi-agent system

(4.2) model can be rewritten as follows:

ẋ = I ⊗ Ax− 1

2ηασ

Lσ ⊗ BKx+ I ⊗ Buf (4.17)

Let us define zi = xi − x̄ for i = 1, ..., n, where the state vector x̄ is governed
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by the following dynamical equation

˙̄x = Ax̄− Δσ

nηασ

B
n∑

j=1

K(x̄− xj), x̄(0) =

∑n
j=1 xj(0)

n
(4.18)

Consider the augmented vector z which is defined as follows:

z = [zT1 , ..., z
T
n ]

T = x− 1⊗ x̄

. Since (Lσ ⊗ BKR)x = (Lσ ⊗ BKR)z+ (Lσ ⊗ BKR)(1⊗ x̄) = (Lσ ⊗ BKR)z,

from equation (4.17) one can obtain:

ż = ẋ− (1⊗ ˙̄x) = (I ⊗ A)x− 1

2ηασ

(Lσ ⊗ BKR)z+ I ⊗ Buf

− (I ⊗ A)(1⊗ x̄)− Δσ

nηασ

(11T ⊗ BKR)z

= (I ⊗ A)z− 1

2ηασ

(
(Lσ + 2

Δσ

n
11T )⊗ BKR

)
z+ I ⊗ Buf

Now, by adding and subtracting 1
2
I ⊗BKz to the right-hand side of equation

(4.19), one obtains

ż = I ⊗ (A− 1

2
BK)z− 1

2ηασ

(Hσ − ηασI)⊗ BKz+ I ⊗ Buf (4.19)

Now, consider the following piecewise quadratic Lyapunov function candi-

date

Vσ = Vσ(t)(z) = zTPHσ ⊗ PAz (4.20)

Taking time derivative of Vσ along the trajectories of the system (4.19) and

using the equations (4.16) and (4.8), one can obtain:

V̇σ = zT
(
PHσ ⊗

(
PA(A− 1

2
BKR) + (A− 1

2
BKR)

TPA

))
z

− zT

2ηασ

((
PHσ(Hσ − ηασI) + (Hσ − ηασI)

TPHσ

)⊗ BKR

)
z

+zT (PHσ ⊗ PAB) uf + uf
T
(
PHσ ⊗ BTPA

)
z (4.21)

= zT
(
PHσ ⊗

(
PAA+ ATPA − PABBTPA

))
z

74



+2zT (PHσ ⊗ PAB) uf − zT

2ηασ

(
QHσ ⊗ (PABBTPA)

)
z

Let us define diagonal matrix Γσ = diag[γ11, ..., γik, ..., γnm], where γik =√
|Ni(t)|+1

2ηασ

√
βσ1βσ2|Ni(t)|

κi. Noting that

uf =
1

2ηασ

(Lσ ⊗ BTPA)z

it is easy to verify that the following inequality holds:

2zT (PHσ ⊗ PAB) uf ≤ zT (PHσ ⊗ PAB)F
1
2ΓσF

1
2

(
PHσ ⊗ BTPA

)
z

+
1

4η2α2
σ

zT
(
LT
σ ⊗ PAB

)
F

1
2Γ−1

σ F
1
2

(
Lσ ⊗ BTPA

)
z

Knowing the fact that for any two matrices A ∈ �m×n and B ∈ �n×p we have

AB =
∑n

i=1 coli(A)rowi(B), one can obtain:

(PHσ ⊗ PAB)F
1
2ΓσF

1
2

(
PHσ ⊗ BTPA

)

=
n∑

i=1

m∑
k=1

γikfik
(
rowT

i (PHσ)⊗ rowT
k (B

TPA)
)

(
rowi(PHσ)⊗ rowk(B

TPA)
)

=
n∑

i=1

m∑
k=1

γikfik
(
rowT

i (PHσ)rowi(PHσ)
)

⊗ (
rowT

k (B
TPA)rowk(B

TPA)
)

≤
n∑

i=1

||Fi||maxκi

√|Ni(t)|+ 1

2ηασ

√
βσ1βσ2|Ni(t)|

(
rowT

i (PHσ)rowi(PHσ)
)

⊗ PABBTPA

≤
n∑

i=1

Findx

2βσ2

(
rowT

i (PHσ)rowi(PHσ)
)⊗PABBTPA

=
Findx

2βσ2

P 2
Hσ

⊗PABBTPA ≤ 1

2
FindxPHσ⊗PABBTPA

and

1

4η2α2
σ

(
LT
σ ⊗ PAB

)
F

1
2Γ−1

σ F
1
2

(
Lσ ⊗ BTPA

)
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=
1

4η2α2
σ

n∑
i=1

m∑
k=1

γ−1
ik fik

(
rowT

i (Lσ)⊗ rowT
k (B

TPA)
)

(
rowi(Lσ)⊗ rowk(B

TPA)
)

≤
n∑

i=1

||Fi||max

√
βσ1βσ2|Ni(t)|

2ηασκi

√|Ni(t)|+ 1

(
rowT

i (Lσ)rowi(Lσ)
)

⊗ (
PABBTPA

)
Using the fact that:

||rowi(Lσ)|| = κi

√
1 +

1

|Ni(t)|
The following inequality holds:

≤
√
βσ1βσ2

2

n∑
i=1

(
||Fi||maxκi

ηασ

√
|Ni(t)|+ 1

|Ni(t)|

)
I⊗(

PABBTPA

)

=
βσ1

2
FindxI ⊗

(
PABBTPA

) ≤ 1

2
FindxPHσ ⊗ PABBTPA

Now, by substituting the above inequality into equation (4.21) we have:

V̇σ ≤ −zT
(
(PHσ ⊗QA) +

1

2ηασ

(QHσ ⊗ PABBTPA)

)
z

+ Findxz
T (PHσ ⊗ PABBTPA)z (4.22)

≤ −zT
(
PHσ ⊗ (QA − FindxPABBTPA)

)
z

Since matrix PABBTPA is positive semi-definite, then there exists a Fmax > 0

such that:

QA − FmaxPABBTPA ≥ Q > 0

where Q is a positive definite matrix. Now, let us define

δ = min
λmin(Q)

λmax(PA)

Given that

− (PHσ ⊗Q) ≤ −λmin(Q)(PHσ ⊗ I) ≤
− δλmax(PA)(PHσ ⊗ I) ≤ −δPHσ ⊗ PA
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we have:

V̇σ ≤ −δzTPHσ ⊗ PAz ≤ −δVσ (4.23)

It is easy to verify that the following properties are satisfied:

1. V̇σ(t) ≤ −δVσ(t) for all t > 0,

2. β1||z||2 ≤ Vσ(t) ≤ β2||z||2 for all t > 0, where β1 = βσ1λmin(PA) and

β2 = βσ2λmax(PA), and

3. Vσ(t̂1) ≤ μVσ(t̂2) for any t̂1, t̂2 > 0, where μ = β2

β1
.

By selecting τa > ln(μ)
δ

and given that N = Nσ(T ) ≤ T
τa
, one can verify

that δ∗T ≤ δT − ln(μ)N holds for any T > 0, where δ∗ is a positive constant

equal to δ − ln(μ)
τa

. Therefore, we have:

||z(T )|| ≤
√

β2

β1

e−
1
2
δ∗T ||z(0)|| (4.24)

and this guarantees the exponential convergence of z → 0 as t → ∞. Using

Remark 4.2, one can now conclude that the proof of the theorem is complete.

�

4.2.2 Consensus Control Reconfiguration Strategy

To improve the reliability of the team with respect to fault severity estimation

errors that are provided by the FDI module, a consensus control reconfigu-

ration strategy is now proposed. Inspired by the team fault estimation error

index as stated in Definition 4.3, in this section our objective is to minimize

κi for the faulty agents while maximizing ασ. In other words, our goal is to

increase the connectivity of the information flow graph while decrease the role

of the faulty agents.

To formally present our proposed reconfiguration strategy, let us define the

vector K = [κ1, ..., κn]
T and define L(K) = [�ij(κi)], where �ij(κi) defined as in

equation (3.1). Also, let αK = α(L(K)), HK = LK + 2ΔK
n
11T , where ΔK de-

notes maximum in-degree of all nodes of a graph with a Laplacian matrix equal

to LK. Consider cκi
= C(||F̂i||), where C(||F̂i||) is a positive and increasing

function of the fault estimate of the ith agent.
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In our proposed reconfiguration strategy we need to obtain a solution to

the following optimization problem:

Minimize
K

√
μK

CTK
αK

(4.25)

where C = [cκ1 , cκ2 , ..., cκn ]
T , μK = λmax(PK)

λmin(PK)
, and PK is the solution to

PKHK + HT
KPK − 2ηαK = QHσ . In general, the above optimization problem

has no analytical solution and should be solved by numerical methods. Fur-

thermore, since it is a non-convex optimization problem, in general it cannot

be guaranteed that the resulting numerical solution is the global one. How-

ever, even sub-optimal solutions can improve the fault recovery performance

of the team.

There are various numerical methods available to solve the above opti-

mization problem. In this chapter, Nelder–Mead simplex method presented

in [142] is used to to obtain find sub-optimal solutions to problem (4.25). In

other words, a set of sub-optimal values for κi is obtained that can be used to

reconfigure the weights of agents in the consensus control algorithm that is de-

fined in equation (4.13). In the reconfigured consensus algorithm the healthy

agents are allocating higher control efforts and the consensus achievement of

the team is less dependent on the control efforts of the faulty agents and

therefore, it leads to improving the fault recovery performance of the team.

Since the new set of agent weights are the solution of an optimization prob-

lem, it can be argued that the fault recovery performance of the team has been

enhanced by using the reconfiguration strategy, however the amount of quanti-

tative improvement is dependent on the information flow graph structure and

can be determined only after solving the optimization problem (4.25).

Remark 4.4. To select cκi
in the optimization problem (4.25) without consid-

ering the severity of faults, it is possible to set it to 1 for faulty agents and set

it to 0 for healthy agents.
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4.2.3 Consenus Achievment of the Multi-agent Team in

Presence of Actuator Saturation

Our proposed reconfiguration strategy in the previous subsection can also be

used to improve the consensus achievement performance of the multi-agent

team due to presence of actuator saturations faults. Towards this end, consider

that the agents actuators are subject to saturation faults, which is formally

presented in equation (4.4) and and let us define Ui as minimum of the elements

of Ui for each agent. Now, we implement the consensus algorithm (4.12) and

set u∗
i = uh

i . By following along the same lines as in the proof of Theorem 4.1

one can verify that the following inequality holds.

||uh
i || ≤

κi

2ηασ

||K||
√

1 +
1

|Ni(t)| ||z||

Therefore, if one can guarantee that the inequality below holds

CTK
ασ

||z|| ≤ 1 (4.26)

where C is set to

C =

[
||KR||
2ηU1

√
1 +

1

|N1(t)| , ...,
||KR||
2ηUn

√
1 +

1

|Nn(t)|

]T

(4.27)

and K = [κ1, ..., κn]
T , is satisfied for i = 1, ..., n then one can conclude

that all actuators in all agents are in their linear operation region and are not

saturated.

The above results are now summarized in the following lemma.

Lemma 4.2. Consider the multi-agent team (4.2) that satisfies Assumption

4.1 and its actuators are subject to saturation faults as defined in (4.4). Con-

sider a piecewise constant switching signal σ(t) and let the information flow

graph Gσ satisfies Assumption 4.2. Let ασ be defined as in equation (4.6) and

consider the vector K = [κ1, ..., κn]
T and positive definite matrix QA, and let

PA be the solution of the algebraic Riccati equation (4.15) and the relative state
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cooperative control gain K is defined as in equation (4.16). Assume that the

initial conditions of the multi-agent team satisfy

||z(0)|| ≤
(
CTK
ασ

√
μσ

λmax(PA)

λmin(PA)

)−1

(4.28)

where C is defined as in equation (4.27), and let the control signal uh
i

defined in equation (4.12) be used as the desired control signal for the agent.

Then there exists τa > 0, such that if the average dwell time of σ(t) is τa, the

multi-agent system (4.2) achieves consensus.

Proof. From equation (4.9) it follows that
√
μσ

λmax(PA)
λmin(PA)

=
√

β2

β1
≥ 1 and there-

fore from condition (4.28) one can verify that the inequality (4.26) holds. This

implies that at t = 0, none of the actuators are saturated. Thus, follow-

ing along the same lines as in the proof of Theorem 4.1 and using the same

Lyaponuv function and noting that all the actuators are in their linear oper-

ating region at the initial conditions, one can verify that the inequality (4.24)

holds. Using condition (4.28) and the inequality (4.24), for any t > 0 we have:

||z(t)|| ≤
(
CTK
ασ

)−1

and from the above inequality one can conclude that the inequality (4.26)

is always satisfied and none of the actuators are saturated. Therefore, the

multi-agent team achieves consensus. �

It should be pointed out that improving the tolerance of the multi-agent

system and extending the acceptable initial condition boundary is an impor-

tant issue. The idea here is to adjust the agent gains in our proposed weighted

consensus algorithm such that agents with larger saturation bounds contribute

more control effort towards the consensus achievement of the multi-agent team.

As can be seen in the condition (4.28), the acceptable boundary for the initial

conditions is proportional to the inverse of
√
μσ

CTK
ασ

, and therefore our pro-

posed solution to the optimization problem (4.25) can maximize this bound.
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Figure 4.1: Clockwise ring topology of the information flow graph.

4.3 Simulation Results

To show the effectiveness of our proposed fault accommodation method, a

multi-agent team of LTI systems consisting of 10 agents having the following

representation is considered

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

−1 0 10 10

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎥⎦

Due to the term
√

1 + 1
|Ni(t)| in equation (4.14), the worst case scenario

to consider is when |Ni(t)| = 1. Therefore, to demonstrate the performance

capabilities of our proposed fault recovery strategy, the information flow graph

topology is selected to be clockwise or counter-clockwise ring topologies that

switches every 10 seconds between them. Figure 4.1 shows the clockwise ring

topology.

The design parameter η is set to 0.95, QH = I and QA = 10I. The relative

state cooperative control gain is then computed and the resulting matrix is

given by:
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Figure 4.2: Norm of the agents states corresponding to the healthy team.

K =

[
1.7017 2.6654 6.9806 3.8183

1.7017 2.6654 3.8183 6.9806

]

and Gi = 2.7558 for i = 1, ..., 10. The initial states of the agents are chosen

randomly in the interval [−2, 2]. Figure 4.2 shows ||xi|| corresponding to all

agents and Figure 4.3 shows the consensus error of the team, which is defined

as follows
n∑

i=1

n∑
j=i+1

||xi − xj||

and finally Figure 4.4 illustrates the control signals of the agents. It follows

that the team reaches consensus and ||xi|| remains bounded for all agents and

the average consensus team error over 50sec is 1.566.

Now assume that at t = 1sec the 1st, 3rd, 5th, 7th and 9th agents simulta-

neously face actuator faults with severities of 50% and let the FDI module

detects the faults and estimates their severity as 95% of the actual fault sever-

ities. Figure 4.5 shows the team consensus error when only our proposed

consensus algorithm without reconfiguration strategy is used to accommodate
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Figure 4.3: Consensus error of the healthy team.

Figure 4.4: Control signals of the healthy team
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Figure 4.5: Consensus error of the team in presence of faults (95% estimated
accurately by the FDI module ) by invoking our proposed consensus scheme
without reconfiguration.

the faults and Figure 4.6 shows the control signals.

Now consider that the estimate of fault severity is less accurate and it is

estimated to within 30% of the actual fault severities. It follows from Figure 4.7

that the team now cannot achieve consensus without using the reconfiguration

strategy. Figure 4.8 shows the control signals of the agents.

To implement the reconfiguration strategy, C is selected as stated in Section

4.2.2 according to:

C(||F̂i||) = 1

1− ||F̂i||2
− 1

and the step size sn is set to 0.95. The weights of the agents as defined in

equation (4.13) are obtained based on the solutions to the optimization prob-

lem (4.25) associated with the clockwise and counter-clockwise ring topologies.

By applying Matlab fminsearch function as implementation of optimization

method presented in [142], the resulting values for the agent weights are ob-

tained as 1.67, 3.84, 1.72, 3.73, 1.82, 3.86, 1.86, 3.86, 1.75, 3.86 for first to 10th
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Figure 4.6: Control signals of the team in presence of faults (95% estimated
accurately by the FDI module ) by invoking our proposed consensus scheme
without reconfiguration.
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Figure 4.7: Consensus error of the team in presence of faults (30% estimated
accurately by the FDI module) by invoking our proposed consensus scheme
without reconfiguration.
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Figure 4.8: Control signals of the team in presence of faults (30% estimated
accurately by the FDI module ) by invoking our proposed consensus scheme
without reconfiguration.
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Figure 4.9: Consensus error of the team in presence of faults (30% estimated
accurately by the FDI module) by invoking the reconfiguration strategy.

agent, respectively. As stated in Section 4.2, the optimization problem is non-

convex and therefore one cannot generally guarantee that the above solution

is the global minimum of the optimization problem (4.25). However, it can

be shown that the fault tolerant performance of the multi-agent team is sig-

nificantly improved. Figures 4.9, 4.10 and 4.11 depict the consensus errors

of the team, the norms of agent states and control signals after applying the

reconfiguration strategy, respectively. In this case, the average of the team

consensus error over 50sec is 1.966.

It can be observed that the consensus error converges to zero and the norm

of agents states remain bounded despite a large amount of uncertainty in the

estimation of the fault severities.

Next we compare our proposed algorithm with the work in the literature

on centralized and decentralized fault recovery methods as presented in [44].

It is worth noting that in both fault recovery strategies in [44] the communi-

cation network topology should be fixed and although the developed recovery

algorithms can deal with faults in more than one agent and one can reconfigure
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Figure 4.10: Norm of the agent states in presence of faults by invoking the
reconfiguration strategy.

Figure 4.11: Control signals of the team in presence of faults (30% estimated
accurately by the FDI module) by invoking the reconfiguration strategy.
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Figure 4.12: Consensus error of the team in presence of faults (30% estimated
accurately by the FDI module) by invoking the centralized fault recovery ap-
proach developed in [44].

the controller gains based on the estimate of the fault severites, however the

effects of inaccurate estimates in more that one agent was not investigated.

For comparison with the centralized approach it is assumed that all agents

have access to the relative state measurements of all the other agents. In other

words, the information flow graph is undirected and fully connected. In [44]

following the fault occurrence and based on the estimate of fault severities

the solution of an LMI optimization problem is obtained and a new set of

controller gains is computed. Figures 4.12 and 4.13 show the consensus error

and control signals of the team as a result of the application of this control

strategy. The centralized fault recovery strategy yields an average of the team

consensus error over 50sec of 1.3388.

For comparison with the decentralized fault recovery approach that is de-

veloped in [44], the topology of the information flow graph remains unchanged

and only the controller gains are updated to reconfigure the consensus algo-

rithm. In [44] the agents control gains are fully independent from each other
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Figure 4.13: Control signals of the team in presence of faults (30% estimated
accurately by the FDI module) by invoking the centralized fault recovery ap-
proach developed in [44].
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Figure 4.14: Consensus error of the team in presence of faults (30% estimated
accurately by the FDI module) by invoking the decentralized fault recovery
approach developed in [44].

and are obtained based on the solution of an LMI optimization problem. Fig-

ures 4.14 and 4.15 show the consensus error and control signals of the team

as a result of the application of this control strategy. The average of the

team consensus error over 50sec is 17.964 for the decentralized fault recovery

strategy.

As can be observed from results in Figures 4.12 and 4.14 and the average

team consensus error, the rate of convergence of the consensus error using our

proposed method is significantly faster than the rate of convergence of the

decentralized fault recovery method that is developed in [44]. Not surprisingly

the performance of the centralized method is the best even when compared to

the performance of the healthy team that uses only the ring communication

network topology where the network is not fully connected. Notwithstand-

ing the above benefit, due to communication limitations and constraints it

is not always feasible to use the centralized method when the number of the

agents is too high. Table 4.1 summarizes the above simulation results and
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Figure 4.15: Control signals of the team in presence of faults (30% estimated
accurately by the FDI module) by invoking the decentralized fault recovery
approach developed in [44].
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Figure 4.16: Norm of the agents states in presence of actuator saturation faults
without using our proposed reconfiguration strategy.

presents quantitative comparisons between our proposed strategy and the one

developed in [44].

Finally, to demonstrate the capabilities and effectiveness of our proposed

method to deal with actuator saturation fault, next we consider the same

multi-agent team and communication networks and assume that the actuators

of 1th, 3th, 5th, 7th and 9th agents are saturated and their associated satura-

tion bounds is given by [ 1 1 ]T . By employing the same design parame-

ters η,QH and QA and the same consensus algorithm numerical simulations

for the team of multi-agents are conducted. The states of the agents and

consensus errors are shown in Figures 4.16 and 4.17, respectively. As can

be observed the multi-agent team cannot achieve consensus by using the

recovery control strategy in [44] and as shown in Figure 4.18 actuators of

faulty agents are saturated. To recover the multi-agent team, the vector C

in the optimization problem (4.25) is set as per described in Section 4.2.3 to

[ 0.1422 0 0.1422 0 0.1422 0 0.1422 0 0.1422 0 ]T . The solution to

the optimization problem (4.25) is now computed and the resulting agent gains
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Figure 4.17: Consensus error of the team in presence of actuator saturation
faults without using our proposed reconfiguration strategy.

Figure 4.18: Control signals of the agents affected by actuator saturation faults
without using our proposed reconfiguration strategy.
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Figure 4.19: Norm of the agents states in presence of actuator saturation faults
by invoking our proposed reconfiguration strategy.

Figure 4.20: Consensus error of the team in presence of actuator saturation
faults by invoking our proposed reconfiguration strategy.
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Figure 4.21: Control signals of the agents affected by actuator saturation faults
by invoking our proposed reconfiguration strategy.

are obtained as 1.25, 5.27, 1.20, 2.57, 1.17, 5.08, 1.20, 5.01, 1.25, 5.21 for first to

10th agent, respectively. Figures 4.19, 4.20 and 4.21 show the simulation re-

sults of the recovered multi-agent team that confirms that the team achieves

consensus and none of the actuators are saturated. Table 4.2 provides the

comparative summary of the faulty multi-agent system with and without the

control recovery implementation subject to saturation fault.

4.4 Summary

In this chapter, a fault tolerant consensus scheme for a team of LTI multi-agent

systems is developed under switching topologies and directed communication

network graph. A weighted consensus algorithm is proposed for consensus

achievement of the multi-agent system based on an inaccurate estimate of the

fault severities. Moreover, a control reconfiguration strategy is also proposed

to improve the fault tolerance capabilities of our proposed consensus strategy.

The faults can occur simultaneously in any number of agents and there is no
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Table 4.2: The comparison between consensus performance of the team in
presence of actuator saturations

Without using control
reconfiguration strategy

By invoking control
reconfiguration strategy

Control effort of
faulty agents (max)

1 0.8268

Control effort (L2 norm) unstable 10.28

Consensus error (RMS) unstable 2.036

Settling time (sec) unstable 21.7

need to have an accurate knowledge of the fault severities. Two kinds of faults

are considered, namely a loss-of-effectiveness and a control saturation in the

actuators. The stability of the overall closed-loop switched system is shown

by using Lyapunov analysis. Finally, it is shown how to remedy the actua-

tor faults and saturations in the multi-agent team and improve the consensus

achievement performance by employing our proposed reconfiguration strategy.

The effectiveness and capabilities of our proposed consensus algorithms are

illustrated through numerical simulations to a team of ten multi-agent sys-

tems where the performance of our proposed methods is compared with the

performance of centralized and decentralized fault recovery methods that are

available in the literature.

In the next chapter we address the disturbance attenuation properties of

consensus achievement algorithms for a multi-agent team with output mea-

surement noise and teams of agents with model uncertainties including Lips-

chitz nonlinearity. Furthermore, we propose a cooperative-adaptive consensus

algorithm for a team of multi-agent systems with unknown nonlinearity.
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Chapter 5

Consensus Achievement of

Multi-Agent Teams In Presence

of Measurment Noise and

Model Uncertainties

In this chapter, the disturbance attenuation properties of consensus achieve-

ment algorithms for a multi-agent team with output measurement noise and

teams of agents with model uncertainties including Lipschitz nonlinearity are

investigated. The communication network topology is assumed to be switch-

ing. The teams are homogeneous and the information flow graph is directed.

The sufficient conditions to design observers and distributed controllers are

presented. Based on the solution of two algebraic Riccati equations and with-

out need to solve linear matrix inequalities (LMIs), design techniques are pro-

posed. The stability of the proposed controllers are investigated based on

Lyapunov stability analysis. The effectiveness of the proposed consensus al-

gorithm is illustrated by performing numerical simulations.

Furthermore, a cooperative-adaptive consensus algorithm for a team of

multi-agent systems with unknown non-linearity in presence of unknown dis-

turbance signals is presented. In this proposed cooperative learning method

each agent shares the knowledge learned about the non-linearity with its neigh-

boring agents to improve the overall performance of the team.
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5.1 Consensus Achievement in Presence of Mea-

surement Noise

In this section we consider LTI multi-agent systems and assume that agents

only have access to the their measured outputs which is contaminated by noise.

First, we present the problem statement of this section and based on a new

variable that is presented we drive the overall dynamics of the team. Further-

more, the main result of this section is presented as a theorem and validity of

our analytical results are verified by performing numerical simulations.

5.1.1 Problem Statement And The Main Result

To formally present the problem statement of this section we consider a multi-

agent system with N agents where their dynamics is described by the following

equations:

{
ẋi = Axi + Bui + B2ωi

yi = Cxi + νi
(5.1)

where A ∈ �p×p, B ∈ �p×m, C ∈ �r×p, B2 ∈ �p×q denote real matrices,

and xi ∈ �p and ui ∈ �m, yi ∈ �r, ωi ∈ �q, and νi ∈ �r denote state, control

input, output, disturbance, and measurement noise of the ith agent, respec-

tively. We also assume that the dynamics of all agents satisfy the Assumption

5.1.

Assumption 5.1. In this section it is assumed that the matrix A is not Hur-

witz (see Remark 3.5), the pair (A,B) is controllable, and the pair (A,C) is

observable.

In the remainder of this section, our objective is to design a distributed

cooperative control law ui for the agent to ensure that the team while achieves

output consensus as per Definition 5.1 and can reject effects of input distur-

bances and measurement noise as per Definition 5.2.

Definition 5.1. The control input ui solves the output-consensus problem if

||yi − yj|| → 0 as t → ∞, ∀i, j ∈ {1, ..., n} (5.2)
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Definition 5.2. The multi-agent system (5.1) achieves H∞ output consensus

in presence of disturbance input and measurement noise with bounds γρ and

γn if

• it achieves output consensus as per Definition 5.1 when there is no dis-

turbance, nor measurement noise,

• and there exists a positive constant ξ such that for any T > 0 in pres-

ence of disturbance input and measurement noise, the following inequality

holds:

1

n

(
n∑

i=1

n∑
j=i+1

1

T

∫ T

0

||yi − yj||dt
)

≤γ2
ρ

n∑
i=1

1

T

∫ T

0

||ωi||2dt

+ γ2
n

n∑
i=1

1

T

∫ T

0

||νi||2dt.

Before we continue, let us define the relative state as Ξi =
∑

j∈Ni
xi − xj

and the relative output as Yi =
∑

j∈Ni
yi − yj for the ith agent.

To design the consensus algorithm, let us introduce the following aug-

mented system which represents the dynamics of the entire multi-agent system

{
ẋ = (I ⊗ A)x+ (I ⊗ B)u+ (I ⊗ B2)ω

y = (I ⊗ C)x+ ν
(5.3)

where x = [x1, ..., xn]
T , u(x) = [u1, ..., un]

T , ω = [ω1, ..., ωn]
T and y = [y1, ..., yn]

T .

Now let us introduce the relative state vector Ξ = [ΞT
1 , ...,Ξ

T
n ]

T and relative

the output vector Y = [YT
1 , ...,YT

n ]
T . By replacing these vectors into equation

(5.3) one can obtain:

Ξ = (Lσ ⊗ I)x (5.4)

Y = (Lσ ⊗ I)y = (I ⊗ C)Ξ + (Lσ ⊗ I)ν

where Lσ is the Laplacian matrix of the communication network as per Defi-

nition 3.8. From equation (5.3) we have:

Ξ̇ = (Lσ⊗I)ẋ = (Lσ⊗A)x+(Lσ⊗B)u+(Lσ⊗B2)ω = (I⊗A)Ξ+(Lσ⊗B)u+(Lσ⊗B2)ω

(5.5)
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In order to use the same framework which we developed in the Chapters 3

and 4 to design the consensus algorithm for the team, we need to estimate the

relative states of the agents. Towards this end, the relative states of the team

can be estimated by using the following observer:

˙̂
Ξ = (I ⊗ A)Ξ̂ + (Lσ ⊗ B)u+ (I ⊗GC)Ξ̂− (I ⊗G)Y (5.6)

where Ξ̂ denotes the estimated relative state and the matrix G denotes the

observer gain. Let us denote the estimation error by e = Ξ̂−Ξ. Therefore, we

have:

ė = I ⊗ (A+GC)e− (Lσ ⊗ B2)ω − (Lσ ⊗G)ν (5.7)

Consider the following Lyapunov function candidate

Vo = eT (PHσ ⊗ Po)e (5.8)

The time derivative of (5.8) along the trajectories of equation (5.7) is given

by:

V̇o = eT (PHσ ⊗
(
Po(A+GC) + (A+GC)TPo

)
)e− 2eT (PHσLσ ⊗ PoB2)ω

− 2eT (PHσLσ ⊗ PoG)ν

(5.9)

Knowing that for any positive definite matrices P1 and P2, the vectors v1 and

v2, and a positive constant γ, the following inequality then holds:

0 ≤ (
γvT1 (P1 ⊗ P2)− γ−1vT2

) (
γ(PT

1 ⊗ PT
2 )v1 − γ−1v2

)
One can verify that in view of the above the following inequality is now valid:

2vT1 (P1 ⊗ P2)v2 ≤ γ2vT1
(P1PT

1 ⊗ P2PT
2

)
v1 + γ−2vT2 v2 (5.10)

One can also verify that the following inequality holds for any positive con-

stants γR by using the above inequality and by setting γ = γR
√

λmin(PHσ)
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:

2eT (PHσLσ ⊗ PoB2)ω

≤ λmin(PHσ)
−1γ−2

R eT (PHσLσL
T
σPHσ ⊗ PoB2B

T
2 Po)e+ λmin(PHσ)γ

2
Rω

Tω

≤ μσλmax(L
T
σLσ)γ

−2
R eT (PHσ ⊗ PoB2B

T
2 Po)e+ λmin(PHσ)γ

2
Rω

Tω

(5.11)

Similarly, for any positive constant γν by taking γ = γν

√
1
2
λmin(PHσ) we

have:

2eT (PHσLσ ⊗ PoG)ν

≤ 1

2
λmin(PHσ)

−1γ−2
ν eT (PHσLσL

T
σPHσ ⊗ PoGGTPo)e+ 2λmin(PHσ)γ

2
νν

Tν

≤ 1

2
μσλmax(L

T
σLσ)γ

−2
ν eT (PHσ ⊗ PoGGTPo)e+ 2λmin(PHσ)γ

2
νν

Tν

(5.12)

Using the above inequality one can verify that the following inequality

holds for positive constants γR and γν :

V̇o ≤ eT (PHσ ⊗
(
Po(A+GC) + (A+GC)TPo

)
)e

+ μσλmax(L
T
σLσ)γ

−2
R eT (PHσ ⊗ PoB2B

T
2 Po)e+ λmin(PHσ)γ

2
Rω

Tω

+
1

2
μσλmax(L

T
σLσ)γ

−2
ν eT (PHσ ⊗ PoGGTPo)e+ 2λmin(PHσ)γ

2
νν

Tν

(5.13)

Now, let PA be a solution to the following algebraic Riccati equation

−Qo = Po(A+GC) + (A+GC)TPo + δPo

+ μσλmax(L
T
σLσ)

(
1

2
γ−2
ν PoGGTPo + γ−2

R PoB2B
T
2 Po

) (5.14)

where Qo denotes a positive definite matrix and δ denotes a positive constant.

Therefore, we have:

V̇o ≤ −eT (PHσ ⊗ (Qo+ δPo))e+λmin(PHσ)γ
2
R||ω||2+2λmin(PHσ)γ

2
ν ||ν||2 (5.15)

Let us propose our distributed consensus control algorithm as

u = − 1

2ηασ

(I ⊗BTPA)Ξ̂ = − 1

2ηασ

(Lσ ⊗BTPA)x− 1

2ηασ

(I ⊗BTPA)e (5.16)
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where 0 < η < 1 is a real constant, ασ is a connectivity measure of the

communication network and defined in Definition 4.2, and PA is a positive

definite matrix.

Lemma 5.1. Consider the vectors x1, ..., xn, x̄ ∈ �q and let us define zi =

xi − x̄ for i = 1, ..., n, then the following inequality is satisfied:

0 ≤
n∑

i=1

n∑
j=i+1

||xi − xj||2 ≤ n
n∑

i=1

||zi||2 (5.17)

Proof. We have:

n∑
i=1

n∑
j=i+1

||xi − xj||2 =
n∑

i=1

n∑
j=i+1

||zi − zj||2 =

(n− 1)
n∑

i=1

||zi||2 −
n∑

i=1

n∑
j=i+1

(zTi zj + zTj zi)

(5.18)

and we know that

(
n∑

i=1

zi

)T (
n∑

i=1

zi

)
=

n∑
i=1

||zi||2

+
n∑

i=1

n∑
j=i+1

zTi zj + zTj zi ≥ 0

which concludes the proof of the lemma. �

Remark 5.1. Consider the multi-agent system (5.3) and assume that ν = 0.

Note that for any vector x̄(t), one can write

||yi−yj|| = ||Cxi−Cxj|| = ||Cxi−Cx̄−Cxj+Cx̄|| = ||Czi−Czj|| ≤ ||Czi||+||Czj||

where,

zi = xi − x̄.

Therefore, if zi → 0 as t → ∞, ∀i ∈ {1, ..., n} then the multi-agent system

(5.3) achieves consensus.

Similar as in Chapter 4, let us introduce the virtual agent with the following
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dynamics:

˙̄x = Ax̄− Δσ

nηασ

BBTPA

n∑
j=1

(x̄− xj) (5.19)

where Δσ is the maximum degree of the Laplacian matrix Lσ.

Now, let us define the vector z = [z1, ..., zn]
T . This implies that z = x−1⊗x̄

where 1 = [1, ..., 1]T . It can be verified that for any matrix M ∈ �p×p we have

Mzi = Mxi −Mx̄, therefore I ⊗Mz = I ⊗Mx1 ⊗Mx̄. Furthermore, one

can verify that the following equation holds:

(Lσ ⊗M)z = (Lσ ⊗M)x− ((Lσ1)⊗M)x̄ = (Lσ ⊗M)x (5.20)

Using the above equation and dynamics of the augmented system (5.3) one

can obtain:

ż =(I ⊗ (A− 1

2
BBTPA))z− 1

2ηασ

((Hσ − ηασI)⊗ BBTPA)z

− 1

2ηασ

(I ⊗ BBTPA)e+ (I ⊗ B2)ω
(5.21)

where z = x− 1⊗ x̄. The time derivative of the Lyapunov function candidate

VA = zT (PHσ ⊗ PA)z (5.22)

along the trajectories of the equation (5.21) yields:

V̇A = zT (PHσ ⊗ (PAA+ ATPA − PABBTPA))z− 1

2ηασ

zT (QHσ ⊗ PABBTPA)z

− 1

ηασ

zT (PHσ ⊗ PABBTPA)e+ z(PHσ ⊗ PAB2)ω

(5.23)
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Using the inequality (5.10) one gets:

V̇A ≤ zT (PHσ ⊗ (PAA+ ATPA − PABBTPA))z− 1

ηασ

zT (PHσ ⊗ PABBTPA)e

+
γ−2
R

λmin(PHσ)
z(P 2

Hσ
⊗ PAB2B

T
2 PA)z+ λmin(PHσ)γ

2
R||ω||2

+ 2λmin(PHσ)z
T (I ⊗ CTC)z− 2λmin(PHσ)z

T (I ⊗ CTC)z

(5.24)

Assume that PA is a solution to the algebraic Riccati equation (5.25)

PAA+ ATPA − PABBTPA + μσγ
−2
R PAB2B

T
2 PA + 2CTC = −QA (5.25)

where QA is a positive definite matrix. We have:

V̇A ≤− zT (PHσ ⊗QA)z− 1

ηασ

zT (PHσ ⊗ PABBTPA)e

+ λmin(PHσ)
(
γ2
R||ω||2 − 2zT I ⊗ CTCz

) (5.26)

Now, let us consider the following piece-wise quadratic function as our

Lyapunov function to analyze the consensus achievement of the overall team:

Vσ = Vσ(z, e) = zT (PHσ ⊗ PA)z+ eT (PHσ ⊗ Po)e (5.27)

Note that Vσ is the sum of piece-wise quadratic function Vo as per equation

(5.8) and piece-wise quadratic function VA as per equation (5.22). Therefore,

one can use inequalities (5.15) and (5.26) to obtain the time derivative of the

Lyapunov function (5.27) along the trajectories of the multi-agent system (5.1)

and can verify that it satisfies the following inequality:

V̇σ =V̇A + V̇o ≤ −zT (PHσ ⊗QA)z− 1

ηασ

zT (PHσ ⊗ PABBTPA)e

− eT (PHσ ⊗ (Qo + δPo))e+ 2λmin(PHσ)
(
γ2
ν ||ν||2 + γ2

R||ω||2 − zT I ⊗ CTCz
)

(5.28)

Similar to results in Section 5.2, one can verify the integrity of the following

inequality

V̇σ ≤ −δVσ + 2λmin(PHσ)
(
γ2
ν ||ν||2 + γ2

R||ω||2 − zT I ⊗ CTCz
)

(5.29)
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if the following matrix is positive semi-definite:

[
QA − δPA

1
2ηασ

PABBTPA

1
2ηασ

PABBTPA Qo

]
≥ 0 (5.30)

Furthermore, from the Schur complement condition for positive semi-definiteness

we know that a block matrix

X =

[
A B
BT C

]

is positive semi-definite if A is positive definite and C − BTA−1B is positive

semi-definite. Therefore, δ should satisfies the inequality (5.31)

δ <
λmin(QA)

λmax(PA)
(5.31)

and the following inequality should hold:

Qo ≥ λmax(PABBTPA)
2

4η2α2
σλmin(QA − δPA)

(5.32)

To formally present the main result of this section, we propose the following

theorem.

Theorem 5.1. Consider the multi-agent system (5.1) which satisfies Assump-

tion 5.1 and let the matrix G is the observer gain. Assume all the graphs Gσ

have directed spanning trees where σ(t) be a piecewise constant switching sig-

nal with average dwell time τa and let μσ be defined as per equation (5.31). If

the algebraic Riccati equation (5.25) has a unique positive definite solution PA

for a positive constant γR and positive definite matrix QA and positive definite

matrix Po is the solution to the algebraic Riccati equation (5.14) for a posi-

tive definite matrix Qo that satisfies the inequality (5.32), then the distributed

consensus control presented in (5.16) solves the H∞ output consensus problem

of the multi-agent team as per Definition 5.2 with bounds γρ = γR
√
μ and

γn = γν
√
μ, where μ is defined as per equation (5.38).

Proof. From (5.29) it is clear that the following inequality holds when ω = 0
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and ν = 0:

V̇σ ≤ −δVσ (5.33)

Furthermore, using (5.27) one can verify that Vσ satisfies the following inequal-

ities

α1(||z||2 + ||e||2) ≤ Vσ ≤ α2(||z||2 + ||e||2) (5.34)

where

α1 = min
σ

{λmin(PHσ)λmin(PA), λmin(PHσ)λmin(Po)} (5.35)

and

α2 = max
σ

{λmax(PHσ)λmax(PA), λmax(PHσ)λmax(Po)} (5.36)

Finally, the inequality (5.37) holds for any t1, t2 ≥ 0, this is

Vσ(t1) ≤ μVσ(t2) (5.37)

where

μ =
α2

α1

(5.38)

Noting that the Lyapunov function (5.27) satisfies conditions (5.33), (5.34),

and (5.37) therefore, using Lemma 3.7 one can conclude that the vector z

exponentially converges to zero if the average dwell time τa ≥ ln(μ)
δ

.

To show the H∞ output consensus of the multi-agent team, using Lemma

3.5 for any T > 0 and any given initial condition we have:

1

T

∫ T

0

ζ(t)
(
V̇σ + δVσ

)
dt+

1

T
Vσ(0) ≥ 0 (5.39)

where ζ(t) = eδk(t−tk) and δk and tk are defined in Lemma 3.5.

From (5.29) it is easy to verify that the following inequality holds:

zT (I ⊗ CTC)z− γ2
Rω

Tω − γνν
Tν +

1

2λmin(PHσ)
(V̇σ + δVσ) ≤ 0 (5.40)
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Noting that ζ(t) is always positive gives us:

1

T

∫ T

0

ζ(t)zT (I ⊗ CTC)z− 1

T

∫ T

0

ζ(t)γ2
Rω

Tω − 1

T

∫ T

0

ζ(t)γ2
νν

Tν

+
1

2λmin(PHσ)T

∫ T

0

ζ(t)(V̇σ + δVσ) ≤ 0

(5.41)

Using the inequality (5.39) we have:

1

T

∫ T

0

ζ(t)zT (I ⊗ CTC)z− 1

T

∫ T

0

ζ(t)γ2
Rω

Tω − 1

T

∫ T

0

ζ(t)γ2
νν

Tν

− 1

2λmin(PHσ)T
Vσ(0) ≤ 0

(5.42)

Using the fact that 1 ≤ ζ(t) < μ for any t ≥ 0 one can verfiy that:

1

T

∫ T

0

zT (I⊗CTC)z ≤ μγ2
R

T

∫ T

0

ωTω+
μγ2

ν

T

∫ T

0

νTν+
1

λmin(PHσ)T
Vσ(0) (5.43)

Now, using the above inequality and Lemma 5.1, one concludes the proof of

the theorem. �

5.1.2 Simulation Results

The effectiveness of our proposed consensus algorithm design methodology is

now demonstrated by performing the following numerical simulations. To-

wards this end, the diving consensus of a team of four unmanned under-

water vehicles (UUV) similar to those studied in Chapter 3 is considered.

The linearized diving dynamics of the UUVs can be represented as ẋi =

Axi + Bui + Bωωi, yi = Cxi + νi , where:

A =

⎡
⎢⎢⎣

−0.7 −0.3 0

1 0 0

0 u0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0.035

0

0

⎤
⎥⎥⎦ , Bω =

⎡
⎢⎢⎣

0

0.01

0

⎤
⎥⎥⎦ (5.44)

and

C =
[
0 0 1

]
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xi = [qi, θi, zi]
T , zi denotes the depth, θi denotes the pitch angle and qi denotes

the pitch angular velocity, and u0 denotes the nominal value of the surge

linear velocity and is set to 0.3m
s
. The control input ui is the deflection of the

control surface from the stern plane and ωi is the external disturbance. Units

of zi, θi, qi, u0 and ui are m, rad, rad/sec and deg, respectively. The digraphs

associated with the communication networks of the team are shown in Figure

5.1. The values of ασ are computed based on the network topologies shown in

�� ��

�� ��

Figure 5.1: Communication networks digraphs.

Figure 5.1. For the graph in the left side it is equal to 1.25 and for the graph in

the right side it is 1. Furthermore, the design parameters are selected as QH =

I, QA = 6I, γR = 0.6, γν = 230 and η = 0.5. The poles of observers are set to

-0.9, -.95 and -1. The resulting observer gain is G =
[
−1.41, 3.07, −2.17

]
and the controller gain becomes K1 =

[
−2.66, −1.93, 2.33

]
and K2 =[

−3.33, −2.41, 2.92
]
. Figures 5.2 and 5.3 show the angular velocity and

pitch angle of the agents, respectively. The depth of the agents, which is

the output signal is shown in Figure 5.4. Figure 5.5 shows the feasibility of

the resulting control signal. The disturbance signal ωi is a combination of

several sinusoidal signals with different frequencies where their phases and

frequencies are selected randomly and with RMS of 1 and a pseudo-random

signal with RMS of = 0.1 is used to simulate noise signal and these are applied

to the agents to justify the H∞ performance of our output-feedback distributed

controller. The estimation errors are shown in Figure 5.6 to illustrate the

performance of the presented observers.

One of the most recent works in the field of output-feedback consensus

achievement for homogenous LTI multi-agent systems is presented in [143].

In this work, based on solution to an algebraic Riccati equation a distributed

cooperative consensus controller with the disturbance rejection property is pre-

sented. However, in comparison to our proposed method, the method in [143]
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Figure 5.2: Angular velocity of the agents.

Figure 5.3: Pitch angle of the agents.
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Figure 5.4: Depth (output signal) of the agents.

Figure 5.5: Control input of the agents.
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Figure 5.6: Observers estimation errors.

is limited to fixed communication topologies and does not consider the mea-

surement noise. In order to compare the performance of our proposed method

with their presented method, we consider the same numerical example pre-

sented in [143] and increase the disturbance coefficient D. The team consists

of a leader and 4 follower agents having the following dynamics:

{
ẋ0 = Ax0

y0 = Cx0

,

{
ẋi = Axi + Bui +Dωi

yi = Cxi

(5.45)

where x0 is the state of the leader, y0 is the output of the leader, xi is the state

of the ith agent, yi is its output, ui is its control input, ωi is its disturbance

signal and matrices A,B,C,D are:

A =

[
0 1

1 −1

]
, B = I, C =

[
1 0.6

]
, D =

[
0.01

0

]

Figure 5.7 shows the topology of the communication networks used by

the agents to exchange information. We used the same design parameters
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Figure 5.7: Communication network topology [143].

that are presented in [143] and performed the numerical simulations using a

combination of several sinusoidal signals with different frequencies with RMS

of 1 as the disturbance signal. Figures 5.8 and 5.9 depict the outputs and the

control inputs of the agents by using the presented method in [143]. Since,

matrix A is not stable, as can be seen in Figure 5.8, the output of the agents is

increasing. We applied our proposed method to the same multi-agent system

and used QH = I, QA = 3.5I, η = 0.55 and γR = 1.3 as design parameters

and placed the observer poles at −1.58. The resulting observer gain matrix

obtained is G = [−1.7602,−0.9383] and the controller gain matrix is given by:

K =

[
−7.9491 −3.2304

−3.2304 −4.6658

]

We used the same initial conditions and disturbance signals and repeated

the numerical simulation by using our proposed method. The resulting agents

outputs are shown in Figure 5.10 and the control inputs are depicted in Figure

5.11. Furthermore, in Table 5.1 a quantitative comparison between maximum

of the control inputs, L2 norm of the control inputs, RMS of the consensus error

and the settling time of these two approaches are presented. As illustrated

in these figures and the comparison table, the settling time of our approach is

not significantly slower than their method. However, the control effort that is

required by our method is less than the one in the method of [143] and RMS

of the consensus error of our proposed method is also smaller.
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Figure 5.8: The outputs of the agents by using the method in [143].

Figure 5.9: The control inputs of the agents by using the method in [143].
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Figure 5.10: The outputs of the agents by using the method in [143].

Figure 5.11: The control inputs of the agents by using the method in [143].
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Table 5.1: The comparison between our proposed method and the method
in [143].

Control effort
(max)

Control effort
(L2 norm)

Consensus
error (RMS)

Settling
time (sec)

Our proposed method 0.7742 9.71 4.81 1.8981

The method in [143] 3.8675 18.49 6.05 1.85814

5.2 Consensus Achievement In Presence of Model

Uncertainties

In this section we study a team of multi-agents with model uncertainties in-

cluding Lipschitz nonlinearities. In the first step, we propose a distributed

consensus algorithm in absence of the measurement noise and in the next step

we present an approach to tackle the consensus achievement problem of the

team in presence of both model uncertainties and measurement noise. Finally,

we performed numerical simulations to support our analytical results.

5.2.1 Problem Statement and Main Result

In this section we extend our proposed method to design a distributed consen-

sus algorithm for a multi-agent team of N agents with model uncertainties,

including Lipschitz nonlinearity, as presented in equation (5.46) to guarantee

it achieves H∞ consensus as per Definition stated next.

ẋi = (A+ΔA(t))xi + f(xi) +Bui + B2ωi (5.46)

In the above equation, A ∈ �p×p, B ∈ �p×m, B2 ∈ �p×q are known real

matrices, time varying matrix ΔA(t) ∈ �p×p represents unknown linear model

uncertainties, the function f : �p → �p is unknown non-linearity and, xi ∈ �p,

ui ∈ �m and ωi ∈ �q are state, control input and disturbance of the ith agent,

respectively.

Definition 5.3. The multi-agent system (5.46) achieves H∞ consensus with
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bound γρ in presence of the disturbance if it achieves consensus when there is

no disturbance and there exists a positive constant θ such that for any T > 0

in presence of disturbance the following inequality holds:

1

n

(
n∑

i=1

n∑
j=i+1

1

T

∫ T

0

||xi − xj||dt
)

≤ γ2
ρ

n∑
i=1

1

T

∫ T

0

||ωi||2dt+ θ

T
V (x1(0), ..., xn(0))

(5.47)

where V (.) is a positive definite function and x1(0), ..., xn(0) are the initial

states of the agents.

Assumption 5.2. In this chapter it is assumed that the matrix A is not

Hurwitz (see Remark 3.5), and the pair (A,B) is controllable.

Assumption 5.3. The vector function f : �p → �p satisfies the following

Lipschitz condition:

||f(x1)− f(x2)|| ≤ γL||x1 − x2|| (5.48)

Assumption 5.4. The model uncertainty matrix ΔA(t) can be represented

as:

ΔA(t) = ELΔA(t)ER

where EL ∈ �p×r and ER ∈ �r×p are known constant matrices and the un-

known matrix ΔA(t) ∈ �r×r satisfies the following inequality for any t ≥ 0:

ΔA(t)ΔA(t)
T ≤ I (5.49)

In the remainder of this section ΔA(t) will be denoted by ΔA.

To design the consensus algorithm, let us introduce the following aug-

mented system which represents the dynamics of the entire multi-agent sys-

tems

ẋ = I ⊗ Ax+ I ⊗ (ELΔAER)x+ f(x) + I ⊗ Bu+ I ⊗ B2ω (5.50)

where x = [x1, ..., xn]
T , f(x) = [f(x1), ..., f(xn)]

T , and ω = [ω1, ..., ωn]
T .
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The following equation gives our proposed consensus control law

ui = − 1

2ηασ|Ni|B
TPA

∑
j∈Ni

(xi − xj) (5.51)

where Ni is the set of neighboring agents, 0 < η < 1 is a real constant, ασ is

a connectivity measure of communication network and defined in Definition

4.2, PA is a positive definite matrix. As can be seen the overall structure of

the above controller is the same as that of the previous ones. However, the

way that we compute the matrix PA, which determines the controller gains, is

different and will be addressed in the remainder of this chapter and will let us

deal with model uncertainties and nonlinearites.

To facilitate dealing with the Lyapunov stability analysis, similar to the

previous chapters in the remainder of this section we will use augmented con-

trol law which is denoted by u = [u1, ..., un]
T . Using the Laplacian matrix

presented in Definition 3.8 one can obtain the following control law for the

augmented system (5.50):

u = − 1

2ηασ

Lσ ⊗ BTPAx (5.52)

Furthermore, in order to evaluate the consensus achievement of the team

using Lyapunov method, similar to Chapter 4, we use a virtual agent as a

reference to measure the consensus error of the team and we will denote its

state as x̄. As stated in Remark 4.2, the dynamics of the virtual agent could

be chosen arbitrarily and it is shown that if the resulting consensus error

converges to zero, the team will achieve consensus. However, selecting the

following dynamics for the virtual agent in the remainder of this section will

help us achieve our goal, namely:

˙̄x = Ax̄+ ELΔAERx̄+ f(x̄)− Δσ

nηασ

BBTPA

n∑
j=1

(x̄− xj) (5.53)

Following along the same lines as in Section 5.1 and noting that:

(Lσ ⊗M)z = (Lσ ⊗M)x− (Lσ1)⊗Mx̄ = Lσ ⊗Mx
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By using the above virtual agent dynamics and the dynamics of the augmented

system (5.50) one can obtain the following consensus error dynamic equation:

ż = ẋ− 1⊗ ˙̄x = I ⊗ Ax+ I ⊗ ELΔAERx− 1

2ηασ

Lσ ⊗ BTPAz+ I ⊗ B2ω + f(x)

− 1⊗ Ax̄− 1⊗ ELΔAERx̄− Δσ

nηασ

11T ⊗ BBTPAz− f̄

(5.54)

where f̄ = 1 ⊗ f(x̄). Using the matrix Hσ as defined in equation (4.7) and

some algebraic manipulations we have:

ż =I ⊗ Az+ I ⊗ ELΔAERz− 1

2ηασ

(Lσ +
2Δσ

n
11T )⊗ BTPAz+ I ⊗ B2ω

+ f(x)− f̄

=I ⊗ (A− 1

2
BBTPA)z+ I ⊗ ELΔAERz− 1

2ηασ

(Hσ − ηασI)⊗ BTPAz

+ I ⊗ B2ω + f(x)− f̄

(5.55)

Now, to guarantee that the team achieves consensus, we need to show that

the above consensus error dynamics converges to zero. Towards this end, let

us define the following Lyapunov candidate function:

Vσ = zTPHσ ⊗ PAz (5.56)

The time derivative of (5.56) along the trajectories of the dynamical system

(5.55) is given by:

V̇σ = zTPHσ ⊗
(
PAA+ ATPA − PABBTPA

)
z− 1

2ηασ

zTQHσ ⊗ (PABBTPA)z

+ 2zTPHσ ⊗ PAB2ω + 2zT (PHσ ⊗ PA)(f(x)− f̄) + zTPHσ ⊗ PAELΔAERz

+ zTPHσ ⊗ ET
RΔ

T
AE

T
LPAz

(5.57)

One can determine that the following inequality holds for any positive definite

matrices P1 and P2 and vectors v1 and v1:

2vT1P1 ⊗ P2v1 ≤ γvT1
(P1PT

1 ⊗ P2PT
2

)
v1 + γ−1vT2 v2 (5.58)
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Using the inequality (5.58) one can verify that the following inequality

holds:

V̇σ ≤ zTPHσ ⊗
(
PAA+ ATPA − PABBTPA

)
z

+
γ2
L

λmin(PHσ)
zTP 2

Hσ
⊗ P 2

Az+
λmin(PHσ)

γ2
L

||f(x)− f̄||2

+
γ2
Δ

λmin(PHσ)
zTP 2

Hσ
⊗ PAELΔAΔ

T
AE

T
LPAz+

λmin(PHσ)

γ2
Δ

zT I ⊗ ERE
T
Rz

+
γ−2
R

λmin(PHσ)
zTP 2

Hσ
⊗ (PAB2B

T
2 PA)z+ λmin(PHσ)γ

2
R||ω||2

(5.59)

Now, using Assumptions 5.3 and 5.4 and after some algebraic manipulations

one can get:

V̇σ ≤ zTPHσ ⊗
(
PAA+ ATPA − PABBTPA

)
z

+ μσγ
2
Lz

TPHσ ⊗ P 2
Az+ λmin(PHσ)z

T z

+ μσγ
2
Δz

TPHσ ⊗ PAELE
T
LPAz+ γ−2

Δ zTPHσ ⊗ ERE
T
Rz

+ μσγ
−2
R zTPHσ ⊗ (PAB2B

T
2 PA)z+ λmin(PHσ)γ

2
R||ω||2

− λmin(PHσ)z
T z+ λmin(PHσ)z

T z

(5.60)

where δ is a positive constant, μσ is defined as follows

μσ =
λmax(PHσ)

λmin(PHσ)
. (5.61)

We require PA to satisfy the following equation:

PAA+ ATPA − PABBTPA + μσγ
2
LPAPA + μσγ

−2
R PAB2B2PA

+ μσγ
2
ΔPAELE

T
LPA + γ−2

Δ ERE
T
R + δPA + 2I = −QA

(5.62)

where QA is a positive definite matrix. Now, we have the following inequality:

V̇σ ≤ −zTPHσ ⊗QAz− δzTPHσ ⊗ PAz +λmin(PHσ)
(
γ2
R||ω||2 − ‖z‖2) (5.63)

The main result of this section can be formalized int the following theorem.

Theorem 5.2. Consider the nonlinear multi-agent system (5.46) which satis-

fies Assumptions 5.2, 5.3 and 5.4. Assume that all the graphs Gσ have directed
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spanning trees where σ(t) is a piecewise constant switching signal with average

dwell time τa and let μσ be defined in equation (5.61). If the algebraic Riccati

equation (5.62) has a unique positive definite solution PA for a positive con-

stant γR and positive definite matrix QA, then the distributed consensus control

presented in (5.51) solves the H∞ consensus problem of Definition 5.3 for the

multi-agent team with a bound γρ = γR
√
μ, where μ is defined in equation

(5.69).

Proof. In the first step, we need to show the multi-agent system (5.46) achieves

consensus in absence of disturbances i.e. z → 0 as t → ∞. Consider the

piecewise quadratic Lyapunov function (5.56). From (5.63) it follows that the

following inequality holds when ω = 0:

V̇σ ≤ −δVσ (5.64)

Furthermore, using (5.56) one can verify that Vσ satisfies the following inequal-

ities

α1||z||2 ≤ Vσ ≤ α2||z||2 (5.65)

where

α1 = min
σ

{λmin(PHσ)λmin(PA)} (5.66)

and

α2 = max
σ

{λmax(PHσ)λmax(PA)} (5.67)

Finally, the inequality (5.68) holds for any t1, t2 ≥ 0

Vσ(t1) ≤ μVσ(t2) (5.68)

where

μ =
α2

α1

(5.69)

To show that inequality (5.47) in Definition 5.3 holds, one can use Lemma

5.1 and prove that the following inequality holds:

1

T

∫ T

0

zT zdt ≤ γ2
ρ

1

T

∫ T

0

ωTωdt+
θ

T
V (x1(0), ..., xn(0)) (5.70)
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Using the function ξ(t) and its properties as per defined in Lemma 3.5 and

setting θ = λmin(PHσ)
−1, one can verify that the inequality (5.70) holds if the

following inequality is valid:

1

T
λmin(PHσ)

∫ T

0

ξ(t)
(
zT z− γ2

ρω
Tω

)
dt− 1

T
ξ(t)V0 ≤ 0 (5.71)

where V0 = V (x1(0), ..., xn(0)). Noting that the Lyapunov function (5.56)

satisfies the conditions (5.64),(5.65), and (5.68) from Lemma 3.5 we have:

1

T

∫ T

0

ξ(t)
(
V̇σ + δVσ

)
dt+

1

T
ξ(t)V0 ≥ 1

T

∫ T

0

ξ(t)
(
V̇σ + δVσ

)
dt+

1

T
V0 ≥ 0

(5.72)

Therefore, one can show that the inequality (5.71) is valid if the following

inequality is satisfied:

1

T
λmin(PHσ)

∫ T

0

ξ(t)
(
zT z− γ2

ρω
Tω

)
dt− 1

T
ξ(t)V0

≤ 1

T

∫ T

0

ξ(t)
(
λmin(PHσ)z

T z− γ2
ρλmin(PHσ)ω

Tω + V̇σ + δVσ

)
dt ≤ 0

(5.73)

This can be verified by using the inequality (5.63). Therefore, one can conclude

proof of the theorem. �

5.2.2 Output Consensus Achievement in Presence of

Model Uncertainties and Measurement Noise

In this chapter, first we studied the output consensus problem for multi-agent

systems in presence of measurement noise. Next, we proposed a distributed

state-feedback cooperative consensus controller for multi-agent systems by

considering the model uncertainties. Now, in order to show extendability of

our proposed technique, we present the steps leading to design of an output-

feedback consensus controller for the following multi-agent system in presence

of measurement noise and model uncertainties, namely:

{
ẋi = (A+ΔA(t))xi + f(xi) +Bui + B2ωi

yi = Cxi + νi
(5.74)
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In the above equation, A ∈ �p×p, B ∈ �p×m, B2 ∈ �p×q, C ∈ �r×p are

known real matrices that satisfy the Assumption 5.1. The time varying matrix

ΔA(t) ∈ �p×p represents unknown linear model uncertainties that satisfy the

Assumption 5.4. The function f : �p → �p is an unknown non-linearity and

xi ∈ �p that satisfies the Assumption 5.3, and yi ∈ �r, ui ∈ �m, νi ∈ �r

and ωi ∈ �q are the state, output, control input, measurement noise and the

disturbance of the ith agent, respectively.

Similar to the last section, one can define an augmented system where its

dynamics is governed by equation (5.50) and similar to Section 5.1 let the

augmented measured output be denoted by y and represented as follows:

y = (I ⊗ C)x+ ν

By following along the same strategy as in Section 5.1 one can define the

relative state vector Ξ as:

Ξ = (Lσ ⊗ I)x (5.75)

where x is the state of the augmented system. Let us use the same state

observer that we designed in Section 5.1 and presented as equation (5.6) to

estimate the relative state and denote it by Ξ̂. By using the same virtual agent

dynamics as presented in equation (5.53), the augmented system equation

(5.50) and considering the equation (5.20), one can take the time derivative of

Ξ and obtain:

Ξ̇ = (Lσ ⊗A)x+ (I ⊗ (ELΔAER)) z+ (Lσ ⊗ I)f(x) + (Lσ ⊗B)u+ (Lσ ⊗B2)ω

(5.76)

where u is the augmented control law and is defined as follow:

u = − 1

2ηασ

(I ⊗ BTPA)Ξ̂ (5.77)

where 0 < η < 1 is a real constant, ασ is a connectivity measure of the

communication network, that is defined in Definition 4.2, and PA is a positive

definite matrix.
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Now, if e = Ξ̂−Ξ denotes the estimation error, one can obtain the following

error dynamic equation:

ė = (I ⊗ (A+GC)) e−(I ⊗ (ELΔAER)) z−(Lσ⊗I)(f(x)−f̄)−(Lσ⊗B2)ω−(Lσ⊗G)ν

(5.78)

To obtain the above equation we used the fact that:

(Lσ ⊗ I )̄f = (Lσ ⊗ I)(1⊗ f(x̄)) = Lσ(1⊗ f(x̄)) = 0

Consider the Lyapunov function candidate (5.8) where one can verify that

its time derivative along the trajectories of the estimation error dynamics is

as follows:

V̇o = eT
(
PHσ ⊗

(
Po(A+GC) + (A+GC)TPo

))
e− 2eT (PHσLσ ⊗ PoB2)ω

− 2eT (PHσLσ ⊗ PoG)ν − 2eT (PHσ ⊗ Po(ELΔAER)) z− 2eT (PHσLσ ⊗ Po)(f − f̄)

(5.79)

After some algebraic manipulations and using the inequality (5.10) one can

verify that:

V̇o ≤ eT
(
PHσ ⊗

(
Po(A+GC) + (A+GC)TPo

))
e

+
λmax(L

T
σLσ)γ

−2
R

λmin(PHσ)
eT (P 2

Hσ
⊗ PoB2B

T
2 Po)e+ 2

λmin(PHσ)γ
2
ν

λmax(LT
σLσ)

νT
(
(LT

σLσ)⊗ I
)
ν

+
λmin(PHσ)γ

2
R

λmax(LT
σLσ)

ωT
(
(LT

σLσ)⊗ I
)
ω +

λmax(L
T
σLσ)γ

−2
ν

2λmin(PHσ)
eT (P 2

Hσ
⊗ PoGGTPo)e

+
γ2
Δλmax(ERE

T
R)

λmin(PHσ)
eT (P 2

Hσ
⊗ PoELΔAΔ

T
AE

T
LPo)e+

λmin(PHσ)

γ2
Δλmax(ERET

R)
zT (I ⊗ ERE

T
R)z

+
γ2
Lλmax(L

T
σLσ)

λmin(PHσ)
(eTP 2

Hσ
⊗ P 2

o )e+
λmin(PHσ)

γ2
L

||f(x)− f̄||2

(5.80)

Now, let PA be a solution to the following algebraic Riccati equation

−Qo = Po(A+GC) + (A+GC)TPo + δPo + μσγ
2
Δλmax(ERE

T
R)PoE

T
LELPo

+ μσλmax(L
T
σLσ)

(
1

2
γ−2
ν PoGGTPo + γ−2

R PoB2B
T
2 Po + γ2

LPoPo

)
(5.81)
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where Qo is a positive definite matrix and δ is a positive constant. Using the

above Riccati equation one can verify that the following inequality holds:

V̇o ≤− eT (PHσ ⊗ (Qo + δPo)) e+ λmin(PHσ)(1 + γ−2
Δ )‖z‖2

+ λmin(PHσ)γ
2
R||ω||2 + 2λmin(PHσ)γ

2
ν ||ν||2

(5.82)

At this point one can follow along the same lines as presented for the

observer-based consensus algorithm design presented in Section 5.1 and the

controller design procedure for a team with model uncertainty in absence of

measurement noise in Section 5.2.1 to design an observer-based distributed

controller that guarantees H∞ output consensus achievement of the multi-

agent system in presence of measurement noise and model uncertainties.

5.2.3 Simulation Results

In this section we modified the case study that we selected to perform our

numerical simulations in the previous section to show performance and effec-

tiveness of our approach and also make it comparable with previous results

that we obtained. In this section, our team consists of 4 agents with the fol-

lowing dynamics and we use the same communication network topology as in

the previous section shown in Figure 5.1, namely.

ẋi = Axi + ELΔERxi + f(xi) +Bui + Bωωi

where ER = I, EL = 0.001I, matrices A, B, and Bω are defined as in (5.44),

the function f(.) and Δ are defined as follows:

Δ =

⎡
⎢⎢⎣

0 0 sin(2t)

sin(t) 0 0

0 cos(t) 0

⎤
⎥⎥⎦ , f(x) = 0.001

⎡
⎢⎢⎣

0
sin(x1)

1+x2
1

x2

1+x2
2

⎤
⎥⎥⎦

The design parameters are selected as QH = I, QA = 14.5I, γR = 0.75,

γL = 0.0013, η = 0.97, and δ = 0.23. The resulting agent controller gains

become K1 =
[
−32.90 −26.74 35.61

]
and K2 =

[
−8.45 −6.68 7.96

]
.

Figures 5.12 and 5.13 depict the angular velocity and pitch angle of the agents,
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Figure 5.12: Angular velocity of the agents.

respectively. The depth of the agents is shown in Figure 5.14. Noting that

the control input signal ui is in fact the deflection of the control surface of

the ith agent which is measured in units of degrees, the resulting control signal

depicted in Figure 5.15 is feasible. Similar to the previous section, disturbance

signal is a combination of several sinusoidal signals with different frequencies

where their phases and frequencies are selected randomly with an RMS of 1.

Furthermore, to compare the performance of our proposed distributed con-

sensus algorithm design procedure with the work in the literature, we chose

one of the most recent work in this field presented in [94]. Similar to our

proposed approach, this work deals with consensus achievement of leader-

less high-order multi-agent systems with Lipschitz nonlinearity and switching

topology communication networks. However, their approach requires solving

a set of computationally expensive LMIs and does not consider linear model

uncertainties and disturbance signals. In contrast, our proposed method is

based on the solution to an algebraic Riccati equation and can deal with lin-

ear model uncertainties and disturbance signals. We applied our method to
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Figure 5.13: Pitch angle of the agents.

Figure 5.14: Depth (output signal) of the agents.
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Figure 5.15: Control inputs of the agents.

the same numerical simulation example presented in [94]. In their work, the

authors considered a team of 4 agents with following dynamics:

ẋi = Axi + Bui + f(xi) (5.83)

where

A =

[
0 1

0 0

]
, B =

[
0

1

]
, f(xi) = γL

[
0

sin(xi2)

]
, (5.84)

where γL = 0.05. In [94], it is assumed that the communication network topol-

ogy is selected among the graphs presented in Figure 5.16 and the piece-wise

constant switching signal is illustrated in Figure 5.17. The agent controller

gain that is calculated based on their proposed method is K = [4.95461.1727].

Figures 5.18 and 5.19 show the first and second states of the agents, respec-

tively.

We have applied our proposed method to the same multi-agent system

(5.84) with γL = 0.075 and used the same communication network and switch-

ing signal depicted in Figures 5.16 and 5.17, respectively. The controller gains
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Figure 5.16: Communication network topologies that are used in [94].
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Figure 5.17: Switching signal that is used in [94].
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Figure 5.18: Trajectories of the first states in Example 1 of [94].
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Figure 5.19: Trajectories of the second states in Example 1 of [94].
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Figure 5.20: Trajectories of the first states of the agents using our proposed
method.

obtained for different communication graphs G1 to G4 are K1 = [−3.9452 −
4.3882],K2 = [−4.3717−4.6469],K3 = [−4.8118−4.9099] andK4 = [−4.7976−
4.9015], respectively. Figure 5.20 shows the trajectories of the first states of

agents and in Figure 5.20 the second states of the team are illustrated.

Furthermore, the quantitative comparison between our proposed method

and the method in [94] is presented in Table 5.2. As seen in these figures and

Table 5.2, although the settling time of our proposed consensus algorithm is

more than that of the method presented in [94], our proposed method can

guarantee consensus achievement of the team with larger Lipschitz constants.

5.3 Cooperative Adaptive Consensus Achieve-

ment of Nonlinear Multi-Agent Systems

In this section we consider a more general class of nonlinear multi-agent sys-

tems and design a cooperative adaptive algorithm for online approximation

of nonlinearity in dynamics of agents and based on that we will propose a
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Figure 5.21: Trajectories of the second states of the agents using our proposed
method.

Table 5.2: The comparison between our proposed method and the method
in [94].

Control effort
(max)

Control effort
(L2 norm)

Consensus
error (RMS)

Settling
time (sec)

Our proposed method
(γL = 0.05) 37.11 205.17 34.81 0.75

The method in [94]
(γL = 0.05) 115.83 284.31 32.13 0.70

Our proposed method
(γL = 0.075) 70.01 271.87 28.36 1.00

The method in [94]
(γL = 0.075) 115.83 284.35 32.13 0.70

134



controller that guarantees uniformly ultimately bounded (UUB) consensus

achievement of the team.

First, consider a multi-agent system consisting of N agents with the fol-

lowing dynamics:

ẋi = Axi + Bui + Bfi(xi) +B2ωi (5.85)

where A ∈ �p×p, B ∈ �p×m, B2 ∈ �p×q are real matrices, fi : �p → �m

is an unknown nonlinear function, and xi ∈ �p and ui ∈ �m, and ωi ∈ �q

are state, control input, and disturbance of the ith agent, respectively. It

is assumed that states of all agents are measurable and the pair (A,B) is

controllable. The communication network among agents is considered to be

undirected and connected. Furthermore, we consider a virtual leader with the

following dynamics and assume its state is accessible to at least one of the

agents and its dynamics is governed by the following equation:

ẋ� = Ax� (5.86)

Therefore, all agents directly or through other agents can access the virtual

leader information through the communication network. Now, let us define

the consensus error of the ith agent as follows:

ei = li(xi − x�) +
∑
j∈Ni

(xi − xj) (5.87)

where Ni is the neighboring set of the ith agent and li is equal to 1 when the

agent has direct access to the virtual agent and it is zero otherwise. Using the

above definition, the multi-agent team achieves consensus if ei, for i = 1, ..., n

converges to zero.

For the case of a known nonlinear function fi(.), the controller design proce-

dure is straightforward. Inspired by this fact, for the case of unknown function

fi(.), numerous methods are proposed in the literature to estimate the func-

tion and control the overall system. However, in most of these approaches

only local information is used for function approximation despite the fact that

in multi-agent systems each agent has access to information of its neighboring

agents. To resolve this drawback, in this section we propose a cooperative

learning algorithm for our function approximation phase. We assume that
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the nonlinear function fi(.) can be approximated by using a class of general

function approximator that is formally formulated according to the following

assumptions.

Assumption 5.5. There exists a compact set Ω ⊆ �p and a smooth matrix

function Φ : Ω → �m×l where l ≥ 1 known as the basis function, such that the

unknown nonlinear function fi : �p → �m satisfies the following equation for

any x ∈ Ω,

fi(x) = Φ(x)Wi + εi(x) (5.88)

where the vector Wi ∈ �l represents the parameters of the approximator and

εi(x) ∈ �p denotes the approximation error.

Assumption 5.6. For the nonlinear function fi(.) and the general function

approximator denoted by equation (5.88) in Assumption 5.5 there exits an

optimal W ∗
i which is defined as follows:

W ∗
i = arg min

Wi∈�l

{
sup
x∈Ω

‖fi(x)− Φ(x)Wi‖
}

(5.89)

and the approximation error is bounded by ε∗u, which is defined as

ε∗u = sup
x∈Ω

‖fi(x)− Φ(x)W ∗
i ‖ (5.90)

Assumption 5.7. In the function approximation presented in Assumption

5.5, the approximation error bound ε∗u defined in Assumption 5.6 can arbi-

trarily become small if the dimension of the basis function Φ denoted by l in

Assumption 5.5 is sufficiently large.

Remark 5.2. In the remainder of this section we will use radial basis func-

tion (RBF) neural networks (NN) approach for the function approximation.

However, we are not limited to RBF neural networks and many other function

approximation techniques can be employed as long as they satisfy the assump-

tions presented in this section.

For the RBF neural networks, the matrix function Φ(x) = [Φ1(x)...Φl(x)]

is defined as Φi(x) = eiφi(x), where the constant vector ei ∈ �p has a non-zero
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element equal to 1 and the scalar function φi is a Gaussian function as follows

φi(x) = e
‖x−ξi‖

ηi .

and where ξi and ηi are the center and variance of the node, respectively.

Let us define e = [eT1 , ..., e
T
n ]

T , x = [xT
1 , ..., x

T
n ]

T , x� = [xT
� , ..., x

T
� ]

T , Lσ =

diag{l1, ..., ln} and let Lσ be defined as per Definition 3.8. One can obtain:

e = (Lσ ⊗ I)x+ (Lσ ⊗ I)(x− x�)

Lemma 5.2. Assume Lσ ∈ �n×n is a Laplacian matrix associated with a

connected undirected graph and Lσ ∈ �n×n is a non-zero diagonal matrix with

non-negative elements. The matrix Hσ = Lσ + Lσ is symmetric and positive

definite.

Proof. Let the non-negative numbers l1, ..., ln denote diagonal elements of the

matrix Lσ and G denotes the undirected graph associated with the Laplacian

matrix Lσ. Now, let us construct the new digraph G∗ by adding a node to the

graph G and without loss of generality label it as the node n + 1. Let L∗ be

its corresponding Laplacian matrix that is defined as follows:

L∗ =

⎡
⎢⎢⎢⎢⎢⎣

−l1

Lσ + Lσ
...

−ln

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

Note that the graph G is undirected and connected and at least one of the real

numbers l1, ..., ln is positive. Therefore, the digraph G∗ has a directed spanning

tree and node n+ 1 is its root. Furthermore, the matrix Hσ is symmetric and

its eigenvalues are real. Now, by using the Lemma 3.3 and knowing that the

digraph G∗ has a directed spanning tree and all eigenvalues are the matrix Hσ

are real, one can conclude the proof of the lemma. �

Using the above lemma one can obtain the dynamics of the consensus error

variables as follows:
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ė = (Hσ ⊗ I)ẋ− (Lσ ⊗ I)ẋ�

Using Assumptions 5.5 and 5.6 and equations (5.85) and (5.86), one can

verify the validity of the following dynamic equation:

ė = (Hσ⊗A)x−(Lσ⊗A)x�+(Hσ⊗B)ΦW∗+(Hσ⊗B)ε+(Hσ⊗B)u+(Hσ⊗B2)ω

(5.91)

where W∗ = [W ∗T
1 , ...,W ∗T

n ]T denotes the optimal approximator weights, ε =

[εT1 , ..., ε
T
n ]

T denotes the optimal appoximation errors, ω = [ωT
1 , ..., ω

T
n ]

T , u =

[uT
1 , ..., u

T
n ]

T , and the matrix Φ is defined as follows:

Φ =

⎡
⎢⎢⎢⎢⎢⎣

Φ1(x1) 0 ... 0

0 Φ2(x2) ... 0
...

. . .
...

0 ... 0 Φn(xn)

⎤
⎥⎥⎥⎥⎥⎦

Now, let us consider the following controller:

ui = − 1

2εσ
BTPAei − Φ(xi)Ŵi (5.92)

where Ŵi denotes the estimate of the optimal RBF neural networks weights

that are used by the ith agent, εσ is a positive number that satisfies the in-

equality Hσ − εσI > 0, and finally PA ∈ �p×p is a symmetric and positive

definite solution to the following Riccati equation

PAA+ ATPA − PABBTPA + μσγ
−2
ε PABBTPA + μσγ

−2
ω PAB2B

T
2 PA = −QA

(5.93)

where QA is a symmetric postive definite matrix, γε, and γω are positive con-

stants and μσ = maxσ
λmax(Hσ)
λmin(Hσ)

. By substituting equation (5.92) into equation

(5.91), one obtains:

ė =(I ⊗ A− 1

2
BBTPA)e− 1

2εσ
(Hσ − εσI ⊗ BBTPA)e

− (Hσ ⊗ B)ΦW̃ + (Hσ ⊗ B)ε+ (Hσ ⊗ B2)ω

(5.94)
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where W̃ = Ŵ−W∗ and Ŵ = [Ŵ T
1 , ..., Ŵ

T
n ]

T . Now, let us present the following

learning law:

˙̂
W = Γ

(
ΦT (Hσ ⊗ BTPA)e− ηŴ

)
(5.95)

where Γ ∈ �nl×nl is a diagonal positive definite matrix and denotes the learning

gain, η is a positive constant and denotes the learning factor.

Remark 5.3. Whenever all the nonlinear functions f1(.), ..., fn(x) are identi-

cal, the optimal approximator weights W ∗T
1 , ...,W ∗T

n are the same and equal to

W ∗. Therefore, in principle all the estimated weights Ŵi should converge to

the same value. We can use this fact to our advantage and let the team share

their learned knowledge by using the following cooperative learning law

˙̂
W = Γ

(
ΦT (Hσ ⊗ BTPA)e− ηc(Lσ ⊗ I)Ŵ − ηŴ

)
(5.96)

where the positive constant ηc denotes the cooperative learning factor. Note

that Ŵi − Ŵj = Ŵi −W ∗ +W ∗ − Ŵj = W̃i − W̃j. Therefore, one can verify

the validity of the following equation:

(Lσ ⊗ I)Ŵ = (Lσ ⊗ I)W̃

Remark 5.4. In the remainder of this section, instead of using the learning

law (5.95) we use the cooperative learning law (5.96) and set ηc to 0.

Theorem 5.3. The consensus error defined in (5.87) for the nonlinear multi-

agent team (5.85) with the virtual leader (5.86) is uniformly ultimately bounded

if the undirected switching topology communication network Gσ is connected,

the controller (5.92) and the learning rule (5.96) are employed, all the nonlin-

ear functions fi(x) satisfies Assumptions 5.5- 5.7, the pair (A,B) is control-

lable, and the following inequality holds for all ωi:

sup
t

{‖ωi(t)‖} ≤ �

where � is a positive constant.

Proof. Consider the following Lyapunov function candidate:
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V (e, W̃) =
1

2
eT (I ⊗ PA)e+

1

2
W̃TΓ−1W̃ (5.97)

By taking the time derivative of the above Lyapunov function along the tra-

jectories of the augmented equations (5.94) and (5.96), one can obtain:

V̇ = eT (I ⊗ PAA+ ATPA− PABBTPA)e− 1

2εσ
eT (Hσ − εσI ⊗ PABBTPA)e

− eT (Hσ ⊗ PAB)ΦW̃ + eT (Hσ ⊗ PAB)ε+ eT (Hσ ⊗ PAB2)ω

+ W̃TΦT (BTPA ⊗Hσ)e− ηcW̃
T (Lσ ⊗ I)W̃ − ηW̃T Ŵ

≤ eT (I ⊗ PAA+ ATPA− PABBTPA)e+ eT (Hσ ⊗ PAB)ε

+ eT (Hσ ⊗ PAB2)ω − ηcW̃
T (Lσ ⊗ I)W̃ − ηW̃T Ŵ

(5.98)

Using the inequality (5.10), we have:

V̇ ≤eT (I ⊗ PAA+ ATPA− PABBTPA + μσγ
−2
ε PABBTPA + μσγ

−2
ω PAB2B

T
2 PA)e

+ γ2
εε

T ε+ γ2
ωω

Tω − ηcW̃
T (Lσ ⊗ I)W̃ − ηW̃T Ŵ

(5.99)

After some algebraic manipulations one can verify that for any matrix M the

following inequality holds:

2W̃TMŴ = 2(Ŵ −W∗)TMŴ = 2ŴTMŴ − 2W∗TMŴ

= 2ŴTMŴ − 2W∗TMŴ +W∗TMW∗ −W∗TMW∗

= ŴTMŴ + (Ŵ −W∗)TM(Ŵ −W∗)−W∗TMW∗

= ŴTMŴ + W̃TMW̃ −W∗TMW∗

≥ W̃TMW̃ −W∗TMW∗

(5.100)

Using the above inequality and substituting equation (5.93) into the inequality

(5.99) one obtains:
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V̇ ≤− eT (I ⊗QA)e+ γ2
εε

T ε+ γ2
ωω

Tω − ηcW̃
T (Lσ ⊗ I) W̃

− 1

2
ηW̃T W̃ +

1

2
ηW∗TW∗

≤− eT (I ⊗QA)e− ηcW̃
T (Lσ ⊗ I)W̃ − 1

2
ηW̃T W̃

+ γ2
ε‖ε‖2 + γ2

ω‖ω‖2 +
1

2
η‖W∗‖2

(5.101)

Using the above inequality one can verify that V̇ < 0 as long as the pair (e, W̃)

is outside the compact set Θ = Θe ∩ Θw, where Θe and Θw are compact sets

defined as follows:

Θe =

{
(e, W̃) | ‖e‖ ≤

√
C

λmin(QA)

}
, Θw =

{
(e, W̃) | ‖W̃‖ ≤

√
2

η
C
}

(5.102)

where C = nγεε
∗
u
2 + nγ2

ω�
2 + 1

2
η‖W∗‖2. Therefore, the overall multi-agent

system is uniformly ultimately bounded. Furthermore, one can verify that V̇

is negative definite outside the compact set Θe and therefore an attractive set.

Therefore, the upper bound of ‖e‖ can be arbitrarily reduced as C decreases

or λmin(QA) increases and this concludes the proof of the theorem. �

Remark 5.5. Although, our proposed cooperative learning based consensus al-

gorithm guarantees that the estimation error of the RBF neural network weight

remains bounded, however our method cannot guarantee that the upper bound

of the estimation error of the NN weights can be arbitrarily reduced without

invoking the persistent excitation (PE) condition [144].

Simulation Results

To show the effectiveness of our proposed learning based consensus algorithm

we performed numerical simulations for a team of four agents where their

dynamics is governed by equation (5.85), with matrices A, B, and Bω defined

in (5.44). In our simulations, each agent uses an RBF neural network with

5 neurons to learn the nonlinear function f(x). Figure 5.22 depicts the two

undirected graph that are used by the agents to exchange information and the
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Figure 5.22: Communication networks topologies.

communication network topology of the team changes smoothly between these

two networks every 30 seconds. The disturbance signals ωi are combinations

of a number of sinusoidal functions with different frequencies, amplitude of 1

and random phases. The matrix Γ in the learning rule (5.96) is set to 20I, the

learning constant η = 0.0001. Furthermore, in the algebraic Riccati equation

(5.93) the constants γε and γω are set to 10 and the matrix QA = 2I. The

resulting control gains K1 =
1
2ε1

BTPA1 and K2 =
1
2ε2

BTPA2 are as follows:

K1 =
[
−12.8491 −9.0439 11.7027

]
K2 =

[
−16.9637 −11.9357 15.4936

]

In our numerical simulation, the initial values for the RBF neural network

weights and initial states of the leader and other agents are selected randomly.

To demonstrate that our proposed learning based consensus control algo-

rithm capable of dealing with different nonlinear functions, in the first step

we perform our numerical simulations on a team with the following different

nonlinear functions:

f1(x) =

⎡
⎢⎢⎣

0
10(1−x2

2)

1+x2
2

0

⎤
⎥⎥⎦ , f2(x) = −f1(x), f3(x) =

⎡
⎢⎢⎣

0
5 cos(x2)

1+x2
2

0

⎤
⎥⎥⎦ , f4(x) = −f3(x)

(5.103)

To make it easier to observe the effects of the neural network correction

term in performance of the team, first we performed the simulations by ignor-

ing the neural network output and by using ui = − 1
2εσ

BTPAei as the control
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Figure 5.23: Depth of the agents with different nonlinearities and without
using a neural network-based control approach.

law. Figure 5.23 shows the trajectories of the agents’ depth where clearly the

consensus is not achieved.

In comparison Figures 5.24, 5.25, 5.26 show different states of the agents

and Figure 5.27 illustrates the consensus error signal by using the entire control

law (5.92) with the neural network term and employing the learning law (5.95)

with no cooperative learning term. As can be observed, the team achieves UUB

consensus.

The control inputs of the agents is depicted in Figure 5.28 and finally Figure

5.29 shows the trajectories of the RBF neural network weights. In Table 5.3

the quantitative differences between these two scenarios are illustrated.

To show the importance and the performance improvement of the team

by using the cooperative learning and make it easier to compare the non-

cooperative learning-based and cooperative learning-based methods, in the

next step we consider that the nonlinearity of all agents are identical and

equal to the function f1(x) in equation (5.103). The depth of the agents

and the neural network weights for the team with identical nonlinearities and
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Figure 5.24: Pitch angle of the agents with different nonlinearities and by
using a neural network-based control approach.

Figure 5.25: Angular velocity of the agents with different nonlinearities and
by using a neural network-based control approach.
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Figure 5.26: Depth of the agents with different nonlinearities and by using a
neural network-based control approach.

Figure 5.27: Consensus error of the team with different nonlinearities and by
using a neural network-based control approach.
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Figure 5.28: Control inputs of the agents with different nonlinearities and by
using a neural network-based control approach.

Figure 5.29: Neural network weights of the team with different nonlinearities.
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Table 5.3: Quantitative comparison results for the team with different nonlin-
earities with and without using the neural network-based control approach.

Settling time
(sec)

Consensus error
(L2 norm)

Consensus error
(steady state RMS)

The team by using
the neural network-based
control approach

27.09 19.60 0.0047

The team without using
the neural network-based
control approach

- 170.22 1.2048

without using the cooperative learning term are shown is Figures 5.30 and

5.31, respectively.

We now set the cooperative learning constant ηc to 0.1 and repeated our

numerical simulation by using the cooperative learning law (5.96). In Figures

5.32, 5.33 and 5.34 the states of the agents are depicted, and the consensus

error of the team is shown in Figure 5.35, and the control inputs are illustrated

in Figure 5.36. As can be seen the team achieves consensus faster in comparison

with the non-cooperative learning-based approach. Figure 5.37 depicts the

neural network weights. It clearly shows how sharing the learned knowledge

between the agents affects the trajectories of the estimated weights and causes

the agents to reach a consensus on the neural network weights. Table 5.4

shows the quantitative comparison between the performances of the team with

identical nonlinear functions under different control and learning laws. It can

be observed the the settling time for the cooperative learning method is much

faster in comparison with the non-cooperative learning method.

As stated earlier in this section, our proposed method is not limited to

the RBF neural networks and is capable of dealing with different function ap-

proximation techniques. To demonstrate this, we assume that the structure

of the nonlinear function is known and fi(x) = κiΦi(xi), where Φi(x) =
1−x2

2

1+x2
2
,

but the parameter κi is unknown and is required to be estimated. Let us

denote the estimated values of the parameters by κ̂1, ..., κ̂4. Using our pro-

posed method, one can update the values of κ̂ = [κ̂1, ..., κ̂4]
T by employing the
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Figure 5.30: Depth of the agents with identical nonlinearities and without
using the cooperative learning term.

Figure 5.31: Neural network weights of the team with identical nonlinearities
and without using the cooperative learning term.
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Table 5.4: The simulation results for the team with identical nonlinearities.

Settling time
(sec)

Consensus error
(L2 norm)

Consensus error
(steady state RMS)

The team without using the
neural network-based control
approach

- 191.840 1.6860

The team without using the
cooperative learning method 29.998 19.632 0.0072

The team by using the
cooperative learning method 9.819 18.121 0.0022

Figure 5.32: Pitch angle of the agents by using neural network and without
employing the cooperative learning term.
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Figure 5.33: Angular velocity of the agents by using neural network and with-
out employing the cooperative learning term.

Figure 5.34: Depth of the agents without using neural network and without
employing the cooperative learning term.
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Figure 5.35: Consensus error of the team by using neural network and without
employing the cooperative learning term.

Figure 5.36: Control inputs of the agents by using neural network and without
employing the cooperative learning term.
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Figure 5.37: Neural network weights of the team and without employing the
cooperative learning term.

following cooperative adaptive law:

˙̂κ = Γ
(
ΦT (Hσ ⊗ BTPA)e− ηc(Lσ ⊗ I)κ̂− ηκ̂

)
(5.104)

In the above adaptation law, we used the same design parameters as those that

are stated for the RBF neural network simulation scenarios to make compar-

ison between the two approaches meaningful. The numerical simulations for

both scenarios using non-cooperative adaptive and using cooperative adaptive

laws are performed. For the first scenario, the depth trajectories of the agents

are shown in Figure 5.38. Figure 5.39 illustrates the applied control signals.

Finally, the estimated parameters for the four agents are shown in Figure 5.40.

In Figures 5.41, 5.42 and 5.43 the agents depth, control signals and esti-

mated parameters for the second scenario are depicted, respectively.

Although, our approach cannot guarantee that persistent excitation condi-

tion is always satisfied, as can be seen in Figures 5.40 and 5.43, our proposed

adaptive methods correctly estimate the unknown parameter values. Further-

more, the settling time, the L2 norm of the consensus error, and the RMS value
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Figure 5.38: Depth of the agents by using the non-cooperative adaptive
method.

Figure 5.39: Control inputs of the agents by using the non-cooperative adap-
tive method.
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Figure 5.40: Estimated parameters by using the non-cooperative adaptive
method.

Figure 5.41: Depth of the agents by using the cooperative adaptive method.
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Figure 5.42: Control inputs of the agents by using the cooperative adaptive
method.

Figure 5.43: Estimated parameters by using the cooperative adaptive method.
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Table 5.5: The comparison between cooperative and non-cooperative adaptive
methods.

Settling time
(sec)

Consensus error
(L2 norm)

Consensus error
(steady state RMS)

The non-cooperative
adaptive method 80.89 27.56 0.0097

The cooperative
adaptive method 24.11 18.07 0.0079

of the steady state consensus error for both adaptive approaches are presented

in Table 5.5. It is shown that the settling time of the cooperative adaptive

method is faster than that of the non-cooperative adaptive approach.

5.4 Summary

In this chapter effects of measurement noise and model uncertainties includ-

ing Lipschitz nonlinearity on consensus achievement of multi-agent systems

and their disturbance rejection capability was studied. In the first section, we

proposed an observer based cooperative algorithm for output consensus of a

team of LTI agents with a measurement noise. Next, consensus achievement

problem for a homogenous team of multi-agent systems with unknown linear

and Lipschitz nonlinearity model uncertainties is studied in the second section.

Furthermore, an observer design procedure is proposed to show how one can

deal with both model uncertainty and measurement noise at the same time.

Finally, a novel cooperative-learning based consensus algorithm is presented

and its shown that it guarantees UUB consensus achievement error for a class

of nonlinear multi-agent systems with undirected and switching topology com-

munication network. In this chapter, by using Lyapunov stability analysis and

the method developed in Chapter 3 the disturbance rejection property of the

overall team was also demonstrated.
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Chapter 6

Conclusions and future work

In this thesis consensus based cooperative control of multi-agent system is ad-

dressed and its different aspects namely, consensus achievement in teams of

LTI systems with directed and switching topology communication networks in

presence of disturbances, fault-tolerant cooperative control and fault recovery

of multi-agent systems for actuator saturation and loss-of-effectiveness fault,

and observer based consensus achievement of multi-agent systems with mea-

surement noise and a finally, cooperative control of team of agents with model

uncertainties including nonlinear multi-agent systems are studied.

First, H∞ and weighted H∞ consensus problems for a team of homogenous

LTI multi-agent systems subject to switching topology and directed commu-

nication network graphs were investigated. Then, we proposed a novel design

procedure which is based on the solution of an algebraic Riccati equation.

Sufficient conditions provided based on state feedback stabilizability of an LTI

system and utilizing Lyapunov analysis the stability of the overall closed-loop

switched system was asserted. Comparing to other existing methods in the

literature, our proposed methodology proved to be more feasible in terms of

computational complexity. The disturbance rejection property of the overall

system was demonstrated by employing Lyapunov stability analysis and the

proposed procedure.

We developed a fault tolerant consensus scheme for a team of LTI multi-

agent systems under switching topologies and directed communication network

graph. This is a weighted consensus algorithm for consensus achievement of
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the multi-agent system based on an inaccurate estimate of the fault severities.

Moreover, to improve the fault tolerance capabilities of our proposed consen-

sus strategy a control reconfiguration strategy was proposed. The faults can

occur simultaneously in any number of agents and there is no need to have an

accurate knowledge of the fault severities. Two kinds of faults namely, a loss-

of-effectiveness and a control saturation in the actuators were considered. The

stability of the overall closed-loop switched system was shown by using Lya-

punov analysis. Finally, it was shown how to remedy the actuator faults and

saturation in the multi-agent team and improve the consensus achievement

performance by employing our proposed reconfiguration strategy. The effec-

tiveness and capabilities of our proposed consensus algorithms were illustrated

through numerical simulations to a team of ten multi-agent systems where the

performance of our proposed methods was compared with the performance of

centralized and decentralized fault recovery methods that are available in the

literature.

Finally, effects of measurement noise and model uncertainties including

Lipschitz nonlinearity on consensus achievement of multi-agent systems and

their disturbance rejection capability was studied. An observer based coop-

erative algorithm for output consensus of a team of LTI agents with a mea-

surement noise is proposed and numerical simulation is performed to show its

effectiveness. It is followed by, studying consensus achievement problem for

a homogenous team of multi-agents with unknown linear and Lipschitz non-

linearity model uncertainties. Furthermore, an observer design procedure is

proposed to show how one can deal with both model uncertainty and mea-

surement noise at the same time. Finally, a novel cooperative-learning based

consensus algorithm presented and its shown that it guarantees consensus

achievement error of a class of nonlinear multi-agent systems with undirected

and switching topology communication network is UUB.

6.1 Future work

Based on the work that has been done in this thesis and the obtained results,

in the following some of the potential areas of study and suggestions for future
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work and research directions are presented:

1. One of the fast growing research areas in consensus based cooperative

control is event-driven consensus algorithms. In this thesis we developed

a transformation and a stability analysis lemma to tackle H∞ consensus

problem of LTI multi-agent systems. Extending these results and make

them suitable to design event-driven consensus algorithms in presence

of disturbances will make them more capable to deal with real world

practical scenarios.

2. Applying our algorithms to real multi-agent systems and addressing real-

time issues.

3. We defined a fault index to quantify effects of the severities of agents

actuator faults on stability of our proposed consensus controller and

developed a framework to convert the fault tolerant cooperative control

into an optimization problem and proposed a fault recovery strategy

based on their solutions. However, it is an open problem to find the best

numerical method to solve this or find a better approach to define a fault

index or to formulate an optimization problem which has more efficient

numerical solution.

4. Extend our results to address data-based FDI methods, fault detection

delay, and also consider other types of actuator faults including the ones

due to age and fatigue.

5. In this thesis, we used our proposed method to decouple communication

network topology from agents dynamics and only use algebraic connec-

tivity of the network and agents dynamics to design consensus algorithms

to minimize the design procedure computational complexity. However,

one may duplicate our results by employing classical pole placement tech-

niques and make a comparison between the two to find out which one is

less conservative.

6. Throughout this dissertation, we assumed that there is no delay in the

communication network and furthermore we assumed that all the infor-

mation that is sent to an agent is always received by it and no data loss is
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considered. The effects of these two issues can be studied and addressed

in future work.

7. Another interesting problem in multi-agent systems research domain

that is not addressed in our work, is consensus achievement of non-

homogeneous teams. In the first step, one can consider output consensus

of non-homogenous LTI multi-agent systems and in the second step one

can try to extend it to teams of nonlinear or time-varying systems.

8. In the literature, connectivity preserving and obstacle avoiding consensus

algorithms are mainly addressed for single and second order multi-agent

systems and extending these algorithms to teams of more general LTI

systems is a step in generalizing multi-agent research area.

9. The cooperative adaptive consensus control is a new topic and in this

work we only addressed a class of general function approximators includ-

ing RBF neural networks. These results could be extended to other types

of learning methods such as multilayer perceptron (MLP) networks.
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