
Cryptanalysis of Some AES-based Cryptographic Primitives

Riham AlTawy

A Thesis

in

The Concordia Institute for Information

Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy at
Concordia University

Montréal, Québec, Canada

March 2016

c⃝Riham AlTawy, 2016

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 Chair

 External Examiner

 External to Program

 Examiner

Examiner

Thesis Supervisor

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

Riham AlTawy

Cryptanalysis of Some AES-based Cryptographic Primitives

Doctor of Philosophy in Information Systems Engineering

Dr. Tarek Zayed

Dr. Haward M. Heys

Dr. Dongyu Qiu

Dr. Mohammad Mannan

Dr. Jeremy Clark

Dr. Amr M. Youssef

Dr. Amir Asif

Cryptanalysis of Some AES-based Cryptographic Primitives

Approved by
Dissertation Committee:

Abstract
Cryptanalysis of Some AES-based Cryptographic Primitives

Riham AlTawy, Ph.D.

Concordia University, 2016

Current information security systems rely heavily on symmetric key cryptographic primitives

as one of their basic building blocks. In order to boost the efficiency of the security systems, designers

of the underlying primitives often tend to avoid the use of provably secure designs. In fact, they adopt

ad hoc designs with claimed security assumptions in the hope that they resist known cryptanalytic

attacks. Accordingly, the security evaluation of such primitives continually remains an open field. In

this thesis, we analyze the security of two cryptographic hash functions and one block cipher. We

primarily focus on the recent AES-based designs used in the new Russian Federation cryptographic

hashing and encryption suite GOST because the majority of our work was carried out during the open

research competition run by the Russian standardization body TC26 for the analysis of their new

cryptographic hash function Streebog. Although, there exist security proofs for the resistance of AES-

based primitives against standard differential and linear attacks, other cryptanalytic techniques such as

integral, rebound, and meet-in-the-middle attacks have proven to be effective. The results presented in

this thesis can be summarized as follows:

Initially, we analyze various security aspects of the Russian cryptographic hash function GOST

R 34.11-2012, also known as Streebog or Stribog. In particular, our work investigates five security

aspects of Streebog. Firstly, we present a collision analysis of the compression function and its in-

ternal cipher in the form of a series of modified rebound attacks. Secondly, we propose an integral

distinguisher for the 7- and 8-round compression function. Thirdly, we investigate the one wayness

iii

of Streebog with respect to two approaches of the meet-in-the-middle attack, where we present a

preimage analysis of the compression function and combine the results with a multicollision attack

to generate a preimage of the hash function output. Fourthly, we investigate Streebog in the context

of malicious hashing and by utilizing a carefully tailored differential path, we present a backdoored

version of the hash function where collisions can be generated with practical complexity. Lastly, we

propose a fault analysis attack which retrieves the inputs of the compression function and utilize it to

recover the secret key when Streebog is used in the keyed simple prefix and secret-IV MACs, HMAC,

or NMAC. All the presented results are on reduced round variants of the function except for our analy-

sis of the malicious version of Streebog and our fault analysis attack where both attacks cover the full

round hash function.

Next, we examine the preimage resistance of the AES-based Maelstrom-0 hash function which is

designed to be a lightweight alternative to the ISO standardized hash function Whirlpool. One of the

distinguishing features of the Maelstrom-0 design is the proposal of a new chaining construction called

3CM which is based on the 3C/3C+ family. In our analysis, we employ a 4-stage approach that uses

a modified technique to defeat the 3CM chaining construction and generates preimages of the 6-round

reduced Maelstrom-0 hash function.

Finally, we provide a key recovery attack on the new Russian encryption standard GOST R 34.12-

2015, also known as Kuznyechik. Although Kuznyechik adopts an AES-based design, it exhibits a

faster diffusion rate as it employs an optimal diffusion transformation. In our analysis, we propose

a meet-in-the-middle attack using the idea of efficient differential enumeration where we construct

a three round distinguisher and consequently are able to recover 16-bytes of the master key of the

reduced 5-round cipher. We also present partial sequence matching, by which we generate, store, and

match parts of the compared parameters while maintaining negligible probability of matching error,

thus the overall online time complexity of the attack is reduced.

iv

Acknowledgments

I wish to address my first thanks to my supervisor, Professor Amr Youssef, whose knowledge,

kindness, patience, and availability have largely contributed to the existence of this work. Our frequent

fruitful discussions have helped improve my confidence in my cryptanalytic abilities and allowed me

to better focus on my research goals.

Next, I want to thank Aleksandar Kircanski for jumpstarting my interest in hash function cryptanal-

ysis, and for tolerating my silly questions regarding second-order collisions. I also like to express my

gratitude to my lab colleagues at the CIISE Crypto Lab for their friendship and social support.

Finally, thank you Karim for enduring long days and nights full of cryptanalysis and writing papers,

and thank you Mama for always pushing me and encouraging me throughout all my studies.

RIHAM ALTAWY

v

To my family for their love and support

Table of Contents

Abstract iii

Acknowledgments v

List of Figures xi

List of Tables xiii

Chapter 1 Introduction 1

1.1 General Overview and Motivation . 1

1.2 Thesis contributions . 5

Chapter 2 Background 7

2.1 The Role of Cryptography . 7

2.1.1 Symmetric-key Primitives . 8

2.1.2 Asymmetric-key Primitives . 9

2.2 Block Ciphers . 10

2.2.1 Security Requirements . 11

2.2.2 The Advanced Encryption Standard . 12

2.3 Hash Functions . 14

2.3.1 Cryptographic Properties and Applications 14

2.3.2 Generic Attacks . 16

2.3.3 Hash Function Construction . 17

2.3.4 Block Cipher-based Compression Functions 18

2.4 Overview of the Employed Cryptanalytic Methods 19

vii

Chapter 3 Collision Analysis of Streebog 23

3.1 Introduction . 24

3.2 Specification of Streebog . 26

3.3 The Rebound Attack . 29

3.4 Attacks on the Internal Block Cipher (E) . 31

3.4.1 5-round Free-start Collision . 33

3.4.2 8-round Collision and 7.75-round Near Collision Attacks 34

3.5 Attacks on the Streebog Compression Function . 36

3.6 Conclusion . 39

Chapter 4 Integral Distinguishers for Streebog 41

4.1 Introduction . 42

4.2 Integral cryptanalysis . 42

4.3 Distinguishers for the Streebog Primitives . 45

4.4 Extending the Distinguisher to 8 Rounds . 48

4.5 Conclusion . 52

Chapter 5 Preimage Analysis of Streebog 53

5.1 Introduction . 54

5.2 MitM Preimage Attacks on AES-based Hash Functions 55

5.3 5-round Pseudo Preimage of the Compression Function 57

5.4 Extending the Attack to 6 Rounds . 62

5.5 Preimage of the Streebog Hash Function . 64

5.6 Conclusion . 66

Chapter 6 Malicious Streebog 68

6.1 Introduction . 68

6.2 Malicious compression function collision . 70

6.2.1 Finding a solution for the differential path . 72

6.2.2 Our proposed technique for finding collisions 72

6.2.3 Connecting the three solutions . 73

6.3 Collision attack on the full malicious Streebog . 74

6.4 Conclusion . 75

viii

Chapter 7 Differential Fault Analysis of Streebog 78

7.1 Introduction . 78

7.2 Fault Analysis . 79

7.3 Differential Fault Analysis Attack on Streebog . 81

7.3.1 Stage One . 83

7.3.2 Stage Two . 84

7.3.3 Extending the Attack to the Hash Function 85

7.4 DFA on Streebog in Different MAC Settings . 87

7.5 Simulation Results . 89

7.6 Conclusion . 90

Chapter 8 Preimage Analysis of the Maelstrom-0 Hash Function 92

8.1 Introduction . 92

8.2 Specifications of Maelstrom-0 . 94

8.3 Pseudo Preimage Attack on the 6-Round Reduced Compression Function 97

8.4 Preimage of the Maelstrom-0 Hash Function . 101

8.5 Conclusion . 104

Chapter 9 A Meet in the Middle Attack on Kuznyechik 105

9.1 Introduction . 105

9.2 Specification of Kuznyechik . 108

9.3 Security Analysis of Kuznyechik . 111

9.3.1 Differential and Linear Cryptanalysis . 111

9.3.2 Related-key Cryptanalysis . 111

9.3.3 Integral Cryptanalysis . 112

9.3.4 Higher Order Differential Cryptanalysis . 112

9.4 A MitM Attack using Differential Enumeration on Kuznyechik 112

9.4.1 Attack Procedure . 115

9.4.2 Complexity Analysis . 120

9.4.3 Partial sequence matching . 120

9.5 Conclusion . 121

ix

Chapter 10 Summary and Future Research Directions 122

10.1 Summary of contributions . 122

10.2 Future work . 125

Bibliography 127

x

List of Figures

2.1 An insecure unencrypted communication channel . 8

2.2 Alice and Bob using symmetric-key encryption . 9

2.3 Alice and Bob using asymmetric-key encryption . 10

2.4 Fiestel and Substitution Permutation Network constructions. 12

2.5 The AES round function. 13

2.6 Merkle-Damgård construction . 18

2.7 Compression function modes of operation . 18

3.1 The Streebog compression function gN . 26

3.2 The internal block cipher (E) . 27

3.3 The inbound phase of the rebound attack. 29

3.4 7.75 round differential path . 32

3.5 Start from the middle approach. 35

3.6 4.75 round near collision path . 38

4.1 A 3-round first order integral for Rijndael . 44

4.2 An example for a forward 4-round 8th order integral 46

4.3 An example for a backward 3.5-round 8th order integral 47

4.4 An example for a 7.5-round 15th order integral . 48

4.5 An example for a 7-round 15th order integral . 49

4.6 An example for a 6-round 8th order integral . 50

4.7 An eight round distinguisher for the Streebog internal cipher 51

5.1 MitM preimage attack techniques for hash functions 56

5.2 Chunk separation for a 5-round MitM pseudo preimage attack 58

xi

5.3 Initial structure for the 5-round attack . 59

5.4 Chunk separation for a 6-round MitM pseudo preimage attack 63

5.5 Preimage attack on the Streebog hash function. 65

6.1 The first truncated differential path. 71

6.2 Our approach for finding collision for the full round compression function. 73

6.3 Malicious Streebog collision. 74

7.1 Fault injection in the first stage of the attack. 83

7.2 Fault injection in the second stage of the attack. 84

7.3 The Streebog iterated hash function. 86

7.4 Simple prefix MAC using Streebog. 88

7.5 HMAC using Streebog. 88

8.1 The Maelstrom-0 hash function. 95

8.2 The Maelstrom-0 compression function. 96

8.3 Chunk separation for the MitM pseudo preimage attack 98

8.4 Initial structure used in our attack . 99

8.5 A 4-stage preimage attack on the Maelstrom-0 hash function. 102

9.1 The encryption procedure of Kuznyechik . 109

9.2 The key schedule of Kuznyechik . 110

9.3 Differential path used in the 5-round attack. 114

xii

List of Tables

2.1 Generic attack parameters. 17

3.1 Summary of our collision analysis of Streebog. 23

3.2 Example of a 4.75-round near collision . 39

3.3 Example of a 5-round collision and 7.75-round near collision 40

4.1 Summary of the integral cryptanalysis results on the Streebog primitives. 41

5.1 Summary of the preimage cryptanalytic results on Streebog 53

6.1 The six new constants. 76

6.2 The six unchanged (original) constants. 77

6.3 Example of a 2-block message collision for the malicious Streebog hash function. . . . 77

xiii

Chapter 1

Introduction

1.1 General Overview and Motivation

Ever since ancient times, cryptography has been used to protect the privacy of governmental and

military communications. With the development of telecommunications during the twentieth century,

cryptography has become more important as it evolved to ensure not only information confidentiality,

but also its integrity and authenticity. A cryptosystem is usually described by an algorithm that states

the series of operations to be performed on the message. Historically, such operations were applied on

messages by hand or with the aid of mechanical machines such as the German Enigma [110]. Also,

the concept of security by obscurity where the whole cryptographic algorithm is kept a secret was

widely adopted. Currently, computers are integral components of the modern networked IT society.

Cryptographic primitives are implemented in small processors used by almost every digital object such

as mobile phones and credit cards. Accordingly, hiding the workings of the adopted cryptographic

algorithms cannot scale with such wide deployment of the utilized security systems. In fact, modern

cryptography follows the principle of Auguste Kerckhoffs [81] which states that cryptographic systems

must use openly described algorithms while hiding only little information. Such secret information is

referred to as a key that is known to the intended parties involved in the communication. Thus, if

such key is compromised, setting a new key is enough to regain the system security without the need

to change the whole cryptosystem. Additionally and more importantly, it enables the continually

ongoing public analysis of the cryptosystem which strengthens the confidence of the cryptographic

1

community in its security.

Academic research in cryptography revolves around two high level research directions which are

the proposal of new cryptosystems and the cryptanalysis of such systems. Designers of modern cryp-

tosystems often opt for non provably secure designs as they are more efficient in terms of their running

time, hardware area, and power consumption. Alternatively, the designers of such systems specify the

assumed expected effort and resources required to violate the security requirements of their cryptosys-

tems. Such effort and resources rely on the cryptosystem parameters which are chosen such that the

effort and resources required by the respective generic attacks are infeasible to be realized practically.

On the other hand, cryptanalysts study the workings of such systems and try to devise new approaches

to attack their security properties. An attack on a given cryptosystem is considered successful when

any of its security properties can be violated with an effort and resources less than those specified by

its designers [110].

Symmetric-key cryptosystems are cryptographic primitives that employ one cryptographic key for

both the encryption and decryption procedures [110]. Such primitives include block and stream ci-

phers, Message Authentication Code (MAC) schemes, and dedicated authenticated encryption algo-

rithms. Hash functions are publicly computable deterministic unkeyed functions. However, they are

commonly included in the category of symmetric-key primitives due to the fact that they are often built

on a block cipher core and cryptanalyzed using block cipher approaches. One of the most prominent

block ciphers is the Advanced Encryption Standard (AES) [45] as it is the U.S. standardized encryption

algorithm and is widely deployed in security protocols. The AES design offers a heuristic proof for the

lower bound complexities against standard differential and linear attacks [28, 100]. Additionally, ever

since its inception, no attacks have been discovered that compromise its security in practice. For that

reason, many proposals of other symmetric-key primitives such as hash functions and authenticated

encryption schemes are adopting AES-based designs.

Generally, symmetric-key encryption algorithms that are built using rigorous security proofs

may not be suitable in terms of running time for the current demands and constraints of modern security

systems. For that reason, most of the practically used and standardized cryptographic primitives gain

2

their strength from withstanding years of cryptanalysis without being broken. In other words, such

algorithms do not provide a proof of absolute security, but because they have been studied for several

years by cryptanalysts, the confidence in their resistance to various attacks is strengthened. Such

demand for analysis is usually motivated by the significance of the cryptographic primitive and/or its

participation in public research competitions. During such competitions, the standardization body calls

for submissions for a cryptographic primitive or analysis results on a given primitive. In response to

such call, designers from the cryptographic community submit their proposals or research papers that

are evaluated by other researchers through multiple analysis rounds until a winner is chosen. Examples

of such competitions include the U.S. NIST’s block cipher standard AES (1997-2000) [117] and hash

function standard Secure Hash Algorithm-3 (SHA-3) (2007-2012) [118] competitions, and the Russian

TC26 open research competition for the analysis of the standard hash function Streebog (2013-2015)

[138]. Additionally, a new Competition for Authenticated Encryption: Security, Applicability, and

Robustness (CAESAR) [41] funded by NIST was initiated in 2013 to select a portfolio of authenticated

encryption algorithms, where the winning schemes are expected to be announced in 2017. These

competitions have lead to a flurry in both the design and cryptanalysis of cryptographic algorithms.

Particularly, the Russian open research competition on Streebog has motivated the majority of our

work which aims to propose cryptanalytic attacks on the Russian cryptographic hashing standard to

provide better lower bounds on its security margins.

Cryptanalysis starting from the mid-2000s has improved significantly, especially in the area related

to hash functions. More precisely, it has been shown that the commonly used hash functions by that

time offered only a very limited security margin. In particular, a completely new chapter in the his-

tory of the analysis of Merkle-Damgård (MD) construction that adopt Add-Rotate-Xor (ARX)-based

designs was opened when Wang et al. [143, 144] managed to enhance multi-block differential crypt-

analysis to a point that finding collisions for MD5 became utterly feasible (under a minute on a PC)

and a vast reduction of the security margin was obtained for Secure Hash Algorithm 1 (SHA-1). Al-

though Wang’s random looking collisions by themselves do not pose any harm, later it was shown that

inserting these blocks in certain places of popular documents format (such as PostScript or MS word)

can lead to two different files that hash to the same value. Another elegant yet severe consequence

3

of this attack was demonstrated in [137] through the construction of two different X.509 certificates

with two different public keys and the same MD5 hash. Such attack allows impersonation and defeats

directly the authentication mechanism of security protocols using MD5. In response to these dramatic

cryptanalytic attacks, the National Institute for Standards and Technology (NIST) decided to develop

another hash function through a public competition [118]. The SHA-3 competition ended in Octo-

ber 2012 with Keccak [69] being announced as the new U.S. cryptographic hashing standard [40].

During this competition, there has been a conceptual shift in hash function designs through the pro-

posal of several AES-based hash functions. Indeed, at the same time when most of the standardized

ARX-based hash functions were failing to resist the techniques introduced by Wang et al., the already

existing ISO standard AES-based Whirlpool [126] was not affected by these attacks. The inclination

towards AES-based hash function designs was clearly evident among the SHA-3 competition propos-

als (e.g., the SHA-3 finalists Grøstl [60], JH [149], and LANE [73]). Additionally, Streebog [102],

the new Russian hash standard which is officially known as GOST R 34.11-2012, is also among the

recently proposed AES-based hash functions. Streebog has been proposed by a group of Russian

designers [102], and chosen by the Russian standardization body TC26 to be the new cryptographic

hashing encryption standard. In order to boost the confidence of the cryptographic community in

Streebog, TC26 has called for an international open research competition dedicated to the analysis of

its new standard. The work presented in chapters 3, 4, 5, 6, and 7 of this thesis has been chosen by

TC26 as a winner of the open research competition dedicated for the analysis of Streebog.

AES adopts the wide trail design strategy [45] which is a design approach that mitigates standard

differential and linear attacks. This strategy provides upper bounds for the probability of any differ-

ential or linear trail. More precisely, the wide trail strategy ensures that full difference diffusion after

two rounds such that no sparse differential path can be constructed. In the case of AES, the mini-

mum number of active Sboxes of any 4-round path is 25. All the attacks on the AES block cipher

in the secret key setting have time, memory, or data complexities that makes such attacks far from

being realized practically, and consequently, they do not directly threaten the security of AES. Such

attacks include boomerang related-key attack [30], biclique attacks [32], and meet-in-the-middle at-

tacks [48, 49, 52, 96]. Accordingly, the new Russian encryption standard Kuznyechik [3] is designed

4

based on the wide trail strategy. However, unlike AES, Kuznyechik employs a full state optimum diffu-

sion transformation which ensures full diffusion after one encryption round and results in a minimum

of 17 active Sboxes in any 2-round path.

Today, almost every electronic transaction with security requirements relies on the underlying en-

cryption and cryptographic hashing primitives. The research scope of this thesis lies in the analysis

of standardized and/or significant AES-based cryptographic primitives, which is important work since

compromising their security results in the direct compromise of the security of the whole system em-

ploying them. Finding and exhibiting weaknesses of such cryptographic primitives allows fixing them

which foils adversaries and prevents any attempt to compromise systems of critical importance such as

the IT infrastructure of government organizations and banks which are probably going to adopt such

standardized primitives.

The cryptanalytic results presented in this thesis are motivated by the need to devise cryptanalytic

methods to analyze the security of AES-based cryptographic primitives in order to provide better lower

bounds of their security margins. The main goal of this thesis is to enhance the state of knowledge of

the cryptographic and security communities regarding the real security of the analyzed primitives.

1.2 Thesis contributions

In this thesis, we investigate five security properties of the Russian cryptographic hash function

Streebog. We also study the resistance of the Maelstrom-0 hash function to preimage attacks. Finally,

we propose a key recovery attack on the Russian encryption standard Kuznyechik. The contributions

of this thesis are as follows:

- We analyze the collision resistance of the Streebog compression function and its internal ci-

pher with respect to rebound attacks and present practical collision examples on reduced round

version of the function to verify our results.

- We study the structural integral properties of reduced-round versions of the Streebog compres-

sion function and its internal permutation, where we present 7 and 8-round distinguishers for the

5

compression function.

- We investigate the security of Streebog and its compression function, assessing their resistance

to the meet-in-the-middle preimage attacks, and present a pseudo preimage attack on the com-

pression function and use it to produce hash function preimages.

- We propose a malicious version of Streebog where we exploit the randomness of the independent

round constants to provide a backdoored version of the hash function where collisions can be

feasibly generated. Our proposed attack has a practical complexity and is verified by example.

- We present a differential fault analysis attack on Streebog, where we consider the function when

used in the secret key setting. We propose a two-stage attack to recover the secret inputs of the

function when it is used in various MAC schemes.

- We investigate the security of Maelstrom-0 and its compression function, assessing their re-

sistance to the meet-in-the-middle preimage attacks, and propose a four stage approach which

combines a 2-block multicollision attack [56,57] with a meet-in-the-middle attack to bypass the

effect of its finalization step and generate preimages of the reduced Maelstrom-0 hash function.

- We propose a key recovery meet-in-the-middle attack on the Russian encryption standard, Kuznyechik,

using efficient differential enumeration [49]. We also present partial sequence matching which

enables us to lower the overall time complexity of the attack and reduce its memory require-

ments.

The above contributions have been published in [7, 11, 12, 14–17]. Other works conducted during the

tenure of this Ph.D. have been published in [4, 6, 8–10,13, 84].

6

Chapter 2

Background

In this chapter, we provide a brief overview of the two basic classes of cryptosystems. We also

present a high level literature survey on the different design approaches for symmetric-key encryption

algorithms and hash functions, and the well known cryptanalytic methods used for their analysis.

2.1 The Role of Cryptography

A cryptosystem is a system that provides essential security properties required by communi-

cation entities. For example, as depicted in Figure 2.1, if two users, Alice and Bob are exchanging

messages remotely, the assurance that the exchanged messages are not disclosed, modified, or fabri-

cated is not guaranteed. Moreover, if they are communicating wirelessly, it becomes utterly easy for

adversaries to either intercept and read their messages passively, or actively engage in the communi-

cation by modifying, deleting, or inserting messages.

Cryptography provides a framework of various cryptographic algorithms to ensure essential security

requirements for the safe communication between Alice and Bob. Such requirements include [110]:

- Confidentiality: Keeping information secret from all but those who are authorized to see it.

- Integrity: Ensuring information has not been altered by unauthorized or unknown means.

- Entity authentication: Corroboration of the identity of an entity.

7

Figure 2.1: An insecure unencrypted communication channel

- Non repudiation: Preventing the denial of previous commitments or actions.

From a high level perspective, cryptosystems are divided into two different design classes: symmetric-

key and asymmetric-key primitives. They both differ in the roles of both Alice and Bob, employed

operations, rate of data throughput, and key management. In what follows, we give a brief overview

of these two classes of cryptographic algorithms

2.1.1 Symmetric-key Primitives

Symmetric-key primitives are also known as private key algorithms, and only one key is re-

quired in a communication session. LetEnc(m,K) andDec(m,K) denote encrypting and decrypting

message m with key K, respectively. As depicted in Figure 2.2, both Alice and Bob have symmetric

roles as they share a secret keyK which is used to encrypt and decrypt the exchanged information. As

long as the secret key is known only to Alice and Bob, an adversary cannot disclose the contents of

their encrypted communication. Symmetric-key primitives often adopt rather simple operations (e.g.,

xor, shift, and table lookups), thus they are characterized by their high data throughput and suitability

to resource constrained environments. However, they suffer from the key distribution problem where it

requires an additional mechanism to allow Alice and bob to exchange the private key securely. Cryp-

tosystems that employ symmetric-key cryptography include block ciphers, stream ciphers, Message

Authentication Code (MAC) schemes, and authenticated encryption algorithms.

8

Figure 2.2: Alice and Bob using symmetric-key encryption

2.1.2 Asymmetric-key Primitives

Asymmetric-key primitives are also known as public-key algorithms as the key material in-

cludes both private and public information. More precisely, as depicted in Figure 2.3, in a given

communication session, each participant has two different keys called a key pair (Kprv, Kpub): a pri-

vate and a public key. Bob’s public key Kbpub is used by Alice to encrypt messages that only he can

decrypt using his private key Kbprv. For that, a given entity’s public key can be advertised publicly

and used by anyone to initiate secure communication with it, as only the owner of the corresponding

private key can disclose the contents of the communication. Because of the fact that the information

required for encryption is public, asymmetric-key cryptosystems do not have a problem in managing

key distribution. In fact, public-key cryptosystems are often used to enable the distribution of secret

session keys in communications protected using symmetric-key encryption. On the other hand, public-

key primitives are several orders of magnitude slower than symmetric-key algorithms and their keys

are considerably long (e.g., 1024-2048 bit). Cryptosystems that employ asymmetric-key cryptogra-

phy include digital signatures such as DSS [82], public-key encryption such as RSA [77], and key

agreement protocols such as the Diffie-Hellman protocol [125].

9

Figure 2.3: Alice and Bob using asymmetric-key encryption

2.2 Block Ciphers

A block cipher is a bijective function that maps a block of n bits of the plaintext into a block

of n bits ciphertext parametrized by a secret key of k bits. Let Enc(p,K) and Dec(c,K) denote the

encryption and decryption of the n-bit plaintext and ciphertext blocks using a k-bit key, respectively.

Formally, a block cipher encompasses the following two mappings [110]:

Enc(p,K) : {0, 1}n × {0, 1}k 7→ {0, 1}n

Dec(c,K) : {0, 1}n × {0, 1}k 7→ {0, 1}n

such that for a given key K, p = Dec(Enc(p,K), K) where the key K is chosen at random from the

k-bit key space. A block cipher algorithm defines encryption, decryption, and round subkey generation

procedures. Initially, the secret key is processed through a number of mixed linear and nonlinear trans-

formations to generate a set of subkeys to be used in both the encryption and decryption procedures. In

the encryption process, the plaintext is used to initialize the encryption state which changes continually

by being processed through iterating a nonlinear function for a specific number of rounds [134]. In

each round, a given secret subkey is mixed with the current state to progressively obscure its contents.

Block ciphers usually employ rather simple operations in their round function which by themselves

are insufficient to deliver the required security properties, However, cascading them in a given order

in the round function and iterating such function for enough number of rounds makes the algorithm

10

resistant to known attacks. A round function typically consists of linear and nonlinear transformations.

The linear transformations are often implemented using xores, cyclic shifts, and finite field multipli-

cations by constants. On the other hand, nonlinear transformations can be designed using Sboxes, and

modular additions.

Modern block ciphers adopt one of two design architectures: Fiestel Network or Substitution Per-

mutation Network (SPN) which are both depicted in Figure 2.4. The former approach which is adopted

by the past encryption standard, DES [116] requires more rounds of iterating the mixing round func-

tion than the SPN structure to achieve full diffusion of the secret key bits. This is due to the fact that

the round function is applied only to half the encryption state and consequently, half the new updated

state remains unprocessed. At first the plaintext is loaded in the encryption state (L0, R0), for n/2-bit

blocks L0 and R0. After being processed for r rounds the state contains the ciphertext (Rr, Lr). For

1 ≤ i ≤ r, round i transforms state (Li−1, Ri−1) to state (Li, Ri) as follows:

Li = Ri−1,

Ri = Li−1 ⊕ f(Ri−1, Ki),

where Ki denotes the generated subkey for round i and f is the mixing function. On the other hand,

as shown in Figure 2.4, in the SPN structure, the round mixing function is applied to the whole state

which is initially loaded by the plaintext. Each round applies a key mixing transformation followed

by a substitution and permutation/linear transformation. All the employed transformations must be

invertible in order to enable decryption of the generated ciphertext. On the other hand, the mixing

function f in Fiestel designs may not be invertible because decryption is achieved by running the same

r-round encryption procedure on the ciphertext and using the subkeys in the reverse order.

2.2.1 Security Requirements

It is required that block ciphers resist attacks where the adversary can have additional knowl-

edge and capabilities than only observing random ciphertext. This extra knowledge results in the

adversary mounting known-plaintext, chosen-plaintext, chosen-ciphertext, and adaptive attacks [110].

11

Figure 2.4: Fiestel and Substitution Permutation Network constructions.

Also, recently, there has been an inclination from the cryptographic community to consider

the resistance of block cipher to additional attack scenarios. For example, current block ciphers are

analyzed with respect to related-key attacks [30] in which the adversary is assumed to adopt a chosen-

plaintext model while assuming that encryption is performed using different unknown keys that have

a known/chosen difference. Also, analysis of block ciphers using the known-key and chosen-key [90]

models has become popular due to the utilization of block ciphers in constructing hash functions.

Particularly, when a block cipher-based compression function is used in a hash function, both inputs to

of the internal block ciphers are known. More precisely, according to the adopted mode of operation,

either the message or the chaining value is processed through the key generation procedure, and thus

the attacker can control the key input. Since all the analyzed primitives in this thesis adopt an AES-

based design, in what follows, we give a brief description of the AES block cipher.

2.2.2 The Advanced Encryption Standard

AES is the U.S. standardized block cipher [117] which was originally proposed by Daemen

and Rijmen [45]. AES is an SPN cipher that follows the wide trail strategy which ensures that the

full diffusion of a difference in one byte is achieved after two execution rounds. The algorithm defines

encryption and key schedule procedures. In what follows, we give a brief overview of the specifications

of AES.

12

- Encryption: AES encrypts blocks of 128 bits which are initially loaded in a state of 4 × 4 bytes.

It allows the use of three key sizes: 128, 192, and 256 bits where the encryption procedure updates

the state for 10, 12, and 14 rounds, respectively. As depicted in Figure 2.5, during one round, the

following four round transformations are used to update the state:

- SubBytes (SB): A nonlinear transformation that substitutes each byte from the state by another

byte from the AES Sbox.

- ShiftRows (SR): A linear cyclic shift transformation that rotates the ith row of the state to the left

by i places, for i = 0, 1, 2, and 3.

- MixColumns (MC): A linear transformation that left multiplies a constant MDS matrix [45] by

the state. Each column of the state is multiplied independently.

- AddKey (AK): A linear transformation which es the 16-byte subkey with the state.

Initially, the plaintext block is loaded in the state and then it is ed with the secret master key before the

beginning of the first round. Also, the MixColumns transformation is omitted in the last round.

Figure 2.5: The AES round function.

- Subkeys Generation: Round subkeys are 128-bit keys where the ith round subkeyKi is generated

from its preceding round subkey Ki−1, and the initial key K0 is evaluated from the master key. One

round of the subkey generation procedure consists of a linear part using operations and circular shifts

and a nonlinear part using four AES Sbox lookups. More details of the exact working of the AES key

schedule can be found in [45].

- Decryption: AES is an SPN construction where all its transformations are invertible. Accordingly,

the AES decryption is implemented by applying the inverse round transformations in reverse order on

the ciphertext using the round keys that are applied in the reverse order.

13

2.3 Hash Functions

A hash function is a function that maps arbitrary strings into strings of fixed length. It takes a

message as an input and computes a fingerprint for this message (sometimes called the message digest).

The message is seen as a sequence of bits of arbitrary length, and the fingerprint is a sequence of bits of

a fixed size, for example 256 bits (the output size of the hash function). The hash function compresses

the message, and generates a fingerprint that depends on all the bits of the message. Accordingly,

it can be used to uniquely identify and guarantee the integrity of this message. In what follows, we

define the fundamental properties of hash functions. Moreover, we discuss different applications of

hash functions, and describe their basic design principles.

2.3.1 Cryptographic Properties and Applications

A perfect hash function should behave like a random oracle [36]. The only way to get informa-

tion about the fingerprint of a message is to recalculate it, and the result must be random and exhibit

great avalanche effect. The most important properties that are related to the use of a hash function to

produce unique identifiers are: preimage resistance, second preimage resistance, and collision resis-

tance [110]. Let H be a hash function with n-bit output, i.e., H is a deterministic function that takes

an arbitrary length input, and outputs a binary string of length n. Formally, H : {0, 1}∗ 7→ {0, 1}n.

Definition 2.1 A hash function H is preimage resistant (one-way) if for essentially all pre-specified

outputs, it is computationally infeasible to find any input which hashes to that output, i.e., to find any

preimage x such that H(x) = y when given any y for which a corresponding input is not known.

Definition 2.2 A hash function H is second-preimage resistant (weak collision resistant) if it is com-

putationally infeasible to find any second input which has the same output as any specified input, i.e.,

given x, to find a 2nd-preimage y ̸= x such that H(x) = H(y).

Definition 2.3 A hash functionH is collision resistant (strong collision resistant) if it is computation-

ally infeasible to find any two distinct inputs x and y which hash to the same output, i.e.,H(x) = H(y)

14

Collision resistance implies second-preimage resistance but not vice versa. In practice, collision re-

sistance is the most difficult to satisfy because generating a random colliding message pair is less

restrictive than finding a second preimage or a preimage of a given digest. Consequently, breaking

collision resistance is the main objective of most of the attacks on hash functions. However, a good

hash function should exhibit other properties than that mentioned above. For example, one would ex-

pect that flipping an input bit would lead to approximately half the output bits being flipped (avalanche

property) and that one cannot practically guess some input bits when given the output of the hash

function (local one-wayness). Inability to provide such properties or other properties, such as the re-

sistance to pseudo-collision [142] (also known as free-start collision) where one can find two different

messages and two different chaining values that hash to the same digest, semi free-start collision where

one can find two different messages and two equal chaining values which are not equal to the standard

IV that hash to the same digest, and second order collision attacks is categorized as a certificational

weakness. These weak properties do not imply a break of a hash function but are enough to shed doubt

on its design principles.

The hash function is a very versatile cryptographic primitive, and many cryptographic systems are

based on it, that is why it has gained a reputation for being the swiss army knife of cryptography. Ap-

plications that employ hash functions in the core of their operation include:

- Digital signatures (Hash-and-Sign): Signature schemes such as RSA or ElGamal [110] are

used to authenticate the message and the signer, but they require complex calculations. Generally,

instead of applying a signature scheme directly to a long message, the signature is applied to a hash of

the message. Thus, the signing operation is performed on a small identifier and consequently is less

expensive.

- Commitment schemes: E-bidding and digital cash protocols [67, 146] demand that partici-

pants commit to their decisions. Firstly, a participant reveals the hash of her randomized decision, then

later reveals its contents. The hash provides no usable information about the decision, but it ensures

that the participant cannot change it after revealing the hash.

- Message Authentication Code (MAC): To authenticate a message M , two participants share

a secret key K, and add an identifier MACK(M) to the message. An adversary should not be able to

15

calculate theMAC without knowing the key. A simple way to construct a MAC is to get the message

and the key in a hash function (e.g., HMACK(M) = H(K ⊕ opad ∥ H(K ⊕ ipad ∥M))) [25].

2.3.2 Generic Attacks

A generic attack is an attack that is applicable to all hash functions irrespective of their internal

structure, as opposed to certain attacks that exploit specific vulnerabilities of a particular design. The

complexity of a generic attacks is evaluated by the number of the hash function evaluations needed to

mount this attack. The generic complexities of preimage, second preimage, and collision attacks for a

hash function H with n−bit output are provided below [110].

- Pre-image attack: In this attack, the adversary is given a hash, and she must find a message

that produces this hash. The generic attack is the exhaustive search, which has a complexity of 2n.

- Second preimage attack: The adversary is provided with a message, and she must find

another message that has the same hash value. This attack is generally easier than preimage attack,

because one can reuse parts of the first message to figure out the second. However, the generic attack

is still the exhaustive search, which requires 2n hash computations.

- Collision attack: In this attack, the adversary has to find two messages with the same hash.

A collision attack is easier to launch than preimage and second preimage attacks because the opponent

has the choice of two messages. The generic attack is based on the birthday paradox [110], which has

a complexity of 2n/2. Table. 2.1 provides the parameters of the three generic attacks. In what follows,

we recall the birthday paradox and its relation to collision search.

The birthday paradox [110] is a mathematical property, which states that the probability of finding

two people among a random group of 1.2
√
365 = 23 people that share the same birthday is about 50

percent [110]. The same rationale applies to finding a pair of messages that collides under a random

hash function H . If H is a hash function with n-bit output, then the complexity of finding collisions is

1.2
√
2n ≈ 2n/2.

16

Attack Input Output Property Complexity
Pre-image H(M1) M2 H(M1) = H(M2) 2n

2nd preimage M1 M2 H(M1) = H(M2), M1 ̸= M2 2n

Collision - M1,M2 H(M1) = H(M2) 2n/2

Table 2.1: Generic attack parameters.

2.3.3 Hash Function Construction

Rather than building directly a function that compresses an arbitrary input size, cryptographic

hash functions are constructed from iterating the execution of a compression function. A compression

function takes a fixed size input and compresses it to a fixed size output. However, a hash function

must be able to process arbitrary size input. Consequently, it needs a domain extender to extend

the domain of the compression function. Thus, given a compression function, the domain extender

produces a function with arbitrary-length input. In what follows, we give a brief overview on the

Merkle-Damgård domain extender which is the most widely used domain extender.

Merkle-Damgård (MD) Construction

As depicted in Figure 2.6, the easiest way to build a hash function is to iterate over the compres-

sion function and use the last calculated output as the hash value. In 1989, RalphMerkle [111] and Ivan

Damgård [46] independently proposed a domain extender algorithm and proved that if the one-way

compression function is collision resistant, then the hash function constructed using it is also collision

resistant. However, the MD construction is vulnerable to the length extension attack where given an

unknown hash function input x and its digest H(x), it is easy to find the value of H(x||pad(x)||y),

where y is a message chosen by the attacker and pad is the padding function of the hash function

which is used to make the length of the input message a multiple of the message block length. Other

domain extenders build on the MD construction and propose a finalization stage to mitigate the length

extension attack. Such finalization stage usually applies the compression function on the summation

of either the intermediate chaining values [61] or the messages [102].

17

Figure 2.6: Merkle-Damgård construction

2.3.4 Block Cipher-based Compression Functions

The most common method for constructing a compression function is to employ a block cipher

core. All the analyzed hash functions in this thesis adopt block cipher-based compression functions.

There are many advantages for building a compression function from a block cipher. For instance,

block ciphers are usually well studied cryptographic primitives and various efficient implementations

for different block ciphers exist. Additionally, if a block cipher is already implemented on a device, a

block cipher-based hash function can be added to the system with minimal additional cost. Preneel et

al. [123] have analyzed the security of different modes of operation that are used for turning a block

cipher into a compression function. The three most frequently used modes are Davies-Meyer (DM),

Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP) which are shown in Figure 2.7.

Figure 2.7: Three main block cipher modes to construct compression functions.

18

2.4 Overview of the Employed Cryptanalytic Methods

A successful cryptanalytic attack violates the security requirements of the cryptographic prim-

itive using effort less than that claimed by its designers. For example a block cipher key recovery

attack is expected to retrieve the k-bit master key with a time complexity less than 2k, which is the

time required by the generic brute force attack. A given cryptanalytic attack is characterized by the

following complexities:

- Time complexity: The amount of required computations to successfully launch the attack. Such

amount is usually expressed in terms of the number of executions of the analyzed cryptographic

primitive.

- Data complexity: The amount of both input and output data required to be available to the

attacker in order to successfully implement the attack. In the case of keyed primitives, the data

complexity often involves the number of queries to the encryption and/or decryption oracle.

- Memory complexity: The amount of storage required to perform the cryptanalytic attack.

In what follows, we give a brief description of the basic cryptanalytic techniques which are employed

in developing the attacks on the primitives that are investigated in this thesis.

- Differential cryptanalysis: Differential cryptanalysis [28] is one of the most important methods

for the analysis of hash functions and block ciphers. Particularly, most of the currently developed

cryptanalytic techniques are based on differential cryptanalysis. Such techniques include the rebound

attack [107], the boomerang attack [31, 140], and meet-in-the-middle attacks with differential enu-

meration [52]. In a differential attack, one tries to follow how the difference between two inputs

evolves after it propagates through execution rounds. The input difference propagation through linear

transformations is deterministic. However, a given input difference to a nonlinear transformation such

as an Sbox results in multiple output differences depending on the value of the input. Accordingly,

the cryptanalyst studies the differential properties [28] of the analyzed nonlinear layer and chooses

an output difference that occurs with high probability. Then, by adding more rounds, one constructs a

differential path whose probability is equal to the product of probabilities of the analyzed rounds. Now

given the output difference at the state before the last round and the corresponding ciphertext pairs,

19

some bits of the last round subkey are guessed to compute the value of the portions of the state where

the output difference is given. The cryptanalyst then picks the guessed subkey bits that generated the

maximum number of results with a difference equal to the expected one as the right subkey bits. Since

one guesses only parts of the last round subkey which is usually smaller than the master key, signif-

icant gain over exhaustive key search is achieved. In the case of hash functions, since differences in

the execution state can be canceled by introducing differences in the message blocks, the attacker first

constructs a differential path that has zero output difference and then searches for a pair of messages

to follow it in order to produce a collision [143,144].

- Truncated differential cryptanalysis: Truncated differential cryptanalysis was proposed by Knud-

sen [89], and it proved to be effective against AES-based hash functions. A truncated trail is a differ-

ential path that does not specify the value of the differences in the path, but rather it indicates whether

a given bit/byte is active or not, i.e., the differences are not fully specified. Truncated differential

cryptanalysis was first applied by Knudsen on the round reduced DES [89] and Skipjack [91] block

ciphers. AES-based hash functions have been extensively analyzed using truncated differentials dur-

ing the SHA3 competition. Specifically, the rebound attack [107] and its improvements [95, 104, 121]

rely on truncated trails in describing the difference propagation. The rebound attack has been used to

analyze nearly all the AES-based SHA3 submissions including LANE [101], JH [128], Echo [75,121],

and Grøstl [107, 109, 121].

- Integral attacks: Integral cryptanalysis was proposed by Knudsen and Wagner in [88]. It is consid-

ered as a dual to differential cryptanalysis and is efficient against ciphers that are resistant to differen-

tial attacks. While in differential cryptanalysis, one considers the propagation of differences between

pairs of values to obtain probable differentials, in integral cryptanalysis, we consider the propagation

of sums of many values to obtain integrals. Integral cryptanalysis is specifically designed for block

ciphers which use only bijective transformations. An integral covers several rounds of the cipher and

describes how the summation properties of a set of input values would be affected by each successive

round.

Before being formalized in [88], the idea of integral attacks has been explored under several

names. It was first discovered during the analysis of the square cipher [43] and named the square

attack. Following this, the attack was generalized into the saturation attack and was used to analyze

20

the Twofish cipher [98]. Ever since higher order integrals have been introduced in [88], integral crypt-

analysis has been used to analyze block ciphers in the known key setting [87, 113, 131] and to present

distinguishers for the components of hash functions.

- Meet-in-the-Middle Attacks: Meet in the middle (MitM) attacks have drawn a lot of attention since

the inception of the original attack which was proposed in 1977 by Diffie and Hellman [50] for the

analysis of the Data Encryption Standard (DES). Soon after, the attack became a generic approach to be

used for the analysis of ciphers with non complicated key schedules. For this class of ciphers, one can

separate the execution into two independent parts where each part can be computed without guessing

all the bits of the master key. The first execution part covers encryption rounds from the plaintext to

some intermediate state and the other part covers decryption rounds from the corresponding ciphertext

to the same internal state. At this point, the attacker has knowledge of the same intermediate state

from two independent executions where the right key guess produces matching states. A typical MitM

attack can be launched with as low as one known plaintext-ciphertext pair. Accordingly, with the

recent growing interest in low data complexity attacks [35], MitM attacks have witnessed various

improvements and have been widely adopted for the analysis of various cryptographic primitives. The

increasing motivation for adopting low data complexity attacks for the analysis of ciphers is backed

by the fact that security bounds are better perceived in a realistic model. Particularly, in a real life

scenario, security protocols impose restrictions on the amount of plaintext-ciphertext pairs that can be

eavesdropped and/or the number of queries permitted under the same key. MitM attacks have been

applied on block ciphers such as AES [47, 48, 52] and LBlock [10]. In the context of hash functions,

MitM attacks are used to generate preimages [132,150]

- Fault Analysis Attacks: Fault analysis is an implementation dependent attack where the attacker

applies some kind of physical intervention during the computation of the internal state of the primitive

to corrupt random or known bits in the state. Consequently, the attacker observes the correct and faulty

outputs and performs some analysis to gain non negligible information about the secret information

embedded in the hardware. Fault injection can be done in many ways which include power glitches,

clock pulses, and laser radiation [42, 136].

Fault analysis was first introduced when Boneh et al. showed how the private key of the RSA-

CRT-algorithm can be successfully recovered by observing the correct signature and then injecting

21

a fault and acquiring the faulty signature [34]. Afterwards, Biham and Shamir extended the idea

to cover symmetric-key primitives where they introduced differential fault analysis (DFA) [29]. DFA

combines fault analysis with differential cryptanalysis where the difference between faulty and genuine

ciphertexts is exploited. DFA attacks have been widely used for recovering the secret inputs of block

ciphers and keyed hash functions [55, 64, 85, 139].

22

Chapter 3

Collision Analysis of Streebog

In this chapter, we investigate the collision resistance of the Russian cryptographic hashing

standard GOST R 34.11-2012, also known as Streebog, where we analyze its compression function

and internal cipher with respect to rebound attacks. First, we analyze the differential properties of

the Streebog Sbox differential distribution table and show how these properties affect the complexity

of the rebound attack. As for the internal cipher, we introduce differences in both the key schedule

and message encryption, and propose a new message differential path such that a local collision is

enforced every two rounds. Accordingly, the Sbox matching complexity caused by its differential bias

is bypassed. As a result, we efficiently produce free-start 5-round collision and 7-round near collision

examples for the internal cipher. Moreover, we show that the compression function is vulnerable to

semi free-start 7.75 round collision, 8.75 and 9.75 round near collision attacks and present an example

for a 4.75 round 50-byte near colliding message pair. Our results are summarized in Table 3.1 .

Target #Rounds Time Memory Attack

Internal cipher
5 28 28

Free-start collision
8 264 28

Compression function

7.75 2184 28
Semi free-start collision

4.75 28 -
7.75 272 28

Semi free-start near collision (50 bytes)8.75 2128 28

9.75 2184 28

Table 3.1: Summary of our collision analysis of Streebog.

23

3.1 Introduction

The attacks byWang et al. onMD5 [144] and SHA-1 [143] followed by the SHA-3 competition

[118] have led to a flurry in the area of hash function cryptanalysis. The primary targets of these

attacks are the Add-Rotate-Xor (ARX) based hash functions where one can find differential patterns

that propagate with acceptable probabilities. Additionally, using message modification techniques,

significant complexity reduction is achieved. Consequently, during the SHA-3 competition, different

design concepts were introduced, out of which are the Advanced Encryption Standard (AES) based

designs that are known for their resistance to standard differential attacks due to the wide trail strategy.

The ISO standard Whirlpool [126], the SHA-3 finalist Grøstl [60], and the new Russian hash standard

Streebog [2] are among the proposed AES-based hash functions.

Streebog was proposed in 2010 [102]. It has an output length of 512/256-bit. The compression

function employs a 12-round AES-like cipher with 8×8-byte internal state preceded with one round of

nonlinear whitening of the chaining value. The compression function operates in Miyaguchi-Preneel

(MP) mode and is plugged in Merkle-Damgård domain extender with a finalization step [2]. Streebog

officially replaces the previous standard GOST R 34.11-94 which has been theoretically broken in

[105,106] and recently analyzed in [103].

Due to the significance of this standard, its security has been thoroughly investigated in a se-

ries of works appearing in a relatively short time. These works include the analysis of the collision

resistance of its compression function and internal cipher by AlTawy et al. [7] and Wang et al. [145].

An integral analysis of the compression function has been presented by AlTawy and Youssef where

integral distinguishers for the reduced compression function was proposed [11]. Moreover, preimage

attacks on the reduced hash function have been independently proposed by Altawy and Youssef [12]

and Zou et al. [152], and later the attacks were improved by Bingka et al. [99]. Also, Kazymyrov

and Kazymyrova presented an analysis of the algebraic aspects of the function [79], and a long second

preimage attack was proposed by Guo et al. [65]. Furthermore, a malicious version of the whole hash

function where practical collisions are generated was presented in [17]. Finally, the function was in-

vestigated in the secret-key setting and a differential fault analysis attack has been proposed in [14] to

recover the secret key when Streebog is used in various MAC schemes.

24

The rebound attack is a differential attack [107] proposed by Mendel et al. during the SHA-3

competition to construct differential paths for AES-based hash functions. Previous literature related to

the rebound attack includes Mendel et al. first proposal on the ISO standard Whirlpool and the SHA-3

finalist Grøstl [107, 108]. In particular, Mendel et al. presented a 4.5-round collision, 5.5-round semi

free-start collision and 7.5-round near collision attacks on the Whirlpool compression function. As

for Grøstl-256, a 6-round semi free-start collision is given. Subsequently, rebound attacks have been

applied to other AES-based hash functions such as LANE [101], JH [128], and Echo [75]. Various

tweaks have been applied to the basic rebound attack in order to construct differential paths that cover

more rounds such as merging multiple in-bounds [95], super Sbox cryptanalysis [63], extended 5-

round inbound [95], and linearized match-in-the-middle and start-from-the-middle techniques [104].

Lastly, Sasaki et al. [132] presented a free-start collision and near collision attacks on Whirlpool by

inserting difference in the intermediate keys to cancel the difference propagation in the message and

thus creating local collisions every 4 rounds. Previous work findings were often reported on reduced

rounds of the compression function, internal block cipher and/or its internal permutations [104,106].

In the first part of this chapter, we investigate the security of the Streebog hash function, assessing

its resistance to rebound attacks. We efficiently produce free-start collision and near collision for

the internal cipher (E) reduced to 5 and 7.75 rounds by employing the concept of local collisions.

Specifically, we present a message differential path such that a local collision is enforced every 2

rounds. Thus we bypass the complexity of the rebound matching in the message in-bounds by using

the same differentials as in the key path. Consequently, in contrast to [132], finding one key satisfying

the key path is practically sufficient for finding a message pair following the message path.

In the second part of this chapter, we present a practical 4.75 round 50 (out of 64) bytes near

colliding message pair for the compression function and show that it is vulnerable to semi free-start

7.75 round collision, 8.75 and 9.75 round near collision attacks. Examples for the internal cipher at-

tacks and the 4.75 round compression function near-collision attack are provided to validate our results.

The rest of the chapter is organized as follows. In the next section, the specification of the

Streebog hash function along with the notation used throughout the chapter are provided. A brief

25

overview of the rebound attack is given in Section 3.3. Afterwards, in Sections 3.4 and 3.5, we provide

detailed description of our attacks, differential patterns, and the complexities of the attacks. Finally,

the chapter is concluded in Section 3.6.

3.2 Specification of Streebog

Streebog outputs a 512 or 256-bit hash value, where half the last state is truncated when adopt-

ing the 256-bit output. The standard specifies two different IVs to be used with the two output lengths.

The function can process messages of length up to 2512 − 1. The compression function iterates over

12 rounds of an AES-like cipher with an 8 × 8 byte internal state and a final round of key mixing.

The compression function operates in Miyaguchi-Preneel mode and is plugged in Merkle-Damgård

domain extender with a finalization step. The input message M is padded into a multiple of 512

bits by appending one followed by zeros. The message length for MD-strengthening is further in-

cluded as an extra separate block, followed by a block of a checksum evaluated by the modulo 2512

addition of all message blocks as a finalization step. More precisely, let n = ⌊|M |
512
⌋ and the in-

put message M = x∥mn∥..∥m1∥m0, where |M | is length of M , and x is an un-complete or an

empty block. The message is padded as follows: let mn+1 = 0511−|x|∥1∥x, then the padded mes-

sage M = mn+1∥mn∥..∥m1∥m0. Let σ = mn+1 + .. + m1 + m0. The compression function gN is

Figure 3.1: The Streebog compression function gN

parameterized by N which is the counter for the bits that are hashed so far, where N = 0 when the

compression function is used in the finalization stage and thus it is denoted by g0. The compression

function gN is fed with three inputs: the chaining value hi−1, a message block mi−1, and the counter

of bits hashed so far Ni−1 = 512 × i. (see Figure 3.1). Let hi be a 512-bit chaining variable. The

26

first state is loaded with the initial value IV and assigned to h0. The hash value of M is computed as

follows:

hi ← gN(hi−1,mi−1, Ni−1) for i = 1, 2, .., n+ 2

hn+3 ← g0(hn+2, |M |)

h(M)← g0(hn+3, σ),

where h(M) is the hash value of M . As depicted in Figure 3.1, the compression function gN consists

of:

• KN : a nonlinear whitening round of the chaining value. It takes a 512-bit chaining variable hi−1

and a counter of the bits hashed so far Ni−1 and outputs a 512-bit keyK.

• E: an AES-based cipher that iterates over the message for 12 rounds in addition to a finalization

key mixing round. The cipher E takes a 512-bit key K and a 512-bit message block m as a

plaintext. As shown in Figure 3.2, it consists of two similar parallel flows for the state update

and the key scheduling.

Figure 3.2: The internal block cipher (E)

Both KN and E operate on an 8 × 8 byte key state K. E updates an additional 8 × 8 byte message

stateM . In one round, a given state is updated by the following sequence of transformations:

• AddKey(X): XOR with either a round key, a constant, or the counter of bits hashed so far (N).

• SubBytes (S): A nonlinear byte bijective mapping.

• Transposition (P): Byte permutation.

• Linear Transformation (L): Row multiplication by an MDS matrix in GF(2).

27

Initially, stateK is loaded with the chaining value hi−1 and updated by KN as follows:

k0 = L ◦ P ◦ S ◦X[Ni−1](K).

Now K contains the key k0 to be used by the cipher E. The message state M is initially loaded with

the message block m and E(k0,m) runs the key scheduling function on state K to generate 12 round

keys k1, k2, .., k12 as follows:

ki = L ◦ P ◦ S ◦X[Ci−1](ki−1), for i = 1, 2, .., 12,

where Ci−1 is the ith round constant. The state M is updated as follows:

Mi = L ◦ P ◦ S ◦X[ki−1](Mi−1), for i = 1, 2, ..., 12.

The final round output is given by E(k0,m) = M12⊕ k12. The output of gN in the Miyaguchi-Preneel

mode is E(KN(hi−1, Ni−1),mi−1)⊕mi−1⊕ hi−1 as shown in Figure 1. For further details, the reader

is referred to [2].

- Notation: Let M and K be (8 × 8)-byte states denoting the message and key state, respectively.

The following notation will be used throughout the chapter:

• Mi: The message state at the beginning of round i.

• MU
i : The message state after the U transformation at round i, where U ∈ {X,S, P, L}.

• Mi[r, c]: A byte at row r and column c of state Mi.

• Mi[row r]: Eight bytes located at row r of Mi state.

• Mi[col c]: Eight bytes located at column c ofMi state.

• m
ri−→ n: A transition from anm active bytes state at round i to an n active bytes state at round

i+ 1.

28

Figure 3.3: The inbound phase of the rebound attack.

• m
ri←− n: A transition from an n active bytes state at round i + 1 to an m active bytes state at

round i.

Same notation applies to K.

3.3 The Rebound Attack

The rebound attack [107] is proposed by Mendel et al. for the cryptanalysis of AES-based hash

functions. It is a differential attack that follows the inside-out or start from the middle approach which

is used in the boomerang attack [140]. The rebound attack is composed of three phases, one inbound

and two outbounds. The compression function, internal block cipher or permutation of a hash function

is divided into three parts. If C is a block cipher, then C is expressed as C = Cfw ◦ Cin ◦ Cbw. The

middle part is the inbound phase and the forward and backward parts are the two outbound phases. In

the inbound phase, a low probability XOR differential path is used and all possible degrees of freedom

are used to satisfy the inbound path. In the two outbound phases, high probability truncated paths [89]

are used. In other words, one starts from the middle satisfying Cin, then hash forward and backward

to satisfy Cfw and Cbw probabilistically. For an 8 × 8 byte state, the basic rebound attack finds two

states satisfying an inbound phase over two rounds 8 ri−→ 64
ri+1−→ 8. The main idea is to pick random

differences at each of the two eight active bytes sates. Then propagate both backward and forward until

the output and input of the full active state Sbox, respectively. Using the Sbox differential distribution

table (DDT), find values that satisfy input and output differentials. This process is further illustrated in

Figure 3.3. The last step of the attack is called the Sbox matching phase and its complexity depends on

the Sbox DDT. If the probability of differentials that have solutions is p, then the matching probability

is given by p8. In the following, we analyze the Sbox used in Streebog and investigate how it affects

29

the complexity of the rebound attack. The Streebog Sbox DDT has the following properties:

• Out of the 65536 differentials, there are 27300 possible non trivial differentials, i.e., nonzero

(input, output) difference pairs that have solutions. Thus the probability that a randomly chosen

differential is possible ≈ 0.42 = 2−1.3

• Each possible differential can have 2, 4, 6, or 8 solutions.

• A given input difference has a minimum of 98 and a maximum of 114 output differences.

• A given output difference has a minimum of 90 and a maximum of 128 input differences.

• For a given input (output) difference the average number of output (input) difference is 107.

From the analysis of the Sbox DDT, one can estimate the complexity of the inbound matching part of

the rebound attack. Let us consider the basic inbound path 8
r1−→ 64

r2−→ 8. One can find a pair of

states satisfying this path as follows:

1. Compute the Sbox DDT.

2. Choose a random 8 differences for ML
2 active bytes.

3. Propagate the differences in ML
2 backwards until MS

2 (output difference).

4. for each row in MP
1

a. Choose a random difference for one active byte, propagate it forward to MX
2 (input dif-

ference). Propagating one active byte in MP
1 through the L transformation results in full

active row in MX
2 .

b. Using the Sbox DDT, determine if the corresponding row differences inMX
2 andMS

2 have

solutions. If one byte differential pair is not possible, go to step 4.a.

One can repeat step (4.a) at most 28 times since we variate only one byte. However, the success prob-

ability of step 4.b. (finding solutions for the whole active row) is 2−1.3×8 ≈ 2−10 which cannot be

easily satisfied by randomizing one byte difference. One would often have to restart at step 2, i.e., pick

another output difference. The same situation takes place when we move to the next row and pick a

30

new output difference. In this case we have to start from row 0. As a result, the complexity of finding

solutions to the 8 rows is not purely added [107]. Based on our experimental results, the complexity of

this inbound path is in the order of 218. However finding this match means finding at least 264 actual

state values for MX
2 , such that both MX

2 and MX
2 ⊕ (input difference) follow the inbound path. Each

value out of the 264 values is a new starting point to satisfy the two outbound paths. In the following

section, we present our attack on the internal block cipher of the Streebog compression function.

All the compression function paths require that the full active state which is the most expensive

part of the path to be placed in the middle and consequently difference in the first and last sates must

be equal so that they cancel out after feedforward. To efficiently extend the attack to more rounds,

several proposals that solve wider inbounds have been published in [104]. In Section 3.4, we briefly

recall two of the practical proposals which we use in our attack.

3.4 Attacks on the Internal Block Cipher (E)

Verifying the ideal behaviour of the internal primitives of a hash function is important to evalu-

ate its resistance to distinguishing attacks [37]. In this section we investigate the internal block cipher

(E) and, by employing the idea of successive local collisions, we present a message differential path

that collides every two rounds. This message differential path enables us to efficiently produce 5-round

semi free-start collision and 7.75-round 40 bytes (out of 64) semi free-start near collision. The main

idea of our approach is to first find a pair of keys that follows a given differential path and then use it

to search for a pair of messages satisfying the message path. The approach of creating local collisions

works perfectly if the key and the message flows are identical and the initial key is the input chain-

ing value. To this end, one can keep similar differential patterns and the state message difference is

cancelled after the X transformation, so that a collision is obtained after the Miyaguchi-Preneel feed-

forward. However, in the compression function of Streebog the key used in the internal cipher is the

result of applying theKN transformation on the input chaining value. Similar differential patterns can

be obtained when considering the internal block cipher. In our attack on the Streebog internal cipher,

we present a message differential path such that a local collision is enforced every two rounds. Specif-

31

Figure 3.4: 7.75 round differential path. Active bytes are gray colored. Ellipses mark the row and
column restricted by the two inbounds.

ically, we first search for a pair of keys that satisfies the key differential path, then we use the Sbox

differentials in the key path for the message path. Consequently, we bypass the complexity caused by

the Sbox DDT matching in the message differential path and only one key pair is required to search

for a message pair. In [132], Sasaki et al. presented a message differential path that creates local

collisions every four rounds for the Whirlpool compression function and reported that they had to try

109 key pairs to search for a message pair that collides every 4 round. Furthermore, they estimated an

increase in the message search complexity by a factor of 27 and attributed this to the imbalance of the

Sbox DDT. Given the Streebog Sbox DDT, finding one key pair that follows the 8-round differential

path takes up to two hours on a 4-core Intel i7 CPU running at 2.67GHz. Accordingly, it is important

that the message differential path requires only one key pair to be satisfied. In what follows, we give

the details of our approach.

32

3.4.1 5-round Free-start Collision

Since the Streebog’s Sbox DDT is biased with possible differential probability ≈ 0.42, we

bypass the Sbox matching phase by using a message differential path such that local collisions are

created every two rounds. The used key and message paths are given by:

Key: 64 r1−→ 8
r2−→ 1

r3−→ 8
r4−→ 64

Message: 64 r1−→ 0
r2−→ 1

r3−→ 0
r4−→ 64

r5−→ 0

This message differential path allows us to bypass the rebound matching part completely in our mes-

sage search because the same input and output Sbox differences in the key path are used for the

message path. Thus the matching probability is 1. Unlike the differential paths in [132], our message

differential path is satisfied practically using only one key pair. In this attack, we do not use the match-

ing part of the rebound attack in either the key or the message; we only search for one byte value in

the message to find a common solution between two rounds which can be considered as a meet in the

middle approach. As depicted in Figure 3.4, the steps for finding a key pair can be summarized as

follows:

1. Choose a random difference and a random value for byte KL
2 [3, 3]

2. Hash backward until K1.

3. Hash forward until K5.

Accordingly, we have a key pair following the given key path. Let the differences in MX
2 , MS

2 , M
X
4 ,

and MS
4 be the same as the differences in KX

2 , KS
2 , K

X
4 , and KS

4 , respectively. Having the same

differences in the message states as in the key states implies that no differential matching is needed at

the Sboxes of rounds 2 and 4, and guarantees that the differences in K3 and M3 cancel out. Similar

observation applies to K5 andM5.

To search for a conforming message pair, we need to find a common solution between the

Sboxes of rounds 2 and 4 possible solutions. This can be achieved as follows. Since MX
2 [col 3] and

MS
2 [col 3] differentials are possible, then from the Sbox DDT there are at least 28 values forMX

2 [col 3]

33

that satisfy the path untilMS
3 . For all solutionM

X
2 [col 3], hash forward untilMS

3 . BecauseM
X
2 [col 3]

is one column after the P , L, X , and S transformations, its transformed value becomes MS
3 [row 3]

as indicated by the ellipse in Figure 3.4. We store all possible values of MS
3 [row 3] in a list l. As for

MX
4 [row 3], andMS

4 [row 3], hashing all possible solutions backwards restricts the values ofMS
3 [col 3].

However we do not store the results in a another list. Because the two restricted results intersect in

only one byte MS
3 [3, 3] (the intersection of the two ellipses in Figure 3.4), we compare byte [3, 3] of

each backward result against byte [3, 3] from each entry in list l. The success probability for finding

a one byte match is 2−8 which can be easily fulfilled by the number of entries in l. Once a match is

found, we assign the matching list row to MS
3 [row 3] and the backwards column to MS

3 [col 3]. The

rest of the 49 unrestricted bytes are free and can be used to satisfy a longer outbound.

3.4.2 8-round Collision and 7.75-round Near Collision Attacks

Extending the 5 round path to 8 rounds adds complexity to the key search part because we need

to use an improved version of the rebound attack to get a key pair following a longer differential path.

We employ the following message and key differential paths:

Key: 64 r1−→ 8
r2−→ 1

r3−→ 8
r4−→ 64

r5−→ 8
r6−→ 8

r7−→ 64

Message: 64 r1−→ 0
r2−→ 1

r3−→ 0
r4−→ 64

r5−→ 0
r6−→ 8

r7−→ 8
r8−→ 0

and use the start form the middle technique [104] to solve the key inbound phase between rounds 3

and 5. This approach finds states following a 1 −→ 8 −→ 64 −→ 8 transition. Unlike the basic

inbound that yields 264 solutions, using this approach on Streebog results in only one solution. For

AES Sboxes, a solution is expected in a time complexity of 28 and memory complexity of 28. However,

for Streebog’s biased Sbox DDT, one practical solution is found between 33 minutes to 2 hours on an

4-core Intel i7 CPU running at 2.67GHz. Accordingly, it is crucial that the key outbound phase has

high probability if one is aiming for practical results and no rebound matching is used in the message

search so that one key is enough to get a conforming message pair. In the following steps, we briefly

describe the procedure we used for solving the 1 −→ 8 −→ 64 −→ 8 key inbound phase. Figure 3.5

further illustrates the process.

34

Figure 3.5: Start from the middle approach.

1. Solve the basic inbound 8 −→ 64←− 8 as explained in Section 3.

2. From the DDT, each byte difference in KX
5 has at least 2 and at most 8 values, such that any

value satisfies the path from KX
4 to K6.

3. To enforce the transition from 8 active bytes in KX
4 to 1 active byte in KP

3 , do the following:

a. Create a table TL of all possible 255 byte difference values d3 (candidates for KP
3 [3, 3])

and their corresponding 8 byte difference values L(d3) (candidates for KX
4 [row 3]). These

values are the result of applying the linear transformation L to a difference at column 3.

b. Each candidate difference for KX
4 [row 3] has 8 active bytes that can be manipulated inde-

pendently. More precisely, to change the difference value of byte i in KX
4 [row 3], one has

to switch between 28 or more possible values of KX
5 [row i]. As illustrated by the ellipses

in Figure 3.5, a change in the values of KX
5 [row 0] is reflected on the difference value of

byte 0 inKX
4 [row 3]

c. Go through the entries in table TL and change the values of KX
5 rows one by one until a

match is found, if not, restart from step 1.

In [104], the authors follow a different process that consists of three phases to solve this inbound.

Their process is supposed to take less time (25 vs 28) but more memory requirements are needed.

However, for Streebog’s DDT both approaches were close in the running time and we only needed one

key. Finally, by hashing the obtained key pair two rounds backward and two rounds forward, we get

a conforming key pair that follows the key differential path. Once we have the key, we can directly

get a message pair in the same way as explained in the previous section for the 5-round collision.

This message pair satisfies the message differential path up until ML
6 . However, to have an 8-round

collision, we need the difference in K8 to cancel the difference in M8 after the X transformation in

35

round 8. Since both L and P transformations are linear, then this condition is satisfied if the 8 byte

differences in KS
7 and MS

7 are equal. The difference in KS
7 is already set from the key search stage,

so we randomize the 49 unrestricted bytes in MS
3 , hash forward till MS

7 and compare the resulting

8 differences with KS
7 . The probability that the 8 byte differences are equal is 2−64. To verify the

applicability of this attack, we have implemented a 7.75-round near collision attack where we were

checking if only 5 out of 8 byte differences are equal in MS
7 and KS

7 . In Figure 3.4, the implemented

7.75-round differential pattern, with 240 time and 28 state memory complexities is given. Table 3.3

shows an example for a free-start 5-round collision and 7.75-round near collision for the internal

cipher (E). Both the 5-round semi free-start collision and the 7.75 semi free-start near collision are

demonstrated by one example because the 7.75 semi free-start near collision path collides at round 5.

3.5 Attacks on the Streebog Compression Function

As depicted in Figure 3.1, the compression function of Streebog employs a nonlinear whiten-

ing round KN of the chaining value. This extra round randomizes the chaining value before being

introduced as a key for the block cipher E. As long as there is no difference in the chaining value,

most of the differential trails proposed for Whirlpool are also applicable on the Streebog compression

function.

In what follows, we consider semi free-start collision attacks on the compression function. Because

of the extra round KN which is as a whitening stage for the chaining value, a free-start collision

would not be feasible. This is due to the feedforward and the asymmetry in the key and message

flows. Several approaches are used to extend the inbound phase can be used to construct collision

paths for the compression function. The extended 5 round inbound presented in [95] finds a pair of

states satisfying the 8 r1−→ 64
r2−→ 8

r3−→ 8
r4−→ 64

r5−→ 8 transition in 264 time and 28 memory. The

main idea is to solve two independent 8 r1−→ 64
r2−→ 8 and 8

r4−→ 64
r5−→ 8 inbounds and use the

freedom to choose key values that connect the resulting 8 differences and 64 byte values. However,

unlike the basic inbound, it provides only one solution or starting point for the outbound paths. Using

different outbounds with the extended inbound, a semi free-start 7.75-round collision, and 7.75-round,

36

8.75-round, and 9.75-round near collisions are obtained.

7.75-round Semi Free-start Collision.

This is obtained by using two outbounds in the form of 8 −→ 1. The probability of a transition

from 8 active bytes to 1 active byte through L is 2−8×7 = 2−56. Given the following path:

1
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 8
r5−→ 64

r6−→ 8
r7−→ 1,

one can produce a semi free-start collision. We need two transitions from 8 to 1 in both the forward

and backward directions, and the one active byte in the first and last states to be equal so that they

cancel out after the feedforward. Thus, one needs to try 256+56+8 times to satisfy the outbound phase.

In other words, we need 2120 inbound solutions. If the complexity of one inbound solution is 264, then

the time complexity of 7.75 rounds semi free-start collision is 2184 and the memory complexity is 28,

as we can pass one active byte through X, S and P transformations with probability one.

7.75-round Semi Free-start Near Collision.

While aiming for collision requires both differences in the first and last states to be exactly in the

same place so that they cancel out after the feedforward, near collision requires only few differences to

cancel out. A 50-byte near collision is obtained by extending the 5-round inbound with two transitions

from 8 to 8 in both directions with no additional cost. Using the following path:

8
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 8
r5−→ 64

r6−→ 8
r7−→ 8

one active byte would cancel out with probability 2−8 after feedforward. Consequently, The complex-

ity of 7.75 rounds semi free-start 50-byte collision is 272. To demonstrate the correctness of the above

concept, we have implemented a 4.75-round 50-byte near collision with a shorter practical inbound

8
r2−→ 64

r3−→ 8 as shown in Figure 3.6 with a time complexity of 218. A 4.75-round near colliding

pair is given in Table 3.2 using the IV = 0 and N = 0.

37

Figure 3.6: 4.75 round near collision path

8.75-round Semi Free-start Near Collision.

Using one transition from 8 to 1 in the forward outbound has a complexity of 256 and results in

the following path:

8
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 8
r5−→ 64

r6−→ 8
r7−→ 1

r8−→ 8

The probability that one active byte is canceled by the feedforward is 2−8. Consequently the complex-

ity of 8.75 rounds semi free-start 50-byte collision is 264+56+8 = 2120.

9.75-round Semi Free-start Near Collision.

With a complexity of 2196, a 9.75-round 50-byte near collision can be obtained with a lower

complexity of 2184. By adding two 8 to 1 transitions in both the forward and the backward directions

for a complexity of 2112 and two 1 to 8 transitions in rounds one (backward) and nine (forward) for no

additional cost, the following path:

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 8
r5−→ 8

r6−→ 64
r7−→ 8

r8−→ 1
r9−→ 8

results in a 50-byte near collision. Additional complexity of 28 is needed for a one byte cancellation

after the feedforward.

38

3.6 Conclusion

In this chapter, we have analyzed the collision resistance of the Streebog compression function

and internal cipher. As for the internal cipher, we have proposed a new message differential path such

that a local collision is enforced every two rounds. Accordingly, the Sbox matching complexity caused

by its DDT bias is bypassed. As a result, we have efficiently produced free-start 5-round collision

and 7.75-round near collision examples for the internal cipher. Moreover, the compression function

is investigated and we have noted that the Streebog compression function key whitening round KN

enhances its resistance to free-start collision attacks. However, we have showed that the Streebog

compression function is vulnerable to semi free-start 7.75 round collision, 8.75 and 9.75 round near

collision attacks and presented an example for a 4.75 round 50-byte near colliding message pair.

It should be noted that our results considers only complete full round, after which, the feedfor-

ward is applied. More specifically, unlike the results presented in [99, 145], we respect the wide trail

strategy and all of our results that are given on n + 0.75 rounds are in fact applicable on the n-round

versions. On the other hand, all the results presented in [99, 145] try to align the input and output

differences of the differential path by applying the feedforward in the middle of the round after the

transpose transformation.

m m′ Difference at M4

cd ed 17 46 d8 d7 f0 f3 cd ed 17 59 d8 d7 f0 f3 00 00 00 1f 00 00 00 00
3e d6 22 7a 99 4a c9 ea 3e d6 22 0c 99 4a c9 ea 00 00 00 76 00 00 00 00
cc 5d e2 f0 14 4f f0 3c cc 5d e2 ea 14 4f f0 3c 00 00 00 1a 00 00 00 00
4b bc 31 41 dd 99 68 0d 4b bc 31 4d dd 99 68 0d ba 38 7a 00 6f 93 95 37
b4 d1 27 0f 2d ed 55 28 b4 d1 27 58 2d ed 55 28 00 00 00 57 00 00 00 00
d8 ca c8 79 22 fa c8 14 d8 ca c8 f6 22 fa c8 14 00 00 00 8f 00 00 00 00
9f 06 fe 94 b3 3d 20 6a 9f 06 fe 80 b3 3d 20 6a 00 00 00 14 00 00 00 00
5a d6 10 10 51 4c a3 7a 5a d6 10 2b 51 4c a3 7a 00 00 00 3b 00 00 00 00

Table 3.2: Example of a 4.75-round near collision for the compression function.

39

m m′ Difference at MP
7

ba aa da d1 92 9e 95 f5 3b 16 1b b0 76 fe 1e 78
3a 4a 35 2c 61 a8 84 f1 4c 03 4f 12 d1 a3 b4 bd
44 38 38 e2 d2 fa 5e ec c6 a7 81 ff 3a c7 3e 36
27 00 09 05 4f 53 05 f2 6c 76 3e 0a d6 92 72 00
cd 02 30 bb 3e b4 54 df 47 7e c6 e0 a4 6e 23 1a
fc c6 de 98 54 4e 5c b6 28 a4 20 68 ee e1 01 11 d7 4d 00 c8 00 00 00 00
60 dc 52 73 dc c9 5d f1 43 20 0a 43 12 ba fe a0 ff 60 00 60 00 00 00 00
72 99 45 8d 9b c8 73 f2 8a d2 ff b3 19 f4 e4 25 15 3c 00 c9 00 00 00 00

1b 49 00 ae 00 00 00 00
k k′ 03 81 00 42 00 00 00 00

1a ed 00 ea 00 00 00 00
f4 d7 d6 42 05 a4 b9 7a 75 6b 17 23 e1 c4 32 f7 37 8e 00 60 00 00 00 00
2f 70 68 1a 2c 59 f4 4e 59 39 12 24 9c 52 c4 02 61 b8 00 f2 00 00 00 00
8b 7b 44 12 38 36 84 87 09 e4 fd 0f d0 0b e4 5d
63 04 2f 7d de 3d b9 9f 28 72 18 72 47 fc ce 6d
78 db 37 55 73 39 f7 30 f2 a7 c1 0e e9 e3 80 f5
3f f2 8d fb 23 a9 6a 8a eb 90 73 0b 99 06 37 2d
20 18 3a e4 63 85 3a 81 03 e4 62 d4 ad f6 99 d0
b5 58 8a e7 d3 34 20 4d 4d 13 30 d9 51 08 b7 9a

Table 3.3: Example of a 5-round collision and 7.75-round near collision for the internal block cipher
(E).

40

Chapter 4

Integral Distinguishers for Streebog

In this chapter, we investigate the structural integral properties of reduced-round versions of

the Streebog compression function and its internal permutation. Specifically, we present forward and

backward higher order integrals that can be used to distinguish 4 and 3.5 rounds, respectively. Us-

ing the start from the middle approach, we combine the two proposed integrals to get 6.5-round and

7.5-round distinguishers for the internal permutation and 6-round and 7-round distinguishers for the

compression function using 264 and 2120 middle input states, respectively. Moreover, following the

simplified representation of AES [62], we extend our original work to 8 rounds by considering an

alternative representation of the twelve rounds Streebog internal cipher. In Table 4.1, we provide a

summary of our results on the underlying primitives of the Streebog hash function.

Target #Rounds Complexity Attack
Time,Mem

Compression function
6 264 states

Integral distinguisher

7 2120 states
8 2128 states

Internal permutation
6.5 264 states
7.5 2120 states

Table 4.1: Summary of the integral cryptanalysis results on the Streebog primitives.

41

4.1 Introduction

Modern cryptanalytic approaches target both the hash function and its underlying ciphers or

permutations as these components are expected to provide certain properties and verifying their ideal

behaviour is important to evaluate the resistance of the hash function to distinguishing attacks [37].

Particularly, the analysis of hash functions underlying block ciphers or permutations has resulted in

new attack models for block ciphers, e.g., known key [87]. Such model is due to the fact that there is

no secret key when block cipher based structures are used as the hash function building blocks.

In the first part of the chapter, we focus on the integral properties and their applications to

present the first known integral distinguishers for the Russian cryptographic hash standard compres-

sion function and its internal permutation. We present a 4-round 8th order integral for the forward

direction and a 3.5-round 8th order integral for the backward direction, where both integrals are sat-

isfied by 264 inputs. In the second part, we present 6.5-round and 7.5-round distinguisher for the

internal permutation using 264 and 2120 middle inputs, respectively and 6-round and 7-round integral

distinguishers for the compression function that are satisfied by 264 and 2120 middle input states, re-

spectively. Lastly, we show how using the simplified representation of AES [62], we can extend our

attacks on the compression function to cover 8 rounds.

The rest of this chapter is organized as follows. In the next section, a brief overview of integral

cryptanalysis is given. Afterwards, in Sections 4.3, we provide detailed description of the integral pat-

terns and the complexities of the distinguishers. An alternative representation of the Streebog internal

cipher and an 8-round integral distinguisher for the compression function are given in Section 4.4.

Finally, the chapter is concluded in Section 4.5.

4.2 Integral cryptanalysis

Integral cryptanalysis was proposed by Knudsen and Wagner in [88]. It is considered as a dual

to differential cryptanalysis and is efficient against ciphers that are resistant to differential attacks.

While In differential cryptanalysis, one considers the propagation of differences between pairs of val-

42

ues to obtain probable differentials, in integral cryptanalysis, we consider the propagation of sums of

many values to obtain integrals. Integral cryptanalysis is specifically designed for block ciphers which

use only bijective transformations. An integral is a set of values with a specific input and output sums.

It covers several rounds of the cipher and describes how the summation properties of a set of input

values would be affected by each successive round.

Before being formalized in [88], the idea of integral attacks has been explored under several

names. It was first discovered during the analysis of the square cipher [43] and named the square

attack. Following this, the attack was generalized into the saturation attack and was used to analyze

the Twofish cipher [98]. Ever since higher order integrals have been introduced in [88], integral crypt-

analysis has been used to analyze block ciphers in the known key setting [87, 113, 131] and to present

distinguishers for the components of hash functions.

Integrals properties.

For a given collection of (8×8)-byte states, a typical integral usesm chosen input states, where

m equals 28× (number of active bytes). A state byte position can have any of the following properties:

• C: A constant byte, where all the bytes at this position in the m states are equal. However, If

two byte position at the same state have the C property, that does not necessarily mean that they

are equal.

• A: An active byte, where all the bytes at this position in the m states are different. Specifically,

if m = 28, then each byte in that position takes a value between 0 and 28 − 1 only once.

• Ad: An active byte that participates in a dth-order integral. If a byte takes 28 different values,

then Ad means that this particular byte takes all values exactly 28(d−1) times. A byte with the Ad

property also satisfies the A property.

• Ad
i : An active byte that participates in a d

th-order integral within a group. In particular, the string

concatenation of all bytes with subscript i take the 28d values exactly once. A byte with the Ad
i

property satisfies both the Ad and A property.

43

Figure 4.1: A 3-round first order integral for Rijndael

• S: The sum of all bytes at this position can be predicted. All the C, A, Ad, and Ad
i properties

satisfies the S property where their predictable sum is zero. The S property is the weakest of

them all as it reveals so little about the relation between bytes at similar positions in a set of

states.

In order to be able to use an integral as a distinguisher, we expect that at least one entry in the output set

of values satisfies a predictable property. Similar to truncated differentials [89] where one considers

if a specific entry is active or not, in a given integral we consider if an input has an A property or a

C property. As mentioned earlier, a typical integral uses 28×# active bytes inputs. An integral having one

active byte is called a first order integral and can be satisfied with 28 chosen inputs. On the other hand

considering an integral with a group of active bytes results in a higher order integral.

An example of a 3-round first order integral for Rijndeal is given in the first proposal [88] by

Knudsen and Wagner and is shown in Figure 4.1. To further explain the idea of integral propagation

through successive rounds, we give a detailed example on the above Rijndeal first order integral. One

round applies 4 transformations on a state , which are byte substitution (SB), row cyclic shifting (SR),

linear transformation (MC), and Key addition (AK). Consider a set of 28 input states, such that they

have different values in M [0, 0] and equal values in the rest of the fifteen bytes. the transformation

SB keeps the same property because it is bijective so each byte is substituted with a unique one. Af-

terwards, the SR transformation affects only the constant bytes keeping the state of the integral as is,

then the MC transformation mixes the active byte with three constant bytes in column 0 and results

in a column full of active bytes. Finally, due to the fact that the AK transformation XORs the same

key with all the 256 state, the sum of all states remain the same at the end of the round. As with

differential propagation, after two encryption rounds all the sixteen bytes in all the 256 states become

active. However, this integral can go one more encryption round and we get a 256 states that sum to

44

zero in all the sixteen byte positions.

Constructing a integral distinguisher can be viewed as a zero sum problem. Accordingly, to

estimate the expected complexity of having a random set of states produce a distinguisher with a final

balanced properties, the k-sum problem [141] was introduced in [87] to model this complexity. The

k-sum problem finds a set of k inputs x1,, xk such
∑k

i=1 f(xi) = 0 for a given permutation f . This

problem has a time and memory complexity of O(k2n/(1+log2k)), where n is the size of the state in

bits. The k-sum problem is the best generic known approach suited to this case to find the zero sum.

However, it does not provide the structured propertied of the distinguisher as hashing rounds progress

and has high memory requirements.

Previous literature related to integral cryptanalysis of hash functions include the analysis of

Minier et al. of the three SHA-3 candidates; Hamsi-256, LANE-256 and Grøstl-512 [112] and recently

Grøstl-512 [114], and Knudsen’s attack on whirlpool internal block cipher [86].

4.3 Distinguishers for the Streebog Primitives

The compression function of the Streebog hash function employs an AES-based cipher. In

Figure 4.2, we present an 8th order integral distinguisher for the Streebog internal cipher. In this

distinguisher, the sum of all the bytes in all the states after four rounds of encryption with the same

key is equal zero. To build this distinguisher, we consider 264 input statesM1 that have equal values in

56 bytes and differ in only eight bytes. These states differs in the eight bytes in column three such that

each state M1[col 3] (out of the 264) state takes a value between 0 and 264 − 1 only once (the place of

the column is arbitrary). After four complete rounds of hashing forward (encryption) we get 264 states

M5, such that all the 64 bytes sum to zero.

The fact that the Streebog round transformations are bijective allows us to build integrals in

the backward direction (decryption). In Figure 4.3, we present a backward integral for 3.5 rounds of

Streebog internal permutation. Although the third round integral properties are still giving a lot of

information about the integral, i.e., M2[col 0, 1, ..7] all have grouped 8th order properties, we only get

45

Figure 4.2: An example for a forward 4-round 8th order integral for the Streebog permutation. S means
the sum is equal zero

S property integral at states MS
1 after applying the inverse linear transformation that processes the

state row by row. Consequently, extending the backward integral to four rounds does not preserve

the S property because the nonlinear substitution transformation does not preserve this property. To

construct the backward distinguisher, we consider 264 input states M4 that have equal values in 56

bytes and differ in only eight bytes. These states differs in the eight bytes in row three such that each

state row M [row 3] takes a value between 0 and 264 − 1 only once. Following 3.5 rounds of hashing

backward (decryption) we get 264 states, such that all the 64 bytes sum to zero.

In order to cover more rounds, we employ the start from the middle approach. Using this

approach we can combine the forward and backward integrals over more than 7 rounds of the Streebog

46

Figure 4.3: An example for a backward 3.5-round 8th order integral for the Streebog permutation. S
means the sum is equal zero

internal permutation. In Figure 4.4, a 15th order integral 7.5-round distinguisher for the Streebog

permutation is given. Moreover, we can obtain an 8th order integral to distinguish 6.5 rounds of the

internal permutation by using 264 middle states only. Such integral is obtained by combining the

forward integral shown in Figure 4.2 with only the two rounds that start with states M4 from the

backward integral shown in Figure 4.3. The 7.5-round integral is constructed by choosing a set of 2120

middle states M4 a structure that have equal values in 49 bytes and differ in 15 bytes. Each middle

state different bytes takes a value between 0 and 2120 − 1 only once. Finally, hashing forward for 4

rounds and backward for 3.5 rounds we obtain the 7.5-round integral distinguisher for the Streebog

internal permutation. Although both the forward and backward integrals are 8th order integrals, one

47

Figure 4.4: An example for a 7.5-round 15th order integral for the Streebog internal permutation. S
means the sum is equal zero

can perceive the set of 2120 middle states used for the 15th order integral as a set of 256 sets of the

forward 4-round integral and also 256 sets of the backward 3.5-round integral.

Compression Function Distinguishers.

A 7-round 15th distinguisher for the reduced compression function can be obtained after apply-

ing the Miyaguchi-Preneel feedforward and we would still have a fully balanced integral. The com-

pression function distinguisher is shown in Figure 4.5. Additionally, one can construct a compression

function integral distinguisher that covers 6 rounds which are equivalent to half of the compression

function rounds using 264 middle states only (See Figure 4.6). This distinguisher is obtained by com-

bining the forward integral shown in Figure 4.2 with only the two rounds that start with statesM4 from

the backward integral shown in Figure 4.3.

4.4 Extending the Distinguisher to 8 Rounds

In this representation, the internal cipher is viewed as a sequence of six super rounds proceeded

and followed by a transpose operation. Each super round replaces two consecutive regular rounds and

48

Figure 4.5: An example for a 7-round 15th order integral for the Streebog compression function. S
means the sum is equal zero

is composed of two 64-bit transformations:

- A non-linear transformation (SS) which consists of eight 64-bit bijective super Sboxes and op-

erates on the eight rows simultaneously.

- A linear transformation (C) which consists of eight linear transformations applied on the eight

64-bit columns.

In order to demonstrate the new representation of the cipher, we denote the composition of two

transformation A and B by A · B instead of using the classical notation B ◦ A as reading the former

notation from left to right describes the successive transformations that are applied to the input. In

Streebog, a two consecutive rounds are composed of the following transformations:

S · P · L ·X · S · P · L ·X,

since P can be applied before or after S, then the two rounds can be written as:

P · (S · L ·X · S) · P · L ·X,

49

Figure 4.6: An example for a 6-round 8th order integral for the Streebog compression function. S
means the sum is equal zero

where (S · L ·X · S) represents the super Sbox layer SS that operate on the 64-bit rows. Moreover, if

one observes an r repetitions of the above 2-round representation P · SS · P · L ·X,, one can view it

as an r repetition of the following shifted pattern:

SS · (P · L ·X · P)

To this end, one can see that due to the fact that P is a transpose operation which means that it works

on both rows and column, the right composed transformation (P · L ·X · P) is a linear mapping that

operates on the individual columns of the input state. Accordingly, our two round representation is

composed of SS = S ·L ·X ·S and C = P ·L ·X ·P , and we only need to add a transpose P operation

before and after the first and last round, respectively. Consequently, the Streebog internal cipher can

be expressed as:

X · P · (SS · C)6 · P.

In what follows, we describe how this new representation is used to present an eight round integral

distinguisher of the Streebog compression function.

50

Figure 4.7 depicts the proposed eight round distinguisher for the internal cipher. Since SS is a

bijective row mapping and C is a column linear mapping, it can be seen by following the row-wise

transitions of the input sate Z through transformations SS, C, and SS, results in a pattern of an all bal-

anced output. Afterwards, C mixes all balanced columns through an MDS matrix multiplication and

P only transposes the result. Hence, we get an output state with a predictable sum in the forward di-

rection. Similarly, when following the transitions of the input state for the backward direction C−1(Z)

through (SS.C.SS)−1 transitions, we get an all balanced state which also has a predictable sum. Since

the compression function output is given by the Xor addition of the cipher input state and the output

states along with the input chaining value, which is composed of an all constant state, we get a com-

pression function output with a predictable sum. The main idea of this distinguisher using the new

Figure 4.7: An eight round distinguisher for the Streebog internal cipher

representation is that the input state of the forward direction Z and the input state of the backward di-

rection C−1(Z) are linked together through C−1, although, they do not map into each other through C.

Let,X(0,0,0,x,0,0,0,0) or Y(0,0,0,y,0,0,0,0) denote a structure of 264 states, where all the rows have zero value

except the forth row which takes the 264 values of x or y, for x, y ∈ {0, 1}64. In this distinguisher, we

use a 2128 chosen middle blocks structure Z = X0 ⊕ C(Y0), where X0 and Y0 denote X(0,0,0,x,0,0,0,0)

51

and Y(0,0,0,y,0,0,0,0), respectively, and X0 ⊕ C(Y0) denotes the set {X ⊕ C(Y), X ∈ X0, Y ∈ Y0}.

Accordingly, Z can be partitioned into 264 structures X0 ⊕ C(0, 0, 0, y, 0, 0, 0, 0,) = XC(0,0,0,y,0,0,0,0,)

of 264 blocks each, one for each value of the 264 values of y. Accordingly, the proposed eight round

distinguisher requires 2128 middle states and has a time complexity of 2128.

4.5 Conclusion

In this chapter, we have analyzed the integral properties of the compression function and the

internal permutation of the new Russian cryptographic hashing standard GOST R 34.11-2012. As for

the internal permutation, we have proposed two integral distinguishers that cover 4 and 3.5 rounds

in the forward and backward directions, respectively. Moreover, we have shown that using the start

from the middle approach, we are able to combine these two integrals to obtain a 7.5-round and 6.5-

round distinguishers for the internal permutation in the known-key setting that holds with probability

1 and are satisfied by 2120 and 264 middle states, respectively. Furthermore, we extended this approach

based on the integral output properties to the compression function after applying the feedforward

to distinguish 6 and 7 rounds out of 12 rounds with probability 1 and 264 and 2120 middle states,

respectively. Finally, we have shown that by adopting an alternative representation of the Streebog

internal cipher, we can further extend the distinguisher to 8 rounds of the compression function.

52

Chapter 5

Preimage Analysis of Streebog

In this chapter, we investigate the preimage resistance of the Streebog hash function. In par-

ticular, we apply a meet in the middle preimage attack on the compression function which allows us

to obtain a 5-round pseudo preimage for a given compression function output with time complexity

of 2448 and memory complexity of 264. Additionally, we adopt a guess and determine approach to

obtain a 6-round chunk separation that balances the available degrees of freedom and the guess size.

The proposed chunk separation allows us to attack 6 out of 12 rounds with time and memory com-

plexities of 2496 and 2112, respectively. Finally, by employing a multicollision attack, we show that

preimages of the 5 and 6-round reduced hash function can be generated with time complexity of 2481

and 2505, respectively. The two preimage attacks have equal memory complexity of 2256. Our results

are summarized in Table 5.1.

Target #Rounds Time Memory Attack

Compression function
5 2448 264

Pseudo preimage
6 2496 2112

Hash function
5 2481 2256

Preimage
6 2505 2256

Table 5.1: Summary of the preimage cryptanalytic results on Streebog presented in this chapter.

53

5.1 Introduction

Following the work of Lai and Massey [94], the meet-in-the-middle (MitM) preimage attack

was proposed by Aoki and Sasaki [20]. The main idea of the proposed technique is to divide the at-

tacked rounds into two independent executions such that each execution is affected by a different set

of inputs. The outputs of the two executions meet at a matching point where a solution is selected

to satisfy both executions. The MitM preimage attack has been applied to MD4 [20, 66], MD5 [20],

HAS-160 [71], and all functions of the SHA family [18, 19, 66]. The attack exploits the fact that

all the previously mentioned functions are ARX-based and operate in the Davis-Mayer (DM) mode,

where the state is initialized by the chaining value and some of the expanded message blocks are

used independently each round. Thus, one can determine which message blocks affect each execution

for the MitM attack. However, several AES-based hash functions operate in the Miyaguchi-Preneel

mode, where the input message is fed to the initial state which undergoes a chain of successive trans-

formations. Consequently, the process of separating independent executions becomes relatively more

complicated.

In FSE 2011, Sasaki proposed the first MitM preimage attack on several AES hashing modes [130].

In the same work, a 5-round pseudo preimage attack on the compression function of Whirlpool was

presented and used for a second preimage attack on the whole hash function. Afterwards, Wu et al.

applied the MitM preimage attack on Grøstl [150] and used a time-memory trade off approach to

improve the time complexity of the 5-round attack on the Whirlpool compression function. Lastly, a

pseudo preimage attack on the 6-round Whirlpool compression function and a memoryless preimage

attack on the reduced hash function were proposed in [132].

In the first part of this chapter, we present a pseudo preimage attack on the compression function

reduced to 5 out of 12 rounds by employing the partial matching and initial structure concepts [130]. In

particular, we present an execution separation for the compression function that balances the degrees

of freedom in both execution directions with their corresponding matching probability [150]. In the

second part of the chapter, we extend the attack by one round using the guess and determine approach

[132], which allows us to guess parts of the state that belongs to one execution. The proposed 6-round

54

chunk separation maximizes the overall complexity of the attack by balancing the adopted degrees of

freedom and the guess size. Finally, we show how to generate preimages of the Streebog hash function

using the presented pseudo preimage attacks on the compression function.

The rest of the chapter is organized as follows. In the next section, a brief overview of the MitM

preimage attack and the used approaches is given. Afterwards, in Sections 5.3 and 5.4, we provide

detailed description of the attacks and their corresponding complexity. In Section 5.5, we show how

preimages of the hash function are generated using the attacks presented in Sections 5.3 and 5.4.

Finally, the chapter is summarized and a short discussion is provided in Section 5.6.

5.2 MitM Preimage Attacks on AES-based Hash Functions

The first preimage attack on AES-based hash functions [130] was proposed for the cryptanalysis

of the AES cipher operating in several hashing modes. It is a meet in the middle attack where the

attacked rounds are divided at a given round (starting point) into two independent executions called

the forward and backward chunks. To maintain the independence constraint, each chunk must be

influenced by a different set of inputs. These set of inputs are often called the chunk neutral bytes, e.g.,

if a change in a given byte affects the forward chunk only, then this byte is known as a forward neutral

byte, and consequently, it is a forward degree of freedom as well. Accordingly, the degree of freedom

for each execution direction is the number of independent starting values for each execution. Hence,

the output of the forward and the backward executions can be independently calculated and stored.

Similar to all MitM attacks, the two separated chunks must meet at a common round (matching point)

for matching a solution from both the forward and backward directions that satisfies both executions.

This is accomplished by adopting the cut and splice technique [20] that employs the mode of operation

of the hash functions which chains the input and output states through feedforwarding. More precisely,

this technique regards the first and last states as successive rounds. Subsequently, the whole attacked

rounds behave in a cyclic manner and one can find a common matching point between the forward and

backward executions and one can also select any starting point.

55

Improvements to this attack aim to stretch the starting and matching points over more than one round

state and hence extend the number of the overall attacked rounds. Specifically, the initial structure

approach [130] provides the means for the starting point to cover a few successive transformations

where bytes in the states belong to both the forward and backward chunks. Although, neutral bytes

of both chunks are shared within the initial structure, independence of both executions is achieved

in the rounds at the edges of the initial structure. Additionally, the partial matching technique [20]

allows only parts of the state to be matched at the matching point. This method is used to extend the

matching point further and makes use of the fact that round transformations may update only parts

of the state. Thus the remaining unchanged parts can be used for matching. This approach is highly

successful in ARX-based hash functions which are characterized by the slow diffusion of their round

update functions and so some state variables remain independent in one direction while execution is in

the opposite direction. The unaffected parts of the states at each chunk are used for partial matching at

the matching point. However, in AES-based hash functions, full diffusion is achieved after two rounds

and this approach can be used to extend the matching point of two states for a limited number of

transformations. Once a partial match is found, the inputs of both chunks that resulted in the matched

values are selected and used to evaluate the remaining undetermined parts of the state at the matching

point to check for a full state match.

Figure 5.1 illustrates the MitM preimage attack approaches when a hash function operates in the

Miyaguchi-Preneel mode. The red and blue arrows denote the forward and backward executions on

the message state, respectively. In what follows, we apply the techniques discussed in this section to

Figure 5.1: MitM preimage attack techniques for hash functions operating in MP mode.

56

derive a 5-round pseudo preimage attack on the Streebog compression function.

5.3 5-round Pseudo Preimage of the Compression Function

For a compression function CF that operates on a chaining value h and a message block m, a

preimage attack is defined as follows: given h and x, where x is the compression function output, find

m such that CF (h,m) = x. However, in a pseudo preimage attack, only x is given and we must find

h and m such that CF (h,m) = x. Generally, pseudo preimages of the compression function of some

narrow pipe constructions are important because they can be turned to preimages of the hash function

with little cost [110]. As for Streebog, the impact of the pseudo preimage attacks on its compres-

sion function is demonstrated in Section 6, where we combine these attacks with 2t multicollision to

produce preimages for the hash function. Pseudo preimage attacks are adopted when the compression

function operates in Davis-Mayer mode where the first state is initialized by the chaining value. Subse-

quently, using the cut and splice technique enforces changes in the first state through the feedforward.

Additionally, the initial phase of MitM preimage attack usually produces pseudo preimages when the

function operates in the Miyaguchi-Preneel mode and the complexity of finding a preimage is higher

than the available bits that can be chosen freely in the message. Consequently, the chaining value is

utilized as a source of randomization to satisfy the number of multiple restarts required by the attack.

As a result, we end up with a pseudo preimage rather than a preimage of the compression function

output.

The attack on the compression function starts by chunk separation. Specifically, we divide five

rounds of Streebog execution into a forward chunk and a backward chunk around a starting point

(initial structure). The adopted chunk separation is shown in Figure 5.2. The forward chunk starts at

M3 and ends at MP
4 which is the input state to the matching point. The backward chunk starts at MP

1

and ends after the feedforward at ML
4 which is the output state of the matching point. The red bytes

are the neutral bytes for the forward chunk and after choosing them in the initial structure, all other red

bytes can be independently calculated. White bytes in the forward chunk are the ones whose values

depend on the neutral bytes of the backward chunk which are the blue bytes in the initial structure.

57

Figure 5.2: Chunk separation for a 5-round MitM pseudo preimage attack on Streebog compression
function. BSV: Backward starting value, FSV: Forward starting value, MV: Matching value.

Accordingly, their values are undetermined, these bytes cannot be evaluated until a partial match is

found. Same rationale applies to the backward chunk and the blue bytes. Grey bytes are constants

which are either given (compression function output) or chosen (chaining value and constants in the

initial structure).

In the initial structure, we try to balance the degrees of freedom in each direction and the number

of known bytes at the end of each chunk. The degrees of freedom in both directions should produce

candidate pairs at the matching point to satisfy the matching probability. More precisely, to minimize

58

the complexity, the total degrees of freedom in both chunks must be greater than the matching size. For

further clarification, we first explain the idea behind the initial structure. The main point is to choose

several bytes as neutral bytes so that the number of output bytes of the L and L−1 transformations at

the start of each chunk that are constant or relatively constant is maximized. A relatively constant byte

is a byte whose value is affected by the degrees of freedom in one execution direction but remains

constant from the opposite execution perspective. The initial structure for the 5-round MitM preimage

attack on the compression function of Streebog is shown in Figure 5.3. We start by randomly choosing

Figure 5.3: Initial structure for the 5-round attack on the Streebog compression function.

the five constant bytes in d[row 0] and then determine the values of blue bytes in c[row 0] so that after

applying L on c[row 0], we maintain the chosen five constants. Since we need five constant bytes in

d[row 0], we only need five free variables in c[row 0] to solve a system of five equations when the other

three bytes are fixed. Accordingly, for any of the first three rows in state c, we can randomly choose

any three blue bytes and compute the remaining five so that the output of L maintains the previously

chosen five constants at d[row 0]. To this end, we have nine free blue bytes (three for each row in

state c). Thus the backward degrees of freedom is 272 which means that we can start the backward

execution by 272 different starting values and hence 272 different output values at the matching point

ML
4 . Similarly, we choose 32 constants in state a and for each row in state b we randomly choose

one red byte and compute the other four bytes such that, after the L−1 transformation, we get the

predetermined constants at each row in a. However, the value of the four shaded blue bytes in each

row of state a depends also on the three blue bytes in the rows of state b. We call these bytes relative

constants because their final values cannot be determined until the backward execution starts and these

59

values are different for each execution iteration. Specifically, their final values are the predetermined

constants XORed with the corresponding blue bytes multiplied by the L−1 coefficients. In the sequel,

we have eight free bytes (one for each row in b) which means 264 forward degrees of freedom to start

the forward execution and hence 264 different input values to the matching point MP
4 .

At the matching point, we match results atMP
4 from the forward chunk with the values atML

4 from

the backward chunk through the L transformation. As depicted in Figure 5.2 at the matching point,

five bytes are known from the forward computation and four bytes are known from the backward

computation in each row. As a result, we can form four linear equations using three unknowns and

match the resulting forward and backward values through the remaining equation. More precisely, we

use the following equation to compute a given output row y through the linear transformation L given

an input row x.

[
x7 x6 x5 x4 x3 x2 x1 x0

]


l0,7 l0,6 l0,5 l0,4 l0,3 l0,2 l0,1 l0,0

l1,7 l1,6 l1,5 l1,4 l1,3 l1,2 l1,1 l1,0

l2,7 l2,6 l2,5 l2,4 l2,3 l2,2 l2,1 l2,0

l3,7 l3,6 l3,5 l3,4 l3,3 l3,2 l3,1 l3,0

l4,7 l4,6 l4,5 l4,4 l4,3 l4,2 l4,1 l4,0

l5,7 l5,6 l5,5 l5,4 l5,3 l5,2 l5,1 l5,0

l6,7 l6,6 l6,5 l6,4 l6,3 l6,2 l6,1 l6,0

l7,7 l7,6 l7,5 l7,4 l7,3 l7,2 l7,1 l7,0


=

[
y7 y6 y5 y4 y3 y2 y1 y0

]

In the above equation, the overline denotes the unknown bytes at a given row. More precisely, the input

contains the unknown bytes x5, x4, and x3 and the corresponding output contains the known bytes y7,

y5, y3, and y1. Accordingly, given the GF (28) equivalent of the Streebog binary matrix [79], we can

form the following equations:

y7 = tin7 ⊕ x5 · l2,7 ⊕ x4 · l3,7 ⊕ x3 · l4,7 (5.1)

y5 = tin5 ⊕ x5 · l2,5 ⊕ x4 · l3,5 ⊕ x3 · l4,5 (5.2)

y3 = tin3 ⊕ x5 · l2,3 ⊕ x4 · l3,3 ⊕ x3 · l4,3 (5.3)

y1 = tin1 ⊕ x5 · l2,1 ⊕ x4 · l3,1 ⊕ x3 · l4,1, (5.4)

60

where tini is the total of the known input bytes in the ith row multiplied by their corresponding matrix

coefficients. To this end, we calculate x5, x4, and x3 from equations 1, 2, and 3 and substitute their

values in equation 4. Consequently, the two sides of equation 4 are all known from both input and

output directions. Hence, the matching size per row is one byte and hence the matching probability

for the whole state is 2−64. The choice of the number forward and backward values directly affects the

matching probability as their number determines the number of red and blue bytes at a given row at the

matching point. If the number of blue and red bytes are not properly chosen at the initial structure, one

might have no value to match at the matching point. In other words, we cannot have a MitM matching

value if the total number of red and blue bytes in a given row at the matching point is less than or equal

to eight. The attack can be summarized as follows:

1. Randomly choose the chaining value and the constants at the initial structure.

2. For each forward starting value fwi in the 264 forward starting values atM2, compute the forward

matching value fmi atMP
4 and store (fwi, fmi) in a lookup table T .

3. For each backward starting value bwj in the 272 backward starting values in MP
2 compute the

backward matching value bmj atML
4 and check if there exists an fmi = bmj in T . If found, then

a partial match exists and the full match should be checked using the matched starting points

fwi and bwi. If a full match exists, then output the chaining value and the message M0, else go

to step 1.

The complexity of the MitM preimage attack is given by 2n(2−r + 2−b + 2−m), where n is the state

size and r, b, andm are the forward, backward, and matching bit sizes, respectively [150]. The choice

of these parameters should minimize the complexity and this can be achieved by keeping r, b and m,

as close as possible. In the chunk separation shown in Figure 5.2, r = 64, b = 72, and m = 64. To

further explain the complexity of the attack, we consider the attack procedure. After step 2, we have

264 forward matching values and we need 264 memory to store them. At the end of step 3, we have

272 backward matching values. Accordingly, we get 264+72 = 2136 partial matching candidate pairs.

Since the probability of a partial match is 2−64, we expect 272 partially matching pairs. The probability

that a partial match results in a full match is 264−512 = 2−448. Consequently, the expected number of

61

fully matching pairs is 2−376. Thus we need to repeat the attack 2376 times to get a fully matching pair.

The time complexity for one repetition of the attack is 264 for the forward computation, 272 for the

backward computation, and 272 to check that partially matching pairs fully match. Consequently, the

overall complexity of the attack is 2376(264 + 272 + 272) ≈ 2448 time and 264 memory

5.4 Extending the Attack to 6 Rounds

The previous 5-round attack cannot be extended to 6-rounds because at the end of each chunk

execution the state has undetermined bytes at each row. Consequently, applying the linear transforma-

tion L to such state results in a fully undetermined state and no matching can be achieved. A guess

and determine approach [132] can be used in one direction to guess the undetermined bytes in some

rows. Thus we have some known state rows after the linear transformation L. The proposed chunk

separation for the 6-round MitM attack is shown in Figure 5.4. In order to be able extend the attack by

one extra round, we guess the twelve undetermined bytes (yellow bytes) in state MP
4 . As a result, we

can reach state MP
5 with four determined columns where matching takes place.

Our choice of the separation and guessed parameters is based on our analysis of the attack com-

plexity and enumerating several values. Our main objective is to maximize the attack probability by

carefully selecting the forward, backward, and guessed bit values. We aim to maximize the number

of forward bits and keep the backward and the matching number of bits larger than the number of

guessed bits and as close as possible. For our attack, the chosen forward, backward, and guessed bit

sizes are 16, 128, and 96, respectively. Setting these parameters fixes the matching bit size which is

equal to 128. In what follows, we give the attack procedure and complexity based on the above chosen

parameters:

1. Randomly choose the chaining value and the constants the initial structure.

2. For each forward starting value fwi and guessed value gi in the 216 forward starting values and

the 296 guessed values, compute the forward matching value fmi atMP
5 and store (fwi, gi, fmi)

in a lookup table T .

62

Figure 5.4: Chunk separation for a 6-round MitM pseudo preimage attack on Streebog compression
function. BSV: Backward starting value, FSV: Forward starting value, MV: Matching value

3. For each backward starting value bwj in the 2128 backward starting values, compute the backward

matching value bmj at ML
5 and check if there exists an fmi = bmj in T . If found, then a partial

match exists and the full match should be checked using the matched forward, guessed, and

backwards values fwi, gi, and bwi. If a full match exists, then output the chaining value and the

message M0, else go to step 1.

63

After step 2, we have 216+96 = 2112 forward matching values which need 2112 memory for the

look up table. At the end of step 3, we have 2128 backward matching values. Accordingly, we get

2112+128 = 2240 partial matching candidate pairs. Since the probability of a partial match is 2−128

and the probability of a correct guess is 2−96, we expect 2240−128−96 = 216 correctly guessed partially

matching pairs. The probability that a partial match is a full match is 2−384. Consequently, the expected

number of fully matching pairs is 2−368 and hence we need to repeat the attack 2368 times to get

a full match. The time complexity for one repetition is 2112 for the forward computation, 2128 for

the backward computation, and 216 to check that partially matching pairs fully match. The overall

complexity of the attack is 2368(2112 + 2128 + 216) ≈ 2496 time and 2112 memory.

5.5 Preimage of the Streebog Hash Function

In this section, we show how the previously presented pseudo preimage attacks on the Streebog

compression function can be utilized to produce preimages for the whole hash function. Streebog has

a finalization step which is the last compression function call in the hash function. In this step, the

compression function operates on the modular addition of the previously processed message blocks.

At first glance, this may seem to limit the ability of turning a pseudo preimage of the compression

function to a hash function preimage because inverting the last compression function call returns the

sum of the message blocks and thus constraints their values. However, a preimage of the hash function

can be found when we consider a large set of long messages that produce different sums and a set

pseudo preimage attacks on the last compression function call. Hence, another MitM attack can be

performed on both sets to find the message that corresponds to the retrieved sum [105]. As depicted in

Figure 5.5, the attack is divided into four stages:

1. Given the hash function outputH(M), we produce 2p pseudo preimages for the last compression

function call. The output of this step is 2p pairs of the last chaining value and the message sum

(H515,
∑

o). We store these results in a table T .

2. In this stage, we construct a large set of equal length messages such that all of them collide at

H512. This structure is called a multicollision of length 512 [76]. More precisely, a multicollision

64

Figure 5.5: Preimage attack on the Streebog hash function.

of length t is a set of 2t messages where each message consists of exactly t block and every

application of the compression function results in the same chaining value. Consequently, all

the 2t messages lead to the same Ht value. Building a multicollision of length t is done with

time complexity of t · 2n/2 and memory complexity of t · 2 ·n to store t 2-message blocks, where

n is the state size. In our case, we build 2512 multicollision, i.e., Mi = mj
1∥m

j
2∥...∥m

j
512, where

i ∈ {1, .., 2512} and j ∈ {1, 2} such that all theM ′
is lead to the same H512. To this end, we have

2512 different massages stored in 512 · 2 · 512 = 219 memory and hence 2512 candidate sums∑
Mi
.

3. At this point, we try to connect the results of stages 1 and 2 using the freedom of choosing

m513. Specifically, since we are using messages of 513 complete blocks, then both the padding

block mp and the length block |M | are known constants. We also have one known value of

H512 produced from the previous stage. In the sequel, we randomly choosem∗
513, compute H∗

515

and check if it exists in T . As T contains 2p entries, it is expected to find a match after 2512−p

evaluations of the following three compression function calls:

H513 = gN(H512,m
∗
513, N513)

H514 = gN(H513,mp, N514)

H∗
515 = g0(H514, |M |)

65

Once a matching H515 value is found in T, the corresponding
∑

o is fixed as well. Hence the

desired sum at the output of the multicollision
∑

Mi
is equal to

∑
o−mp −m513.

4. At the last stage of the attack, we try to find a message Mi out of the 2512 messages generated

in stage 2 that has a sum equal to the sum
∑

Mi
acquired at the previous stage. This can be

achieved by a meet in the middle attack. More precisely, we first calculate all the 2256 sums of

the first half of all the 2256 messages
∑

M1
= mj

1+mj
2+ ...+mj

256 and we store them in a table.

Afterwards, for each second half message we compute the sum
∑

M2
= mj

266+mj
267+ ...+mj

512

and check if
∑

Mi
−
∑

M2
is in the table. It is expected to find a match after 2256 checks. Once

a match is found, the concatenation of the two message halves that correspond to the matching

sums and m513 is the preimage of the given H(M).

The time complexity of the attack is evaluated as follows: we need 2P× (complexity of pseudo

preimage attack) in stage 1, 512×2256 to build the multicollision at stage 2, 2512−p evaluations of three

compression function calls at stage 3, and finally 2256 for the MitM attack in stage 4. The memory

complexity for the four stages is as follows: 2p 2-states to store the pseudo preimages in stage 1,

512 2-message blocks for the multicollision, and 2256 for the MitM table in stage 4. Since the time

complexity is highly influenced by p, so we have chosen p = 32 for the 5-round attack and p = 8 for

the 6-round attack to obtain the maximum gain. Accordingly, preimages for 5-round Streebog hash

function can be produced with a time complexity of 232+448 +29+256 +2512−32× 3+ 2256 ≈ 2481. The

time complexity for the 6-round attack is 28+496+29+256+2512−8× 3+2256 ≈ 2505, both attacks have

a similar memory complexity of 2256 dominated by the MitM attack in stage 4.

5.6 Conclusion

In this chapter, we have analyzed Streebog and its compression function with respect to preim-

age attacks. We have shown that with a carefully balanced chunk separation, pseudo preimages for

the 5-round reduced compression function are generated with time complexity of 2448 and memory

complexity of 264. Additionally, we have adopted a guess and determine technique to obtain a 6-round

chunk separation that maximizes the forward degrees of freedom and balances the backward and the

66

guess bit sizes. As a result, we were able to extend the 5-round attack by one more round with time

complexity of 2496 and memory complexity of 2112. Finally, using 2512 multicollision and another

MitM attack, the compression function pseudo preimage attacks are used to produce 5 and 6-round

hash function preimages with time complexity of 2481 and 2505, respectively. The two preimage at-

tacks have equal memory complexity of 2256. Interestingly, if one considers long preimages (1024

blocks), the time complexity of the attack can be further reduced by removing the last stage MitM

procedure [99]. Specifically, instead of considering 2512 multicollision, one can adopt a variant of the

multicollision attack [58] that deals with the checksum and considers a preimage of the last compres-

sion function call. Accordingly, a 1024 block preimage message for the 6-round reduced Streebog can

be generated in 2496 time and 2112 memory.

It should be noted that the Streebog compression function key whitening round KN enhances its

resistance to certain attacks that require similar diffusion of the executions of both the message and the

chaining value. The guess and determine approach is more effective in reducing the complexity when

similar chunk separation is performed on the key of the internal cipher to provide additional starting

values in both directions [132]. However, key separation cannot be achieved because Streebog has

an initial nonlinear whitening round that deviates the chaining value (key) from the message by one

round. Hence, even if we were able to start from the middle and separate the chaining value execution,

we lose all information when we get to the input chaining value because of the wide trail effect.

67

Chapter 6

Malicious Streebog

In this chapter, we investigate the new Russian cryptographic hashing standard in the context

of malicious hashing and present a practical collision for a malicious version of the full hash function.

In particular, we apply the rebound attack to find three solutions for three different differential paths

for four rounds. Then, using the freedom of the round constants we connect them to obtain a collision

for the twelve rounds of the compression function. Additionally, and due to the simple processing

of the counter, we bypass the barrier of the checksum finalization step and transfer the compression

function collision to the hash function output with no additional cost. The presented attack has a

practical complexity and is verified by an example. While the results presented in this chapter may not

have a direct impact on the security of the current Streebog hash function, they have raised concerns

within the cryptographic community and presented an urge for the designers of the new standards to

publish the origin of the used parameters and the rational behind their choices. Such concerns were

later addressed by the designers of Streebog in a published paper [129], available on the Russian

standardization agency website, explaining the origin of the adopted parameters.

6.1 Introduction

Research on malicious cryptographic primitives has always been thought of as the work of in-

telligence agencies. The belief that governmental spy agencies work hard to incorporate backdoors

in their primitives, which enables the efficient manipulation of certain security properties, has always

68

been lurking in the cryptographic community. This belief was further strengthened last year after

Edward Snowden exposed the existence of the NSA’s Bullrun decryption project [147]. Leaked docu-

ments have shown that the NSA has deliberately inserted a backdoor in the standardized pseudorandom

number generator Dual EC DRBG [148]. This backdoor provides the knowledge of the internal state

of the generator and accordingly its subsequent outputs. Additionally, it is also speculated that NSA

paid RSA Security $10 million in a secret deal to use Dual EC DRBG as the default pseudorandom

number generator in the RSA BSAFE cryptography library [148]. With Dual EC DRBG being rec-

ommended by NIST at that time, these revelations have raised suspicions with respect to the NIST

standards being manipulated by the NSA, particularly, after voices from the cryptographic community

began suggesting the possibility of the NSA compromising the NIST’s recommended elliptic curve

constants [133].

Only few papers have been peer reviewed in public venues in the area of malicious cryptog-

raphy. Young and Yung were among the first to address the topic of malicious cryptography through

their cryptovirology project [151]. Later Rijmen and Preneel proposed malicious versions of CAST

and LOKI by hiding linear relations in the used Sboxes [127]. Work related to malicious ciphers,

implementations and pseudorandom generators includes [22, 27, 54, 119, 120]. Although most of the

previous work focused on ciphers, just recently the concept of malicious hashing have been introduced

in [5,21]. Specifically, Albertini et al. proposed a malicious version of SHA-1 by which collisions can

be produced in an efficient way. They have used the freedom of the round constants to satisfy a given

differential path and generate one block message collisions.

Since coming to effect in 2013, Streebog has been standardized by IETF as RFC 6896 [72].

However, unlike the specifications of other standardized hash functions, the reference of the new

GOST standard [2] gives no information about how or why the parameters of the function (e.g., round

constants, matrix constants, and the number of rounds) have been chosen. This fact opens the door

to our analysis, which makes use of exactly two parameters: the heavily random looking independent

constants and the number of rounds, to present practical collisions for a malicious version of Streebog.

In this chapter, we investigate a malicious version of Streebog. We exploit the randomness

of the independent round constants and take advantage of the number of rounds of the compression

function to efficiently generate collisions for the compression function. More precisely, we first employ

69

the rebound attack technique proposed in [93] to find three pairs of messages and keys that satisfy a

specific three 4-round differential paths independently. In the sequel, we use the freedom of five out

of the twelve round constants to connect the three obtained solutions and obtain collisions for the

twelve round compression function. Finally, we tune the last constant of the compression function

to adjust its output after the feedforward to cancel the effect of the counter, Ni−1, addition of the

following compression function call, and append another identical colliding message pair. Hence, we

generate a two block messages 22 multicollision structure where two of them have the same modular

sum and thus a collision at the output of the hash function. While previous work [21] stated that

compression function collisions are not sufficient to generate hash function collision in constructions

that incorporate checksum, our results prove that this is not the case for Streebog. Table 6.1 provides

the six new constants used in our malicious version of Streebog. An example of the two block message

collision along with its corresponding digest is provided in Table 6.3.

The rest of the chapter is organized as follows. In the next section, we provide a detailed description

of the used approach, the malicious compression function attack and its corresponding complexity.

In Section 6.3, we show how collisions of the malicious hash function are generated using the attack

presented in Section 6.2. Finally, the chapter is concluded and a short discussion is provided in Section

6.4.

6.2 Malicious compression function collision

In Latincrypt 2014, Kölbl and Rechberger presented a practical method to find semi free-start

collision for a 4-round AES-based compression function [93]. More precisely, they have proposed a

way to first find a specific differential path for 1 ri−→ 8
ri+1−→ 64

ri+2−→ 8
ri+3−→ 1 transition, then use

the freedom in the key to find two messages that follow the given path. They have implemented their

approach on Streebog and presented a semi free-start collision for the 4-round reduced compression

function. In what follows, we show how we adapt their approach to generate collisions for a malicious

version of the full Streebog compression function.

70

Our approach makes use of the heavily random looking independent round constants and the twelve

rounds of the compression function. In fact, the specific number of rounds (12) used in Streebog

enables us to find three independent solutions for the commonly known 1 −→ 8 −→ 64 −→ 8 −→ 1

four round differential path and then, by changing five constants, we can successfully connect them

and generate a collision. Our attack starts by finding the first solution which is a pair of messages and

Figure 6.1: The first truncated differential path.

a key that follow the given differential path shown in Figure 6.1. In doing so, we employ the approach

proposed in [93] which is composed of two procedures and is briefly described as follows:

Building the differential characteristic In this procedure, one determines the exact differential

transitions of the above truncated differential trail as follows:

1. Choose a random difference atML
4 [3, 3] and propagate it backward until the full active stateM

S
3 .

2. For each byte difference in MS
3 , save a set of all possible input differences.

3. Create a table TL of all possible 255 byte difference values d3 (candidates for MP
2 [∗, 3]) and

their corresponding 8 byte difference values L(d3) (candidates for MX
3 [row 3]). These values

are the result of applying the linear transformation L to a difference at column 3.

4. For each row of MX
3 , check if there is a possible match with the rows in TL.

5. To achieve the transition from one active byte in MP
1 [∗, 3] to eight active bytes in MX

2 [row 3],

steps 2 and 4 must be repeated for only one row between states MS
2 andMP

1 .

71

According to the Streebog Sbox differential distribution properties, finding the differential character-

istic has a complexity of ≈ 220 [93].

6.2.1 Finding a solution for the differential path

Once we have found a characteristic, we now need to find a message pair that follows it. This

can be done by performing the following steps:

1. Set the message state at MX
3 with a solution that satisfies the full active state differentials from

the above procedure.

2. UseK3[col 3] to satisfy the solutions of the Sbox differentials atMP
2 [col 3]. Also useK3[row 3]

to satisfy the solutions of the Sbox differentials at MX
4 [col 3].

Since there is one byte, K3[3, 3], shared between the two solutions, one needs to repeat the above

procedure 28 times. For more details on the specifics of the used technique, the reader is referred

to [93].

6.2.2 Our proposed technique for finding collisions of the malicious compres-

sion function

To this end, we have found a solution to the first differential path with a key input different from

that is produced by the standard IV . This solution gives us a specific input and output differences∆1
in

and ∆1
out at M1[3, 3] and ML

4 [3, 3], respectively. In the sequel, we restart the above two procedures

to search for the second differential characteristic and its solution such that this second search covers

rounds five to eight and has an input difference ∆2
in at M5[3, 3] equals to the output difference ∆1

out

of the first path. Since we restrict the input difference of the second path to a specific value, the

complexity of the second procedure of our search is increased by a factor of 28. However, the overall

search complexity is still dominated by the first procedure which is about 220. Finally, we search

for the third and last differential path and its solution which covers rounds nine to twelve. For this

path, we have to restrict its input difference ∆3
in at M9[3, 3] to be equal ∆2

out at M
L
8 [3, 3] and its

output difference ∆3
out at M

L
12[3, 3] to be equal ∆1

in at M1[3, 3], so that the latter cancels out after the

72

feedforward. Figure 6.2 depicts an overview of our technique. Similarly colored input and output

differences in the states which result from the three solutions are chosen to be equal. The constants

that are evaluated to connect the three solutions, and to get the desired IV and compression function

output values are also shown in the figure.

Figure 6.2: Our approach for finding collision for the full round compression function.

6.2.3 Connecting the three solutions

Now that we have the three solutions, we can start tuning specific round constants to connect

them. We first work on the first solution’s key output K1, which is different than that generated by

the standard IV . To solve this problem, we fix the new C1 = LPS(IV) ⊕ (KX
1). By doing this,

we guarantee that the resulting new key satisfies the first differential path. Thus, the new colliding

messages are m = (MX
1 ⊕ LPS(IV) andm′ = m⊕∆1

in.

To connect the first and second solutions, we have to change K5. However, altering K5 affects

both K4 and K6, which are restricted by the solutions of the first and second paths, respectively. In

order to cancel the propagation of alteration to the latter two round keys, we compute the new two

constants C5 and C4 as follows:

K5 = ML
4 ⊕MX

5 ,

C5 = K5 ⊕KX
5 ,

C4 = S−1 ⊕ P ⊕ L−1(K5)⊕K4,

where ML
4 and K4 are solutions of the first path, while MX

5 and KX
5 are solutions of the second path.

To connect the second and third paths, we perform the same procedure to compute the new C8 and

73

C9. Having all the new five constants in place, Table 6.3, gives an example of a colliding message pair

which has the same compression function output using IV = 0 and Ni−1 = 0.

6.3 Collision attack on the full malicious Streebog

While previous work [21] speculated that collisions of the compression function cannot be re-

flected at the output of the hash function when employing a checksum finalization step, in this section,

we show how to turn the previous compression function collision to a hash function collision. On top

of the modular checksum finalization step, Streebog incorporates a counter Ni−1 with each compres-

sion function call. However, Ni−1 is mixed with the chaining value with a simple XOR operation. It

should be noted that once the constants of the compression function are fixed to some values, they re-

main the same for all successive executions of the compression function. Accordingly, it is infeasible

to search for a different collision with the same constants. Our approach replicates the first collision

Figure 6.3: Malicious Streebog collision.

two times, thus creating a 2-block multicollision structure with the same h2 input to the padding call

gN(h2,mp, N2) as depicted in Figure 6.3. By doing this, it is guaranteed that four messages collide at

h2, and only two of them collide at the output of the hash function. Namely, those two that have the

same modular checksum which are M = m||m′ and M ′ = m′||m. However, using the same collision

twice implies that the second collision should have a chaining input h1 equal to that of the first colli-

sion which is IV = 0. For this, we compute a new C12 to enforce the output of the first collision h1 to

be 512, which is equal to the value ofN1 used in the following compression function call. The desired

74

value of C12 is evaluated as follows:

C12 = S−1 ◦ P ◦ L−1(ML
12 ⊕M1 ⊕ 512)⊕K12.

To this end, at the input of the second compression function call h1 cancels the effect of N1 and the

second colliding message pair has a chaining input internal state equal to that of the IV which is used

at the first call.

6.4 Conclusion

In this chapter, we have investigated a malicious version of Streebog. We took advantage of the

heavily random looking constants and the number of rounds of the compression function to present a

2-block message pair with the same digest. Our approach first searches for three solutions for three

different 4-round differential paths, and then uses the freedom of five constants to connect them to

produce a compression function collision. Finally, we employed the freedom in the last constant used

in the round key generation to cancel the effect of the counter used in the second compression function

call. Hence, we were able to append a second similar message pair, thus creating a 22 multicollision

structure where only two of them have the same modular checksum and accordingly the same digest.

It should be noted that these results have no impact on the security of the original standard.

Additionally, this new set of constants does not provide collision for GOST-256 as it uses a different

IV . However, they are interesting in the light of the absence of the source of the used parameters of

the standard. Our results also show one of the first examples of compression function collisions being

sufficient to generate hash function collisions. It is interesting to mention that, due to the versatility

of the used differential path where the one byte difference can virtually be anywhere in the state, we

get the freedom to satisfy the magic number as well as other constraints that are needed to produce

meaningful collisions for some specific file formats (cf. section 4 in [5]). In other words, as the

difference is sparse and the complexity of the attack is upper bounded by 220, if one requires to find

two messages that start with a specific byte value, then we need to repeat the first path search 256

times which raises the time complexity of the attack by a factor of 28. As a future direction, one may

75

investigate the applicability of the attack if the number of rounds is not a multiple of four. Also, one

might try searching for a malicious adaptation that holds for the two versions of the hash function

simultaneously. In response to our results, the Russian standardization body TC26 has published a

note [129] explaining the origin of the employed constants.

C1 C4 C5

3b 7b 5d ca f1 e4 23 2f 7b 51 2e eb f5 f6 ab f4 9b b1 e8 b9 00 2f 6d 75
de dd 27 78 d6 9b fe 93 42 52 38 55 1b 14 c2 9d 96 d7 e3 12 a2 5c 66 9c
f7 9f 94 dd 27 02 f3 a2 6e 5b 20 23 c9 b9 8f 3d 7e aa 0e bf dd 0e 04 88
4b 8e ad 06 8d 6f 3a fd a5 cc 0b e3 78 9b 9d 52 f7 30 67 e2 8c b5 37 1e
fa da e2 5c b1 2a 0f 3a bc 30 cc de 99 39 07 69 6b 1c 1b 28 09 6d 0d 78
0f 7d 0d 18 ba f6 0c e9 cb 69 60 cf 89 c9 20 cd 4c fa 57 06 9e da f6 4f
27 b7 42 a3 7d 68 cd 64 e7 e6 7c 81 ef d7 97 6e 1d 20 22 e9 ce 7e 54 3f
5b 41 e8 61 e2 cb 9d a6 71 ac 16 c5 bf cc b9 c1 35 0c 56 b4 d8 a5 01 b7

C8 C9 C12

02 e5 04 18 6c 11 2d 01 f9 53 2e c1 78 84 d2 6e a3 23 32 b5 81 5e 1b 85
02 f1 f2 49 5d d0 aa 7b 17 ae c9 5a a4 44 4c 8d f4 67 4d bc c3 77 fd 7f
98 4c e1 b8 08 fd 0f 60 21 8b 63 a4 c1 2a 32 b8 f8 a1 db b5 e3 69 99 41
46 79 75 f7 37 5d a1 8c 41 2c 9a d0 71 20 55 30 eb 15 09 84 de 8d 22 ea
3c b5 83 ac 90 27 38 30 fb 71 99 26 59 a8 6f 4f 9d e6 44 d5 fd 40 7b 5d
25 af e8 05 d1 bd e3 34 8e 37 7a c5 06 ad 7f 93 d1 32 45 08 e9 3d 3f 51
ea eb 50 bf be 39 32 9a 50 0b be 70 04 4b 9d 5c 2a 36 ae cc 53 97 0f fc
61 1a 1a 22 e1 0d ff 58 d7 aa 2c 27 6e cd 41 01 41 a7 84 f3 44 91 24 3e

Table 6.1: The six new constants.

76

C2 C3 C6

6f a3 b5 8a a9 9d 2f 1a f5 74 dc ac 2b ce 2f c7 ae 4f ae ae 1d 3a d3 d9
4f e3 9d 46 0f 70 b5 d7 0a 39 fc 28 6a 3d 84 35 6f a4 c3 3b 7a 30 39 c0
f3 fe ea 72 0a 23 2b 98 06 f1 5e 5f 52 9c 1f 8b 2d 66 c4 f9 51 42 a4 6c
61 d5 5e 0f 16 b5 01 31 f2 ea 75 14 b1 29 7b 7b 18 7f 9a b4 9a f0 8e c6
9a b5 17 6b 12 d6 99 58 d3 e2 0f e4 90 35 9e b1 cf fa a6 b7 1c 9a b7 b4
5c b5 61 c2 db 0a a7 ca c1 c9 3a 37 60 62 db 09 0a f2 1f 66 c2 be c6 b6
55 dd a2 1b d7 cb cd 56 c2 b6 f4 43 86 7a db 31 bf 71 c5 72 36 90 4f 35
e6 79 04 70 21 b1 9b b7 99 1e 96 f5 0a ba 0a b2 fa 68 40 7a 46 64 7d 6e

C7 C10 C11

f4 c7 0e 16 ee aa c5 ec ab be de a6 80 05 6f 52 7b cd 9e d0 ef c8 89 fb
51 ac 86 fe bf 24 09 54 38 2a e5 48 b2 e4 f3 f3 30 02 c6 cd 63 5a fe 94
39 9e c6 c7 e6 bf 87 c9 89 41 e7 1c ff 8a 78 db d8 fa 6b bb eb ab 07 61
d3 47 3e 33 19 7a 93 c9 1f ff e1 8a 1b 33 61 03 20 01 80 21 14 84 66 79
09 92 ab c5 2d 82 2c 37 9f e7 67 02 af 69 33 4b 8a 1d 71 ef ea 48 b9 ca
06 47 69 83 28 4a 05 04 7a 1e 6c 30 3b 76 52 f4 ef ba cd 1d 7d 47 6e 98
35 17 45 4c a2 3c 4a f3 36 98 fa d1 15 3b b6 c3 de a2 59 4a c0 6f d8 5d
88 86 56 4d 3a 14 d4 93 74 b4 c7 fb 98 45 9c ed 6b ca a4 cd 81 f3 2d 1b

Table 6.2: The six unchanged (original) constants.

m m′ ∆m
d2 d7 5d 81 b1 63 d8 cc d2 d7 5d 81 b1 63 d8 cc 00 00 00 00 00 00 00 00
63 16 bb de 0e 61 85 d6 63 16 bb de 0e 61 85 d6 00 00 00 00 00 00 00 00
97 89 a3 e6 55 cf 46 e7 97 89 a3 e6 55 cf 46 e7 00 00 00 00 00 00 00 00
37 de 22 19 54 d6 01 95 37 de 22 bb 54 d6 01 95 00 00 00 a2 00 00 00 00
13 44 b8 4d a3 4d 36 4c 13 44 b8 4d a3 4d 36 4c 00 00 00 00 00 00 00 00
a3 50 36 27 f3 51 7f ee a3 50 36 27 f3 51 7f ee 00 00 00 00 00 00 00 00
58 23 1d 88 80 1b 09 62 58 23 1d 88 80 1b 09 62 00 00 00 00 00 00 00 00
08 9d bc 4d aa a1 73 2a 08 9d bc 4d aa a1 73 2a 00 00 00 00 00 00 00 00

H(m||m′) = H(m′||m)

94e19a2ad9252ca78d14600c20488ad66de12c72ab3aac19f7bb9e277abe973aea22f1c3fa3be180c6dd212f4b19eefed80fb114c44dfb39ffdb2cfad24c6275

Table 6.3: Example of a 2-block message collision for the malicious Streebog hash function.

77

Chapter 7

Differential Fault Analysis of Streebog

In this chapter, we present a fault analysis attack on the Streebog hash function. In particular,

our attack considers the compression function in the secret key setting where both the input chaining

value and the message block are unknown. The adopted fault model is the one in which an attacker

is assumed to be able to cause a bit-flip at a random byte in the internal state of the underlying cipher

of the compression function. We also consider the case where the position of the faulted byte can be

chosen by the attacker. In the sequel, we propose a two-stage approach that recovers the two secret

inputs of the compression function using an average number of faults that varies between 338-1640,

depending on the assumptions of our employed fault model. Moreover, we show that the attack can

be extended to the iterated hash function using a feasible pre-computation stage. Finally, we analyze

Streebog in different MAC settings and demonstrate how our attack can be used to recover the secret

key of HMAC/NMAC-GOST.

7.1 Introduction

Streebog is expected to be included in standardized cryptographic suites that support its use in

the secret key setting. Thus, studying its vulnerability to fault attacks and demonstrating the complex-

ity of the key recovery by an adversary that can manipulate the function’s execution are of paramount

importance. In this chapter, we present a practical differential fault analysis attack (DFA) on Streebog.

The attack considers the compression function when operating with secret inputs which is the default

78

setting when the function is used in a message authentication code (MAC) scheme. In other words,

we consider that both the input chaining value and message block are unknown and that we can only

observe the output of the compression function. In the sequel, we propose a two-stage attack using

the one-bit fault model where the attacker is able to cause a bit flip at a chosen or random byte in the

internal state of the function. Employing a specific property of the Streebog Sbox and by observing

several correct and faulty compression function outputs, the first stage of the attack bypasses the final

feedforward and retrieves the state of the internal cipher. Since all inputs are unknown, the retrieved

state does not allow us to invert the internal cipher of the compression function because its round keys

are dependant on the input chaining value which is a secret. Accordingly, in the second stage of the

attack, we recover one of the round keys which enables the recovery of both the chaining value and

message block of the attacked compression function. To this end, we are restricted to the processing of

the last compression function in the iterated hash function as it is the only one which we can observe

both its correct and faulty outputs. For that, we employ two precomputed tables which allows us to

extend the attack to the whole hash function. Finally, we analyze the GOST hash function in different

MAC [25] settings and show how to use our attack to recover the secret MAC key of simple prefix and

secret-IV MACs [124], HMAC, and NMAC [25].

The rest of the chapter is organized as follows. In the next section, a brief overview on fault analysis

attacks is given. Afterwards, in section 7.3, we provide a detailed description of the used fault model,

our two-stage approach, and show how to extend the attack from the compression function to the whole

hash function. In section 7.4, we consider Streebog operating in different MAC settings and present

the approaches used in the key recovery of simple prefix, secret-IV, HMAC, and NMAC. Simulation

results and analysis of the number of required faults for different attack scenarios are given in section

7.5. Finally, the chapter is concluded in section 7.6.

7.2 Fault Analysis

In mathematical attacks, such as differential and linear cryptanalysis, the attacker tries to ex-

ploit any weakness in the underlying mathematical structure of the cryptographic primitive. In fault

79

analysis, which is an implementation dependent attack, the attacker faults the state of the primitive

during its computation to deduce information about its secret material. In particular, the attacker ap-

plies some kind of physical intervention during the computation of the internal state of the primitive

which corrupts random or known bits in the state. Consequently, the attacker observes the correct

and the faulty outputs and performs differential fault analysis [29]. During this analysis, the attacker

gains non negligible information about the secret material embedded in the hardware by comparing

the correct and faulty outputs. Fault injection can be done in many ways which include power glitches,

clock pulses, and laser radiation. The reader is referred to [42,136] for more details about the practical

experimentation with different methods of fault injection.

Fault analysis was first introduced when Boneh et al. showed how the private key of the RSA-

CRT-algorithm can be successfully recovered by observing the correct ciphertext and then injecting a

fault and acquiring the faulty ciphertext [34]. Later on, Biham and Shamir combined fault analysis with

differential cryptanalysis and presented differential fault analysis [29] against DES. Their attack works

by observing the difference between the correct and faulty ciphertexts and exploiting this relation to

recover the key of DES. DFA attacks have been used for the analysis of the hardware security of many

ciphers (e.g., see [23,64,139]). In particular and due to its significance as a standard, AES has received

a lot of attention with regards to DFA where some of the works used fault injection in the encryption

process [64, 139], and others attacked the key schedule [83]. DFA attacks vary in the number of

required faults depending on the employed fault model. Generally, all models assume that the attacker

has access to the physical device, and is able to reset the device to the same unknown initial settings as

often as needed. Furthermore, different assumptions with respect to the amount of control the attacker

has over the position and the Hamming weight of the induced faults are employed.

While most of the DFA work in the literature is targeted towards block and stream ciphers, only

few researchers considered hash functions. This fact might seem logical at first glance because ciphers

have a secret key input. On the other hand, hash functions are usually analyzed with known inputs.

However, lately, DFA attacks have been considered on hash functions with secret inputs, which is

the default setting for the hash function when used in a MAC scheme. In general, adapting DFA

80

attacks against hash functions operating in the secret key setting is somewhat inherently more difficult

than adapting it against stream and block ciphers. In fact, unlike block and stream ciphers where one

assumes that only the input key material is unknown, when a hash compression function is used in a

MAC setting, we consider all its inputs as secrets. Additionally, when a hash function is employed in a

MAC scheme, there are usually several applications of the hash function and even a single application

of the hash function uses a domain extender with occasionally a complex finalization stage.

Literature related to DFA attacks on hash functions include the analysis of SHACAL [97],

which is the internal cipher of the SHA1 compression function. Later, the attack was adapted to deal

with the feedforward which masks the output of the internal cipher and both the secret chaining value

and message block were retrieved [70]. Afterwards, DFA was used to analyze HAS1-60 [78], and

Grøstl [55]. In particular, in the analysis of Grøstl [55], the authors have used the one-bit fault model

to invert the truncated output transformation, and to retrieve the input chaining value and message

block of its permutation based compression function. In our attack on Streebog, we employ some of

the concepts introduced in [55]. In the following section, we give the description of our two-stage

attack.

7.3 Differential Fault Analysis Attack on Streebog

Our attack on the Streebog compression function aims to recover the secret input chaining value

and message block. We proceed in a two-stage approach. In the first stage, given the compression

function output, we recover the internal state of the last round of the internal cipher. Unlike the attack

on the permutation based Grøstl, the knowledge of the internal state is not sufficient to recover the

secret inputs since Streebog employs an internal cipher with secret round keys additions. Hence, we

adopt a second stage for the attack where we use the knowledge of the retrieved state from stage one

to successfully recover one of the secret round keys, thus inverting the cipher and acquiring both the

secret inputs of the compression function. In what follows, we give the definition of the used fault

model and one of the Streebog Sbox properties that we are going to use in our attack.

81

Fault model: In our attack, we use the one-bit fault model which is used in [55, 64]. For each fault

injection, the attacker is assumed to be able to flip one bit in a given byte of the processed state

whose position at row r and column c may be known or not. The practicality of this model has been

demonstrated in [42], where the authors showed how tuning the laser injection parameters enables

them to control with a 100% success rate the fault injection effect on a single bit: 0 to 1 or 1 to 0. Let

M be a correctly computed state and M ′ a faulty state with a fault induced during its computation,

then M ′ = M ⊕ ∆ where ∆ is the error state with only one non-zero byte. Formally, the employed

fault model is defined as follows:

∆[r, c] =


δ ∈ E for only one byte position,

0 otherwise,

where ∆[r, c] denotes the error at the byte in row r and column c, and the set

E = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}.

For the Streebog Sbox, if x is a random input byte, δxi ∈ E for i = 1, .., n, n ≤ 8 is a randomly

chosen but distinct one bit faults, and

δyi = S(x)⊕ S(x⊕ δxi),

then x is uniquely identified by the values of δyi only. In other words, the value of the Sbox input byte

x can be recovered by observing n output differences δyi corresponding to n one-bit distinct input

faults. According to our exhaustive simulation, depending on x, the average number of fault insertions

δxi which affect different bits required to identify x varies between 2.071418 - 4.86861, and the overall

average is n ≈ 2.635 faults per byte. For the case when fault insertions δxi are randomly picked, the

overall average is n ≈ 3.077 faults per byte. Another observation is that, for all x, there always exist

two unique δxi that would identify x. In what follows, we give the details of the first stage of the

attack.

82

7.3.1 Stage One

In this stage, we recover the message state of the internal cipher of the compression func-

tion gN(hi−1,m,N). We first observe the value of the correct compression function output hi =

gN(hi−1,m,N). Afterwards and as depicted in Figure 7.1, we induce one-bit fault in a given byte of

M11, which is the input to the last round of the cipher, such that,M ′
11 = M11⊕∆, and∆ has only one

non zero byte at position [r, c]. This fault results in a faulty h′
i that differs from the correct hi state in

one row as shown in Figure 7.1.

Figure 7.1: Fault injection in the first stage of the attack.

For a fault in a given byte position M11[r, c] we get the following two equations:

hi = (X[k12] ◦ L ◦ P ◦ S(M11))⊕ hi−1 ⊕m,

h′
i = (X[k12] ◦ L ◦ P ◦ S(M11 ⊕∆))⊕ hi−1 ⊕m.

Since, X,L, and P are bijective linear functions, we can propagate the difference at hi backwards

until the state after the Sbox as follows:

hi ⊕ h′
i = L ◦ P ◦ (S(M11)⊕ S(M11 ⊕∆)),

P ◦ L−1(hi ⊕ h′
i) = S(M11)⊕ S(M11 ⊕∆).

To this end, the difference state at the output of the Sbox of the last round of the internal cipher is

given by ∆out = S(M11) ⊕ S(M11 ⊕ ∆), where ∆out = P ◦ L−1(hi ⊕ h′
i) and has only one non-

zero value at row r and column c. Since, the substitution transformation operates on the state bytes

independently, then the knowledge of the difference state∆out reveals the position [r, c] of the induced

fault. Accordingly, if we assume that we have enough faulty compression function outputs h′
i such

83

that we know enough ∆out states for each byte position in state MS
11, then using the Sbox property

presented in the previous section, we can recover the value of the entire state M11.

7.3.2 Stage Two

Although in stage one, we are able to bypass the effect of the feedforward and recover state

M11 of the internal cipher, we are still not able to invert the compression function and retrieve the

secret input chaining value and message block. This is due to the fact that unlike other AES-based

hash functions such as Grøstl which employs an internal permutation where known round constant

additions are used, the Streebog internal cipher employs round key addition. These round keys are

derived from the secret input chaining value and consequently they are not known to the attacker. For

that reason, the knowledge of a round state of the compression function is not sufficient to invert it.

Our strategy in this stage is to recover the value of round key k11, which is the key used in the

round before the last one. Once we retrieve the value of k11, we invert the key schedule to compute

all previous round keys and finally, using the knowledge of the compression function counter N , the

secret input chaining value is recovered. The employed approach depends on the knowledge of state

M11 which we have recovered in the first stage of the attack. To recover the value of k11, we first

retrieve the value of stateM10, then evaluate k11 = L ◦ P ◦ S(M10)⊕M11. Since, we know the value

Figure 7.2: Fault injection in the second stage of the attack.

of M11, we can inject one-bit faults in M10 and propagate the resulting differences in state hi back to

state M11 which is then used as hi in stage one to recover M10. As depicted in Figure 7.2, we inject

84

one-faults inM10 and acquire the corresponding faulty h′
i which differs from the correct hi in the whole

state. The difference state hi⊕h′
i is then propagated backward through the linear transformations until

stateMS
11. Accordingly, the value of the faulty state M

′
11 is given by:

M ′
11 = S−1(S(M11)⊕ (P ◦ L−1(hi ⊕ h′

i))).

To this end, we get the difference at M11 which is then propagated backward to state MS
10. The

difference at MS
10 is the output difference of the Sbox at the eleventh round corresponding to the fault

that we injected at state M10. Consequently, this difference has only one active byte which reveals the

byte position of the injected fault. The difference at state MS
10 is denoted by ∆out and is given by:

∆out = P ◦ L−1(M11 ⊕M ′
11).

Now, if we repeat stage two such that we get enough ∆out values for each of the 64 positions in

state MS
10, we can recover the value of state M10. Consequently, the value of k11 is computed by the

following equation:

k11 = (L ◦ P ◦ S(M10))⊕M11).

In the sequel, using k11 we invert the key schedule and acquire all the round keys. Then by utilizing the

knowledge of the compression function counter N within the hash function, the input chaining value

hi−1 is recovered. Since, we only observe the output of the last compression function call of the hash

function, we always assume that we are processing g0(hi−1,Σ) so thatN = 0. However, the attack can

work on any gN within the hash function as described in the following subsection. Finally, with the

knowledge of the round keys and state M10, we invert the message encryption and recover the input

message block m of g0(hi−1,Σ).

7.3.3 Extending the Attack to the Hash Function

The two-stage attack presented in the previous section works on a compression function that

one can observe the effect of the induced fault on its output. When Streebog is used in various MAC

applications, full hash function application is used and, as depicted in Figure 7.3, one can only observe

85

the output H(M) of the last compression function call g0(ht+1,Σ) of the hash function. Accordingly,

Figure 7.3: The Streebog iterated hash function.

to be able to retrieve the inputs of the previous compression function, we first launch the two-stage

attack on g0(ht+1,Σ). Because we observe both the correct and faulty values ofH(M), we can retrieve

the values of Σ and ht+1. To attack g0(ht, |M |), the first stage of the attack requires the difference

at ht+1 in addition to its value which cannot be deduced from observing the faulty H ′(M). This

requirement can be fulfilled with a precomputed table T1 for all the possible differences at ht+1 that

result from injecting any fault at all the 64 byte positions of state M11 and their corresponding faulty

H ′(M). Building this table is quite feasible for the fact that whatever the value of the induced fault at

M11, as depicted in Figure 7.1, each byte position at MS
11 may have up to 255 difference values which

linearly maps to 255 one row differences ∆ht+1 at state ht+1. Accordingly, for each byte position in

MS
11, we linearly propagate the 255 possible differences forward to get ∆ht+1. Using our knowledge

of the values of ht+1 and Σ, we evaluate the faulty H ′(M) corresponding to each difference. Finally,

table T1 will have 64 × 255 pairs of ∆ht+1 and their corresponding H ′(M). Consequently, table T1

enables us to complete the first stage of our attack because, when we inject a fault in M11, the value

of ∆ht+1 corresponding to the resulting observed faulty H ′(M) is obtained from T1. This step allows

the recovery of the value of state M11 of g0(ht, |M |).

The second stage of our attack requires the knowledge of the difference ∆M11 at state M11. As

depicted in Figure 7.2, a fault at a given position in M10 may have up to 255 difference after the Sbox

which internally linearly map to 255 one row difference ∆M11 at state M11. Since, we already know

the value of state M11 from the previous step, we can get the corresponding 255 output differences

after the Sbox at stateMS
11 and linearly propagate them to get the full active state differences∆ht+1 at

86

state ht+1. Similar to the previous step, we build a second table, T2 with all the 64 × 255 differences

∆ht+1 and their correspondingH ′(M). This table allows us to finish stage two of our DFA and recover

the values of ht and |M | of g0(ht, |M |). The knowledge of |M | reveals the number of the processed

message blocks and accordingly the number of compression function calls and their corresponding

counter values. Finally, we repeat the previous two-steps for each compression function and hence

invert all of the compression function calls within the iterated hash function and retrieve all their secret

inputs. Although we consider the 512-bit version of the hash function in our 2-stage attack, it also

works on the 256-bit version where the last four rows of the last compression function are truncated.

We only have to add an initial stage that deals with the truncation. We utilize the fact that the position

and value of a single byte difference in a given row can be uniquely identified from the knowledge of

the difference in any two bytes in the same row after the linear transformation (cf. Lemma 3 in [55]).

In the added initial stage, we retrieve half of the state of the last round. Then, in stage one of our

attack, we recover the whole state in the round before the last one with the knowledge of half of the

difference state after the linear transformation, then continue with the rest of the attack.

7.4 DFA on Streebog in Different MAC Settings

One of the prospective applications of the new Russian standard is using it in MAC schemes.

Despite the fact that both the simple prefix and the secret-IV MACs [124] are vulnerable to length

extension attacks, Streebog is by design not vulnerable to length extension attacks due to its finalization

stage. This property may tempt users to adopt one of the simpler MAC constructions. Indeed, the

designers of the NIST SHA-3 hash function, Keccak [26,39] state on their website that since Keccak is

not vulnerable to length extension attacks, it does not need HMAC and propose that MAC computation

can be done by concatenating the key with the message [80]. Accordingly, in what follows, we consider

Streebog in both the simple and standardized MAC settings, and show how our attack can be used to

recover the secret MAC key.

Simple prefix/Secret-IV MACs: As depicted in Figure 7.4, in the simple prefix MAC, the secret key

is used as the first message block of the processed message in the iterative construction of the hash

87

function. More formally, MAC(M) = H(K||M). On the other hand, in the secret-IV MAC, the

standard initial value is replaced by the secret key in the iterative construction of the hash function.

More formally,MAC(M) = HK(M), whereHK(M) is the keyed hash value of the messageM using

the secret key K as the IV. The knowledge of the authenticated message reveals its corresponding

Figure 7.4: Simple prefix MAC using Streebog.

message blocks and accordingly their modular sum. We can retrieve the secret key of the simple prefix

MAC using the two-stage DFA on the last compression function call. The attack recovers Σ which

is the modular summation of all processed message blocks including the secret key. Accordingly, to

recover the key, we simply subtract the summation of the known message blocks of the authenticated

message from the retrieved Σ. As for secret-IV MAC, we use our DFA and invert the compression

function calls until the first one with N = 0, the retrived chaining value is the secret key. In both

schemes, if we do not know the authenticate message, we can easily retrieve the number of message

blocks from |M | and iterate the attack backwards until the compression function withN = 0 to recover

the key.

Figure 7.5: HMAC using Streebog.

88

HMAC/NMAC: HMAC [25] is defined as:

HMAC(M) = H((K ⊕ opad)||H((K ⊕ ipad)||M)),

where opad and ipad are known padding constants andH denotes a hash function call. The algorithm

is standardized by ANSI, IETF, ISO and NIST, and is widely deployed in many Internet security

protocols (e.g. SSL, SSH, IPSec). As depicted in Figure 7.5, the Streebog hash function is called

twice. Our analysis works on the outer hash function call whereK ⊕ opad is used as the first message

block. Accordingly, our DFA is applied on the outer hash function and using the observed HMAC(M),

we iterate the attack backwards to invert five compression function calls. The retrieved message block

of the fifth backward compression function reveals the key value after xoring it with opad.

NMAC [25] employs two keys and is defined as:

NMAC(M) = HK2(HK1(M)),

where the keys are used as the initial values in the outer and inner hash function calls. The algorithm

has a similar structure to HMAC but differs in that the first compression function call in both hash

function calls in HMAC is omitted, and K1 and K2 are used as the IV for the following compression

function call. Accordingly, if Figure 7.5 is to describe NMAC, we omit gN(IV,K ⊕ ipad,N1) and

replace the resulting h1 by K1, and remove gN(IV,K ⊕ opad,N1) and use K2 as the IV for the

following compression function call. In the sequel, our attack works first to recover K2 by iterating

the two-stage attack backwards for four compression function calls. Afterwards, the retrieved message

block corresponding to the output of the inner hash function is used to further recover K1 from the

inner hash function application.

7.5 Simulation Results

Since the attack has a very low complexity, we have simulated three scenarios of the attack on

the compression function on an 4-core Intel i7 CPU running at 2.67GHz and the secret inputs were

recovered in less than one minute. The scenarios vary in the assumptions of whether the attacker

89

can control the injection of distinct faults and if the faulted byte position can be chosen or not. The

provided average fault requirements are the result of running our simulation using 1000 different inputs

to the compression function. As shown by our simulations, the number of required faults to retrieve

128 bytes in both stages depends on the assumptions used during fault injections. In what follows, we

give the results of our simulation:

1. When the faults are selected distinctly and the byte position [r, c] is chosen by the attacker, then

one needs an average of 338 faults which is equivalent to an average of 2.635 faults per byte.

2. If we randomly induce non distinct one-bit faults and select the byte positions, then the attack

requires an average of 394 fault injections in total with an average of 3.077 faults per byte.

3. In the case where both the byte position and the induced one-bit faults are randomly chosen, the

attack requires an average of 1640 fault injections in total, and accordingly an average 12.807

fault per byte.

7.6 Conclusion

In this chapter, we have investigated the security of the new Russian hash function standard

GOST R 34.11-2012 with respect to differential fault analysis. In particular, we have proposed a two-

stage approach that considers the compression function operating with secret inputs. Using one-bit

faults, the first stage of our attack bypasses the final feedforward and retrieves the internal state of the

cipher used in the compression function. The second stage retrieves one of the round keys used in the

cipher which enables the generation of the rest of the round keys and consequently, the input chaining

value and message block are recovered. We have simulated the attack on the compression function

with different assumptions regarding the control of the attacker over the induced faults and the faulted

position. The results show that our two-stage attack requires between 338 and 1640 faults on average,

depending on what are the assumptions of the employed fault model. Moreover, we have proposed a

feasible precomputation step where we require two tables of size 214 state each to enable the extension

of the attack to the whole hash function. Finally, we have shown how our proposed approach is used

to recover the secret MAC key when Streebog is used in simple prefix, secret-IV, HMAC, and NMAC

90

settings. A naive approach to prevent our attack is to use spatial/temporal algorithm level redundancy

and to disable the device output if the two produced MAC tags do not match. Another approach is to

add parity bits to detect corruptions of the inner state registers and disable the device output if any of

these parity checks is violated. Efficient fault analysis resistant implementations for Streebog, as well

as for other hash functions deployed in MAC schemes, need to be addressed in future research.

91

Chapter 8

Preimage Analysis of the Maelstrom-0 Hash

Function

Maelstrom-0 is the second member of a family of AES-based hash functions whose designs are

pioneered by Paulo Baretto and Vincent Rijmen. According to its designers, the function is designed

to be an evolutionary lightweight alternative to the ISO standard Whirlpool. In this chapter, we study

the preimage resistance of the Maelstrom-0 hash function which employs the 3CM chaining construc-

tion. More precisely, we apply a meet-in-the-middle preimage attack on the compression function and

combine it with a guess and determine approach which allows us to obtain a 6-round pseudo preim-

age for a given compression function output with time complexity of 2496 and memory complexity of

2112. Then, we propose a four stage attack in which we adopt another meet-in-the-middle attack and

a 2-block multicollision approach to defeat the two additional checksum chains and turn the pseudo

preimage attack on the compression function into a preimage attack on the hash function. Using our

approach, preimages of the 6-round reduced Maelstrom-0 hash function are generated with time com-

plexity of 2505 and memory complexity of 2112.

8.1 Introduction

Maelstrom-0 is an AES-based hash function that adopts a modified chaining scheme called

3CM [53]. The function is proposed by Filho, Barreto, and Rijmen as an evolutionary lighter alterna-

92

tive to its predecessor Whirlpool. Maelstrom-0 is considered the second member of a family of hash

functions which is preceded by Whirlpool and followed by Whirlwind. The design of Maelstrom-0

is heavily inspired by Whirlpool but adopts a simpler key schedule and takes into account the recent

development in hash function cryptanalysis. Particularly, the designers consider those attacks where

the cryptanalytic techniques which are applicable on the compression function can be easily mapped

to the hash function due to the simplicity of the Merkle-Damgård construction used by Whirlpool. In

addition to adopting a simpler key schedule which makes Maelstrom-0 more robust and significantly

faster than Whirlpool, the designers employ the Davis-Mayer compression mode which is the only

mode among the twelve secure constructions that naturally allows the compression function to accept

a message block size different from the chaining value size, thus allowing faster hashing rate [53].

Also, all the remaining eleven constructions XOR the message and the chaining value block, thus

forcing either truncation or padding to cope with the different sizes, and it is unclear to what extent

truncation or padding might adversely affect the security analysis.

The most important feature in the design of Maelstrom-0 is the proposal of a new chaining

construction called 3CM which is based on the 3C/3C+ family [61]. This construction computes two

checksums from the generated intermediate chaining values, concatenates them, and as a finalization

step processes the result as a message block in the last compression function call. This finalization step

aims to thwart some generic attacks on the MD construction used in Whirlpool such as long second

preimage and herding attacks, and also inhibits length extension attacks. According to the designers

of Maelstrom-0, the proposed finalization step mitigates the applicability of extending attacks on the

compression function to the hash function. Unfortunately, this is not the case in our attack where we

employ a 4-stage approach that uses a modified technique which defeats the 3CM chaining construc-

tion [56, 57, 59] and combines it with another meet-in-the-middle (MitM) attack to extend a pseudo

preimage attack on the compression function to a preimage attack on the hash function.

Literature related to the cryptanalysis of Maelstrom-0 include the analysis of the collision re-

sistance of its compression function by Kölbl and Mendel [92] where the weak properties of the key

schedule were used to produce semi free-start collision for the 6 and 7 round reduced compression

function and semi free-start near collision for the 8 and 10-rounds compression function. An analysis

of the used chaining construction was presented by Gauravaram and Kelsey in [56, 57] along with a

93

long second preimage and herding attacks on the hash function. Finally, Mendel et al. used the re-

bound attack to show how employing a message block whose size is double that of the chaining state

is used to present a free start collisison on the 8.5 reduced round compression function [107].

In this chapter, we investigate the security of Maelstrom-0 and its compression function, assessing

their resistance to the MitM preimage attacks. Employing the partial matching and initial structure

concepts [130], we present a pseudo preimage attack on the 6-round reduced compression function. In

the presented attack, we employ a guess and determine approach [132] to guess parts of the state. This

approach helps in maintaining partial state knowledge for an extra round when all state knowledge

is lost due to the wide trail effect. The proposed 6-round execution separation maximizes the overall

probability of the attack by balancing the chosen number of starting values and the guess size. Finally,

we propose a four stage approach which combines a 2-block multicollision attack [56, 57] with a sec-

ond MitM attack to bypass the effect of the 3CM checksum used in the finalization step. Our approach

is successfully used to generate preimages of the 6-round reduced Maelstrom-0 hash function using the

presented pseudo preimage attack on the last compression function. Up to our knowledge, our analysis

is the first to consider the hash function and not only the compression function of Maelstrom-0.

The rest of the chapter is organized as follows. In the next section, the description of the Maelstrom-

0 hash function along with the notation used throughout the chapter are given. Afterwards, in section

8.3, we provide detailed description of the pseudo preimage attack on the compression function. In

section 8.4, we show how preimages of the hash function are generated using our four stage approach

and the attack presented in section 8.3. Finally, the chapter is concluded in section 8.5.

8.2 Specifications of Maelstrom-0

Maelstrom-0 is an AES-based iterative hash function designed by Filho, Barreto and Rijmen

[53]. Its compression function processes 1024-bit message blocks and a 512-bit chaining value. As

depicted in Figure 8.1, the messageM is padded by 1 followed by zeros to make the length of the last

block 768. Then the remaining 256 bits are used for the binary representation of the message length

94

|M |. Hence the padded message has the form M = m1||m2|| · · · ||mk, where the last 256-bits of mk

denote |M |. The compression function is iterated in the 3CM chaining mode which is based on 3C/3C+

Figure 8.1: The Maelstrom-0 hash function.

family [61]. Given that hi denotes the internal state value after processing the message block mi, i.e.,

hi = f(mi, hi−1) with h0 = IV , this chaining mode generalizes the Merkle-Damgård construction

by maintaining three chains hi, si, ti instead of only hi. The extra two chains are transformed into an

additional message block mk+1 = sk||tk. The second chain si is a simple XOR accumulation of all

intermediate compression function outputs, recursively defined as s0 = 0, si = hi ⊕ si−1. The third

chain is recursively defined as t0 = IV , ti = hi ⊕ ζ(ti−1) where an LFSR is employed by ζ to update

ti−1 by left shifting it by one byte followed by a one byte XOR. More precisely, we compute the hash

value hi in the following way:

h0 = IV,

hi = f(hi−1,mi), for i = 1, 2, ..., k,

H(M) = f(hk, sk||tk).

The compression function, f , employs a block cipher, E and uses the Davis-Mayer mode of operation.

The internal cipher is based on the one used in Whirlpool where it only differs in the key schedule. The

round function which operates on 8× 8 byte state is initially loaded with the input chaining value. As

depicted in Figure 8.2, the state is updated through 10 rounds and one key addition at the beginning.

One round of the state update function consists of the application of the following four transformations:

• The nonlinear layer γ: A transformation that consists of parallel application of a nonlinear Sbox

on each byte using an 8-bit Sbox. The used Sbox is the same as the one used in Whirlpool.

95

• The cyclical permutation π: This layer cyclically shifts each column of its argument indepen-

dently, so that column j is shifted downwards by j positions, j = 0, 1, · · · , 7.

• The linear diffusion layer θ: AMixRow operation where each row is multiplied by an 8×8MDS

matrix over F28 . The values of the matrix are chosen such that the branch number of MixRow is

9. Therefore the total number of active bytes at both the input and output is at least 9.

• The key addition σ: A linear transformation where the state is XORed with a round key state.

Figure 8.2: The Maelstrom-0 compression function.

The key schedule takes as input the 1024-bit message block and generates the 512-bit round keys,

K0, K1, · · · , K10. Since the key scheduling process is not relevant to our attack, we do not give a

detailed description of the round key generation function. For more details on the specification of

Maelstrom-0, the reader is referred to [53].

- Notation: Let X be (8 × 8) byte state denoting the internal state of the function. The following

notation is used in our attacks:

• Xi: The message state at the beginning of round i.

• XU
i : The message state after the U transformation at round i, where U ∈ {γ, π, θ, σ}.

• Xi[r, c]: A byte at row r and column c of state Xi.

96

• Xi[row r]: Eight bytes located at row r of state Xi.

• Xi[col c]: Eight bytes located at column c of state Xi.

8.3 Pseudo Preimage Attack on the 6-Round Reduced Compres-

sion Function

In our analysis of the compression function, we are forced to adopt a pseudo preimage attack

because the compression function operates in Davis-Mayer mode. Consequently, using the cut and

splice technique causes updates in the first state which is initialized by the chaining value. In our

attack, we start by dividing the two execution chunks around the initial structure. More precisely, we

separate the six attacked rounds into a 3-round forward chunk and a 2-round backward chunk around

the starting round represented by the initial structure. The proposed chunk separation is shown in

Figure 8.3. The number of the forward and backward starting values in the initial structure amounts

for the complexity of the attack. Accordingly, one must try to balance the number starting values for

each chunk and the number of known bytes at the matching point at the end of each chunk. The total

number of starting values in both directions should produce candidate pairs at the matching point to

satisfy the matching probability.

To better explain the idea, we start by demonstrating how the initial structure is constructed.

The main objective of the MitM attack separation is to maximize the number of known bytes at the start

of each execution chunk. This can be achieved by selecting several bytes as neutral so that the number

of corresponding output bytes of the θ and θ−1 transformations at the start of both chunks that are

constant or relatively constant is maximized. A relatively constant byte is a byte whose value depends

on the value of the neutral bytes in one execution direction but remains constant from the opposite

execution perspective. As depicted in Figure 8.4, we want to have six constants in the lowermost row

in state a, then we need to evaluate the possible values of the corresponding red row in state b such

that the values of the selected six constants in state a hold. The values of the lowermost red row in

state b are the possible forward starting values. For the lowermost row in state b, we randomly choose

the six constant bytes in a[row 7] and then evaluate the values of red bytes in b[row 7] so that after

97

Figure 8.3: Chunk separation for the 6-round MitM pseudo preimage attack the compression function.

applying θ−1 on b[row 7], the chosen values of the six constants hold. Since we require six constant

bytes in the lowermost row in state a, we need to maintain six variable bytes in b[row 7] in order to

solve a system of six equations when the other two bytes are fixed. Accordingly, for the last row in

state b, we can randomly choose any two red bytes and compute the remaining six so that the output of

θ−1 maintains the previously chosen six constant bytes at state a. To this end, the number of forward

starting values is 216. Similarly, we choose 40 constant bytes in state d and for each row in state c

we randomly choose two blue bytes and compute the other five such that after the θ transformation

we get the predetermined five constants at each row in d. However, the value of the five shaded red

bytes in each row of state d depends also on the one red byte in the rows of state c. We call these

98

bytes relative constants because their final values cannot be determined until the forward execution

starts and these values are different for each forward execution iteration. Specifically, their final values

are the predetermined constants acting as offsets which are XORed with the corresponding red bytes

multiplied by the MDS matrix coefficients. In the sequel, we have two free bytes for each row in c

which means 2128 backward starting values.

Figure 8.4: Initial structure used in the attack on the 6-round compression function.

Following Figure 8.3, due to the wide trail strategy where one unknown byte results in a full

unknown state after two rounds, we lose all state knowledge after applying θ on Xπ
4 . To maintain

partial state knowledge in the forward direction and reach the matching point at Xπ
5 , we adopt a guess

and determine approach [132], by which, we can probabilistically guess the undetermined bytes in

some rows of the state at round 4 before the linear transformation. Thus, we maintain knowledge of

some state rows after the linear transformation θ which are used for matching. One have to carefully

choose the number of guessed bytes and both starting values in the initial structure to result in an

acceptable number of correctly guessed matching pairs. Accordingly, we guess the twelve unknown

yellow bytes in state Xπ
4 . As a result, we can reach state Xπ

5 with four determined bytes in each row

where matching takes place.

As depicted in Figure 8.3, the forward chunk begins at Xθ
2 and ends at Xπ

5 which is the input

state to the matching point. The backward chunk starts at Xπ
1 and ends after the feedforward at Xθ

5

which is the output state of the matching point. The red bytes denote the bytes which are affected

by the forward execution only and thus can be independently calculated without the knowledge of the

blue bytes. White words in the forward chunk are the ones whose values depend on the blue bytes of

99

the backward chunk. Accordingly, their values are undetermined. Same rationale applies to the blue

bytes of backward execution. Grey bytes are constants which can be either the compression function

output or the chosen constants in the initial structure.

At the matching point, we partially match the available row bytes from the forward execution

at Xπ
5 with the corresponding row bytes from the backward execution at Xθ

5 through the linear θ

transformation. In each row, we have four and six bytes from the forward and backward executions,

respectively. Since the linear mapping is performed on bytes, we compose four byte linear equations

in two unknown bytes. Then we evaluate the values of the two unknown bytes from two out of the

four equations and substitute their values in the remaining two equations. With probability 2−16 the

two remaining byte equations are satisfied. Hence, the matching probability for one state row is 2−16.

Thus, the partial matching probability for the whole state is 28×−16=−128.

For our attack, the chosen number for the forward and backward starting values, and the guessed

values are 216, 2128, and 296, respectively. Setting these parameters fixes the number of matching values

to 2128. The chosen parameters maximize the attack probability as we aim to increase the number of

starting forward values and keep the number of backward and matching values as close as possible

and larger than the number of guessed values. In what follows, we give a description of the attack

procedure and complexity based on the above chosen parameters:

1. Randomly choose the constants in Xπ
1 and Xθ

2 and the input message block value.

2. For each forward starting value fwi and guessed value gi in the 216 forward starting values and

the 296 guessed values, compute the forward matching value fmi atXπ
5 and store (fwi, gi, fmi)

in a lookup table T .

3. For each backward starting value bwj in the 2128 backward starting values, we compute the

backward matching value bmj atXθ
5 and check if there exists an fmi = bmj in T . If found, then

a partial match exists and the full match should be checked. If a full match exists, then we output

the chaining value hi−1 and the message mi, else go to step 1.

The complexity of the attack is evaluated as follows: after step 2, we have 216+96 = 2112 forward

matching values which need 2112 memory for the look up table. At the end of step 3, we have 2128

100

backward matching values. Accordingly, we get 2112+128 = 2240 partial matching candidate pairs.

Since the probability of a partial match is 2−128 and the probability of a correct guess is 2−96, we

expect 2240−128−96 = 216 correctly guessed partially matching pairs. To check for a full match, we

want the partially matching starting values to result in the correct values for the 48 unknown bytes in

both Xπ
5 and Xθ

5 that make the blue and red words hold. The probability that the latter condition is

satisfied is 248×−8 = 2−384. Consequently, the expected number of fully matching pairs is 2−368 and

hence we need to repeat the attack 2368 times to get a full match. The time complexity for one repetition

is 2112 for the forward computation, 2128 for the backward computation, and 216 to check that partially

matching pairs fully match. The overall time complexity of the attack is 2368(2112+2128+216) ≈ 2496

and the memory complexity is 2112.

8.4 Preimage of the Maelstrom-0 Hash Function

In this section, we propose a 4-stage approach by which we utilize the previously presented

pseudo preimage attack on the Maelstrom compression function to produce a preimage for the whole

hash function. The designers of Maelstrom-0 proposed the 3CM chaining scheme that computes two

additional checksum chains specifically to inhibit the ability of extending attacks on the compression

function to the hash function. The two additional checksums are computed from a combination of

the XOR of the intermediate chaining values, then the two results are concatenated and processed as

the input message block of the last compression function call in the hash function. At first instance,

this construction seems to limit the scope of our attack to the compression function. Nevertheless,

employing the 4-stage approach, a preimage of the hash function can be found when we consider a

large set of messages that produce different combinations of intermediate chaining values and thus

different checksums and combine it with a set of pseudo preimage attacks on the last compression

function call. Hence, another MitM attack can be performed on both sets to find a message that

correspond to the retrieved checksums. As depicted in Figure 8.5, the attack is divided into four

stages:

1. Given the hash function outputH(M), we produce 2p pseudo preimages for the last compression

function call. The output of this step is 2p pairs of the last chaining value and the two checksums

101

Figure 8.5: A 4-stage preimage attack on the Maelstrom-0 hash function.

(h2049, s2049, t2049). We store these results in a table T .

2. In this stage, we construct a set of 2-block messages such that all of them collide at h2048. This

structure is called a 2-block multicollision of length 1024 [57, 76]. More precisely, an n-block

multicollision of length t is a set of 2t messages where each message consists of exactly n × t

blocks and every consecutive n application of the compression function results in the same

chaining value. Consequently, we have 2t different possibilities for the intermediate chaining

values and all the 2t n-block messages lead to the same hn×t value. Constructing a 2t n-block

multicollision using exhaustive collision search requires a time complexity of t(2(n−1)+2b/2),

where b is the chaining state size, and a memory complexity of t(2 · n) message to store t two

messages of n-block each. In our case, we generate 2-block multicollision of length 1024 which

gives us 21024 2-block message combinations, and each 2-block collision gives us two choices for

the checksum of two consecutive chaining values. In other words, in the first 2-block collision,

we either choose (h1, h2) or (h∗
1, h2) and thus two choices for the checksum chains. To this end,

we have 21024 different 2-block massages stored in 1024 · 2 · 2 = 212 memory and hence 21024

candidate chaining checksums.

3. At this stage, we try to connect the resulting chaining value, h2048, from stage 2 to one of 2p

chaining values, h2049, stored in T which was created in stage 1, using the freedom of choosing

m2049. Specifically, we randomly choose 512 bit of m∗
2049, then properly pad it and append the

message length, and using h2048 generated by the multicollision, we compute h∗
2049 and check if

it exists in T . As T contains 2p entries, it is expected to find a match after 2512−p evaluations of

102

the following compression function call:

h∗
2049 = f(h2048,m

∗
2049).

Once a matching h∗
2049 value is found in T , the corresponding checksums s∗2049, t

∗
2049 are re-

trieved. Hence the desired checksums at the output of the multicollision, s2048 and t2048 are

equal to s∗2049 ⊕ h∗
2049 and ζ

−1(t∗2049 ⊕ h∗
2049), respectively.

4. At the last stage of the attack, we try to find a message M out of the 21024 2-block messages

generated in stage 2 that results in checksums equal to the ones retrieved in stage 3. For this, we

form a system of 1024 equations in 1024 unknowns to select one combination from the 21024 dif-

ferent combinations of possible chaining checksums which make the retrieved two checksums

hold. Note that, the algorithm proposed in [56] which employs 2512 2-block multicollision and

treats the two checksums independently by solving two independent systems of 512 equations

cannot work on 3CM, as the two checksums are dependent on each other. This algorithm only

works on the 3C chaining construction [57, 59] because it utilizes only one checksum. Accord-

ingly, in our solution, we adopt 1024 2-block messages to find a common solution for the two

checksums simultaneously, hence, having the required freedom to satisfy two bit constraints for

each bit position in the two checksums. The time complexity of this stage is about 10243 = 230.

The time complexity of the attack is evaluated as follows: we need 2p× (complexity of pseudo

preimage attack) in stage 1, 1024 × 2256 + 2048 ≈ 2266 to build the 2-block multicollision at stage 2,

2512−p evaluations of one compression function call at stage 3, and finally 230 for stage 4. The memory

complexity for the four stages is as follows: 2p 3-states to store the pseudo preimages in stage 1 and

2112 for the pseudo preimage attack, and 212 for the multicollision in stage 2. Since the time complexity

is highly influenced by p, so we have chosen p = 8 to maximize the attack probability. Accordingly,

preimages for the 6-round Maelstrom-0 hash function can be produced with a time complexity of

28+496 + 2266 + 2512−8 + 230 ≈ 2505. The memory complexity of attack is dominated by the memory

requirements of the pseudo preimage attack on the compression function which is given by 2112.

103

8.5 Conclusion

In this chapter, we have investigated Maelstrom-0 and its compression function with respect to

MitM preimage attacks. We have shown that with a carefully balanced chunk separation and the use

of a guess and determine approach, pseudo preimages for the 6-round reduced compression function

can be generated. Moreover, we have analyzed the employed 3CM chaining scheme which is designed

specifically to inhibit the ability of extending attacks on the compression function to the hash func-

tion, and proposed a 4-stage approach to bypass its effect and turn the pseudo preimage attack on the

compression function to a preimage attack on the hash function. Accordingly, 6-round hash function

preimages are generated with a time complexity of 2505 and a memory complexity of 2112.

104

Chapter 9

A Meet in the Middle Attack on Kuznyechik

In this chapter, we present a meet-in-the-middle attack on the 5-round reduced Kuznyechik ci-

pher which has been recently chosen to be standardized by the Russian federation. Our attack is based

on the differential enumeration approach, where we propose a distinguisher for the middle rounds and

match a sequence of state differences at its output. However, the application of the exact approach is

not successful on Kuznyechik due to its optimal round diffusion properties. Accordingly, we adopt an

equivalent representation for the last round where we can efficiently filter ciphertext pairs and launch

the attack in the chosen ciphertext setting. We also utilize partial sequence matching which further

reduces the memory and time complexities through relaxing the error probability. The adopted par-

tial sequence matching approach enables successful key recovery by matching parts of the generated

sequence instead of the full sequence matching used in the traditional setting of this attack. For the

5-round reduced cipher, the 256-bit master key is recovered with a time complexity of 2140.3, a memory

complexity of 2153.3, and a data complexity of 2113.

9.1 Introduction

The Russian Federation has recently published a project for a new standard for block cipher

encryption algorithm [3]. A draft for this new algorithm was presented by its designers at CTCrypt

2014 [135]. The new algorithm, Kuznyechik, (Grasshopper in Russian), is chosen [3] to accompany

the current Russian encryption standard GOST 28147-89 [1]. Although the current standard is con-

105

sidered a lightweight cipher [122], and only theoretical attacks on the full round cipher have been

presented [51, 74], it operates on 64-bit blocks of data which is not sufficient for the current require-

ments [135]. Hence, the need arose for a new standard with larger block length which is intended to

supersede in the future the current GOST 28147-89 cipher.

The meet-in-the-middle (MitM) attack was first proposed in 1977 by Diffie and Hellman [50]

for the analysis of the Data Encryption Standard (DES). Ever since, the attack has been evolving

to cryptanalyze block ciphers such as Present and Prince [38], KTANTAN [33], LBlock [10], and

mCrypton [68]. Additionally, MitM preimage attacks on hash functions have been presented on HAS-

160 [71], Whirlpool [132], Whirlwind [13], and Streebog [12]. The first application of a non standard

type of MitM attacks on AES was due to the work of Demirci and Selçuk [47], whose approach opened

the door to a new line of research. They constructed a truncated differential four round distinguisher,

and showed that if the input to the distinguisher has only one active byte that takes all the possible

values, then each output byte can be evaluated as a function of 25 parameters. They also showed that

the values of each output byte corresponding to the input byte values form an ordered sequence that

can be used as a property to identify the right key guess. The main disadvantage of their technique is

the high memory complexity which is required by a precomputation table to store all the sequences

resulting from all the possible combinations of the 25 byte parameters. Accordingly, the approach was

only valid to attack seven and eight rounds of AES-192 and AES-256, and not the 128-bit version.

Afterwards, the number of parameters was reduced to 24 bytes in [48], which lowered the size of the

table by a factor of 8.

Afterwards, Dunkelman et al. proposed the idea of multisets and differential enumeration [52] to

tackle the high memory requirements of the approach of Demirci and Selçuk [47]. While the concept

of multisets provides better encoding of the ordered sequence which reduces the size of the table by

a factor of 4, differential enumeration can be considered the main advantage of their attack. More

precisely, differential enumeration allows the ordered sequence to be generated by the knowledge of

16 byte parameters only instead of 24, which brings the number of entries of the table down from 2192

to 2128. This gain is attributed to the use of a low probability truncated differential distinguisher where

106

the generated sequences at its output can only take a restricted number of values. Accordingly, one

must initially search through a large amount of input data pairs to find one pair that satisfies the chosen

distinguisher. Indeed, their proposal has reduced the memory complexity of the attack at the expense

of its data complexity required to search for the right input data pair.

Later on, Derbez et al. [49] improved the attack of Dunkelman et al. by borrowing ideas from the

rebound attack [107], and proving that not all of the sequences in the table can be verified by input

data satisfying the truncated distinguisher. They have presented an efficient enumeration technique

and showed that the whole set of sequences can take only 280 values and not 2128 as with the case in

the attack by Dunkelman et al. Accordingly, all the generated sequences require the knowledge of only

10 byte parameters, thus the number of entries of the precomputation table is further reduced to 280.

A direct consequence of their improvement is that the memory complexity is not the bottleneck of the

attack anymore but both the time and data complexities are. Nevertheless, their attack is considered

the most efficient attack on the 7-round reduced AES-128 and 8-round reduced AES-192/256. They

have also used a 5-round distingusher to attack the 9-rounds reduced AES-256.

Finally, Li et al. [96] employed a key-dependent sieve to further reduce the memory complexity

of Derbez’s attack and present an attack on 9 rounds AES-192 using a 5-round truncated differential

distinguisher.

In this chapter, we present a MitM attack on Kuznyechik using the idea of efficient differential

enumeration. Unlike AES, Kuznyechik employs an optimal diffusion transformation applied to the

whole state, where one byte difference results in a full active state with certainty after one round.

Consequently, we construct a three round distinguisher in our attack to recover 16-bytes of the master

key of the reduced 5-round cipher. The direct application of the attack on Kuznyechik requires a time

complexity that exceeds that of the exhaustive search for the 256-bit key, which is also attributed to

the optimal round diffusion. Accordingly, we adopt an equivalent representation of the last round

which allows us to efficiently select ciphertext pairs that satisfy the lower half of the differential path

used in the attack with certainty. Hence, our attack is considered in the chosen ciphertext setting.

This modification lowers the time complexity of the online phase by a factor of 2120 because we

107

eliminate the probabilistic propagation of the 16 to 1 transition through the linear transformation from

the ciphertext side. We also present partial sequence matching, by which we generate, store, and

match parts of the ordered sequence while maintaining negligible probability of error. Indeed, not

only we decrease the partially encrypted/decrypted data during online matching and thus the overall

time complexity of the attack is lowered, but this approach also reduces the memory requirements of

the attack.

The rest of the chapter is organized as follows. In the next section, the description of the Kuznyechik

block cipher along with the notation used throughout the chapter are provided. Afterwards, in section

9.3, a preliminary security analysis of Kuznyechik against well known attacks is given. In section

9.4, we provide a detailed description of the proposed distinguisher, the adopted attack procedure, our

filtering approach, the proposed partial sequences idea. Finally, the chapter is concluded in section

9.5.

9.2 Specification of Kuznyechik

Kuznyechik [3, 135] is an SPN block cipher that operates on a 128-bit state. The cipher em-

ploys a 256-bit key which is used to generate ten 128-bit round keys. As depicted in Figure 9.1, the

encryption procedure updates the 16-byte state by iterating the round function for nine rounds. The

round function consists of:

• SubBytes (S): A nonlinear byte bijective mapping.

• Linear Transformation (L): An optimal diffusion operation that operates on a 16-byte input and

has a branch number = 17.

• Xor layer (X): Mixes round keys with the encryption state.

Additionally, an initial XOR layer is applied prior to the first round. The full encryption function

where the ciphertext C is evaluated from the plaintext P is given by:

C = (X[K10] ◦ L ◦ S) ◦ · · · ◦ (X[K2] ◦ L ◦ S) ◦X[K1](P)

108

Figure 9.1: The encryption procedure of Kuznyechik

In our attack, we use an equivalent representation of the last round function. The representation ex-

ploits the fact that both the linear transformation, L, and the Xor operation, X , are linear and thus,

their order can be swapped. One has to first Xor the data with an equivalent round key, then apply the

linear transformation, L, to the result. We evaluate the equivalent round key after the last round r by

EKr+1 = L−1(Kr+1). We also use the following property of the Sbox:

Property 1. For a given Sbox differential (δx, δy), the average number of solutions to S(x)⊕S(x⊕

δx) = δy is 1 over all x.

For further details regarding the employed Sboxes and linear transformation, the reader is referred

to [135].

Key schedule: The ten 128-bit round keys are derived from the 256-bit master key by undergoing

32 rounds of a Feistel structure function. The first two round keys, K1 and K2, are derived directly

from the master key,K, as follows: K1 ∥ K2 = K. As depicted in Figure 9.2, each pair of subsequent

round keys is extracted after eight rounds of execution. During each round, the same round function

used in the encryption procedure is applied to the right half of the input to the Feistel round. However,

round constants are used with the X operation instead of round keys. The 128-bit round constants Ci

are defined as follows: Ci = L(i), i = 1, 2, · · · , 32. Let F [C](a, b) denote (L ◦ S ◦X[C](a) ⊕ b, a),

where C, a, and b are 128-bit inputs. The rest of the round keys are derived from the first two round

109

Figure 9.2: The key schedule of Kuznyechik

keys,K1 andK2, as follows:

(K2i+1, K2i+2) = F [C8(i−1)+8] ◦ · · · ◦ F [C8(i−1)+1](K2i−1, K2i), i = 1, 2, 3, 4.

It is interesting to note that Kuznyechik bares a lot of resemblance with one of the AES predecessors,

Khazad [24]. In particular, both ciphers employ an iterative SPN structure for updating the input

block state, where the adopted linear transformation has an optimal diffusion properties. Also, they

both use Fiestel network for the round keys generation. While in Kuznyechik, two round keys are

generated after eight rounds of execution, only one round of execution separates consecutive round

keys in Khazad. They also differ in that Khazad employs involution Sboxes and linear transformation,

and it does not use a linear transformation in the last round.

- Notation: The following notation is used throughout the chapter:

• xi, yi, zi: The 16-byte state after the X , S, L operation, respectively, at round i.

• xj
i : The state at round i whose position within a set or a sequence is given by j.

• xi[j]: The jth byte of the state xi, where j = 0, 1, · · · , 15, and the bytes are indexed from left to

right.

110

• ∆xi, ∆xi[j]: The difference at state xi, and byte xi[j], respectively.

• X[Ki]: xor addition of the ith round keyKi.

The memory complexity of our attack is given in 16-byte states and the time complexity is evaluated

in reduced round Kuznyechik encryptions. In the following sections, we give a preliminary security

analysis of Kuznyechik and present the details of our MitM attack.

9.3 Security Analysis of Kuznyechik

The designers of Kuznyechik did not provide any security analysis of the cipher. Accordingly,

we give our analysis of the cipher against some well known attacks.

9.3.1 Differential and Linear Cryptanalysis

Since Kuznyechik employs the same Sbox as the Russian hash function standard Streebog

[135], we use the Sbox properties presented in [79]. The linear transformation of the cipher has an op-

timal branch number of 17. The maximum Sbox differential probability= 8/256 = 2−5. Accordingly,

the maximum probability of a differential characteristic over two rounds is (2−5)17 = 2−85. Also, with

an Sbox nonlinearity of 100, there is no linear approximation over two rounds with an input-output cor-

relation larger than ((128−100)/128)17 ≈ 2−37.27. Furthermore, letNr denote the minimum number of

differentially or linearly active Sboxes for r rounds, r = 1, · · · , 9. Then, using the mixed integer linear

programming approach proposed in [115], one can show that Nr = 1, 17, 18, 34, 35, 51, 52, 68, 69, for

r = 1, 2, · · · , 9, respectively. Consequently, given the block length of 128-bits and by noting the data

complexity of differential and linear cryptanalysis, there is no useful differential or linear characteristic

of length more than three rounds.

9.3.2 Related-key Cryptanalysis

This attack exploits either the slow diffusion or the symmetry in the key schedule. The Kuznyechik

key schedule employs a Feistel structure with the same round function used in the encryption rounds.

This round function is designed to cause fast and nonlinear diffusion between round keys. Also, eight

111

rounds of processing are used between round keys extraction which makes it infeasible to propagate

and maintain a given relation between keys from two successive extractions.

9.3.3 Integral Cryptanalysis

Using a set of 28 chosen plaintexts which differ in one byte that takes all the 28 values and

the remaining fifteen bytes are equal, results in a zero sum of all 256 cipher states at every byte

position after two rounds. Accordingly, one can recover the third round key by guessing the key

bytes independently, decrypting the corresponding 256 ciphers, and checking for the zero sum at the

respective position. Once the last round key is recovered, one can peal this round off and repeat the

attack to recover the key in the round before the last. The time complexity for recovering the last round

key of the three rounds reduced cipher is 16×28×28 ≈ 220 and for recovering the whole master key is

221. Extending the attack to four rounds can be done by guessing the last round key and then launching

the previous attack on the first three rounds to recover the third round key which increases the time

complexity to 220+128 = 2148.

9.3.4 Higher Order Differential Cryptanalysis

Since the algebraic degree of the Sbox is 7, then the degree of two consecutive rounds of

the cipher is at most 7 × 7 = 49 and any 50-th (or higher) order derivative must be 0. One can

append an additional round before these two rounds by choosing 256 plaintext inputs with seven active

Sboxes. The fourth round subkey bytes are then recovered independently with a time complexity of

16× 256+8 = 268.

In the following section, we give the details of our MitM attack on Kuznyechik.

9.4 AMitMAttack using Differential Enumeration onKuznyechik

Generally, our attack divides the reduced Kuznyechik block cipher, CK , into three parts, such

that CK = Ck2 ◦ Cm ◦ Ck1 , where C
m is the middle part of the cipher which exhibits a distinguishing

property. The employed property is evaluated without the knowledge of the key bits used in these

112

middle rounds. Hence, correct round key candidates for k1 and k2 are checked if they verify this

distinguishing property or not. Our middle distinguisher is a truncated differential characteristic such

that, when a set of input states from a δ-set [44] is presented as its input, the set of each byte of the

output state forms an ordered sequence.

Definition 1. (δ-set of Kuznyechick) is a set of 256 states where one byte at a particular state takes

all the 28 possible values and the rest of the 15 bytes are constants.

In our MitM attack, we employ a distinguisher where the δ-set is presented at their input from the

ciphertext side, thus, after partially decrypting it, we acquire the corresponding ordered sequence. We

denote the δ-set at state xi resulting from changing the byte at position j by δsj , j = 0, 1, · · · , 15,

where

δsj = {x0
i , x

1
i , · · · , x255

i }.

We also denote the set of 255 differences at byte xi−r[k] which form the ordered sequence for an r

round distinguisher by osk, k = 0, 1, · · · , 15, where

osk = {∆1xi−r[k],∆
2xi−r[k], · · · ,∆255xi−r[k]},

and ∆lxi−r[k] = x0
i−r[k] ⊕ xl

i−r[k], for l = 1, 2, · · · , 255. The correct ordered sequence osk is eval-

uated by partially decrypting the 256 bytes which are different in the δ-set for r rounds. However,

we compute all the possible sequences so that one does not need to know the key bits involved in

this encryption process because we simply compute it using all the possible values of the involved

parameters.

Our proposed 5-round MitM attack employs a three round distinguisher. Figure 9.3 depicts the

differential path used in the attack in which we embed a 1 → 16 → 16 → 1 distinguisher that

starts at x5 and ends at x2. The length of the distinguisher is restricted by the properties of optimal

linear transformation used in the Kuznyechik round. Unlike the MixColumn transformation used in

AES which works on independent columns leading to full state diffusion after two rounds, the linear

113

transformation L guaranties full diffusion in one round. As depicted in Figure 9.3, our δ-set is the set

Figure 9.3: Differential path used in the 5-round attack.

of states resulting from changing the first byte at state x5 and is given by:

δs0 = {x0
5, x

1
5, · · · , x255

5 }.

The corresponding ordered sequence:

os0 = {∆1x2[0],∆
2x2[0], ·,∆255x2[0]}

114

is evaluated by the knowledge of the values of 33 bytes. More precisely, in addition to δs0, given the

values of 16 bytes at y4, 16 bytes at y3 and 1 byte at y2[0], the ith element, ∆ix2[0] of the ordered

sequence is computed as follows:

• Compute ∆ix5[0] = x0
5[0]⊕ xi

5[0] from δs0.

• Linearly propagate ∆ix5[0] backwards and compute the value of ∆iy4.

• Using the value of y4 and ∆iy4, pass the substitution layer with certainty and evaluate ∆ix4.

• Linearly propagate ∆ix4 backwards and compute the value of ∆iy3.

• Using the value of y3 and ∆iy3, evaluate ∆ix3

• Linearly propagate ∆ix3 backwards through both X[K3] and L to evaluate ∆iy2[0].

• Using ∆iy2[0] and y2[0], compute ∆ix2[0].

However, by employing the rebound based differential enumeration technique [49], we deduce that

if x0
5 of δs0 belongs to a pair of messages that follows the differential path in Figure 9.3, then the

corresponding ordered sequence os0 can have only 2152 values. Accordingly, a given ordered sequence

can be computed by the knowledge of 19 byte parameters only. These parameters are∆x5[0], y4, y2[0],

and∆y2[0], where∆x5[0] and∆y2[0] denote the differences generated by a conforming message pair.

In what follows, we give the details of the attack steps and explain how we evaluate the 2152 sequences

from these 19 parameters.

9.4.1 Attack Procedure

The attack recovers the 128-bit first round key K1 and one byte of EK6 = L−1(K6). The fact

thatK1 is half the master key,K, enables us to recover the whole master key by exhaustively searching

for the other half. The benefit of the extra knowledge of the recovered byte of EK6 is limited to

making the exhaustive search for the rest of the master key more efficient by early aborting the round

keys generation process if the corresponding byte in EK6[0] does not match the one recovered by our

attack. More precisely, the key schedule employs a large number of rounds between the generation

115

of sequential round keys, which leads to a very complex relation between them and renders any key

bridging approaches useless.

The attack is composed of precomputation and online phases. In the precomputation phase, we iter-

ate on all the values of the parameters required for evaluating the ordered sequence, and for each value,

we deduce its corresponding 33 bytes values which are then used to generate the ordered sequence.

We store all the sequences in a hash table. The online phase is further divided into data collection and

filtration, and key recovery phases. In the data collection phase, we collect many pairs such that one

of them satisfies the 5-round differential characteristics given in Figure 9.3. However, given the fact

that our required ciphertext pairs are fully active, we employ an equivalent representation of the last

round to enable efficient filtering by which we are certain that the obtained ciphertext pairs satisfy the

lower two rounds of the differential characteristic. Finally, in the key recovery phase, for each of the

obtained pairs, we compute the ordered sequences by deducing the first round key K1 and guessing

the first byte of EK6. We then search for a match between the online computed sequence and the ones

stored in the precomputed table, which enables the recovery of K1 and EK6[0].

Precomputaion phase: In this phase, we construct a lookup table that contains the 2152 ordered

sequences of the resulting 255 difference,

os0 = {∆1x2[0],∆
2x2[0], · · · ,∆255x2[0]},

from the δs0 = {x0
5, x

1
5, · · · , x255

5 }. This stage is done by first iterating on the 2152 possible values for

the 19 bytes ∆x5[0], y4, y2[0], and ∆y2[0], and for each one of them, we deduce the possible values

of the 33 original parameters using the rebound approach. Then, for each of them, we construct the

ordered sequence of 255 differences. The procedure can be summarized as follows:

1. For each of the 2152 possible values of ∆x5[0] ∥ y4 ∥ y2[0] ∥ ∆y2[0], evaluate the values of the

33 bytes required to compute the ordered sequence, which are y2[0], y3, and y4 as follows:

• Linearly propagate ∆x5[0] backwards to evaluate ∆y4.

• Using ∆y4 and y4, evaluate ∆y3.

116

• Compute ∆x3 by linearly propagating ∆y2[0] through the linear transformation.

• Find x3, such that S(x3) ⊕ S(x3 ⊕ ∆x3) = ∆y3. According to property 1 in Section 2,

not all the 2152 differentials are possible, but the ones that are possible result in about 216

solutions so we get one solution on average.

• Evaluate y3 = S(x3).

2. The additional knowledge of the evaluated value of y3 provides us with the values of the 33 bytes

required to compute the 255 differences ∆lx2[0], l = 1, 2, · · · , 255, of the ordered sequence as

described at the beginning of this section.

3. Store all the generated sequences in a hash table.

Online phase: In this phase, we first find enough pairs of messages such that one of them conforms

to the truncated differential characteristic in Figure 9.3. In this step we introduce a modification to

the default process of data collection [49, 52]. More precisely, instead of collecting enough random

pairs with full active states so that one of them satisfies the two 16 → 1 transitions through the linear

transformation in rounds 1 and 4, we start data collection from the ciphertext side and employ an

equivalent representation of the last round. During this stage, we commence by composing structures

of the inverse linear transformation of ciphertext that have all the 28 possible values in one byte while

the other bytes are constants. Accordingly, even though their corresponding ciphertext pairs have full

active state, these differences guaranty the 16→ 1 transition through the linear transformation. Hence,

we have to repeat this filtration stage enough times so that we satisfy only the probabilistic transition

in round 1. A direct consequence of our modification is that instead of requiring 2240 pairs, the attack

is applicable with 2120 pairs only, thus both the data and time requirements of the attack are lowered by

this difference. The second step uses the found pairs to create a set of sequences and test them against

the precomputed table to identify the correct K1.

Data collection and filtration: In this step, we query the decryption oracle with structures of

chosen ciphertexts to get enough pairs such that one conforms to the whole truncated differential path.

Each structure is composed of 256 ciphertext, where the first byte after applying the inverse linear

117

transformation on them takes all the 256 values and the remaining fifteen bytes are equal. The process

is described as follows:

1. To get one ciphertext structure, randomly pick the value of the rightmost fifteen bytes of L−1(C)

and let the first byte take all the possible 256 values. This structure generates about 28×(28−1)
2

≈

215 pairs. This step guaranties that all the corresponding (C,C ′) pairs in the structure conform

to the 16→ 1 transition in round 5.

2. Query the decryption oracle for the plaintext pairs (P, P ′) corresponding to the ciphertext pairs

generated in step 1. These pairs are not necessarily going to conform to the 16→ 1 transition in

round 1, which happens with probability 2−120.

3. Store the 28 plaintexts and their corresponding ciphertexts in a hash table.

4. To get one pair of plaintexts (P, P ′) that satisfy the 16 → 1 probabilistic transition, we need to

try approximately 2120 pairs. Since, each structure provides 215 pairs, one requires about 2105

structures, and hence the above steps are repeated 2105 times.

All in all, we ask for the decryption of 2105 × 28 = 2113 chosen ciphertexts to get the required 2120

pairs.

Key recovery: The previous steps results in 2120 candidate pairs (Pi, Ci) and (P ′
i , C

′
i), for i =

0, 1, · · · , 2120 − 1, with a plaintext difference, ∆Pi = Pi ⊕ P ′
i , and a predetermined ciphertext dif-

ference, ∆Ci = Ci ⊕ C ′
i. For each pair, we deduce the possible values of K1 and guess the value of

EK6[0] to compute a candidate ordered sequence and match it against the precomputed table, and thus

determine the value of the right K1. The following process describes the method adopted for the re-

covery of the first round key, and it is repeated for each plaintext pair (Pi, P
′
i) and their corresponding

ciphertext pair (Ci, C
′
i).

1. Guess a value for ∆x2[0], and linearly propagate it backwards to get the value of ∆y1.

2. Using the fact that ∆x1 = ∆Pi, find the value of x1 which provides a solution for ∆y1 =

S(x1)⊕ S(x1 ⊕∆x1). According to property 1 in section 2, we get one solution on average.

118

3. Evaluate K1 = Pi ⊕ x1. By repeating the previous two steps for all the possible guesses of

∆x2[0], we get 28 candidate values for K1.

4. For each candidate of the 28 values ofK1 and for each guess of the 28 guesses of EK6[0], use Ci

to get the rest of the 255 ciphertextsCj
i for j = 1, 2, · · · , 255, corresponding to the δs0 generated

by Ci as follows:

• The value of x5[0] which is the first byte of the first state in δs0 is evaluated as follows:

x5[0] = S−1(L−1(Ci)[0]⊕ EK6[0]).

• The set of different values of x5[0] in the states of δs0 has the following structure:

{x5[0], x5[0]⊕∆1, x5[0]⊕∆2, · · · , x5[0]⊕∆255},

and ∆j = j for j = 1, 2, · · · , 255. Accordingly, we can evaluate the 255 values of

L−1(Cj
i)[0] corresponding to the values of x5[0]⊕∆j by

L−1(Cj
i)[0] = S(x5[0]⊕∆j)⊕ EK6[0].

• Get the difference∆jL−1(Ci)[0] = L−1(Cj
i)[0]⊕L−1(Ci)[0], and propagate it through the

linear transformation to get the corresponding difference ∆jCi. Finally, the required 255

values of Cj
i are evaluated by Cj

i = Ci ⊕∆jCi.

5. Get the 256 plaintexts (Pi, P
1
i , · · · , P 255

i) corresponding to the ciphertexts generated in the pre-

vious step from the currently stored structure.

6. Using K1, partially encrypt the plaintexts (Pi, P
1
i , · · · , P 255

i) to get the 256 values of ∆jx2[0],

which form the ordered sequence os0.

7. Check if there is a match between the computed os0 and the 2152 ordered sequences stored in the

precomputed table. If there is a match, then exit with the candidate K1 and EK6[0] as the right

key, else we discard it with certainty.

119

The probability of a wrong key producing a valid 255 byte ordered sequence is given by 2152+120+16−2040 =

2−1752, which is negligible and can be relaxed. This fact allows us to present our partial sequence

matching idea.

9.4.2 Complexity Analysis

The memory complexity of the attack is attributed to the precomputed table required for the

storage of 2152 sequences of size 2040 bits each. Thus the memory requirements of the attack is given

by 2152 × 2040/128 ≈ 2156 128-bit states. That memory complexity can be reduced by a factor of

4 using the multiset encoding idea (cf. Appendix A in [49]), where 512-bits are used to store the

required information of the 255 bytes in a sequence. The data complexity of the attack is due to

the data collection step where we query the decryption oracle with 2113 chosen ciphertexts. The time

complexity for recovering the first round key is dominated by the time required for partially encrypting

the 256 values in a δ-set with all the 216 key candidates for all the 2120 collected pairs. Accordingly,

the time complexity of the attack ≈ 2(120+16+8) × 2/5 ≈ 2143.

As it is fairly complex to deduce any relation between the recoveredK1 andEK6[0] that can aid

us in the recovery ofK2, which is the second half of the master key, we are left with two options. First,

with the knowledge of the recoveredK1, we can remove one round from the beginning, and repeat the

attack on the following four rounds to recover K2. Otherwise, our second option is to exhaustively

search for K2. Comparing the complexities of both options, we opt for the second one. Thus, the

memory, data, and time complexities required for the recovery of the 256-bit KuznyechiK key are

given by 2154, 2113 and 2143 + 2128 ≈ 2143, respectively. In what follows, we present the idea of partial

sequence matching by which we reduce both the memory and time complexities of the attack.

9.4.3 Partial sequence matching

Our proposed 5-round attack has a time complexity of 2143, which is affected by the number

of partial encryptions/decryptions required to generate the 28 − 1 differences in the ordered sequence

from the δ-set. Accordingly, instead of partially encrypting the 28 values of the δ-set to get their

corresponding ciphertexts, and then encrypting 28 plaintexts to evaluate the ordered sequence, we can

120

reduce the number of encryption/decryption operations to b, where b < 28 and denotes the number of

differences stored in the ordered sequence. In other words, since the probability of error is so small,

it can be relaxed such that we match b bytes of the 28 of the ordered sequence to identify the right

key. More precisely, if we accept the error probability to be 2−32, which is still negligible, the required

number of bytes, b, is evaluated by 2−32 = 2120+16+152−8b. Hence, it is enough to match 40 bytes of the

ordered sequence to identify a right key with an error probability of 2−32. In the sequel, the memory

complexity of the attack is reduced to 2152 × (320/128) ≈ 2153.3 states, and the time complexity is

evaluated by 2120+16 × 25.3 × 2/5 ≈ 2140.3.

9.5 Conclusion

In this chapter, we have presented a MitM attack on the new Russian encryption standard, also

known as Kuznyechik, using the idea of efficient differential enumeration. We have proposed an ini-

tial filtration stage which lowers the time complexity of the basic approach by a factor of 2120. Instead

of trying random data pairs such that the truncated differential path is satisfied probabilistically, we

carefully compose ciphertext pairs so that the lower half of the path is conformed to with certainty.

Additionally, we have adopted partial sequence matching, by which we store and match parts of the

ordered sequences while maintaining a negligible probability of error which reduces both the mem-

ory and time complexities of the attack. Our attack on the 5-round reduced cipher has a memory

complexity of 2153.3, a time complexity of 2140.3, and a data complexity of 2113 chosen ciphertext.

It should be noted that several improvements like key bridging techniques [49] for this class of

attacks were possible on AES because of its relatively simple key schedule. This is unlikely to be the

case for Kuznyechik, given the large number of rounds used in the generation of the round keys, which

despite its conceptual simplicity leads to a very complex relation between successive round keys. Also,

we note that 4 rounds of Kuznyechik can be broken using the integral attack (cf. section 5.6 and 5.7

in [24]) which was applied on Khazad.

121

Chapter 10

Summary and Future Research Directions

10.1 Summary of contributions

In what follows we briefly summarize the contributions of this thesis in the analysis of the

Russian cryptographic hash function Streebog and block cipher Kuznyechik, and the Maelstrom-0

hash function.

In chapter 3, we have investigated the compression function of the Russian standardized hash

function Streebog and its internal cipher with respect to rebound attacks. First, we analyzed

the differential properties of the Streebog Sbox differential distribution table and showed how

these properties affect the complexity of the rebound attack. As for the internal cipher, we have

introduced differences in both the key schedule and message encryption and proposed a new

message differential path such that a local collision is enforced every two rounds. Accordingly,

the Sbox matching complexity which is caused by its differential bias is bypassed. As a result, a

free-start 5-round collision and 7-round near collision examples for the internal cipher have been

generated. Moreover, the compression function was investigated and we noted that the Streebog

compression function key whitening round, which shifts the flow of the key generation process

from the message encryption by one round enhances its resistance to free-start collision attacks.

However, our results have demonstrated that the Streebog compression function is vulnerable to

semi free-start 7.75 round collision, 8.75 and 9.75 round near collision attacks and an example

for a 4.75 round 50-byte near colliding message pair has been presented.

122

In our second analysis of Streebog in chapter 4, we have investigated the structural integral prop-

erties of reduced-round versions of the Streebog compression function and its internal permuta-

tion. Specifically, we presented forward and backward higher order integrals that can be used to

distinguish 4 and 3.5 rounds, respectively. Using the start from the middle approach, we com-

bined the two proposed integrals to get 6.5-round and 7.5-round distinguishers for the internal

permutation and 6-round and 7-round distinguishers for the compression function. Moreover,

following the simplified representation of AES [62], we have extended our original work in [11]

to 8 rounds by considering a new representation of the 12-round Streebog internal cipher. In

this representation, the internal cipher is viewed as a sequence of six super rounds proceeded

and followed by a transpose operation where each super round replaces two consecutive regular

rounds.

In chapter 5, we have analyzed the security of Streebog and its compression function, assess-

ing their resistance to the meet-in-the-middle preimage attacks. Specifically, we presented a

pseudo preimage attack on the compression function reduced to 5 out of 12 rounds by employ-

ing the partial matching and initial structure concepts. In particular, we proposed an execution

separation for the compression function that balances the degrees of freedom in both execution

directions with their corresponding matching probability. Furthermore, we extended the attack

by one round using a guess and determine approach, which allows us to guess parts of the state

that belong to one execution. Finally, using a multicollision attack, the compression function

pseudo preimage attacks were used to produce 5 and 6-round hash function preimages.

Continuing with the rebound attacks, in chapter 6, we proposed a malicious version of Streebog.

By exploiting the randomness of the independent round constants and the number of rounds of

the compression function, we were able to efficiently generate collisions for the compression

function. Specifically, we first employed the rebound attack approach to find three pairs of

messages and keys that satisfy a specific three 4-round differential paths independently. Then

using the freedom of five out of the twelve round constants, we connected the three obtained

solutions to generate collisions for the twelve round compression function. Finally, we tuned the

last constant of the compression function to adjust its output after the feedforward to cancel the

123

effect of the counter addition of the following compression function call, and appended another

identical colliding message pair. Hence, we were able to generate a two block messages 22

multicollision structure where two of them have the same modular sum and thus a collision at

the output of the hash function. While previous works have stated that compression function

collisions are not sufficient to generate hash function collision in constructions that incorporate

a checksum, our results proved that this is not the case with Streebog. Our attack has a practical

complexity and is verified by example.

In chapter 7, we have presented a differential fault analysis attack on Streebog. The attack

considers the compression function when operating with secret inputs which is the default setting

when the function is used in a message authentication code (MAC) scheme. In our analysis, we

have proposed a two-stage attack using the one-bit fault model where the attacker is able to

cause a bit flip at a chosen or random byte in the internal state of the function. Employing a

specific property of the Streebog Sbox and by observing several correct and faulty compression

function outputs, the first stage of the attack bypasses the final feedforward and retrieves the

state of the internal cipher. The second stage of the attack recovers one of the round keys which

enables the recovery of both the chaining value and message block of the attacked compression

function. Lastly, we analyzed the Streebog hash function in different MAC settings and showed

how to use our DFA attack to recover the secret MAC key of simple prefix and secret-IV MACs,

HMAC, and NMAC.

In chapter 8, we have investigated the security of Maelstrom-0 and its compression function, as-

sessing their resistance to the meet-in-the-middle preimage attacks. The Maelstrom-0 hash func-

tion is proposed as a lighter alternative to its predecessor the ISO standard Whirlpool. Firstly, we

have presented a pseudo preimage attack on the 6-round reduced compression function. Then,

we proposed a four stage approach which combines a 2-block multicollision attack [56,57] with

a second meet-in-the-middle attack to bypass the effect of the 3CM checksum used in the final-

ization step, and generate preimages of the 6-round reduced Maelstrom-0 hash function.

In chapter 9, we have presented a meet-in-the-middle attack on the new Russian encryption stan-

dard Kuznyechik using the idea of efficient differential enumeration. Unlike AES, Kuznyechik

124

employs an optimal diffusion transformation applied to the whole state, where one byte differ-

ence results in a full active state with certainty after one round. Consequently, we constructed a

three round distinguisher to recover 16-bytes of the master key of the reduced 5-round cipher. In

our analysis, we adopted an equivalent representation of the last round which allows us to effi-

ciently select ciphertext pairs that satisfy the lower half of the differential path used in the attack

with certainty. Hence, our attack is considered in the chosen ciphertext setting. Additionally, we

have presented partial sequence matching, by which we generate, store, and match parts of the

ordered sequence while maintaining negligible probability of error.

10.2 Future work

In what follows, we propose some avenues for possible extension of our work:

With the ongoing CAESAR competition [41] which is scheduled to announce a final portfolio of

authenticated encryption schemes in 2017, it is interesting to investigate how the cryptanalytic

approaches presented in this thesis can be used to analyze the CAESAR submissions. Indeed,

most of the remaining submissions are not fully provably secure. Hence, their security arguments

are completely attributed to their ongoing cryptanalysis. Additionally, the area of integrated

authenticated encryption algorithms is considered relatively new as authenticated ciphers are

less developed than other cryptographic primitives such as block ciphers and hash functions.

The Streebog compression function key whitening round KN creates asymmetry in the key and

message flows which limits our proposed approach of creating multiple local collisions for the

compression function. In our work [7], we maintain a sparse differential path by enforcing

local collisions through keeping similar differential patterns in both the message and key states.

Due to the key whitening round KN , our approach is only successful on the internal cipher.

Accordingly, a possible research direction in the context of the collision analysis of Streebog is

to study the extension of the internal cipher attack to generate collisions of the hash function.

An interesting extension to our malicious adaptation of Streebog is to investigate other malicious

notions such as preimage and second preimage backdoors. To begin, the definitions of preimage

125

and second preimage backdoors should be clarified. More precisely, our proposed collision

backdoor is based on having one colliding message block pair that is acquired at the design

stage of the hash function by carefully choosing the constants. Later, this colliding message

pair can be used to generate hash function collisions of various messages by inserting it in these

messages. However, in the context of a preimage backdoor, how can one benefit from designing

the hash function such that the preimage of a specific digest is known? and can one design a

malicious hash function that allows the recovery of the message from its digest with a complexity

lower than the generic attack? Answering these questions remains an open problem and provides

research challenges for future work. From the other perspective, given the fact that we were able

to generate nothing up my sleeve constants in our backdoored Streebog, probing hash functions

for the existence of such backdoors is an interesting topic for research, which is significantly

important especially after the recent Snowden revelations.

126

Bibliography

[1] GOST 28147-89. Information Processing Systems. Cryptographic Protection. Cryptographic

Transformation Algorithm. (In Russian).

[2] The National Hash Standard of the Russian Federation GOST R 34.11-2012. Russian Federal

Agency on Technical Regulation and Metrology report, 2012. http://www.tc26.ru/en/

standard/gost/GOST_R_34_11-2012_eng.pdf.

[3] The National Standard of the Russian Federation GOST R 34. -20 . Russian Federal

Agency on Technical Regulation and Metrology report, 2015. http://www.tc26.ru/en/

standard/draft/ENG_GOST_R_bsh.pdf.

[4] ABDELKHALEK, A., ALTAWY, R., TOLBA, M., AND YOUSSEF, A. M. Meet-in-the-middle

attacks on reduced-round Hierocrypt-3. In LATINCRYPT (2015), vol. 9230 of Lecture Notes in

Computer Science, Springer, pp. 187–203.

[5] ALBERTINI, A., AUMASSON, J.-P., EICHLSEDER, M., MENDEL, F., AND SCHLÄFFER, M.

Malicious hashing: Eve’s variant of SHA-1. In SAC (2014), A. Joux and A. Youssef, Eds.,

vol. 8781 of Lecture Notes in Computer Science, Springer, pp. 1–19.

[6] ALTAWY, R., DUMAN, O., AND YOUSSEF, A. M. Fault analysis of Kuznyechik. In CTCrypt

(2015), pp. 302–3017. Available at: http://eprint.iacr.org/2015/347.

[7] ALTAWY, R., KIRCANSKI, A., AND YOUSSEF, A. M. Rebound attacks on Stribog. In

ICISC (2013), H.-S. Lee and D.-G. Han, Eds., vol. 8565 of Lecture Notes in Computer Sci-

ence, Springer, pp. 175–188.

127

[8] ALTAWY, R., KIRCANSKI, A., AND YOUSSEF, A. M. Second order collision for the 42-step

reduced DHA-256 hash function. Information Processing Letters 113 (2013), 764–770.

[9] ALTAWY, R., TOLBA, M., AND YOUSSEF, A. M. A higher order key partitioning attack with

application to LBlock. In Codes, Cryptology, and Information Security (2015), S. E. Hajji,

A. Nitaj, C. Carlet, and E. M. Souidi, Eds., vol. 9084 of Lecture Notes in Computer Science,

Springer, pp. 215–227.

[10] ALTAWY, R., AND YOUSSEF, A. M. Differential sieving for 2-step matching meet-in-the-

middle attack with application to LBlock. In LightSec (2014), T. Eisenbarth and E. Öztürk,

Eds., vol. 8898 of Lecture Notes in Computer Science, Springer, pp. 126–139.

[11] ALTAWY, R., AND YOUSSEF, A. M. Integral distinguishers for reduced-round Stribog. Infor-

mation Processing Letters 114, 8 (2014), 426 – 431.

[12] ALTAWY, R., AND YOUSSEF, A. M. Preimage attacks on reduced-round Stribog. In

AFRICACRYPT (2014), D. Pointcheval and D. Vergnaud, Eds., vol. 8469 of Lecture Notes

in Computer Science, Springer, pp. 109–125.

[13] ALTAWY, R., AND YOUSSEF, A. M. Second preimage analysis of Whirlwind. In Insrypt

(2014), D. Lin, M. Yung, and J. Zhou, Eds., vol. 8957 of Lecture Notes in Computer Science,

Springer, pp. 311–328.

[14] ALTAWY, R., AND YOUSSEF, A. M. Differential fault analysis of Streebog. In Information

Security Practice and Experience (2015), J. Lopez and Y. Wu, Eds., vol. 9065 of Lecture Notes

in Computer Science, Springer, pp. 35–49.

[15] ALTAWY, R., AND YOUSSEF, A. M. A meet in the middle attack on reduced round

Kuznyechik. IEICE Transactions 98-A, 10 (2015), 2194–2198.

[16] ALTAWY, R., AND YOUSSEF, A. M. Preimage analysis of the Maelstrom-0 hash func-

tion. In Security, Privacy, and Applied Cryptography Engineering (2015), R. S. Chakraborty,

P. Schwabe, and J. A. Solworth, Eds., vol. 9354 of Lecture Notes in Computer Science, Springer,

pp. 113–126.

128

[17] ALTAWY, R., AND YOUSSEF, A. M. Watch your constants: malicious Streebog. IET Informa-

tion Security 9, 6 (2015), 328–333.

[18] AOKI, K., GUO, J., MATUSIEWICZ, K., SASAKI, Y., AND WANG, L. Preimages for step-

reduced SHA-2. In ASIACRYPT (2009), M. Matsui, Ed., vol. 5912 of Lecture Notes in Com-

puter Science, Springer, pp. 578–597.

[19] AOKI, K., AND SASAKI, Y. Meet-in-the-middle preimage attacks against reduced SHA-0 and

SHA-1. In CRYPTO (2009), S. Halevi, Ed., vol. 5677 of Lecture Notes in Computer Science,

Springer, pp. 70–89.

[20] AOKI, K., AND SASAKI, Y. Preimage attacks on one-block MD4, 63-step MD5 and more. In

SAC (2009), R. M. Avanzi, L. Keliher, and F. Sica, Eds., vol. 5381 of Lecture Notes in Computer

Science, Springer, pp. 103–119.

[21] AUMASSON, J.-P. Eve’s SHA3 candidate: malicious hashing. Online article, 2011. https:

//131002.net/data/papers/Aum11a.pdf.

[22] AUMASSON, J.-P. Cryptographic backdooring, 2014. https://131002.net/data/

talks/backdooring_nsc14.pdf.

[23] BANIK, S., MAITRA, S., AND SARKAR, S. A differential fault attack on the Grain family of

stream ciphers. In CHES (2012), E. Prouff and P. Schaumont, Eds., vol. 7428 of Lecture Notes

in Computer Science, Springer, pp. 122–139.

[24] BARRETO, P., AND RIJMEN, V. The Khazad Legacy-Level Block Cipher. In First Open

NESSIE Workshop, KU-Leuven, 2000. Submission to NESSIE.

[25] BELLARE, M., CANETTI, R., AND KRAWCZYK, H. Keying hash functions for message au-

thentication. In Advances in Cryptology CRYPTO 96 (1996), N. Koblitz, Ed., vol. 1109 of

Lecture Notes in Computer Science, Springer, pp. 1–15.

[26] BERTONI, G., DAEMEN, J., PEETERS, M., AND VAN ASSCHE, G. Keccak sponge function

family main document. Submission to NIST (Round 2) (2009).

129

[27] BIHAM, E., CARMELI, Y., AND SHAMIR, A. Bug attacks. In CRYPTO (2008), D. Wagner,

Ed., vol. 5157 of Lecture Notes in Computer Science, Springer, pp. 221–240.

[28] BIHAM, E., AND SHAMIR, A. Differential cryptanalysis of DES-like cryptosystems. In

CRYPTO (1990), A. Menezes and S. A. Vanstone, Eds., vol. 537 of Lecture Notes in Computer

Science, Springer, pp. 2–21.

[29] BIHAM, E., AND SHAMIR, A. Differential fault analysis of secret key cryptosystems. In

CRYPTO (1997), J. Kaliski, BurtonS., Ed., vol. 1294 of Lecture Notes in Computer Science,

Springer, pp. 513–525.

[30] BIRYUKOV, A., KHOVRATOVICH, D., AND NIKOLIC, I. Distinguisher and related-key attack

on the full AES-256. InCRYPTO (2009), S. Halevi, Ed., vol. 5677 of Lecture Notes in Computer

Science, Springer, pp. 231–249.

[31] BIRYUKOV, A., NIKOLIĆ, I., AND ROY, A. Boomerang attacks on BLAKE-32. In FSE (2011),

A. Joux, Ed., vol. 6733 of Lecture Notes in Computer Science, Springer, pp. 218–237.

[32] BOGDANOV, A., KHOVRATOVICH, D., AND RECHBERGER, C. Biclique cryptanalysis of the

full AES. In ASIACRYPT (2011), D. H. Lee and X. Wang, Eds., vol. 7073 of Lecture Notes in

Computer Science, Springer, pp. 344–371.

[33] BOGDANOV, A., AND RECHBERGER, C. A 3-subset meet-in-the-middle attack: Cryptanal-

ysis of the lightweight block cipher KTANTAN. In SAC (2011), A. Biryukov, G. Gong, and

D. Stinson, Eds., vol. 6544 of Lecture Notes in Computer Science, Springer, pp. 229–240.

[34] BONEH, D., DEMILLO, R., AND LIPTON, R. On the importance of checking cryptographic

protocols for faults. In EUROCRYPT (1997), W. Fumy, Ed., vol. 1233 of Lecture Notes in

Computer Science, Springer, pp. 37–51.

[35] BOUILLAGUET, C., DERBEZ, P., DUNKELMAN, O., FOUQUE, P.-A., KELLER, N., AND

RIJMEN, V. Low-data complexity attacks on AES. IEEE Transactions on Information Theory

58, 11 (2012), 7002–7017.

130

[36] CANETTI, R., GOLDREICH, O., AND HALEVI, S. The random oracle methodology, revisited.

Journal of the ACM (JACM) 51 (July 2004), 557–594.

[37] CANTEAUT, A., FUHR, T., NAYA-PLASENCIA, M., PAILLIER, P., REINHARD, J.-R., AND

VIDEAU, M. A unified indifferentiability proof for permutation- or block cipher-based hash

functions. Cryptology ePrint Archive, Report 2012/363, 2012. http://eprint.iacr.org/2012/363.

[38] CANTEAUT, A., NAYA-PLASENCIA, M., AND VAYSSIRE, B. Sieve-in-the-middle: Improved

MITM attacks. In CRYPTO (2013), R. Canetti and J. Garay, Eds., vol. 8042 of Lecture Notes in

Computer Science, Springer, pp. 222–240.

[39] CHANG, S.-J., PERLNER, R., BURR, W. E., TURAN, M. S., KELSEY, J. M., PAUL, S., AND

BASSHAM, L. E. Third-round report of the SHA-3 cryptographic hash algorithm competition.

2012.

[40] CHANG, S., PERLNER, R., BURR, W.E., TURAN, M., KELSEY, J., PAUL, S. AND BASSHAM,

L.E. Third-round report of the SHA-3 cryptographic hash algorithm competition. http:

//nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf.

[41] COMPETITIONS.CR.YP.TO. CAESAR: Competition for Authenticated Encryption: Security,

Applicability, and Robustness, 2013.

[42] COURBON, F., LOUBET-MOUNDI, P., FOURNIER, J. J., AND TRIA, A. Adjusting laser in-

jections for fully controlled faults. In Constructive Side-Channel Analysis and Secure Design

(2014), E. Prouff, Ed., Lecture Notes in Computer Science, Springer, pp. 229–242.

[43] DAEMEN, J., KNUDSEN, L., AND RIJMEN, V. The block cipher SQUARE. In FSE (1997),

E. Biham, Ed., vol. 1267 of Lecture Notes in Computer Science, Springer, pp. 149–165.

[44] DAEMEN, J., AND RIJMEN, V. AES proposal: Rijndael, 1998.

[45] DAEMEN, J., AND RIJMEN, V. The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer, 2002.

131

[46] DAMGÅRD, I. B. A Design Principle for Hash Functions. In CRYPTO (1990), G. Brassard,

Ed., vol. 435 of Lecture Notes in Computer Science, Springer, pp. 416–427.

[47] DEMIRCI, H., AND SELÇUK, A. A meet-in-the-middle attack on 8-round AES. In FSE (2008),

K. Nyberg, Ed., vol. 5086 of Lecture Notes in Computer Science, Springer, pp. 116–126.

[48] DEMIRCI, H., TAŞKN, I., ÇOBAN, M., AND BAYSAL, A. Improved meet-in-the-middle at-

tacks on AES. In INDOCRYPT (2009), B. Roy and N. Sendrier, Eds., vol. 5922 of Lecture

Notes in Computer Science, Springer, pp. 144–156.

[49] DERBEZ, P., FOUQUE, P.-A., AND JEAN, J. Improved key recovery attacks on reduced-round

AES in the single-key setting. In EUROCRYPT (2013), T. Johansson and P. Nguyen, Eds.,

vol. 7881 of Lecture Notes in Computer Science, Springer, pp. 371–387.

[50] DIFFIE, W., AND HELLMAN, M. Exhaustive cryptanalysis of the NBS Data Encryption Stan-

dard. Computer 10, 6 (1977), 74–84.

[51] DINUR, I., DUNKELMAN, O., AND SHAMIR, A. Improved attacks on full GOST. In FSE

(2012), A. Canteaut, Ed., vol. 7549 of Lecture Notes in Computer Science, Springer, pp. 9–28.

[52] DUNKELMAN, O., KELLER, N., AND SHAMIR, A. Improved single-key attacks on 8-round

AES-192 and AES-256. In ASIACRYPT (2010), M. Abe, Ed., vol. 6477 of Lecture Notes in

Computer Science, Springer, pp. 158–176.

[53] FILHO, D., BARRETO, P., AND RIJMEN, V. The Maelstrom-0 hash function. In VI Brazilian

Symposium on Information and Computer Systems Security (2006).

[54] FILIOL, E. Malicious cryptography techniques for unreversable (malicious or not) binaries.

CoRR abs/1009.4000 (2010).

[55] FISCHER, W., AND REUTER, C. Differential fault analysis on Grøstl. In IEEE workshop on

Fault Diagnosis and Tolerance in Cryptography (2012), pp. 44–54.

[56] GAURAVARAM, P., AND KELSEY, J. Cryptanalysis of a class of cryptographic hash functions.

Cryptology ePrint Archive, Report 2007/277, 2007. http://eprint.iacr.org/.

132

[57] GAURAVARAM, P., AND KELSEY, J. Linear-XOR and additive checksums dont protect

Damgård-Merkle hashes from generic attacks. In CT-RSA (2008), T. Malkin, Ed., vol. 4964

of Lecture Notes in Computer Science, Springer, pp. 36–51.

[58] GAURAVARAM, P., AND KELSEY, J. Linear-XOR and additive checksums dont protect

damgård-merkle hashes from generic attacks. In Topics in Cryptology CT-RSA 2008 (2008),

T. Malkin, Ed., vol. 4964 of Lecture Notes in Computer Science, Springer, pp. 36–51.

[59] GAURAVARAM, P., KELSEY, J., KNUDSEN, L. R., AND THOMSEN, S. On hash functions

using checksums. International Journal of Information Security 9, 2 (2010), 137–151.

[60] GAURAVARAM, P., KNUDSEN, L. R., MATUSIEWICZ, K., MENDEL, F., RECHBERGER, C.,

SCHLÄFFER, M., AND THOMSEN, S. S. Grøstl a SHA-3 candidate. NIST submission (2008).

[61] GAURAVARAM, P., MILLAN, W., DAWSON, E., AND VISWANATHAN, K. Constructing secure

hash functions by enhancing Merkle-Damgård construction. In ACISP (2006), L. Batten and

R. Safavi-Naini, Eds., vol. 4058 of Lecture Notes in Computer Science, Springer, pp. 407–420.

[62] GILBERT, H. A simplified representation of AES. In ASIACRYPT (2014), P. Sarkar and

T. Iwata, Eds., vol. 8873 of Lecture Notes in Computer Science, Springe, pp. 200–222.

[63] GILBERT, H., AND PEYRIN, T. Super-Sbox Cryptanalysis: Improved attacks for AES-like per-

mutations. In FSE (2010), S. Hong and T. Iwata, Eds., vol. 6147 of Lecture Notes in Computer

Science, Springer, pp. 365–383.

[64] GIRAUD, C. DFA on AES. In AES (2005), H. Dobbertin, V. Rijmen, and A. Sowa, Eds.,

vol. 3373 of Lecture Notes in Computer Science, Springer, pp. 27–41.

[65] GUO, J., JEAN, J., LEURENT, G., PEYRIN, T., AND WANG, L. The usage of counter revisited:

Second-preimage attack on new Russian standardized hash function. In SAC (2014), A. Joux

and A. Youssef, Eds., vol. 8781 of Lecture Notes in Computer Science, Springer, pp. 195–211.

[66] GUO, J., LING, S., RECHBERGER, C., AND WANG, H. Advanced meet-in-the-middle preim-

age attacks: First results on full Tiger, and improved results onMD4 and SHA-2. In ASIACRYPT

(2010), M. Abe, Ed., vol. 6477 of Lecture Notes in Computer Science, Springer, pp. 56–75.

133

[67] HALEVI, S., AND MICALI, S. Practical and provably-secure commitment schemes from

collision-free hashing. In CRYPTO (1996), N. Koblitz, Ed., vol. 1109, pp. 201–215.

[68] HAO, Y., BAI, D., AND LI, L. A meet-in-the-middle attack on round-reduced mCrypton

using the differential enumeration technique. In Network and System Security (2014), M. Au,

B. Carminati, and C.-C. Kuo, Eds., vol. 8792 of Lecture Notes in Computer Science, Springer,

pp. 166–183.

[69] HARBERT, T. New king of security algorithms crowned. IEEE Spectrum 49 (2012), 12–13.

[70] HEMME, L., AND HOFFMANN, L. Differential fault analysis on the SHA1 compression func-

tion. In IEEE workshop on Fault Diagnosis and Tolerance in Cryptography (2011), pp. 54–62.

[71] HONG, D., KOO, B., AND SASAKI, Y. Improved preimage attack for 68-step HAS-160. In

ICISC (2009), D. Lee and S. Hong, Eds., vol. 5984 of Lecture Notes in Computer Science,

Springer, pp. 332–348.

[72] IETF. GOST R 34.11-2012: Hash Function, 2013. (RFC6896).

[73] INDESTEEGE, S. The Lane hash function. Submission to NIST (2008). Avalabile at:

http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf.

[74] ISOBE, T. A single-key attack on the full GOST block cipher. In FSE (2011), A. Joux, Ed.,

vol. 6733 of Lecture Notes in Computer Science, Springer, pp. 290–305.

[75] JEAN, J., AND FOUQUE, P.-A. Practical near-collisions and collisions on round-reduced

ECHO-256 compression function. In FSE (2011), A. Joux, Ed., vol. 6733 of Lecture Notes

in Computer Science, Springer, pp. 107–127.

[76] JOUX, A. Multicollisions in iterated hash functions. application to cascaded constructions. In

CRYPTO (2004), M. Franklin, Ed., vol. 3152 of Lecture Notes in Computer Science, Springer,

pp. 306–316.

[77] KALISKI, B. Pkcs# 1: Rsa encryption version 1.5.

134

[78] KANG, J., JEONG, K., SUNG, J., AND HONG, S. Differential fault analysis on HAS-160

compression function. In Computer Science and its Applications (2012), S.-S. Yeo, Y. Pan,

Y. S. Lee, and H. B. Chang, Eds., vol. 203 of Lecture Notes in Electrical Engineering, Springer,

pp. 97–105.

[79] KAZYMYROV, O., AND KAZYMYROVA, V. Algebraic aspects of the russian hash

standard GOST R 34.11-2012. In CTCrypt (2013), pp. 160–176. Available at:

http://eprint.iacr.org/2013/556.

[80] KECCAK TEAM. “Strengths of Keccak - Design and security”. http://keccak.noekeon.

org/. Last Accessed: 2014-12-2.

[81] KERCKHOFFS, A. La cryptographie militaire. Journal des sciences militaires IX (January

1883), 5–83.

[82] KERRY, C. F. Digital Signature Standard (DSS).

[83] KIM, C., AND QUISQUATER, J.-J. New differential fault analysis on AES key schedule: Two

faults are enough. In Smart Card Research and Advanced Applications (2008), G. Grimaud and

F.-X. Standaert, Eds., vol. 5189 of Lecture Notes in Computer Science, Springer, pp. 48–60.

[84] KIRCANSKI, A., ALTAWY, R., AND YOUSSEF, A. M. A heuristic for finding compatible

differential paths with application to HAS-160. In ASIACRYPT (2013), K. Sako and P. Sarkar,

Eds., vol. 8270 of Lecture Notes in Computer Science, Springer, pp. 464–483.

[85] KIRCANSKI, A., AND YOUSSEF, A. M. Differential Fault Analysis of Rabbit. In Selected

Areas in Cryptography (2009), M. J. J. Jr., V. Rijmen, and R. Safavi-Naini, Eds., vol. 5867 of

Lecture Notes in Computer Science, Springer, pp. 197–214.

[86] KNUDSEN, L. Non-random properties of reduced-round Whirlpool. NESSIE public report,

2002. NES/DOC/UIB/WP5/017/1.

[87] KNUDSEN, L., AND RIJMEN, V. Known-key distinguishers for some block ciphers. In ASI-

ACRYPT (2007), K. Kurosawa, Ed., vol. 4833 of Lecture Notes in Computer Science, Springer,

pp. 315–324.

135

[88] KNUDSEN, L., AND WAGNER, D. Integral cryptanalysis. In FSE (2002), J. Daemen and

V. Rijmen, Eds., vol. 2365 of Lecture Notes in Computer Science, Springer, pp. 112–127.

[89] KNUDSEN, L. R. Truncated and higher order differentials. In FSE (1995), B. Preneel, Ed.,

vol. 1008 of Lecture Notes in Computer Science, Springer, pp. 196–211.

[90] KNUDSEN, L. R., AND RIJMEN, V. Known-key distinguishers for some block ciphers. In ASI-

ACRYPT (2007), K. Kurosawa, Ed., vol. 4833 of Lecture Notes in Computer Science, Springer,

pp. 315–324.

[91] KNUDSEN, L. R., ROBSHAW, M. J. B., AND WAGNER, D. Truncated differentials and skip-

jack. In CRYPTO (1999), M. J. Wiener, Ed., vol. 1666 of Lecture Notes in Computer Science,

Springer, pp. 165–180.

[92] KÖLBL, S., AND MENDEL, F. Practical attacks on the Maelstrom-0 compression function. In

ACNS (2011), J. Lopez and G. Tsudik, Eds., vol. 6715 of Lecture Notes in Computer Science,

Springer, pp. 449–461.

[93] KÖLBL, S., AND RECHBERGER, C. Practical attacks on AES-like cryptographic hash func-

tions. In Latincrypt (2014), D. F. Aranha and A. Menezes, Eds., vol. 8895 of Lecture Notes in

Computer Science, Springer, pp. 259–273.

[94] LAI, X., AND MASSEY, J. Hash function based on block ciphers. In EUROCRYPT (1992),

R. A. Rueppel, Ed., vol. 658 of Lecture Notes in Computer Science, Springer, pp. 55–70.

[95] LAMBERGER, M., MENDEL, F., RECHBERGER, C., RIJMEN, V., AND SCHLÄFFER, M. Re-

bound distinguishers: Results on the full Whirlpool compression function. In ASIACRYPT

(2009), M. Matsui, Ed., vol. 5912 of Lecture Notes in Computer Science, Springer, pp. 126–

143.

[96] LI, L., JIA, K., AND WANG, X. Improved single-key attacks on 9-round AES-192/256. In

FSE (2014), C. Cid and C. Rechberger, Eds., vol. 8540 of Lecture Notes in Computer Science,

Springer.

136

[97] LI, R., LI, C., AND GONG, C. Differential fault analysis on SHACAL-1. In IEEE workshop

on Fault Diagnosis and Tolerance in Cryptography (2009), pp. 120–126.

[98] LUCKS, S. The saturation attack a bait for Twofish. In FSE (2002), M. Matsui, Ed., vol. 2355

of Lecture Notes in Computer Science, Springer, pp. 1–15.

[99] MA, B., LI, B., HAO, R., AND LI, X. Improved cryptanalysis on reduced-round GOST and

Whirlpool hash function. In Applied Cryptography and Network Security (2014), I. Boureanu,

P. Owesarski, and S. Vaudenay, Eds., vol. 8479 of Lecture Notes in Computer Science, Springer,

pp. 289–307.

[100] MATSUI, M. Linear cryptoanalysis method for DES cipher. In EUROCRYPT (1993), T. Helle-

seth, Ed., vol. 765 of Lecture Notes in Computer Science, Springer, pp. 386–397.

[101] MATUSIEWICZ, K., NAYA-PLASENCIA, M., NIKOLI, I., SASAKI, Y., AND SCHLÄFFER, M.

Rebound attack on the full lane compression function. In ASIACRYPT (2009), M. Matsui, Ed.,

vol. 5912 of Lecture Notes in Computer Science, Springer, pp. 106–125.

[102] MATYUKHIN, D., RUDSKOY, V., AND SHISHKIN, V. A perspective hashing algorithm. In

RusCrypto (2010). (In Russian).

[103] MATYUKHIN, D., AND SHISHKIN, V. Some methods of hash functions analysis with applica-

tion to the GOST P 34.11-94 algorithm. Mat. Vopr. Kriptogr 3 (2012), 71–89. (In Russian).

[104] MENDEL, F., PEYRIN, T., RECHBERGER, C., AND SCHLÄFFER, M. Improved cryptanalysis

of the reduced Grøstl compression function, ECHO permutation and AES block cipher. In

Selected Areas in Cryptography (2009), M. J. Jacobson Jr, V. Rijmen, and R. Safavi-Naini,

Eds., vol. 5867 of Lecture Notes in Computer Science, Springer, pp. 16–35.

[105] MENDEL, F., PRAMSTALLER, N., AND RECHBERGER, C. A (second) preimage attack on the

GOST hash function. In FSE (2008), K. Nyberg, Ed., vol. 5086 of Lecture Notes in Computer

Science, Springer, pp. 224–234.

137

[106] MENDEL, F., PRAMSTALLER, N., RECHBERGER, C., KONTAK, M., AND SZMIDT, J. Crypt-

analysis of the GOST hash function. In CRYPTO (2008), D. Wagner, Ed., vol. 5157 of Lecture

Notes in Computer Science, Springer, pp. 162–178.

[107] MENDEL, F., RECHBERGER, C., SCHLFFER, M., AND THOMSEN, S. S. The rebound attack:

Cryptanalysis of reduced Whirlpool and Grøstl. In FSE (2009), O. Dunkelman, Ed., vol. 5665

of Lecture Notes in Computer Science, Springer, pp. 260–276.

[108] MENDEL, F., RECHBERGER, C., SCHLFFER, M., AND THOMSEN, S. S. Rebound attacks

on the reduced Grøstl hash function. In CT-RSA (2010), J. Pieprzyk, Ed., vol. 5985 of Lecture

Notes in Computer Science, Springer, pp. 350–365.

[109] MENDEL, F., RIJMEN, V., AND SCHLFFER, M. Collision attack on 5 rounds of Grøstl. In

FSE (2014), C. Cid and C. Rechberger, Eds., vol. 8540 of Lecture Notes in Computer Science,

Springer, pp. 509–521.

[110] MENEZES, A. J., VAN OORSCHOT, P. C., AND VANSTONE, S. A. Handbook of applied

cryptography. CRC press, 2010.

[111] MERKLE, R. C. One Way Hash Functions and DES. In CRYPTO (1990), G. Brassard, Ed.,

vol. 435 of Lecture Notes in Computer Science, Springer, pp. 428–446.

[112] MINIER, M., PHAN, R., AND POUSSE, B. Integral distinguishers of some SHA-3 candidates.

In CANS (2010), S.-H. Heng, R. N. Wright, and B.-M. Goi, Eds., vol. 6467 of Lecture Notes in

Computer Science, Springer, pp. 106–123.

[113] MINIER, M., PHAN, R. C., AND POUSSE, B. Distinguishers for ciphers and known key attack

against Rijndael with large blocks. In AFRICACRYPT (2009), B. Preneel, Ed., vol. 5580 of

Lecture Notes in Computer Science, Springer, pp. 60–76.

[114] MINIER, M., AND THOMAS, G. Integral distinguisher on Grøstl-512 v3. In Indocrypt (2013),

To appear in Springer LNCS.

138

[115] MOUHA, N., CANNIÈRE, C. D., INDESTEEGE, S., AND PRENEEL, B. Finding collisions for

a 45-step simplified HAS-V. In WISA (2009), H. Y. Youm and M. Yung, Eds., vol. 5932 of

Lecture Notes in Computer Science, Springer, pp. 206–225.

[116] NATIONAL BUREAN OF STANDARDS. Data Encryption Standard, U.S. Department of Com-

merce, Federal Information Processing Standards 46 (1977).

[117] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Advanced Encryption Standard

(AES) (FIPS PUB 197), 2001.

[118] NIST. Announcing request for candidate algorithm nominations for a new cryptographic hash

algorithm (SHA-3) family. In Federal Register (November 2007), vol. 72(212). Available at:

http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

[119] PATARIN, J., AND GOUBIN, L. Trapdoor one-way permutations and multivariate polynomials.

In ICICS (1997), Y. Han, T. Okamoto, and S. Qing, Eds., vol. 1334 of Lecture Notes in Computer

Science, Springer, pp. 356–368.

[120] PATERSON, K. G. Imprimitive permutation groups and trapdoors in iterated block ciphers.

In FSE (1999), L. Knudsen, Ed., vol. 1636 of Lecture Notes in Computer Science, Springer,

pp. 201–214.

[121] PEYRIN, T. Improved differential attacks for ECHO and Grøstl. In CRYPTO (2010), T. Rabin,

Ed., vol. 6223 of Lecture Notes in Computer Science, Springer, pp. 370–392.

[122] POSCHMANN, A., LING, S., AND WANG, H. 256 bit standardized crypto for 650 GE GOST

revisited. In CHES (2010), S. Mangard and F.-X. Standaert, Eds., vol. 6225 of Lecture Notes in

Computer Science, Springer, pp. 219–233.

[123] PRENEEL, B., GOVAERTS, R., AND VANDEWALLE, J. Hash functions based on block ciphers:

A synthetic approach. In CRYPTO (1993), D. R. Stinson, Ed., vol. 773 of Lecture Notes in

Computer Science, Springer, pp. 368–378.

[124] PRENEEL, B., AND VAN OORSCHOT, P. C. On the security of iterated message authentication

codes. IEEE Transactions on Information Theory 45, 1 (1999), 188–199.

139

[125] RESCORLA, E. Diffie-Hellman key agreement method.

[126] RIJMEN, V., AND BARRETO, P. S. L. M. The Whirlpool hashing function. NISSIE submission

(2000).

[127] RIJMEN, V., AND PRENEEL, B. A family of trapdoor ciphers. In FSE (1997), E. Biham, Ed.,

vol. 1267 of Lecture Notes in Computer Science, Springer, pp. 139–148.

[128] RIJMEN, V., TOZ, D., AND VARC, K. Rebound attack on reduced-round versions of JH. In

FSE (2010), S. Hong and T. Iwata, Eds., vol. 6147 of Lecture Notes in Computer Science,

Springer, pp. 286–303.

[129] RUDSKOY, V. Note on Streebog constants origin, 2015. http://tk26.ru/en/ISO_IEC/

streebog/streebog_constants_eng.pdf.

[130] SASAKI, Y. Meet-in-the-middle preimage attacks on AES hashing modes and an application

to Whirlpool. In FSE (2011), A. Joux, Ed., vol. 6733 of Lecture Notes in Computer Science,

Springer, pp. 378–396.

[131] SASAKI, Y., AND WANG, L. Comprehensive study of integral analysis on 22-round LBlock.

In ICISC2012 (2013), T. Kwon, M.-K. Lee, and D. Kwon, Eds., vol. 7839 of Lecture Notes in

Computer Science, Springer, pp. 156–169.

[132] SASAKI, Y., WANG, L., WU, S., AND WU, W. Investigating fundamental security require-

ments onWhirlpool: Improved preimage and collision attacks. In ASIACRYPT (2012), X. Wang

and K. Sako, Eds., vol. 7658 of Lecture Notes in Computer Science, Springer, pp. 562–579.

[133] SCHNEIER, B. The NSA is breaking most encryption on the internet. https://www.

schneier.com/blog/archives/2013/09/the_nsa_is_brea.html, [On-

line; published September-2013].

[134] SHANNON, C. E. Communication theory of secrecy systems. Bell System Tech. J. 28 (1949),

656–715.

140

[135] SHISHKIN, V., DYGIN, D., LAVRIKOV, I., MARSHALKO, G., RUDSKOY, V., AND TRIFONOV,

D. Low-Weight and Hi-End: Draft Russian Encryption Standard. In CTCrypt (2014), pp. 183–

188.

[136] SKOROBOGATOV, S., AND ANDERSON, R. Optical fault induction attacks. In CHES (2003),

B. Kaliski, e. Ko, and C. Paar, Eds., vol. 2523 of Lecture Notes in Computer Science, Springer,

pp. 2–12.

[137] STEVENS, M., LENSTRA, A., AND DE WEGER, B. Chosen-Prefix Collisions for MD5 and

Colliding X.509 Certificates for Different Identities. In EUROCRYP (2007), M. Naor, Ed.,

vol. 4515 of Lecture Notes in Computer Science, Springer, pp. 1–22.

[138] TC26. Provision on the open research competition on hash function GOST R 34.11-2012,

2013. http://www.tc26.ru/en/research/polozhenie/.

[139] TUNSTALL, M., MUKHOPADHYAY, D., AND ALI, S. Differential fault analysis of the Ad-

vanced Encryption Standard using a single fault. In Information Security Theory and Practice

(2011), C. Ardagna and J. Zhou, Eds., vol. 6633 of Lecture Notes in Computer Science, Springer,

pp. 224–233.

[140] WAGNER, D. The boomerang attack. In Fast Software Encryption (1999), L. Knudsen, Ed.,

vol. 1636 of Lecture Notes in Computer Science, Springer, pp. 156–170.

[141] WAGNER, D. A generalized birthday problem. In CRYPTO (2002), M. Yung, Ed., vol. 2442 of

Lecture Notes in Computer Science, Springer, pp. 288–304.

[142] WANG, G. L. Collision attack on the full extended MD4 and pseudo-preimage attack on

RIPEMD. Journal of Computer Science and Technology 28 (2013), 129–143.

[143] WANG, X., YIN, Y. L., AND YU, H. Finding collisions in the full SHA-1. In CRYPTO (2005),

V. Shoup, Ed., vol. 3621 of Lecture Notes in Computer Science, Springer, pp. 17–36.

[144] WANG, X., AND YU, H. How to breakMD5 and other hash functions. In EUROCRYPT (2005),

R. Cramer, Ed., vol. 3494 of Lecture Notes in Computer Science, Springer, pp. 19–35.

141

[145] WANG, Z., YU, H., AND WANG, X. Cryptanalysis of GOST R hash function. Information

Processing Letters 114, 12 (2014), 655–662.

[146] WAYNER, P. Digital Cash (2nd Ed.): Commerce on the Net. Academic Press Professional, Inc.,

1997.

[147] WIKIPEDIA. Bullrun (decryption program)—Wikipedia, the free encyclopedia, 2014. [Online;

accessed 22-October-2014].

[148] WIKIPEDIA. Dual EC DRBG — Wikipedia, the free encyclopedia, 2014. [Online; accessed

22-October-2014].

[149] WU, H. The hash function JH, 2011. Avalabile

at:http://www3.ntu.edu.sg/home/wuhj/research/jh/jh-round3.pdf.

[150] WU, S., FENG, D., WU, W., GUO, J., DONG, L., AND ZOU, J. (Pseudo) preimage attack on

round-reduced Grøstl hash function and others. In FSE (2012), A. Canteaut, Ed., vol. 7549 of

Lecture Notes in Computer Science, Springer, pp. 127–145.

[151] YOUNG, A., AND YUNG, M. Malicious cryptography: Exposing cryptovirology. John Wiley

& Sons, 2004.

[152] ZOU, J., WU, W., AND WU, S. Cryptanalysis of the round-reduced GOST hash function. In

Information Security and Cryptology (2014), D. Lin, S. Xu, and M. Yung, Eds., Lecture Notes

in Computer Science, Springer, pp. 309–322.

142

	Altawy_PhD_F2016
	signaturepagephd
	Altawy_PhD_F2016

