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Abstract

In the currently dominant cloud computing paradigm, applications are being served in data

centers (DCs), which are connected to high capacity optical networks. For bandwidth and

consequently cost efficiency reasons, in both DC and optical network domains, virtualization

of the physical hardware is exploited. In a DC, it means that multiple so-called virtual

machines (VMs) are being hosted on the same physical server. Similarly, the network is

partitioned into separate virtual networks, thus providing isolation between distinct virtual

network operators (VNOs). Thus, the problem of virtual network mapping arises: how to

decide which physical resources to allocate for a particular virtual network? In this thesis,

we study that problem in the context of cloud computing with multiple DC sites. This

introduces additional flexibility, due to the anycast routing principle: we have the freedom

to decide at what particular DC location to serve a particular application. We can exploit

this choice to minimize the required resources when solving the virtual network mapping

problem.

This thesis solves a resilient virtual network mapping problem that optimally decides

on the mapping of both network and data center resources, considering time-varying traffic

conditions and protecting against possible failures of both network and DC resources. We

consider the so-called VNO resilience scheme: rerouting under failure conditions is provided

in the virtual network layer. To minimize physical resource capacity requirements, we allow

reuse of both network and DC resources: we can reuse the same resources for the rerouting

under failure scenarios that are assumed not to occur simultaneously. Since we also pro-

tect against DC failures, we allocate backup DC resources, and account for synchronization

between primary and backup DCs. To deal with the time variations in the volume and ge-

ographical pattern of the application traffic, we investigate the potential benefits (in terms
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of overall bandwidth requirements) of reconfiguring the virtual network mapping from one

time period to the next. We provide models with good scalability, and investigate different

scenarios to check whether it is worth to change routing for service requirement between time

periods. The results come up with our experiments show that the benefits for rerouting is

very limited.

Keywords: Cloud Computing, Optical Networks, Virtualization, Anycast, VNO resilience
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Chapter 1

Introduction

This chapter begins by laying out the general background of the thesis in Section 1.1 and

the introduction of the research project, called the Resilient Virtual Networking Mapping

(RVNM) problem, in Section 1.2. Finally, key contributions and organization of this thesis

are described in Section 1.3 and 1.4, respectively.

1.1 General Background

In the past few decades, there is a sharp increase in Internet usage. According to Internet

World Stats [4], today’s Internet has approximately 3 billion users. National Science Foun-

dation gives a prediction that the number of Internet users will increase to nearly 5 billion

by 2020 [1].

The network bandwidth increases rapidly to support the high bandwidth demand of the

entertaining applications, and the fact is relatively well-known, due to the improvement in

the capacity and affordability of processors, memory, disks, etc.

In order to satisfy the increasing global bandwidth requirement, optical networks can

definitely be considered due to the advantages of transmission speed, expansion capacity and

stability. Optical fiber has already been deployed in the backbone and in the metropolitan

networks. The current trend is to let it penetrate into the access network domain and achieve

FTTH (fiber to the home) ultimately.

However, the multi-provider nature of the Internet and the consensus requirements bring
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a big challenge for architecture alterations such as incremental updates and new network

technologies deployment. So network virtualization has been considered as a key attribute

for the future network.

The basic idea behind network virtualization is to allow multiple coexisting heterogeneous

network architectures by splitting the roles of the traditional Internet service providers into

two independent entities. One is Physical Infrastructure Providers (PIPs), who create and

manage the physical infrastructure. Another one is Virtual Network Operators (VNOs),

who create virtual networks (VNets) by aggregating resources from multiple PIPs and over

end-to-end services [13].

Moreover, we also need to introduce the concept of cloud computing. Cloud computing is

a computing term or metaphor that evolved in the late 2000s, based on distributed computing,

parallel computing and grid computing which will be introduced in next chapter. It is an

Internet-based super-computing model that has tens of computers and servers connected

with each other in remote data centers (DCs). The basic principle of cloud computing is

to distribute computing on a large number of distributed computers rather than the local

computer or a single remote server, so that users can get the required resources (hardware,

platform, software) through the network. The network providing resources is called ”Cloud”.

From the users’ point of view, the resources in a ”Cloud” is ”infinitely” expandable, and can

be readily available, on-demand delivered [39].

With the advent of the era of big data, cloud storage, one extension of cloud computing

also appears in public view. It is a kind of online storage mode, that is, the data stored by

a third party which is usually hosted in multiple virtual servers rather than on a dedicated

server. Data files can be stored in different storage nodes in a cloud storage system, and those

data files can be accessed without geographical restrictions [33]. When the system upgrade

or a failure happens, user’s requirement could be satisfied by guiding the I/O instructions

to another storage server who has same data files, and after b the original storage server

recovers, the file will then migrate back. This is one of the most important context of our

model. A high level architecture of cloud storage is illustrated in Fig. 1.1.

Our RVNM project focuses on IP-over-WDM networks, and our main goal is to optically

solve a mapping problem that minimizes the bandwidth resources considering time-varying
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shows the major causes of failure and impact collected and analyzed based on CENIC (the

Corporation for Education Network Initiatives in California) network and the log information

from the network extending from late 2004 to the end of 2009 [57]. As we mainly focus on

VNets, the failure causes can be summarized as failures on links and data centers. In this

thesis, we develop models to protect against single failure (assuming there is only one failure

happen on the network at one time) by providing a working path, a backup path as well

as a working (primary) data center and a backup data center for each service request. In

cloud context, users do not care very much about the exact location of data centers, and

service providers can exploit anycast routing: to serve a new request, they basically have

the freedom to pick any of the available data centers. As a result, this anycast principle

can be exploited for resiliency purposes: if either the server infrastructure (in the DC), or

the (optical) network is affected by a failure, the data delivery on a working path will be

switched to a backup path which refers to a different DC location. In order to eliminate the

disruption of data delivery when switching paths, a synchronization path to synchronize the

data between working and backup paths is also generated for each request.

As we mentioned at beginning, the network bandwidth increases rapidly and there is no

doubt it will keep increasing in the future. Therefore, how to determine routing for service

requests in order to lower bandwidth cost is worth to be studied. Since we are taking care

of single-failure protection, a backup path for a request will only be used when there is a

failure happens on the working path of this request. That means, only the backup paths for

requests which share same link/node on their working paths has the possibility to be used

at same time. Therefore, it is possible to share backup paths for those requests which do

not share link/node for working paths. While shared protection schemes allow significant

bandwidth saving, additional saving can be achieved by re-provisioning (rerouting) paths if

the traffic is highly time-varying.

This topic has been investigated in the past, but not thoroughly. To our knowledge, we

are the first who considered resilient multi-period anycast traffic routing. This motivated us

to formulate the optimization problem to find the best routing going from one period to the

next.
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1.3 Thesis Contributions

In this thesis, we solved a resilient virtual network mapping problem that optimally decides

on the mapping of both network and data center resources, considering time-varying traffic

conditions and protecting against possible failures of both network and DC resources. We

proposed a global optimization model, considering optimization of the routing over a set of

multiple consecutive time periods.

Besides, we studied the interest of re-provisioning the working and the backup paths in

the context of resilient anycast routing traffic in cloud computing, assuming time-varying

traffic, where the path provisioning can be updated periodically. We consider a multi-time

periods approach, where the traffic requests change from one time period to the next, and

investigate the usefulness of reconfiguration the traffic routes when a new time slot starts.

Such reconfiguration may involve changing working and/or backup paths for (some of) the

traffic flows. Since changing the working path of ongoing traffic might be too disruptive (or

unacceptable for some time-critical, high quality of services(QoS)), we also investigate the

potential benefit (in terms of overall reduced link bandwidth occupancy) of only modifying

the backup paths.

In our pervious work, we provided a single-time period model that considers traffic vari-

ation between multiple time periods. The model is designed for solving the problem for a

single time period at one step: given the virtual network mapping for time t, we determine

the (possibly changed) mapping for t + 1. In this thesis, the models for truly multi-period

traffic is developed, and they could determine the routing for all time periods at once. We

propose several column generation models, but only implemented the most scalable one with

parallel computing technology.

Publications:

[1] Bui, Minh, Ting Wang, Brigitte Jaumard, Deep Medhi, and Chris Develder. ”Time-

varying resilient virtual network mapping for multi-location cloud data centers.” In IEEE

16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1-8.

Submitted:

[2] Ting Wang, Brigitte Jaumard, and Chris Develder. ”A Scalable Model for Multi-period
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Virtual Network Mapping for Resilient Multi-Site Data Centers.” In IEEE International

Conference on Advanced Networks and Telecommunications Systems (ANTS), 2015.

To be shortly submitted:

[3] Ting Wang, Brigitte Jaumard, and Chris Develder. ”A Scalable Model for Multi-

period Virtual Network Mapping for Resilient Multi-Site Data Centers.” Journal of Optical

Communications and Networking.

1.4 Organization of Thesis

The thesis is organized as follows. In Chapter 2, it begins by laying out the technical back-

ground, then we present a literature review on the previously published studies related to this

resilient virtual network mapping (RVNM) problem. In Chapter 3, we give a statement of

our RVNM problem, explain our mapping scheme in details and highlight the three different

rerouting scenarios we consider. In Chapter 4, we present four different mathematical models

for finding the routes that minimize the bandwidth requirements to serve time-varying cloud

traffic, and analysis the advantages and drawbacks of each model. In Chapter 5, we introduce

the solution process of RVNM problem by describing the implemented parallel strategy. The

numerical results is given in Chapter 6. We summarize our conclusions and future work in

Chapter 7.
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Chapter 2

Background and Literature Review

In this chapter, an overview of technical background is provided in Section 2.1. Then, we will

present a literature review regarding to rerouting in networks and resilient virtual topologies

mappiong in Section 2.2.

2.1 Background

In this section we will review the basic technique concepts of this thesis including the grids

and clouds, anycast routing, column generation and parallel computing.

2.1.1 Grids vs. Clouds

The term “Grid ”comes from the word“power grid”which is familiar by public. A grid is

indeed similar to a power grid in many aspects. When people wash their clothes by using a

washing machine, the only thing they care about is that when the clothes can be cleaned,

but not where the power comes from. Similar to grids, users do not need to consider about

where the resources (computational, storage and networking) are, and they only take care

of what kind of services they are expecting. Grids can be simply understand as a from

of distributed system that interconnect the whole network as a “super virtual computer”,

in which computing resources are not administered centrally, open standards are used, and

notrivial quality of service is achieved [24].
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• Collective: Coordinating multiple resources. Collective layer collect the resources sub-

mitted by resource layer which could be invoked by applications in order to achieve

resource sharing.

• Applications. Applications access to the required services by invoking the application

programming interface (API) defined by each layer. The resources of the grid was used

by these services to complete tasks.

This five-layered architecture h focused primarily on qualitative description rather than

specific defined protocol.

According to Li et al. [34] and Travostino et al. [56], we summarize four advantages of

grids which are described as follows:

• Resource sharing . Grids can provide resource sharing and eliminate information silos,in

order to achieve the interconnection of applications. Different from the traditional

computer networks, grid can provide communications on the application layer.

• Collaborative working. Working collaborative is the second feature of grids. A lot of

grid nodes can work together on a single project.

• Decentralized management and control. Grids are using standard, open, general-

purpose protocols and interfaces, so that resource provisioning, utilization and recon-

figuration can be allowed without any other authorities include the centralized man-

agement.

• Dynamic integration and scalability. Grids enable services and resources to be inte-

grated and continually changed dynamically.

Nowadays, all kinds of grids are being applied in an expanding scope of applications and

services, especially in Internet and web technology. A grid netwok is a computer network

that includes a number of devices such as supercomputers, storage elements and file systems

connected in a grid topology. In grid networks, distributed resources, computing or storage
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elements as well as scientific instruments are incorporated with a communications capability

to support computing-intensive and data-intensive applications [52].

Inspired by the success of the grid paradigm in scientific circles, the cloud computing ideas

arose in the 2000s, building on the seminal idea of ”computation provided as a public utility”

(as suggested back in 1961 by John McCarthy) [18]. Clouds inherit a lot of advantages of

grids, and have some differences. The relationship of clouds, grids and some other technologies

are shown in Fig. 2.2. I gave a simple introduction of cloud computing in Section 1.1. Here,

we will talk about some of the differences between grids and clouds.

• Business Model. Cloud computing refers to the on-demand delivery of IT resources

and applications via the Internet with pay-as-you-go pricing. Whereases, the business

model for grids (at least that found in academia or government labs) is project-oriented

in which the users or community only have certain number of service units (i.e., CPU

hours) they can spend [26].

• Infrastructure. Cloud applications typically run in large data centers, as opposed to

high-performance computing (HPC) infrastructure for many grid applications.

• Monitoring. Monitoring in clouds is quite challenging whereas grids apply a different

trust model where users, via identity delegation, can access and browse resources at

various sites that contain resources. In grids, these resources are typically not that much

abstracted or virtualized compared to Clouds. Because the user can not deploy their

own monitoring infrastructure and the returned information may not provide enough

details to figure out the resource status.

• Virtualization. It is a key difference between clouds and grids. It enables migration to

other servers, both for performance and resilience against failures.

Cloud computing is one of the most promising technology developed from grid computing

which has already been provided by some strong industries, such as Google (Google App

Engine, a cloud platform supported by Google) and Amazon (Amazon Web Services offer

cloud computing services). Clouds are likely to provide everything as a service which is

classified into three levels. “Infrastructure as a Service (IaaS) provisions hardware, software,
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Fig. 2.2: Grids and Clouds Overview (taken from [26])

and equipment (mostly at the unified resource layer, but can also include part of the fabric

layer) to deliver software application environments with a resource usage-based pricing model.

” [26] Infrastructure can scale up and down dynamically based on application resource needs.

Platform as a Service (PaaS) offers a integrated development environment to build, test, and

deploy applications. Generally, developers will need to accept some restrictions on the type of

software they can write in exchange for built-in application scalability. Software as a Service

(SaaS) delivers special-purpose software that is remotely accessible by consumers through

the Internet with a usage-based pricing model. SaaS model can remove the maintenance cost

as well as saving the budget on buying software and hardware.

The main goal of our project is to give an efficient routing and scheduling strategy for

traffic in a context of cloud with the resources optimal principle. However, it’s also adapted

to Grid networks.

2.1.2 Anycast Routing

In an optical grid network and the cloud context, resouces are stored in multiple locations

and users do not care about which location they are getting connected to. Therefore there

are a group of potential destinations, and a certain source-destination pair does not exist

anymore [19]. Moreover, in order to meet the demand of geographically wide-spread users,
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• Reduced use of router and link resources. Standard IP routing will deliver packets over

the shortest path to closest available server.

• Simplified configuration. A client only needs to be configured with a single anycast

address that identifies one of a group of possible servers offering a particular service or

application.

• Network resiliency. If a server in the anycast group goes away, the network will deliver

packets to the next closest anycast server. The service will become more reliable.

• Load balancing. Anycast servers distributed over the network topology will have the

effect of balancing the traffic load from many clients.

There are two anycast schemes, according to Metz [40], one is the network-layer (or IP)

anycast, and another one is the application-layer anycast. The network-layer anycast is solely

based on network topology. If the destination host is selected due to the factors such as the

fewest router hops or lowest cost (there may be different cost between router links), then

we attribute it to network-layer anycast. The metric related to application characteristics

such as response time, capacity and active connections is considered by application-layer

anycast. The external entity that application-layer anycasting depends on could help clients

to determine the best destination host to contact which is can be guaranteed by network-layer

anycast.

We use network-layer anycast as the address method in our RVNM project, however,

because of the inherent benefits listed above and the complications and scalability problems

exhibited by application-layer anycast [32].

2.1.3 Column Generation

In our project, we use CPLEX which is a powerful optimization software package developed

by IBM for linear programming (LP) as our solver tool. Though, there are some other

well-known softwares such as Gurobi, GNU Linear Programming Kit and LP Slove.

Column generation (CG) is an efficient technique for solving large linear programs. The

very basic idea of using column generation to solve linear programs was believed to be first
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proposed by Ford and Fulkerson [27], and the resulting algorithm is what we call Dantzig-

Wolfe decomposition [15]. The idea of CG can be generalized to yield an algorithm for solving

any LP by partitioning the problem into two problems: the master problem (MP) and the

pricing problem (PP) [44]. The MP is the original problem, and usually looks like follows

(which c and a is matrix, b is a given value):

z := min
∑

j∈J

cjλj

subject to
∑

j∈J

ajλj ≤ b,

λj ≤ 0, j ∈ J.

(2.1)

In practice, the |J | is usually huge, and because the memory of computer is limit, it can

not solve such a big model. Therefore, we need to use column generation approach. MP is

generally solved with a reasonably small subset J ′ ∈ J . We call such a problem restricted

master problem (RMP) [37]. The job of PP is looking for a new column that could help RMP

to get a better solution by using the optimal dual variables provided by the RMP. That is,

in the pricing step, we need to find a solution with a negative reduced cost.

Most of linear problems are involved with some integers, then integrated to integer linear

program (ILP) problems or mixed integer linear program (MILP) problems. In these cases,

as shown in Fig. 2.4, we solve the problem in two steps. First, the problem is solved as LP

problem, and it’s called LP relaxation. The second step is to get an ILP solution by using

the results from the LP relaxation. Therefore, the solution we get is not the real optimal

one, but as close as possible to the real optimal one. In other words, the less the gap between

LP and ILP/MILP solution, the better the accuracy is. In order to do this, branch-and-

cut [45] algorithm is used to derive an integer solution from an optimal LP solution, and

brand-and-price [7] algorithm is used to improve the gap between to solutions.

2.1.4 Parallel Computing (MPI, MPJ)

Parallel computing is a form of computation that solve problems by using multiple compu-

tational resources simultaneously. It is an effective method to improve the computing speed
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• Instruction-level parallelism. In a computer program, a stream of instructions can be

carried out at same time. It’s also a measure that how many instruct can be executed

simultaneously.

• Data parallelism. Data parallelism is a form of parallel computing where same calcu-

lation is performed on the same or different sets of data.

• Task parallelism. It’s also called function parallelism or control parallelism. It focuses

on distributing tasks (concretely performed by processes or threads) across different

parallel computing nodes. Just contrasts to data parallelism.

Parallel computing can be classified as parallel-in-time and parallel-in-space. Parallel-in-

time is a kind of pipelining technique. Two or more operations will be executed at same time,

which could improve computing performance greatly. Parallel-in-space refers to computing

carried out by multiple processors, which is connecting two or more processors by network to

let them working on different part of one task. By doing this, some large computing problem

that can not be solved by individual computer can be handled.

Parallel computing science is mainly focus on parallel-in-space. It led to the creation of

two types of parallel machine. According to Flynn’s taxonomy [23] [21], they are Multiple

Instruction, multiple Data stream (MIMD) and Single Instruction, Multiple Data streams

(SIMD). The sequential computers which exploits no parallelism in either the instruction

or data streams is also called Single Instruction, Single Data stream (SISD). SIMD refers

to a computer which exploits multiple data streams against a single instruction stream to

perform operations which may be naturally parallelized, e.g. an array processor or graph-

ics processor unit (GPU). And MIMD refers to the machine that could support multiple

autonomous processors simultaneously carried out different instructions on different data.

MIMD machines can be classified into parallel vector processor (PVP), symmetric multi-

processor (SMP), massively parallel processor (MPP), cluster of workstations (COW) and

distributed shared memory (DSM) processor.

Concurrent programming languages, libraries, APIs, and parallel programming models

have been created for programming parallel computers. These can generally be divided into

classes based on the assumptions they make about the underlying memory architecture–
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shared memory, distributed memory, or shared distributed memory (SDM). Shared memory

programming languages communicate by manipulating shared memory variables. Distributed

memory uses message passing. POSIX Threads which is aPortable Operating System Inter-

face (OPSIX) standard for threads and OpenMP are two of most widely used shared memory

APIs, whereas Message Passing Interface (MPI) is the most widely used message-passing sys-

tem API. One concept used in programming parallel programs is the future concept, where

one part of a program promises to deliver a required datum to another part of a program at

some future time.

2.1.4.1 Message Passing Interface (MPI)

Nowadays, due to the clusters’ scalability, flexibility and acceptable ratio performance/cost,

it has an important presence in High-Performance Computing (HPC). Currently, multi-core

clusters are the most popular option for the deployment of HPC infrastructures. These

systems are usually programmed with native languages using message passing libraries, es-

pecially Message Passing Interface (MPI) [4], which are targeted to distributed memory

systems.

The message–passing is the most widely used parallel programming model as it is portable,

scalable and usually provides good performance. It is the preferred choice for parallel pro-

gramming distributed memory systems such as clusters, which provide higher scalability and

performance than shared memory systems. Regarding native languages, Message Passing

Interface (MPI) is the standard interface for message-passing libraries [38].

Message Passing Interface (MPI) is a standardized and portable message-passing system

designed by a group of researchers from academia and industry to function on a wide variety

of parallel computers. The standard defines the syntax and semantics of a core of library

routines useful to a wide range of users writing portable message passing programs in different

computer programming languages such as Fortran, C, C++ and Java. There are several well-

tested and efficient implementations of MPI, including some that are free or in the public

domain [54]. These fostered the development of a parallel software industry, and encouraged

development of portable and scalable of large-scale parallel applications.

The MPI interface is meant to provide essential virtual topology, synchronization, and
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communication functionality between a set of processes (that have been mapped to nodes/servers/

computer instances) in a language-independent way, with language-specific syntax (bind-

ings), plus a few language-specific features. MPI programs always work with processes, but

programmers commonly refer to the processes as processors. Typically, for maximum perfor-

mance, each CPU (or core in a multi-core machine) will be assigned just a single process. This

assignment happens at runtime through the agent that starts the MPI program, normally

called mpirun or mpiexec.

2.1.4.2 Message Passing in Java (MPJ)

Java has became a leading programming language, especially for distributed programming,

and is an emerging option for High-Performance Computing (HPC). The increasing inter-

est on Java for parallel computing is based on its appealing characteristics: built-in net-

working and multithreading support, object orientation, platform independence, portability,

and security [54]. Currently, the hybrid architecture (shared/distributed memory) of the

multi-core systems demands the use of hybrid programming approaches, such as the use of

MPI+OpenMP, in order to take advantage of the available processing power. An interesting

alternative is the use of Java for parallel programming multi-core systems. In fact, the Java

built-in networking and multithreading support makes this language especially suitable for

this task.

Java can take full advantage of hybrid architectures using intra-process communication

in shared memory and relying on efficient inter-node communication. Moreover, Java can

handle the increasing availability of computing resources thanks to its portability and the use

of scalable communication middleware. Therefore, as scalability is a key factor to confront

new challenges in parallel computing, Java message-passing libraries providing such feature

through the use of efficient nonblocking communications and high-speed networks support.

There have been several implementations of Java message-passing libraries [53]. Most of

them have developed their own MPI-like binding for the Java language. The two main

proposed APIs are the mpiJava API and MPJ API [12], whose main differences lay on

naming conventions of variables and methods.

The mpiJava [5] library consists of a collection of wrapper classes that called a native
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MPI implementation (e.g., MPICH or OpenMPI) through Java Native Interface (JNI). This

wrapper based approach provides efficient communication relying on native libraries, adding

a reduced JNI overhead. However, mpiJava currently only supports some combinations of

JVMs(Java Virtual Machines) and MPI libraries, as wrapping a wide number of functions and

heterogeneous runtime environments entails an important maintaining effort. Additionally,

this native MPI implementation presents instability problems, derived from the native code

wrapping, and it is not thread-safe, being unable to take advantage of multi-core systems

through multithreading. The main mpiJava drawbacks are solved with the use of pure Java

(100% Java) message-passing libraries, that implement the whole messaging system in Java.

However, these implementations are usually less efficient than mpiJava. MPJ Express [6] is

a thread-safe and pure MPJ library that implements the mpiJava API.

We use Java language to implement our mathematical model. Though most people will

choose C or C++ as their programming language when they implement their project related

to HPC (because of the running speed of memory usage of these languages). As an objective

oriented programming language, Java is much more friendly to programmers, and the auto-

matic garbage collection could saves a lot of time and helps to avoid some memory issues to

the junior programmer who are not so familiar with memory management. As a consequence,

MPJ is our best choose to implement a parallel program.

2.2 Literature Review

Optical networks are employed to facilitate reliable and faster communications for data trans-

fer. In the recent years, the improvement of communication systems in distributed computing

and storage-systems has received some attention. A virtualized optical network is a promis-

ing candidate for reliable and cost effective cloud computing environment. The studys about

protection and dimensioning of optical networks applying unicast approach is described in

Section 2.2.1, and some work considered protection on logical/virtual topologies is listed in

Section 2.2.2. In Section 2.2.3, we go through papers that focus on network survivability in

cloud/grid environment.
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2.2.1 Protection and Rerouting with Unicast

In the past years, several heuristics and algorithms have been reported for protection and

rerouting in networks.

Schupke and Prinz [49] approach the design of an optical network in order to minimize the

average loss caused by dual failures of fiber links, while single failures are still fully survived.

High dual failure restorability is their primary aim, capacity is optimized in a second step.

For WDM networks with full wavelength conversion, they formulated a mixed integer linear

programming model for dedicated path protection, shared (backup) path protection, and path

rerouting with and without stub-release. For larger problem instances in path rerouting,they

proposed two heuristics.

They implemented their models with several random networks with 20-26 edges, and

their computational results indicate that the connectivity is of much more importance for

high restorability values than the overall protection capacity. Shared protection has similar

restorability levels as dedicated protection while the capacity is comparable to rerouting.

Rerouting surpasses the protection mechanisms in restorability and comes close to 100%

dual failure survivability. Compared to single failure planning, both shared path protection

and rerouting need significantly more capacity in dual failure planning.

Zhong et al. [60] proposed failure inferencing based fast rerouting (FIFR) approach that

exploits the existence of a forwarding table per linecard, for lookup efficiency in current

routers, to provide fast rerouting similar to Multiprotocol Label Switching (MPLS), while

adhering to the destination-based forwarding paradigm.

In their previous work, they have shown that the old approach can only deal with single

link failures. In this paper, they extend the FIFR approach to ensure loop-free packet delivery

in case of single router failures. Also, thus mitigating the impact of many scenarios of failures.

They demonstrated that the proposed approach not only provides high service availability

but also incurs minimal routing overhead. They have proved that when a node fails, FLFR,

guarantees loop-free forwarding of a packet to its destination if there exists a path to it

without the failed node. They have also shown that by inferring node failures, FLFR can

handle link failures also without any perceptible increase in the path length stretch.
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As for network rerouting against failures, in [43], Nelakuditi et al. proposed a local

rerouting based approach called failure insensitive routing. The proposed approach prepares

for failures using interface-specific forwarding, and upon a failure, suppresses the link state

advertisement and instead triggers local rerouting using a backwarding table. With this

approach, when no more than one link failure notification is suppressed, a packet is guaranteed

to be forwarded along a loop-free path to its destination if such a path exists in the network.

In their paper, they have not only presented a proactive failure insensitive routing ap-

proach as an alternative to the reactive approach of the existing link state routing protocols

such as OSPF (Open Shortest Path First)/ISIS (Intermediate System-to-Intermediate Sys-

tem) for failure resiliency. Also they described how FIR (failure insensitive routing) approach

prepares for failures by computing interface-specific forwarding and backwarding tables, and

proved that it ensures reachability of packets to their destinations through local rerouting

while suppressing transient single link failures. They have developed a formal model to

analyze the routing stability and network availability under both proactive and reactive ap-

proaches,and validated it through simulations. Moreover, they have shown that FIR provides

better stability and availability than OSPF across various failure frequencies, convergence de-

lays, and network sizes. They experimented their model with topologies of different size. The

number of nodes in these topologies is up to 200, and the average node degrees varies from

4 to 6. The results indicate that the improvement due to FIR is markedly better when link

failures are frequent and transient. There are several issues related to FIR that require fur-

ther investigation. The schemes presented assume a forwarding table per each interface and

are applicable to single area networks of point-to-point links with symmetric weights.

These papers are giving algorithms or heuristics consider unicast as their routing method

which is not suitable in cloud context. Next, we will go through some papers studied the

failure protecting problem on virtual topologies.

2.2.2 Resilient Virtual Topologies Mapping in Optical Networks

A survivable virtual topology problem does not have really stringent requirements, and it

could be simply described as a survivable mapping problem that how to guarantee the con-

nectivity of a topology while a failure occurs.
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The concept “survivable ”was first introduced by Modiano et al. [41] to describe a routing

that can guarantee a network will not be disconnected by a single link failure. In this paper,

a condition similar to max-flow min-cut theorem for survivable routing is given as well as

an ILP model based on the condition. They compared their ILP model with a shortest

path solution on a 14-node, 21-link NSFNET physical topology, and proved that their ILP

model can provide better protection against single failure. The same results were got from

experiments on bi-directional ring logical topologies with only 6 and 10 nodes, and they leave

the search for an efficient solution to the ILP problem as future work.

He et al. [28] propose a sub-reconfiguration technique in order to rearrange the paths for

WDM (Wavelength Division Multiplexing) networks, using pre-computed alternate backup

paths. They report a 10% bandwidth saving with simulation experiments using OPNET.

Their algorithm is not scalable enough, and they only did experiments with up to a hundred

traffic load.

Todimala et al. [55] studied the survivable virtual topology routing under single node/Shared

Risk Link Group (SRLG) failure model and present an improved ILP formulation which is

originally developed by Modiano et al. [42]. However, their formulation is not scalable as

well. As a consequence, a general graph (even a medium-sized one) is too large to be solved.

In these papers, the logical topology is given and could not be changed. A study that

enable a survivable mapping or reduce the minimal survivable mapping cost by adding logical

links into a original topology is presented by Liu et al. [35]. Unlike the original survivable

mapping problem, they allow the given logical topology to be augmented by adding new

logical links to it, and give two reasons to explain the significance of their new survivable

mapping problem. First, if the given logical topology does not have a survivable mapping,

logical links can be added to it to enable a survivable mapping. Second, if the given logical

topology has a survivable mapping, it is possible to reduce the minimal survivable mapping

cost by adding logical links to the given logical topology.

They provided a ILP formulation (ILP1) to solve the survivable mapping problem, and

then a second ILP model (ILP2) to find a solution to this problem by only adding reflective

logical links to achieve the minimal cost. They used a 14-node 21-link NSFNET and a 12-

node 18-link random graph in their simulations, and compare their second model (ILP2)

23



with the ILP model provided in [41]. The results shown that ILP2 obtain an insignificant

improvement, and works better on sparser logical topologies than denser ones. The issue of

the study is that due to the presence of the exponential number of constraints, their proposed

ILP model is not scalable too.

Most of the proposed models or algorithms do not have ability to deal efficiently with

general cases. A model that could handle larger instances was designed by Jaumard et

al. [30]. They proposed a new optimization model, an enhanced cutset model which can

against either single or multiple failures in IP-over-WDM. One additional model based on a

multi-flow formulation is presented in [31]. Both models can solve exactly most benchmark

instances, which were only solved heuristically so far. But these two are mainly focus on

logical topologies’ survivability, and doesn’t pay attention to resourc minimization. Band-

width requirements is considered in [29], which is also the objective of our current RVNM

problem. In this paper, Jaumard et al. provide a full recovery for IP requests, assuming

that all the traffic of a disrupted IP request is sent over a single restoration path. They

investigate in detail the respective bandwidth requirements of the two extreme cases: under

the assumption of single or multiple link/node failures. They experimented their models by

using four different topologies, and the size of these topologies is up to 45 edges and 24 nodes.

The traffic they generated on these topologies is up to 40 units, which is not large enough.

Time-varying traffic was not been considered in these studies.

2.2.3 Protection in Cloud/Grid Environment

The problem of dimensioning optical clouds/grids basically involves finding the amount of

resources (network and servers), to meet a set of given cloud services (i.e., traffic requests).

The main complication herein stems from the anycast principle: in a cloud scenario, we have

a certain flexibility in choosing an appropriate data center among a given set of possible

locations to serve the cloud traffic. Thus, the classical notion of a (source, destination)-based

traffic matrix disappears [20] [9].

Christodoulopoulos et al. [14] presented an initial study which proposes models that reflect

real-world optical grid application traffic characteristics, appropriate for simulation purposes.

They addressed scheduling and routing algorithms in dimensioning problems of optical grids.
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They concluded that: (i) Job inter-arrival times on the observed Grid level can be successfully

modeled by a Poisson process, but on the Grid site level the long range dependency needs to

be taken into account and Homogeneous Poisson (HP), Markov Modulated Poisson Process

(MMPP) or Pareto-Exponential (PE) models need to be used. (ii) For the job execution

times, they achieved the most satisfactory results with a hyper-exponential process.

As for the protection of optical grids, Zang et al. [59] proposed path protection routing

and wavelength assignment ILP formulation for optical grid networks. The objective is to

minimize the number of bandwidth units for a given (fixed) destination for the working path

and anycast principle is used for the backup path. This ILP formulation successfully solves

only instances with up to size of 20 requested connections on Geant2 network topology (17

nodes, 45 directional links), due to scalability problems. The path protection under single-

link-failure survivability has been considered. An experimental result shows that 20% of the

number of wavelengths have been saved as compared to the case, where destination is given

(fixed) in both working and backup paths [50].

Shaikh et al. [51] presented two ILP models focus on resiliency against single link failure

in optical grids. The problem is solved by providing primary and backup baths for a set of

requests, and guarantee that these requests can always be able to reach an operational data

center through either a primary path or backup path. The first model they provided lack of

scalability, and the second one which involve column generation works well with large-scale

optimization. Three 28-node mesh networks with 35, 41 and 59 links respectively are used

in their experiments, and the number of requests is up to 400. They found that for lower

node degrees, the potential bandwidth saving are much higher, and these savings of their

relocation strategy come at the price of increased load on the relocation servers.

Develder et al. [17] addressed the dimensioning problem of optical grids, decided how

much server infrastructure need to provide, at which locations in a given topology need to

deploy. Network and server capacity is also taken into consideration. In this paper, they

presented an elegant and scalable model to jointly dimension network and server capacity for

grid-like scenarios, where demands for IT infrastructure (servers) and connectivity towards

it arise with a freedom in choosing the IT resource location (anycast principle). This model

is using column generation approach, allows providing resilience against both network and
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server site failures by specifying the appropriate shared risk link groups (SRLGs) comprising

possibly jointly failing resources. They evaluated the approach in a case study on a 28-

node 41-link European network. There, relocation in protection against single link failures

achieves network resource savings around 19%, but calls for around 11% extra server capacity.

Providing also protection against server site failures incurs 55% extra servers , and 26% extra

wavelengths.

In their follow-up study [16], they provided a new integer linear programming (ILP)

formulation to solve the resilient grid/cloud dimensioning problem using failure-dependent

backup routes. They considered their previous work as using failure-independent path rerout-

ing approach, thus, for a given demand unit the alternate path (the backup path) under any

failure condition affecting the primary path was always the same. They use same test net-

work as previous, and compared four different cases for failure-dependent backup rerouting.

The number of requests in their experiments up to 350. However, the results shown that in

the anycast routing problem, the benefit of using failure-dependent (FD) rerouting is limited

compared to failure-independent (FID) backup routing.

However, these previous works did not consider any resource to accommodate synchro-

nization between distinct working and backup data center locations (as opposed to this

thesis).

In [58], Vizcano et al. proposed a algorithm to protect optical transport networks with

fixed and flexible grid. This article evaluates the energy and cost efficiency of an innovative

flexible grid orthogonal frequency division multiplexing (OFDM) based network and com-

pares them with those for conventional wavelength division multiplexing (WDM) networks.

Due to the importance of resilience in optical transport networks, their study considers and

evaluates different protection schemes. The results demonstrate the potential energy effi-

ciency improvements that can be achieved by an elastic OFDM-based technology, especially

when a shared protection scheme is adopted, and give an insight into the potential cost

benefits that such a novel technology can offer to telecommunication carriers.

One of the studies about resilience in cloud context is provided by Bui et al. [11]. They

investigated the design of scalable optimization models to perform the virtual network map-

ping resiliently for both link and node failures. In this paper, they focused on the planning
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of the core network as well as allocation of server capacity at data centers. Both optical net-

work and data centers are assumed to be virtualized. Two models basic on different resilience

options were presented, one used VNO-resilience and another one used PIP-resilience. They

evaluated their models on a 24-node US nationwide backbone network with 43 non-directional

links and the number of requests in their test data set is varying from 10 to 40 which is really

small. From the results, thdy didn’t find intuitively difference between VNO-resilience and

PIP-resilience considering bandwidth demand.

Most of studies only considered the primary (working) path and back path when design

routing to against network failures. When a failure happens, switch to backup path stiffly

may cause some quality issues for customs which is hard to accepted today. In our models, we

considered the synchronization between primary and backup path. Therefore, after switch

the delivery could be continued exactly from where it was interrupted. In addition, as our

best knowledge, we are the first one who work on time-varying anycast traffic exploiting

protection rerouting or reconfiguration. Yet, there we assumed an iterative approach: we

formulated the optimization problem to find the best routing going from one period to the

next.
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Chapter 3

Statement of the Project

In this chapter, we provide the description of our project and explain the basic idea about our

mapping scheme. In Section 3.1, we introduce our VNO-resilience model, analyze different

failure situations, explain the time-varying traffic we considered in this thesis and our back-

up sharing strategy. The definition of the variables and parameters used in our model is

described in Section 3.2.

3.1 Outline

In this section, we will introduce our VNO-resilience model, analyze different cases of failures

and give a detailed description of our Resilient Virtual Networking Mapping (RVNM) project.

3.1.1 Virtualization and Resilience in Cloud Computing

In this thesis, we focus on resilient virtual topology mapping: how to decide on what routes

to follow in the physical network to map the virtual connections from source nodes to data

centers and which part of the applications are being served? The cloud services’ requests are

offered by a virtual network operator (VNO), which runs its virtual network (VNet) on top

of the physical network resources that offered by a physical infrastructure provider (PIP).

The problem we addressed is how to determine a resilient VNet topology that minimizes the

bandwidth resources which are requested by the VNO to the PIP in time-varying traffic. We

assume a VNO-resilience scheme, i.e., rerouting in the virtual network under the VNO control
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(see Section 3.1.2, or, e.g., [10]). We design the VNet such that requests can survive through

single failures, which can affect either the physical network or data center infrastructure.

3.1.2 VNO-resilience

VNO

PIP

VS d
W

d
B

πS

πB

πW

Fig. 3.1: The VNO-resilience Scheme.

The VNO-resilience model we adopt is illustrated in Fig. 3.1: it provides 1:1 protection

routing in the VNet for network failures, where the working and protection paths of a service

have to be physically link/node disjoint (if only the protection against link failures is re-

quested, then only link disjoint condition needs to be satisfied. Same as node disjoint, if only

the node protection needs to be ensured). The working path (πw) routes the services from

their source node (vs) towards the primary DC (dw), the protection path (πb) towards the

backup DC (db), while πw and πb are disjoint in their physical layer mapping. In addition,

a synchronization path (πs) is established in order to handle migration and failure routing

requirements when a DC failure occurs: services then need to be rerouted from the primary

dw to backup db. Thus, the resulting VNet for the request from source vs comprises three

virtual paths, mapped to the physical πw, πb and πs paths, respectively. Note that both πw

and πb need to carry the overall traffic ( only when πw or dw are affected by a failure, then
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πb need to carry the traffic), but πs possibly only a fraction thereof, since it is used just to

keep the state at the backup location db which synchronized with dw (or vice versa), in order

to allow smooth migration upon dw failure (or recovery).

Further, we assume that there is an automatic switch-back to the original network path

and DC once a fault is repaired, and therefore we allow reusing the same network/DC capacity

to protect against other failures: backup capacity is shared. Under the assumptions that

(A1) the backup DC has a different location for the primary DC, (A2) πw and πb are link

disjoint, (A3) πw and πs are link disjoint, protection is guaranteed against any single link

failure and any single DC failure. We now qualitatively discuss the various failure cases that

we protect against:

(i) Failure of link ` ∈ πw: the request is rerouted to the backup data center db, using the

backup path πb (which is link disjoint from πw, thus ` /∈ πb). If ` ∈ πs ∩ πw, then as

long as the failure is not restored, the primary data center dw cannot be kept in sync

with the now operational db. Thus, right after the reparation of `, the primary dw is in

stale state, and hence it will switch back to dw because either it suffers from this stale

state or it need to wait some extra time to handle the requests again. The remedy is

to enforce πw ∩ πs = ∅. (Yet, note that the same issue of a non-synchronized primary

dw also occurs after the reparation of dw which itself failed.)

(ii) Failure of link ` ∈ πs \ πw: there is no immediate issue. Yet, if shortly after ` is

repaired and working path πw fails, the switchover to the backup db (via path πb) suffers

from stale state since the failing πs interrupt the synchronization between primary and

backup DCs. This can only be remedied by providing a second synchronization path

πs, that is link disjoint with πs.

(iii) Failure of link ` ∈ πb: again no immediate problem arises (since this means that πw

is operational, given πw∩πb = ∅). However, if ` ∈ πs∩πb and shortly after ` repair the

primary path πw (or dw) failures—meaning that now πb is followed towards db—the

secondary data center dB might not be fully synchronized yet. Clearly, this can be

remedied by choosing πb∩πs = ∅. Yet, the issue is similar to the one of case (ii), which

obviously remains, even if we take πs ∩ πb = ∅.
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(iv) Failure of primary DC dw: requests are rerouted to backup db via the πb path.

Clearly, the failing of dw can not be kept in sync with the operational backup db. Thus,

we might need to wait some time after dw’s repaired to switch back requests via πw.

Any failure that would occur shortly after dw’s reparation and which would prevent

services to remain being served at db could imply service degradation because of the

unsynchronized dw: (a) failure of πs, (b) failure of πb, or (c) failure of db. However,

protection against such a failure event requires extra DC resources or extra paths.

3.1.3 Time-varying Traffic

This project investigates the problem that whether it is worth reconfiguring the primary

and the backup paths in order to save bandwidth when the communication traffic patterns

change. Note that this change is not necessarily limited to a scaling of the volume, but also

its geographical distribution: when considering large backbone networks (as the ones that

we are designing VNets over), they might comprise different time zones where activities are

shifted in time, and hence the resulting volume of cloud requests fluctuates differently.

As changing the VNet mapping operations may have an impact on the real-time perfor-

mance of the cloud requests they are servicing, we propose to investigate three scenarios:

• In Scenario I (very conservative), we do not allow reconfiguring in the already established

paths. In this scenario, once a configuration is assigned to the traffic, these traffic is not

allowed to use other configurations anymore. However, the troublesome rerouting work can

be avoided, we will get higher bandwidth cost;

• In Scenario II we only allow reconfiguring backup and/or synchronization routes (πb and/or

πs) for traffic that continues from one period to the next. By allowing back-up rerouting,

we may gain more bandwidth sharing. But the bandwidth cost probably is still not the

minimum one, since the primary (working) paths are not allowed to be rerouting;

• In Scenario III we assume complete freedom and thus also allow to change the primary

paths (πw). Yet, we always look for the optimal solution (in terms of minimal link band-

width consumed on the PIP layer) with the lowest number of configuration changes. The

freedom of both working and back-up paths rerouting may lead us to the best bandwidth
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cost, but on the other hand, change working paths can cause the interruption of data

delivery.

3.1.4 Bandwidth Sharing

The number of Internet users in the world is already more than 3,100 million, and keep

increasing every second. In one second, there were 48,318 Google searches, 98,898 YouTube

videos viewed, 2,385,699 emails sent [3]. As traffic through network going to be crowded, a

good mapping scheme is essential. Under the failure-protecting condition, one of the efficient

way to achieve bandwidth saving is backup sharing.

V1

V2

π1
S

π1
B

π2
B

π2
W

π2
S

DC1

DC2

DC3

π1
W

Fig. 3.2: Backup Sharing Example.

An example is showed in Fig. 3.2. Suppose we have a service request k1 asked by a user

located in v1, which uses πw

1 as primary path, πb

1 as backup path, and πs

1 as synchronization

path. Assuming that the bandwidth need for k1 is β1, and the synchronization path need

βs

1. Another service request k2 is located at v2 with a need of β2 bandwidth and βs

2 for

synchronization. πw

2 , π
b

2 , π
s

2 are used by k2 as primary, backup and synchronization paths

respectively. Therefore, the bandwidth need of this topology is the sum of the primary

part β1 + β2, the synchronization part βs

1 + βs

2, and the backup part max{β1, β2}, instead of

2(β1 + β2) + βs

1 + βs

2 without backup sharing.
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3.2 Notations and Statements

In this section, we define all the notations for the four mathematical models which will be

presented in Chapter 4. The first two are non aggregated traffic models with link formulation

and path formulation respectively, and the last two are aggregated traffic models. There are

some difference between notations used for the these four models. For the parameters and

variables which are used differently, we will give some specific explanations.

3.2.1 Network, Time Periods and Traffic

The cloud network is modeled by an undirected graph G = (V, L) where V is the node set

(indexed by v) and L is the link set (indexed by `), for which ω(v) denotes the set of links

adjacent to v, and ‖`‖ is the length of link `.

In this network, there is a set of data centers VD (indexed by d). The current model

assumes (at most) a single data center per node.

In order to solve the RVNM problem for multiple time periods, let T be the set of time

periods. And T ′ is the set of time periods without the first period, which can be defined as

following:

T ′ = T \ {t1}

, where t1 represents the first time period.

Traffic is defined by the number of service requests (demands), originating from a set of

source/service nodes V , with generic index v.

The set of service requests is represented by K, and K can be defined as:

K =
⋃

v∈V

Kv OR K =
⋃

v∈V

⋃

t∈T

Kv,t

where Kv is the set of requests associated with source node v ∈ V , and Kv,t is the set of

requests associated with source node v ∈ V which are “alive” at time period t.

Each request k is characterized by its bandwidth requirement ∆k, its source (or origin)
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vk, its “alive” time periods, and δk (with 0 ≤ δk ≤ 1) representing the fraction of ∆k that is

required for synchronization between the primary and the backup data center.

In last two models, we aggregated requests with same source node, so in these two models

parameters ∆k and δk will be replaced by ∆v,t and δv. ∆v,t represents bandwidth requirement

of all the “alive” requests originating from node v at time period t, and ∆v,t represents the

fraction of bandwidth requirement that is required for synchronization for all the requests

with source node v.

T ′
k represents the set of time period associated with request k, which can be defined as

follows:

T ′
k =

(

tSTART
k , tEND

k

]

where tSTART
k is the time period where request k appears, and tEND

k is the time period where

k ends.

3.2.2 Paths

Let Π be the set of paths which include all the working (primary) paths, backup paths and

synchronization paths. Each path π ∈ Π is characterized by its source node vk and a set of

links associated with it. Also, Π can be represented as :

Π =
⋃

v∈Vs

Πv

where Πv is set of paths associated with source node v ∈ Vs.

3.2.3 Configurations

The mathematical model we proposed relies on the notion of configurations, where a config-

uration is associated with a set of service requests originating at a given source node. Let C

be the overall set of configurations:

C =
⋃

v∈Vs

Cv,

where Cv is the set of configurations associated with source node v ∈ Vs.

We define a configuration c ∈ Cv by:
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(i) a set of 3 paths, one primary path πw originating at vs towards a primary data center

dw, one backup path πb originating at vs towards a primary data center db, and one

synchronization paths (πs) between the primary and the backup data center.

(ii) the service requests are routed and protected by this set of 3 routes.

There are another two notations being used in the models with path formulations: Cw,π

and Cbs,π,π′

. Cw,π is defined as the set of configurations which use path π ∈ Π as working

path. Cbs,π,π′

is the set of configurations which use π as backup path and π′ as synchronization

path.

3.2.4 Parameters and Variables for Master Problems

Recall CG problem, each problem is decomposed into master problem and pricing prob-

lem. Here, since we use CG to solve our RVNM problem, we have two sub-models for each

mathematic model: one for master problem and one for pricing problem.

Master problems are aimed to choose configurations for each service request, and the

parameters used in models for master problems are as follows:

• pw,c
` = 1 if link ` is used by the working path of configuration c, 0 otherwise;

• pb,c` = 1 if link ` is used by the backup path of configuration c, 0 otherwise;

• ps,c` = 1 if link ` is used by the synchronization path of c between the primary data

center and the backup data center, 0 otherwise;

• aw,c
v = 1 if node v ∈ VD is selected as the primary data center by configuration c, 0

otherwise;

• αw,c,π = 1 if path π is used by configuration c as a working path, 0 otherwise;

• αb,c,π = 1 if path π is used by configuration c as a backup path, 0 otherwise;

• αs,c,π = 1 if path π is used by configuration c as a synchronization path, 0 otherwise;

The variables need to be used by master problems are:
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• zck,t = 1 if configuration c is selected by request k at time period t, 0 otherwise;

• xw

k,t = 1 if request k select different working paths at time period t and t−1, 0 otherwise;

• xbs

k,t = 1 if request k select different backup paths or synchronization path at time period

t and t− 1, 0 otherwise;

• BW is total bandwidth needed on the network in order to satisfy every service request.

• βw

`,t ∈ IR: the working bandwidth on `;

• βb

`,t ∈ IR: the backup bandwidth on `;

• βs

`,t ∈ IR: the bandwidth of Synchronization path on `;

In last two models, we aggregated the requests with same source node. Therefore, there are

several variables which are different from the first two models listed as follows:

• zct ∈ IR: the bandwidth assigned to configuration c at time period t;

• xw

v,t ∈ IR: the bandwidth of changed working paths originating on source node v ∈ Vs

at time period t;

• xbs

v,t ∈ IR: the bandwidth of changed backup paths or synchronization paths associated

requests originating on source node v ∈ Vs at time period t.

• ∆v,t ∈ IR: the amount of traffic that originating on source node v ∈ Vs at time period

t.

• ∆DEL
v,t,t−1 ∈ IR: the amount of traffic that exist at time period t − 1, and is deleted at

time period t which is originating on source node v ∈ Vs.

• ∆ADD
v,t,t−1 ∈ IR: the amount of traffic that does not exist at time period t− 1, and shows

up at time period t which is originating on source node v ∈ Vs.
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3.2.5 Variables for Pricing Problems

Pricing problems in this project is to generation configurations, the variables used in models

for pricing problems are as follows:

• pw` = 1 if link ` is used by the working path of the configuration under construction, 0

otherwise;

• pb` = 1 if link ` is used by the backup path of the configuration under construction, 0

otherwise;

• ps` = 1 if link ` is used by the synchronization path of the configuration under construc-

tion between the primary data center and the backup data center, 0 otherwise;

• awv = 1 if node v is selected as a data center location by the working path in the

configuration under construction, 0 otherwise;

• abv = 1 if node v is selected as a data center location by the backup path in the

configuration under construction, 0 otherwise;

• dwv = 1 if node v is on the working path in the configuration under construction, 0

otherwise;

• dbv = 1 if node v is on the backup path in the configuration under construction, 0

otherwise;

• dsv = 1 if node v is on the synchronization path between the primary data center and

the backup data center in the configuration under construction, 0 otherwise;

• αw,π = 1 if path π is the working path in the configuration under construction, 0

otherwise;

• αb,π = 1 if path π is the backup path in the configuration under construction, 0 other-

wise;

• αs,π = 1 if path π is the synchronization path in the configuration under construction,

0 otherwise.
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In this chapter, we proposed a detailed description of our RVNM project. Our main goal

is to solve a mapping problem in order to protect against single network failure as well as to

optimize bandwidth requirement. We also investigate three scenarios to figure out whether

it is worth to reconfigure the primary and backup paths. The parameters and variables that

listed in this chapter are used in our mathematical models which will be presented next.
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Chapter 4

Models for the Problem

In this chapter, we propose four models for our RVNM problem. Section 4.1 gives a general

introduction to these models. The first two models are non-aggregated models with link

formulations and path formulations respectively. Here, the term “non-aggregated” means

the traffic is defined by the number of service requests and is not gathered by their source

node, so that configuration assignment is based on each request. The details of these two

models is in Section 4.2 and Section 4.3. After that, there will be two aggregated models.

In these two models, we gather all the requests together in the same source node and select

multiple configurations for them. The detail description is presented in Section 4.4 and

Section 4.5, respectively. We compare these four models and summarize the advantages and

disadvantages for each model in Section 4.6.

4.1 Introduction

Our models are based on column generation technique. As explained previously, our RVNM

problem is separated into a master problem and a pricing problem. The master problem is

aimed to select configurations for all the service requests in order to minimize bandwidth

requirement on the network. And the pricing problem is to generate configurations which

are provided to master problem and help it to get better results.

As shown in Fig. 4.1, each time RMP solve the problem with existing set of configurations,

it gives the values of the dual variables to PP. PP uses these dual values to generate a

39





4.2 Model 1: Non Aggregated Traffic & Link Formula-

tion

The purpose of this model is to find out a mapping solution for a given network and set

of requests, and this solution should have a minimized bandwidth requirement as well as

the number of reconfigurations. Let’s take an example to explain it clearly. Assuming a

network as shown in Fig. 4.2 is given, and requests k1 and k2 are two requests in the given

requests set and we are considering Scenario II (in which only backup paths have freedom

to change, see Section 3.1.3). In order to achieve the optimal bandwidth requirement, at

time period t1, configuration C1 which contains working (primary) path Cw

1 , backup path

Cb

1 , synchronization path Cs

1, working (primary) data center DC1 and backup data center

DC2 is assigned to request k1, and configuration C2 is assigned to k2. At time period t2,

since there are some new requests appear, we could have two options to get the optimal

bandwidth requirement. Option 1 need to reconfigure both k1 and k2, whereas only k1 need

to be reconfigure in Option 2. Therefore, in order to achieve our purpose, Option 2 will be

selected by this model. The parameters and variables for this model is listed previously in

Section 3.2.4.

4.2.1 Master Problem

The master problem is to choose configurations for the given requests from a configuration

set. In this model, each request will choose one configuration (if there is one has same source

node in the configurations set). The minimization of configuration changes is considered

for Scenario II and Scenario III, but have less priority than the optimization of bandwidth

requirement. These changes are detected by checking every link in the network.

4.2.1.1 Objective

minBW + penal
disrupt b

∑

k∈K

∑

t∈T ′

k

xbs

k,t + penal
disrupt w

∑

k∈K

∑

t∈T ′

k

xw

k,t. (4.1)
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4.2.1.2 Constraints

∑

c∈Cv

zck,t ≥ 1 v ∈ V, k ∈ Kv, t ∈ T (4.3)

∑

v∈V

∑

k∈Kv,t

∑

c∈Cv

∆k p
w,c
` zck,t = βw

`,t ` ∈ L, t ∈ T (4.4)

∑

v∈V

∑

k∈Kv,t

∑

c∈Cv

∆kδk p
s,c
` zck,t = βs

`,t ` ∈ L, t ∈ T (4.5)

∑

v∈V

∑

k∈Kv,t

∑

c∈Cv

∆k p
w,c

`′ pb,c` zck,t ≤ βb

`,t `′ ∈ L, ` ∈ L \ {`′}, t ∈ T (4.6)

∑

v′∈V

∑

k∈Kv′,t

∑

c∈Cv′

∆k a
w,c
v pb,c` zck,t ≤ βb

`,t v ∈ VD, ` ∈ L, t ∈ T (4.7)

|
∑

c∈Cv

pw,c
` zck,t −

∑

c∈Cv

pw,c
` zck,t−1| ≤ xw

k,t v ∈ V, k ∈ Kv, ` ∈ L, t ∈ T ′
k (4.8)

|
∑

c∈Cv

pb,c` zck,t −
∑

c∈Cv

pb,c` zck,t−1| ≤ xbs

k,t v ∈ V, k ∈ Kv, ` ∈ L, t ∈ T ′
k (4.9)

|
∑

c∈Cv

ps,c` zck,t −
∑

c∈Cv

ps,c` zck,t−1| ≤ xbs

k,t v ∈ V, k ∈ Kv, ` ∈ L, t ∈ T ′
k (4.10)

BW ≥
∑

`∈L

(βw

`,t + βb

`,t + βs

`,t) · ‖`‖ t ∈ T (4.11)

zck,t ∈ {0, 1} c ∈ C, k ∈ Kt, t ∈ T (4.12)

BW, βw

`,t, β
b

`,t, β
s

`,t ∈ IR ` ∈ L, t ∈ T (4.13)

Constraint (4.3) make sure that every request will select at least one configuration, and

combine with object function (4.1), each request will only select one configuration. Con-

straints (4.4) and (4.5) compute the working and synchronization bandwidth requirements

on link ` at time period t, respectively. Constraints (4.6) ensure sufficient shared backup

bandwidth requirements on link ` at time period t subject to a single link failure. If any

requests which share a link ` on their backup paths is link disjoint on their working paths,

the backup bandwidth on the link ` could be larger than or equal to the largest bandwidth

requirement among these requests. Otherwise, if these requests also share links on their

working path, the backup bandwidth on ` should be larger than or equal to the summation

of these requests’ bandwidth requirements. Constraints (4.7) guarantee sufficient backup

bandwidth ` to handle any data center failure. If any requests which share link ` on their
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backup paths also share data center v, the bandwidth of ` should be larger or equal to the

summation of their bandwidth requirements. Otherwise, we only need to ensure that the

largest bandwidth requirement among these requests is smaller than the backup bandwidth

on `. Constraints (4.11) defines variable BW which is the overall bandwidth requirements.

BW should be no smaller than the bandwidth requirements at any time period. The last two

set of constraints, i.e., (4.12) and (4.13), define the domain of the variables.

In Scenario I, requests can not be reconfigured, so we add following constraints:

xw

k,t = 0, xw

k,t = 0 k ∈ Kv, t ∈ T ′
k (4.14)

These constraints make sure that any request at time period t will choose same configu-

ration as previous time period, if this request survive more than one time period.

In Scenario II, only backup and synchronization paths can be modified. So, in Scenario II:

xw

k,t = 0 k ∈ Kv, t ∈ T ′
k (4.15)

xw

k,t ∈ {0, 1} k ∈ Kv, t ∈ T ′
k (4.16)

Constraint (4.15) guarantees that the working path will be fixed for all time period. Con-

straint (4.16) counts the number of backup-changed requests. The synchronization change

is also counted as backup change. If one request changes backup path and synchronization

path at same time, we only count it once.

In Scenario III, all the paths can be modified:

xw

k,t, x
bs

k,t ∈ {0, 1} k ∈ Kv, t ∈ T ′
k (4.17)

Constraints (4.17) let both working path and backup path (include synchronization path)

to be free changed and count the number of working-changed and backup-changed requests,

respectively.

If we focus on constraints (4.8) to (4.10), we notice that there are absolute formulations

which need to be linearized, and |a − b| < x can be linearized by x ≥ a − b and x ≥ b − a.

Another issue is that for the decision variable z, there are both zt and zt−1 shown up in the

constraints, and when we write pricing model, we need to consider three different situations:

1) t ∈ T ′
k, t− 1 /∈ T ′

k, 2) t ∈ T ′
k, t− 1 ∈ T ′

k, 3) t /∈ T ′
k, t− 1 ∈ T ′

k. Therefore, we need to have
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three models for pricing problem, and it’s a bit complex for implementation. In order to

make it simpler (just have one model for pricing problem), we introduce the variables γw

k,l,t,

γb

k,l,t, γ
s

k,l,t. The constraints (4.8) (4.9) (4.10) can be linearized as the following:

∑

c∈Cv

pw,c
` zck,t = γw

k,`,t v ∈ V, k ∈ Kv, ` ∈ L, t ∈ T (4.18)

γw

k,`,t − γw

k,`,t−1 ≤ xw

k,t k ∈ K, ` ∈ L, t ∈ T ′
k (4.19)

γw

k,`,t−1 − γw

k,`,t ≤ xw

k,t k ∈ K, ` ∈ L, t ∈ T ′
k (4.20)

∑

c∈Cv

pb,c` zck,t = γb

k,`,t v ∈ V, k ∈ Kv, ` ∈ L, t ∈ T (4.21)

γb

k,`,t − γb

k,`,t−1 ≤ xbs

k,t k ∈ K, ` ∈ L, t ∈ T ′
k (4.22)

γb

k,`,t−1 − γb

k,`,t ≤ xbs

k,t k ∈ K, ` ∈ L, t ∈ T ′
k (4.23)

∑

c∈Cv

ps,c` zck,t = γs

k,`,t v ∈ V, k ∈ Kv, ` ∈ L, t ∈ T (4.24)

γs

k,`,t − γs

k,`,t−1 ≤ xbs

k,t k ∈ K, ` ∈ L, t ∈ T ′
k (4.25)

γs

k,`,t−1 − γs

k,`,t ≤ xbs

k,t k ∈ K, ` ∈ L, t ∈ T ′
k (4.26)

Constraints (4.18) to (4.20) are equivalent to previous constraints (4.8), constraints (4.21)

to (4.23) are equivalent to (4.9), and (4.24) to (4.26) are equivalent to previous constraints

(4.10).

4.2.2 Pricing Problem

Recall that the pricing problem (PP) will determine augmenting configurations, i.e., routes

for w, b and s paths such that their addition to the restricted master problem will entail

an improvement of the optimal value of the current restricted master. Each PP is written

for a given source node k and for a given time period t. Parameters ∆k and δk retain their

definition for a request k as in the RMP.

The objective of PP1(k, t) with k∈K, t ∈ Tk, where Tk is the set of time periods that

make request k to keep ”alive”, and to minimize the reduced cost cost
1(zk,t) as obtained
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from the RMP, which is defined as:

cost1(zk,t) = 0− u
(4.3)
vkt

−
∑

`∈L

u
(4.4)
`t ∆k p

w

` −
∑

`∈L

u
(4.5)
`t ∆kδk p

s

`

+
∑

`∈L

∑

`′∈L\{`}

u
(4.6)
``′t ∆k p

w

`′p
b

` +
∑

v∈Vd

∑

`∈L

u
(4.7)
v`t ∆ka

w

v p
b

`

−
∑

`∈L

u
(4.18)
`vkt

pw` −
∑

`∈L

u
(4.21)
`vkt

pb` −
∑

`∈L

u
(4.24)
`vkt

ps` (4.27)

where vk is the source node of request k, u
(4.3)
vkt

≥ 0, u
(4.4)
`t ≷ 0, u

(4.5)
`t ≷ 0, u

(4.6)
``′ ≥ 0, u

(4.7)
v` ≥ 0,

u
(4.18)
`vkt

≷ 0, u
(4.21)
`vkt

≷ 0 and u
(4.24)
`vkt

≷ 0 are the values of the dual variables associated with

constraints (4.3), (4.4), (4.5), (4.6), (4.7), (4.18), (4.21), (4.24) respectively. The first explicit

0 term stems from the RMP objective, which does not contain the configuration variable zck,t.

Note that there are two quadratic terms which can be easily linearized through the in-

troduction of two sets of binary variables pwb

``′ and pwb

v` and the addition of the following

constraints:

For all `′ ∈ L, ` ∈ L \ {`′}, v ∈ Vd

pwb

``′ ≤ pw`′ ; pwb

``′ ≤ pb` (4.28)

pwb

``′ ≥ pw`′ + pw`′ − 1 (4.29)

pwb

v` ≤ awv ; pwb

v` ≤ pb` (4.30)

pwb

v` ≥ awv + pw`′ − 1. (4.31)

For all three scenarios, the path and data center variables have to obey the following

constraints:
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∑

`∈ω(v)

pw` =







































1 if v = vk

2 dwv − awv if v ∈ VD, v 6= vk

2 dwv otherwise,

i.e., v ∈ V \ VD, v 6= vk

(4.32)

∑

`∈ω(v)

pb` =







































1 if v = vk

2 dbv − abv if v ∈ VD, v 6= vk

2 dbv otherwise,

i.e., v ∈ V \ VD, v 6= vk

(4.33)

∑

`∈ω(v)

ps` =



























2 dsv − awv − abv if v ∈ VD

2 dsv otherwise,

i.e., v ∈ V \ VD

(4.34)

pw` + pb` ≤ 1 ` ∈ L (4.35)
∑

v∈VD

awv = 1 ;
∑

v∈VD

abv = 1 (4.36)

awv + abv ≤ 1 v ∈ VD (4.37)

awv , a
b

v ∈ {0, 1} v ∈ VD (4.38)

dwv , d
b

v , d
s

v ∈ {0, 1} v ∈ V (4.39)

pw` , p
b

` , p
s

` ∈ {0, 1} ` ∈ L. (4.40)

Constraints (4.32)–(4.34) are the conventional flow constraints for undirected working,

backup and synchronization paths. Constraints (4.35) force primary path and backup path

to be link disjoint. Constraints (4.36) ensure that each configuration has exactly one primary

and one back up data center, while constraints (4.37) force them to be different. Constraints

(4.36) combine with constraints (4.32)–(4.34) to make sure that the generated configuration

has one primary path, one backup path and one synchronization path linked primary and

backup paths. Constraints (4.38)–(4.40) define the domains of the variables.

The drawback of this model is that it has a large number of constraints in the master
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which makes it not scalable. And we will discuss this drawbacks and compare it with other

models in Section 4.6.

4.3 Model 2: Non Aggregated Traffic & Path Formu-

lation

The purpose of this model is same as the first model (non aggregated traffic& link formula-

tion), we will select one configuration for each request and try to carry out with a optimal

bandwidth requirement as well as reconfigurations. The mapping scheme can be explained

by same example in Section 4.2 (see Fig. 4.2). The difference of this model, it is that instead

of checking every link to detect configuration changes, we check every path of generated

configurations.

4.3.1 Master Problem

We have same objective function (4.1) as Model 1, which is to minimize bandwidth require-

ment and configuration changes. For the constraints, we keep constraints (4.3)–(4.7), and

constraints (4.11)–(4.13).

Constraints (4.8), (4.9) and (4.10) can then be rewritten:

|
∑

c∈Cv

αw,c,πzck,t −
∑

c∈Cv

αw,c,πzck,t−1| ≤ xw

k,t v ∈ V, k ∈ Kv, t ∈ T ′
k, π ∈ Πv (4.41)

|
∑

c∈Cv

αb,c,πzck,t −
∑

c∈Cv

αb,c,πzck,t−1| ≤ xbs

k,t v ∈ V, k ∈ Kv, t ∈ T ′
k, π ∈ Πv (4.42)

|
∑

c∈Cv

αs,c,πzck,t −
∑

c∈Cv

αs,c,πzck,t−1| ≤ xbs

k,t v ∈ V, k ∈ Kv, t ∈ T ′
k, π ∈ Πv (4.43)

Just as we described in Model 1, in Scenario I we have constraints (4.14). In Scenario II

we have constraints (4.15) and (4.16). And for Scenario III we keep constraints (4.17).

Constraints (4.41) force each request k select same working path (or count the working

path changes in scenario 3) at time period t and the previous time period by checking every

path originating at the same node as request k. As illustrated in Fig. 4.3, since we are
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considering Scenario II, in t2 if path Cw

2 is selected for k2, this constraints force same path

must be selected for k2 in t1 as well. If we focus on Scenario III, and find out that path Cw

2

is selected in t1 but not in t2, then xw

k,t will be set to 1 which means there is a working path

rerouting happens for k2 in time period t2. Constraints (4.42) and (4.43) is related to backup

paths and synchronization paths, respectively.

These three constraints need to be linearized. Similar as what we did in Model 1, we

introduce variables γw,π
k,t , γ

b,π
k,t and γs,π

k,t , and get following constraints:

∑

c∈Cv

αw,c,πzck,t = γw,π
k,t k ∈ Kv, π ∈ Πv, v ∈ V, t ∈ T (4.44)

γw,π
k,t − γw,π

k,t−1 ≤ xw

k,t k ∈ Kv, π ∈ Πv, v ∈ V, t ∈ T ′
k (4.45)

γw,π
k,t−1 − γw,π

k,t ≤ xw

k,t k ∈ Kv, π ∈ Πv, v ∈ V, t ∈ T ′
k (4.46)

∑

c∈Cv

αb,c,πzck,t = γb,π
k,t k ∈ Kv, π ∈ Πv, v ∈ V, t ∈ T (4.47)

γb,π
k,t − γb,π

k,t−1 ≤ xbs

k,t k ∈ Kv, π ∈ Πv, v ∈ V, t ∈ T ′
k (4.48)

γb,π
k,t−1 − γb,π

k,t ≤ xbs

k,t k ∈ Kv, π ∈ Πv, v ∈ V, t ∈ T ′
k (4.49)

∑

c∈Cv

αs,c,πzck,t = γs,π
k,t k ∈ Kv, π ∈ Πv, v ∈ V, t ∈ T (4.50)

γs,π
k,t − γs,π

k,t−1 ≤ xbs

k,t k ∈ Kv, π ∈ Πv, v ∈ V, t ∈ T ′
k (4.51)

γs,π
k,t−1 − γs,π

k,t ≤ xbs

k,t k ∈ Kv, π ∈ Πv, v ∈ V, t ∈ T ′
k (4.52)

Constraints (4.44) to (4.45) is equivalent to constraints (4.41), and constraints (4.47) to

(4.49) equivalent to (4.42), (4.50) to (4.52) equivalent to constraints (4.43).

4.3.2 Pricing Problem

Reduced cost with the path formulation:

49



cost2(zk,t) = 0− u
(4.3)
vkt

−
∑

`∈L

u
(4.4)
`t ∆k p

w

` −
∑

`∈L

u
(4.5)
`t ∆kδk p

s

`

+
∑

`∈L

∑

`′∈L\{`}

u
(4.6)
``′t ∆k p

w

`′p
b

` +
∑

v∈Vd

∑

`∈L

u
(4.7)
v`t ∆ka

w

v p
b

`

−
∑

π∈Πv

u
(4.44)
πvkt

αw,π −
∑

π∈Πv

u
(4.47)
πvkt

αb,π −
∑

π∈Πv

u
(4.50)
πvkt

αs,π (4.53)

where vk is the source node of request k, u
(4.3)
vkt

≥ 0, u
(4.4)
`t ≷ 0, u

(4.5)
`t ≷ 0, u

(4.6)
``′ ≥ 0, u

(4.7)
v` ≥ 0,

u
(4.44)
`vkt

≷ 0, u
(4.47)
`vkt

≷ 0 and u
(4.50)
`vkt

≷ 0 are the values of the dual variables associated with

constraints (4.3), (4.4), (4.5), (4.6), (4.7), (4.44), (4.47), (4.50) respectively.

We need to keep constraints (4.28) to (4.31) to linearize the two quadratic terms, and

(4.32) to (4.40) to generate a configuration. They also need some addition constraints to

define variable αw,π, αb,π and αs,π. Let p be the path that built by the pricing problem,

and p′ be the path generated by previous pricing problem. We have to check it against all

previously π generated paths:

αw,π =
∧

`∈L

(

pw` ≡ p′
w,π

`

)

π ∈ Πv (4.54)

αb,π =
∧

`∈L

(

pb` ≡ p′
b,π

`

)

π ∈ Πv (4.55)

αs,π =
∧

`∈L

(

ps` ≡ p′
s,π

`

)

π ∈ Πv (4.56)

The above three constraints are highly nonlinear, so after linearization we have:
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αw,π ≤ pw` · p′
w,π

` + (1− pw` ) ·
(

1− p′
w,π

`

)

` ∈ L, π ∈ Π (4.57)

αw,π + |L| − 1 ≥
∑

`∈L

(

pw` · p′
w,π

` + (1− pw` ) ·
(

1− p′
w,π

`

))

π ∈ Π (4.58)

αb,π ≤ pb` · p
′b,π
` + (1− pb` ) ·

(

1− p′
b,π

`

)

` ∈ L, π ∈ Π (4.59)

αb,π + |L| − 1 ≥
∑

`∈L

(

pb` · p
′b,π
` + (1− pb` ) ·

(

1− p′
b,π

`

))

π ∈ Π (4.60)

αs,π ≤ ps` · p
′s,π
` + (1− ps`) ·

(

1− p′
s,π

`

)

` ∈ L, π ∈ Π (4.61)

αs,π + |L| − 1 ≥
∑

`∈L

(

ps` · p
′s,π
` + (1− ps`) ·

(

1− p′
s,π

`

))

π ∈ Π (4.62)

Notice that, here pw` , p
b

` , p
s

` are variables and p′w,π
` , p′b,π` , p′s,π` are parameters, so those

constraints are linear. Constraints (4.57) and (4.58) are equivalent to constraints (4.54),

(4.59) and (4.60) are equivalent to (4.55) and (4.61)(4.62) are equivalent to constraints (4.56).

Therefore, the constraints for this model’s pricing problem are constraints (4.28)–(4.40) with

additional constraints (4.57)–(4.62).

This model is a bit more scalable than Model 1, only if the average number of path

originate at one node is smaller than the number of links in the given network. But obversely,

the model for pricing problem is more complex. We will compare this model with others in

Section 4.6.

4.4 Model 3: Aggregated Traffic & Path Formulation

(Reconfiguration Optimized)

The optimization terms is not changed in this model, we still need to minimize both band-

width requirement and the number of rerouted paths. The difference is that, in this model,

we aggregate traffic with same source node. The configuration assignment is based on source

node instead of a single request. As the example shown in Fig. 4.3. In time period t1, there

are 20 units of traffic originated on source node v, and configurations C1, C2 and C3 which

carry 10, 5 and 5 units of traffic are assigned to node v to provide services to the requests

which related to these traffic. We do not care these 20 units of traffic belongs to which re-
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quests, and we only need to guarantee that there are configurations to carry these 20 units of

traffic. The detection of reconfigurations is achieved by checking every path in the network.

4.4.1 Master Problem

4.4.1.1 Objective

minBW + penal
disrupt b

∑

v∈V

∑

t∈T ′

xbs

v,t + penal
disrupt w

∑

v∈V

∑

t∈T ′

xw

v,t. (4.63)

Same as previous models, BW is the maximum bandwidth requirements among all time

periods. xbs

v,t and xw

v,t is used to compute reconfigured traffic, just as what we defined in

Section 3.2.4. Since we aggregate traffic, it is hard to detect rerouting for each requests, here

we compute reconfigurations for the traffic that originated at each node.
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4.4.1.2 Constraints

∑

c∈Cv

zct ≥ ∆v,t v ∈ V, t ∈ T (4.64)

∑

c∈C

pw,c
` zct = βw

`,t ` ∈ L, t ∈ T (4.65)

∑

v∈V

∑

c∈Cv

δv p
s,c
` zct = βs

`,t ` ∈ L, t ∈ T (4.66)

∑

c∈C

pw,c

`′ pb,c` zct ≤ βb

`,t `′ ∈ L, ` ∈ L \ {`′}, t ∈ T

(4.67)
∑

c∈C

aw,c
v pb,c` zct ≤ βb

`,t v ∈ VD, ` ∈ L, t ∈ T

(4.68)
∑

π∈Πv

|
∑

c∈Cw,π

(zct − zct−1)| − (∆DEL
v,t,t−1 +∆ADD

v,t,t−1) ≤ 2xw

v,t v ∈ V, t ∈ T ′ (4.69)

∑

π∈Πv

∑

π′∈Πv\π

|
∑

c∈Cbs,π,π′

(zct − zct−1)| − (∆DEL
v,t,t−1 +∆ADD

v,t,t−1) ≤ 2xbs

v,t v ∈ V, t ∈ T ′ (4.70)

BW ≥
∑

`∈L

(βw

`,t + βb

`,t + βs

`,t) · ‖`‖ t ∈ T (4.71)

zct ∈ IR c ∈ C, t ∈ T (4.72)

BW, βw

`,t, β
b

`,t, β
s

`,t ∈ IR ` ∈ L, t ∈ T (4.73)

Constraints (4.64) guarantee that the bandwidth of configurations that assigned on the

node v is larger than the total bandwidth requirements of all requests originated on v, in

other word, all the bandwidth requirements will be satisfied. Just as in Model 1 and Model

2. Constraints (4.65) and (4.66) compute the working and synchronization bandwidth re-

quirements on link ` at time period t, respectively. Constraints (4.67) ensure sufficient shared

backup bandwidth requirements on link ` at time period t subject to a single link failure.

Constraints (4.68) guarantee sufficient backup bandwidth ` to handle any data center fail-

ure. The last two set of constraints, i.e., (4.72) and (4.73), define the domain of the variables.

Constraints (4.69) and (4.70) are constraints about reconfigurations. Traffic variation on

source node v between time period t and t − 1 can be expressed as ∆DEL
v,t,t−1 + ∆ADD

v,t,t−1. On
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a single working path π, bandwidth change is |
∑

c∈Cw,π

(zct − zct−1)| and |
∑

c∈Cbs,π,π′

(zct − zct−1)|

represent the bandwidth change on path π and π′ where π is used as a backup path and

π′ is used as a synchronization path. Therefore, reconfigured bandwidth on source node

v at time period t is 1
2
(
∑

π∈Πv

|
∑

c∈Cw,π

(zct − zct−1)| − (∆DEL
v,t,t−1 + ∆ADD

v,t,t−1)) for working paths or

1
2
(
∑

π∈Πv

∑

π′∈Πv\π

|
∑

c∈Cbs,π,π′

(zct − zct−1)| − (∆DEL
v,t,t−1 +∆ADD

v,t,t−1)) for backup paths.

As example shown in Fig. 4.3. When time period change from t1 to t2, there are 5

traffic units are deleted and 5 units are new. Since we do not care about traffic details, the

removed traffic and new traffic can be anyone. The graph shows part of mapping result,

and it satisfied conditions in scenario 3. The traffic variation is 10 units (5 deleted, 5 new),

and if we concentrate on working path variation, bandwidth difference can be computed by

2(π1)+1(π4)+5(π5)+6(π7) = 14. 10 of the 14 units are caused by the change of traffic, and

4 of them are because of reconfiguration. Assuming we remove two units from configuration

c1, and add one to c2 and another one to c4. Indeed, there are only 2 units of traffic being

reconfigured, and the left part of constraints (4.69) and (4.70) will compute these changes

twice (once for decrease on one configuration, and once for increase on another configuration),

that’s where 1
2
comes from.

In Scenario I, requests cannot be reconfigured, so we add following constraints:to define

the value of xw

v,t, x
bs

v,t:

xw

v,t = xbs

v,t = 0 v ∈ V, t ∈ T ′ (4.74)

By forcing these two variables equal to zero, we force all of working paths, backup paths

and synchronization paths must keep same for all time periods.

In Scenario II, we add additional constraints as follows:

xw

v,t = 0 v ∈ V, t ∈ T ′ (4.75)

xbs

v,t ∈ IR v ∈ V, t ∈ T ′ (4.76)

In this scenario, only backup and synchronization paths can be modified. These additional

constraints force working paths keep same, and calculate the reconfigurations for backup

paths and synchronization paths.
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In Scenario III, reconfiguration is total free, so we add:

xw

v,t, x
bs

v,t ∈ IR v ∈ V, t ∈ T ′ (4.77)

In this model, the number of constraints will not be influenced by the number of service

requests. But the main issues with it is the linearization of constraints (4.69) and (4.70).

There will be 2|Π| number of constraints to linearize constraints (4.69) and 22|Π| constraints

to linearize (4.69). Therefore solving master problem will be really costly with the fact that

the size of paths set Π is keeping increasing.

4.5 Model 4: Aggregated Traffic & Path Formulation

In this model, the purpose is slightly different from previous models. Here, we only minimize

the bandwidth requirement, but not the number of rerouted paths. The traffic is also aggre-

gated in order to keep the advantages of the scalability. The assumption of which traffic unit

can be reconfigured is different from previous models. Here, we concentrate on the amount of

traffic based on each node. If ∆v,t−∆v,t−1 ≥ 0, we assume that there are only (∆v,t−∆v,t−1)

units new traffic and none of traffic is deleted at the end of time period t− 1. Oppositely, if

∆v,t −∆v,t−1 < 0, we assume that there are only (∆v,t−1 −∆v,t) units traffic is removed and

no new traffic is added in. If we look at the example in Fig. 4.3, there are actually 5 units

traffic deleted and 5 units new traffic. But in this model, we treat it as there is no traffic

changes (no deletion and no creation).

4.5.1 Master Problem

In the master problem, multiple configurations will be assigned to requests on same source

node. It can be understood by aggregated all requests with same source node as one, and

this one can choose more than one configurations. The goal of master problem is to minimize

the summation of the bandwidth requirements of all selected configurations, but do not take

care of optimizing reconfigurations.
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4.5.1.1 Objective

minmax
t∈T

∑

`∈L

(βw

`,t + βb

`,t + βs

`,t) · ‖`‖ . (4.78)

where ‖`‖ being the length of link `. The object function is to minimize the overall bandwidth

requirements which should be no smaller than the bandwidth requirements at any time

period. max
t∈T

∑

`∈L

(βw

`,t + βb

`,t + βs

`,t) · ‖`‖ is equivalent to BW in previous models.

4.5.1.2 Constraints

We keep constraints (4.64)–(4.73) in this model, but do not need constraints (4.69) and (4.70)

anymore.

In Scenario I, requests cannot be reconfigured, so we add some constraints. For every

v ∈ V, π ∈ Πv, t ∈ T ′ :

∑

c∈Cw,π

(zct − zct−1)











≤ 0 if ∆v,t < ∆v,t−1

≥ 0 if ∆v,t ≥ ∆v,t−1

(4.79)

∑

c∈Cb,π

(zct − zct−1)











≤ 0 if ∆v,t < ∆v,t−1

≥ 0 if ∆v,t ≥ ∆v,t−1

(4.80)

∑

c∈Cs,π

(zct − zct−1)











≤ 0 if ∆v,t < ∆v,t−1

≥ 0 if ∆v,t ≥ ∆v,t−1

(4.81)

Constraints (4.79) check every path to force the working paths not to change between one

time period to previous time period. Since we aggregate all the requests originated on same

node, it is hard to check configuration changes for every request. Here, we switch to another

strategy. If traffic increase between time period t − 1 and t, and there is no configuration’s

bandwidth decrease, we consider this situation as no reconfigurations. Otherwise, we consider

it as configuration changes. Therefore, constraints (4.79) guarantee that the bandwidth of

each working path which originated on source node v could only increase or keep same when

traffic demand is increasing on node v during time period t and t−1, and could only decrease

or not change if traffic demand is decreasing. By doing this, we forth the ’legacy’ requests to

use same working path as previously.
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Constraints (4.80) and (4.81) force the backup paths and synchronization paths not to

be reconfigured, respectively.

In Scenario II, only backup and synchronization paths can be modified. So, in scenario

2 we add constraints (4.79). And in Scenario III, all the paths are free to change, nothing

need to be added.

As same as the reason we explained in Section 4.2.1.2 we do not want three different pricing

problems, so that γ∗,π
t is introduced to represent variable

∑

c∈C∗,π

zct . Therefore, constraints

(4.79) - (4.81) can be rewritten as:

∑

c∈Cw,π

zct = γw,π
t π ∈ Π, t ∈ T (4.82)

∑

c∈Cb,π

zct = γb,π
t π ∈ Π, t ∈ T (4.83)

∑

c∈Cs,π

zct = γs,π
t π ∈ Π, t ∈ T (4.84)

γw,π
t − γw,π

t−1











≤ 0 if ∆v,t < ∆v,t−1

≥ 0 if ∆v,t ≥ ∆v,t−1

(4.85)

γb,π
t − γb,π

t−1











≤ 0 if ∆v,t < ∆v,t−1

≥ 0 if ∆v,t ≥ ∆v,t−1

(4.86)

γs,π
t − γs,π

t−1











≤ 0 if ∆v,t < ∆v,t−1

≥ 0 if ∆v,t ≥ ∆v,t−1

(4.87)

4.5.2 Pricing Problem

Recall that the pricing problem (PP) will determine augmenting configurations, i.e., routes

for w, b and s paths such that their addition to the restricted master problem will entail an

improvement of the optimal value of the current restricted master. Each PP is written for a

given source node v and for a given time period t. Parameters δv retain their definition for

a node v as in the RMP.

The objective of PP4(v, t) with v∈V, t ∈ T is to minimize the reduced cost cost4(zv,t) as
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obtained from the RMP, defined as:

cost4(zv,t) = 0− u
(4.64)
vt −

∑

`∈L

u
(4.65)
`t pw` −

∑

`∈L

u
(4.66)
`t δv p

s

`

+
∑

`∈L

∑

`′∈L\{`}

u
(4.67)
``′t pw`′p

b

` +
∑

v∈Vd

∑

`∈L

u
(4.68)
v`t awv p

b

`

+
∑

π∈Π

u
(4.85)
πt +

∑

π∈Π

u
(4.86)
πt +

∑

π∈Π

u
(4.87)
πt (4.88)

u
(4.64)
vt ≥ 0, u

(4.65)
`t ≷ 0, u

(4.66)
`t ≷ 0, u

(4.67)
``′ ≥ 0, u

(4.68)
v` ≥ 0 u

(4.85)
πt ≷ 0, u

(4.86)
πt ≷ 0, u

(4.87)
πt ≷ 0

are the values of the dual variables associated with constraints (4.64), (4.65), (4.66), (4.67),

(4.68), (4.85), (4.86), (4.87) respectively. The first explicit 0 term stems from the RMP

objective, which does not contain the configuration variable zct .

The constraints of PP are used to generate a configuration which is same for each model,

and we could reuse constraints (4.32) to (4.40) in this model.

There are two quadratic terms pw`′p
b

` and awv p
b

` which can be easily linearized through the

introduction of two sets of binary variables pwb

``′ and pwb

v` just as in Model 1 (see Section 4.2.2),

and the constraints we need to use are as same as constraints (4.28)–(4.31).

4.6 Comparison of Models

We compare the scalability of all four models proposed in this chapter, and summarize their

advantages and disadvantages in this section.

The first two models are non aggregated traffic models, they can calculate the exact

number of rerouting paths. But these two models have scalability issues. The one with link

formulation (Model 1) has a large number of constraints in the master. Constraints (4.3)

gives |K| × |T | columns. Constraints (4.4) and (4.5) gives |L| × |T | columns, respectively.

|L| × |L| × |T | columns for constraints (4.6), |VD| × |L| × |T | columns for constraints (4.7).

And after linearization, each one of the constraints (4.18)–(4.26) contributes |K| × |L| × |T |

columns. Therefore, we could predict that it is time consuming if we want to solve a problem

with a big size of service requests and a network contains large number of links. In fact,

we did the experiments with a 42-links network by using 4 six-core processors running 2.667
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GHz. The running time exceed 50 hours when the number of service requests is more than

100.

Compared with the Model 1, the constraints for master problem of Model 2 (the one with

path formulation) is slightly simpler (in general). In Model 1, we need 9 × |K| × |L| × |T |

columns due to constraints (4.18)–(4.26). In Model 2, we only have approximately 9× |K| ×

|ΠAVG|×|T | columns for the constraints (4.44)–(4.52) (|K|×|ΠAVG|×|T | for each). |ΠAVG| is

the average number of paths originating at one node. Although this parameter really depends

on the topology of the network, in general, it is much smaller than the number of links.

But while we end up with a more competitive model for master problem, we also get a

more complex pricing problem. We could see Section 4.3.2 that constraints (4.57),(4.59) and

(4.61) generate 3×|L|× |Π| columns. Since we need to solving almost |K|× |T | times pricing

problem after one iteration of master problem, we do not expect a heavy pricing problem.

Apart from the issue caused by model in PP, actually, the model of MP is still not efficient

for large datasets. Since the number of constraints will increase as the number of requests

increase (in practice, the number of requests can be really huge), when we solve a problem

with a large number of requests, this model is not scalable enough.

In Model 3, since we aggregated traffic, the number of constraints will not be affected

by number of requests. But it is hard to find an efficient way to linearize constraints (4.69)

and (4.70). Assuming there are about |ΠAVG| different paths originated on each node, and

let
∑

c∈Cw,π

(zct − zct−1) = Aπ. The first part of constraints (4.69),
∑

π∈Πv

|
∑

c∈Cw,π

(zct − zct−1)| can be

linearized as:

±Aπ1
± Aπ2

± Aπ3
± · · · · · · (4.89)

There will be approximately 2|ΠAVG| constraints for (4.69) after linearization and 22|ΠAVG|

constraints for (4.70). That means after linearization, we have |V |×|T |×2|ΠAVG|+ |V |×|T |×

22|ΠAVG| columns only for counting reconfigurations, which is too costly if we only use column

generation (considering the fact that the size of paths set is keeping increasing after each

time a PP is solved). This problem could be solved by involving an additional technology

called ”row generation “, which will be left as future work.

The last model (Model 4) is the most scalable one. Benefit from aggregating traffic, it
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can deal with a large amount of service requests. Due to the path formulation, it is also

adapted to networks with a large set of links. The drawbacks of this model are: 1) it is not

accurate when it detects new requests (some requests will be considered as ”legacy “one and

be forced to use the legacy configurations in scenario 1 and 2), 2) it has no capability to

optimize rerouting paths.

The summarized comparison of these four models is shown in tables below. Table 4.1 and

Table 4.2 describe the number of variables and constraints used in each model, respectively.

Table 4.3 list the comparison of pricing problems for each model.

However, after comparing the scalability of these four models and analyzing the drawbacks

of each model, we believe that the Model 4 offers the best compromise with respect to

scalability vs. accuracy. The less accurate of the problem is not a really big issue as long as

all the requests can be satisfied, especially when we can get the accurate solution for scenario

3. As a consequence, we only implemented Model 4.

Master Problems Variables: #(Numbers)

Model 1

βw

`,t: #(|L| × |T |)

βb

`,t: #(|L| × |T |)

βs

`,t: #(|L| × |T |)

zck,t: #(|K| × |T | × |C|)

xw

k,t: #(|K| × |T |)

xbs

k,t: #(|K| × |T |)Model 2

αw,c,π: #(|C| × |Π|)

αb,c,π: #(|C| × |Π|)

αs,c,π: #(|C| × |Π|)

Model 3

zct : #(|C| × |T |)

xw

v,t: #(|V | × |T |)

xbs

v,t: #(|V | × |T |)

Model 4

Table 4.1: Comparison of number of variables used for master problems in each model
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Master Problems #Numbers (Constraints)

Model 1

#|K| × |T | (4.3)

#|L| × |T | (4.4), (4.5)

#|L| × |L| × |T | (4.6)

#|VD| × |L| × |T | (4.7)

#|T | (4.11)

#|K| × |L| × |T | (4.18)–(4.26)

Model 2 #|K| × |Π| × |T | (4.44)–(4.52)

Model 3
#|V | × |T | (4.64)

#|L| × |T | (4.65), (4.66)

#|L| × |L| × |T | (4.67)

#|VD| × |L| × |T | (4.68)

#|T | (4.71)

#|V | × |T | × 2|ΠAVG| (4.69)

#|V | × |T | × 22|ΠAVG| (4.70)

Model 4 #|Π| × |T | (4.82)–(4.87)

Table 4.2: Comparison of number of constraints used for master problems in each model

Pricing Variables: #(Numbers) #Numbers (Constraints)

Model 1
pw` : #(|L|)

pb` : #(|L|)

ps`: #(|L|)

awv : #(|V |)

abv : #(|V |)

dwv : #(|V |)

dbv : #(|V |)

dsv: #(|V |)

pwb

``′ : #(|L| × |L|)

pwb

v` : #(|L| × |V |)

#|V | (4.32)–(4.34)

#|L| (4.35)

#1 (4.36)

#|VD| (4.37)

#|L| × |L| (4.28),(4.29)

#|L| × |VD| (4.30),(4.31)

Model 2

αw,π: #(|Π|)

αb,π: #(|Π|)

αs,π: #(|Π|)

#|L| × |Π|

(4.57),(4.59),(4.61)

#|Π|

(4.58),(4.60),(4.62)

Model 3

Model 4

Table 4.3: Comparison of number of variables and constraints used for pricing problems in

each model
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Chapter 5

Solution Process

5.1 Strategy with Parallel Computing

As mentioned in previous chapter, the problem could be really large. Therefore, in order to

save CPU time, we implemented this problem by using parallel computing with MPJ. Here

we only describe the solution process for Model 4. The purpose of master problem is to get an

optimal solution based on the whole network and all the service requests, and constraints in

the master problem are highly related. Therefore, we only solved pricing problem in parallel

but not for RMP.

As shown in Fig. 5.1, we create a process for each source node, and each processor

response for solving the pricing problem associated with that node. The solution procedure

is described as follows:

• Create one processor, call it master processor, to solve master problem. And send the

dual values to other processors, call them sub-processors.

• Every sub-processor solves one pricing problem PP(v, t) associated with a single node

v and a single time period t.

• If PP(v, t) get a negative reduced cost, then the sub-processor send the generated

configuration to master processor.
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The advantage of this strategy is the parallelization of pricing problems solving. It solves

PP for all the nodes and can get several new columns in one iteration. The drawback is that

all the PP(v, t)(v ∈ V , t is given) in a round are solved with the same set of dual values, if the

configuration which got by PP(v1, t1) can be updated into configuration set before PP(v2, t1)

is solving, with the parallel strategy, the dual values can not have much improvement. While

the dual values which computed by RMP with new set of configurations may help PP(v2, t1)

to get a better configuration.

Compared with the so-called ‘round robin’ strategy, this one will have slightly more num-

ber of rounds (when complete the whole procedure in ‘round robin’, then it calls a ‘round’

in parallel) and much larger memory requirements, but save a lot CPU time (more details in

Section 6.3).

5.2 Other Unexplored Strategies

Since there are some drawbacks for the parallel strategy we described above, it could be

improved. We thought about two different strategies which are explained below.

5.2.1 An Improved Serial Strategy

Different from the round robin strategy, here we select the node v that will contribute most

to the improvement for master problem, which means the reduced cost of PP(v, t) for a given

time period t is the most negative one based on the current set of dual variables. We can

expect that there will be less iterations for MP to get the optimal solution. However, it does

not change the stopping condition which is quite time consuming. We still need a complete

round (when such a round is activated) for all time periods with no negative reduced cost.

To overcome the drawback, we can use a large PP that embed all source nodes with

traffic. Instead of solving PP(v, t) for every v ∈ V , we generate new configuration by using

PP(t) which is response for finding the ’best’ node v and generate a configuration originating

on node v. The flowchart is shown in Fig. 5.2.
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Chapter 6

Numerical Results

The optimization models were implemented and tested on several data sets. We first describe

the experiment data sets in Section 6.1. Next, we present the numerical results of Model

4 (described in Section 4.5) in Section 6.2. The comparison for saving the problem with

parallel strategy and serial strategy is presented in Section 6.3.

6.1 Data Sets

In this section, we first describe the network we use and the location of data centers in this

network. Then we will introduce how we divided the network into different regions. The

traffic patterns is displayed next, and we will summarize the four data sets we used in our

experiments by a table at last.

6.1.1 Network and Location of Data Centers

We use a 24-node USA network with 43 no-direction links (as illustrated in Fig. 6.1 and

Fig. 6.2) , which will be divided into different regions, each with their own traffic pattern.

We have two different data center sets, and in each set there are 4 data centers.

• DC #1 : We assume the 4 data centers located in UT (node 7), NM(node 10), IL (node

11), MS (node 17) as illustrated in Fig. 6.1.
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Time Periods Region 1 Region 2 Region 3 Region 4

t1 4pm - 12am 12am - 8am 8am - 4pm 4pm - 12am

(37.94%) (13.64%) (48.41%) (37.94%)

t2 8am - 4pm 4pm - 12am 12am - 8am 8am - 4pm

(37.94%) (13.64%) (48.41%) (37.94%)

t3 12am - 8am 8am - 4pm 4pm - 12am 12am - 8am

(37.94%) (13.64%) (48.41%) (37.94%)

Table 6.5: Traffic distribution for each time period in each region with RS #2

Several sets of requests are generated with these three different traffic pattern. Each

request with different living time periods is randomly assigned to a node, which is the source

node of that request, so that the traffic volume based on each node at one time period is

random. However, the total traffic volume is considered varies from 50 to 200 units. In order

to make the data simpler and the results more comparable, we define the synchronization

factor δv = 0.1 for all node v. Also, there are only requests survive for at most 2 time periods,

and no one survive for all three time periods.

6.1.4 Data Sets

Finally, there are four test data sets generated, and Table 6.6 display the data centers, number

of regions and traffic pattern used in each data set.

data sets data centers regions traffic pattern

DS #1 DC #1 RS #1 Pattern #1

DS #2 DC #1 RS #1 Pattern #2

DS #3 DC #2 RS #2 Pattern #2

DS #4 DC #2 RS #2 Pattern #3

Table 6.6: Data centers, number of regions and traffic pattern used in each data set
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• DS #1 : Pattern #1 is used to generate requests for this data set. These requests will be

implemented on network which is divided into 3 regions with set of data center DC #1.

As shown in Table 6.7, in time period t1 of Region 1, 11% is the traffic only appears in

single time period, and 3% is the traffic go through two time periods. The two percentage

is based on the total traffic volume originating in Region 1.

• DS #2 : Traffic is generated based on Pattern #2. We use network divided into 3 regions

with DC #1. The traffic distribution in every time period in each region are illustrated in

Table 6.8. .

• DS #3 : The network used in this data set is different than the two above. We divided

the USA network with 4 regions and use DC #2. Requests are generated by considering

Pattern #2. The percentage of traffic distributed to each region in each time period is

shown in Table 6.9. .

• DS #4 : Network with RS #2 and DC #2 is used. Traffic pattern for this data set is

Pattern #3. Table 6.9 described the traffic volume for each time period in each region.

The number in the table can be read same way as Table 6.10.

Region 1 (33.33%) Region 2 (37.5%) Region 3 (29.17%)

t1 11% (t1) + 3% (t1-t2) 30% (t1) + 8% (t1-t2) 39% (t1) + 10% (t1-t2)

t2 30% (t2) + 8% (t2-t3) 39% (t2) + 10% (t2-t3) 11% (t2) + 3% (t2-t3)

t1 39% (t3) + 10% (t3-t1) 11% (t3) + 3% (t3-t1) 30% (t3) + 8% (t3-t1)

Table 6.7: Traffic distribution in DS #1 (e.g. in time period t1 of Region 1, 11% is the traffic

only appears in single time period, and 3% is the traffic go through two time periods.)

6.2 Results of Model 4 with Parallel Solution Strategy

In this section, we present the results for the four data sets we used, and do some analysis

based on these results. Section 6.2.1 shown the results for DS #1 and DS #2. The results

got from DS #3 and DS #4 is displayed in Section 6.2.2.
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Region 1 (33.33%) Region 2 (37.5%) Region 3 (29.17%)

t1 3% (t1) + 11% (t1-t2) 8% (t1) + 30% (t1-t2) 10% (t1) + 39% (t1-t2)

t2 8% (t2) + 30% (t2-t3) 10% (t2) + 39% (t2-t3) 3% (t2) + 11% (t2-t3)

t3 10% (t3) + 39% (t3-t1) 3% (t3) + 11% (t3-t1) 8% (t3) + 30% (t3-t1)

Table 6.8: Traffic distribution in DS #2

Region 1 (29.17%) Region 2 (16.67%) Region 3 (25%) Region 4 (29.17%)

t1 3% (t1) + 11% (t1-t2) 8% + 30% 10% + 39% 3% + 11%

t2 8% (t2) + 30% (t2-t3) 10% + 39% 3% + 11% 8% + 30%

t3 10% (t3) + 39% (t3-t1) 3% + 11% 8% + 30% 10% + 39%

Table 6.9: Traffic distribution in DS #3 (e.g. in time period t1 of Region 1, 11% is the traffic

only appears in single time period, and 3% is the traffic go through two time periods.)

6.2.1 Bandwidth Requirements with Time-varying Traffic

The relative change in bandwidth cost (i.e., the first summation of the optimization objective

(4.78)) for the various scenarios is shown in Fig. 6.4. From these numerical results, we learn

that the total bandwidth cost is reduced with average 5.1% (resp. 6.4%) for Scenario II (resp.

Scenario III) with traffic Pattern #1, and by 6.9% (resp. 8.2%) with Pattern #2 (where the

average is taken over all traffic instances). This net saving mainly stems from a reduction

of bandwidth for the backup paths, due to increased sharing: we noted that an average

reduction of the backup bandwidth cost with average 11.5% (resp. 13.4%) for Pattern #1

and 14.2% (resp. 16.3%) for Pattern #2, for Scenario II (resp. Scenario III). We verified

Region 1 (29.17%) Region 2 (16.67%) Region 3 (25%) Region 4 (29.17%)

t1 7% (t1)+7% (t1-t2) 19%+19% 24%+24% 7%+7%

t2 19% (t2)+19% (t2-t3) 24%+24% 7%+7% 19%+19%

t3 24% (t3)+24% (t3-t1) 7%+7% 19%+19% 24%+24%

Table 6.10: Traffic distribution in DS #4
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that these savings do not require all 2-period traffic requests to change their routing when

going from one period to the next, but only about half of them. Further, compared with

the results got from the single-time period model, these preliminary results suggest that the

cost advantage can be achieved by only changing the backup/synchronization paths when

we consider multiple time periods together (Scenario II): The advantage of allowing also

the working path to be changed is much smaller, which is just reversed in the results of

single-time period model.

Pattern #1, total Pattern #1, backup Pattern #1, sync Pattern #1, working

Pattern #2, total Pattern #2, backup Pattern #2, sync Pattern #2, working
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Fig. 6.4: Bandwidth Saving got from DS #1 and DS #2

From the results presented above, the observation is as follows:

• The reduction of bandwidth requirements is mainly depended on the saving of backup

paths.

• Compared with Scenario I, the bandwidth requirements on working paths are slightly

higher while the overall bandwidth requirements are less. When backup paths have the

freedom to change, the less optimal working paths will be chosen in order to achieve

better backup sharing.
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• When the working paths are allowed to be rerouted (Scenario III), the bandwidth saving

is better than the situation that only backup paths can be rerouted (Scenario II). But

the difference is not significant.

• Compared with Scenario I, the bandwidth saving is not more than 10% (in Scenario III,

even smaller for Scenario II) which is quite small.

6.2.2 More Experiments and Results

Since the results we got from DS #1 and DS #2 show that the saving is no more than 10%,

we try some “extreme ”cases with data centers which are almost in a line (see Fig. 6.2). The

data sets we used are DS #3 and DS #4.

Pattern #2, total Pattern #2, backup Pattern #2, sync Pattern #2, working
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Fig. 6.5: Bandwidth Saving got from DS #3 and DS #4
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From these numerical results illustrated in Fig. 6.5, we see the total bandwidth cost is

reduced up to 5.6% on average (resp. 6.9%) for Scenario II (resp. Scenario III) with traffic

DS #3, and by 6.8% (resp. 9%) with DS #4 (where the average is taken over all traffic

instances). The average reduction of the backup bandwidth cost is up to 11.8% (resp. 16.4%)

for DS #3 and 15.1% (resp. 18%) for DS #4, for Scenario II (resp. Scenario III).

The results are similar to what we got from DS #1 and DS #2, we didn’t see any obvious

improvement of bandwidth saving.

6.3 Comparison of Parallel Strategy and Serial Strat-

egy

In order to explain the advantage of using parallel strategy, we compare it with a serial

strategy (only solve one pricing problem for a single node each time). Here, if the pricing

problems for all nodes in every time period are solved once (PP(v, t), v ∈ V, t ∈ T ), we say

that a ”round” computation is completed. We compare the number of rounds cost by these

two strategy in Section 6.3.1. The CPU time comparison is presented in Section 6.3.2.

6.3.1 The Number of Rounds Cost by Parallel Strategy and Serial

Strategy

Fig. 6.6 and Fig. 6.7 are the comparison for experiments based on DS #3. The bandwidth

requirements for the first 5 rounds are listed in Table 6.11. The results for other traffic

pattern and scenarios are similar.

0 1 2 3 4 5

Parallel 1,650,000 248,852.9 190,711.5 179,291.75 169,220.63 165,277.88

Serial 1,650,000 240,106 183,014 170,407 164,256 163,102.19

Table 6.11: Bandwidth requirements for the first 5 rounds with DS #3

From the results, we can see that the bandwidth requirements decrease sharply in the

first 5 rounds, especially the first round. It is obviously, in one round, serial strategy can
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Fig. 6.6: Comparison of Number of Rounds in Parallel Strategy and Serial Strategy for the

First 5 Rounds with DS #3

get better improvement with bandwidth requirements. So that, in order to get the optimal

solution, parallel strategy need more rounds of computation (from the results, the difference

is approximately 10 rounds). However, the pricing problems in a round with serial strategy

is solved one by one, and with parallel strategy, all the PPs for different nodes can be solved

at same time.

6.3.2 Comparison of CPU Time

We compare the CPU time in parallel strategy and serial strategy with same data set used

in Section 6.3.1.

Fig. 6.8 shows the CPU time for each round. In each round, the CPU time for serial

strategy is approximately 19 times more than parallel strategy. The overall CPU time con-

sumption after each round of computation is illustrated in Fig. 6.9. After the RVNM problem

is completely solved, the overall CPU time cost by serial strategy is about 13.8 times more

than the parallel strategy.
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Fig. 6.7: Number of Rounds Comparison of Parallel Strategy and Serial Strategy (After the

5th Round) with DS #3

Most of time is used to solve master problems. There are no columns at the very beginning,

therefore master problem can be solved very quickly (do not need to choose any configurations

since the configuration set is empty). But after that, for parallel strategy, solving MP need

47 times more CPU time than PP on average. For serial strategy, the CPU time of MP are

computed by summing the time consumption for all iterations of MP in a round (same for

PP). The CPU time which spend on MP is about 53 times more than PP on average.

We can form these results by using parallel strategy, we need more processors to solve

the problem, but we could gain much CPU time saving. The saving is not only due to

parallelization of PP computation, also because the reduction of the number of iterations

that MP is being solved.

In this chapter, we presented the results that is got from several experiments for our

Model 4, and illustrated the comparison of parallel strategy and serial strategy, listed our

investigation. The conclusion will be summarized in next chapter.
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Fig. 6.8: CPU Time Cost by Each Round with DS #3
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Fig. 6.9: Overall CPU Time with DS #3
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Based on the results we got and the analysis of our model, we got several conclusions given

below:

• By using parallel strategy, we need more rounds to get the optimal solution compared

with the serial strategy. But we can gain much CPU time saving with the parallel

strategy. The overall saving is mainly cased by the reduction of the number of iterations

that MP is solved. If we look at the CPU time spent by PP, the results also indicate

that by using parallel strategy, solving PP is almost 14 times faster on average.

• By rerouting both backup and synchronization paths we could get more bandwidth

saving. However, by using present data instances, we only got around 10% bandwidth

saving when compared Scenario III and Scenario I. Eeven a little bit less when compare

Scenario I and Scenario II. This indicated that it is not really worth to reroute backup.

• No real need (at least not much from the results we got) to fix the ‘non’ accuracy of

Scenario II. The ‘non’ accuracy caused by the assumption we made for model 4. If

traffic increase 5 units from one time period to next which included 5 units dropped

and 10 units new. We force 5 units of the new traffic to use working paths assigned to

the dropped traffic, in other words, we consider there are only 5 units of new traffic.

Therefore, the results we got for scenario 2 could be slightly higher than the accuracy
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results. From the results shown in Chapter 6, we can see that the difference between

scenario 2 and 3 is only about 2-3% which is really small, and the accuracy results for

scenario 2 will make it even smaller. so it will not influence our conclusion : It is not

worth to reroute the working paths, since rerouting is costly and the benefit is limited.

7.2 Future Work

There are some work related to this thesis, we could leave them for further.

• Make an analysis of whether it’s worth to implement a model to optimize the number

of rerouting (model 3). Model 3 has the ability to distinguish dropped and new traffic,

and could lead to a accuracy result. Meanwhile, we could also optimize the number of

rerouted traffic. The problem of this model, as mentioned previously, is the linearization

of the master model. If we could find a efficient way to solve the linearization problem,

it maybe worth to implement this model.

• Better understanding of why we do not get more benefit. The results for Scenario II

and Scenario III show that we do not get much saving by rerouting. We could check out

the details of the results we got to analyze the reason, and figure out whether results

will be significantly effected by traffic pattern and DC location.

• Do experiments with real data. In this thesis, we generate test data by using the traffic

pattern recorded by a website. We could try some real data in the future to do further

research on this topic.
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