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Abstract

Towards the Design Automation of Quantum Circuits

Sidi Mohamed Beillahi

Quantum mechanics based computing systems are expected to have high capabilities

and are considered good candidates to replace classical cryptography and supercom-

puting systems. Among many implementations, quantum optics systems provide a

promising platform to implement universal quantum computers, since they link quan-

tum computation and quantum communication in the same framework. Recently, sev-

eral quantum gates, circuits, and protocols have been experimentally realized using

optics. Despite the fact that big advances in building the physical quantum computers

were achieved, there are no currently available industrial computer aided tools that

can perform the modeling, analysis, and verification of optical quantum computing

systems. In this thesis, we tackle the idea of design automation for quantum cir-

cuits, where we use a sound language, higher order logic, to model and reason about

quantum circuits formally. In particular, we propose a framework for the hierarchical

modeling and automated verification of quantum computing circuits. The modeling

approach captures quantum models built hierarchically from quantum gates, which

models are readily available in a library. The analysis and verification of composed

circuits is done seamlessly based on dedicated mathematical foundations formalized

in the theorem prover. Specifically, the tensor product and linear projection are used

to extract the quantum circuit outputs. Subsequently, a rich library of quantum gates

which includes 1-qubit, 2-qubit, and 3-qubit gates is formalized. In order to auto-

mate the analysis process, we developed a decision procedure to eliminate the need

of user guidance throughout the formal proofs. To demonstrate the effectiveness of
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the proposed framework, we conduct the formal analysis of a benchmark of quantum

circuits including the Shor’s integer factorization algorithm, the Grover’s oracle, and

the quantum full adder.
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Chapter 1

Introduction

1.1 Motivation

Quantum physics [16] was developed at the beginning of the twentieth century to

comprehend the fundamental forces of nature, in particular at microscopic scale. The

main difference between classical and quantum physics lies in the two principles of

superposition (i.e., an object could be in two places at the same time) and entan-

glement (i.e., two objects in remote locations without physical connection could be

instantaneously connected). Due to these principles, it has been proved that classical

machines cannot simulate quantum physics in polynomial times [11]. Accordingly,

scientists were working to develop new systems, namely quantum computers, which

employ quantum physics principles to increase the efficiency of the current comput-

ing and security systems. Throughout their research, quantum technologies showed

a good potential for providing solutions to several challenges such as secure commu-

nication, and most significantly faster computation.

Quantum computing [36] is a typical example of reversible computing which re-

quires that the output contains enough information to reconstruct the input, i.e., no

input information is erased, which also means no energy dissipation due to information

loss. On the other hand, traditional computing is characterized by energy dissipation

because it is logically irreversible. Beside energy saving, the class of problems that
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can be efficiently tackled by quantum computers includes several currently insolvable

problems by classical computers (e.g., integer factorization algorithm). Interestingly,

the integer factorization algorithm is crucial as it can be used to break cryptographic

codes that are widely employed in monetary transactions on the Internet [7].

Quantum optics [14] is considered as one of the rich and promising approaches

for realizing quantum machines. During the last two decades, research has shown

significant progress in linear optics for building quantum computers. For instance,

in [25], the authors have shown that it is possible to create a “universal” quantum

computer using only single photon sources, detectors, and linear optical elements

(e.g., beam splitter and phase shifter) [26]. However, like its peer approaches, optical

quantum computing suffers from several practical limitations such as: initialization

of quantum bits (i.e., two-state quantum systems), measurements, and decoherence

(i.e., unwanted interaction between a quantum system and its environment). Never-

theless, in this thesis we are focusing on quantum optics computing systems where the

quantum bits (qubits) are considered as single photons that can be in two different

optical modes (e.g., horizontal or vertical) which is called a dual-rail representation

[26].

Quantum circuits [36] are networks of quantum gates connected by wires. The

quantum gates represent quantum transformations while the wires represent the

qubits on which the gates act. The main difference between classical and quan-

tum gates is that quantum gates have the same number of inputs as outputs. In

general, a quantum circuit computation is randomized and the probabilities can be

negative. Quantum computing circuits like any other physical or engineering circuits

need Computer Aided Design (CAD) tools to facilitate their design and deployment

in real life applications. These CAD tools help in the realization of new designs

and evaluation of their efficiency without the need for expensive laboratory setups.

Generally, quantum circuits rely heavily on mathematical models of quantum physics

principles (i.e., infinite linear spaces), whereas, current languages and tools are based

on Boolean logic. Therefore, building tools that can model, synthesize, verify, and
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ensure the full functionalities of quantum circuits is as important as building the

physical quantum computer. Nowadays, many computer scientists are working to

develop algorithms which can exploit quantum features, including languages which

can be supported on quantum machines and tools that can verify and simulate the

functionalities of quantum machines.

Because quantum logic is mainly based on infinite linear spaces theory, they cannot

be handled by current CAD tools, which were conceived for the analysis of Boolean

based machines. Hence, we believe that there is a dire need of comprehensive and

expressive computer-aided design and verification tools for quantum systems that

cover both the mathematics and the principles of quantum physics. Formal methods

based techniques [54] allow for expressive and accurate analysis of reversible quantum

systems and have the potential to provide the necessary mathematical foundation.

The main idea behind formal methods is to construct a computer based mathematical

model of the given system. Higher-order-logic (HOL) theorem proving [19] is an effec-

tive formal methods approach to analyze physics and engineering systems, thanks to

its solid mathematics foundations, which fulfil the main requirement for the modeling

of quantum systems.

Recently, a comprehensive linear algebra library was formalized in the HOL Light

theorem prover [30]. Using this library, the author of [29] has formalized the notions

of quantum optics single mode and multi modes, beam splitter, and phase shifter.

Based on this work, our ultimate goal is to build the necessary tools to formally model

and verify quantum circuits composed using quantum gates that are built using only

optical components such as beam splitter and phase shifter, in a hierarchical fashion.

The first step towards this goal is to formally define in HOL the required mathe-

matics which are the notions of linear projection, tensor product, and tensor product

projection and to prove the associated properties. The second step is to apply this

mathematical formalization to formally model and verify a library of quantum gates

that is rich enough to model a variety of quantum circuits. This library includes

1-qubit, 2-qubit, and 3-qubit gates. Because of the underlying logic, HOL theorem
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proving is an interactive approach. The analysis of any quantum circuit within HOL

would require user guidance, which is tedious in particular for large circuits. There-

fore, the third step is to develop a decision procedure that fully automate the analysis

of any given quantum circuit that can be constructed using the existing gates library.

The developed automation procedure eliminates the need for user interaction with the

interactive HOL theorem prover. Finally, the last step is to demonstrate the utility

and the effectiveness of the previous steps through the analysis of several real world

quantum circuits.

1.2 Related Work

The field of quantum computing is one of the hottest in physics and computer science

as many researchers believe it is only a matter of time and intensified effort before

a large-scale quantum computer is built. Due to the tremendous amount of research

conducted in the field of quantum computing, scientists and engineers use different

approaches to build CAD tools to analyze the corresponding systems based on analyt-

ical and numerical models. In this section, we provide an overview of these techniques

and highlight their strengths and weaknesses. In particular, we can subdivide CAD

approaches related to quantum computing into three main categories: quantum cir-

cuits simulation and emulation, synthesis of quantum circuits, and formal verification

of quantum circuits.

1.2.1 Quantum Simulation and Emulation

Numerical simulations are used to study the behavior of engineering systems through

computer assisted calculation. Nowadays, numerical simulations are the most popu-

lar approach in CAD. However, due to the inherent quantum circuits complexities,

which rely on Hilbert spaces [40] and quantum principles, numerical simulations are

incomplete: the computation space increases exponentially with the size of the quan-

tum circuit. Nevertheless, a number of approaches have been persuaded to simulate
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quantum circuits using existing emulation and numerical simulation techniques. For

example, several methods and tools for numerical simulation have been proposed,

where the quantum gates are described as matrices and applied to quantum states

(described as vectors) using matrix-vector multiplication (e.g., [8, 51, 52]). In these

work, the simulations were performed at the gate level without modeling the physical

elements of the quantum gates. In fact quantum circuits are built using different el-

ementary physical devices, which in turn limit the ability of such tools to accurately

perform the analysis of these circuits. On the other hand, in [24] the authors used

an FPGA emulator for the emulation of quantum circuits, however, this approach is

limited by the size of the FPGA under consideration which constrains it to quantum

circuits with a limited number of qubits.

1.2.2 Quantum Synthesis

Motivated by the capacity of quantum computers, researchers and engineers started

to actively consider the logic synthesis of quantum circuits. In order to design scalable

quantum computers, automatic methods for computer-aided synthesis are required.

Accordingly, efficient quantum circuit synthesis became an active field of research in

design automation. Several approaches addressing quantum circuits synthesis have

been proposed, whether universally (i.e., synthesis with no restriction on the gates

types) [23, 48], exploiting synthesis methods for reversible circuits [15, 34, 47] or

using a fixed set of quantum gates such as the Clifford group (a set of quantum gates)

[37]. Another area of research in quantum circuits synthesis is the optimization of

the number of SWAP gates (i.e., a 2-qubit gate that switches the states of the two

inputs) inserted in a quantum circuit where the quantum gates are restricted to work

on adjacent qubits (nearest neighbor quantum circuits) [28, 53]. The drawback of

all the above approaches is that synthesis and optimization of the quantum circuits

is conducted at the behavioral level rather than the physical level of the elementary

gates design, which limits these work in finding the optimal design. For example, in

[15, 47], the Toffoli gate circuit was synthesized into five 2-qubit gates, however, it is
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possible to implement it in quantum optics using only three 2-qubit gates as shown in

[45], by utilizing the photons polarization structure of the qubits. In another related

work [22], the authors used model checking to formally synthesise quantum circuits

based on a fixed set of 1-qubit and 2-qubit gates. The authors have demonstrated

the optimized design for Toffoli and Fredkin gates, however, this remains valid only

when dealing with circuits at the behavioral level. Moreover, another work [17] using

formal techniques: Boolean satisability (SAT) and SAT modulo theory (SMT) for

the synthesis of Toffoli networks at the behavioral level. However, this work suffers

from the same limitation described earlier regarding the level at which the analysis

is conducted.

1.2.3 Quantum Formal Verification

Developing methods and tools for the formal modeling and verification for quan-

tum circuits is a promising subject in CAD research, since formal methods have rich

mathematics foundation and quantum circuits exhibit many mathematical notions

that need to be tackled. In [55], Binary Decision Diagrams (BDD) have been used

for the equivalence checking of reversible quantum circuits through the classification

of quantum circuits into two types: properly-quantum and non-properly-quantum.

A circuit is properly-quantum if it contains quantum gates that exploit superposi-

tion quantum, e.g., Hadamard gate. Thus, this limits significantly the underlying

technique to perform a generic modeling analysis of quantum circuits. In [13], the

CWB-NC model checker has been used to formally analyse quantum communication

protocols that are implemented as quantum circuits. The authors have verified the

quantum coin-flipping protocol. The proposed technique, however, can only be used

for protocols that are described as finite-state models. The focus of the work in [13]

is on quantum cryptography (i.e., the use of quantum mechanics to encrypt data)

not quantum computing which is the main target of our work. Another related work

in using formal methods is [3], in which the authors developed a special quantum

process calculus to model linear optical quantum systems. As an application, the
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authors modeled and verified the controlled-not gate. The main limitation of this

work is that the authors consider beam splitters parameters as real numbers, whereas

in the general context of quantum optics they can be complex numbers as in the case

of quantum interferometer [33]. So far, the proposed process calculus has not been

demonstrated on scalable quantum circuits.

Using the formalized linear algebra library in HOL Light theorem prover, in [31],

the authors conducted the formalization1 of the flip gate based on coherent states.

Then in [32], the authors formalized the optical beam splitter, phase shifter, Mach-

Zehnder interferometer and the controlled-not (CNOT) gate.

1.3 Proposed Methodology

The objective of this thesis is mainly targeted towards the development of a theorem

proving based automated analysis framework for quantum optics circuits that can

handle the modeling and analysis of real-world quantum circuits. In particular, we

propose to develop a framework in HOL Light characterizing:

• The ability to formally express the notions of measurement in quantum optics

(i.e., measurement of quantum circuits outputs) in a mathematical form.

• The ability to use the developed infrastructure to analyze different types of

optical quantum gates and circuits.

• The ability to formally model the quantum circuits in a systematic way with

no restriction on the number of quantum gates.

• The ability to perform the formal analysis of quantum circuits automatically

without the need for the user to guide the theorem prover.

1A system is considered as formalized if it is stated in a formal language, with enough detail that
a computer program (proof assistant or theorem prover) can mechanically verify properties of the
system and thereby certifying its correctness.
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The proposed framework, given in Figure 1.1, outlines the above mentioned char-

acteristics and the main idea about the automated formal design, modeling, and ver-

ification of quantum optical circuits within the sound core of HOL theorem proving.

The whole framework can be decomposed into three major parts. First, the mathe-

 

Decision Procedure 
HOL 

Theorem 
 

 

Quantum Gates Library 

Optics Elements:  
Phase Shifter and  

Beam Splitter 

Quantum 
Circuit 
Netlist 

Inputs 
Infinite Linear 
Spaces Theory 

Tensor Product 
Projection 

: Existing Libraries 

Figure 1.1: Modeling and Verification Methodology

matical foundation, where we have the main requirement to model quantum states in

multi-modes and the measurement of quantum states in single mode (i.e., quantum

state contains only one mode of light) and multi-modes (i.e., quantum state contains

several modes of light). In particular, we formalize the notions of tensor product pro-

jection and its associated properties using the existing formalization of infinite linear

spaces. Having the required mathematical tools to analyze any quantum system, the

second part of this thesis is to build a rich library of the most important quantum

gates which are built hierarchically from simple gates based on optical elements (i.e.,

beam splitter and phase shifter) to complicated gates that are composed of other

gates. The third part of the framework is to take a quantum circuit netlist and a set

of inputs and establish a HOL theorem for the outputs relations and success probabil-

ity (i.e., the probability at which the quantum circuit produces the correct outputs).

To facilitate the proof of the HOL theorem automatically without the need of user

guidance, we developed a decision procedure that automates the proof. Note that

the underlying framework can also be used to formally check if inputs and outputs

correspond to each other for a given quantum circuit.
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1.4 Thesis Contributions

The main contribution of this thesis is about the idea of applying HOL theorem prover

to handle the hierarchical analysis of optical quantum computing circuits. We develop

a formal framework on top of the trusted kernel of HOL Light theorem prover which

ultimately allows the precise analysis of quantum optics circuits. Furthermore, the

high expressiveness of HOL Light provides a suitable environment for dealing with all

kinds of mathematics and hence it is the proper tool to tackle the complete analysis

of optical quantum computing systems. Our proposed approach can be considered

as a complementary method to other state-of-the-art but less accurate and complete

techniques like numerical simulation and lab simulation based analysis. We list below

the main contributions of this thesis:

• The formalization of the basic notions of tensor product, linear projection and

tensor product projection.

• The formalization of a rich library of optical quantum gates that contains: 1-

qubit gates, 2-qubit gates, and 3-qubit gates.

• The development of an automated decision procedure to fully automate the

analysis process without the need for user interaction with the theorem prover.

• The formalization of several practical quantum applications including the quan-

tum full adder, Grover’s oracle, and Shor’s algorithm for factoring the number

15.

1.5 Thesis Outline

The rest of this thesis is organized as follows: In Chapter 2, we introduce some basic

concepts of quantum mechanics including the notions of quantum states, fock states,

and quantum operators. Afterward, we describe the tensor product to model quantum

states in multi-modes. We also present the field of quantum computing and the optics
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approach for implementing a quantum machine. Then, we provide an overview of the

HOL Light theorem prover along with some of its useful features. Finally, we describe

the formalization of the phase shifter and beam splitter which our work is based on.

In Chapter 3, we describe the formalization of tensor product and related prop-

erties such as bilinearity, tensor of zero, and tensor of tensor. We also present the

development of linear projection and its properties such as linearity, idempotent, and

self-adjoint. We then combine these two notions to formalize the tensor product pro-

jection and its properties such as: projection of tensor of tensor, and projection of

tensor of fock states.

In Chapter 4, we present the HOL formalization of quantum optical gates. In

particular, we describe the formal modeling and verification of the Hadamard, the

non-linear sign, and the flip gates, which are 1-qubit gates. Then, we present the

formalization of the controlled phase, the controlled not, and the SWAP gates which

are 2-qubit gates. Finally, we provide the formal modeling and verification of the

Toffoli sign, the Toffoli, and the Fredkin gates which are 3-qubit gates. In this chapter,

we highlight the usage of tensor product projection properties to obtain the expected

output of the non-linear sign and controlled phase gates. We also discuss a novel

design of the flip gate and how the Toffoli gate design can be optimized in terms of

the number of gates compared to existing models.

In Chapter 5, we present the automated verification of quantum circuits. In

particular, we demonstrate the process of verifying a quantum circuit through the

verification of the Shor’s integer factorization of the number 15 circuit. Then, we

present a decision procedure to fully automate the quantum circuits verification pro-

cess. We describe the idea behind the decision procedure and the lemmas for tensor

product folding and unfolding involved in the construction of the final tactics to be

used to perform the automatic analysis. In order to highlight the effectiveness and

the benefit of the proposed framework, we provide a detailed analysis of the quantum

full adder. Finally, we provide the result of the analysis for a number of benchmark

quantum circuits that were taken from the online library for quantum circuits [46].

10



This chapter also highlights the benefit of our approach of extracting the success

probabilities of the analyzed quantum circuits.

Finally, Chapter 6 concludes this thesis by providing some remarks about the

developed framework including a description of some challenging aspects of our work

and potential future research directions.
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Chapter 2

Preliminaries

In this chapter, we start by giving a preliminary overview on quantum mechanics

along with the tensor product. Then, we give an introduction about quantum com-

puting and quantum optics. Subsequently, we provide a brief overview of theorem

proving technique and HOL Light theorem prover. Finally, we present the existing

formalization of two important quantum optics elements, namely beam splitter and

phase shifter. The intent of this chapter is to introduce the basic theories along with

some notations of the theorem proving environment that we use in the rest of this

thesis.

2.1 Quantum Mechanics

Quantum mechanics can be described as the study of physics at very small length and

microscopic scales. In quantum theory, physical particles have wavelike properties and

their behaviors are governed by the Schrodinger equation [16]. Generally, quantum

mechanics is composed of many physics aspects such as: the quantum measurement,

Bell’s theorem, and wave-particle duality [16]. The two main mathematical objects

in quantum mechanics are wavefunctions and operators. The wavefunction describes

the system of interest (such as a spin or an electron); if the wavefunction is known,

it is possible to extract all properties of the system: The square of the wavefunction

12



gives the probability of finding the particle at that point. During the mathematical

analysis of quantum mechanics, a wavefunction is represented using the “ket” (i.e.,

|. . .〉) notation as follows:

fq is written as |q〉 or sometimes |fq〉 (1)

The complex conjugate of a wavefunction is written as a “bra” 〈. . .|:

(fq′)
∗ is written as 〈q′| (2)

Another rule is that if a bra appears on the left side and a ket on the right side,

integration over dτ is implied:

〈q′|q〉 implies

∫
(f ∗q′)fqdτ (3)

where the notation dτ is taken in quantum mechanics to mean integration over the full

range of all relevant variables. Mathematically, we call this notation the inner product

which is a multiplication operation that maps any pair of vectors of a linear complex

vector space into a number. A linear complex vector space in which an inner product is

defined, is called the Hilbert space. Traditionally, quantum mechanical operators and

wavefunctions can be represented as linear transformations and functions in Hilbert

space, respectively. In order to describe a multi-states quantum system, we use the

notion of tensor product in the next section.

2.2 Tensor Product

In this section, we give an overview of the tensor product of Hilbert spaces [40]. Given

two complex vector spaces V and W , then the complex vector space V ⊗W is called

the tensor product, whose elements are linear combinations of vectors of the form

v ⊗ w, with v ∈ V , w ∈ W . To generalize, suppose we have n vector spaces over C

(i.e., Vk, k ∈ [1, n]), then the tensor product V1 ⊗ V2 ⊗ ... ⊗ Vn is a new complex

vector space:

v1 ⊗ v2 ⊗ ...⊗ vn ∈ V1 ⊗ V2 ⊗ ...⊗ Vn when ∀k ∈ [1, n]. vk ∈ Vk. (4)
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Each tensor product is bilinear [40] and all elements of the tensor vector space V1 ⊗

V2 ⊗ ...⊗ Vn should satisfy the following properties of biltinearity:

1. If the vector vk is scaled by a complex scalar number, this is equivalent to scaling

the main vector.

v1 ⊗ ...⊗ (avk)⊗ ...⊗ vn = a(v1 ⊗ ...⊗ vk ⊗ ...⊗ vn), a ∈ C. (5)

2. If the vector vk is a superposition of two vectors, then the main vector is also a

superposition.

v1 ⊗ ...⊗ (vk1 + vk2)⊗ ...⊗ vn = v1 ⊗ ...⊗ vk1 ⊗ ...⊗ vn + v1 ⊗ ...⊗ vk2 ⊗ ...⊗ vn.

(6)

The main usage of tensor product is to describe multi-states quantum system [1].

For example, given a 2-particle quantum system where v ∈ V and w ∈ W describe the

state for the first and second particles, respectively, then the element v⊗w ∈ V ⊗W

describes the joint states of the two particles. The element v1 ⊗ v2 ⊗ ... ⊗ vn is a

vector in a tensor vector space V1 ⊗ V2 ⊗ ... ⊗ Vn that represents the description of

the quantum states of the system of n single particles. Moreover, for a multi-particle

quantum system, the operators are also tensor products of single state operators.

For example, for n operators applied on a quantum state of n particles, we have the

following formulas:

(â†1 ⊗ â
†
2 ⊗ ...⊗ â†n) (|ψ〉1 ⊗ |ψ〉2 ⊗ ...⊗ |ψ〉n) = â†1 |ψ〉1 ⊗ â

†
2 |ψ〉2 ⊗ ...⊗ â

†
n |ψ〉n (7)

Furthermore, the tensor product of linear operators is also multi-linear and satisfies

Equations 5 and 6.

2.3 Quantum Computing

The observation that certain quantum mechanical effects cannot be simulated effi-

ciently on a classical computer leads to thinking that quantum based computation can

be more efficient than the classical computation. This speculation was justified when a
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polynomial time quantum algorithm for factoring integers was developed. Since then,

a tremendous amount of research has been conducted on quantum information hop-

ing to solve some problems that cannot efficiently be solved by classical algorithms.

In quantum systems, the computational space (the size of Hilbert space) increases

exponentially with the size of the system which enables exponential parallelism. This

parallelism can lead to exponentially faster quantum algorithms than possible with

current machines. However, accessing the results, which requires measurements that

may destroy the information, requires new non-traditional programming techniques.

The main element of quantum computer is a quantum bit (qubit), which is a

unit vector in a two dimensional complex vector space for which a particular basis,

denoted by |0〉 , |1〉, has been fixed. In one of the realizations of quantum systems, the

orthonormal basis |0〉 and |1〉 correspond to the |↑〉 and |→〉 polarizations of a photon,

respectively. Generally, all measurements in two dimensional quantum systems are

made with respect to the standard basis for quantum computation, |0〉 , |1〉. For the

purposes of quantum computation, the basis states |0〉 and |1〉 are used to represent

the classical logic bit values 0 and 1, respectively. Unlike classical bits, however,

qubits can be in a superposition of |0〉 and |1〉 such as:

a |0〉+ b |1〉 , where a, b ∈ C and such that |a|2 + |b|2 = 1. (8)

Furthermore, the probability that the measured value is |0〉 is |a|2 and the probability

that the measured value is |1〉 is |b|2. In quantum computation, the resulting state

space for a system of n qubits is a space of 2n, however, in classical computation

the possible states of a system of n bits, form a vector space of 2n dimensions.

This demonstrates the exponential speed-up of computation on quantum computers

over classical computers. In quantum computing, the states of qubits are combined

using the tensor product. For example, the state space for two qubits, each with

basis |0〉 , |1〉, has basis |0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉 which can be written

more compactly as |00〉 , |01〉 , |10〉 , |11〉. More generally, an n-qubit system has 2n

basis vectors. On the other hand, the states which cannot be decomposed into their

individual components are called entangled states. These states represent situations
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that have no classical counterpart, and for which we have no intuition. The state

|00〉 + |11〉 is an example of a quantum state that cannot be described in terms

of the state of each of its components separately. In other words, we cannot find

a1, a2, b1, and b2 such that (a1 |0〉 + b1 |1〉) ⊗ (a2 |0〉 + b2 |1〉) = |00〉 + |11〉 since

(a1 |0〉 + b1 |1〉)⊗ (a2 |0〉 + b2 |1〉) = a1a2 |00〉 + a1b2 |01〉 + b1a2 |10〉 + b1b2 |11〉 and

a1b2 = 0 implies that either a1a2 = 0 or b1b2 = 0. Note that it would require vast

resources to simulate even a small quantum system on traditional computers.

2.4 Quantum Optics

Quantum optics is considered as one of the rich and promising approaches under

investigation for realizing quantum computers [25, 42]. This is because, photons

decohere slowly, photons can move quickly (at the speed of light), and photons can be

experimented with at room temperature. For quantum optics, the state of a quantum

system is a probability density function which provides the probability of the number

of photons inside the optical beam, typically written as |ψ〉. The corresponding linear

Hilbert space is the space of square integrable functions and the inner product is the

complex Lebesgue integral. The two main quantum optics operators are: annihilation

operator (annihilator) and creation operator (creator) for photons. Because, they

lower and increase the photon count by 1, respectively. The two operators satisfy

the Boson commutation relation: [âj, â
†
j] = 1. Another quantum optics operator

is the number operator: n̂j = â†j âj. The most elementary optical quantum states,

namely fock states which are pure states (means that they cannot be modeled by

other states). The fock state |n〉j describes the number of photons in a mode j, also

they are eigenstates of the number operator n̂j, i.e., n̂j |n〉j = nj |n〉j with integer

eigenvalues. The set of fock states represents an orthonormal basis for the linear

functional space. Therefore any quantum state |ψ〉 of a given mode is a superposition

of fock states, i.e., |ψ〉 ≡
∑

n ψn |n〉. The main operators which act on fock states are
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the annihilation and creation operators:

âj |n〉j =
√
n |n− 1〉j and â

†
j |n〉j =

√
n+ 1 |n+ 1〉j , respectively. (9)

For the case of a quantum state |Ψ〉 where there are N single modes |ψ〉j (|ψ〉j can

be independent from each other or entangled between each other), the state |Ψ〉 is

described as the tensor product of the states |ψ〉j:

|Ψ〉 ≡
N⊗
j=1

|ψ〉j = |ψ〉1 ⊗ |ψ〉2 ⊗ . . .⊗ |ψ〉N (10)

In optical quantum computing systems the qubit is usually taken as a single photon

that can be in two different modes of polarization, |0〉L = |1〉
⊗
|0〉 ≡ |1, 0〉 and

|1〉L = |0〉
⊗
|1〉 ≡ |0, 1〉 which is called dual rail. When the two modes represent the

internal polarization degree of freedom of the photon (|0〉L = |H〉 and |1〉L = |V 〉),

we call it a polarization qubit. In [25], the authors showed that given single photon

sources and single-photon detectors, linear optics alone would suffice to implement

efficient quantum computation. Moreover, most existing universal quantum gate

architectures are built using only linear-optical networks, a linear optical element is

such that the mode transformation under evolution, U can be described by matrices

u and v, which transform the modes linearly, such that, â†j →
∑

k ukj â
†
k + vkj âk. The

most widely employed linear optics elements are beam splitters and phase shifters.

2.4.1 Phase Shifter

An important optical component is the single-mode phase shifter which provides a

phase shift in a given mode: âo1 = eiθâi1 [14]. A phase shifter Pθ (θ is the angle of the

phase shifter) is a passive linear optical element with Hamiltonian: HPθ(θ) = θâ†â.

Thus, the Hamiltonian is proportional to the number operator, which means that

the photon number is conserved. Phase shifter transformation is associated with a

unitary operator described by: U(Pθ) = eiφ. Physically, a phase shifter is a slab of

transparent material with an index of refraction that is different from that of free

space.
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2.4.2 Beam Splitter

Beam splitter [14] is a two mode passive linear optical element that consists of a semi

reflective mirror: when a light beam falls on the mirror, a part will be reflected and

a part will be transmitted. Beam splitters are central components in linear optical

quantum computing systems. Mathematically, a beam splitter has two parameters

θ and ϕ, where cos θ and sin θ are the probability amplitudes and ϕ is the relative

phase. Let the two incoming modes on either side of the beam splitter be denoted

by ai1 and ai2 and the outgoing modes by ao1 and ao2, as shown in Figure 2.1. Its

transformation is then:

 â†o1

â†o2

 =

 cos θ ie−iϕ sin θ

ieiϕ sin θ cos θ

 â†i1

â†i2


The Hamiltonian HBS of the beam-splitter transformation is given as: HBS =

θeiϕâ†i1âi2 + θe−iϕâi1â
†
i2. Since the Hamiltonian operator HBS commutes with the to-

tal number operators [HBS, n̂] = 0, then the photon number is conserved in the beam

splitter. The commonly used beam splitter is the one of relative phase ϕ = 0.

o2 

i1 

i2 

o1 

η 

Figure 2.1: Schematics of Beam Splitter

2.4.3 Quantum Gates

Many universal quantum gates have been implemented using linear optics elements:

such as the above described phase shifter and beam splitter. These include 1-qubit

gates such as the Hadamard, Flip, and Non-linear sign gates; 2-qubit gates such as the

controlled-phase (CZ) and controlled-not (CNOT) gates which are constructed using
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Non-linear sign (NS) gates [26]; and 3-qubit gates such as the Toffoli and Fredkin

gates which can be constructed using CZ, Hadamard, and Flip gates. Therefore,

quantum linear optics does indeed maintain DiVincenzo’s fourth criteria for building

scalable quantum computing machines [26]. Although most existing implementations

of quantum gates in linear optics are probabilistics, it has been proposed to use

teleportation to improve the efficiency to become deterministic (near-deterministic)

by teleporting the successful gate outputs [26].

2.5 Theorem Proving

High-order logic (HOL) is a mathematical logic language which encompasses the no-

tions of quantification over functions, and functions defined on functions. Hence, this

gives HOL an advantage over the other types of mathematical logic (i.e., propositional

logic, first-order logic, and second-order logic). HOL is employed for the reasoning

about systems as mathematical objects in order to prove properties about them.

There exist several HOL based theorem provers, the most popular are Isabelle/HOL

[38], Coq [10], HOL4 [50], HOL Light [20] and PVS [39].

The work proposed in this thesis is conducted within HOL Light because it pro-

vides rich multivariate analysis libraries [21]. HOL Light has been employed to verify

generic properties of a wide class of software, hardware and physical systems as well as

a platform for the formalization of pure mathematical theorems. HOL Light is written

in the functional programming language Objective CAML (OCaml) [20]. The main

components of the logical kernel of HOL Light are: types, terms, theorems, rules of

inference, and axioms. Proofs in HOL Light are based on the concepts of tactics and

tacticals that break goals into simple subgoals. There are many automatic proof and

decision procedures available in HOL Light which help the user in directing the proof

to the end [20]. In this thesis, we make use of the HOL Light theories of complex

numbers, transcendental functions, functional spaces, and multivariate analysis. In

fact, one of the primary motivations of selecting the HOL Light theorem prover for
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our work was to benefit from these built-in mathematical theories. In Table 2.1, we

provide the mathematical interpretations of some HOL Light notations that will be

used in this thesis. In the following, we provide a couple of examples to illustrate

how definitions and theorems are written in HOL Light:

We define a function f min that takes two real values as parameters and returns

the minimum one, the corresponding HOL expression of such a function is as follows:

` f min⇐⇒ (λ (x : real) (y : real). if x ≥ y then y else x) (11)

The if statement is part of the HOL Light which allows to choose between two alter-

natives according to a given condition. f min x y returns the minimum of the given

parameters x and y. The type of f min is real→ real→ real.

Another way to define in HOL Light is by using a predicate which accepts an

integer parameter and returns true if this integer is even and false otherwise:

` is even (n : num)⇐⇒ (if (n rem 2 = 0) then T else F) (12)

Here, we are using the equivalence symbol⇐⇒ to define is even since it is a predicate

(i.e., the return value is Boolean) not a function (can return any type). Thus, the

type of is even is int→ bool. Also, we use the predefined HOL Light function

rem which returns the remainder of integer division. The fashion of the underlying

definition is mostly employ when the concrete implementation of a function is not

available but rather its specifications.

2.6 Formalization of Quantum Optics Elements

In this section, we present the formalization of beam splitter and phase shifter (cf.

Section 2.4), which have been developed in [29].

2.6.1 Phase Shifter

The annihilator and creator operators for the input and output of the phase shifter

transformation are related as: âo1 = eiθâi1 and â†o1 = e−iθâ†i1, respectively. Hence, the
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Table 2.1: HOL Light Symbols and Functions

HOL Symbol Standard Symbol Meaning

/\ and Logical and
\/ or Logical or
∼ not Logical negation
T true Logical true value
F false Logical false value

==> −→ Implication
<=> = Equality
λx.t λx.t Function that maps x to t(x)
num {0, 1, 2, . . .} Positive Integers data type
real All Real numbers Real data type

complex All complex numbers Complex data type
A:real A : R Specify type operator
suc n (n+ 1) Successor of natural number
abs x |x| Absolute function

&a N→ R Typecasting from Integers to Reals
Cx a R→ C Typecasting from Reals to Complexes

[a; b; ..] [a; b; ..] Lists
{x|P(x)} {x|P (x)} Set of all x such that P (x)

lambda x. v x λ x. v x Vectors lambda
λ λ Lambda abstraction (required for functions definition)
x$i x(i) Vector indexing operator

x pow n xn Real and complex power
a % V a . V Scalar multiplication
-- - Arithmetic negation
** * Operator multiplication

A→ B A→ B Domain to Codomain
f o g f o g Function composition

let var = exp1 in exp2 (var) exp2 (exp1) exp1 is evaluated first then exp2 is evaluated with var
bound to the value produced by the evaluation of exp1

phase shifter transformation is formally defined in HOL as follows [29]:

Definition 2.1 (Phase Shifter).

` phase shifter(ten, θ, i1, m1, o1, m2)⇐⇒

1 (is sm i1) ∧ (is sm o1) ∧ (w i1 = w o1) ∧ (vac i1 = vac o1) ∧

2 (pos ten (cr i1) m1 = e(−j∗θ) % pos ten (cr o1) m2) ∧

3 (pos ten (anh i1) m1 = e(j∗θ) % pos ten (anh o1) m2)

where ten is the tensor product operator and pos is used to position a given oper-

ator in a specific mode (based on its order in the input vector) and leave the other

modes with the identity operator. anh x and cr x designate the annihilator and cre-

ator operators for the mode x, respectively. i1 and o1 are the input and output,
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respectively. Notice that the formal definition of the phase shifter relates the input

operators (anh i1 and cr i1) in terms of the output operators (anh o1 and cr o1),

see Lines 2 and 3. In Line 1, the parameters {m1, m2} define the order of each mode

in the input vector. Line 1 ensures that the two modes (input and output) are proper

optical single modes, and working with the same frequency and vacuum state (i.e.,

the state of zero photons).

2.6.2 Beam Splitter

The beam splitter transformation described in Section 2.4.2 can be formally defined

in HOL as follows [29]:

Definition 2.2 (Beam Splitter).

` is beam splitter (p1, p2, p3, p4, ten, i1, m1, i2, m2, o1, m3, o2, m4)⇐⇒

1 (is sm i1) ∧ (is sm i2) ∧ (is sm o1) ∧ (is sm o2)∧

2 (w i1 = w i2) ∧ (w i2 = w o1) ∧ (w o1 = w o2) ∧

3 (vac i1 = vac i2) ∧ (vac i2 = vac o1) ∧ (vac o1 = vac o2) ∧

4 (pos ten (anh i1) m1 = p1 % pos ten (anh o1) m3 + p2 % pos ten (anh o2) m4) ∧

5 (pos ten (anh i2) m2 = p3 % pos ten (anh o1) m3 + p4 % pos ten (anh o2) m4) ∧

6 (pos ten (cr i1) m1 = p1∗ % pos ten (cr o1) m3 + p2∗ % pos ten (cr o2) m4) ∧

7 (pos ten (cr i2) m2 = p3∗ % pos ten (cr o1) m3 + p4∗ % pos ten (cr o2) m4)

where i1, i2 and o1, o2 represent the beam splitter inputs and outputs modes, re-

spectively. m1 and m2 (resp. m3 and m4) represent the order of the two beam splitter

input (resp. output) modes within the inputs (resp. outputs) vector. Similar to the

phase shifter, the formal definition of the beam splitter relates the inputs annihilator

and creator operators in terms of the outputs annihilator and creator operators (see

Lines 4, 5, 6, and 7). The parameters {p1,p2,p3,p4} are the inverse of the beam

splitter matrix. Lines 1, 2, and 3 ensure that the four modes are proper single modes,

and working with the same frequency and vacuum state.
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Chapter 3

Formalization of Tensor Product

Projection

In Chapter 2, we gave an introduction to quantum theory that shows the importance

of tensor product for the analysis of quantum states in multi-modes. This chapter

covers in detail the higher-order formalization of the tensor product along with linear

projection. In the last part of this chapter, we combine the tensor product and linear

projection to obtain the tensor product projection. In our formalization, we are

building on top of a linear algebra library [30] which is available as part of the HOL

Light libraries [18]. We chose this library as it provides the theory of Hilbert-spaces

and the main theorems required for our formalization. Note that Hilbert-spaces are

the primary resource for modeling quantum systems.

Infinite Linear 
Spaces Theory 

Tensor Product 
Projection 

Linear 
Projection 

Tensor 
Product 

: Existing Libraries 

Figure 3.1: Mathematical Foundation
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Figure 3.1 shows the main components of the mathematical foundation we de-

velop in this chapter, including tensor product, linear projection, and tensor product

projection. For each one we prove the associated properties such as: linearity and

self-adjoint for projection, bilinearity and tensor of tensor for tensor product, and

projection of tensor of tensor for tensor product projection. Notice that this mathe-

matical foundation is built over the HOL Light library for infinite linear spaces [29].

3.1 Formalization of Tensor Products

Given the quantum states |ψ〉1 . . . |ψ〉n of n optical beams, the function that describes

the joint probability of the n beams is then the point-wise multiplication of all the

states. Hence, we define the tensor product for an n-beam quantum state as follows:

λ y1 . . . yn. (|ψ〉1 ⊗ . . . ⊗ |ψ〉n)(y1 . . . yn) = |ψ〉1 y1 ∗ . . . ∗ |ψ〉n yn. Thus, we formally

define the tensor product for n optical beams in HOL, recursively, as follows:

Definition 3.1 (Tensor Product).

` tensor 0 mode = (λy. 1) ∧

tensor n + 1 mode = (λy. ((tensor n mode) y) ∗ (mode$(n + 1) y$(n + 1)))

where mode is a vector of size n that contains n modes. The basic case of zero mode

n = 0 is a trivial case; it is a constant function (i.e., y =⇒ 1) and it guarantees a

terminating definition. Mathematically, to validate that the underlying tensor prod-

uct is well defined, we should prove the bi-linearity property. Therefore, the defined

tensor should satisfy the following two properties of bi-linearity:

Theorem 3.1 (Tensor Product: Bi-Linearity).

` n + 1 ≤ dimindex (: N) ∧ k ≤ n + 1 ∧ 0 < k ∧ mode$k = a % x =⇒

tensor n + 1 mode = a % tensor n + 1 (λi. if i = k then x else mode$i)

` n + 1 ≤ dimindex (: N) ∧ k ≤ n + 1 ∧ 0 < k ∧ mode$k = x1 + x2 =⇒

tensor n + 1 mode = tensor n + 1 (λi. if i = k then x1 else mode$i)

+ tensor n + 1 (λi. if i = k then x2 else mode$i)
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where dimindex (: N) returns the size of the set {1 · · · N}. Notice that the number of

modes is n + 1 as this property does not hold for n = 0, where the tensor product

is the constant functions (not linear). The two assumptions k ≤ n + 1 and 0 < k

ensure that the element k is indeed part of the tensor. The assumption mode$k =

a % x (mode$k = x1 + x2) ensures that the element can be written in the form of

multiplication of scalar and vector (summation of two vectors). With the previous two

theorems we have verified that our definition is indeed a tensor product. The proof

steps for the two theorems are based on using induction where the base case is trivial

and in the inductive step we use the lemma k ≤ n + 2⇐⇒ (k ≤ n + 1 ∨ k = n + 2)

then using the induction hypothesis for the first case and the definition of tensor

product for the second case. With these properties of bi-linearity, we have validated

our tensor product definition.

An important property for the manipulation of tensor product in quantum physics

is when we have a tensor product constructed out of two elementary tensors. In this

case, this property states that a tensor v1 ⊗ ...⊗ vm ⊗ u1 ⊗ ...⊗ un can be written in

the form (v1 ⊗ ...⊗ vm)⊗ (u1 ⊗ ...⊗ un).

Theorem 3.2 (Tensor Product: Multiplication (1/2)).

` m + n ≤ dimindex (: N) =⇒ tensor m + n mode =

(λy. ((tensor m mode) y) ∗ (tensor n (λi. mode$(i + m))) (λi. y$(i + m)))

Here, tensor m mode and tensor n (λi. mode$(i + m)) represent the elementary ten-

sors (v1⊗...⊗vm) and (u1⊗...⊗un), respectively. As an example of this property utility,

suppose that one of the elementary tensors goes through a quantum transformation

alone, using this theorem we can isolate the elementary tensor under consideration

and substitute it by the result of the transformation without modifying the state of

the second elementary tensor. Furthermore, in order to return back to the initial

main tensor we use the following property:

25



Theorem 3.3 (Tensor Product: Multiplication (2/2)).

` m + n ≤ dimindex (: N) =⇒

(λy. ((tensor m mode1) y) ∗ (tensor n mode2 (λi. y$(i + m))) =

tensor (m + n) (λ i. if(i ≤ m) then mode1$i else mode2$i)

An important property of tensor product which is very useful for orthogonal pro-

jection is that v1 ⊗ ...⊗ 0⊗ ...⊗ vn = 0, which is given in HOL as:

Theorem 3.4 (Tensor Product: Zero Element).

` n + 1 ≤ dimindex (: N) ∧ mode$k = |0〉 ∧ 0 < k ∧ k ≤ n + 1 =⇒

tensor n + 1 mode = |0〉

The proof of this theorem is done using the induction on the size of the tensor

product (i.e., n). Finally, we provide an important property in the process of unfolding

and folding of the tensor product as follows:

Theorem 3.5 (Tensor Product: Rewriting).

` n ≤ dimindex (: N) =⇒

tensor n mode = tensor n (λ i. if(1 ≤ i ∧ i ≤ n) then mode$i else g i)

where g can be any vector as it has no effect in the analysis and its role is only to

have valid if, else expression. In the next section, we describe the linear projection

and provide some of its important properties.

3.2 Formalization of Linear Projection

In linear algebra, a projection is a linear transformation p from a vector space to itself

that maintains the idempotent property; p2 = p. In the quantum context, a pure

state associated with a state vector |ψ〉 ∈ H from a Hilbert space H, the projection

over this state is given by p = |ψ〉 〈ψ|, which is a self-adjoint linear projection. In

particular, for a quantum circuit design, the expected circuit output is the projection

of all possible outputs over the appropriate fock states. For example, let us consider
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the state |φ〉 = 1
3
|n〉 + 1

3
|n− 1〉 + 1

3
|n+ 1〉 which is a mixture of three fock states,

and the projection pn = |n〉 〈n| over fock state. The result of the projection of |φ〉 is

pn(|φ〉) = |n〉 〈n| (1
3
|n〉 + 1

3
|n− 1〉 + 1

3
|n+ 1〉) = 1

3
|n〉, because the fock states form

an orthonormal basis (i.e., 〈n|n〉 = 1 and 〈n|m〉 = 0 for m 6= n). Therefore, we define

the projection on fock states as follows:

Definition 3.2 (Linear Projection).

` ∀ x. (proj |n〉sm) x = 〈nsm|x〉 % |n〉sm

where proj |n〉sm is the quantum linear projection over the fock state and accepts

as parameter x. A quantum linear projection should meet the three mathematical

requirements which are linearity, idempotent, and self-adjoint properties. We have

formally proven these properties in HOL Light. The HOL theorem for the linearity

property of the projection is as follows:

Theorem 3.6 (Projection: Linearity).

` is sm sm =⇒ (∀ x y a. x, y ∈ sq integrable =⇒

(proj |n〉sm) (x + y) = (proj |n〉sm) x + (proj |n〉sm) y ∧

(proj |n〉sm) (a%x) = a% ((proj |n〉sm) x))

where the assumption is sm sm is to maintain that the beam sm is indeed a quantum

single mode beam and that it meets all the requirements [29]. Here sq integrable

is the linear inner product space formed by the square integrable functions space

and Lebesgue integral. The proof of this theorem is based on the linearity of inner

product. In what follows, we show the projection idempotent property:

Theorem 3.7 (Projection: Idempotent).

` is sm sm =⇒ ∀x. (proj |n〉sm) ((proj |n〉sm) x) = (proj |n〉sm) x

where (proj |n〉sm) ((proj |n〉sm) x) is the application of the projection proj |n〉sm
twice on x. The proof of this theorem is based on the conjugate (i.e., 〈x|y〉 = 〈y|x〉∗)

and linearity of inner product. Next, we show the property of the self-adjoint for the

projection operator (i.e., 〈p(u)|v〉 = 〈u|p(v)〉):
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Theorem 3.8 (Projection: Self-Adjoint).

` is sm sm =⇒ (∀ x y. x, y ∈ sq integrable =⇒

r inprod x (proj |n〉sm y) = r inprod (proj |n〉sm x) y

The proof of this theorem is based on the conjugate (i.e., 〈x|y〉 = 〈y|x〉∗) and linearity

of inner product.

3.3 Formalization of Tensor Product Projection

In this section, we combine the tensor product for multi-mode and linear projection

for single-mode together to obtain the tensor product projection, or in other words

the multi-mode projection. In some realization of quantum optics, the quantum gates

are implemented using ancilla resources which are extra qubits that have a secondary

role in a computation and are used for detecting the correct output [26]. During

the design process of a quantum circuit, the state of the ancilla is measured after

it leaves the circuit using a detector. The correct output is known to have been

produced whenever the detector registers the expected ancilla. In our formalization,

we implement the design process of detecting the expected ancillas in the output

ports of a quantum circuit as the tensor product projection of the circuit outputs. By

doing this, we eliminate the undesirable outputs and keep only the “correct” ones.

In addition, we obtain the projected state multiplied by a scalar value which is the

success probability of the circuit, or the probability in which we detect the expected

ancilla. To the best of our knowledge, this is the first time tensor product projection

is used as a mathematical analysis tool for quantum optics detection. We define the

projection of multi-mode over multi-mode as follows:

Definition 3.3 (Tensor Projection).

` is tensor proj m proj ⇐⇒ ∀ mode1 mode2 n.

is linear cop (m proj (tensor n mode1)) ∧

m proj (tensor n mode1) (tensor n mode2) =

tensor n (λi. ((proj mode1$i) mode2$i))
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where m proj tensor n mode1 is a linear projection operator defined over the multi-

mode state tensor n mode1, and takes as parameter tensor n mode2 which is the

projected multi-mode state. The projection produces the state:

tensor n (λ i. ((proj (mode1$i)) (mode2$i))) which is the tensor of the projection

of each single-mode state. The function is linear cop op ensures that the operator

op is indeed a linear operator. Using this definition, we prove a crucial property in

the analysis of quantum circuits, which states that (p1 ⊗ ... ⊗ pn)(u1 ⊗ ... ⊗ un) =

p1(u1)⊗ ...⊗ pn(un):

Theorem 3.9 (Tensor Projection: Multiplication).

` is tensor proj m proj ∧ 1 ≤ n =⇒

(m proj tensor m + n mode1) tensor m + n mode2 =

(λy. ((m proj tensor m mode1) tensor m mode2) y ∗

(m proj tensor n (λi.mode1$(i + m)) tensor n (λi.mode2$(i + m))) (λi.y$(i + m)))

The verification of this theorem is based on Theorem 3.2. This property is very

useful when projecting multi-mode state which is applied to parallel quantum gates

as the case for the controlled-phase gate (see Figure 4.5 where the multi-mode state

|b$1, b$2, b$3, d$1, d$2, d$3〉 is fed to the two parallel NS gates). Using the tensor

product lemma v1 ⊗ ...⊗ 0⊗ ...⊗ vn = 0, we prove the following property:

Theorem 3.10 (Tensor Projection: Fock States).

` is tensor proj m proj ∧ 0 < k ∧ mode1$k = |m1〉sm ∧ mode2$k = |m2〉sm ∧

m1 6= m2 ∧ is sm sm ∧ k ≤ n + 1 =⇒

(m proj tensor n + 1 mode1) tensor n + 1 mode2 = 0

This theorem is very important for the measurement of photons as it indicates that

for two multi-mode states, where in the first state, the single mode k contains the

fock state |m1〉 (i.e., |mode1$1, · · · ,m1, · · · ,mode1$n〉) and in the second state, the

single mode k contains the fock state |m2〉 (i.e., |mode2$1, · · · ,m2, · · · ,mode2$n〉).

If m1 and m2 are different (m1 and m2 describe the number of photons in each fock
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state), then the projection of the first multi-mode state over the other is zero (the

zero constant function).

3.4 Summary

In this chapter, we have covered the required mathematical tools for dealing with

the modeling, verification and analysis of optical quantum gates and circuits. In par-

ticular, we have covered the notions of tensor product, linear projection, and tensor

product projection and have proved several important theorems related to these three

mathematical notions. To the best of our knowledge this is the first time a systematic

formalization of tensor product, linear projection, and tensor product projection is

tackled in the context of quantum optics circuits analysis. In addition, our mathe-

matics formalization is general and can be used in other quantum circuits analysis.

In the following chapter, we will utilize the developed mathematical foundation to

formalize a variety of quantum gates.

30



Chapter 4

Quantum Gates Library

In this chapter, we build upon the mathematical foundation described in the previous

chapter to formally model a set of nine quantum gates that includes 1-qubit, 2-qubit,

and 3-qubit gates. The gates library includes a new implementation of the flip gate

based on a single photon source. Another interesting gate is the Toffoli sign gate

which is taken from [45] and has three inputs, where one input is qutrit (i.e., has

three quantum states) and the rest are qubits. This makes it impossible to model the

Toffoli sign using existing tools because of their Boolean foundation (i.e., compatible

with only two states entity). Based on the Toffoli sign gate we can model an optimal

implementation of the Toffoli gate.

1-Qubit Gates: 
Hadamard, Flip and NS 

3-Qubit Gates:  
Toffoli Sign, Toffoli and 

Fredkin 

Quantum Gates Library: 

Optics Elements:  
Phase Shifter and  

Beam Splitter 

2-Qubit Gates:  
CZ, CNOT and SWAP 

: Existing Libraries 

Figure 4.1: Quantum Gates Library
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Figure 4.1 depicts the formalized quantum gates library using the existing formal-

ization of the optical elements. We subdivide quantum gates to three categories based

on the number of qubits: 1) 1-qubit gates which are the simplest type of gates that

are built using only optical elements (i.e., beam splitter and phase shifter). This set

contains two deterministic gates (Hadamard and flip gates) and a non-deterministic

gate (non-linear sign (NS) gate); 2) 2-qubit gates which are mostly constructed using

1-qubit gates and optical elements and can also be built using 2-qubit gates such as

the case for SWAP gate; and 3) 3-qubit gates which contain the most complicated set

of gates that are constructed using a mixture of 1-qubit, 2-qubit, and 3-qubit gates.

4.1 Formalization of 1-qubit gates

In this section, we show the formal modeling and verification of the Hadamard, bit flip

(flip) and non-linear sign (NS) gates using the mathematical formalization presented

in the previous chapter. The modeling and verification of other 1-qubit gates follow

the same pattern. Throughout our formal analysis of the 1-qubit gates, we extract

their success probabilities and verify their correct outputs.

4.1.1 Hadamard Gate

The Hadamard gate [36] is an 1-qubit universal gate which exploits quantum super-

position to create a new state, where we have a combination of |0〉 and |1〉 with the

same probability. For example, if the possible input is |φ〉input = α |0〉 + β |1〉, then

the output is |φ〉output = α |0〉+|1〉√
2

+ β |0〉−|1〉√
2

. Hadamard gates are usually used to ini-

tialize the quantum states of a circuit or to add random information to a quantum

circuit. The authors in [41] implemented the Shor’s algorithm for factorization of the

number 15 using six Hadamard gates in a photonics chip by employing the quan-

tum optics single photon technology. In this section, we present the formalization of

the Hadamard gate in HOL Light as an example of a single qubit gate that can be

constructed by using a beam splitter (BS)
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 π 
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a$2 

c$1 
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η =
1

2
  H 

BS 

PHS 

Figure 4.2: Schematics of Hadamard Gate

and a phase shifter (PSH) together. The dual-rail representation is used to describe

the qubit. The gate circuit is shown in Figure 4.2 with a beam splitter (η = 1√
2
) and

a phase shifter of angle θ = π (ϕ = 0).

The formal definition of the gate structure in HOL is as follows:

Definition 4.1 (Hadamard Gate).

HADAMARD GATE(a, c, ten, LH, LV)⇐⇒ (∀ b. phase shifter(ten, π, b$2, 2, c$2, 2) ∧

is beam splitter( 1√
2
,− 1√

2
, 1√

2
, 1√

2
, ten, a$1, 1, a$2, 2, c$1, 1, b$2, 2))

where LH and LV are employed to describe the representation of qubits using the

photon vertical or horizontal polarization. Here, LV a$1 (resp., LH a$1) represents a

vertically (resp., horizontally) polarized photon in the single mode a$1 which describes

the qubit in the state |1〉 (resp., |0〉). HADAMARD GATE takes as parameters all gate

input/output ports (a, c), and the tensor product operator tens. Using this definition,

we formally verify the result of applying the Hadamard gate on the two possible

inputs: |0, 1〉a and |1, 0〉a :

Theorem 4.1 (Hadamard Input: |1〉L ≡ |0, 1〉a).

let constraints = is tensor ten ∧ HADAMARD GATE(a, c, ten, LH, LV) in

let |0, 1〉a = tensor 2 (λi. if i = 2 then |1〉a$2 else |0〉a$1) in

let |1, 0〉c = tensor 2 (λi. if i = 1 then |1〉c$1 else |0〉c$2) in

let |0, 1〉c = tensor 2 (λi. if i = 2 then |1〉c$2 else |0〉c$2) in

constraints =⇒ |0, 1〉a = 1√
2
% |1, 0〉c −

1√
2
% |0, 1〉c
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Theorem 4.2 (Hadamard Input: |0〉L ≡ |1, 0〉a).

let constraints = is tensor ten ∧ HADAMARD GATE(a, c, ten, LH, LV) in

let |1, 0〉a = tensor 2 (λi. if i = 1 then |1〉a$1 else |0〉a$1) in

let |1, 0〉c = tensor 2 (λi. if i = 1 then |1〉c$1 else |0〉c$2) in

let |0, 1〉c = tensor 2 (λi. if i = 2 then |1〉c$2 else |0〉c$2) in

constraints =⇒ |1, 0〉a = 1√
2
% |1, 0〉c + 1√

2
% |0, 1〉c

Notice that we did not use the projection because we do not employ ancilla,

therefore, there will be no detection required. As shown in Figure 4.2 the op-

tical implementation of the Hadamard gate has two inputs to describe the input

qubit. In order to make use of this gate in quantum circuits where the compu-

tation is at the qubit level without getting to the detail of the qubit representa-

tion, we developed an input/output behavioral description for the Hadamard gate

Hadamard In Outputs(a0, b0, a, c, LH, LV) presented in Table 4.1.

Table 4.1: Hadamard Gate Behavioral Description

Hadamard In Outputs (a0,b0,a,c,LH,LV)

tensor 1 (λi. LH a0) tensor 2 (λi. if i = 1 then |1〉a$1 else |0〉a$2)
tensor 1 (λi. LV a0) tensor 2 (λi. if i = 2 then |1〉a$2 else |0〉a$1)
tensor 1 (λi. vac a0) tensor 2 (λi. |0〉a$1)
tensor 1 (λi. LH b0) tensor 2 (λi. if i = 1 then |1〉c$1 else |0〉c$2)
tensor 1 (λi. LV b0) tensor 2 (λi. if i = 2 then |1〉c$2 else |0〉c$1)
tensor 1 (λi. vac b0) tensor 2 (λi. |0〉c$2)

Generally, an optical photon is horizontally (resp. vertically) polarized if in the

first optical mode there is one fock state and in the second mode we have vacuum

|10〉 (resp. vacuum in the first optical mode and one fock state in the second mode

|01〉). The first three rows (resp. last three rows) of Table 4.1 represent the relation

between the behavioral description and optical modes representation for the inputs

(resp. outputs). The first column of the table contains the behavioral description of

the inputs and the second column contains the optical modes representation of the

inputs and outputs. A special case where there is no photon in neither the horizontal
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and the vertical polarization modes, we named it vac. For example in the third and

last rows of Table 4.1, we have vac a0 = |00〉a and vac b0 = |00〉b.

4.1.2 Flip Gate

A design of the flip gate based on coherent state source is proposed in [43]. However,

to the best of our knowledge, there is no optical design based on the single photon

source technique. In this section, we detail a new implementation of the optical flip

gate (not gate or X gate) based on single photon technology. The flip gate flips

the input state: if the possible input is |φ〉input = α |0〉 + β |1〉, then the output is

|φ〉output = α |1〉 + β |0〉. The intended implementation of the gate, shown in Figure

4.3, is composed of two beam splitters and a phase shifter.

b$2 

a$1 

a$2 

η =
1

2
 

d$2 
 π 

b$1 d$1 

c$2 

η =
1

2
  X 

BS BS 

PHS 

Figure 4.3: Schematics of Flip Gate

We formally define the flip gate structure in HOL as follows:

Definition 4.2 (Flip Gate).

FLIP GATE(a, d, ten, LH, LV)⇐⇒ (∀ b c. phase shifter (ten, π, c$2, 2, d$2, 2) ∧

is beam splitter( 1√
2
,− 1√

2
, 1√

2
, 1√

2
, ten, a$1, 1, a$2, 2, b$1, 1, b$2, 2) ∧

is beam splitter( 1√
2
,− 1√

2
, 1√

2
, 1√

2
, ten, b$1, 1, b$2, 2, d$1, 1, c$2, 2))

FLIP GATE takes as parameters all gate input a and output ports d, the tensor

operator, and the parameter i to specify the order of the signal in the main tensor

on which the gate is applied. Using this definition, we formally verify the result of

applying the flip gate on the two possible inputs |0, 1〉a and |1, 0〉a:
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Theorem 4.3 (Flip Input: |1〉L ≡ |0, 1〉a).

let constraints = is tensor ten ∧ FLIP GATE(a, d, ten, LH, LV) in

let |0, 1〉a = tensor 2 (λi. if i = 2 then |1〉a$2 else |0〉a$1) in

let |1, 0〉d = tensor 2 (λi. if i = 1 then |1〉d$1 else |0〉d$2) in

constraints =⇒ |0, 1〉a = |1, 0〉d

Theorem 4.4 (Flip Input: |0〉L ≡ |1, 0〉a).

let constraints = is tensor ten ∧ FLIP GATE(a, d, ten, LH, LV) in

let |1, 0〉a = tensor 2 (λi. if i = 1 then |1〉a$1 else |0〉a$1) in

let |0, 1〉d = tensor 2 (λi. if i = 2 then |1〉d$2 else |0〉d$2) in

constraints =⇒ |1, 0〉a = |0, 1〉d

Similar to the Hadamard gate, we developed an input/output behavioral descrip-

tion for flip gate Flip In Outputs(a0, b0, a, d, LH, LV), which is presented in Table

4.2. In Table 4.2, the input qubit a0 is described using the photon polarization on

the two optical modes a$1 and a$2 and the output qubit b0 is described using the

photon polarization on the two optical modes c$1 and c$2. The first two rows (resp.

last two rows) of Table 4.2 represent the relation between the behavioral description

and optical modes representation for the inputs (resp. outputs). The first column

of the table contains the behavioral description and the second column contains the

optical modes representation of the inputs and outputs.

Table 4.2: Flip Gate Behavioral Description

Flip In Outputs (a0,b0,a,c1,LH,LV)

tensor 1 (λi. LH a0) tensor 2 (λi. if i = 1 then |1〉a$1 else |0〉a$2)
tensor 1 (λi. LV a0) tensor 2 (λi. if i = 2 then |1〉a$2 else |0〉a$1)
tensor 1 (λi. LH b0) tensor 2 (λi. if i = 1 then |1〉c$1 else |0〉c$2)
tensor 1 (λi. LV b0) tensor 2 (λi. if i = 2 then |1〉c$2 else |0〉c$1)

So far, we have presented two 1-qubit gates without using the ancilla resources

which are extra qubits that have a secondary role in a quantum computation and are
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used for detecting the correct output [26]. However, many optical quantum circuits

implementations are using quantum detectors to measure the states of the ancillas

after they leave the quantum circuit. In the approach proposed by [25], the quantum

circuit is considered properly implemented only when the detector produces a positive

outcome (expected outcome), i.e., the circuit is nondeterministic (sometimes we say

probabilistic). In the next section, we describe a nondeterministic gate namely the

non-linear sign gate.

4.1.3 Non-Linear Sign Gate

In [25], the authors formed the universal controlled-phase gate using the nondeter-

ministic non-linear sign (NS) gate (Figure 4.4), which is a 1-qubit gate composed

of three beam splitters. The NS gate operates as follows: When a superposition of

the vacuum state |0〉, the one photon state |1〉 and the two-photon state |2〉 is input

into the NS gate, the gate flips the sign (or the phase) of the amplitude of the |2〉

component. Contrary to the Hadamard gate, the NS gate contains two ancillas, one

with a single photon and the other in vacuum as shown in Figure 4.4. For instance,

if the input is like (|ψ〉1 = α |0〉1 +β |1〉1 +γ |2〉1)⊗|1〉2⊗|0〉3, then when we measure

a single photon at port d$2 and vacuum at port d$3, the gate operation is considered

successful. In this case we have the output state |ψ〉′1 = α |0〉1 +β |1〉1−γ |2〉1 at port

d$1.

Given this structure, the probability of measuring a single photon at the ancilla

port d$2 and vacuum at the ancilla port d$3 is then 1
4
. Accordingly, we formally

define the NS gate structure in HOL as follows:
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Figure 4.4: Schematics of NS Gate

Definition 4.3 (NS Gate).

` NS GATE(a, b, c, d, ten)⇐⇒ is beam splitter(
√
2
√
2− 2,

√
3− 2

√
2,−

√
3− 2

√
2,√

2
√
2− 2, ten, b$2, 2, a$1, 1, d$1, 1, c$2, 2) ∧ is beam splitter( 1√

4−2
√
2
,

√
3−2
√
2√

4−2
√
2
,

√
3−2
√
2√

4−2
√
2
,− 1√

4−2
√
2
, ten, a$2, 2, a$3, 3, b$2, 2, b$3, 3) ∧ is beam splitter( 1√

4−2
√
2
,

√
3−2
√
2√

4−2
√
2
,

√
3−2
√
2√

4−2
√
2
,− 1√

4−2
√
2
, ten, c$2, 2, b$3, 3, d$2, 2, d$3, 3)

where NS GATE takes as parameters the two input vectors (a, b), the two output vectors

(c, d), and the tensor operator ten. Using this definition of NS gate, we formally verify

the expected output and its joint success probability by projecting all NS gate outputs

on the expected output. We prove that for an input |2, 1, 0〉a the projection of NS gate

output on the states |0, 1, 0〉d and |1, 1, 0〉d gives zero, on the contrary the projection

on the state |2, 1, 0〉d gives −1
2

(success probability (1
2
)2 = 1

4
). We repeat the same

procedure for the two other possible inputs (i.e., |0, 1, 0〉a and |1, 1, 0〉a).

Theorem 4.5 (NS Input: |2〉, Projection: |2〉).

` let constraint = is tensor proj m proj ∧ is tensor ten ∧

NS GATE(a, b, c, d, ten) in

let |2, 1, 0〉d = tensor 3 (λi. if i = 1 then |2〉d$1 elseif i = 2 then |1〉d$2
else |0〉d$3) in

let |2, 1, 0〉a = tensor 3 (λi. if i = 1 then |2〉a$1 elseif i = 2 then |1〉a$2
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else |0〉a$3) in

constraint =⇒ (m proj |2, 1, 0〉d) |2, 1, 0〉a = −1
2
% |2, 1, 0〉d

Next, we show the projection of the previous input (|2, 1, 0〉) over a different

quantum state |1, 1, 0〉. The result of this projection is the zero constant function, as

follows:

Theorem 4.6 (NS Input: |2〉, Projection: |1〉).

` let constraint = is tensor proj m proj ∧ is tensor ten ∧

NS GATE(a, b, c, d, ten) in

let |1, 1, 0〉d = tensor 3 (λi. if i = 1 then |1〉d$1 elseif i = 2 then |1〉d$2
else |0〉d$3) in

let |2, 1, 0〉a = tensor 3 (λi. if i = 1 then |2〉a$1 elseif i = 2 then |1〉a$2
else |0〉a$3) in

constraint =⇒ (m proj |1, 1, 0〉d) |2, 1, 0〉a = 0

Theorem 4.7 (NS Input: |2〉, Projection: |0〉).

` let constraint = is tensor proj m proj ∧ is tensor ten ∧

NS GATE(a, b, c, d, ten) in

let |0, 1, 0〉d = tensor 3 (λi. if i = 2 then |1〉d$2 else |0〉d$3) in

let |2, 1, 0〉a = tensor 3 (λi. if i = 1 then |2〉a$1 elseif i = 2 then |1〉a$2
else |0〉a$3) in

constraint =⇒ (m proj |0, 1, 0〉d) |2, 1, 0〉a = 0

where, m mode pro (|1, 1, 0〉d) is the projection on the state |1, 1, 0〉d.

4.2 Formalization of 2-Qubit Gates

In this section, we focus on the 2-qubit quantum gates that can be constructed using

the three 1-qubit gates described in the previous section. In particular, we formally

model and verify the controlled phase (CZ), controlled not (CNOT), and SWAP gates.
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The CZ and CNOT are considered as two universal gates in quantum computing and

many quantum computing circuits are based on these two gates. On the other hand,

the SWAP gate has a crucial role in interchanging the qubits between each other

inside a quantum circuit.

4.2.1 Controlled Phase Gate

The controlled-phase (CZ) gate is a two qubits gate which transforms the input

state |x, y〉 to the output eiπx.y |x, y〉, x, y ∈ {0, 1}. In other words, if the possible

input is |φ〉input = α |00〉 + β |01〉 + γ |10〉 + δ |11〉, then the output is |φ〉output =

α |00〉 + β |01〉 + γ |10〉 − δ |11〉. The CZ gate is constructed with the use of two NS

gates and two beam splitters, as shown in Figure 4.5. The probability of measuring

|𝞇⟩1 |𝞇′⟩1 

η1 =
1

2
 

NS1 

NS2 
|𝞇⟩2 

|𝞇′⟩2 

η2 =
1

2
 

a$1 

a$4 

b$1 

d$1 

b$2 
b$3 

d$2 
d$3 

c$1 

q$3 
q$2 
q$1 

j$4 

j$1 
c$3 
c$2 

CZ: 
BS BS 

Figure 4.5: Schematics of CZ Gate

the ancilla state |1, 0〉 in both NS gates is 1
16

, which is the success probability of the

CZ gate (otherwise the gate fails, i.e., the result of the measurement of the ancilla

states is other than |1, 0〉). We formally define the CZ gate as follows:

Definition 4.4 (CZ Gate).

` IS CZ GATE (a, b, c, j, ten, LH, LV, m proj)⇐⇒ (∀ d q k l m p.

NS GATE(d, m, p, q, ten) ∧ b$4 = d$1 ∧ b$5 = d$2 ∧ b$6 = d$3 ∧

NS GATE(b, l, k, c, ten) ∧ q$1 = c$4 ∧ is sm a$3 ∧ is sm a$2 ∧

q$3 = c$6 ∧ is beam splitter( 1√
2
, 1√

2
, 1√

2
,− 1√

2
, ten, a$1, 1, a$4, 4, b$1, 1, b$4, 4) ∧

q$2 = c$5 ∧ is beam splitter( 1√
2
, 1√

2
, 1√

2
,− 1√

2
, ten, c$1, 1, c$4, 4, j$1, 1, j$4, 4))
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Notice that we renamed the input and output ports for the second NS gate in order

to match the order of the modes in the definition of the gate, instead of |b$4, b$5, b$6〉

and |c$4, c$5, c$6〉 we have |d$1, d$2, d$3〉 and |q$1, q$2, q$3〉, respectively. From this

definition, we formally verify the CZ gate operations and its success probability.

There are four possible combinations of inputs, we are providing here two of them as

example, and the rest can be found in [5].

Theorem 4.8 (CZ Input: |1, 1〉).

` let constraints = is tensor proj m proj ∧ is tensor ten ∧

IS CZ GATE (a, b, c, j, ten, LH, LV, m proj) in

let |2, 1, 0, 0, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 1 then |2〉c$1 elseif i = 2

then |1〉c$2 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |0, 1, 0, 2, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 2 then |1〉c$2 elseif i = 4

then |2〉q$1 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |1, 1, 0, 1, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 1 then |1〉c$1 elseif i = 2

then |1〉c$2 elseif i = 4 then |1〉q$1 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |1, 1, 0, 1, 1, 0, 0, 0〉ab = tensor 8 (λi. if i = 1 then |1〉a$1 elseif i = 2

then |1〉b$2 elseif i = 4 then |1〉a$4 elseif i = 5 then |1〉b$5 else |0〉b$3) in

let |1, 1, 0, 1, 1, 0, 0, 0〉cj = tensor 8 (λi. if i = 1 then |1〉j$1 elseif i = 2

then |1〉c$2 elseif i = 4 then |1〉j$4 elseif i = 5 then |1〉c$5 else |0〉c$3) in

constraints =⇒ (m proj |2, 1, 0, 1, 0, 0, 0, 0〉cq + m proj |0, 1, 0, 1, 2, 0, 0, 0〉cq +

m proj |1, 1, 0, 1, 1, 0, 0, 0〉cq) (|1, 1, 0, 1, 1, 0, 0, 0〉ab) = − 1
4

% |1, 1, 0, 1, 1, 0, 0, 0〉cj

Notice that the output of the CZ gate has been projected over three different

states. This is because of the fact that we have two photons at the input port (|1, 1〉)

which results in three possibilities at the input of the two parallel NS gates: 1) two

photons go through the first NS gate; 2) two photons go through the second NS gate;

and 3) one photon goes through the first NS gate and the other goes through the

second NS gate. For the second input, it is as follows:
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Theorem 4.9 (CZ Input: |1, 0〉).

` let constraints = is tensor proj m proj ∧ is tensor ten ∧

IS CZ GATE (a, b, c, j, ten, LH, LV, m proj) in

let |1, 1, 0, 0, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 1 then |1〉c$1 elseif i = 2

then |1〉c$2 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |0, 1, 0, 1, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 2 then |1〉c$2 elseif i = 4

then |1〉q$1 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |1, 1, 0, 0, 1, 0, 0, 0〉ab = tensor 8 (λi. if i = 1 then |1〉a$1 elseif i = 2

then |1〉b$2 elseif i = 5 then |1〉b$5 else |0〉b$3) in

let |1, 1, 0, 0, 1, 0, 0, 0〉cj = tensor 8 (λi. if i = 1 then |1〉j$1 elseif i = 2

then |1〉c$2 elseif i = 5 then |1〉c$5 else |0〉c$3) in

constraints =⇒ (m proj |1, 1, 0, 0, 1, 0, 0, 0〉cq + m proj |0, 1, 0, 1, 1, 0, 0, 0〉cq)

(|1, 1, 0, 0, 1, 0, 0, 0〉ab) = 1
4

% |1, 1, 0, 0, 1, 0, 0, 0〉cj

Here, the CZ gate has been projected over two different states. This is because of

the fact that we have one photon at the input port (|1, 0〉), which results in two

possibilities at the input of the two parallel NS gates: 1) one photon goes through the

first NS gate; and 2) one photon goes through the second NS gate. The verification of

the CZ gate has been done using Theorem 6 in order to subdivide the tensor product

projection to the tensor of two tensor product projections each fed to an NS gate.

As shown in Figure 4.5, the CZ gate has 8 input modes, however, the CZ gate

is a 2-qubit gate, where each logical qubit is represented by two optical modes and

the rest of the modes are ancillas. In order to facilitate the use of this gate in

quantum circuits where the computation is at the qubit level (behavioral level), we

developed CZ INPUTS (a, b, c, LH, LV, m proj) and CZ OUTPUTS (a, c, j, LH, LV)2, details

are presented in Appendix A. This completes the formal analysis of the CZ gate for

the inputs “11” and “10”. The analysis for the inputs “01”, and “00” follows the

similar pattern.

2A behavioral description for CZ gate, where instead of eight inputs and eight outputs, we have
two inputs and two outputs.
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4.2.2 Controlled-Not Gate

The Controlled-not (CNOT) gate is a two inputs/two outputs gate, namely control

and target signals. The gate functionality is to invert the target bit whenever the

control bit is equal to one, and nothing changes as long as the control bit is equal

to zero. The control bit is always transmitted as is. In other words, if the possible

input is |φ〉input = α |00〉 + β |01〉 + γ |10〉 + δ |11〉, then the output is |φ〉output =

α |00〉+β |11〉+ γ |10〉+ δ |01〉. Here, we will show the gate implementation using CZ

and Hadamard gates, as shown in Figure 4.6, however, it can also be implemented

using five beam splitters as shown in [44] and verified in [32].

 H  H 
c1 d1 b2 

a2 b1 CNOT1: 

a1 

Figure 4.6: Schematics of CNOT Gate

Contrary to CZ, CNOT is not symmetric (i.e., an exchange in the order of inputs

implies a modification in the design of the gate). Therefore, we have formally defined

two versions of the CNOT, where for the first version the target qubit feds to the first

input and for the second version it is fed to the second input. We provide here the

HOL definition of the first version of CNOT gate structure and the second one (we

name them CNOT1 and CNOT2, respectively). We formally define CNOT1 structure as

follows (CNOT2 is given in Appendix B):

Definition 4.5 (CNOT Gate).

` CNOT1 GATE(a1, a2, b1, b2, ten, LH, LV, m proj)⇐⇒ (∀c1 d1.

HADAMARD GATE(a1, c1, ten, LH, LV) ∧ HADAMARD GATE(d1, b2, ten, LH, LV)

∧ CZ GATE(c1, a2, d1, b1, ten, LH, LV, m proj))

Here, the Hadamard gate is applied on the first input, which is the target qubit. We

formally verified that this definition maintains the truth table of the CNOT gate. As
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an example we provide the result of applying the CNOT on the input |0, 1〉:

Theorem 4.10 (CNOT Gate Input: |0, 1〉).

` let constraints = is tensor proj m proj ∧ is tensor ten ∧

CNOT1 GATE (a1, a2, b1, b2, ten, LH, LV, m proj) ∧ 8 ≤ dimindex (: N) in

let |0, 1〉a = tensor 2 (λi. if i = 1 then LH a1 else LV a2) in

let |1, 1〉b = tensor 2 (λi. if i = 1 then LV b1 else LV b2) in

constraints =⇒ |0, 1〉a = 1
4

% |1, 1〉b

Furthermore, by employing the bilinearity of tensor product, we formally prove the

general case for an input in the form |x, y〉 = x1y1 |11〉 + x1y2 |10〉 + x2y1 |01〉 +

x2y2 |00〉 feds to the CNOT gate, as follows:

Theorem 4.11 (CNOT Gate Input: |x, y〉).

` let constraints = is tensor proj m proj ∧ is tensor ten ∧

CNOT1 GATE (a1, a2, b1, b2, ten, LH, LV, m proj) ∧ 8 ≤ dimindex (: N) in

let x1y1 |11〉a + x1y2 |10〉a + x2y1 |01〉a + x2y2 |00〉a = tensor 2 (λi. if i = 1

then (x1%LV a1 + x2%LH a1) else (y1%LV a2 + y2%LH a2)) in

let x1y1 |01〉b + x2y1 |11〉b = tensor 2 (λi. if i = 1 then

(x1%LH b1 + x2%LV b1) else y1%LV b2) in

let x1y2 |10〉b + x2y2 |00〉b = tensor 2 (λi. if i = 1 then

(x1%LV b1 + x2%LH b1) else y2%LH b2) in

constraints =⇒ x1y1 |11〉a + x1y2 |10〉a + x2y1 |01〉a + x2y2 |00〉a =

1
4

% (x1y1 |01〉b + x2y1 |11〉b + x1y2 |10〉b + x2y2 |00〉b)

Here, x1y1, x1y2, x2y1, and x2y2 represent the probabilities that the state |x, y〉 is

in the basics quantum states |11〉, |10〉, |01〉, and |00〉, respectively. Notice that the

CNOT gate has the same success probability as the CZ gate.
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4.2.3 SWAP Gate

The SWAP gate is a two qubits gate which swaps the states of two input qubits. It has

a crucial role in the design of quantum circuits where the SWAP gate is used to swap

the qubits between each other in order to fulfil the requirement that computations

should only be performed between adjacent qubits [34]. Also in [27], the authors show

the role of SWAP gates for the storage of quantum information, where the SWAP

gate swaps the information of qubits between flying qubits, which are not suitable

for storage of quantum information and statics qubits. In [12], it was shown that

the SWAP gate plays an important role in the implementation of Shor’s algorithm

[49] based on linear nearest neighbor architecture, where the SWAP gate rearranges

the qubits. The physical implementation of the SWAP gate requires three CNOT

gates, as shown in Figure 4.7. In the structure of the SWAP gate, we can note the

a1 

a2 

c1 

c2 d2 

d1 b1 

b2 CNOT2: SWAP: CNOT1: 

Figure 4.7: Schematics of SWAP Gate

usage of the two versions of the CNOT gate in the implementation of SWAP: the

first (CNOT1) where the target qubit is represented by the first input and the second

(CNOT2) where the target qubit is represented by the second input, more details

can be found in [6]. We formally define the structure of the SWAP gate in HOL as

follows:

Definition 4.6 (SWAP Gate Structure).

` SWAP GATE(a1, a2, b1, b2, ten, LH, LV, m proj)⇐⇒

(∀ c1 c2 d1 d2. CNOT2 GATE(d1, d2, b1, b2, ten, LH, LV, m proj) ∧

CNOT2 GATE(a1, a2, c1, c2, ten, LH, LV, m proj) ∧

CNOT1 GATE(c1, c2, d1, d2, ten, LH, LV, m proj))
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We now use this definition to prove the general case for an input to the SWAP

gate in the form |a1, a2〉 = |x1%1 + x2%0, y1%1 + y2%0〉 in HOL as follows:

Theorem 4.12 (SWAP Gate Input: |x, y〉).

` let constraints = is tensor proj m proj ∧ is tensor ten ∧

8 ≤ dimindex (: N) ∧ SWAP GATE(a1, a2, b1, b2, ten, LH, LV, m proj) in

let |x1%1 + x2%0, y1%1 + y2%0〉a = tensor 2 (λi. if i = 1 then

(x1%LV a1 + x2%LH a1) else (y1%LV a2 + y2%LH a2)) in

let |y1%1 + y2%0, x1%1 + x2%0〉b = tensor 2 (λi. if i = 1 then

(y1%LH b1 + y2%LV b1) else (x1%LH b2 + x2%LV b2)) in

constraints =⇒ |x1%1 + x2%0, y1%1 + y2%0〉a =

1
64

% |y1%1 + y2%0, x1%1 + x2%0〉b

Here, the two assumptions is tensor proj m proj and is tensor ten are to main-

tain that the two operators m proj and ten are indeed the tensor product projection

and the tensor product operator, respectively. The assumption 8 ≤ dimindex (: N) is

to make sure that the dimension of the tensor product is more than the size of the

quantum circuit under consideration. We can notice that there is a scalar multipli-

cation by the output state, 1
64

, which represents the success rate of the gate (i.e., the

probability at which the gate produces the correct output).

4.3 Formalization of 3-Qubit Gates

In the previous two sections, we showed the formalization of 1-qubit and 2-qubit gates.

Both sets of gates are an indispensable part for building quantum circuits. In this

section, we present the formalization of another set of gates, namely 3-qubit gates. In

particular, we formally model and verify two most prominent 3-qubit gates, namely

Toffoli and Fredkin gates. For the former, we were required to formalize another

3-qubit gate which is the Toffoli Sign gate. Also, it is important to notice that the

Fredkin gate design is based on the Toffoli gate design.
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4.3.1 Toffoli Sign Gate

The Toffoli Sign (TS) gate is a 3-qubit reversible gate that applies a sign shift on one

of the state components, and the identity to other inputs. The main benefit of the

TS gate is to construct the Toffoli gate. In the optical implementation of TS, vac t$1

refers to the vacuum state, i.e., where both polarization modes are unoccupied, in the

single mode t$1. Thus, we will introduce a third level of representation of a qutrit

(i.e., a superposition of three orthogonal quantum states [45]).

The realization of TS is based on using two qubits t$2, t1$2 (i.e., 0L = |LH〉 and

1L = |LV 〉) and a qutrit t (i.e., 1L = |vac, LV 〉t$1t$3 and 0L = |LH, vac〉t$1t$3). The

TS gate structure is shown in Figure 4.8. It is composed of two CNOT gates and a

CZ gate. The two CNOT gates operate as normal at the qubit levels and implement

the identity if the target is at the qutrit level (|vac, LV 〉).

TS 

k 

c1 

b3 

a2 d2 

a3 

b2 c2 

a1 b1 
CNOT2: 

CZ: 

Figure 4.8: Schematics of TS Gate

We formally define the structure of the TS gate in HOL as follows:

Definition 4.7 (TS Gate Structure).

` TS GATE(a1, a2, a3, b1, b2, b3, ten, LH, LV, m proj)⇐⇒

(∀ k c1 c2 d2. CNOT2 GATE(c1, d2, b1, b2, ten, LH, LV, m proj) ∧

CNOT2 GATE(a1, a2, c1, c2, ten, LH, LV, m proj) ∧

CZ GATE(c2, a3, d2, b3, ten, LH, LV, m proj) ∧

TS outputs(k, b1, b2, b3, LH, LV) ∧ TS inputs(k, a1, a2, a3, LH, LV))

where CZ GATE describes the structure of a CZ gate. In our formal definition of TS

gate, for an input |x, y, z〉, x is the qutrit. We formally verify the result of applying the
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TS transformation on two inputs forms: |101〉 and |111〉, which in a 4-qubit format

are given as |1, vac, 1, 1〉 and |1, 1, 1, vac〉, respectively. Following is the result of the

TS transformation over the input |0, 1, 1〉:

Theorem 4.13 (TS Input: |101〉).

` let constraints = 8 ≤ dimindex (: N) ∧ is tensor pro m proj ∧

is tensor ten ∧ TS GATE(a1, a2, a3, b1, b2, b3, ten, LH, LV, m proj) in

let |0, 1, 1〉a = tensor 3 (λi. if i = 1 then LH a1 elseif i = 2 then LV a2

else LV a3) in

let |0, 1, 1〉b = tensor 3 (λi. if i = 1 then LH a1 elseif i = 2 then LV a2

else LV a3) in

constraints =⇒ |0, 1, 1〉a = − 1
64

% |0, 1, 1〉b

Notice here the sign shift for the output state |0, 1, 1〉, which is also multiplied by a

scalar value that represents the gate success probability, 1
64

. However, for the input

|1, 1, 1〉 there will be no sign shift:

Theorem 4.14 (TS Input: |111〉).

` let constraints = 8 ≤ dimindex (: N) ∧ is tensor pro m proj ∧

is tensor ten ∧ TS GATE(a1, a2, a3, b1, b2, b3, ten, LH, LV, m proj) in

let |1, 1, 1〉a = tensor 3 (λi. if i = 1 then LV a1 elseif i = 2 then LV a2

else LV a3) in

let |1, 1, 1〉b = tensor 3 (λi. if i = 1 then LV b1 elseif i = 2 then LV b2

else LV b3) in

constraints =⇒ |1, 1, 1〉a = 1
64

% |1, 1, 1〉b

Note that in the Figure 4.8, the TS gate has four input modes, however, TS is a

3-qubit gate, where the first logical qubit is represented by two optical modes. In

order to facilitate the use of this gate in quantum circuits where the computation is

at the qubit level and without getting into the details of the qubit representation, we

developed an input/output behavioral description of the gate which can be found in
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Appendix C. Now, after formally modeling and verifying the Toffoli Sign gate, we are

ready to tackle the formalization of the Toffoli gate.

4.3.2 Toffoli Gate

The Toffoli gate is a three-qubit reversible gate that flips the logical state of the

target qubit conditional on the logical state of the two control qubits. The Toffoli

gate is one of the most important quantum gates and has many quantum applications

including; universal reversible classical computation, quantum error correction and

fault tolerance. Furthermore, the combination of the Toffoli and Hadamard gates

offers a simple universal quantum gate set [2].

The simplest known design of the Toffoli gate when restricted to operating on

qubits at the behavioral level is a circuit that requires five 2-qubit gates. However,

it was shown in [45] that it is possible to construct a Toffoli gate using the Toffoli

sign flip and Hadamard gates, the Toffoli gate is shown in Figure 4.9. In following,

we formally formalize this optimized design of the Toffoli gate.

 H 

 X 
TS 

 X 

 H 

b1 

a2 b2 

a3 

a1 c1 

b3 c3 b3 

b1 

TOFFOLI3: 

Figure 4.9: Schematics of Toffoli Gate

Similar to the CNOT gate, the Toffoli gate can be used in two forms: 1) the

first qubit is the target; and 2) the third qubit is the target (we call them TOFFOLI1

and TOFFOLI3, respectively). Therefore, we have formally defined these two kinds of

Toffoli gate in HOL. More details about the first kind of Toffoli gate can be found at

[5]. We provide here the formal definition of the second type structure of Toffoli gate

(TOFFOLI3) as follows:
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Definition 4.8 (Toffoli Gate Structure).

` TOFFOLI3 GATE(a1, a2, a3, b1, b2, b3, ten, LH, LV, m proj)⇐⇒ (∀ c3 d3 c1 d1.

FLIP GATE(a1, c1, LH, LV, ten) ∧ TS Gate(c1, a2, c3, d1, b2, d3, ten, LH, LV, m proj) ∧

HADAMARD GATE(a3, c3, ten, LH, LV) ∧ FLIP GATE(d1, b1, LH, LV, ten) ∧

HADAMARD GATE(d3, b3, ten, LH, LV))

Using this definition, we verify the result of applying Toffoli on the input |111〉,

where the control qubits are both |1〉L:

Theorem 4.15 (Toffoli Input: |111〉).

` let constraints = 8 ≤ dimindex(: N) ∧ is tensor pro m proj ∧

is tensor ten ∧ TOFFOLI3 GATE(a1, a2, a3, b1, b2, b3, ten, LH, LV, m proj) in

let |111〉a = tensor 3 (λi. if i = 1 then LV a1 elif i = 2 then LV a2 else

LV a3) in

let |011〉b = tensor 3 (λi. if i = 1 then LH b1 elif i = 2 then LV b2 else

LV b3) in

constraints =⇒ |111〉a = 1
64

% |011〉b

We provide also the result of applying the Toffoli on the input |011〉, where the

target is |0〉L:

Theorem 4.16 (Toffoli Input: |011〉).

` let constraints = 8 ≤ dimindex(: N) ∧ is tensor pro m proj ∧

is tensor ten ∧ TOFFOLI3 GATE(a1, a2, a3, b1, b2, b3, ten, LH, LV, m proj) in

let |011〉a = tensor 3 (λi. if i = 1 then LH a1 elif i = 2 then LV a2 else

LV a3) in

let |111〉b = tensor 3 (λi. if i = 1 then LV b1 elif i = 2 then LV b2 else

LV b3) in

constraints =⇒ |011〉a = 1
64

% |111〉b

Notice that the success probability of the Toffoli gate is the same as the one of

the Toffoli Sign: 1
64

. Note that if the Toffoli gate was constructed using five 2-qubit

gates, the success probability will be around 1
16

of 1
64

.
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4.3.3 Fredkin Gate

The Fredkin gate or the controlled-2x2 reversible quantum switch gate (or controlled

SWAP gate) is a 3-qubit gate [35]. One of the qubits is designated as the control qubit

and is left unchanged by the gate, and the other two qubits are the target qubits.

If the control qubit is zero, the two target qubits remain unchanged. If the control

qubit is one, the two target qubits are inter-changed.

The Fredkin gate plays an important role in quantum computing, error-correcting

quantum computations, and information processing [36]. Moreover, the controlled

SWAP gate is a universal gate for classical (reversible) computing which means that

any logical or arithmetic operation can be constructed entirely out of Fredkin gates

[35]. As there is two versions of the Toffoli gate, it results of having two versions of the

Fredkin gate: 1) the control qubit is the first qubit (FREDKIN1); and 2) the control

qubit is the third qubit (FREDKIN3). The Fredkin gate circuit shown in Figure 4.10

is composed of two CNOT gates and one Toffoli gate. Other gates such as AND, OR,

and XOR gates, flip-flops, etc. can also be constructed using the Fredkin gate.

c2 
c3 

a2 
b1 

d2 
d3 

a1 

a3 
b2 
b3 

FREDKIN3: 

Figure 4.10: Schematics of Fredkin Gate

We formally model the structure of the second version of the Fredkin gate (FREDKIN3

in HOL as follows:

Definition 4.9 (Fredkin Gate Structure).

` FREDKIN3 GATE (a1, a2, a3, b1, b2, b3, ten, LH, LV, m proj)⇐⇒ (∀ c2 c3 d2 d3.

CNOT1 GATE(a2, a3, c2, c3, ten, LH, LV, m proj) ∧

TOFFOLI3 GATE(a1, c2, c3, b1, d2, d3, ten, LH, LV, m proj) ∧

CNOT1 GATE(d2, d3, b2, b3, ten, LH, LV, m proj))
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From this definition, we verify the result of applying the Fredkin gate on the

input |011〉, where the two control qubits are |1〉L, which means that there will be an

exchange between the two target qubits.

Theorem 4.17 (Fredkin Input: |011〉).

` let constraints = 8 ≤ dimindex(: N) ∧ is tensor pro m proj ∧

is tensor ten ∧ FREDKIN3 GATE(a1, a2, a3, b1, b2, b3, ten, LH, LV, m proj) in

let |011〉a = tensor 3 (λi. if i = 1 then LH a1 elif i = 2 then LV a2

else LV a3) in

let |101〉b = tensor 3 (λi. if i = 1 then LV b1 elif i = 2 then LH b2

else LV b3) in

constraints =⇒ |011〉a = 1
1024

% |101〉b

Using the bilinearity property of tensor product, we also verify the result of ap-

plying the Fredkin gate on the input in the general form |zxy〉:

Theorem 4.18 (Fredkin Input: |zxy〉).

` let constraints = 8 ≤ dimindex(: N) ∧ is tensor pro m proj ∧

is tensor ten ∧ FREDKIN3 GATE(a1, a2, a3, b1, b2, b3, ten, LH, LV, m proj) in

let |zxy〉a = tensor 3 (λi. if i = 1 then (z1%LH a1 + z2%LV a1) else

if i = 2 then (x1%LH a2 + x2%LV a2) else (y1%LH a3 + y2%LV a3)) in

let |0xy〉b = tensor 3 (λi. if i = 1 then LH b1 elseif i = 2 then

(x1%LH b2 + x2%LV b2) else (y1%LH b3 + y2%LV b3)) in

let |1xy〉b = tensor 3 (λi. if i = 1 then LV b1 elseif i = 2 then

(y1%LH b2 + y2%LV b2) else (x1%LH b3 + x2%LV b3)) in

constraints =⇒ |zxy〉a = 1
1024

%(z1% |0xy〉b + z2% |1xy〉b

Here, the Fredkin gate inputs z represents the control input and x and y are the

target inputs. We can notice that when z = |0〉 the two target inputs do not change

and when z = |1〉 the two target inputs switch between each other. It is important to

notice that the success probability of the Fredkin gate is 1
1024

and it is very small. By
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this, we have covered the formal modeling, design and verification of a set of reversible

quantum gates which can be used in the analysis of a variety of quantum circuits.

4.4 Summary

In this chapter, we have covered the formal modeling, design and verification of a

complete library of quantum gates which can be used in the design and analysis of

a variety of quantum algorithms and circuits. We have demonstrated the usefulness

of the developed mathematical foundation in carrying the analysis of the underlying

gates library. In particular, we have used the tensor product projection to obtain

the correct expected output, to eliminate the undesired outputs, and to obtain the

success probability for the NS and CZ gates. It is important to notice that we gen-

eralized the CNOT, Toffoli, and Fredkin gates modeling by formalizing two versions

(configurations) of each gate. Also, we demonstrated the usability of our approach

to discover new designs for 1-qubit gates through the flip gate design that is based

on quantum optics single photon technology. We then verified that the new flip gate

design has 100% success probability and checked that the gate outputs for all possible

inputs (|0〉 and |1〉) match the gate truth table. Finally, we have shown the success

probability of each quantum gate that was analyzed.

In the next chapter, we will provide the description of a decision procedure to

automate the analysis of quantum circuits constructed using the formalized quantum

gates library and several quantum circuits that were analyzed using the proposed

framework.
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Chapter 5

Automated Quantum Circuits

Verification

In this chapter, we describe the culminating part of our framework, which is the

verification of quantum circuits. Indeed the developed mathematics and gates library

are rich enough to model and verify a variety of quantum circuits. Though, the

verification process for a quantum circuit in an interactive theorem prover is not an

easy task due to the need of user expertise to guide the proof process. Therefore,

some kind of automation is required for the framework to be usable by non-experts.

This decision procedure shall fully eliminate the need for user interaction with the

theorem prover which will tremendously help in facilitating the use of our framework

by engineers and physicists who want to conduct the analysis of quantum circuits.

In the first part of this chapter, we present the verification process for quantum

circuits taking as an example the Shor’s algorithm for integer factorization of the

number 15 circuit [41]. In the second part, we describe the developed decision pro-

cedure and use the quantum full adder [9] as a running example. Finally, we provide

experimental results of applying the developed framework on the analysis of several

benchmark quantum applications, including the above mentioned Shor’s algorithm

and quantum full adder.
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5.1 Quantum Circuits Verification

In this section, we present the verification process for any quantum circuit using the

developed mathematical foundation and the gates library. The verification process

involves multiple rewriting of the tensor product using Theorems 3.2 and 3.3 and

substituting one gate input by the output of the gate transformation when applied

on that input. We use the Shor’s integer factorization of the number 15 circuit as an

example to illustrate the proof steps for verifying quantum circuits.

5.1.1 Shor’s Algorithm

Shor’s integer factorization [49] is a quantum algorithm which can break cryptographic

codes that are widely employed in monetary transactions on the Internet [7]. The

algorithm trick is that it can compute the two primes factor of a given integer number

much faster than classical algorithms can do. Our objective here is to show the formal

modeling and verification of a compiled version (i.e., a designed version to find the

prime factors of a specific input) of Shor’s factoring for the number 15 [41] using the

previously presented formalization. The task of the underlying circuit is to find the

minimum integer r that satisfies ar mode N = 1, where N = 15 and a is a randomly

chosen co-prime integer to N , in our case a = 2. r is called the order of a modulo N ,

from which we compute the desired prime factors; (a
r
2 − 1) and (a

r
2 + 1).

The circuit is composed of six Hadamard and two CZ gates, as shown in Figure

5.1, and it has four inputs/outputs. The inputs are initialized to the state |ψ〉in =

|0, 0, 1, 0〉x1f1f2x2. From the computed output, |ψ〉out = |., ., ., .〉ẍ1f̈1f̈2ẍ2, we extract

the variable z = |., ., 0〉ẍ1ẍ2, then we obtain r = az mod 15. Accordingly, we formally

define the circuit structure in HOL as follows:

Definition 5.1 (Shor’s Circuit).

` shor(x1, x2, f1, f2, f̈1, f̈2, ẍ1, ẍ2, ten, LH, LV, m proj)⇐⇒ (∀a2 b2 a1 a3 a4 b3.

CZ GATE(a1, a2, ẍ1, b2, ten, LH, LV, m proj) ∧

CZ GATE(a3, a4, b3, ẍ2, ten, LH, LV, m proj) ∧
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Figure 5.1: Shor’s Factorization of Number 15 Circuit

HADAMARD GATE(x1, a1, ten, LH, LV) ∧ HADAMARD GATE(f1, a2, ten, LH, LV) ∧

HADAMARD GATE(f2, a3, ten, LH, LV) ∧ HADAMARD GATE(x2, a4, ten, LH, LV) ∧

HADAMARD GATE(b2, f̈1, ten, LH, LV) ∧ HADAMARD GATE(b3, f̈2, ten, LH, LV))

From this definition, we formally verify the operation of the circuit as follows:

Theorem 5.1 (Shor’s Factoring of 15).

` let constraints = is tensor proj m proj ∧ is tensor ten ∧

shor (x1, x2, f1, f2, f̈1, f̈2, ẍ1, ẍ2, ten) in

let |0, 0, 1, 0〉f1x1f2x2 = tensor 4 (λi. if i = 1 then LH f1 elseif i = 2

then LH x1 elseif i = 3 then LV f2 else LH x2) in

let |0, 0, 0, 1〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then LH f̈1 elseif i = 2

then LH ẍ1 elseif i = 3 then LH f̈2 else LV ẍ2) in

let |0, 0, 1, 0〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then LH f̈1 elseif i = 2

then LH ẍ1 elseif i = 3 then LV f̈2 else LH ẍ2) in

let |1, 1, 0, 1〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then LV f̈1 elseif i = 2

then LV ẍ1 elseif i = 3 then LH f̈2 else LV ẍ2) in

let |1, 1, 1, 0〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then LH f̈1 elseif i = 2

then LH ẍ1 elseif i = 3 then LV f̈2 else LH ẍ2) in

constraints =⇒ |0, 0, 1, 0〉f1x1f2x2 = 1
32

% (|1, 1, 1, 0〉f̈1ẍ1f̈2ẍ2 + |1, 1, 0, 1〉f̈1ẍ1f̈2ẍ2

+ |0, 0, 1, 0〉f̈1ẍ1f̈2ẍ2 + |0, 0, 0, 1〉f̈1ẍ1f̈2ẍ2)
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Here, the circuit produces two categories of solutions: 1) |000〉 or |100〉, which are an

expected failure of the algorithm; and 2) |010〉 or |110〉 ≡ z = 2 or z = 6 which give

r = 4 from which we obtain the 5 and 3 prime numbers.

The Shor’s circuit input is as follows: tensor 4 (λi. if i = 1 then LV x1 else

if i = 2 then LH f1 else if i = 3 then LH f2 else LH x2). As shown in Figure 5.1,

the four parallel Hadamard gates are the first to act on the circuit input, therefore,

we need to unfold the input to four elementary tensors of size one each. To per-

form this step of the proof, we rewrite the goal using tensor product theorems and

the lemmas in Appendix D. Thereupon, the resulting output becomes in the form:

(λ y. (tensor 1 (λi. LV x1) y$1) ∗ (tensor 1 (λi. LH f1) y$2) ∗ (tensor 1 (λi. LH f2)

y$3) ∗ (tensor 1 (λi. LH x2) y$4)). Next, we apply the four Hadamard gate transfor-

mations over the four elementary tensors to rewrite the goal with the Hadamard gate

formalization and the lemmas in Appendix D. As explained in the previous chapter,

the Hadamard gate output is a superposition of two states, therefore, each elementary

tensor is replaced by two tensors. Thus, when we spread the main expression, we get

sixteen terms (2∗2∗2∗2). The first term is as follows: (1/4) % (λ y. (tensor 1 (λi.

LV a1) y$1) ∗ (tensor 1 (λi. LH a2) y$2) ∗ (tensor 1 (λi. LH a3) y$3) ∗ (tensor 1

(λi. LH a4) y$4)) + · · ·.

After the four Hadamard gate transformations, the input will undertake two paral-

lel CZ transformations, therefore, we need to fold back the four elementary tensors to

one tensor and unfold this tensor to two elementary tensors by rewriting the goal us-

ing tensor product theorems and the lemmas in Appendix D. The resulting expression

for the first term is as follows: (1/4) % (λ y. (tensor 2 (λi. if i = 1 then LV a1

else LH a2) y$1) ∗ (tensor 2 (λi. if i = 1 then LH a3 else LH a4) y$2)) + · · ·. We

now apply the two CZ gate transformations over this expression to rewrite the goal

with the CZ gate formalization and the lemmas in Appendix D. The first term of the

expression is now as follows: (1/64) % (λ y. (tensor 2 (λi. if i = 1 then LV ẍ1

else LH b2) y$1) ∗ (tensor 2 (λi. if i = 1 then LH b3 else LH ẍ2) y$2)) + · · ·.

After folding and unfolding the tensor product, we apply the last two parallel
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Hadamard gate transformations to rewrite the goal with the tensor product lemmas,

the Hadamard gate formalization and the lemmas in Appendix D. Finally, after ap-

plying all the gate transformations, we obtain the final expression given in the RHS

of the Theorem 5.1.

The process of verifying the Shor’s integer factorization of the number 15 was

not easy and involved more than 10 lemmas to prove. In addition, the proof of

Theorem 5.1 required more than 150 lines of HOL Light proof script. Based on this

result, the proof of circuits that involves dozens of gates may involve thousands of

HOL Light proof script which is very tedious even for an expert in HOL. Hence,

providing automation is necessary for our framework to be used in the analysis of

quantum circuits. In the next section, we will describe a decision procedure that fully

automates the analysis process.

5.2 Decision Procedure

Generally, any quantum circuit is a collection of gates that are connected to each other

either sequentially or in parallel. Therefore, the main proof steps for the analysis of

any quantum circuit are: 1) unfold the input tensor product to elementary tensors

to be input to parallel gates as shown in Figure 5.2; 2) apply the required gates

transformation; 3) fold the tensor product back. Then, we repeat this process until the

input tensor goes through all the gates transformations that are sequential. Finally,

we rewrite the obtained result to the final format using some linear algebra theorems.

𝑢1⨂𝑢2⨂𝑢3 
𝑢2⨂𝑢3 

𝑢1 
𝑣1⨂𝑣2 

𝑣3 
𝑥2⨂𝑦3 

𝑦1 

𝑦1⨂𝑧2⨂𝑥3 

𝑦3 

𝑦2 

𝑦1 

Input Output 

Figure 5.2: Tensor Product Unfolding
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To facilitate the proof of the HOL theorem automatically without the need of

user guidance, we have developed a decision procedure, given in Figure 5.3, that

takes a quantum circuit netlist and its inputs and builds tactics3 that automate the

proof. The decision procedure first reads the quantum circuit netlist and generates a

matrix that captures the circuit structure. For each gate of the circuit, the procedure

then uses special rewriting rules that rewrite a gate outputs in terms of its inputs.

Based on these rules and the extracted circuit matrix, the procedure generates the

required folding/unfolding lemmas (which are related to the number of times the

tensor product is going to be unfolded and folded back). Finally, using a set of

simplification rules, we construct the final automation tactics to conduct the formal

proof of the quantum circuit properties. Note that the decision procedure can also

be used to formally validate if given inputs and outputs correspond to each other for

a given circuit (i.e., we apply the quantum circuit to the given inputs and compare

the obtained result with the expected outputs in order to validate it).

HOL 
Theorem 
 

Decision Procedure 

Simplification  
Rules 

Circuit 
Matrix 

Automation 
Tactics 

Quantum 
Circuit 
Netlist 

Inputs 

Gates Rewriting  
Rules 

Folding/Unfolding  
Lemmas 

Formal  
Proof 

Figure 5.3: Decision Procedure

The core of the procedure is an Ocaml function that extracts from a textual

quantum circuit netlist description a matrix that contains information about the

3A tactic is a function written in OCaml which partially automates the process of theorem proving
in HOL Light
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circuit gates, their inputs/outputs and their orders. The information contained in

this matrix are crucial to perform the three steps explained earlier. This function

searches in the given circuit description: 1) if two gates are sequential and which one

is first applied to the circuit input; and 2) if two gates are parallel what is their inputs

order within the circuit input vector. Knowing this information helps in unfolding

the input tensor product to elementary tensors for each particular gate.

A second Ocaml function takes this matrix and generates the folding/unfolding

lemmas and tactics. This function uses the extracted matrix to provide the proof

steps, subgoals and lemmas to automatically prove the required theorems for the

underlying circuit.

For example, consider the quantum circuit given in Figure 5.4, which is a quantum

full adder composed of two SWAP gates, three CNOT gates and one Fredkin gate.

Using the first Ocaml function described previously, we extract the following matrix:

[
0 CNOT2 2 a0 a1 b0 b1

] [
2 CNOT2 2 a2 a3 b2 b3

]
[
1 CNOT2 2 b1 b2 c1 c2

]
[
0 SWAP 2 b0 c1 c0 d1

] [
2 SWAP 2 c2 b3 d2 c3

]
[
0 FREDKIN1 3 c0 d1 d2 e0 e1 e2

]



b1 

a2 

a0 c0 
a1 

a3 

b2 c2 
b3 

c1 
b0 

d1 
d2 

e3 

e0 
e1 
e2 

Figure 5.4: Quantum Full Adder

In the matrix, the first row contains the description of the gates that are applied in

parallel to the circuit inputs. The subsequent rows describe, in order, the subsequent

gates applied to previous gates outputs. Each element of the matrix contains the order

of the gate (i.e., order of the gate inputs with regard to the circuit inputs, e.g., 1 means
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that the gate input starts from the second element of the circuit input), its type, the

number of inputs and the list of inputs and outputs. To illustrate the task of the sec-

Table 5.1: Tensor Product Folding/Unfolding Lemmas

lemma1 tensor m + n mode = (λy. (tensor m mode) y∗
(tensor n (λi. mode(i + m))) (λi. y(i + m)))

lemma2 (if i ≤ k1 ∧ k2 ≤ i then (if i = k then xk else · · · if i = k2 then xk2
else · · · if i = k1 then xk1 else · · · else xm) else y) =
(if i ≤ k1 ∧ k2 ≤ i then (if i = k2 then xk2 else · · · else xk1) else y)

lemma3 ∀ i j k ∈ N. (i + j = k)⇐⇒ (if (j ≤ k) then (i = k− j) else FALSE)
lemma4 tensor m mode = tensor m (λi. if i ≤ m ∧ 1 ≤ i then mode(i) else y)
lemma5 (f1 x1) ∗ · · · ∗ ((ak % fk) xk) ∗ · · · ∗ (fn xn) =

ak ∗ ((f1 x1) ∗ · · · ∗ (fk xk) ∗ · · · ∗ (fn xn))
lemma6 (λy. ((tensor m mode1) y) ∗ (tensor n mode2) (λi. y(i + m))) =

tensor (m + n) (λi. if i ≤ m then mode1(i) else mode2(i))
lemma7 (if i ≤ m ∧ 1 ≤ i then (if i ≤ k then (if i = 1 then x1 else · · · else xk)

else (if i = 1 then xk+1 else · · · else xm)) else y) =
(if i ≤ m ∧ 1 ≤ i then (if i = 1 then x1 else · · · else xm) else y)

ond Ocaml function and the flow of the decision procedure and the lemmas involved,

consider a n-qubits circuit that contains a m-qubits gate (m ≤ n), where the general

form of the circuit input is: tensor n (λi. if i = 1 then x1 else · · · else xn). Two

of the most important properties of the tensor product are the ability to write tensor

as tensor of tensor (lemma1 in Table 5.1) and vice versa (lemma6 in Table 5.1). Then

the first step in the proof is to rewrite the main tensor product (circuit input) using

lemma1, lemma2, lemma3 and lemma4 in the form:

(λy. (tensor k1 (λi. if i = 1 then x1 else · · · else xk1)) y ∗

(tensor m (λi. if i = 1 then xk1+1 else · · · else xk1+n)) (λi. y(i + k1)) ∗

(tensor k2 (λi. if i = 1 then xk1+n+1 else · · · else xm)) (λi. y(i + k1 + m)))

where n = k1 + m + k2. After rewriting each elementary tensor as in the above equa-

tion, we replace the term tensor m (λi. if i = 1 then xk1+1 else · · · else xk1+m) with

its transformation under the m-qubit gate, which is a % tensor m (λi. if i = 1 then

zk1+1 else · · · else zk1+m). Thus the circuit input becomes:
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(λy. (tensor k1 (λi. if i = 1 then x1 else · · · else xk1)) y ∗

(a % tensor m (λi. if i = 1 then zk1+1 else · · · else zk1+n)) (λi. y(i + k1)) ∗

(tensor k2 (λi. if i = 1 then xk1+n+1 else · · · else xm)) (λi. y(i + k1 + m))

The last step consists of folding back the tensor product by using lemma4, lemma5,

lemma6, and lemma7 of Table 5.1. Thereafter, the circuit input will become in the

form:

a % tensor n (λi. if i = 1 then x1 else · · · if i = k1 + 1 then

zk1+1 else · · · if i = k1 + m + 1 then xk1+m+1 else · · · else xn)

We repeat the same procedure to all circuit gates transformation over the input until

reaching the final value of the circuit output. Notice that this decision procedure can

be applied to any quantum circuit that is constructed based on the formalized gates

library.

For this 4-qubit quantum adder, which input vector is in the form of tensor 4 mode,

when the second Ocaml function takes the circuit matrix, in the first row we have

two parallel gates, accordingly we should unfold the input tensor to two elementary

tensors: tensor 2 mode1 and tensor 2 mode2 and apply the two CNOT gates to the

two tensors as shown in Figure 5.5. Then, we fold back to the main tensor. Conse-

quently, in the second row we have one gate, however, this gate order is in the middle

of the main tensor. Therefore, we should unfold the main tensor to three elementary

tensors: tensor 1 mode1, tensor 2 mode2 and tensor 1 mode3 and apply the CNOT

gate to the elementary tensor tensor 2 mode2. Then, we fold back to the main ten-

sor. Subsequently, we repeat the same procedures for the remaining two rows of the

matrix until all gates are applied, and the final tensor product is obtained which is

the circuit output.

In the following, we provide the detailed analysis of the quantum full adder circuit

in HOL. The circuit model of quantum full adder is based on the design proposed in

[9], which we have modified to meet the adjacency principle.

We consider a quantum full adder design depicted in Figure 5.4 to which we have
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Figure 5.5: Proof Steps for Full Adder Circuit

added two swap gates to exchange the qubits before feeding them to the Fredkin gate.

The circuit has four inputs; the two operands, the carry, and an extra input which

is initialized to the state |0〉. We formally define the structure of the quantum full

adder as follows:

Definition 5.2 (Full Adder Circuit).

` FULL ADDER(a0, a1, a2, a3, e0, e1, e2, e3, ten, LH, LV, m proj)⇐⇒

(∀ b0 b1 b2 b3 c0 c1 c2 d1 d2. CNOT2 GATE(a0, a1, b0, b1, ten, LH, LV, m proj) ∧

CNOT2 GATE(a2, a3, b2, b3, ten, LH, LV, m proj) ∧

CNOT2 GATE(b1, b2, c1, c2, ten, LH, LV, m proj) ∧

SWAP GATE(b0, c1, c0, d1, ten, LH, LV, m proj) ∧

SWAP GATE(c2, b3, d2, e3, ten, LH, LV, m proj) ∧

FREDKIN3 GATE(c0, d1, d2, e0, e1, e2, ten, LH, LV, m proj))

Based on this definition, we formally verify the functionality of the quantum full

adder in the general case where the two input values are added: |x〉 = x1 |0〉a1+x2 |1〉a1
and |y〉 = y1 |0〉a2 + y2 |1〉a2, and the carry: |z〉 = z1 |0〉a3 + z2 |1〉a3.
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Theorem 5.2 (Full Adder).

` let constraints = is tensor proj m proj ∧ is tensor ten ∧

FULL ADDER(a1, a2, a3, a4, b1, b2, b3, b4, ten, LH, LV, m proj) in

let input = tensor 4 (λi.if i = 1 then (x1%LH a1 + x2%LV a1)

elseif i = 2 then (y1%LH a2 + y2%LV a2) elseif i = 3 then

(z1%LH a3 + z2%LV a3) else LH a4) in

let output1 = tensor 4 (λi. if i = 1 then LH b1 elseif i = 2 then

LH b2 elseif i = 3 then LH b3 else LH b4) in

let output2 = tensor 4 (λi. if i = 1 then LV b1 elseif i = 2 then

LH b2 elseif i = 3 then LH b3 else LV b4) in

let output3 = tensor 4 (λi. if i = 1 then LV b1 elseif i = 2 then

LH b2 elseif i = 3 then LV b3 else LV b4) in

let output4 = tensor 4 (λi. if i = 1 then LH b1 elseif i = 2 then

LV b2 elseif i = 3 then LH b3 else LH b4) in

let output5 = tensor 4 (λi. if i = 1 then LH b1 elseif i = 2 then

LH b2 elseif i = 3 then LV b3 else LV b4) in

let output6 = tensor 4 (λi. if i = 1 then LV b1 elseif i = 2 then

LV b2 elseif i = 3 then LH b3 else LH b4) in

let output7 = tensor 4 (λi. if i = 1 then LV b1 elseif i = 2 then

LV b2 elseif i = 3 then LV b3 else LH b4) in

let output8 = tensor 4 (λi. if i = 1 then LH b1 elseif i = 2 then

LV b2 elseif i = 3 then LV b3 else LV b4) in

constraints =⇒ input = Cx(( &1
&16

) pow 7) ∗ ((z1 ∗ x1 ∗ y1)%output1+

(z1 ∗ x1 ∗ y2)%output2 + (z1 ∗ x2 ∗ y1)%output3 + (z1 ∗ x2 ∗ y2)%output4+

(z2 ∗ x1 ∗ y1)%output5 + (z2 ∗ x1 ∗ y2)%output6 + (z2 ∗ x2 ∗ y1)%output7+

(z2 ∗ x2 ∗ y2)%output8)

Here we have eight possible cases in the outputs of the adder, as the combinations

of the three inputs gives eight possibilities. Notice that the success probability of the
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quantum full adder is very low: ( 1
16

)7.

5.3 Experimental Results

In this section we provide the results of the formal analysis of several quantum cir-

cuits. We have analysed several quantum benchmarks circuits taken from the on-

line library of reversible and quantum circuits at [46]. The provided circuits do not

meet the adjacency criteria in quantum computing. This criteria is supported ex-

perimentally and theoretically [4]. For example, in order to apply a 2-qubit gate

to two elements xk1 and xk2 of an n-qubit input, the input should be in the form

tensor n (λi.if i = 1 then · · · if x = k1 then xk1 elseif x = k2 then xk2 else · · · xn).

Therefore, we added SWAP gates to all quantum circuits taken from [46] to move the

qubits to be adjacent to each other when they are applied to the same gate.

For example, consider the size 3 Hamming optimal coding function circuit given

in Figure 5.4(a) [46]. In this circuit, the fourth gate (with dashed line) is applied to

𝑎 

𝑏 

𝑐 

𝑎 

𝑏 

𝑐 

(a) Without SWAP Gate

𝑎 

𝑏 

𝑐 

𝑎 

𝑐 

𝑏 

(b) With SWAP Gate

Figure 5.6: Size 3 Hamming Circuit

two inputs that are not adjacent. Therefore, in order to meet the adjacency principle

we added a SWAP gate before the fourth gate as shown in Figure 5.4(b).

We experimented with the following benchmark quantum circuits, which we au-

tomatically analysed using the developed decision procedure.

• gf23mult is about finding the product of two elements of a field GF(23), a = a0+

a1x + a2x
2 and b = b0 + b1x + b2x

2 with the output, ab = c = c0 + c1x + c2x
2

written on the last 3 qubits.
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• 2-to-4 decoder that has 3 inputs and 4 outputs. If the enable qubit is low, all

output qubits will be zero. If the enable qubit is high, one of the four output

qubits will become high selected by the remaining two input qubits.

• hwb4 is the hidden weighted bit function with four inputs/outputs. Its output

equals its input shifted left by the number of positions equal to the number of

ones in the input pattern.

• ham3 is the size 3 Hamming optimal coding function.

• mod5 is Grover’s oracle, which has 4 inputs and 1 output. Its output is 1 if

and only if the binary number represented by its input is divisible by 5.

• 6sym has 6 inputs and 1 output. Its output is 1 if and only if the number of

ones in the input pattern is 2, 3 or 4.

• nth prime3 inc is used to find primes with up to 3 binary digits.

The result of the formal analysis of these quantum circuits is given in Table 5.2. The

second column provides the number of gates in each circuit before adding the SWAP

gate, and the third column provides the total number of gates. Details about the

benchmark circuits can be found in [5].

The case studies that we have conducted demonstrate that our decision procedure

significantly improves the degree of automation. Instead of using thousands of lines

of HOL tactics to conduct the proof, we were able to achieve it automatically using

the decision procedure. We believe that without the proposed decision procedure, we

will not be able to formally analyse the circuits 6sym and gf23mult that contain 61

gates.

5.4 Summary

In this chapter, we tackled a crucial subject in the interactive theorem provers which is

the automation and the elimination of the need for user interaction with the theorem
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Table 5.2: Formalized Quantum Circuits

Circuit Name Qubits Gates without SWAP Total Gates Success Probability
nth prime3 inc 3 4 6 5.9 ∗ 10−8

ham3 3 5 6 9.5 ∗ 10−7
hwb4 4 12 22 1.2 ∗ 10−29

Shor’s algorithm 4 8 8 3.1 ∗ 10−2
full adder 4 4 6 3.7 ∗ 10−9

Grover’s oracle 5 8 18 2 ∗ 10−28
2-4 dec 6 3 8 8.6 ∗ 10−19

gf23̂mult 9 11 61 1.7 ∗ 10−108
6sym 10 20 61 1.7 ∗ 10−102

prover. For instance, we have developed an automation procedure that fully automate

the analysis process for any quantum circuit. This automation procedure helps in

speeding up the analysis of new quantum circuits designs. Moreover, we showed

the practicality of the proposed framework in the formal modeling and analysis of

several real world quantum computing applications. We have tackled different kinds

of quantum circuits that perform different functionalities. We have formally modeled

and verified the Shor’s algorithm for factorization of the number 15 and the Grover’s

oracle which are basically the most prominent quantum computing algorithms. Thus,

we have formally verified the success probability and the outputs of the algorithms

circuits.

In our formalization approach we have added SWAP gates to the quantum circuits

that do not satisfy the principle of adjacency. Hence, this makes the designs more

physically practical be constructed [4]. We also formally verified the quantum full

adder circuit outputs and its success probability in the case where the inputs are

superpositions of multi quantum states. In Table 5.2, we showed the usefulness of

our approach in the analysis of optical quantum computing circuits by demonstrating

how little is the success probability of the analyzed circuits. These results will help

in finding new physical approaches for building quantum computing circuits and

improving their success probabilities.

67



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Quantum computing systems are widely considered the next generation of computing

system that will revolutionize the industry of computing and secure communication.

Optics systems is one of several approaches under investigation for building a scalable

quantum computer. Due to the novelty and nature of quantum computing, current

CAD tools are not sufficient enough for these systems. Therefore, there is dire need

for CAD tools to carry the systematic analysis of quantum computing systems. The

development of these tools is believed to accelerate the pace for building quantum

computers by providing environments for developing new designs, verifying these

designs, writing quantum algorithms and synthesizing these algorithms to quantum

gates and circuits. During the last decade, several software environments and CAD

tools have been proposed for the analysis of quantum circuits and developing quantum

algorithms. However, these tools work at the behavioral level which limits their

efficient deployment for the development of quantum computers. In fact, all efforts

to build quantum circuits are undertaken at the physical level using some specific

technologies. There is hence a dire need for CAD tools that can conduct the analysis

of quantum circuits at the physical level.

In this thesis, we proposed to leverage upon the expressiveness and accuracy of
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higher-order-logic theorem proving to develop a framework for the formal analysis of

quantum optics computing circuits. The main contributions of the proposed frame-

work are: First, the development of several fundamental mathematical theories re-

lated to tensor product, which model the physical operation of measuring the output

of quantum circuits. Second, the development of a library of commonly used quantum

gates that are composed of optical elements. Third, the development of a decision

procedure to automate the analysis process of any quantum circuits constructed us-

ing the quantum gates library. Fourth, the application of the framework on a set of

benchmark circuits including the Shor’s algorithm and the quantum full adder

The developed framework allowed us to discover a novel design of the flip gate and

formally verified it. Moreover, it enabled us to extract the success probability of all

formalized circuits, which provides an insight about the effectiveness of the proposed

implementation. For instance, our analysis provided a very small success probability

for the design of the quantum full adder, described in Chapter 5, which is, to the best

of our knowledge, an optimum circuit in terms of the number of quantum gates. This

result leads to considering alternative methods for implementing quantum circuits

such as quantum teleportation. Note that such result has never been reported in

the literature. Compared to existing related work, the presented approach is more

complete (i.e., covers more quantum gates and circuits), and generic (i.e., the analysis

is done at the quantum physics level).

The proposed formal analysis framework along with the above mentioned practical

quantum applications provide some thoughtful indications: theorem proving systems

have reached to the maturity, where complex physical models can be expressed with

less efforts than ever before; and formal methods can assist in the verification of

futuristic quantum computing systems which are largely becoming the main research

trend in computing industry nowadays. However, the question of the utilization of

higher-order-logic theorem proving in an industrial settings and physical laboratories

still persists due to the huge amount of time required to formalize the underlying

mathematical theories. We believe that an important factor is the gap between the
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theorem proving and engineering and physicists communities which limits its usage

in industrial settings. For example, it is hard to find engineers (or physicists) with

theorem proving background and vice-versa. One of the several solutions to tackle

this issue is the continuous formal development of quantum theories including the

synthesis and optimization of quantum circuits. The work presented in this thesis

can be considered as a one step towards this goal.

The proof script of the formalization presented in this thesis require around 5500

lines of HOL Light code and 500 lines of OCaml code available at [5].

6.2 Future Work

The formalization and verification results, presented in this thesis, can be used as

a complementary approach to provide a more expressiveness and accuracy to the

existing techniques. In the following, we list some future research directions based on

our experience and lessons learned during the course of this thesis:

• An immediate extension of this thesis is to build a simple graphical interface

where the quantum circuit will be depicted as blocks connected between each

other and a textual description of the circuit will be generated and fed to the

developed framework in this thesis to conduct the automated formal verification

and analysis with the help of the developed decision procedure.

• Another short term extension is to investigate the optimization of the number

of gates in a circuit that performs a given functionality. Also, to develop a

procedure to optimize the number of SWAP gates added to a quantum circuit

in order to meet the principle of adjacency.

• A longer term extension of this thesis is to investigate the usage of quantum

teleportation in quantum optics circuits to improve the success probabilities

of these circuits. Quantum teleportation principle is such that the successful
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result for a given quantum gate is teleported to the rest of the gates within the

quantum circuit.

• Quantum cryptography has shown recently a good capability of securing com-

munication transaction and several companies have started commercializing

quantum cryptography products that are built using optics elements. Our work

can be extended to cover the formal analysis of quantum cryptography proto-

cols based on optics. This approach will provide an accurate analysis method

which may interest the new born industry of quantum cryptography.

• It is possible to use high-order logic to do the formal synthesis of quantum func-

tions and algorithms to quantum optics gates and circuits. This approach will

be more efficient compared to the existing quantum circuits synthesis methods

due to the low level design of the gates and circuits which gives more liberty

to optimize the quantum circuits in term of number of gates. Another feature

of this approach will be the synthesis of quantum functions and algorithms to

circuits that are practically feasible to build in laboratory setups. For example

several of the existing quantum synthesis approaches do not taken into account

the adjacency constraint.

• The library built in this thesis contains only gates that are constructed using

single photon technology which is the most common optics approach. However,

it will be interesting to build other libraries that contain gates constructed from

different technologies (i.e., squeezed states or coherent states). This will enable

the possibility to compare the efficiency for a given quantum algorithm that is

modeled using these different optics approaches and to choose the most efficient

one in terms of the number of gates, success probability, and number of optics

modes.

71



Appendix A

CZ Gate Behavioral Description

In this appendix, we define the behavioral description for CZ gate, where instead
of eight inputs and eight outputs of optical modes, we have two behavioral inputs
and two behavioral outputs. The first table is for the outputs behavioral description
and the second table is for inputs behavioral description.

CZ INPUTS (x1,x2,a, b, c,LH, LV,m proj)

tensor 2 (λi. if i = 1 then m modes pro (tensor 8 (λi. if i = 2 then fock c$2 1

LH x1 else LH x2) elif i = 5 then fock c$51 elif i = 7 then fock a$2 1

elif i = 8 then fock a$3 1 else vac c$3))
(tensor 8 (λi. if i = 2 then fock b$2 1 elif i = 5

then fock b$5 1 elif i = 7 then fock a$2 1 elif i = 8

then fock a$3 1 else vac b$3))
tensor 2 (λi. if i = 1 then (m modes pro (tensor 8 (λi. if i = 2 then fock c$2 1

LV x1 else LH x2) elif i = 5 then fock c$5 1 elif i = 7 then vac a$2
elif i = 8 then vac a$3 elif i = 1 then fock c$1 2

else vac c$3)) + m modes pro (tensor 8 (λi. if i = 2

then fock c$2 1 elif i = 5 then fock c$5 1

elif i = 7 then vac a$2 elif i = 8 then vac a$3
elif i = 4 then fock c$4 2 else vac c$3))+
m modes pro (tensor 8 (λi. if i = 2 then fock c$2 1

elif i = 5 then fock c$5 1 elif i = 4 then fock c$4 1

elif i = 7 then vac a$2 elif i = 8 then vac a$3
elif i = 4 then fock c$4 1 else vac c$3)))
(tensor 8 (λi. if i = 1 then fock a$1 1 elif i = 4

then fock a$41 elif i = 5 then fock b$21 elif i = 7

then vac a$2 elif i = 8 then vac a$3 elif i = 5

then fock b$51 else vac b$3))
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tensor 2 (λi. if i = 1 then (m modes pro (tensor 8 (λi. if i = 2 then fock c$2 1

LV x1 else LH x2) elif i = 1 then fock c$11 elif i = 7 then vac a$2
elif i = 8 then fock a$3 1 elif i = 5 then fock c$5 1

else vac c$3)) + m modes pro (tensor 8 (λi. if i = 2

then fock c$2 1 elif i = 4 then fock c$4 1

elif i = 7 then vac a$2 elif i = 8 then fock a$3 1

elif i = 5 then fock c$5 1 else vac c$3)))
(tensor 8 (λi. if i = 1 then fock a$1 1 elif i = 2

then fock b$21 elif i = 7 then vac a$2 elif i = 8

then fock a$3 1 elif i = 5 then fock b$51 else vac b$3))
tensor 2 (λi. if i = 1 then (m modes pro (tensor 8 (λi. if i = 2 then fock c$2 1

LH x1 else LV x2) elif i = 1 then fock c$11 elif i = 7 then fock a$2 1

elif i = 8 then vac a$3 elif i = 5 then fock c$5 1

else vac c$3)) + m modes pro (tensor 8 (λi. if i = 2

then fock c$2 1 elif i = 4 then fock c$41
elif i = 7 then fock a$2 1 elif i = 8 then vac a$3
elif i = 5 then fock c$5 1 else vac c$3)))
(tensor 8 (λi. if i = 4 then fock a$4 1 elif i = 2

then fock b$21 elif i = 7 then fock a$2 1 elif i = 8

then vac a$3 elif i = 5 then fock b$51 else vac b$3))
tensor 2 (λi. if i = 1 then m modes pro (tensor 8 (λi. if i = 2 then fock c$2 1

vac x1 else LH x2) elif i = 5 then fock c$51 elif i = 7 then vac a$2
elif i = 8 then fock a$3 1 else vac c$3))
(tensor 8 (λi. if i = 2 then fock b$2 1 elif i = 5

then fock b$5 1 elif i = 7 then vac a$2 elif i = 8

then fock a$3 1 else vac b$3))
tensor 2 (λi. if i = 1 then (m modes pro (tensor 8 (λi. if i = 2 then fock c$2 1

vac x1 else LV x2) elif i = 1 then fock c$11 elif i = 7 then vac a$2
elif i = 8 then vac a$3 elif i = 5 then fock c$5 1

else vac c$3)) + m modes pro (tensor 8 (λi. if i = 2

then fock c$2 1 elif i = 4 then fock c$41
elif i = 7 then vac a$2 elif i = 8 then vac a$3
elif i = 5 then fock c$5 1 else vac c$3)))
(tensor 8 (λi. if i = 4 then fock a$4 1 elif i = 2

then fock b$21 elif i = 7 then vac a$2 elif i = 8

then vac a$3 elif i = 5 then fock b$51 else vac b$3))
tensor 2 (λi. if i = 1 then m modes pro (tensor 8 (λi. if i = 2 then fock c$2 1

LH x1 else vac x2) elif i = 5 then fock c$51 elif i = 7 then fock a$2 1

elif i = 8 then vac a$3 else vac c$3))
(tensor 8 (λi. if i = 2 then fock b$2 1 elif i = 5

then fock b$5 1 elif i = 7 then fock a$2 1 elif i = 8

then vac a$3 else vac b$3))
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tensor 2 (λi. if i = 1 then (m modes pro (tensor 8 (λi. if i = 2 then fock c$2 1

LV x1 else vac x2) elif i = 1 then fock c$11 elif i = 7 then vac a$2
elif i = 8 then vac a$3 elif i = 5 then fock c$5 1

else vac c$3)) + m modes pro (tensor 8 (λi. if i = 2

then fock c$2 1 elif i = 4 then fock c$41
elif i = 7 then vac a$2 elif i = 8 then vac a$3
elif i = 5 then fock c$5 1 else vac c$3)))
(tensor 8 (λi. if i = 1 then fock a$1 1 elif i = 2

then fock b$21 elif i = 7 then vac a$2 elif i = 8

then vac a$3 elif i = 5 then fock b$51 else vac b$3))

CZ OUTPUTS (y1,y2,a, c, j,LH, LV)

tensor 8 (λi. if i = 2 then fock c$2 1 elif i = 5 tensor 2 (λi. if i = 1 then

then fock c$5 1 elif i = 7 then fock a$2 1 elif i = 8 LH y1 else LH y2)
then fock a$3 1 else vac c$3)
tensor 8 (λi. if i = 1 then fock j$1 1 elif i = 4 tensor 2 (λi. if i = 1 then

then fock j$4 1 elif i = 2 then fock c$2 1 elif i = 5 LV y1 else LV y2)
then fock c$5 1 elif i = 7 then vac a$3 elif i = 7

then vac a$2 else vac c$3)
tensor 8 (λi. if i = 1 then fock j$1 1 elif i = 2 tensor 2 (λi. if i = 1 then

then fock c$21 elif i = 5 then fock c$5 1 elif i = 7 LV y1 else LH y2)
then vac a$2 elif i = 8 then fock a$3 1 else vac c$3)
tensor 8 (λi. if i = 4 then fock j$4 1 elif i = 2 tensor 2 (λi. if i = 1 then

then fock c$21 elif i = 5 then fock c$5 1 elif i = 7 LH y1 else LV y2)
then fock a$2 1 elif i = 8 then vac a$3 else vac c$3)
tensor 8 (λi. if i = 2 then fock c$2 1 elif i = 5 tensor 2 (λi. if i = 1 then

then fock c$5 1 elif i = 7 then vac a$2 elif i = 8 vac y1 else LH y2)
then fock a$3 1 else vac c$3)
tensor 8 (λi. if i = 4 then fock j$4 1 elif i = 2 tensor 2 (λi. if i = 1 then

then fock c$21 elif i = 5 then fock c$5 1 elif i = 7 vac y1 else LV y2)
then vac a$2 elif i = 8 then vac a$3 else vac c$3)
tensor 8 (λi. if i = 2 then fock c$2 1 elif i = 5 tensor 2 (λi. if i = 1 then

then fock c$5 1 elif i = 7 then fock a$2 1 elif i = 8 LH y1 else vac y2)
then vac a$3 else vac c$3)
tensor 8 (λi. if i = 1 then fock j$1 1 elif i = 2 tensor 2 (λi. if i = 1 then

then fock c$21 elif i = 5 then fock c$5 1 elif i = 7 LV y1 else vac y2)
then vac a$2 elif i = 8 then vac a$3 else vac c$3)
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Appendix B

Second Version of CNOT Gate

In this appendix, we provide the HOL formalization of the second version of CNOT
gate.

Definition B.1 (CNOT Gate).
` CNOT2 GATE(a2, a1, b1, b2, ten, LH, LV, m proj)⇐⇒ (∀ c1 d1.
HADAMARD GATE(a1, c1, ten, LH, LV) ∧
HADAMARD GATE(d1, b2, ten, LH, LV) ∧ CZ GATE(a2, c1, b1, d1, ten, LH, LV, m proj))

Here, the Hadamard gate is applied on the second input which is the target qubit.
Using this definition, we formally verified that it maintains the truth table of the
CNOT gate. The general case for an input in the form |x, y〉 = x1y1 |11〉+x1y2 |10〉+
x2y1 |01〉+ x2y2 |00〉 is as follows:

Theorem B.1 (CNOT Gate Input: |x, y〉).
` let const = is tensor proj m proj ∧ is tensor ten ∧ 8 ≤ dimindex (: N)
∧ CNOT2 GATE (a1, a2, b1, b2, ten, LH, LV, m proj) in

let x1y1 |11〉a + x1y2 |10〉a + x2y1 |01〉a + x2y2 |00〉a = tensor 2 (λi. if i = 1

then (x1%LV a1 + x2%LH a1) else (y1%LV a2 + y2%LH a2)) in

let x1y1 |01〉b + x2y1 |11〉b = tensor 2 (λi. if i = 1 then

(x1%LH b1 + x2%LV b1) else y1%LV b2) in

let x1y2 |10〉b + x2y2 |00〉b = tensor 2 (λi. if i = 1 then

(x1%LV b1 + x2%LH b1) else y2%LH b2) in

const =⇒ x1y1 |11〉a + x1y2 |10〉a + x2y1 |01〉a + x2y2 |00〉a =
1
4

% (x1y1 |10〉b + x1y2 |11〉b + x2y1 |01〉b + x2y2 |00〉b)
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Appendix C

TS Gate Behavioral Description

In this appendix, we define the behavioral description for the Toffoli Sign gate,
where instead of four inputs and four outputs, we have three inputs and three outputs.
The first table is for the outputs behavioral description and the second table is for
inputs behavioral description.

TS outputs (t,y1,y2,y3,LH,LV)

tensor 4 (λi. if i = 1 then LV y1 elif i = 2 then tensor 3 (λi. if i = 1 then LV y1

LV y2 elif i = 3 then LV y3 else vac t$4) elif i = 2 then LV y2 else LV y3)
tensor 4 (λi. if i = 1 then LV y1 elif i = 2 then tensor 3 (λi. if i = 1 then LV y1

LV y2 elif i = 3 then LH y3 else vac t$4) elif i = 2 then LV y2 else LH y3)
tensor 4 (λi. if i = 1 then LV y1 elif i = 2 then tensor 3 (λi. if i = 1 then LV y1

vac y2 elif i = 3 then LV y3 else LH t$4) elif i = 2 then LH y2 else LV y3)
tensor 4 (λi. if i = 1 then LV y1 elif i = 2 then tensor 3 (λi. if i = 1 then LV y1

vac y2 elif i = 3 then LH y3 else LH t$4) elif i = 2 then LH y2 else LH y3)
tensor 4 (λi. if i = 1 then LH y1 elif i = 2 then tensor 3 (λi. if i = 1 then LH y1

LV y2 elif i = 3 then LV y3 else vac t$4) elif i = 2 then LV y2 else LV y3)
tensor 4 (λi. if i = 1 then LH y1 elif i = 2 then tensor 3 (λi. if i = 1 then LH y1

LV y2 elif i = 3 then LH y3 else vac t$4) elif i = 2 then LV y2 else LH y3)
tensor 4 (λi. if i = 1 then LH y1 elif i = 2 then tensor 3 (λi. if i = 1 then LH y1

vac y2 elif i = 3 then LV y3 else LH t$4) elif i = 2 then LH y2 else LV y3)
tensor 4 (λi. if i = 1 then LH y1 elif i = 2 then tensor 3 (λi. if i = 1 then LH y1

vac y2 elif i = 3 then LH y3 else LH t$4) elif i = 2 then LH y2 else LH y3)
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TF inputs (t,x1,x2,x3,LH,LV)

tensor 3 (λi. if i = 1 then LV x1 tensor 4 (λi. if i = 1 then LV x1 elif i = 2 then

elif i = 2 then LV x2 else LV x3) LV x2 elif i = 3 then LV x3 else vac t$4)
tensor 3 (λi. if i = 1 then LV x1 tensor 4 (λi. if i = 1 then LV x1 elif i = 2 then

elif i = 2 then LV x2 else LH x3) LV x2 elif i = 3 then LH x3 else vac t$4)
tensor 3 (λi. if i = 1 then LV x1 tensor 4 (λi. if i = 1 then LV x1 elif i = 2 then

elif i = 2 then LH x2 else LV x3) vac x2 elif i = 3 then LV x3 else LH t$4)
tensor 3 (λi. if i = 1 then LV x1 tensor 4 (λi. if i = 1 then LV x1 elif i = 2 then

elif i = 2 then LH x2 else LH x3) vac x2 elif i = 3 then LH x3 else LH t$4)
tensor 3 (λi. if i = 1 then LH x1 tensor 4 (λi. if i = 1 then LH x1 elif i = 2 then

elif i = 2 then LV x2 else LV x3) LV x2 elif i = 3 then LV x3 else vac t$4)
tensor 3 (λi. if i = 1 then LH x1 tensor 4 (λi. if i = 1 then LH x1 elif i = 2 then

elif i = 2 then LV x2 else LH x3) LV x2 elif i = 3 then LH x3 else vac t$4)
tensor 3 (λi. if i = 1 then LH x1 tensor 4 (λi. if i = 1 then LH x1 elif i = 2 then

elif i = 2 then LH x2 else LV x3) vac x2 elif i = 3 then LV x3 else LH t$4)
tensor 3 (λi. if i = 1 then LH x1 tensor 4 (λi. if i = 1 then LH x1 elif i = 2 then

elif i = 2 then LH x2 else LH x3) vac x2 elif i = 3 then LH x3 else LH t$4)
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Appendix D

Proof Lemmas

In this appendix, we provide a set of lemmas used during the proof process for the
verification the operations of the circuit of Shor’s integer factorization for the number
15.

4 = ((1 + 1) + 1) + 1 ∧ 1 <= 1

1 + 1 = 2 ∧ 2 + 1 = 3 ∧ 3 + 1 = 4 ∧ 2 = 1 + 1 ∧ 1 <= 1

4 = 2 + 2 ∧ 1 <= 2 ∧ 1 + 1 = 2 ∧ 2 + 2 = 4

4 <= dimindex(: N) <=> (4 <= dimindex(: N) ∧ 3 <= dimindex(: N) ∧
2 <= dimindex(: N)/ 1 <= dimindex(: N))
(1 <= i + 3) ∧ (1 <= i + 2) ∧ (1 <= i + 1) ∧
(4 <= dimindex(: N) ==> (i <= 1 ==> (i + 3 <= dimindex(: N)
∧ i + 2 <= dimindex(: N) ∧ i + 1 <= dimindex(: N))))
((i : num) + j = k) <=> (if (j <= k) then i = k− j else F)
(i <= 1 ∧ 1 <= i) <=> i = 1

((a1%f1) y) ∗ ((a2%f2) x) ∗ ((a3%f3) z) ∗ (a4%f4) t =
(a1 ∗ a2 ∗ a3 ∗ a4) ∗ f1 y ∗ f2 x ∗ f3 z ∗ f4 t

(λy.a ∗ f1 y) = a%(λy.f1 y)
(x : complex) ∗ y ∗ z ∗ t = ((x ∗ y) ∗ z) ∗ t
((a1%f1) y) ∗ ((a2%f2) x) = (a1 ∗ a2) ∗ f1y ∗ f2x
(∼ (i <= 3) ==> 1 <= i− 3) ∧ (∼ (i <= 2) ==> 1 <= i− 2) ∧
(∼ (i <= 1) ==> 1 <= i− 1) ∧ ((4 <= dimindex(: N)) ==> (i <= 4 ==>
(i <= dimindex(: N) ∧ i− 3 <= dimindex(: N) ∧ i− 2 <= dimindex(: N)
∧i− 1 <= dimindex(: N))))
1 <= i + 2 ∧ ((4 <= dimindex(: N)) ==> (i <= 2 ==> (i + 2 <= dimindex(: N))))
(if(i <= 2 ∧ 1 <= i) then if i <= 3 then if i <= 1 then x1 else x2 else x3 else

g i) = (if (i <= 2 ∧ 1 <= i) then if i = 1 then x1 else x2 else g i) ∧
(if (i <= 2 ∧ 1 <= i) then if i <= 1 then if i <= 0 then x1 else x2 else x3

else g i) = (if (i <= 2 ∧ 1 <= i) then if i = 1 then x2 else x3 else g i)
(4 <= dimindex(: N) <=> (4 <= dimindex(: N) ∧ 1 <= dimindex(: N)))
1 <= i + 1 ∧ ((4 <= dimindex(: N)) ==>
(i <= 1 ==> (i + 1 <= dimindex(: N))))
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(f1 y) ∗ (f2 x) ∗ (f3 z) ∗ f4 t = (f1 y ∗ f2 x) ∗ (f3 z ∗ f4 t)
(((a1%f1) y) ∗ (f2 x)) ∗ (((a2%f3) z) ∗ f4 t) =
(a1 ∗ a2) ∗ ((f1 y ∗ f2 x) ∗ (f3 z ∗ f4 t))
(∼ (i− 2 <= 1) ==> 1 <= i− 2− 1) ∧ (∼ (i <= 2) ==> 1 <= i− 2) ∧
(∼ (i <= 1) ==> 1 <= i− 1) ∧ ((4 <= dimindex(: N)) ==> (i <= 4 ==>
(i <= dimindex(: N) ∧ i− 2− 1 <= dimindex(: N) ∧ i− 2 <= dimindex(: N)
∧ i− 1 <= dimindex(: N))))
(if (i <= 4 ∧ 1 <= i) then if i <= 2 then if i <= 1 then x1 else x2 else

if i− 2 <= 1 then x3 else x4 else x5) = (if (i <= 4 ∧ 1 <= i) then
if i = 1 then x1 else if i = 2 then x2 else if i = 3 then x3 else x4 else x5)
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