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Abstract 

Hybrid Prototyping of Multicore Embedded Systems 

Ehsan Saboori, Ph.D. 
Concordia University, 2016 

 

Multicore platforms are becoming increasingly pervasive in modern embedded 

systems. System level modeling techniques have enabled creation of fast software models 

of multicore platforms, commonly known as Virtual Prototypes, for early functional 

validation of embedded software, before the hardware is available. On the other hand, for 

accurate performance validation, the complete multicore platform can be implemented as 

a physical prototype on FPGA. Both virtual platforms and FPGA prototypes have their 

respective pros and cons. Virtual platforms have the advantage of high speed functional 

simulation and, typically, scale well with the number of cores. However, the accuracy of 

performance estimation is sacrificed. FPGA prototypes provide cycle-accurate 

performance estimation, because the software executes directly on an FPGA 

implementation of the target cores. However, it takes a significant amount of time to 

design, implement and test the inter-core communication architecture on the FPGA. 

In this thesis we propose to design a novel system-level modeling framework, called 

Hybrid Prototyping. Our goal is to provide the benefits of both virtual platforms and 

FPGA prototypes. It aims to provide early, fast, and scalable models, similar to virtual 

platforms, along with the cycle-accuracy of FPGA prototypes. Using hybrid prototyping, 

embedded software designers will be able to create concurrent applications and accurately 

analyze the performance implication of their optimizations before the chip is delivered. 

At the same time, multicore architects will be able to modify the platform model without 
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having to do full system prototyping. Therefore, hybrid prototyping will enable early and 

reliable multicore embedded system design, resulting in huge productivity gains for both 

embedded software designers and multicore chip architects. 
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Chapter 1 

Introduction 

1.1  Motivation 

Multicore platforms are becoming increasingly pervasive in modern embedded systems 

because of the potential computation speedups resulting from concurrent application 

execution on independent cores. However, both the multicore hardware platform and 

the embedded software that runs on it must be carefully designed for functional 

correctness and optimal performance. System level modeling techniques have enabled 

creation of fast models of multicore platforms, commonly known as virtual platforms, 

for early functional validation of embedded software. Virtual platforms enable early 

functional validation of embedded software, before the chip is delivered. For accurate 

performance validation, the complete multicore platform can be prototyped on Field 

Programmable Gate Arrays (FPGA). The FPGA prototype serves as a cycle-accurate 

hardware model of the chip and can be used for embedded software design using in-

circuit emulation tools. 

Both virtual and FPGA prototypes have their respective pros and cons. Virtual 

prototypes have the advantage of high speed functional simulation and, typically, scale 
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well with the number of cores. However, the accuracy of performance estimation is 

sacrificed because the processor simulation models used are very abstract. Cycle-

accurate models may be used in virtual prototypes, but they drastically slow down 

simulation speed, thereby defeating the purpose of fast and early software validation. 

FPGA prototypes provide cycle-accurate performance estimation because the software 

executes directly on an FPGA implementation of the target cores. However, it takes 

a significant amount of time to design, implement and test the inter-core 

communication architecture on the FPGA. Furthermore, if several cores are being 

used, the amount of reconfigurable logic required for implementing the cores, the 

communication fabric, and the on-chip memory for the full multicore system becomes 

too large to fit on a single FPGA. Using multiple FPGA chips adds another dimension 

of complexity to implementing the prototype. Therefore, the scalability and design 

time of full system FPGA prototypes are serious issues. 

 In this thesis, we present a new technique called Hybrid Prototyping framework 

that offers the scalability benefits of virtual prototypes, as well as the cycle-accuracy 

of FPGA prototypes. The system provides a high-speed model of a multicore platform 

that will enable embedded software designers to accurately analyze and debug their 

applications before the hardware is available. Application designers can also use these 

models to influence the multicore architecture design early in the design process. The 

fundamental idea of hybrid prototyping is to create an emulation kernel in software 

that executes on a single target core. The target core is physically implemented in 

FPGA. The emulation kernel simulates the execution of concurrent tasks on 

independent emulated cores by dynamically scheduling the tasks on the physical target 

core. The emulation kernel manages the state of the individual emulated cores and the 

logical times until which they have been simulated. 
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1.2  Literature Review 

Pre-silicon performance validation of multicore embedded systems is a serious 

challenge. Both virtual prototyping and FPGA-based physical prototyping have been 

a topic of intense research with the growing adoption of multicore architectures and 

the corresponding need to provide early simulation models to embedded software 

designers.  

Virtual prototype is a set of functional models of System on Chip (SoC) hardware 

such as processors, peripherals and buses, in software form. Processor model is often 

implemented using Instruction Set Simulator (ISS) which provides binary 

compatibility with embedded processor (called Target) instruction set. ISS converts 

target instruction set to the instruction set of the general-purpose computer by running 

the simulation (called Host) to allow execution of un-modified embedded software. 

Bus and peripheral are typically modeled using a high-level language such as ANSI C 

or SystemC with focusing on pin-accurate software visible interfaces such as register, 

bus protocol and peripheral functionality.  

FPGA-based prototyping is another widely-used pre-silicon SoC evaluation 

method using FPGA as the platform. FPGA can be used to implement any logic 

function that an Application-Specific Integrated Circuit (ASIC) chip could perform, 

which makes it a good platform for rapid system prototyping. In FPGA-based 

prototype the application and the system software for a design is executed directly on 

FPGA. Figure 1 shows virtual prototyping vs. FPGA prototyping. 
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Figure 1: Virtual Prototyping vs. FPGA Prototyping 

Conventional technologies such as virtual prototyping and FPGA prototyping 

have several limitations. Virtual prototypes, based on host-compiled ISS, can provide 

high simulation speed, but at the expense of limited or no timing accuracy. FPGA 

prototypes, based on instantiation and integration of processor cores in FPGA, provide 

cycle accuracy, but with the disadvantage of high development cost and lack of 

scalability. In addition, there is no flexibility of abstracting the inter-core 

communication in FPGA prototypes, since it is fixed in hardware. Furthermore, 

software debugging on multiple processors in FPGA can be quite challenging. 
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 Virtual Prototyping 

In recent years multicore virtualization has become an important research subject in 

computer architecture and embedded systems fields. Virtual prototyping involves the 

use of highly abstracted target architecture model. Many tools and frameworks have 

been developed for virtual prototyping. The SimpleScalar [1] tool set provides an 

infrastructure for simulation and architectural modeling. This tool is an interpreter 

which executes all program instructions and can model a variety of platforms ranging 

from simple unpipelined processors to detailed dynamically scheduled micro-

architectures with multiple-level memory hierarchies. Quick EMUlator (QEMU) [2] is 

an open source machine emulator which relies on dynamic binary translation. It allows 

applications compiled for one architecture to be run on another. The proposed system 

provides performance estimation for Design Space Exploration (DSE). Mambo [3] is a 

full-system simulator for modeling PowerPC-based systems. It provides building 

blocks for creating simulators that range from purely functional to timing-accurate. 

ASIM [4] is a decoupled simulation framework. This framework provides modularity 

which helps break down the performance-modeling problem into individual pieces that 

can be modeled separately, while its reusability allows using a software component 

repeatedly in different contexts. PTLsim [5] is a cycle accurate full system x86-64 

microprocessor simulator and virtual machine. This framework provides cycle accurate 

simulation with sacrificing the speed.  

These frameworks not only enable earlier software development but also can give 

a feedback where the hardware needs to be adapted or to be changed prior the 

implementation. The enabler for virtual prototyping is a virtual platform, which is an 

executable model of the target core architecture, including processors, memories, buses 

and peripheral [6]. Virtual prototyping can provide flexibility, scalability and ease of 
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debugging for the designer, but one most compromise either simulation speed or 

accuracy. Virtual prototypes cannot provide highly accurate results due to abstract 

software implementation of models. Conversely, if accurate models are used in virtual 

prototyping, the simulation slows down significantly. 

Software cycle-accurate simulation has been the primary tool to allow 

collaborative hardware and software [7]. Cycle-accurate Register-Transfer Level (RTL) 

simulations accurately model hardware behaviors down to register transfer level, 

suitable for hardware verification and profiling. They provide very accurate timing 

with sacrificing the simulation time. ModelSim [8], Synopsys VCS [9] and Cadence 

Incisive Enterprise Simulator [10] are some example of these kind of simulators. Simics 

[11] is a full-system functional simulators. It provides the level of accuracy necessary 

to execute fairly complex binaries on the simulated machine. GEMS [12], timing 

multiprocessor simulator, and SimWattch simulation tool [13], used for microprocessor 

performance and power estimation, are built on top of the Simics library. Such 

simulators can be used for large designs with range of single-digit hertz which is not 

reasonable for regular software code to be run on it [6]. 

Amongst the software-based methods, the most successful developments have been 

virtual platform technologies based on binary translation, as commercialized by 

Windriver [14], Coware [15], and Xilinx XVP [16]. In most virtual platforms, host-

compiled ISS have replaced or complemented traditional cycle-accurate micro-

architecture simulators [17] [18]. HISCS [19] is a technique for generation of fast 

instruction-set simulators that combines the benefit of both compiled and interpretive 

simulation. A major challenge in this technique is the compilation time overhead that 

makes usage of compiler optimizations impractical, especially for large applications. 

DynamoSim [20] is a suite of techniques inspired by recent advances in dynamic 

compilers to construct a hybrid simulation framework. In this framework any 
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instruction can be interpreted and only frequently executed instructions are translated 

on-the-fly into native code for direct execution. SoClib [21] is an open platform for 

virtual prototyping of Multi-Processors System on Chip (MPSoC). Its core is based on 

a library of SystemC [22] simulation models to facilitate architecture exploration of 

MPSoC. Open Virtual Platform (OVP) [23] is an open source virtual platform which 

uses OVPsim to simulate different designs. OVPsim is an instruction accurate 

simulator which provides infrastructure for describing platforms with one or more 

processors containing shared memory and busses in arbitrary topologies and peripheral 

models [24]. Wang et al. [25] have shown OVP and its interoperability with the existing 

Transaction-Level Modeling (TLM) based SystemC platforms shows that OVP is 

faster than other existing solutions. Such simulators can provide significant speedups 

(reaching simulation speeds of several hundred MIPS), but often focus on functionality 

and speed at the expense of limited or no timing accuracy.  

Host-compiled software simulation technique is based on source level static delay 

annotation in the application [26] [27]. The delays are derived by analyzing the 

execution of applications on an abstract model of the core. Although source-level 

annotation techniques promise high simulation speed, they require the full application 

source, including sources of libraries. These techniques also use an abstract core model, 

leading to estimation inaccuracies. 

Another popular method to simulate a multiprocessor system is to integrate 

multiple ISSs into a SystemC based simulation backbone. MPARM [7] is well known 

academic simulation platforms based on this solution. Such simulators are able to 

execute target binary and provide cycle-accurate simulation. However, they are 

extremely slow and very complicated [28].  
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 FPGA Prototyping 

FPGAs are semiconductor devices that are based around a matrix of configurable logic 

blocks (CLBs) connected via programmable interconnects. FPGAs can be 

reprogrammed to desired application or functionality requirements after 

manufacturing. This feature distinguishes FPGAs from ASICs, which are custom 

manufactured for specific design tasks. FPGAs has become a natural choice for 

building system prototypes of ASIC and SoC designs. It allows hardware designers to 

develop and test their systems, and it provides software developers early access to a 

fully functioning hardware platform. 

FPGA Prototyping is a technique to verify the functionality and performance by 

implementing the design on a FPGA. FAST [29] is a methodology that enables a single 

FPGA to accelerate the performance of cycle-accurate computer system simulators 

modeling modem, realistic SoCs and embedded systems. ProtoFlex [30] simulation 

architecture is an FPGA-based, full-system functional simulator for a symmetric 

multiprocessor server, hosted on a single FPGA and achieves a significant speedup 

over comparable software simulation. Chiou et al. improve FAST simulator by 

supporting work in parallelized computer system simulators [31]. Taeweon et al. [32] 

show the possibility of using FPGA in architecture research to enhance the simulation 

time. They introduce a new hardware/software co-simulation method that performs 

execution-driven microarchitecture simulation. Based on an off-the-shelf Pentium-III 

system that communicates with an FPGA via the Front-Side Bus. RAMP gold [33] is 

a FPGA-based architecture simulator for multiprocessors provides a high-throughput, 

cycle-accurate full-system simulator that runs on a single Xilinx Virtex-5 FPGA board, 

and which simulates a 64-core shared-memory target machine capable of booting real 

operating systems.  
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FPGA prototypes are highly accurate and fast. So, designers do not have to rely 

only on software simulations to verify a design. The application and system software 

for a design is executed directly on FPGA prototype to ensure that it is functionally 

correct before implementation. In contrast to virtual prototyping, FPGA prototyping 

does not provide scalability and flexibility is too costly. It is impractical for designers 

to implement different hardware platform on FPGA, given the vast amount of design 

choices. 

FPGA prototyping can be much more complicated for multicore architectures 

because FPGA logic on a chip is limited. Prototyping multicore may require multiple 

FPGA chips, which can compromise the accuracy of the FPGA prototype. In addition, 

debugging can be cumbersome and time consuming on FPGA prototypes. ChipScope 

[34] and SignalTAP [35] are standard debugging tools offered by FPGA vendors. 

However, they are difficult to use with multicore. Several prototyping frameworks 

using FPGA have been proposed. RAMP [36] provides the prototyping platform for 

implementing the full-system under test on FPGA. This platform puts together a large 

array of FPGAs in order to support the instantiation and integration of hundreds of 

cores [37] [36]. Unfortunately, the cost and design time of such full system prototypes 

is very high [30]. In addition, there is no flexibility of abstracting the inter-core 

communication in RAMP, since it is fixed in hardware by the inter-FPGA 

communication architecture.  

Another FPGA-based modeling approach implements the SystemC simulation 

kernel in FPGA to support standard hardware I/O during simulation [38]. Yet, 

another type of FPGA-assisted simulation, called virtual in-circuit emulation, runs 

software-on-host and application-specific hardware on FPGA to avoid slow RTL 

simulation in software [39]. The above techniques are incremental improvements to 

cycle-accurate simulation and have not been shown to scale to large multicore designs.  
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1.3  General Problem Statement 

The objective of this work is to design a novel system-level modeling framework, called 

hybrid prototyping that can provide the benefits of both virtual platforms and FPGA 

prototypes. Virtual prototypes have the advantage of scalability and high speed 

functional simulation by sacrificing the accuracy of performance estimation. Using 

cycle-accurate models are drastically slow down simulation speed. FPGA prototypes 

provide cycle-accurate performance. However, the scalability and design time of full 

system FPGA prototypes are serious issues.  

The proposed framework targets the typical Symmetric MultiProcessing (SMP) 

architecture consisting of multiple cores, each with a dedicated L1 cache and shared 

off-chip main memory. It also introduces emulation kernel and the modeling of 

dynamic Real-Time Operating System (RTOS) scheduler as well as hardware 

interrupts on top of the emulation kernel, in order to support the simulation of 

unmodified multi-threaded applications. The L1 caches of the cores are emulated by 

a dynamically reconfigurable on-chip memory module to support dynamic thread 

scheduling in SMP designs. In order to meet the above objective, we need to address 

some key technical challenges in hybrid prototyping design. First, the core, the emulation 

kernel and the cache model must all fit on one FPGA chip for optimal performance. 

Second, the emulation kernel and the cache model must be highly optimized for 

performance so that the core-context switching overhead is minimized. Finally, the 

emulation system must be completely transparent to the user, similar to virtual platforms. 

Hybrid prototyping aims to provide early, fast, and scalable models similar to 

virtual prototypes along with the cycle-accuracy of FPGA prototypes. Using hybrid 

prototyping, embedded software designers can create concurrent applications and 

accurately analyze the performance implication of their optimizations before 
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implementation. At the same time, hardware architects can modify the platform model 

without having to do full FPGA prototyping. Therefore, hybrid prototyping will 

enable early and reliable multicore embedded system design, resulting in huge 

productivity gains for both embedded software designers and multicore chip architects. 
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1.4  Thesis Contribution 

The main contributions of this thesis are presented as follows: 

1. Multicore Emulation Kernel (MEK). The fundamental idea of hybrid 

prototyping is to create multicore emulation kernel that executes on a single target 

core, which is physically implemented in FPGA.  The MEK emulates the execution 

of concurrent tasks on independent cores by dynamically scheduling them on the 

physical target core. It provides simulation primitives and the modeling of inter-

core communication. The emulation kernel, MEK, implements primitives for the 

management of discrete events and logical times for the tasks. It also provides 

simulation primitives and services to instantiate emulated cores and modeling of 

inter-core communication for SMP architecture. SMP is a system that has multiple, 

identical processors all sharing memory and devices.  

2. Multi-clock domains MPSoCs. Most embedded processors support several 

operating frequencies, which allows us to create a mixture of cores, each running 

at a different operating point. So, a multicore embedded system might have 

multiple clock domains. Hybrid prototyping can be applied to realistic multi-clock 

MPSoC designs. 

3. Simulation of Hardware peripherals (interrupts). An important aspect of 

RTOS design is the mechanism for servicing the interrupt-driven devices such as 

hardware peripherals. Hybrid prototyping is extended to simulate interrupts issued 

by external hardware. 

4. Memory hierarchy simulation. Caches are widely used in embedded system to 

increase efficiency. So it is important to consider memory hierarchy in hybrid 

prototyping. A novel dynamically reconfigurable active L1 cache (instruction and 
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data) model called DRAC proposed for hybrid prototyping. It is an on-chip 

hardware peripheral connected to the local bus of the core. DRAC is responsible 

for swapping the cache context when the MEK switches simulation context from 

one emulated core to another. Utilizing DRAC model, embedded designers are able 

to analyze, verify, and optimize their multicore design with cache design without 

the need for full system prototyping.  

5. SMP designs with dynamic RTOS scheduler model. In SMP designs, the 

number of threads that can run concurrently (simultaneously) is limited by the 

number of processors. Since each processor can execute only one thread at a time, 

with multiple processors, multiple threads can execute simultaneously. A single 

kernel manages all cores simultaneously. The hybrid prototyping supports SMP 

architectures and introduces the modeling of dynamic RTOS scheduler on top of 

the emulation kernel, in order to support the simulation of unmodified multi-

threaded applications. Therefore, in the hybrid prototyping, the RTOS scheduler 

can dynamically schedule any thread on any emulated core to achieve full 

utilization of all emulated cores. 

6. Automatic/Semi-Automatic Design Space Exploration. Using hybrid 

prototypes, multicore embedded system designers can create concurrent 

applications and accurately analyze the power and performance implication of their 

optimizations before the hardware is available. As such, the hybrid prototyping is 

capable of fast and early multicore design space exploration. It can provide huge 

productivity gains for multicore chip architects as they can optimize the hardware 

architecture without having to do full system prototyping. 
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1.5  Thesis Outline 

The remainder of this thesis is organized as follows. In Chapter 2 the hybrid 

prototyping methodology is presented. We start with describing the main idea behind 

the hybrid prototyping technique followed by explaining its different layers. In chapter 

3, we describe the MEK and primitives provided by this layer. Chapter 4 explains the 

hardware model layer and its primitives. Memory hierarchy and cache model 

supported by the hybrid prototyping are also discussed in details. Chapter 5 covers 

software model layer including thread management and RTOS model scheduler. 

Chapter 6 includes the experimental results for evaluating the hybrid prototyping in 

terms of accuracy, speed and scalability. Finally, conclusions and suggestions for future 

work are provided in Chapter 7. 
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Chapter 2 

2Hybrid Prototyping Methodology 

Multicore platforms deliver greater computing power through concurrency, offer 

greater system density, and run at lower clock speeds than uniprocessor chips resulting 

lower power consumption and thermal dissipation. Multiprocessing includes several 

operating modes such as SMP and Asymmetric MultiProcessing (AMP). An AMP 

system has multiple cores (may be either heterogeneous or homogeneous multicore). 

A separate operating system or a separate copy of the same operating system, manages 

each core.  Typically, each application’s process is locked to a single core. It provides 

an execution environment similar to that of uniprocessor systems. It allows simple 

migration of legacy code and facilitates management of each core independently. 

However, it can result in underutilization of processor cores. For instance, if one core 

becomes busy, applications running on that core cannot, in most cases, migrate to a 

core that has more CPU cycles available. Though such dynamic migration is possible, 

it typically involves complex check pointing of the application’s state and can result 

in a service interruption while the application is stopped on one core and restarted on 
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another. SMP is a computer architecture that provides fast performance by using two 

or more homogeneous processors to complete individual processes simultaneously 

under a single operating system. Unlike asymmetrical processing, any idle processor 

can be assigned any task, and additional processors can be added to improve 

performance and handle increased loads. Specific applications can benefit the most if 

the code allows multithreading. SMP systems can easily move tasks between processors 

to balance the workload efficiently. Figure 2 shows different configurations of a 

multicore design.  

 
Figure 2: SMP vs. AMP configurations of multicore designs [40] 

Hybrid Prototyping [41] is a modeling framework that aims to provide early, fast, 

and cycle-accurate models of SMP designs which are widely used in modern embedded 

and networking SoCs. The fundamental idea is to simulate a design with multiple 

processor cores by creating a Multicore Emulation Kernel (MEK) in software on top 

of a single physical instance of the processor. The MEK switches between cores and 

manages the logical simulation times of the individual processor cores. Since the 

application executes on exactly the same core as it is targeted for, the simulation is 

cycle-accurate. As a result, we can achieve fast and cycle-accurate simulation of 

multicores, thereby overcoming the accuracy concerns of virtual prototyping and the 

scalability issues of FPGA prototyping. Using hybrid prototypes, multicore system 
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designers can create concurrent applications and accurately analyze the power and 

performance implication of their optimizations before the hardware is available. 

2.1  Methodology 

Hybrid prototyping time-multiplexes several emulated cores on a single physical target 

core. The principal idea is to simulate a design with multiple processor cores by 

creating an emulation kernel in software on top of a single physical instance of the 

processor core. Since the application executes on exactly the same core as it is targeted 

for, the simulation is cycle-accurate. The core and the additional simulation 

infrastructure can fit on a single FPGA chip, making it very cost effective in contrast 

to full system prototyping in FPGA. It supports the execution of any multi-tasking 

ANSI C/C++ application. 

Since the application executes on exactly the same core as it is targeted for, the 

estimation accuracy is 100%, in contrast to binary translation. As opposed to source-

level annotation techniques, there is no need for availability of source code or 

knowledge of the core datapath, since the application binary runs directly on the target 

core. Finally, the at-speed execution of application tasks in our technique provides 

significant speedup over cycle-accurate software simulation. 

Figure 3 uses a simple example to illustrate the concept of multi-core simulation 

on a hybrid prototype. We assume that the design consists of multiple cores, 

communicating using inter-core communication primitives, such as simplex channels. 

The synchronization in the channels between the threads (mapped to different cores) 

is modeled using events. We assume a classical discrete event model, in which an event 

is consumed by a waiting thread, or lost if no thread is waiting at the logical time of 

notification. 
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Figure 3: Simple example of simulation with a hybrid prototype 

Figure 3(a) shows the design with two cores, each executing a single thread. 

Thread T1 executes on core EC1 for time t11 and notifies a global event e. After 

notification, it executes for another t12 units and terminates. Thread T2 executes on 

core EC2 (of the same type as EC1) for time t21 (< t11) and waits for the global event 

e. After e is notified (by T1), it executes for another t22 units and terminates. Both 

tasks are assumed to start at the same time. The cores, EC1 and EC2, are simulated 

on the target core, which is of the same type as EC1 and EC2, and hosts the MEK. 

Figure 3(b) shows two possible simulation schedules on the target core. A thread 

may be in four possible states: RUNNING, READY, BLOCKED or TERMINATED. 

The MEK maintains the logical times, lt1 and lt2, of the two emulated cores EC1 and 

EC2, respectively. The logical time for an emulated core is the time until which the 

core has been simulated since the beginning of system simulation. At logical time 0, 

the MEK may pick either EC1 or EC2 to simulate first. If the MEK schedules EC1 to 

be simulated first, it runs T1 on EC1 until e is notified. The MEK saves the event’s 

notification and its logical timestamp t11. Since event notification is non-blocking in a 
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discrete event model, the MEK allows T1 to execute until it is terminated. Once T1 is 

terminated, the MEK does a context switch (CS) and runs T2 from its logical time 0 

until it reaches wait(e) at logical time t21. At this point the MEK checks for any 

notifications of e that were made after logical time t21. Indeed, since t11>t21, the MEK 

finds that e was notified by T1 before T2 started waiting for it. As such the MEK 

updates the logical time of EC2 to t11 to model T2 being blocked on the wait from t21 

to t11. Finally, T2 is resumed and runs to completion. 

If the MEK schedules EC2 to be simulated first (Case 2), it runs T2 on EC2 from 

EC2's logical time 0 until it reaches wait(e) at EC2's logical time t21. Since no 

notifications of e are found, the MEK stores the wait on event e with timestamp equal 

to t21 and blocks T2. It then does a core context switch from EC2 to EC1. To emulate 

EC1, the MEK runs T1 from EC1's logical time 0 until the notification of e at EC1’s 

logical time t11. Upon notification, the MEK checks if there are any pending waits on 

event e at or before logical time t11. Indeed, task T2 is blocked since EC2's logical time 

t21 (< t11) on e. Therefore, the MEK unblocks T2 and updates EC2's logical time to 

t11 in order to account for the blocking time. The MEK continues simulating EC1 until 

termination of T1, followed by a context switch to EC2 and its simulation until 

termination of T2.  
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2.2  Modeling Framework 

Figure 4 illustrates the modeling framework of the hybrid prototyping. A hybrid 

prototype is a combination of software and hardware components. The hardware 

component is the target core which is physically implemented in FPGA. And the 

software component consists of three layers: the MEK, software and hardware models. 

 
Figure 4: The hybrid prototyping framework  

The MEK implements primitives for the management of discrete events and logical 

times of the emulated cores. It provides services to instantiate emulated cores and 

communication channels. This layer consists of discrete event model, shared resource 

(SR), hardware timer and emulated cores scheduler. The MEK defines primitives for 

event management using basic notify/wait concept. The context switching between 

emulated cores during simulation is done by the emulated core scheduler. It stores the 

context (stack, registers and state) of the running thread and loading the context of 
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the next ready thread. Timer primitives is also defined to provide a simple API to 

control the execution time. 

The hardware layer models emulated SMP cores that are responsible for executing 

the user application threads, memory hierarchy and hardware interrupt sources. It 

provides services to allocate/deallocate a thread to a specific emulated core. The 

hardware design such as the number of processors, hardware interrupts, processors 

frequencies, Fast Simplex Link (FSL) (for modeling of simplex channels for point-to-

point communication between the emulated cores) and etc. are implemented as an 

API on top of the MEK primitives in this layer  

The software model layer implements OS primitives for scheduling and 

communication on top of the hardware model. It provides models of priority-based 

preemptive scheduler - which is responsible for scheduling threads on the emulated 

cores -, Inter-Process Communication (IPC) services, and Interrupt Service Routines 

(ISR). The software model is the layer of the system which interacts directly with the 

user application. It defines thread management primitives (e.g. pthread_create, sleep, 

etc.), message queue, conditional variables and other essential services needed by the 

user application.  

The hybrid prototyping simulates the execution of concurrent tasks on 

independent cores by dynamically scheduling the processes on the emulated cores. As 

it is shown in Figure 4, only one thread can be run on the physical processor at a time. 
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2.3  Summary 

In this chapter we introduced the hybrid prototyping methodology and the idea behind 

it. We then explained the modeling framework and described different layers of the 

hybrid prototype. Hybrid prototype consists of three layers: software model layer 

which is responsible for thread scheduling, hardware model layer which is providing 

primitives for instantiating the emulated cores and the MEK which defines primitives 

for the management of discrete events and provides timer API required for managing 

the logical times for the emulated cores. In the next chapter we will talk about the 

MEK and its role in the hybrid prototyping. 
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Chapter 3 

3Multicore Emulation Kernel 

Figure 5 shows the MEK structure. The MEK provides simulation primitives for the 

management of events and shared resources. The most important part of the MEK is 

the emulated cores scheduler which is responsible to switch context between emulated 

cores. The timer primitive is also defined to provide a simple API to control the 

execution time.  

 
Figure 5: The MEK structure in the  
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3.4  Hardware Timer Controller  

The MEK uses a hardware timer (XPS Timer [16]) controller to measure the execution 

time in CPU cycles. The hardware timer driver provides a simple API to control the 

timer. The XPS Timer is organized as two identical timer modules. Each timer module 

has an associated load register that is used to hold the value for the counter. The 

MEK defines timer class to provide a simple API to control the execution time. Listing 

1 shows the timer class which is providing essential methods to work with both timer 

modules in the hardware timer. 

Class Timer{ 
   public: 
      Timer(u16 deviceId); 
      void start(u16 timerId); 
      void stop(u16 timerId); 
      u32 getValue(u16 timerId); 
   private: 
      XTmrCtr XPS_Timer; 
      int controlTime; 
} 

Listing 1: Timer class 

For measuring the execution time of a block of code, the MEK starts the timer 

before the block by calling start method. At the end of the block, the MEK calls stop 

method to stop the timer and reads the timer’s value by calling getValue method. To 

have accurate time measurement, the MEK must account for control time, which is 

the CPU time consumed for starting and stopping the timer, without any operations 

between them. The Listing 2 shows calculates the control time. 

u32 get_control_time() { 
   start(0); 
   stop(0); 
   return XTmrCtr_GetValue(&XPS_Timer, 0); 
} 

Listing 2: Control time 
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3.5  Event 

We have implemented a classical discrete event model, where an event is consumed 

by a waiting thread, or is lost if no thread is waiting at the logical time of notification. 

Each event maintains a waitlist which is sorted by the logical time of wait calls. The 

item type in the list is a pair of id and timestamp. As the name implies, the waitlist 

is the list of all emulated cores that their running threads are waiting on the event. 

Listing 3 shows the event class in the MEK. 

class Event { 
   public: 
      Event(); 
      ~Event(); 
      void wait(); 
      void notify(); 
   private: 
      Boost::List< pair<int,int> >* waitList; 
      void insertWait(int id, int timeStamp); 
} 

Listing 3: Event class 

The MEK defines notify/wait methods for event management. Listing 4 shows the 

pseudo code for event’s wait method. Each kernel call is surrounded by 

KERNEL_CALL_START and KERNEL_CALL_END functions. The first function, 

stops the timer to mark the end of user code and the start of execution of the kernel 

call. It also uses the timer value to update the logical time of the running emulated 

core. While the second function starts the timer before the kernel call returns to the 

user core. Wait operation puts the emulated core in suspended state (line 2), adds the 

wait to the event’s waitlist (line 3) and gives the control of the physical processor to 

the emulated core on the top of the busy queue (next busy emulated core) (line 4). 

Active_ecore is the emulated core which is actually running on the physical processor 

and consume CPU cycles.  
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void event::wait() { 
   1: KERNEL_CALL_START(); 
   2: suspend(active_ecore); 
   3: this->waitlist.insert(active_ecore); 
   4: run_next_ready_ecore(); 
   5: KERNEL_CALL_END(); 
} 

Listing 4: Event's wait pseudo code 

Listing 5 shows the pseudo code for event notification. An event cannot be notified 

unless all other emulated cores have been simulated at least until the current notifying 

emulated core’s logical time. Therefore, the notification is committed when the logical 

time of the notifier is equal to MIN_SIM_TIME which is the minimum logical time 

among none suspended emulated cores. If the logical time of the notifier is not equal 

to MIN_SIM_TIME, the emulated core yields its execution turn (line 3) to make sure 

all other emulated cores will be simulated at least until its current logical time. It 

ensures all waits and all notifications of an event (from different emulated cores) are 

being processed in order. Notifying an event brings the first emulated core in the 

waitlist to the ready state (lines 4-6). The waiting emulated core is inserted back into 

the idle queue and the wait is deleted from the event’s waitlist. It then updates the 

logical time of the waiting emulated core to current logical time only if the logical time 

of the waiting emulated core is less than the notify time (line 8). It implies that the 

waiting emulated core had waited on the event at a logical time before the current 

logical time of the notifying emulated core (active_ecore). In such a scenario the idle 

time of the waiting emulated core is incremented by the difference between the 

notifying emulated core’s logical time (active_ecore) and the waiting emulated core’s 

idle time (line 7). If no thread is waiting on the event, the notification will be lost. 
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void event::notify() { 
   1: KERNEL_CALL_START(); 
   2: while(active_ecore.logicalTime != MIN_SIM_TIME) 
   3:    yield(); 
   4: c = this->waitlist.first(); 
   5: if(c!=null) { 
   6:  wakeup(c); 
   6:  if(active_ecore.logicalTime > c.logicalTime){ 
   7:    c.idleTime+=active_ecore.logicalTime–c.logicalTime; 
   8:    c.logicalTime = active_ecore.logicalTime; 
   9:  } 
   10:} 
   11: KERNEL_CALL_END(); 
} 

Listing 5: Event's notify pseudo code 

It is important to note that on every update of the logical time after blocking, the 

difference between the new logical time and the task’s logical time indicates the idle 

time for the corresponding core. Figure 6 shows the busy/idle time for tasks T1 and 

T2. In this case, when T1 notifies event e, the MEK updates T2’s timestamp to t11 and 

increases T2’s idle time by t11 – t21.  

 
Figure 6: The busy/idle time 

Figure 7 shows a design with two emulated cores, each executing a single thread. 

Both threads are assumed to start at the same time. Thread T1 executes on emulated 

core EC1 for time t11 and notifies a global event e. After notification, it executes for 

another t12 units and terminates. Thread T2 executes on emulated core EC2 for time 

t21 (< t11) and waits for the global event e. After e is notified (by T1), it executes for 

another t22 units and terminates. For simplicity, we assume that T1 and T2 are bound 

to EC1 and EC2, respectively. 
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Figure 7: Simulation of two tasks on two emulated cores with hybrid 

prototyping 

Figure 8 shows two possible simulation schedules on emulated cores. The MEK 

maintains the logical times, lt1 and lt2, and idle times, idle1 and idle2, of the two cores 

EC1 and EC2 respectively. At logical time 0, either EC1 or EC2 can be simulated first. 

If EC1 is picked first to be simulated (Case 1), it executes thread T1 for time t11 until 

e is notified. At this logical time the MIN_SIM_TIME is equal to zero because the 

thread T2 has not yet been simulated and EC2’s logical time is zero. Therefore, EC1 

yields the execution to EC2. The MEK switches the context and simulates EC2. Thread 

T2 then executes on emulated core EC2 for time t21 and waits for e. Wait on event e 

puts EC2 in suspended state and the next ready emulated core (EC1) takes control of 

the processor. Based on the definition, MIN_SIM_TIME is the minimum of the logical 

time of all none suspended emulated cores. Therefore, now MIN_SIM_TIME is equal 

to the logical time of the EC1. The MEK does the context switch and simulates the 

EC1. EC1 executes thread T1 and it notifies the event e. After e is notified, T1 executes 

for another t12 units and terminates. Notifying event e by EC1 puts EC2 in ready state. 

As EC2 has waited before it gets notified, the MEK updates the logical time of EC2 to 

t11 to model T2 being blocked on the wait from t21 to t11. It also updates the EC2’s 

idle time to t11 – t21. Finally, T2 is resumed and runs to completion. 
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Figure 8: Possible emulation schedules 
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If EC2 is scheduled to be simulated first (Case 2), it runs T2 from EC2's logical 

time 0 until it reaches wait on event e at EC2's logical time t21. The MEK suspends 

the EC2 and switches the context to run EC1. EC1 executes thread T1 from EC1’s 

logical time 0 until the notification of event e at EC1’s logical time t11. Upon 

notification, since the MIN_SIM_TIME is equal to EC1’s logical time (EC1 is the 

only none suspended emulated core) the MEK removes EC2 from the event’s waitlist 

and updates the logical time of the waiting emulated core (EC2) to t11 and EC2’s idle 

time to t11 – t21 since t21 < t11. The thread T1 is simulating until it terminates, followed 

by a context switch to EC2 and its simulation until the termination of T2. By the end 

of the simulation (in both cases) the hybrid prototype reports EC1’s logical time as t11 

+ t12, EC1’s idle time is equal to 0, EC2’s logical time as t11+ t22 and finally EC2’s idle 

time as t11 - t21. The busy time for each emulated core is the difference of the logical 

time and the idle time of the emulated core. Therefore, the MEK reports the EC1’s 

busy time as t11 + t12 and EC2’s busy time as t21 + t22. As we will see later in next 

chapters, the busy time is needed for estimating the energy consumption of cores. 

3.6  Shared Resources 

The MEK ensures that accesses to a shared resource from different emulated cores is 

processed in order. It means an emulated core cannot read or update a shared resource 

unless all other emulated cores have been simulated at least until its current logical 

time. The MEK layer provides primitives for shared resources. Listing 6 and Listing 7 

describe write and read methods respectively. The emulated core can access the shared 

resource if the emulated core’s logical time is equal to MIN_SIM_TIME (line 2). 

Otherwise, it yields (line 3) to the next ready emulated core to be simulated. 
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void SR::write(T newvalue) { 
   1: KERNEL_CALL_START(); 
   2: while(active_ecore.logicalTime != MIN_SIM_TIME) 
   3:    yield(); 
   4: this->value = newvalue; 
   5: KERNEL_CALL_END(); 
} 

Listing 6: Shared resource write pseudo code 

T SR::read() { 
   1: KERNEL_CALL_START(); 
   2: while(active_ecore.logicalTime != MIN_SIM_TIME) 
   3:    yield(); 
   4: KERNEL_CALL_END(); 
   5: return this->value; 
} 

Listing 7: Shared resource read pseudo code 

It is important to note that the shared resource model only ensures that all 

accesses to a shared resource are being processed in order of logical time. It cannot be 

used to solve mutual exclusion in critical sections. Synchronization is required at the 

entry and exit of the critical section to ensure exclusive use. 

3.7  Emulated Core Scheduler 

The implementation of discrete event and logical time in the hybrid prototyping are 

different from a pure software discrete event simulator. A discrete event simulator like 

SystemC provides primitives of logical time (wait) and events (wait/notify). But in 

order to model execution time, the user has to advance logical time. In hybrid 

prototyping, there is the notion of a single global logical time, but multiple logical 

timelines (one for each emulated core). The time on these logical timelines is advanced 

when the emulated core is executing its context. Logical time is completely different 

from the physical time (wall clock). It represents the time by which actions happen 

on the system. 
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Figure 9: Classical vs the MEK discrete event simulation  

Figure 9 shows the difference between a classical discrete event and the MEK 

discrete event simulation. As it shows task1 writes into message queue after d1 unit of 

time. Task2 reads from the message queue after d2 unit of time. In the MEK discrete 

event simulation the user doesn’t need to advance the logical time as both task1 and 

task2 execute on the emulated cores. In contrast, in the classical discrete event 

simulation the user needs to apply time primitive (wait) to advance the logical time. 

 
Figure 10: Classical vs MEK discrete event simulation 

Figure 10 shows how discrete events are simulated with the MEK. After the MEK 

initialization phase, task1 is scheduled to run on EC1. It executes for d1 unit of time 

and then writes into message queue and terminates. The MEK then switches to EC2. 

After task2 executes for d2 unit of time it reads data from message queue and 

terminates. Therefore, the user doesn’t need to take care of logical time and the MEK 

measures the logical time for each emulated core. On the other hand, in the classical 

discrete event simulator, the pending event set is typically organized as a priority 

Task1 {
.
.
q.write(data)

}

d1

Task2 {
.
.
.
.
q.read(data)

}

d2
q

Task1 {

q.write(data)
}

wait (d1)

Task2 {

q.read(data)
}

wait (d2)
q

(b) Classical discrete event simulation(a) The MEK discrete event simulation

Physical time

EC1

EC2

0

0

t1

d1

d1

d2

logical time1

logical time 20

MEK-init

t1+d1

CS

t2 t2+d2

write

d2 read

Logical time

Task1

Task2 wait(d2)

0 d1

write

d1 d2 d2

read

wait(d1)
Physical time

irrelevant!

(b) Classical discrete event simulation(a) The MEK discrete event simulation



  33 
 

queue, sorted by event time. Following that, the simulator simulates the events and 

uses time primitives to handle logical times. 

The emulated core scheduler is the most important part of the MEK. It is 

responsible for switching between available emulated cores. It uses two queues to keep 

track of busy and idle emulated cores. At the beginning of the simulation, all emulated 

cores are initialized and placed in the idle queue. The thread scheduler in the software 

model dispatches the ready threads on the idle emulated cores. When an emulated 

core gets assigned to a thread, it becomes busy and is placed at the end of the busy 

queue.  

The MEK uses a First-In-First-Out (FIFO) scheduling policy to schedule emulated 

cores on the physical target core. In FIFO scheduling algorithm, an emulated core is 

simulated on the target core as long as the task mapped to the given emulated core is 

running. However, if the running thread on the emulated core terminates, blocks or 

voluntarily yields the emulated core, then the MEK switches to the next ready 

emulated core. Emulated cores don't switch instantaneously. After a thread blocks or 

terminates, the MEK must save the running thread’s state before simulating another 

emulated core. The operation to save this state and restore another is known as 

context-switch. To perform the context-switch the scheduler stores stack, CPU 

registers and state for each thread. It must be noted that the MEK scheduler and the 

RTOS scheduler model are theoretically orthogonal entities. 
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3.8  Summary 

In this chapter we explained the MEK layer. It is the fundamental idea of the hybrid 

prototyping. We introduced discrete event model, shared resource (SR), hardware 

timer and emulated cores scheduler. As we have seen, the emulated core scheduler is 

responsible for switching between emulated cores. In the next chapter we will see how 

emulated cores are modeled in the hardware model layer and are managed by the 

scheduler. 
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Chapter 4 

4Hardware Model Layer 

Figure 11 shows the hardware model layer structure in the hybrid prototyping. The 

hardware model layer instantiates the emulated cores, channels and interrupt sources. 

It provides services to allocate/deallocate a thread to a specific emulated core. This 

layer also models the cache behavioral by using an on-chip hardware peripheral. 

 
Figure 11: Hardware model layer structure 

The hardware architecture includes the number and configuration of processors, 
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a simple hardware model described in a hybrid prototype with two emulated cores and 

a hardware interrupt. 

void initialize() { 
   1: hybrid_init(NUM_CORES,  
         SCHED_TYPE,INIT_ROUTINE,CLOCK_DOMAINS); 
   2: u16 Id = hw_model->create_int_source(PERIOD); 
   3: hw_model->connect(Id, ISR_ROUTINE); 
   4: hybrid_run(); 
} 

Listing 8: Hardware description with hybrid prototyping 

To initialize a hardware model of the design, hybrid_init method is used (line 1), 

where NUM_CORES is the number of emulated cores and SCHED_TYPE is the 

scheduling type which can be static or dynamic. INIT_ROUTINE is the start of the 

routine responsible to initialize all the application’s thread and will be invoked by the 

prototype. Therefore, INIT_ROUTINE is the first thread which will be run by the 

MEK. If static scheduling is used, INIT_ROUTINE will be locked to the first 

emulated core. CLOCK_DOMAINS is an array of the frequencies which are going to 

be assigned (in order) to emulated cores.  

The hardware model provides a create_int_source method to initialize an 

external hardware interrupt source where PERIOD determines the interval time 

between the interrupts (line 2). Connect method in hardware model connects the 

external device to ISRs routine where ISR_ROUTINE defines the ISRs function. At 

the end, the simulation will be run by calling hybrid_run method (line 3). 
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4.1  Emulated Cores 

The hardware model provides simulation primitives for the management of the 

emulated cores. Each emulated core is responsible for executing the thread which has 

been assigned to it. The emulated core scheduler switches between different emulated 

cores and manages the logical simulation times and idle time of the individual 

emulated core. An emulated core is parameterized with: 

1. State which can be IDLE, BUSY, RUNNING or SUSPEND 

2. Logical time, the time until which the emulated core has been simulated. 

3. Idle time, the time until which the emulated core has been idle. 

4. Clock Frequency, the operating clock frequency which the emulated core works 

with. 

5. Running thread, the thread which has been assigned to the emulated core to 

get executed. 

6. Awake event, the event which is used to wake up the emulated core. As we will 

see later in chapter 5, the MEK uses this event to manage emulated cores’ idle 

time. When an emulated core becomes idle it will run idle thread. By running 

the idle thread, the emulated core will wait on awake event and as a result it 

will be suspended. When the event is notified, the MEK wakes up the suspended 

emulated core and updates its logical time and idle time if needed. 

 
Figure 12: Emulated core life-cycle state diagram 

Idle

Busy

Running

Suspended

New

blocking/terminate 
at thread level



  38 
 

The life-cycle of an emulated core is shown in Figure 12. An emulated core is 

initialized in the idle state; the emulated core scheduler puts it at the end of the idle 

queue. Idle emulated cores are waiting for threads to get assigned to them. After the 

RTOS model scheduler assigns a thread to an emulated core, it becomes busy and is 

placed at the end of the busy queue. When the emulated core is selected to run by the 

MEK, it is removed from the busy queue, changes its state to running and begins 

executing the assigned thread on the physical core. When the running thread on the 

emulated core blocks or terminates, the emulated core becomes idle and is placed at 

the end of the idle queue. 

If the emulated core yields its execution (for example at event notification), it is 

placed at the end of the busy queue and the next ready emulated core, in the busy 

queue is moved to the running state. An emulated core is suspended if it waits on an 

event which has not yet been notified. The suspended emulated core is not scheduled 

to execute on the target core until it is unblocked by a notification. When the 

suspended emulated core is subsequently notified, it is placed back at the end of the 

idle queue and waits for the next ready threads. 

4.2  Communication Models 

There are three different ways of communication in a hybrid prototype. FSL is used 

to model communication between emulated cores. Signals are used to model hardware 

interrupt by connecting external hardware device to emulated cores. In SMP designs 

message queue is an efficient way of passing data between processes which is created 

in the shared memory. One program will create a protected memory portion which 

other processes can access. Figure 13 shows different types of communication in the 

hybrid prototyping. 
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Figure 13: Communication models in the hybrid prototyping 

 Statically Scheduled MPSoCs  

Static MPSoCs architecture can be modeled by a hybrid prototype. In such an 

architecture, there is no dynamic scheduling and each task is locked to a specific core 

and they can use inter-core communication channel such as FSL to communicate. FSL 

is a unidirectional point-to-point FIFO-based communication channel bus used to 

perform fast communication between Xilinx MicroBlaze [16] soft processor.  

The basic simulation primitives of notify, wait, update and yield are powerful 

enough to build a complex communication models. In this section, we will describe 

modeling of simplex channels for point-to-point communication between the emulated 

cores called FSL. FSL is implemented as a circular buffer. Listing 9 shows the FSL 

class. 

class FSL { 
public: 
  FSL(int len); 
  void bwrite(const T value); 
  T bread(); 
  bool isEmpty(); 
  bool isFull(); 
private: 
  Event* ev_is_not_full; 
  Event* ev_is_not_empty; 
  SharedResource<bool> flag_not_empty; 
  SharedResource<bool> flag_not_full; 
  Cbuffer<SharedResource<T>>* cbuffer; 
} 

Listing 9: FSL class 
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The channel buffer is modeled as an array of shared resources of items which the 

user defined them. The head and tail of the circular buffer is maintained. Readers read 

from the head and writers write into the tail. The channel has boolean SR variables 

to indicate a full or empty state, as well as respective events that are notified whenever 

the buffer is read or written. 

void bwrite(const T value) { 
   1: KERNEL_CALL_START(); 
   2: while (!flag_not_full.Read()) 
   3:    this->ev_is_not_full->wait(); 
   4: SharedResource<T> sr(value); 
   5: cbuffer->enqueue(sr); 
   6: if (cbuffer->isFull()) 
   7:    flag_not_full = false; 
   8: flag_not_empty = true; 
   9: this->ev_is_not_empty->notify(); 
   10:KERNEL_CALL_END(); 
} 

Listing 10: FSL’s blocking write method 

Listing 10 illustrates the pseudo code for a blocking write (bwrite) into the channel. 

At line 1, the timer is first stopped to mark the end of user code and the start of 

execution of the communication model. The timer value is then used to update the 

logical time of the caller emulated core. Since this is a blocking write, the writing task 

must wait as long as the channel is full. If the shared resource flag_not_full can be 

accessed by the task, it guarantees that the logical time of the emulated core is equal 

to MIN_SIM_TIME and all other emulated cores (including the reader of this 

channel) have been simulated at least until this time (line 2). If channel is full, the 

writer must block on the channel ev_is_not_full event (line 3). Wait on the event 

puts current emulated core in suspended state and the next ready emulated core takes 

control of the processor. The actual writing is subsequently done by copying over the 

data into the buffer’s tail (line 5), updating the buffer full flag, if needed, (lines 6-8) 

and ev_is_not_empty event is then notified (line 9). Upon this notification, the 
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emulated cores which has been waiting on the channel will be waken up and the MEK 

will update the waiting emulated core’s logical time and idle time if needed.  

The blocking read method (bread) is the exact dual of bwrite as shown in Listing 

11. After stopping the timer and updating its logical time (line 1), the reader checks 

if the channel is empty by reading the flag_not_empty shared resource (line 2). Similar 

to bwrite, if the shared resource flag_not_empty can be accessed by the task, it 

guarantees that the logical time of the emulated core is equal to MIN_SIM_TIME 

and all other emulated cores (including the reader of this channel) have been simulated 

at least until this time (line 2). If the channel is empty, the reader must wait on the 

ev_is_not_empty event (line 3). Otherwise, it proceeds to perform the actual data 

read by reading the tail of the circular buffer (line 4). As the circular buffer is an array 

of shared resources, the reader’s logical time must be the same as MIN_SIM_TIME 

that the reader can read data from the buffer. After reading data, the MEK then 

updates the buffer full flag, if needed, (lines 5-7) and notifies ev_is_not_full (line 9). 

By notifying the event, the emulated core which has been waiting on the channel will 

be waken up and the MEK will update the waiting emulated core’s logical time and 

idle time if needed. 

T bread() { 
   1: KERNEL_CALL_START(); 
   2: while (!flag_not_empty.Read()) 
   3:    this->ev_is_notEmpty->wait(); 
   4: T item = cbuffer->dequeue().Read(); 
   5: if (cbuffer->isEmpty()) 
   6:    flag_not_empty = false; 
   7: flag_not_full = true; 
   8: this->ev_is_not_full->notify(); 
   9: KERNEL_CALL_END(); 
   10:return item; 
} 

Listing 11: FSL’s blocking read method 
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Figure 14 shows how the MEK manages tasks when they use communication 

models. We use this simple example to explain communication models in details. There 

are two possible scheduling for this example. It is assumed that the length of the 

channel is only 1 data item. The MEK can run either T1 or T2 first.  

 
Figure 14: Simple example of using communication model by two emulated 

cores in the hybrid prototyping 

Figure 15 illustrates the case when the MEK runs T1 first. T1 runs till reaches 

bread at time t11. Since no data items are found, the MEK blocks T1 and switches to 

task T2. T2 runs and at time t21 writes the data item into the channel and notifies the 

ch ev_write. So the MEK unblocks T1. After this notification, T2 executes for another 

t22. Then, it wants to write for the second time. As there is no space in the channel, 

the MEK blocks T2, set the T2’s timestamp to t21 + t22 and switches back to T1. T1 

reads the data item from the channel and notifies the ch ev_read. Considering this 

notification, the MEK unblocks T2. T1 can execute for t12 till reaches the second read 

while it is empty. So the MEK sets T1’s timestamp to t11 + t12 and switches to T2. 

When T2 writes in the channel, the MEK updates the T1’s timestamp to T2’s 

timestamp (t21 + t22) because T2’s timestamp is bigger than T1’s. T2, then, executes 

for t23 and terminates. The MEK switches back to T1. It reads from the channels, 

executes for t13 units and then terminates. At the end of the simulation, the MEK 

reports T1’s timestamp as t21 + t22 + t13 and T2’s timestamp as t21 + t22 + t23. 
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Figure 15: Simple example of using communication model by two tasks 

 

 

Figure 16: Simple example of using communication model by two tasks 
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Figure 16 shows the case when the MEK executes task T2 first. When the MEK 

schedules T2 to be simulated first, it runs T2 until it reaches bwrite at logical time t21. 

Since the channel is empty, T2 can writes the data item into the channel. So the MEK 

writs the data item and updates T2 timestamp to t21, store the t21 as block’s wire time 

and notifies ch ev_write. By this notification, the MEK changes the state to ready 

for all the tasks that are blocked on this channel and have been blocked. T1 then runs 

until it reaches the second write. As there is no space in the channel (channel size is 

1) data item, the MEK blocks T1, updates T1’s timestamp to t21 + t22 and does a 

context switch.  

The MEK then runs T2 until reading data items from the channel. Before reading 

the data item, the MEK updates the T2’s time stamp to t11. As the channel is not 

empty, T2 can read data item. After reading operation, the ch ev_read will be fired. 

Therefore, the MEK unblocks T1. In this case, the MEK does not update the T1’s 

timestamp because T1’s timestamp is greater than data item’s write time (t11>t21). 

The MEK continues simulating T1 until the second read from the channel. Before 

any operations, the MEK updates T1’s timestamp to t11 + t12. T1 reads the data item 

from the channel and as there are no more data items in the channel, the MEK blocks 

T1 and switches the context to T2. The channel has empty space and T2 can write the 

data item.  

Upon ch ev_write notification, the MEK unblocks the T1 because T1 has been 

blocked on this channel. Also the MEK updates the T1’s timestamp to t21 + t22 since 

the T2 logical time is greater than T1 logical time (t21 + t22 > t11 + t12) on notify ch 

ev_write. The MEK continues simulating T2 until it terminates and updates its 

timestamp to t21 + t22 + t23. The MEK then switches to T1 and simulates it until 

termination of T1. At the termination point, the T1’s timestamp is updated to t21 + 
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t22 + t13. So, regardless which task is scheduled first by the MEK, the final results are 

identical. 

 SMP Architecture 

Processes can communicate with each other using inter-process communication 

primitives provided by the operating system. One process can create a protected 

memory portion which other processes can access it. Message queue is an efficient 

means of passing data between processes which is provided by software model layer in 

the hybrid prototyping. A message queue is a way for applications to send messages 

between one another in order to reliably communicate. We will describe message queue 

in the next chapter. 

 Interrupt to Processor 

Signals are a useful synchronization mechanism to connect a hardware interrupt 

sources to a core. It will be used to model hardware interrupts in the hybrid 

prototyping. As opposed to events, notification on signals won’t be lost when no 

waiting thread is found on the signal. The signal structure consists of two lists: 

pendinglist and waitlist. As the name suggests, pendinglist is the list of logical time 

when the signal was initiated. Waitlist is the list of all threads that are waiting on the 

signal. The MEK defines signal/wait methods for signal management.  

Listing 12 illustrates the pseudo code for a wait on signal. The MEK first tries to 

find a notification for the signal that has occurred at a logical time before the current 

logical time of the core executing the wait (line 2). A notifying thread may have been 

simulated before the waiting thread and the notification may be present in the 

pendinglist. If the notification is found, it will be removed from the signal’s pendinglist 

and the caller proceeds (lines 2-3). If a notification is not found, the RTOS must allow 
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other thread to be run, so that a potential notify on the signal is executed. The wait 

is added to the signal’s waitlist and the waiting thread is BLOCKED by the RTOS 

(lines 4-7). The RTOS reschedules the ready threads on the emulated cores and 

changing the context (lines 7-8) to the next emulated core. 

void signal::wait() { 
   1: KERNEL_CALL_START(); 
   2: if(∃ n ∈ pendinglist, n->lt < active_ecore.lt) 
   3:    delete (pendinglist, n); 
   4: else { 
   5:    Thread *t = active_ecore.running_thread; 
   6:    add (waitlist, t); 
   7:    suspend(t);  
   8:    run_next_ready_ecore(); 
   9: } 
   10: KERNEL_CALL_END(); 
} 

Listing 12: Signal’s wait method pseudo code 

Listing 13 shows the pseudo code for signal notification. A thread cannot notify a 

signal unless all other threads have been simulated at least until the current logical 

time. Therefore, the notification is committed when the logical time of the notifying 

core is equal to MIN_SIM_TIME (lines 2-3). The thread yield its simulation turn to 

make sure all threads have been simulated at least until the current logical time and 

ensure all waits and notifications have been processed in order. If the current time is 

equal to MIN_SIM_TIM, the RTOS then looks for the first thread that has been 

waiting on the signal (line 7). If such a wait is found, the RTOS wakes the thread up 

and removes the wait from the waitlist (lines 8-9). If no waiting thread is found, it is 

possible that the thread which might call the wait at a later logical time has not yet 

been simulated till the wait call. Therefore, the notification is added to the pendinglist 

of signal (lines 4-5). 
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void signal::signal() { 
   1: KERNEL_CALL_START(); 
   2: while(active_ecore.logicalTime != MIN_SIM_TIME) 
   3:    yield(); 
   4: if(waitlist.isEmpty()) 
   5:    pendinglist->add(active_ecore.logicalTime); 
   6: else { 
   7:    w = waitlist.first(); 
   8:    wakeup(w); 
   9:    delete(waitlist, w); 
   10: } 
   11: KERNEL_CALL_END(); 
} 

Listing 13: Signal’s signal method pseudo code 

4.3  Hardware Interrupt Handling 

Hardware interrupts are issued by external peripherals, leading to execution of an ISR. 

ISRs are treated as special threads that have the highest priority. The signaling of an 

interrupt event notifies the ISR; the RTOS will run the ISR on the first available 

emulated core (either idle or busy with lowest priority task). Upon the ISRs execution 

the corresponding interrupt handler is called. 

Signal delivery is not instantaneous. When a signal is posted to ISR from a 

peripheral, the signal flagged as pending and added in signal’s pendinglist and the 

RTOS schedules the ISR to run on the first available emulated core. When ISR is next 

scheduled to be run, pending signals are checked and appropriate action is taken.  

An external device which is generating hardware interrupt (HW_INT) is modeled 

as a special emulated core in the hybrid prototyping. Like a regular emulated core, it 

is scheduled by emulated cores scheduler and it is capable to run any thread. The 

difference is that it only runs a thread which is locked to it. This thread describes the 

HW_INT’s behavior and defines in which circumstances the interrupt must occur. 

The other difference is that the MEK only update the HW_INT’s logical time when 

it sleeps for a given length of time. The MEK simulates the sleep operation which 
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means the thread is not really blocked on the sleep. The MEK just advances the logical 

time of the emulated core as much as the given length of time. Therefore, the 

HW_INT’s is always busy and its idle time is zero. For instance, Listing 14 shows a 

thread running on a HW_INT which is generating interrupts at a fixed time intervals 

(tINT). 

void interrupt() { 
   1: while (true) { 
   2:    pthread_sleep(tINT); 
   3:    int_sig->signal(); 
   4:    yield(); 
   5: } 
} 

Listing 14: Simple interrupt thread pseudo code 

As Listing 14 illustrates, the peripheral waits for tINT milliseconds and then sends 

a signal on int_sig signal. At the end, it yields its execution turn to another thread to 

ensure all threads will be simulated until the signal call. 

4.4  Multi-Clock Domains 

Multiple clock domains are often used in power-efficient designs. These designs might 

run different cores at different clock domains. The hybrid prototyping provides 

multiple clock domains by running each emulated core with different clock frequencies 

[42]. As the MEK calculates the execution time in CPU cycles, the real execution time 

can be easily obtained by multiplying the number of cycles with the clock period of 

each core. 

The MEK uses a hardware timer to measure the execution time in CPU cycles. 

The timer’s value is used to manage the emulated core’s logical time. It can be 

measured either in CPU cycles or real execution time (in milliseconds). To obtain 

execution time in millisecond, a clock frequency (f) should be assigned to each 
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emulated core. Equation 1 shows how the real execution time can be easily obtained 

by multiplying the number of cycles with the clock period of each emulated core. 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚 =  𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒𝐶𝐶 ×  1
𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒′𝑚𝑚 𝑓𝑓𝑐𝑐𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑓𝑓𝑐𝑐𝑓𝑓

    (1) 

Figure 17(a) shows how the MEK maintains the logical times lt1 and lt2 on 

emulated cores EC1 and EC2 respectively. It is assumed that the length of the channel 

is only 1 item and EC1 and EC2 are running with frequencies f1 and f2 respectively. 

The MEK may pick either EC1 or EC2 to simulate first. Figure 17(b) illustrates the 

case when EC1 is picket by the MEK. The X-axis shows the physical time measured 

by the hardware timer in CPU cycles. As this figure shows, the MEK runs T1 on 

emulated core EC1 until it reaches bread at time t11. Since no data is found in the 

channel, the MEK update the lt1 to t11 × f1, blocks T1 and switches to task T2. T2 

runs for t21 unit, writes data into the channel then notifies event chev_write. As a 

result, the MEK unblocks T1. Right after this notification, T2 executes for another t22 

unit. Then, it tends to write for the second time. However, as there is no space in the 

channel, the MEK blocks T2, set the lt2 to (t21 + t22) × f2 and switches back to T1. 

T1 reads data from the channel and notifies event chev_read. Considering this 

notification, the MEK unblocks T2. As T1 can execute for t12 unit till reaches the 

second read while the channel is empty, the MEK sets lt2 to (t11 + t12) × f1 and 

switches to T2. When T2 writes into the channel, the MEK updates the lt1 to lt2‘s 

value. This happens because lt2 is bigger than lt1. T2, then, executes for t23 unit and 

terminates. The MEK switches back to T1. It reads from the channels, executes for t13 

units and then terminates. At the end of the simulation, the MEK reports lt1 as (t21 

+ t22) × f2 + t13 × f1 and lt2 as (t21 + t22 + t23) × f2. 
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Figure 17: Multi-clock domain simulation example 
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4.5  Memory Hierarchy 

Caches are widely used in embedded system to increase efficiency. So it is important 

to consider memory hierarchy in hybrid prototyping. L1 caches add a new degree of 

complexity to multicore emulation because the L1 context must be switched along 

with the core context during emulation. Fortunately, the typical L1 cache size in 

embedded multicore systems that we are targeting is relatively small. Therefore, the 

delay in replacing the cache data during context switches don’t slow down the 

emulation drastically.  

Cache modeling can be broadly divided into software-based and hardware-based 

modeling techniques. Software models allow a high degree of configurability; however, 

software-based simulators compromise accuracy for simulation speed. Trace driven 

simulators [43] [44] can be quite accurate, but at the cost of high simulation time. 

Furthermore, they require repeated simulation runs to reach acceptable accuracy 

levels. Source-level simulations proposed in [45] estimate only the worst case scenarios; 

they cannot generate memory transaction statistics over different designs, and are, 

therefore, unsuitable for design space exploration. Transaction Level Modeling (TLM) 

techniques [46] [47] increase the level of modeling abstraction to speed up simulation. 

Software debugging also becomes more efficient with TLMs. Nonetheless, TLMs 

compromise timing accuracy for greater simulation speed [48]. 

In order to support fast and accurate simulation, hardware cache emulators have 

been introduced. Hardware cache models can be classified into passive and active 

emulators. Passive emulators are hardware monitors that probe memory transactions 

over the processor bus. Passive cache models like P-cache [49] and RACFCS [50] are 

L1 cache models that provide cycle-accuracy, configurability and observability into 
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the cache state at run-time. However, they are not suitable for utilization in multicore 

emulation systems since they cannot support multiple cache contexts. MemorIES is a 

passive L3 cache emulator that is designed for multiprocessor servers, such as IBM 

S70 class RS/6000 or AS/400 servers. The main drawback of this model is the 

complexity of the hardware design by using several FPGA boards, and the inaccuracy 

when modeling large caches. 

Active cache emulators provide the modeling accuracy and observability of passive 

models, while behaving as a built-in cache. Prototyping systems such as RMP [51], 

and RAMP [36] emulate the entire multiprocessor system and the memory hierarchy. 

Their key drawback is the scalability and the ease of debug. ACE [52] is an FPGA-

based active emulator that models L3 cache. It actively interacts with the target 

system, and provides the same functionality as the built-in cache, but with larger 

latencies. ACE provides cycle-accuracy and observability. However, like other cache 

emulators, this model does not support run-time re-configurability for switching 

between cache contexts, so it cannot be used for multicore emulation. DRAC provides 

the emulation speed of active models, the observability of passive models, and the run-

time configurability to support multiple cache contexts. 

We have designed a Dynamically Reconfigurable Active L1 Cache (DRAC) [53] 

module that emulates the local L1 caches of the cores. The DRAC is an on-chip 

hardware peripheral connected to the local bus of the core. All program and data 

memory transactions are made by the core on the local bus.  

We have focused on modeling a direct-mapped L1 write-through cache because of 

the following reasons: (i) L1 has the maximum impact on performance, (ii) direct-

mapped has the lowest energy footprint and is therefore popular in embedded systems, 

and (iii) write-through policy brings greater predictability to global memory state and 

is desirable for multicore embedded systems. Nevertheless, the ideas presented in this 
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paper can easily be extended for other types of caches using common cache modeling 

methods. L1 cache modeling for hybrid prototyping is more involved than 

implementing a simple cache model in FPGA. The cache model should be capable of 

simulating different caches of the emulated cores by dynamically changing its context. 

Therefore, DRAC is designed as a run-time configurable cache that enables the MEK 

to change the cache context as it switches from one emulated core to the next. 

 
Figure 18: A multicore design with its equivalent hybrid prototype 

Figure 18 presents the layered structured of a multicore design and its hybrid 

prototype equivalent. In the target design, which is shown in Figure 18(a), T1 and T2 

are tasks running on separate cores. Each core has its own L1 cache and separate 

memory space on DDR. The communication between the cores is performed using 

FIFO-based communication channels. Hybrid prototyping introduces an additional 

software layer on top of an emulation core. Figure 18(b) illustrates the hybrid 

prototype that incorporates the MEK. The emulation core and the main memory in 

the hybrid prototype are of the same type as that used in the multicore design. 

(a) multicore design (a) Equivalent hybrid prototype
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However, the built-in caches have been replaced by DRAC models. DRAC is 

customized to support different cache contexts for the two cores. For each cache 

context, a separate space on DDR is dedicated as cache image. Before the MEK starts 

emulating a core, it loads the corresponding cache image from DDR to DRAC. 

Similarly, after the MEK stops emulating a core, it saves the corresponding cache 

image to DDR. Hence the cache images are swapped in DRAC, when the MEK 

switches from one core to another. 

 Dynamically Reconfigurable Active Cache 

The DRAC model includes the functionality of a standalone cycle-accurate data and 

instruction cache, and additional logic to support multicore hybrid prototypes. As 

discussed earlier, the hybrid prototype simulates several virtual cores on a single core. 

Thus, a single cache that is capable of switching its context over different virtual cores 

is needed. To realize this concept, an extra module has been implemented in the cache 

that can swap the cache contents across different virtual cores. Each virtual core’s 

cache can be configured independently; however, this requires DRAC to change its 

configuration during run-time. The run-time configurability of DRAC provides the 

MEK to change the configuration of the cache. 

DARC is implemented as an interface between the target processor and the main 

memory. It receives memory access instructions from the target, processes the requests 

from the processor, and delivers the instructions and data, as needed. Therefore, it 

actively interacts with the target system. In order to support multiple cache design 

choices, DRAC is designed as a parameterized cache model.  
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 DRAC Design 

The top level design of DRAC consists of Bridge/Cache Arbitrator, Bus Bridge 

module, and Cache/Swap module as shown in Figure 19. 

 
Figure 19: Top level design of DRAC  

 Bridge/Cache Arbitrator & Bus Bridge  

DRAC is placed between the processor and the DDR memory controller; therefore, all 

memory transactions go through DRAC. The active behavior of DRAC requires it to 

have an extra module beside the cache, which is called Bus Bridge. This module is 

responsible for establishing the connection between the processor and the off-chip DDR 

memory when the cache is inactive. In this case, Cache/Swap module is bypassed by 

the Bridge/Cache Arbitrator, and the Bus Bridge provides processor’s direct access to 

the DDR memory controller. The arbitrator multiplexes the address bus, data bus, 

and control signals between the Cache/Swap module and the Bus Bridge. The 

arbitrator is controlled by the Control Status Register’s (CSR). CSR is a 32 bit control 
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register that resets, enables/disables, sets the size of the cache, and switches DRAC 

between bridge mode and swap mode.  

 Cache Module 

This module is composed of a controller and two block RAMs used for data and tag 

memory. The cache size configuration is set by this module. The CSR is used to set 

the cache size in DRAC. To support large cache sizes, we dedicate a large amount of 

Block RAMs (BRAMs) for data and tag memory. We, then, utilize a part of the 

BRAMs as per the cache size requirement. 

 
Figure 20: Finite State Machine of cache controller 

The cache controller is key module of DRAC, which is used in both data and 

instruction cache models. The only difference between the data and the instruction 

cache is read-only. In order to simplify DRAC design, we used the same controller for 
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both instruction and data. Figure 20 demonstrates the cache controller’s finite state 

machine (FSM). 

Cache Controller always checks the CSR value before any memory transaction. If 

CSR is set to cache enable, the FSM in cache controller is triggered and the state is 

changed to address check. In this state, the module checks the address valid Bit 

(Addr_valid) signal on the bus in every clock cycle; if it is detected, then the controller 

checks R/W signal and goes to Read or Write state. In both Read and Write states, 

the cache module first checks the tag memory in order to locate the memory block in 

the cache. In the read state, if the data is found in the cache, it is a hit case, and the 

cache retrieves the data from its own data memory to the processor; otherwise, it is a 

miss case and the cache should fetch the regarding memory block from the main 

memory. The controller’s last state is Add Delay Time. This state inserts delays 

depending on our timing model. The algorithm will be discussed in next section. DRAC 

is assumed to be a write-through cache. Hence, in the case of write, it updates both 

the cache and the main memory. At the end of each transaction, DRAC sets the 

acknowledgment signal in the processor’s bus, to inform the processor the memory 

transaction is done. 

 Swap Module 

The cache swap feature is the ability of the cache to save a copy of itself on the off-

chip DDR memory and to load it later automatically. The swap module is responsible 

for switching the cache context from one core to another during run-time. Whenever 

a swap is triggered by the MEK, DRAC stalls the processor and saves the current 

cache context to the main memory, line by line. The context of the next core to be 

simulated is, subsequently, loaded. Figure 21 illustrates the finite state machine of the 
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swap controller. Similar to the cache controller, the swap controller has a CSR Check 

state as an initial state. The swap trigger is detected in this state. 

 
Figure 21: FSM of swap controller (Swap Mode) 

Depending on the CSR value, the controller will save or load the cache state. As 

explained earlier, space in the DDR memory has been allocated for each core, 

depending on the cache size. The. Initialize state determines the starting and the 

ending address locations of each core’s cache. If the processor issues the save cache 

state command, the controller goes to Read from Cache state, reads the first line of 

the cache, and writes it into main memory. It continues this process until all cache 

lines are written to the main memory. On the other hand, if the processor’s command 

is load, the controller goes to Read from DDR2 state, reads all previously saved 

contents of the cache from main memory, and writes them into the cache. There is a 

stall state in swap’s FSM that ensures the data is safely resided in the cache or the 

main memory. 

 Timing Model 

Designing DRAC as an active cache model and utilizing on-chip BRAM memory as 

data and tag memory, reduces the program’s execution time, as compared to a passive 
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model. However, the DRAC delay is typically longer than that of the processor’s built-

in cache. In order to model the built-in cache, we add extra cycles to certain DRAC 

transactions such that all the DRAC delays are a multiple of corresponding built-in 

cache delays, by the same factor. As a result, the program’s execution time, when 

using DRAC, will be a multiple of the execution time with built-in cache. For example, 

in equation 2, if a processor with built-in cache executes a program in x Clock cycles, 

the proposed model will execute the same program in n × x Clock cycles, where n is 

the linear scaling factor: 

Modeled Clock cycles= n × Real Clock cycle      (2) 

In order to explain the timing model in more detail, we present the example of a 

MicroBlaze based system [16]. In this system, MicroBlaze is the core processor and 

CacheLink (XCL) is the communication bus between the main memory and the BIC. 

DRAC is designed as a master IP core that can be utilized as data or instruction 

cache. For hybrid prototypes, we disable the built-in caches, and use DRAC instead. 

Since DRAC is simply a peripheral to MicroBlaze, it is connected to processor local 

bus (PLB) which has a different protocol from XCL. XCL is an FSL based dedicated 

link, so DRAC cannot be connected to it. Clearly, replacing the XCL bus with PLB, 

disabling the built-in cache, and using DRAC will change the execution time of a 

program on MicroBlaze. However, it must be noted that our concern is not only the 

system speed performance, but also the timing estimation.  

We used ChipScopePro bus analyzer [16] to obtain memory parameter values for 

DRAC. The hit time for the MicroBlaze built-in cache is 1 cycle, while this time is 12 

cycles for DRAC over PLB. Therefore, we have defined our scaling factor as 12. It 

means every memory transaction in DRAC will incur 12 times the delay of the 

corresponding transactions with the MicroBlaze built-in cache. The other factor that 
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defines cache performance is read miss time. The average miss time latency for the 

MicroBlaze built-in cache is 29 cycles. This miss time is 149 cycles in DRAC.  In order 

to model read miss time, the emulator inserts 199 cycles to make read miss latency 

12×29 cycles.  

The write operation is another factor that impacts the system performance. DRAC 

models a write-through cache. Hence, in every write transaction the main memory will 

be updated. Writing into on-chip BRAM is quite simple and predictable; however, the 

write operation to the main memory, which in our case is DDR2 RAM, is quite 

complex. The complexity comes from the buffers that are implemented in the DDR2 

memory controller. Therefore, in order to model write operation in DRAC, we first 

need to model DDR2.  

 DRAM Modeling  

The connection of DDR2 memory to the system is established by Multi-Port Memory 

Controller (MPMC). MPMC provides separate accesses to the main memory for 

different modules in the system. It shares single off-chip DDR2 memory between 

multiple devices. We have two kinds of memory transactions in the system: read and 

write. The effect of multiple reads from different ports of MPMC is negligible since 

reading from the memory does not affect the saved data. The write delays behave 

differently, though. For a write into the main memory, MPMC stalls other memory 

transactions to make sure that the memory is in a consistent state. Therefore, if there 

is a write into a port of MPMC, the read or write access time of other ports will 

increase. 

MPMC uses the buffering technique in order to reduce the write time latency. In 

case of a single write, MPMC processes the write transactions in the background while 

it handles other read accesses. Buffering offers the system a better performance, 
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although it creates irregularity in successive or multiple memory transactions. In case 

of successive writes into a single port, the write operation time will be different 

depending on the number of consecutive writes in that port. The first write will take 

the least, and the last write will take the most operation time. The read time will also 

be affected by the successive writes of the other port. If the number of consecutive 

writes increases, the read access time of the other port will also increase. 

Table 1: Effect of concurrent writes to DRAM 

Previously, it was mentioned the DRAC model scales its delays to be a multiple 

of built-in cache delays. Besides hit and miss time latencies, DRAC also models the 

successive and multiple write delays. Table 1 presents the write and read access 

parameters of the built-n cache, and the modeled parameter values of DRAC. In the 

single core design, the instruction and the data cache are utilizing separate ports of 

MPMC. Since there is no write into MPMC in the instruction cache, the read access 

time of the instruction cache is only effected by data cache writes. In the multicore 

design, there are more than one data caches that write into MPMC. Hence, the effect 

of multiple writes will be more severe in higher number of cores. 

In multicore emulation with hybrid prototyping, only one core is simulated at a 

time. Hence, it is not possible to predict the exact behavior of the other cores during 

simulation. This effect causes the predicted execution time to be less than what is 

expected. In order to decrease this effect, we introduce a multiplication factor fm, which 

Number of concurrent writes to port 0 0 1 2 3 >=4 

Number of cycles to write to MPMC port 0 in BIC 0 2 4 5 11 

Number of cycles to write to MPMC port 0 in DRAC 0 2×12×fm 4×12×fm 5×12×fm 11×12×fm 

Number of cycles to read from MPMC port 1 in BIC 29 42 53 65 79 

Number of cycles to read from MPMC port 1 in 
DRAC 

29×12×fm 42×12×fm 53×12×fm 65×12×fm 79×12×fm 



  62 
 

models the multiple write effect.  To determine fm, we tested different multicore designs 

with all the cores running in parallel. We observed that the multiple write effect 

depends on the number, density, and distribution of writes over different cores. As a 

result, we executed a sample software code with different write distributions on 

multiple cores running in parallel. In each experiment, we kept the write density of 

the first core constant, and changed the write density of the other cores. We test 

different write densities for different number of cores ranging from the best case, in 

which there is no write in the second core, to the worst case, that the write density is 

almost 100%. We found an average fm value for each core. Table 2 presents the values 

of fm for different number of cores.  

Table 2: Multiple write factor for different number of cores 

Number of cores 2 3 4 
fm 4 9 12 

 

 Cache Modeling Limitation in Hybrid 
Prototyping 

There are several limitations of cache modeling in hybrid prototyping. The L1 images 

of all the cores are maintained in a dedicated memory, which may be on-chip if there 

is enough space. During the core context switch, the MEK instructs the DRAC to 

store the current L1 image and load the appropriate L1 image for the next core to be 

emulated. By increasing the number of cores we need more space to store the L1 

images which may not be available. Furthermore, increasing the number of cores will 

impact on prototyping speed as the L1 image must swap for each context switch. 

Therefore, increasing the number of cores could affect the space and speed of the 

hybrid prototype. 
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The other limitation of using cache model in the hybrid prototyping is modeling 

multiple cache hierarchy. Cache pollution is a serious problem for modeling multiple 

cache hierarchy in multicore designs. For instance, a core may replace the blocks 

fetched by another core into shared L2 cache. In the hybrid prototyping, running 

emulation kernel between application’s thread is also resulting the cache pollution. 

Therefore, running a design in FPGA prototype with shared L2 cache reports different 

results comparing to the hybrid prototype due to unpredictable misses and hits that 

occurs in shared L2 cache. 

Inability of modeling scratchpads is another limitation of cache modeling in the 

hybrid prototyping. Scratchpad is a high-speed internal memory used for temporary 

storage of calculations, data, and other work in progress. As it was explained earlier, 

to model the cache behavior, an on-chip hardware peripheral can be connected to the 

local bus of the core. It then can model the cache by observing all memory transactions. 

In contrast, scratchpads are transparent to the system. They cannot be accessed and 

cannot be observed as they sit close to the CPU. As a result, modeling scratchpads 

without the ability of observing or accessing them is another issue for modeling 

memory hierarchy in the hybrid prototyping. 

Cache model heavily depends on hardware architecture. Current DRAC cache 

model can only be used in designs with MicroBlaze as the target core. To use DRAC 

cache model for other architectures such as PowerPC or ARM we need to investigate 

the new architectures and change DRAC to support them which is a very time 

consuming and difficult work. 
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4.6  Summary 

In this chapter we presented the hardware model layer of the hybrid prototyping. We 

explained how the processors in a SMP design were emulated by emulated cores. 

Different communications models which are supported in the framework were also 

described. We then talked about the modeling of the hardware interrupts in the 

framework. We have also seen that the hybrid prototype can support multi-clock 

domain frequencies. Finally, we explained memory hierarchy model in details. In the 

next chapter we will talk about the software model layer which provides RTOS model 

scheduler to manage threads on top of the emulated cores. 
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Chapter 5 

5Software Model layer 

Software model layer provides simulation primitives for the management of threads. 

It defines model of RTOS scheduler for dynamic task scheduling on the emulated 

cores. Models of RTOS scheduler developed for system level design languages have 

been proposed, but are non-trivial to port to hybrid prototypes, given the absence of 

a single logical time [54].  

 
Figure 22: Software model layer structure 
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This layer defines message queue primitives which models the inter-process 

communication services implemented as an API on top of the conditional variable 

simulation primitives. Conditional variable is an important synchronization primitive 

beyond locks and allows threads to sleep when some program state is not as desired. 

The idle task provided by this layer is a special thread that has the lowest priority 

and is always ready to be run on the idle emulated cores. Finally, ISRs is defined in 

this layer to handle hardware interrupts in the design [55]. Figure 22 shows the 

software mode layer structure in the hybrid prototyping. 

5.1  Thread 

Threads (sometimes called lightweight processes) are the basic unit of processor use. 

Each is a separate control path through the code, and the ones within a process are 

essentially independent. Threads can access all the address space by the process, and 

they have no protection against each other. Software model layer in the hybrid 

prototyping provides all primitives and services for thread management. In a hybrid 

prototype, each thread comprises a thread id, program counter, register set and a 

stack. 

Every thread is assigned a priority. The priority can be set to a level from 0 to 10 

(10 is the highest priority which can be varied by the designer). As we will see later 

in this section, the thread scheduler selects the next threads to be run by looking at 

the priority assigned to every thread that is READY (i.e., capable of using the 

processor). The thread with the highest priority is selected to be run.  

The created thread becomes the tail of the ready queue for that priority. The 

ready queue is an array of the queues. Each entry of the array consists of a queue of 

the threads that are READY at that priority. Any threads that aren't READY aren't 
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in any of the queues, however they will be when they become READY. The RTOS 

uses ready queue to decide who to schedule next.  

 
Figure 23: Threads ready queue 

Figure 23 shows the ready queue data structure. Listing 15 shows the thread class 

in the software model layer. 

class Thread { 
   public: 
      Thread(functionPtr, int, int, int); 
      void setState(THREAD_STATE); 
      void setPrio(int); 
      void setId(int); 
      THREAD_STATE getState() const; 
      int getId() const; 
      int getPrio() const; 
      int getCoreId() const; 
      bool hasContext() const; 
      Context context; 
      functionPtr start_routine; 
private: 
      THREAD_STATE thread_state; 
      int thread_id; 
      int thread_prio; 
      int core_id; 
} 

Listing 15: Thread class in the software model 

In our RTOS scheduler model, a thread may be in four possible states: “running”, 

“ready”, “blocked” or “terminated”. Running state means that the thread is now actively 
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consuming the physical target core. The ready state means that a thread is ready to 

be run right now but all emulated cores are being used by other threads at that time. 

Terminated simply means that the thread is terminated and no longer needs to get 

executed. The terminated threads are removed from the ready queue. Blocked states 

means a thread must wait for some event to occur (e.g. response to a signal, event, 

etc.). The blocked thread is also removed from the ready queue until the blocking will 

be completed. Figure 24 illustrates the thread life cycle. It is important to mention 

that a running thread can voluntarily yield its execution turn. By yielding the 

execution, the thread will be placed at the end of the ready queue for that priority. 

Then the highest priority thread will be run. 

 
Figure 24: Thread life cycle in the software model scheduler  

5.2  Thread Scheduler 

Thread scheduling refers to the assignment of idle emulated cores to ready threads. 

The RTOS thread scheduler in our software model supports the FIFO scheduling 

policy. In FIFO scheduling algorithm, a thread is allowed to consume emulated core 

for as long as it wants. If the running thread terminates, blocks or voluntarily gives 

up the emulated core (yield), the RTOS looks for another ready thread in the same 
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capable of using the emulated core. Therefore, the highest-priority threads will be run. 
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If there’s another thread that is ready to be run and if there’s an available emulated 

core, the thread will be run on it. If there aren’t enough threads to go around, the idle 

emulated cores will run the idle thread. Idle thread is a special thread that has the 

lowest priority and is always ready to be run. An emulated core is considered to be 

idle when the idle thread is scheduled to be run on it. If there aren’t enough emulated 

cores to go around, then only the N-highest-priority ready threads will be run, where 

N is the number of available emulated cores. The scheduling decisions may take place 

when a thread: 

1. switches from the running to the blocked state 

2. switches from the running to the ready state 

3. switches from the blocked to the ready state 

4. terminates 

Under condition 1, the running thread waits for some events to occur and gets 

blocked. The blocked thread is removed from the ready queue and the highest-priority 

ready thread is then run. When the blocked thread is subsequently unblocked, it's 

usually placed at the end of the ready queue for that priority level. In condition 2, the 

running thread may yield the execution. The RTOS scheduler then inserts it at the 

end of the ready queue for that priority and does the scheduling decision. When a 

thread becomes unblocked (condition 3), the RTOS scheduler puts it back at the end 

of the ready queue and decides which threads should be run at this particular time. 

Finally, if a thread is terminated the RTOS scheduler removes it from the ready queue 

and reschedule the ready threads on the emulated cores. 

The simulation exits successfully if all threads are in the terminated state. A 

scheduling event may also result from a hardware interrupt. If an external interrupt 

occurs, a signal is posted to ISR. As we will see later in this section, ISR is a special 
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thread with the highest priority which is responsible to respond to external interrupt 

and performs the appropriate action based on the interrupt.  

5.3  Processor Affinity 

Processor affinity is the ability of binding or unbinding a process or a thread to a 

particular processor. Our software model supports static scheduling by specifying strict 

core affinity. During the application initialization in the hybrid prototyping, a setting 

determined by the system designer forces all of an application’s threads to execute 

only on a specified emulated core. It offers the benefits of SMP’s transparent resource 

management, but gives designers the ability to lock any application (and all of its 

threads) to a specific core to help migrate uniprocessor code to a multicore 

environment. It allows legacy applications written for uniprocessor environments to 

be run correctly in a concurrent multicore environment, without modifications.  

5.4  Condition Variable 

Conditional variable is an important synchronization primitive typically used in 

implementing deterministic producer/consumer behavior. Our software model layer 

provides conditional variable primitives using basic wait/signal methods. The wait 

method is executed when a thread wants to put itself to sleep until a condition is 

satisfied, and the signal method is executed when a thread wants to wake sleeping 

threads waiting on the given condition. 

Conditional variable class has a list called waitlist. Waitlist is a list of all threads 

that are waiting on the conditional variable. Upon a wait call, the RTOS scheduler 

puts the caller thread into the blocked state, removes the thread from the ready queue 
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and inserts the caller thread into the conditional variable’s waitlist. On a signal call, 

all threads which have been waiting on the conditional variable are notified and the 

RTOS scheduler changes their state to ready, puts them back in the ready queue and 

reschedules the ready threads on the emulated cores. If there is no sleeping thread on 

the conditional variable, the signal will be lost. 

5.5  Message Queue 

Message queue (mqueue) is an asynchronous communication mechanism between 

discrete components of an application. It facilitates message passing by connecting 

producers which create messages and consumers which then process them. The mqueue 

is modeled as a variable size circular buffer. The mqueue has two boolean variables to 

indicate a full or empty state, as well as respective conditional variables that are 

signaled whenever the buffer is read or written. 

void msqueue::send(T newvalue) { 
   1: KERNEL_CALL_START(); 
   2: while (this->isFull()) 
   3:    this->con_var_is_not_full->wait(); 
   4: this->cbuffer->enqueue(newvalue); 
   5: if (this->cbuffer->isFull()) 
   6:    this->flag_not_full = false; 
   7: this->flag_not_empty_ = true; 
   8: this->con_var_is_not_empty->signal(); 
   9: KERNEL_CALL_END(); 
} 

Listing 16: Message queue send method pseudo code 

Listing 16 shows the pseudo code for sending data over the mqueue. Since this is 

a blocking operation, the sending thread must wait as long as the mqueue is full (lines 

2-3). If the queue is not empty, the item is placed into the tail of the circular buffer 

(line 4) and con_var_is_not_empty is signaled (line 8). The condition variable wakes 

up all threads which have been waiting on the mqueue for receiving data. 
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The receiving method is the exact dual of sending as shown in Listing 17. The 

consumer checks if the mqueue is empty or not (line 2). If the mqueue is empty the 

consumer waits on the condition variable (line 3). Otherwise, the item is read from 

the buffer (line 4) and the con_var_is_not_full is notified (line 8) to wake up all 

threads which have been waiting on the mqueue for sending data. 

T msqueue::receive() { 
   1: KERNEL_CALL_START(); 
   2: while (this->isEmpty()) 
   3:    this->con_var_is_not_empty->wait(); 
   4: T item = this->cbuffer->dequeue(); 
   5: if (this->cbuffer->isEmpty()) 
   6:    this->flag_not_empty = false; 
   7: this->flag_not_full = true; 
   8: this->con_var_is_not_full->signal(); 
   9: KERNEL_CALL_END(); 
   10: return item; 
} 

Listing 17: Message queue receive method pseudo code 

5.6  Idle Task 

Idle task is a special thread with the lowest priority and always ready to run. It is 

scheduled on the emulated cores when there aren’t enough threads to go around. The 

primary purpose of the idle thread is to measure the idle time for each emulated core 

by waiting on awake event of the emulated core. When idle thread executes on an 

emulated core, the core is considered as an idle and the amount of time that the idle 

thread spend on running on the core is considered as idle time. We will see later in 

the next section how the hybrid prototyping calculates the idle and busy time for each 

individual emulate core. 

The idle thread waits on emulated core’s event (awake) as shown in Listing 18 the 

wait call puts the emulated core in the suspended state. When the event awake is 
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notified, the MEK wakes up the suspended emulated core and updates its logical time 

and idle time if needed.  

void idle_thread() { 
  1: while (true) { 
  2:    active_ecore->awake->wait(); 
  3: } 
} 

Listing 18: Idle thread pseudo code 
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5.7  Dynamic Scheduling Example 

Dynamic scheduling enables the execution of unmodified multi-threaded applications 

on top of a SMP-based hybrid prototype. In this section we describe how a hybrid 

prototype emulates a SMP design using a simple example. Figure 25 uses a simple 

example to illustrate dynamic scheduling simulation on a hybrid prototype. We assume 

that the design consists of two emulated cores and one hardware interrupt generator 

(HW_INT). The application has two threads which are communicating to each other 

with message queue primitives. The HW_INT generates interrupt at fixed time 

intervals (tINT >t11 >t21). 

 
Figure 25: Simple example of dynamic scheduling on two emulated cores with a 

hardware interrupt 

Figure 26 shows how the hybrid prototype maintains the logical times, lt1 and lt2, 

and idle times, idle1 and idle2, for emulated cores EC1, EC2 respectively. To avoid 

complexity of the example we just show one interrupt signal simulation from the 

HW_INT. The ISRs thread is also is not shown in the figure. We assume that the 

interrupt is sent to T2 directly. After the hybrid prototype is instantiated, EC1 and 

EC2 are placed at the end of the idle queue which means they are capable of executing 
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threads. The RTOS then schedules T1 and T2 on EC1 and EC2 respectively. By starting 

the simulation, the RTOS schedules EC1 to execute on the physical target core. Thread 

T1 executes on EC1 from EC1’s logical time 0 until it reaches mq.receive at EC1’s 

logical time t12. At this time, there is no data in the message queue because T2 has 

not yet been simulated. Therefore, T1 must be blocked until some data is written in 

the message queue. T1’s state becomes blocked, the EC1’s logical time is set to t11 and 

the MEK removes it from EC1.  

The MEK then puts EC1 at the end of the idle queue, does a context switch and 

schedules EC2 to execute on the target core. At this point of time, EC1 is the only idle 

emulated core. As there is no ready thread available, the RTOS schedules idle thread 

on EC1 and inserts it back into the busy queue. 

EC2 then executes on the target core and runs T2 from its logical time 0 until it 

reaches wait on the interrupt at EC2’s logical time t21. At this point the MEK checks 

if there are any pending signals on the interrupt at or before the current logical time 

t21. Since no notifications for interrupt are found, the MEK stores the wait on the 

interrupt in the signal’s waitlist and the RTOS blocks T2 and removes it from EC2. 

The MEK updates EC2’s logical time to t21 and puts EC2 at the end of the idle queue, 

does a context switch and schedules HW_INT to get control on the target core.  

HW_INT task sleeps for tINT and then posts a signal on the interrupt. Upon 

notification, the RTOS checks if there are any pending waits on the signal at or before 

logical time tINT. As thread T2 is blocked on the signal at EC2's logical time t21 ( t21 

< tINT), the RTOS unblocks T2 and updates EC2's logical time to tINT and EC2’s idle 

time to tINT – t21 in order to calculate the blocking time. The HW_INT’s logical time 

is also set to tINT.  

The MEK then schedules EC1 to execute on the target core. EC1 executes the idle 

thread until it reaches wait on the awake event. The MEK puts EC1 in suspended 
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state and removes it from the busy queue. The MEK switches the context and 

schedules EC2 to run on the target core. It runs idle thread and waits on its awake 

event as well. EC2 becomes suspended and the MEK removes it from the busy queue 

and switches the context to the HW_INT task. HW_INT runs again and now its 

logical time is equal to MIN_SIM_TIME (the only non-suspended emulated core is 

HW_INT, therefore, MIN_SIM_TIME will be equal to HW_INT’s logical time). 

HW_INT then notifies EC1’s awake event and EC2’s awake event.  

Upon this notification, the MEK updates EC1’ logical time to HW_INT’s logical 

time (t11 < tINT) and updates EC1’s idle time to tINT – t11. Now the HW_INT yields 

its exaction turn to let other emulated cores to run and may consume the interrupt. 

Both EC1 and EC2 are now capable of getting assigned to the next available threads. 

Since at this point of time T2 is the only ready thread that can be run, the RTOS 

schedules it to be run on EC1 (the first available emulated core) and schedules idle 

thread on EC2. EC1 executes T2 from EC2’s logical time tINT until it sends the item 

on the message queue. The MEK then updates the EC1’s logical time to tINT + t22, 

changes the state of T1 to ready and puts it back at the end of the ready queue. 
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Figure 26: Timing estimation example with two threads running on a design with two emulated cores and a hardware interrupt 
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At this point, the MEK sends a notification to all other emulated cores which 

have been waiting on their awake event. Since, EC2’s logical time is equal to 

MIN_SIM_TIME, EC1 yields its execution turn and EC2 executes on the target core. 

EC2 runs idle thread and waits on its awake event. The MEK puts EC2 into suspended 

state and removes it from the busy queue, switches the context and runs EC1. At this 

time, the notification is committed and as a result the MEK updates EC2’s logical 

time to tINT + t22 and EC2’s idle time to tINT – t21 + t22. 

The RTOS makes scheduling decision and schedules T1 to run on EC2. T2 executes 

on EC1 for another t23 unit of time until it terminates. The RTOS changes T1’s state 

to “terminated” and removes it from the ready queue. The MEK updates EC1’s logical 

time to tINT + t22 + t23. It then switches the context to simulate EC2. Since a thread 

has been terminated, the RTOS does a scheduling decision and schedules idle thread 

on EC1. EC2 executes T1 from its logical time tINT + t22 until it receives data from the 

message queue. After receiving data from the message queue, EC2 continues simulating 

T1 until it terminates. Then the MEK updates EC2’s logical time to tINT + t22 + t12, 

the RTOS changes the T1’s state to “terminated”, removes it from the ready queue 

and the MEK then notifies the awake events of all emulated cores (in this case EC1). 

Upon this notification the MEK updates EC1’s logical time to tINT + t22 + t12 and 

EC1’s idle time to (tINT – t11) + (t12 – t23) (since EC2’s logical time > EC1’s logical 

time). The simulation has been done because there aren’t any available ready threads 

in ready queue and all threads are terminated successfully. By the end of the 

simulation, the hybrid prototype reports EC1’s logical time as tINT + t22 + t12, EC1’s 

idle time as (tINT – t11) + (t12 – t23), EC2’s logical time is equal to tINT + t22 + t12 and 

finally EC2’s idle time as (tINT - t21) + t22. The busy time for each emulated core is 

the difference of the logical time and the idle time of the core. Therefore, the hybrid 

prototype reports the EC1’s busy time as t11 + t12 + t23 and EC2’s busy time as t21 + 
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t12. Table 3 shows the emulated cores states and the actions each thread takes, as well 

as its scheduler state over time. 

Table 3: Threads and emulated cores trace 

EC1 EC2 T1 T2 Comment 
T1 T2 Running Ready Simulation get started 
idle T2 Blocked Running T1 blocked on message queue 
idle idle Blocked Blocked T2 waits for interrupt 
T2 idle Blocked Ready T2 get notified by the interrupt 
T2 idle Blocked Running  
idle T1 Ready Terminated T2 sends data on the message queue 
idle T1 Running Terminated T1 receives data 
idle idle Terminated Terminated  

5.8  Summary 

In this chapter we presented the software model layer of the hybrid prototyping and 

its model of RTOS scheduler. We first talked about threads and thread scheduling in 

this layer. Then we explained the inter-processor communication model in the hybrid 

prototyping. We also introduced conditional variables as a synchronization 

mechanism. Finally, we went through an example in order to explain how RTOS 

schedules different threads on the emulated cores and handles hardware interrupts.  
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Chapter 6 

6Evaluation 

6.1  Use cases  

To evaluate the speed and accuracy of the hybrid prototypes, we used the JPEG 

encoder, the MP3 decoder and a simple packet forwarding applications.  The JPEG 

encoder is a simple pipelined multicore application with IO file. The MP3 decoder is 

a larger and more complex application with real-time constraints and hardware IO. 

The packet forwarding application can be massively parallel to demonstrate scalability 

of the hybrid prototyping. There are many alternative design options to implement 

these applications. These design options can be considered as benchmarks in our 

experimental results. Therefore, using these applications can help us to evaluate the 

hybrid prototypes in different aspects. We chose the MicroBlaze [16] core from Xilinx 

for the target multicore architectures because of easy integration with FPGA and the 

ability to instantiate multiple Microblazes (soft processor) to create reference FPGA 



  81 
 

prototypes for accuracy evaluation. The FIFO communication between the tasks is 

performed using the FSL buses supported by MicroBlaze. 

 MP3 Decoder  

The MP3 decoder application reads and decodes data from the media file. The MP3 

data is fetched from a file, and after being decoded it is written into a serial buffer. 

The buffered data can be played on the handset speaker. This application has 5 

separate tasks which can be run on different cores: isrPulser which is responsible for 

sending pulse in proper time to task isr. Task isr is the interrupt handler that notifies 

the decoding task if more data is needed by the serial buffer for the speakers. Task 

audiosal which reads and decodes data from the media file. Task mixerctrl is in charge 

of the channel and task dspaudio converts the rate, playback, mix, etc. on the data. 

Figure 27 shows the MP3 decoder application.  

 
Figure 27: The MP3 decoder application 

 Jpeg Encoder 
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Transform (DCT), Quantization of values (Quant), ZigZag transform (ZigZag) and 
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Huffman encoding (Huff). As Figure 28 shows, each task consumes a frame, which is 

an 8×8 block of integers, processes it and passes the block to the next task. Given the 

application structure, it can be easily pipelined and the concurrent tasks can be 

mapped to different cores.  

 
Figure 28: JPEG encoder application 

Table 4 shows 15 different multicore designs (ranging from 2 core to 5 cores) of 

the JPEG encoder application. As it shows, each design has different mappings from 

tasks to cores. 

Table 4: Task mappings for the JPEG encoder multicore designs 

Design #Cores Mapping 

2a 2 Read  mb1; DCT, Quant, ZigZag, Huff  mb2 

2b 2 Read, DCT  mb1; Quant, ZigZag, Huff  mb2 

2c 2 Read, DCT, Quant  mb1; ZigZag, Huff  mb2 

2d 2 Read, DCT, Quant, ZigZag  mb1; Huff  mb2 

3a 3 Read  mb1; DCT  mb2, Quant, ZigZag, Huff  mb3 

3b 3 Read  mb1; DCT, Quant  mb2; ZigZag, Huff  mb3 

3c 3 Read  mb1; DCT, Quant, ZigZag  mb2; Huff  mb3 

3d 3 Read, DCT  mb1; Quant, ZigZag  mb2; Huff  mb3 

3e 3 Read, DCT  mb1; Quant  mb2; ZigZag, Huff  mb3 

3f 3 Read, DCT, Quant  mb1; ZigZag  mb2; Huff  mb3 

4a 4 Read  mb1; DCT  mb2; Quant  mb3; ZigZag, Huff  mb4 

4b 4 Read  mb1; DCT  mb2; Quant, ZigZag  mb3; Huff   mb4 

4c 4 Read  mb1; DCT, Quant  mb2; ZigZag  mb3; Huff  mb4 

4d 4 Read, Quant  mb1; DCT  mb2; ZigZag  mb3; Huff  mb4 

5 5 Read  mb1; Quant  mb2; DCT  mb3; ZigZag  mb4; Huff  mb5 

DCT Quant. Zigzag Huff.Read 64 64

180 iterations

64 64
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 Packet Forwarding Application 

The JPEG encoder and the MP3 decoder can be run on a design with maximum 

number of 5 cores. However, to evaluate the overhead of the hybrid prototype and 

also to show its scalability, we need an application that can be run on a large number 

of cores simultaneously. A packet forwarding application would be an ideal choice for 

this purpose. Therefore, a simple application has been implemented in order to process 

packets. The application has a dispatcher responsible for reading packets and 

distributing them among the inner-cores. The inner-cores execute packet processing 

tasks and send the processed packets to the collector. The collector receives all packets 

and puts them in a proper order. This application can be implemented with a large 

number of inner-cores that can each be implemented as a MicroBlaze in FPGA 

prototype. The cores are connected using FSL as shown in Figure 29. 

 
Figure 29: Simple Packet forwarding application 

6.2  Experimental Results  

We created a FPGA prototype, a hybrid prototype and a virtual prototype for 

different designs for JPEG encoder, MP3 decoder and packet forwarding applications. 
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All the used MicroBlaze cores are clocked at 125 MHz. Each MicroBlaze core in the 

FPGA prototypes has 64 KB of dedicated BRAM for program and data. The hybrid 

prototypes use a single MicroBlaze core with 64 KB of BRAM since all the tasks and 

the MEK fit in a single BRAM. For larger programs, one may create multiple instances 

of BRAMs with contiguous address space assignment. OVP is used to create the 

virtual prototypes. As OVP is an instruction accurate simulator, it only calculates the 

number of instructions and cannot measure the idle time. Therefore, the busy time for 

each core is the sole result that can be provided by the OVP. 

 Accuracy 

We used static binding to lock each task to a specific emulate core in hybrid prototypes 

to be able to compare them with the PFGA and virtual prototypes. FSL provided by 

the hardware model was used for the inter-process communication. Static binding and 

dynamic binding in the hybrid prototype use exactly the same approach to deal with 

time estimation, therefore, the hybrid prototypes can be evaluated using static 

binding. 

Figure 30 shows the busy time reported by FPGA, Hybrid and virtual prototypes 

for each core for all different designs mentioned in Table 4. The X-axis shows the 

designs and Y-axis shows the execution time in million cycles for each design. 

 
Figure 30: The busy times for FPGA, hybrid and Virtual prototypes for the 
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Figure 31 shows the number of cycles needed to execute the JPEG encoder for a 

given image reported by FPGA and hybrid prototypes for each design mentioned in 

Table 4. It does not contain OVP results because OVP reports busy time instead of 

total execution time (busy time + idle time). In a given multicore design, the longest 

execution time amongst all tasks (mapped to different cores) can be considered as the 

design’s total execution time. The X-axis shows the designs and Y-axis shows the 

execution time in CPU cycles. 

 
Figure 31: The execution time reported by FPGA and hybrid prototypes for 

the JPEG encoder 

 Table 5 contains all the results for the JPEG encoder application in CPU cycles. 

The first column indicates the designs which are explained in Table 4. The second 

column shows the hybrid prototyping emulation time. The fourth and fifth columns 

contain the execution time for each core. Accuracy column shows how hybrid 

prototypes are accurate. The two last columns contain the busy time ratio for each 

core in a design. Busy time ration can be easily calculated by equation 3. 

𝑏𝑏𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑟𝑟𝑐𝑐 =  𝑏𝑏𝑒𝑒𝑚𝑚𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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Table 5: The JPEG encoder execution time in CPU cycles for all possible design 

Design 

Hybrid 
prototyping 

total 
emulation 

time 

Core 

FPGA 
prototype 
execution 

time 

Hybrid 
prototype 
execution 

time 

Accuracy 

Busy time ratio 

FPGA Hybrid OVP 

1 47872930 

1 
2 
3 
4 
5 

4329834 
4326674 
4397971 
4402759 
4413335 

4289109 
4335045 
4356360 
4360950 
4371449 

99.06% 
99.80% 
99.05% 
99.05% 
99.05% 

28% 
99% 
94% 
25% 
50% 

28% 
98% 
94% 
25% 
51% 

17% 
82% 
68% 
16% 
32% 

2a 10728896 
1 
2 

10059354 
10168752 

10069038 
10178315 

99.90% 
99.90% 

12% 
100% 

12% 
99% 

7% 
74% 

2b 10730450 
1 
2 

6371169 
6438799 

6380750 
6448354 

99.85% 
99.85% 

78% 
99% 

77% 
99% 

61% 
67% 

2c 10751181 
1 
2 

8535527 
8549169 

8512615 
8526277 

99.73% 
99.73% 

100% 
33% 

100% 
33% 

77% 
20% 

2d 10751181 
1 
2 

9104767 
9115258 

9081955 
9092454 

99.75% 
99.75% 

100% 
24% 

100% 
24% 

75% 
16% 

3a 20507035 
1 
2 
3 

6301868 
6323034 
6440517 

6311253 
6382167 
6449781 

99.85% 
99.06% 
99.85% 

19% 
68% 
99% 

19% 
67% 
99% 

11% 
56% 
67% 

3b 20507043 
1 
2 
3 

7889652 
7926390 
7989885 

7827749 
7913477 
7927139 

99.21% 
99.83% 
99.21% 

15% 
99% 
35% 

15% 
99% 
35% 

9% 
78% 
22% 

3c 20507043 
1 
2 
3 

8452546 
8495609 
8555930 

8390763 
8482817 
8493316 

99.27% 
99.85% 
99.27% 

14% 
99% 
26% 

14% 
99% 
26% 

9% 
76% 
17% 

3d 20523589 
1 
2 
3 

4958290 
4947656 
5007977 

4934183 
4970043 
4980542 

99.50% 
99.55% 
99.45% 

100% 
95% 
44% 

100% 
94% 
44% 

79% 
66% 
28% 

3e 20562359 
1 
2 
3 

4957187 
4929016 
4992511 

4934183 
4955498 
4969160 

99.54% 
99.46% 
99.53% 

100% 
83% 
56% 

100% 
83% 
56% 

79% 
60% 
35% 

3f 20573659 
1 
2 
3 

8535472 
8535472 
8550902 

8512615 
8517205 
8527704 

99.73% 
99.78% 
99.73% 

100% 
13% 
26% 

100% 
13% 
26% 

77% 
8% 
17% 

4a 32887985 

1 
2 
3 
4 

4329783 
4326617 
4348274 
4411776 

4289109 
4335045 
4356360 
4370022 

99.06% 
99.80% 
99.85% 
99.05% 

28% 
99% 
95% 
63% 

28% 
98% 
94% 
64% 

17% 
82% 
68% 
40% 

4b 32888142 

1 
2 
3 
4 

4705107 
4706371 
4757431 
4817769 

4665371 
4715728 
4766119 
4776618 

99.15% 
99.80% 
99.82% 
99.15% 

25% 
91% 
99% 
46% 

25% 
90% 
98% 
46% 

16% 
75% 
69% 
30% 

4c 32888102 

1 
2 
3 
4 

7868474 
7905091 
7910030 
7970382 

7827749 
7913477 
7918067 
7928566 

99.48% 
99.90% 
99.90% 
99.48% 

15% 
100% 
14% 
28% 

15% 
99% 
14% 
28% 

9% 
78% 
9% 
18% 

4d 30515938 

1 
2 
3 
4 

4947440 
4919245 
4924184 
4984536 

4934183 
4955498 
4960088 
4970587 

99.73% 
99.26% 
99.27% 
99.72% 

100% 
84% 
22% 
45% 

100% 
83% 
22% 
44% 

79% 
60% 
14% 
28% 
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The MP3 decoder has only one design. The FPGA prototype was created with 5 

MicroBlazes which are connected to each other through FSLs. The hybrid prototype 

has five emulated cores running on the MEK, and the OVP was used to create the 

virtual prototype. Table 6 shows the accuracy and busy time percentages for each core 

for FPGA, hybrid and virtual prototypes of the MP3 decoder. 

Table 6: The MP3 decoder execution time 

Core 
FPGA 

prototype 
execution time 

Hybrid 
prototype 

execution time 

Accuracy 
Busy time ratio 

FPGA Hybrid OVP 

1 312467571 31250217 99.98 % 100% 100% 96% 

2 32890978 32719520 99.47 % 22% 23% 0% 

3 33058711 32908133 99.54 % 28% 28% 26% 

4 32972069 32839963 99.59 % 17% 17% 5% 

5 32962442 32780419 99.44 % 14% 14% 45% 

1 The time unit is nanoseconds. 

Both FPGA and hybrid prototypes were created for packet forwarding application. 

MicroBlaze was used to implement the dispatcher, the inner cores and the collector 

while the channels were implemented by FSL in FPGA prototypes. Up to 8 

MicroBlazes can be used on the FPGA due to MicroBlaze Debug Module (MDM) 

restriction. MDM can be connected to the maximum of eight MicroBlazes at the same 

time. Therefore, FPGA prototypes can be implemented with only up to eight cores. 

There is no such limitation in hybrid prototypes, as they use a single MicroBlaze. 

Therefore, the hybrid prototypes can be easily implemented for designs with more 

than 8 cores. Taking all these in to consideration, we created hybrid prototypes for 

multicore designs ranging from 1 to 22 inner cores for packet forwarding application. 

Table 7 contains the results for designs with up to 8 cores. 
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Table 7: Packet forwarding application execution time for all designs with up 
to 8 cores 

# of 
cores 

Hybrid 
prototyping 

total emulation 
time 

Core 

FPGA 
prototype 
execution 

time 

Hybrid 
prototype 
execution 

time 

Accuracy 

Busy time ratio 

FPG
A 

Hybrid 

3 165437971 
1 
2 
3 

8215201 
8110358 
8179239 

8197827 
8095852 
8160706 

99.78% 
99.82% 
99.77% 

31% 
99% 
25% 

31% 
99% 
25% 

4 16321045 

1 
2 
3 
4 

4253865 
4185051 
4147267 
4191826 

4243561 
4179134 
4117228 
4163493 

99.75% 
99.85% 
99.27% 
99.34% 

30% 
98% 
97% 
25% 

30% 
98% 
97% 
25% 

5 16290722 

1 
2 
3 
4 
5 

2698869 
2696830 
2695860 
2695925 
2658783 

2679012 
2682205 
2682673 
2677983 
2647032 

99.26% 
99.45% 
99.51% 
99.33% 
99.55% 

32% 
100% 
100% 
99% 
26% 

32% 
100% 
100% 
99% 
26% 

6 16275717 

1 
2 
3 
4 
5 
6 

2060713 
2085449 
2032422 
2064680 
2059318 
2025314 

2047099 
2074646 
2024721 
2059527 
2048999 
2019111 

99.33% 
99.48% 
99.62% 
99.75% 
99.49% 
99.69% 

32% 
100% 
99% 
97% 
97% 
26% 

32% 
100% 
98% 
97% 
96% 
26% 

7 16329727 

1 
2 
3 
4 
5 
6 
7 

1692604 
1652163 
1716628 
1649340 
1709723 
1655231 
1644068 

1681916 
1640601 
1701179 
1641103 
1697389 
1644970 
1635644 

99.36% 
99.30% 
99.10% 
99.50% 
99.27% 
99.38% 
99.48% 

31% 
99% 
97% 
93% 
97% 
98% 
26% 

31% 
99% 
97% 
92% 
97% 
97% 
26% 

8 16448208 

1 
2 
3 
4 
5 
6 
7 
8 

1383061 
1411095 
1419597 
1410275 
1416298 
1423591 
1379922 
1340852 

1387820 
1400584 
1411888 
1399360 
1407350 
1415296 
1371985 
1329655 

99.65% 
99.25% 
99.45% 
99.22% 
99.36% 
99.41% 
99.42% 
99.16% 

32% 
100% 
100% 
99% 
92% 
90% 
93% 
26% 

31% 
100% 
100% 
99% 
91% 
89% 
92% 
27% 

1 The time unit is CPU cycles. 

Figure 32 illustrates the results for designs with up to 8 cores. The X-axis shows 

the number of cores and Y-axis shows the execution time in million cycles for each 

design. 
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Figure 32: Packet forwarding application execution time for all designs with up 

to 8 cores 

We created both hybrid and FPGA prototypes for the MP3 decoder and the JPEG 

encoder by using multi-clock domains (60, 90, 25, 45 and 55 MHz) in which each core 

is run with different clock frequencies. Table 8 contains the results for the MP3 

decoder.  

Table 8: MP3 decoder results with multiple clock domains 

Core Clock 
FPGA 

prototype 
execution time 

Hybrid 
prototype 

execution time 
Accuracy 

Busy time ratio 

FPGA Hybrid 

1 60 MHz 5186937601 520836936 99.58 % 100% 100% 

2 90 MHz 559167104 560874804 99.69 % 14% 14% 

3 25 MHz 560718592 566038909 99.06 % 43% 43% 

4 45 MHz 560128320 563309406 99.43 % 22% 22% 

5 55 MHz 560088448 561985784 99.66 % 15% 15% 

1 The time unit is nanoseconds. 

Figure 33 shows the results for all 15 designs mentioned in Table 4 for the JPEG 

encoder with multi-clock domains. The X-axis shows the designs and Y-axis shows the 

execution time in million cycles for each design. 
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Figure 33: The execution times for FPGA and hybrid prototypes for the JPEG 

encoder with multiple clock domains 

Table 9 shows the results for all designs of JPEG encoder application. These 

results show that the hybrid prototypes are accurate with multiple clock domains and 

that they report the same number of cycles for each task as measured by the FPGA 

prototypes. As it was described earlier, all the inner cores in packet forwarding 

application are doing same processing, therefore, there would be no point to use 

multiple clock domains for it. 

The hybrid prototype reported exactly the same number of cycles for each task as 

measured by the FPGA prototype. This is because we execute the tasks on the same 

core as in the FPGA prototype. In contrast, because of the high abstraction level of 

the underlying ISS, OVP simulation had an error of over 25% in the number of cycles 

reported. Furthermore, OVP can only report busy time for each core because it is an 

instruction accurate simulator. Therefore, hybrid prototype was shown to be more 

reliable than abstract virtual prototypes. 
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Table 9: The JPEG encoder all possible design results with multiple clock domains 

Design 

Hybrid 
prototyping 

total emulation 
time 

Core Clock 

FPGA 
prototype 
execution 

time 

Hybrid 
prototype 
execution 

time 

Accuracy 

Busy time ratio 

FPGA Hybrid 

1 6292686781 

1 
2 
3 
4 
5 

60 MHz 
90 MHz 
25 MHz 
45 MHz 
55 MHz 

163592080 
165787840 
164717088 
166585072 
168085792 

161934608 
163735376 
165544016 
165646112 
165836912 

98.98% 
98.76% 
99.49% 
99.43% 
98.66% 

12% 
29% 
99% 
14% 
24% 

12% 
29% 
99% 
15% 
24% 

2a 142173208 
1 
2 

60 MHz 
90 MHz 

111329376 
113249352 

112436944 
113645104 

99.00% 
99.65% 

18% 
99% 

18% 
99% 

2b 143218269 
1 
2 

60 MHz 
90 MHz 

82245400 
83217800 

82379056 
82752432 

99.83% 
99.44% 

99% 
85% 

100% 
86% 

2c 143387489 
1 
2 

60 MHz 
90 MHz 

141520480 
142504016 

142068624 
142220304 

99.61% 
99.80% 

100% 
22% 

100% 
22% 

2d 143371408 
1 
2 

60 MHz 
90 MHz 

150971520 
151956928 

151547664 
151664208 

99.61% 
99.80% 

100% 
16% 

100% 
16% 

3a 276169513 
1 
2 
3 

60 MHz 
90 MHz 
25 MHz 

249373888 
252952912 
254799392 

250510384 
253386448 
256137024 

99.54% 
99.82% 
99.47% 

8% 
19% 
100% 

8% 
19% 
99% 

3b 276544872 
1 
2 
3 

60 MHz 
90 MHz 
25 MHz 

110199088 
111642624 
111883280 

110328288 
111607512 
112760784 

99.88% 
99.96% 
99.21% 

18% 
78% 
99% 

18% 
78% 
99% 

3c 276587332 
1 
2 
3 

60 MHz 
90 MHz 
25 MHz 

94964488 
96082808 
95658920 

95294840 
96312088 
96772440 

99.65% 
99.76% 
99.83% 

21% 
97% 
92% 

21% 
97% 
91% 

3d 277076094 
1 
2 
3 

60 MHz 
90 MHz 
25 MHz 

88173024 
89276248 
89261640 

88211656 
89237840 
90138072 

99.95% 
99.95% 
99.01% 

93% 
58% 
99% 

93% 
58% 
98% 

3e 276562294 
1 
2 
3 

60 MHz 
90 MHz 
25 MHz 

110316464 
111759408 
112000080 

110444032 
111723256 
112876528 

99.88% 
99.96% 
99.21% 

74% 
41% 
99% 

74% 
41% 
98% 

3f 277978006 
1 
2 
3 

60 MHz 
90 MHz 
25 MHz 

141520480 
141853152 
141433840 

142068624 
142119232 
142580096 

99.61% 
99.81% 
99.18% 

100% 
8% 
62% 

100% 
8% 
62% 

4a 452180251 

1 
2 
3 
4 

60 MHz 
90 MHz 
25 MHz 
45 MHz 

163592080 
165787840 
164717088 
167886784 

161934608 
163735376 
165544016 
165847264 

98.98% 
98.76% 
99.49% 
98.78% 

12% 
29% 
99% 
37% 

12% 
29% 
99% 
37% 

4b 452077382 

1 
2 
3 
4 

60 MHz 
90 MHz 
25 MHz 
45 MHz 

185770512 
188306144 
187490688 
190587840 

184201264 
186255024 
188316672 
188549632 

99.15% 
99.91% 
99.55% 
98.93% 

11% 
25% 
99% 
26% 

11% 
25% 
99% 
26% 

4c 434297936 

1 
2 
3 
4 

60 MHz 
90 MHz 
25 MHz 
45 MHz 

87211288 
88228984 
85587480 
88694840 

87537448 
88484408 
85708400 
88941360 

99.62% 
99.71% 
99.85% 
99.72% 

22% 
99% 
50% 
55% 

23% 
99% 
50% 
55% 

4d 414815049 

1 
2 
3 
4 

60 MHz 
90 MHz 
25 MHz 
45 MHz 

82118512 
82404392 
79762280 
82870224 

82243696 
82481352 
79705344 
82938304 

99.84% 
99.90% 
99.92% 
99.91% 

100% 
55% 
54% 
59% 

100% 
55% 
54% 
59% 

1 The time unit is nanoseconds. 
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 Speed 

Figure 34 shows speed comparison between hybrid, FPGA and virtual prototypes to 

execute the JPEG encoder for a given image. The X-axis is the number of cores and 

the Y-axis is the simulation time in milliseconds. The real execution time can easily 

be obtained by multiplying the number of cycles with the clock period.  

 
Figure 34: Prototyping speed comparison between FPGA, hybrid and OVP 

prototypes for the JPEG encoder 

Figure 35 shows speed and overhead comparison between hybrid and FPGA 

prototypes using the number of cycles needed to execute the JPEG encoder for a given 

image. The X-axis is the design and the Y-axis is the number of cycles in millions. 

The overhead is defined as the difference between the cycles for simulating JPEG on 

the hybrid prototype and those on the FPGA prototype. As we can see, the hybrid 

prototype takes approximately the same time for all mappings with a given number 

of cores. This is because the total inter-core data communication is the same for 

different mappings of JPEG. The small variations are due to different absolute 

communication times for each channel, and the variations in task scheduling in the 

RTOS scheduler model. We can also see that the worst case overhead for a given 

number of cores scales well with the number of cores and the total amount of data 

communication.  
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Figure 35: The simulation times for FPGA and hybrid design for the JPEG 

encoder application 

The overhead of the hybrid prototype itself can be observed as the difference 

between the hybrid prototyping simulation times and the 1-core JPEG FPGA 

prototype execution time, since the total computation on the core stays constant. The 

hybrid prototype overhead consists of the wall clock time used for task/event 

management, scheduling and channel calls. As we can see, the hybrid prototype 

overhead also scales well with the number of cores and the amount of channel 

communication. 

 
Figure 36: Prototyping speed comparison between FPGA, hybrid and OVP 

prototypes for Packet forwarding application 

Figure 36 shows the speed comparison between hybrid, FPGA and OVP 

prototypes for packet forwarding application. The X-axis is the number of cores used 

in each design and the Y-axis is the simulation time in milliseconds. Up to eight 
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MicroBlazes can be used on the FPGA due to MDM restriction. MDM can be 

connected to the maximum of eight MicroBlazes at the same time. Therefore, FPGA 

prototypes can be implemented with only up to eight cores.  

In the most complex design with 5 cores, the hybrid prototype took about 40 M 

cycles (or 400 ms) to simulate JPEG. On the other hand, the FPGA prototype took 4 

M cycles (or 40 ms). In contrast, the virtual prototyping using OVP took over 20 

seconds on a 2GHz Pentium host with 8GB of RAM and the behavioral RTL 

simulation of the 5-core design took over 3 hours on a 2GHz Pentium host with 8GB 

of RAM. We were unable to create a 5-core virtual prototype, because the Xilinx 

Virtual Platform (XVP) simulator supports only a single instance of MicroBlaze [16]. 

For the 1-core design, the XVP took 3 minutes to simulate JPEG on the same host as 

the one used for RTL simulation. Based on the above results, we can conclude that 

hybrid prototyping outperforms both cycle-accurate RTL software simulation and 

virtual prototypes. The FPGA prototype took 33M cycles (330 ms) to execute the 

MP3 decoder while the hybrid prototype took 47.25M cycles (470 ms) to emulate it 

and OVP took about 28 second to simulate the design. The FPGA prototype with 

eight cores took 11 ms to execute packet forwarding application, while the hybrid 

prototypes took 131 ms to emulate the application. In contrast, the OVP took 26 

seconds to simulate the design. 

Different multicore designs (ranging from 1 to 5 cores) also created to dynamically 

schedule JPEG encoder’s threads on top of them. Figure 37 shows the simulation time 

needed to execute the JPEG encoder for the given image reported by hybrid 

prototypes. The Y-axis shows the simulation time in seconds and the X-axis shows the 

number of cores used in different multicore designs.  
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Figure 37: Simulation time (second) reported by the hybrid prototype with 
dynamic scheduling with different number of cores for JPEG encoder 

To have dynamic scheduling model of the MP3 decoder, different multicore designs 

with up to 4 cores are created. Figure 38 shows the simulation time needed to execute 

the MP3 decoder application reported by hybrid prototypes for different designs with 

different number of core. The Y-axis shows the simulation time in second and the X-

axis shows the number of cores used in different multicore designs. 

Simulation took longer with dynamic scheduling in hybrid prototypes. This is 

because of the RTOS scheduling and more kernel calls. However, as Figure 37 and 

Figure 38 show the simulation time increases linearly with the number of emulated 

cores. 

 

Figure 38: Simulation time (second) reported by the hybrid prototype with 
dynamic scheduling with different number of cores for MP3 decoder 
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As we have seen, a hybrid prototype can provide highly cycle-accurate and fast 

simulation similar to FPGA-based prototypes. The simulation time also increases 

linearly with the number of emulated cores. 

 Scalability 

As it was mentioned earlier, due to MDM limitation, the number of MicroBlazes are 

limited to 8 in FPGA prototypes. To overcome this problem, multiple FPGAs can be 

used, but with lots of effort. In contrast, in hybrid prototypes, there is no limitation 

to have designs with more than 8 cores. Furthermore, as it was described before, the 

experimental results for the JPEG encoder and the packet forwarding applications 

show that the hybrid prototype simulation time increases linearly when the number 

of cores are being increased. Therefore, hybrid prototyping provides scalable models 

of multicore embedded system design. 

 Modeling Effort 

Modeling effort is a difficult metric to measure because of the human element. In 

creating our experimental setup, we found out it was very difficult to debug the FPGA 

prototypes as the number of cores increased. We used a JTAG based debug module 

provided in the Xilinx Embedded Development Kit. The I/O from the different cores 

was sent to the hyper-terminal on the host. In the case of multiple cores, it was difficult 

to sort them through the debug messages from the different cores. Figure 39 shows 

the difference between the hybrid prototype and FPGA prototype hyper-terminal 

output. As it shows, hybrid prototype output is more clear and readable comparing to 

FPGA prototype output. FPGA prototype output is hard to understand because all 

cores write into terminal simultaneously and they override other cores’ output. To 
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solve this problem in FPGA prototypes we need to use synchronization mechanism 

like mutex which make FPGA prototype much more complicated. 

 
Figure 39: Hybrid prototype vs. FPGA prototype hyper-terminal output 

Furthermore, it takes a significant amount of time to design, implement and test 

the inter-core communication architecture on the FPGA comparing to hybrid 

prototypes. Because in the hybrid prototype, we have to interface with only one core, 

and the state of the core being emulated was easily observed at any given time. Figure 

40 shows the complexity of hybrid prototype vs FPGA prototype for running MP3 

decoder application. In summary, we found it much more challenging to implement 

and validate the FPGA prototypes than the hybrid ones. 

 
Figure 40: Hybrid prototype vs. FPGA prototype hardware design for MP3 

decoder application 

 

  

(b) Hybrid prototype output(a) FPGA prototype output
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6.3  Design Space Exploration 

Design Space Exploration (DSE) is the process of analyzing and modeling several 

possible design alternatives prior to implementation. By using DSE, designers can 

discover and evaluate their designs during system development. DSE is critical for 

design optimization before silicon is available. Rapid prototyping is often used to 

implement a set of prototypes for different design choices. By analyzing these 

prototypes, designers can improve their understanding of the impact of design 

decisions. The set of prototypes can be compared using well defined metrics such as 

execution time, cost and power consumption. As such, DSE can be used to discover 

the optimization possibilities before implementation [56]. Our primary goal with 

hybrid prototyping is to make DSE fast, early and reliable [42].  

 
Figure 41: Design Space Exploration 

Figure 41 explains how DSE is performed using hybrid prototyping. For a given 

application and architecture, there are several possible mappings. Different mappings 

are created and evaluated as per the chosen quality metrics. Eventually, the designer 

can select the best design amongst the evaluated mappings. For each design, the hybrid 
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prototype provides a simple energy consumption model and a highly accurate 

estimation of the application’s execution time. We consider execution time (speed) 

and energy consumption as quality metrics for DSE.  

 Speed 

As it was mentioned earlier, a hybrid prototype provides a highly accurate estimation 

of the application’s execution time for a given design. The timing estimates are 

generated for both total execution time and busy time for each core. In a given 

multicore design, the longest execution time amongst all tasks (mapped to different 

cores) can be considered as the design’s total execution time. So by comparing the 

total task execution times on all cores, we can determine the speed of a multi-core 

design. 

 Energy Estimation 

Energy consumption is one of the most important quality metrics in embedded system 

design. The power consumption of a core is directly related to its frequency. Most 

embedded processors support several operating frequencies, which allows us to create 

a mixture of cores, each running at a different operating point. The busy power 

consumption is a measure of the power which is consumed by the core when it executes 

the instructions. The idle power consumption is a measure of the, largely static, power 

consumed by the core while it waits on external events, and does not execute any 

instruction. We used the Xilinx XPower analyzer [16] to measure both the busy and 

idle power consumptions. The idle dynamic power is zero for the MicroBlaze when it 

waits on the FSL communication channels. The Static power, consumed at all times 

irrespective of whether the core is busy or idle, is the same for all cores with different 

clock domains and is measured to be 1.48 mw. If the clock frequency is increased, the 



  100 
 

power consumption will increase as well. As CPU and memory are the most power 

consuming parts in our designs, we consider the busy power as sum of CPU power and 

memory power. Table 10 shows the average busy power for MicroBlaze and BRAM. 

Table 10: The busy power consumption for different clock domains 

Frequency MicroBlaze BRAM 

25 MHz 07.14 mw 14.57 mw 

45 MHz 12.23 mw 25.68 mw 

55 MHz 14.65 mw 30.80 mw 

60 MHz 16.00 mw 34.01 mw 

90 MHz 23.24 mw 50.65 mw 

125 MHz 31.91 mw 68.91 mw 

A simplistic, yet reasonably accurate, power model of a processor assigns a single 

power consumption number to each operating point. Clearly, the processor is only 

consuming dynamic power when it is busy. Since different mappings may result in 

different busy times for the cores, we can change the mapping in order to obtain the 

best energy consumption by the design. Using a hybrid prototype, the designer can 

quickly obtain the busy times for the design with different operating frequencies and 

mappings. The estimated energy consumption for each emulated core can be calculated 

by the following equations. 

𝐸𝐸𝑒𝑒𝑒𝑒𝐸𝐸𝐸𝐸𝐶𝐶 =  (𝐼𝐼𝐼𝐼𝐶𝐶𝑒𝑒𝑒𝑒𝑟𝑟𝑚𝑚𝑒𝑒 ×  𝐼𝐼𝐼𝐼𝐶𝐶𝑒𝑒𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑐𝑐) + (𝑏𝑏𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒𝑟𝑟𝑚𝑚𝑒𝑒 ×  𝑏𝑏𝑒𝑒𝐶𝐶𝐶𝐶𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑐𝑐)    (4) 

𝑏𝑏𝑒𝑒𝐶𝐶𝐶𝐶𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑐𝑐 =  𝐶𝐶𝐶𝐶𝐶𝐶 𝑏𝑏𝑒𝑒𝑚𝑚𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 +  𝑀𝑀𝑒𝑒𝑡𝑡𝑒𝑒𝐸𝐸𝐶𝐶 𝑏𝑏𝑒𝑒𝑚𝑚𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝      (5) 

 Automatic Design Space Exploration 

Hybrid prototyping is extended to support automatic design space exploration. In 

most multicore embedded systems, there are several possible design options depending 
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on the number of cores, their frequencies and the mapping of application tasks to the 

cores. Each of the design options may consume different energies, may have different 

execution times and different chip area. Higher core frequency results in greater power 

consumption. Less power design, using lower operating frequencies, increases the 

execution time. There may be chip area constraints as well, which limit the number 

of cores that can be implemented on the chip. Moreover, limited parallelism in the 

application may limit the speed advantage of adding more cores to the design. 

Therefore, the right multicore design for a given application is not obvious until 

accurate models of possible design options have been evaluated. 

Clearly, implementing all possible designs is often impractical. So, the designer 

needs a mechanism to evaluate most of the promising design options before 

implementation. Hybrid prototyping provides such mechanism for designer. As 

mentioned earlier, the hybrid prototype can calculate energy and execution time for 

each design, for a given input. So, the designer can evaluate any designs in terms of 

energy, speed and area.  

As we described before, the JPEG encoder application has five tasks which can be 

mapped on 1 to 5 cores. Each core can have a different CPU clock frequency. Also we 

can have different mapping of tasks on the cores. The equation 6 shows the number 

of all possible designs. 

𝑁𝑁𝑒𝑒𝑡𝑡𝑏𝑏𝑒𝑒𝐸𝐸 𝑒𝑒𝑜𝑜 𝐷𝐷𝑒𝑒𝐶𝐶𝑒𝑒𝐸𝐸𝑒𝑒 =   ∑ (𝑀𝑀 × 𝐶𝐶𝐷𝐷𝑀𝑀𝑒𝑒𝑀𝑀
1 )       (6) 

Where max is the maximum number of cores, M is the number of possible mapping, 

C is the number of cores and D is the number of clock domains. Table 11 shows all 

possible numbers of designs with different clock domains and maximum five different 

cores. For instance, the third column shows that there are 16 possible designs with 

only 1 clock domain which were described in Table 4. By increasing the number of 
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clocks, the number of possible designs increases dramatically. There are 14406 different 

possible designs for JPEG encoding application with six clock frequencies. Therefore, 

it is impractical to implement all these designs and choose the best one. 

Table 11: Number of all possible design with multiple clock domains 
#

 c
or

es
 

#
 m

ap
pi

ng
 

Number of possible design with different clock domains 

1 2 3 4 5 6 
1 1 1 2 3 4 5 6 
2 4 4 16 36 64 100 144 
3 6 6 48 162 384 750 1296 
4 4 4 64 324 1024 2500 5184 
5 1 1 32 243 1024 3125 7776 

Total 16 162 768 2500 6480 14406 

To overcome this problem, we can create a script for the hybrid prototype that 

takes the following inputs: clock domains, the maximum number of the cores and 

possible mappings to generate all possible models. In the most complex design the 

hybrid prototype takes 165ms to complete the simulation. Therefore, the total time 

for all 14406 design can take around 40 minutes to be done in the hybrid prototyping 

framework. The result is a log which contains the design mapping, total execution 

time, the busy time and energy consumption, for each core as well as the entire design. 

Designers can use this output to analyze all designs and choose the best one. For 

instance, we can use the hybrid prototype to log the results for all possible designs 

with two different clock domains (60 MHz and 125 MHz). 

Our experiments with the hybrid prototyping demonstrate its applicability to fast 

multicore design space exploration. We have modeled the 162 possible designs of the 

JPEG encoder which is being run with 2 clock domains (60 and 125 MHz). Xilinx 

Virtual Platform (XVP) simulation shows errors of over 40% in the number of cycles 

reported because of its high abstraction level. The FPGA prototype takes 35ms to 
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execute and 15 minutes to synthesize every design choice. Therefore, full FPGA 

prototyping takes almost 40 hours for all 162 possible designs without considering the 

effort of creating the FPGA prototypes. In contrast to the above techniques, it takes 

only 15 minutes to synthesize the hybrid platform’s target core, which is a one-time 

effort. The hybrid prototype takes 382ms (in worst case) to emulate each design, 

thereby enabling extremely fast, early and reliable design space exploration. Figure 42 

plots speed vs. energy consumption reported by the hybrid prototypes for all 162 

designs which each spot presents a design. The circle highlights the best designs that 

consume minimal energy and shortest execution time.  

 
Figure 42: Scatter chart for design exploration with two different clock 

domains 

 Dynamic scheduling 

Each design can have different number of cores clocked at different speeds. It is also 

possible to have threads running with different priorities which may affect the total 

execution time and energy consumption for the application. For each design, the 

hybrid prototype provides a simple energy consumption model and a highly accurate 

estimation of the application’s execution time. So, by comparing the execution times 
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and energy consumption for each design, we can reliably analyze the power and 

performance implication of their optimizations before the hardware is available. 

Our experiments with the hybrid prototyping also demonstrate its fast design 

space exploration for SMP designs. We have modeled 50 different designs of the JPEG 

encoder and 40 different designs for the MP3 decoder with different threads’ priorities 

which are being run on up to 5 cores with different clock frequencies (55, 60, 90, 25, 

45 and 125 MHz). The FPGA prototype takes 400ms (in average) to execute and 15 

minutes to synthesize every design choice. Therefore, full FPGA prototyping takes 

almost 12.5 hours for all the 50 designs without considering the effort of creating the 

FPGA prototypes. In contrast to FPGA prototyping, it takes only 15 minutes to 

synthesize the hybrid platform’s target core, which is a one-time effort. The hybrid 

prototype takes 48 second (in worst case) to emulate each design, thereby enabling 

fast, early and reliable design space exploration. Figure 43 plots speed vs. energy 

consumption reported by the hybrid prototypes for all different designs for JPEG 

encoder and MP3 decoder applications in which each spot presents a design. The circle 

highlights the best designs that consume minimal energy and shortest execution time.  

 
Figure 43: Speed vs. Energy consumption for different SMP designs with multi-
clock domains and different threads’ priorities for the JPEG encoder and MP3 

decoder applications  
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6.4  Dynamically Reconfigurable Active Cache 

DRAC was implemented in VHDL, and synthesized using Xilinx ISE toolset [16] on 

ML507 evaluation board using Vertex5 FPGA. The soft-core MicroBlaze processor, 

running at 125MHz, was chosen as the target core for all the experimental cases.  

 Standalone Accuracy 

Prior to using DRAC in hybrid prototyping, we evaluated the standalone model in a 

single core design. In order to check the functionality and timing accuracy of the 

standalone instruction and data DRAC model, we ran JPEG Encoder, Quicksort, and 

Dhrystone benchmarks for different cache sizes in a single core design. The MicroBlaze 

built-in cache configuration was set to direct map, 4-word line size, with write through 

policy. The result for different cases is shown in Table 12. We observed an average 

error of 3% and the worst-case error is only 5%, thereby demonstrating the accuracy 

of DRAC as a standalone cache model. 

Table 12: Estimation accuracy of standalone DRAC 

Benchmark Cache Size 
TBIC 

(Million 
Cycles) 

TDRAC 
(Million 
Cycles) 

Error 
% 

JPEG 

256B 48.63 48.05 -1.18 
1KB 23.19 23.31 0.49 
2KB 18.11 17.91 -1.10 
4KB 13.72 13.45 -1.98 
8KB 12.55 12.18 -2.90 

Quicksort 

256B 13.83 13.13 -5.06 
1KB 12.27 11.72 -4.48 
2KB 9.76 9.32 -4.59 
4KB 6.28 5.99 -4.61 
8KB 6.28 5.99 -4.61 

Dhrystone 

256B 22.25 22.79 2.41 
1KB 8.79 9.02 2.63 
2KB 7.90 8.05 1.90 
4KB 7.90 8.05 1.90 
8KB 7.90 8.05 1.90 



  106 
 

 Accuracy in the Hybrid Prototype 

We created 15 different multicore designs for JPEG Encoder in the full FPGA design 

and the hybrid prototype, ranging from 1 to 4 cores.  Each core is running different 

tasks of JPEG with different mappings to the cores. In the full FPGA design, cores 

are connected to each other with FIFOs. Reading/writing from/to FIFO’s is blocking 

method. Cores stop executing unless there is a value on the FSL.  

Table 13: Estimation accuracy of DRAC-based hybrid prototype 

Number of cores 
Mappin

g 
Average Error 

Worst-case 
Error Cache Size 

2core 

4-1 3.17% 6.76% 1 KB 
3-2 4.24% 8.56% 1 KB 
2-3 3.50% 12.3% 4 KB 
1-4 5.88% 10.2% 1 KB 

3core 

1-1-3 4.50% 7.24% 8 KB 
1-2-2 2.73% 4.34% 4 KB 
1-3-1 3.76% 7.81% 1 KB 
2-2-1 3.24% 6.73% 256 B 
2-1-2 4.76% 6.92% 256 B 
3-1-1 6.76% 10.8% 8 KB 

4core 

1-1-1-2 12.24% 12.98% 4 KB 
1-1-2-1 10.80% 12.55% 4 KB 
1-2-1-1 5.96% 9.78% 2 KB 
2-1-1-1 6.27% 9.09% 8 KB 

There are two timers implemented on each core in full FPGA prototype. The first 

timer calculates the actual busy-time of a core regardless of that core’s waiting time 

on blocking reads or writes. The second timer starts at the first of the program and 

measures the total execution time including program execution time and FSL waiting 

times. In hybrid design, there are also two timers. One timer is used by the MEK, to 

simulate the busy-time and the total execution time of each core; the other timer 

calculates the total simulation time, including the swap time, the total execution time 

of the tasks, and the MEK software. Table 13 presents the total execution time error 
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for different JPEG mappings and cache sizes. The mapping values represent number 

of JPEG tasks that have mapped to each core. For example, in the 2core design, 

mapping 4-1 means 4 tasks of JPEG have been mapped to the first core, and one task 

to the second core.  As it is shown, the average error is 9.00% and the worst case error 

is 13% in the 4 core design.  

 Simulation Speed 

As mentioned earlier, there is a timer for calculating the total simulation time. It 

starts at the first of the simulation, and stops at the end of the procedure. The total 

simulation time of the hybrid prototype can be seen in Figure 44. 

 
Figure 44: Simulation speed of hybrid prototypes with DRAC 

The values are obtained for all task mappings and all 5 different cache sizes 

ranging from 256B to 8KB. Because the hybrid prototype platform is running on off-

chip DDR2 SDRAM memory, and the swap is also running during the simulation, the 

timing is quite high in compare to hybrid prototype running on BRAM. The simulation 

time increases by increasing the number of cores, since number of cache swaps increase. 
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During simulation, both instruction and data cache is disabled, and the cache is 

enabled only when a task is running. Because of this, cache size increment effect is not 

significant in total simulation time. Even in some cases, the cache size increment 

results in higher simulation timing. The reason is that if the cache size increases, the 

swap time increases as well. Table 14 reports the time consumption for a load/save 

from/to DDR2 to/from the cache, and total swap (Load + Save). 

Table 14: Swap time consumption for different L1 sizes 

Cache Size 
Save  

(Cycles) 
Load  

(Cycles) 
Total Swap Time  

(Cycles) 
256B 2467 3831 6298 
1k 8499 13725 22224 
2k 16477 26957 43434 
4k 32513 53343 85856 
8k 64521 106123 170644 

 DRAC Resource Usage 

Each design consumes a certain amount of time to be synthesized, and occupies a 

portion of FPGA area during implementation. For each full FPGA multicore and 

hybrid design, we have obtained synthesis time and resource usage. Table 15 presents 

resources usage of the hybrid and full FPGA multicore designs. As it can be seen, as 

much the number of cores in the full FPGA design increases, the synthesis time and 

the area consumption gets higher. The full FPGA design must be synthesized once, 

with any configuration change like cache size; however, the hybrid design can emulate 

any configuration with only one time synthesis. Furthermore, in the hybrid design the 

area consumption remains the same during emulation of all designs and configurations. 
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Table 15: Resource usage of hybrid vs FPGA prototype 

 Energy Analysis 

Beside the speed of the system, power consumption is the other main factor for the 

designer to choose the best design in multicore processing. The main components that 

consume the most of the power are the processor, built-in cache, and off-chip main 

memory. Figure 45 demonstrates the total power consumption of the system for 

different number of cores and cache sizes. As can be seen, the cache size increment 

results in more BRAM utilization and more power consumption. On the other hand, 

adding more cores to the system and using more ports of MPMC increase the power 

consumption as well. 

 
Figure 45: Power consumption for different L1 cache sizes 

Design 
Synthesis 

Time 
Host PC memory 

Usage 

Resources Usage Percentage 

LUT BRAM Reg. Slice 
Bonded 

IO 
Real 2core 332s 737 MB 16% 23% 17% 36% 18% 

Real 3core 424s 802 MB 21% 35% 23% 47% 18% 

Real 3core 639s 925 MB 28% 57% 28% 59% 18% 

MEK with 
DRAC 

500s 656 MB 22% 33% 23% 53% 18% 
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 In multicore systems, power consumption is different core by core, depending on 

the task running on each core. Energy is the best way to measure the system 

performance in terms of power and time. The busy-time of a task is the time for a core 

to execute a task without considering blocking data transfer among different cores. 

The processor is on idle during blocking reads or writes, hence it consumes negligible 

amount of energy. Because of this fact, we multiplied the total power consumption of 

each core to the total busy-time of all cores and obtained the energy consumption for 

different task mappings. 

 Design Space Exploration 

Two of the most important factors that define system efficiency, are the speed of the 

system and the energy consumption of the design. Figure 46 plots all the full FPGA 

multicore designs from 2 to 4 cores with all possible JPEG Encoder mappings, and 

five different cache sizes execution time versus energy consumption. Each point is a 

design with certain mapping and the cache size. As it is circled on the figure, the best 

designs are the one that consume less energy and execute the program in the shortest 

time. For example, the best design in JPEG Encoder is a 2 core design with 2k cache 

size and the mapping of 2 tasks in the first core and 3 tasks in the second core.  

 
Figure 46: Design exploration using full FPGA prototype 
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The hybrid prototype provides a simple environment for the designer to choose 

the best design among the others, without having the full FPGA multicore prototype. 

The consistency of the results, 100% relative accuracy among different cache sizes and 

different task mapping, make the hybrid prototype a powerful tool to compare 

different designs. Figure 47 presents energy versus execution time for all JPEG 

Encoder possible mapping and the cache sizes, predicted by the hybrid prototype. The 

correlation of  the hybrid prototype results and the full FPGA results is clear. In both 

Figure 46 and Figure 47, the best design is the 2core design with 2k instruction and 

data cache with 3-2 JPEG mapping. This confirms the accuracy and reliabality of the 

hybrid prototype with cache. 

 
Figure 47: Design exploration using hybrid prototype 
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6.5  Summary 

In this chapter we evaluated the hybrid prototypes and compared them with virtual 

and FPGA prototypes. We have seen, a hybrid prototype can provide highly cycle-

accurate, scalable and fast simulation similar to FPGA-based prototypes. In contrast, 

virtual prototypes had an error of over 25% in the number of cycles reported. The 

simulation time also increases linearly with the number of emulated cores. We also 

found it much more challenging to implement and validate the FPGA prototypes than 

the hybrid ones. Furthermore, the experiments with the hybrid prototyping has 

demonstrated its applicability to fast multicore design space exploration.  

  



  113 
 

 

Chapter 7 

7Conclusions and future work 

In this thesis we have presented a novel modeling technique called hybrid prototyping 

that aims to provide early, fast, cycle-accurate and scalable models of multicore 

embedded systems. It also provides the modeling of a dynamic RTOS scheduler as 

well as hardware interrupts on top of the MEK, in order to support the simulation of 

unmodified multi-threaded applications.  

Our experimental results demonstrate the high accuracy, simulation speed and 

scalability of our hybrid prototyping-based simulation models. The hybrid prototype 

reported exactly the same number of cycles for each task as measured by the FPGA 

prototype. This is because it executes the tasks on the same core as in the FPGA 

prototype. In contrast, because of the high abstraction level of the underlying ISS, 

OVP simulation had an error of over 25% in the number of cycles reported. Therefore, 

hybrid prototype was shown to be more reliable than abstract virtual prototypes.  

Our experiments with the hybrid prototyping also demonstrate its applicability to 

fast multicore design space exploration. Multicore embedded system designers can 
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create concurrent applications and accurately analyze the power and performance 

implication of their optimizations before the hardware is available. As such, the hybrid 

prototyping was proven capable of fast and early multicore embedded design space 

exploration. Embedded system architects can optimize the hardware architecture 

without having to do full system prototyping. Therefore, hybrid prototypes can 

provide huge productivity gains for both embedded software designers and multicore 

chip architects. 

7.1  Future work 

Based on the work that has been done in this thesis and the obtained results, in the 

following some of the potential areas of study and suggestions for future work and 

research directions are presented: 

1. Processors with different instruction-set architectures. Extending the 

hybrid prototyping to support different target core architecture such as 

PowerPC or ARM. It can be easily done by providing the new processor’s 

architecture drivers in the MEK layer. 

2. Heterogeneous MPSoCs Architectures. Heterogeneous MPSoCs refers to 

systems that use a variety of different types of cores with different 

architectures. In general, a heterogeneous computing platform consists of 

processors with different instruction set architectures (ISAs). Embedded 

appliances designers rely on them to provide better performance [57]. Due to 

the inherent complexity of this kind of platform, we need a mechanism to 

support heterogeneous design in hybrid prototyping. Investigating the 

heterogeneous cores may cause adding some additional kernel functions and it 

may need more than one target core to execute the kernel (the MEK, software 
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and hardware models). For instance, assume that a designer wants to simulate 

a design with multiple instances of MicroBlaze, PowerPC and ARM A7 cores. 

In this case, the hybrid prototype may require instantiation of 3 cores on the 

FPGA. The kernel will need to be distributed on the cores to provide a 

consistent simulation context for the design. 

3. Asymmetric multiprocessing (AMP). An AMP system has multiple cores 

(may be either heterogeneous or homogeneous multicore). A separate operating 

system or a separate copy of the same operating system, manages each core. 

Typically, each application’s process is locked to a single core. It provides an 

execution environment similar to that of uniprocessor systems. It allows simple 

migration of legacy code and facilitates management of each core 

independently. However, it can result in underutilization of processor cores. 

4. Debugging. It needs to enable basic run control debug, where all emulated 

cores can be halted and ensured all emulated cores have been simulated until 

the debugging time.  

5. Complex inter-core communications and synchronization. The hybrid 

prototyping provides FIFO channel for inter-core communications. It can 

support many designs with FIFO communication. However, more complex 

communication models are needed when more complex communication 

architectures, such as shared buses and Networks-on-Chip (NoCs), are used. 

Complex communication models require additional hardware peripherals and 

additional kernel functions in the framework, to support them. One of the 

primary challenges is to efficiently model synchronization mechanisms that are 

used to control access to shared resources by the multiple cores. For instance, 

we need a mechanism to synchronize two or more cores to grant access to 

shared memory or I/O device. Lock, Mutex and Semaphore are such 
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mechanisms to ensure that no two threads, running on separate cores, are in 

their critical section at the same time. The hybrid prototyping can be extended 

to provide such synchronization mechanisms and complex communication 

architectures. 

6. Reference SMP designs for accuracy comparison. There is no equivalent 

Microblaze reference SMP design for accuracy measurement. Therefore, we 

need to find out a way to compare the accuracy of hybrid prototype of SMP 

design with the FPGA SMP reference design. 

 

  



  117 
 

Bibliography 

[1] T. Austin, E. Larson, and D. Ernst, "SimpleScalar: an infrastructure for 
computer system modeling," Computer, vol. 35, pp. 59-67, 2002. 

[2] F. Bellard, "QEMU, a fast and portable dynamic translator," presented at the 
Proceedings of the annual conference on USENIX Annual Technical 
Conference, Anaheim, CA, 2005. 

[3] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R. Rockhold, et 
al., "Mambo: a full system simulator for the PowerPC architecture," 
SIGMETRICS Perform. Eval. Rev., vol. 31, pp. 8-12, 2004. 

[4] J. Emer, P. Ahuja, E. Borch, A. Klauser, L. Chi-Keung, S. Manne, et al., 
"Asim: a performance model framework," Computer, vol. 35, pp. 68-76, 2002. 

[5] M. T. Yourst, "PTLsim: A Cycle Accurate Full System x86-64 
Microarchitectural Simulator," in 2007 IEEE International Symposium on 
Performance Analysis of Systems & Software, 2007, pp. 23-34. 

[6] N. Yi, M. Wai Sum, and Z. Jianwen, "On virtual prototyping of embedded 
system-on-chips," in ASIC (ASICON), 2011 IEEE 9th International 
Conference on, 2011, pp. 1106-1109. 

[7] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri, "MPARM: 
Exploring the Multi-Processor SoC Design Space with SystemC," J. VLSI 
Signal Process. Syst., vol. 41, pp. 169-182, 2005. 

[8] ModelSim. Available: https://www.mentor.com/products/fv/modelsim/ 

[9] Functional Verification Choice of Leading SoC Design Teams. Available: 
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/
VCS.aspx 

[10] Incisive Enterprise Simulator Available: 
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.as
px 

[11] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. 
Hogberg, et al., "Simics: A full system simulation platform," Computer, vol. 
35, pp. 50-58, 2002. 

https://www.mentor.com/products/fv/modelsim/
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx


  118 
 

[12] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. 
Alameldeen, et al., "Multifacet's general execution-driven multiprocessor 
simulator (GEMS) toolset," ACM SIGARCH Computer Architecture News, 
vol. 33, pp. 92-99, 2005. 

[13] C. Jianwei, M. Dubois, and P. Stenstrom, "Integrating complete-system and 
user-level performance/power simulators: the SimWattch approach," in 
Performance Analysis of Systems and Software, 2003. ISPASS. 2003 IEEE 
International Symposium on, 2003, pp. 1-10. 

[14] Wind River Simics. Available: http://www.windriver.com/products/simics/ 

[15] Coware Platform Studio. Available: http://www.synopsys.com/Tools/SLD 

[16] Xilinx Embedded Development Kit. Available: http://www.xilinx.com/edk 

[17] A. Gerstlauer, "Host-compiled simulation of multi-core platforms," in 
Proceedings of 2010 21st IEEE International Symposium on Rapid System 
Protyping, 2010, pp. 1-6. 

[18] G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers, and H. Meyr, "A 
universal technique for fast and flexible instruction-set architecture 
simulation," IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems, vol. 23, pp. 1625-1639, 2004. 

[19] M. Reshadi, P. Mishra, and N. Dutt, "Hybrid-compiled simulation: An efficient 
technique for instruction-set architecture simulation," ACM Trans. Embed. 
Comput. Syst., vol. 8, pp. 1-27, 2009. 

[20] M. Wai Sum and Z. Jianwen, "DynamoSim: a trace-based dynamically 
compiled instruction set simulator," in Computer Aided Design, 2004. ICCAD-
2004. IEEE/ACM International Conference on, 2004, pp. 131-136. 

[21] System on Chip library (SoClib). Available: http://www.systematic-paris-
region.org/fr/projets/soclib 

[22] SystemC. Available: http://www.accellera.org/downloads/standards/systemc 

[23] Open Virtual Platforms. Available: http://www.ovpworld.org 

[24] I. Nita, V. Lazarescu, and R. Constantinescu, "A new Hw/Sw co-design method 
for multiprocessor system on chip applications," in Signals, Circuits and 
Systems, 2009. ISSCS 2009. International Symposium on, 2009, pp. 1-4. 

[25] C. L. Wang, B. Yao, Y. Yang, and Z. Zhu, "A survey of embedded operating 
system," Techical Report, University of California, San Diego, USA, 2001. 

http://www.windriver.com/products/simics/
http://www.synopsys.com/Tools/SLD
http://www.xilinx.com/edk
http://www.systematic-paris-region.org/fr/projets/soclib
http://www.systematic-paris-region.org/fr/projets/soclib
http://www.accellera.org/downloads/standards/systemc
http://www.ovpworld.org/


  119 
 

[26] Y. Hwang, S. Abdi, and D. Gajski, "Cycle-approximate Retargetable 
Performance Estimation at the Transaction Level," in 2008 Design, Automation 
and Test in Europe, 2008, pp. 3-8. 

[27] Z. Wang and A. Herkersdorf, "An efficient approach for system-level timing 
simulation of compiler-optimized embedded software," in Design Automation 
Conference, 2009. DAC '09. 46th ACM/IEEE, 2009, pp. 220-225. 

[28] Z. Wang, K. Lu, and A. Herkersdorf, "An approach to improve accuracy of 
source-level TLMs of embedded software," in 2011 Design, Automation & Test 
in Europe, 2011, pp. 1-6. 

[29] D. Chiou, S. Dam, K. Joonsoo, P. Nikhil, W. H. Reinhart, D. E. Johnson, et 
al., "The FAST methodology for high-speed SoC/computer simulation," in 
2007 IEEE/ACM International Conference on Computer-Aided Design, 2007, 
pp. 295-302. 

[30] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, K. Mai, and B. 
Falsafi, "ProtoFlex: Towards Scalable, Full-System Multiprocessor Simulations 
Using FPGAs," ACM Trans. Reconfigurable Technol. Syst., vol. 2, pp. 1-32, 
2009. 

[31] D. Chiou, D. Sunwoo, H. Angepat, J. Kim, N. A. Patil, W. Reinhart, et al., 
"Parallelizing computer system simulators," in Parallel and Distributed 
Processing, 2008. IPDPS 2008. IEEE International Symposium on, 2008, pp. 
1-5. 

[32] T. S. H.-H. S. Lee and S.-L. L. J. Shen, "Initial Observations of 
Hardware/Software Co-Simulation using FPGA in Architecture Research," 
2006. 

[33] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, et al., 
"RAMP gold: An FPGA-based architecture simulator for multiprocessors," in 
Design Automation Conference (DAC), 2010 47th ACM/IEEE, 2010, pp. 463-
468. 

[34] ChipScope Available: http://www-
mtl.mit.edu/Courses/6.111/labkit/chipscope.shtml 

[35] C. Yajun, C. Qingshan, Z. Lianqing, G. Yangkuan, and P. Zhikang, "Signal 
Tap-II Based Debugging Approach for the Data Acquisition System of Multi-
joint Coordinate Measuring Machine," in Instrumentation, Measurement, 
Computer, Communication and Control (IMCCC), 2012 Second International 
Conference on, 2012, pp. 1182-1184. 

http://www-mtl.mit.edu/Courses/6.111/labkit/chipscope.shtml
http://www-mtl.mit.edu/Courses/6.111/labkit/chipscope.shtml


  120 
 

[36] J. Wawrzynek, D. Patterson, M. Oskin, S. L. Lu, C. Kozyrakis, J. C. Hoe, et 
al., "RAMP: Research Accelerator for Multiple Processors," IEEE Micro, vol. 
27, pp. 46-57, 2007. 

[37] C. Chang, J. Wawrzynek, and R. W. Brodersen, "BEE2: a high-end 
reconfigurable computing system," IEEE Design & Test of Computers, vol. 22, 
pp. 114-125, 2005. 

[38] S. S. Sirowy, B. Miller, and F. Vahid, "Portable SystemC-on-a-chip," presented 
at the Proceedings of the 7th IEEE/ACM international conference on 
Hardware/software codesign and system synthesis, Grenoble, France, 2009. 

[39] L. Benini, D. Bruni, N. Drago, F. Fummi, and M. Poncino, "Virtual in-circuit 
emulation for timing accurate system prototyping," in ASIC/SOC Conference, 
2002. 15th Annual IEEE International, 2002, pp. 49-53. 

[40] Renesas' Multi-Core Technology. Available: 
http://www.renesas.com/products/mpumcu/multi_core/child/multicore.jsp 

[41] E. Saboori and S. Abdi, "Hybrid Prototyping of multicore embedded systems," 
in Design, Automation & Test in Europe Conference & Exhibition (DATE), 
2013, 2013, pp. 1627-1630. 

[42] E. Saboori and S. Abdi, "Rapid design space exploration of multi-clock domain 
MPSoCs with Hybrid Prototyping," in Electrical & Computer Engineering 
(CCECE), Vancouver, Canada, 2016. 

[43] Dinero IV Trace-Driven Uniprocessor Cache Simulator. Available: 
http://pages.cs.wisc.edu/~markhill/DineroIV/ 

[44] B. Atanasovski, S. Ristov, M. Gusev, and N. Anchev, "MMCacheSim: A Highly 
Configurable Matrix Multiplication Cache Simulator," ICT Innovations 2012, 
Web Proceedings ISSN 1857-7288, p. 185, 2012. 

[45] S. Stattelmann, G. Gebhard, C. Cullmann, O. Bringmann, and W. Rosenstiel, 
"Hybrid source-level simulation of data caches using abstract cache models," 
presented at the Proceedings of the Conference on Design, Automation and 
Test in Europe, Dresden, Germany, 2012. 

[46] R. Dömer, "Transaction level modeling of computation," Center for Embedded 
Computer Systems, Technical Report, 2006. 

[47] D. Araki, N. Ito, T. Shinsha, and Y. Mori, "High speed hardware/software 
coverification with cpu model generator from software code," in 5th NASCUG 
(North American SystemC User's Group) meeting Co-located with DAC, 2006. 

http://www.renesas.com/products/mpumcu/multi_core/child/multicore.jsp
http://pages.cs.wisc.edu/%7Emarkhill/DineroIV/


  121 
 

[48] G. Schirner, A. Gerstlauer, and R. Doemer, "Abstract, multifaceted modeling 
of embedded processors for system level design," in Design Automation 
Conference, 2007. ASP-DAC'07. Asia and South Pacific, 2007, pp. 384-389. 

[49] P. Ravishankar, "An Observable Data Cache Model for FPGA Prototyping," 
Concordia University, 2013. 

[50] H.-M. Yoon, G.-H. Park, K.-W. Lee, T.-D. Han, S.-D. Kim, and S.-B. Yang, 
"Reconfigurable address collector and flying cache simulator," in High 
Performance Computing on the Information Superhighway, 1997. HPC Asia'97, 
1997, pp. 552-556. 

[51] L. A. Barroso, M. Dubois, and K. Ramamurthy, "RPM: A rapid prototyping 
engine for multiprocessor systems," Computer, vol. 28, pp. 26-34, 1995. 

[52] J. Hong, E. Nurvitadhi, and S.-L. L. Lu, "Design, implementation, and 
verification of active cache emulator (ACE)," in Proceedings of the 2006 
ACM/SIGDA 14th international symposium on Field programmable gate 
arrays, 2006, pp. 63-72. 

[53] A. Barzegar, E. Saboori, and S. Abdi, "DRAC: a dynamically reconfigurable 
active L1 cache model for hybrid prototyping of multicore embedded systems," 
in 2014 25nd IEEE International Symposium on Rapid System Prototyping, 
2014, pp. 86-92. 

[54] A. Gerstlauer, Y. Haobo, and D. D. Gajski, "RTOS modeling for system level 
design," in Design, Automation and Test in Europe Conference and Exhibition, 
2003, 2003, pp. 130-135. 

[55] E. Saboori and S. Abdi, "Fast and cycle-accurate simulation of multi-threaded 
applications on SMP architectures using hybrid prototyping " in International 
Conference on Hardware/Software Codesign and System Synthesis 
(CODES/ISSS), Pittsburgh, USA, 2016. 

[56] E. Kang, E. Jackson, and W. Schulte, "An approach for effective design space 
exploration," presented at the Proceedings of the 16th Monterey conference on 
Foundations of computer software: modeling, development, and verification of 
adaptive systems, Redmond, WA, 2011. 

[57] X. Guerin and F. Petrot, "A System Framework for the Design of Embedded 
Software Targeting Heterogeneous Multi-core SoCs," in 2009 20th IEEE 
International Conference on Application-specific Systems, Architectures and 
Processors, 2009, pp. 153-160. 

 


	List of Figures
	List of Tables
	Code Listings
	Publications and Workshops
	Glossary
	Introduction
	1.1  Motivation
	1.2  Literature Review
	1.2.1  Virtual Prototyping
	1.2.2  FPGA Prototyping

	1.3  General Problem Statement
	1.4  Thesis Contribution
	1.5  Thesis Outline

	2 Hybrid Prototyping Methodology
	2.1  Methodology
	2.2  Modeling Framework
	2.3  Summary

	3 Multicore Emulation Kernel
	3.4  Hardware Timer Controller 
	3.5  Event
	3.6  Shared Resources
	3.7  Emulated Core Scheduler
	3.8  Summary

	4 Hardware Model Layer
	4.1  Emulated Cores
	4.2  Communication Models
	4.2.1  Statically Scheduled MPSoCs 
	4.2.2  SMP Architecture
	4.2.3  Interrupt to Processor

	4.3  Hardware Interrupt Handling
	4.4  Multi-Clock Domains
	4.5  Memory Hierarchy
	4.5.1  Dynamically Reconfigurable Active Cache
	4.5.2  DRAC Design
	4.5.3  Bridge/Cache Arbitrator & Bus Bridge 
	4.5.4  Cache Module
	4.5.5  Swap Module
	4.5.6  Timing Model
	4.5.7  DRAM Modeling 
	4.5.8  Cache Modeling Limitation in Hybrid Prototyping

	4.6  Summary

	5 Software Model layer
	5.1  Thread
	5.2  Thread Scheduler
	5.3  Processor Affinity
	5.4  Condition Variable
	5.5  Message Queue
	5.6  Idle Task
	5.7  Dynamic Scheduling Example
	5.8  Summary

	6 Evaluation
	6.1  Use cases 
	6.1.1  MP3 Decoder 
	6.1.2  Jpeg Encoder
	6.1.3  Packet Forwarding Application

	6.2  Experimental Results 
	6.2.1  Accuracy
	6.2.2  Speed
	6.2.3  Scalability
	6.2.4  Modeling Effort

	6.3  Design Space Exploration
	6.3.1  Speed
	6.3.2  Energy Estimation
	6.3.3  Automatic Design Space Exploration
	6.3.4  Dynamic scheduling

	6.4  Dynamically Reconfigurable Active Cache
	6.4.1  Standalone Accuracy
	6.4.2  Accuracy in the Hybrid Prototype
	6.4.3  Simulation Speed
	6.4.4  DRAC Resource Usage
	6.4.5  Energy Analysis
	6.4.6  Design Space Exploration

	6.5  Summary

	7 Conclusions and future work
	7.1  Future work

	Bibliography

