

HYBRID PROTOTYPING OF MULTICORE

EMBEDDED SYSTEMS

EHSAN SABOORI

A THESIS
IN

THE DEPARTMENT
OF

ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JULY 2016
© EHSAN SABOORI, 2016

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Ehsan Saboori
Entitled: Hybrid Prototyping of Multicore Embedded Systems

and submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

 Chair

Dr. Wahid S. Ghaly

 External Examiner
Dr. Amirali Baniasadi

 External to Program
Dr. Lingyu Wang

 Examiner
Dr. Otmane Ait Mohamed

 Examiner
Dr. Yan Liu

 Supervisor
Dr. Samar Abdi

Approved by:

Dr. Wei-Ping Zhu, Graduate Program Director

July 22, 2016
Dr. Amir Asif, Dean
Faculty of Engineering and Computer Science

 iii

Abstract

Hybrid Prototyping of Multicore Embedded Systems

Ehsan Saboori, Ph.D.
Concordia University, 2016

Multicore platforms are becoming increasingly pervasive in modern embedded

systems. System level modeling techniques have enabled creation of fast software models

of multicore platforms, commonly known as Virtual Prototypes, for early functional

validation of embedded software, before the hardware is available. On the other hand, for

accurate performance validation, the complete multicore platform can be implemented as

a physical prototype on FPGA. Both virtual platforms and FPGA prototypes have their

respective pros and cons. Virtual platforms have the advantage of high speed functional

simulation and, typically, scale well with the number of cores. However, the accuracy of

performance estimation is sacrificed. FPGA prototypes provide cycle-accurate

performance estimation, because the software executes directly on an FPGA

implementation of the target cores. However, it takes a significant amount of time to

design, implement and test the inter-core communication architecture on the FPGA.

In this thesis we propose to design a novel system-level modeling framework, called

Hybrid Prototyping. Our goal is to provide the benefits of both virtual platforms and

FPGA prototypes. It aims to provide early, fast, and scalable models, similar to virtual

platforms, along with the cycle-accuracy of FPGA prototypes. Using hybrid prototyping,

embedded software designers will be able to create concurrent applications and accurately

analyze the performance implication of their optimizations before the chip is delivered.

At the same time, multicore architects will be able to modify the platform model without

 iv

having to do full system prototyping. Therefore, hybrid prototyping will enable early and

reliable multicore embedded system design, resulting in huge productivity gains for both

embedded software designers and multicore chip architects.

 v

Acknowledgments

I would like to take this opportunity to thank all the people who have contributed to

the fruition of this thesis. First of all, I would like to thank my advisor, Professor Samar

Abdi for excellent guidance during my PhD studies. He has taught me how to think about

problems, how to approach the solution and when to commit to a solution. I will forever

be indebted for the time and the effort he has spent in my education. I would also like to

thank many friends in ECE, including Shafigh Parsazad, Richard Lee, Partha

Ravishankar, Paul Leons, Ali Barzegar, Karim Al-Khalek and Aryan Yaghoubian for their

great company and all their help.

This thesis would not have been possible without the unflinching support of my

wonderful wife, Golnaz. She celebrated my success and lifted my spirits whenever I faced

rejection. She is by far the single most important reason why I maintained my emotional

balance through the ups and downs of graduate life.

Finally, I would like to thank my parents, to whom this thesis is dedicated. My dear

mother and father who have made many personal sacrifices to provide me the best possible

education and a healthy atmosphere at home. It is impossible to put down in words their

contribution to my personal growth. I would also like to thank my brother, sister and

their families for always cheering me on.

 vi

Contents

List of Figures .. viii

List of Tables... x

Code Listings .. xi

Publications and Workshops ... xii

Glossary.. xiii

1 Introduction .. 1
1.1 Motivation ... 1
1.2 Literature Review .. 3

 Virtual Prototyping ... 5
 FPGA Prototyping .. 8

1.3 General Problem Statement .. 10
1.4 Thesis Contribution ... 12
1.5 Thesis Outline ... 14

2 Hybrid Prototyping Methodology ... 15
2.1 Methodology .. 17
2.2 Modeling Framework ... 20
2.3 Summary ... 22

3 Multicore Emulation Kernel ... 23
3.4 Hardware Timer Controller ... 24
3.5 Event ... 25
3.6 Shared Resources ... 30
3.7 Emulated Core Scheduler .. 31
3.8 Summary ... 34

4 Hardware Model Layer ... 35
4.1 Emulated Cores ... 37
4.2 Communication Models ... 38

 Statically Scheduled MPSoCs .. 39
 SMP Architecture .. 45
 Interrupt to Processor .. 45

4.3 Hardware Interrupt Handling .. 47
4.4 Multi-Clock Domains ... 48
4.5 Memory Hierarchy ... 51

 Dynamically Reconfigurable Active Cache .. 54

 vii

 DRAC Design .. 55
 Bridge/Cache Arbitrator & Bus Bridge .. 55
 Cache Module .. 56
 Swap Module ... 57
 Timing Model .. 58
 DRAM Modeling .. 60
 Cache Modeling Limitation in Hybrid Prototyping ... 62

4.6 Summary ... 64

5 Software Model layer .. 65
5.1 Thread ... 66
5.2 Thread Scheduler ... 68
5.3 Processor Affinity .. 70
5.4 Condition Variable .. 70
5.5 Message Queue .. 71
5.6 Idle Task .. 72
5.7 Dynamic Scheduling Example ... 74
5.8 Summary ... 79

6 Evaluation ... 80
6.1 Use cases .. 80

 MP3 Decoder ... 81
 Jpeg Encoder ... 81
 Packet Forwarding Application ... 83

6.2 Experimental Results ... 83
 Accuracy .. 84
 Speed .. 92
 Scalability .. 96
 Modeling Effort .. 96

6.3 Design Space Exploration .. 98
 Speed .. 99
 Energy Estimation ... 99
 Automatic Design Space Exploration ... 100
 Dynamic scheduling .. 103

6.4 Dynamically Reconfigurable Active Cache .. 105
 Standalone Accuracy .. 105
 Accuracy in the Hybrid Prototype ... 106
 Simulation Speed .. 107
 DRAC Resource Usage ... 108
 Energy Analysis .. 109
 Design Space Exploration ... 110

6.5 Summary ... 112

7 Conclusions and future work .. 113
7.1 Future work ... 114

Bibliography .. 117

 viii

List of Figures

Figure 1: Virtual Prototyping vs. FPGA Prototyping ... 4

Figure 2: SMP vs. AMP configurations of multicore designs [40] 16

Figure 3: Simple example of simulation with a hybrid prototype 18

Figure 4: The hybrid prototyping framework .. 20

Figure 5: The MEK structure in the .. 23

Figure 6: The busy/idle time ... 27

Figure 7: Simulation of two tasks on two emulated cores with hybrid prototyping 28

Figure 8: Possible emulation schedules .. 29

Figure 9: Classical vs the MEK discrete event simulation ... 32

Figure 10: Classical vs MEK discrete event simulation ... 32

Figure 11: Hardware model layer structure ... 35

Figure 12: Emulated core life-cycle state diagram ... 37

Figure 13: Communication models in the hybrid prototyping ... 39

Figure 14: Simple example of using communication model by two emulated cores in the
hybrid prototyping .. 42

Figure 15: Simple example of using communication model by two tasks 43

Figure 16: Simple example of using communication model by two tasks 43

Figure 17: Multi-clock domain simulation example ... 50

Figure 18: A multicore design with its equivalent hybrid prototype 53

Figure 19: Top level design of DRAC .. 55

Figure 20: Finite State Machine of cache controller .. 56

Figure 21: FSM of swap controller (Swap Mode) .. 58

Figure 22: Software model layer structure ... 65

Figure 23: Threads ready queue .. 67

Figure 24: Thread life cycle in the software model scheduler .. 68

Figure 25: Simple example of dynamic scheduling on two emulated cores with a
hardware interrupt .. 74

Figure 26: Timing estimation example with two threads running on a design with two
emulated cores and a hardware interrupt ... 77

Figure 27: The MP3 decoder application ... 81

 ix

Figure 28: JPEG encoder application .. 82

Figure 29: Simple Packet forwarding application .. 83

Figure 30: The busy times for FPGA, hybrid and Virtual prototypes for the JPEG
encoder .. 84

Figure 31: The execution time reported by FPGA and hybrid prototypes for the JPEG
encoder .. 85

Figure 32: Packet forwarding application execution time for all designs with up to 8
cores .. 89

Figure 33: The execution times for FPGA and hybrid prototypes for the JPEG encoder
with multiple clock domains ... 90

Figure 34: Prototyping speed comparison between FPGA, hybrid and OVP prototypes
for the JPEG encoder .. 92

Figure 35: The simulation times for FPGA and hybrid design for the JPEG encoder
application ... 93

Figure 36: Prototyping speed comparison between FPGA, hybrid and OVP prototypes
for Packet forwarding application ... 93

Figure 37: Simulation time (second) reported by the hybrid prototype with dynamic
scheduling with different number of cores for JPEG encoder 95

Figure 38: Simulation time (second) reported by the hybrid prototype with dynamic
scheduling with different number of cores for MP3 decoder 95

Figure 39: Hybrid prototype vs. FPGA prototype hyper-terminal output 97

Figure 40: Hybrid prototype vs. FPGA prototype hardware design for MP3 decoder
application ... 97

Figure 41: Design Space Exploration ... 98

Figure 42: Scatter chart for design exploration with two different clock domains 103

Figure 43: Speed vs. Energy consumption for different SMP designs with multi-clock
domains and different threads’ priorities for the JPEG encoder and MP3
decoder applications .. 104

Figure 44: Simulation speed of hybrid prototypes with DRAC 107

Figure 45: Power consumption for different L1 cache sizes ... 109

Figure 46: Design exploration using full FPGA prototype .. 110

Figure 47: Design exploration using hybrid prototype... 111

 x

List of Tables

Table 1: Effect of concurrent writes to DRAM .. 61

Table 2: Multiple write factor for different number of cores .. 62

Table 3: Threads and emulated cores trace .. 79

Table 4: Task mappings for the JPEG encoder multicore designs 82

Table 5: The JPEG encoder execution time in CPU cycles for all possible design 86

Table 6: The MP3 decoder execution time .. 87

Table 7: Packet forwarding application execution time for all designs with up to 8 cores 88

Table 8: MP3 decoder results with multiple clock domains ... 89

Table 9: The JPEG encoder all possible design results with multiple clock domains 91

Table 10: The busy power consumption for different clock domains 100

Table 11: Number of all possible design with multiple clock domains 102

Table 12: Estimation accuracy of standalone DRAC ... 105

Table 13: Estimation accuracy of DRAC-based hybrid prototype 106

Table 14: Swap time consumption for different L1 sizes .. 108

Table 15: Resource usage of hybrid vs FPGA prototype ... 109

 xi

Code Listings

Listing 1: Timer class .. 24

Listing 2: Control time .. 24

Listing 3: Event class ... 25

Listing 4: Event's wait pseudo code ... 26

Listing 5: Event's notify pseudo code .. 27

Listing 6: Shared resource write pseudo code .. 31

Listing 7: Shared resource read pseudo code ... 31

Listing 8: Hardware description with hybrid prototyping ... 36

Listing 9: FSL class ... 39

Listing 10: FSL’s blocking write method ... 40

Listing 11: FSL’s blocking read method .. 41

Listing 12: Signal’s wait method pseudo code ... 46

Listing 13: Signal’s signal method pseudo code ... 47

Listing 14: Simple interrupt thread pseudo code ... 48

Listing 15: Thread class in the software model ... 67

Listing 16: Message queue send method pseudo code .. 71

Listing 17: Message queue receive method pseudo code .. 72

Listing 18: Idle thread pseudo code ... 73

 xii

Publications and Workshops

1. Ehsan Saboori, Samar Abdi, “Fast and cycle-accurate simulation of multi-threaded
applications on SMP architectures using hybrid prototyping”, International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Pittsburgh,
USA, 2016

2. Ehsan Saboori, Samar Abdi, “Rapid design space exploration of multi-clock domain
MPSoCs with Hybrid Prototyping”, Electrical & Computer Engineering (CCECE), 2016
29th IEEE Canadian Conference on, Vancouver, BC, 2016

3. A. Barzegar, E. Saboori and S. Abdi, "DRAC: a dynamically reconfigurable active L1
cache model for hybrid prototyping of multicore embedded systems," 2014 25nd IEEE
International Symposium on Rapid System Prototyping, New Delhi, 2014, pp. 86-92.

4. Ehsan Saboori, Samar Abdi, “Hybrid Prototyping of Multicore Embedded Systems”,
qualified presentation at TEXPO, student competition and exhibition, Ottawa, Canada,
Oct, 2014

5. S. Abdi, E. Saboori, “Hybrid Prototyping of Many-core Embedded Systems,” Many-Core
Embedded Systems Workshop (MCES), Montreal, Canada, October, 2013.

6. E. Saboori, S. Abdi, “Hybrid Prototyping of MPSoCs,” In Proceedings of the International
Forum on MPSoC and Embedded Multicore, Otsu City, Japan, June, 2013 (invited
paper).

7. Saboori, Ehsan; Abdi, Samar, "Hybrid Prototyping of multicore embedded systems,"

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013, vol., no.,
pp.1627,1630, 18-22 March 2013

• The source code is available at: https://github.com/ehsab/hybrid_prototyping

 xiii

Glossary

DES Design Space Exploration

DRAC Dynamically Reconfigurable Active Cache

FPGA Field Programmable Gate Arrays

FPGA Prototyping Using FPGAs as a platform for SoC development and

verification

Hybrid Prototyping The proposed prototyping framework in this thesis

ISS Instruction Set Simulator

MEK Multicore Emulation Kernel

MPSoC Multi Processors System on Chip

RTL Register-Transfer Level

RTOS Real-time Operating System

SMP Symmetric Multiprocessing

SoC System on Chip

Thread Scheduling deciding which thread runs at a certain point in time

Virtual Prototyping Software-based modelling for SoC development and

verification

 1

Chapter 1

Introduction

1.1 Motivation

Multicore platforms are becoming increasingly pervasive in modern embedded systems

because of the potential computation speedups resulting from concurrent application

execution on independent cores. However, both the multicore hardware platform and

the embedded software that runs on it must be carefully designed for functional

correctness and optimal performance. System level modeling techniques have enabled

creation of fast models of multicore platforms, commonly known as virtual platforms,

for early functional validation of embedded software. Virtual platforms enable early

functional validation of embedded software, before the chip is delivered. For accurate

performance validation, the complete multicore platform can be prototyped on Field

Programmable Gate Arrays (FPGA). The FPGA prototype serves as a cycle-accurate

hardware model of the chip and can be used for embedded software design using in-

circuit emulation tools.

Both virtual and FPGA prototypes have their respective pros and cons. Virtual

prototypes have the advantage of high speed functional simulation and, typically, scale

 2

well with the number of cores. However, the accuracy of performance estimation is

sacrificed because the processor simulation models used are very abstract. Cycle-

accurate models may be used in virtual prototypes, but they drastically slow down

simulation speed, thereby defeating the purpose of fast and early software validation.

FPGA prototypes provide cycle-accurate performance estimation because the software

executes directly on an FPGA implementation of the target cores. However, it takes

a significant amount of time to design, implement and test the inter-core

communication architecture on the FPGA. Furthermore, if several cores are being

used, the amount of reconfigurable logic required for implementing the cores, the

communication fabric, and the on-chip memory for the full multicore system becomes

too large to fit on a single FPGA. Using multiple FPGA chips adds another dimension

of complexity to implementing the prototype. Therefore, the scalability and design

time of full system FPGA prototypes are serious issues.

 In this thesis, we present a new technique called Hybrid Prototyping framework

that offers the scalability benefits of virtual prototypes, as well as the cycle-accuracy

of FPGA prototypes. The system provides a high-speed model of a multicore platform

that will enable embedded software designers to accurately analyze and debug their

applications before the hardware is available. Application designers can also use these

models to influence the multicore architecture design early in the design process. The

fundamental idea of hybrid prototyping is to create an emulation kernel in software

that executes on a single target core. The target core is physically implemented in

FPGA. The emulation kernel simulates the execution of concurrent tasks on

independent emulated cores by dynamically scheduling the tasks on the physical target

core. The emulation kernel manages the state of the individual emulated cores and the

logical times until which they have been simulated.

 3

1.2 Literature Review

Pre-silicon performance validation of multicore embedded systems is a serious

challenge. Both virtual prototyping and FPGA-based physical prototyping have been

a topic of intense research with the growing adoption of multicore architectures and

the corresponding need to provide early simulation models to embedded software

designers.

Virtual prototype is a set of functional models of System on Chip (SoC) hardware

such as processors, peripherals and buses, in software form. Processor model is often

implemented using Instruction Set Simulator (ISS) which provides binary

compatibility with embedded processor (called Target) instruction set. ISS converts

target instruction set to the instruction set of the general-purpose computer by running

the simulation (called Host) to allow execution of un-modified embedded software.

Bus and peripheral are typically modeled using a high-level language such as ANSI C

or SystemC with focusing on pin-accurate software visible interfaces such as register,

bus protocol and peripheral functionality.

FPGA-based prototyping is another widely-used pre-silicon SoC evaluation

method using FPGA as the platform. FPGA can be used to implement any logic

function that an Application-Specific Integrated Circuit (ASIC) chip could perform,

which makes it a good platform for rapid system prototyping. In FPGA-based

prototype the application and the system software for a design is executed directly on

FPGA. Figure 1 shows virtual prototyping vs. FPGA prototyping.

 4

Figure 1: Virtual Prototyping vs. FPGA Prototyping

Conventional technologies such as virtual prototyping and FPGA prototyping

have several limitations. Virtual prototypes, based on host-compiled ISS, can provide

high simulation speed, but at the expense of limited or no timing accuracy. FPGA

prototypes, based on instantiation and integration of processor cores in FPGA, provide

cycle accuracy, but with the disadvantage of high development cost and lack of

scalability. In addition, there is no flexibility of abstracting the inter-core

communication in FPGA prototypes, since it is fixed in hardware. Furthermore,

software debugging on multiple processors in FPGA can be quite challenging.

Design

T1

Core 1

…...

Communication
architecture

T2

Core 2

Tn

Core n

FPGA

Application

core comm

SystemC

Host

Application

IS Comm

Virtual
Prototyping

FPGA
Prototyping

 5

 Virtual Prototyping

In recent years multicore virtualization has become an important research subject in

computer architecture and embedded systems fields. Virtual prototyping involves the

use of highly abstracted target architecture model. Many tools and frameworks have

been developed for virtual prototyping. The SimpleScalar [1] tool set provides an

infrastructure for simulation and architectural modeling. This tool is an interpreter

which executes all program instructions and can model a variety of platforms ranging

from simple unpipelined processors to detailed dynamically scheduled micro-

architectures with multiple-level memory hierarchies. Quick EMUlator (QEMU) [2] is

an open source machine emulator which relies on dynamic binary translation. It allows

applications compiled for one architecture to be run on another. The proposed system

provides performance estimation for Design Space Exploration (DSE). Mambo [3] is a

full-system simulator for modeling PowerPC-based systems. It provides building

blocks for creating simulators that range from purely functional to timing-accurate.

ASIM [4] is a decoupled simulation framework. This framework provides modularity

which helps break down the performance-modeling problem into individual pieces that

can be modeled separately, while its reusability allows using a software component

repeatedly in different contexts. PTLsim [5] is a cycle accurate full system x86-64

microprocessor simulator and virtual machine. This framework provides cycle accurate

simulation with sacrificing the speed.

These frameworks not only enable earlier software development but also can give

a feedback where the hardware needs to be adapted or to be changed prior the

implementation. The enabler for virtual prototyping is a virtual platform, which is an

executable model of the target core architecture, including processors, memories, buses

and peripheral [6]. Virtual prototyping can provide flexibility, scalability and ease of

 6

debugging for the designer, but one most compromise either simulation speed or

accuracy. Virtual prototypes cannot provide highly accurate results due to abstract

software implementation of models. Conversely, if accurate models are used in virtual

prototyping, the simulation slows down significantly.

Software cycle-accurate simulation has been the primary tool to allow

collaborative hardware and software [7]. Cycle-accurate Register-Transfer Level (RTL)

simulations accurately model hardware behaviors down to register transfer level,

suitable for hardware verification and profiling. They provide very accurate timing

with sacrificing the simulation time. ModelSim [8], Synopsys VCS [9] and Cadence

Incisive Enterprise Simulator [10] are some example of these kind of simulators. Simics

[11] is a full-system functional simulators. It provides the level of accuracy necessary

to execute fairly complex binaries on the simulated machine. GEMS [12], timing

multiprocessor simulator, and SimWattch simulation tool [13], used for microprocessor

performance and power estimation, are built on top of the Simics library. Such

simulators can be used for large designs with range of single-digit hertz which is not

reasonable for regular software code to be run on it [6].

Amongst the software-based methods, the most successful developments have been

virtual platform technologies based on binary translation, as commercialized by

Windriver [14], Coware [15], and Xilinx XVP [16]. In most virtual platforms, host-

compiled ISS have replaced or complemented traditional cycle-accurate micro-

architecture simulators [17] [18]. HISCS [19] is a technique for generation of fast

instruction-set simulators that combines the benefit of both compiled and interpretive

simulation. A major challenge in this technique is the compilation time overhead that

makes usage of compiler optimizations impractical, especially for large applications.

DynamoSim [20] is a suite of techniques inspired by recent advances in dynamic

compilers to construct a hybrid simulation framework. In this framework any

 7

instruction can be interpreted and only frequently executed instructions are translated

on-the-fly into native code for direct execution. SoClib [21] is an open platform for

virtual prototyping of Multi-Processors System on Chip (MPSoC). Its core is based on

a library of SystemC [22] simulation models to facilitate architecture exploration of

MPSoC. Open Virtual Platform (OVP) [23] is an open source virtual platform which

uses OVPsim to simulate different designs. OVPsim is an instruction accurate

simulator which provides infrastructure for describing platforms with one or more

processors containing shared memory and busses in arbitrary topologies and peripheral

models [24]. Wang et al. [25] have shown OVP and its interoperability with the existing

Transaction-Level Modeling (TLM) based SystemC platforms shows that OVP is

faster than other existing solutions. Such simulators can provide significant speedups

(reaching simulation speeds of several hundred MIPS), but often focus on functionality

and speed at the expense of limited or no timing accuracy.

Host-compiled software simulation technique is based on source level static delay

annotation in the application [26] [27]. The delays are derived by analyzing the

execution of applications on an abstract model of the core. Although source-level

annotation techniques promise high simulation speed, they require the full application

source, including sources of libraries. These techniques also use an abstract core model,

leading to estimation inaccuracies.

Another popular method to simulate a multiprocessor system is to integrate

multiple ISSs into a SystemC based simulation backbone. MPARM [7] is well known

academic simulation platforms based on this solution. Such simulators are able to

execute target binary and provide cycle-accurate simulation. However, they are

extremely slow and very complicated [28].

 8

 FPGA Prototyping

FPGAs are semiconductor devices that are based around a matrix of configurable logic

blocks (CLBs) connected via programmable interconnects. FPGAs can be

reprogrammed to desired application or functionality requirements after

manufacturing. This feature distinguishes FPGAs from ASICs, which are custom

manufactured for specific design tasks. FPGAs has become a natural choice for

building system prototypes of ASIC and SoC designs. It allows hardware designers to

develop and test their systems, and it provides software developers early access to a

fully functioning hardware platform.

FPGA Prototyping is a technique to verify the functionality and performance by

implementing the design on a FPGA. FAST [29] is a methodology that enables a single

FPGA to accelerate the performance of cycle-accurate computer system simulators

modeling modem, realistic SoCs and embedded systems. ProtoFlex [30] simulation

architecture is an FPGA-based, full-system functional simulator for a symmetric

multiprocessor server, hosted on a single FPGA and achieves a significant speedup

over comparable software simulation. Chiou et al. improve FAST simulator by

supporting work in parallelized computer system simulators [31]. Taeweon et al. [32]

show the possibility of using FPGA in architecture research to enhance the simulation

time. They introduce a new hardware/software co-simulation method that performs

execution-driven microarchitecture simulation. Based on an off-the-shelf Pentium-III

system that communicates with an FPGA via the Front-Side Bus. RAMP gold [33] is

a FPGA-based architecture simulator for multiprocessors provides a high-throughput,

cycle-accurate full-system simulator that runs on a single Xilinx Virtex-5 FPGA board,

and which simulates a 64-core shared-memory target machine capable of booting real

operating systems.

 9

FPGA prototypes are highly accurate and fast. So, designers do not have to rely

only on software simulations to verify a design. The application and system software

for a design is executed directly on FPGA prototype to ensure that it is functionally

correct before implementation. In contrast to virtual prototyping, FPGA prototyping

does not provide scalability and flexibility is too costly. It is impractical for designers

to implement different hardware platform on FPGA, given the vast amount of design

choices.

FPGA prototyping can be much more complicated for multicore architectures

because FPGA logic on a chip is limited. Prototyping multicore may require multiple

FPGA chips, which can compromise the accuracy of the FPGA prototype. In addition,

debugging can be cumbersome and time consuming on FPGA prototypes. ChipScope

[34] and SignalTAP [35] are standard debugging tools offered by FPGA vendors.

However, they are difficult to use with multicore. Several prototyping frameworks

using FPGA have been proposed. RAMP [36] provides the prototyping platform for

implementing the full-system under test on FPGA. This platform puts together a large

array of FPGAs in order to support the instantiation and integration of hundreds of

cores [37] [36]. Unfortunately, the cost and design time of such full system prototypes

is very high [30]. In addition, there is no flexibility of abstracting the inter-core

communication in RAMP, since it is fixed in hardware by the inter-FPGA

communication architecture.

Another FPGA-based modeling approach implements the SystemC simulation

kernel in FPGA to support standard hardware I/O during simulation [38]. Yet,

another type of FPGA-assisted simulation, called virtual in-circuit emulation, runs

software-on-host and application-specific hardware on FPGA to avoid slow RTL

simulation in software [39]. The above techniques are incremental improvements to

cycle-accurate simulation and have not been shown to scale to large multicore designs.

 10

1.3 General Problem Statement

The objective of this work is to design a novel system-level modeling framework, called

hybrid prototyping that can provide the benefits of both virtual platforms and FPGA

prototypes. Virtual prototypes have the advantage of scalability and high speed

functional simulation by sacrificing the accuracy of performance estimation. Using

cycle-accurate models are drastically slow down simulation speed. FPGA prototypes

provide cycle-accurate performance. However, the scalability and design time of full

system FPGA prototypes are serious issues.

The proposed framework targets the typical Symmetric MultiProcessing (SMP)

architecture consisting of multiple cores, each with a dedicated L1 cache and shared

off-chip main memory. It also introduces emulation kernel and the modeling of

dynamic Real-Time Operating System (RTOS) scheduler as well as hardware

interrupts on top of the emulation kernel, in order to support the simulation of

unmodified multi-threaded applications. The L1 caches of the cores are emulated by

a dynamically reconfigurable on-chip memory module to support dynamic thread

scheduling in SMP designs. In order to meet the above objective, we need to address

some key technical challenges in hybrid prototyping design. First, the core, the emulation

kernel and the cache model must all fit on one FPGA chip for optimal performance.

Second, the emulation kernel and the cache model must be highly optimized for

performance so that the core-context switching overhead is minimized. Finally, the

emulation system must be completely transparent to the user, similar to virtual platforms.

Hybrid prototyping aims to provide early, fast, and scalable models similar to

virtual prototypes along with the cycle-accuracy of FPGA prototypes. Using hybrid

prototyping, embedded software designers can create concurrent applications and

accurately analyze the performance implication of their optimizations before

 11

implementation. At the same time, hardware architects can modify the platform model

without having to do full FPGA prototyping. Therefore, hybrid prototyping will

enable early and reliable multicore embedded system design, resulting in huge

productivity gains for both embedded software designers and multicore chip architects.

 12

1.4 Thesis Contribution

The main contributions of this thesis are presented as follows:

1. Multicore Emulation Kernel (MEK). The fundamental idea of hybrid

prototyping is to create multicore emulation kernel that executes on a single target

core, which is physically implemented in FPGA. The MEK emulates the execution

of concurrent tasks on independent cores by dynamically scheduling them on the

physical target core. It provides simulation primitives and the modeling of inter-

core communication. The emulation kernel, MEK, implements primitives for the

management of discrete events and logical times for the tasks. It also provides

simulation primitives and services to instantiate emulated cores and modeling of

inter-core communication for SMP architecture. SMP is a system that has multiple,

identical processors all sharing memory and devices.

2. Multi-clock domains MPSoCs. Most embedded processors support several

operating frequencies, which allows us to create a mixture of cores, each running

at a different operating point. So, a multicore embedded system might have

multiple clock domains. Hybrid prototyping can be applied to realistic multi-clock

MPSoC designs.

3. Simulation of Hardware peripherals (interrupts). An important aspect of

RTOS design is the mechanism for servicing the interrupt-driven devices such as

hardware peripherals. Hybrid prototyping is extended to simulate interrupts issued

by external hardware.

4. Memory hierarchy simulation. Caches are widely used in embedded system to

increase efficiency. So it is important to consider memory hierarchy in hybrid

prototyping. A novel dynamically reconfigurable active L1 cache (instruction and

 13

data) model called DRAC proposed for hybrid prototyping. It is an on-chip

hardware peripheral connected to the local bus of the core. DRAC is responsible

for swapping the cache context when the MEK switches simulation context from

one emulated core to another. Utilizing DRAC model, embedded designers are able

to analyze, verify, and optimize their multicore design with cache design without

the need for full system prototyping.

5. SMP designs with dynamic RTOS scheduler model. In SMP designs, the

number of threads that can run concurrently (simultaneously) is limited by the

number of processors. Since each processor can execute only one thread at a time,

with multiple processors, multiple threads can execute simultaneously. A single

kernel manages all cores simultaneously. The hybrid prototyping supports SMP

architectures and introduces the modeling of dynamic RTOS scheduler on top of

the emulation kernel, in order to support the simulation of unmodified multi-

threaded applications. Therefore, in the hybrid prototyping, the RTOS scheduler

can dynamically schedule any thread on any emulated core to achieve full

utilization of all emulated cores.

6. Automatic/Semi-Automatic Design Space Exploration. Using hybrid

prototypes, multicore embedded system designers can create concurrent

applications and accurately analyze the power and performance implication of their

optimizations before the hardware is available. As such, the hybrid prototyping is

capable of fast and early multicore design space exploration. It can provide huge

productivity gains for multicore chip architects as they can optimize the hardware

architecture without having to do full system prototyping.

 14

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 the hybrid

prototyping methodology is presented. We start with describing the main idea behind

the hybrid prototyping technique followed by explaining its different layers. In chapter

3, we describe the MEK and primitives provided by this layer. Chapter 4 explains the

hardware model layer and its primitives. Memory hierarchy and cache model

supported by the hybrid prototyping are also discussed in details. Chapter 5 covers

software model layer including thread management and RTOS model scheduler.

Chapter 6 includes the experimental results for evaluating the hybrid prototyping in

terms of accuracy, speed and scalability. Finally, conclusions and suggestions for future

work are provided in Chapter 7.

 15

Chapter 2

2Hybrid Prototyping Methodology

Multicore platforms deliver greater computing power through concurrency, offer

greater system density, and run at lower clock speeds than uniprocessor chips resulting

lower power consumption and thermal dissipation. Multiprocessing includes several

operating modes such as SMP and Asymmetric MultiProcessing (AMP). An AMP

system has multiple cores (may be either heterogeneous or homogeneous multicore).

A separate operating system or a separate copy of the same operating system, manages

each core. Typically, each application’s process is locked to a single core. It provides

an execution environment similar to that of uniprocessor systems. It allows simple

migration of legacy code and facilitates management of each core independently.

However, it can result in underutilization of processor cores. For instance, if one core

becomes busy, applications running on that core cannot, in most cases, migrate to a

core that has more CPU cycles available. Though such dynamic migration is possible,

it typically involves complex check pointing of the application’s state and can result

in a service interruption while the application is stopped on one core and restarted on

 16

another. SMP is a computer architecture that provides fast performance by using two

or more homogeneous processors to complete individual processes simultaneously

under a single operating system. Unlike asymmetrical processing, any idle processor

can be assigned any task, and additional processors can be added to improve

performance and handle increased loads. Specific applications can benefit the most if

the code allows multithreading. SMP systems can easily move tasks between processors

to balance the workload efficiently. Figure 2 shows different configurations of a

multicore design.

Figure 2: SMP vs. AMP configurations of multicore designs [40]

Hybrid Prototyping [41] is a modeling framework that aims to provide early, fast,

and cycle-accurate models of SMP designs which are widely used in modern embedded

and networking SoCs. The fundamental idea is to simulate a design with multiple

processor cores by creating a Multicore Emulation Kernel (MEK) in software on top

of a single physical instance of the processor. The MEK switches between cores and

manages the logical simulation times of the individual processor cores. Since the

application executes on exactly the same core as it is targeted for, the simulation is

cycle-accurate. As a result, we can achieve fast and cycle-accurate simulation of

multicores, thereby overcoming the accuracy concerns of virtual prototyping and the

scalability issues of FPGA prototyping. Using hybrid prototypes, multicore system

 17

designers can create concurrent applications and accurately analyze the power and

performance implication of their optimizations before the hardware is available.

2.1 Methodology

Hybrid prototyping time-multiplexes several emulated cores on a single physical target

core. The principal idea is to simulate a design with multiple processor cores by

creating an emulation kernel in software on top of a single physical instance of the

processor core. Since the application executes on exactly the same core as it is targeted

for, the simulation is cycle-accurate. The core and the additional simulation

infrastructure can fit on a single FPGA chip, making it very cost effective in contrast

to full system prototyping in FPGA. It supports the execution of any multi-tasking

ANSI C/C++ application.

Since the application executes on exactly the same core as it is targeted for, the

estimation accuracy is 100%, in contrast to binary translation. As opposed to source-

level annotation techniques, there is no need for availability of source code or

knowledge of the core datapath, since the application binary runs directly on the target

core. Finally, the at-speed execution of application tasks in our technique provides

significant speedup over cycle-accurate software simulation.

Figure 3 uses a simple example to illustrate the concept of multi-core simulation

on a hybrid prototype. We assume that the design consists of multiple cores,

communicating using inter-core communication primitives, such as simplex channels.

The synchronization in the channels between the threads (mapped to different cores)

is modeled using events. We assume a classical discrete event model, in which an event

is consumed by a waiting thread, or lost if no thread is waiting at the logical time of

notification.

 18

Figure 3: Simple example of simulation with a hybrid prototype

Figure 3(a) shows the design with two cores, each executing a single thread.

Thread T1 executes on core EC1 for time t11 and notifies a global event e. After

notification, it executes for another t12 units and terminates. Thread T2 executes on

core EC2 (of the same type as EC1) for time t21 (< t11) and waits for the global event

e. After e is notified (by T1), it executes for another t22 units and terminates. Both

tasks are assumed to start at the same time. The cores, EC1 and EC2, are simulated

on the target core, which is of the same type as EC1 and EC2, and hosts the MEK.

Figure 3(b) shows two possible simulation schedules on the target core. A thread

may be in four possible states: RUNNING, READY, BLOCKED or TERMINATED.

The MEK maintains the logical times, lt1 and lt2, of the two emulated cores EC1 and

EC2, respectively. The logical time for an emulated core is the time until which the

core has been simulated since the beginning of system simulation. At logical time 0,

the MEK may pick either EC1 or EC2 to simulate first. If the MEK schedules EC1 to

be simulated first, it runs T1 on EC1 until e is notified. The MEK saves the event’s

notification and its logical timestamp t11. Since event notification is non-blocking in a

EC1 EC2

Target core

notify(e)
wait(e)

T1 T2

t11

t12

t21

t22

0

Ph
ys

ic
al

 (w
al

l c
lo

ck
) t

im
e

Case 1
(T1 first)

lt1 lt2

0

t11

t11+t12

T1

n

T1
CS

T2
w

T2

t11+t12

t11+t12

0

0

0

t21t11

t11+t22

Case 2
(T2 first)

lt1 lt2

0

t11

T2

T1
n

T1

CS

T2

t11+t12

t11+t12

0

t21

t11+t22

wCS 0

t11

(a) Emulation of tasks on
two different cores

(b) Possible emulation schedules

t21t11

 19

discrete event model, the MEK allows T1 to execute until it is terminated. Once T1 is

terminated, the MEK does a context switch (CS) and runs T2 from its logical time 0

until it reaches wait(e) at logical time t21. At this point the MEK checks for any

notifications of e that were made after logical time t21. Indeed, since t11>t21, the MEK

finds that e was notified by T1 before T2 started waiting for it. As such the MEK

updates the logical time of EC2 to t11 to model T2 being blocked on the wait from t21

to t11. Finally, T2 is resumed and runs to completion.

If the MEK schedules EC2 to be simulated first (Case 2), it runs T2 on EC2 from

EC2's logical time 0 until it reaches wait(e) at EC2's logical time t21. Since no

notifications of e are found, the MEK stores the wait on event e with timestamp equal

to t21 and blocks T2. It then does a core context switch from EC2 to EC1. To emulate

EC1, the MEK runs T1 from EC1's logical time 0 until the notification of e at EC1’s

logical time t11. Upon notification, the MEK checks if there are any pending waits on

event e at or before logical time t11. Indeed, task T2 is blocked since EC2's logical time

t21 (< t11) on e. Therefore, the MEK unblocks T2 and updates EC2's logical time to

t11 in order to account for the blocking time. The MEK continues simulating EC1 until

termination of T1, followed by a context switch to EC2 and its simulation until

termination of T2.

 20

2.2 Modeling Framework

Figure 4 illustrates the modeling framework of the hybrid prototyping. A hybrid

prototype is a combination of software and hardware components. The hardware

component is the target core which is physically implemented in FPGA. And the

software component consists of three layers: the MEK, software and hardware models.

Figure 4: The hybrid prototyping framework

The MEK implements primitives for the management of discrete events and logical

times of the emulated cores. It provides services to instantiate emulated cores and

communication channels. This layer consists of discrete event model, shared resource

(SR), hardware timer and emulated cores scheduler. The MEK defines primitives for

event management using basic notify/wait concept. The context switching between

emulated cores during simulation is done by the emulated core scheduler. It stores the

context (stack, registers and state) of the running thread and loading the context of

…

ap
pl

ic
at

io
n

Ha
rd

w
ar

e
M

od
el

So
ft

w
ar

e
M

od
el

scheduler

EC1 EC2 ECn INT1 INTn

M
EK Hy

br
id

 p
ro

to
ty

pe

ISR

…

P2P1 P3

Emulated cores
scheduler

Physical Target Core
active_ecore

 21

the next ready thread. Timer primitives is also defined to provide a simple API to

control the execution time.

The hardware layer models emulated SMP cores that are responsible for executing

the user application threads, memory hierarchy and hardware interrupt sources. It

provides services to allocate/deallocate a thread to a specific emulated core. The

hardware design such as the number of processors, hardware interrupts, processors

frequencies, Fast Simplex Link (FSL) (for modeling of simplex channels for point-to-

point communication between the emulated cores) and etc. are implemented as an

API on top of the MEK primitives in this layer

The software model layer implements OS primitives for scheduling and

communication on top of the hardware model. It provides models of priority-based

preemptive scheduler - which is responsible for scheduling threads on the emulated

cores -, Inter-Process Communication (IPC) services, and Interrupt Service Routines

(ISR). The software model is the layer of the system which interacts directly with the

user application. It defines thread management primitives (e.g. pthread_create, sleep,

etc.), message queue, conditional variables and other essential services needed by the

user application.

The hybrid prototyping simulates the execution of concurrent tasks on

independent cores by dynamically scheduling the processes on the emulated cores. As

it is shown in Figure 4, only one thread can be run on the physical processor at a time.

 22

2.3 Summary

In this chapter we introduced the hybrid prototyping methodology and the idea behind

it. We then explained the modeling framework and described different layers of the

hybrid prototype. Hybrid prototype consists of three layers: software model layer

which is responsible for thread scheduling, hardware model layer which is providing

primitives for instantiating the emulated cores and the MEK which defines primitives

for the management of discrete events and provides timer API required for managing

the logical times for the emulated cores. In the next chapter we will talk about the

MEK and its role in the hybrid prototyping.

 23

Chapter 3

3Multicore Emulation Kernel

Figure 5 shows the MEK structure. The MEK provides simulation primitives for the

management of events and shared resources. The most important part of the MEK is

the emulated cores scheduler which is responsible to switch context between emulated

cores. The timer primitive is also defined to provide a simple API to control the

execution time.

Figure 5: The MEK structure in the

Physical Target Core

Event
HW

Timer
Shared ResourcesM

EK

Application Hybrid Prototype

Hardware Model
Software Model

Emulated Cores Scheduler

 24

3.4 Hardware Timer Controller

The MEK uses a hardware timer (XPS Timer [16]) controller to measure the execution

time in CPU cycles. The hardware timer driver provides a simple API to control the

timer. The XPS Timer is organized as two identical timer modules. Each timer module

has an associated load register that is used to hold the value for the counter. The

MEK defines timer class to provide a simple API to control the execution time. Listing

1 shows the timer class which is providing essential methods to work with both timer

modules in the hardware timer.

Class Timer{
 public:
 Timer(u16 deviceId);
 void start(u16 timerId);
 void stop(u16 timerId);
 u32 getValue(u16 timerId);
 private:
 XTmrCtr XPS_Timer;
 int controlTime;
}

Listing 1: Timer class

For measuring the execution time of a block of code, the MEK starts the timer

before the block by calling start method. At the end of the block, the MEK calls stop

method to stop the timer and reads the timer’s value by calling getValue method. To

have accurate time measurement, the MEK must account for control time, which is

the CPU time consumed for starting and stopping the timer, without any operations

between them. The Listing 2 shows calculates the control time.

u32 get_control_time() {
 start(0);
 stop(0);
 return XTmrCtr_GetValue(&XPS_Timer, 0);
}

Listing 2: Control time

 25

3.5 Event

We have implemented a classical discrete event model, where an event is consumed

by a waiting thread, or is lost if no thread is waiting at the logical time of notification.

Each event maintains a waitlist which is sorted by the logical time of wait calls. The

item type in the list is a pair of id and timestamp. As the name implies, the waitlist

is the list of all emulated cores that their running threads are waiting on the event.

Listing 3 shows the event class in the MEK.

class Event {
 public:
 Event();
 ~Event();
 void wait();
 void notify();
 private:
 Boost::List< pair<int,int> >* waitList;
 void insertWait(int id, int timeStamp);
}

Listing 3: Event class

The MEK defines notify/wait methods for event management. Listing 4 shows the

pseudo code for event’s wait method. Each kernel call is surrounded by

KERNEL_CALL_START and KERNEL_CALL_END functions. The first function,

stops the timer to mark the end of user code and the start of execution of the kernel

call. It also uses the timer value to update the logical time of the running emulated

core. While the second function starts the timer before the kernel call returns to the

user core. Wait operation puts the emulated core in suspended state (line 2), adds the

wait to the event’s waitlist (line 3) and gives the control of the physical processor to

the emulated core on the top of the busy queue (next busy emulated core) (line 4).

Active_ecore is the emulated core which is actually running on the physical processor

and consume CPU cycles.

 26

void event::wait() {
 1: KERNEL_CALL_START();
 2: suspend(active_ecore);
 3: this->waitlist.insert(active_ecore);
 4: run_next_ready_ecore();
 5: KERNEL_CALL_END();
}

Listing 4: Event's wait pseudo code

Listing 5 shows the pseudo code for event notification. An event cannot be notified

unless all other emulated cores have been simulated at least until the current notifying

emulated core’s logical time. Therefore, the notification is committed when the logical

time of the notifier is equal to MIN_SIM_TIME which is the minimum logical time

among none suspended emulated cores. If the logical time of the notifier is not equal

to MIN_SIM_TIME, the emulated core yields its execution turn (line 3) to make sure

all other emulated cores will be simulated at least until its current logical time. It

ensures all waits and all notifications of an event (from different emulated cores) are

being processed in order. Notifying an event brings the first emulated core in the

waitlist to the ready state (lines 4-6). The waiting emulated core is inserted back into

the idle queue and the wait is deleted from the event’s waitlist. It then updates the

logical time of the waiting emulated core to current logical time only if the logical time

of the waiting emulated core is less than the notify time (line 8). It implies that the

waiting emulated core had waited on the event at a logical time before the current

logical time of the notifying emulated core (active_ecore). In such a scenario the idle

time of the waiting emulated core is incremented by the difference between the

notifying emulated core’s logical time (active_ecore) and the waiting emulated core’s

idle time (line 7). If no thread is waiting on the event, the notification will be lost.

 27

void event::notify() {
 1: KERNEL_CALL_START();
 2: while(active_ecore.logicalTime != MIN_SIM_TIME)
 3: yield();
 4: c = this->waitlist.first();
 5: if(c!=null) {
 6: wakeup(c);
 6: if(active_ecore.logicalTime > c.logicalTime){
 7: c.idleTime+=active_ecore.logicalTime–c.logicalTime;
 8: c.logicalTime = active_ecore.logicalTime;
 9: }
 10:}
 11: KERNEL_CALL_END();
}

Listing 5: Event's notify pseudo code

It is important to note that on every update of the logical time after blocking, the

difference between the new logical time and the task’s logical time indicates the idle

time for the corresponding core. Figure 6 shows the busy/idle time for tasks T1 and

T2. In this case, when T1 notifies event e, the MEK updates T2’s timestamp to t11 and

increases T2’s idle time by t11 – t21.

Figure 6: The busy/idle time

Figure 7 shows a design with two emulated cores, each executing a single thread.

Both threads are assumed to start at the same time. Thread T1 executes on emulated

core EC1 for time t11 and notifies a global event e. After notification, it executes for

another t12 units and terminates. Thread T2 executes on emulated core EC2 for time

t21 (< t11) and waits for the global event e. After e is notified (by T1), it executes for

another t22 units and terminates. For simplicity, we assume that T1 and T2 are bound

to EC1 and EC2, respectively.

 28

Figure 7: Simulation of two tasks on two emulated cores with hybrid

prototyping

Figure 8 shows two possible simulation schedules on emulated cores. The MEK

maintains the logical times, lt1 and lt2, and idle times, idle1 and idle2, of the two cores

EC1 and EC2 respectively. At logical time 0, either EC1 or EC2 can be simulated first.

If EC1 is picked first to be simulated (Case 1), it executes thread T1 for time t11 until

e is notified. At this logical time the MIN_SIM_TIME is equal to zero because the

thread T2 has not yet been simulated and EC2’s logical time is zero. Therefore, EC1

yields the execution to EC2. The MEK switches the context and simulates EC2. Thread

T2 then executes on emulated core EC2 for time t21 and waits for e. Wait on event e

puts EC2 in suspended state and the next ready emulated core (EC1) takes control of

the processor. Based on the definition, MIN_SIM_TIME is the minimum of the logical

time of all none suspended emulated cores. Therefore, now MIN_SIM_TIME is equal

to the logical time of the EC1. The MEK does the context switch and simulates the

EC1. EC1 executes thread T1 and it notifies the event e. After e is notified, T1 executes

for another t12 units and terminates. Notifying event e by EC1 puts EC2 in ready state.

As EC2 has waited before it gets notified, the MEK updates the logical time of EC2 to

t11 to model T2 being blocked on the wait from t21 to t11. It also updates the EC2’s

idle time to t11 – t21. Finally, T2 is resumed and runs to completion.

EC1 EC2

Target Core

notify(e)
wait(e)

T1 T2

t11

t12

t21

t22

0

 29

Figure 8: Possible emulation schedules

Wait Wait on event Notify Notify event Context SwitchCS terminateT

lt1 = t11

Physical time

EC1

EC2

CS

t11 t12t21

Notify

T2

T1

Wait

T1

T2

TCS

CS

t22

lt2 = t21

idle2 = t11 – t21
lt2 = t11

suspend

case 1

T

yield

lt1 = t11 + t12

lt2 = t11 + t22

Physical time

EC1

EC2

CS

t12

Notify T1

T2

T

lt1 = t11

t11

T1

t22t21

T2 Wait CS

lt2 = t21
idle2 = t11 – t21
lt2 = t11

case 2

T

lt1 = t11 + t12

lt2 = t11 + t22suspend

 30

If EC2 is scheduled to be simulated first (Case 2), it runs T2 from EC2's logical

time 0 until it reaches wait on event e at EC2's logical time t21. The MEK suspends

the EC2 and switches the context to run EC1. EC1 executes thread T1 from EC1’s

logical time 0 until the notification of event e at EC1’s logical time t11. Upon

notification, since the MIN_SIM_TIME is equal to EC1’s logical time (EC1 is the

only none suspended emulated core) the MEK removes EC2 from the event’s waitlist

and updates the logical time of the waiting emulated core (EC2) to t11 and EC2’s idle

time to t11 – t21 since t21 < t11. The thread T1 is simulating until it terminates, followed

by a context switch to EC2 and its simulation until the termination of T2. By the end

of the simulation (in both cases) the hybrid prototype reports EC1’s logical time as t11

+ t12, EC1’s idle time is equal to 0, EC2’s logical time as t11+ t22 and finally EC2’s idle

time as t11 - t21. The busy time for each emulated core is the difference of the logical

time and the idle time of the emulated core. Therefore, the MEK reports the EC1’s

busy time as t11 + t12 and EC2’s busy time as t21 + t22. As we will see later in next

chapters, the busy time is needed for estimating the energy consumption of cores.

3.6 Shared Resources

The MEK ensures that accesses to a shared resource from different emulated cores is

processed in order. It means an emulated core cannot read or update a shared resource

unless all other emulated cores have been simulated at least until its current logical

time. The MEK layer provides primitives for shared resources. Listing 6 and Listing 7

describe write and read methods respectively. The emulated core can access the shared

resource if the emulated core’s logical time is equal to MIN_SIM_TIME (line 2).

Otherwise, it yields (line 3) to the next ready emulated core to be simulated.

 31

void SR::write(T newvalue) {
 1: KERNEL_CALL_START();
 2: while(active_ecore.logicalTime != MIN_SIM_TIME)
 3: yield();
 4: this->value = newvalue;
 5: KERNEL_CALL_END();
}

Listing 6: Shared resource write pseudo code

T SR::read() {
 1: KERNEL_CALL_START();
 2: while(active_ecore.logicalTime != MIN_SIM_TIME)
 3: yield();
 4: KERNEL_CALL_END();
 5: return this->value;
}

Listing 7: Shared resource read pseudo code

It is important to note that the shared resource model only ensures that all

accesses to a shared resource are being processed in order of logical time. It cannot be

used to solve mutual exclusion in critical sections. Synchronization is required at the

entry and exit of the critical section to ensure exclusive use.

3.7 Emulated Core Scheduler

The implementation of discrete event and logical time in the hybrid prototyping are

different from a pure software discrete event simulator. A discrete event simulator like

SystemC provides primitives of logical time (wait) and events (wait/notify). But in

order to model execution time, the user has to advance logical time. In hybrid

prototyping, there is the notion of a single global logical time, but multiple logical

timelines (one for each emulated core). The time on these logical timelines is advanced

when the emulated core is executing its context. Logical time is completely different

from the physical time (wall clock). It represents the time by which actions happen

on the system.

 32

Figure 9: Classical vs the MEK discrete event simulation

Figure 9 shows the difference between a classical discrete event and the MEK

discrete event simulation. As it shows task1 writes into message queue after d1 unit of

time. Task2 reads from the message queue after d2 unit of time. In the MEK discrete

event simulation the user doesn’t need to advance the logical time as both task1 and

task2 execute on the emulated cores. In contrast, in the classical discrete event

simulation the user needs to apply time primitive (wait) to advance the logical time.

Figure 10: Classical vs MEK discrete event simulation

Figure 10 shows how discrete events are simulated with the MEK. After the MEK

initialization phase, task1 is scheduled to run on EC1. It executes for d1 unit of time

and then writes into message queue and terminates. The MEK then switches to EC2.

After task2 executes for d2 unit of time it reads data from message queue and

terminates. Therefore, the user doesn’t need to take care of logical time and the MEK

measures the logical time for each emulated core. On the other hand, in the classical

discrete event simulator, the pending event set is typically organized as a priority

Task1 {
.
.
q.write(data)

}

d1

Task2 {
.
.
.
.
q.read(data)

}

d2
q

Task1 {

q.write(data)
}

wait (d1)

Task2 {

q.read(data)
}

wait (d2)
q

(b) Classical discrete event simulation(a) The MEK discrete event simulation

Physical time

EC1

EC2

0

0

t1

d1

d1

d2

logical time1

logical time 20

MEK-init

t1+d1

CS

t2 t2+d2

write

d2 read

Logical time

Task1

Task2 wait(d2)

0 d1

write

d1 d2 d2

read

wait(d1)
Physical time

irrelevant!

(b) Classical discrete event simulation(a) The MEK discrete event simulation

 33

queue, sorted by event time. Following that, the simulator simulates the events and

uses time primitives to handle logical times.

The emulated core scheduler is the most important part of the MEK. It is

responsible for switching between available emulated cores. It uses two queues to keep

track of busy and idle emulated cores. At the beginning of the simulation, all emulated

cores are initialized and placed in the idle queue. The thread scheduler in the software

model dispatches the ready threads on the idle emulated cores. When an emulated

core gets assigned to a thread, it becomes busy and is placed at the end of the busy

queue.

The MEK uses a First-In-First-Out (FIFO) scheduling policy to schedule emulated

cores on the physical target core. In FIFO scheduling algorithm, an emulated core is

simulated on the target core as long as the task mapped to the given emulated core is

running. However, if the running thread on the emulated core terminates, blocks or

voluntarily yields the emulated core, then the MEK switches to the next ready

emulated core. Emulated cores don't switch instantaneously. After a thread blocks or

terminates, the MEK must save the running thread’s state before simulating another

emulated core. The operation to save this state and restore another is known as

context-switch. To perform the context-switch the scheduler stores stack, CPU

registers and state for each thread. It must be noted that the MEK scheduler and the

RTOS scheduler model are theoretically orthogonal entities.

 34

3.8 Summary

In this chapter we explained the MEK layer. It is the fundamental idea of the hybrid

prototyping. We introduced discrete event model, shared resource (SR), hardware

timer and emulated cores scheduler. As we have seen, the emulated core scheduler is

responsible for switching between emulated cores. In the next chapter we will see how

emulated cores are modeled in the hardware model layer and are managed by the

scheduler.

 35

Chapter 4

4Hardware Model Layer

Figure 11 shows the hardware model layer structure in the hybrid prototyping. The

hardware model layer instantiates the emulated cores, channels and interrupt sources.

It provides services to allocate/deallocate a thread to a specific emulated core. This

layer also models the cache behavioral by using an on-chip hardware peripheral.

Figure 11: Hardware model layer structure

The hardware architecture includes the number and configuration of processors,

hardware interrupt sources, and inter-core communication channels. The architecture

is modeled on top of the MEK primitives in the hardware model. Listing 8 shows how

Physical Target Core

Hybrid Prototype

Application

Ha
rd

w
ar

e
M

od
el Emulated

cores Signal

HW InterruptsTime
Manage

ment cache

Software Model

MEK

 36

a simple hardware model described in a hybrid prototype with two emulated cores and

a hardware interrupt.

void initialize() {
 1: hybrid_init(NUM_CORES,
 SCHED_TYPE,INIT_ROUTINE,CLOCK_DOMAINS);
 2: u16 Id = hw_model->create_int_source(PERIOD);
 3: hw_model->connect(Id, ISR_ROUTINE);
 4: hybrid_run();
}

Listing 8: Hardware description with hybrid prototyping

To initialize a hardware model of the design, hybrid_init method is used (line 1),

where NUM_CORES is the number of emulated cores and SCHED_TYPE is the

scheduling type which can be static or dynamic. INIT_ROUTINE is the start of the

routine responsible to initialize all the application’s thread and will be invoked by the

prototype. Therefore, INIT_ROUTINE is the first thread which will be run by the

MEK. If static scheduling is used, INIT_ROUTINE will be locked to the first

emulated core. CLOCK_DOMAINS is an array of the frequencies which are going to

be assigned (in order) to emulated cores.

The hardware model provides a create_int_source method to initialize an

external hardware interrupt source where PERIOD determines the interval time

between the interrupts (line 2). Connect method in hardware model connects the

external device to ISRs routine where ISR_ROUTINE defines the ISRs function. At

the end, the simulation will be run by calling hybrid_run method (line 3).

 37

4.1 Emulated Cores

The hardware model provides simulation primitives for the management of the

emulated cores. Each emulated core is responsible for executing the thread which has

been assigned to it. The emulated core scheduler switches between different emulated

cores and manages the logical simulation times and idle time of the individual

emulated core. An emulated core is parameterized with:

1. State which can be IDLE, BUSY, RUNNING or SUSPEND

2. Logical time, the time until which the emulated core has been simulated.

3. Idle time, the time until which the emulated core has been idle.

4. Clock Frequency, the operating clock frequency which the emulated core works

with.

5. Running thread, the thread which has been assigned to the emulated core to

get executed.

6. Awake event, the event which is used to wake up the emulated core. As we will

see later in chapter 5, the MEK uses this event to manage emulated cores’ idle

time. When an emulated core becomes idle it will run idle thread. By running

the idle thread, the emulated core will wait on awake event and as a result it

will be suspended. When the event is notified, the MEK wakes up the suspended

emulated core and updates its logical time and idle time if needed.

Figure 12: Emulated core life-cycle state diagram

Idle

Busy

Running

Suspended

New

blocking/terminate
at thread level

 38

The life-cycle of an emulated core is shown in Figure 12. An emulated core is

initialized in the idle state; the emulated core scheduler puts it at the end of the idle

queue. Idle emulated cores are waiting for threads to get assigned to them. After the

RTOS model scheduler assigns a thread to an emulated core, it becomes busy and is

placed at the end of the busy queue. When the emulated core is selected to run by the

MEK, it is removed from the busy queue, changes its state to running and begins

executing the assigned thread on the physical core. When the running thread on the

emulated core blocks or terminates, the emulated core becomes idle and is placed at

the end of the idle queue.

If the emulated core yields its execution (for example at event notification), it is

placed at the end of the busy queue and the next ready emulated core, in the busy

queue is moved to the running state. An emulated core is suspended if it waits on an

event which has not yet been notified. The suspended emulated core is not scheduled

to execute on the target core until it is unblocked by a notification. When the

suspended emulated core is subsequently notified, it is placed back at the end of the

idle queue and waits for the next ready threads.

4.2 Communication Models

There are three different ways of communication in a hybrid prototype. FSL is used

to model communication between emulated cores. Signals are used to model hardware

interrupt by connecting external hardware device to emulated cores. In SMP designs

message queue is an efficient way of passing data between processes which is created

in the shared memory. One program will create a protected memory portion which

other processes can access. Figure 13 shows different types of communication in the

hybrid prototyping.

 39

Figure 13: Communication models in the hybrid prototyping

 Statically Scheduled MPSoCs

Static MPSoCs architecture can be modeled by a hybrid prototype. In such an

architecture, there is no dynamic scheduling and each task is locked to a specific core

and they can use inter-core communication channel such as FSL to communicate. FSL

is a unidirectional point-to-point FIFO-based communication channel bus used to

perform fast communication between Xilinx MicroBlaze [16] soft processor.

The basic simulation primitives of notify, wait, update and yield are powerful

enough to build a complex communication models. In this section, we will describe

modeling of simplex channels for point-to-point communication between the emulated

cores called FSL. FSL is implemented as a circular buffer. Listing 9 shows the FSL

class.

class FSL {
public:
 FSL(int len);
 void bwrite(const T value);
 T bread();
 bool isEmpty();
 bool isFull();
private:
 Event* ev_is_not_full;
 Event* ev_is_not_empty;
 SharedResource<bool> flag_not_empty;
 SharedResource<bool> flag_not_full;
 Cbuffer<SharedResource<T>>* cbuffer;
}

Listing 9: FSL class

EC1 EC2 INT1

I/O

RTOS Instance

Signal

FSL

Message Queue
P1 P2

 40

The channel buffer is modeled as an array of shared resources of items which the

user defined them. The head and tail of the circular buffer is maintained. Readers read

from the head and writers write into the tail. The channel has boolean SR variables

to indicate a full or empty state, as well as respective events that are notified whenever

the buffer is read or written.

void bwrite(const T value) {
 1: KERNEL_CALL_START();
 2: while (!flag_not_full.Read())
 3: this->ev_is_not_full->wait();
 4: SharedResource<T> sr(value);
 5: cbuffer->enqueue(sr);
 6: if (cbuffer->isFull())
 7: flag_not_full = false;
 8: flag_not_empty = true;
 9: this->ev_is_not_empty->notify();
 10:KERNEL_CALL_END();
}

Listing 10: FSL’s blocking write method

Listing 10 illustrates the pseudo code for a blocking write (bwrite) into the channel.

At line 1, the timer is first stopped to mark the end of user code and the start of

execution of the communication model. The timer value is then used to update the

logical time of the caller emulated core. Since this is a blocking write, the writing task

must wait as long as the channel is full. If the shared resource flag_not_full can be

accessed by the task, it guarantees that the logical time of the emulated core is equal

to MIN_SIM_TIME and all other emulated cores (including the reader of this

channel) have been simulated at least until this time (line 2). If channel is full, the

writer must block on the channel ev_is_not_full event (line 3). Wait on the event

puts current emulated core in suspended state and the next ready emulated core takes

control of the processor. The actual writing is subsequently done by copying over the

data into the buffer’s tail (line 5), updating the buffer full flag, if needed, (lines 6-8)

and ev_is_not_empty event is then notified (line 9). Upon this notification, the

 41

emulated cores which has been waiting on the channel will be waken up and the MEK

will update the waiting emulated core’s logical time and idle time if needed.

The blocking read method (bread) is the exact dual of bwrite as shown in Listing

11. After stopping the timer and updating its logical time (line 1), the reader checks

if the channel is empty by reading the flag_not_empty shared resource (line 2). Similar

to bwrite, if the shared resource flag_not_empty can be accessed by the task, it

guarantees that the logical time of the emulated core is equal to MIN_SIM_TIME

and all other emulated cores (including the reader of this channel) have been simulated

at least until this time (line 2). If the channel is empty, the reader must wait on the

ev_is_not_empty event (line 3). Otherwise, it proceeds to perform the actual data

read by reading the tail of the circular buffer (line 4). As the circular buffer is an array

of shared resources, the reader’s logical time must be the same as MIN_SIM_TIME

that the reader can read data from the buffer. After reading data, the MEK then

updates the buffer full flag, if needed, (lines 5-7) and notifies ev_is_not_full (line 9).

By notifying the event, the emulated core which has been waiting on the channel will

be waken up and the MEK will update the waiting emulated core’s logical time and

idle time if needed.

T bread() {
 1: KERNEL_CALL_START();
 2: while (!flag_not_empty.Read())
 3: this->ev_is_notEmpty->wait();
 4: T item = cbuffer->dequeue().Read();
 5: if (cbuffer->isEmpty())
 6: flag_not_empty = false;
 7: flag_not_full = true;
 8: this->ev_is_not_full->notify();
 9: KERNEL_CALL_END();
 10:return item;
}

Listing 11: FSL’s blocking read method

 42

Figure 14 shows how the MEK manages tasks when they use communication

models. We use this simple example to explain communication models in details. There

are two possible scheduling for this example. It is assumed that the length of the

channel is only 1 data item. The MEK can run either T1 or T2 first.

Figure 14: Simple example of using communication model by two emulated

cores in the hybrid prototyping

Figure 15 illustrates the case when the MEK runs T1 first. T1 runs till reaches

bread at time t11. Since no data items are found, the MEK blocks T1 and switches to

task T2. T2 runs and at time t21 writes the data item into the channel and notifies the

ch ev_write. So the MEK unblocks T1. After this notification, T2 executes for another

t22. Then, it wants to write for the second time. As there is no space in the channel,

the MEK blocks T2, set the T2’s timestamp to t21 + t22 and switches back to T1. T1

reads the data item from the channel and notifies the ch ev_read. Considering this

notification, the MEK unblocks T2. T1 can execute for t12 till reaches the second read

while it is empty. So the MEK sets T1’s timestamp to t11 + t12 and switches to T2.

When T2 writes in the channel, the MEK updates the T1’s timestamp to T2’s

timestamp (t21 + t22) because T2’s timestamp is bigger than T1’s. T2, then, executes

for t23 and terminates. The MEK switches back to T1. It reads from the channels,

executes for t13 units and then terminates. At the end of the simulation, the MEK

reports T1’s timestamp as t21 + t22 + t13 and T2’s timestamp as t21 + t22 + t23.

EC1 EC2

Target Core

bRead (b)
bWrite (b)

T1 T2

t11

t12

t21

t22

0

bRead (b)

bWrite (b)t13

t23

 43

Figure 15: Simple example of using communication model by two tasks

Figure 16: Simple example of using communication model by two tasks

N

CS

Physical (wall clock) time

t11 t21 t22 t12

lt1 = t11 lt1 = (t11 + t12)

lt2 = t21 lt1 = (t21 + t22)lt2 = (t21+ t22)

RW

lt2 = (t21 + t22 + t23)

WR

N

CS

t23 t13

T1

T2 WR

lt1 = (t21 + t22) + t13

CS

T

T

Context SwitchCSwrite into channelWR N notify channel’s event W wait on channel’s eventR read from channel T terminate

W

N

R N

CSW

N

CS

Physical (wall clock) time

t21 t22 t11 t12

lt1 = t11 Lt1 = t11 + t12

lt2 = t21 lt1 = t21 + t22
lt2 = t21+ t22

R

W

lt2 = t21 + t22 + t23

WR

N

CS

t23 t13

T1

T2 WR

lt1 = t21 + t22 + t13

CS T

T

Context SwitchCSwrite into channelWR N notify channel’s event W wait on channel’s eventR read from channel T terminate

W

N

R N

 44

Figure 16 shows the case when the MEK executes task T2 first. When the MEK

schedules T2 to be simulated first, it runs T2 until it reaches bwrite at logical time t21.

Since the channel is empty, T2 can writes the data item into the channel. So the MEK

writs the data item and updates T2 timestamp to t21, store the t21 as block’s wire time

and notifies ch ev_write. By this notification, the MEK changes the state to ready

for all the tasks that are blocked on this channel and have been blocked. T1 then runs

until it reaches the second write. As there is no space in the channel (channel size is

1) data item, the MEK blocks T1, updates T1’s timestamp to t21 + t22 and does a

context switch.

The MEK then runs T2 until reading data items from the channel. Before reading

the data item, the MEK updates the T2’s time stamp to t11. As the channel is not

empty, T2 can read data item. After reading operation, the ch ev_read will be fired.

Therefore, the MEK unblocks T1. In this case, the MEK does not update the T1’s

timestamp because T1’s timestamp is greater than data item’s write time (t11>t21).

The MEK continues simulating T1 until the second read from the channel. Before

any operations, the MEK updates T1’s timestamp to t11 + t12. T1 reads the data item

from the channel and as there are no more data items in the channel, the MEK blocks

T1 and switches the context to T2. The channel has empty space and T2 can write the

data item.

Upon ch ev_write notification, the MEK unblocks the T1 because T1 has been

blocked on this channel. Also the MEK updates the T1’s timestamp to t21 + t22 since

the T2 logical time is greater than T1 logical time (t21 + t22 > t11 + t12) on notify ch

ev_write. The MEK continues simulating T2 until it terminates and updates its

timestamp to t21 + t22 + t23. The MEK then switches to T1 and simulates it until

termination of T1. At the termination point, the T1’s timestamp is updated to t21 +

 45

t22 + t13. So, regardless which task is scheduled first by the MEK, the final results are

identical.

 SMP Architecture

Processes can communicate with each other using inter-process communication

primitives provided by the operating system. One process can create a protected

memory portion which other processes can access it. Message queue is an efficient

means of passing data between processes which is provided by software model layer in

the hybrid prototyping. A message queue is a way for applications to send messages

between one another in order to reliably communicate. We will describe message queue

in the next chapter.

 Interrupt to Processor

Signals are a useful synchronization mechanism to connect a hardware interrupt

sources to a core. It will be used to model hardware interrupts in the hybrid

prototyping. As opposed to events, notification on signals won’t be lost when no

waiting thread is found on the signal. The signal structure consists of two lists:

pendinglist and waitlist. As the name suggests, pendinglist is the list of logical time

when the signal was initiated. Waitlist is the list of all threads that are waiting on the

signal. The MEK defines signal/wait methods for signal management.

Listing 12 illustrates the pseudo code for a wait on signal. The MEK first tries to

find a notification for the signal that has occurred at a logical time before the current

logical time of the core executing the wait (line 2). A notifying thread may have been

simulated before the waiting thread and the notification may be present in the

pendinglist. If the notification is found, it will be removed from the signal’s pendinglist

and the caller proceeds (lines 2-3). If a notification is not found, the RTOS must allow

 46

other thread to be run, so that a potential notify on the signal is executed. The wait

is added to the signal’s waitlist and the waiting thread is BLOCKED by the RTOS

(lines 4-7). The RTOS reschedules the ready threads on the emulated cores and

changing the context (lines 7-8) to the next emulated core.

void signal::wait() {
 1: KERNEL_CALL_START();
 2: if(∃ n ∈ pendinglist, n->lt < active_ecore.lt)
 3: delete (pendinglist, n);
 4: else {
 5: Thread *t = active_ecore.running_thread;
 6: add (waitlist, t);
 7: suspend(t);
 8: run_next_ready_ecore();
 9: }
 10: KERNEL_CALL_END();
}

Listing 12: Signal’s wait method pseudo code

Listing 13 shows the pseudo code for signal notification. A thread cannot notify a

signal unless all other threads have been simulated at least until the current logical

time. Therefore, the notification is committed when the logical time of the notifying

core is equal to MIN_SIM_TIME (lines 2-3). The thread yield its simulation turn to

make sure all threads have been simulated at least until the current logical time and

ensure all waits and notifications have been processed in order. If the current time is

equal to MIN_SIM_TIM, the RTOS then looks for the first thread that has been

waiting on the signal (line 7). If such a wait is found, the RTOS wakes the thread up

and removes the wait from the waitlist (lines 8-9). If no waiting thread is found, it is

possible that the thread which might call the wait at a later logical time has not yet

been simulated till the wait call. Therefore, the notification is added to the pendinglist

of signal (lines 4-5).

 47

void signal::signal() {
 1: KERNEL_CALL_START();
 2: while(active_ecore.logicalTime != MIN_SIM_TIME)
 3: yield();
 4: if(waitlist.isEmpty())
 5: pendinglist->add(active_ecore.logicalTime);
 6: else {
 7: w = waitlist.first();
 8: wakeup(w);
 9: delete(waitlist, w);
 10: }
 11: KERNEL_CALL_END();
}

Listing 13: Signal’s signal method pseudo code

4.3 Hardware Interrupt Handling

Hardware interrupts are issued by external peripherals, leading to execution of an ISR.

ISRs are treated as special threads that have the highest priority. The signaling of an

interrupt event notifies the ISR; the RTOS will run the ISR on the first available

emulated core (either idle or busy with lowest priority task). Upon the ISRs execution

the corresponding interrupt handler is called.

Signal delivery is not instantaneous. When a signal is posted to ISR from a

peripheral, the signal flagged as pending and added in signal’s pendinglist and the

RTOS schedules the ISR to run on the first available emulated core. When ISR is next

scheduled to be run, pending signals are checked and appropriate action is taken.

An external device which is generating hardware interrupt (HW_INT) is modeled

as a special emulated core in the hybrid prototyping. Like a regular emulated core, it

is scheduled by emulated cores scheduler and it is capable to run any thread. The

difference is that it only runs a thread which is locked to it. This thread describes the

HW_INT’s behavior and defines in which circumstances the interrupt must occur.

The other difference is that the MEK only update the HW_INT’s logical time when

it sleeps for a given length of time. The MEK simulates the sleep operation which

 48

means the thread is not really blocked on the sleep. The MEK just advances the logical

time of the emulated core as much as the given length of time. Therefore, the

HW_INT’s is always busy and its idle time is zero. For instance, Listing 14 shows a

thread running on a HW_INT which is generating interrupts at a fixed time intervals

(tINT).

void interrupt() {
 1: while (true) {
 2: pthread_sleep(tINT);
 3: int_sig->signal();
 4: yield();
 5: }
}

Listing 14: Simple interrupt thread pseudo code

As Listing 14 illustrates, the peripheral waits for tINT milliseconds and then sends

a signal on int_sig signal. At the end, it yields its execution turn to another thread to

ensure all threads will be simulated until the signal call.

4.4 Multi-Clock Domains

Multiple clock domains are often used in power-efficient designs. These designs might

run different cores at different clock domains. The hybrid prototyping provides

multiple clock domains by running each emulated core with different clock frequencies

[42]. As the MEK calculates the execution time in CPU cycles, the real execution time

can be easily obtained by multiplying the number of cycles with the clock period of

each core.

The MEK uses a hardware timer to measure the execution time in CPU cycles.

The timer’s value is used to manage the emulated core’s logical time. It can be

measured either in CPU cycles or real execution time (in milliseconds). To obtain

execution time in millisecond, a clock frequency (f) should be assigned to each

 49

emulated core. Equation 1 shows how the real execution time can be easily obtained

by multiplying the number of cycles with the clock period of each emulated core.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒𝐶𝐶 × 1
𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒′𝑚𝑚 𝑓𝑓𝑐𝑐𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑓𝑓𝑐𝑐𝑓𝑓

 (1)

Figure 17(a) shows how the MEK maintains the logical times lt1 and lt2 on

emulated cores EC1 and EC2 respectively. It is assumed that the length of the channel

is only 1 item and EC1 and EC2 are running with frequencies f1 and f2 respectively.

The MEK may pick either EC1 or EC2 to simulate first. Figure 17(b) illustrates the

case when EC1 is picket by the MEK. The X-axis shows the physical time measured

by the hardware timer in CPU cycles. As this figure shows, the MEK runs T1 on

emulated core EC1 until it reaches bread at time t11. Since no data is found in the

channel, the MEK update the lt1 to t11 × f1, blocks T1 and switches to task T2. T2

runs for t21 unit, writes data into the channel then notifies event chev_write. As a

result, the MEK unblocks T1. Right after this notification, T2 executes for another t22

unit. Then, it tends to write for the second time. However, as there is no space in the

channel, the MEK blocks T2, set the lt2 to (t21 + t22) × f2 and switches back to T1.

T1 reads data from the channel and notifies event chev_read. Considering this

notification, the MEK unblocks T2. As T1 can execute for t12 unit till reaches the

second read while the channel is empty, the MEK sets lt2 to (t11 + t12) × f1 and

switches to T2. When T2 writes into the channel, the MEK updates the lt1 to lt2‘s

value. This happens because lt2 is bigger than lt1. T2, then, executes for t23 unit and

terminates. The MEK switches back to T1. It reads from the channels, executes for t13

units and then terminates. At the end of the simulation, the MEK reports lt1 as (t21

+ t22) × f2 + t13 × f1 and lt2 as (t21 + t22 + t23) × f2.

 50

Figure 17: Multi-clock domain simulation example

N

CS

Physical (wall clock) time

t11 t21 t22 t12

lt1 = t11 × f1 lt1 = (t11 + t12) × f1

lt2 = t21 × f2 lt1 = (t21 + t22) × f2
lt2 = (t21+ t22) × f2

RW

lt2 = (t21 + t22 + t23) × f2

WR

N

CS

t23 t13

T1

T2 WR

lt1 = (t21 + t22) × f2 + t13 × f1

CS

T

T

Context SwitchCSwrite into channelWR N notify channel’s event W wait on channel’s eventR read from channel T terminate

W

N

R N

CSW

EC1 EC2

Target Core

bRead (b)
bWrite (b)

T1 T2

t11

t12

t21

t22

0

bRead (b)

bWrite (b)t13

t23

f1 f2

(b)(a)

 51

4.5 Memory Hierarchy

Caches are widely used in embedded system to increase efficiency. So it is important

to consider memory hierarchy in hybrid prototyping. L1 caches add a new degree of

complexity to multicore emulation because the L1 context must be switched along

with the core context during emulation. Fortunately, the typical L1 cache size in

embedded multicore systems that we are targeting is relatively small. Therefore, the

delay in replacing the cache data during context switches don’t slow down the

emulation drastically.

Cache modeling can be broadly divided into software-based and hardware-based

modeling techniques. Software models allow a high degree of configurability; however,

software-based simulators compromise accuracy for simulation speed. Trace driven

simulators [43] [44] can be quite accurate, but at the cost of high simulation time.

Furthermore, they require repeated simulation runs to reach acceptable accuracy

levels. Source-level simulations proposed in [45] estimate only the worst case scenarios;

they cannot generate memory transaction statistics over different designs, and are,

therefore, unsuitable for design space exploration. Transaction Level Modeling (TLM)

techniques [46] [47] increase the level of modeling abstraction to speed up simulation.

Software debugging also becomes more efficient with TLMs. Nonetheless, TLMs

compromise timing accuracy for greater simulation speed [48].

In order to support fast and accurate simulation, hardware cache emulators have

been introduced. Hardware cache models can be classified into passive and active

emulators. Passive emulators are hardware monitors that probe memory transactions

over the processor bus. Passive cache models like P-cache [49] and RACFCS [50] are

L1 cache models that provide cycle-accuracy, configurability and observability into

 52

the cache state at run-time. However, they are not suitable for utilization in multicore

emulation systems since they cannot support multiple cache contexts. MemorIES is a

passive L3 cache emulator that is designed for multiprocessor servers, such as IBM

S70 class RS/6000 or AS/400 servers. The main drawback of this model is the

complexity of the hardware design by using several FPGA boards, and the inaccuracy

when modeling large caches.

Active cache emulators provide the modeling accuracy and observability of passive

models, while behaving as a built-in cache. Prototyping systems such as RMP [51],

and RAMP [36] emulate the entire multiprocessor system and the memory hierarchy.

Their key drawback is the scalability and the ease of debug. ACE [52] is an FPGA-

based active emulator that models L3 cache. It actively interacts with the target

system, and provides the same functionality as the built-in cache, but with larger

latencies. ACE provides cycle-accuracy and observability. However, like other cache

emulators, this model does not support run-time re-configurability for switching

between cache contexts, so it cannot be used for multicore emulation. DRAC provides

the emulation speed of active models, the observability of passive models, and the run-

time configurability to support multiple cache contexts.

We have designed a Dynamically Reconfigurable Active L1 Cache (DRAC) [53]

module that emulates the local L1 caches of the cores. The DRAC is an on-chip

hardware peripheral connected to the local bus of the core. All program and data

memory transactions are made by the core on the local bus.

We have focused on modeling a direct-mapped L1 write-through cache because of

the following reasons: (i) L1 has the maximum impact on performance, (ii) direct-

mapped has the lowest energy footprint and is therefore popular in embedded systems,

and (iii) write-through policy brings greater predictability to global memory state and

is desirable for multicore embedded systems. Nevertheless, the ideas presented in this

 53

paper can easily be extended for other types of caches using common cache modeling

methods. L1 cache modeling for hybrid prototyping is more involved than

implementing a simple cache model in FPGA. The cache model should be capable of

simulating different caches of the emulated cores by dynamically changing its context.

Therefore, DRAC is designed as a run-time configurable cache that enables the MEK

to change the cache context as it switches from one emulated core to the next.

Figure 18: A multicore design with its equivalent hybrid prototype

Figure 18 presents the layered structured of a multicore design and its hybrid

prototype equivalent. In the target design, which is shown in Figure 18(a), T1 and T2

are tasks running on separate cores. Each core has its own L1 cache and separate

memory space on DDR. The communication between the cores is performed using

FIFO-based communication channels. Hybrid prototyping introduces an additional

software layer on top of an emulation core. Figure 18(b) illustrates the hybrid

prototype that incorporates the MEK. The emulation core and the main memory in

the hybrid prototype are of the same type as that used in the multicore design.

(a) multicore design (a) Equivalent hybrid prototype

 54

However, the built-in caches have been replaced by DRAC models. DRAC is

customized to support different cache contexts for the two cores. For each cache

context, a separate space on DDR is dedicated as cache image. Before the MEK starts

emulating a core, it loads the corresponding cache image from DDR to DRAC.

Similarly, after the MEK stops emulating a core, it saves the corresponding cache

image to DDR. Hence the cache images are swapped in DRAC, when the MEK

switches from one core to another.

 Dynamically Reconfigurable Active Cache

The DRAC model includes the functionality of a standalone cycle-accurate data and

instruction cache, and additional logic to support multicore hybrid prototypes. As

discussed earlier, the hybrid prototype simulates several virtual cores on a single core.

Thus, a single cache that is capable of switching its context over different virtual cores

is needed. To realize this concept, an extra module has been implemented in the cache

that can swap the cache contents across different virtual cores. Each virtual core’s

cache can be configured independently; however, this requires DRAC to change its

configuration during run-time. The run-time configurability of DRAC provides the

MEK to change the configuration of the cache.

DARC is implemented as an interface between the target processor and the main

memory. It receives memory access instructions from the target, processes the requests

from the processor, and delivers the instructions and data, as needed. Therefore, it

actively interacts with the target system. In order to support multiple cache design

choices, DRAC is designed as a parameterized cache model.

 55

 DRAC Design

The top level design of DRAC consists of Bridge/Cache Arbitrator, Bus Bridge

module, and Cache/Swap module as shown in Figure 19.

Figure 19: Top level design of DRAC

 Bridge/Cache Arbitrator & Bus Bridge

DRAC is placed between the processor and the DDR memory controller; therefore, all

memory transactions go through DRAC. The active behavior of DRAC requires it to

have an extra module beside the cache, which is called Bus Bridge. This module is

responsible for establishing the connection between the processor and the off-chip DDR

memory when the cache is inactive. In this case, Cache/Swap module is bypassed by

the Bridge/Cache Arbitrator, and the Bus Bridge provides processor’s direct access to

the DDR memory controller. The arbitrator multiplexes the address bus, data bus,

and control signals between the Cache/Swap module and the Bus Bridge. The

arbitrator is controlled by the Control Status Register’s (CSR). CSR is a 32 bit control

 56

register that resets, enables/disables, sets the size of the cache, and switches DRAC

between bridge mode and swap mode.

 Cache Module

This module is composed of a controller and two block RAMs used for data and tag

memory. The cache size configuration is set by this module. The CSR is used to set

the cache size in DRAC. To support large cache sizes, we dedicate a large amount of

Block RAMs (BRAMs) for data and tag memory. We, then, utilize a part of the

BRAMs as per the cache size requirement.

Figure 20: Finite State Machine of cache controller

The cache controller is key module of DRAC, which is used in both data and

instruction cache models. The only difference between the data and the instruction

cache is read-only. In order to simplify DRAC design, we used the same controller for

 57

both instruction and data. Figure 20 demonstrates the cache controller’s finite state

machine (FSM).

Cache Controller always checks the CSR value before any memory transaction. If

CSR is set to cache enable, the FSM in cache controller is triggered and the state is

changed to address check. In this state, the module checks the address valid Bit

(Addr_valid) signal on the bus in every clock cycle; if it is detected, then the controller

checks R/W signal and goes to Read or Write state. In both Read and Write states,

the cache module first checks the tag memory in order to locate the memory block in

the cache. In the read state, if the data is found in the cache, it is a hit case, and the

cache retrieves the data from its own data memory to the processor; otherwise, it is a

miss case and the cache should fetch the regarding memory block from the main

memory. The controller’s last state is Add Delay Time. This state inserts delays

depending on our timing model. The algorithm will be discussed in next section. DRAC

is assumed to be a write-through cache. Hence, in the case of write, it updates both

the cache and the main memory. At the end of each transaction, DRAC sets the

acknowledgment signal in the processor’s bus, to inform the processor the memory

transaction is done.

 Swap Module

The cache swap feature is the ability of the cache to save a copy of itself on the off-

chip DDR memory and to load it later automatically. The swap module is responsible

for switching the cache context from one core to another during run-time. Whenever

a swap is triggered by the MEK, DRAC stalls the processor and saves the current

cache context to the main memory, line by line. The context of the next core to be

simulated is, subsequently, loaded. Figure 21 illustrates the finite state machine of the

 58

swap controller. Similar to the cache controller, the swap controller has a CSR Check

state as an initial state. The swap trigger is detected in this state.

Figure 21: FSM of swap controller (Swap Mode)

Depending on the CSR value, the controller will save or load the cache state. As

explained earlier, space in the DDR memory has been allocated for each core,

depending on the cache size. The. Initialize state determines the starting and the

ending address locations of each core’s cache. If the processor issues the save cache

state command, the controller goes to Read from Cache state, reads the first line of

the cache, and writes it into main memory. It continues this process until all cache

lines are written to the main memory. On the other hand, if the processor’s command

is load, the controller goes to Read from DDR2 state, reads all previously saved

contents of the cache from main memory, and writes them into the cache. There is a

stall state in swap’s FSM that ensures the data is safely resided in the cache or the

main memory.

 Timing Model

Designing DRAC as an active cache model and utilizing on-chip BRAM memory as

data and tag memory, reduces the program’s execution time, as compared to a passive

 59

model. However, the DRAC delay is typically longer than that of the processor’s built-

in cache. In order to model the built-in cache, we add extra cycles to certain DRAC

transactions such that all the DRAC delays are a multiple of corresponding built-in

cache delays, by the same factor. As a result, the program’s execution time, when

using DRAC, will be a multiple of the execution time with built-in cache. For example,

in equation 2, if a processor with built-in cache executes a program in x Clock cycles,

the proposed model will execute the same program in n × x Clock cycles, where n is

the linear scaling factor:

Modeled Clock cycles= n × Real Clock cycle (2)

In order to explain the timing model in more detail, we present the example of a

MicroBlaze based system [16]. In this system, MicroBlaze is the core processor and

CacheLink (XCL) is the communication bus between the main memory and the BIC.

DRAC is designed as a master IP core that can be utilized as data or instruction

cache. For hybrid prototypes, we disable the built-in caches, and use DRAC instead.

Since DRAC is simply a peripheral to MicroBlaze, it is connected to processor local

bus (PLB) which has a different protocol from XCL. XCL is an FSL based dedicated

link, so DRAC cannot be connected to it. Clearly, replacing the XCL bus with PLB,

disabling the built-in cache, and using DRAC will change the execution time of a

program on MicroBlaze. However, it must be noted that our concern is not only the

system speed performance, but also the timing estimation.

We used ChipScopePro bus analyzer [16] to obtain memory parameter values for

DRAC. The hit time for the MicroBlaze built-in cache is 1 cycle, while this time is 12

cycles for DRAC over PLB. Therefore, we have defined our scaling factor as 12. It

means every memory transaction in DRAC will incur 12 times the delay of the

corresponding transactions with the MicroBlaze built-in cache. The other factor that

 60

defines cache performance is read miss time. The average miss time latency for the

MicroBlaze built-in cache is 29 cycles. This miss time is 149 cycles in DRAC. In order

to model read miss time, the emulator inserts 199 cycles to make read miss latency

12×29 cycles.

The write operation is another factor that impacts the system performance. DRAC

models a write-through cache. Hence, in every write transaction the main memory will

be updated. Writing into on-chip BRAM is quite simple and predictable; however, the

write operation to the main memory, which in our case is DDR2 RAM, is quite

complex. The complexity comes from the buffers that are implemented in the DDR2

memory controller. Therefore, in order to model write operation in DRAC, we first

need to model DDR2.

 DRAM Modeling

The connection of DDR2 memory to the system is established by Multi-Port Memory

Controller (MPMC). MPMC provides separate accesses to the main memory for

different modules in the system. It shares single off-chip DDR2 memory between

multiple devices. We have two kinds of memory transactions in the system: read and

write. The effect of multiple reads from different ports of MPMC is negligible since

reading from the memory does not affect the saved data. The write delays behave

differently, though. For a write into the main memory, MPMC stalls other memory

transactions to make sure that the memory is in a consistent state. Therefore, if there

is a write into a port of MPMC, the read or write access time of other ports will

increase.

MPMC uses the buffering technique in order to reduce the write time latency. In

case of a single write, MPMC processes the write transactions in the background while

it handles other read accesses. Buffering offers the system a better performance,

 61

although it creates irregularity in successive or multiple memory transactions. In case

of successive writes into a single port, the write operation time will be different

depending on the number of consecutive writes in that port. The first write will take

the least, and the last write will take the most operation time. The read time will also

be affected by the successive writes of the other port. If the number of consecutive

writes increases, the read access time of the other port will also increase.

Table 1: Effect of concurrent writes to DRAM

Previously, it was mentioned the DRAC model scales its delays to be a multiple

of built-in cache delays. Besides hit and miss time latencies, DRAC also models the

successive and multiple write delays. Table 1 presents the write and read access

parameters of the built-n cache, and the modeled parameter values of DRAC. In the

single core design, the instruction and the data cache are utilizing separate ports of

MPMC. Since there is no write into MPMC in the instruction cache, the read access

time of the instruction cache is only effected by data cache writes. In the multicore

design, there are more than one data caches that write into MPMC. Hence, the effect

of multiple writes will be more severe in higher number of cores.

In multicore emulation with hybrid prototyping, only one core is simulated at a

time. Hence, it is not possible to predict the exact behavior of the other cores during

simulation. This effect causes the predicted execution time to be less than what is

expected. In order to decrease this effect, we introduce a multiplication factor fm, which

Number of concurrent writes to port 0 0 1 2 3 >=4

Number of cycles to write to MPMC port 0 in BIC 0 2 4 5 11

Number of cycles to write to MPMC port 0 in DRAC 0 2×12×fm 4×12×fm 5×12×fm 11×12×fm

Number of cycles to read from MPMC port 1 in BIC 29 42 53 65 79

Number of cycles to read from MPMC port 1 in
DRAC

29×12×fm 42×12×fm 53×12×fm 65×12×fm 79×12×fm

 62

models the multiple write effect. To determine fm, we tested different multicore designs

with all the cores running in parallel. We observed that the multiple write effect

depends on the number, density, and distribution of writes over different cores. As a

result, we executed a sample software code with different write distributions on

multiple cores running in parallel. In each experiment, we kept the write density of

the first core constant, and changed the write density of the other cores. We test

different write densities for different number of cores ranging from the best case, in

which there is no write in the second core, to the worst case, that the write density is

almost 100%. We found an average fm value for each core. Table 2 presents the values

of fm for different number of cores.

Table 2: Multiple write factor for different number of cores

Number of cores 2 3 4
fm 4 9 12

 Cache Modeling Limitation in Hybrid
Prototyping

There are several limitations of cache modeling in hybrid prototyping. The L1 images

of all the cores are maintained in a dedicated memory, which may be on-chip if there

is enough space. During the core context switch, the MEK instructs the DRAC to

store the current L1 image and load the appropriate L1 image for the next core to be

emulated. By increasing the number of cores we need more space to store the L1

images which may not be available. Furthermore, increasing the number of cores will

impact on prototyping speed as the L1 image must swap for each context switch.

Therefore, increasing the number of cores could affect the space and speed of the

hybrid prototype.

 63

The other limitation of using cache model in the hybrid prototyping is modeling

multiple cache hierarchy. Cache pollution is a serious problem for modeling multiple

cache hierarchy in multicore designs. For instance, a core may replace the blocks

fetched by another core into shared L2 cache. In the hybrid prototyping, running

emulation kernel between application’s thread is also resulting the cache pollution.

Therefore, running a design in FPGA prototype with shared L2 cache reports different

results comparing to the hybrid prototype due to unpredictable misses and hits that

occurs in shared L2 cache.

Inability of modeling scratchpads is another limitation of cache modeling in the

hybrid prototyping. Scratchpad is a high-speed internal memory used for temporary

storage of calculations, data, and other work in progress. As it was explained earlier,

to model the cache behavior, an on-chip hardware peripheral can be connected to the

local bus of the core. It then can model the cache by observing all memory transactions.

In contrast, scratchpads are transparent to the system. They cannot be accessed and

cannot be observed as they sit close to the CPU. As a result, modeling scratchpads

without the ability of observing or accessing them is another issue for modeling

memory hierarchy in the hybrid prototyping.

Cache model heavily depends on hardware architecture. Current DRAC cache

model can only be used in designs with MicroBlaze as the target core. To use DRAC

cache model for other architectures such as PowerPC or ARM we need to investigate

the new architectures and change DRAC to support them which is a very time

consuming and difficult work.

 64

4.6 Summary

In this chapter we presented the hardware model layer of the hybrid prototyping. We

explained how the processors in a SMP design were emulated by emulated cores.

Different communications models which are supported in the framework were also

described. We then talked about the modeling of the hardware interrupts in the

framework. We have also seen that the hybrid prototype can support multi-clock

domain frequencies. Finally, we explained memory hierarchy model in details. In the

next chapter we will talk about the software model layer which provides RTOS model

scheduler to manage threads on top of the emulated cores.

 65

Chapter 5

5Software Model layer

Software model layer provides simulation primitives for the management of threads.

It defines model of RTOS scheduler for dynamic task scheduling on the emulated

cores. Models of RTOS scheduler developed for system level design languages have

been proposed, but are non-trivial to port to hybrid prototypes, given the absence of

a single logical time [54].

Figure 22: Software model layer structure

Physical Target Core

Application

Hybrid Prototype

Thread scheduler

Thread

Conditional
variable

Idle TaskISR Message
queue

So
ft

w
ar

e
M

od
el

Hardware Model
MEK

 66

This layer defines message queue primitives which models the inter-process

communication services implemented as an API on top of the conditional variable

simulation primitives. Conditional variable is an important synchronization primitive

beyond locks and allows threads to sleep when some program state is not as desired.

The idle task provided by this layer is a special thread that has the lowest priority

and is always ready to be run on the idle emulated cores. Finally, ISRs is defined in

this layer to handle hardware interrupts in the design [55]. Figure 22 shows the

software mode layer structure in the hybrid prototyping.

5.1 Thread

Threads (sometimes called lightweight processes) are the basic unit of processor use.

Each is a separate control path through the code, and the ones within a process are

essentially independent. Threads can access all the address space by the process, and

they have no protection against each other. Software model layer in the hybrid

prototyping provides all primitives and services for thread management. In a hybrid

prototype, each thread comprises a thread id, program counter, register set and a

stack.

Every thread is assigned a priority. The priority can be set to a level from 0 to 10

(10 is the highest priority which can be varied by the designer). As we will see later

in this section, the thread scheduler selects the next threads to be run by looking at

the priority assigned to every thread that is READY (i.e., capable of using the

processor). The thread with the highest priority is selected to be run.

The created thread becomes the tail of the ready queue for that priority. The

ready queue is an array of the queues. Each entry of the array consists of a queue of

the threads that are READY at that priority. Any threads that aren't READY aren't

 67

in any of the queues, however they will be when they become READY. The RTOS

uses ready queue to decide who to schedule next.

Figure 23: Threads ready queue

Figure 23 shows the ready queue data structure. Listing 15 shows the thread class

in the software model layer.

class Thread {
 public:
 Thread(functionPtr, int, int, int);
 void setState(THREAD_STATE);
 void setPrio(int);
 void setId(int);
 THREAD_STATE getState() const;
 int getId() const;
 int getPrio() const;
 int getCoreId() const;
 bool hasContext() const;
 Context context;
 functionPtr start_routine;
private:
 THREAD_STATE thread_state;
 int thread_id;
 int thread_prio;
 int core_id;
}

Listing 15: Thread class in the software model

In our RTOS scheduler model, a thread may be in four possible states: “running”,

“ready”, “blocked” or “terminated”. Running state means that the thread is now actively

Pr
io

rit
y

0

10

 68

consuming the physical target core. The ready state means that a thread is ready to

be run right now but all emulated cores are being used by other threads at that time.

Terminated simply means that the thread is terminated and no longer needs to get

executed. The terminated threads are removed from the ready queue. Blocked states

means a thread must wait for some event to occur (e.g. response to a signal, event,

etc.). The blocked thread is also removed from the ready queue until the blocking will

be completed. Figure 24 illustrates the thread life cycle. It is important to mention

that a running thread can voluntarily yield its execution turn. By yielding the

execution, the thread will be placed at the end of the ready queue for that priority.

Then the highest priority thread will be run.

Figure 24: Thread life cycle in the software model scheduler

5.2 Thread Scheduler

Thread scheduling refers to the assignment of idle emulated cores to ready threads.

The RTOS thread scheduler in our software model supports the FIFO scheduling

policy. In FIFO scheduling algorithm, a thread is allowed to consume emulated core

for as long as it wants. If the running thread terminates, blocks or voluntarily gives

up the emulated core (yield), the RTOS looks for another ready thread in the same

priority, and if there are no such threads, the RTOS looks for lower-priority threads

capable of using the emulated core. Therefore, the highest-priority threads will be run.

ready terminatedRunning

Blocked

New
Dispatchedcreate

block

Completed

yield

Scheduling
decision

 69

If there’s another thread that is ready to be run and if there’s an available emulated

core, the thread will be run on it. If there aren’t enough threads to go around, the idle

emulated cores will run the idle thread. Idle thread is a special thread that has the

lowest priority and is always ready to be run. An emulated core is considered to be

idle when the idle thread is scheduled to be run on it. If there aren’t enough emulated

cores to go around, then only the N-highest-priority ready threads will be run, where

N is the number of available emulated cores. The scheduling decisions may take place

when a thread:

1. switches from the running to the blocked state

2. switches from the running to the ready state

3. switches from the blocked to the ready state

4. terminates

Under condition 1, the running thread waits for some events to occur and gets

blocked. The blocked thread is removed from the ready queue and the highest-priority

ready thread is then run. When the blocked thread is subsequently unblocked, it's

usually placed at the end of the ready queue for that priority level. In condition 2, the

running thread may yield the execution. The RTOS scheduler then inserts it at the

end of the ready queue for that priority and does the scheduling decision. When a

thread becomes unblocked (condition 3), the RTOS scheduler puts it back at the end

of the ready queue and decides which threads should be run at this particular time.

Finally, if a thread is terminated the RTOS scheduler removes it from the ready queue

and reschedule the ready threads on the emulated cores.

The simulation exits successfully if all threads are in the terminated state. A

scheduling event may also result from a hardware interrupt. If an external interrupt

occurs, a signal is posted to ISR. As we will see later in this section, ISR is a special

 70

thread with the highest priority which is responsible to respond to external interrupt

and performs the appropriate action based on the interrupt.

5.3 Processor Affinity

Processor affinity is the ability of binding or unbinding a process or a thread to a

particular processor. Our software model supports static scheduling by specifying strict

core affinity. During the application initialization in the hybrid prototyping, a setting

determined by the system designer forces all of an application’s threads to execute

only on a specified emulated core. It offers the benefits of SMP’s transparent resource

management, but gives designers the ability to lock any application (and all of its

threads) to a specific core to help migrate uniprocessor code to a multicore

environment. It allows legacy applications written for uniprocessor environments to

be run correctly in a concurrent multicore environment, without modifications.

5.4 Condition Variable

Conditional variable is an important synchronization primitive typically used in

implementing deterministic producer/consumer behavior. Our software model layer

provides conditional variable primitives using basic wait/signal methods. The wait

method is executed when a thread wants to put itself to sleep until a condition is

satisfied, and the signal method is executed when a thread wants to wake sleeping

threads waiting on the given condition.

Conditional variable class has a list called waitlist. Waitlist is a list of all threads

that are waiting on the conditional variable. Upon a wait call, the RTOS scheduler

puts the caller thread into the blocked state, removes the thread from the ready queue

 71

and inserts the caller thread into the conditional variable’s waitlist. On a signal call,

all threads which have been waiting on the conditional variable are notified and the

RTOS scheduler changes their state to ready, puts them back in the ready queue and

reschedules the ready threads on the emulated cores. If there is no sleeping thread on

the conditional variable, the signal will be lost.

5.5 Message Queue

Message queue (mqueue) is an asynchronous communication mechanism between

discrete components of an application. It facilitates message passing by connecting

producers which create messages and consumers which then process them. The mqueue

is modeled as a variable size circular buffer. The mqueue has two boolean variables to

indicate a full or empty state, as well as respective conditional variables that are

signaled whenever the buffer is read or written.

void msqueue::send(T newvalue) {
 1: KERNEL_CALL_START();
 2: while (this->isFull())
 3: this->con_var_is_not_full->wait();
 4: this->cbuffer->enqueue(newvalue);
 5: if (this->cbuffer->isFull())
 6: this->flag_not_full = false;
 7: this->flag_not_empty_ = true;
 8: this->con_var_is_not_empty->signal();
 9: KERNEL_CALL_END();
}

Listing 16: Message queue send method pseudo code

Listing 16 shows the pseudo code for sending data over the mqueue. Since this is

a blocking operation, the sending thread must wait as long as the mqueue is full (lines

2-3). If the queue is not empty, the item is placed into the tail of the circular buffer

(line 4) and con_var_is_not_empty is signaled (line 8). The condition variable wakes

up all threads which have been waiting on the mqueue for receiving data.

 72

The receiving method is the exact dual of sending as shown in Listing 17. The

consumer checks if the mqueue is empty or not (line 2). If the mqueue is empty the

consumer waits on the condition variable (line 3). Otherwise, the item is read from

the buffer (line 4) and the con_var_is_not_full is notified (line 8) to wake up all

threads which have been waiting on the mqueue for sending data.

T msqueue::receive() {
 1: KERNEL_CALL_START();
 2: while (this->isEmpty())
 3: this->con_var_is_not_empty->wait();
 4: T item = this->cbuffer->dequeue();
 5: if (this->cbuffer->isEmpty())
 6: this->flag_not_empty = false;
 7: this->flag_not_full = true;
 8: this->con_var_is_not_full->signal();
 9: KERNEL_CALL_END();
 10: return item;
}

Listing 17: Message queue receive method pseudo code

5.6 Idle Task

Idle task is a special thread with the lowest priority and always ready to run. It is

scheduled on the emulated cores when there aren’t enough threads to go around. The

primary purpose of the idle thread is to measure the idle time for each emulated core

by waiting on awake event of the emulated core. When idle thread executes on an

emulated core, the core is considered as an idle and the amount of time that the idle

thread spend on running on the core is considered as idle time. We will see later in

the next section how the hybrid prototyping calculates the idle and busy time for each

individual emulate core.

The idle thread waits on emulated core’s event (awake) as shown in Listing 18 the

wait call puts the emulated core in the suspended state. When the event awake is

 73

notified, the MEK wakes up the suspended emulated core and updates its logical time

and idle time if needed.

void idle_thread() {
 1: while (true) {
 2: active_ecore->awake->wait();
 3: }
}

Listing 18: Idle thread pseudo code

 74

5.7 Dynamic Scheduling Example

Dynamic scheduling enables the execution of unmodified multi-threaded applications

on top of a SMP-based hybrid prototype. In this section we describe how a hybrid

prototype emulates a SMP design using a simple example. Figure 25 uses a simple

example to illustrate dynamic scheduling simulation on a hybrid prototype. We assume

that the design consists of two emulated cores and one hardware interrupt generator

(HW_INT). The application has two threads which are communicating to each other

with message queue primitives. The HW_INT generates interrupt at fixed time

intervals (tINT >t11 >t21).

Figure 25: Simple example of dynamic scheduling on two emulated cores with a

hardware interrupt

Figure 26 shows how the hybrid prototype maintains the logical times, lt1 and lt2,

and idle times, idle1 and idle2, for emulated cores EC1, EC2 respectively. To avoid

complexity of the example we just show one interrupt signal simulation from the

HW_INT. The ISRs thread is also is not shown in the figure. We assume that the

interrupt is sent to T2 directly. After the hybrid prototype is instantiated, EC1 and

EC2 are placed at the end of the idle queue which means they are capable of executing

EC1 EC2

Physical Target Core

mq.receive()
mq.send(d)

T1 T2

t11

t12

t21

t23

0

Thread scheduler

Emulated cores scheduler

ISR

wait()

HW_INT

t22

 75

threads. The RTOS then schedules T1 and T2 on EC1 and EC2 respectively. By starting

the simulation, the RTOS schedules EC1 to execute on the physical target core. Thread

T1 executes on EC1 from EC1’s logical time 0 until it reaches mq.receive at EC1’s

logical time t12. At this time, there is no data in the message queue because T2 has

not yet been simulated. Therefore, T1 must be blocked until some data is written in

the message queue. T1’s state becomes blocked, the EC1’s logical time is set to t11 and

the MEK removes it from EC1.

The MEK then puts EC1 at the end of the idle queue, does a context switch and

schedules EC2 to execute on the target core. At this point of time, EC1 is the only idle

emulated core. As there is no ready thread available, the RTOS schedules idle thread

on EC1 and inserts it back into the busy queue.

EC2 then executes on the target core and runs T2 from its logical time 0 until it

reaches wait on the interrupt at EC2’s logical time t21. At this point the MEK checks

if there are any pending signals on the interrupt at or before the current logical time

t21. Since no notifications for interrupt are found, the MEK stores the wait on the

interrupt in the signal’s waitlist and the RTOS blocks T2 and removes it from EC2.

The MEK updates EC2’s logical time to t21 and puts EC2 at the end of the idle queue,

does a context switch and schedules HW_INT to get control on the target core.

HW_INT task sleeps for tINT and then posts a signal on the interrupt. Upon

notification, the RTOS checks if there are any pending waits on the signal at or before

logical time tINT. As thread T2 is blocked on the signal at EC2's logical time t21 (t21

< tINT), the RTOS unblocks T2 and updates EC2's logical time to tINT and EC2’s idle

time to tINT – t21 in order to calculate the blocking time. The HW_INT’s logical time

is also set to tINT.

The MEK then schedules EC1 to execute on the target core. EC1 executes the idle

thread until it reaches wait on the awake event. The MEK puts EC1 in suspended

 76

state and removes it from the busy queue. The MEK switches the context and

schedules EC2 to run on the target core. It runs idle thread and waits on its awake

event as well. EC2 becomes suspended and the MEK removes it from the busy queue

and switches the context to the HW_INT task. HW_INT runs again and now its

logical time is equal to MIN_SIM_TIME (the only non-suspended emulated core is

HW_INT, therefore, MIN_SIM_TIME will be equal to HW_INT’s logical time).

HW_INT then notifies EC1’s awake event and EC2’s awake event.

Upon this notification, the MEK updates EC1’ logical time to HW_INT’s logical

time (t11 < tINT) and updates EC1’s idle time to tINT – t11. Now the HW_INT yields

its exaction turn to let other emulated cores to run and may consume the interrupt.

Both EC1 and EC2 are now capable of getting assigned to the next available threads.

Since at this point of time T2 is the only ready thread that can be run, the RTOS

schedules it to be run on EC1 (the first available emulated core) and schedules idle

thread on EC2. EC1 executes T2 from EC2’s logical time tINT until it sends the item

on the message queue. The MEK then updates the EC1’s logical time to tINT + t22,

changes the state of T1 to ready and puts it back at the end of the ready queue.

 77

Figure 26: Timing estimation example with two threads running on a design with two emulated cores and a hardware interrupt

lt1 = t11

Physical (wall clock) time

T

EC1

EC2

HW
INT

CS

Notifyall

t11 tINTt21

CVW

T2

T1

SigW

Interrupt SigN

SCH

SCH

Wait T2 MQS T2 T

MQR T1

CS

CS

idle

yi
el

d

Notifyall

yi
el

d

t22 t23

SCH Notifyall

yi
el

d

yi
el

d

SCH

t12

yi
el

d

Waitidle

yi
el

d

SCH

CVN Notify on conditional variable

CVW Wait on conditional variable MQR Receive on message queue

MQS Send on message queue

Wait Wait on event

Notify Notify event

SigW Wait on signal

SigN Notify signal

Scheduling decisionSCH

Context SwitchCS

terminateT

idle2 = tINT – t21
lt2 = tINT

lt2 = t21

lt3 = tINT

idle2 = (tINT – t21)+ t22
lt2 = tINT + t22

lt1 = tINT + t22 lt1 = tINT + t22 + t23

lt2 = tINT + t22 + t12 idle1 = (tINT – t11) + (t12 – t23)
lt1 = tINT + t22 + t12

CS

idle1 = tINT – t11
lt1 = tINT

Waitidle CS Waitidle CS

CS CS

CS

CS

CS

 78

At this point, the MEK sends a notification to all other emulated cores which

have been waiting on their awake event. Since, EC2’s logical time is equal to

MIN_SIM_TIME, EC1 yields its execution turn and EC2 executes on the target core.

EC2 runs idle thread and waits on its awake event. The MEK puts EC2 into suspended

state and removes it from the busy queue, switches the context and runs EC1. At this

time, the notification is committed and as a result the MEK updates EC2’s logical

time to tINT + t22 and EC2’s idle time to tINT – t21 + t22.

The RTOS makes scheduling decision and schedules T1 to run on EC2. T2 executes

on EC1 for another t23 unit of time until it terminates. The RTOS changes T1’s state

to “terminated” and removes it from the ready queue. The MEK updates EC1’s logical

time to tINT + t22 + t23. It then switches the context to simulate EC2. Since a thread

has been terminated, the RTOS does a scheduling decision and schedules idle thread

on EC1. EC2 executes T1 from its logical time tINT + t22 until it receives data from the

message queue. After receiving data from the message queue, EC2 continues simulating

T1 until it terminates. Then the MEK updates EC2’s logical time to tINT + t22 + t12,

the RTOS changes the T1’s state to “terminated”, removes it from the ready queue

and the MEK then notifies the awake events of all emulated cores (in this case EC1).

Upon this notification the MEK updates EC1’s logical time to tINT + t22 + t12 and

EC1’s idle time to (tINT – t11) + (t12 – t23) (since EC2’s logical time > EC1’s logical

time). The simulation has been done because there aren’t any available ready threads

in ready queue and all threads are terminated successfully. By the end of the

simulation, the hybrid prototype reports EC1’s logical time as tINT + t22 + t12, EC1’s

idle time as (tINT – t11) + (t12 – t23), EC2’s logical time is equal to tINT + t22 + t12 and

finally EC2’s idle time as (tINT - t21) + t22. The busy time for each emulated core is

the difference of the logical time and the idle time of the core. Therefore, the hybrid

prototype reports the EC1’s busy time as t11 + t12 + t23 and EC2’s busy time as t21 +

 79

t12. Table 3 shows the emulated cores states and the actions each thread takes, as well

as its scheduler state over time.

Table 3: Threads and emulated cores trace

EC1 EC2 T1 T2 Comment
T1 T2 Running Ready Simulation get started
idle T2 Blocked Running T1 blocked on message queue
idle idle Blocked Blocked T2 waits for interrupt
T2 idle Blocked Ready T2 get notified by the interrupt
T2 idle Blocked Running
idle T1 Ready Terminated T2 sends data on the message queue
idle T1 Running Terminated T1 receives data
idle idle Terminated Terminated

5.8 Summary

In this chapter we presented the software model layer of the hybrid prototyping and

its model of RTOS scheduler. We first talked about threads and thread scheduling in

this layer. Then we explained the inter-processor communication model in the hybrid

prototyping. We also introduced conditional variables as a synchronization

mechanism. Finally, we went through an example in order to explain how RTOS

schedules different threads on the emulated cores and handles hardware interrupts.

 80

Chapter 6

6Evaluation

6.1 Use cases

To evaluate the speed and accuracy of the hybrid prototypes, we used the JPEG

encoder, the MP3 decoder and a simple packet forwarding applications. The JPEG

encoder is a simple pipelined multicore application with IO file. The MP3 decoder is

a larger and more complex application with real-time constraints and hardware IO.

The packet forwarding application can be massively parallel to demonstrate scalability

of the hybrid prototyping. There are many alternative design options to implement

these applications. These design options can be considered as benchmarks in our

experimental results. Therefore, using these applications can help us to evaluate the

hybrid prototypes in different aspects. We chose the MicroBlaze [16] core from Xilinx

for the target multicore architectures because of easy integration with FPGA and the

ability to instantiate multiple Microblazes (soft processor) to create reference FPGA

 81

prototypes for accuracy evaluation. The FIFO communication between the tasks is

performed using the FSL buses supported by MicroBlaze.

 MP3 Decoder

The MP3 decoder application reads and decodes data from the media file. The MP3

data is fetched from a file, and after being decoded it is written into a serial buffer.

The buffered data can be played on the handset speaker. This application has 5

separate tasks which can be run on different cores: isrPulser which is responsible for

sending pulse in proper time to task isr. Task isr is the interrupt handler that notifies

the decoding task if more data is needed by the serial buffer for the speakers. Task

audiosal which reads and decodes data from the media file. Task mixerctrl is in charge

of the channel and task dspaudio converts the rate, playback, mix, etc. on the data.

Figure 27 shows the MP3 decoder application.

Figure 27: The MP3 decoder application

 Jpeg Encoder

The JPEG encoder consists of 5 tasks: Read the bitmap (Read), Discrete Cosine

Transform (DCT), Quantization of values (Quant), ZigZag transform (ZigZag) and

isr dspaudio mixerctrl audiosal

Read from
media file

Mix Channel

Rate convert, playback,
mix, sink, …

Write to
output file

Media
File

Output
buffer

isrPulser

 82

Huffman encoding (Huff). As Figure 28 shows, each task consumes a frame, which is

an 8×8 block of integers, processes it and passes the block to the next task. Given the

application structure, it can be easily pipelined and the concurrent tasks can be

mapped to different cores.

Figure 28: JPEG encoder application

Table 4 shows 15 different multicore designs (ranging from 2 core to 5 cores) of

the JPEG encoder application. As it shows, each design has different mappings from

tasks to cores.

Table 4: Task mappings for the JPEG encoder multicore designs

Design #Cores Mapping

2a 2 Read mb1; DCT, Quant, ZigZag, Huff mb2

2b 2 Read, DCT mb1; Quant, ZigZag, Huff mb2

2c 2 Read, DCT, Quant mb1; ZigZag, Huff mb2

2d 2 Read, DCT, Quant, ZigZag mb1; Huff mb2

3a 3 Read mb1; DCT mb2, Quant, ZigZag, Huff mb3

3b 3 Read mb1; DCT, Quant mb2; ZigZag, Huff mb3

3c 3 Read mb1; DCT, Quant, ZigZag mb2; Huff mb3

3d 3 Read, DCT mb1; Quant, ZigZag mb2; Huff mb3

3e 3 Read, DCT mb1; Quant mb2; ZigZag, Huff mb3

3f 3 Read, DCT, Quant mb1; ZigZag mb2; Huff mb3

4a 4 Read mb1; DCT mb2; Quant mb3; ZigZag, Huff mb4

4b 4 Read mb1; DCT mb2; Quant, ZigZag mb3; Huff mb4

4c 4 Read mb1; DCT, Quant mb2; ZigZag mb3; Huff mb4

4d 4 Read, Quant mb1; DCT mb2; ZigZag mb3; Huff mb4

5 5 Read mb1; Quant mb2; DCT mb3; ZigZag mb4; Huff mb5

DCT Quant. Zigzag Huff.Read 64 64

180 iterations

64 64

 83

 Packet Forwarding Application

The JPEG encoder and the MP3 decoder can be run on a design with maximum

number of 5 cores. However, to evaluate the overhead of the hybrid prototype and

also to show its scalability, we need an application that can be run on a large number

of cores simultaneously. A packet forwarding application would be an ideal choice for

this purpose. Therefore, a simple application has been implemented in order to process

packets. The application has a dispatcher responsible for reading packets and

distributing them among the inner-cores. The inner-cores execute packet processing

tasks and send the processed packets to the collector. The collector receives all packets

and puts them in a proper order. This application can be implemented with a large

number of inner-cores that can each be implemented as a MicroBlaze in FPGA

prototype. The cores are connected using FSL as shown in Figure 29.

Figure 29: Simple Packet forwarding application

6.2 Experimental Results

We created a FPGA prototype, a hybrid prototype and a virtual prototype for

different designs for JPEG encoder, MP3 decoder and packet forwarding applications.

 84

All the used MicroBlaze cores are clocked at 125 MHz. Each MicroBlaze core in the

FPGA prototypes has 64 KB of dedicated BRAM for program and data. The hybrid

prototypes use a single MicroBlaze core with 64 KB of BRAM since all the tasks and

the MEK fit in a single BRAM. For larger programs, one may create multiple instances

of BRAMs with contiguous address space assignment. OVP is used to create the

virtual prototypes. As OVP is an instruction accurate simulator, it only calculates the

number of instructions and cannot measure the idle time. Therefore, the busy time for

each core is the sole result that can be provided by the OVP.

 Accuracy

We used static binding to lock each task to a specific emulate core in hybrid prototypes

to be able to compare them with the PFGA and virtual prototypes. FSL provided by

the hardware model was used for the inter-process communication. Static binding and

dynamic binding in the hybrid prototype use exactly the same approach to deal with

time estimation, therefore, the hybrid prototypes can be evaluated using static

binding.

Figure 30 shows the busy time reported by FPGA, Hybrid and virtual prototypes

for each core for all different designs mentioned in Table 4. The X-axis shows the

designs and Y-axis shows the execution time in million cycles for each design.

Figure 30: The busy times for FPGA, hybrid and Virtual prototypes for the

JPEG encoder

0
2
4
6
8

10
12

2a 2b 2c 2d 3a 3b 3c 3d 3e 3f 4a 4b 4c 4d 5

M
ill

io
n

cy
cl

es

FPGA Prototypes Hybrid Prototypes OVP

designs

 85

Figure 31 shows the number of cycles needed to execute the JPEG encoder for a

given image reported by FPGA and hybrid prototypes for each design mentioned in

Table 4. It does not contain OVP results because OVP reports busy time instead of

total execution time (busy time + idle time). In a given multicore design, the longest

execution time amongst all tasks (mapped to different cores) can be considered as the

design’s total execution time. The X-axis shows the designs and Y-axis shows the

execution time in CPU cycles.

Figure 31: The execution time reported by FPGA and hybrid prototypes for

the JPEG encoder

 Table 5 contains all the results for the JPEG encoder application in CPU cycles.

The first column indicates the designs which are explained in Table 4. The second

column shows the hybrid prototyping emulation time. The fourth and fifth columns

contain the execution time for each core. Accuracy column shows how hybrid

prototypes are accurate. The two last columns contain the busy time ratio for each

core in a design. Busy time ration can be easily calculated by equation 3.

𝑏𝑏𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑟𝑟𝑐𝑐 = 𝑏𝑏𝑒𝑒𝑚𝑚𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 (3)

0

10

20

30

40

1 2a 2b 2c 2d 3a 3b 3c 3d 3e 3f 4a 4b 4c 4d 5

M
ill

io
n

cy
cl

es

Physical prototypes Hybrid prototypes

designs

 86

Table 5: The JPEG encoder execution time in CPU cycles for all possible design

Design

Hybrid
prototyping

total
emulation

time

Core

FPGA
prototype
execution

time

Hybrid
prototype
execution

time

Accuracy

Busy time ratio

FPGA Hybrid OVP

1 47872930

1
2
3
4
5

4329834
4326674
4397971
4402759
4413335

4289109
4335045
4356360
4360950
4371449

99.06%
99.80%
99.05%
99.05%
99.05%

28%
99%
94%
25%
50%

28%
98%
94%
25%
51%

17%
82%
68%
16%
32%

2a 10728896
1
2

10059354
10168752

10069038
10178315

99.90%
99.90%

12%
100%

12%
99%

7%
74%

2b 10730450
1
2

6371169
6438799

6380750
6448354

99.85%
99.85%

78%
99%

77%
99%

61%
67%

2c 10751181
1
2

8535527
8549169

8512615
8526277

99.73%
99.73%

100%
33%

100%
33%

77%
20%

2d 10751181
1
2

9104767
9115258

9081955
9092454

99.75%
99.75%

100%
24%

100%
24%

75%
16%

3a 20507035
1
2
3

6301868
6323034
6440517

6311253
6382167
6449781

99.85%
99.06%
99.85%

19%
68%
99%

19%
67%
99%

11%
56%
67%

3b 20507043
1
2
3

7889652
7926390
7989885

7827749
7913477
7927139

99.21%
99.83%
99.21%

15%
99%
35%

15%
99%
35%

9%
78%
22%

3c 20507043
1
2
3

8452546
8495609
8555930

8390763
8482817
8493316

99.27%
99.85%
99.27%

14%
99%
26%

14%
99%
26%

9%
76%
17%

3d 20523589
1
2
3

4958290
4947656
5007977

4934183
4970043
4980542

99.50%
99.55%
99.45%

100%
95%
44%

100%
94%
44%

79%
66%
28%

3e 20562359
1
2
3

4957187
4929016
4992511

4934183
4955498
4969160

99.54%
99.46%
99.53%

100%
83%
56%

100%
83%
56%

79%
60%
35%

3f 20573659
1
2
3

8535472
8535472
8550902

8512615
8517205
8527704

99.73%
99.78%
99.73%

100%
13%
26%

100%
13%
26%

77%
8%
17%

4a 32887985

1
2
3
4

4329783
4326617
4348274
4411776

4289109
4335045
4356360
4370022

99.06%
99.80%
99.85%
99.05%

28%
99%
95%
63%

28%
98%
94%
64%

17%
82%
68%
40%

4b 32888142

1
2
3
4

4705107
4706371
4757431
4817769

4665371
4715728
4766119
4776618

99.15%
99.80%
99.82%
99.15%

25%
91%
99%
46%

25%
90%
98%
46%

16%
75%
69%
30%

4c 32888102

1
2
3
4

7868474
7905091
7910030
7970382

7827749
7913477
7918067
7928566

99.48%
99.90%
99.90%
99.48%

15%
100%
14%
28%

15%
99%
14%
28%

9%
78%
9%
18%

4d 30515938

1
2
3
4

4947440
4919245
4924184
4984536

4934183
4955498
4960088
4970587

99.73%
99.26%
99.27%
99.72%

100%
84%
22%
45%

100%
83%
22%
44%

79%
60%
14%
28%

 87

The MP3 decoder has only one design. The FPGA prototype was created with 5

MicroBlazes which are connected to each other through FSLs. The hybrid prototype

has five emulated cores running on the MEK, and the OVP was used to create the

virtual prototype. Table 6 shows the accuracy and busy time percentages for each core

for FPGA, hybrid and virtual prototypes of the MP3 decoder.

Table 6: The MP3 decoder execution time

Core
FPGA

prototype
execution time

Hybrid
prototype

execution time

Accuracy
Busy time ratio

FPGA Hybrid OVP

1 312467571 31250217 99.98 % 100% 100% 96%

2 32890978 32719520 99.47 % 22% 23% 0%

3 33058711 32908133 99.54 % 28% 28% 26%

4 32972069 32839963 99.59 % 17% 17% 5%

5 32962442 32780419 99.44 % 14% 14% 45%

1 The time unit is nanoseconds.

Both FPGA and hybrid prototypes were created for packet forwarding application.

MicroBlaze was used to implement the dispatcher, the inner cores and the collector

while the channels were implemented by FSL in FPGA prototypes. Up to 8

MicroBlazes can be used on the FPGA due to MicroBlaze Debug Module (MDM)

restriction. MDM can be connected to the maximum of eight MicroBlazes at the same

time. Therefore, FPGA prototypes can be implemented with only up to eight cores.

There is no such limitation in hybrid prototypes, as they use a single MicroBlaze.

Therefore, the hybrid prototypes can be easily implemented for designs with more

than 8 cores. Taking all these in to consideration, we created hybrid prototypes for

multicore designs ranging from 1 to 22 inner cores for packet forwarding application.

Table 7 contains the results for designs with up to 8 cores.

 88

Table 7: Packet forwarding application execution time for all designs with up
to 8 cores

of
cores

Hybrid
prototyping

total emulation
time

Core

FPGA
prototype
execution

time

Hybrid
prototype
execution

time

Accuracy

Busy time ratio

FPG
A

Hybrid

3 165437971
1
2
3

8215201
8110358
8179239

8197827
8095852
8160706

99.78%
99.82%
99.77%

31%
99%
25%

31%
99%
25%

4 16321045

1
2
3
4

4253865
4185051
4147267
4191826

4243561
4179134
4117228
4163493

99.75%
99.85%
99.27%
99.34%

30%
98%
97%
25%

30%
98%
97%
25%

5 16290722

1
2
3
4
5

2698869
2696830
2695860
2695925
2658783

2679012
2682205
2682673
2677983
2647032

99.26%
99.45%
99.51%
99.33%
99.55%

32%
100%
100%
99%
26%

32%
100%
100%
99%
26%

6 16275717

1
2
3
4
5
6

2060713
2085449
2032422
2064680
2059318
2025314

2047099
2074646
2024721
2059527
2048999
2019111

99.33%
99.48%
99.62%
99.75%
99.49%
99.69%

32%
100%
99%
97%
97%
26%

32%
100%
98%
97%
96%
26%

7 16329727

1
2
3
4
5
6
7

1692604
1652163
1716628
1649340
1709723
1655231
1644068

1681916
1640601
1701179
1641103
1697389
1644970
1635644

99.36%
99.30%
99.10%
99.50%
99.27%
99.38%
99.48%

31%
99%
97%
93%
97%
98%
26%

31%
99%
97%
92%
97%
97%
26%

8 16448208

1
2
3
4
5
6
7
8

1383061
1411095
1419597
1410275
1416298
1423591
1379922
1340852

1387820
1400584
1411888
1399360
1407350
1415296
1371985
1329655

99.65%
99.25%
99.45%
99.22%
99.36%
99.41%
99.42%
99.16%

32%
100%
100%
99%
92%
90%
93%
26%

31%
100%
100%
99%
91%
89%
92%
27%

1 The time unit is CPU cycles.

Figure 32 illustrates the results for designs with up to 8 cores. The X-axis shows

the number of cores and Y-axis shows the execution time in million cycles for each

design.

 89

Figure 32: Packet forwarding application execution time for all designs with up

to 8 cores

We created both hybrid and FPGA prototypes for the MP3 decoder and the JPEG

encoder by using multi-clock domains (60, 90, 25, 45 and 55 MHz) in which each core

is run with different clock frequencies. Table 8 contains the results for the MP3

decoder.

Table 8: MP3 decoder results with multiple clock domains

Core Clock
FPGA

prototype
execution time

Hybrid
prototype

execution time
Accuracy

Busy time ratio

FPGA Hybrid

1 60 MHz 5186937601 520836936 99.58 % 100% 100%

2 90 MHz 559167104 560874804 99.69 % 14% 14%

3 25 MHz 560718592 566038909 99.06 % 43% 43%

4 45 MHz 560128320 563309406 99.43 % 22% 22%

5 55 MHz 560088448 561985784 99.66 % 15% 15%

1 The time unit is nanoseconds.

Figure 33 shows the results for all 15 designs mentioned in Table 4 for the JPEG

encoder with multi-clock domains. The X-axis shows the designs and Y-axis shows the

execution time in million cycles for each design.

0

2

4

6

8

10

3 4 5 6 7 8

M
ill

io
n

cy
cl

es FPGA Prototypes Hybrid Prototypes

number of cores

 90

Figure 33: The execution times for FPGA and hybrid prototypes for the JPEG

encoder with multiple clock domains

Table 9 shows the results for all designs of JPEG encoder application. These

results show that the hybrid prototypes are accurate with multiple clock domains and

that they report the same number of cycles for each task as measured by the FPGA

prototypes. As it was described earlier, all the inner cores in packet forwarding

application are doing same processing, therefore, there would be no point to use

multiple clock domains for it.

The hybrid prototype reported exactly the same number of cycles for each task as

measured by the FPGA prototype. This is because we execute the tasks on the same

core as in the FPGA prototype. In contrast, because of the high abstraction level of

the underlying ISS, OVP simulation had an error of over 25% in the number of cycles

reported. Furthermore, OVP can only report busy time for each core because it is an

instruction accurate simulator. Therefore, hybrid prototype was shown to be more

reliable than abstract virtual prototypes.

0

50

100

150

200

250

300

2a 2b 2c 2d 3a 3b 3c 3d 3e 3f 4a 4b 4c 4d 5

M
ill

io
n

cy
cl

es

FPGA Prototype Hybrid Prototype

designs

 91

Table 9: The JPEG encoder all possible design results with multiple clock domains

Design

Hybrid
prototyping

total emulation
time

Core Clock

FPGA
prototype
execution

time

Hybrid
prototype
execution

time

Accuracy

Busy time ratio

FPGA Hybrid

1 6292686781

1
2
3
4
5

60 MHz
90 MHz
25 MHz
45 MHz
55 MHz

163592080
165787840
164717088
166585072
168085792

161934608
163735376
165544016
165646112
165836912

98.98%
98.76%
99.49%
99.43%
98.66%

12%
29%
99%
14%
24%

12%
29%
99%
15%
24%

2a 142173208
1
2

60 MHz
90 MHz

111329376
113249352

112436944
113645104

99.00%
99.65%

18%
99%

18%
99%

2b 143218269
1
2

60 MHz
90 MHz

82245400
83217800

82379056
82752432

99.83%
99.44%

99%
85%

100%
86%

2c 143387489
1
2

60 MHz
90 MHz

141520480
142504016

142068624
142220304

99.61%
99.80%

100%
22%

100%
22%

2d 143371408
1
2

60 MHz
90 MHz

150971520
151956928

151547664
151664208

99.61%
99.80%

100%
16%

100%
16%

3a 276169513
1
2
3

60 MHz
90 MHz
25 MHz

249373888
252952912
254799392

250510384
253386448
256137024

99.54%
99.82%
99.47%

8%
19%
100%

8%
19%
99%

3b 276544872
1
2
3

60 MHz
90 MHz
25 MHz

110199088
111642624
111883280

110328288
111607512
112760784

99.88%
99.96%
99.21%

18%
78%
99%

18%
78%
99%

3c 276587332
1
2
3

60 MHz
90 MHz
25 MHz

94964488
96082808
95658920

95294840
96312088
96772440

99.65%
99.76%
99.83%

21%
97%
92%

21%
97%
91%

3d 277076094
1
2
3

60 MHz
90 MHz
25 MHz

88173024
89276248
89261640

88211656
89237840
90138072

99.95%
99.95%
99.01%

93%
58%
99%

93%
58%
98%

3e 276562294
1
2
3

60 MHz
90 MHz
25 MHz

110316464
111759408
112000080

110444032
111723256
112876528

99.88%
99.96%
99.21%

74%
41%
99%

74%
41%
98%

3f 277978006
1
2
3

60 MHz
90 MHz
25 MHz

141520480
141853152
141433840

142068624
142119232
142580096

99.61%
99.81%
99.18%

100%
8%
62%

100%
8%
62%

4a 452180251

1
2
3
4

60 MHz
90 MHz
25 MHz
45 MHz

163592080
165787840
164717088
167886784

161934608
163735376
165544016
165847264

98.98%
98.76%
99.49%
98.78%

12%
29%
99%
37%

12%
29%
99%
37%

4b 452077382

1
2
3
4

60 MHz
90 MHz
25 MHz
45 MHz

185770512
188306144
187490688
190587840

184201264
186255024
188316672
188549632

99.15%
99.91%
99.55%
98.93%

11%
25%
99%
26%

11%
25%
99%
26%

4c 434297936

1
2
3
4

60 MHz
90 MHz
25 MHz
45 MHz

87211288
88228984
85587480
88694840

87537448
88484408
85708400
88941360

99.62%
99.71%
99.85%
99.72%

22%
99%
50%
55%

23%
99%
50%
55%

4d 414815049

1
2
3
4

60 MHz
90 MHz
25 MHz
45 MHz

82118512
82404392
79762280
82870224

82243696
82481352
79705344
82938304

99.84%
99.90%
99.92%
99.91%

100%
55%
54%
59%

100%
55%
54%
59%

1 The time unit is nanoseconds.

 92

 Speed

Figure 34 shows speed comparison between hybrid, FPGA and virtual prototypes to

execute the JPEG encoder for a given image. The X-axis is the number of cores and

the Y-axis is the simulation time in milliseconds. The real execution time can easily

be obtained by multiplying the number of cycles with the clock period.

Figure 34: Prototyping speed comparison between FPGA, hybrid and OVP

prototypes for the JPEG encoder

Figure 35 shows speed and overhead comparison between hybrid and FPGA

prototypes using the number of cycles needed to execute the JPEG encoder for a given

image. The X-axis is the design and the Y-axis is the number of cycles in millions.

The overhead is defined as the difference between the cycles for simulating JPEG on

the hybrid prototype and those on the FPGA prototype. As we can see, the hybrid

prototype takes approximately the same time for all mappings with a given number

of cores. This is because the total inter-core data communication is the same for

different mappings of JPEG. The small variations are due to different absolute

communication times for each channel, and the variations in task scheduling in the

RTOS scheduler model. We can also see that the worst case overhead for a given

number of cores scales well with the number of cores and the total amount of data

communication.

 93

Figure 35: The simulation times for FPGA and hybrid design for the JPEG

encoder application

The overhead of the hybrid prototype itself can be observed as the difference

between the hybrid prototyping simulation times and the 1-core JPEG FPGA

prototype execution time, since the total computation on the core stays constant. The

hybrid prototype overhead consists of the wall clock time used for task/event

management, scheduling and channel calls. As we can see, the hybrid prototype

overhead also scales well with the number of cores and the amount of channel

communication.

Figure 36: Prototyping speed comparison between FPGA, hybrid and OVP

prototypes for Packet forwarding application

Figure 36 shows the speed comparison between hybrid, FPGA and OVP

prototypes for packet forwarding application. The X-axis is the number of cores used

in each design and the Y-axis is the simulation time in milliseconds. Up to eight

0

10

20

30

40

2a 2b 2c 2d 3a 3b 3c 3d 3e 3f 4d 4c 4b 4a 5

M
ill

io
n

Cy
cl

es

FPGA Prototype Hybrid Prototype Overhead

designs

 94

MicroBlazes can be used on the FPGA due to MDM restriction. MDM can be

connected to the maximum of eight MicroBlazes at the same time. Therefore, FPGA

prototypes can be implemented with only up to eight cores.

In the most complex design with 5 cores, the hybrid prototype took about 40 M

cycles (or 400 ms) to simulate JPEG. On the other hand, the FPGA prototype took 4

M cycles (or 40 ms). In contrast, the virtual prototyping using OVP took over 20

seconds on a 2GHz Pentium host with 8GB of RAM and the behavioral RTL

simulation of the 5-core design took over 3 hours on a 2GHz Pentium host with 8GB

of RAM. We were unable to create a 5-core virtual prototype, because the Xilinx

Virtual Platform (XVP) simulator supports only a single instance of MicroBlaze [16].

For the 1-core design, the XVP took 3 minutes to simulate JPEG on the same host as

the one used for RTL simulation. Based on the above results, we can conclude that

hybrid prototyping outperforms both cycle-accurate RTL software simulation and

virtual prototypes. The FPGA prototype took 33M cycles (330 ms) to execute the

MP3 decoder while the hybrid prototype took 47.25M cycles (470 ms) to emulate it

and OVP took about 28 second to simulate the design. The FPGA prototype with

eight cores took 11 ms to execute packet forwarding application, while the hybrid

prototypes took 131 ms to emulate the application. In contrast, the OVP took 26

seconds to simulate the design.

Different multicore designs (ranging from 1 to 5 cores) also created to dynamically

schedule JPEG encoder’s threads on top of them. Figure 37 shows the simulation time

needed to execute the JPEG encoder for the given image reported by hybrid

prototypes. The Y-axis shows the simulation time in seconds and the X-axis shows the

number of cores used in different multicore designs.

 95

Figure 37: Simulation time (second) reported by the hybrid prototype with
dynamic scheduling with different number of cores for JPEG encoder

To have dynamic scheduling model of the MP3 decoder, different multicore designs

with up to 4 cores are created. Figure 38 shows the simulation time needed to execute

the MP3 decoder application reported by hybrid prototypes for different designs with

different number of core. The Y-axis shows the simulation time in second and the X-

axis shows the number of cores used in different multicore designs.

Simulation took longer with dynamic scheduling in hybrid prototypes. This is

because of the RTOS scheduling and more kernel calls. However, as Figure 37 and

Figure 38 show the simulation time increases linearly with the number of emulated

cores.

Figure 38: Simulation time (second) reported by the hybrid prototype with
dynamic scheduling with different number of cores for MP3 decoder

0

10

20

30

40

50

1 2 3 4 5
number of cores

Se
co

nd

0

2

4

6

8

10

1 2 3 4
number of cores

Se
co

nd

 96

As we have seen, a hybrid prototype can provide highly cycle-accurate and fast

simulation similar to FPGA-based prototypes. The simulation time also increases

linearly with the number of emulated cores.

 Scalability

As it was mentioned earlier, due to MDM limitation, the number of MicroBlazes are

limited to 8 in FPGA prototypes. To overcome this problem, multiple FPGAs can be

used, but with lots of effort. In contrast, in hybrid prototypes, there is no limitation

to have designs with more than 8 cores. Furthermore, as it was described before, the

experimental results for the JPEG encoder and the packet forwarding applications

show that the hybrid prototype simulation time increases linearly when the number

of cores are being increased. Therefore, hybrid prototyping provides scalable models

of multicore embedded system design.

 Modeling Effort

Modeling effort is a difficult metric to measure because of the human element. In

creating our experimental setup, we found out it was very difficult to debug the FPGA

prototypes as the number of cores increased. We used a JTAG based debug module

provided in the Xilinx Embedded Development Kit. The I/O from the different cores

was sent to the hyper-terminal on the host. In the case of multiple cores, it was difficult

to sort them through the debug messages from the different cores. Figure 39 shows

the difference between the hybrid prototype and FPGA prototype hyper-terminal

output. As it shows, hybrid prototype output is more clear and readable comparing to

FPGA prototype output. FPGA prototype output is hard to understand because all

cores write into terminal simultaneously and they override other cores’ output. To

 97

solve this problem in FPGA prototypes we need to use synchronization mechanism

like mutex which make FPGA prototype much more complicated.

Figure 39: Hybrid prototype vs. FPGA prototype hyper-terminal output

Furthermore, it takes a significant amount of time to design, implement and test

the inter-core communication architecture on the FPGA comparing to hybrid

prototypes. Because in the hybrid prototype, we have to interface with only one core,

and the state of the core being emulated was easily observed at any given time. Figure

40 shows the complexity of hybrid prototype vs FPGA prototype for running MP3

decoder application. In summary, we found it much more challenging to implement

and validate the FPGA prototypes than the hybrid ones.

Figure 40: Hybrid prototype vs. FPGA prototype hardware design for MP3

decoder application

(b) Hybrid prototype output(a) FPGA prototype output

 98

6.3 Design Space Exploration

Design Space Exploration (DSE) is the process of analyzing and modeling several

possible design alternatives prior to implementation. By using DSE, designers can

discover and evaluate their designs during system development. DSE is critical for

design optimization before silicon is available. Rapid prototyping is often used to

implement a set of prototypes for different design choices. By analyzing these

prototypes, designers can improve their understanding of the impact of design

decisions. The set of prototypes can be compared using well defined metrics such as

execution time, cost and power consumption. As such, DSE can be used to discover

the optimization possibilities before implementation [56]. Our primary goal with

hybrid prototyping is to make DSE fast, early and reliable [42].

Figure 41: Design Space Exploration

Figure 41 explains how DSE is performed using hybrid prototyping. For a given

application and architecture, there are several possible mappings. Different mappings

are created and evaluated as per the chosen quality metrics. Eventually, the designer

can select the best design amongst the evaluated mappings. For each design, the hybrid

Application

Problem Space

Architecture

Mapping

Design
Candidate

Evaluation

Quality
Metrics

Implementation

 99

prototype provides a simple energy consumption model and a highly accurate

estimation of the application’s execution time. We consider execution time (speed)

and energy consumption as quality metrics for DSE.

 Speed

As it was mentioned earlier, a hybrid prototype provides a highly accurate estimation

of the application’s execution time for a given design. The timing estimates are

generated for both total execution time and busy time for each core. In a given

multicore design, the longest execution time amongst all tasks (mapped to different

cores) can be considered as the design’s total execution time. So by comparing the

total task execution times on all cores, we can determine the speed of a multi-core

design.

 Energy Estimation

Energy consumption is one of the most important quality metrics in embedded system

design. The power consumption of a core is directly related to its frequency. Most

embedded processors support several operating frequencies, which allows us to create

a mixture of cores, each running at a different operating point. The busy power

consumption is a measure of the power which is consumed by the core when it executes

the instructions. The idle power consumption is a measure of the, largely static, power

consumed by the core while it waits on external events, and does not execute any

instruction. We used the Xilinx XPower analyzer [16] to measure both the busy and

idle power consumptions. The idle dynamic power is zero for the MicroBlaze when it

waits on the FSL communication channels. The Static power, consumed at all times

irrespective of whether the core is busy or idle, is the same for all cores with different

clock domains and is measured to be 1.48 mw. If the clock frequency is increased, the

 100

power consumption will increase as well. As CPU and memory are the most power

consuming parts in our designs, we consider the busy power as sum of CPU power and

memory power. Table 10 shows the average busy power for MicroBlaze and BRAM.

Table 10: The busy power consumption for different clock domains

Frequency MicroBlaze BRAM

25 MHz 07.14 mw 14.57 mw

45 MHz 12.23 mw 25.68 mw

55 MHz 14.65 mw 30.80 mw

60 MHz 16.00 mw 34.01 mw

90 MHz 23.24 mw 50.65 mw

125 MHz 31.91 mw 68.91 mw

A simplistic, yet reasonably accurate, power model of a processor assigns a single

power consumption number to each operating point. Clearly, the processor is only

consuming dynamic power when it is busy. Since different mappings may result in

different busy times for the cores, we can change the mapping in order to obtain the

best energy consumption by the design. Using a hybrid prototype, the designer can

quickly obtain the busy times for the design with different operating frequencies and

mappings. The estimated energy consumption for each emulated core can be calculated

by the following equations.

𝐸𝐸𝑒𝑒𝑒𝑒𝐸𝐸𝐸𝐸𝐶𝐶 = (𝐼𝐼𝐼𝐼𝐶𝐶𝑒𝑒𝑒𝑒𝑟𝑟𝑚𝑚𝑒𝑒 × 𝐼𝐼𝐼𝐼𝐶𝐶𝑒𝑒𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑐𝑐) + (𝑏𝑏𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒𝑟𝑟𝑚𝑚𝑒𝑒 × 𝑏𝑏𝑒𝑒𝐶𝐶𝐶𝐶𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑐𝑐) (4)

𝑏𝑏𝑒𝑒𝐶𝐶𝐶𝐶𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑐𝑐 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑏𝑏𝑒𝑒𝑚𝑚𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 + 𝑀𝑀𝑒𝑒𝑡𝑡𝑒𝑒𝐸𝐸𝐶𝐶 𝑏𝑏𝑒𝑒𝑚𝑚𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 (5)

 Automatic Design Space Exploration

Hybrid prototyping is extended to support automatic design space exploration. In

most multicore embedded systems, there are several possible design options depending

 101

on the number of cores, their frequencies and the mapping of application tasks to the

cores. Each of the design options may consume different energies, may have different

execution times and different chip area. Higher core frequency results in greater power

consumption. Less power design, using lower operating frequencies, increases the

execution time. There may be chip area constraints as well, which limit the number

of cores that can be implemented on the chip. Moreover, limited parallelism in the

application may limit the speed advantage of adding more cores to the design.

Therefore, the right multicore design for a given application is not obvious until

accurate models of possible design options have been evaluated.

Clearly, implementing all possible designs is often impractical. So, the designer

needs a mechanism to evaluate most of the promising design options before

implementation. Hybrid prototyping provides such mechanism for designer. As

mentioned earlier, the hybrid prototype can calculate energy and execution time for

each design, for a given input. So, the designer can evaluate any designs in terms of

energy, speed and area.

As we described before, the JPEG encoder application has five tasks which can be

mapped on 1 to 5 cores. Each core can have a different CPU clock frequency. Also we

can have different mapping of tasks on the cores. The equation 6 shows the number

of all possible designs.

𝑁𝑁𝑒𝑒𝑡𝑡𝑏𝑏𝑒𝑒𝐸𝐸 𝑒𝑒𝑜𝑜 𝐷𝐷𝑒𝑒𝐶𝐶𝑒𝑒𝐸𝐸𝑒𝑒 = ∑ (𝑀𝑀 × 𝐶𝐶𝐷𝐷𝑀𝑀𝑒𝑒𝑀𝑀
1) (6)

Where max is the maximum number of cores, M is the number of possible mapping,

C is the number of cores and D is the number of clock domains. Table 11 shows all

possible numbers of designs with different clock domains and maximum five different

cores. For instance, the third column shows that there are 16 possible designs with

only 1 clock domain which were described in Table 4. By increasing the number of

 102

clocks, the number of possible designs increases dramatically. There are 14406 different

possible designs for JPEG encoding application with six clock frequencies. Therefore,

it is impractical to implement all these designs and choose the best one.

Table 11: Number of all possible design with multiple clock domains
#

 c
or

es

#
 m

ap
pi

ng

Number of possible design with different clock domains

1 2 3 4 5 6
1 1 1 2 3 4 5 6
2 4 4 16 36 64 100 144
3 6 6 48 162 384 750 1296
4 4 4 64 324 1024 2500 5184
5 1 1 32 243 1024 3125 7776

Total 16 162 768 2500 6480 14406

To overcome this problem, we can create a script for the hybrid prototype that

takes the following inputs: clock domains, the maximum number of the cores and

possible mappings to generate all possible models. In the most complex design the

hybrid prototype takes 165ms to complete the simulation. Therefore, the total time

for all 14406 design can take around 40 minutes to be done in the hybrid prototyping

framework. The result is a log which contains the design mapping, total execution

time, the busy time and energy consumption, for each core as well as the entire design.

Designers can use this output to analyze all designs and choose the best one. For

instance, we can use the hybrid prototype to log the results for all possible designs

with two different clock domains (60 MHz and 125 MHz).

Our experiments with the hybrid prototyping demonstrate its applicability to fast

multicore design space exploration. We have modeled the 162 possible designs of the

JPEG encoder which is being run with 2 clock domains (60 and 125 MHz). Xilinx

Virtual Platform (XVP) simulation shows errors of over 40% in the number of cycles

reported because of its high abstraction level. The FPGA prototype takes 35ms to

 103

execute and 15 minutes to synthesize every design choice. Therefore, full FPGA

prototyping takes almost 40 hours for all 162 possible designs without considering the

effort of creating the FPGA prototypes. In contrast to the above techniques, it takes

only 15 minutes to synthesize the hybrid platform’s target core, which is a one-time

effort. The hybrid prototype takes 382ms (in worst case) to emulate each design,

thereby enabling extremely fast, early and reliable design space exploration. Figure 42

plots speed vs. energy consumption reported by the hybrid prototypes for all 162

designs which each spot presents a design. The circle highlights the best designs that

consume minimal energy and shortest execution time.

Figure 42: Scatter chart for design exploration with two different clock

domains

 Dynamic scheduling

Each design can have different number of cores clocked at different speeds. It is also

possible to have threads running with different priorities which may affect the total

execution time and energy consumption for the application. For each design, the

hybrid prototype provides a simple energy consumption model and a highly accurate

estimation of the application’s execution time. So, by comparing the execution times

 104

and energy consumption for each design, we can reliably analyze the power and

performance implication of their optimizations before the hardware is available.

Our experiments with the hybrid prototyping also demonstrate its fast design

space exploration for SMP designs. We have modeled 50 different designs of the JPEG

encoder and 40 different designs for the MP3 decoder with different threads’ priorities

which are being run on up to 5 cores with different clock frequencies (55, 60, 90, 25,

45 and 125 MHz). The FPGA prototype takes 400ms (in average) to execute and 15

minutes to synthesize every design choice. Therefore, full FPGA prototyping takes

almost 12.5 hours for all the 50 designs without considering the effort of creating the

FPGA prototypes. In contrast to FPGA prototyping, it takes only 15 minutes to

synthesize the hybrid platform’s target core, which is a one-time effort. The hybrid

prototype takes 48 second (in worst case) to emulate each design, thereby enabling

fast, early and reliable design space exploration. Figure 43 plots speed vs. energy

consumption reported by the hybrid prototypes for all different designs for JPEG

encoder and MP3 decoder applications in which each spot presents a design. The circle

highlights the best designs that consume minimal energy and shortest execution time.

Figure 43: Speed vs. Energy consumption for different SMP designs with multi-
clock domains and different threads’ priorities for the JPEG encoder and MP3

decoder applications

13.3

13.5

13.7

13.9

14.1

14.3

14.5

14.7

150 250 350 450 550 650 750 850 950 1050
Exection Time (ms)

En
er

gy
 (m

J)

50

53

56

59

62

65

68

71

590 620 650 680 710 740 770 800
Execution Time (ms)

En
er

gy
 (m

J)

(a) MP3 decoder application (b) JPEG encoder application

 105

6.4 Dynamically Reconfigurable Active Cache

DRAC was implemented in VHDL, and synthesized using Xilinx ISE toolset [16] on

ML507 evaluation board using Vertex5 FPGA. The soft-core MicroBlaze processor,

running at 125MHz, was chosen as the target core for all the experimental cases.

 Standalone Accuracy

Prior to using DRAC in hybrid prototyping, we evaluated the standalone model in a

single core design. In order to check the functionality and timing accuracy of the

standalone instruction and data DRAC model, we ran JPEG Encoder, Quicksort, and

Dhrystone benchmarks for different cache sizes in a single core design. The MicroBlaze

built-in cache configuration was set to direct map, 4-word line size, with write through

policy. The result for different cases is shown in Table 12. We observed an average

error of 3% and the worst-case error is only 5%, thereby demonstrating the accuracy

of DRAC as a standalone cache model.

Table 12: Estimation accuracy of standalone DRAC

Benchmark Cache Size
TBIC

(Million
Cycles)

TDRAC
(Million
Cycles)

Error
%

JPEG

256B 48.63 48.05 -1.18
1KB 23.19 23.31 0.49
2KB 18.11 17.91 -1.10
4KB 13.72 13.45 -1.98
8KB 12.55 12.18 -2.90

Quicksort

256B 13.83 13.13 -5.06
1KB 12.27 11.72 -4.48
2KB 9.76 9.32 -4.59
4KB 6.28 5.99 -4.61
8KB 6.28 5.99 -4.61

Dhrystone

256B 22.25 22.79 2.41
1KB 8.79 9.02 2.63
2KB 7.90 8.05 1.90
4KB 7.90 8.05 1.90
8KB 7.90 8.05 1.90

 106

 Accuracy in the Hybrid Prototype

We created 15 different multicore designs for JPEG Encoder in the full FPGA design

and the hybrid prototype, ranging from 1 to 4 cores. Each core is running different

tasks of JPEG with different mappings to the cores. In the full FPGA design, cores

are connected to each other with FIFOs. Reading/writing from/to FIFO’s is blocking

method. Cores stop executing unless there is a value on the FSL.

Table 13: Estimation accuracy of DRAC-based hybrid prototype

Number of cores
Mappin

g
Average Error

Worst-case
Error Cache Size

2core

4-1 3.17% 6.76% 1 KB
3-2 4.24% 8.56% 1 KB
2-3 3.50% 12.3% 4 KB
1-4 5.88% 10.2% 1 KB

3core

1-1-3 4.50% 7.24% 8 KB
1-2-2 2.73% 4.34% 4 KB
1-3-1 3.76% 7.81% 1 KB
2-2-1 3.24% 6.73% 256 B
2-1-2 4.76% 6.92% 256 B
3-1-1 6.76% 10.8% 8 KB

4core

1-1-1-2 12.24% 12.98% 4 KB
1-1-2-1 10.80% 12.55% 4 KB
1-2-1-1 5.96% 9.78% 2 KB
2-1-1-1 6.27% 9.09% 8 KB

There are two timers implemented on each core in full FPGA prototype. The first

timer calculates the actual busy-time of a core regardless of that core’s waiting time

on blocking reads or writes. The second timer starts at the first of the program and

measures the total execution time including program execution time and FSL waiting

times. In hybrid design, there are also two timers. One timer is used by the MEK, to

simulate the busy-time and the total execution time of each core; the other timer

calculates the total simulation time, including the swap time, the total execution time

of the tasks, and the MEK software. Table 13 presents the total execution time error

 107

for different JPEG mappings and cache sizes. The mapping values represent number

of JPEG tasks that have mapped to each core. For example, in the 2core design,

mapping 4-1 means 4 tasks of JPEG have been mapped to the first core, and one task

to the second core. As it is shown, the average error is 9.00% and the worst case error

is 13% in the 4 core design.

 Simulation Speed

As mentioned earlier, there is a timer for calculating the total simulation time. It

starts at the first of the simulation, and stops at the end of the procedure. The total

simulation time of the hybrid prototype can be seen in Figure 44.

Figure 44: Simulation speed of hybrid prototypes with DRAC

The values are obtained for all task mappings and all 5 different cache sizes

ranging from 256B to 8KB. Because the hybrid prototype platform is running on off-

chip DDR2 SDRAM memory, and the swap is also running during the simulation, the

timing is quite high in compare to hybrid prototype running on BRAM. The simulation

time increases by increasing the number of cores, since number of cache swaps increase.

To
ta

l e
xe

cu
tio

n
tim

e
In

 m
ill

io
n

cy
cl

es

cache size and mapping

2 core

3 core

4 core

1 core

 108

During simulation, both instruction and data cache is disabled, and the cache is

enabled only when a task is running. Because of this, cache size increment effect is not

significant in total simulation time. Even in some cases, the cache size increment

results in higher simulation timing. The reason is that if the cache size increases, the

swap time increases as well. Table 14 reports the time consumption for a load/save

from/to DDR2 to/from the cache, and total swap (Load + Save).

Table 14: Swap time consumption for different L1 sizes

Cache Size
Save

(Cycles)
Load

(Cycles)
Total Swap Time

(Cycles)
256B 2467 3831 6298
1k 8499 13725 22224
2k 16477 26957 43434
4k 32513 53343 85856
8k 64521 106123 170644

 DRAC Resource Usage

Each design consumes a certain amount of time to be synthesized, and occupies a

portion of FPGA area during implementation. For each full FPGA multicore and

hybrid design, we have obtained synthesis time and resource usage. Table 15 presents

resources usage of the hybrid and full FPGA multicore designs. As it can be seen, as

much the number of cores in the full FPGA design increases, the synthesis time and

the area consumption gets higher. The full FPGA design must be synthesized once,

with any configuration change like cache size; however, the hybrid design can emulate

any configuration with only one time synthesis. Furthermore, in the hybrid design the

area consumption remains the same during emulation of all designs and configurations.

 109

Table 15: Resource usage of hybrid vs FPGA prototype

 Energy Analysis

Beside the speed of the system, power consumption is the other main factor for the

designer to choose the best design in multicore processing. The main components that

consume the most of the power are the processor, built-in cache, and off-chip main

memory. Figure 45 demonstrates the total power consumption of the system for

different number of cores and cache sizes. As can be seen, the cache size increment

results in more BRAM utilization and more power consumption. On the other hand,

adding more cores to the system and using more ports of MPMC increase the power

consumption as well.

Figure 45: Power consumption for different L1 cache sizes

Design
Synthesis

Time
Host PC memory

Usage

Resources Usage Percentage

LUT BRAM Reg. Slice
Bonded

IO
Real 2core 332s 737 MB 16% 23% 17% 36% 18%

Real 3core 424s 802 MB 21% 35% 23% 47% 18%

Real 3core 639s 925 MB 28% 57% 28% 59% 18%

MEK with
DRAC

500s 656 MB 22% 33% 23% 53% 18%

 110

 In multicore systems, power consumption is different core by core, depending on

the task running on each core. Energy is the best way to measure the system

performance in terms of power and time. The busy-time of a task is the time for a core

to execute a task without considering blocking data transfer among different cores.

The processor is on idle during blocking reads or writes, hence it consumes negligible

amount of energy. Because of this fact, we multiplied the total power consumption of

each core to the total busy-time of all cores and obtained the energy consumption for

different task mappings.

 Design Space Exploration

Two of the most important factors that define system efficiency, are the speed of the

system and the energy consumption of the design. Figure 46 plots all the full FPGA

multicore designs from 2 to 4 cores with all possible JPEG Encoder mappings, and

five different cache sizes execution time versus energy consumption. Each point is a

design with certain mapping and the cache size. As it is circled on the figure, the best

designs are the one that consume less energy and execute the program in the shortest

time. For example, the best design in JPEG Encoder is a 2 core design with 2k cache

size and the mapping of 2 tasks in the first core and 3 tasks in the second core.

Figure 46: Design exploration using full FPGA prototype

 111

The hybrid prototype provides a simple environment for the designer to choose

the best design among the others, without having the full FPGA multicore prototype.

The consistency of the results, 100% relative accuracy among different cache sizes and

different task mapping, make the hybrid prototype a powerful tool to compare

different designs. Figure 47 presents energy versus execution time for all JPEG

Encoder possible mapping and the cache sizes, predicted by the hybrid prototype. The

correlation of the hybrid prototype results and the full FPGA results is clear. In both

Figure 46 and Figure 47, the best design is the 2core design with 2k instruction and

data cache with 3-2 JPEG mapping. This confirms the accuracy and reliabality of the

hybrid prototype with cache.

Figure 47: Design exploration using hybrid prototype

 112

6.5 Summary

In this chapter we evaluated the hybrid prototypes and compared them with virtual

and FPGA prototypes. We have seen, a hybrid prototype can provide highly cycle-

accurate, scalable and fast simulation similar to FPGA-based prototypes. In contrast,

virtual prototypes had an error of over 25% in the number of cycles reported. The

simulation time also increases linearly with the number of emulated cores. We also

found it much more challenging to implement and validate the FPGA prototypes than

the hybrid ones. Furthermore, the experiments with the hybrid prototyping has

demonstrated its applicability to fast multicore design space exploration.

 113

Chapter 7

7Conclusions and future work

In this thesis we have presented a novel modeling technique called hybrid prototyping

that aims to provide early, fast, cycle-accurate and scalable models of multicore

embedded systems. It also provides the modeling of a dynamic RTOS scheduler as

well as hardware interrupts on top of the MEK, in order to support the simulation of

unmodified multi-threaded applications.

Our experimental results demonstrate the high accuracy, simulation speed and

scalability of our hybrid prototyping-based simulation models. The hybrid prototype

reported exactly the same number of cycles for each task as measured by the FPGA

prototype. This is because it executes the tasks on the same core as in the FPGA

prototype. In contrast, because of the high abstraction level of the underlying ISS,

OVP simulation had an error of over 25% in the number of cycles reported. Therefore,

hybrid prototype was shown to be more reliable than abstract virtual prototypes.

Our experiments with the hybrid prototyping also demonstrate its applicability to

fast multicore design space exploration. Multicore embedded system designers can

 114

create concurrent applications and accurately analyze the power and performance

implication of their optimizations before the hardware is available. As such, the hybrid

prototyping was proven capable of fast and early multicore embedded design space

exploration. Embedded system architects can optimize the hardware architecture

without having to do full system prototyping. Therefore, hybrid prototypes can

provide huge productivity gains for both embedded software designers and multicore

chip architects.

7.1 Future work

Based on the work that has been done in this thesis and the obtained results, in the

following some of the potential areas of study and suggestions for future work and

research directions are presented:

1. Processors with different instruction-set architectures. Extending the

hybrid prototyping to support different target core architecture such as

PowerPC or ARM. It can be easily done by providing the new processor’s

architecture drivers in the MEK layer.

2. Heterogeneous MPSoCs Architectures. Heterogeneous MPSoCs refers to

systems that use a variety of different types of cores with different

architectures. In general, a heterogeneous computing platform consists of

processors with different instruction set architectures (ISAs). Embedded

appliances designers rely on them to provide better performance [57]. Due to

the inherent complexity of this kind of platform, we need a mechanism to

support heterogeneous design in hybrid prototyping. Investigating the

heterogeneous cores may cause adding some additional kernel functions and it

may need more than one target core to execute the kernel (the MEK, software

 115

and hardware models). For instance, assume that a designer wants to simulate

a design with multiple instances of MicroBlaze, PowerPC and ARM A7 cores.

In this case, the hybrid prototype may require instantiation of 3 cores on the

FPGA. The kernel will need to be distributed on the cores to provide a

consistent simulation context for the design.

3. Asymmetric multiprocessing (AMP). An AMP system has multiple cores

(may be either heterogeneous or homogeneous multicore). A separate operating

system or a separate copy of the same operating system, manages each core.

Typically, each application’s process is locked to a single core. It provides an

execution environment similar to that of uniprocessor systems. It allows simple

migration of legacy code and facilitates management of each core

independently. However, it can result in underutilization of processor cores.

4. Debugging. It needs to enable basic run control debug, where all emulated

cores can be halted and ensured all emulated cores have been simulated until

the debugging time.

5. Complex inter-core communications and synchronization. The hybrid

prototyping provides FIFO channel for inter-core communications. It can

support many designs with FIFO communication. However, more complex

communication models are needed when more complex communication

architectures, such as shared buses and Networks-on-Chip (NoCs), are used.

Complex communication models require additional hardware peripherals and

additional kernel functions in the framework, to support them. One of the

primary challenges is to efficiently model synchronization mechanisms that are

used to control access to shared resources by the multiple cores. For instance,

we need a mechanism to synchronize two or more cores to grant access to

shared memory or I/O device. Lock, Mutex and Semaphore are such

 116

mechanisms to ensure that no two threads, running on separate cores, are in

their critical section at the same time. The hybrid prototyping can be extended

to provide such synchronization mechanisms and complex communication

architectures.

6. Reference SMP designs for accuracy comparison. There is no equivalent

Microblaze reference SMP design for accuracy measurement. Therefore, we

need to find out a way to compare the accuracy of hybrid prototype of SMP

design with the FPGA SMP reference design.

 117

Bibliography

[1] T. Austin, E. Larson, and D. Ernst, "SimpleScalar: an infrastructure for
computer system modeling," Computer, vol. 35, pp. 59-67, 2002.

[2] F. Bellard, "QEMU, a fast and portable dynamic translator," presented at the
Proceedings of the annual conference on USENIX Annual Technical
Conference, Anaheim, CA, 2005.

[3] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R. Rockhold, et
al., "Mambo: a full system simulator for the PowerPC architecture,"
SIGMETRICS Perform. Eval. Rev., vol. 31, pp. 8-12, 2004.

[4] J. Emer, P. Ahuja, E. Borch, A. Klauser, L. Chi-Keung, S. Manne, et al.,
"Asim: a performance model framework," Computer, vol. 35, pp. 68-76, 2002.

[5] M. T. Yourst, "PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator," in 2007 IEEE International Symposium on
Performance Analysis of Systems & Software, 2007, pp. 23-34.

[6] N. Yi, M. Wai Sum, and Z. Jianwen, "On virtual prototyping of embedded
system-on-chips," in ASIC (ASICON), 2011 IEEE 9th International
Conference on, 2011, pp. 1106-1109.

[7] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri, "MPARM:
Exploring the Multi-Processor SoC Design Space with SystemC," J. VLSI
Signal Process. Syst., vol. 41, pp. 169-182, 2005.

[8] ModelSim. Available: https://www.mentor.com/products/fv/modelsim/

[9] Functional Verification Choice of Leading SoC Design Teams. Available:
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/
VCS.aspx

[10] Incisive Enterprise Simulator Available:
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.as
px

[11] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.
Hogberg, et al., "Simics: A full system simulation platform," Computer, vol.
35, pp. 50-58, 2002.

https://www.mentor.com/products/fv/modelsim/
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx

 118

[12] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, et al., "Multifacet's general execution-driven multiprocessor
simulator (GEMS) toolset," ACM SIGARCH Computer Architecture News,
vol. 33, pp. 92-99, 2005.

[13] C. Jianwei, M. Dubois, and P. Stenstrom, "Integrating complete-system and
user-level performance/power simulators: the SimWattch approach," in
Performance Analysis of Systems and Software, 2003. ISPASS. 2003 IEEE
International Symposium on, 2003, pp. 1-10.

[14] Wind River Simics. Available: http://www.windriver.com/products/simics/

[15] Coware Platform Studio. Available: http://www.synopsys.com/Tools/SLD

[16] Xilinx Embedded Development Kit. Available: http://www.xilinx.com/edk

[17] A. Gerstlauer, "Host-compiled simulation of multi-core platforms," in
Proceedings of 2010 21st IEEE International Symposium on Rapid System
Protyping, 2010, pp. 1-6.

[18] G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers, and H. Meyr, "A
universal technique for fast and flexible instruction-set architecture
simulation," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, pp. 1625-1639, 2004.

[19] M. Reshadi, P. Mishra, and N. Dutt, "Hybrid-compiled simulation: An efficient
technique for instruction-set architecture simulation," ACM Trans. Embed.
Comput. Syst., vol. 8, pp. 1-27, 2009.

[20] M. Wai Sum and Z. Jianwen, "DynamoSim: a trace-based dynamically
compiled instruction set simulator," in Computer Aided Design, 2004. ICCAD-
2004. IEEE/ACM International Conference on, 2004, pp. 131-136.

[21] System on Chip library (SoClib). Available: http://www.systematic-paris-
region.org/fr/projets/soclib

[22] SystemC. Available: http://www.accellera.org/downloads/standards/systemc

[23] Open Virtual Platforms. Available: http://www.ovpworld.org

[24] I. Nita, V. Lazarescu, and R. Constantinescu, "A new Hw/Sw co-design method
for multiprocessor system on chip applications," in Signals, Circuits and
Systems, 2009. ISSCS 2009. International Symposium on, 2009, pp. 1-4.

[25] C. L. Wang, B. Yao, Y. Yang, and Z. Zhu, "A survey of embedded operating
system," Techical Report, University of California, San Diego, USA, 2001.

http://www.windriver.com/products/simics/
http://www.synopsys.com/Tools/SLD
http://www.xilinx.com/edk
http://www.systematic-paris-region.org/fr/projets/soclib
http://www.systematic-paris-region.org/fr/projets/soclib
http://www.accellera.org/downloads/standards/systemc
http://www.ovpworld.org/

 119

[26] Y. Hwang, S. Abdi, and D. Gajski, "Cycle-approximate Retargetable
Performance Estimation at the Transaction Level," in 2008 Design, Automation
and Test in Europe, 2008, pp. 3-8.

[27] Z. Wang and A. Herkersdorf, "An efficient approach for system-level timing
simulation of compiler-optimized embedded software," in Design Automation
Conference, 2009. DAC '09. 46th ACM/IEEE, 2009, pp. 220-225.

[28] Z. Wang, K. Lu, and A. Herkersdorf, "An approach to improve accuracy of
source-level TLMs of embedded software," in 2011 Design, Automation & Test
in Europe, 2011, pp. 1-6.

[29] D. Chiou, S. Dam, K. Joonsoo, P. Nikhil, W. H. Reinhart, D. E. Johnson, et
al., "The FAST methodology for high-speed SoC/computer simulation," in
2007 IEEE/ACM International Conference on Computer-Aided Design, 2007,
pp. 295-302.

[30] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, K. Mai, and B.
Falsafi, "ProtoFlex: Towards Scalable, Full-System Multiprocessor Simulations
Using FPGAs," ACM Trans. Reconfigurable Technol. Syst., vol. 2, pp. 1-32,
2009.

[31] D. Chiou, D. Sunwoo, H. Angepat, J. Kim, N. A. Patil, W. Reinhart, et al.,
"Parallelizing computer system simulators," in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, 2008, pp.
1-5.

[32] T. S. H.-H. S. Lee and S.-L. L. J. Shen, "Initial Observations of
Hardware/Software Co-Simulation using FPGA in Architecture Research,"
2006.

[33] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, et al.,
"RAMP gold: An FPGA-based architecture simulator for multiprocessors," in
Design Automation Conference (DAC), 2010 47th ACM/IEEE, 2010, pp. 463-
468.

[34] ChipScope Available: http://www-
mtl.mit.edu/Courses/6.111/labkit/chipscope.shtml

[35] C. Yajun, C. Qingshan, Z. Lianqing, G. Yangkuan, and P. Zhikang, "Signal
Tap-II Based Debugging Approach for the Data Acquisition System of Multi-
joint Coordinate Measuring Machine," in Instrumentation, Measurement,
Computer, Communication and Control (IMCCC), 2012 Second International
Conference on, 2012, pp. 1182-1184.

http://www-mtl.mit.edu/Courses/6.111/labkit/chipscope.shtml
http://www-mtl.mit.edu/Courses/6.111/labkit/chipscope.shtml

 120

[36] J. Wawrzynek, D. Patterson, M. Oskin, S. L. Lu, C. Kozyrakis, J. C. Hoe, et
al., "RAMP: Research Accelerator for Multiple Processors," IEEE Micro, vol.
27, pp. 46-57, 2007.

[37] C. Chang, J. Wawrzynek, and R. W. Brodersen, "BEE2: a high-end
reconfigurable computing system," IEEE Design & Test of Computers, vol. 22,
pp. 114-125, 2005.

[38] S. S. Sirowy, B. Miller, and F. Vahid, "Portable SystemC-on-a-chip," presented
at the Proceedings of the 7th IEEE/ACM international conference on
Hardware/software codesign and system synthesis, Grenoble, France, 2009.

[39] L. Benini, D. Bruni, N. Drago, F. Fummi, and M. Poncino, "Virtual in-circuit
emulation for timing accurate system prototyping," in ASIC/SOC Conference,
2002. 15th Annual IEEE International, 2002, pp. 49-53.

[40] Renesas' Multi-Core Technology. Available:
http://www.renesas.com/products/mpumcu/multi_core/child/multicore.jsp

[41] E. Saboori and S. Abdi, "Hybrid Prototyping of multicore embedded systems,"
in Design, Automation & Test in Europe Conference & Exhibition (DATE),
2013, 2013, pp. 1627-1630.

[42] E. Saboori and S. Abdi, "Rapid design space exploration of multi-clock domain
MPSoCs with Hybrid Prototyping," in Electrical & Computer Engineering
(CCECE), Vancouver, Canada, 2016.

[43] Dinero IV Trace-Driven Uniprocessor Cache Simulator. Available:
http://pages.cs.wisc.edu/~markhill/DineroIV/

[44] B. Atanasovski, S. Ristov, M. Gusev, and N. Anchev, "MMCacheSim: A Highly
Configurable Matrix Multiplication Cache Simulator," ICT Innovations 2012,
Web Proceedings ISSN 1857-7288, p. 185, 2012.

[45] S. Stattelmann, G. Gebhard, C. Cullmann, O. Bringmann, and W. Rosenstiel,
"Hybrid source-level simulation of data caches using abstract cache models,"
presented at the Proceedings of the Conference on Design, Automation and
Test in Europe, Dresden, Germany, 2012.

[46] R. Dömer, "Transaction level modeling of computation," Center for Embedded
Computer Systems, Technical Report, 2006.

[47] D. Araki, N. Ito, T. Shinsha, and Y. Mori, "High speed hardware/software
coverification with cpu model generator from software code," in 5th NASCUG
(North American SystemC User's Group) meeting Co-located with DAC, 2006.

http://www.renesas.com/products/mpumcu/multi_core/child/multicore.jsp
http://pages.cs.wisc.edu/%7Emarkhill/DineroIV/

 121

[48] G. Schirner, A. Gerstlauer, and R. Doemer, "Abstract, multifaceted modeling
of embedded processors for system level design," in Design Automation
Conference, 2007. ASP-DAC'07. Asia and South Pacific, 2007, pp. 384-389.

[49] P. Ravishankar, "An Observable Data Cache Model for FPGA Prototyping,"
Concordia University, 2013.

[50] H.-M. Yoon, G.-H. Park, K.-W. Lee, T.-D. Han, S.-D. Kim, and S.-B. Yang,
"Reconfigurable address collector and flying cache simulator," in High
Performance Computing on the Information Superhighway, 1997. HPC Asia'97,
1997, pp. 552-556.

[51] L. A. Barroso, M. Dubois, and K. Ramamurthy, "RPM: A rapid prototyping
engine for multiprocessor systems," Computer, vol. 28, pp. 26-34, 1995.

[52] J. Hong, E. Nurvitadhi, and S.-L. L. Lu, "Design, implementation, and
verification of active cache emulator (ACE)," in Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable gate
arrays, 2006, pp. 63-72.

[53] A. Barzegar, E. Saboori, and S. Abdi, "DRAC: a dynamically reconfigurable
active L1 cache model for hybrid prototyping of multicore embedded systems,"
in 2014 25nd IEEE International Symposium on Rapid System Prototyping,
2014, pp. 86-92.

[54] A. Gerstlauer, Y. Haobo, and D. D. Gajski, "RTOS modeling for system level
design," in Design, Automation and Test in Europe Conference and Exhibition,
2003, 2003, pp. 130-135.

[55] E. Saboori and S. Abdi, "Fast and cycle-accurate simulation of multi-threaded
applications on SMP architectures using hybrid prototyping " in International
Conference on Hardware/Software Codesign and System Synthesis
(CODES/ISSS), Pittsburgh, USA, 2016.

[56] E. Kang, E. Jackson, and W. Schulte, "An approach for effective design space
exploration," presented at the Proceedings of the 16th Monterey conference on
Foundations of computer software: modeling, development, and verification of
adaptive systems, Redmond, WA, 2011.

[57] X. Guerin and F. Petrot, "A System Framework for the Design of Embedded
Software Targeting Heterogeneous Multi-core SoCs," in 2009 20th IEEE
International Conference on Application-specific Systems, Architectures and
Processors, 2009, pp. 153-160.

	List of Figures
	List of Tables
	Code Listings
	Publications and Workshops
	Glossary
	Introduction
	1.1 Motivation
	1.2 Literature Review
	1.2.1 Virtual Prototyping
	1.2.2 FPGA Prototyping

	1.3 General Problem Statement
	1.4 Thesis Contribution
	1.5 Thesis Outline

	2 Hybrid Prototyping Methodology
	2.1 Methodology
	2.2 Modeling Framework
	2.3 Summary

	3 Multicore Emulation Kernel
	3.4 Hardware Timer Controller
	3.5 Event
	3.6 Shared Resources
	3.7 Emulated Core Scheduler
	3.8 Summary

	4 Hardware Model Layer
	4.1 Emulated Cores
	4.2 Communication Models
	4.2.1 Statically Scheduled MPSoCs
	4.2.2 SMP Architecture
	4.2.3 Interrupt to Processor

	4.3 Hardware Interrupt Handling
	4.4 Multi-Clock Domains
	4.5 Memory Hierarchy
	4.5.1 Dynamically Reconfigurable Active Cache
	4.5.2 DRAC Design
	4.5.3 Bridge/Cache Arbitrator & Bus Bridge
	4.5.4 Cache Module
	4.5.5 Swap Module
	4.5.6 Timing Model
	4.5.7 DRAM Modeling
	4.5.8 Cache Modeling Limitation in Hybrid Prototyping

	4.6 Summary

	5 Software Model layer
	5.1 Thread
	5.2 Thread Scheduler
	5.3 Processor Affinity
	5.4 Condition Variable
	5.5 Message Queue
	5.6 Idle Task
	5.7 Dynamic Scheduling Example
	5.8 Summary

	6 Evaluation
	6.1 Use cases
	6.1.1 MP3 Decoder
	6.1.2 Jpeg Encoder
	6.1.3 Packet Forwarding Application

	6.2 Experimental Results
	6.2.1 Accuracy
	6.2.2 Speed
	6.2.3 Scalability
	6.2.4 Modeling Effort

	6.3 Design Space Exploration
	6.3.1 Speed
	6.3.2 Energy Estimation
	6.3.3 Automatic Design Space Exploration
	6.3.4 Dynamic scheduling

	6.4 Dynamically Reconfigurable Active Cache
	6.4.1 Standalone Accuracy
	6.4.2 Accuracy in the Hybrid Prototype
	6.4.3 Simulation Speed
	6.4.4 DRAC Resource Usage
	6.4.5 Energy Analysis
	6.4.6 Design Space Exploration

	6.5 Summary

	7 Conclusions and future work
	7.1 Future work

	Bibliography

