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Abstract 

Influence of Mechanical Surface Treatments on the Water Droplet Erosion Performance of 

Ti-6Al-4V 

Abdullahi K. Gujba, PhD 

Concordia University, 2016 

In an attempt to enhance the water droplet erosion (WDE) performance of Ti-6Al-4V, a 

typical material used for compressor blades in gas turbines, this work studies the WDE 

performance/behaviour of reference untreated and surface treated Ti-6Al-4V. Existing literature 

suggests that WDE is likened to fatigue-like damage due to the continuous liquid impacts in a 

cyclic fashion. Also, the crack initiation and propagation have been found to significantly 

influence WDE behaviour similar to fatigue. It is known that induced compressive residual 

stresses from mechanical surface treatments retard crack initiation and further propagation 

and improves fatigue life. Hence, mechanical surface treatments might enhance WDE 

performance. For this reason, this work employed two mechanical surface treatments, laser 

shock peening (LSP) and ultrasonic nanocrystalline surface modification (UNSM), for the first 

time. UNSM treatment induced high levels of compressive residual stresses into the material. 

Variation in grain size was observed across the modified layer and the microhardness of the 

UNSM condition was enhanced significantly compared to the As-M condition. Although, 

significant amount of compressive residual stress was induced via LSP, the treatment showed 

mild increase in microhardness and no noticeable changes in the microstructure. This was 

attributed to the low level of cold work (about 5 %) during LSP processing. The WDE 

performance tests were conducted in a rotating disc rig in accordance with ASTM G73 standard. 

Influence of impact speed (between 150 and 350 m/s) on WDE performance was explored on 

two different sample geometries (T-shaped flat and airfoil). First, to understand the WDE 
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behaviour of the reference or as-machined (As-M) Ti-6Al-4V before applying surface 

treatments, its WDE behaviour was studied. In the second and third parts of this study, the WDE 

performance of UNSM treated versus As-M Ti-6Al-4V and LSP treated versus As-M Ti-6Al-4V 

conditions was investigated, respectively. WDE results showed that the T-shaped flat UNSM 

samples had enhanced WDE performance at speeds 250, 275 and 300 m/s compared with the As-

M condition. At 350 m/s, both UNSM and As-M conditions showed similar performance due to 

diminished effect of the UNSM treatment. UNSM airfoils showed mild enhancement in the 

WDE performance at 300 m/s during the advanced stage compared with the As-M condition. At 

350 m/s, no enhanced performance was observed for the UNSM airfoil condition. LSP showed 

little or no beneficial effect at any stage of the WDE performance at all tested impact speeds for 

the T-shaped flat geometry. However, LSP airfoil samples showed only mild enhancement in the 

WDE performance at 300 m/s during the advanced stage compared with the As-M condition. At 

350 m/s, no enhanced performance was observed for the LSP airfoil condition. It was concluded 

that the influence of mechanical surface treatments on the WDE performance of material 

depends in general on the erosion test condition, sample geometry, materials‟ properties and 

microstructure. However, for the mechanical treatment to be effective in improving WDE 

performance, it has to cause surface hardening and grain refinement. Compressive residual 

stresses alone are not sufficient to enhance WDE performance especially for the T-shaped flat 

geometry. For the airfoil, the induced compressive residual stresses show limited beneficial 

effect in mitigating erosion at the advanced erosion stage. This is due to the fact that compressive 

residual stresses are through the thickness of the airfoil. This is the case observed at relatively 

low speed of 300 m/s. However, at 350 m/s where the test condition is severe, the induced 

compressive residual stresses show no beneficial effect on the airfoil geometry. 



v 

 

Dedication 

 

 

 

To my parents, brothers and sisters for their love and support 

 

To my friends who always encouraged me 

 

To my beloved wife and her family for their love, care and patience 

 

 

 

 

  



vi 

 

Acknowledgements 

I would like to show my sincere and earnest gratitude to my supervisor, Professor Mamoun 

Medraj, for his moral, financial and intellectual support. I would also like to thank him for his 

constructive criticisms throughout my PhD program at Concordia University. 

My sincere thanks go to Dr. Dmytro Kevorkov for his immense contributions and discussions 

during the course of my PhD program. Mazen Samara is also gratefully acknowledged for his 

good administrative work in the TMG lab. The way in which this work was organized would not 

have been possible without Mazen‟s professional assistance. To my wonderful group members, 

Hany Kirols, Ahmad O. Mostafa, Jessie Yi, Guy Joel Rocher, Tian Wang, Benjamin Wallace, 

Bolarinwa Komolafe, Kayode Orimoloye, Xin Zhang, Yinan Zhang, Alex Chen, Mohammed 

Mahdipoor and Dina Ma, thank you very much.  

My gratitude goes to my collaborators Dr. Lloyd Hackel (Metal Improvement Company, 

USA), Dr. Chang Ye (The University of Akron, Ohio, USA) and Dr. Amanov Auezhan (Sun 

Moon University, South Korea). Their support and technical advice throughout this work 

contributed to the entire outcomes of this work. 

My family members and all my relatives supported and prayed for my success in this task. 

Their efforts are gratefully acknowledged. Thanks to my wife (Maryam Mohammed) and her 

family members for their continuous support and encouragements. To my friends, I thank all of 

them. Special thanks go to Musa Muhammad Sadisu (Aluta), Halilu Ibrahim Makintami 

(Awliya) and Dr. Chentouf Samir Mourad for their tremendous assistance during my PhD work.    

I gratefully acknowledge the financial support provided by Concordia University, Canada 

through Frederick Lowy Scholars Fellowship Award, Graduate Student Support Program 

(GSSP) and Natural Sciences and Engineering Research Council of Canada (NSERC). 



vii 

 

Table of Contents 
 
List of Figures .............................................................................................................................. xii 

List of Tables ............................................................................................................................. xvii 

List of Abbreviations ............................................................................................................... xviii 

 : Introduction .............................................................................................................. 1 Chapter 1

1.1. Problem statement ................................................................................................................ 1 

1.2. Thesis layout ........................................................................................................................ 3 

 : Literature Review and Research Motivations ....................................................... 5 Chapter 2

2.1. Water droplet erosion (WDE) and its causes ....................................................................... 5 

2.1.1. Stages of WDE damage ................................................................................................ 7 

2.2. Factors affecting WDE behaviour of Ti-6Al-4V ................................................................. 8 

2.2.1. Surface roughness ......................................................................................................... 9 

2.2.2. Impact speed ............................................................................................................... 10 

2.2.3. Sample geometry ........................................................................................................ 12 

2.3. Surface treatments for WDE mitigation ............................................................................ 13 

2.3.1. Mechanical surface treatments .................................................................................... 13 

2.3.1.1. Ultrasonic nanocrystalline surface modification (UNSM) .................................. 15 

2.3.1.2. Laser shock peening (LSP) .................................................................................. 16 

2.3.1.3. Comparisons between UNSM and LSP treatments ............................................. 19 

2.4. Objectives .......................................................................................................................... 20 

 : Water Droplet Erosion Behaviour of Ti-6Al-4V and Mechanisms of Material Chapter 3

Damage at the Early and Advanced Stages .............................................................................. 21 

ABSTRACT .............................................................................................................................. 21 

3.1. Introduction ........................................................................................................................ 22 

3.2. Experimental procedure ..................................................................................................... 24 



viii 

 

3.2.1. Material and geometry ................................................................................................ 24 

3.2.2. WDE testing, mass loss measurement and characterization of eroded coupons ........ 25 

3.3. Results and discussion ....................................................................................................... 28 

3.3.1. Droplets generation and size distribution ................................................................... 28 

3.3.2. WDE curves and characterization ............................................................................... 29 

3.3.2.1. Effect of impact speed on the incubation period ................................................. 32 

3.3.2.2. Effect of impact speed on the maximum erosion rate.......................................... 36 

3.3.3. Optical macrographs of eroded coupons..................................................................... 38 

3.4. Erosion mechanism ............................................................................................................ 42 

3.4.1. Early stages of erosion damage................................................................................... 43 

3.4.2. Advanced erosion stage .............................................................................................. 47 

3.5. Conclusions ........................................................................................................................ 52 

Acknowledgement .................................................................................................................... 52 

 : Effect of Ultrasonic Nanocrystalline Surface Modification on the Water Chapter 4

Droplet Erosion Performance of Ti-6Al-4V ............................................................................. 53 

ABSTRACT .............................................................................................................................. 53 

4.1. Introduction ........................................................................................................................ 54 

4.2. Experimental procedure ..................................................................................................... 57 

4.2.1. Material and geometry ................................................................................................ 57 

4.2.2. UNSM treatment and characterization ........................................................................ 58 

4.2.2.1. UNSM processing ................................................................................................ 58 

4.2.2.2. Surface roughness ................................................................................................ 59 

4.2.2.3. X-ray diffraction pattern and residual stress measurement .................................. 59 

4.2.2.4. Microhardness ...................................................................................................... 60 

4.2.2.5. Microstructure investigations............................................................................... 60 



ix 

 

4.2.3. WDE testing and characterization .............................................................................. 61 

4.2.3.1. WDE tests ............................................................................................................ 61 

4.2.3.2. Water droplet erosion behaviour .......................................................................... 62 

4.3. Results and discussion ....................................................................................................... 63 

4.3.1. Effect of UNSM on surface and in-depth characteristics ........................................... 63 

4.3.1.1. Surface roughness ................................................................................................ 63 

4.3.1.2. XRD pattern and compressive residual stresses .................................................. 64 

4.3.1.3. Microstructure characteristics .............................................................................. 66 

4.3.1.4. Microhardness ...................................................................................................... 69 

4.3.2. Water droplet erosion .................................................................................................. 71 

4.3.2.1. WDE performance of UNSM and As-M T-shaped sample conditions ............... 73 

4.3.2.2. WDE performance of UNSM and As-M airfoil sample conditions .................... 84 

4.3.2.3. Effect of sample geometry and UNSM on WDE performance ........................... 86 

4.3.3. Optical macrographs ................................................................................................... 87 

4.4. Conclusions ........................................................................................................................ 91 

Acknowledgement .................................................................................................................... 92 

 : Water Droplet Erosion Performance of Laser Shock Peened Ti-6Al-4V ......... 93 Chapter 5

ABSTRACT .............................................................................................................................. 93 

5.1. Introduction ........................................................................................................................ 94 

5.2. Experimental procedure ..................................................................................................... 96 

5.2.1. Material and sample geometries ................................................................................. 96 

5.2.2. LSP processing and characterizations ......................................................................... 97 

5.2.2.1. LSP processing..................................................................................................... 97 

5.2.2.2. X-ray diffraction pattern and residual stress measurement .................................. 98 

5.2.2.3. Microhardness ...................................................................................................... 99 



x 

 

5.2.2.4. Microscopy .......................................................................................................... 99 

5.2.3. WDE testing and damage analysis ............................................................................ 100 

5.2.3.1. WDE tests .......................................................................................................... 100 

5.2.3.2. Damage analysis and WDE curves characterizations ........................................ 101 

5.3. Results and discussion ..................................................................................................... 103 

5.3.1. Effect of LSP on surface and in-depth characteristics .............................................. 103 

5.3.1.1. XRD pattern and compressive residual stresses ................................................ 103 

5.3.1.2. Microstructure .................................................................................................... 104 

5.3.1.3. Microhardness .................................................................................................... 106 

5.3.2. Water droplet erosion performance .......................................................................... 108 

5.3.2.1. WDE performance of LSP and As-M T-shaped sample conditions .................. 109 

5.3.2.2. WDE performance of LSP and As-M airfoil sample conditions ....................... 115 

5.3.2.3. Effect of sample geometry and LSP on WDE performance .............................. 118 

5.3.3. WDE damage evolution ............................................................................................ 119 

5.3.4. WDE and Fatigue damage ........................................................................................ 122 

5.4. Conclusions ...................................................................................................................... 123 

Acknowledgement .................................................................................................................. 124 

 : Conclusions, Contributions and Recommendations ......................................... 125 Chapter 6

6.1. Conclusions ...................................................................................................................... 125 

6.2. Contributions.................................................................................................................... 127 

6.3. Recommendations ............................................................................................................ 130 

References .................................................................................................................................. 132 

Appendices ................................................................................................................................. 153 

Appendix A ............................................................................................................................. 153 

Appendix B ............................................................................................................................. 156 



xi 

 

Appendix C ............................................................................................................................. 158 

Appendix D ............................................................................................................................. 162 

 

  



xii 

 

List of Figures 

Figure 1-1: Schematic illustration of fogging system. Courtesy of Mee Industries ....................... 2 

Figure 1-2: Gas turbine engine showing compressor blades before and after erosion damage. 

Courtesy of MSD Coatings Technologies Co. ................................................................................ 2 

Figure 1-3: Water droplet erosion damage of compressor blade in LM6000 sprint gas turbine. 

Courtesy of General Electric………………………………………………………………………3 

Figure 2-1: Water droplet impact and the radial outflow (lateral jetting) [14]. .............................. 6 

Figure 2-2: Schematic illustration of compression and shear waves during droplet impacts. ........ 7 

Figure 2-3: Characteristic erosion-time curves showing different stages on (a) cumulative erosion 

versus cumulative exposure duration and (b) instantaneous erosion rate versus the cumulative 

exposure duration [12]. ................................................................................................................... 8 

Figure 2-4: WDE behaviour of Ti-6Al-4V having three surface conditions tested at (a) 300 m/s 

and (b) 350 m/s using 464 µm droplet size [17]. ............................................................................ 9 

Figure 2-5: Cumulative mass loss versus impingement number [9]............................................. 11 

Figure 2-6: Cumulative volume loss versus number of droplet impingements for untreated Ti-

6Al-4V and 12% Cr stainless steel at various speeds [31]. .......................................................... 12 

Figure 2-7: Schematic illustration of the UNSM process [48]. .................................................... 16 

Figure 2-8: Schematic illustration of the LSP process [34]. ......................................................... 17 

Figure 3-1 : Typical T-shaped Ti-6Al-4V sample (dimensions are in inches). ............................ 25 

Figure 3-2: SEM micrographs showing the initial Ti-6Al-4V microstructure. ............................ 25 

Figure 3-3: Schematic illustration of the water erosion rig used in the present work. ................. 26 

Figure 3-4: Typical three line representation for WDE curve characterization [12]. ................... 27 



xiii 

 

Figure 3-5: (a) Statistical distribution of droplet size range and (b) equivalent number of droplets 

hitting the coupon. ........................................................................................................................ 28 

Figure 3-6: WDE curves for (a) 150 to 275 m/s and (b) 300 to 350 m/s impact speed tests. ....... 31 

Figure 3-7: Relationship between impact speed, impact pressure and erosion initiation. ............ 34 

Figure 3-8: Log-log graph of ERmax versus impact speed. ........................................................... 38 

Figure 3-9: Optical macrographs showing the erosion evolution and progression on Ti-6Al-4V 

coupon tested at (a) 250 m/s (b) 300 m/s and (c) 350 m/s. The scale at the bottom of each image 

is in mm......................................................................................................................................... 40 

Figure 3-10: Macrographs showing the influence of impact speeds on the observed crater width 

and depth. ...................................................................................................................................... 42 

Figure 3-11: SEM showing (a) typical erosion initiation and advanced erosion stages and (b-c) 

isolated pits during early stages of erosion damage...................................................................... 43 

Figure 3-12: Shows the formation of cracks due to droplet impacts (a) and typical network of 

microcracks (b). ............................................................................................................................ 44 

Figure 3-13: Formation of surface asperity [18] (a) typical surface asperities after few impacts 

(b) and accumulated impacts and continuous lateral jetting (c). .................................................. 45 

Figure 3-14: SEM micrographs showing (a) different pit sizes and (b) material folding and 

fatigue striation marks................................................................................................................... 46 

Figure 3-15: SEM showing eroded Ti-6Al-4V coupon during the advanced erosion stage. ........ 48 

Figure 3-16: (a) the crater section A-A and (b) the in-depth microstructural view during the 

advanced erosion stage. ................................................................................................................ 49 



xiv 

 

Figure 3-17: Erosion crater showing (a) sub-surface cracks and propagation on the sidewall and 

base, (b) sub-surface cracking (c) secondary pits formation due to high cumulative impacts, and 

(d) material upheaving/folding. .................................................................................................... 50 

Figure 3-18: SEM micrographs showing craters at (a) 250 m/s (b) 300 m/s and (c) 350 m/s. ..... 51 

Figure 4-1: Typical T-shaped flat (left) and airfoil (right) samples machined. ............................ 58 

Figure 4-2: SEM micrographs showing the initial Ti-6Al-4V microstructure at (a) lower and (b) 

higher magnifications.................................................................................................................... 58 

Figure 4-3: Water erosion rig (a) and nozzles used (b). ............................................................... 62 

Figure 4-4: WDE curve characterization using (a) three line representation [12] and (b) ERinst 

[29]. ............................................................................................................................................... 63 

Figure 4-5: XRD patterns for the As-M and UNSM treated surface. ........................................... 65 

Figure 4-6: Variation of top surface and in-depth compressive residual stress profile. ............... 66 

Figure 4-7: SEM micrographs showing microtracks and microdimples on ultrasonic modified 

surface. .......................................................................................................................................... 67 

Figure 4-8: (a) optical macrograph of typical UNSM sample and (b) schematic illustration of 

structure characteristics and grain size profile on UNSM treated condition. ............................... 67 

Figure 4-9: SEM micrographs showing polished and etched (a) untreated top surface (b, c, d) 

UNSM treated top surface (e) untreated cross-section and (f) UNSM treated cross-section. ...... 69 

Figure 4-10: Variation of microhardness with depth for treated and untreated samples. ............. 70 

Figure 4-11: WDE curves showing the repeatability of the results at 250 m/s and 350 m/s. ....... 73 

Figure 4-12: WDE curves of As-M versus UNSM flat samples at different impact speeds. ....... 74 

Figure 4-13: Effect of impact speed on (a) number of impingements to initiation and (b) ERmax.

....................................................................................................................................................... 77 



xv 

 

Figure 4-14: ERinst versus number of impingements at different impact speeds. ......................... 78 

Figure 4-15: (a) schematic illustration of the WDE testing direction with respect to the airfoil 

treated surface and (b) typical eroded UNSM airfoil.................................................................... 84 

Figure 4-16: WDE curves of As-M and UNSM airfoil samples at different impact speeds. ....... 85 

Figure 4-17: ERinst for As-M and UNSM airfoil samples at different impact speeds. ................. 86 

Figure 4-18: Optical macrographs showing the erosion evolution and progression of As-M and 

UNSM flat samples tested at various speeds and exposure times. The scale shown in each image 

is in mm......................................................................................................................................... 89 

Figure 4-19: Optical macrographs showing the erosion evolution and progression of As-M and 

UNSM airfoil samples at 300 m/s. The scale on each image is in mm. ....................................... 91 

Figure 5-1: SEM micrographs showing the initial Ti-6Al-4V microstructure. ............................ 97 

Figure 5-2: Typical T-shaped flat (left) and airfoil (right) samples machined. ............................ 97 

Figure 5-3: Illustration of 0˚ and 90˚ directions relative to laser scanning direction on a peened 

sample. .......................................................................................................................................... 99 

Figure 5-4: Water erosion rig with attached samples (a) and fixed nozzles and sample (b). ..... 101 

Figure 5-5: Schematic illustration of the WDE testing direction with respect to (a) T-shaped flat 

and (b) airfoil treated surfaces. ................................................................................................... 101 

Figure 5-6: WDE curve analyses using (a) three line representation [12] and (b) ERinst [29]. ... 103 

Figure 5-7: XRD patterns of the As-M and LSP treated surface. ............................................... 104 

Figure 5-8: SEM micrographs showing (a) treated top surface (b) untreated cross-section and (c) 

LSP treated cross-section. ........................................................................................................... 106 

Figure 5-9: Measured microhardness with respect to depth for LSP and As-M conditions. ...... 108 

Figure 5-10: WDE curves for As-M versus LSP at (a) 150-200 m/s and (b) 250-350 m/s. ....... 110 



xvi 

 

Figure 5-11: Effect of impact speed on (a) erosion initiation and (b) ERmax. ............................. 112 

Figure 5-12: WDE curve of As-M versus LSP for (a) 460 and (b) 200 µm droplet sizes. ......... 116 

Figure 5-13: ERinst for WDE tests using (a) 350 m/s, 460 µm, (b) 300 m/s, 460 µm and (c) 350 

m/s, 200 µm. ............................................................................................................................... 117 

Figure 5-14: Optical macrographs showing the erosion evolution and progression on As-M and 

LSP samples tested at (a) 250 m/s and (b) 300 m/s. The scale shown in each image is in mm.. 120 

Figure 5-15: Optical macrographs showing the erosion evolution and progression on As-M and 

LSP airfoil samples at 350 m/s using 460 µm. The scale shown in each image is in mm.. ....... 122 

  



xvii 

 

List of Tables 

Table 2-1: Typical WDE damage features and their cause(s) ........................................................ 7 

Table 3-1: WDE test parameters used in this work ...................................................................... 27 

Table 3-2: Data from three line characterization of erosion curves for various speeds ............... 34 

Table 3-3: Experimental threshold velocities and n
th

 power of velocity by different authors ...... 36 

Table 3-4: Summary of the observed accumulated material loss, crater width and depth at 

different speeds ............................................................................................................................. 42 

Table 4-1: UNSM processing parameters for Ti-6Al-4V and study purpose ............................... 59 

Table 4-2: WDE test parameters used in the present work ........................................................... 62 

Table 4-3: Characterization of the ERinst curves at various speeds ............................................... 79 

Table 5-1: LSP processing parameters and conditions ................................................................. 98 

Table 5-2: WDE test parameters used in this work .................................................................... 101 

 

 

 

  



xviii 

 

List of Abbreviations 

As-M As Machined 

ASTM American Society for Testing and Materials  

DR Deep Rolling 

ERmax Maximum Erosion Rate 

HEL Hugoniot Elastic Limit  

ERinst Instantaneous Erosion Rate 

HF Hydrofluoric Acid 

HNO3 Nitric Acid 

LPB Low Plasticity Burnishing 

LSP Laser Shock Peening 

OM Optical Macrographs 

SEM Scanning Electron Microscopy (Micrographs) 

UNSM 
Ultrasonic Nanocrystalline Surface 

Modification  

WC Tungsten Carbide 

WDE Water Droplet Erosion 

XRD X-Ray Diffraction 

 

 



 

1 

 

 : Introduction Chapter 1

One of the Achilles‟ heels of advanced materials found in the power generation industry 

is the erosion of the leading edge of the compressor blades. This chapter introduces the 

leading cause of this erosion damage. Also, the layout of this thesis is presented.   

1.1. Problem statement  

In the electric power generation industry, the gas turbine efficiency is an important issue 

and is directly affected by the ambient temperature [1]. Rise in ambient temperature 

especially during hot summer times leads to loss of gas turbine output power [2]. The lower 

turbine efficiency is attributed to a decrease in air density leading to a decrease in the intake 

air mass [3]. This consequently results in high electricity cost [4] and high CO2 emissions [3]. 

In order to augment the turbine efficiency, the ambient temperature must be kept as low as 

possible. This can be achieved by using the inlet air fog cooling technique shown in Figure 1-

1. In this technique, water droplets are sprayed into the inlet of the gas turbine compressor to 

cool down the intake air, thereby increasing the intake mass. The sprayed droplets reduce the 

temperature and increase in power out is realized [5]. This is a cost effective method 

however, the impacting water droplets cause a severe erosion damage problem to the leading 

edge of the rotating compressor blades especially at high speed [6]. The damage also causes 

vibrations which lead to loss of efficiency and fatigue issues for the entire turbine. This 

damage is usually termed as the “water erosion by impingement or water droplet erosion 

(WDE)”. Figure 1-2 shows a typical gas turbine engine with the compressor blades before 

and after the erosion damage. With the current state of the problem, industries have invested 

huge amount of resources in order to mitigate this undesirable phenomenon.  

Material such as Ti-6Al-4V has been identified as prone to WDE phenomenon despite its 

remarkable physical and mechanical properties. For example, Figure 1-3 shows a real-life 

compressor blade damage caused by WDE. 
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Figure 1-1: Schematic illustration of fogging system. Courtesy of Mee Industries 

 
Figure 1-2: Gas turbine engine showing compressor blades before and after erosion damage. 

Courtesy of MSD Coatings Technologies Co. 

Several surface treatment techniques such as surface coatings, nitriding, laser surface 

modifications have shown improvements in the WDE performance of Ti-6Al-4V. The 
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enhancements were attributed to different materials‟ properties such as hardness, toughness, 

ultimate resilience, work hardening rate and true stress at fracture. However, no single 

parameter has successfully been linked to the improved WDE performance of materials and 

there are still challenges that exist with the applied surface modifications such as presence of 

surface defects and microcracks. This shows that more investigations are still needed for 

better understanding of the erosion damage as well as to identify the best methods/techniques 

that can be employed to mitigate such damage. 

 

Figure 1-3: Water droplet erosion damage of compressor blade in LM6000 sprint gas turbine. 

Courtesy of General Electric. 

1.2. Thesis layout 

In this section, the thesis layout is outlined. Based on the approach followed in this 

research, the entire thesis is composed of six chapters. It is worth noting that the thesis is a 

manuscript based thesis containing three journal articles. Chapter 1 outlines the problem 

statement which is the erosion of the leading edge of compressor blades in gas turbines. 

Chapter 2 reviews the WDE phenomenon and a case study on Ti-6Al-4V which is the 

common compressor blade material is reviewed. The chapter also discusses some of the 
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potential methods used in mitigating the erosion. In the same chapter, mechanical surface 

treatments, LSP and UNSM processes, are reviewed. Research motivations and objectives are 

highlighted in relation to the literature findings and current work, respectively. In Chapter 3, 

the first article on water droplet erosion behaviour of Ti-6Al-4V and mechanisms of material 

damage at the early and advanced stages is presented. Chapter 4 presents the second article 

on the effect of ultrasonic nanocrystalline surface modification on the water droplet erosion 

performance of Ti-6Al-4V. In chapter 5, the third article addresses the water droplet erosion 

performance of laser shock peened Ti-6Al-4V. Finally, chapter 6 summarizes the contents 

and contributions in the present work and also, recommendations for future research are 

highlighted. For additional information regarding the entire thesis work, appendices are 

provided.   
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 : Literature Review and Research Motivations Chapter 2

Water droplet erosion of compressor blades of gas turbines is reviewed in this chapter. 

The causes and different stages of the erosion damage are reported. WDE behaviour of Ti-

6Al-4V, a typical compressor blade material is presented. The need for more research work is 

emphasized based on the literature findings. Potential surface treatments employed to combat 

WDE are highlighted with specific emphasis on mechanical surface treatments on Ti-6Al-4V.   

2.1. Water droplet erosion (WDE) and its causes 

WDE is the progressive loss of material from a solid surface due to accumulated impacts 

by liquid droplets [7]. WDE is a complex phenomenon that existed for considerable long 

period of time and the reason for this is the number of parameters involved during the erosion 

process. These parameters include: impact speed, impact angle, droplet size, droplet density, 

frequency of impacts, liquid film formation, mechanical properties and conditions of the 

target material. More information on the influence of WDE parameters such as droplet size, 

impact speed, impact angle have been reported in [8,9]. WDE damage is predominantly 

caused by two main factors; (1) the high pressure exerted by the water droplet on the exposed 

area of the solid surface and (2) the radial liquid flow (lateral jetting) along the surface at high 

speed, which occurs after the initial droplet pressure lessens [10]. Figure 2-1 shows a typical 

droplet impact and its radial outflow (lateral jetting). The high pressure is usually termed as 

“water hammer pressure”. The water hammer pressure is the induced pressure exerted by the 

“arrested” liquid droplet on the solid surface. This is an important factor that influences the 

surface damage especially at the incubation stage [11]. According to Heymann [12,13], this 

pressure can be considerably higher than the yield strength of many alloys especially at high 

impact speeds. Due to the continuous liquid impacts, the hammer pressure and lateral jetting 

lead to the formation of compression and shear waves (stress waves). The phenomenon of 

compression and shear waves is also paramount in understanding the erosion damage. 
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Figure 2-1: Water droplet impact and the radial outflow (lateral jetting) [14]. 

According to the elastic wave theory of solids [15], “when an impulse loading acts on a 

solid surface, a compression and a shear wave are generated in the bulk solid and on the 

surface, a Rayleigh surface wave is generated” [16]. As the compression wave travels through 

the solid, shear wave is formed. The shear wave offsets the stresses caused by the 

compression wave [16]. In water droplet impacts, the liquid impact causes the compression 

wave while the liquid lateral jetting causes the shear wave especially during advanced stage 

of water erosion damage. This is schematically shown in Figure 2-2. Also, at high impact 

speeds, the magnitude of these waves is high, causing significant damage. The effects of the 

compression and shear waves in understanding the mechanisms of material damage during 

erosion process have been addressed in this research.  

The continuous impacts and lateral jetting reveal several damage features depending on 

the erosion damage stage, nature of material and most importantly the erosion condition. 

Based on the literature findings, typical WDE damage features and their possible cause(s) are 

summarized in Table 2-1. It should be noted that erosion damage features result from 

synergistic effects; however, only the main causes are highlighted here. The different stages 

of the erosion damage are discussed in the following section. 
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Figure 2-2: Schematic illustration of compression and shear waves during droplet impacts. 

Table 2-1: Typical WDE damage features and their cause(s) 

Erosion Features Main Cause(s) References 

Surface asperities Impact and liquid lateral jetting [17,18] 

Surface micro-cracks Water hammering and stress waves [11] 

Surface depressions Hydraulic pressure caused by droplet impacts [17,19–23] 

Internal or Sub-surface 

cracks 

Interaction of the transmitted and reflected stress 

waves 
[11] 

Surface slip bands Shear stress waves [11] 

Fatigue striations Repeated droplet impacts in a cyclic fashion [9,11] 

Material folding and 

upheaval 
Shear stress waves from the lateral jetting [11] 

Hydraulic penetration 
Continuous liquid impact into the existing pits or 

craters 
[11,24–27] 

Side wall cracking Liquid lateral jetting [9,28] 

Inter/transgranular 

cracking 

Repeated impacts causing interaction between 

transmitted and reflected waves 
[9,11,28] 

2.1.1. Stages of WDE damage 

Due to the time dependence of the erosion damage, different stages as shown in Figure 2-

3 have been reported [12]. Figure 2-3a shows the cumulative erosion versus cumulative 

exposure duration, while Figure 2-3b shows the instantaneous erosion rate versus the 
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cumulative exposure duration. The different stages have been described as: A – the 

incubation stage during which little or no mass loss is observed, although surface roughening 

and metallurgical changes might be seen; B - the acceleration stage where the erosion rate 

increases up to a maximum; C – the maximum erosion stage where the erosion is at its peak 

and sometimes, it is reported as a single number; D – the deceleration or attenuation stage 

during which erosion rate is declining to a fraction of maximum erosion rate. Often, the 

fraction is ¼ to ½ of the maximum erosion rate; lastly, E – the terminal or final steady stage 

during which the rate remains constant.  

    

Figure 2-3: Characteristic erosion-time curves showing different stages on (a) cumulative 

erosion versus cumulative exposure duration and (b) instantaneous erosion rate versus the 

cumulative exposure duration [12]. 

The shape of erosion curves shown in Figure 2-3 depends on the target material and 

erosion conditions [29]. For instance, material with a well-behaved erosion curve has an S-

shaped erosion curve with distinct erosion stages [29]. These characteristic curves are further 

affected by surface roughness [17,30], surface properties, microstructure [10], geometry [30], 

combination of impact speed and droplet size [30]. The next section discusses how these 

parameters affect the WDE behaviour of Ti-6Al-4V. 

2.2. Factors affecting WDE behaviour of Ti-6Al-4V 

WDE behaviour of Ti-6Al-4V (ASTM B265, Grade 5) alloy, a typical material for 

compressor blades in gas turbines has been studied in the literature. Different facilities, test 

(a) (b) 
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parameters and surface conditions have been employed in order to investigate the WDE 

behaviour of Ti-6Al-4V. 

2.2.1. Surface roughness 

It has been reported that the presence of surface asperities or irregularities prior to erosion 

test accelerates the erosion initiation [30]. Kirols et al. [17] studied the effect of initial surface 

roughness on the WDE behaviour of Ti-6Al-4V. Ti-6Al-4V samples with average initial 

surface roughness values (Ra) of 0.30, 0.12 and 0.04 μm were tested. During WDE tests, 

impact speed of 300 and 350 m/s and droplet size of 464 μm were employed. Figures 2-4a 

and b show their [17] WDE curves.  

 

 

Figure 2-4: WDE behaviour of Ti-6Al-4V having three surface conditions tested at (a) 300 

m/s and (b) 350 m/s using 464 µm droplet size [17]. 

(a) 300m/s 

(b) 350m/s 
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From Figures 2-4a and b, it can be seen that merely polishing the surface prior to WDE 

tests delayed the erosion initiation and decreased the maximum erosion rates. They [17] 

studied the effect of surface roughness using only two impact speeds (300 and 350 m/s). 

More erosion tests are still needed at a wide range of impact speeds in order to have a full 

understanding of the effects of surface roughness. Also, monitoring the effect of initial 

surface roughness on various surface treatments and substrate materials prior to testing is 

paramount. In the current work, much attention has been given to the aforementioned points. 

For instance, the surface roughness of treated and untreated samples was similar prior to 

testing. This provides a better understanding of the influence of surface treatments on WDE 

behaviour.  

2.2.2. Impact speed 

Impact speed is one of the most important parameters that influence the WDE behaviour 

of Ti-6Al-4V. For instance, from Figures 2-4a and b, reducing the impact speed from 350 to 

300 m/s delayed erosion initiation and reduced the erosion rate. In another study, Kamkar [9] 

reported the influence of impact speed on the WDE behaviour of Ti-6Al-4V. Impact speeds 

of 250, 300 and 350 m/s were employed. Figure 2-5 shows the cumulative mass loss versus 

impingement number. Also, it can be seen in Figure 2-5 that increase in impact speed 

corresponds to faster erosion initiation and greater erosion rate. However, in this work [9], x-

axis was not represented accurately because the number of droplets impacting the sample was 

not taken into account. Instead, the number of impingement is simply taken as the number of 

sample rotations. Thus, the information presented in [9] underestimates the number of 

impingements to erosion initiation. More information regarding the number of droplets 

impacting the sample is needed for better understanding and representation of test data. This 

has been addressed in the current research through the use of a high speed camera in order to 

capture the number of droplets impacting the surface. 
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Figure 2-5: Cumulative mass loss versus impingement number [9]. 

Gerdes et al. [31] studied the WDE behaviour of Ti-6Al-4V compared with 12% Cr 

hardened steel. A rotating arm apparatus was used and three water streams were introduced 

parallel to specimen surface. They [31] reported the WDE behaviour for both materials at 

300, 400 and 500 m/s impact speeds, as shown in Figure 2-6. From this figure, it is evident 

that at relatively low speed of 300 m/s, both materials have similar water erosion behaviour 

as compared to those tested at higher speeds of 400 and 500 m/s. At higher speeds, 12% Cr 

hardened steel showed better WDE behaviour compared to Ti-6Al-4V. Again, in this work 

[31], the number of impingements was not defined and initial surface roughness was not 

mentioned. Furthermore, information regarding initiation time and erosion rate were not 

reported. These details are needed for better interpretation of the observed WDE behaviour as 

recommended by ASTM standard [29]. In this research, guidelines in the standard [29] has 

been used for the erosion testing and the interpretation of test data. Also, testing at a wide 

range of impact speed is paramount. For instance, test at 250 m/s might reveal different WDE 

behaviour for both materials.  

Based on the works in [9,17,31], no information was provided regarding the first 

threshold speed/velocity. This is the speed below which no apparent damage is seen. This 

threshold speed is often neglected in the literature due to the fact that a narrow range of 
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impact speeds is employed. In order to capture the threshold speed, tests at a wide range of 

speeds is required. In this work, a range of impact speed from 150 to 350 m/s is employed. 

 

Figure 2-6: Cumulative volume loss versus number of droplet impingements for untreated Ti-

6Al-4V and 12% Cr stainless steel at various speeds [31]. 

2.2.3. Sample geometry 

The sample geometry is another factor that can influence WDE behaviour, however the 

studies presented in [9,17,31] considered only one sample geometry, rectangular flat samples. 

The effect of sample geometry on the WDE behaviour was not considered. Thus, more 

studies are still needed in order to address the effect of sample geometry on the erosion 

behaviour. Sample geometries similar to the leading edge of compressor blades could be 

used. This work tackled this issue by employing two different sample geometries (T-shaped 

flat and airfoil) during erosion tests. The airfoil geometry is similar to the leading edge of 

compressor blades. 

Despite the efforts to understand the erosion behaviour of Ti-6Al-4V investigations are 

still needed in order to fully understand its WDE behaviour. These investigations include 

methods of accurately representing test data, understanding the influence of sample geometry, 

testing at wide range of impact speed and employing potential surface treatments to combat 

WDE damage. The following section discusses some surface treatments employed in the 

literature to mitigate WDE damage. 
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2.3. Surface treatments for WDE mitigation 

The two most effective means of mitigating erosion damage are to minimize the main 

factors causing the erosion damage or to enhance the surface and mechanical properties of 

blades‟ materials [32]. Enhancement of surface and mechanical properties of blades‟ 

materials has received considerable attention due to cost effectiveness. Despite the efforts to 

combat or mitigate the erosion damage, it has not been possible to predict or identify and/or 

quantify a single parameter for WDE resistance [29]. Significant attempts have been made to 

attribute the surface hardness [10], toughness [10], work hardening [31] and ultimate 

resilience [25] to the WDE resistance. However, a synergistic effect of these parameters is 

expected to be a more appropriate term to explain the WDE behaviour. Different surface 

treatments such as coatings [24,33] and laser surface treatments [25,31] have been employed 

to mitigate WDE. However, attaining this objective still remains a puzzle due to the presence 

of surface defects, interface defects and microcracks after surface modification. To fully 

understand the influence of surface treatments on WDE behaviour of materials, other surface 

treatments such as mechanical treatments need to be explored. This work explores the 

influence of two mechanical surface treatments, ultrasonic nanocrystalline surface 

modification (UNSM) and laser shock peening (LSP), on WDE behaviour for the first time. 

The next section discusses the potentials of mechanical surface treatments in understanding 

WDE damage. 

2.3.1. Mechanical surface treatments  

In mechanical surface treatments, deep levels of compressive residual stresses are induced 

while improving the surface and sub-surface properties. These treatments are usually 

employed to enhance the fatigue life of components due to the deep levels of induced 

compressive residual stresses [34]. Also, WDE damage is likened to fatigue-like damage due 

to fatigue striation marks caused by the cyclic nature of the liquid droplet impacts [11,18,35]. 
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One would expect mechanical surface treatments to combat WDE damage. However, this is 

not the case for mechanical surface treatments such as shot peening and deep rolling or low 

plasticity burnishing [11]. For instance, Ma et al. [11] studied the water impingement erosion 

performance of deep rolled Ti-6Al-4V. Different rolling parameters were used and the 

samples with the deepest compressive residual stress levels were WDE tested. Different 

droplet sizes (464 µm and 603 µm) and impact speeds (250 m/s and 350 m/s) were employed. 

Their [11] WDE results showed that no enhanced WDE performance was observed for the 

DR treated condition at all tested conditions. They [11] attributed this behaviour to two 

competing mechanisms at the initiation stage which balance out one another. This is in accord 

with the explanation given by Frederick and Heymann [10]. They [10] mentioned that 

mechanical processes might not be very effective in enhancing the WDE behaviour of 

materials especially during the initiation stage. This is because the mechanical processes 

plastically deform the surface and induce strain hardening. Repeated droplet impacts strain 

harden the material further, causing early crack initiation and erosion [10]. Interestingly, 

Heymann [18] stated that certain degree of work hardening prior to exposure to erosion might 

be beneficial. However, excessive work hardening might show detrimental effects. To shed 

more light on this and help resolve this contradiction, UNSM and LSP mechanical surface 

treatments were selected because they induce large and deep compressive residual stresses 

but significantly different levels of strain hardening. While, UNSM increases the surface and 

in-depth hardness [36–39], LSP barely cause any significant change in hardness [40,41]. 

Hence, it is worthwhile to explore the UNSM and LSP techniques in relation to WDE 

damage. The following sections briefly discuss the UNSM and LSP techniques and the 

pertinent literature investigations so far. 
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2.3.1.1. Ultrasonic nanocrystalline surface modification (UNSM) 

UNSM technique is relatively a new surface modification technique that uses ultrasonic 

vibration energy which converts harmonic oscillations of an excited body into resonant 

impulses of high frequency [42]. The generated energy from these oscillations are used to 

impact the work piece at high frequency of up to 20 kHz [42]. Ball tip made of tungsten 

carbide (WC) [36,43] or silicon nitride ceramic (Si3N4) [42,44] attached to an ultrasonic horn 

is used to strike/impact the work piece surface. Typical impacts on the work piece surface 

ranges from 20,000 to 40,000 shots per square millimeter [42]. Figure 2-7 shows a schematic 

illustration of the UNSM process. The high frequency striking leads to severe plastic 

deformation of the surface, thereby introducing high dislocations density [36]. Thus, 

nanocrystalline surface layer is formed beneath the specimen surface as shown in Figure 2-7. 

Other process parameters include; static load, number of impacts/strikes, intervals, amplitude 

and diameter of the ball tip. Hence, the top surface and in-depth of the work piece are 

modified which in turn, improves the mechanical properties. The strengthening effect is due 

to the plastic strain and refined microstructure [37]. The microstructural refinement after 

UNSM treatment improves mechanical properties according to the Hall-Petch relationship 

[45]. The UNSM treatment has also been applied successfully on a wide range of materials 

such as AISI 304 Stainless steel [37–39], S45C steel [45], Ti-6Al-4V [36,42], Pt coated Ni 

alloy [46], Cu based alloy [47] and AZ91D Magnesium alloy [48] and SiC [44]. Increased 

surface/in-depth hardness [36–39], reduced grain size [46,48], improved surface quality [37] 

and deep levels of compressive residual stresses [37,39,42,49] have been reported. Based on 

the aforementioned attributes, UNSM has shown enhanced fatigue life [37–39,49], enhanced 

cyclic oxidation behaviour of coated Ni-based superalloy (CM247LC) [46], enhanced 

tribological properties such as wear resistance [42,44,47,48] and lowering of friction 

coefficients [42,44,47,48] of materials. 
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Figure 2-7: Schematic illustration of the UNSM process [48]. 

However, to date, no study could be found in the literature regarding the effectiveness of 

UNSM and its associated attributes on the WDE performance/behaviour of Ti-6Al-4V or 

other alloys. In the current work, the observed microhardness, surface quality and induced 

compressive residual stresses after UNSM processing are used to understand the WDE 

performance of treated Ti-6Al-4V.  

2.3.1.2. Laser shock peening (LSP) 

LSP which dates back to late 60s and early 70s [40,50–56] has been described as a 

mechanical process where pulses hit the surface with high power intensity generating shock 

(pressure) waves [54,55,57,58]. These waves plastically deform the surface and compressive 

stresses are extended into the material [55,58–62]. The basic steps for laser shock wave 

generation can be described as: firstly, the target surface is covered with an absorbent 

(sacrificial) coating. This layer vaporizes, forming plasma on the surface with short duration 

pulse pressure. Absorbent layer prevents melting and laser ablation while maintaining high 

surface quality [63] and without this layer, the energy conversion from pressure to shock 

cannot be made effectively [54]. This layer can be aluminum [58,64–66], copper [67], lead 

[53], vinyl tape [68–70], zinc [66] or black paint [54,59,71]. Hong et al. [68] showed 

experimentally that black paint has the best absorption ability to laser, i.e. almost 100% laser 
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energy is absorbed by black paint as compared to 80% absorption by Al layer. This means 

that when a target is irradiated, almost 100% of the laser intensity is used to generate the 

plasma. However, the choice of absorbent layer depends on the target material and other 

peening parameters. Moreover, LSP is still possible without this layer [72–78]. In this work, 

the choice of this layer was based on the material and geometrical constraints. For instance, 

Al layer was used for the thick flat (T-shaped) geometry, whereas no layer was used for the 

thin membered airfoil geometry. The presence of this layer increases the intensity of the 

treatment which causes distortion of thin membered sections. For this reason, no layer was 

used and both sides of the airfoil were treated. Secondly, transparent overlay is applied to 

prevent the plasma from expanding away from the surface, thereby increasing the intensity of 

the shock wave. These overlays, also known as the confining medium, can be water 

[58,59,69,71,79], quartz [40,53,68,80] or glass [68,81,82]. Water is mostly used not to cool 

the surface but as confining medium as investigated by Kruusing [79]. Water can also be 

suitable for peening complex geometries [34] and in this work, water is used due to the 

special geometry employed. Other confining media are K9 glass [83], Pb glass [68], Perspex 

[68] or silicon rubber which has been studied by Hong et al. [68]. Finally, plastic deformation 

occurs when the shock wave pressure exceeds the dynamic yield strength of the metal 

[54,56,58,84,85]. This process is schematically shown in Figure 2-8.  

 

Figure 2-8: Schematic illustration of the LSP process [34]. 
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The plastic deformation results in dislocation multiplication and movements which could 

possibly affect the microstructure as well as the properties of the material [54]. This is due to 

the low level of cold working from the laser peening process [34,86]. Reports have shown  

that the level of cold working in LSP is around 5 % compared to 30-50 % in the conventional 

shot peening [86–88]. Moreover, it has been reported that multiple laser shocks can increase 

the percentage of cold work from 5 to 7 % [88]. Hence, changes in microstructure and 

materials‟ properties might not be significant due to the small amount of cold work induced 

during LSP process.  

The description of how shock waves are generated is simple compared to the complexity 

of the process parameters and optimization. Effective shock peening process depends on the 

material (target), laser and beam parameters as well as the absorbent and transparent overlays 

[89]. Typical requirements are: Q-switched laser system based on neodymium doped:Glass 

(Nd:Glass), yttrium aluminum garnet (Nd:YAG) lasers. Different laser wavelengths of 1064 

nm (infra-red), 532 nm (green), and 355 nm (ultraviolet) are common. Additionally, time 

duration for shock wave pressure (laser pulse length) ranges from 10-100 ns [54,79] with 

energy of 1-100+ J per shot, and spot size of 1-6 mm. A frequency of less than 1 kHz and 

power density (I) of 0.1-10
6
 GW/cm

2
 [54] are also used. In the current work, Nd:Glass, 18 ns 

and 10 GW/cm
2
 are used. To perform and control the peening process, different equations 

have been used in the literature. Appendix A summarizes the different equations applied 

during LSP processing. The parameter selection can be achieved by experimental work and 

simulations. LSP technique is considered to be a potential substitute to the conventional shot 

peening (SP) process because of higher depth of residual stresses into the material reaching 

about 4-5 times deep and high intensity with uniformity across the surface. Furthermore, the 

LSP provides good surface finish as compared to SP where the roughness needs to be reduced 

by surface grinding or polishing for typical processes and applications that encounter wear 
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[54,71,84,90]. Areas such as notches and fillets not accessible during SP can be treated by 

LSP [91,92]. The applications of the LSP include improvement of fatigue life 

[54,60,61,71,78,93,94], stress corrosion cracking resistance [95–97], corrosion resistance 

[56,73,74,98,99], wear resistance [100]. Another application is the surface enhancement of 

thin membered sections as reported by [91,101] and Mannava et al. [102,103] in their patent 

reports. Even though significant works have been achieved by applying LSP, no study 

addressed the issue of the influence of LSP process on the WDE performance of Ti-6Al-4V 

or other alloys. Since LSP process is known to enhance fatigue life of blades‟ materials and 

researchers [9,11] ascribed WDE damage to fatigue-like mechanism, studying WDE of LSP 

treated Ti-6Al-4V is worthwhile.   

2.3.1.3. Comparisons between UNSM and LSP treatments 

UNSM and LSP surface treatments are different techniques with unique features. 

However, both process share similar trends in terms of the realized attributes after processing. 

For instance, deep levels of compressive residual stresses have been reported for both and 

both processes enhance fatigue life of components which is the primary objective of 

mechanical treatments. Most importantly, both processes have been employed successfully 

on Ti-6Al-4V to enhance its fatigue life. To date, no studies were found in the literature 

regarding the effectiveness of UNSM and LSP on the WDE performance of materials such as 

Ti-6Al-4V or other alloys. Due to the cyclic nature of the continuous liquid droplet impacts, 

researchers [9,11] linked WDE to fatigue. If fatigue is the dominating mechanism in WDE, 

one would expect UNSM and LSP processes to mitigate WDE damage. Besides, studying 

WDE behaviour of such process that result in different surface attributes in terms of 

microhardness and microstructure from these processes may enhance the understanding of 

WDE problem. This forms an integral part of the objectives of this work and the next section 

highlights the objectives. 
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2.4. Objectives 

The main objective of this work is to investigate the influences of mechanical surface 

treatments on the WDE performance of Ti-6Al-4V. LSP and UNSM techniques are explored 

and surface/in-depth characterizations are carried out using X-Ray diffraction (XRD) for 

residual stress measurement, surface roughness, scanning electron microscopy (SEM) and 

microhardness. A state-of-the-art rotating disc water erosion rig is used for the WDE testing. 

Relationships between the WDE performances and the surface/in-depth characteristics are 

discussed. The specific objectives include: 

(1) Study the WDE behaviour of bare (As-M) Ti-6Al-4V and mechanisms of material 

damage at the early and advanced stages. The influence of impact speed 150 to 350 m/s 

on the WDE behaviour is elaborated. Determination of the actual number of droplets 

impacting the surface is detailed. 

(2) Investigate the effect of UNSM on the WDE performance of Ti-6Al-4V. Microstructure, 

compressive residual stress and microhardness are used to understand the WDE 

performance of UNSM treated Ti-6Al-4V. 

(3) Study the effect of LSP process on the WDE performance of Ti-6Al-4V. Effect of LSP 

and its associated attributes on WDE performance is elucidated. 

(4) Establish a relationship between the influence of sample geometries and the effectiveness 

of these mechanical surface treatments on the WDE performance of Ti-6Al-4V. Two 

sample geometries, T-shaped flat and airfoil, are used.  
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ABSTRACT 

In this study, the water droplet erosion (WDE) behaviour of Ti-6Al-4V and mechanisms of 

material damage were investigated. The WDE test was conducted in an advanced rig in 

accordance with ASTM G73 standard. The influence of impact speed between 150 and 

350m/s on the WDE behaviour was explored and the cumulative mass losses versus the 

exposure time/number of impingements were plotted. It was observed that the higher the 

impact speed the faster the erosion initiation time and greater the maximum erosion rate 

(ERmax). ERmax was also found to be related to the impact speed with an exponent of 9.9 in a 

log-log scale. SEM images showed that the early stages of erosion damage were mainly 

limited to the formation of microcracks, asperities and isolated pits of irregular shapes. It was 

found that the most profound mode of material removal during the advanced stage of water 

droplet erosion was hydraulic penetration. Sub-surface, side wall cracking and material 

folding/upheaving were also features observed.  

Keywords: Water droplet erosion; impact speed; incubation stage; advanced stage; Ti-6Al-

4V 
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3.1. Introduction  

In the electric power generation industry the gas turbine efficiency is an important issue 

and is directly affected by the ambient temperature. Meher-Homji and Mee [1] reported that a 

rise of 1
o
F results in a turbine efficiency decrease of 0.3-0.5%. This adverse temperature 

effect is obviously a season dependent phenomenon. For instance, in the United States, a 9% 

loss of gas turbine output power was recorded in summer versus winter periods [2]. The 

lower turbine efficiency is attributed to a decrease in air density leading to a decrease in the 

intake air mass [3]. The lower efficiency results in high electricity cost [4] and high CO2 

emissions [3]. To keep the ambient temperature as low as possible, the inlet air fog cooling 

technique is used [1]. In this technique, water droplets are sprayed into the inlet of the gas 

turbine compressor to cool down the intake air thereby increasing the intake mass. The water 

droplets reduce the temperature leading to an increase in the output power [5]. However, an 

overspray can occur when all droplets are not being evaporated [5,6]. Despite the cost 

effectiveness of this fogging method, droplets cause a severe erosion damage problem for the 

leading edge of the compressor blades and consequently a significant fatigue cracking issue 

for the full blades, especially at high speeds. Khan [6] stated that the erosion damage 

phenomenon was featured as the synergy of the impacting water droplets and rotating blade. 

This is usually termed as the “water erosion by impingement or water droplet erosion 

(WDE)”.  

Water erosion by impingement is a special form of erosion produced by repetitive 

impingement of high velocity liquid droplets on a solid surface [104]. The mechanism of the 

erosion process is complex by virtue of the many parameters involved, including: impact 

velocity, impact angle, droplet size, droplet density, frequency of impacts, liquid film 

formation and mechanical properties and conditions of the target material. However, this 

erosion phenomenon has also been found in several industrial applications including cooling 
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pipes of nuclear plants [105], sewage plants and sea water systems [106], aerodynamic 

surfaces of aircrafts and missiles [29] flying through rainstorm at subsonic and supersonic 

speeds [10]. The WDE damage is predominantly caused by two main factors; (1) the high 

pressure exerted by the water droplet on the exposed area of the solid surface and (2) the 

radial liquid flow along the surface at high speed, which occurs after the initial droplet 

pressure lessens [10]. Moreover, this erosion damage reduces the efficiency of mechanical 

components due to aerodynamic losses [107]. Despite the efforts to combat or mitigate the 

erosion damage, it has not been possible to identify or quantify an absolute parameter for 

WDE resistance [29]. This is due to the fact that erosion rate is not constant with time and 

therefore, no single value can quantify the erosion test. Significant attempts have been made 

to attribute the hardness [10], toughness [10], work hardening [31], and ultimate resilience 

[25] to the WDE resistance. More so, a synergistic effect of these parameters would be a 

more appropriate term. For this reason, material (rating) ranking system which is somewhat 

semi-quantitative has been developed by Heymann [108]. He [108] proposed sets of 

comparative studies in order to evaluate erosion resistance under different sets of conditions. 

In this system, the normalized erosion resistance, which is the maximum rate of volume loss 

of a reference material divided by the maximum rate of volume loss of material being 

evaluated. However, the major setback here is the lack of precision in projecting the erosion 

damage. ASTM standard [29] mentioned that for bulk materials, the incubation period and 

the maximum erosion rate determined from empirical relationships could be used for the 

material rating. This is provided that the principal liquid impingement parameters such as 

droplet size, impact velocity are known. Also, due to the variation of erosion rate with 

exposure time and synergy of different interacting WDE parameters such as impact speed and 

droplet size, different WDE behaviours and damage mechanisms will prevail. Thus, 

predicting or projecting the erosion damage becomes difficult. In this case, the experimental 
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investigations become paramount. The mechanism by which material is removed or chipped 

out is an important aspect of the WDE damage. However, the challenge lies in defining the 

hydrodynamic conditions that cause particular erosion and material detachment effects [10]. 

Nevertheless, it is paramount to fully understand the WDE behaviour of materials and the 

mechanism by which material is removed when exposed to an erosive medium. To 

understand this, the concept of water hammer pressure, stress wave propagation, liquid 

outflow and hydraulic penetration as well as material response must be comprehended. 

In this study, the WDE behaviour of Ti-6Al-4V and the mechanism of material removal 

during the early and advanced stages of erosion damage were investigated. Special attention 

was given to the influence of impact speed of the erosion behaviour. Cumulative mass loss, 

number of impingements, erosion initiation time and maximum erosion rate (ERmax) with 

respect to the impact speed were derived. Study on the mechanism of material removal was 

conducted with the aid of a scanning electron microscope (SEM). Here, the as-eroded surface 

and polished cross sectional views were investigated.  

3.2. Experimental procedure 

3.2.1. Material and geometry 

For the present study, Ti-6Al-4V (ASTM B265, Grade 5) alloy, used for compressor 

blades in gas turbine, was investigated. Typical room temperature physical and mechanical 

properties are: elastic modulus (113GPa), Poisson‟s ratio (0.342), melting point temperature 

range (1604-1660°C) and tensile strength (880MPa). T-shaped coupons, as shown in Figure 

3-1, were machined using a CNC Haas machine under flood coolant in accordance to the 

WDE testing rig geometry. Figure 3-2 shows the starting microstructure of the Ti-6Al-4V 

alloy which contains α and β phases. 



 

25 

 

 

Figure 3-1 : Typical T-shaped Ti-6Al-4V sample (dimensions are in inches). 

 

Figure 3-2: SEM micrographs showing the initial Ti-6Al-4V microstructure. 

3.2.2. WDE testing, mass loss measurement and characterization of eroded coupons 

A state-of-the-art rotating disc rig at Concordia University, shown in Figure 3-3, was used 

for studying the WDE behaviour of the Ti-6Al-4V alloy. The test was carried out in 

accordance with ASTM G73 standard [29]. This is a unique testing rig that reaches up to 500 

m/s linear speed (equivalent to 20,000 rpm rotational speed). It has a working chamber 

coupled with a vacuum system, a compressed air driven turbine and a water droplet 

generating system. The rig has a user friendly control system allowing monitoring of the 

vibration level, vacuum level, chamber temperature, turbine bearing temperature as well as 

the rotational speed. Coupons are fixed at the opposite ends of the rotating disc as depicted in 

Figure 3-3.   
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Figure 3-3: Schematic illustration of the water erosion rig used in the present work. 

 To avoid friction between the rotating disc and air, that cause significant temperature 

rise, a 30-50 mbar vacuum is maintained during the experiment. Thus, favourable working 

temperature was maintained and water evaporation avoided. This vacuuming approach 

further allows for WDE testing at very high impact speeds. It is worth mentioning that a 

separate setup using a transparent chamber was used to simulate the water droplets behaviour 

inside the rig. The droplet size distribution was monitored using a high speed camera (9000 

frames per second) with the aid of this setup. Furthermore, the number of droplets was 

counted which was essential for computing other parameters such as the volume of impinging 

water. Similar water droplet generation and size distribution determination has been reported 

[11,17,28]. Typical WDE testing parameters are summarized in Table 3-1. Once a desired 

rotational speed was attained, the water droplets (de-ionized water) were introduced while 

controlling the flow rate. The setup enabled the droplets to impact the coupons at 90° in a 

repetitive fashion. The impact angle of 90º causes the most severe water erosion damage. The 

erosion exposure time depended on the impact speed used. However, timings at 30 second 

intervals were used in order to capture the first stage of the erosion process (incubation 

period). Also, longer times (1, 2, 3 up to 840 minutes) were employed as the test progressed 

to the advanced stage of the erosion process. 
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Table 3-1: WDE test parameters used in this work 

Process parameter Variable 

Impact speed (m/s) 150, 200, 250, 275, 300, 325, 350 

Rotational speed x 10
3
 (rpm) 6, 8, 10, 11, 12, 13, 14 

Flow rate (liter/min) 0.05 

Nozzle distance from coupon (mm) 5 

Average droplet size (µm) 463 

Initial pressure (mBar) 30-50 

Impact angle (°) 90 

Coupons were weighed using a balance and pictures were taken with a standard stereo 

optical microscope, at each interval. Typical erosion curves such as cumulative mass loss 

versus exposure time/number of impingement and ERmax versus impact speed were plotted. 

For accurate determination of incubation period and maximum erosion rate, a three line 

representation method was used as demonstrated in Figure 3-4 [12]. The mechanism of 

material removal during the incubation and advanced stages was monitored and the damages 

were characterized using SEM. Here, the as-eroded surface and polished cross sectional 

views were investigated. Microcracks, stress wave propagation, crack initiation sites, 

formation of pits and removal of cavity were primarily investigated. Results and discussion 

are presented in the next section. 

 

Figure 3-4: Typical three line representation for WDE curve characterization [12]. 
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3.3. Results and discussion 

3.3.1. Droplets generation and size distribution 

Prior to the WDE tests, several experiments were performed with an impact angle of 90° 

in order to establish and calibrate the erosion test conditions, such as initial pressure, flow 

rate and droplet size distribution. Droplet generating system and a nozzle were used to 

produce a streak of water droplets. The generated droplets and sizes depend on the water line 

pressure, nozzle diameter and flow rate [17]. In this study, water line pressure of 1psi, flow 

rate of 0.05 liter/min and nozzle diameter of 400 µm were used. The diameters of the droplets 

were measured and a statistical distribution of 200 droplet diameter counts was derived as 

shown in Figure 3-5a. Figure 3-5a indicates that the droplet size range was between 400-527 

µm with an average size of 463 µm. In addition, the observed droplet size range is within the 

spectrum of size ranges (50-1500 µm) encountered by components subjected to WDE 

[32,109] and used in similar investigations [11,17,28,31]. During the off-situ droplet size 

monitoring and with the aid of a high speed camera, the equivalent number of droplets hitting 

the coupon surface per revolution was obtained. The number of droplets hitting the surface 

depends on the dimension of the exposed surface. For instance, Figure 3-5b shows that 6 

droplets would be hitting the exposed surface of an 8 mm thick coupon per revolution.  

 
Figure 3-5: (a) Statistical distribution of droplet size range and (b) equivalent number of 

droplets hitting the coupon. 
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This observation and finding indicate that the total number of droplets or volume of water 

impinging the coupon during testing can be quantified with reasonable degree of accuracy.  

3.3.2. WDE curves and characterization 

Water erosion results are typically reported as cumulative material loss versus cumulative 

exposure time [29]. However, “number of impingements” was preferred to cumulative 

exposure time in this paper. This is because the number of droplets impinging the coupon at a 

particular time was known (Figure 3-5b). Moreover, the exposure time does not quantify the 

amount of water used, thus, number of impingements could be employed successfully in 

representing the experimental results and data. Per contra, this was not the case in earlier 

WDE studies such as in [9,25,33]. Moreover, the number of impingements was obtained 

using Equation 3-1. 

                                                               

Where      is the number of impingement,   is the rotational speed (rpm),     is the 

erosion exposure time (minutes) and           is the number of droplets hitting the coupon 

per revolution which is 6 as per Figure 3-5b. Contrarily, Kamkar [9] defined the number of 

impingement as “the number of times the sample intersects the water stream”. This definition 

would render the x-axis cumulative exposure duration inaccurate or underestimated, since 

only      were considered while neglecting          . It is worth noting that the number of 

droplets impacting the sample varies with droplet size thus, rendering [9]‟s estimation more 

inaccurate. Therefore, it will be difficult to quantify the volume of water injected at a 

particular time from [9] and the number of impingements to erosion initiation will be 

underestimated. 

The cumulative mass loss can be described as the sum of material loss due to exposure to 

an erosive medium such as water at a particular time. For better quantification of the mass 

loss measurement, tested coupons were weighed after each interval. For instance, 30 seconds 
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intervals up to 2 minutes were taken initially in order to capture the incubation period (period 

of negligible mass loss) [12]. It is worth mentioning that the measurable mass losses are 

mostly observed when the first threshold velocity (endurance limit) is exceeded after a certain 

number of impacts [30]. Therefore, the first threshold velocity is the velocity below which no 

damages (significant mass losses i.e. > 0.2 mg) are observed. The cumulative mass loss 

versus the exposure time/number of impingements graphs for the varied speed tests are 

reported in this work. The WDE curves for impact speeds of 150, 200, 250, 275 and 300, 325, 

350 m/s are shown in Figures 3-6a and 3-6b, respectively. Figures 3-6a and 3-6b show that 

reducing the impact speed delayed the erosion initiation time and reduced the erosion rate. At 

an impact speed of 150 m/s no erosion was observed after long exposure to the erosive 

medium. Only an erosion trace line was observed under the optical microscope as shown in 

the inset macrograph in Figure 3-6a. This indicates that the first threshold velocity (impact 

speed) of the material is greater than or equal to 150 m/s. On the other hand, increasing the 

speed showed faster erosion initiation and greater erosion rates. More on the effect of speed 

on the erosion initiation and maximum erosion rate has been discussed in sections 3.3.2.1 and 

3.3.2.2, respectively. It is well known that the shape of erosion curves depends on the target 

material and the erosion condition [29]. For instance, material with a well-behaved erosion 

curve has an S-shaped erosion curve with distinct erosion stages [29]. These stages are: 

incubation period with negligible mass loss; acceleration stage (energy accumulation zone 

[110]) to a maximum rate stage; deceleration (attenuation) stage with declining erosion rate 

and terminal or final steady state with constant erosion rate [12,30]. These characteristic 

curves are further affected by surface roughness [17,30], surface properties, microstructure 

[10], geometry [30], combination of impact speed and droplet size [30]. For instance, Kirols 

et al. [17] reported that merely polishing the surface prior to WDE tests delayed the erosion 

initiation and in some cases, the maximum erosion rates in 12 % Cr-Steel and Ti-6Al-4V. 
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Figure 3-6: WDE curves for (a) 150 to 275 m/s and (b) 300 to 350 m/s impact speed tests. 

It can be seen from Figure 3-6a that the erosion stages were different after 50 x 10
5
 

impingements for impact speeds of 200 and 250 m/s. The stages attained were incubation and 

maximum erosion for 200 and 250 m/s. This is also consistent with the WDE results of 

forged Ti-6Al-4V [9]. In this present study, the surface quality/roughness, microstructure and 

geometry were kept constant. Furthermore, employing the three line representation according 

to Figure 3-4, the erosion curves were characterized and the initiation time and maximum 

erosion rate were calculated. 
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3.3.2.1. Effect of impact speed on the incubation period 

The initiation of erosion is an important stage in the erosion process though it is often 

affected by several factors, such as: surface roughness, impact pressure, velocity and erosion 

conditions. According to Hoff et al. [111], the predominant factor in the WDE material 

damage is the impact velocity of the specimen. This was attributed to the increased kinetic 

energy with increase in impact velocity (V
2
). In real life applications, however, the impact 

velocity comes from both the movement of the droplet and the rotation of blades. Kiel et al. 

[112] reported that the kinetic energy transferred into the material results in plastic 

deformation. However, this stage is still not well understood as to the definition of the stage, 

which solely depends on the observer. For this work, the incubation period was defined as the 

period where mass loss is negligible. At the early stages of the erosion damage (end of 

incubation period), isolated pits are observed which result in measurable mass loss. The early 

damage mechanism is discussed in section 3.4. Table 3-2 shows the typical incubation period 

(erosion initiation time) and number of impingements to erosion initiation as well as the 

maximum erosion rates observed at various speeds. From the three line representation 

analysis, the general trend is that the higher the speed the shorter the incubation period. This 

was the case for impact speeds from 200 up to 325 m/s. However, it was observed that the 

incubation periods for speeds of 325 and 350 m/s were close and in the range of seconds. 

This can be attributed to the severity of the test and the resulting high induced stresses. The 

observed trends can also be attributed to the increased water hammer pressure and impact 

energy with increased impact speed. This observation is in accord with the explanation given 

by Thiruvengadam and Rudy [110], Ma et al. [11], Mahdipoor et al. [24] and Kamkar [9]. 

The water hammer pressure is the induced pressure exerted by the “arrested” liquid droplet 

on the solid surface. This is an important factor that influences the surface damage especially 

at the incubation stage [11]. According to Heymann [12,13], this pressure can be 
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considerably higher than the yield strength of many alloys especially at high impact speeds. 

Equations 3-2 to 3-4 show the different water hammer pressure representations in the 

literature [12,13]. 

                                                                    (3-2) 

                                (  
  

 
)                                                     (3-3) 

                  (   
       

 
)                                              (3-4) 

Where   is the pressure,   is the density of the liquid (1000 kg/m
3
),   is the acoustic velocity 

of the liquid (1500 m/s – for water),    is the impact velocity (m/s) and     for water.  

These equations are approximations that satisfy wide range of impact speeds on solid 

surfaces. Equation 3-2 represents one dimensional water hammer pressure developed for 

liquid-solid impact on a rigid surface. Equation 3-3 incorporates the shock wave velocity 

variable for rigid and elastic surface. Moreover, Equation 3-4 provides a reasonably critical 

impact pressure with the condition that Mach number is greater than 0.2 as reported by 

Heymann [13]. Therefore, impact speeds equal to or greater than 300 m/s will satisfy the 

assumption of [13]. Table 3-2 shows the calculated impact pressure values based on Equation 

3-4 for different impact speeds. One can see that the impact pressure is proportional to the 

impact speed and at higher speeds the pressure induces stress that exceeds the yield strength 

of the material. Sanada et al. [113] also reported that different pressure distributions is 

produced at different Mach number (Mi) ranges. They [113] concluded that the difference in 

pressure at the center and edge of the droplet is minimized for low Mi (between 0.1 and 0.4). 

For high Mi (>0.4), the edge pressure is 3 times that of the center when jetting starts [16,114]. 

Therefore, the initiation period will be influenced greatly by the exerted impact pressure as 

shown in Figure 3-7. Figure 3-7 also shows that the impact pressure is inversely proportional 

to the number of impingements to erosion initiation. Zhou et al. [115] showed a linear 
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relationship between water hammer pressure and droplet size. However, in this present work 

the average droplet size was kept constant.  

Table 3-2: Data from three line characterization of erosion curves for various speeds 

Impact 

speed 

(m/s) 

Rotational 

speed (rpm) 

Water 

hammer 

pressure 

(MPa)** 

Erosion 

initiation 

time 

(minutes) 

Number of 

impingement 

to initiation x 

10
5
 

ERmax x 10
-5

 

(g/minute) 

150 6000 506 840* 302.40* * 

200 8000 705 340 163.20 1.54 

250 10000 919 45 27.00 12.00 

275 11000 1032 20 13.20 25.00 

300 12000 1148 4 2.88 125.00 

325 13000 1268 2.5 1.95 172.00 

350 14000 1392 1 0.84 333.00 

*WDE test was stopped due to prolonged testing without any erosion,**from equation (3-4). 

 

Figure 3-7: Relationship between impact speed, impact pressure and erosion initiation. 

Figure 3-6 shows that reducing the impact speed delayed the erosion initiation time and 

this was attributed to the reduced impact pressure and impact energy at lower speeds. It is 

important to note that when lower speeds were used, the erosion time intervals were 
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increased. Therefore, prolonged erosion time corresponding to more water impingements was 

adapted. For instance, this can be seen for speed test of 200 m/s (Figure 3-6a) where the 

erosion started after 340 minutes (16.32 million impingements). Even though the reduction of 

impact speed showed prolonged initiation times, such speeds cannot be used in the mitigation 

of erosion. These low speeds are not practical in running compressor blades in gas and steam 

turbines. The present study covered a wide range of impact speeds (150 to 350 m/s) however, 

very low speeds (˂150 m/s) and very high speeds (>350 m/s) were not tested. The 

extrapolation of initiation times and maximum erosion rates using the current data might give 

unsatisfactory results. This is due to the fact that liquid characteristics and target responses 

vary significantly with impact speeds. Since the erosion rate is not constant with time, 

prediction of erosion damage would also be difficult. In this case, experimental investigation 

becomes paramount. 

Another point of interest is the threshold speed range (150 m/s ≤ Vthreshold ˂200 m/s) that 

was observed after prolonged time of exposure (up to 840 minutes for test at 150 m/s). This 

velocity is the so-called first threshold while the velocity at which mass loss is measurable is 

the second threshold [30]. However, there is a challenge in understanding this velocity due to 

the target response, erosion facility, surface quality and the water droplet characteristics such 

as size, density, impact angle and the frequency of impact. The forgoing point has been 

mentioned by Rein [116]. Table 3-3 shows the experimental Vthreshold values for different 

materials and applications. 

One might suggest that for every reported threshold speed, the test conditions should be 

clearly stated. This is because the first threshold velocity by one researcher might correspond 

to the second velocity by another researcher. For instance, Thiruvengadam and Rudy [110] 

defined their threshold velocity as the velocity at which detectable indentations are observed 

using a 10x magnifier under suitable lighting. They [110] reported the relationship between 
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the impact (threshold) velocity and the number of impacts after which detectable indentations 

are observed on Al 1100 and 316SS alloys. After several repeated observations, they [110] 

showed that the threshold velocities corresponding to 10 million impacts were 15 m/s for Al 

1100 and 45 m/s for 316SS (Table 3-3). In this work, it was found that using average droplet 

size of 464 µm and flow rate of 0.05 litre/min, the threshold velocity was in the range of 150 

m/s ≤ Vthreshold ˂200 m/s after 840 minutes of exposure time which corresponds to 

approximately 30 million impingements. Here, only a shiny erosion line trace was observed 

under the optical macrograph as shown in the inset of Figure 3-6a. 

Table 3-3: Experimental threshold velocities and n
th

 power of velocity by different authors 

S/No Material 

First 

threshold 

speed (m/s) 

n
th

 power 

of velocity 
Ref. 

1 S15C-Carbon steel
1
 80 6 [117] 

2 STPA22- Alloy steel
1
 90 7 [117] 

3 SUS304-Stainless steel
1
 120 7 [117] 

4 Al1070, Al5056, C3604, SS400, S20C
1
 - 7* [118] 

5 Al-1100
2
 15 5 [110] 

6 316SS
2
 45 5 [110] 

7 TiAl
3
 200-250 11-13 [28] 

8 Ti-6Al-4V
3
 - 9 [9] 

9 Ti-6Al-4V
3
 - 7-9 [28] 

10 Ti-6Al-4V
3
 150 ≤ V˂ 200 >9 Present study 

1
Liquid impingement erosion for pipe wall thinning, 

2
Liquid jet impact, 

3
Water droplet 

erosion for compressor blade applications, *Average value for all materials with a scattering 

from 5-9 depending on material. 

3.3.2.2. Effect of impact speed on the maximum erosion rate 

Immediately after the energy accumulation (acceleration) stage the material loss rate 

becomes significant up to a maximum. This stage is the zone during which the measured 

mass loss is at its peak due to fracture and deep craters [110] thus, huge chunks of materials 

are removed. From Table 3-2, the influence of impact speed on the maximum erosion rate 

showed that greater ERmax values were recorded at higher speeds. Oka et al. [119] also 
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reported similar trend of maximum damage (erosion) rate at higher impact speeds. For lower 

speed tests, more exposure time/impingements were required to have an equal mass loss than 

when using higher speeds. Moreover, it can be suggested here that each impinging droplet 

causes its own damage during the very high impact speed. Whereas, water accumulation 

might have decreased the erosion rates in low impact speed test. However, experimental 

proofs are needed to verify this hypothesis. More so, the energy level is greatly attenuated at 

lower impact speed than higher impact speed. The ERmax and impact speed relationship has 

been discussed in the literature [110,117]. That is the power law relationship where speed 

exponents were determined. This dependency between the ERmax and impact velocity is 

derived using Equation 3-5. 

                                                 

Where    is the erosion rate,   is the impact speed and   is the speed exponent. Typical 

speed exponent values for metal are in the range of 5-7 as reported in the literature 

[110,111,120]. Table 3-3 shows speed exponent value for various materials in comparison 

with the present work. Based on Table 3-3 and Figure 3-8, a different exponent value higher 

than 9 which is in accord with Kamkar [9] and Mahdipoor et al. [28]. Thus, this can be 

attributed to the test conditions, set-up and erosive medium characteristics. Having different 

material microstructures could reveal different exponent values. The method of ERmax 

determination could also have played a role in this difference [28]. For instance, using the 

instantaneous erosion rate approach which is the slope between two consecutive points on the 

WDE curve could give a difference value than that observed when using Figure 3-4. Even 

though erosion rate is sensitive and proportional to the impact speed (generally erosion 

conditions) [28], no satisfactory explanation for the dependency between the erosion rate and 

impact velocity has been provided in the literature yet. This could be due to the fact that other 

parameters such as droplet size, droplet velocity and the target materials properties are also 
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playing significant roles in the erosion process. For instance, Mahdipoor et al. [28] reported 

different speed exponent values for Ti-6Al-4V tested with different droplet sizes. Values of 

8.9 and 7.7 were observed for droplet size of 463 and 603 µm, respectively. Also, Ikohagi 

[121] mentioned the influence of liquid film on the erosion rate. He [121] studied the 

numerical simulation of single droplet (100 µm size) impingement on a solid surface. He 

[121] found that the exponent value (n) increased from 5.3 to 7.7 for the solid surface with a 

liquid film of 2.5 µm thickness. Fujisawa et al. [122] further showed in their experimental 

work combined with theoretical consideration that increase in the liquid film thickness 

increases the damping effect of the impact pressure. Hence, thicker liquid film shows reduced 

erosion rates and this is in accord with the suggestion by Ikohagi [121]. The works in 

[28,121,122] clearly indicate that speed exponent is function of droplet size and the entire 

testing conditions. Therefore, accounting for the effect of all these parameters might be 

tedious. Thus, different exponent values might be observed.  

 

Figure 3-8: Log-log graph of ERmax versus impact speed. 

3.3.3. Optical macrographs of eroded coupons 

To demonstrate and understand how the erosion process evolved and progressed, optical 

macrographs were taken after each interval during testing. This is also the interval during 

which the coupon is weighed and the mass loss is recorded. Figure 3-9a-c shows the erosion 
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evolution and procession for the tested Ti-6Al-4V coupons at impact speeds of 250, 300 and 

350 m/s, respectively. Normally, the erosion process initiates with an erosion trace line due to 

impingement of droplets [11,17]. Figure 3-9a shows this initiation process after 20 minutes of 

exposure time at 250 m/s where the mass loss is negligible. This stage is reported as the 

region of local plastic deformation that causes grain displacement leading to formation of 

microcracks [112] and depressions [22]. After a few additional impacts, small pits are formed 

along the erosion trace line and with further impacts, large isolated pits are formed and 

gradual pit growth is observed. This is the situation seen in Figure 3-9a after 50 minutes of 

exposure time where mass loss of 0.0007 g was recorded. After 65 minutes, acceleration 

stage was reached where significant mass loss of 0.0026 g was observed due to the pit 

coalescence and secondary cracks intersecting thereby, detaching larger pieces of material 

[9,10]. The maximum erosion rate (0.000213 g/min) was reached after 80 minutes where 

material damage was at its peak and complete crater has been formed. The material damage 

was due to high pressure exerted and the liquid lateral jetting. The jetting is the radial outflow 

of the liquid droplets after impact which is identified as a major cause of the erosion damage 

[18]. This jetting also interacts with surface discontinuities [16], thereby forming surface 

cracks and surface asperities. This leads to significant removal of material during the 

advanced erosion stages. It is important to note that with increased exposure time and a 

severe erosion test (for instance, increase in impact speed), both depth and width of the 

craters are increased [11]. For instance, crater width of less than 1 mm and more than 1 mm 

were observed after 65 and 310 minutes, respectively (Figure 3-9a). This observation is also 

true when comparing the crater width/depth for different speeds at the same exposure time 

and this is in accord with the findings of [9]. Similarly, Figures 3-9b and 3-9c show that 

increasing the impact speed accelerated the erosion evolution and progression as compared to 

Figure 3-9a. For instance, measureable mass losses were observed after 8 and 2 minutes of 
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exposure only at 300 m/s (Figure 3-9b) and 350 m/s (Figure 3-9b), respectively. Maximum 

erosion rates were 0.001125 g/min and 0.00245 g/min after 12 and 5 minutes of exposure at 

300 m/s and 350 m/s, respectively. Full crater was formed after 3 minutes at 350 m/s 

compared to the full crater formation after 80 minutes at 250 m/s. Therefore, Figures 3-9a-c 

show the influence of changing the impact speed on the erosion behaviour. The early erosion 

initiation and progression at high impact speed is attributed to the increased impact pressure 

which induced significant stresses.  

 

 

 

Figure 3-9: Optical macrographs showing the erosion evolution and progression on Ti-6Al-

4V coupon tested at (a) 250 m/s (b) 300 m/s and (c) 350 m/s. The scale at the bottom of each 

image is in mm. 

To further understand the influence of impact speed on the erosion crater behaviour; the 

accumulated material loss, crater width and depth were observed after certain exposure 

times/number of impingements at different impact speeds. Figure 3-10 shows the polished 

cross-sectional views of the erosion craters at impact speeds of 250, 300 and 350 m/s halted 

after 415, 70 and 30 minutes, respectively. Prolonged exposure time was chosen for low 
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impact speed (250 m/s) in order to have significant mass loss for better comparison. The 

crater widths and depths were measured with the aid of a microscope. The accumulated 

material losses, crater widths and depths are presented in Table 3-4. It can be seen from Table 

3-4 that increasing only the impact speed showed significant mass loss and increase in crater 

dimensions even with fewer number of impingements/exposure time. For instance, test at 350 

m/s which was halted after 30 minutes (after 25 x 10
5
 impingements) showed 48.9 % and 

31.2 % increase in mass loss as compared to test at 250 m/s (after 249 x 10
5
 impingements) 

and 300 m/s (after 50 x 10
5
 impingements), respectively. Similarly, increasing the impact 

speed from 250 m/s to 350 m/s showed a 32 % and 100 % increase in crater width and depth, 

respectively. It is worth noting that the number of impingements for test at 250 m/s is 10 

times more than test at 350 m/s. It should also be noted that the crater depth might vary 

depending on the location of the cross-section. This is the case shown in Figures 3-10b-c 

where 350 m/s test showed less depth compared to 300 m/s test. Based on several cross-

sectional views taken, similar trends were observed especially for the accumulated mass loss 

and crater depth. For instance, another set of craters were sectioned after 18.6 x 10
5
, 50 x 10

5
 

and 30 x 10
5 

impingements at 250, 300 and 350 m/s, respectively. Accumulated mass losses 

were 0.0170, 0.0264 and 0.0391 g, respectively. Crater depths of 0.392, 0.769 and 0.841 mm 

were observed, respectively. This observation is in general agreement with the data in Table 

3-4 which indicates a linear relationship between the impact speed and observed crater depth. 

Moreover, the significant mass losses observed at high impact speed (350 m/s) could suggest 

that the crater dimensions are highly representative. As mentioned previously, this is 

attributed to the increased test severity, which induces high stresses. This can also be 

attributed to the change in droplet properties with increase in test severity [17]. 
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Figure 3-10: Macrographs showing the influence of impact speeds on the observed crater 

width and depth. 

Table 3-4: Summary of the observed accumulated material loss, crater width and depth at 

different speeds  

Impact 

Speed 

(m/s) 

Experiment stopped after Accumulated 

material loss 

(g) 

Crater 

width 

(mm) 

Crater 

depth 

(mm) 
Exposure time 

(minutes) 

No. of 

impingements x 10
5
 

250 415 249 0.0237 1.09 0.50 

300 70 50 0.0269 1.28 1.08 

350 30 25 0.0353 1.44 1.00 

3.4. Erosion mechanism 

WDE phenomenon sets-up different material removal mechanisms at various stages of the 

erosion process. This damage will also depend on the material nature whether it is brittle or 

ductile, for example. However, the material removal is not well understood due to the 

difficulty in accurately predicting the hydrodynamic condition that causes particular erosion 

damage [10]. The individual stages during the erosion process merge into one another 

without any noticeable transition. For this reason, the present investigation carefully explored 

the important stages of the erosion such as the early stage of erosion damage (damage 

initiation stages) and advanced stages as shown in Figure 3-11. Regions A and B in Figure 3-

11a represent the early stages of the damage and advanced stages, respectively. Figures 3-11b 

and 3-11c show the isolated pits during the early stages. It is important to note that at a 

moderate impact speed test (200-300 m/s) more apparent features can be observed as 

compared to a severe test. Based on the forgoing point, SEM images revealed several features 
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obtained from different WDE tested conditions. This is to fully understand the mechanism of 

material removal during the erosion process. 

 

Figure 3-11: SEM showing (a) typical erosion initiation and advanced erosion stages and (b-

c) isolated pits during early stages of erosion damage. 

3.4.1. Early stages of erosion damage 

Based on the SEM observations, it was found that the formation of a shiny erosion line, 

isolated erosion pits of different dimensions, asperity formation and network of microcracks 

were the predominant features during the damage initiation period. Other features such as 

grain tilting resulting in grain boundary damage were also reported by Kamkar [9]. 

Nevertheless, as pointed out earlier that the definition of incubation stage (start and end) 

depends on the observer and this might vary significantly. For instance, it was believed that 

when the plastic deformation limit is reached and with more energy (kinetic energy) supplied 

to the target, erosion initiation starts [18,123]. It is worth noting that for plastic deformation 

to occur, the dynamic yield strength of the target material must be exceeded [34]. The plastic 
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deformation induces high local concentration of crystalline defects, which induce high 

internal stresses [123]. With more droplet impacts surface damages such as the microcracks 

are observed. The initiation of microcracks is an important feature observed at the on-set of 

the erosion process. Rieger [123] reported that the crack formation occurs when the fracture 

strength is exceeded. Kamkar [9] reported that the cracks formed due to the high local 

deformation with conditions related to low cycle fatigue (LCF). Ma et al. [11] attributed the 

formation of surface microcracks to synergetic effect of water hammer pressure and stress 

waves. Figure 3-12a shows how the crack lines are formed due to the repeated droplet 

impacts. Figure 3-12b shows a typical network of microcracks that was observed and this can 

be attributed to the aforementioned reasons given by [9,11,123]. These microcracks chip out 

small amount of material leading to a stress raiser that initiates more rapid failure due to 

repetitive impacts with sufficient magnitude [30,124]. It is evident from Figure 3-12b that 

microcracks during the early stages of damage serve as potential sites for favourable pit 

coalescence and growth and crack propagation [107]. Thus, detachment of larger fragments 

occurs at later stages in the erosion process due to following impacts and liquid lateral jetting. 

 

Figure 3-12: Shows the formation of cracks due to droplet impacts (a) and typical network of 

microcracks (b). 

Also, water impingement results in surface depressions, which are typical trademarks 

associated with the incubation period [19–23]. These depressions are most likely to be 

observed at low impact velocities whose impact pressures induce stresses greater than the 
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yield strength of the material [125]. At high velocities, the formed depressions might not be 

seen due to the severity of the test. Field et al. [126] pointed out that these depressions are 

enlarged with further impacts and in turn produce surface asperities due to repeated liquid 

lateral jetting. Heymann [18] stated that the high speed lateral jetting interacts with surface 

irregularities or asperities, thereby causing further crack initiation and damage. Also, Hattori 

et al. [117] mentioned that these asperities are the reasons for the fatigue crack initiation and 

material removal. Figure 3-13a shows the formation of surface asperities as explained by 

[18]. Figures 3-13b-c show surface asperities observed during the early stages of the erosion 

damage after few droplet impacts and accumulated impacts. Figure 3-13c indicates that the 

asperities further open-up with increased impacts thus, leaving a large cavity on the surface 

that deepens with time [18]. Here, removal of material by the shearing or tearing mode was 

observed. 

 

Figure 3-13: Formation of surface asperity [18] (a) typical surface asperities after few impacts 

(b) and accumulated impacts and continuous lateral jetting (c). 
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 During the erosion initiation stage, isolated pits of irregular shapes and dimensions were 

found as shown in Figures 3-11b-c and 3-14a. This could possibly suggest the irregularity of 

the erosion process and the initial surface quality such as different surface imperfections. 

With repeated impacts on the pits, deeper and wider craters are formed thereby, leading to the 

advanced erosion stage where significant material is lost. The phenomenon of compression 

and shear waves is also paramount in understanding the erosion damage. According to the 

elastic wave theory of solids [15], “when an impulse loading acts on a solid surface, a 

compression and a shear wave are generated in the bulk solid and on the surface, a Rayleigh 

surface wave is generated” [16]. As the compression wave travels along a free surface, shear 

(head) wave is formed. The shear wave offsets the stresses caused by the compression wave. 

Shi and Dear [127] stated that the liquid lateral jetting causes energetic shear waves in the 

solid, thereby forming shear bands in sub-layer of materials. Field et al. [128] reported that 

the Rayleigh wave forms circumferential cracks as the liquid jets away. In this WDE study, 

the droplet impact causes the compression wave while the lateral jetting causes the shear 

wave. The material folding/upheaving shown in Figure 3-14b could be due to the shear 

waves. Also, fatigue striation marks are also shown which indicates the fatigue-like damage.   

 

Figure 3-14: SEM micrographs showing (a) different pit sizes and (b) material folding and 

fatigue striation marks. 

These fatigue striation marks are due to the fatigue-based damage caused by cyclic nature 

of the liquid droplets [9,11,117]. Similar features (material folding and striation marks) were 
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also observed at the advanced stages of the erosion process [11]. In general, the erosion 

initiation stage strongly depends on magnitude, duration and frequency of the localized 

loadings as well as the material‟s response [124], microstructure [18] and surface quality 

(roughness) [17,30]. 

3.4.2. Advanced erosion stage 

The advanced stage in this study is shown as region “B” in Figure 3-11a. Figure 3-15 

shows several damage features observed during the advanced erosion stage. Significant 

amount of material was lost due to water droplets impingements. This loss of large chunks of 

material was due to the hydraulic penetration as indicated by the arrow in Figure 3-15b. This 

is the penetration of liquid over pre-existing cracks or pits thus, forcing large chunks of 

material to be removed. Moreover, the hydraulic penetration phenomenon has been observed 

and reported as the most profound material removal mode in Ti-6Al-4V [11,24–27]. Figure 3-

15b also revealed how a sub-surface crack emanated and propagated from beneath the erosion 

crater to the top surface. This could be due to the interaction of the impacting droplets with 

sub-surface defects such as cracks. Typical cracks were observed as indicated by the arrows 

in Figure 3-15c. These cracks could have originated from highly stressed points or damaged 

grain boundaries. It has been reported that materials are more susceptible to erosion damage 

if imperfections are present at the grain boundaries [14]. This causes large detachment of 

grains which leaves a deep void. Material upheaving at the edge of the crater was observed as 

shown in Figure 3-15d. Adler and Vyhnal [27] observed this material upheaving in their rain 

erosion experiment and attributed it to the merging of cracks which originated from the 

erosion pits. However, this can also be attributed to the shear wave propagation due to the 

lateral (radial) jetting of the liquid.  
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Figure 3-15: SEM showing eroded Ti-6Al-4V coupon during the advanced erosion stage. 

It is imperative to show the crater depths and possible interaction between the formed 

craters at longer erosion times. This approach of observing multiple craters presented in this 

study might give better understanding in regards to material removal mechanisms as WDE 

progresses. Hence, crater geometry, interactions and mean depth of craters can be observed 

fully. Figures 3-16a and 3-16b-c show the crater cross section A-A and the in-depth 

microstructural features, respectively. One can see different crater depths and geometries 

(spherical and V-shaped crater at points 1, 2 and 3). These can be attributed to the hydraulic 

penetration and the irregularity of the erosion process. The deeper craters might have been the 

initially damaged locations thereby, forming deeper pits and sub-tunnels due to accumulated 

impacts and lateral jetting, respectively. Other locations (point 4 for instance) showed 

relatively levelled surface as compared to points 1, 2 and 3. This also confirms the 

explanation given in section 3.3.3 that the crater depth might vary significantly. The variation 

in the crater geometries and depths could be additional contributions to the difficulty in fully 

understanding the process of material damage by erosion.  
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Figure 3-16: (a) the crater section A-A and (b) the in-depth microstructural view during the 

advanced erosion stage. 

Looking closer at the craters shown in Figures 3-16b-c, several other features could be 

observed. For instance, sub-surface cracks and side wall cracks were observed as shown in 

Figures 3-17a-b. The sub-surface cracking is a direct consequence of the continuous droplet 

impact. The continuous impact allows for the interaction between the transmitted 

(compression) and reflected (tension) stress waves which occurs repeatedly [11]. This leads 

to the initiation of sub-surface cracks and the propagation of existing cracks. This cracking 

could be intergranular or transgranular or the combination of both in Ti alloys 

[14,28,129,130]. Also, due to repeated droplet impacts on existing cavities, secondary pits 

shown in Figure 3-17c are formed and these are termed as sub-tunnels within the craters [18]. 

This sub-tunnelling phenomenon has been described and observed by Hammitt and Heymann 

[10], Mahdipoor et al. [130] and Kamkar et al. [9]. Furthermore, Figure 3-17d shows the 

material upheaving/folding due to the stress wave and this is in accord with the top surface 

feature shown in Figures 3-14c and 3-15d. 
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Figure 3-17: Erosion crater showing (a) sub-surface cracks and propagation on the sidewall 

and base, (b) sub-surface cracking (c) secondary pits formation due to high cumulative 

impacts, and (d) material upheaving/folding. 

Figures 3-18a-c show micrographs taken after 54 x 10
5
, 17 x 10

5
 and 8.4 x 10

5
 

impingements at 250, 300 and 350 m/s, respectively. Figures 3-18a-c show side wall cracks 

which is caused by the liquid lateral jetting. With increased droplet impacts, these side wall 

cracks propagate removing large chunk of material. This could further highlight the reason 

why the crater dimensions (width and depth) were increased with increased exposure and 

severity. For instance, locations X, Y and Z in Figure 3-18 indicate vulnerable portions of the 

material to be removed with increased impacts. Location Z is the largest portion to be 

removed compared to X and Y. This could account for the significant mass losses observed 

when using high impact speeds. Depending on the severity of the test, the liquid jetting effect 

might show different crater geometries. Hence, observing the influence of the impact speed 

on this jetting will be paramount. It can be seen from Figures 3-18a-c that the lateral jetting is 

more apparent with increasing the impact speed even with relatively low number of 

impingements/less exposure time. For instance, Figure 3-18a shows that the liquid jetting 
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effect seems to be evenly distributed in the crater for mild erosion conditions (≤250 m/s, for 

instance). However, Figures 3-18b-c show more jetting effect on one side for more severe test 

conditions (≥300 m/s). This phenomenon has been observed in several micrographs taken at 

different erosion conditions. This observation is in accord with the claims made by Lesser 

and Field [131] that the response of liquid droplet changes corresponding to changes in 

impact speed. They [131] stated that “if the impact speed is sufficiently low for a given 

liquid, distinct shocks and high-speed jetting would not be expected” and vice versa. 

 

Figure 3-18: SEM micrographs showing craters at (a) 250 m/s (b) 300 m/s and (c) 350 m/s. 

Comparatively, the material damage, crater dimensions and surface features during the 

early stages of erosion damage and advanced stages are different. For instance, during the 

advanced stage, the crater deepens further while the width has a slow increase with further 

impacts. This was not the case during the erosion initiation and subsequent stages where both 

the crater width and depth increased with more impacts.  
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3.5. Conclusion 

The WDE behaviour of Ti-6Al-4V and the mechanism of material removal during the 

early and advanced stages of erosion damage were studied. The following conclusions could 

be drawn from this study: 

(1) Increasing the impact speed decreases the erosion initiation time and increases the 

maximum erosion rates (ERmax). It was also observed that ERmax increases with the 9 

to 10
th

 power of impact speed. A threshold velocity range between 150 and 200 m/s 

was observed after 840 minutes of exposure time corresponding to 30 million 

impingements.  

(2) Erosion crater dimensions were found to be increased with increasing impact speed 

even at significantly lower number of impingements/exposure time compared to low 

speed. 

(3) Early stage of the erosion damage was mainly limited to the generation of 

microcracks, isolated pits and formation of asperities.  

(4) During the advanced stage, the most profound mode of material removal was the 

hydraulic penetration. Fatigue striation, side wall cracks, sub-surface cracks, material 

folding and upheaving were also observed at the advanced stage. Impact speed 

significantly influences the liquid lateral jetting at the advanced water droplet erosion 

stage.   
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ABSTRACT 

The effect of ultrasonic nanocrystalline surface modification (UNSM) on the water droplet 

erosion (WDE) performance of Ti-6Al-4V was studied. It was observed that UNSM induces 

deep levels of compressive residual stresses in both the scanning and transverse directions. 

The treated surface revealed microdimples in a micro-tracked fashion. Mechanical 

deformation marks were observed within the grains due to excessive plastic deformation and 

variation in grain size was observed across the ultrasonically modified layer. Microhardness 

of the UNSM condition was enhanced significantly as compared with the untreated (As-M) 

condition. The WDE performance tests for the UNSM and As-M conditions were conducted 

in a rotating disc rig in accordance with ASTM G73 standard. Influence of impact speed on 

WDE was explored on two different sample geometries (T-shaped flat and airfoil). WDE 

results showed that the flat UNSM samples had enhanced WDE performance at speeds 250, 

275 and 300 m/s as compared with the As-M condition. At 350 m/s, both UNSM and As-M 

conditions showed similar performance. UNSM airfoil samples showed mild enhancement in 

the WDE performance at 300 m/s during the advanced stage as compared with the As-M 

condition. At 350 m/s, the UNSM airfoils do not show enhancement in WDE performance.  

Keywords: UNSM; microhardness; compressive residual stress; WDE; impact speed; Ti-

6Al-4V 
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4.1. Introduction 

In the power generation industry, the fogging method employed to cool the intake air into 

the compressor poses severe erosion damage to the leading edge of the blades. This occurs 

due to the synergy of the impacting water droplets and rotating blades. This is usually termed 

as “water erosion by impingement (liquid impingement erosion) or water droplet erosion 

(WDE)” [6]. WDE is the progressive loss of material from a solid surface due to accumulated 

impacts by liquid droplets [7]. WDE is a complex phenomenon due to many interacting 

parameters such as impact speed, droplet size, impact angle and conditions of the target 

material such as mechanical properties and surface roughness. The main causes of WDE 

damage are the high pressure exerted by the relative speed between the droplets and the 

rotating blade and the liquid lateral jetting [10]. The jetting is the radial outflow of the liquid 

droplets after impact which is identified as a major cause of the erosion damage [18]. 

Heymann [12] proposed four primary modes of WDE damage, which are plastic deformation 

and asperity formation, stress waves propagation, lateral jetting and hydraulic penetration. 

WDE consists of several stages viz: incubation period where mass loss is negligible; 

acceleration stage (energy accumulation zone [110]) where mass loss is significant; 

maximum erosion rate stage where mass loss is at its peak and terminal or final steady state 

with erosion rate declining and remaining constant [12,30]. These stages are further affected 

by surface roughness [30], mechanical properties [18], microstructure [10], geometry [30] 

and combination of impact speed and droplet size [30]. In order to prolong the life span of 

components, the WDE performance of materials such as Ti-6Al-4V must be improved. 

Ryzhenkov et al. [32] stated that the methods of mitigating WDE can be classified into two 

distinct categories with certain conditions; (1) active (intrinsic) methods which basically 

minimize the main factors causing the erosion such as reducing the moisture content as well 

as decreasing the droplet sizes and; (2) passive (extrinsic) methods which aim at enhancing 
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the surface and mechanical properties of blades‟ materials. The passive method has been 

adopted due to its economic feasibility [132]. Despite the efforts to combat or mitigate the 

erosion damage, it has not been possible to identify or quantify an absolute parameter for 

WDE resistance [29]. This is due to the fact that erosion rate is not constant with time and 

therefore, no single value can quantify the erosion performance.  

Several surface modification techniques such as coatings [24,33] and laser surface 

treatments [25,31] have been employed to combat WDE. However, achieving this goal still 

remains a challenge due to the presence of surface defects and microcracks after surface 

modification. Mechanical surface treatments such as deep rolling (DR) [11], has recently 

being explored in this regard. Mechanical treatments are usually employed to enhance the 

fatigue life of components due to the deep levels of induced compressive residual stresses 

[34]. However, more work is still needed in order to fully understand the effectiveness of 

mechanical treatments in combating erosion damage. WDE damage is likened to fatigue-like 

damage due to fatigue striation marks caused by the cyclic nature of the liquid droplet 

impacts [11,18,35]. Researchers [9,117,133] have shown that WDE damage mechanisms is 

influenced significantly by crack initiation and propagation. It is well known that 

mechanical surface treatments retard crack initiation and propagation as well as enhance 

fatigue life [34]. Thus, one would expect mechanical surface treatments to combat WDE 

damage. However, the effect of cold working (strain hardening) before exposing the surface 

to liquid droplet impacts has been questioned. This is because the mechanical treatments 

plastically deform the surface and induce strain hardening. Repeated droplet impacts strain 

harden the material further [10]. Frederick and Heymann [10] stated that the duplication of 

the work hardening process might show detrimental effects and in another report by 

Heymann [18], he suggested the opposite trend with the condition that too much cold 

working should be avoided. To shed more light with regards these claims, a relatively new 
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mechanical surface modification technique called ultrasonic nanocrystalline surface 

modification (UNSM) is explored. This technique harnesses ultrasonic vibration energy 

which converts harmonic oscillations of an excited body into resonant impulses of high 

frequency [42]. The generated energy from these oscillations is used to impact the work 

piece. Tungsten carbide (WC) [36,43] or silicon nitride ceramic (Si3N4) [42,44] ball tip that is 

attached to an ultrasonic horn is used to strike/impact the work piece surface at high 

frequency of up to 20 kHz [42]. Typical impacts on the work piece surface range from 20,000 

to 40,000 shots per square millimeter [42]. Other process parameters include static load, 

number of impacts/strikes, intervals, amplitude and diameter of the ball tip. The high 

frequency striking of the ball leads to severe plastic deformation of the surface, thereby 

introducing high density of dislocations [36]. Hence, the top surface and in-depth of the work 

piece are modified, which improves the mechanical properties. The strengthening effect is 

due to the plastic strain and refined microstructure [37]. The microstructural refinement after 

UNSM treatment improves mechanical properties based on the Hall-Petch relationship [45]. 

Generally, UNSM treatment has shown increased hardness [36–39], reduced grain size 

[46,48], improved surface quality [37] and deep levels of compressive residual stresses 

[37,39,42,49]. Based on the aforementioned attributes, UNSM has shown enhanced fatigue 

life [37–39,49], enhanced cyclic oxidation behaviour of coated Ni-based superalloy 

(CM247LC) [46], enhanced tribological properties such as wear resistance [42,44,47,48] and 

lowering of friction coefficients [42,44,47,48] of materials. To this point, no study could be 

found in the literature regarding the effectiveness of UNSM and the associated attributes on 

the WDE performance of Ti-6Al-4V or other alloys. Since UNSM process is known to 

enhance fatigue life of materials and WDE damage is ascribed to fatigue-like mechanism, 

studying WDE performance of UNSM treated Ti-6Al-4V is worthwhile. 
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In this work, the effect of UNSM on the WDE performance of Ti-6Al-4V was 

investigated for the first time. The microstructure, microhardness, induced compressive 

residual stresses were discussed in relation to the WDE performance. Much attention was 

given to the influence of impact speed on the WDE performance. The sample geometry is 

another factor that can influence WDE behaviour, however only flat sample geometry has 

been explored in the literature [11,24,25,31,33] and the effect of sample geometry on the 

WDE behaviour could not be found in the literature. The current study addresses this issue by 

employing two different sample geometries (T-shaped flat and airfoil). Also, the influence of 

sample geometry and the effectiveness of UNSM treatment on the WDE performance of Ti-

6Al-4V are addressed in this work. UNSM processing, sample characterizations and WDE 

tests are detailed in the following section.  

4.2. Experimental procedure 

4.2.1. Material and geometry 

For the present study, Ti-6Al-4V (ASTM B265, Grade 5) alloy, a typical material for 

compressor blades in gas turbines, was investigated. Room temperature physical and 

mechanical properties of this alloy are: elastic modulus (113 GPa), Poisson‟s ratio (0.342), 

tensile strength (880 MPa) and melting temperature range (1604-1660 °C) [134]. T-shaped 

and airfoil samples, as shown in Figure 4-1, were machined in accordance to the sample‟s 

geometrical requirement of the WDE testing rig. The T-shaped sample represents the typical 

flat surfaces commonly used in the literature [11,24,25,31,33]. However, in real gas turbine 

compressor blade where damage is caused by droplet impacts, the airfoil (aerofoil) geometry 

represents the leading edge of the compressor blade. For this reason, the airfoil geometry was 

used in this work. Figures 4-2a and b show the starting microstructure of the Ti-6Al-4V alloy 

which contains α- and β-phases. 
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Figure 4-1: Typical T-shaped flat (left) and airfoil (right) samples machined. 

 

Figure 4-2: SEM micrographs showing the initial Ti-6Al-4V microstructure at (a) lower and 

(b) higher magnifications. 

4.2.2. UNSM treatment and characterization 

4.2.2.1. UNSM processing  

The as-machined (As-M) samples (T-shaped and airfoil) surfaces were modified using 

UNSM apparatus at The University of Akron, Ohio, USA. The modified surfaces are 

indicated by the arrows in Figure 4-1. The airfoil sample was treated on both sides in order to 

avoid sample distortion. This is the usual practice when applying mechanical surface 

treatments such as laser shock peening (LSP) on airfoil geometry [135]. UNSM process 

parameters are summarized in Table 4-1 and are also compared with other UNSM parameters 

found in the literature [36,42,43]. To observe the effectiveness of UNSM processing, several 

techniques were used to characterize the untreated and treated samples and are discussed in 

the following sections. 
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Table 4-1: UNSM processing parameters for Ti-6Al-4V and study purpose 

Reference 
Ball 

material 

Diameter of 

ball tip 

(mm) 

Frequenc

y (kHz) 

Interval 

(mm) 

Amplitude 

(µm) 
Study purpose 

Amanov et 

al. [42] 

Silicon 

nitride 
2.38 20 0.07 30 

Fretting wear and 

friction reduction 

Cho et al. 

[43] 

Tungsten 

carbide 
2.30 20 0.07 30 Fatigue behaviour 

Ye et al. 

[36] 

Tungsten 

carbide 
2.60 20 ** ** 

Mechanical properties 

and microstructure 

Present 

work 

Tungsten 

carbide 
2.40 20 0.01 24 

Water droplet erosion 

performance 

**Indicates no information from the reference. 

4.2.2.2. Surface roughness 

Mitutoyo SJ-210 portable surface roughness tester was used to measure the surface 

roughness (Ra) before and after UNSM treatment. An average of 5-7 readings was taken 

across the sample surface. The surface roughness is an important parameter in WDE study 

because roughness can act as stress raiser or crack initiation sites [34]. Hence, it is 

recommended to have similar initial surface roughness when comparing the WDE 

performance of different materials and/or surface conditions. 

4.2.2.3. X-ray diffraction pattern and residual stress measurement  

X-ray diffraction (XRD) patterns for the untreated and UNSM treated surfaces were 

acquired in order to observe any phase changes/transformations due to UNSM processing. 

Phase change/transformation has been reported in material such as 304 stainless steel after 

UNSM processing [37–39,49]. In this work, the constituent α- and β-phases were monitored 

before and after processing. The compressive residual stresses before and after UNSM were 

also measured using the XRD sin
2
ɸ technique at Proto Manufacturing Inc., USA. 

Crystallographic plane of {213} and Bragg‟s angle (2θ = 142º) obtained by Cu Kα radiation 

were used for this purpose. For the UNSM condition, the top surface and in-depth residual 
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stresses were measured relative to the ultrasound scanning directions i.e. parallel (0˚) and 

transverse (90˚). For the sake of comparison, the top surface residual stresses for the As-M 

condition were also measured using these two directions. To quantify the residual stress 

values with respect to depth, surface layers were gradually removed by electropolishing. 

Strain gradient correction and layer removal corrections were carried out in accordance with 

SAE J784a standard [136]. Total depth of 0.26 mm was measured with initial fine steps of 

0.03 mm down to 0.15 mm followed by two coarser steps of 0.06 mm down to 0.21 mm and 

of 0.05 mm down to 0.26 mm. More information on the residual stress measurements using 

the sin
2
ɸ technique can be found in the standard [136]. 

4.2.2.4. Microhardness 

Microhardness measurements were carried out on the top surface and cross-section of all 

treated and untreated samples. A direct load of 50 gram-force (gf) and a dwell time of 15 

seconds were used. Prior to the hardness measurements, the samples (treated and untreated) 

were cut perpendicular to the surface using a diamond cutter. Under cooling and lubricating 

fluid conditions, low speed and moderate load were applied in order to minimize unwanted 

surface modifications during cutting. After mounting, silicon carbide grit papers from 400 to 

800 were used for grinding and vibratory polishing with 1 µm diamond paste was employed 

to remove scratches and other undesired debris. 

4.2.2.5. Microstructure investigations 

To observe any surface features such as microdimples, the as-treated top surface was 

observed under SEM (S-3400N, Hitachi). Also, the cross-section of the as-treated condition 

was observed using optical microscope. For surface and in-depth microstructure 

investigations, Kroll‟s reagent containing 2 ml HF + 5 ml HNO3 + 100 ml H2O was used to 

etch the vibratory polished samples. Etching time of 15 seconds was chosen in order to have a 

balance between details and contrast as recommended by Gammon et al. [137]. SEM images 
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of the polished-etched top surface and cross-sections for both treated and untreated samples 

were taken at different magnifications. 

4.2.3. WDE testing and characterization 

4.2.3.1. WDE tests 

A rotating disc rig available at Concordia University, shown in Figure 4-3a, was used for 

studying the WDE performance of the treated and untreated Ti-6Al-4V. In this study, the 

untreated Ti-6Al-4V is used as a reference. Details about this unique erosion rig has been 

reported in [28,133]. The test was conducted in accordance with the ASTM G73 standard 

[29]. In this rig, the untreated and UNSM treated samples were fixed at diametrically 

opposite ends of the rotating disc as shown in Figure 4-3a. To avoid vibration during testing, 

difference in sample weight not exceeding 0.05 g was maintained. It is worth noting that the 

surface roughness of both treated and untreated samples was similar prior to testing. Two 

types of nozzles as shown in Figure 4-3b were used depending on the geometry to be tested. 

A shower head nozzle was used for testing the airfoil samples, whereas a single streak nozzle 

was used for testing the T-shaped flat samples. Typical WDE testing parameters are 

summarized in Table 4-2. Once the desired rotational speed was obtained, the water droplets 

(de-ionized water) were introduced while controlling the flow rate. The setup enabled the 

droplets to impact the samples at 90° in a repetitive fashion. The impact angle of 90º causes 

the most severe water erosion damage [109]. The erosion exposure time depended on the 

impact speed, nozzle type and sample geometry. For instance, for the T-shaped flat, 1 minute 

constant time intervals were used in order to capture the early stages of the erosion process 

(initiation stage). Whereas, longer time intervals of 2, 3, 4, 6, 10, 12, 30, 60 and 75 minutes 

were employed as the test progressed to the advanced stages of erosion. For the airfoil, 

intervals of 2, 3, 4, 6, 8, 10, 12, 15, 18, 20, 24 and 30 minutes were used.  
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Figure 4-3: Water erosion rig (a) and nozzles used (b). 

Table 4-2: WDE test parameters used in the present work 

WDE parameters Flat sample Airfoil sample 

Impact speed (m/s) 250, 275, 300, 350 300, 350 

Rotational speed x 10
3
 (rpm) 10, 11, 12, 14 12, 14 

Flow rate (liter/min) 0.05 0.15 

Nozzle head type Single streak Shower head 

Stand-off distance (mm) 5 5 

Average droplet size (µm) 463 460 

Impact angle (°) 90 90 

4.2.3.2. Water droplet erosion behaviour 

During the WDE tests, experiments were halted at certain intervals and eroded samples 

were weighed using a balance having ±0.2 mg accuracy. Typical erosion curves such as 

cumulative mass loss versus exposure time/number of impingements, maximum erosion rate 

(ERmax) versus impact speed and number of impingement to erosion initiation versus impact 

speed were plotted. For satisfactory determination of the incubation period and ERmax, a three 

line representation method [12] demonstrated in Figure 4-4a was used. In Figure 4-4a, the 

ERmax denoted as “B” is the slope of the best line fit of the data points in the maximum 

erosion stage, whereas the incubation period denoted as “A” is the intersection of the straight 

line with the x-axis (exposure time axis) [29]. To observe the erosion rate as the erosion test 

Attached samples 

Rotating disc 

Showerhead 

nozzle               

(13 orifices) 

Single streak 

nozzle (Only one 

orifice is used) 

(a) (b) 
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progressed, the instantaneous erosion rate (ERinst) which is the slope between two consecutive 

points on the erosion-time graphs were plotted (Figure 4-4b). It is important to note that the 

incubation period, ERmax and ERinst are analyzed in this study. To understand how the erosion 

process evolved, images were taken using a standard stereo optical microscope at the 

intervals during which mass loss was measured.     

   
Figure 4-4: WDE curve characterization using (a) three line representation [12] and (b) ERinst 

[29]. 

4.3. Results and discussion 

4.3.1. Effect of UNSM on surface and in-depth characteristics 

UNSM treatment has been considered as an effective and economically viable method for 

producing nano-corrugated [138] and nanostructured [47] surface layers. This is due to the 

accompanied grain refinement. Properties and microstructure of the modified layers can be 

controlled by careful selection of process parameters such as static load, amplitude, diameter 

of the ball tip and interval. In this study, interval of 0.01 mm, static load of 30 N, amplitude 

of 24 µm and tip diameter of 2.4 mm were used for the UNSM treatment. The effect of 

UNSM process on the surface roughness, XRD pattern, compressive residual stress, 

microstructure and microhardness were investigated and reported in this paper. 

4.3.1.1. Surface roughness 

The average surface roughness (Ra) values before and after UNSM treatments were 

recorded. Five different locations across the treated and untreated surfaces were measured 

(a) (b) 
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and average Ra value was taken. Ra values of 0.71±0.06 µm and 0.26±0.02 µm were 

observed before and after UNSM, respectively. It can be seen that the surface roughness after 

UNSM treatment was reduced significantly (about 63 % reduction). Also, the UNSM showed 

a relatively uniform roughness across the surface. This observation is also in accord with the 

findings of [37,44,45,47,48,139]. The surface roughness can further be controlled by varying 

parameters such as static load [42] and number of strikes [45]. It can be said that UNSM 

treatment improves surface quality. However, this is not the case in other processes such as 

shot peening (SP) and LSP where the control of surface roughness and surface defects is still 

a challenge [34]. For comparative studies such as wear and fatigue behaviour of materials, the 

surface roughness of treated and untreated samples should be made comparable [37,38,44]. 

To study WDE, the untreated samples were also polished to a comparable surface roughness 

similar to the UNSM samples. An average Ra value of 0.25±0.03 µm is used for the untreated 

samples in this work and more on this is discussed in section 4.3.2. 

4.3.1.2. XRD pattern and compressive residual stresses 

The XRD patterns of the untreated and UNSM conditions are as shown in Figure 4-5, 

where reduced peak intensity and peak broadening are observed for the UNSM condition 

compared with the untreated material. Full width half maximum (FWHM) approach was 

employed to quantify the peak broadening. For instance, analysing the first three peaks in 

Figure 4-5, FWHM values were quantified. For the untreated condition, 0.26, 0.22 and 0.36 

were obtained for first, second and third peaks, respectively. Similarly, for the treated 

condition, 0.48, 0.48 and 0.55 were obtained. It has been reported that reduced peak intensity 

and peak broadening are due to the high induced strains, causing severe plastic deformation 

and grain refinement [140–142]. Figure 4-5 clearly indicates that UNSM treatment is one of 

such processes that induce severe surface layer of plastic deformation.  
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Figure 4-5: XRD patterns for the As-M and UNSM treated surface. 

The compressive residual stresses in the 0 and 90˚ directions before and after UNSM 

were measured. Surface of the As-M condition showed -490±19 MPa and -607±9 in the 0 and 

90˚ directions, respectively. The UNSM surface showed -863±18 MPa and -1582±28 MPa in 

the 0 and 90˚ directions, respectively. UNSM condition showed higher top surface 

compressive residual stress in both directions than the As-M condition. This is due to the 

local plastic deformation and induced strain hardening during UNSM processing [49]. 

Similar top surface residual stress has been observed elsewhere on UNSM-treated Ti-6Al-4V 

[42]. Also, due to machining, grinding and polishing, the observed surface compressive 

residual stresses for the untreated condition is expected. Chou et al. [143] demonstrated that 

surface finishing techniques such as grinding and polishing can induce different levels of 

compressive residual stresses. Variation of the compressive residual stress with depth was 

measured for the UNSM condition. Figure 4-6 shows the observed stress profile and it can be 

seen that compressive residual stresses were induced into the material down to 0.25 mm. 

Similar variation in residual stress has been reported on UNSM treated Ti-6Al-4V [42,43]. 

Depth of compressive residual stress down to 0.15 mm [42] and 0.16 mm [43] was observed. 

It is also shown that the stresses in 0 and 90˚ directions were different. For instance, 

comparing the magnitude of the compressive residual stresses from the top surface to 0.12 
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mm depth, stresses in 90˚ direction were higher than in the 0˚ direction. However, beyond 

0.12 mm depth, residual stresses in both directions were relatively similar. The observed 

compressive residual stresses induced via UNSM are due to the surface and sub-surface 

deformation. Compressive residual stresses extend into the subsurface of the target material 

through dislocations multiplications and their interactions [34]. It has been pointed out that 

increasing the frequency of ball striking and load increases the macroscopic compressive 

residual stresses [36,45]. Contrarily, a decrease in compressive residual stresses was observed 

after applying very high static load [38]. Hence, careful selection of process parameters is 

required for optimized UNSM process. 

 

Figure 4-6: Variation of top surface and in-depth compressive residual stress profile. 

4.3.1.3. Microstructure characteristics 

The SEM micrographs in Figure 4-7 show that UNSM treatment produces microdimples 

and microtracks on the surface. Microdimples are indentations produced due to the ball 

impact which causes severe plastic deformation during processing [47,139]. They are usually 

1-2 µm in diameter [144] and formed in a micro-tracked fashion (Figure 4-7) which can be 

attributed to the controlled processing parameters such as scanning interval. However, 

varying the interval induces different microtracks and microdimples patterns and 
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consequently, different material properties/behaviours [145]. Microdimples have shown 

significant effect on tribological characteristics such as reducing the friction coefficient and 

the wear volume loss [144]. 

 

Figure 4-7: SEM micrographs showing microtracks and microdimples on ultrasonic modified 

surface. 

Also, due to the severe plastic deformation during UNSM processing, surface and sub-

surface layers in the material are significantly changed. Figure 4-8a shows optical 

macrograph of the cross section after UNSM treatment, whereas Figure 4-8b shows a 

schematic illustration of the layers of a typically UNSM modified material.  

 

Figure 4-8: (a) optical macrograph of typical UNSM sample and (b) schematic illustration of 

structure characteristics and grain size profile on UNSM treated condition. 

The modified region in Figure 4-8a indicates that the coarse-grain structure has been 

deformed significantly [144]. It can be seen from Figure 4-8a that the effectiveness of the 

UNSM treatment is reduced with respect to the depth. In other words, an increase in the grain 
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size away from the deformed region until the unaffected region is observed as shown in 

Figure 4-8b. The grain refinement, in conjunction with the accumulation of dislocation, 

causes the enhancement in mechanical properties such as microhardness. Similar to other 

mechanical surface treatment techniques such as LSP, SP, DR and LPB, plastic deformation 

and induced strain after UNSM occur in a gradient manner, with the top surface showing the 

highest plastic strain followed by a gradual decrease into the material [49]. It is important to 

note that the plastically deformed layer shown in Figure 4-8a could be increased by 

increasing the striking number and/or amplitude [36]. However, over processing may 

deteriorate the desired properties too.  

Figures 4-9a-b shows the polished and etched top surface of the untreated and treated 

samples. Figure 4-9a shows un-deformed grains and the β-phase is surrounding the α-phase 

in a uniformly distributed fashion. However, Figure 4-9b shows fragmented and elongated β-

phase and the grain boundaries were less apparent. This could be due to the deformation of 

grains that resulted in the modified microstructure. Amanov et al. [42] also reported similar 

modified microstructure in Ti-6Al-4V after UNSM with the grain boundaries less apparent. 

Their [42] micrographs showed that the initially continuous β-phase was fragmented. 

Mechanical deformation marks in the grains were formed (Figures 4-9b, c and d) after UNSM 

treatment due to the induced high strain and strain rate [36]. Location A in Figures 4-9c and d 

clearly show the formation of the deformation marks within the grains. Figures 4-9e and f 

show the cross-sectional micrographs of the untreated and treated conditions, respectively. 

Figure 4-9e shows relatively un-deformed grains across the depth, whereas Figure 4-9f shows 

the deformed or modified layer of about 30-40 µm at the top surface. This is attributed to the 

effectiveness of the UNSM technique in producing relatively deep modified layers.  
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Figure 4-9: SEM micrographs showing polished and etched (a) untreated top surface (b, c, d) 

UNSM treated top surface (e) untreated cross-section and (f) UNSM treated cross-section. 

4.3.1.4. Microhardness  

As mentioned in section 4.2.2, a 50 gf load was used to measure the top surface and in-

depth microhardness. Microhardness at 7-8 locations were obtained across the depth of 

UNSM and As-M samples. At each location, the average and standard deviation of 4-5 

readings were calculated. Figure 4-10 shows the microhardness values for untreated and 
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UNSM conditions. It is clear that the UNSM condition showed enhanced microhardness as 

compared with the untreated condition. The top surface microhardness values were 331±5.3 

HV and 379±7.6 HV for untreated and UNSM conditions, respectively. Furthermore, the 

microhardness can further be enhanced by varying UNSM parameters such as scanning 

interval [42] and number of strikes [45]. This increases the depth of the deformed layer, thus 

increasing the microhardness [36,45]. It is important to note that the highest microhardness 

value of 427±16.83 HV was observed 30 µm below the top surface. This is also shown in the 

optical macrograph embedded in Figure 4-10. To confirm the aforementioned trend, another 

treated sample was measured and similar microhardness trend was observed. Amanov et al. 

[42] also reported similar variation in microhardness below the surface of UNSM treated Ti-

6Al-4V. This could be due to the additional work hardening during cutting, polishing and 

grinding. Zaden et al. [146] showed microhardness increase below the surface of Al6061 

after cutting in dry, wet and mist conditions. They [146] attributed this trend to the increase in 

surface deformation which further increased the work hardening effect. For the treated 

conditions, the microhardness values decreased steadily after the plastically deformed layer.  

 

Figure 4-10: Variation of microhardness with depth for treated and untreated samples. 

In general, the increase in microhardness after UNSM can be attributed to the grain 

refinement and work hardening effect. This observation is in accord with UNSM treatment on 
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Ti-6Al-4V [36,43], medium carbon steel (S45C) [45], austenitic stainless steel (SUS 304) 

[38] and magnesium alloy (AZ91D) [48]. Hence, the surface and in-depth features observed 

in Figures 4-5 to 4-10 are used to help understand the WDE performance of the As-M and 

UNSM conditions. The WDE results are detailed in the following section.  

4.3.2. Water droplet erosion 

Prior to the WDE tests, the As-M flat samples were polished to a similar surface finish as 

the UNSM samples. The average Ra for the polished and UNSM samples were 

approximately 0.25±0.03 µm and 0.26±0.02 µm, respectively. This was done because the 

presence of surface defects or imperfections such as scratches has an influence on the WDE 

behaviour of materials. Heymann [30] emphasized the influence of surface roughness on the 

erosion behaviour of materials. He [30] stated that the presence of surface asperities or 

irregularities facilitates the erosion initiation. This is because irregularities on the surface act 

as stress raisers and potential sites for pit formation and growth. Also, due to the high speed 

lateral jetting which interacts with surface irregularities or asperities, further crack initiation 

and material damage are observed. Hence, better surface quality delays the crack initiation 

and material damage. For instance, Kirols et al. [17] studied the influence of initial surface 

roughness on the WDE behaviour of 12 % Cr-Steel and Ti-6Al-4V. For the Ti-6Al-4V, 

samples with average initial surface roughness values (Ra) of 0.30, 0.12 and 0.04 μm were 

tested. They [17] reported that merely polishing the surfaces prior to WDE tests delayed the 

erosion initiation and in some cases, decreased the maximum erosion rate. In this work, 

polishing was done in order to reduce the effect of surface roughness.  

For the T-shaped flat samples, UNSM versus the polished As-M samples were tested. For 

simplicity, the polished-As-M samples are referred to As-M (untreated) samples for all the 

WDE tests. At each WDE testing condition (mentioned in Table 4-2 and section 4.2.3.1); two 

coupons (As-M and UNSM) were tested at the same time in order to investigate their WDE 
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performances. The main parameter that was varied was the impact speed while keeping other 

parameters constant. Here, impact speeds of 250, 275, 300 and 350 m/s were selected. This is 

because the predominant factor in the material damage is the impact speed [111,133]. This is 

attributed to the increased kinetic energy (
 

 
   ) with increasing the speed. The cumulative 

mass losses versus the number of impingements graphs were plotted. The number of 

impingement was determined using Equation 4-1.  

                                                               

Where      is the cumulative number of impingements during an exposure period,   is 

the rotational speed (rpm),     is the erosion exposure time (minutes) and           is the 

number of droplets impacting the sample per revolution. For the flat sample geometry in this 

work,           is 6. Detailed procedure on the droplet generation, droplet size distribution 

and number of droplets hitting the sample can be found in reference [133]. For the airfoil 

samples, only impact speeds of 300 and 350 m/s were used. Here, 350 m/s was chosen as the 

most severe condition, whereas 300 m/s was chosen in order to have a less severe testing 

condition and also, to avoid prolonged testing. Tests using impact speed of 250 and 275 m/s 

for airfoil geometry would mean testing for prolonged erosion time without significant mass 

loss. Therefore, tests at these speeds were not performed. Contrary to the flat sample 

geometry, there is a challenge of quantifying the number of droplets hitting the airfoil sample. 

This is due to the shower head nozzle used during testing. Hence, graphs of cumulative mass 

loss versus number of cycles were plotted. The number of cycles is simply the rotational 

speed (rpm) multiplied by the erosion exposure time (minutes). It is worth noting that the 

amount of water used after certain time interval can be computed by multiplying the number 

of cycles by the flow rate. 

It is worth mentioning that there are two threshold speeds in relation to erosion damage  

i.e. first and second threshold speeds [133]. The first threshold speed is the speed below 
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which no apparent damage is seen. However, the definition of this speed is somehow 

subjective and depends on the testing conditions such as impact speed, droplet size and 

number of impingements. More information regarding first threshold speeds with regards to 

different applications such as liquid impingement erosion for pipe wall thinning, liquid jet 

impact, WDE for compressor blade applications has been addressed by the authors in [133]. 

The second threshold speed is the speed at which mass loss is measurable. In this work, all 

the selected impact speeds are speeds at which measurable mass losses are observed. 

In order to verify the repeatability of the WDE experiments, tests at 250 and 350 m/s with 

463 µm droplet size were conducted. For each test speed, the samples had similar surface 

quality and each test was conducted twice. Also, for each test speed, the two tests are 

designated as test 1 and test 2. Figure 4-11 shows the WDE curves for test 1 and test 2 for 

both speeds. It can be seen that for each test speed, the curves coincided for most of the data 

points, indicating an acceptable level of repeatability. 

 

Figure 4-11: WDE curves showing the repeatability of the results at 250 m/s and 350 m/s. 

4.3.2.1. WDE performance of UNSM and As-M T-shaped sample conditions 

Figure 4-12 shows the cumulative mass loss versus number of impingements graphs for 

the flat samples. The graphs compare the WDE performances of UNSM and As-M samples 

tested at different speeds.  
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Figure 4-12: WDE curves of As-M versus UNSM flat samples at different impact speeds. 
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Figure 4-12a shows that similar WDE performance was observed at 350 m/s for UNSM 

and As-M samples. In other words, both conditions are exhibiting similar erosion trend in 

terms of initial mass loss and subsequent stages. This can be attributed to the severity of the 

WDE test conditions. Therefore, the UNSM treatment showed little or no beneficial effect in 

enhancing WDE performance at such high impact speed. At 300 m/s (Figure 4-12b), UNSM 

showed a much better WDE performance as compared with the As-M condition. At 275 and 

250 m/s (Figure 4-12c-d), UNSM condition showed significant improvement in WDE 

performances at all stages of the erosion process as compared with the As-M condition. 

Based on the graphs shown in Figure 4-12, the effect of UNSM treatment on the WDE 

performance of Ti-6Al-4V was observed at impact speeds of 250, 275 and 300 m/s. However, 

this was not the case at impact speed of 350 m/s. 

Based on the three line representation (Figure 4-4a), the influence of impact speed on the 

erosion initiation and ERmax is shown in Figures 4-13a and 4-13b, respectively. It can be seen 

from Figure 4-13 that reducing the impact speed from 350 to 250 m/s delayed the erosion 

initiation time and showed less ERmax. In other words, as the speed is decreased from 350 to 

250 m/s, more droplet impingements are required in order to initiate erosion damage in both 

conditions. Comparing the As-M and UNSM conditions at 250 m/s, 6 million droplet 

impingements were required for erosion initiation for the UNSM condition as compared with 

2.1 million droplet impingements required for the As-M condition, indicating better WDE 

performance of the UNSM condition at this speed. As the impact speed is increased, the 

number of impingements for erosion initiation is significantly reduced for both conditions. At 

350 m/s, the number of impingements to initiate erosion for the UNSM and As-M samples 

was the same, indicating the effect of the speed on the erosion initiation. When comparing the 

ERmax for the UNSM and As-M samples (Figure 4-13b), UNSM condition showed less ERmax 

at impact speeds ≤300 m/s as compared with the As-M condition. However, at 350m/s, both 
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conditions showed similar ERmax due to the severity of the erosion test. The relationship 

between erosion rate and impact speed has been discussed and emphasized in the literature 

[110]. This dependency between the maximum erosion rate and impact velocity can be 

expressed using Equation 4-2. Based on the power law relationship in Equation 4-2, the speed 

exponent n can be determined. 

                                                    

Where       is the erosion rate,   is the impact speed and   is the speed exponent. For 

metals, typical exponent values range from 5-7 in the literature [110,111]. However, based on 

Figure 4-13b, exponent values of 11.2 and 12.1 were observed for the As-M and UNSM 

samples, respectively. The values observed in this study are different from the values 

observed by Kamkar [9] and Mahdipoor et al. [28] for Ti-6Al-4V. This discrepancy can be 

attributed to the test conditions, initial surface quality of the samples and the starting 

microstructure. The higher value shown by the UNSM condition indicates higher dependence 

on impact speed and more sensitive to the change in speed than the As-M condition. The 

impact damping capacity and fracture toughness of the UNSM surface are reduced. This 

hypothesis is in accord with the explanation given by Ma et al. [11] in their study on the 

WDE performance of deep rolled Ti-6Al-4V. 
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Figure 4-13: Effect of impact speed on (a) number of impingements to initiation and (b) 

ERmax. 

Interestingly, using the instantaneous erosion rate approach (Figure 4-4b), the variation of 

erosion rates with increase in exposure could be traced clearly. Figure 4-14a-d shows the 

ERinst versus number of impingements at different speeds. It can be seen that the As-M 

condition had higher ERinst and maximum ERinst than the UNSM condition at all speeds. The 

maximum ERinst is the highest points on the graphs (Figure 4-14). At 350 m/s, the ERinst were 

very close for both conditions. Also, Figure 4-14 shows that the maximum ERinst was not 

reached after the same number of impingements/exposure for the UNSM and As-M 

conditions. In other words, the As-M condition reached its maximum ERinst much earlier than 

the UNSM condition. Table 4-3 shows the aforementioned maximum ERinst trends and the 

number of impingements at which the maximum ERinst occurred for the treated and untreated 

conditions. Table 4-3 indicates that UNSM condition required more droplet impingements to 

reach its maximum ERinst at all speeds. It is important to note that this insight is missed by the 

three line representation (Figure 4-4a) because it only uses a straight line to determine the 

ERmax. Therefore, for comparative erosion studies, it is recommended to observe and report 

the ERinst.    
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Figure 4-14: ERinst versus number of impingements at different impact speeds. 
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Table 4-3: Characterization of the ERinst curves at various speeds 

Impact speed 

(m/s) 
Condition ERinst x 10

-5
 Nimp x 10

5
 

250 
As-M 14 48 

UNSM 10 96 

275 
As-M 28 26 

UNSM 19 53 

300 
As-M 215 4 

UNSM 110 6 

350 
As-M 400 2 

UNSM 350 4 

Based on Figures 4-12 and 4-14 and Table 4-3, the general trend is that UNSM (T-

shaped) samples showed enhanced WDE performance than the As-M samples at impact 

speeds 250, 275 and 300 m/s. However, at 350 m/s, both treated and untreated conditions 

showed similar WDE performance. This trend is in accord with the observations of 

Mahdipoor et al. [24] where they studied the WDE performance of HVOF sprayed coated 

and uncoated Ti-6Al-4V. Impact speeds of 250, 300 and 350 m/s were employed and their 

[24] results showed that at speed of 250 m/s, the coated condition had enhanced erosion 

performance compared to the uncoated condition. At 350 m/s, similar erosion performance 

was observed for the coated and uncoated conditions [24]. In another study, Mahdipoor et al. 

[28] studied the influence of impact speed on water droplet erosion of TiAl (Titanium 

Aluminide) compared with Ti-6Al-4V. They [28] showed that TiAl had superior WDE 

performance compared to Ti-6Al-4V at 275 and 300 m/s impact speeds. Again, at 350 m/s, 

they [28] showed that the superiority of TiAl over Ti-6Al-4V was reduced significantly.  

In this study, as the impact speed is increased from 300 to 350 m/s, the effectiveness of 

the UNSM treatment diminished. This can be attributed to the increased impact pressure 

which induced high internal stresses. This pressure is usually termed as „water hammer 

pressure‟ which is the induced pressure exerted by the “arrested” liquid droplet on the solid 
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surface. This observation is in accord with the explanation given by Thiruvengadam and 

Rudy [110], Mahdipoor et al. [24,28], Ma et al. [11] and Kamkar [9]. The exerted pressure 

strongly depends on the impact speed employed. Sanada et al. [113] reported that pressure 

distributions depend on Mach number (Mi) ranges. They [113] stated that the difference in 

pressure at the center and edge of the droplet is minimum for low Mi (between 0.1 and 0.4). 

For high Mi (>0.4), the edge pressure is 3 times that of the center when liquid jetting occurs 

[16,114]. In this study, the calculated Mach number is within the low Mi range. Moreover, 

high Mi range will only be achieved at impact speeds greater than 550 m/s based on the 

assumptions in [113]. Nevertheless, the initiation period will be influenced greatly by the 

exerted impact pressure. According to Heymann [12,13], this pressure can be considerably 

higher than the yield strength of many alloys especially at high impact speeds. For instance, 

Equation 4-3 provides a reasonable critical impact pressure by incorporating the shock wave 

velocity for rigid and elastic surface [13]. 

      (   
       

 
)                                                  (4 - 3) 

Where   is the pressure (MPa),   is the density of the liquid (kg/m
3
),   is the acoustic 

velocity of the liquid (m/s),   is the impact velocity (m/s), and     for water up to impact 

Mach number of 1.2. Incorporating values of 250 m/s, 275 m/s, 300 m/s and 350 m/s for  ; 

water hammer pressures of 919, 1032, 1148 and 1392 MPa were obtained, respectively. 

Based on the calculated pressure values, it can be seen that the impact pressure increases 

linearly with the impact speed. Due to the high pressure at high speeds, the effectiveness of 

the UNSM treatment will be reduced significantly. For this reason also, similar erosion 

initiations for both the UNSM and As-M samples were observed for impact speeds 350 m/s 

(Figure 4-12). 

Highlighting the phenomenon of stress wave propagation could possibly explain the 

observed trends in Figure 4-12. During the initial droplet impacts, part of the impact energy 
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transmits through the solid until it reaches a discontinuity. This discontinuity can either be 

grain boundaries, inclusions and/or cracks. In this work, the deformed region due to UNSM 

treatment represents a discontinuity. At the discontinuity interface, part of the stress wave 

travels as transmitted waves, whereas the remaining part travels back in the opposite direction 

as reflected waves. As the erosion process evolves, the surface is continuously impacted by 

the liquid droplets and the transmission and reflection of the stress waves occur repeatedly. 

Hence, the transmitted and reflected waves interaction results in high tensile stress waves that 

cause crack initiation and propagation of existing cracks [11]. Due to the high frequency of 

the liquid impacts at high speeds, the stress wave interactions will be very fast and the 

magnitude of the resulting tensile stress waves will be high. However, the stress wave 

interactions will be reduced greatly as the impact speed is reduced, thereby reducing the 

magnitude of tensile stress wave. This is the scenario when the impact speed was reduced 

from 350 m/s to 250 m/s, where the effectiveness of the treatment was realized. 

The enhanced WDE performance observed in this study at speed 250, 275 and 300 m/s 

are mainly attributed to the increased microhardness and modified microstructure. Heymann 

[18,30] stated that microhardness is a good and reliable material property used in assessing 

the resistance of materials to erosion damage. Reports [18,109] have shown that the erosion 

resistance varies with 2
nd

 to 3
rd

 power of Vickers hardness number. More so, refined 

microstructure or reduction in grain size has also been associated with erosion resistance of 

materials [106,109]. Materials having small finely distributed and hard particles are resistant 

to erosion especially in elastic and ductile matrix [18]. For treated Ti-6Al-4V, microhardness 

and refined microstructure have been considered among the most influential parameters 

improving the WDE performance. For instance, Yasugahira et al. [147] studied the water 

erosion resistance of pure Al and a range of titanium alloys. They [147] attributed the higher 

resistance of Ti alloys to the high Vickers number. Similar investigation was carried out by 
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Robinson et al. [26] who reported that the resistance was due to the 10 % increase in hardness 

and the refined microstructure. In this work, it has been shown that UNSM treatment 

enhanced the surface and in-depth microhardness (Figure 4-10) and the modified surface and 

in-depth microstructure (Figures 4-8a, 4-9b, 4-9c and 4-9d). For these reasons, UNSM 

condition showed enhanced WDE performances as compared with the As-M condition at 

speeds <350 m/s. The effect of micro-dimpled surface (Figure 4-7) might also have 

contributed to the enhanced WDE performance. This is due to the fact that micro-dimpled 

surface has shown enhanced tribological characteristics. For instance, Amanov et al. [144] 

studied the influence of micro-dimples on the tribological behaviour of thrust ball bearing in 

a ball-on-disc test rig. The upper ring of the thrust bearing was used as the disc specimen and 

a rotational speed of 100 rpm was employed. Comparing the UNSM treated surface with 

ground surface, their [144] results showed that UNSM treated (micro-dimpled) surface had 

reduced wear volume loss as compared to the ground surface. Also, the friction coefficient of 

the UNSM-treated surface was reduced by about 25 %. The effect of micro-dimples might be 

extended to WDE applications especially at very low speed such as 150m/s. However, more 

experimental work is needed. 

Since UNSM treatment involves work hardening similar to SP, LSP, LPB and DR, it 

enhances mechanical properties such as hardness. Heymann [18] stated that processes 

involving work hardening such as pressing, rolling or hammering might be beneficial in 

resisting erosion damage. However, excessive work hardening might show detrimental 

effects. In another report, Frederick and Heymann [10] stated that processes involving 

peening might not be very effective in enhancing the WDE behaviour of materials especially 

during the incubation stage. They [10] argued that the peening process involves plastic 

deformation which work hardens the surface and during droplet impingements, repeated 

plastic deformation further work hardens the surface. The duplication of the work hardening 
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process at the incubation period might be detrimental to the WDE behaviour [10]. Heymann 

[30] further stated that the first plastic deformation retards erosion initiation while the second 

promotes the erosion initiation. The first and second plastic deformations balance each other, 

thus a non-enhanced WDE performance will be observed. Ma et al. [11] reported the WDE 

performance of untreated and deep rolled Ti-6Al-4V. Despite having improved hardness after 

the deep rolling process, both the untreated and treated conditions had the same WDE 

performance. They [11] suggested that there are two competing mechanisms at the initiation 

stage which balance out one another. These competing mechanisms are the work hardening 

process from the deep rolling process and the compressive residual stresses. While work 

hardening decreases the erosion resistance due to the increased brittleness, the presence of 

compressive residual stresses is expected to improve WDE resistance by delaying crack 

propagation. For this reason, no enhanced WDE performance was observed for the deep 

rolled treated condition. This is in accord with explanation given in [30] who pointed out that 

a non-enhanced WDE performance maybe observed due to duplication of the working 

hardening process. However, the results presented in this work showed contradictory trends 

to the arguments in [10,30]. For instance, changing the severity of erosion test conditions 

such as varying impact speed, different erosion behaviour may prevail. This is the situation 

observed in this work where enhanced WDE performances were seen at speeds <350 m/s. 

Contrary to Frederick and Heymann [10], the incubation (erosion initiation) stage (Figure 4-

13a) in this work was significantly delayed for the UNSM treated sample at such varied 

conditions. Moreover, the ERmax (Figure 4-13b and 4-14) was reduced significantly at these 

conditions. It can be inferred that the severity of the erosion conditions must be taken into 

consideration when evaluating the suitability of certain service treatment to combat WDE. 

Another reason for the observed trends in this study and [11] is the level of induced 

plastic deformation during UNSM and DR processing. It might be that the amount of plastic 
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deformation from the DR technique is higher than the UNSM technique. Due to the increased 

strain hardening, the DR treated material will be more brittle than the UNSM treated material. 

In this case, the UNSM condition will accommodate more plastic deformation from water 

hammering than the DR condition during the initiation stage. 

It has been shown that UNSM induced deep levels of compressive residual stresses 

(Figure 4-6). However, it is not guaranteed that the induced stresses are beneficial in 

enhancing WDE resistance. In this case, extensive work is still needed in order to fully 

understand the influence of compressive residual stresses on WDE performance. 

4.3.2.2. WDE performance of UNSM and As-M airfoil sample conditions 

Similar to the WDE investigations on the flat T-shaped samples, As-M and UNSM-

treated airfoil samples were studied. However, the WDE tests were conducted perpendicular 

to the UNSM-treated surface and a shower head nozzle of 460 µm droplet size was used. 

Figures 4-15a and b show a schematic illustration of the WDE testing direction with respect 

to the airfoil treated surface and a typically eroded UNSM airfoil, respectively. The nozzle 

contained 13 orifices where water droplets are introduced. Due to the difficulty in accurately 

accounting for the number of impingements when using a shower head, the number of cycles 

was used.  

 

Figure 4-15: (a) schematic illustration of the WDE testing direction with respect to the airfoil 

treated surface and (b) typical eroded UNSM airfoil. 

Figure 4-16 shows the WDE curves for the As-M and UNSM airfoil samples and Figure 

4-17 shows the corresponding ERinst curves tested at different impact speeds. Figure 4-16a 
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shows that at 350 m/s, both conditions had the same initial mass losses but after additional 

number of cycles, the UNSM showed more mass loss as compared with the As-M condition. 

This can be attributed to the severity of the test which induced high stresses. Due to the work 

hardened surface, the material is most likely to fail in a brittle manner, allowing cracks to 

propagate easily. Ma et al. [11] stated that strain-hardened surfaces decrease the erosion 

resistance due to increase in brittleness. This could be the reason for the observed mass loss 

in the UNSM. This observed trend is also shown in Figure 4-17a where the UNSM condition 

showed higher maximum ERinst than the As-M condition. Figure 4-16b shows that at 300 m/s, 

both conditions showed initial mass losses but the UNSM condition further lost material with 

additional cycles. 

 

 

Figure 4-16: WDE curves of As-M and UNSM airfoil samples at different impact speeds. 

Interestingly, the UNSM started showing better WDE performance than the As-M 

condition. This is demonstrated clearly in the region A of Figure 4-17b where the UNSM 
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treatment mitigated further erosion damage. Similar tests were carried out using 300 m/s and 

similar trends were observed. Here, the induced compressive residual stresses might have 

arrested crack propagations similar to the crack arrest in stress corrosion cracking (SCC) tests 

[34]. Another reason for this behaviour could be attributed to the effectiveness of the UNSM 

treatment further away from the leading edge.  

 

 
Figure 4-17: ERinst for As-M and UNSM airfoil samples at different impact speeds. 

4.3.2.3. Effect of sample geometry and UNSM on WDE performance 

The effect of UNSM process on WDE performance of treated and untreated T-shaped and 

airfoil samples is reported in this work. UNSM process induced compressive residual 

stresses, modified the microstructure as well as improved the microhardness. For the T-

shaped flat sample, the WDE test was conducted parallel to the ultrasonically modified 

surface. UNSM condition showed enhanced WDE performance especially at speeds of 250, 

275 and 300 m/s compared with the As-M condition for this sample geometry. This is clearly 

demonstrated in Figures 4-12, 4-13 and 4-14. This behaviour is attributed to the modified 
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microstructure and enhanced microhardness. However, at 350 m/s both treated and untreated 

conditions had similar WDE performances. Even though UNSM induced compressive 

residual stresses which are beneficial in retarding crack initiation and propagation, this 

benefit could not be guaranteed for the T-shaped flat samples. This is because the modified 

microstructure and enhanced microhardness have more profound influence on erosion 

resistance than induced compressive residual stresses. Hence, it can be inferred that for the 

flat samples, the improved WDE performance is attributed to the hardening effect only. For 

the airfoils where the WDE test perpendicular to the treated surface (Figures 4-15a and b), the 

induced compressive residual stresses showed limited beneficial effect in mitigating erosion 

at the advanced erosion stage. This is the case at relatively low speed of 300 m/s. However, at 

350 m/s where the test condition is severe, the induced compressive residual stresses showed 

no beneficial effect on the airfoil geometry. Contrary to the flat samples, the WDE 

performance of the treated airfoil condition at relatively low speed (300 m/s) could have been 

influenced by the induced compressive residual stresses. This is due to the fact that 

compressive residual stresses are through the thickness of the airfoil. It is worth noting that at 

350 m/s, UNSM and its attributes were not realized on both sample geometries. This is due to 

the diminished effect of the UNSM treatment at high impact speed. 

4.3.3. Optical macrographs 

Optical macrographs were acquired after each interval during testing. Figure 4-18 shows 

the erosion process of As-M and UNSM conditions at 250, 275, 300 and 350 m/s 

corresponding to the WDE results presented in Figure 4-12. Normally, the erosion initiation 

process emerges with an erosion trace line due to impingement of droplets [11,17]. For 

instance, Figure 4-18a shows a trace line on the UNSM-treated condition after 20 minutes of 

exposure at 250 m/s. This indicates that the erosion is still in the incubation period where the 

mass loss is negligible [29]. Compared with the As-M condition after the same 20 minute 
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exposure in Figure 4-18a, the As-M condition showed formation of small isolated pits along 

the trace line, thus indicating early stage of the erosion damage even though the mass loss 

was negligible. With additional impacts, large isolated pits were formed and gradual pit 

growth was observed on the As-M condition. This is the situation seen in Figure 4-18a after 

38 minutes of exposure where mass loss of 0.0003 g was recorded. At this point, the UNSM-

treated condition only showed the erosion trace line without any noticeable pits. After 80 

minutes of exposure, the As-M condition showed a mass loss of 0.0043 g with a complete 

crater formed. At the same time, the UNSM condition showed only a gradual growth of 

isolated pits with a mass loss of 0.0001 g. The delay in erosion process on the UNSM further 

delayed reaching the maximum ERinst and final steady state. For instance, from Figure 4-14d, 

the As-M condition showed maximum ERinst of 0.00014 g/min after 80 minutes and the 

UNSM showed maximum ERinst of 0.00013 g/min after 160 minutes. Figure 4-18a also 

confirms the enhanced WDE performance (delayed erosion initiation) of UNSM as compared 

with the As-M condition. Reaching the maximum erosion rate, material damage was at its 

peak and complete crater has been formed. The material damage was due to the high exerted 

pressure and the liquid lateral jetting. This jetting also interacts with surface imperfections 

[16], forming surface cracks and surface asperities. This leads to significant material removal 

during the advanced erosion stages. It is important to note that with increased exposure time, 

both the depth and the width of the craters are increased [11]. For instance, crater width of 

less than 1 mm and greater than 1 mm were observed on the UNSM condition after 80 and 

340 minutes, respectively, as can be seen in Figure 4-18a. This observation is also true when 

comparing the crater width/depth for different speeds at the same exposure. Similar erosion 

evolution and progression was observed at 275 m/s (Figure 4-18b) where UNSM showed 

delayed erosion initiation and smaller maximum ERinst than that of the As-M condition. 

Similar analyses were made on Figures 4-18c (300 m/s) and d (350 m/s).  
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Figure 4-18: Optical macrographs showing the erosion evolution and progression of As-M 

and UNSM flat samples tested at various speeds and exposure times. The scale shown in each 

image is in mm. 
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Based on Figure 4-18a-d, it can be said that at impact speeds of 250 and 275 m/s, the 

UNSM condition showed delayed erosion initiation and the subsequent stages as compared 

with the As-M condition. At impact speeds of 300 and 350 m/s, the erosion initiation and 

progression of the As-M and the UNSM conditions are much faster as compared with these at 

speeds of 250 and 275 m/s. 

In a similar fashion, the As-M and UNSM airfoil samples were observed under the optical 

microscope during test interruptions. However, for this sample geometry, the images were 

taken at two different orientations considering the fact that the WDE tests were conducted 

perpendicular to the UNSM treated surfaces. Figure 4-19 shows the erosion evolution and 

progression of the airfoil samples at 300 m/s. Both conditions showed similar erosion 

initiation as discussed previously and demonstrated in Figures 4-16b and 4-17b. It can be 

seen that after 90 minutes of exposure, individual craters are merging into one another due to 

the continuous impacts and liquid jetting. Also, the formed craters are becoming deeper as 

seen after 90 minutes. With further exposure, the craters further deepen and widen due to the 

accumulated liquid impacts and the radial outflows. The increase in depth with increase in 

exposure can be seen more clearly in this geometry than in the T-shaped flat samples. Similar 

to the flat samples, increasing the impact speed showed faster erosion initiation and greater 

maximum ERinst (Figures 4-16a and 4-17a). 
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Figure 4-19: Optical macrographs showing the erosion evolution and progression of As-M 

and UNSM airfoil samples at 300 m/s. The scale on each image is in mm. 

4.4. Conclusions 

This work investigates the effect of UNSM treatment on the WDE performance of Ti-

6Al-4V for the first time. The following conclusions can be drawn: 

 UNSM treatment reveals surface features such as microdimples and microtracks due 

to the ball impact during processing. Also, the treatment induces compressive residual 

stress. In this work, compressive residual stresses were induced into the material 

down to 0.25 mm after UNSM processing. 

 UNSM is associated with excessive plastic deformation, thus the process reveals 

mechanical deformation marks. This resulted in significant changes on the surface and 

sub-surface layers which leads to variation in grain size across the depth of the 

modified layer. Hence, material properties such as microhardness are enhanced. 
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 WDE results show that increasing the impact speed leads to faster erosion initiation 

and greater ERmax. This trend is attributed to the increasing impact pressure and the 

lateral jetting of the liquid droplet. 

 UNSM T-shaped flat condition shows enhanced WDE performances especially at 

speeds of 250, 275 and 300 m/s compared with the As-M condition. This is attributed 

to the refined microstructure and increased microhardness. At speed of 350 m/s, the 

UNSM and As-M conditions show similar WDE performance. 

 UNSM and As-M airfoils show similar WDE performance at 350 m/s, suggesting that 

the effectiveness of the UNSM treatment diminishes due to test severity. However, at 

300 m/s, UNSM airfoil mildly enhances WDE performance at the advanced stage of 

erosion damage compared with the As-M condition. 

 This work concludes that for the mechanical treatment to be effective in enhancing 

WDE performance, surface hardening and grain refinement must be realized. 

Compressive residual stresses alone are not sufficient to enhance WDE performance 

especially for the T-shaped flat geometry. 
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ABSTRACT 

The water droplet erosion (WDE) performance of laser shock peened (LSP) Ti-6Al-4V was 

investigated. LSP condition using 2 or 3 peening impacts per unit area induced compressive 

residual stresses. However, LSP treatment showed mild increase in microhardness and no 

observable changes in the microstructure. The effect of LSP and its associated attributes on 

the WDE performance was studied according to ASTM G73 standard. Influence of impact 

speed between 150 and 350 m/s on the WDE performance was explored. Two sample 

geometries, T-shaped flat and airfoil, are used for the WDE tests. For the flat samples, LSP 

showed little or no beneficial effect in enhancing the WDE performances at all tested speeds. 

The peened and unpeened flat samples showed similar erosion initiation and maximum 

erosion rate (ERmax). LSP airfoil samples showed mild improvement in the WDE 

performance at 300 m/s during the advanced erosion stage compared to the as-machined (As-

M) condition. However, at 350 m/s, no improved WDE performance was observed for the 

LSP airfoil condition at all stages of the erosion. It was concluded that compressive residual 

stresses alone are not enough to mitigate WDE. Hence, the notion that fatigue mechanism is 

dominating in WDE damage is unlikely.  

Keywords: LSP; microstructure; microhardness; residual stresses; WDE; impact speed; Ti-

6Al-4V 

mailto:mmedraj@encs.concordia.ca


 

94 

 

5.1. Introduction 

Gas turbine efficiency in power generation industry is affected by changes in temperature 

[1]. This is mostly experienced during summer times when ambient temperature increases. In 

order to increase the gas turbine efficiency, cost effective techniques are employed to keep 

the temperature at the inlet of the gas turbine compressor as low as possible. Among these 

techniques, fog cooling technique has been used successfully. In this technique, water 

droplets are sprayed into the gas turbine compressor to cool down the intake air, thus 

increasing the intake mass. This approach reduces the temperature and increases power 

output [5]. A major setback of this method is the erosion damage caused to the leading edge 

of the rotating blades during service. This is due to the combined effect of the rotating blades 

and the injected liquid droplets during fog cooling [6]. This damage further causes fatigue 

damage for the entire gas turbine. The erosion damage is known as “water droplet erosion 

(WDE)” which is the progressive loss of material from a solid surface due to continuous 

impacts by liquid droplets [7]. The high pressure exerted by the liquid droplets and the radial 

outflow (lateral jetting) of the droplets along the surface are the main driving forces of the 

erosion damage [10,131]. Despite the known causes of the erosion damage, the erosion 

process of materials is considered to be a complex phenomenon. This is due to the many 

parameters involved such as impact speed, impact angle, droplet size, and mechanical 

properties and conditions of the target material. To fully understand the erosion process, the 

effect of these parameters on the WDE behaviour must be understood. However, the task 

becomes more cumbersome especially when considering the interactions between these 

parameters such as impact speed and droplet size. Also, due to the variation of erosion rate 

with exposure time, predicting the erosion behaviour becomes difficult. Therefore, WDE 

experimental investigations are essential to understand the WDE behaviour of materials. 
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A typical material prone to this type of erosion damage is Ti-6Al-4V alloy, used for 

compressor blades in gas turbines. Surface coatings [24,33] and laser surface treatments 

[25,31] have been employed to mitigate WDE damage on Ti-6Al-4V. However, WDE is 

accelerated due to the presence of surface defects, interface defects and microcracks after 

such treatments. Recently, there is considerable interest in understanding the effectiveness of 

mechanical treatments in combating erosion damage. This is due to the deep levels of induced 

compressive residual stresses after mechanical processing. WDE behaviour of mechanical 

surface treatments such as deep rolling (DR) [11] and ultrasonic nanocrystalline surface 

modification (UNSM) [148] have recently being studied. This work explores another 

mechanical surface treatment, laser shock peening (LSP). LSP is a cold working process 

where pulses hit the surface through high power intensity, generating shock waves. As the 

shock wave stress exceeds the dynamic yield strength of the material, plastic deformation 

occurs [34]. These waves deform the top surface and compressive residual stresses are 

extended into the material [34]. More information on LSP in relation to shock wave 

generation, process parameters, residual stress profile, surface quality and material properties 

can be found in [34]. For the most part of the literature, LSP was usually employed to 

enhance the fatigue life [58,71,149,150] and fretting fatigue life [85] of materials such as Ti-

6Al-4V. These enhancements have been attributed mainly to the significant depth of induced 

compressive residual stresses after LSP processing [151]. So far, the effect of LSP and its 

associated attributes on the WDE performance of Ti-6Al-4V or other alloys could not be 

found in the literature. Reports [9,117,133] have shown that WDE damage mechanisms is 

influenced significantly by crack initiation and propagation. Also, due to the continuous 

liquid impingements in a cyclic fashion, researchers [9,11,117] have associated WDE to 

fatigue. Moreover, it is well known that LSP retards crack initiation and propagation as 

well as enhances fatigue life [34]. At this point, one would expect LSP to mitigate the 
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WDE damage to a certain degree. For these reasons, studying WDE performance of laser 

peened Ti-6Al-4V is worthwhile. This work attempts to explore this research gap for the first 

time. The WDE performance is discussed based on the observed residual stresses, 

microhardness and microstructure. Much attention was given to the influence of impact speed 

on the WDE performance. Another factor that can influence WDE behavior is the sample 

geometry, however only flat sample geometry has been studied extensively in the literature 

[11,24,25,31,33]. Only recently, a study [148] by the current authors investigated the effect of 

sample geometry on the WDE behavior of Ti-6Al-4V. In the study [148], ultrasonic 

nanocrystalline surface modification was employed on two sample geometries, T-shaped flat 

and airfoil. The current study also explores similar sample geometries (T-shaped flat and 

airfoil), however different surface treatment (LSP) is employed. In this paper, the influence of 

sample geometry and the effectiveness of LSP and its attributes on the WDE performance of 

Ti-6Al-4V are addressed. To achieve this objective, a systematic approach is followed in 

carrying out this investigation. 

5.2. Experimental procedure 

5.2.1. Material and sample geometries 

For this study, Ti-6Al-4V (ASTM B265, Grade 5) alloy [134], used for compressor 

blades in gas turbines, was investigated. Figure 5-1 shows the starting microstructure of the 

Ti-6Al-4V alloy which contains α- and β-phases. T-shaped and airfoil samples, as shown in 

Figure 5-2, were machined using a CNC Haas machine under flood coolant in accordance to 

the sample‟s geometrical requirement of the WDE testing rig. The T-shaped sample 

represents the typical flat surfaces commonly explored in the literature [11,24,25,31,33]. 

Moreover, in industrial gas turbine compressor blade where damage is caused by droplet 

impacts, the airfoil geometry represents the leading edge of the compressor blade. For this 

reason, the airfoil geometry is employed in this study. 
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Figure 5-1: SEM micrographs showing the initial Ti-6Al-4V microstructure. 

 

Figure 5-2: Typical T-shaped flat (left) and airfoil (right) samples machined. 

5.2.2. LSP processing and characterizations 

Untreated samples were used as the baseline reference material in this work. Otherwise 

stated, untreated condition in this work is also referred to as as-machined (As-M) condition. 

For LSP processing, next section describes the process. Also, to observe the effectiveness of 

the LSP processing, several techniques were used to characterize the untreated and treated 

samples. 

5.2.2.1. LSP processing 

For the LSP processing, an Nd:Glass laser at Metal Improvement Company (MIC), 

Livermore Laser Peening Division, California, USA, was used. Table 5-1 shows the LSP 

processing parameters used in this work. Figure 5-2 also shows the LSP modified regions on 

both sample geometries. For the airfoil geometry, it is a common practice to peen both sides 
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of the sample in order to avoid distortion as reported in [69,71,135,152–154]. This approach 

has been adopted in this work.  

Table 5-1: LSP processing parameters and conditions 

Sample geometry T-shaped Flat Airfoil 

Surface treated As-M  As-M 

Laser type Nd:Glass Nd:Glass 

Ablative layer Aluminum No layer 

Intensity (GW/cm
2
) 10  10  

Pulse time (ns) 18 18 

Number of layers 2 3 

Spot geometry Square Square 

5.2.2.2. X-ray diffraction pattern and residual stress measurement  

X-ray diffraction (XRD) patterns for the untreated and LSP treated surfaces were 

acquired in order to observe any induced strains during LSP. It has been reported that X-ray 

diffraction peak broadening is associated with induced strains [155]. In this work, variations 

in the peak intensity and peak broadening are monitored for the first three peaks. Top surface 

compressive residual stresses before and after LSP processing were also measured using the 

XRD sin
2
ɸ technique at Proto Manufacturing Inc., USA. Crystallographic plane of {213} and 

Bragg‟s angle (2θ = 142º) obtained by Cu Kα radiation were employed for this purpose. For 

the LSP condition, residual stresses were measured relative to the peening (scanning) 

directions i.e. parallel (0˚) and transverse (90˚). Figure 5-3 shows a peened sample and the 0˚ 

and 90˚ directions used for measurements are indicated. For comparison, the top surface 

residual stresses for the As-M condition were also measured using these two directions. 
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Figure 5-3: Illustration of 0˚ and 90˚ directions relative to laser scanning direction on a 

peened sample. 

5.2.2.3. Microhardness 

Prior to the hardness measurements, the samples (LSP and As-M) were cut perpendicular 

to the surface using a diamond cutter. Under cooling and lubricating fluid conditions, low 

speed and moderate load were applied in order to minimize undesired surface modifications 

during cutting. After mounting, SiC papers from 400-800 grits were used for grinding and 

vibratory polishing with 1 µm diamond paste was employed to remove scratches and other 

undesired debris. Microhardness measurements were carried out on the top surface and cross-

section of LSP and As-M samples. A 50 gf load and 15 seconds dwell time were used during 

measurements. Microhardness at 7-8 locations were obtained across the depth of LSP and As-

M samples. At each location, the average and standard deviation of 4-5 readings were 

calculated.  

5.2.2.4. Microscopy 

To observe any surface features, the as-treated top surface was observed under SEM (S-

3400N, Hitachi). For surface and in-depth microstructure investigations, Kroll‟s reagent 

containing 2ml HF + 5ml HNO3 + 100ml H2O was used to etch the vibratory polished 

samples. As recommended by Gammon et al. [137], etching time of 15 seconds was chosen 

to have a balance between details and contrast. SEM images of the polished-etched top 

surface and cross-sections for both LSP and As-M samples were taken at different 

magnifications. 
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5.2.3. WDE testing and damage analysis 

5.2.3.1. WDE tests 

A rotating disc rig at Concordia University, shown in Figure 5-4a, was used for studying 

the WDE performances of LSP and As-M Ti-6Al-4V. The test was conducted in accordance 

with the ASTM G73 standard [29]. In this rig, the As-M and LSP samples are fixed at 

diametrically opposite ends of the rotating disc as shown in Figure 5-4a. To avoid vibrations 

during testing, difference in sample weight not exceeding 0.05 g was maintained. It is worth 

noting that prior to testing, the surface roughness of both LSP and As-M samples were 

similar. The nozzles are fixed and protected by a shield, as shown in Figure 5-4b, to prevent 

droplets from drifting away during testing. Two types of nozzles were employed for the WDE 

tests depending on the sample geometry. A shower head nozzle was used for testing the 

airfoil samples; whereas, a single streak nozzle was used for testing the T-shaped flat 

samples. Figures 5-5a and b show a schematic illustration of the WDE testing direction with 

respect to the T-shaped flat and airfoil treated surface, respectively. Typical WDE testing 

parameters are summarized in Table 5-2. Reaching the desired impact (rotational) speed, de-

ionized water droplets were introduced at a controlled flow rate. The impact angle of 90º 

which causes the most severe water erosion damage [109] was used. The erosion exposure 

time depends on the impact speed, nozzle type, sample geometry and erosion stage. For 

instance, shorter exposure times were used in order to capture the early stages of the erosion 

process (initiation stage). Whereas, longer times were employed as the test progressed to the 

advanced stages of erosion.  
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Figure 5-4: Water erosion rig with attached samples (a) and fixed nozzles and sample (b). 

  

Figure 5-5: Schematic illustration of the WDE testing direction with respect to (a) T-shaped 

flat and (b) airfoil treated surfaces. 

Table 5-2: WDE test parameters used in this work 

WDE parameters Flat sample Airfoil sample 

Impact speed (m/s) 150, 200, 250, 300, 325, 350 300, 350 

Rotational speed x 10
3
 (rpm) 6, 8, 10, 12, 13, 14 12, 14 

Flow rate (liter/min) 0.05 0.15, 0.20* 

Nozzle head type Single streak Shower head 

Nozzle distance from sample (mm) 5 5 

Average droplet size (µm) 463 460, 200 

Impact angle (°) 90 90 

*Flow rate of 0.20 L/min was used only for shower head nozzle producing average droplet size of 200 µm. 

5.2.3.2. Damage analysis and WDE curves characterizations  

During the WDE tests, experiments were halted at certain intervals and eroded samples 

were weighed using a balance having ±0.2 mg accuracy. Also, to understand how the erosion 

process evolved and progressed, images were taken using a standard stereo optical 
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microscope at the intervals during which mass loss was measured. Typical erosion curves 

such as cumulative mass loss versus number of impingements, maximum erosion rate (ERmax) 

versus impact speed and number of impingement to erosion initiation versus impact speed 

were plotted. The cumulative mass loss is the sum of material loss due to exposure to an 

erosive medium at a particular time. The number of impingement was determined using 

Equation 5-1.  

                                                               

Where      is the cumulative number of impingements during an exposure period,   is 

the rotational speed (rpm),     is the erosion exposure time (minutes) and           is the 

number of droplets impacting the sample per revolution. For the flat sample geometry, 

          has been determined as 6. Detailed procedure on the droplet generation, droplet size 

distribution and number of droplets impacting the sample has been reported by the current 

authors in reference [133]. Contrary to the flat sample geometry, there is a challenge of 

quantifying the number of droplets impacting the airfoil sample. This is due to the shower 

head nozzle used during testing. Hence, graphs of cumulative mass loss versus number of 

cycles are plotted. The number of cycles is simply     . For satisfactory determination of 

the incubation period and ERmax, a three line representation method [12] demonstrated in 

Figure 5-6a is used. In Figure 5-6a, the ERmax denoted as “B” is the slope of the data points in 

maximum erosion stage, whereas the incubation period denoted as “A” is the intersection of 

the straight line with the x-axis (time axis) [29]. To determine the relationship between 

impact speed and ERmax, the power law relationship given in Equation 5-2 is used.  

                                                                   

Where    is the erosion rate,   is the impact speed and   is the speed exponent. To 

observe the erosion rate as the erosion test progressed, the instantaneous erosion rate (ERinst) 

which is the slope between two consecutive points on the erosion-time graphs is plotted, 
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similar to that shown in Figure 5-6b. Hence, in this study the incubation period, ERmax and 

ERinst are analyzed. 

   

Figure 5-6: WDE curve analyses using (a) three line representation [12] and (b) ERinst [29]. 

5.3. Results and discussion 

5.3.1. Effect of LSP on surface and in-depth characteristics 

The effects of LSP and its associated attributes on the surface and in-depth characteristics 

of Ti-6Al-4V alloy have been investigated. This section reports the effect of LSP process on 

the observed XRD pattern, compressive residual stress, microstructure and microhardness.  

5.3.1.1. XRD pattern and compressive residual stresses 

Figure 5-7 shows the XRD patterns of the As-M and LSP conditions acquired. Observing 

the first three peaks, the intensity of the first two peaks is reduced for the LSP condition 

compared to the As-M condition. For all three peaks, LSP condition showed peak broadening 

compared to the As-M condition. The full width half maximum (FWHM) approach was used 

to quantify this peak broadening in Figure 5-7. For the As-M condition, 0.26, 0.22 and 0.36 

were obtained for first, second and third peak, respectively. Similarly, for the LSP condition, 

0.38, 0.39 and 0.38 were obtained. It can be inferred here that the reduced peak intensity and 

peak broadening are due to the induced lattice strains during LSP processing [156,157]. 

Prevéy [158] and Zolotoyabko et al. [155] mentioned that X-ray diffraction peak broadening 

(a) (b) 
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is associated with increase in induced lattice strains. This was attributed to the induced cold 

work during processing. This is in accord with the observation in this work. 

Furthermore, the top surface compressive stresses were measured for the As-M and LSP 

conditions in the 0, scanning, and 90˚, transverse, directions. The As-M condition showed -

490±19 and -607±9 MPa, respectively in the 0º and 90º directions due to the machining 

process. LSP condition showed residual stresses of -770±13.5 and -768±14.82 MPa in the 0º 

and 90º directions, respectively, which are higher than those observed for the As-M 

condition. This is due to the effectiveness of LSP in inducing compressive residual stress. 

The LSP induced stresses are in the range of 90-110 ksi (600-750 MPa) and about 60-80% of 

the materials‟ yield strength. This is in accord with the current findings. Since, several studies  

reported the variation of the compressive residual stress with depth after the LSP process 

[58,71,85,150,159], the in-depth residual stresses were not measured in this work. 

 

Figure 5-7: XRD patterns of the As-M and LSP treated surface. 

5.3.1.2. Microstructure 

The top surface and cross-sectional views of the As-M and LSP conditions were observed 

using SEM. Figure 5-8a shows the observed top surface after LSP processing, however 

microstructural changes due to deformation are not observed due to the small amount of cold 
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working induced during LSP process [34,86,87]. Graham et al. [160] further mentioned that 

laser shock processing does not cause macroscopic deformation in the treated region. Thus, 

this micrograph is similar to the starting microstructure (As-M) shown in Figure 5-1. Figures 

5-8b and c show the in-depth microstructures of the As-M and LSP conditions, respectively. 

Similarly, no noticeable changes were observed in the microstructure after LSP treatment 

across the depth. Shepard et al. [154] reported the effect of LSP on the microstructure of Ti-

6Al-4V. They [154] employed several peening parameters such as different pulse repetitions 

of 1, 3 ad 5 shocks/spot and power densities of 4 and 9 GW/cm
2
 while keeping pulse duration 

of 20 ns constant. Their [154] results showed that LSP induced deep levels of compressive 

residual stresses especially with increase in both pulse repetition and power density. 

However, their [154] SEM micrographs showed no changes in the microstructure after 

peening. Zhao [161] also reported that the microstructure of peened and unpeened Ti-6Al-4V 

samples after LSP processing at different energy levels was similar. This is also the case in 

the present work. It is well known that the pulse duration produced by the peening process 

where laser shock interaction times are very short (in nanoseconds) compared to other 

conventional peening techniques such as shot peening [162]. Even though XRD analysis 

(peak broadening) suggests induced strains after LSP, the short interaction times might not be 

enough to significantly change the microstructure. This is mainly attributed to the low level 

of cold work during processing (about 5 %) [87]. Moreover, information on the interaction of 

the microstructure with laser induced shock waves and the resulting changes at the macro- 

and microstructural levels is still lacking in the literature. Based on the present work and 

works in [154,161], it can be inferred that microstructural changes after peening might not be 

significant even though deep compressive residual stresses are induced.. 
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Figure 5-8: SEM micrographs showing (a) treated top surface (b) untreated cross-section and 

(c) LSP treated cross-section. 

5.3.1.3. Microhardness 

Figure 5-9 shows the microhardness measurements of As-M and LSP conditions. The top 

surface microhardness values were 331±5.3 HV and 333±6.2 HV for As-M and LSP 

conditions, respectively. Microhardness across the depth shows that only a mild increase or 

no appreciable increase after the LSP treatment. Chavez et al. [163] also reported that LSP 

had no apparent effect on the microhardness of Ti-6Al-4V. These observations are in accord 

with the works of Rubio-González et al. [41] and Fairand and Clauer [40] on other materials. 

For instance, Rubio-González et al. [41] showed that LSP had no effect on the hardness of 

2205 duplex stainless steel. They [41] attributed this to the insufficient energy from LSP. 

Again, Fairand and Clauer [40] reported the effect of LSP on heat treated aluminum alloys 

(2024-T351, 2024-T851, 7075-T651, 7075-T73). Their [40] results showed that LSP 

increased the hardness in 2024-T351. However, no appreciable effect on the hardness of peak 
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aged 2024-T851 and 7075-T651 and over-aged 7075-T73. No obvious reasons were 

mentioned for the observed behaviours. This can be attributed to the low level of cold 

working associated with the LSP processing [164]. Reports [87,88] have shown that LSP 

induces about 5 % cold working. It is known that cold working improves the mechanical 

properties such as hardness and tensile strength [165]. For instance, Nagarjuna et al. [166] 

studied the effect of cold working on mechanical properties and structure of Ti alloy (Ti with 

Cu-1.5 wt%). They [166] reported that increase in percentage cold work from 0, 20, 40, 60 up 

to 80 % showed significant increase in hardness. This also had a corresponding increase in 

the tensile strength of the alloy. This is due to the fact that tensile strength is directly 

proportional to the hardness [167]. It was deduced from their work [166] that at 5 % cold 

work, the tensile strength was increased by only less than 2 % compared to 46.15 % increase 

at 80 % cold work. Petunina and Poplavskaya [165] also studied the effect of  cold working 

on the strength of titanium-based alloys (pure Ti and Ti-3Al-2V). They [165]  stated that the 

tensile strength of the titanium alloys was enhanced significantly after 20 % cold working 

with only a slight loss in ductility. Gupta et al. [168] also studied the effect of prior cold 

working before tensile tests on equiaxed α- and β-phase Ti-6Al-4V. Three different levels of 

cold working were employed, 0, 10 and 15 %. They [168] reported that with 10 % and 15 % 

cold work, the tensile strength (TS) and ultimate tensile strength (UTS) were increased as 

compared to 0 % cold worked condition. Hence, the strain hardening exponent (n) and 

strength coefficient (K) were consequently increased with increase in cold working. They 

[168] attributed this behaviour to the large amount of dislocations and the dislocation pile up 

hindered the movement of other dislocation, thus strain hardening the material. In the current 

work where LSP is assumed to induce only 5 % cold work, the hardness increased by only 2-

3 %. From the aforementioned works [165,166], it can be confirmed that low level of cold 

working from LSP might not have significant effect on hardness. This accompanied with the 

http://link.springer.com/article/10.1007%2FBF00811659#author-details-1
http://link.springer.com/article/10.1007%2FBF00811659#author-details-2
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unchanged microstructure (Figure 5-8c) could have led to the observed unchanged 

microhardness. It is known that refinement of microstructure or reduction in grain size is 

associated with enhanced microhardness [148]. This is not the case in this work. The 

observed surface and in-depth characteristics are used to understand the WDE performance. 

 

Figure 5-9: Measured microhardness with respect to depth for LSP and As-M conditions. 

5.3.2. Water droplet erosion performance 

During WDE tests, two coupons (As-M versus LSP) were tested at the same time in order 

to investigate their WDE performances. To understand the effects of LSP and its attributes on 

WDE performance, a wide range of impact speed was used. For the T-shaped flat samples, 

impact speed was the main parameter varied while keeping other parameters constant. Here, 

impact speeds of 150, 200, 250, 300, 325 and 350 m/s were selected. For the airfoil samples, 

only impact speeds of 300 and 350 m/s were used. Also, two droplet sizes of 200 and 460 µm 

were used. For the 460 µm droplet size used, impact speeds of 300 and 350 m/s were 

employed, whereas only 350 m/s was employed for the 200 µm droplet size test. Impact 

speed of 350 m/s was chosen as the most severe condition, whereas 300 m/s was chosen to 

have a less severe testing condition. Testing at lower impact speed than 300 m/s and 200 µm 

droplets would require impractical long testing time. Therefore, tests using impact speed of 

<300 m/s for airfoil geometry were not performed in this work. 
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5.3.2.1. WDE performance of LSP and As-M T-shaped sample conditions 

Figures 5-10a and b show the graphs of cumulative mass loss versus number of 

impingements for flat T-shaped LSP and As-M conditions at impact speeds ranging from 150 

to 350 m/s. Figure 5-10b shows typical well-behaved erosion curves with an S-shape. With 

this curve shape, distinct erosion stages such as incubation (initiation) period with negligible 

mass loss; acceleration stage up to a ERmax stage; deceleration (attenuation) stage with 

declining ER and terminal erosion state with constant ER can be observed [12,29,30]. In this 

work, the incubation period and ERmax are analyzed. From Figure 5-10, it can be seen 

generally that increasing the impact speed from 150 to 350 m/s showed faster erosion 

evolutions and progressions in both As-M and LSP conditions. This is due to the increase in 

test severity with increase in impact speed. Interestingly, at impact speed of 150 m/s (Figure 

5-10a), no erosion was observed on both As-M and LSP conditions after 840 minutes of 

exposure which corresponds to approximately 30 million impingements. Here, only a shiny 

erosion line trace was observed under the optical macrograph and no visible damage was 

detected. This is as shown in the insert macrograph in Figure 5-10a. This could be the 

threshold speed for both As-M and LSP conditions which is greater than or equal to 150 m/s. 

The threshold speed is the speed below which no apparent damage is seen [30]. Moreover, 

the definition of this speed is somehow subjective and depends on the testing conditions such 

as impact speed, droplet size and number of impingements. In this work, it was found that 

using average droplet size of 464 µm and flow rate of 0.05 liter/min, the threshold velocity 

was in the range of 150 m/s ≤ Vthreshold ˂200 m/s where there was no measurable mass loss 

after as long as 840 minutes of exposure which corresponds to more than 30 million 

impingements. This is an important observation has not been captured in previous studies on 

WDE of Ti-6Al-4V [9,17,31]. Based on Figures 5-10a and b, it can be seen that similar WDE 

performance was observed for both As-M and LSP conditions. In other words, both 
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conditions showed similar WDE behaviour at all stages of the erosion irrespective of the 

impact speed employed. The little difference observed in the graphs is considered within the 

experimental errors. 

 

 

Figure 5-10: WDE curves for As-M versus LSP at (a) 150-200 m/s and (b) 250-350 m/s. 

Using the three line representation (Figure 5-6a), the effect of impact speed on the erosion 

initiation and ERmax was deduced for the LSP and As-M conditions based on the results 

presented in Figures 5-10a and b. Figures 5-11a and b show the aforementioned effect of 

speed on the erosion initiation and ERmax, respectively. It is evident from Figure 5-11a that at 

higher impact speeds lower number of impingements were required to initiate erosion 

damage. Also, at higher impact speed corresponds to greater ERmax due to increased test 
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severity. However, at all tested speeds, number of impingements to initiate erosion for the 

LSP and As-M samples was the same. The relationship between impact speed and ERmax, was 

established using the power law equation (Equation 5-2) and the speed exponent was 

determined. For metals, typical exponent values range from 5-7 in the literature [110,111]. 

However, based on Figure 5-11b, exponent value of 8.9 was observed for the As-M and LSP 

samples, respectively. This observation is in accord with the studies by Kamkar [9] and 

Mahdipoor et al. [28] where they reported values of 9 and 7-9, respectively, for WDE tested 

Ti-6Al-4V. The exponent value obtained in this work and in [9,28] is higher than the range 

(5-7) found in the literature. This could be due to the test set-up/conditions, initial target 

surface conditions and erosive medium characteristics such as droplet size and droplet 

velocity. For instance, exponent values of 5 [110] and 6-7 [117] have been reported for liquid 

jet impact and liquid impingement erosion for pipe wall thinning applications, respectively. 

In this work and in [9,28], the application is for water droplet erosion for compressor blades 

of gas turbine. Hence, it can be seen that the test set-up/conditions are different which 

resulted in different exponent values. Also, the technique used for determining ERmax could 

have influenced the observed difference. In this work and in [9,28], three line representation 

technique was employed, whereas others [110,117,118] used the ERinst approach. Based on 

Figure 5-11b, the exponent value (8.9) further confirms that the LSP and As-M conditions 

have similar WDE performance.  

Two main reasons for the observed WDE performance are the lack of noticeable 

microstructural changes (Figure 5-8) and mild increase in microhardness (Figure 5-9) after 

the LSP treatment. Microhardness is one of the most important material properties used to 

assess the resistance of materials to WDE damage [18,30]. It has been reported [18,109] that 

erosion resistance varies with 2
nd

 to 3
rd

 power of hardness. Refined microstructure and 

reduction in grain size have also been associated with erosion resistance [18,30]. For treated 
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Ti-6Al-4V, enhanced microhardness and refined grains have shown improved erosion 

resistance [26,147]. However, this is not the case for the LSP condition, thus similar erosion 

behaviour compared to As-M condition is expected.  

 

 

Figure 5-11: Effect of impact speed on (a) erosion initiation and (b) ERmax. 

The influence of induced compressive residual stresses in understanding erosion 

performance is paramount. It has been reported that induced compressive residual stresses 

supress cavitation erosion. For instance, Hackel et al. [159] reported the effect of laser 

peening on the cavitation erosion behaviour of Ti-6Al-4V. Their [159] preliminary erosion 

results showed that LSP technique supresses cavitation erosion due to the beneficial induced 

compressive residual stresses. In their [159] work, no information about microhardness, 

microstructure and surface roughness after LSP was provided. Also, the starting surface 
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conditions for both peened and unpeened samples prior to the cavitation test were not 

mentioned. These details are needed in order to understand this behaviour. It should be noted 

here that cavitation erosion is different from water droplet erosion. The main difference is the 

high exerted pressure by the liquid droplets and the radial outflows in WDE damage and this 

is not the case during cavitation tests which deal with the collapse of bubbles. In WDE, the 

surface is continuously impacted by water droplets, transmission and reflection of the stress 

waves will occur repeatedly. These waves interact and result in high tensile stress waves that 

cause crack initiation and propagation of existing cracks. Because of the high frequency of 

the liquid impacts at high speeds, the stress wave interactions will be very fast and the 

magnitude of the resulting tensile stress waves will be high. This is not the case in cavitation 

tests. 

The influence of mechanical surface treatments on the WDE behaviour of materials has 

not been explored extensively in the literature. Heymann [18] stated that processes involving 

cold working (strain hardening) such as pressing, rolling or hammering might be beneficial in 

mitigating erosion damage. However, too much cold working might show detrimental effects. 

In another report, Frederick and Heymann [10] stated that processes involving peening might 

not be beneficial in enhancing the WDE behaviour of materials especially during the 

incubation stage. This is due to the fact that the exposed surface is plastically deformed twice 

and consequently, work hardened twice. First work hardening comes from the peening 

process itself, whereas the second comes from the continuous droplet impacts during the 

erosion process. The duplication of the work hardening process at the incubation period 

might be detrimental to the WDE behaviour [10]. Heymann [30] further stated that the first 

plastic deformation retards erosion initiation while the second promotes the erosion initiation. 

The first and second plastic deformations balance each other, thus this may result in non-

enhanced WDE performance. The statements mentioned in [10,18,30] are contradictory and 
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need to be supported with further investigations. In addition to this work, two mechanical 

surface treatments, deep rolling and (DR) and ultrasonic nanocrystalline surface modification 

(UNSM), have recently been explored in relation to WDE performance of Ti-6Al-4V. For 

instance, Ma et al. [11] studied the water impingement erosion performance of deep rolled 

versus As-M Ti-6Al-4V. During their [11] work, several DR parameters were explored in 

order to have deep compressive residual stress while improving the surface and sub-surface 

properties. Using similar sample geometry (T-shaped flat), WDE parameters such as droplet 

sizes (464 µm and 603 µm) and impact speeds (250 m/s and 350 m/s) were employed. Their 

[11] WDE results showed that no improved WDE performance for the DR condition 

compared to the As-M condition at all tested conditions. This is in accord to with the present 

work, where no enhanced WDE performance was observed for the LSP condition. More so, 

the present work and [11] revealed that no deterioration in the WDE performance was 

observed after LSP and DR processing, respectively. Gujba et al. [148] studied the effect of 

UNSM on the WDE performance of Ti-6Al-4V. T-shaped flat geometry was also tested while 

using impact speeds of 250, 275, 300 and 350 m/s and 464 µm droplet size. Their [148] WDE 

results showed that UNSM condition had enhanced WDE performance at impact speeds of 

250, 275 and 300 m/s compared with the As-M condition. At 350 m/s, the effectiveness of the 

UNSM process diminished. The enhanced performance was attributed to the increased 

microhardness and modified microstructure after UNSM processing. In this work, even at 

lower speeds of 150 and 200 m/s employed, no enhanced WDE performance could be 

observed. This is due to the fact that LSP had no significant effect on the microhardness and 

microstructure (grain refinement). Even though, the amount of cold working is small in LSP, 

the observations in this work and [11] are in agreement with the explanations given in 

[10,30], who pointed out that a non-enhanced WDE performance maybe observed due to 

duplication of the working hardening process. However, the current work and [11] are in 
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disagreement with statements given in [18], who claimed that processes involving cold 

working might mitigate erosion damage. Interestingly, the work in [148] showed that specific 

process involving cold working mitigates erosion damage at certain conditions which is in 

accord with the explanations given in [18]. Also, the same work in [148] proved that 

duplication of the working hardening process did not show any non-enhanced WDE 

performance which is in disagreements with the explanation given in [10,30]. 

5.3.2.2. WDE performance of LSP and As-M airfoil sample conditions 

Similar to the WDE studies on the flat T-shaped samples, airfoils in As-M and LSP 

conditions were investigated. However, the WDE tests were conducted perpendicular to the 

LSP treated surface as shown in Figure 5-5b. Figures 5-12a and b show the WDE curves for 

the As-M and LSP airfoil samples tested using 460 and 200 µm droplet sizes, respectively. 

Figure 5-12a shows the test carried out using 460 µm at 350 and 300 m/s and it can be seen 

that at 350 m/s, significant mass loss at all stages of the erosion was observed as compared 

with test at 300 m/s. This observation is also shown in the ERinst curves in Figures 5-13a and 

b, respectively. Again, at 350 m/s (Figures 5-12a and 5-13a), the WDE performance of As-M 

and LSP conditions were very close. However, at 300 m/s (Figure 5-12a and 5-13b), LSP 

condition lost more material during early stages of the damage as compared to the As-M 

condition. At the advanced stages (>100 x 10
4
 cycles), LSP condition showed slightly 

reduced erosion rate compared to the As-M condition. This could be due to the influence of 

induced compressive residual stresses which is through the thickness of the airfoil. This is an 

interesting observation that has been reported in another work by Gujba et al. [148]. They 

[148] studied the influence of UNSM treatment on the WDE performance of treated and 

untreated airfoil Ti-6Al-4V. Similar to the LSP treatment on the airfoil geometry, the UNSM 

treatment was carried out on both sides, thus residual stresses are across the thickness as well. 

Using similar erosion conditions i.e. 460 µm at 350 and 300 m/s, they [148] reported that at 
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350 m/s, no enhanced performance was observed. However, at 300 m/s the UNSM airfoil 

showed mildly enhanced WDE performance at the advanced WDE stages. This is the case in 

the present work (shown in Figure 5-13b) under the same eroding condition. Hence, the 

induced stresses might have resisted further crack propagations similar to the crack arrest in 

stress corrosion cracking (SCC) tests [34]. Based on the present work and [148], it can be 

said that both LSP and UNSM might be effective treatments especially when sample are 

treated away from the leading edge. It should be noted that this behaviour was observed only 

at 300 m/s which is relatively low speed testing condition.  

 

 

Figure 5-12: WDE curve of As-M versus LSP for (a) 460 and (b) 200 µm droplet sizes. 

In order to further reduce the test severity, the droplet size was reduced to 200 µm while 

using 350 m/s. Figure 5-12b shows the WDE curve for test at 350 m/s and 200 µm. It can be 

seen that reducing the droplet size reduced the mass loss compared to test at 350 m/s using 

460 µm (Figure 5-12a). This is attributed to the decreased test severity when using smaller 
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droplet sizes. Figure 5-12c shows the corresponding ERinst for Figure 5-12b where the erosion 

rate was reduced significantly. However, the LSP condition did not show enhanced WDE 

performance at all stages of the erosion. By reducing the droplet size (reducing test severity), 

one would expect behaviour similar to Figure 5-13b. This is not the case in Figure 5-13c 

where the WDE performance for both As-M and LSP condition was the same. 

 

 

 
Figure 5-13: ERinst for WDE tests using (a) 350 m/s, 460 µm, (b) 300 m/s, 460 µm and (c) 

350 m/s, 200 µm. 
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5.3.2.3. Effect of sample geometry and LSP on WDE performance 

The effect of LSP process on WDE performance of treated and untreated T-shaped and 

airfoil samples is reported in this study. LSP induced compressive residual stresses but had no 

significant effect on the microstructure and microhardness.  

For the T-shaped flat sample, the WDE test was conducted parallel to the peened surface 

(Figure 5-5a). Laser peening had no beneficial effect in enhancing WDE performance for this 

sample geometry. This is clearly demonstrated in Figure 5-10 where both As-M and LSP 

conditions showed similar WDE performance. In other words, both conditions showed 

similar erosion initiation and ERmax at all tested speeds as shown in Figures 5-11a and b. This 

was attributed to the unchanged microstructure and lack of appreciable increase in 

microhardness. Even though LSP induced compressive residual stresses which are beneficial 

in retarding crack initiation and propagation, this benefit could not be realized for the T-

shaped flat samples. This explanation is in accord with the findings in [148]. In their [148] 

WDE study, they mentioned that the benefit of compressive residual stresses could not be 

guaranteed for the T- shaped sample. This is because modified microstructure and enhanced 

microhardness seem to be the dominating factors in erosion resistance than the induced 

compressive residual stresses. Comparing [148] with this work, the argument can further be 

strengthened that compressive residual stresses are not beneficial for this T-shaped flat 

sample geometry. This is due to the fact that LSP only induced compressive residual stresses 

with minimum influence on the microstructure and microhardness. Based on this study and 

[148], it can be inferred that for enhanced WDE performance on the flat samples, hardening 

effect must be realized. 

For the airfoils where the WDE test perpendicular to the treated surface (Figure 5-5b), 

the LSP treatment had limited beneficial effect in mitigating the erosion damage during the 

advanced erosion stage at a relatively low speed (300 m/s). At 350 m/s, where the test 
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condition is severe, the induced compressive residual stresses showed no beneficial effect on 

the airfoil geometry. Comparing with the T-shaped sample geometry, the WDE performance 

of the treated airfoil condition at relatively low speed (300 m/s) could have been influenced 

by the induced compressive residual stresses via LSP. This is because the induced 

compressive residual stresses are through the airfoil thickness. Hence, erosion damage is 

improved to some degree by resisting further crack propagations especially at advanced 

stages. This observation is in accord with the study in [148]. 

5.3.3. WDE damage evolution 

During the erosion tests, optical macrographs were taken after every interval. This is to 

observe the erosion initiation and progression on the As-M and LSP conditions. Figures 5-

14a and b show the macrographs taken during tests at 250 and 300 m/s which correspond to 

WDE curves in Figure 5-10. The erosion initiation started with the emergence of erosion 

trace line. Figure 5-14a shows this initiation process on the As-M condition after 6 minutes of 

exposure at 250 m/s. This is the incubation stage where mass loss is negligible. Compared 

with LSP condition, similar erosion trace line was seen after the same 6 minute exposure. 

After 10 minutes of exposure (Figure 5-14a), both conditions showed formation of small 

isolated pits along the trace line, thus indicating early stage of the erosion damage. Here, the 

As-M and LSP conditions showed mass losses of 0.0003 and 0.0002 g, respectively. With 

additional impacts (after 16 minutes), large isolated pits were formed and gradual pit growth 

was observed in the As-M and LSP conditions. At this point, mass losses of 0.012 and 0.013 

g were recorded for the As-M and LSP condition, respectively. After 56 minutes, complete 

craters were formed and mass loss of 0.084 g was observed for both As-M and LSP 

conditions. Similarly, increasing the impact speed from 250 to 300 m/s (Figure 5-14b), 

quicker erosion initiation and progression were observed. For instance, after 6 minutes of 

exposure, formation of pits and gradual pit growth were observed in both As-M and LSP 
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conditions compared to the pit growth after 10 minutes at 250 m/s (Figure 5-14a). ERmax was 

reached after 16 minutes of exposure (11.52 x 10
5
 impingements) after which a decrease in 

the rate was observed for both conditions (Figure 5-10b).  

  

 

Figure 5-14: Optical macrographs showing the erosion evolution and progression on As-M 

and LSP samples tested at (a) 250 m/s and (b) 300 m/s. The scale shown in each image is in 

mm. 

From the optical macrographs shown in Figure 5-14, it can be said that decreasing the 

impact speed delays the erosion initiation and progression. The early erosion initiation and 

progression at high impact speeds are due to the significant impact stresses. This is attributed 

to the high impacts pressure and the radial outflows (lateral jetting) of the liquid droplets. It is 

worth noting that with increased exposure time/droplet impacts, both the depth and the width 

of the craters are increased [11]. At 250 m/s, crater width of less than 1 mm and greater than 

1 mm were observed on the both As-M and LSP conditions after 10 and 76 minutes, 

respectively. This observation is also true when comparing the crater width/depth for 
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different speeds at the same exposure. For instance, comparing the crater widths after 16 

minutes of exposure at 250 m/s and 300 m/s, it can be observed that crater width of less than 

1 mm and greater than 1 mm were observed at 250 m/s and 300 m/s, respectively. This is also 

the case when comparing the As-M and LSP conditions. This is due to the continuous droplet 

impacts and the radial liquid outflows. At all exposure times shown in Figures 5-14a and b, 

similar erosion evolution and progression were observed for the As-M and LSP conditions. 

This further indicates that LSP had no benefit in enhancing the WDE performance for this 

sample geometry. This can be attributed to the unchanged microstructure and lack of 

appreciable increase in microhardness after peening.  

Similar to Figure 5-14, Figure 5-15 shows the erosion evolution and progression for the 

LSP and As-M airfoil samples at 350 m/s using 460 µm droplet size which correspond to the 

WDE curve in Figure 5-12a . Due to the sample geometry, images were taken at two different 

orientations. From Figure 5-15, both As-M and LSP conditions showed similar erosion 

initiation and progression. Isolated pits/craters were observed after 9 minutes of exposure due 

to the shower head nozzle employed. Here, mass losses of 0.0068 and 0.0077 g were 

observed on the LSP and As-M conditions, respectively. After 21 minutes of exposure, the 

craters merged into one another due to the continuous liquid impacts and lateral jetting, 

causing significant loss of material. At this stage, the formed craters became deeper and 

cumulative mass losses of 0.0235 and 0.0249 g were observed for the LSP and As-M 

conditions, respectively. With additional exposure (after 182 minutes), the craters further 

deepened and widened due to the accumulated liquid impacts and the radial outflows. Mass 

loss of 0.0913 and 0.0873 g were recorded for the LSP and As-M conditions, respectively. 

Both As-M and LSP conditions showed crater depth of <1mm and ~2mm after 21 and 182 

minutes, respectively. Based on Figure 5-15, the WDE performance of As-M and LSP airfoils 

is the same. This is also the case for the test at 350 m/s using 200 µm droplet size. The effect 
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of LSP and the associated compressive residual stresses had no benefit in mitigating erosion 

at this speed (350 m/s). 

 

Figure 5-15: Optical macrographs showing the erosion evolution and progression on As-M 

and LSP airfoil samples at 350 m/s using 460 µm. The scale shown in each image is in mm. 

5.3.4. WDE and Fatigue damage  

Despite researchers [9,11,117] associating WDE to fatigue-like damage due to the 

continuous liquid impingements in a cyclic fashion, the question still remains, is fatigue 

mechanism dominating in WDE?. Also, the perception that compressive residual stresses 

enhance fatigue life is becoming a fact. If fatigue is dominating in WDE, then processes that 

induce deep and large compressive residual stresses such as LSP should mitigate erosion 

damage. However, this does not seem to be the case for enhancing water droplet erosion 

resistance. Even though fatigue-like features such as striations during WDE damage have 

been observed [133], the likelihood that fatigue-like mechanism is dominating in WDE is 

unlikely. If this is the case, the level of residual stresses reached via LSP should have been 

sufficient to mitigate erosion damage. It has been mentioned that compressive residual 

stresses through the thickness of the airfoil samples could have arrested further crack 
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propagations. These are normal cracks which could be observed in other damages such as 

stress corrosion cracking (SCC) not only limited to WDE. It is worth noting that only the 

effect of continuous liquid impacts is usually considered when ascribing WDE to fatigue 

while ignoring the effect of the continuous liquid lateral jetting after the impacts. The 

continuous lateral jetting which is not the case in real fatigue damage could be more 

damaging than liquid impacts especially at high impact speeds. It has been reported that 

increase in impact speed has significant effect on the lateral jetting and the resulting damage 

[133]. Hence, WDE damage should be viewed and understood as a synergy of both 

continuous liquid impacts and the lateral jetting. 

5.4. Conclusions 

This work studies the effect of LSP on the WDE performance of Ti-6Al-4V for the first 

time. The work explores the influence of impact speed on two sample geometries (T-shaped 

flat and airfoil). The following conclusions can be drawn: 

1. LSP treatment using 2 and 3 pulses per unit area induces significant levels of 

compressive residual stress. However, for the treatment approach and conditions used 

in this work, LSP shows little or no effect on the Ti-6Al-4V microstructure and 

microhardness. 

2. WDE results show similar WDE performance for the T-shaped flat LSP and As-M 

conditions at all tested speeds (150 m/s to 350 m/s). At 150 m/s, both LSP and As-M 

conditions show no erosion damage after 840 minutes (30 million impingements).  

3. Both LSP and As-M conditions show similar ERmax and speed exponent value of 8.9. 

Hence, for the T-shaped fat geometry, LSP treatment shows no beneficial effect in 

enhancing the WDE performance. 

4. Despite LSP inducing compressive residual stresses, the residual stresses reached in 

this work do not improve WDE performance. Since LSP is proven to improve fatigue 
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behaviour of Ti-6Al-4V alloy, this indicates that the fatigue-like mechanism is not 

dominating in WDE. 

5. For the airfoil geometry, WDE curves show similar WDE performances LSP and As-

M conditions at 350 m/s. At 300 m/s, LSP shows little improvement in WDE 

resistance at the advanced erosion stage. The compressive residual stress through the 

sample thickness influences this behaviour. 

6. Synergy between surface hardening, microstructural refinement and compressive 

residual stresses is necessary for significant improvement in water droplet 

impingement erosion resistance. 
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 : Conclusions, Contributions and Recommendations Chapter 6

The main outcomes of this thesis are summarized in this chapter. Also, the main 

contributions of this work in relation to previously published works are highlighted. 

Suggestions for future research directions are provided. 

6.1. Conclusions 

The thesis investigates the WDE behaviour/performance of untreated (As-M) and treated 

Ti-6Al-4V. The influence of impact speed on the WDE performance is detailed. For the first 

time, the study explores two mechanical surface treatments, LSP and UNSM. Also, the work 

reports the effect of sample geometries and the effectiveness of these mechanical surface 

treatments on the WDE performance of Ti-6Al-4V. Two sample geometries, T-shaped flat 

and airfoil, are employed.  

Investigation on the WDE behaviour of bare (As-M) Ti-6Al-4V shows that increasing the 

impact speed decreases the erosion initiation time and increases the maximum erosion rate 

(ERmax). It is found that ERmax increases with the 9 to 10
th

 power of impact speed. A threshold 

speed range between 150 and 200 m/s was observed for this material after prolonged 

exposure. The dimensions of erosion crater are influenced significantly with increase in 

impact speed. From SEM analyses, formation of microcracks, isolated pits and surface 

asperities are the main erosion features during the early stage of the erosion damage. At 

advanced WDE stage, the dominating mode of material removal is the hydraulic penetration. 

More so, fatigue striations, side wall cracks, sub-surface cracks, material folding and 

upheaving were also observed at the advanced stage. Impact speed influences the liquid 

lateral jetting at the advanced water droplet erosion stage. In this study, it was shown that 

lateral jetting is more apparent with increase in impact speed even with relatively low number 

of impingements/less exposure time.  
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In the second part of the work, the effect of UNSM treatment on the WDE performance of 

Ti-6Al-4V is reported. UNSM treatment reveals surface features such as microdimples and 

microtracks due to the ball impacts. Also, the treatment induces deep levels of compressive 

residual stress. In this work, compressive residual stresses were induced in the parallel and 

transverse directions down to 0.25 mm. UNSM treatment is associated with severe plastic 

deformations, thus the process reveals mechanical deformation marks. This translates to 

significant changes in the surface and sub-surface layers after processing. Hence, material 

properties such as microhardness are enhanced due to variation in grain sizes across the depth 

of the ultrasonically modified layer. In this work, the highest microhardness was observed at 

around 30 μm below the top surface. WDE results reveal that UNSM T-shaped flat condition 

shows enhanced WDE performances at speeds of 250, 275 and 300 m/s compared with the 

As-M condition. This is attributed to the modified microstructure and improved 

microhardness. At speed of 350 m/s, both conditions show similar WDE performance. The 

effects of UNSM and its attributes diminished with increasing impact speed. UNSM airfoil 

shows more mass loss at the advanced stages as compared with the As-M condition at 350 

m/s. At 300 m/s, UNSM airfoil mildly improves WDE performance at the advanced stages 

compared with the As-M condition.  

Finally, this study investigates the influence of LSP and its associated attributes on the 

WDE performance of Ti-6Al-4V. LSP condition shows significant level of induced 

compressive residual stress compared to As-M condition. However, LSP shows a mild 

increase in the microhardness which is attributed to the unchanged microstructure after LSP. 

WDE results show that the T-shaped flat LSP and As-M conditions had similar WDE 

performance at all tested speeds. Similar erosion initiation times and ERmax are observed for 

both conditions. The ERmax increases with the 9
th

 power of impact speed for both LSP and 

As-M flat samples. Optical macrographs reveal that both peened and unpeened conditions 
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had the same erosion evolution and progression. The erosion curves for different WDE 

testing conditions support these observations. In this work, the LSP technique shows no 

enhanced WDE performance in peened flat samples for all tested speeds. The LSP and As-M 

airfoil conditions show similar WDE performances at 350 m/s. However, at advanced stage, 

LSP condition shows little resistance compared to As-M condition at 300 m/s. 

The notion that compressive residual stresses enhance fatigue life is becoming a fact. 

However, this does not seem to be the case for enhancing water droplet erosion resistance. 

Even though this work observes fatigue-like features such as striations during WDE damage, 

the likelihood that fatigue-like mechanism is dominating in WDE is unlikely. This work also 

shows that treating both sides of the airfoil proves to be slightly beneficial in arresting further 

crack propagations at relatively low speed (300 m/s). This is due to the compressive residual 

stresses across the thickness of the airfoil. This work indicates that compressive residual 

stresses induced by mechanical surface treatments might be more effective in the airfoil 

geometry than the T-shaped geometry. 

6.2. Contributions 

Due to the urgent need to address the issue of WDE especially in the power generation 

industry, this study contributes to the on-going understanding of the WDE phenomenon. In 

previous studies, erosion testing at high impact speeds was a challenge due to limitations of 

the test facilities and/or testing conditions. For instance, most test facilities employed rotating 

arm apparatus and the water spraying was on a stationary target. In this work, a state-of-the-

art rotating disc water erosion testing rig that reaches up to 500 m/s linear speed (equivalent 

to 20,000 rpm rotational speed) is used. In this rig, erosion parameters such as impact speed 

and droplet size can be controlled accurately and repeatable results can be achieved. The 

repeatability of the results has been demonstrated in this work. More so, the results can be 

used in physical simulation of the WDE process as experienced in real life situations. Also, in 
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previous studies, only a narrow range of impact speeds is employed hence, there is a need to 

study WDE behaviour at a wide range of impact speeds. For these reasons, a range of impact 

speed from 150 to 350 m/s was studied and the threshold velocity of 150 m/s ≤ Vthreshold ˂200 

m/s was found for this material. Previously, much attention was not given to the effect of 

sample geometry on WDE performance. This study employed special sample geometry 

(airfoil) which is close to the real life compressor blade leading edge. 

In mitigating erosion damage, surface treatments such as coatings and laser surface 

treatments have been employed to combat WDE. However, there are still challenges related 

to surface imperfections and microcracks after such surface modifications. These surface 

defects are detrimental during WDE tests. Recently, mechanical surface treatments have 

received considerable attention. For the most part of the literature, mechanical surface 

treatments are employed to enhance fatigue life and successful results have been achieved. 

This was attributed to the induced compressive residual stresses. Also, due to the 

continuous liquid impacts in a cyclic fashion, WDE has been likened to fatigue. Moreover, 

crack initiation and propagation have been found to significantly influence WDE damage 

behaviour. It is well known that compressive residual stresses retard crack initiation and 

arrest further propagation as well as enhance fatigue life. At this point, one would expect 

mechanical surface treatments to mitigate the WDE damage to a certain degree.  Not long 

ago, deep rolling which is a mechanical surface treatment was explored in order to enhance 

WDE performance of Ti-6Al-4V. However, no enhanced WDE performance was observed 

for the deep rolled condition. For the first time, two mechanical surface treatments, LSP and 

UNSM, were employed. Influence of these treatments on the WDE performance of Ti-6Al-

4V was experimentally studied. It was established in this work that specific mechanical 

surface treatment mitigates erosion damage at certain conditions. For instance, UNSM 

surface treatment employed enhanced the WDE performance especially at 250, 275 and 300 
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m/s impact speeds for the flat samples. Whereas, LSP and its associated attributes did not 

show improved WDE performance of Ti-6Al-4V for the flat samples. Moreover, no 

deterioration in the performance was observed. 

The combined effect of surface treatment and sample geometry on the WDE performance 

was established. For instance, treating the airfoil on both sides and having compressive 

residual stresses through the thickness showed a slight reduction in the erosion rate especially 

at the advanced stage of erosion. It is worth mentioning that companies are now interested in 

testing erosion damage up to the advanced stages. This might be a viable contribution that 

can be applied. Hence, sample geometry plays a significant role in understanding WDE 

performance.  

Three journal articles were used in the body of the thesis (chapters 3, 4 and 5). In 

addition, a review article (number 1 below) related to LSP has been published and conference 

paper presented. Another article is under preparation and will be submitted afterwards. They 

are listed as follows: 

Journal Papers 

(1) A. K. Gujba, M. Medraj: Laser peening process and its impact on materials 

properties in comparison with shot peening and ultrasonic impact peening. Materials, 

Vol. 7, 2014, pp. 7925-7974. Doi:10.3390/ma7127925.  

(2) A. K. Gujba, A. Amanov, M. Medraj: Influence of sample geometry and mechanical 

surface treatment on the WDE performance of Ti-6Al-4V. (Under preparation) 

Conference Presentation 

(1) A. K. Gujba, D. Kevorkov, L. Hackel, M. Medraj: Mechanism of material removal in 

Ti-6Al-4V during the incubation and advanced water droplet erosion stages. The 4
th

 

International Conference and Exhibition on Materials Science & Engineering, 14-16
th

 

September, 2015, Orlando, Florida, USA. 

http://dx.doi.org/10.3390/ma7127925
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6.3. Recommendations 

WDE is a complex phenomenon due to several interacting parameters involved in the 

water droplet erosion process. Efforts have been made to mitigate the erosion damage 

however, identifying a single parameter for WDE resistance still remains a challenge. For this 

reason, there is still need for more studies. In order to compliment the on-going search for 

best and reliable techniques to mitigate WDE damage, some suggestions for future works are 

as follows. 

 Based on this work, it does not seem that the induced compressive residual stresses 

are beneficial in enhancing WDE resistance. For this reason, more research work is 

still needed in order to establish the influence of compressive residual stresses on the 

WDE performance of materials. This can be achieved by exploring other processes 

that induces compressive residual stress such as warm laser shock peening (WLSP) or 

thermal engineered LSP. WLSP is a new emerging technique that integrates the merits 

from the conventional LSP process, dynamic strain aging (DSA) and dynamic 

precipitation (DP) to enhance material performance [82,169,170]. This technique 

stabilizes the induced compressive residual stresses and modifies the microstructure. 

Hence, careful selection of LSP temperature, pre-treatment and tempering 

temperatures as well as other processing parameters should be studied. 

 In this work, impact speeds and droplet sizes in the range of 150 to 350 m/s and 200-

463 µm were used during WDE tests. More studies with varying impingement 

conditions are still needed. For instance, further reducing the droplet size ranging 

from 100 - 150 µm, varying the stand-off distance, flow rate, impact angle and surface 

conditions could reveal different erosion behaviour.  
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 The thesis work presented is solely experimental studies. However, there is still need 

to have extensive studies using simulation. Combining simulations and experimental 

test results would provide better understanding of the erosion process.  

 Experimental conditions used in this thesis are similar to the observed conditions in 

gas turbine compressor blades in service. In steam turbines, condensated water 

droplets impact blades at significantly larger speeds causing serious erosion damage 

problems. Hence, the current work could be extended to steam turbine applications. 
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Appendices 

Appendices contain additional information about different sections of this thesis. The 

appendices are divided into four, Appendix A, B, C and D. The following sections discuss 

each appendix. 

Appendix A 

Appendix A contains additional information about the LSP process parameters and 

equations used by different authors. Table A-1 summarizes these equations for instance; 

power density is expressed as a function of frequency, pulse time, power and spot area as 

given in Equation (1). Other parameters are the laser fluence as given in Equation (2), the 

load or pressure (P), which must exceed the dynamic yield strength for plastic deformation 

given by different authors in Equations (3)–(9). Equation (10) shows the reduced shock 

impedance (Z) for the target material (Z1) and confining medium (Z2) which is related to the 

density and speed of sound in the material. Table A-2 lists typical values of acoustic shock 

impedance for various confining media and target materials. Furthermore, Equation (11) 

shows the Hugoniot Elastic Limit (HEL), which is the ultimate stress a material can withstand 

under compression without internal rearrangement [171]. The process optimization could be 

more complicated especially when many parameters are involved. For instance, shock 

pressure representation was inconsistent as found in the literature. Equations (3)–(9) indicate 

how the constants were varied based on the experimental observations. The variations of 

constants were attributed to the type of coating, confining medium and target material 

properties. This suggests that selecting the most effective processing parameters is 

paramount. 
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Table A-1:  Summary of laser processing equations used by different authors 

Equation 

No. 
Parameter Equation Ref. 

1 Intensity    
  

   
   

    

        
 [59] 

2 Laser Fluence         (
 

   
)   

                       

                     
 [172] 

3 Pressure    (
 

    
)
   

         [55] 

4 Pressure            (
 

    
)
   

         [156,173] 

5 Pressure                 [156,173] 

6 Pressure                    [174] 

7 Pressure       (
 

    
)
   

     
[175] 

 

8 Pressure                [55] 

9 Pressure            [72] 

10 Reduced Impedance 
 

 
  

 

  

  
 

  

 [173] 

11 
Hugoniot Elastic 

Limit 
     

   

    
  

   
 [173] 

Where,   is the laser power density in GW/cm2,      is the average power output in W,   is the laser frequency in Hz,    is 

the pulse time in ns, a is the laser spot area in cm2, B is 21 or 10.1 for glass- or water-confined modes, respectively, A is 

absorption coefficient for surface coating, M is transmission coefficient for transparent overlay,   is the ratio of thermal to 

internal energy,    is the reduced shock impedance of the target material and confinement medium,   is Poisson‟s ratio,   
   

 

is the dynamic yield strength at high strains. 
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Table A-2: Typical values of Z1 and Z2 as reported by different authors 

Target material 
Z1 x 10

6
 (g/cm

2
s) 

(Reference) 

Confining 

medium 

Z2 x 10
6
 (g/cm

2
s) 

(Reference) 

Ti-6Al-4V 2.75 [69] Water 0.17 [69] 

AA7050-T7451 1.50 [173] Perpex 0.32 [68] 

SS304 3.61 [81] Silicon rubber 0.47 [68] 

Mg-Ca 0.88 [176] K9 Glass 1.14 [68], 1.5 [81] 

AISI 4140 3.96 [82] Quartz Glass 1.31 [68] 

Cu 0.16 [177] Pb Glass 1.54 [68] 

SS321 4.00 [72] BK Glass 1.44 [82] 
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Appendix B 

Appendix B contains additional information on the dimensions of sample geometries, T-

shaped and airfoil, used for the WDE tests. Figures B-1 and B-2 show the dimensions and typical 

machined T-shaped flat and airfoils geometries, respectively.  

 

 

  

Figure B-1: T-shaped Ti-6Al-4V sample geometry with dimensions in inches. 
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Figure B-2: Airfoil Ti-6Al-4V sample geometry with dimensions in mm. 
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Appendix C 

Appendix C highlights further details on the effect of UNSM process on the WDE 

performance of Ti-6Al-4V. Results from both sample geometries are presented. 

C-1: WDE performance of UNSM and As-M T-shaped sample conditions  

Similar to the analyses made in Figure 3-10 (section 3.3.3) and Table 3-4, the influence of 

impact speed on the erosion crater behaviour of As-M and UNSM was studied. Also, the 

accumulated material loss, crater width and depth were observed after certain exposure 

times/number of impingements at different impact speeds. Figure C-1shows the polished cross-

sectional views of the As-M and UNSM erosion craters at impact speeds of 250, 300 and 350 

m/s halted after 310, 70 and 30 minutes, respectively. Table C-1 shows the accumulated material 

loss, crater width and depth at various impact speeds. It can be seen from Table C-1 that 

increasing the impact speed showed significant mass loss and increase in crater dimensions even 

with fewer number of impingements/exposure time. This trend is in general agreement with the 

data presented in Table 3.4 which indicates a linear relationship between the impact speed and 

crater dimension. Comparing the As-M and UNSM conditions, it can be seen that As-M 

condition showed higher mass losses and crater dimensions. However, at 350 m/s, UNSM 

condition showed a little deeper crater (Table C-1) than the As-M condition. This might be due 

to the sectioned area on the UNSM where significant damage had occurred. Nevertheless, the 

significant mass losses observed at 350 m/s could suggest that the crater dimensions are highly 

representative. Based on Figure C-1 and Table C-1, it can be confirmed that the UNSM 

condition had enhanced WDE performance than the As-M condition.   
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Figure C-1: OM images showing the influence of impact speeds on the As-M and UNSM crater 

width and depth. The scale shown in each image is in mm. 

Table C-1: Summary of the observed accumulated material loss, crater width and depth for As-M 

and UNSM samples at different speeds 

Speed 

(m/s) 

 

Experiment stopped after 
Accumulated mass 

loss (g) 

Crater width 

(mm) 

Crater depth 

(mm) 

Time (mins)  Nimp x 10
5
  As-M UNSM As-M UNSM As-M UNSM 

250 340 186 0.0170 0.0133 1.33 1.16 0.392 0.360 

300 70 50 0.0269 0.0215 1.07 1.07 0.769 0.568 

350 30 25 0.0353 0.0320 1.36 0.87 0.841 0.886 

C-2: WDE performance of UNSM and As-M airfoil sample conditions  

Based on the observed trend in Figure 4-17b (region A), another airfoil sample was UNSM 

treated. However, in this treatment, the edge of the airfoil was not treated i.e. about 0.5 mm away 

from the edge was untreated. Figure C-2 shows the WDE performance of the UNSM airfoil 

without edge treatment versus As-M airfoil tested at 300 m/s. It can be seen clearly that not 

treating the edge of the airfoil proves to be beneficial in mitigating the erosion damage especially 

at the advanced stages. Region B (Figure C-2a) shows that both UNSM and As-M conditions had 
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similar erosion behaviour during the early stages. However, after 60 x 10
4
 cycles, the UNSM 

airfoil showed mildly enhanced performance at the advanced stage which confirms the 

hypothesis observed in Figure 4-17b (Region A). The ERinst graph shown in Figure C-2b also 

revealed that the UNSM airfoil without edge treatment has slower erosion rates compared to As-

M condition. This is due to the fact that compressive residual stresses are through the thickness 

of the airfoil. 

 

 

Figure C-2: WDE performance of UNSM airfoil with untreated edge versus As-M at 300 

m/s. 
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Figure C-3a shows the macrographs of the UNSM airfoil with the untreated edge, whereas 

Figure C-3b shows the erosion evolution and progression. However, the macrograph clearly 

indicates better WDE performance and resistance on the UNSM airfoil as compared with the As-

M at advanced stage. This is also consistent with the WDE curves in Figure C-2. 

 

Figure C-3: Optical macrographs showing (a) the untreated airfoil edge and (b) the erosion 

evolution and progression on As-M and UNSM (with untreated edge) airfoil samples at 300 m/s. 

The scale shown in each image is in mm. 
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Appendix D 

Appendix C presents additional information regarding the effect of LSP and its attributes on 

the WDE performance of Ti6Al-4V. 

D-1: WDE performance of SR, As-M, SR+LSP and LSP surface conditions  

Other surface conditions have been employed during the current research. For instance, stress 

relieved (SR) and stress relieved plus laser shock peening (SR+LSP) surface conditions were 

explored. The purpose of having different surface conditions is to have different levels of 

compressive residual stresses. For the SR condition, As-M sample was heat treated in an oven 

(Thermolyne Oven model FD1535M) at a temperature of 1100°F (590°C) for 2 hrs. This 

approach relieved the compressive residual stresses induced during machining. The SR condition 

showed close to zero compressive residual stress (-29.14±5.8 and -22.2±17.83MPa in the 0º and 

90º directions, respectively). For the SR+LSP, SR sample was laser peened using similar LSP 

parameters mentioned in section 5.2.2. The WDE performance of T-shaped SR versus LSP and 

As-M versus SR+LSP was investigated at various impact speeds. Figure D-1a also shows the 

WDE performance of SR versus LSP conditions at 275 and 350 m/s. Again, the influence of the 

LSP and its attributes on the WDE performance was not observed, thus similar trend was 

observed as in Figure 5-10. Figure D-1b shows similar WDE behaviour and performance for the 

SR+LSP and As-M conditions at 250 and 300 m/s. Based on the graphs presented in Figures D-1 

and 5-10, the As-M, LSP, SR and SR+LSP conditions had similar WDE performance 

irrespective of the test condition for the T-shaped sample.  
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Figure D-1: WDE curves for (a) SR versus LSP at 275 m/s and 300 m/s and (b) SR+LSP versus 

As-M at 250 m/s and 300 m/s. 

Also, another laser peening test was also conducted with a low energy laser at The University 

of Akron, Ohio, USA. Parameters used are; Nd:YAG laser, Aluminum, Glass, 4 GW/cm
2
, 5 ns 

and 75 % overlapping. The peened sample was WDE tested against As-M condition at 300 m/s 

using 463 µm droplet size. Figure D-2 shows the WDE curve and it can be seen that similar 

WDE performance was observed for both conditions at all stages of the erosion. The little 

difference observed in the graphs is considered within the experimental errors. 
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Figure D-2: WDE curve for As-M versus LSP conditions at 300 m/s. LSP treatment with low 

energy laser. 

 

 

 

 

 

 


