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Abstract 

Several studies have been carried out on the evaluation of wind-induced pressures on 

building envelopes. However, there is very limited research on wind-induced forces on the 

main structural elements of a building including its foundation. Thus, a full-scale monitoring 

research project was initiated to examine the wind-induced structural forces of a low-rise 

wood building. The field facilities include two weather stations and a test house equipped 

with load and pressure sensors. The house is resting on top of twenty-seven load cells and is 

structurally isolated i.e. the only points of contact between the foundation wall and the 

superstructure are the load cells. Simultaneously to the load monitoring, forty pressure taps 

are recording the envelope pressures both at the roof and the wall surfaces. In addition to the 

field monitoring, a scaled model of the house was tested in a boundary layer wind tunnel 

using three different upstream terrain configurations, to simulate winds coming from different 

directions. 

The analysis of the wind speed and direction field data confirmed the non-uniform variation 

of the basic terrain properties over the wind direction and this was also verified in the 

comparison of the field with the wind tunnel results. These comparisons were made in the 

form of both envelope pressures and total uplift forces at the foundation level and provided 

useful insight regarding the wind load path inside the structural elements of the building. 

Experimental findings were also compared to the Canadian Code and American Standard 

wind provisions indicating that there is a clear underestimation of the total uplift force when 

this is estimated on a code/standard basis, in its current state. 
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Full-scale monitoring, wind tunnel experiments, low-rise wood building, envelope pressures, 

wind uplift forces. 

1. Introduction 

 

The majority of dwellings in North America are light-weight, low-rise structures of simple 

geometry and layout. Wind-induced loading is of major importance during the design of these 

structures and wind-related standards have been developed and revised numerous times, 

resulting into a more complex yet safer and more economical design process. However, 

recent extreme wind events and growth of wind-related losses indicate that this process still 

needs further refinement and attention.  

Wind effects on low buildings have been examined extensively the past few decades. The 

availability of boundary layer wind tunnels had also significant influence to the current wind 

standards (Davenport et al. 1977 and 1978). In addition, several full-scale studies were 

carried out and contributed to the verification of the results from simulation studies. Almost 

all of these studies have been focusing extensively on how the pressure distribution can be 

precisely and accurately predicted (Eaton and Mayne 1975, Robertson and Glass 1988, Ng 

and Mehta 1990, Levitan et al. 1990). In addition, technological advancement and increase of 

computing power have introduced new computational tools into the experimental wind 

engineering approach. The link between the pressure prediction and the actual wind-induced 

structural response stage was traditionally weak and often transferred to other disciplines 

(structural engineers and finite element modelling experts). This needs to be carefully 

addressed and the current study is aiming exactly at the interconnection of the two disciplines 

i.e. wind and structural engineering. 

The potential of wind-structure interaction through full-scale studies was acknowledged and 

proposed by researchers as the most reliable tool to validate wind tunnel experiments (e.g. 
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Davenport 1975 and 2002). Lack of significant field studies related to wind load paths, 

initiated the present collaborative effort, which has as main objective to better understand and 

define how wind pressure is transformed into a set of forces transferred through building 

elements to the foundation level. In addition to the envelope pressure characteristics, force 

data will provide the appropriate information to successfully map the wind load flow. Each of 

the structural components has its own importance and effect in the total response and reaction 

of the structure. Dissipation of the applied energy occurs at various stages and in most cases 

is part of a highly non-linear process. In some cases these phenomena are treated from current 

provisions by approximations; e.g. the 30% reduction of the effective wind load for the 

design of the foundation, suggested by National Building Code of Canada (NBCC 2005, 

Users Guide - Figure I-7). The need for a facility capable of capturing real wind events in the 

form of, not-only wind-induced pressures on the building envelope, but also in resulting 

structural forces is clear. 

 

2. Project description 

 

2.1 Full-scale facilities 

The full-scale facilities include an experimental single-storey wood building and two 

meteorological towers. The experimental house is located in Fredericton (NB) and it was 

built for the particular needs of this research project (Doudak 2005, Zisis and Stathopoulos 

2009). The building has a rectangular layout with external dimensions of 8.6 x 17.2 x 5.6 

meters (W x L x H), a duo-pitch roof of 4/12 slope and rests on a concrete foundation wall 

0.225 m thick and 1.225 meters deep. The geometry and dimensions of the house are shown 

in Fig. 1. The orientation of the building is 43 degrees right of the geometric North which 

was assumed to be the reference zero point for all wind direction measurements. Four 
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anemometers are monitoring the wind speed and direction. Three of them are mounted on a 

10-meter mast on the North-West side of the house at 5.5, 6.5 and 10.0 meters height and the 

fourth is mounted on the top of a 5.5-meter post on the South-East side of the house.  

The load cell system is an innovative part of this study. A total number of twenty-seven 3-D 

load cells were placed around the perimeter of the building at the foundation-to-wall 

interface. Another six 1-D load cells were also installed between the wall top plate and three 

of the roof trusses but the results obtained from those have not been considered in this paper. 

It should be mentioned that the building is completely isolated from the foundation and the 

only points of contact are the 3-D load cells. This construction detail assures the transfer of 

any applied load to the foundation only through the load cells. Furthermore, the monitoring of 

the wind-induced envelope pressures was achieved through the forty pressure taps, twelve of 

which located on the wall and twenty-eight on the roof. The location of the load cells and 

pressure taps is shown in Fig. 2. The temperature was also monitored using thermocouples 

installed at various locations.  

 

2.2 Wind tunnel tests 

A model of the test house and its surroundings was constructed and tested in the boundary 

layer wind tunnel of the Building Aerodynamics Laboratory at Concordia University. The 

model is of geometric scale of 1:200 and is equipped with 126 pressure taps located on the 

wall and roof surface (Fig. 3). Forty of these taps correspond to their appropriate full-scale 

location (see Fig. 2). All wind tunnel tests were conducted for thirty-six wind angles of attack 

in 10o increments. The wind velocity and turbulence intensity profiles were measured using 

the 4-hole Cobra probe (TFI) and sampling rate of 1000 Hz. The gradient wind velocity for 

all tests was 13.5 m/s. Three different upstream terrain configurations were considered for the 

wind tunnel tests representing open, light suburban and heavy suburban exposures. The 
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power law coefficients for these tests were 0.16, 0.22 and 0.28 (see Fig. 4) whereas the 

turbulence intensity levels at the ridge height were 17.9, 20.2 and 26.4% respectively. The 

pressure measurements on the model were conducted using a system of miniature pressure 

scanners from Scanivalve (ZOC33/64Px) and the digital service module DSM 3400. 

 

3. Experimental results 

 

3.1 Weather tower - Exposure effects 

The experimental house is located in a relatively open-suburban area with some low-height 

obstacles in the proximity. In order to verify the above subjective observation, the basic 

exposure characteristics (power law exponent, turbulence intensity and roughness length) 

were evaluated using field data acquired from the two anemometers of the North-West 

meteorological tower (at 6.5 and 10.0 meters height). Records collected during October to 

November 2008 and April to June 2009 were considered for this analysis and power law 

exponent, turbulence intensity and roughness length values were calculated with respect to 

the approaching wind direction. The results are based on 10-minute averaged statistical 

values (mean and standard deviation) and were filtered to retain data with mean wind speeds 

over 10 km/h (at 6.5-meter height) assuming stationarity is satisfied. More specifically, thirty 

seven individual records fulfilled the above condition, considering also that the period 

between December 2008 and March 2009 the data acquisition system was not operational due 

to lower temperatures and snow accumulation on top of the roof. 

The results were plotted in terms of power law exponent, turbulence intensity and 

roughness length for all available full-scale wind directions and presented in Figs. 5, 6 and 7 

respectively. The power law exponent ranges from 0.05 to 0.50, the turbulence intensity from 

20% to 50% and the roughness length from a few millimeters up to 1.2 meters. Even if the 
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data are grouped within a wind direction range that results into similar properties (e.g. South-

West region) the mean values still vary significantly. For instance, the power law exponent 

takes its highest mean value of 0.36 (0.08 standard deviation) for the wind direction range 

230o-290o, whereas the lowest mean value of 0.20 (0.05 standard deviation) occurs at the 70o-

125o range. However, this approach results into more consistent turbulence intensity values 

(32% to 37%) for all wind direction ranges.     

It is quite interesting to examine how these properties vary for different angles of attack, 

considering that the test house, as previously indicated, is located in a relatively open area 

with only few low-rise buildings and medium height trees in the proximity. Following current 

wind provision guidelines and “common” wind engineering sense, the terrain would be 

classified in the open to suburban region expecting a power law exponent in the range of 

0.20. The higher variations should be clearly attributed to the influence of adjacent buildings 

(north and south sides) and forestry area (east side) located inside a radius of 300-400 meter 

fetch. These deviating terrain properties indicate that complex terrains need to be examined 

carefully in order to properly conduct scaled model tests and compare full-scale to wind 

tunnel results successfully. 

 

3.2 Pressure coefficient comparisons 

To verify the agreement between the field and model scale pressure results, two field 

records (May 14th and June 1st, 2009) were compared to the three available wind tunnel tests 

(open, light suburban and heavy suburban). The full-scale records were selected based on the 

high wind speeds occurred for an extended duration during the 24-hour period. For this 

comparison two pressure taps were considered, one on the wall (Fig. 8) and one on the roof 

surface (Fig. 9). The mean and peak pressure coefficients were evaluated using the following 

equations and plotted with respect to wind direction: 
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where ρ=air density (kg/m3); 5.5mV : mean wind speed at 5.5 meters (m/s); pa=ambient 

atmospheric pressure (Pa), pmean=mean surface pressure (Pa) and ppeak=peak surface pressure 

(Pa). It should be noted that for the full-scale calculations the mean values where based on a 

10-minute average and the instantaneous peak on a 3-second average (full-scale time scale). 

Moreover field data were integrated over a wind angle of attack of 10-degree range to 

account for the higher standard deviation values and to be directly compared to wind tunnel 

tests carried out using intervals of 10 degrees. To better represent the varying characteristics 

of the full-scale results the minimum and maximum integrated values of each set of data were 

considered and plotted in addition to the mean values. This range obtained by considering the 

mode of the extreme (minimum/maximum) probability density function assuming a Type I 

distribution (Gumbel). 

The agreement for both mean and peak pressure coefficients is considered satisfactory. 

Wind tunnel values are in most cases within the range of the field results. Regarding peak 

pressure coefficients, the heavy suburban terrain configuration values show smaller 

discrepancies, particularly for those directions where the terrain properties vary the most 

(240o to 300o – see Figs. 5, 6 and 7). 

In addition to the individual pressure tap comparisons, the wind tunnel tests are verified by 

comparing mean and peak pressure coefficients including this time results from all wall and 

roof pressure taps. In more detail, data from two wind tunnel tests (light suburban and heavy 

suburban) are compared to the two field records in the form of 45o scatter plots. The open 

terrain case was disregarded as it was assumed not to properly describe the real/field 
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exposure. Roof and wall pressure coefficients based on 10-minute sets from each record are 

presented in Fig. 10 (May 14th, 2009) and Fig. 11 (June 1st, 2009). The mean wind speed and 

direction for the first record was 8.36 m/s and 204o; for the second 7.06 m/s and 285o. For 

both cases the agreement is significantly better for the heavy suburban terrain simulation. 

This agreement supports the previous results and adds confidence on the verification process 

of the wind tunnel experimental approach. 

 

3.3 Wall uplift participation factors 

As previously discussed, an innovative part of this study is the system of twenty-seven load 

cells located between the concrete foundation wall and the floor I-Joist system. These load 

sensors capture simultaneously the wind-induced loads that flow from the superstructure 

down to the foundation level. Similarly to the pressure coefficient comparison, load cell data 

acquired during Fall 2008 (October and November) and Spring 2009 (April to June) were 

used to evaluate the uplift force participation of each wall during strong wind events with 

respect to the approaching wind angle of attack. The twenty-seven foundation load cells were 

grouped into four main sets, namely North-West, South-West, South-East and North East, 

representing the four wall segments (Fig. 12). Load readings were transformed into force 

coefficients (cf,i) using the following equation: 

[3] 
i

f ,i 2

5.5m

F
c

(1/ 2 V )A



 

where ρ: air density (kg/m3), 5.5mV : mean wind speed at 5.5 meters (m/s), Fi: load cell force 

reading (N) and A: building area (m2). 

The participation of each wall to the uplift structural resistance was evaluated by 

considering the ratios of the instantaneous uplift force coefficient acting simultaneously on 

each wall segment to the instantaneous total uplift force coefficient (Fig. 13). The results 
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show that the dominant foundation load is transferred towards the sidewalls, as opposed to 

the minimal contribution from the endwalls. In more detail, the South-East wall reaches the 

47% of the total uplift wind load for wind direction of 180o while it takes its minimum value 

of 36% as a leeward wall (270o-330 o). The North-West wall performs in a similar manner, 

i.e. a participation of 50% is reached when the wind is approaching from the North-West 

direction and a minimum of 30% is anticipated for anti-diametric wind directions. Finally, the 

endwalls (South-West and North-East) have significantly lower participation with their 

maximum ratio to the total uplift force to be up to 29% combined. If considered separately, 

the North-East reaches its maximum value of 26% and the South-West the value of 27.5% as 

windward walls.  

Despite the fact that these results follow in principle what should be expected on a typical 

low-rise wood building with a rigid I-Joist floor system, the precise participation of each wall 

segment can be now incorporated on the ongoing finite element modelling of the test house 

which will assist to further investigate and compare simulation to field results.  

 

3.4 Force coefficient comparisons  

Full-scale data were acquired using both pressure and force sensors, whereas wind tunnel 

tests produced only envelope pressures. In addition to the verification of the wind tunnel 

simulation in the form of pressure coefficient comparisons, the total instantaneous uplift force 

of the building was compared to the available full-scale load data by integrating the measured 

envelope pressures obtained in the wind tunnel over the roof surface. Consequently, the total 

uplift force coefficient was calculated, and compared to that calculated directly by the load 

cell data, for each upstream terrain case using the following equation: 

[4] p,i eff ,i
f ,z

c A
c

A
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where cp,i: instantaneous pressure coefficient, Aeff,i: effective pressure tap area (m2) and A: 

building area (m2). Similarly to the previous comparisons, for the full-scale calculations the 

mean force values were based on a 10-minute average and the instantaneous peak force 

values on a 3-second gust. The field data were filtered to retain only those for wind speeds 

over 8 m/sec (at 5.5 meters height). The dynamic pressure was always averaged on a 10-

minute basis and was referenced to the 5.5 meters anemometer. Moreover, field data were 

integrated over a wind angle of attack of 10-degree range to account for the higher standard 

deviation values of the wind direction and to be directly compared to wind tunnel tests 

carried out using intervals of 10 degrees. To account for the varying characteristics of the 

full-scale results, the range (maximum and minimum values) of the integrated values of each 

set of data was considered in addition to the mean values.      

The comparison of the mean total uplift force coefficients is presented in Fig. 14 and shows 

that all three wind tunnel upstream exposure configurations are located within the range of 

the field values. The discrepancies are higher for the North-West region (230o - 330o) where 

the mean full-scale values are up to 74% higher compared to the light suburban terrain wind 

tunnel test. The peak uplift force coefficient comparison is presented in Fig. 15 and shows 

better agreement compared to the mean values. Both positive and negative peak wind tunnel 

results are again within the range of the field data. The agreement is particularly improved for 

the heavy suburban terrain simulation, for which the full-scale minimum peak uplift force 

coefficients are in between the ±25% range compared to the wind tunnel data.  

In addition to the experimental findings, the estimated total uplift force coefficients derived 

from the NBCC 2005 building code and ASCE 7-05 standard were also plotted in Fig. 15. 

For the NBCC 2005 calculations, the external peak composite pressure-gust coefficients 

(CpCg) from Figure I-7 were used to calculate the total uplift force coefficient. The averaging 

period for the reference wind pressure was adjusted from hourly to 10-minute mean. In a 
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similar manner, the external pressure coefficients (GCpf) from Figure 6-10 (ASCE/SEI 7-05) 

were considered and the total uplift force coefficient was computed. For this comparison the 

velocity pressure was adjusted to account for the averaging period of 10 minutes instead of 

the 3-sec gust considered in the ASCE standard. The estimated NBCC 2005 and ASCE 7-05 

values clearly underestimate the full-scale and in some cases the wind tunnel values. The 

ASCE 7-05 uplift force coefficient value of -1.51 is higher (absolute value) than the open and 

suburban terrain wind tunnel curves and for most of the directions also higher than the urban 

terrain. On the other hand, the NBCC 2005 value of -1.30 reflects poorly to both full-scale 

and urban terrain values, whereas the suburban terrain wind tunnel force coefficients exceed 

the estimated NBCC 2005 value for only two directions. This underestimation will become 

even more critical if the NBCC 2005 values are adjusted for the exposure using the factors 

provided in Sentence (5) of section 4.1.7.1 (NBCC 2005). For the particular building the 

exposure factor, which is equal to 0.90 for open terrain and 0.70 for rough terrain, would 

further reduce the estimated force coefficient by an additional 30% resulting into a 

significantly lower than the experimental findings value. 

 

4. Conclusions 

 

The wind-induced response of a low-rise wood building was evaluated through a unique 

full-scale experimental house specially built and equipped with pressure and force monitoring 

equipment. In addition, a scaled model of the house was tested in a boundary layer wind 

tunnel for three different upstream exposure configurations. The analysis of the available 

field and wind tunnel data showed the following: 
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 Data acquired from two anemometers on the North-West side of the house, indicate a 

non-uniform upstream exposure for different wind angles of attack, as established by power 

law exponents and roughness lengths. 

 The comparison of the envelope pressures in form of both mean and peak pressure 

coefficients was satisfactory. Almost all the wind tunnel values were within the range of the 

full-scale values. The agreement for the peak component was particularly improved for the 

heavy suburban wind tunnel configuration. 

 The total wind-induced foundation uplift force is mainly transferred to the two – 

parallel to the ridge – sidewalls. The participation factors are significantly higher, for all wind 

directions, for the two sidewalls compared to the North-East and South-West endwalls.  

 The comparison of total uplift force coefficients between the real and model scale 

studies is considerably good with both mean and peak wind tunnel values located within the 

full-scale range. Some discrepancies exist particularly for those wind directions for which the 

upstream exposure is inhomogeneous.  

 Finally, the estimation of the uplift force coefficient using envelope pressure values 

derived from NBCC 2005 and ASCE 7-05 compares poorly to the minimum peak wind 

tunnel and full-scale values. This underestimation is particularly critical for the NBCC 2005 

if the estimated coefficient is adjusted for the exposure and foundation reduction indicated in 

the current version of the code.    
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Fig. 1. External dimensions of the experimental house. 
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Fig. 2. Location of foundation/roof load cells and pressure taps on the experimental house. 
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Fig. 3. Pressure tap location on the wind tunnel model and wind angles of attack tested in the 

wind tunnel experiments. 
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Fig. 4. Power law exponents of the three upstream terrain configurations used in the wind 

tunnel. 
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Fig. 5. Power law exponent variation with respect to direction. 
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Fig. 6. Turbulence intensity variation with respect to direction. 
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Fig. 7. Roughness length variation with respect to direction. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 30 60 90 120 150 180 210 240 270 300 330 360

R
ou

gh
ne

ss
 L

en
gt

h 
(m

) 
 

Wind Direction

N                                E                                S                                W

 

 



25 
 

 

Fig. 8. Mean and peak pressure coefficient comparison (wall pressure tap NW,10). 
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Fig. 9. Mean and peak pressure coefficient comparison (roof pressure tap R,19). 
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Fig. 10. Pressure coefficient comparison between full-scale and respective wind tunnel 

results (full-scale record: May 14th, 2009). 
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Fig. 11. Pressure coefficient comparison between full-scale and respective wind tunnel 

results (full-scale record: June 1st, 2009). 

y = 0.64x
R² = 0.89

-8.00

-4.00

0.00

4.00

8.00

-8.00 -4.00 0.00 4.00 8.00

W
in

d 
T

un
ne

l 
C

p

Full-Scale Cp

Cp,mean
Cp,max
Cp,min

Wind Tunnel: Light Suburban Terrain (α=0.22)
Full-Scale: 1-Jun-09, Ū=7.06 m/s, θ=285o

y = 0.93x
R² = 0.88

-8.00

-4.00

0.00

4.00

8.00

-8.00 -4.00 0.00 4.00 8.00

W
in

d 
T

un
ne

l 
C

p

Full-Scale Cp

Cp,mean
Cp,max
Cp,min

Wind Tunnel: Heavy Suburban Terrain (α=0.28)
Full-Scale: 1-Jun-09, Ū=7.06 m/s, θ=285o

 



29 
 

 

Fig. 12. Test house and wall segment notations. 
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Fig. 13. Wall segment participation (SE, NW and SW, NE). 
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Fig. 14. Mean total uplift force coefficient comparison. 
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Fig. 15. Minimum and maximum peak total uplift force coefficient comparison. 
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