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ABSTRACT

Overconvergent Eichler-Shimura Isomorphisms on Shimura Curves over a

Totally Real Field

Shan Gao, Ph.D.

Concordia University, 2016

In this work we construct overconvergent Eichler-Shimura isomorphisms on Shimura curves
over a totally real field F. More precisely, for a prime p > 2 and a wide open disk 4 in the
weight space, we construct a Hecke-Galois-equivariant morphism from the space of families
of overconvergent modular symbols over 4 to the space of families of overconvergent modular
forms over 4. In addition, for all but finitely many weights A € 4, this morphism provides a
description of the finite slope part of the space of overconvergent modular symbols of weight
A in terms of the finite slope part of the space of overconvergent modular forms of weight
A + 2. Moreover, for classical weights these overconvergent isomorphisms are compatible

with the classical Eichler-Shimura isomorphisms.
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Chapter 1

Introduction

Let us review the classical Eichler-Shimura isomorphism on modular curves. Fix a prime
p > 3, an integer N > 3 such that (p, N) = 1 and let ' := T';(IV) N Ty(p) € SLy(Z).
Let X := X(N,p) be the modular curve for the group I' over Spec(Z[1/(Np)]), E — X
the universal semi-abelian scheme and w = wg/x = €*(Qy /X) the invertible sheaf on X
of invariant 1-differentials, where e : X — FE is the zero section. We have the following

theorem.

Theorem 1.0.1. (Deligne [1971b]) For every nonnegative integer k, we have a natural iso-

morphism:

H'(T, Vic) 2 H°(Xe, w*?) ® H'(Xc, vk ® Qﬁ(/c),

where Vic := Sym*(C?) and the overline on the second term of the right hand side is the
complex conjugation. Moreover, this isomorphism is compatible with the action of the Hecke

operators.

The elements of H'(T', Vj.c) are called classical weight & modular symbols. The elements



of H(X¢,w"?), respectively H*(X¢,w" ® Q% sc) are called classical modular, respectively
cusp forms of weight k + 2. The classical Eichler-Shimura isomorphism describes the space
of weight k£ modular symbols in terms of elliptic modular forms of weight k£ + 2. In Faltings
[1987] a more arithmetic version of this isomorphism is presented. Now fix a complete discrete
valuation field L of characteristic 0, ring of integers O and residue field L, a perfect field
of characteristic p. We denote by C, the p-adic completion of an algebraic closure L of L.
Let us consider the modular curve X over the p-adic field L and for a nonnegative integer
k, let Vj, := Symk(@i)(l), where (-)(k) is the Tate twist, with the natural action of I' and

G = Gal(L/L). The following theorem is obtained in Faltings [1987].

Theorem 1.0.2. With the above notations we have a canonical isomorphism compatible with

the actions of G and all Hecke operators
H' (T, Vi) ®. C, = (HO(X, W) @ cp) o (Hl(X, w™ @ Cp(k + 1)).

In Coleman [1997] and Coleman and Mazur [1998], the authors show that modular eigen-
forms of finite slope can be p-adically interpolated. In fact there exists a geometric object
parameterizing such modular eigenforms called the eigencurve. On the other hand, modular
symbols have interesting p-adic properties. The work in Stevens [2015] defines overconvergent
modular symbols and shows that classical modular symbols can be interpolated in p-adic
families.

A natural question one could raise is if Faltings’ Eichler-Shimura isomorphism could be
p-adically interpolated in the weight variable. In Andreatta et al. [2015b], the authors
answer affirmatively to this question. They show a description of the finite slope part of

p-adic families of overconvergent modular symbols, in terms of the finite slope part of p-adic
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families of overconvergent modular forms, for generic accessible weights. We can think of
this result as a comparison between two different approaches to construct eigenvarieties:
one using the theory of p-adic and overconvergent modular eigenforms, and the other using
cohomology of arithmetic groups (overconvergent modular eigensymbols). More precisely,
let W be the rigid analytic space associated to the complete noetherian semilocal algebra
Zy|[Z,]], called the weight space. Let Ty := Z,) X Z,, which can be viewed as a compact

subset of Z?

-, with natural actions of Z; and the Iwahori subgroup of GLy(Z). There are

two situations:

(a) For any weight A\ € W(L), we denote by D, the L-Banach space of analytic distribu-

tions on T, homogenous of degree A for the action of Z;.

(b) Let U € W* be a wide open disk, where W* C ‘W is the rigid subspace of accessible
weights, i.e.,weight A such that |A(£)P~' — 1] < p~/®=D_ We denote by O(U) the
L-algebra of rigid functions on U, and by Ay C O(U) the Op-algebra of bounded by
1 rigid functions, i.e., the set of f € O(U) such that | f(\) [< 1 for each A € U. We
denote by Ay : Z, — A the character defined by Ay (s)(A) = A(s) for each s € Z
and A € U(L). This is called the universal character associated to U. Similarly denote
by Dy the By := Ay ® L-Banach module of analytic distributions on Ty, with values

in By, homogenous of degree Ay for the action of Z.

Both D, and Dy are I'-representations. There exists a ['-equivariant map Dy — D, if
A € U(L), called specialization. Similar to the classical case, the elements in H* (I', D(1))
are called overconvergent modular symbols, while the ones in H! (F, DU(l)) are called p-adic

families of overconvergent modular symbols.

3



Moreover, for each w € Q satisfying 0 < w < p/(p + 1), we denote by X (w) the strict
neighborhood of the component containing the cusp oo of the ordinary locus of radius p* in
the rigid analytic curve (X,.)*. Then, for any weight A € W(L), there exists an invertible
modular sheaf wi* on X (w) such that if A\ = k € Z, then wf;* = w¥|y(,). The elements of
HO(X (w),w}") are called overconvergent modular forms of weight \. Similarly, if U ¢ ‘W
is a wide open disk with universal weight Ay, there exists a w and a modular sheaf of By-
Banach modules w{*v, such that the elements of H°(X (w),wl;*") are p—adic families of
overconvergent modular forms over U.

Fix U C W*, a wide open disk defined over L. In Andreatta et al. [2015b] the authors

constructed a geometric (By®C,)-linear homomorphism
Uy H' (T, Dy) @1Cp(1) = H (X (w), wi ) @.,C,,

which is equivariant for the actions of G, and Hecke operators, also compatible with spe-
cializations.

Let h > 0 be an integer and suppose that U is such that both H* (', Dyy) and H (X (w), wi)
have slope < h decompositions and that there exists an integer kg > h — 1 satisfying
ko € U(L). Let \sz) denote the morphism induced by Wy on slope < h parts, we have

the following:

Theorem 1.0.3. (Andreatta et al. [2015b]) Let U, ko and h as above. a) There exists a finite
set of weight Z C U(C,) such that for each A\ € U(L) — Z, we have a natural isomorphism

of C,-vector spaces, which is equivariant for the semilinear Gr-action and the actions of the

Hecke operators Ty for (I, Np) =1 and U, for | dividing Np:

B 1 (T, D)W @ Cy(1) 2 (H (X(w), 0 ) " é1C, ) @ (S0 + 1))

4



Here S/(\h) is a finite C,-vector space with trivial semilinear G'r-action and an action of the
Hecke operators.

b) We have a family version of a) above: for every wide open disk V- C U defined over
L satisfying V(C,) NZ = 0, there exists a finite free By —module S‘(/h) on which the Hecke
operators of T, (for | not dividing pN ) and Uy (for | dividing pN ) act, and we have a natural

G and Hecke equivariant isomorphism
S h niv
H (T, D) &1C,(1) = (H (X (w), 0} )" 2,.C,) @ (Sv (™ X)),

where x 1s the cyclotomic character of L and

XS Gy 25 2 Y B — (By@ Cy)”

is the universal cyclotomic character attached to V', where By :== Ay ® L.

Following the general line of arguments in Andreatta et al. [2015b], we would like to obtain
the similar overconvergent Eichler-Shimura isomorphisms on Shimura curves over a totally

real field F' over Q. There are two cases:

e F' = Q: The work was done in Barrera and Gao [2016] following the same argument
as in Andreatta et al. [2015b]. In this case, the weight space W and T} are the same
as in the modular case. There the authors generalize the result by working with all
the weights in the weight space W not only the accessible ones. Moreover, working
on Shimura curves over Q instead of modular curves, simplifies some problems and
complicates others. Namely, the non-existence of cusps simplifies the log structures
on Faltings’ sites. On the other hand, the universal abelian scheme over the Shimura

curve has higher relative dimension and one has to use the quaternionic multiplication

bt



in order to obtain objects (Tate modules, sheaves of differentials, canonical subgroups,

etc.) of the right size.

o [ # Q: This is the main goal of this thesis, to develop a similar theory of overcon-
vergent Eichler-Shimura isomorphisms as in Andreatta et al. [2015b] and Barrera and
Gao [2016] for modular forms over certain PEL Shimura curves over F'. Similarly as in
the first case, we have higher relative dimension of the universal abelian scheme hence
we need to “cut” certain objects to get the right size. Moreover, in this case, both the
weight space W and Tj are different and we need to consider more structures to make

things work.

Here is a detailed description of the structure of this thesis. We will work mainly on curves
with three different level structures (Section 3.1.3.3). For the convenience of the reader, we
present the following table, which lists the analogy between the quaternionic curves we are
interested in and the classical modular curves. We will consider rigid analytic curves and

their corresponding formal models.

Quaternionic curve Level Classical curve | Classical level
M(H) K(H) Xy (N [y(N)
M(H, ") K(H,7") | Xo(N;p")™ | Ti(N) N To(p")
M(Hm") K(Hz") | Xy (Np")™ I'1(Np")

Let F' be totally real field of degree d > 1 over Q and denote by 7,7, ..., 74 all its real
embeddings. Set 7 = 7. Let B be a quaternion algebra over F' which is split at 7 and

ramified at all other infinite places 7o, ..., 74. Fix p # 2 a prime integer. Choose an element



A € Q, A < 0 such that Q(v/\) splits at p. Let E := F(y/A) be an imaginary quadratic
extension over F. We denote by Pq,...,P,, the primes of F' lying above p, denote simply
by P = P;. Let Fp, be the completion of I at P;. Let Op be the ring of integers of Fp
and denote by e and f its ramification degree and residue degree, respectively. Fix m, a
uniformizer of Op and let & be the residue field, with cardinality ¢ = p/ and characteristic
p. Let v(+) be the normalized valuation of Fy, i.e., v(mw) =1,

In Chapter 2, we review some basic definitions and properties of log schemes. We defined
log smooth and log étale morphisms between fine and saturated log schemes. Then we give
a criterion of log smoothness (respectively log étaleness) in terms of charts. Moreover, we
introduce Kummer étale morphisms and Kummer étale sites, which play an important role
in the construction of Faltings’ site later.

Chapter 3 is a brief review of the work of Carayol [1986], Kassaci [2004] and Brasca [2013].
First we define the Shimura curves with different level structures over C following Carayol
[1986], which are Shimura varieties of PEL type (Section 3.1.2). These curves are moduli
spaces of abelian schemes with additional structures. We also give explicit description of
the moduli problems over both reflex field and local field (Section 3.1.3). Then we recall
the definition of the analogue of the Hasse invariant and the theory of canonical subgroup
developed in Kassaei [2004]. We also review the definition of the dlog map and the con-
struction of the Hodge-Tate sequence. These are the most important technic to construct
the modular sheaves and to define overconvergent (quartenionic) modular forms following
Brasca [2013]. Moreover, we introduce a suitable rigid analytic space W whose L points, for
L a finite extension of Fp, correspond to continuous characters O5 — L*. Following Brasca

[2013], we recall the construction of modular sheaves w) on M (w) for any weight X € W

7



and for families. At the end of this chapter, we give a construction of the Hecke operators,
namely, the U operator and the T operators, which are analogous to the classical U, and
T, operators, respectively.

In Chapter 4, first we review the basic construction of Faltings’ sites and topoi, introduced
by Faltings in Faltings [2002b] and generalized by F. Andreatta and A. Iovita in several papers
such as Andreatta and Tovita [2008], Andreatta and Iovita [2013] and Andreatta and Iovita
[2012]. Then we define Faltings’ sites associated to the Shimura curves which we discuss in
Section 4.3.2 and Section 4.3.3. Moreover, we define several continuous functors between
these sites which induce morphisms between their corresponding topoi. We also show the
localization functors, following Andreatta et al. [2015b], which allows us to calculate or prove
things locally.

Chapter 5 is devoted to introducing the right overconvergent cohomology, which can be
thought of as (families of) overconvergent modular symbols, to be related with the m-adic
families constructed in Brasca [2013]. First we define some modules D, called distributions
with the right action of the semigroup

A, = € My(09) N GLo(Fp) |a € 05, c€ m0p, d#0
c d

The overconvergent modular symbols of weight A are defined to be H'(M (H, 7)$*, Dy ), which
can be identified with the group cohomology @XeCLE H'(T'x, D), where Ty is a certain tor-
sion free arithmetic subgroup of G(Q). Furthermore, this isomorphism is compatible with the
action of Hecke operators and G . This identification allows us to get slope decompositions
on H'(M(H,7)$*, D) by working on @X@LE H'(Tx, Dy).

Chapter 6 is the most important part of this thesis. We relate overconvergent modular

8



symbols H' (M (H, )%, D,) of weight A with overconvergent modular forms H* (M (w), wy™?)

A2

7% as sheaves

of weight A+ 2. We use some continuous functors and think of both D, and w
on M(w) which is Faltings’ site associated to the pair (M(w), M(w)) (Section 4.3.2 and

Section 4.4). By calculating cohomology on 2(w) (Corollary 6.2.1), we obtain a morphism

U H (M(H, )%, D)) &1, Cp(1) — H® (M(w),wpt ™) &1, C, .

Eventually, in Chapter 7, we state and prove our main theorem as follows
Theorem 1.0.4. There exists a finite subset of weights Z C \(C,) such that

a) For each \ € I(L) — Z, there exists a finite dimensional C,-vector space S=" endowed
( ) ) p p A
with trivial semilinear Gr-action and Hecke operators, such that we have natural G,

and Hecke equivariant isomorphisms

<h ~

H' (M(H,m), D2) =" @1C,(1) = (1 (M (w), )

<h 4

®ch) ® <S§h(>\ + 1)) ,
where the first projection is \I/)—fh.

(b) For every wide open disk 0 C A defined over L satisfying B(C,)NZ =0, there exists a
finite free By®, C, —module S%h endowed with trivial semilinear Gp-action and Hecke

operators, for which we have a G and Hecke equivariant exact sequence

0 S%h (X.X%niv) :[_I1 (]\4([’]7 W)%t,gm)gh(gcp(l)%
vy Ap+2) St &
H‘H (M(w)7wwm+ ) ®Cp 0

Moreover, for any such open disk 0, there ewists a finite subset Z' C 0 with the

property that, for any wide open disk 6" C U with V' (C,) N Z' =0, we have a natural



G and Hecke equivariant isomorphism

H' (M(H, 7)%, Dy, )" ©1C,(1)
= (' (M), )" @,C,) @ (S5H00 xa™)) |

where the first projection is determined by \Iféh.

10



Chapter 2

Log Schemes and Log Smoothness

In this chapter, we will briefly recall some basic preliminaries on log schemes and a class of
log étale morphisms of log schemes, called Kummer étale morphisms. In particular, let X be
an fs log scheme (see Definition 2.2.4), we will describe the associated sites and topos, called
the Kummer étale site on X, which play an important role in the construction of the Faltings’
site. We will only list some basic propositions of log schemes and log étale morphisms and
omit most of the proofs. The main references of this chapter are Illusie [2002], Kato [1989],
Nakayama [1997] and Ogus [2006].

In the whole chapter, a monoid means a commutative monoid with a unit element 1.
(In general, a monoid is written multiplicatively. For some special cases, for example N,
the monoid is written additively and the unit element is denoted by 0 in such cases.) A
homomorphism of monoids is assumed to preserve the unit. We write Mon for the category of
monoids and homomorphisms of monoids. Let P be a monoid, there is a universal morphism
A from P to a group P9, such that any morphism, from P to a gp G, factors uniquely

through A\. In other words, there exists a unique group homomorphism P% — G such that

11



the following diagram

P——G

7
Ve
Al )
Ve
por

commutes. Moreover, P9 is called the group associated to P and
P% ={ab"a,b € P}

with the relation that

ab™' = cd™ ' < sad = sbe

for some s € P. We denote by P* the subgroup of all invertible elements of P and write

P = P/P~.

2.1 Monoids

Definition 2.1.1. Let P be a monoid.

P is called sharp if P* = {1}.

P is called integral if ab = ac implies b = ¢ in P. This is equivalent to saying that the

canonical map P — P9 is injective.

P is called saturated if P is integral and for any a € P9, a is in P if and only if there

exists an integer n > 1 such that a" € P.

P is said to be fine if it is finitely generated and integral. Monoids which are both fine

and saturated are often called fs-monoids.

12



Example 2.1.1. (1) A natural example of a monoid is N with respect to the natural
addition. It is a free monoid with generator 1 and integral since N’ = 7Z. Moreover,

N is an fs-monoid.

(2) Let A be a commutative ring with identity 1. Then A with respect to its multiplication

is a monoid, denoted by (A, -, 1).

Definition 2.1.2. Let Mon™" denote the full subcategory of Mon whose objects are the
integral monoids. For any monoid M, let M*™®* denote the image of M in M9 under the
universal morphism Ay : M — M9 . Then M — M™* is left adjoint to the inclusion functor

Mon™* — Mon.
Definition 2.1.3. Let M be an integral monoid. We define M®2* to be the set

M= = {x € M9

" € M for some n € Z,n > 1}.

M?=2* is a saturated submonoid of M9 and the functor M — M?=** is left adjoint to the

inclusion functor from the category Mon®** of saturated monoids to Mon™".
Definition 2.1.4. Let P be a monoid.

e A submonoid E of P x P which is also an equivalence relation on P is called a con-

gruence (or congruence relation) on P.

e If F is a congruence relation on P, then the set P/E of equivalence classes has a unique

monoid structure making the projection P — P/E a monoid morphism.

e If 0: P — M is a homomorphism of monoids, then the set E of pairs (p1,p2) € P X P
such that 6(p;) = 0(p,) is a congruence relation on P, and if 6 is surjective, M can be

recovered as the quotient of P by the equivalence relation E.

13



Definition 2.1.5. The amalgamated sum Q—=Q<——Q) of a pair of monoid morphisms
u; - P — Q;, 1 = 1,2, often denoted by ()1 ®p @2, is the inductive limit of the diagram

Q1<2—-P—2-(Q,. That is, the pair (vy,v;) universally makes the diagram

PLQl

Q2 T Q
commute.
Remark 2.1.1. Indeed, the amalgamated sum () can be thought of as the coequalizer of the
two maps (uq,0) and (0,us) from P to Q1 @ Q2. As the following proposition shows, the

description of () is considerably simplified if one of the monoids in question is a group.

Proposition 2.1.1. (/Ogus, 2006, Chapter I Proposition 1.1.4]) Let u; : P — Q; be a pair
of monoid morphisms, let P be their amalgamated sum and let E be the congruence relation

on Q1 @ Q2 given by the natural map Q1 ® Qo — Q (Remark 2.1.1).

o Let E' be the set of pairs ((q1,q2), (¢}, q5)) of elements of Q1 ® Qo such that there exist
a and b in P with q; + ui(b) = q] + ui(a) and g + us(a) = ¢4 + uzx(b). Then E' is a
congruence relation on Q1 @ Qo containing E, and if any of P, QQ1, or Q2 is a group,

then £ = E'.

e [f P is a group, then two elements of Q1 & Qo are congruent modulo E if and only
if they lie in the same orbit of the action of P on Q1 ® Qo defined by p(qi,q2) =

(1 +u1(p), g2 + ua(—p)).

e [f P and Q; are groups, then so is Q1 ®p Qo, which is in fact just the fibered coproduct
(amalgamated sum) in the category of abelian groups.
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Proposition 2.1.2. ([Ogus, 2006, Chapter I Proposition 1.2.2]) Let Q) be the amalgamated
sum of two homomorphisms u; : P — Q; in Mon. Then Q™ is the amalgamated sum of
ufmt s Pt — QI in the category Mon™*, and can be naturally identified with the image of
Q in QI Gpw QF. If P, Q1, and Qo are integral and any of these monoids is a group, then

Q is integral.

Remark 2.1.2. Note that even when P, (); and ()5 are integral monoids, the amalgamated

sum Q1 ®p ()2 need not be integral. Then same kind of problem arises for saturated monoids.

Example 2.1.2. Fix an a € N and consider the following pair of morphisms of monoids:
—. N (2.1)

N2
where h, sends n — an and A(n) = (n,n).

Let P := N’ @y N be the amalgamated sum associated to the above diagram. We claim

that P =~ 1A(N) + N? as a (additive) submonoid of Q*, where

2A(N)+N2:{<g+s,g+t>

n,s,tEN}.
Note that we have natural morphisms of monoids:
/ 2 1 2
h':N* — —-A(N)+N
a
0 0
1) — (=48 —+1t)=(s,t
(5:0) — (45— +1)= (s
and
" 1 2
R":N — -A(N)+N
a
n n nn
— (—4+0,—+0)=(—,—
n (Z+0,—-+0)=(=~)

a a
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such that the following square is commutative:

N— " N

Al l“

N* — > JA(N) + N°.

Then it suffices to show that (NQL%A(N) + NQLN) satisfies the universal property
of the amalgamated sum of the morphisms in (2.1).
: N? = @ and

Let @ be a (additive) monoid and suppose we have two morphisms « :

b : N — @ such that « o A = o h,.

N

s

N2 —
Define

1 2

(I aA(N) +N*° — Q@
(E4s,2+t) — Bn)+als)

If we have

in LA(N) + N?, then

n—m , ,
=35 —s=t —t.

a

Without loss of generality, we may assume n —m > 0. Then we have

B(n)+al(s, t) = pla(s —s)+m)+ als,t)
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= Bla(s’ =) + B(m) + afs, 1)

= Bohds’—s)+ B(m) +als,t)
= aoA(s' —s)+ B(m) + a(s,t)

= B(m)+a(s —s,8 —s)+a(s,t)
= B(m)+a(s —s,t' —t) + a(s,t)

= B(m)+ a(s,t).

This shows that 1 is well-defined. It is easy to check that ¢ is a monoid homomorphism.

Moreover, for any (s,t) € N?,

(o I)(s.8) = ¥(s,t) = B(0) +als,1) = als, ),
and for any n € N,

(¥ o b)) = ¥(=, =) = B(n) +a(0,0) = B(n).

The uniqueness of such 1 is obvious. This proves our claim that the amalgamated sum P
of the morphisms in (2.1) can be identified with the (additive) monoid 1A(N) + N*. Under

this identification, we conclude that P is finitely generated and a set of generators can be

(1) o).

Moreover, PP = éA(Z) + Z* and P is fine and saturated (i.e., an fs-monoid).

given by

Example 2.1.3. (Monoid Algebras) Let R be a commutative ring with identity and P
a monoid. We denote by 1p the identity of R and by 1p the unit element of P. Then we

construct an R-algebra R[P] as follows. As an R-module, it is free with basis P, i.e., for any

17



f € R[P], f can be written as f = > r,-p, where r, € R and r, = 0 for all but finitely
peEP

many p € P. For f = > r,-xand g = ) r,-y, we define the multiplication of f and ¢ by
zeP yepP

fg:ZZ(Tzry)'p-

pEP zy=p

The R-algebra structure is given by the natural ring homomorphism R — R[P] sending
r+ r-1p, for any r € R. This R-algebra R[P] is called the monoid algebra on P over R. If
we consider R[P] as a monoid with respect to its multiplication, we have a canonical monoid
homomorphism P — R[P] sending any element p € P to 1g - p with the following universal
property:

For any R-algebra S and a monoid homomorphism 6 : P — S (here we consider S as a
multiplicative monoid), there exists a unique R-algebra homomorphism R[P] — S making

the following diagram commutative:

P——= R[P]

o  ar
A
S.

Monoid algebras have the following properties:

Proposition 2.1.3. Let P, Q (Q1, Q2) be monoids and R a (commutative) ring. Then

P is finitely generated (as a monoid) if and only if R[P] is finitely generated (as an

R-algebra).

e R[P] is noetherian if and only if R is noetherian and P is finitely generated.

R[P ® Q] = R[P] ®r R[Q)].

R[Q1 &p Q2] = R[Q1] ®r(p) R[Qo].
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e Moreover, if R is an integral domain and P is integral such that P is torsion free,

then R[P] is an integral domain.

Proof. We refer to [Ogus, 2006, Chapter I §3.1, §3.3] for details. O

2.2 Log Schemes

2.2.1 Log structures

Definition 2.2.1. Let (X, Ox) be a scheme.

e A prelog structure on X is a pair (M, «) where M is a sheaf of monoids on the étale

site X°* and « is a homomorphism from M to the multiplicative monoid of Oy.

A prelog structure (M, «) is called a log structure if the induced map a1 (0%) — 0%

is an isomorphism.

The log structure defined by the inclusion O% — Ox is called the trivial log structure

on X.

A log scheme is a triple (X, M, «v), usually simply denote by X, consisting of a scheme
X and a log structure (M, o) on X. The sheaf of monoids of a log scheme X is generally

denoted by Mx, and the sheaf O% is thought of as a subsheaf of My by a.

A morphism of log schemes is a morphism f : X — Y of the underlying schemes
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together with a morphism f” : My — f.(Mx) such that the following diagram

My Lo fo (M)

o[

OY Tf*(oX)

commutes.

Proposition 2.2.1. ([Ogus, 2006, Chapter II Proposition 1.1.5]) Let X be a scheme. The
inclusion functor from the category of log structures to the category of prelog structures on
X admits a left adjoint (M,a) — (M? a%), where M* = M ©4-1(0%) Ox and o is the

morphism defined by o and the inclusion of O% wn Ox, i.e.,

One calls (M®, a®) the log structure associated to the prelog structure (M, ).

Example 2.2.1. Recall R, P in Example 2.1.3 and let X := Spec(R[P]). Endow X with the
log structure associated to the prelog structure induced by the canonical monoid morphism
P — R[P]. The above log structure is called the canonical log structure on X = Spec(R[P]).
Indeed, it is the inverse image of the canonical log structure on Spec(Z[P]) under the natural

morphism X — Spec(Z[P]).
Definition 2.2.2. Let f : X — Y be a morphism of schemes.

o If ay : Mx — Oy is a log structure on X, then the natural pair

(f*(MX) X f£.(0x) OY7 ﬁ)
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in the following diagram

Je(Mx) X, 0x) Oy LN Oy

| |

fo(Mx) f+(0x)

Je(ax)

is a log structure on Y, called the direct image log structure induced by ax.

o If ay : My — Oy is a log structure on Y, then the composite

fHeay)

fH(My) f1(Oy) Ox

is a prelog structure on X. The associated log structure is called the inverse image log

structure on X and denoted by (f*My, f*ay).

Definition 2.2.3. A map of log schemes

f: X=X Ma) —Y=(,N,p)

is called strict if the natural map f*N — M is an isomorphism.

2.2.2 Charts

Definition 2.2.4. Let o : M — Ox be a log structure on a scheme X.

o A (global) chart, modeled on P, of a log scheme X is a strict map of log schemes
X — Spec Z[P] for some monoid P, where Spec Z[P] is endowed with its canonical log
structure. Giving such a chart is the same as giving a monoid P and a homomorphism
from the constant sheaf of monoids Py on X to M inducing an isomorphism on the

associated log structures.
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A log structure « is called quasi-coherent (resp. coherent) if locally on X it admits a

chart (resp. a chart modeled on a finitely generated monoid).

A log scheme X is called integral if the stalk of M at each geometric point of X is

integral.

A log scheme X is called fine (resp. fine and saturated, or fs for short) if it is integral,
and locally for the étale topology it admits a chart modeled on a finitely generated and

integral (resp. finitely generated and saturated) monoid.

Let f : X — Y be a map of log schemes. A chart of f is a triple (a,b,u) where
a: X — SpecZ[P] and b : Y — SpecZ|Q)] are charts of log schemes X and Y and

u: ) — P is a morphism of monoids such that the following square of log schemes

X —%= Spec Z[P]

|

Y —— SpecZ[Q)]
commutes, where the right vertical map is induced by u. Such chart of f is sometimes

written as (P, Q,u: Q — P).

Remark 2.2.1. If f: X — Y is a map of fine log schemes, a chart of f exists étale locally,
and, P and ) can be chosen to be fine and saturated monoids if X and Y are fs log schemes

(refer to [Ogus, 2006, Chapter 11 §2.2] for details).

Example 2.2.2. Let X be a locally noetherian regular scheme and let D C X be a divisor
with normal crossings. Let 7 : U = X — D — X be the corresponding open immersion.

Then the inclusion Mx = Ox N 7.0} — Ox is an fs log structure on X, which is called the
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log structure defined by X — D (or sometimes, by D). Etale locally X has a chart modeled
on N (if [, ti" is a local equation of D where (;),,, is a part of a system of local

parameters on X, N" — Oy, (n;) = [[;-,, ti" is a local chart).

2.2.3 Fibered products of log schemes

Just as in the case of classical schemes, the existence of products in the category of log
schemes (resp. fine log schemes, resp. fs log schemes) has deep consequences. In this
section, we list some results for the existence of fibered product in several categories, for

details, please refer to [Ogus, 2006, Chapter 1T §2.4].

Proposition 2.2.2. ([Ogus, 2006, Chapter II Proposition 2.4.2]) The category of log schemes
admits fibered products, and the functor X — X taking a log scheme to its underlying scheme

commutes with fibered products. The fibered product of coherent log schemes is coherent.

Remark 2.2.2. e More explicitly, Let X, Y and Z be log schemes with underlying schemes
X, Y and Z, respectively. And let f : X — Z and g : Y — Z be morphisms
of log schemes. Their fibered product in the category of log schemes is obtained by
endowing the usual fibred product of schemes X x 7Y with the log structure associated
to the prolog structure py Mx @ps v, py My , where px, py and pz are the obvious
projections. Consequently, if (Q1, P,u; : P — @) and (Q2, P,us : P — (Q3) are
charts for the morphisms fand g respectively, then the induced morphism X xz Y —

Spec(Z[Q1 ®p @Q2]) is a chart as well.

e If X is a log scheme, let X° denote the log scheme with the same underlying scheme but

with trivial log structure. Then there is a natural morphism of log schemes X — X°,
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and a morphism f: X — Y of log schemes fitting into a commutative diagram:

x—1 .y

L

X?‘Y

If f is strict, this diagram is Cartesian.
Recall that the amalgamated sum of integral (resp. saturated) monoids need not be
integral (resp. saturated) (see Proposition 2.1.2), so the construction of fibered products in

the category of fine (or fs) log schemes is more delicate. We have the following properties:
Proposition 2.2.3. ([Ogus, 2006, Chapter II Proposition 2.4.5])

e The inclusion functor from the category of fine log schemes to the category of coherent
log schemes admits a right adjoint X — X***, and the corresponding morphism of

underlying schemes (X™) — X is a closed immersion.

e The inclusion functor from the category of fs log schemes to the category of fine log
schemes admits a right adjoint X — X%, and the corresponding morphism of under-

lying schemes (X*%) — X is finite and surjective.

Remark 2.2.3. One should always keep in mind that the morphisms of topological spaces
underlying the maps X** — X and X®2* — X% are not in general homeomorphisms. In
particular, we cannot identify Myine (resp. Mysa ), the log structure on X*** (resp. on X2%),
with (Mx)™® (resp. (Mx)®**) in general. Here, (My)™® and (Mx)®®* are defined similarly

as in the category of monoids (see Definition 2.1.2 and 2.1.3).

Corollary 2.2.1. ([Ogus, 2006, Chapter II Corollary 2.4.6]) The category of fine log schemes
(resp. of fs log schemes) admits finite projective limits. Moreover if we have the following
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diagram

Y

|

X—Z

in the category of fine (resp. fs) log schemes, then the natural morphism of schemes
(X Xz Y) — X XZX

is a closed immersion (resp. a finite morphism).

2.3 Log smooth and log étale morphisms

Definition 2.3.1. A morphism of log schemes i : (X, M) — (Y, N) is called a closed im-
mersion (resp. exact closed immersion) if the underlying morphism of schemes X — Y is a

closed immersion and *N — M is surjective (resp. an isomorphism).

Definition 2.3.2. Consider the following commutative diagram of log schemes

(T', L) —*~ (X, M) (2.2)

zl lf

(T, L) ——(Y,N)
such that 7 is an exact closed immersion and 7" is defined in T by an ideal I such that I? = 0.
A morphism f: (X, M) — (Y, N) of fine log schemes is called log smooth (resp. log étale) if
the underlying morphism of schemes X — Y is locally of finite presentation and if for any

commutative diagram as in (2.2), there exists étale locally on T (resp. there exists a unique)

g:(T,L) — (X, M) such that goi =sand fog="1.
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A standard example of a log smooth (resp. log étale) morphism is given by the following
proposition. In Theorem 2.3.1, we shall see that all log smooth (resp. log étale) morphisms

are essentially of the type of this standard example.

Proposition 2.3.1. ([Kato, 1989, Proposition (3.4)]) Let P, Q be two fine monoids, [ :
@ — P a homomorphism, R a ring, such that the kernel and the torsion part of the cokernel
(resp. the kernel and the cokernel) of Q9% — P9 are finite groups whose orders are invertible
i R. Let

X = Spec(R[P]), Y = Spec(R[Q))
and endow them with the canonical log structures My and My, repectively (see Example

2.2.1). Then the morphism (X, Mx) — (Y, My) induced by f is log smooth (resp. log étale).

Theorem 2.3.1. (/Kato, 1989, Theorem (3.5)]) Let f : (X, Mx) — (Y, My) be a morphism
of fine log schemes. Assume that we are given a chart Q — My of My. Then the following

conditions are equivalent.

(1) f is log smooth (resp. log étale).

(2) There is a chart (P — Mx,Q — My,Q — P) of f, étale locally on X, extending the

given chart Q — My by satisfying the following conditions (a, b):

(a) The kernel and the torsion part of the cokernel (resp. the kernel and the cokernel)

of Q% — P9 are finite groups of orders invertible on X.

(b) The induced morphism X — Y Xgpeo(ziq)) SPeC(Z[P]) is a smooth (resp. étale)

map on the underlying schemes.
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Example 2.3.1. Let A be a discrete valuation ring and we fix a uniformizer = of A. Let R

be an A-algebra satisfying the following conditions:
e Spec(R) is connected, i.e., R has no nontrivial idempotents;

e There is an a € N and an étale morphism ¢g : R* — R for which R’ = A[X,Y]/(XY —

).

Denote by S = (S, M) the log scheme whose underlying scheme S = Spec(A), the log
structure is the one associated to the prelog structure given by the map ¢ : N — A sending

1.

Consider the following commutative diagram of monoids and morphisms of monoids:

where pr(m,n) = X™Y" ¢,(n) = 7 and A(n) = (n,n) for all m,n € N. Then we can
identify R’ with A[N?] @4 A as A-algebras.

Let P := N?@®yN be the amalgamated sum as in Example 2.1.2. Consider the log
structure on X = Spec(R) the one associated to the prelog structure induced by the map

P-->R ﬂR, where the maps are shown in the following diagram:

R ——

s
N p’
|
©

R
NQ/A.

Pa
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We denote by X = (X, N) the corresponding log scheme. Then the triple (P,N,h: N —
P) is a chart for the morphism f : X — S. Moreover, we have the following property for

the above morphism of log schemes.
Lemma 2.3.1. The morphism f : X — S of log schemes in the above example is log smooth.

Proof. First, note that we have the following identifications from Example 2.1.2:

oy [,
P -AN)+N —{(a—l—s,a—l—t>

n,s,tEN},

and

1
P>~ _A\(Z) + 77,
a

Then h : N — P can be replaced by the morphism

1
BN — ~A(N) + N2,

n n
n IR I
a a

thus the following commutative square satisfies the universal property of the amalgamated

suin

N

Al lh"

N* —> JA(N) + N,

By Proposition 2.3.1, it is enough to prove that:

(a) The kernel and the torsion part of the cokernel of (") : N% = Z — LA(Z) + Z* are

finite groups of orders invertible in R.

(b) The morphism Spec(R) — Spec(A) Xgpee(zn)) Spec(Z[P]) is smooth on the underlying
schemes.
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Notice that (h”)9 is injective and its image h"(Z) = 2A(Z), thus (a) follows immediately.

Part (b) can be verified by the fact

A@an A[P] =2 A®an A [N On NQ}

12

A ® AN (A[N] R A[N] A[N2]) (Proposition 2.1.3)

12

A @ AN

12

R (Example 2.3.1),

and our assumption that R — R is étale. This completes the proof. O

Remark 2.3.1. In the above example, when a = 1, X is called of semistable reduction over
S. In this case h, = idy and P = N2 Let N’ be the log structure on X defined by its
special fiber (see Example 2.2.2). Then N’ coincides with the log structure N on X defined
above. In other words, the triple (N2, NA:N— NQ) is a chart for the natural morphism

of log schemes (X, N') — (S, M).

Log smooth (resp. log étale) morphisms enjoy most of the properties of classical smooth

(resp. étale) morphisms in the theory of schemes.

Proposition 2.3.2. (a) Log smooth (resp. log étale) morphisms are stable under compo-

sition and arbitrary base change (either in the category of fine or fs log schemes).

(b) Suppose we have the following commutative diagram of log schemes and morphisms:

N

S.

If f and g are log smooth (resp. log étale), so is h.
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(c) If f: X =Y is a map of schemes, viewed as a map of log schemes with the trivial log
structures, then f is log smooth (resp. log étale) if and only if f is classically smooth

(resp. étale).

Proof. These are consequences of Theorem 2.3.1. U

2.4 Kummer étale topology

Definition 2.4.1. e A homomorphism of integral monoids h : () — P is said to be exact

if Q = (ho?)™" (P) in Q9.

e A morphism f: X — Y of log schemes with integral log structures is said to be exact

if the homomorphism (f*My )z — Mxz is exact for any 7 € X.

e A morphism h : Q — P of fs monoids is said to be Kummer (or of Kummer type) if
h is injective and for all p € P there exists n € N, n > 1, such that np € h(Q) (the

monoid laws written additively).

e A morphism f: X — Y of fs log schemes is said to be Kummer (or of Kummer type)

if for all geometric point z of X with image 7 in Y, the natural map
Myyg — MX,E
is Kummer.

e A morphism f: X — Y of fs log schemes is said to be Kummer étale if it is both log

étale and Kummer.
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Remark 2.4.1. (i) Let f : X — Y be a morphism of fs log schemes. If f has a chart

(P — Mx,Q — My,h:Q — P) such that h is Kummer, then f is Kummer.

(ii) Morphisms of Kummer type are stable under compositions and base changes in the

category of fs log schemes.
(iii) A morphism of Kummer type is exact.

(iv) Let f: X — Y be a log étale morphism of fs log schemes. Then f is Kummer if and

only if f is exact.

Another property of Kummer étale morphisms is the following:

Proposition 2.4.1. (Vidal [2001],1.3) Let f : Z =Y, g: Y — X be morphisms of fs log

schemes and h = go f. If g and h are Kummer étale, then f is Kummer étale.
Definition 2.4.2. Let X be an fs log scheme.
¢ The Kummer étale site of X, denoted by X** is defined as follows:

e The objects of X** are the fs log schemes which are Kummer étale over X.

e If Y, Z are objects of X*¢* a morphism from Y to Z is an X-map Y — Z. By

Proposition 2.4.1, any such map is again Kummer étale.

e The Kummer étale topology is the topology on X*°* generated by the covering

families (f; : Y; = Y);er of morphisms of X** such that

Y =)
set theoretically.
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e The Kummer étale site of X is the category X*** endowed with the Kummer étale

topology.

¢ The Kummer étale topos of X, denoted by Top(X*e*) (or simply X*®* again if there is

no confusion), is the category of sheaves on X*e*.

Remark 2.4.2. The datum for each object Y of X*°* and the set of covering families of Y as
above define a pretopology on X*®* in the sense of Grothendieck ([Artin et al., 1972, 1T 1.3]
). To verify the axioms of a pretopology the only nontrivial part is checking the stability
of covering families under base change. By Proposition 2.3.2 and Remark 2.4.1, Kummer
étale morphisms are stable under fs base change, thus it is enough to verify the universal

surjectivity of covering families. This follows from the following lemma:

Lemma 2.4.1. (/Nakayama, 1997, Lemma 2.2.2]) Suppose we have the following cartesian

square of fs log schemes

Let x5 € X3, x9 € Xy be such that f(x3) = g(x2). Assume that f or g is exact. Then there

exists x4 € X4 such that f'(xy) = xo and ¢'(x4) = x3.

Remark 2.4.3. Let X be a scheme with the trivial log structure. If f: Y — X is an object
of X** then f is strict, the log structure on Y is trivial and f is étale in the classical sense.

Thus the Kummer étale site X*°* can be identified with the classical étale site X°* of X.
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Chapter 3

P-adic Modular Forms over Shimura Curves

In this chapter, we review the theory of P-adic modular forms over Shimura curves over
totally real fields of non-integral weights, which was established by R. Brasca in Brasca
[2011] and Brasca [2013]. Our main references for this chapter are Carayol [1986], Kassaei

[2004], Brasca [2011] and Brasca [2013].

3.1 Shimura Curves

3.1.1 Quaternionic Shimura curves Mg (G, X)

First, we introduce some notations. Let F' be totally real field of degree d > 1 over Q and
denote by 71, 7o, ..., 74 its all real embeddings. Set 7 = 71. Let B be a quaternion algebra
over F' which is split at 7 and ramified at all other infinite places 7o, . . ., 74 (these assumptions

imply that the Shimura datum we are going to construct later gives a Shimura variety of
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dimension one). In particular, we fix identifications
B ®@p, R = My(R),

and fori=2,...,d

B ®F,’Ti R = ]H>

where H is the Hamilton quaternion algebra over R.

Let G be the reductive group over QQ defined by
G := Resp/o(B”).

Then G(Q) = B* and G(R) = GLy(R) x (H)*'. We set § := Resc /R(Gmc), hence S(R) =

C*. The morphism

comes from a morphism

h:S— Gg.

Now let X be the G(R)-conjugation class of h, then X can be identified with
X=C-R=6"| |9

which is the union of two copies of the Poincaré half plane.
Let K be a compact open subgroup of G(A7). We define the following compact Riemann

surface to be the double cosets:

Mg (G, X)(C) := GQ)\G(A) x X/K.
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Here the action of K on X is trivial and via right multiplication on G(AY), G(Q) acts by
left multiplication on G(A/) and via the natural diagonal embedding induced by Q — A/.
By the theory of Shimura (Shimura [1970], Deligne [1971a]), there exists a canonical model
Mg (G, X) of Mg (G, X)(C), defined over F', where F' is thought of as a subfield of C via the
embedding FF'“"= R<— C. Moreover, My (G, X) is smooth and proper. The Shimura
curves Mg (G, X) are not of PEL type hence can not be described in terms of abelian varieties.
To modify this, we will introduce another reductive group G’ with the same derived group as
G and the G’(R)-conjugation class of a morphism of algebraic groups b’ : § — G} such that
the corresponding Shimura curves M., (G’, X') classify abelian varieties with polarizations,

endomorphisms and level structures (see Theorem 3.1.1).

3.1.2 Unitary Shimura curves M. (G, X')

Let F', B, S, G be as before. Fix p # 2 a prime integer. Choose an element A\ € Q, A < 0
such that Q(v/\) splits at p. Let E := F(y/\) be an imaginary quadratic extension over F.
By choosing a square root p of A in C, we extend the embeddings 7; : F' < R to embeddings
7t E — C, via 7;(x + yVA) = 7,(x) + prily), for 1 < i < d, where x,y € F. Similarly, we
fix the embedding

Ti=11:FE—C

and consider £ as a subfield of C via 7.
Now let T := Resp/ (G, r) and Z be the center of G. Then we can identify 7" by Z. Let

v : G — T be the morphism obtained by the restriction of the reduced norm of B. Then we
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have an exact sequence of algebraic groups:

1 Gy G——=T 1,

where (G is the derived group of G. Let Ty := ResE/Q(GmyE) and Ug be the subgroup of T
defined by the equation z - Z = 1, where - denotes the natural conjugation of E with respect

to F'. Let G := G X7 Tg be the amalgamated product of the following pair of morphisms
Tp+—T=7—(d.
We have the following commutative diagram of morphisms of algebraic groups:

T=/7——@G

|

where

a:Tp — T xUg,

Z (ZZ,Z/Z),

and

This induces a morphism

VG — T x Ug,
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(g,2) +— (U(g)zz,z/z).

Now consider 1" := G,, g X Ug, the sub-torus of T' x Ug, and let G’ be the inverse image of

T viav' in G”, i.e.,

G' = ('U’)_1 (T"Y——G" = (G x1 Tg) (3.1)
T'c T x Ug.
The complex embeddings 7, ..., 74 of E into C give an isomorphism

Tp(R) = (E ®g R)* = (C*)*

Let hg : S — (Tg)g be the morphism defined by

Recall that we have a morphism A : § — Gy and the morphism S — (G xp Tg)g, defined

by the composite

S m (G X TE)[R LOJ; (G X7 TE)R,

has image in 7”. Hence it factors through a morphism A’ : $ — (G')g.
Now let X’ be the G'(R)-conjugation class of h’, which can be identified with $*, the
Poincaré half plane. For any compact open subgroup K’ of G'(A/), we associate to (G, X)

a Shimura curve over C, defined by
M (G', X")(C) :== G'(Q\G'(AT) x X' /K,

which is a compact Riemann surface.
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Now we give another description of the reductive group G’ as in [Carayol, 1986, §2.2].
We need both descriptions to state the moduli problem of the unitary Shimura curves. Let

D := B®p E. Then D is a quaternion algebra over £. We define

D — D,

bz — VUV ®2Z,

where ' : B — B is the canonical involution of B, and z + Z is the conjugation of E with
respect to F. It follows that - is an involution on D.

Choose an element § € D* such that § = § and define another involution on D by

S D — D,

d — 67'd6.

Let V' be the underlying Q-vector space of D, with the left action of D by left multipli-
cation. We may consider V' as a free left D-module of rank 1. Choose a non-zero element

a € E such that @ = —a and define a Q-bilinear form, for all v and w in V:

O:VxV — Q,

(v,w) +— Trpq (atrpp(véw®)).
Then we have
Proposition 3.1.1. O is a symplectic form on V, i.e.,
(i) O(v,v) =0 for any v € V ( alternating).

(i1) If ©(v,w) =0 for allw € V, then v =0 ( non-degenerate).
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(i1i) O(dv,w) = O(v,d*w), for any v,w € V and any d € D.
Proof. See [Brasca, 2011, Lemma 1.2.2]. O

Definition 3.1.1. Let W be a free left D-module and let © a symplectic (see Prop. 3.1.1)
Q-bilinear form on W. We say an element g € Autp (W) is a D-linear symplectic similitude

of (W, 0) if there exists p, € Q™ such that

© (9(v), 9(w)) = pgO(v, w)
for all v,w e W.

Remark 3.1.1. In our case, since V' is a free left D-module of rank 1, we have Autp (V) = D*
and a automorphism corresponds to the right multiplication by a unit in D. Then a D-linear

symplectic similitude of (V,;©) is an element d € D* such that for any v,w € V
O(vd, wd) = pO(v, w) for some element u € Q™ . (3.2)
Then by the Q-linenarity of ©, the above equality is equivalent to
S) ('Udéd*é’l,w) =0 (v, w),

which is equivalent to

dd 5! =

since O is non-degenerate. Finally, using d* = §~'dd, we conclude that the original equation
(3.2) is equivalent to

dd =p € Q*.
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Consider the reductive group over Q such that for any Q-algebra R, its R-points are the
D-linear symplectic similitudes of (Vg, ©r) (here we extend the above definition to (Vg, Og)).

In particular, its Q-points can be identified with

{deDX dde@x}.

Then we can identify the reductive group G’ (diagram (3.1)) with the one defined above.

This gives a morphism of algebraic groups G — GL(Vk) and the composite
$—"~ G, ——~GL(Vh)

defines a Hodge structure of type {(—1,0), (0, —1)} on Vg, where J = I/(i) gives a complex
structure on Vg via

Jox=x-J"

for any x € Vg. Moreover, we can choose ¢ so that © is a polarization for this Hodge

structure, i.e., the form on Vi defined by

(2,9) — © (2, (0(0) )

is positive definite (see [Carayol, 1986, §2.2.4] for details).

3.1.3 Moduli problems for unitary Shimura curves

3.1.3.1 The canonical model over the reflex field

For any d € D, define t : D — C by
t(d) = Tre (d, Vc/ F0<Vc)> ,
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where F*(V¢) is the Hodge filtration of V¢ defined by /. Let £’ be the subfield of C generated

{t(d)y de D}.

by

We have the following results

Theorem 3.1.1. [Deligne, 1972, §6] The canonical model M}, (G', X') is defined over E’,
for any sufficiently small compact open subgroup K' C G'(A'). Moreover, it represents the
functor

Mo o {E'-algebras} — {Sets}

defined as follows:
For any E'-algebra R, M. (R) is the set of isomorphism classes of quadruples (A, ¢, 0, k)

where

(a) A is an abelian scheme over R, defined up to isogenies, with an action of D wvia v :

D — End(A) such that for any d € D

(%) Tr(u(d); Lie(A)) = t(d).

(b) 0 is a homogeneous polarization of A such that the Rosati involution sends t(d) to v(d*),

foralld e D.
(c) k is a class modulo K' of a symplectic D-linear similitudes
V(A S VoA,

where V(A) = T(A) @ Q, with symplectic structure coming from the Weil pairings and

T(A) = [[Ti(A) is the product of the Tate modules of A over all primes.
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From now on we always assume that K’ is small enough to have a canonical model My,.
By calculating t(d) for element d € D, we have a more explicit description of the reflex field

E’. Indeed, we have

Proposition 3.1.2. The reflex field for the canonical model My.,(G', X') is E, where E is

thought of as a subfield of C via 7.

Proof. For 1 <i <d, let

Di =D ®F,T¢ R=D ®E,T¢ C

and let V; be its underlying R-space. Then we have
Ve/FO(Ve) = Ve /vt =2 v o

Using the notations above we obtain the decomposition

d
V(;LO _ @ (‘/; ®R C)—l,O )
i=1

and the trace we want to calculate is just the sum of the various traces in the decomposition

above. We calculate the different traces in the following cases:

(a) If i = 1, then V; = My(C) and V; @ C = My(C) & My(C) via v ® 2 — (vz,02).

J=hn{) = vt and for any My, M,y € My(C),
1 0
-1 -1
0 —1 0 —1
J(My, My) = (Mljfl,Mngl) = | M , M,
1 0 1 0

For any d; € D; = My(C),

dy - (My, M) = (di My, dy Ms)
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where the - in the second component is the complex conjugation. By some basic

calculation on matrices, we have
(Vi@a €)™ = {(My, My)|J(Mi, Mp) = i(Mi, M) }

a —al a —al

= , a,d e C
di d di d

Hence

Tr (di; (Vi ® C)™1) = te(dy) + tr(dy) = tr(dy) + tr(dy).

(b) Fori > 2, D; = My(C) and V; ® C = My(C) & M,(C).

J=n() =

and for any My, My € My(C),
J(My, My) = (iMy, —iMs) .
Then

(VioC) M = {(My, My)|J(My, M) = i(My, My)}

= M;y(C).
Hence Tr (di; (Vi ® (C)_l’o) = 2tr(d;) for any d; € D;.

From the above discussion, we deduce that for any d € D

t(d) = tr(dy) +tr(dy) +2)  tr(d;)
=2 ;
= T (tI’D/E(d)) + 7:1 (tl"D/E(d)) + 22’7’Z (tl"D/E(d))
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= (’7’1 +7 4+ 2+ + 2Td> (tI‘D/E(d))

Define a morphism ¢ : E — C by 0 :=7 + 7 + 27 + -+ + 274. Then for any d € D

For z, y € F', we have the equalities

oz +yVA) = (@) +pn(y) + (nle) = pri(y)) +2)_ (r(2) + prily))

=2
= 2trr/o(@) + 2o (trrye(y) — y)
which imply that the image of o in C generates E. Hence E' = E. This completes the

proof. O

3.1.3.2 The canonical model over a local field

Let F', E, B, p be as before and denote by Py,...,P,, the primes of F' lying above p. We
denote simply by P = P;. Let Fp, denote the completion of F' at P;. Let Op be the ring of
integers of Fip and denote by e and f its ramification degree and residue degree, respectively.
Fix 7, a uniformizer of Op and let x be the residue field, with cardinality ¢ = p and
characteristic p. Let v(-) be the normalized valuation of Fp, i.e., v(r) = 1, and let | - | be a
norm on Fp compatible with v(-).

Choose a square root p of A in QQ,, which can be done since we assume that Q(v/\) splits

at p. The morphism

E — F,oF=(F®qQ,)® (F®qQ,)

r+yVA (2 4y —yp)
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extends to an isomorphism
E®QPL>FPEBFPL>(F?IEB”’EBF?m)@(FT1®"'®Fﬂ’m)a

which allow us to consider Fyp as an E-algebra via the following composition

pri

ESERQ, = (Fp,® - ©F, )0 (Fp, @ Fp,) 25 (Fp, &--- @ Fp,) 25 Fy.

From now on we base change the model M}, to Fp and consider the Fyp-scheme M., (G', X' )®g
Fyp, which is still denoted by M.

We assume that the quaternion algebra B is split at P and fix an isomorphism B ®p Fp =
Ma(Fp). Let

D,=D®Q,=BRIERQ,).

F

Then the decomposition of £ ® Q, induces a decomposition of D, as
Dy=(Di®-@D,)®(Di®-o D),

where DF is an Fp-algebra and DF & By, := B®p Fy, fori = 1,...,m and k = 1,2. In
particular, D} and D? are identified with My(Fp). The involution -* : D — D induces an
involution of D, which switches D} with D2.

Now suppose A is a D,-module. The decomposition of D, induces a decomposition of A:
A=M@-dA)e (AMe---dA),

where D,, acts on A¥ via DF.
Recall that we have fixed isomorphisms D] & D} 2 My (Fy). This allows us to decompose

A? into a direct sum of Fip-vector spaces:

A =AY @AY
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where A7' (resp. A2?) is the kernel of the idempotent (resp. ) of
0 0 01

D?. These two Fyp-vector spaces are isomorphic and can be switched by conjugation of the

01
element of D?.

10

Now let R be an Fp-algebra and A an abelian scheme over R, defined up to isogenies, with
an action of D. Then the relative Lie algebra Lieg(A) is an R ® D-module, in particular is

a Dy-module. Then we have a decomposition as before:
Lie(A) = Lie;(A) @ - - - @ Lie}, (A) @ Lie}(A) @ - - - @ Lie?,(A),

where Lief(A) is a projective R-module with an action of D¥. Furthermore, the factor

Lie?(A) admits the decomposition
Lie?(A) = Lie?' (A) @ Lie>*(A)

of two projective R-modules with an Fjp-action. Using such decomposition, we obtain an
more explicit description of condition (x) in the moduli problem (see part (a) in Theorem

3.1.1).

Proposition 3.1.3. Let R, A as above. The condition (%) in Theorem 3.1.1 is equivalent

to the followings:

1. The relative dimension of A is 4d.

2. The projective R-module Lie>" (A) has rank 1, with an action of Fp via the natural map

Fy — R.

3. Fori>2, Lie}(A) = 0.
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Proof. See [Carayol, 1986, §2.4] O

Now let (V,©) be as in section 3.1.2 and consider the Dy-module V), = V ®¢ Q, with an
decomposition

V,=Vle---oVievie ..oVl

We will also give a more explicit description in terms of decompositions of V,, for part (c)
of the moduli problem. The space V, has a symplectic form ©, = © ®g Q, such that the

components V} and le are orthogonal unless ¢ = j and k # [. More generally, we have

Lemma 3.1.1. Let A be a Dy-module with a Q,-bilinear, alternating, nondegenerate form
® such that ®(dv, w) = ®(v,d*w) for all d € D,, v,w € A. Then A} and A} are orthogonal

unless i = j and k # 1.

The group G'(Q,) is identified with the group of D,-linear symplectic similitudes of

(V,,©,). By the above lemma such a similitude is totally determined by
e its similitude ratio p € Q,;
e its restriction to V2.

Thus we have

G'(@Q) = Q) x [JAutp(Vy)

>~ QX x H (D))"
=1
>~ Q) x [[(B®rF)"
=1
= @ XGLQ(FQ)) X (B SQF Fg)Q)X X+ X (B Qr Fg)m)X
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Let A be an abelian scheme, defined up to isogenies, with an action of D via ¢ : D —
End(A) and a polarization 6 such that the Rosati involution sends ¢(d) to «(d*). Let @ :
Vu(A) x V(A) — Q,(1) be the pairing associated to . Then ® is a Q,-bilinear, alternating,

nondegenerate from such that for any d € D,, v,w € V,(A),
O(dv,w) = &(v, d*w).

Therefore, V/*(A) and V}(A) are orthogonal with respect to ® unless i = j and k # . To

7

give a D-linear symplectic similitude
k:V(A) SV eAS
is equivalent to give the followings:

e a D-linear symplectic similitude

B VP(A) = [[Vi(A) = V @ AP
l#p

e a similitude ratio y, € Q,;

e D?Zlinear isomorphisms

k-Q:V-Q(A) 52
for 1 <i<m.

In particular, giving a k? is equivalent to giving an Fp-linear isomorphism

It is often necessary to describe the Shimura curve M., (G’, X’) as a moduli problem

defined in terms of abelian varieties, rather than isogeny classes of abelian schemes. To do
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this, we need to choose a maximal order of the quaternion algebra D. Let Op be a maximal

order of D and denote by V7 the corresponding lattice in V. The ring Op ® Z, admits a

decomposition
Op®Z, = Op1 & -+ & Opy, @ Opz & --- @& Opz
N N N N N
D®Q, = Dl & --- @ D, @® D} @& --- @& D2.

Moreover we can choose Op, «,  in such a way that:

(I) Op is stable under the involution d — d*;

(II) each Opr is a maximal order in Dy and Op2 C D} = My(Fp) is identified with My(Og);
(III) the symplectic form © : V x V' — Q defined by

O(v,w) = Trg/q ((xtrD/E(v(Sw*))
takes integer values on V;
(IV) © induces a perfect pairing ©, on Vz, = Vz ® Z,,.
Then every Op, = Op ® Z,-module A admits a decomposition as
A=A DA AN D - DN

such that each A¥ is an Opr-module. The Opz = My (Op)-module A? decomposes further as
the direct sum of two Op-modules A2 = A7' @ A*?.

Let K’ be an open compact subgroup of G'(A/) small enough such that it keeps the adelic
lattice V, = Vu®7Z C V@AS invariant. We have the following theorem as in [Carayol, 1986,
§2.6.2]:
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Theorem 3.1.2. The functor Mk, in Theorem 3.1.1 is isomorphic to the functor
M3 : { E-algebras}y — {Sets}

which 1s defined as follows:
For any E-algebra R, M2%.,(R) is the set of isomorphism classes of quadruples (A, 1,0, k)

where

(a) A is an abelian scheme over R of relative dimension 4d, with an action of D wvia

t: D — End(A) such that the condition (x) of Theorem 3.1.1 is satisfied.

(b) 0 is a polarization of A, of degree prime to p, such that the corresponding Rosati

involution sends t(d) to v(d*), for all d € D.
(c) k is a class modulo K' of Op-linear symplectic isomorphisms
k:T(A) =V,
Example 3.1.1. Some level structure we are interested in.

Let

I .= (B®p Fp,) x - x (B®p Fp, )* x G'(A"P).

Then the finite adelic points of G’ can be described as
G'(AT) = Q) x GLy(Fyp) x I,
From now on, we will only consider the subgroup K’ C G’(A/) of the form
K' =17} x Ky x H,

where Ky is a subgroup of GLy(F»p) and H is an open compact subgroup of I".
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Let (A, 1,0, k) be an object of the moduli problem as in Theorem 3.1.2. We will use the
following notations to give a more explicit interpretation of a K’-level structure k. Recall

that we have the decomposition of

l#p
T(A) = T7(A)&T7(A),
Wr = Vo7,
W, = (Vg,)36 & (Vz,)2

Then the level structure k in the description of the functor M2, can be replaced with the

following data:

(#) ky is a class modulo Ky of isomorphisms of Op-modules
ko o (T(A)y = (Va, )7 = 03;
(44) k7 is a class, modulo H, of isomorphisms
K =1k @k TP (A) @ TP(A) -~ W2 o WP,
with k) : T7(A) = W) linear and k? : TP(A) = WP symplectic.
In particular, if Ky = GLy(0O5), then condition () disappears.
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3.1.3.3 Special level structures

From now on, we will only consider the following three cases of Ky, whose corresponding

level structures can be described even more explicitly. We write A[x"]3" for the 7"-torsion

in A[p">* and let A[x"]2 := A[x"]3' @ A[x"]**. Define

K(H) = GLy(09),

a b
K(H, 7" = € GLQ(O?)’c = Omod 7" §
c d
a b
K(Hn") := € GLQ(OT)’a = lmod 7" and ¢ = Omod 7"
c d

In these cases, the Shimura curves M., are denoted, respectively, by M (H), M(H,r"™) and

M(H7™). They parametrize the following isomorphic classes, respectively:
(1) (A, ,0,k%) where

e (A,¢,0) is as in Theorem 3.1.2;

e k7 is as in Example 3.1.1 (04).
(2) (A,1,0,C, k%) where

e (A,¢,0) is as in Theorem 3.1.2;
e k7 is as in Example 3.1.1 (04);

e C is a finite flat subgroup scheme of rank ¢* of A[x"]7", stable under Og.

(3) (Av L, 9, Q7 ET) where
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e (A,1,0) is as in Theorem 3.1.2;
e k% is as in Example 3.1.1 (¢4);

e Q is a point of exact Op-order 7" in A[x"]>"".

3.1.3.4 Integral models

One of the main results of Carayol [1986] is that the Shimura curves M (H), M(H,7") and
M(H7"™) over Fp admit canonical proper models over O, denoted respectively by M(H ),
M(H,n"™) and M(H7™), which solve the same moduli problems as M(H), M(H,n") and

M(H7"™) do, respectively, for Op-algebras. More explicitly, we have

Theorem 3.1.3. When H' is small enough, the curve M(H), M(H,7") and M(H=z™) rep-

resent the functors My, Mgy and My, respectivly:
M : {Op-algebras} — {Sets}
such that for any Og-algebra R,
(1) My (R) is the set of all isomorphism classes of (A, 1,0, k™) where
e A is an abelian scheme over R of relative dimension 4d with an action of Op via

t: Op Endgr(A) such that

(a) the projective R—module Lie> (A) has rank one and Op acts on it via Op —
R,
(b) for j > 2, Lie}(A) = 0;
e 0 is a polarization of A of degree prime to p such that the corresponding Rosati

involution sends u(d) to «(d*) for any d € D;
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o k7 is a class, modulo H, of isomorphisms
P_ P P ; ~ P TR
K=k, @k T/ (A) TP (A) — W, @ W7,

with k) - TT(A) = W) linear and kP : TP(A) = W? symplectic (for notations,

see Example 3.1.1).
(2) My (R) is the set of all isomorphism classes of (A, 1,0,C, k%) where

o (A, 1,0,k is as in (1);

e (' is a finite flat subgroup scheme of rank q" of A[W"]f’l, stable under the action

Of O(p.
(3) My (R) is the set of isomorphism classes of (A, 1,0,Q, k") where

o (A,1,0,k%) is as in (1);

e Q is a point of exact Op-order 7" in A[x"]}" in the sense of Drinfeld.

We denote by A(H), A(H,7") and A(H7™) the universal objects of the moduli problems
of the curves M(H), M(H,n") and M (H7"), respectively. Let A(H), A(H,7") and A(H7")
be the corresponding canonical integral models, respectively. Now let K be any of the level
structures K(H), K(H,7") and K(Hn") we described in Example 3.1.1, and let (IM, A) be
any pair of (IM(H),A(H)), (IM(H,7"), A(H,7"™)) and (M(H#"), A(H7")) with correspond-
ing level structure K, respectively. The morphism A — M is denoted by € with zero section

e: M — A. Consider the sheaf of Op-modules 6*9}& M- It has an action of Op ® Z,,, which

allows us to define

W= Wy 1= (5*Q}&/M)i’l
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The condition on the abelian schemes of the moduli problem (Theorem 3.1.3) implies that
w is a line bundle over M. If R is an Ogp-algebra, the pullback of w, via the morphism
Spec(R) — M will be denoted by wp. We usually drop the subscript and use w whenever

no confusion arises. We have the following Kodaira-Spencer isomorphism.

Proposition 3.1.4. Let M, A, w be as above. Then
(1) Wam @ Wavym — Uy, -
(ii) There is a noncanonical isomorphism Q%]M S QIIM/OT'
Proof. See [Kassaei, 2004, Proposition 4.1]. O

Definition 3.1.2. Let K, M be as above. Let R be an Op-algebra and k an integer. The
space of modular forms with respect to D, level K and weight k, with coefficients in R, is

defined as follows:

SD(R, K k) = HO(MR,g%k).

3.2 Hasse Invariant and Canonical subgroups

3.2.1 Hasse invariant

Definition 3.2.1. Let X be an Op-scheme (or a formal scheme). A 7-divisible group H — X
is a Barsotti-Tate group H over X, together with an embedding Op — End(H) such that
the induced action of Op on Lie(H) is the natural action via H — X — Spec (O9). If X is
connected, there is a unique integer ht(H), called the height of H, such that rk(H[n"]) =
nht(H)

q for all n.
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Definition 3.2.2. Let X be a m-adic formal scheme over Spf(Op) and let § — X a smooth
formal group. We say that G is a formal Op-module if there is an action of Op on G whose

action on Lie(9) is via the structure map § — X — Spf (O5).

Let R be an Op-algebra and (A, 0, k%) be an object of the moduli problem M(H) (see
Theorem 3.1.3) with A defined over R. There is a natural action of Op ® Z, on A[p"], for

all n. Hence A[p"]} is defined and we also have A[p"]?" for i = 1,2, which has an action of

O5. Let A[7"]> be its n"-torsion and A[r"]? := A[x"]?" @ A[x"]>*. Similarly we can define

A[r"]{. Then

2,1
1

A[r>]P! = limy A[r"]

is a m-divisible group over A, called the m-divisible group associated to A. Let A be the
m-adic completion of A and A be the formal completion of A along its zero section. Then

< s

fl%’l is a formal Op-module of dimension 1. The formal Op-module associated to A[mr
AZ'. We will use the notation A[x"]>' := A>![x"]. The following proposition is proved in

[Kassaei, 2004, §4.3].

Proposition 3.2.1. Let R, ftfl be as above. There exists a coordiate x on ftfl such that

the action of m takes the following special form

[7](z) = 72 + az? + Z le,j(q—l)-i—l’
=2

where a, ¢; (j >2) € R and ¢; € R unless j =1 mod q.

Moreover, the height of fl?l is either 1 or 2. We say that (A, ¢, 0, k%), or simply A, is

ordinary if Afl has height 1 and say that A is supersingular if Afl has height 2.
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Let W = Spec(R) be an open affine subset of M(H) ® &, let w be the differential dual to
the coordinate x and define

H|y := aw®Y,

where x and a are as in the above proposition. It was showed in [Kassaei, 2004, §6] that
the above definition is independent of the choice of the coordinate and the dual differential.
Furthermore, these locally defined sections of w®@~1) glue together to give a global section
H, which is defined to be the Hasse invariant, a modular form of level K(H) and weight

q — 1 over k.

Proposition 3.2.2. Let Ry be a k-algebra. Then there is an H € SP(Ry, K(H),q—1) which

vanishes at a geometric point (A, 1,0, k%) of M(H) ® Ry ezactly when A is supersingular.
Proof. This is actually Proposition 6.1 in Kassaei [2004]. O

Moreover, it was proved in [Kassaei, 2004, §7] that the Hasse invariant can be lifted to a

modular form of level K(H) and weight ¢ — 1, defined over Os.

Proposition 3.2.3. If H is small enough and q > 3, then there exists an element in

SP(0p, K(H),q— 1), denoted by E, 1, such that
E, 1 =H modm.

Remark 3.2.1. We want to use this lifting of the Hasse invariant to develop similar theory
as in Katz [1973], such as strict neighborhoods, cnonical subgroups. But such element is not
unique. Indeed [Kassaei, 2004, Corollary 13.2] shows that all the theory does not depend on

the choice of such E,_;.
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Now let V be a finite extension of Op with fraction field L. Let 0 < w < 1 be a rational

number such that V' contains an element, denoted by 7%, whose valuation is w. We define
M(H)(w)y = SPGCM(H)V(SYm@@(q_l))/ < B —7">).

Remark 3.2.2. M(H )(w)y is a moduli space over V. Indeed, for any V-algebra R, M(H )(w)y(R)
is naturally in bijection with the set of isomorphism class of (A, ¢, 0, k¥, Y), where (A, ¢, 0, k%)

is as in Theorem 3.1.3 part (1) and Y is a global section of gﬁ(l_‘” such that YFE, | = 7.

Let M(H )(w) be the m-adic completion of M(H )(w). Then the space of m-adic modular
forms with respect to D, level K(H), weight k and growth condition w, with coefficients in
V' is defined to be

SP(Vow, K(H), k) == H(M(H)(w)v,w™).

Moreover, the rigidification of the map M(H )y (w) — M(H )y is the immersion M(H )32 (w) —
M(H)E, where M(H ) (w) is the affinoid subdomain of M(H)}# relative to E,_, and w (see
[Kassaei, 2004, Proposition 9.7]). We call M(H )y (0)"'® the ordinary locus. Tt is an affinoid
subdomain of M(H )Sg and its complement is a finite union of discs, called the supersingu-
lar discs. The points of the supersingular discs correspond to those objects of the moduli
problem that are supersingular.

By rigid GAGA, elements of SP(V, K(H), k) (resp. SP(V,w,K(H),k)r) correspond
to sections of w®* (after rigidification) over M(H)® (resp. M(H)y(w)"). Elements of
SP(V,w, K(H), k) are called overconvergent (resp. convergent) modular forms with coeffi-

cients in L if w > 0 (resp. w = 0).
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3.2.2 Quotient of (A, ., 0, k”) by a finite flat subgroup of A

Let (A, 1,0, k%) be an object of the moduli problem M(H) over Op. Let C' C A be a finite

flat subgroup scheme. In addition we assume that C' satisfies the following conditions.

e (' C Algl is of rank ¢*? and stable under the action of Op;
e the isomorphism 6 : Alq] — A[q]" takes C onto (A[q]/C)Y C Alq]Y;

¢ C):=Ci@-@®Ch =00 = (Alg); & - & (Ala)7-

m

Definition 3.2.3. If C satisfies the above conditions, we say that C' is of type 1 if C’g =0
and of type 2 if C = (Alq])3 & - - - & (A[g])2,- Note that any such C'is uniquely determined

by C21.

Now let A’ := A/C. The assumption that C' is Op-invariant implies that A’ inherits an
action of Op. We denote this Op-action on A’ by ¢/ : Op — End(A’). Moreover, the natural
projection A T A5 0 p-equivariant.

Since 0 : A[q] — Alq]¥ takes C to (Alg]/C)Y, then there is a unique polarization
0 A — (A)Y

such that the associated Rosati involution sends ¢'(d) to ¢/(d*) for any d € D and the following

diagram is commutative:

A2 A
G’J/ l@

AN Vv
(A) v AY,

where f is the natural projection and ¢ is the unique isogeny such that go f = [¢] on A.
Furthermore, deg(#) = deg(6’).
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Remark 3.2.3. Actually, a more general result is proved by Kassaei, see [Kassaei, 2004,

Lemma 4.4].

Now since rk(C') is relatively prime to any prime number [ # p, the map
TP(g) : TP(A") — TP(A)

induced by ¢ is an isomorphism. Recall that we have a class, modulo H, of isomorphisms
kP TP(A) = WP. Define

(k") =k o T7(g),
and

1

k' o (T2(f)) ~ , if Cis of type 1,

!/
(ky) =
k‘g o T;(g) , if C'is of type 2.
Finally we define (k)" as the class of (k))& (k”)’ modulo H. Then (A" = A/C, /.0, (k"))

is also a point of M(H), which is called the quotient of (4, ¢, 0, k") by C.

3.2.3 Canonical subgroups

Now we will briefly recall the theory of canonical subgroup of our abelian schemes, which

was developed in Kassaei [2004].

Theorem 3.2.1. (Canonical subgroups) Let V' be an Op-algebra which is a complete discrete
valuation ring of characteristic O such that the valuation extends the one on Op described at

the beginning of section 3.1.3.2. Then

(1) Let r € V with v(r) < q/(¢+1). There is a canonical way associating to every r-test
object (A, 1,0,k”.Y), where
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— (A, 1,0,k is an object of the moduli problem defined over a V-algebra R,

9 satisfying Y - B, =,

. . ®(1—
— Y is a section ong/R

a finite flat subgroup scheme C of A such that

o C has rank ¢** and is stable under the action of Op,

C' depends only on the R-isomorphism class of (A,1,0,k”)Y),

the formation of C' commutes with arbitrary base change of m-adically complete

V -algebras,

if /7 =0 in R, then C can be identified with the kernel of Frobenius morphism

Fr,: A — AW,
[ Cg:cg@...@cgn:o

(2) Letr € V with v(r) < 1/(q+ 1). There is a canonical way associating to every object

(A,0,0,k”,Y) as in part (i), an ri-test object (A', 1,0, (k”),Y"), where

— (A0 (K”)) is the quotient of (A,1,0,k”) by C,

— Y’ is a section of gf,(/l;) satisfying Y' - E,_q =19,

such that

e Y/ depends only on the R-isomorphism class of (A, 1,0,k),

e the formation of Y' commutes with arbitrary base change of w-adically complete

V -algebras,

o if T/rT =0 in R, then Y' is equal to Y@ on AW = A/C.
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Proof. This is one of the main results in Kassaei [2004]. We refer [Kassaei, 2004, §10.1]
for the proof in details. Here we just give an outline for the construction of C. First,
O (A[r])>' < (Alg))?" was constructed to be a subgroup scheme of (A[z])?" in a similar
way as the construction of the canonical subgroups for elliptic curves in Katz [1973]. Then
CP? < (Aln])7? € (Alg))?* was defined to be the image of C7' under the isomorphism
(Alg)?' = (Alg])¥*. Then define
c? = CPgch?
C? = 0, for2<j<m,
Gl o= ((Ala)3/C3)" C ((Ala)3) " = (Ala));-
Finally, C' is defined to be
C=Clo--0C,0Cia---aC2.
U
In the sequel of this section, we fix an integer > 1 and suppose that w < 1/¢"2(q + 1).

Let A(H)(w) be the base change of A(H) via the natural map M(H)(w) — M(H). The

following proposition is an immediate consequence of the above theorem.

Proposition 3.2.4. A(H)(w)|[q"] has a canonical subgroup, C,, stable under the action of
Op and (C,)7" € (A(H)(w)[x"))7" has order ¢".

Proof. This is [Brasca, 2013, Proposition 6.30]. O

We write M(H)(w) simply by M(w) in the rest of this section. The existence of the

canonical subgroup allows us to define a morphism

M(w) — M(H,7"),
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whose image is still denoted by M(w). Its rigidification is a section of the morphism
M(H, 7" — M(H)",

defined over M(w)". Now let M(H7")(w)"® be the inverse image of M(w)"® under the
morphism M(H7")"& — M(H, 7")"e. Tt is an affinoid subdomain of M(H7")"¢ and the map
M(H7r")(w)"e — M(w)"® is finite and étale. Then let M(H7")(w) be the normalization
of M(w) in M(H7")(w)"8. The rigid analytic fibre of M(H7")(w) is M(H7")(w)" and the
rigidification of the morphism M(H7")(w) — M(w) is just the map M(H#")(w)"e —
M(w)"& described above.

Now we write M" (w) simply for M(H7")(w). Let M be any one of M(w), M(H), M(H, "),
M(H#") and M"(w). We will denote simply by M instead of M"8 the rigidification of M.

We have the following commutative diagram of formal schemes and rigid spaces:

7" —= M(H, ) —= M(H)

M(
] v |

M’"J/(w) — M(w) M (w)
M (w) ——=M(w) M(w)

M(Hr") ——M(H, ) — M(H).
Proposition 3.2.5. Let S be a normal and mw-adically complete V -algebra. For any integer
r >0, there is a natural bijection between M"(w)(S) and the set of isomorphism classes of

(A, 1,0,kY), where

o (A,1,0,k) is an object of moduli problem, with A defined over S, of M(Hx"). And the

canonical S-point of A[x"]>" generates, as Op-module, the canonical subgroup of A[r"];
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e Y is a section ofgi(/ls_w such that Y E,_; = 7%.
Proof. See Brasca [2011] Propositions 2.3.2 and 2.3.7. O

Definition 3.2.4. We define the space of m-adic modular forms with respect to D, level

K(H7"), weight k and growth condition w, with coefficients in V', as
SP (Viw, K (Ha"), K) = KO (M (w), ™)
Note that we have

SP (V,w, K(H7"), k), = H® (M"(w),w®").

3.3 The map dlog and the Hodge-Tate sequence

3.3.1 Group schemes with strict Op-action

The theory of group schemes with strict Op-action, which was developed in Faltings [2002a,
is needed here, as a generalization of the theory of group schemes, to deal with the O-action.
In particular, this gives a good duality theory instead of the usual Cartier duality by taking
into account of the action of O (since G,, has no action of Op). Here we will briefly recall
some basic definitions and properties. For more details, please refer to Faltings [2002a], or
[Brasca, 2011, §1.7].

Let R be a m-adically complete and m-torsion free Op-algebra.

Definition 3.3.1. Let GG be a finite and flat group scheme over R. We say that GG has a

strict Op-action if there is a ring homomorphism Op — Endg(G) such that the action on
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the Lie algebra of GG is the natural one. Homomorphisms between group schemes with strict

Op-action are homomorphisms which respect the action of Osp.

Example 3.3.1. Let H be m-divisible group over R. Then the n"-torsion H[r"] is naturally

a group scheme with strict Op-action for any n.

Example 3.3.2. Consider the ring of power series R[[x]]. Then there exists a unique action

of Oy such that the multiplication by 7 has the form

[Tz = 2?4 mx

and the action on the Lie algebra is the one induced by the structure map Op — R. This
is called Lubin-Tate m-divisible group, denoted by L£T. Then the 7"-torsion of LT is a group

scheme with strict Og-action for any n.

Now we fix GG, a finite flat group scheme with strict Op-action over R.

Lemma 3.3.1. G is killed by © for some n. In particular, any morphism G — LT factors

through LT[m"].

Proof. This is [Faltings, 2002a, Lemma 7]. O

Theorem 3.3.1. The functor from the category of w-adically complete and torsion free R-

algebras to the category of groups, sending

S +— Homy,, (G, £LTs),

1s representable by a finite flat group scheme over R, with strict Op-action. We will denote

this group scheme by GV.
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Proof. This is [Faltings, 2002a, Theorem 8|. O

Remark 3.3.1. If Op = Z, and R contains a primitive p-th root of unity, then £T = ([A}m,R.

In particular, GV as above coincides with the usual Cartier dual.

3.3.2 The map dlog

Definition 3.3.2. Let R be a V-algebra. We say that R is small if:

e R is m-adically complete;
e Spec(R) is connected, i.e., R has no nontrivial idempotents;

e there is a topologically of finite type and formally étale morphism Spf(R) — Spf(R’),

where R :=V{Ty,...,Ts}/(T}---T; — n*) and a € N.
A small affine is a scheme of the form Spf(R) with R small.
Proposition 3.3.1. There is an open covering of M(w) by small affines.

Proof. This is [Brasca, 2011, Proposition 3.1.2]. O

Remark 3.3.2. Moreover, in the proof of [Brasca, 2011, Proposition 3.1.2], the ring R’ in the

above definition can be taken as R' = V{X,Y}/(XY — n%) for some a € N.

Let Spf(R) C M(w) be an open small affine and let Spf(S,) be the pullback of Spf(R)
to M"(w). We assume that w,,/p = (&thﬁ’l is a free R-module, generated by w, and we

write £, = Fw®™ Y Let 7 = Spec(K) be a generic geometric point of Spec(R) and

1}Spf(R)
denote by G for 7, (Spec(Ry),n). We denote by R the direct limit over all normal R—algebras
T C K such that T}, is finite étale over Ry, ﬁ denotes the m-adic completion of R. Then
G = Gal(RL/RL) acts continuously on R.
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Definition 3.3.3. Let GG be an abelian group with an Op-action.

e The Tate module of G is defined to be

T+(G) := lm G[="].

n

o If G is a w-divisible group, we define

TH(G) =T (G(EL)) = ILHG[W"](EL)-

e Let G be a m-divisible group and H a sub Op-module of T, (GY). By duality between

G and GV, we obtain H*, the orthogonal of H, which is a sub Op-module of T} (G).

Now let G be a group scheme with an Op-action annihilated by 7" and let wq/ g be
the module of invariant differential of G. Let W be a normal, Noetherian, m-torsion free

R—algebra. We define a map
dlogg := dlogg y = G (WL) — wg /g @r W/T"W

as follows: let & be a Wp-valued point of GV, it extends, by normality, to a W-valued point
of GV, called again z. Such point gives a group scheme homomorphism f, : G — LT, which

respects the action of Op and we set

dlogg w (x) := frd(T).

The map dlog satisfies various functoriality properties (see [Brasca, 2011, Lemma 3.1.3]).

Applying the construction above to G = A[W”]?’l, for n > 1, we obtain the map

dlog,, v : (A[T"]71)" (WL) — w, g2t O W/T"W.

[
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Taking the direct limit over all W, we have the map
dlog,, 4 : (A[Wn]%l)v (EL) — Wa/r OR E/Wnﬁ = W g [n)2t ®r E/Wnﬁ-
By taking the projective limit, we get the morphism of G-modules
dlog, : Tx ((A[Woo]%’l)v) — Wy /g @R ﬁ

Suppose that R is a discrete valuation ring, whose valuation extends that of Op. From dlog,,

we obtain the maps dlog, 7 and the map

dlogy : Tr ((AT1)Y) — wyp @ R

3.3.3 The Hodge-Tate sequence
Recall that we have the map
dlog, : T ((A[r=]7")Y) ®o, B — Wa/r OR R,

and its analogue for (A[W“]?’l)v,
legAv . Tﬂ— (‘A[ﬂ'oo]%l) ®Oj> R — Q\AV/R ®R F
Then we have an isomorphism of §-modules

Tr ((AlT1Y) = Tr (A7) (1),

where (-)* is the dual module and (-)(1) means the G-action is twisted by the Lubin-Tate

character. Let

ay := (dlogy)" (1).
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Definition 3.3.4. The Hodge-Tate sequence of A is the following sequence of R-modules

with semi-linear action of § = Gal(R;/Ry):

5 a Zdlo =
0—wjv g ®r R(1)—"~T, ((A[WOOKJ)V) R0, Rﬁ;gﬂ/R ®@r R—0.

Remark 3.3.3. Actually, we have the fact that fl%’l[w]v = ﬁ}l[w] and Wyv /g = W)t
See [Brasca, 2011, §3.2] for details.
For integer r» > 1, suppose w < 1/¢" %*(¢ + 1) and let v := w/(¢ — 1). We denote

R. := R/m*R. We have

Theorem 3.3.2. The homology of the Hodge-Tate sequence is killed by © with v :== w/(q —
1), and we have a commutative diagram of G—modules, with exact rows and vertical isomor-

phisms:

0

Ker (dlog ), _, — T((A[r*]}")") @0, Ry Im (dlogy),_, ——0

| |

— — \% —
0— (QT)?J R0y Rr—v (A[W]%l)v ®0p Rr—y ((erﬁ’l) ®oy Rr—y —0,

where (D)7 = ((C.)¥")L. Furthermore, Im(dlog,) and Ker(dlog,) are free R-modules of

rank 1.
Proof. See [Brasca, 2013, §5]. O

Recall that there exists a natural morphism 9, : M"(w) — M(w), whose rigidification is
Galois, with G, 1= (Op/7"05)™ as Galois group. Let U = Spf(R) C M(w) be an open affine
and V, = Spf(S,) the inverse image of U under 9,. It follows that (C,)>" becomes constant
over .S, 1. Furthermore, there exists a canonical point of (€,)%", defined over S,. We now fix

{Cu}n>1, a sequence of C,—points of LT such that the order of ¢, is exactly 7. We assume
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that 7(,41 = C, for each n, and that ¢; is the fixed (—m)Y/@= Y. If ¢, € V, we obtain v,, a
canonical S,-point of ((C,)7")Y. By [Brasca, 2013, Proposition 5.6], there exists an element
d, of R, such that

dlog, 4 (1) = 6,6,
where w =w ® 1 is a basis of w, /p ® ﬁ Let o, € ﬁ be a lift of d,. Since v, is defined over

S, we may assume that §, € S, /7"S, and ST S

Proposition 3.3.2. Let F(5,) Cy, , ®rS, be the submodule generated by bw® 1. Then

we have

A~

F(S,) is a free Sy-module of rank 1, with basis 6,w® and F(S,) ®g, R = Im(dlog,).

The S,-module Tm(dlog )" is equal to F(S,), where H, := Gal(Ry/S,.1).

There exists an isomorphism F(S,),_, = ((@r)l’ )v ®0y (Sr)r—v, and its base change to

A~

R gives the isomorphism of Theorem 3.3.2, via F(S,) ®s, R = Im(dlog,).

There is an isomorphism F(S,)* (1) ®g, R~ Ker(dlogy,).

Furthermore, all the above isomorphisms are H,.-equivariant.
Proof. See [Brasca, 2013, §6.5] and the Proposition 5.11 there. O

Proposition 3.3.3. There exists a unique locally free sheaf of Oyir(w)-modules of rank 1,
denoted by F,, such that

F (Spf(5r)) = F(Sr),
for Spf(S,) as before. Furthermore, we have isomorphism of sheaves of Oyt (w)-modules

?T/Wr_vﬁtr & ((e,«)%’l)v ®ofp (‘)Mr(w)/w”_”(‘)w(w).
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Proof. This follows from the above proposition and [Brasca, 2013, Lemma 5.12]. O

3.4 Modular Sheaves

We assume that e < p — 1. We will remark at the end of this section how to remove this

hypothesis.

3.4.1 The weight space

Let L be a finite field extension of Fp. Take a L-affinoid algebra A, we consider the Fp-locally
analytic characters

A0 = g1 X (1 +70p) —> A™.
Let t € O5. We will use the following notations:

e [t] means [-|, the Teichmiiler character, applied to the reduction of ¢ modulo ;

o (1) :=1t/[t].
Definition 3.4.1. Let r > 1 be an integer. A character A : O35 — L* is said to be r-
accessible if it is of the form ¢ — [t]'(t)* := [t]" exp(slog((t))) for all ¢ with v({(t) — 1) > r,

where
o1 €Z/(qg—1)Z;
o s € L is such that v(s) > (e/(p—1)) — 1.

The 1-accessible characters are said simply to be accessible. In this case we write A = (s,1).
Any integer k can be viewed as the accessible character t — t*. Note that any locally analytic

character is r—accessible for some 7.
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Let W be the weight space for locally analytic characters: it is an Fp-rigid analytic space
whose A-points, for any Fp-affinoid algebra A, are W(A) = Homype_an (05, A*). There exists
a natural bijection between the set of connected components of W and Z/(q¢ — 1)Z. Let
B be the component corresponding to the identity. We then have W = [], Jg-1)Z B. By
[Schneider and Teitelbaum, 2001, Theorem 3.6], we know that B is a twisted form, over C,,
of the open disk of radius 1. Note that B is isomorphic to B(1) if and only if Fp = Q, (see
[Schneider and Teitelbaum, 2001, Lemma 3.9]). In general B is a closed subvariety of BY (1),

the N-dimensional open polydisk of radius 1, where N = [F5 : Q,].

Proposition 3.4.1. There exists an admissible covering {WT}QO of W by affinoid subdo-
mains such that any X € W, is r-admissible. In particular, any X € W(L) lies in some

W, (L).

Proof. See [Brasca, 2013, §6.1]. O

3.4.2 A torsor

Let r, w, v, R, S,, GG, be as in section 3.3.3. Let &, be the sheaf as in Proposition 3.3.3.
Then we define the sheaf 7., on M"(w) to be the inverse image of the constant sheaf of sets
which are given by the subset of ((Gr)f’l)v of points of order exactly 7" under the natural

map

Fo — F /77 F, 2 (€)Y @op Orer(u) /T Ot -
Now let §,, be the sheaf of abelian groups, on M"(w), defined by
Smj = O;(l + WT_vOMr(w)).

Then we have
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Proposition 3.4.2. ), is a Zariski 8, ,—torsor.

Proof. This is a consequence of Proposition 3.3.2 and 3.3.3. O

3.4.3 Modular sheaves

Fix an r-accessible character A and let s € C, be the element associated to A. We assume
that ¢, € V. Since w < 1/(¢"%(¢+ 1)), the canonical subgroup of level 7 exists. Let z = ub
be a local section of 8,, over Spf(S,), where u is a section of Oj and b is a section of

14 7" 7"Ogpt(s,)- Then b* := exp (slog(b)) makes sense and we let

which is also a section of §,,,.
We will write (‘)ﬁm (w) for the sheaf Oy () with the action of 8,,, by multiplication, twisted

by A. Since we have a natural action of §,, on J,, we can consider the sheaf

Q,ﬁ} = %omgm <3~l O?y[:}(qﬂ)) 5

U9

where #oms, , (-, -) means homomorphisms of sheaves with an action of 8,.,. By Proposition
3.4.2, Q) is an invertible sheaf on Ontr(w)- Since ¥, : M"(w) — M(w) is finite, 9, s a
coherent sheaf of Opg)-modules. The action of G, on JF), (induced by its action of the
subset of (€,)7" of points of exactly order ") and on 19T7*O§‘V;Tl(w) gives an action of G, on

9,0, We define the sheaf Q) on M(w) as

O = (ﬂm()g)& .
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Definition 3.4.2. The space of m-adic modular forms with respect to D, level K(H7"),

weight A and growth condition w, with cofficients in L, is defined as

SP(L,w, K(Ha"),\) == H'(M"(w), Q) L.

w

Definition 3.4.3. We define the space of m—adic modular forms with respect to D, level

K(H), weight A and growth condition w, with coefficients in L, as
SP(Lw, K (H), ) = HO(M(w), O23);.

Let w’ > w be a rational number that satisfies the same conditions of w. We have natural
morphisms fy, v : M(w) — M(w’) and gy : M7 (w) — M"(w’).

Lemma 3.4.1. We have a natural isomorphism of Oni(w)-modules py . g;’w,(Q;}],) ~ 0

0.
Then we have py, ., = id and, if w” > w'" satisfies the same conditions of w, we have Py, =

Pww' Gy © (Pur ). Furthermore, we obtain a canonical morphism
. A A
pw’w/ . f:]’w/ (Qw/) —> Qw,
which is an isomorphism after rigidification.

Proof. This is [Brasca, 2013, Lemma 6.18]. O

Definition 3.4.4. Thanks to the above lemma, we are allowed to define the space of over-
convergent modular forms with respect to D, level K(H), weight A and growth condition w,

with coefficients in L, as

S’ (L, K(H), \) := lim S”(L,w, K(H), \).

w>0
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Now let h be an integer with r > h. Suppose that \ is h-accessible. We can repeat the
above construction starting with M"(w), obtaining another sheaf on M(w). For r > h, we
consider the natural morphism 9,5, : M"(w) — M"(w). The rigidification of 9, is Galois.

Its Galois group is G, € G,, the image of 1 + 7"Op.
Proposition 3.4.3. We have an isomorphism of Oxiw) ® L-modules
) G
Orh <19h,*<%”0m5h’v <5Fh7v(‘)M,L(w)> ® L)

o <19 Hom <ff’ OX ) ®L>GT
— T S U M (w)

Furthermore o,, =1id, and, if t < h is an integer, we have 0,4 = 0p 4 © Oy p.
Proof. This is [Brasca, 2013, Proposition 6.34]. O
Proposition 3.4.4. o We have a canonical isomorphism ¥978*Q) =2 Q.

° w®k,r1g o ng,k),r

Wi () = ig, for integer k.

Proof. See [Brasca, 2013, §6.3] and Remark 6.20 there. O

Actually, in [Brasca, 2013, §6.6], it shows that the sheaves Q) can be put in families, we

have

Proposition 3.4.5. There exist locally free sheaves of O, x pr(w)y—modules of rank 1, denoted

by ., such that for any A € W,.(L), the natural morphism
(A, 1d)* () — Q)
s an isomorphism.

Proof. This is [Brasca, 2013, Proposition 6.37]. O

Remark 3.4.1. The assumption e < p — 1 can be removed. For details and differences, see

[Brasca, 2013, §6.7]

I6)



3.5 Hecke Operators

In this section, we recall the definitions of Hecke operators acting on the space of m-adic
modular forms, which was introduced by R. Brasca in [Brasca, 2013, §7]. There, he in-
troduced the U operator and T operators, which are analogous to the classical U, and T}
operators, respectively. Moreover, he showed that the U operator is a completely continuous
operator on the space of overconvergent modular forms. Eventually, he showed that all these

operators can be put in families.

3.5.1 The U operator

Let A: Q5 — L* be a character in W, and let 0 < w < 1/(¢"?(q¢ + 1)) be positive.

Proposition 3.5.1. There exists a norm on SP (L,w, K(Hx"),\) making it a potentially

orthonormizable L-Banach module.
Proof. This is [Brasca, 2013, Proposition 7.1]. O

Definition 3.5.1. Let M be a Banach A—module, where A is an affinoid K —algebra.
Following [Buzzard, 2007, §I.2], we say that M satisfies the property (Pr), if there is a

Banach A—module N such that M & N is potentially orthonormizable.

Corollary 3.5.1. The subspace SP(L,w, K(H),\) C SP(L,w, K(Hx"),\) is a L-Banach

module satisfying property (Pr).

To define the U operator we need to introduce another type of curve. We use the notations
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of section 3.1.3.2. We define

K (H7", q) = € K(Hr") st. b=0mod 7
c d

In the case Ky = K(H7",q), a choice of a level structure is equivalent to a choice of
(Q, D, k%), where (here (A, 1,0, k) is an object of the moduli problem for F—algebras):

(1) @ is an R—point of exact Op-order 7" in A[x"]}";

2) D is a finite and flat Op-submodule of A[x" 2L of order g which intersects the Og-
1

submodule scheme generated by @) trivially;

(3) k7 are as in Section 3.1.3.2.

In this case, the curve M., will be denoted by M (Hx", q). It is a proper and smooth scheme
over L. There exists a natural morphism 7y : M(H7n",q) — M(H7"), defined by forgeting
D and m is finite and flat.

Given D, a finite and flat Op-submodule of A[r]>", we let t3(D) be the unique subgroup
scheme of A[g] satisfying the conditions of Section 3.2.2, of type 2, such that (t5(D))7! = D.
We can now define another morphism 7y : M(Hn",q) — M(H=") by taking the quotient of
to(D) on points. Since D intersects the Op-submodule scheme generated by @) trivially, the
image of () under the natural map A — A/ty(D) is a point of exact Op-order 7”. Passing
to the rigidifications and using the same notations, we have morphisms of rigid spaces 7y,
Ty M(Hn",q) — M(Hz"). Furthermore, we write M (w) for (71)~'(M"(w)) and define the

formal model M (w) as the normalization, via 71, of M"(w) in MJ(w). This gives a formal

model of 7, denoted by p; : M{(w) — M"(w). Moreover, we can define the morphism

pa : Mg (qw) — M (w),

77



by taking the quotient over D, on points (this is well defined by [Brasca, 2013, Lemma 7.5]).

Let A7 (w) be the base change of A" (w), via py, to M{(w). Then A7 (w) has a subgroup of
order q of its w"-torsion, which is denoted by D and has trivial intersection with its canonical
subgroup. The isogeny

mp + Ag(qu) — A (qu)/D

is defined over M (qw). We have the following diagram

Ay (qu) = Ayfqu) /D
A (qu)
M (qw) M (qu)
p1 Gw,quw OP2
M (qw)

such that the left and right squares are Carterian and the square on the back is commutative.

Since g7, .82, = 2, we obtain a morphism

~X L kO * YA
Tp - p2Qw } plﬁqw'
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Then we can define an operator U to be the composition
H (M’"(qw), Q;‘w Qv K)

~rig

Pl o <M’"(w), O @y K)

*

1 (M), P30 @y K)

) ~
- 1O (M (w), pif2), ov K)
e HO <MT(qw), Q;‘w Ry K) ,
where 7 , is the map induced by the trace, which is well defined since 7 is finite and flat.

All the maps in the above composition are G, —equivariant, so is U.

Taking G.—invariants we obtain a map, denoted still by U,
U: SP(L, qu, K(H),\) — SP(L,quw, K(H), \).
Then our U operator
U: SP(L,qw, K(H),\) — S”(L,qu, K(H), \)

is defined by U :=

%f]. Moreover, Brasca shows that

Proposition 3.5.2. The operator U is completely continuous.

Proof. See [Brasca, 2013, Proposition 7.7]. O

Everything we showed above can be repeated for families; in particular, we have the U,

operator and the following proposition.
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Proposition 3.5.3. For any integer v > 1 and any rationalw < 1/(q"~2(q+1)), H*(Qy.0, W, X
IMM(H)(w)"®) is a Banach Ow,(W,)—module that satisfies the property (Pr). Furthermore

the U, operator is completely continuous.

Let A : O5 — L* be a locally analytic character and let h € R, we have the following

proposition.

Proposition 3.5.4. Let h be in R and let f be in SP(L,w, K(H),\)=". Then there exists
an affinoid V. C W such that f can be deformed to a family of modular forms over V.

Furthermore, the U-operator acts with slope < h on this family.

3.5.2 Other Hecke operators

We now sketch the definition of other Hecke operators. Let [ # p be a rational prime such

that [ splits in Q(\/X) Let £ be a prime of F' above [ such that B is split at £. We have
G/(@l> = le X GLQ(FL) X GLQ(FLQ) X X GLQ(FLk)

where Lo, ..., Ly are the primes of F' lying over [ different from £, F;, is the completion of

F at £;. We assume that the compact open subgroup H is of the form
H =7} x GLy(Op,) x H'.

Let m; be a uniformizer of Op,. If A is an abelian scheme as above, we have a decomposition
of Alw,] similar to that of A[w], so A[m]}" is defined and it has an action of &, := Op, /7.
Let A : O3 — L* be an r—accessible character. Let H; be the set of invertible 2 x 2
matrices with left lower corner congruent to 0 modulo 7;. The Shimura curve corresponding
to the case Ky = K(Hw") and H = 7Z; x H; x H' will be denoted by Mg (Hn"). It follows
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that M) (Hn") parametrizes objects of the moduli problem of M(H~") plus a finite and flat
subgroup of A[m|}" of order ||, stable under the action of Op,. If D is such a subgroup,
we can define t,(D) as in the case of subgroups of A[m]>", and also the quotient of A by
to(D) can be defined. We can repeat everything we have done for the U operator and define
the operator

Ty : SP(L,w, K(Hr"),\) — SP(L,w, K(H7"), \)

exactly as in the case of U (using |#;| + 1 as normalization factor). Note that Ty is a
continuous operator but not completely continuous. The operators T, can also be put in

families.
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Chapter 4

Faltings’ Sites

Let p > 2 be a prime integer and L a complete discrete valuation field of characteristic 0 and
perfect residue field L of characteristic p. We denote by Oy, the ring of integers of L and L

a fixed algebraic closure of L. We set G, := Gal(L/L).

4.1 Faltings’ topos: the smooth case

4.1.1 The algebraic setting

First, we let X be a smooth scheme of finite type over Oy and let M, L C M C L, be an
algebraic field extension of L. We denote by X°* the small étale site on X and by Xi¢* the

finite étale site on X,.
Definition 4.1.1. Let Ex,, be the category defined as follows.

1) Objects: the objects of Ex,, are the pairs (U, W) where U is an object of X°* and W
(1) Obj ] ar p : X

is an object of ULf®.
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(2) Morphisms: a morphism (U, W') — (U,W) in Ex,, is a pair of morphisms (a, f3)
where
e a: U — U is a morphism in X°*;

e 5 : W' — W is a morphism of schemes such that the following diagram commutes.

w W

.

/
UM ang UM

Remark 4.1.1. The category Ex,, has a final object (X, Xy/).

Proposition 4.1.1. The finite projective limits are representable in Ex,,. In particular,

fibre products exist.

Proof. 1t suffices to show that the fibre product of the morphisms

(?,5%) (!,

(U?,W?) (U, W) o, wh)

exists. We prove this by two steps.

(1) We claim that the pair

(Ul XU U2,W1 Xw WQ)
is an object of Ex,,.

First of all, by the properties of étale morphisms, it follows that U! x; U? is an object
of X*®*. Since the morphisms W' — Ul,, W? — Uz, are finite étale, the following

morphisms are also finite étale,

® Wl XU W — U]%/[ XU W,
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o W2 xy, W— Ui xu,, W.
Then the morphism
0 W xy, W xp, W?» — U}, xu,, Uy
defined by the composite of finite étale maps

1 2 1 2
(W' xpy, W) xp, W2 — Uy xuy Woxy,, W
1 2

> UM XU]\J W XUIW UM

1 2
; UM XUn UM

is again finite étale (the last map of the composite is finite étale since W — Uy, is so).

Let f : W' — W be the unique map such that p; o f = 8!, where p; : W x¢,, W — W

is the first projection. Then the following commutative diagram

Wl

induces a morphism v; : Wt — W' xy, W which is finite étale since W' x,, W — W1
is. Moreover, there exists a finite étale morphism o : W2 — W?2 xy;,, W obtained in

a similar way. Now define
g" . Wt Xw w? — w! XU w XUns w2
as the composite

W W2 SR Wy (W2 xy, W)
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1 Xid
—

(Wl XU W) Xw (W2 XU W)

= Wh'xy, W xg,, W2
Each map in the above composite is finite étale then so is #”. Hence
0:=0 00" :W'xy W? — Uy, xu,, Uy
is finite étale. Our claim follows immediately by noting that

U]b XUns UJ%4 = (Ul Xu UQ)M

(2) We will show that (U x¢ U?, W xy, W?) satisfies the universal property of the fibre

product of the given pair of morphisms

(U2, W)= (U ) W,

Suppose we have the following commutative diagram of morphisms in EFx,,

(U2, W?)

(U2 w2 =

Note that we have natural morphisms
a U — U xy U? and
B W3 — W Xy W2
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making the following diagrams commutes

Then it is enough to show that («, ) is a morphism in Fy,,, i.e., the following diagram

W3 2 Wy, W2 (4.1)

| ;

Ut == (Ut xpg U?)y,

commutes.
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By the universal property of the fibre products, we have the following diagram

W3

/

E
Wl Xw W2
Wl
[%
N
Ui
v os
(U xu U?)y, Ukt
Ul Ut

such that each part of the above diagram is commutative except the one we need to
check (the square with dot arrows). Hence our diagram (4.1) is also commutative. The

propositions follows immediately.
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Definition 4.1.2. A site is given by a category € and a set Cov(C€) of families of morphisms
with fixed target {U; — U},.,, called coverings (or covering families) of €, satisfying the

following axioms.
(1) If V— U is an isomorphism in €, then {V — U} € Cov(C).

(2) If {U; = U},.; € Cov(C) and for each i we have {V;; = U;} € Cov(C@), then

JEL;

{Vij — U}iel, jes € Cov(C).

(3) If {U; = U},c; € Cov(€) and V' — U is a morphism of C, then U; xy V' exists for all
i€ land {U; xyV =V}, € Cov(C).
Definition 4.1.3. Let (U, W) be an object of Fx,,
e A family of morphisms {(U;, W;) — (U, W)}, in Ex,, is called a covering (family) of
type (), respectively type (B) if

(o) {U; = U}ier is a covering in X°* and W; = W xy U; for every i € I. Here the
morphism W — U in the fibre product is the composite W — Uy — U, or
(B) U; = U for all i € I and {W; — W}, is a covering family in X§f.
e The topology Tx,, generated by the covering families of type () and (f) on Ex,, is
called Faltings’ topology associated to the data (X, M). The associated site and topos

of sheaves of sets are called Faltings” site and Faltings’ topos, and denoted by X,;,

Sh(X /) respectively.

We now give an alternative definition of the topology Tx,,.
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Definition 4.1.4. A family {(U;;, W;;) = (U, W)} ; of morphisms in Ey,, is called a

i€l, je

strict covering (family) if the followings hold:

(a) For every i € I, there exists an object U; in X°* such that U;; = U, for all j € J,

(b) The family of morphisms {U; — U}, is a covering in X*°*,

c¢) For every i € I, the family {W;; — W xy,, U; p}.., is a covering in X§7.
y J v YiMJjecg g M

We denote a strict covering family

{(Uij, Wij) = (U, W)}

el, jeJ

of (U, W) simply by

{(U;, W) = (U,W)}

iel, jeJ’

where U; is as in (a).
Remark 4.1.2. (1) Note that the covering families of type («) and (f) are strict coverings.

(2) Let {(Ui, W) = (U W)}icp e, be a strict covering of (U, W) in Ex,,. It can be

obtained by the composite

{10 Wy) = U W vy, Uiy b o AU W xu, Uaa) > (U W)} ey

i€l
where the first term is a covering family of (U;, W xy,, U; ar) of type () and the second

term is a covering of (U, W) of type («). Hence a strict covering is a covering family

inifﬂp

(3) By the above discussion, the strict coverings also generate the topology T, .
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Definition 4.1.5. Let € be a category. A pretopology on € is: for each object X of €, define

a set Cov(X) of families of morphisms over X satisfying the following axioms:

(PT0) (Existence of fibre product) For all objects X of €, all morphisms Xy — X in Cov(X)

and all morphisms Y — X in €, the fibre product Xy xx Y exists.

(PT1) (Stability under base change) For all objects X of €, all morphisms Y — X in €, and

all {X; = X},.; in Cov(X), the family {X; xx Y — Y}, is in Cov(Y).

(PT2) (Local character) If {X; — X}, in Cov(X), and for all 4, {X;; — X;}._, in Cov(X),

JE€J;
then

{ Xy

ic€l, jeJ;

is also in Cov(X).
(PT3) (Isomorphisms) {X 2y X} is in Cov(X).

Remark 4.1.3. The category Ex,, with the strict covering families does not form a pretopol-
ogy. In fact the strict coverings satisfy (PT0), (PT1) and (PT3) of the above definition but
do not satisfy (PT2). However, the covering families of the pretopology PTy,, generated
by the strict coverings are composite of a finite number of strict coverings. The following
lemma shows that one can use strict covering families to compute the sheaf associated to a

presheaf on Ex,,.

Lemma 4.1.1. Let (U,W) be an object of Ex,,. The strict coverings of (U, W) are cofinal

in the collection of all covering families of (U, W) in PTx,,.
Proof. This is [Andreatta and Iovita, 2010, Lemma 2.8]. O
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Note that for any object (U, W) in Ex,, we have a natural map f: W — U given by the

composite W — Uy — U. Then we obtain a morphism of sheaves
fﬁ : OU — f*OW
Taking global sections we get a morphism I'(U, Oy) — T'(W, Ow).

Definition 4.1.6. Let (U, W) be an object in Ex,,. We define the following presheaves on

Ex,,
e The presheaf of O)s-algebras on Ex,,, denoted by Ox,,, is defined as

Ox,, (U, W) := the normalization of I'(U, Oy ) in I'(W, Ow ).

e Let My C M be the maximal absolutely unramified subfield of M and Oy, be the
ring of integers of M. We define the sub presheaf of Oy -algebras O} of Ox,, as
follows: OF: (U, W) is the subset of Ox, (U, W) consisting of elements x with the
following property: there exist a finite unramified extension L C L' C M, a finite étale
morphism U’ — Up,, and a morphism W — U}, over Uy such that z, thought of as

an element of I'(W, Oy ), lies in the image of I'(U’, Oy).
Proposition 4.1.2. The presheaves Ox,, and O are sheaves.

Proof. See Proposition 2.11 and Remark 2.12 in Andreatta and Iovita [2013]. O

4.1.2 The formal setting

Let L, Op, m, L and M be as before. Now let X be a formal scheme, flat over Spf(O) and
with ideal of definition generated by . Let X°* be the small étale site on X and let U — X
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be an étale morphism, topologically of finite type of m-adic formal schemes. We define the

following sites.
(1) The site Unps ger:

B The objects of Uy e are pairs (W, K') where

e K is a finite extension of L contained in M.
o W — (urig) , 1s a finite étale cover of K-rigid analytic apaces, where uris

denotes the L-rigid analytic space associated to U.

B The morphisms of two objects (W', K'), (W, K) are defined as:

0, if K ¢ K,
MoruM,fet ((W/’ K,)a (VV’ K)) =
Mor(W' W), if K C K'.
Here Mor(W’, Wi) denotes the morphisms of K’-rigid analytic spaces.

B The coverings of a pair (W, K) in Uy ey are families of pairs {(W;, K;)},o; over
(W, K), where K C K; such that there exists a finite extension K’ over K,

K; c K' ¢ M, and the induced map

H Wi,K/ — WK/

el

is surjective.

Remark 4.1.4. (a) The fibre product of the morphisms
(Wla Kl)

(Wa, K) — (W, K)

92



exists in Ups ser and we have
(W1, K1) xwiy (Wa, Ko) = (W xw Wa, Ky),
where K3 is the composite of K; and K.
(b) Let U*> — U' be a morphism in X°*. Then we have a morphism
putuz - u}w,fet — u?\/[,fet
(W K) (W xS K
which sends covering families to covering families.
(2) The site ULS*:
Proposition 4.1.3. Let 8y be the set of morphisms of pairs (W', K') — (W, K) in
Unster such that K C K', and g : W' — Wy be an isomorphism of K'-rigid analytic
spaces. Then we have
o Sy is stable under composition;
o 8y is stable under base change via morphisms in Unpy et ;

e given a morphism U? — U in X%, we have

pu e (Su) C S,
where pya a2 are defined as in Remark 4.1.4;

e if we have a commutative diagram of morphisms in Upy et

(W1, Ky)

S
(Ws, ) —— (W, K)
with f and g in Sy, then h is also in Sy.
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Thanks to the above proposition, we may define the underlying category of UL* to be
the localization of the underlying category of Uyy ser With respect to 8y. More explicitly

we have

B The objects of UL are pairs (W, K) as in U/ set.-

B The morphisms of two objects (W', K'), (W, K) in UL* are defined as follows
MOTUR‘? ((W,’ K,)’ (VVa K)) = liﬂ'Moru]vI,fet ((Wh Kl) - (VVa K)) )

where the direct limit is taken over all morphisms (Wi, K;) — (W', K') in 8.
Equivalently, this is the set of classes of morphisms (W', K') « (W, K;) —
(W, K), where (W1, Ky) — (W', K') is in 8. Two such diagrams (W', K') +
(W1, K1) — (W,K) and (W', K') < (W5, K3) — (W, K) are equivalent if and

only if there is a third one (W', K') < (W3, K3) — (W, K') mapping to the two.

Note that the fibre product of two pairs over a given pair exists in ULS* and it coincides
with the fibre product in Ups fer. If (W', K') <= (W1, K1) — (W, K) and (W", K") «
(Wy, K3) — (W', K') are two morphisms, their composition (W”, K") « (W3, K3) —

(W, K) is defined as:

(Wg,Kg) = (Wl,Kl) X(W’,K’) (WQ,KQ).

The covering families are defined similarly as in Ups¢er. From now on we will write
an object (W, K) in ULS® simply by W but one should keep in mind that W is defined

over a finite extension K of L.

If Uy — U, ia a morphism in X°*, by Proposition 4.1.3, the map py, 1, extends to the
localized categories and defines a map of Grothendieck topologies U%, — U5%,. We
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denote this morphism simply by
W — W Xurlig u;g
on objects.
Now we give a more explicit description of the site Uff’t.
e An object in UF** is a pair (W, K') where K is a finite extension of L contained
in L and W is an object of the finite étale site of Ug.
e Given two objects (W, K) and (W', K') in U£**, the morphisms between them are
defined to be:

Moryse: (W, K),(W' K") = limy Mory,,, (W x K' W' xr K",

where the direct limit is taken over all finite extensions K” of L contained in L
and containing both K and K’. The morphisms on the right hand side are the

ones of rigid analytic spaces over Ug.
(3) The site Xy

B The objects are pairs (U, W) with U an object of X°* and W an object of ULS*.

B A morphism of (U, W;) — (U, W) is a morphism U; — U in X°* and W, —
W xqeie USE in Ui, Here the fibre product W x i U'® is taken after applying

base change to some finite field extension of L in M.

B The covering families are defined as in the algebraic case, see Definitions 4.1.3
and 4.1.4. Let the Faltings’ topology be the topologies generated by the strict

covering families.
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Remark 4.1.5. We can define the presheaves Ox,, and Of as in Definition 4.1.6.

Moreover, these presheaves are sheaves by similar analogue of Proposition 4.1.2.

4.2 Faltings’ topos: the semistable case

4.2.1 Assumptions

Recall L, Op, m, L defined at the beginning of this chapter. Let S := Spec(O) and M be
the log structure on S associated to the prelog structure given by the map N — O sending
n to ™ € Or. We denote by (S, M) the associated log scheme.
Now fix a positive integer a. We assume that we are in one of the following two cases:
(1) (The algebra case)
Let (X, N) be a log scheme. f : (X,N) — (S, M) is a morphism of log schemes of
finite type admitting a covering by étale open subschemes Spec(R) of the form
e Spec(R) — X is étale;

e there is a commutative diagram of O-algebras

0.[Q] "~ R
|
O[N] TOL’
where
(i) Q = N°x N

(ii) @ is the morphism of Op-algebras induced by the map on monoids N — @
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sending
n+—— ((n,n,---,n),(0,0,---,0));
(iii) ), is the morphism O-algebras sending n — 7%".
e The induced morphism of O -algebras by the above commutative diagram
R = 0.[Q] ®o,y O — R

is étale on associated spectra.

e The log structure on Spec(R) induced by (X, N) is the pullback of the fibre

product log structure on Spec(R’).

e For every subset J, C {1,---,s} and every subset J, C {1,--- ,t}, the ideal of R

generated by ¥ (N Jo x N Jt) defines an irreducible closed subscheme of Spec(R).

(2) (The formal case)

We write (Sy, My),,cn for the compatible system of log schemes given by S, := Spec (OL/W”OL> ;
and the log structure M, is the one associated to the prelog structure given by

N — OL/W"OL sending 1 +— .

For every n € N, suppose we have a log scheme (X,,, N,,) over (S, M,) of finite type,
which is denoted by

fo t (X, Np) — (Sn, My),

such that (X, N,,) is isomorphic as log schemes over (S,,, M,,) to the fibre product of

the following pairs:

(Xn+17 N?’H-l)

|

(Sm Mn) - (Sn+17 Mn+1) :
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Let X¢orm be the formal scheme associated to the X,,’s. We require that étale locally

on X, the formal scheme Xjo, — Spf(Op) is of the form

(oL/wnoL) Q] rns R/W"R

d T

(OL / w"oL> N ——0; / Oy,

where @), 0, 1, are as in the algebraic case, ¥p, induces a morphism
R;.L = OL[Q] ®OL[N] OL/ﬂ'nOL — R/ﬂ'nR

which is étale. The log structure on Spec(R/w"R) induced from (X,,N,) is the

pullback of the fibre product log structures on Spec(R),).

Moreover, as in the algebraic case, we require that for every subset J; C {1,---, s} and
Jy C {1,--- ,t}, the ideal of R/TI‘R generated by Vg1 (NJS X NJt) defines an irreducible

closed subscheme of Spec(R / TR).

We have a morphism of sheaves of monoids from
Nform = 1&1 Nn

to Ox,,,,., which coincides with the inverse image of /V; via the canonical map O, —
Ox,. Niorm is called the formal log structure on Xgory. We write (X, N), or sometimes

X, for the inductive system of log schemes {(X,,, N,,)} By the assumption, Xorm

neN’
is a noetherian, m-adic formal scheme and has an étale open covering Spf(R) — Xform

such that

e ¢z : Spf(R) —> Spf (0L[Q)®0,mOL) is étale, where, ¥g, Q are as before and &
is the m-adic completion of the tensor product;
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e the formal log structure Ng,,, on Spf(R) is induced by the formal log structure

on the fibre product Spf (O.[Q]®e,nOL).

We end the assumptions by the following remark.

Remark 4.2.1. By Lemma 3.1 of Andreatta and lovita [2012], the log schemes in both cases
((X, N) in the algebraic case and (X,, N,) in the formal case) are fine and saturated log

schemes.

4.2.2 Faltings’ sites

The notations are as in the previous section.

4.2.2.1 The site X*°t

We write X*¢* for the Kummer étale site of (X, N) for both cases: the algebraic and the
formal. In the former case, X*°* is just the one described in section 2.4. In the latter, we

define X*°* as follows.

B The objects are system of Kummer étale morphisms

{gn : (Yo, Ny,) — (X, No)}

neN

such that g, is the base change of g,,+1 via (X, N,,) = (X,41, Nny1) for every n € N.

We simply write ¢ : (Y, Ny) — (X, N) for such inductive system.
B The morphisms from one object

{gn : (Yo, Ny,) — (X, No)}

neN
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to another

{hn:(Zn,Nz,) — (Xpn, Ny}

neN

are the set of systems of morphisms of log schemes

{tn : (YnaNYn) — (ZnaNZn)}

neN

over (X,, N,,), such that t, is the base change of t,1 via (X, N,,) = (X,41, Nyyq) for

every n € N, which are simply denoted by ¢ : (Y, Ny) — (Z, Ny).
B The coverings are collections of Kummer étale morphisms

{(Y',N}) — (X, N)}ZEI

such that X is the set theorectic union of images of Y'’s.

Note that we have a natural forgetful functor X** — X¥* sending a system

{9n : (Yo, Ny,) — (Xn, No) }

neN

to g1 : (Y1, Ny,) — (X1, N1). Moreover this is an equivalence of categories.

4.2.2.2 Presheaves on X*°*

In the algebraic case, we define presheaves O xre: and Nyxe: on X*°* respectively as: for any

object (U, Ny) in X*e*®

OXket(U, NU) = T (U, OU) )

NXket(U, NU) = T (U, NU) .
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In the formal case, for every h € N, we define presheaves Oxxer j, and Nyxe: ), on X**

respectively as: for any object (U, Ny,), oy in X5,

OXket,h ((Una NUn>n) =T (Uh7 OUh) )

Nxxet  (Un, Nu, Jn) = T (Un, Ny, ) -

Then Let

oXket

form

= T&l@xket,h and Ny = l'LnNXket,h.
h h

Similarly, we can define subpresheaves O%... of Oxx: in the algebraic case, O)X(ketﬁ of O xer p,

and (‘))X(ket of O Xkt respectively, in the formal case. We have

form

Proposition 4.2.1. (1) In the algebraic case the presheaves Oxxer, Q%o and Nxw: are
sheaves, and

@ @ Nxxer — O et
15 a morphism of sheaves of multiplicative monoids such that
o (0%e) — Qe
(2) In the formal case the presheaves
O xet O)X(ketﬁ and Nyxe: j,
for every h € N and the presheaves
Oxpee s O%per and Ny

are sheaves. Moreover,

ap t Nxxee , — Oxxer p, for every h and
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(07 NXII%ertm — OXket

form

are morphisms of sheaves of multiplicative monoids such that

! (O}ket’h> — O%uer , for every b, and

—1 X ~ X
a (0 ) 0%
< Xisim Xt

4.2.2.3 Faltings’ sites

Let U be an object in X*** and let L C M C L. We assume that the log structure on Uy,
defined by Ny coincides with the trivial log structure. Let UZ® be either the site of finite
étale covers of Uy, in the algebraic case or be the site as defined in Section 4.1.2 in the formal

case, respectively. Both are endowed with the trivial log structure. Let Ex,, be the category

defined as follows:
e the objects are pairs (U, W), where U is an object of X*®* and W is an object of Uis*;

e amorphism (U',W’) — (U, W) in Ex,, is a pair of morphisms (o, 3), where o : U' — U

is a morphism in X** 5: W' — W xy, U} is a morphism in (U’)35".

Remark 4.2.2. Some properties, such as the existence of the fibre products, can be proved
exactly the same way as in the smooth case. Moreover, we can also define covering families
of type (a), type () as well as strict covering in the same way. The associated site and

topos of sheaves of sets are denoted by X, Sh(X)), respectively.

In the algebraic case we define the presheaf of O,/-algebras on X, denoted by Ox,,, as

Ox,, (U, W) := the normalization of I' (U, Oy) in I' (W, Oy ).
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In the formal case the definition is the same by replacing I' (U, Oy) with I' (Utorm, Qv )-
We may also define the subpresheaf of W(LL)-algebras OY’ of Ox,, in the same way as we

did in the smooth case. Moreover, these presheaves are sheaves.

4.3 Faltings’ site associated to Shimura curves

4.3.1 Log structures

Recall that we have a commutative diagram of formal schemes and rigid analytic spaces (see

Section 3.2.3):

M (w) ——— M(w) M{(w)
M (w) ——— M(w) M(w)

M(Hr") —M(H, ) — M(H).
Fix H, r and w as before. For M a formal scheme or a rigid analytic space , we write M

for its underlying scheme. We define some log formal schemes and log rigid spaces as follows:

o S:=(5,M).

Let S = Spf(Oy) and let M be the log structure on S defined by its closed point, i.e.,
the log structure associated to the prelog structure given by the morphism N — O

sending n > m,.
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Take a small open affine U = Spf(R) — M(w), i.e., U is connected and there is a
formal étale morphism Spf(R) — Spf(R’), where R’ := O, {X,Y}/(XY — %) for some
a € N (this can be done due to Proposition 3.3.1 and Remark 3.3.2). Then we are in
the situation as in Example 2.3.1. Let P := N? ®y N be the amalgamated sum of the
morphisms A : N — N2 n — (n,n) and ¢, : N = N, n — an. Then we have the

following commutative diagram of monoids:

R——~R
/s
N . p’
o]
N v Oy,

Ya

where Yg(m,n) = X™Y" Op, R and R’ are the multiplicative monoids associated
to the respective rings. Let Ny be the log structure on U associated to the prelog
structure given by the composition P --» R* — R. Moreover M(w) is a fine saturated

log scheme, f: M(w) — S is log smooth (see Example 2.1.2 and Lemma 2.3.1).

e M'(w) := (M"(w), N,.).

Here N, is the inverse image log structure (see Proposition 2.2.2) on M"(w) via the

morphism M (w) — M(w).

e M(H, ) is the log formal scheme whose underlying formal scheme is M(H, 7), the log
structure is defined by its special fibre which is a divisor with normal crossing (since

M(H, ) has semistable reduction).

o Let M(w) (resp. M"(w), resp. M(H,m)) be the log rigid analytic space endowed M (w)
(resp. M"(w), resp. M (H,n)) with the trivial log structure.

104



We have the following commutative diagram of log formal schemes and log rigid spaces:

M(w) —== M(H, )

4.3.2 The sites M(w) and M(H, )

Both the pairs (M(w), M (w)) and (M(H, ), M(H,r)) satisfy the conditions of section 4.2.1.
Then we denote by M (w), respectively MM(H, ) the Faltings’ sites associated to these pairs.
More explicitly, let (M, M) be one of the above pairs, the Faltings’ site associated to the

pair (M, M) is defined as follows. First, the category Ey_ is defined by:
(i) the objects consist of pairs (U, (W, K)) such that U € M*** and (W, K) € UL

(ii) a morphism (U, (W, K)) — (W, (W', K")) in B is a pair of morphisms (a, 3), where
a: U — W is a morphism in M** 5. (W, K) — (W’ xw , Ugr, K') is a morphism in

fet
Ulet,

Then we endow the category Ey with the topology generated by the covering families
defined as in Definition 4.1.3. Note that this topology on FEjc is the same as the one
generated by the strict coverings (see Definition 4.1.4). Now let 9t be either the site M(w)

or M(H, ). Recall that we have sheaves of Op-algebras on 9, denoted by Ogy, defined as:
O (U, W) := the normalization of I'(U, Oy) in I'(W, Ow).

We also have the subsheaf of W(IL)-algebras Oy of Ogn, whose sections over (U, W) consist of

elements = € Og(U, W) for which there exist a finite unramified extension M of L contained
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in L, a Kummer log étale morphism V — U x¢ , Op and a morphism W — 'V, over Uy, such
that z, viewed as an element of I'(WW, Ow ), lies in the image of I'(V, Oy).
Then we denote by 6931 and 65‘}{ the continuous sheaves on 9 defined by the projective

systems {Og/7"Om} _ and {Of /7 O} _ ., respectively.

4.3.3 Induced sites

Let S be a site whose underlying category is denoted by €, and let E be the category of
sheaves of sets on S. Let X be an object in €. We then define the site S,x, called the site

induced by X, as follows.

e Its underlying category, denoted by €y, consists of pairs (Y, ¢), where Y is an object
of Cand ¢ : Y — X is a morphism in €. A morphism (Y’,¢) — (Y,¢) in C/x is a

morphism f: Y’ — Y in € such that the following diagram

commutes in C.

e The topology on €, x is the one induced from S via the forgetful functor ax : €,x — C
sending (Y, ¢) — Y on objects, i.e., a family of morphisms {U; — U}, of objects over

X is a covering family in €,x if and only if it is a covering in C.

Moreover, we denote by E/,x the sheaves of sets on S, x, which are called the topos induced

by X. We have natural functors:

ax.: . — E/x, and
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OJ}IE/X — B

such that o is left adjoint to ax ..
Now suppose that the category C has a final object T" and fibre products exist in €. Then
we obtain a functor

jxie—>e/x

defined by jx(Z) = (Z X X, pry) on objects, where pry is the natural morphism Z xp X —

X.

Definition 4.3.1. Let C' and D be sites with underlying categories C and D, respectively.
A functor u : € = D is called continuous if for every covering family {V; — V'},_, € Cov(C)

we have
(1) {u(Vi) = u(V)}ier € Cov(D);
(2) for any morphism V' — V in €, the morphism
u (V' xy Vi) — u(V') xyu0n) u(Vi)
is an isomorphism for each 7.

Then jx is a continuous functor and defines a morphism of sites. Indeed, we have mor-

phism of topos
Jx £ — Ex, and
Jxs E)x — E,

such that j% is left adjoint to jx.. Moreover, jx is right adjoint to ax and we have a

canonical isomorphism of functors j% = ax .. Then jx has a canonical left adjoint, namely

107



a’. We denote this left adjoint of jx by jx,, which can be described explicitly as follows.

For any sheaf J on S)x, jx,(J) is the sheaf associated to the presheaf on S given by

Z— I 9zyg.

geMore(Z,X)

Recall that we denote by (M, M) be one of the two pairs (M(w), M (w)) and (M(H, 7), M(H,r)),
and by 9 the Faltings’ site associated to the corresponding pair. Let Z — M be a finite
étale morphism of log rigid spaces. Then we get a morphism in Mffet. Thus the pair (M, Z) is

an object of Ey_. We denote by (E'Mf) the induced category and by 3 := 9, z) the

/(M,Z)

induced Faltings’ site. Recall that the site 9t has an final object, namely (M, M) and fibre
products exist in Ey_. We denote simply by « and j the forgetful functor a2y : 3 — M
and the functor j, z) : MM — 3 defined by j(U, W) = (U, W X Z, pro), respectively. Then

we have the following functors:

. : Sh(M) —» Sh(3),
a® : Sh(3) — Sh(M),
J« = Sh(3) — Sh(oM),
j* : Sh(M) —s Sh(3),

ji : Sh(3) —> Sh(M),

such that a* and j* are left adjoint to «, and j,, respectively, and 7, is left adjoint to j*.

Now let (U, W) be an object of M and Z as above. We have

Proposition 4.3.1. There exists an object Zy, in Mffet such that there exists a canonical
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1somorphism

W Xy Z = 1T w [ T 2w (4.3)
gEMor, st (W,Z)
L
Proof. Let g : W — Z be a morphism in Mffet. First we claim that there exists an object

Z, in Mffet such that

W xy Z2WIIZ,

and the following diagram commutes

W xy Z=—"=W1IZ,

T

We———=W,

where the right vertical map is the natural inclusion and ¢, is the unique map (depending

on g) induced by the following commutative diagram:

%%
M.
Since Z — M is finite and étale, so is W x,; Z — W. Then our claim follows from the

following lemma.

Lemma 4.3.1. Let B be a finite separable A-algebra and f : B — A an A-algebra homo-
morphism. Then there exist an A-algebra C' and an A-algebra isomorphism g : B = A x C

such that f = py o g, where py is the projection A x C' — A.
Proof. Clearly, f € Homy (B, A). Since B is separable,

Y : B — Homyu(B,A)
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b — <:L‘l—>Tl"B/A(bl')>

is an isomorphism. Let e € B be such that ¢(e) = f, i.e., Trp/a(ex) = f(x) for all z € B.

Since f is an A-algebra homomorphism, Trp/s(e) = f(1) = 1. Furthermore, for all z,y € B,

Trp/a(ery) = f(zy) = f(2)f(y) = f(x) Trp/aley) = Trp/a(f(x)ey),

ie., ¥(exr) = Y(f(x)e) for all z € B. Since 1 is an isomorphism thus injective, we have

ex = f(x)e . This implies that e Ker(f) = 0. Then the diagram:

0——=Ker(f) —= B2~ A——>0

\LO \Lme My (e)

0— Ker(f) —=B—1

0

commutes with both rows exact, where the first vertical arrow is just m, Ker(f) — 0 since

eKer(f) =0. Then

1= TrB/A(e) = trKer(f)/A(O) + trA/A(f(e)) =0+ f(e) = f(e)

Note that we have ex = f(x)e for all z € B. Taking x = e we get ¢ = f(e)e = ¢, ie., ¢
is an idempotent of B. 1 — e € Ker(f) since f(1 —e) = f(1) — f(e) = 0. Then the map
A — Ker(f), a — a(l — e) makes Ker(f) be an A-algebra. Acturally 1 — e is the identity
of Ker(f) since (1 —e)y=y—ey =y — f(y)e =y —0 =y for all y € Ker(f). Then the
projectivity of A implies B = A x Ker(f), where the isomorphism g : B — A x Ker(f) is
given by z — (f(z),x — ef(x)). Using the identity ex = f(x)e and the fact that f is an

A-algebra homomorphism, we have

g@y) = (f(ey).ay—ef(ay))
= (f(@w). 2y — ef W) (@) = ef @) ) + f (@) ()
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for all x,y € B. Thus g is also an isomorphism of A-algebras. Furthermore, for any = € B,

prog(x) =pi(f(x),z —ef(x)) = f(x), e, ppog = f. Now C := Ker(f) as required.

Moreover, C' is a separable A-algebra. This completes the proof of the lemma. O

Since Z, is also an object in Mffet, repeating the above argument we get a canonical

isomorphism

W Xy Z ]_[ W HZW

gEMor, zet (W, 2)
L

for some object Zy in MZ<*. O

Remark 4.3.1. If B is a separable A-algebra, then B ®4 B is a separable B-algebra via
the second factor. Moreover, the map f : B®, B — B, b® b + bb is a B-algebra
homomorphism. If we apply Lemma 4.3.1 to f, there is a B-algebra C' and a B-algebra

isomorphism ¢ : B ®4 B = B x C making the following diagram

BosB—21~Bx(C

\lp

B

commute, where p is the first projection.
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Recall that we have functors ji, j. : Sh(3) — Sh(9). More precisely, let F be a sheaf of

abelian groups on 3, for any object (U, W) in 9N,
J+(F) (U, W) =F GUW)) = F (U, W X Z,pra),
and the sheaf ji(F) on 9 is the sheaf associated to the presheaf

uw)— P  FUWy).

gEMor, fet (W,2)
L

By the above proposition, we have a natural morphism

B  FUWg — FUW xy Z,pr),

gEMor, fet (W,Z)
L
which induces a morphism of sheaves ji(F) — 7.(F). This gives a natural transformation of

functors: j; — j.. Indeed, we have the following facts.

Proposition 4.3.2. For any Z as before, the natural transformation j1 — j. defined above

1s an isomorphism of functors.

Proof. 1t suffices to prove that for any object (U, W) in 9, there is a surjective morphism
W' — W in M such that
W' Xy Z 1T W,
gEMorM%t W, z)
i.e., Zy = () in formula (4.3).

Let V := W x,; Z. Then the morphism V — W is finite étale and we have a map

Moreover, we have degy, y (y) = degyy,(y') for any y € W, where y' is the image of y under
W — M. By restricting to a connected component of M we may assume that degy,, is a
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constant equal to n. We prove by induction on n. If n = 0, then Z = (), our claim follows
by taking W' .= W9 W . Now let n > 1 and suppose our claim is true when deg < n.

Consider the following commutative diagram:

V\
A
N
VXWVH‘\L/
w,

where A is the morphism induced by the local natural multiplication B ® B — B sending
b®@ b+ bb'. By Remark 4.3.1, there exists a V' in M2* such that the following diagram
commutes

Vs V==V IV

]

VeV
Moreover V' — V' if finite étale and degy.,,, = n — 1. Then by induction hypothesis, there

exists a surjective morphism h : W' — V/ in Mffet such that

Vs W [T,

g

where ¢ is taken over Moerft(W’ ,Z) such that g is not equivalent to pro o h : W' — Z.

Then
W/XMZ = W,XW(WXMZ):W/XWV
= W/XV (V Xw V)
>~ W xy (VIIVY)
= (W’XV V)H(W/XV V/)
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=~ W’H( 1T W’)

g#praoh
= I w
g€Mor,set (W', Z)
L
The composition W’ — V' — W is finite étale. Moreover, since degy,y, =n > 1,V = W

is also surjective. Hence W’ — W is a surjective morphism in Mffet, which proves the claim

and the proposition. O
We have the following consequence immediately.

Corollary 4.3.1. Let Z — M be a morphism in Mffet. Then we have
(a) The functor j, is exact.
(b) R'j. =0 for alli > 1.

Proof. Part (a) follows form the fact that j. = ji = o and (b) follows immediately from

(a). O
By adjunction we obtain a morphism
335 (F) = 3" (F) — F,

which is the functorial on the category of sheaves of abelian groups on the site Ey . It is
called the trace map relative to Z. More explicitly, given a sheaf of abelian groups & on Ey_,

the above trace map is the morphism of sheaves associated to the morphism of presheaves:

WEUW) = i) W,g)

= PFUW) — FUW),

g

114



where g runs over all the morphisms Moerfet(W, 7).

Finally, we define the site 9" (w) to be the induced site

M(w) / ((w), M7 (w)) -

4.4 Continuous functors

Now we have defined several sites, namely M***(w), M**(N, p"), M:*, M(w), M(N, p")
and 9" (w). We have the following natural functors which send covering families to covering
families, commute with fibre products and send final objects to final objects. In particular

they induce morphisms of topoi.

(1) p: M**(H, ) — M*®*(w) is induced by the natural morphism of formal log schemes

M(w) <= M(H, ). More, explicitly, for any object U in M¥*®*(H, ), p sends
Ur— U XM(H,) M(w)
(2) v:M(H,7) — M(w) sending

((u, W)) —> (u XM(H,fr) M(w), W XUL (u XM(HJr) M(w))L)

= (U o) M(w), W X sz M(w)) .

(3) voy : MEE — M with vge(U) := (U, Uy), where M is either M(w) or M(N, p) and M is
either M(w) or M(N, p), respectively. Moreover, we have v (Oyper ) = OF ([Andreatta

and lovita, 2012, Proposition 2.13]). We also have the following commutative diagram
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of sites:

Vom(H, )
—_—

Mkt (H 1) M(H, )

1
M=t (w) i M(w).

(4) w:9M — Mz with (U, W) — W, where 90 is one of the three sites: DM(w), M(H, )

and M (w).
(5) jr : M(w) — M"(w) sending (U, W) — (U, W X 1) M"(w), pr,). By the discussion
in Section 4.3.3, this morphism of topoi has the following properties
(i) The functor j,, : Sh(9M"(w)) — Sh(M(w)) is an exact functor.
(ii) R'j,.=0foralli>1.
(6) v, : M**(w) — M (w), which is defined to be the composite v, := j, ova(w). Actually

v,(U) = (U, Uk X1y M7 (w), pry), v.(M(w)) = (M(w), M"(w),id). Moreover, we
have R'v,., = R0, 0 j,..

We denote by Ogpr(wy := J5(Om)) and by Gmr(w) = j:(@m(w)). By the construction
of M"(w), we have natural isomorphisms of sheaves on M*®*(w):

Gr

Gr —~ —~
<UT,*(OSRT(1U))> = oM(w) and (Ur,*(ofmr(w))> = OM(w)a

where G, = (O(p/ﬂro?)x is the Galois group of M"(w)/M (w) (see [Andreatta et al.,

2015b, Lemma 2.8]).

(7) for any object U in M™%, By : ULt — M sending W +—— (U, W), where M is either

M(w) or M(H, ).
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4.5 Localization functors

This section is a brief recall of [Andreatta et al., 2015b, §2.7]. Let 9t be one of the sites
M(w) or M(N,p) and U = (Spf(Ry, Ny)) a connected small affine object of M**. We
denote by U := Uy, the log rigid generic fibre of U. Write Ry ® L = ‘ﬁ1Ru’i with Spf(Ry;)
connected, let Ny ; be the monoids giving the respective log structures, and U; the respective
log rigid generic fibres. Let Cy; = WRM), and my; denote the log geometric point of
U, = (Spf(Ruyi),Nuyi) over Cy;. Let Gy, be the étale fundamental group of U;. Then
the category Uf®* is equivalent to the category of finite sets with continuous actions of Gy ;.
Write (Euﬂ-, Nuﬂ-) for the direct limit of all the normal extensions S of Iy ; in Cy; such that
Spm(S;) — U is finite étale. Also, we let Ry := ﬁ Rui, Ny = ﬁlﬁm and Gy 1= f_[lSU,i.

=1

Then we have an equivalence of categories,
Sh(UF*)—>Rep(Sv,.),  Fr—=lim F(Spm(Syp)),

where Rep(Gp-) is the category of discrete abelian groups with continuous Gy_-action. Com-
posing with (., we obtain a localization functor Sh(?) — Rep(Gr,), we donote by

F(Ry, Ny) the image of F in Rep(Gr, ). We have

~

ﬁm(ﬁlhﬁ"U) = Ry

(see [Andreatta and lovita, 2013, Proposition 2.15]).
Let F € Sh(M"(w)). U = (Spf(Ry, Ny)) is fixed as a connected small affine object of
M(w)¥e* as before. Let
Ty = {homomorphisms of Ry ® L-algebras I'y :=T'(U"(w), Opr(w)) — Eu[p_l]},
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where U"(w) := Up X prw) M7 (w). For any g € Ty, write
F (R, Nu, g) = liﬂ&"(u, Spm(Sy)),

where the limit is taken over all I'y-subalgebras S of Ry (via g) such that Spm(Sg) — U”(w)
is finite and étale. Let Sy, 4 € Gy, be the subgroup fixing I'y. Similarly as before we
obtain a localization functor Sh(9"(w)) — Rep(Syr,y) and donote by F(Ry, Ny, g) the
image of I € Sh(9M" (w)).

Moreover, given a covering of M(w)** by open small affines {U;}ic;, choosing ¢; € Ty,

for every i € I, the map Sh(9M"(w)) — [] Rep(Gu, ~rg,) is faithful. We also have
i€l '
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Chapter 5

Distributions and Overconvergent Co-

homology

In this chapter we will introduce the overconvergent cohomology which can be related to
the m-adic (families of) overconvergent modular forms constructed in Brasca [2013]. As
highlighted by the author in Brasca [2013], to make things work it is necessary “to consider
the action of Oy everywhere”. Using this principle we define distributions in the classical

way and then we consider its cohomology as usual.

5.1 Distribution

5.1.1 Definitions

We fix an r € N and let L be a finite field extension over Fp containing an element (. €

C, := L, where {(,},>1 is a fixed sequence of C, points of £LT satisfying
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e the Og-order of (, is exactly 7";
o 7(ui1 = (, for each n > 1;
1

e (1 = (—m)a 1, where (—W)Fll is a fixed element in C,,.

Let &4 C W, be a wide open disk defined over L. We denote by Ay the Op-subalgebra of

O(4l) consisting of functions
Ag={feOoW) ||f(z) <1forallzeu}.

We denote by

/\u : o; — (Au)x

the universal weight attached to 4, i.e., the character defined by

for z € O3 and A € 4. As il is a wide open disk we have a (non canonical) isomorphism
Ay = OL[[T]).

Thus it follows that Ay is a complete, local, noetherian Op-algebra. Let 7w, € Op be a

uniformizer. We then define a function

ord : Ay — ZU{c0}

ord(x) = sup{n € N|z € 7} Ay}.
In this section we denote by (B, \) one of the following pairs:
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e (Or,\), where A € U(L) is a weight;
o (Ay, \y), where Ay and Ay are as above,

and we denote by m the corresponding maximal ideal of B. In either case, there exists an

sy € B ®g, L such that A(1 + 7"z) = exp(sylog(z)) for all z € Op (refer to [Brasca, 2013,
§6]).
Definition 5.1.1. We denote by A} the space of functions f : O x Op — B satisfying:

o f(u(w,z)) = Au)f(w,z) for each v € OF and (w, z) € O5 x Oyp;

e the function Op — B defined by z — f(1,z) is Fp-analytic on disks of radius ¢,

i.e., for any zg € Oy there exists a sequence {c¢,,(20)}men in B such that for each

2z € zg+ 1" Op we have:

where ord (¢,,(20)) — 00 as m — oc.

On the B-module A}, we consider the topology given by the family {m™A%},.cn. We
denote by DY the continuous dual of A9, i.e., the B-module of continuous, B-linear homo-

morphisms A — B. Moreover, we let

Ay =AY ®p, L
and

Dy = D0 @0, L.

The (B ®p, L)-module A, is in fact a (B ®g, L)-Banach module with respect to the 7-

adic topology. We can construct an explicit orthonormal basis of Ay as follows. Fix S, a
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set of representatives of Op / 7Oy in Op. Then for each z, € S and m € N, we consider the

function f., ,, € Ay defined by:

Lo mlw, 2) = Aw) <M) " T (%) ,

T
where 1., 70, : Op — L is the characteristic function of the subset z, + 7"0p. By the
definition of Ag\ it follows that { fzn,m}meN,zneS is a family in A, and it is an orthornormal
basis for A,.

As in Barrera and Gao [2016] and Andreatta et al. [2015b] we have the following fact:

Lemma 5.1.1. We have an isomorphism of topological B-modules:

v:08= ] I1 B

zn€S meN

given by po = (1u(f2,m))men,z,es, where DY is endowed with its weak (m-adic) topology, which

corresponds to the product of the m-adic topologies on the right side.

These modules of distributions ( for either B = Ay or B = Op) are main objects giving
rise to the right overconvergent cohomology which will be related to the m-adic (families of)
overconvergent modular forms constructed in Brasca [2013]. In order to obtain sheaves on
the Shimura curve M(H, ) from these modules, we need to endow them with an action
of the arithmetic groups described in Section 5.2.1. To do that we consider the following
semigroup:

A, = € My(09) N GLo(Fp) |a € 05, c€ m0p, d#0
c d

We also define the Twahori subgroup I, C A, by

[ﬂ = Aﬂ- N GLQ(O?)
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Now let Tj := O3 x Ogp, which can be regarded as a compact subset of
03 = {(w,2) | w,z€05}.
There are two natural actions on Tj:
e a left action of OF by scalar multiplication, i.e., for any u € O3,

u-(w,z) = (vw,uz);

e a right action of the semigroup A, by matrix multiplication on the right, i.e., for any

a b
(w, z) € Ty, any v = € A,
c d
a b
(w,2) v =(w,2) = (aw + cz,bw + dz) .
c d

It is obvious that these two actions commute.

Then the semigroup A, acts in a natural way on AS. More precisely, for any f € A} and

a b
v = € A, we define

c d

v [0k x0p— B

to be the function

(v- f)(w,2z) = f(aw + cz,bw + dz) .

Then we have

Lemma 5.1.2. If f € A and v € A, then v - f € A{.
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Proof. Let f € A} and v = € A;. We need to verify that ~ - f satisfies the two

conditions in Definition 5.1.1.

First, let u € O and (w, 2) € O3 x Op, we have

(v ) (u(w, 2)) = f(u(w,z)-7)
= f(u(aw + ez, bw + dz))
— Au)f (aw + cz, bw + dz)
= Au) (v f) (w,2).

Now we consider the second condition in Definition 5.1.1. For z € Op we write

b+ dz
Y(z) =

a-+cz
If Z € zg+ "0y for some z5 € Op, we denote by

b"—dZO
a+cz

21 = (20) =

then we have

7(2) — 21
b+ dz B b+ dz

a -+ cz a + ¢z

det(y)(z — 20)
(a+cz)(a+cz)

Since a € O5 and ¢ € 709, the denominator in the above equation is a unit of Oy, hence
Y(2) — 2z € T Osp.

Let ¢(21),,ey be the sequence in B such that for any z € z; + 77Oy,

F2) = Y et (52

7TT
meN
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with ord (¢, (21)) = 00 as m — oo. Thus if we let u := (a4 cz) " and z := det(y), which

are elements of Oy, we have

= Z em{21) - (uz)™ ((a+czo) -1F c(z — Zo))m . (2 ;TZ())m

= Y culz) - (uz)™ <u ST ez - ZO)Z)m : (Z ;Zo)m

1€N

= S el - utmam ( N(_1)i(cu)i(z - ZO)Z)m , (z ;zo)m

1€

Then

(v- £, 2)
= fla+cz,b+dz)
= Ma+c2)f(1,7(2))
= Ma+ce2)f(1,7(2))

= AMatex) Y cnlz) - utmam (Z(—w(cu)i(z . ZO)Z) - ("’ ;"’“)m

meN 1€eN

Since A is r-accessible, we deduce that the function z — (v - f)(1, 2z) is Fp-analytic on disks

of radius ¢~". This completes the proof of the lemma. O
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Thus we obtain a well defined left action of A, on A}, which induces a right action on DY

by duality, i.e., for any f € A, p € DY and v € A, we have

(u|y) () = (v - ).

The following result is important to prove the existence of spectral decompositions for the

overconvergent cohomology discussed in Section 5.2.1:

Lemma 5.1.3. Suppose that B = Op. Then the L-linear operator on Dy obtained from the

10
action of s compact.

0 =

Proof. We follow the proof of [Urban, 2011, Lemma 3.2.2 and Lemma 3.2.8]. It suffices

10
to verify that the operator on A, obtained from the action of is compact. Let

0 m
A, (Op, B) be the B-module of the functions f : Op — B that are Fp-analytic on disks of

radius ¢~". Then A,(Op, B) ® L is a L-Banach module and we have a natural isomorphism
Ay — A (09, B) ® L induced from the map f(w, z) — f(1, z).
The corresponding operator on A,(Op, B) ® L is given by f(z) — f(mwz). This operator

factors through the inclusion
A, 1(09,B)® L C A (09, B) ® L,
which is compact by [Urban, 2011, Lemma 3.2.2]. O

Remark 5.1.1. If we consider 4 to be a wide open disk in the weight space and we define
the modules of distributions in the same way, we can prove an analogue of the above lemma
for families of weights. This remark will be useful to deduce spectral properties for modules

over wide open disks (refer to the proof of Proposition 5.2.4).
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5.1.2 Filtration

We want to discuss the étale cohomology on the Shimura curve M(H, ) whose coefficients
are sheaves constructed using the modules of distributions defined in the previous section.
To construct these sheaves on the étale site of the Shimura curve, the filtrations defined in
this section are crucial. It is useful to remark that in the case B = Ay, these filtrations have
nice properties because of our choice of 4. This is the main reason for the choice of 4l to be
a wide open disk not an affinoid as usual in the literature.

Recall that we have fixed a set of representatives S in O for O /7" Ogp.

Definition 5.1.2. Let n > 0 be an integer. We define:
Fil} := {p e DY|u(feym) €M™V m=0,--- ,n—1and z, € S}.

For each integer n € N the set Fil} is naturally a B-module. Recall that there is a right

action of the semigroup A, on DY. We have
Proposition 5.1.1. For every n € N, the B-module Fily is stable under the action of A,.

Proof. First we point out that there is a decomposition of A; as A, = N"TN*, where:

(

10
N~ = |cenO0yp p,
c 1
\
(
1 b
01
\
a 0
T = la€ 05, de Oy —{0}
0 d
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Let o € Fily and v € A;. For any 2z, € S and m = 0,1,--- ,n — 1, we will verify that
(,u”y) ( fzmm) € m"™". We consider the following three cases for v in each factor of the

above decomposition of A.

10
Case 1: 7= e N~.

c 1
First, note that for any (w, z) € T

z

w + cz

2 — Wzy — CzZzy

w+cz
_ 2 (1 —cz)) —wz,
w (1 —I—ci)

B 1 —cz, z Zy
142 \w 1-cz)’
Let 2, be the unique element in S satisfying

/ Zn
n _
1 —cz,

mod 7" Osp.

Then we have

z

z
—zy € 0p = — — 2, € 1" Op.
w—+ cz w

Thus

z z
Lertros (w n 02) = Loy (E) '

Then

(’Y : fszn) (wa Z)

= fom(Wtcz,2)

Z_ o, \™ 5
— A wtez TN A e
<w+cz>( - ) — (wm)
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z Z— 2N (1—cz,\™ z
= M (1) (=) L) Ao, (2)
(w) +Cw ( " ) <1+c§ w0
z 1—cz \™
= 1 _) ! Jzlm ) <)
A( te <1+Ci) fopm (W, 2)

Let Gp(z) == A1+ cx) - (ii@) . Then by the hypothesis on A, for z € 2, 4+ 7"Op we

can write

Gm(z) =) di (%)

i>0

with d; € m" and ord(d;/7"") — oo as i — .
Moreover, the definition of the filtrations Fily is independent of the choice of the set of
representatives of Op/7"Op. Now, to prove (,u’”y) ( fzmm) € m" " it suffices to verify the

following;:
for | € N and d € m', we have u(d - Jopmar) € MM

This claim is trivial when [ > n —m. Furthermore, for [ < n —m we have m+1 < n, then

/'L(d : fzn,erl) =d- ,u(fz,,,erl) € mlJr(nimil) = mnim-

Case 2: 7= eT.

Then we have

There exists a subset S’ C S such that

(’7 ’ fzn,m) (w’ 2) - Z Z bCyinym—i(w> Z)

ces’ i=0
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for some b¢; € B. It follows that

(Iu}fy) (fzn,m) c Zmnferi c mnfm.

1=0

Case 3: v = e Nt
01

In this case we have

(v fopm) (w,2)

= Jaym (W, bw + 2)

butz " bw + z
= )\(w) (an> ]lzn+ﬂ-7“oy ( w )

_ w) (W)mﬂw% (1+2)

T
= Z (T) (b/)ifz%,m—iy
1=0

where 0/ € 770y and z; is the unique element in .S such that
z—b=2z —U.
Therefore, we deduce

(17) (fopm) € Yo" C m" .
i=0

For any n € N, we consider the B-module
D, = DY/FIL,
we have
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Proposition 5.1.2. Let Df)\?n be as above for n € N. Then
(a) DY, is a finite (B/m"B)-module.
(b) The natural B-linear morphism
DY — lm DY,
s an isomorphism.

Proof. For (a), recall that we have a B-linear isomorphism (Lemma 5.1.1)

v-D8= ] [] B

zp€S meN
given by p +— (:U’(fzn,m)>meN,anS'

Then by definition, the image of Fil} C DY under the isomorphism ¢ is the B-submodule

0 |(To) (11 7)

n—1
(i) (1)
zn€S m=0 m>n

as B-modules. This implies that the B-linear map ¢ induces an isomorphism

?

ie.,

(5.1)

2y €S m=0
of B-modules. Recall that either B = O, or B = Ay, then by the choice of 4, it follows that
in both cases B/m" ™™ are finite sets. This proves the first statement.
For (b), first let us point out that from the definition of Fil, we have

() Fily = {0}

neN
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Moreover, by the formula (5.2) above, we have

n—1
lim DY, = lim [[ [[ B/m" ™= ]] ][] B=D"

" z,eSm=0 zn€S meN

O

Remark 5.1.2. As an immediate consequence of the above proposition, we see that Df)\?n is

an artinian Op-module for every n € N.

5.1.3 Specialization

Let r, 4, L be as in Section 5.1.1. We fix 7 a uniformizor of Op. Recall that we denote by

(B, \) for one of the following two pairs:

o (Ay, A\y), where 34 C W, is a wide open disk with Ay being the Op-algebra of bounded

rigid analytic functions on i, Ay being the universal weight attached to i;
e (O, ), where A € H(L).

Moreover, if B = Ay (resp. Op), we denote by my (resp.m;) its maximal ideal. There is
a natural structure morphism O, — Agy. We may also relate Ay and O as follows. Let
A € (L) and fix 7y € Ay a function which vanishes with order 1 at A\ and nowhere else on

i1, Such function is called a uniformizer at A. Then

(7T L, T ,\) = INy.
We have an exact sequence

0 Ay —2 Ay 250, 0,
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ie, Op = Ay/m\Ay and py (my) = m;. Furthermore, for A € Y(L), the distributions (for
(B, \) is either (Ag, Ay) or (Op, A)) defined in Section 5.1.1 can also be related by such a

uniformizor at A. We introduce some notations we will use in this section. If B = Ay and

A = Ay, we set

A& = Agu ? Aﬂ = A)\u 9
Dﬁ = D?\u ? Dﬂ = D)\u7
Filj := Fil}, | DY, := DY/Fill.
If B= 0y and X € $4(L), we still use the notations as in Section 5.1.1, i.e., AS, Ay, DY,
Dy, Fil} and D, respectively.

Now the two O7-modules of distributions Dg and D9\ are related as follows. First we have

a natural map

A — A
[ Ju
where fi is defined by

fulw, 2) = M) (1, 2).

This induces the so called specialization map

77,\:D8l — D?\
[ G 1O

defined by

ua(f) = n(fu)(A)
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for any f € AS.

We have the following properties for such specialization maps.

Proposition 5.1.3. Let 34 C W, be a wide open disk and A € (L). Let my € Ay be a fized

uniformizor at \.

(a) We have an exact sequence of Ar-modules

(b) nx (FilZ) = Fil}.

Proof. The proof of part (a) is the same as in [Andreatta et al., 2015b, Proposition 3.11].
For part (b), by Lemma 5.1.1 and equation (5.1) we have the following commutative

diagrams.

Dg. = HZWES Hmzo Aﬂ

Filf —=T1, o5 [(TTnZomi ™) X (T Aw)]

and

Dg = HZT,ES Hmzo O

Py =TT, oo (T2 mi ™) % (T 02)]

Moreover the diagram

DSL — Hznes HmZO Ay

ml l

D?\ — HZT,ES Hmzo O

is also commutative since p) (m{}) = mj} for any n € N, where the right vertical map is the

product of py. Thus we obtain our second statement. O
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Now suppose that there exists an integer k € N such that A\(t) = t* for each t € 0. In

this case we say that A is a classical weight and k is said to be attached to A. Let

k
P) = {Z AW 2"y, € (‘)L} c A

m=0

be the subset of functions f : 05 x Op — O consisting of homogeneous polynomials of
degree k. Moreover, we can verify that this O -submodule is invariant under the action of

A,. Considering continuous duals we obtain a surjective and A -equivariant morphism:
\
or: DYy = VY= (P))" =Homy, (PY,0.).

Remark 5.1.3. Let T := (Op)*. We may identify V? with Sym*(T) ®¢, O, compatible with

the natural right action of A;. The map g, induces a filtration on V) by
Fil" (V) == oy (Fil}).

We denote by Py := Py @, L and V) := V) Q,, L. If il contains a classical weight A, we

have the following A -equivariant maps
Dn X D)\ [ V)\

which are compatible with the filtrations.

5.2 Overconvergent cohomology

5.2.1 Definitions

In this section we will work on the Shimura curve M(H, ). Our main goal is to relate the

group cohomology of its fundamental groups with coefficients in certain modules to its étale
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cohomology with coefficients in certain sheaves coming from those modules. Recall that the
curve M(H, ) is not necessarily connected. Moreover, this curve has a canonical model
defined on the number field E (Section 3.1.3.1) and we have:

M(H,m)(C)= | | MHm(C)= || I\9H"

x€CL x€CL

where the arithmetic group Iy is defined by 'y = g, K (H, 7)g; ' Ko N G(Q) C G(Q), where
{gx}xec% is a family in G(Ay) such that each gy is trivial at p; and {det(gx)}xec% is a set
of representatives of A}, /det(K(H,))det(K ), where K, is certain compact subgroup of
G(R).

Let x € CL}. We fix a geometric generic point 7, = Spec(Ky) of the corresponding
connected component M(H,m)yx/L of M(H, 7). We denote by Gx the geometric étale fun-
damental group attached to M(H,m)x and 7. Let € — M(H, ) be the level m-subgroup

of the universal object A — M(H, 7). We denote by Ty := l'&nn(ﬂ[ﬁnﬁ’l)xmx and let

px T — (@f’l)xanx be the map obtained from the natural morphism (A[x]7")Y — (€F")Y.
The Tate module Ty is a free Op-module of rank 2 with continuous action of G4. Choose a

Og-basis {€1, €2} of Ty, such that px(e;) = 0. Let
(Th)x == {wel + zé€9 } we 05,2 € O(p}.

Then (1)« is a compact subset of Ty and can be identified with OF x Op. Since the group
Gx acts on Ty and preserves (7p)x, using this fixed basis, we obtain a homomorphism of
groups Gx — GLy(05). Now the special choice of the basis implies that the image of this
homomorphism is inside the Iwahori group I, C GLy(O9).

Here we will use the same notations as in Section 5.1.1. We denote by (B, \) be either
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the pair (Ay, Ay) or (O, \) with maximal ideal m. Let AS and DY be the corresponding
B-modules of locally analytic functions and distributions for both cases.
We donote

A = A A

and

Dg,n = DY/Fil}

From Proposition 5.1.3 it follows that these B-modules are in fact finite sets with an
action of A;. Then using the above discussion about the action of G, on the Tate module,

we obtain sheaves on the étale site of M(H, )y, which are denoted by AS, ., DI

An,x7) A n,x

S

Sh((M(H,7)x)$), respectively. Putting these sheaves together we obtain sheaves in the

entire Shimura curve:

A3 s DY, € Sh(M(H, m)$)
AR = (AR nen » DY = (DR )nen € Sh(M (H,m)5)" and

L

Ay, Dy € Ind — Sh(M(H, 7))N.

L

Recall that in this chapter we are going to relate two different kinds of w-adic objects
both of which are helpful to construct eigenvarieties. In Section 3.4.3 we introduced the
overconvergent modular forms constructed by Kasseai and Brasca. Now we are in position

to define the other p-adic object relevant in this chapter:

Definition 5.2.1. The space of Overconvergent Cohomology is defined to be the B-module

HY (M (H,m)*, Dy).

L’
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The space of overconvergent cohomology is a B-module endowed with an action of G, :=
Gal(L/L), since the curve M(H, ) is defined over L.
We can define Hecke operators acting on the overconvergent cohomology. Similarly as in

Section 3.5, we define the U-operator:
U:H'(M(H, mE, D)) — H'(M(H, m)F, D)),

and the operator:

Ty HY(M(H,m)$,Dy) — H (M(H, )5, D).

5.2.2 Group cohomology

Recall that we have

M(H,m)(C)= | | Tx\ 6",

+
xeCLp

where 'y is a certain torsion free arithmetic subgroup of G(Q). Each variety I'y \ 7T is
compact. Moreover, note that the image of each group I'y in G(Fp) is contained in A,
thus the spaces of functions and distributions defined in Section 5.1.1 can be regarded as

I'x-modules.
Proposition 5.2.1. We have the following isomorphism of B-modules:
Hl(FXa D?\) = @Hl (Fm Dg\,n) = Hiont(r)h (Dg\,n)nGN)'

Proof. We first prove the second isomorphism. Recall that as in [Andreatta et al., 2015b,

§3.2] we have the following exact sequence of R-modules:

0— hm(l) HO(FM D())\,n) — Hiont(rx’ (DE)\,n)nEN) — T&HHI (Fm Dg\,n) — O>

138



where lim' is the first right derived functor of the inverse limit functor (refer to [Weibel,
1994, §3.5]). From Proposition 5.1.3 we know that each R[I'y]-module DY, is a finite set, thus
it follows that the projective system (H°(T, ngn))neN satisfies the Mittag-Leffler condition
(Remark 5.2.1) and then lim™ HO(I, DY) = 0. This shows the second isomorphism.

For the first isomorphism we follow the arguments of [Andreatta et al., 2015b, lemma 3.13].
Let BY(Tx, DY) be the B-module of 1-coboundaries and Z'(T'y, DY) be the B-module of the
1-cocycles with coefficients in DY; in the same way we define B!(T'y, DY) and Z'(T', DY ,,).

We have the following commutative diagram:

d
HO(I'x, DY) ——————> BY(I'x, DY) ————— Z(I'x, DY) ——————= H'(I'x, DY) ———>0

lﬂ e ) i“

. . n . o .
&lnn HO(FX’ Dg,n) - Hn B! (Fx’ Dg\,n) - &lnn Zl(FX’ Dg,n) - &lnn Hl(FX’ Dg,n)

Now using Proposition 5.1.3, it follows that the projective system
(B'(Tx, DX,))/ H*(Tx, D} ,,) nen
satisfies the Mittag-LefHler condition. Then the exact sequence
0——H(Ty, DY 1) — B! (T, DS 1)~ Z1 (T, DY, ) == H' (T, D 1) —= 0

implies that « is surjective. We then prove that £, and 6 are isomorphisms. To do this,
we basically apply Proposition 5.1.3 and the fact that 'y is a finitely generated group. The

proof of the first isomorphism is then completed applying Five Lemma. O

Remark 5.2.1. A tower {A;} of abelian groups satisfies the Mittag-Leffler condition if for
each k there exists a j > k such that the image of A; — A; equals the image of A; — A

for all + > 7.
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On the group cohomology we can define the action of the Hecke operators in the classical
way (refer to [Urban, 2011, §4.2]) by the following recipe. Let v € A,. We define [I'x7T'y] :
H'(T'x, D)) — H' (T, D)) by the formula:

[Ty Ty] == Corrimr’”_1 o[y]o Reslzxmflpﬂ,
where Corgimr’”il and Resgxm_lrx7 are the corestriction map and the restriction map,

respectively; and
- H' (Tx Ny 7' Ty, D)) = H (T NATxy ™, D))

is the map given by the action of v on D).

10
Now considering v = , we obtain the operator U. Moreover, using the matrix
0 =
1 0
we obtain the operator T (where 7, is as in Section 3.5.2).
0 s

As a corollary of Proposition 5.2.1, we can interpret the overconvergent cohomology in

terms of group cohomology:

Corollary 5.2.1. We have an isomorphism of B-modules:

H'(M(H,m)$, D)) = P H'(Tx, D)),

+
xeCLy

which are compatible with the action of Hecke operators

Proof. By construction we have

H' (M(H,m)%,Dy) = @ H'(M(H, 7)), Dax),

+
xeCLp

where Dy € Ind — Sh((M(H,7),)$*)" are defined using the sheaves DY /.
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For any embedding of L in C, the curve (M(H,7)y)c has fundamental group Ty, then by

the fact that the curve (M(H,m)x)c is K(m, 1), we obtain

H (M (H,m)x)7" D3 ) = H (M (H, 7)x)E", DY i) = H' (T, DY)

A,n,X A,n,X

Now it follows from Proposition 5.2.1 that:
H' (M(H,7)x)7 Dax) = H (Tx, Dy).
O

Remark 5.2.2. This corollary is useful in the following sense. On one hand, we will deduce
spectral properties for the étale cohomology from those proved for the group cohomology. On

the other hand, we can obtain a Galois action on H'(T'y, D)) from the above identification.

5.2.3 Slope decomposition

Using a well known construction, we deduce good spectral properties for the group coho-
mology and then the overconvergent cohomology by using corollary 5.2.1. Before stating the
results we recall a classical construction of complexes.

Fix x € CL}. Recall that T'y \ §T is a compact variety which is smooth and C*. By
Munkres [1967] there exists a finite triangulation of it. We fix one of those triangulations,
then using the natural projection HT — I'y \ HT we obtain a triangulation of H*. We denote
by /A the set of simplexes of degree ¢ € N of this triangulation, it follows that the action of
['x on A; has a finite number of orbits, each of which is bijective with I'y (since the group
'y is torsion free). Let Cy(T'y) := Z[A] be the free Z-module generated by A;. Then Cy(T'x)
is a free Z[I'x]-module of finite rank. Applying the standard boundary operators we obtain

141



the following exact sequence of Z[I'x]-modules:
0= Cy(Tx) = Ci(Tx) = Co(I'x) = Z — 0.

Now, let M be a module endowed with a left I'c-action. We define the complex C*(I'x, M)
by:

C'(Ty, M) := Homp (Cy(T"), M).
This complex satisfies the following properties:

(I) The cohomology of C'*(I'x, M) computes the cohomology of I'y i.e. the groups H*(I'x, M);

(IT) C*(T'x, M) is isomorphic to M™, where 7, is the number of orbits of the action of I'y

on A\;.

Now, suppose that M admits an action of A,. Following the construction in [Urban, 2011,
§4.2.5 and §4.2.6] we obtain Hecke operators on the complex which are liftings of the Hecke

operators defined on the group cohomology:
U: CYTy, M) — C* Ty, M),
Tg: CH(Ty, M) — C*(Ty, M).

Proposition 5.2.2. Let A € W(L). The L-vector space H' (M (H, ™), D) admits a < h-

decomposition with respect to the operator U.

Proof. Using corollary 5.2.1 it suffices to prove that we have < h-decomposition with respect
to the operator U, on each space H'(T'y, Dy). From general results about slope decompo-

sitions in [Urban, 2011, §2], it follows that it suffices to prove the slope decomposition for
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the action on every term of the complex C*(T'y, D). This is a consequence of the fact that
C*'(T'y, D,) is isomorphic to a finite number of copies of Dj, together with applying Lemma

5.1.3 and [Urban, 2011, Theorem 2.3.8]. O

Now suppose that A is a classical weight with £ € N being the integer attached to it.
Thus, we have a A, -equivariant surjective map of L-vector spaces D, — V). Applying the

construction described in Section 5.2.1 to V), we obtain a sheaf:
Vy € Ind — Sh(M (H, 7)$)".

From the functoriality of the construction, we obtain a Hecke and Galois equivariant mor-

phism of L-vector spaces:

H' (M(H, )%, Dy) — H' (M(H, ), Vy).

> L

Proposition 5.2.3. Let h € Q be such that h < k+1. If we consider the slope decomposition
with respect to Uy, the above morphism induces an isomorphism of vector spaces compatible

with the action of the Hecke operators and Gal(L/L):
HI(M(Ha W)efta ®>\)§h = HI(M(Ha W)efta v)\)gh'

Proof. We prove the proposition component by component. From Corollary 5.2.1, it suffices

to show that, for each x € CL},, we have:
Hl (Fx7 D)\>§h = Hl(an V/\)Sh'

To prove this statement we follow the classical arguments in Pollack and Stevens [2013].
For any i € Z we denote by A;(L) the L[A,]-module of Fp-analytic functions f : Op — L,
i.e., there exists a sequence {¢,, }men in L satisfying ¢,, — 0 as m — oo, such that we have
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f(2) =2, enCm2™ for any z € Op. The action of A, is given by the following rule:

a b 5
@) = (@t eyt

a—i—zc)'

c d
The assignation f(w,z) — f(1,2) induces an isomorphism of L[A;]-modules A, = A(L).
Note that here we consider » = 0 in the definition of Aj.

The operator (d/dz)*™! induces a morphism of L[A,]-modules
Ap(L) = Ao (L) (K + 1),

where the notation (k + 1) refers to the action of A, twisted by the (k + 1)** power of the
determinant. It follows from the definition that the kernel of this morphism is V) under the
identification Ay = Aj(L). Dualizing this morphism and considering the identification, we

obtain the following exact sequence of L[A,]-modules:
0= D s x(L)(k+1) = Dy—Vy—0.

Noticing the long exact sequence attached to this exact sequence and taking slope decom-

position with respect to U, we obtain an exact sequence:
Hl(Fx, D,ka(L))Sh—k—l — Hl(Fx’ D/\)Sh o HI(FX, V,\)Sh . H2(Fx, Dfok(L))gh—k—l.

Note that we have the number h — k — 1 for the cohomology of D_5_;(L) from the twist in
the map (d/dz)**'. Finally notice that D_,_;(L) has a natural Op-lattice stable under the

action of I';; thus the condition h < k — 1 implies:

H*(Px, D_p(L))=" ™" = H' (T, D& (L))=""*7" = {0}
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Now, we have a result analogous to Proposition 5.2.3 for any degree of the cohomology

following a similar proof.

Corollary 5.2.2. Let h € Q be such that h < k+ 1. For any i € N and any x € CL}, we
have an isomorphism of vector spaces compatible with the action of the Hecke operators and
Gal(L/L):

Hi(rxa D)\>§h = Hi(rxa V)\>§h‘
Now we deal with the question about the spectral properties of the modules for families

of weights. Following the proofs of Lemma 3.5 and Corollary 3.6 in Andreatta et al. [2015b]

we obtain:

Lemma 5.2.1. Let {j1;};es be a family of elements in DY such that its image in Dg/mDg
is a basis of this L := Ay/mAy = O /mOp-vector space. Then for each m > 0 the natural
morphism

Bjes (Ay/m™Ay) p; — DY/m™ DY

is an isomorphism of Ay-modules. Moreover, for each p € D there exists a unique family

{a;};es in Ay such that
(i) a; — 0 in the filter of complements of finite sets in J, in the weak topology, and
(”) = ZjeJ Qjfhj-

Proposition 5.2.4. For each weight A € W(L), there exists a wide open disk 4 C W
defined over L and containing A such that the Ay ®o, L-module H'(M(H,n)%, Dy) admits

a < h-decomposition with respect to the operator U,.
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Proof. By the same argument in Proposition 5.2.2; it suffices to prove that we have < h-
decomposition with respect to the operator U, for the complex C*(I';, Dy). Since we work
with wide open disks, this proposition is not a direct consequence of the theory developed in
Ash and Stevens [2008], however, the same proof of [Andreatta et al., 2015b, Theorem. 3.17]
can be adapted to our context, combining Lemma 5.2.1 above, our complexes C*(I';, M),

remark after Lemma 5.1.3 and the theory described in Ash and Stevens [2008]. O

5.2.4 Sheaves on Faltings’ Site

In Section 5.2.2 we described the overconvergent cohomology in terms of group cohomology.
Let A be either Ay or A € 4U(L) for some wide open disk in W,.. In this section, we will explain
how to regard the étale sheaves A, DY ( respectively Ay, Dy and V, if X is an integer)
on M(H,m)$¥ as continuous sheaves(respectively, ind-continuous sheaves) on Faltings’ site
M (H, ) associated to the pair (M(H,x), M(H,n)). This identification will be useful to
compare the sheaves defining overconvergent modular forms with those used to define the

overconvergent cohomology.

Recall that we have a functor (Section 4.4)

w:MH,m) — M(H,m)¥

WU W) — W

This functor u sends the final object to the final object, commutes with fiber products and
sends covering families to covering families. Hence it defines a morphisms of topoi. In
particular, we have

u, : Sh(M(H,m)¥) — Sh(M(H, w)),
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which extends to inductive systems of continuous sheaves. Using this functor we obtain
continuous sheaves u, (AY), u, (DY) and ind-continuous sheaves u, (A,), u. (D,) and u, (V)
on M(H, ). For abuse of notations we omit u,. Moreover, we can define Hecke operators

on H' (M(H, ), D) (Section 6.4):
U:H (M(H,7),Dy) — H (M(H,7),Dy),

Te: H (M(H, 7),Dy) — H (M(H, 7), Dy).

Using the same argument as in [Andreatta et al., 2015b, Proposition 3.19] and [Faltings,

2002b, Theorem 9|, we obtain the following proposition:
Proposition 5.2.5. The natural morphism
H' (M(H,7),D,) — H' (M(H,7)¢, D))

1s an isomorphism compatible with the action of Hecke operators and the Galois group Gy, :=

Gal(L/L). Moreover, it is also compatible with specializations.

Recall that we have a natural continuous functor
v:M(H,7) — M(w)

induced by the natural morphism of log formal schemes M(w) — M(H, ) (Section 4.4).

This fact allows us to obtain ind-continuous sheaves v* (A)) and v* (D) on M(w).
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Chapter 6

The Morphism

We fix an r € N and let L be a finite field extension over Fp containing an element (. €

C, := L, where {¢,},>1 is a fixed sequence of C, points of £LT satisfying
e the Og-order of (, is exactly 7™;

o (i1 = (, for each n > 1;

o (1 = (—ﬂ')ﬁ, where (—7r)q%1 is a fixed element in C,,.

Let w > 0 be a rational number such that w < 1/¢"?(¢g+1). Such w is said to be adapted to
r. Let v :=w/(q—1). Suppose L contains an element of valuation w, denoted by 7. We will
carry out the analogous construction of modular sheaves as in Section 3.4. For convenience,

we assume e < p — 1.
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6.1 Modular sheaves on M(w)

6.1.1 The map dlog
Let A(w) — M(w) be the universal abelian scheme over M(w). Let
T = Tx (Aw)[7]11)Y),

which can be thought of as a continuous sheaf
T = {(A(w)[woo]f’l)v}

on M(w)$.
2,1
Let w = (g*Qh(w)/M(wO , where € : A(w) — M(w) is the natural morphism. Recall
1
that we have continuous functors (refer to Section 4.4 for details)

uw:Mw) — Mw)¥

WUW) — W

and
V) : M(w)** — M(w)
U — (UUL).
Let Wy mw) = Vanw) (w). Since Vg () (OM(w)ket) = Oy Waymw) can be thought of as

a locally free 6%(w)—module of rank 1, a continuous sheaf on M(w). We also see T as a
continuous sheaf on M(w), via u,, which will be omitted for abuse of notations. The usual

dlog map (refer to Section 3.3.2)

dlog, 4 : (A)[7"?")" (Rr) — wa/r ®r B/7"R
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induces a morphism of @m(w)—modules,
dloga) + T @ Omw) — Wajmu) @y Omiw)-

Similarly as in Section 3.3.3, we obtain a Hodge-Tate sequence of continuous sheaves and

morphisms of sheaves of @m(w)—modules

1 ~ ~ dlogm(w) ~
0 >£AV/EDT(1U) ®6un w Om(w)(]_)%j’ ® Ogﬂ(w) >£A/R ®6u9;}t(w) Ogﬂ(w) >‘0,

where (-)~! denotes the dual module. Moreover, we have the following properties.

Lemma 6.1.1. For every connected, small affine open object W = (Spf(Ry), Ny) of M(w)Ee®,
the localization of the above Hodge-tate sequence of sheaves at U is just the Hodge-Tate

sequence of continuous Gy = Gal(Ry 1/ Ry 1)-representations as in Section 3.3.3:

~ ~

OHQZV/R Rpr E(l)H-T7r ((A[ﬂ'oo]%l)\/) ®O? EHQA/R Qnr RHO

Proof. This follows immediately by the definition of T and the fact that

~

6932(10) (Ru, Ny) = Ru.
]

Now let 0 := Im (dlogg,,) and F' := Ker (dlogy,,). Recall that we have defined a

functor:
Jr: Mw) — M (w)
(U, W) +—— (u, WX pr(w) MT(w),pIQ) }
Let 4" := j*F' i = 0,1. Our assumption on w (adapted to r) implies the existence of

the canonical subgroup of A(w)[q"] (see Proposition 3.2.4). We denote this subgroup by €,

150



and we have (€,)7' € A(w)[#"]7" of order ¢". Consider (C,)?" and ((GT)?J)V as the group
of points of their corresponding group schemes over M"(w), and we denote by the same
symbols the locally constant sheaves on (M"(w);)*. Similarly as before, they can be also

viewed as continuous sheaves on 9" (w), via u,. Then we have

Lemma 6.1.2. Let r, w, v be at the beginning of this chapter, and define F*, F*" as above

fori1=0,1.
(1) F° and F*' are locally free sheaves of ﬁm(w)—modules of rank 1.

(2) We have the following isomorphisms of Gm(w)—modules:
o J° / T = (€)1 ® Ome / T Omi(uw) 5
where (D,)7" = (((310)%1)L (refer to Definition 3.5.3).
(3) FO and FY" are locally free sheaves of Gmr(w)—modules of rank 1, where Ggﬁr(w) =
Jr <Om(w)>'
e have a natural isomorphism of Oy (w)-modules with G,-action:
4) We h ) hi f Onr (w)-modul ith G '

Uy« (ZEFOJ) = 3:7“ ®OK O(Cpa

where &, is the sheaf as in Proposition 3.3.3 and G, is the Galois group of M"(w) —
M(w). Here we consider v, (F°7) € Sh(M(w)¥*) as a sheaf on M"(w)k* via the
natural morphism 9, : M"(w) — M(w). Moreover,

?O’T/WT_U?O’T = ((@r)f’l)v X Ow(w)/w“”(‘)w(w).
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Proof. Let W = (Spf(Ry), Ny) be a connected, small affine open object of M(w)**. The

localization of F at U are:
o J0 (Eu,Nu) = Im(dlogy);
o F (Ry, Ny) = Ker(dlogy),

where the map dlogy is the usual dlog map. Then (1) follows immediately by Theorem 3.3.2.
Taking localizations at U, (2) is a consequence of Theorem 3.3.2.
(3) follows from (1), (4) follows from (2) and the construction of F,, refer to Section 3.3.3.

O

6.1.2 A torsor
Let
Sonr(u) = O3 (1 + 7" O ()

be the sheaf of abelian groups, let () be the inverse image of the constant sheaf of subsets

of ((Gr)f’l)v of points of order exactly 7" under the natural map
?O,rH?O,r/erv?O,rL>((er)%l)v X Ogmr(w)/ﬂ'rfvomr(w) .
Then we have

Lemma 6.1.3. We have that ff;}zr(w) is a Sonr(w)-torsor. Moreover, it is trivial over a cov-

ering of the type {(U;, U; x M"(w))},c;, where {U;}ier is a covering of M(w) by small affine

objects.

Proof. This is an immediate consequence of Theorem 3.3.2. O
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Let Ty C T be the inverse image of the subset of ((G,«)%l)v of points of order exactly 7"

via the natural morphism
\ V
T—(A(w)[x") —=((€)1")

which can be also thought of as a sheaf on M (w)$* hence a continuous sheaf on M(w) via
u,. Moreover, we have a natural morphism induced by the dlog map, which is denoted by
the same symbol:

leg : j: (‘Io> — g/mr(w)7

compatible with the action of O5 on both sides.

Now we fix (B,m), A\, r and w such that

e (B,m) is a complete, regular, local, noetherian Oy-algebra with m its maximal ideal.

B is complete and separated for its m-adic topology, hence, also for the m-adic topology.

A€ W(By).

e r € N, r > 0 is minimal such that A € W,.(B). Then there is an element s, € By,

such that A\(1 + 7"y) = exp (s) log(y)) for y € Op.

0<w<1/¢"*(g+1)and w < (¢ — 1) <0rd(s,\) +7r— L)

p—1

Consider the following continuous sheaf on 9" (w) defined by

O (w)®B = { (Omnr(w)®B),, }

neN’

where

(Oomr@)®B),, = (Omrruy /7" Omr () © (B/m" B).
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We denote by (Ogmr(w)@B))\ the continuous sheaf {(Omr(w)®B)2} endowed with the

neN

action of Sopr(w), which is twisted by A and defined as follows. Let (U, W, u) be an object of
M (w), for
ar € Sty (W W, 0) = 05 (14 7Oy (U, W)
and y € (Omr(w)®B) (U, W, u), we define
(az).y := Aa)z™y € (Omr(w)®B) (U, W, u),
where 2°* = exp (s, log(z)) makes sense by the assumption on w.

Now let
~ AL
Qg\ﬂr(w) = %Omsmr(w) (fmr(w), (Ogmr(w)®B) ) .
It is a locally free Omr(w)é{)B—module of rank 1 by Lemma 6.1.3. Moreover, we have a natural

isomorphism of Ogmr(w)@)B—modules
A 5 ~ A1
Homg,,, o8 (D) Omr(w)OB) = Qe
Now let Wé\:nr(w) be the ind-continuous sheaf
Wt w) = ey [1/7]-
If B= 0. and A € W,(L), we have the following isomorphism of sheaves

O (R i) = O @0, Oc,.

6.1.3 Action of G,

Let G, be the Galois group of M"(w) — M(w). For any o € G,, we may consider it as a

functor

o (Bxw)) sy sy " EM@)2) sty 1))
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defined by sending (U, W, u) — (U, W, 0 o u) on objects and by identity on the morphisms.

This functor on the category (EM(w)Z) S (M) M" (1)) induces a continuous functor on the site

IM"(w). Moreover, if F is a sheaf (or a continuous sheaf) on 9" (w), we denote by F7 the
sheaf

(U, W u) — F (o (U, W,u)) =F (U, W,00u).
Then we have
Lemma 6.1.4. Let j, : M(w) — IM"(w) be the functor as in Section 4.4.
(1) If F is a sheaf of abelian groups on M(w) and H = j*F, then H° = H for any o € G,.
(2) For all o € G,, then H? = H if H is one of the following sheaves:
Tty (Oor@w@B), (Owr@)@B) . Wy and
Koy 1= Homoy (35 (7o), (Omwrw©B)")
(3) Let H be a sheaf on M"(w) such that H® = H for all 0 € G,. Then each o defines a

canonical automorphism

e (30) —> o (36).
In other words, we have a canonical action of the group G, on the sheaf j, . ().
Proof.
(1) Since j* = .., where

— EM(w)f

e = (Exitr) oot vt )
is the forgetful functor (see section 4.3.3), we have

(G F) (W, Wou) = F (U, W)
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for any object (U, W,u) in 9" (w). This proves (1).
(2) This is true by the construction of the sheaves.

3) Recall that 7, : M(w) — M"(w) sending (U, W) — (U, W X100 M"(w), pry). Then
(w) 2
(G J0) (W, W) = HC (U, W X ) MT(w), prs,) -

For any 0 € G,, 0 : M"(w) — M"(w) is an automorphism over M (w), after base change to

a larger field (finite over L). We have the following commutative diagram

w XM(w) M’"(w)

%/
w XM (w) Mr(w) pr w
PTy M7 (w)
M"(w) M (w).

Hence the morphism induced by o gives an automorphism

(U, W X pggwy M7 (w), pry) — (U, W X a0y M (w), 07" 0 prsy)
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in " (w). This gives an automorphism, denoted still by o,

H (U, W X pr () M’"(w),prQ) —X (U, W X pp(wy M"(w), 07 o pr2)

(jr,*g_c) (ua W) 9{071 (u> W X M (w) Mr(w)’ pr2)

H (u, W' X pr(w) M’"(w),prz)

(JrH) (W, W) .

Moreover, such o is compatible with morphisms in 9t(w) hence gives an automorphism of
sheaves

0 G H — Jr I

This completes the proof of the lemma. O

6.1.4 Modular sheaves
Recall that we have defined a continuous sheaf
Qs/}m(w) = A 0MSy 0 (?/mr(w), ((‘)mr(w)é?B)rl) :
and an ind-continuous sheaf
wg\ﬁr(w) = Qg‘ﬁr(w)[l/w].
on M"(w). Thanks to Lemma 6.1.4, we can define sheaves on M (w) to be
Dy = (s Beriay)
and
Wity = (rsiru)

We have the following properties
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Proposition 6.1.1. Let B, A\, r and w be as before. Then
(i) wf))\ﬁ(w) is a locally free (Oonuy)@B)[1/7]-module of rank 1.

(1) Vop(uw) <w§\ﬂ(w)> >~ WAy C,, where w) is the rigidification of the sheaf Q) defined in

Section 3.4.3.

Proof. Part (i) follows from Lemma 6.1.3. Let U = (Spf(Ry), Ny) be a connected, small
object of M(w)*et. After localization at U, (ii) and (iii) are clear by the construction of the

above sheaves. O

Remark 6.1.1. Similarly as in Section 3.4.3, the constructions of such sheaves are compatible

for various r’s and w’s in the sense of Lemma 3.4.1 and Proposition 3.4.3.

6.2 Cohomology of the sheaf wsﬁ(w)

Let ¥ : Z — M(w) be a morphism in M (w)3** and let 3 := 9MM(w) ov(w),z) be the associated
induced site (refer to Section 4.3.3 for details). Recall that we have a continuous functor
j:Mw) — 3
(U, W) — (U, W X pw) 2, pr2) ,

which induces a morphism of topoi. In this section, we will give a formula for the ¢-th

cohomology of

H' (3,77 (wimw)))
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for all @ > 0. In particular, if ¥ : M(w) — M(w) is the identity map, we get an explicit
formula for H <9ﬁ(w),w5\mw)) for all ¢« > 0. To calculate the cohomology, we need the

following lemma:

Lemma 6.2.1. Let F be a locally free (Omy®@B)[1/7|-module of finite rank. Then the sheaf
R” von(u).+ ()
1s the one associated to the presheaf
U = (Spf(Ru), Nu) — H” (Su, F(Ru, Nv))

on M(w)¥et, where Gy is the Kummer étale geometric fundamental group of U, for a choice

of a geometric generic point, i.e., Sy = Gal (Ry[1/7]/RyL).
Proof. This is [Andreatta and Iovita, 2012, Proposition 2.10]. O

Theorem 6.2.1. We have the following isomorphisms of G-modules.
(1) B (35" (D) ) = B (2,97 (w2)) @1, Cyl(1);
(2) 1 (3,5° (1)) ) ZH (2,0° (72)) €1.Cp;
(3) 7 (3.5° (4 (1) ) =0 fori = 2.

Proof. First, by exactness of the functor j, we have

I

H' (3,57 (wing (1)) = ' (M(w), " (Wi (1))

for i > 0. We set J := j,j" <w9)‘ﬁ(w)(1)>. In order to calculate H* (9 (w), F), we will use the

following Leray spectral sequence

H” (M (w)**, R? van(w) «(F)) = H ™ (M(w), F).
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By the above lemma, the sheaf R? von(w),«(F) on the left hand side is just the sheaf associated
to the presheaf

U +— H (Su, F(Ru, Nu))

for U = (Spf(Ry), MNy) a connected, small affine object of M(w)*** and
Su = Gal (Ry[1/7]/RyL)

. We first calculate &F (Eu,ﬁu).
Using the formula (4.4) and note that j7* = «a,, where « is the forgetful functor from 3 to
M(w), we have

F (R, No) = W (W) @y, 9202 (Uy) @y Ru(1)

Then by [Faltings, 1987, Theorem 3] (refer to Remark 6.2.1) and the Kodaira-Spencer iso-

morphism (refer to Proposition 3.1.4), we have

.

Ry, 1®1 Cy(1) if g =0,
HY (S Pur) 2 w2 (W) @ Ry Cy(—1) ifg =1,

0 if ¢ > 2.

\

Thus we can deduce the following formulas for HY (9u, F (Eu, Nu)),

(

WAW) @y, 9.02(Up) @, Cp(1) if g =0,

H (S, T (Rus Nu)) = § wd+2(U) @p,,, 0.02(Uz) @, C,  if g =1,

0 if ¢ > 2.

\

Now (1) and (3) follows immediately.

160



For (2), if p + ¢ = 1, the Leray spectral sequence degenerates to the following exact

sequence:

l
EH
g
g
G
l

l

H? (M(w)**, R von(u),« F) —

l

H? (M(w)***, R® van(u) +F) -

Since the sheaf w), ®o,,,, 7+02®LCp(1) on M (w) is locally isomorphic to (4,07, ® B, @, C,),
it is a sheaf of L-banach modules on M (w), which is an affinoid. Then by Kiehl’s vanishing

theorem (refer to [Andreatta et al., 2015a, Appendix]), we obtain that

HZ‘ <M(w)ket7 wi‘] ®OM(w) 19*(()1 =03 (Cp(l)>
S <M(w), W) @0y 10z 1 C,,(l)) —0,

for all 4 > 1. Therefore we have
H (M(w), F) = H (M), wh ™ @o,,, 9.0z @1 C, )
and (2) follows. O

Remark 6.2.1. In fact, if we denote by C, := f, by
x:Gr = Gal(L/L) — O}

the Lubin-Tate character and by (n) the twist of Galois modules with the n-th power of x.
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In [Faltings, 2002a, § 9], the author shows the following

(
L ifi=o,
Hi (G(In(cp)g LX if 2 = 1’
0 if 4 > 2.

\

Moreover the nontrivial twists C,(n) have trivial Galois cohomology. Then the arguments of
[Faltings, 1987, Theorem 3] can be generalized in a similar way to our situation by replacing

p-divisible groups with 7-divisible groups.

In particular, if Z = M (w), we obtain the following corollary.
Corollary 6.2.1. We have the following isomorphisms of G'r-modules.
(1) B (M), wy(1)) 2 H (M(w),wh) @1, Cyl1);

(2) H (M(w), 6y (1))

12
o
=
E
€

>

5
®>
h
a
&

(3) (mt(w),w;ﬁ(w)(1)> — 0 fori>2.

6.3 The morphism

6.3.1 Notations

We fix some notations for the rest of this chapter.

Let

DY = {D3 .}

neN’

Ag = {Ag\m}neN
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be the continuous sheaves and
Dy = ®g[1/ﬂ-]7
.AA = Ag[l/ﬂ']
be the ind-continuous sheaves on 9(H, 7) described as in Section 5.2.1.
Recall that we have a continuous functor v : M(H, ) — M(w) induced by the natural

map M(w) — M(H, ) (refer to Section 4.4). Applying v* to the sheaves described above,

we obtain continuous and ind-continuous sheaves on M(w), namely

0N __ 0,A L * 10 %10
AN = LAY = AL = A,

0N __ 0,A L * 0 _ _*xm0
D= {Dw,n neN = {v ‘D’\v"}neN =v"Djy,

and A) = 1" Ay, Do) == v*D,.

Now let 9 be any one of the sites M(w), M(H, 7) or M"(w). We denote by Oym@ B the

inverse system

{(Om@B),} = {(Om/7"Om) ® (B/m"B)}, oy,

and by (Ogm@B))\ the system
(o).,
with an action of Oy (or sometimes Sypr(y)) twisted by A.
Recall that we have the following sheaves of (O ()®B)-modules on M (w):

-1 -1
Qg\ﬁr(w) = {Qg\ﬁr(w),n}neN

= {ﬁomssmr(w) <3’§ﬂr(w)7 (Omr(w)é@B)i)}

neN ’
and

—1 —1
Asmr(w) - {‘Aimr(w),n}neN
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— {%Omo; (j:‘.TO, ((‘)mzr(w)@B)i)}

neN ’

6.3.2 Construction of the morphism

The goal of this section is to construct a morphism
H' (M(H,7), Dr @ (Omm(u.my@B)) — H' (M(w), winy) -

To this end we proceed in the following four steps.

Step 1 :

First, let us point out that we have a natural morphism of continuous sheaves Gm( Hax) —
Vs <6§m(w)> obtained by adjunction a morphism v* (6931(117#)) — 69)?(w)~ Since v commutes

with tensor products, we obtain a morphism of ind-continuous sheaves on 9t (w):
V' (D @ (O ®B)) — Dy @ (Oom(uy ©B) -
Passing to cohomology and composing with the morphism
H' (M(H,7), D) ® (O, my®B)) — H" (M(w), v* (D ® (Oan(r,)@B)))
induced by v, we obtain a morphism
H' (M(H,7), Dr @ (Om(m®B)) — H' (M(w), D, @ (Oam(u)@B)) - (6.1)

Step 2 :
Let Ty and r(w) be the continuous sheaves defined as in Section 6.1.2. Then we have a
natural map

leg : j: (‘Io) — gjglmr(w)
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The above map induces a morphism

which is G,-invariant.

Moreover, for every n € N, we have an inclusion of Oy -modules
A3/m" A} € Homgx (05 x Op, (B/m"B)*),

where O acts on O3 x O by scalar multiplication and acts on (B/m"B)* via A. Then we

have an injective morphism of sheaves on Mt (w)
A%, — A omyy (To, (B/m"B)*),
hence a morphism of sheaves of (Om'r(w)®B / )n—modules
Bt iR @ (Oar(y®B),, — Homgy (j:fro, (Omr<w>®3)2) A (w)-

These morphisms are compatible for varying n and give a morphism of continuous sheaves

of (Omr(w)®B)—mOdu1€S
67’ Zj:AO)\ (Owtr ®B) — %Omox <.]r(‘TO’ (Ogmr(w ®B) ) ‘Aﬁﬁr(w
Now consider the following diagram of morphisms of sheaves:

T

At o
Qe )

‘Ai/)\J;: w)

E

JEAD ® (omr(w)®3) .

Proposition 6.3.1. Under the above notations, we have

(i) B" is injective and G,-invariant.
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(i) The map o factors via (.

Proof. To prove the statements, we consider first the following diagram of sheaves for each

n €N,

A1 an
Qfmr(w),n

A1
‘Aﬁﬁr(w),n

K
Jr A © (O @B),, -
Then it is equivalent to prove that for all n € N,

(a) B is injective and G, -invariant;
(b) the map «! factors via f].

The G,-invariance of ) follows immediately by its construction and Lemma 6.1.4. We
prove the above assertions by localizing at small affine objects of M(w)k* covering M(w).
Let U = (Spf(Ry), Ny) be a connected small affine object of M(w)*®*. Let g € Ty and
n = Spec(K) be a geometric generic point of Spm(R;) (refer to Section 4.5 for details).
Consider the Op-module

T = T, (AwEY),

let Ty C T be the inverse image of the subset of ((GT)%l)v of points of Op-order exactly 7"

under the natural map
0T — (A(w) =) — (€))7,

Moreover, we fix an Op-basis {eg,e1} of T such that 6"(e;) = 0 and 0"(gp) is a point of
Ogp-order exactly 7".

Let z,y : T'— Os be the Op-linear map defined by

x(agg + bey) = a, and y(agyg + bey) = b,
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for any a,b € Op. Then we can identify Ty = {ago +bey |ae05,b€ OT} cT.

Fix S, a set of representatives of Oy / 7" O, the discussion in Section 5.1.1 implies that

i A% (R N, 9) @@ (B/m™)z (L) 1oy srr0p(y/2).

"
zn€S h=0

Set D := (ogﬂr ®B) (Ru,Nu,g), we have

h
(G240 & (Onww©B). ) (R Fug) = D €D Do’ (=5 1 o /2),

zn€S h=0
where 2 is the map T'— Op such that 2*(agy + be;) = A(a), and
Aty (B N, 9)
= Hom (11T, (Omrw@B),) (B, N 9)
= {f: Ty — D|f is continuous and f(cz) = A(c)f(2), for c € Op,z € Ty},

as D-modules.

After localization, the map £ is just the one sending

> St (V=) 1t/

zn€S h=0

to the map

( h
agg + be; — Z Zazn nA(a ( /G)T ) 1., +rr0,(b/a)

™
zn€S h=0

It is obvious that if the above map is zero then

PIPBLIES (y/ W= s >h1zn+nroy(y/x):0.

Hence ] is injective.
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Now we have

Qf))\ﬁ_r (w),n

n AL
‘Aimr(w),n
B
Jo A0, & (O @),
By the injectivity of 37, to prove «, factoring through f;, it is enough to prove that the

image of ], is contained in the image of ;.

Recall that we have the following commutative diagram for the map dlog

Ker(dlog) ﬁu Im(dlog)
0 77 —? Ker(dlog) T® ervﬁu 77~ v Im(dlog) 0

l l

0—= (D)} @ T — (A1) @ B — ((@)1) " ® i ——0

?
with exact row and vertical isomorphisms (refer to Theorem 3.3.2).

Let {eg,e1} be a ﬁu—basis of T ®o, ﬁu such that
e dlog(eg) is a ﬁu—basis of Im (dlog) and ey = g mod 7"~ ;
e ¢ isa ﬁu—basis of Ker (dlog) and e; = ¢y mod 7" ".
Let X and Y denote the ﬁu—linear maps
T ®o, ﬁu — ﬁu

defined by

X(e1) =Y(eg) =0, and Y(ey) = X(eg) =1,
respectively. Then

vy (Fa: N, 9)

= Homsy, (fﬁmw)’ (Ofm*(w)@?B)z) (Ru, N, 9)
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= Homsm (Sr,v v, Dk) )

where

Srw =03 (1 + WT’”§u> , v = dlog(eg)

and D* is the module Sy -module D with the action of S,, twisted by A. Let X A denote

the map

X*:S.,-v — D

ar-v +— MNa)z*,
fora e 03,z € <1 + Wvaﬁu), where s, € By, such that
AL+ 7m"y) = exp (sxlog(y)),
for y € Op. Then we have the identification
Homg, , (S, v, D) =D - X%,

ie.,

Qg\ﬁ?w),n (Eu,ﬁu,g) =D- X>\.

As a summary, after localization, we are now in the following situation:

D-X* Homyx (O - g + Op - €1, D)
B
BN D A W/z)—2y hﬂ
@ @ x T Zn+7rTOg>(y/’r)'

2n€S h=0
Then it suffices to show that X*, thought of as a map T, — D*, can be written as a power
: A (y/x)—2n 4
series of " and (T) L., 4rr0,(y/).
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We write X = sz + ty for some s,t € Ry. By our assumption we have

1= X(ep) = sx(eg) + ty(eo) = sz(eg) + ty(eg) =s mod 7”7,

0= X(e1) = sa(e) +ty(er) = sw(er) +ty(er) =1 mod «",
ie.,sel+ 7T“”§u mod 7"7Y and t € ervﬁu. Then we have
an(X*) = a2 (s + ty/2)™ € Im(3)).
This completes the proof. O
Now we obtain a G,-invariant morphism of sheaves of Ogpr(,,) ® B-modules on 9" (w):
V" Dy — G A @ (O ()@ B) .

Step 3 :
Applying %ﬂomow(w@B (—, Omr(w)®B) to the above map +" and using the identification
Hoomey, . on (Qg;f(w), omw@B) ~ W)
we have a (G,-invariant morphism
8" AHoomg,,. e (1A © (O ()@ B) , Omr ()@ B) — Qi
In particular, for each n € N, we have a morphism
O s A0 04 05) (A, @ (O @) ®B) (O (w)@B)n) — Qe ) -

We now have the following lemma.

Lemma 6.3.1. For each n € N, there exist an integer k, > n and a morphism

GEDY @ (Omr () ®B), — Qe

(w),n>
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such that the following diagram is commutative

AN (00, 0B), (jfﬂgfkn ® (Omr(w)®B), (OE)LTZT(w)®B)kn) — 51Dy, © (Omr ) ©B),,

\
T |
. . v
Homy,, . on) AL @ (Omrw)®B),, (Omr @) @B)n) ———> Qe () o

n n

where the maps will be described in the following remark.
Remark 6.3.1. Note that we can identify the (Omr(w)@)B)n-module
A 0 rom) (AR ® (O ©B),, (Onr(y©B),)
with
Homp (j; Ay, B/m"B) @ (Owr(w)@B),,
for each n € N. Hence the left vertical map is the natural one induced by
A e 45— A A

for k, > n. Moreover, by the construction, we also have the identification of B / m" B-

modules

DY/m" DS = Homp (A} /m"A}, B/m"B) .

Then the top horizontal map is just the one induced by the quotient

(D3/m*™ D5) / (Fi™ /mP D%) = DY/ Fit* D,

Proof. Tt suffices to prove the above lemma by localizing at small affine objects of M (w)*e*

covering M(w). With the same notations as before and using the identification (equation

5.2)

i
L

DY, =DY/FiI"Dy = (HEP (B/m""B),

zn€S h=0
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we have

Qg/}ﬂr (R"leUa ):D'(X/\)Va

7 Do (B N, g)

\%

- OB (rc (%)1@/)) ,

zn€S h=0

and

Homp (jiA%),, B/m"B) (Ry, Ny, g)
_ DD (B/wB) <x (%) nznw@/x)) -
zn€S h=0

Let D' := ((‘)mr(w)é{)B)k (EU,NU, g). We are now in the following situation:

e?s é(B/mknB) (ZA) QD ——= @Siéal (B/m*~"B) (ZA) ® D'
® @ (B/m'B) () & D— D ()

2y€S h=0
where Z* := (:p’\ <(y/i#>h 1., 470, (y/x)) and D — D’ is the natural map.

Recall that in the proof of Proposition 6.3.1, we showed that X* can be written as a power
series of Z*. Let N,, be the maximal number such that the coefficient of X* with respect to
Z* is nonzero. Next we take an integer k, such that k, > n+ N, then the map 0, localized
at U factors through j*@w b @ (Om'r(w)®B) (Ru,ﬁu,g) as required. This completes the

proof of the lemma. O

Step 4 :

Now for any n € N, there is an integer k,, > n and a morphism

*@w kn ® (Ogﬂr ®B) — QS/}RT(w),n'
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We thus have a morphism of continuous sheaves of (Ogmr(w)@)B)—modules
AL +My0,A - A
0"+ 37D @ (Oomr ) ®B) — Qe
hence a morphism of continuous sheaves of (Ogm(w)@B)—modules
(e D2 & (O @1©8))) — (i) = 0
Jrx \Jr +w & 92W(w)® (]r,* M (w) — VE(w)
Since Gw(w) = j:@gﬂ(w), we have a natural morphism
~ . -k ~ G'r
D & (Omu@B) — (jrs (37D @ (Omr ) ®B))) -

Composing the above two morphisms of continuous sheaves of (Ogm(w)@B)—modules, and

passing to ind-continuous sheaves, we obtain
5+ DY @ (Oom(u)®B) — wiy(uy)- (6.2)
Finally, the above morphism gives a morphism on cohomology
H' (M(w), Dy, @ (Om(uy@B)) — H' (M(w), winu)) -
Composing with the morphism in formula (6.1), we obtain the morphism
H' (M(H, 7), Dy ® (Oon(ir.my®@B)) — H' (M(w), Wi

as we want from the beginning of this section, which is the main goal of this chapter.

6.4 Hecke operators

First, we define the U operator following the same line as in Section 3.5.1. Let M(H7", q),
M(Hr",q), M (w) and M7 (w) be as described in Section 3.5.1. Recall that we have two
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morphisms
mo My (w) — M"(w),
my: Mi(qw) — M"(w),
where 7, is defined by forgeting the level struction given by the group D, m, is defined by
taking quotient by D (refer to Section 3.5.1 for details). Similar as in [Andreatta et al., 2014,

§3.2], we can prove that 7, is finite and étale. Then (M(w), M](w)) is an object of M (w)

hence also an object of M(w). Let M (w) denote the induced site
M (w) = M(w) tgan) vz o)) = V(W) /00), 05 (0))-
Then we have natural continuous functors
P M (quw) — Mg (qw)
(U, W) +— (U, W X prr (qu) M;(qw),prg) ,
and
po M (w) — M (qw)
U, W,u) — (U, W Xpprw) M;(qw),prg) .
Note that p; is just the functor j defined in Section 4.3.3, hence p, . is exact.
Moreover, for fixed r, let w < w’ be two rational numbers adapted to r such that they

satisfy the same conditions as w. Then we have natural morphisms and the following com-

mutative diagram:



Let (W, W' u') be an object on 9" (w’), we have a natural commutative diagram:

w’ XMT(w/) MT(w) M’"(w)

gw,w/

M (w)

w, M(w').

If we denote by

u = w XM(w) M(w),

W o= W Xy M (w),

then W — Uy = U} X prqwy M (w) is finite étale. In other words, (U, W, prs) is also an object

of M"(w). Thus we obtain a functor of sites:

Pt 2 M (w') — M (w),
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such that p*, QX . = Q) . In particular, we have a functor
P aw® “om (w’) M (w)
Pgww = M (quw) — M"(w).

Let A (w), A"(w), D and 7 : Af(qw) — Aj(qw)/D be as in Section 3.5.1. Recall that we

have the following commutative diagram

A (qu) & Ayfqw) /D (6.3)

x %ﬂ'g

M (qu)
where the left and right squares are Carterian and the square in the back is commutative.

Similar as in Section 3.5.1 we obtain a morphism

%D : p;Qg\ﬁr(w) — pTQf))\ﬁT(qw)
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We define an operator U by the following composition:

Hi (mT(qw) Qf))\ﬁT qw >
Pqu,w 7 r * A
—H <9:)/t (w)7 Pauw, wamT(qw )

— T <9ﬁ7‘( ), Qgﬁr(w))

ps

' (D0 (q0) 3% )
e (A q0), BT )

—H' (im;(qw), pl,*p’{ﬁémqw>)

Hi (mr(qw) Qg\ﬁ?“ qw > 5
where the last map is the trace map as described by formula (4.4) in Section 4.3.3, since p;

is exact. Passing to the ind-continuous sheaves and taking the GG,-invariants, we obtain an

operator (recall that both p; . and j, . are exact)
U:H (M(w),wéﬁ(w)) —H (ﬁﬁ(w),wg\n(w)) .
Moreover, we have the following commutative diagrams:

1O (M), ) — B (M(w), ) &,

J !

H° (E)ﬁ(w), w5\;n(w)> —= HY (M (w),w)) ®C,,
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and
Y (90(00). ey ) 17 (M (). 0372) §Cy(—1)
Ul U
HY (D0(0). ) —H (M(w). w3*2) & Cyl(-1),
where the left vertical maps U are defined as above and the right vertical maps U are as in
Section 3.5.1. In other words, all the isomorphisms obtained in Corollary 6.2.1 are invariant

under the action of G and the U operator.

Similarly, the commutative diagram (6.3) also induces a morphism
o 23 (7,00 @ (Ogerwyan)) — P1 (7; Do @ (Omr(quian) )
such that the following diagram

i (j:@g)’A ® (Osmr(w)é@B)) gpf (jfﬂcoﬂﬁ ® (Oﬂﬁ*(qw)é@B))

ag*l la?,;*

PEQ{)\W(M = p91&93\3?*((111})

commutes, where 6% is the morphism obtained in Section 6.3.2. This implies the map
H' (M(H,7), Dr @ (Om(um@B)) — H (M(w), win)

obtained at the end of the previous section is compatible with the U operator.
Similarly as in Section 3.5.2, we can define other Hecke operators and they are compatible

with the morphism obtained in previous section.
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Chapter 7

Eichler-Shimura isomorphisms

Recall that in last chapter we obtain a morphism
H' (M(H, 1), Dy @ (Oom(rr.my®B) ® L) — H" (M(w), winga)) -
Moreover, by Corollary 6.2.1, we have an isomorphism
H' (M(w), wingy (1)) = H (M (w), ™) ©1,.C, -
Composing the above we have
U H (M(H, 7), Dy @ (Oon(r,my@B) @ L(1)) — H® (M(w), wp**?) @1, C,.

In particular, if 4 € W, is an wide open disk, B = Ay and Ay is the universal weight

associated to 4, then we have a morphism
\I’u . I—I1 <9ZR(H, 7T), ‘Du X am(HJ)@Bu(l)) — HO (M(w), wﬁ}‘”) ®L (Cp,
where By := Ay ® L. If X € YU(L) is a weight, we have

T, H (zm(H, ), Dy @ GW(HJ@L(U) — 1 (M(w), wt?) &,.C, .
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By construction, the following diagram

HY (M(H, 7), Dy @ Oanrm @ Bu(1) ) 4 HO (M (w), wi+2) &, C,

| |

Uy

H' (M(H,7), Dy @ Oonrm GL(1) ) —2= 1O (M(w),w}#) &1,C,
is commutative, where the vertical maps are induced by the specializations.
The main goal of this chapter is to study the map ¥, using the map Wy. First we figure

out what happens when A = k > 0 is an integer.

7.1 Classical weights

First we fix some notations for this section. Let M := M(H, 7)), M =: M(H, ) and I :=
M (H, ) the Faltings’ site associated to the pair (M, M). Let € : A — M be the universal
abelian scheme and denote w := (5*Qi1/3vt) ?1. Let T := Tw((ﬂ[woo]%l)v). For any integer
k > 0, consider Sym*(T) ® Om®L as in ind-continuous sheaf on Mz*, it can also be viewed

as an ind-continuous sheaf on 9. We have the following proposition.

Proposition 7.1.1. With the above notations, we have a canonical isomorphism compatible

with the actions of G, and all Hecke operators
' <9ﬁ, Sym"(T) ® @mé@L(l)) = (HO(M, W ® (Cp) ® (Hl(M, w e Cyk + 1)).

Proof. We prove the statement by localizing at connected small affine object of M*®* covering
M. Let U = (Spf(R), N) be such an object such that w restricted to U is a free R-module of
rank 1. Let A be the corresponding abelian scheme defined over R, T := Tw((A[WOO]%’l)V),
V= Sym*(T) ® ﬁ[l /7] and wp the pullback of w to U. Recall that we have a continuous
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functor v : M** — M sending U to (U, Uy ). The Leray spectral sequence
H (Mket, R’ v, <Symk(‘J') ® @m@L)) — gt <9ﬁ, Sym*(T) ® 6m®L>
for i +j = 1 degenerates to the exact sequence

0 — H' (M, R v, (Sym*(T) @ Op&L Sym*(T) © Om&L)) —
— H' (M, Sym*(T) @ Op&L) — H (M**, R 0. (Sym*(T) @ Om@L)) —

— H? (Mket, R’ v, (Sym*(T) ® 6m®L))

By Lemma 6.2.1, the sheaf R? v, (Sym*(7) ® 69}{@[/) is just the sheaf associated to the

following presheaf on M*e*:
U —s 1 (A, (Sym"(T) ® Om&L) (R, N)),
where A := Gal (RL/Ry) is a subgroup of § := Gal (RL/RL) and the localization
(Sym"(7) @ OméL) (R, N) = Sym“(T) @ R[1/m] = V.
First we claim that:
H(A, V) = wit @ Cy(k),
HY(A, V) = Wi ® Cy(—1).
Granted this two claims we deduce:
H (M**, R 0, (Sym*(T) ® Om@L)) ® C, = H® (M, *?) @ C,(-1),
H' (M**, RO 0. (Sym*(T) © Om&L)) © C, = H' (M,w ™) ® C, (k).
Moreover we have

H’ (Mketa R’ v.(Sym*(T) @ 69R®L>) ® C, = H’ (M7 gik) ® Cp(k) =0
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since M has dimension 1. Therefore we have an exact sequence of C,-modules compatible

with the actions of G;, and the Hecke operators

Similar to the main result proved in Tate [1967], the above sequence splits canonically and
we deduce the proposition.
Now we prove our claims. We start with the following exact Hodge-Tate sequence of

R[1/7]-modules with semilinear A-actions, associated to A:

= = dlo =
0— w3l p @ BL/)() —=T @ RlL/7] =% w,  @r R[1/7] —0.

Let eg, €1 be an ﬁ[l/ﬁ]—basis of T® ﬁ[l/w] such that

e ¢ is a R[1/n]-basis of g;/R

and
e dlog(eg) is a basis of wp, i.e., odlog(ey) = dlog(eg) for any o € G.
This gives us the following filtration of V:

0 =:Fil™(V) C Fil®(V) C Fil'(V) C --- C Fil* " }(V) C Fil*(V) .=V,
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where Fil'(V) := Z ﬁ[l/w] bnen fori=0,1,...,k For example,

Fil’(V) = R[1/x]e"

Fil'(V) = R[1/x)e} + R[1/7]ef ey
We have the following results (refer to Remark 6.2.1):

(i) H(A, R[1/7]) = Re,,

=D

(i) HY(A, R[1/7]) = wk®Cy(-1),

where Rc, represents the completed tensor product R®C,. Using these we have:

H(A, Fil°(V)) 2 HO(A, wi* @ R[1 /7] (k)

;U|>

[1/7)(k)) = wi"&C,(k),
[1/7](k))

= Wi © HY(A, R[L/](K)) = wit2&C, (k — 1).

=Wy @ HY(A,

I

;U|>

H'(AFi°(V)) 2 HY(A, wi" ®

Moreover, for any 0 < i < k — 1, we have
HO(A, Fil'*! / FilY) 2 1O(A, w2 2% @ R[1/a](k — i — 1))
> WHP2RQC,(k — i — 1),
HY(A, Fil'™! / Fil) 2 YA, w22 % @ R[1/a](k — i — 1))
WAHTEQC, (k — i — 2).

The class of extension

0 — Fil' /Fil""! — Fil'™! /Fil'™' — Fil'™ / Fil' — 0
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in H' (A, wy” ®r ﬁ[l/w](l)) >~ wr? ®r Hl(A,ﬁ[l/w](l)) = R, can be computed from the
Kodaira-Spencer class and turns out to be a unit. Then by induction, for any ¢+ = 1,2, ...k,
we have:

H(AFil') = wi"&C,(k),

H' (A FilY) = wpmP?PeC,(k— 1 —1).
In particular,
HY(A,V) = HYA,Fil") = wi"&C,(k),
H'Y(A, V) = HYA,Filf) = Wh2&C,(-1).
This proves the claims and the proposition follows. U

Remark 7.1.1. The analogue result for modular curves was proved by Faltings in Faltings

[1987]. The above proof follows from the main lines of the arguments in Faltings’ paper.

Recall that we have a natural isomorphism
H' (M2F, V(1)) @1, C, = H! (sm Sym*(T) 6m®L(1>) .
Let &, be the composite of the following morphisms
H' (M7, V(1)) ®L C,
iy (zm Sym*(T) ® Om@L(1 )

= (Hl(M,g M ® ) o ( ,wh ) ®<Cp>
N

HO(M, wk+2) ® (Cp,

where the last map is the projection to the second factor. Then we have
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Proposition 7.1.2. Let k > 0 be an integer. Then the following diagram is commutative

H' (M(H,m)%, Di) @1, Cp(1) ——~H° (M(w), wi*?) &,.C,

HY (M(H,m)%, V(1)) ®1 C, —2= HO (M(H, 7),0}+2) &1, C,,
where the left vertical map is the one induced by specialization and the right vertical map is

the restriction.

Proof. Recall that we have the following commutative diagram (refer to Section 4.4):

von
MEE 9

(7.1)
ul i

M=t (1) —— DM (w).

Ut (w)

Let wh; := viw® ®gum O, where w = W/ with A — M is the universal abelian scheme. Let
e

Tw :

v*(T). We prove the proposition by showing that the following diagram commutes:

H' (M, D) ® Cy(1) H' (M2, V(1)) @ C, (7.2)

- l%

H' (M, D@0 © L(1)) H' (2, V,60m @ L(1))

H! (sm Sym* (T)&0m © L(1))

' (M (w), 1 (D& 0w © L(1))

5|

H' (M(w), ey © L(1)) i H (M, why ® L(1))

H° (M(w), wfquQ) ® Cp &

HO (M, gk+2) ® (Cp

where the two horizontal maps on the top are induced by the specializaion. Moreover, the

left and right vertical compositions are just U, and P, respectively. We will explain the

other maps in the proof.
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e The top square is obviously commutative.

e For the square at the bottom, we first explain how to obtain the horizontal map
o H (sm, wh, ® L(l)) — H! (M(w),w@t(w) ® L(l)) )
In fact j1 is defined by the following compositions:

HY (90, wh, @ L(1)) ———— ! (sm VW @Oy ® L(l))

- H' <fm(w), V*vg‘ﬁgk®6m(w) ® L(l))

(1)

HY (92(00). vy 2" 00m) © L(1) )

H' (W(w),vén(wwi@@m(w) ® L(l))

HY ((w), vy, (5 Cy(1)))

2)

H! (mt(w), Ut <Ugn(w)7*w§t(w)> ®L(1)>

HY ((w), oy @ L(1) )
where equality (1) is obtained from the commutative diagram (7.1) and equality (2) is

by Proposition 6.1.1.

Now consider the Leray spectral sequence

H” (M***, R vy (why @ L(1))) = HP™ (M, wh ® L(1)) .
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For p 4+ ¢ =1, we get an edge map
HY (90wl @ (1)) — H” (%, R vy © L(1)).

which is just the right vertical map in the bottom square of diagram 7.2. Recall from

Theorem 6.2.1 that we have isomorphisms

H' (M(w), Wiy ® L(1)) = H® (M (w), R vanu),« (Wingw) © L(1)))

I

H® (M(w),wi) ® C,.

w

Thus we obtain a commutative diagram given by

m

i (M), why,,) @ L(1)) H (9, wh, @ L(1))

| |

1O (M (), R v o (g © L(1) ) ) < H (MF%, R i (wly @ L(1))

H® (M (w),w};"?) ® C, HO (M,w*?) ® C,

which implies the commutativity of the bottom square.

e We deduce that the middle square commutes since the following diagram is commuta-

tive

H! <9ﬁ(w), V(D) &0y ® L(l)) v ! (sm D& 0m @ L(l))
' <9ﬁ(w), v (Vi) @0mw) ® L(1)) v i <9ﬁ V@00 © L(1))

*

i (mt(w>, Sym (T,)& Oy @ L(l)) CA— (zm Sym* (T)&0um ® L(l))

| |

HY (M(w), whyy © L(1)) - H' (M, wly ® L(1))
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Here, both vertical maps in the bottom square are induced by the dlog map. Note that
the left vertical composite is just the map 6% as obtained in formula (6.2). The proof

of the proposition is completed.

We end this section with the following proposition.

Proposition 7.1.3. Let & C W, be a wide open disk defined over L and Ay the universal

weight associated to Y. Let A € MU(L) NZ such that k > 0. Then the natural diagram

Uy

H' (M(H, m)g, Da) & Cy(1) —2~ B (M(w), w}*?) &C, (73)

| |

0, .

H1 (M(H, W)%t, 'D,\) ® Cp(l) - HO (M(IU), w)\+2) ® Cp

w

| |

Dy

Hl (M(H7 ﬂ-)%ta V,\) ® (Cp(l) - HO (M(H7 7T), ﬂ)\+2) ® (Cp
is commutative, where the left and the top right vertical maps are induced by the specializa-
tions

Dn—)D)\ — V.

The lower right vertical map is the restriction.

7.2 Main result

7.2.1 Assumptions and notations
To state our main theorem, we first recall some notations and assumptions.

(I) » > 11is an integer.
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(IT) L is a finite field extension over Fp containing an element ¢, € C,, where {(,},>1 is a
fixed sequence of C, points of LT satisfying
e the Op-order of (, is exactly n";
o 1(,11 = (, for each n > 1;

o (| = (—7T)‘1+1, where (—7?)'1+1 is a fixed element in C,,.

(ITI) & C ‘W, is a wide open disk defined over L, with ring of bounded analytic functions
Ag={fe0@) ||f(z) <1forallzeu},

and universal weight

A OF — AL

(IV) w > 0 is a rational number which is adapted to r, i.e.,

1

w<< —-—.
¢ 2(q+1)

Moreover, if we choose a weight A € {(L), we also assume that

w< (qg—1) (v(s)—i—r— ‘ )

p—1
where s is an element in C, depending on A as in Definition 3.4.1, e is the ramification
degree of Fp/Q, with the assumption that ¢ < p — 1 (Remark 3.4.1) and v is the

valuation on C, which extends the one on Fp, normalized by v(m) = 1.
(V) heQ, h>0is aslope.
Furthermore, we also suppose that
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e there exists a weight A € (L) corresponding to an integer k& > 0 and
h<A+2-—N,
where N = [Fp : Q,);

e all H' (M(H, W)%,@u), H® (M (w),wys™?) and H? (M (H, ™%, D) have slope < h
decompositions with respect to the U operator.
Remark 7.2.1. Note that both H° (M(w),w{}‘”)gh and H' (M (H, W)%,'Du)gh are finitely
generated By-modules. Since By is a principal ideal domain, H° (M (w),w;})ﬂ“)gh (resp.
H' (M(H, ™%, Du) ) is a direct sum of a finite free By-submodule and a finite torsion. We

have:

(1) Since H° (M (w), wﬁ}‘”) is an orthonormalizable By-module, one can easily prove that
the torsion part of H° (M (w), wi‘}*“)gh is 0. Hence H® (M (w), w{})u“)gh is a finite free

Bg-module.

(2) It is not known yet whether H' (M (H, )%, @u)_ is a free By-module. We denote by
H' (M(H, )%, @u) ~and H' (M(H, )%, Du) the torsion and torsion free part of

H! (M (H,m)%, Du) , respectively. Then we have an exact sequence

0——=H" (M(H,7)s, Dy) " —=H" (M(H,m)%, Dy)~" ——

——H" (M(H,7), Du) 0,

which is GG and Hecke-equivariant. The above sequence is split as By-modules but
not as Gp-modules. Since H® (M (w), wi‘}‘”)gh is free, the morphism

WS g (M(H, 7%, Dy) =" @ Cy(1) — H° (M (w), w2 )" & C,
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factors through the morphism

<h .

&C,

w

H' (M(H,7)%, Dy) " & Cy(1) — H® (M (w), wh?)
which is still denoted by \Iﬁh. Moreover, we have the following isomorphism

H' (M(H, )%, Dy) =" /my H (M (H, 7)%, Dy) ="

= W (M(H, ) D) (M(H, ), D)y

for all but finite weights A in i, where 7 is a uniformizer at A. Hence if we replace

<h

H' (M(H, )%, Dy) =" by H' (M(H, 7)3, Dy);

=, we can also prove our main theorem

without assuming that H' (M (H, 7)<, Dy) =h

T is a free By-module.

Now we state our main theorem and the proof is left to the following section. Let
x:Gr = Gal(L/L) — O}

be the Lubin-Tate character of L and xp"¥ be the character defined by the following com-

position

G052 B ——(By® C,) .
Theorem 7.2.1. There exists a finite subset of weights Z C \(C,) such that

(a) For each A\ € U(L) — Z, there exists a finite dimensional C,-vector space S3" endowed
with trivial semilinear G-action and Hecke operators, such that we have natural Gp,

and Hecke equivariant isomorphisms

<h -

H1 (M(H, 71')%75’ ®>\) ®L(Cp(1) ~ (HO (M(w)7w)\+2)

w

<h ~

@ch) ® <S§h(>\ n 1)) ,

where the first projection is \Ilfh.
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(b) For every wide open disk 0 C A defined over L satisfying B(C,)NZ =0, there exists a
finite free By®y, C, —module S%h endowed with trivial semilinear Gr-action and Hecke

operators, for which we have a G and Hecke equivariant exact sequence

<h -

0 S%h (X . X%niv) H! (M(H, W)%t, 9%) AL Cp(l) -
L Ag+2) S ¢
— = H° (M(w),w)?)=" & C, 0.

Moreover, for any such open disk U, there exists finite subset Z' C 0 with the property
that, for any wide open disk 0" C U with B'(C,) N Z' = 0, we have a natural G, and

Hecke equivariant isomorphism

<h 2

]:_I1 (M(Ha ﬂ-)%ta ®>“II’) ®L(Cp(1)

I

(HO (M (w), w)r+?)=" ®ch) ® (S%fl (x - x%’V”)) :

where the first projection is determined by W%h.

7.2.2 The proof of the main theorem

We will divide the proof of our main result, Theorem 7.2.1 stated in the previous section,

into several steps.

Lemma 7.2.1. Let 8, Ay, w be as before and A € (L) N 7Z satisfying A > h — 2+ N. Let
T\ € By be a rigid analytic function on L which vanishes with order 1 at A and nowhere
else on 3. Then the specialization maps Dy — Dy and w)* — w induce the following exact

sequences:

H' (M(H,7)¢t, Dy)—~H' (M(H,7)%, Dy)—=H' (M(H,7), Dy)—=0,

L Y
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and
0—H" (M(w),wpy) —=H° (M (w),wy) —=H° (M (w),w}) —0.

w

Proof. We start from the exact sequence:

0 Dy—2-Dy, Dy 0,

which induces the following exact sequence of By-modules

H (M(H 7T)et @u)HHl (M(H 7T)et @n)HHl (M(H 7T)et @)\)

H'1—12 (M(H 7T)et @n) H'1—12 (M(H 7T)et @n) H'1—12 (M(H 7T)et @)\)
Then the following sequence induced by the slope decomposition

H' (M(H e, @n)<h sl (M(H e, @n)<h S— (M(H e, @A)<h

i (M D) e (M(H ) D) e 2 (M) D)
is also exact. Since A € (L) NZ and A > h — 2+ N, by Corollary 5.2.2 we have
12 (M(H,m)%,D,)~" = 12 (M(H,7)%, V)"
But the latter is equal to 0 since
H* (M (H,m)%,V,) =0
by the same argument as in the proof of Proposition 7.1.1. This implies that
m - B2 (M(H,m)%, Dy)~" = 0? (M(H, m)%, Dy)~"
By our choice of 7y, we deduce that

12 (M(H, )%, Dy)=" =0,
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which gives the first exact sequence in the statement of the lemma.

Moreover, the exact sequence

gives another exact sequence of Bg-modules

0—H° (M(w),wpy) —=H° (M (w),wp) —=H° (M (w),w}) —=H" (M (w),w}) .

w

Since M (w) is an affinoid subdomain and w* is a sheaf of By-Banach modules, we can

deduce from [Andreatta et al., 2015a, Appendix| that

' (M(w),w)‘”) = 0.

w

Thus the second exact sequence in the lemma follows. U

Now let r, , w and h be as in Section 7.2.1. Let A € Y(L) NZ, A > 0. Recall that we
have the following commutative diagram

Wy

H' (M(H, )%, Dy) @ Cp(1) ——H° (M(w),wp?) © C,

| |

H' (M(H,m)%,Dy) & Cyp(1) —2=H (M(w), w)?) & C,

| B

H (M(H, )%, V) @ Cy(1) 2= H° (M(H, 7),w™*?) & C, .

By our assumptions, both H' (M (H, 7)$*, Dy) and H® (M (w), wp*?) have slope < h decom-

positions. Then the induced diagram

1Y (M(H,m)%, Dyg)=" & Cy(1) ——H (M(w),w)+2)=" & C, (7.4)

|

H' (M(H,m)%, D))" & Cy(1) ——H® (M(w),w)?) " & C,

| ¢

H (M(H, 7)) " & C,(1) 2> 1O (M(H, 7),w™?) " & C,




is also commutative, where 9 is the specialization map and ¢ is the restriction. Moreover, the
surjectivity of @, implies that the bottom map @fh in the above diagram is also surjective.

We have the following two cases:

(I) h < A+2— N. Then [Kassaei, 2009, Theorem 5.1] and Proposition 5.2.3 imply that
both ¥ and ¢ in the above diagram are isomorphisms. Then \Ilfh is surjective since

<h .
o is so.

(IT) h > A+2 — N. Consider the lower rectangle in diagram (7.4). The commutativity of
this rectangle implies that the image of \Ilfh is contained in the set of classical modular

forms. In general, \Iffh is not surjective.
Now we let B := By®y, C,, we have the following result.
Lemma 7.2.2. There exits a nonzero element b € B such that b - Coker <\I/§h> = 0.

Proof. Let A\ € U(L) NZ be an integer such that A > h — 2 + N. Note that both
H' (M(H,m)%, Dy) =" &C,(1) and H° (M (w), w{})u“)gh ® C, are finite free B-modules. We
denote by n and m their ranks as B-modules, respectively. Then we can choose basis for

both such that the map \Ilih corresponds to a matrix

\I/&h = (bij) 1<i<n € MnXM(B>‘

1<j<m
The exact sequences obtained in Lemma 7.2.1 give the following identifications:
1 et <h 2
H' (M(H,m)¥, D))~ ©@C,y(1)

= (' (M(H.7)5, D)™ & C,(1)) fmn - (1 (M(H, ), Do) EC,(1))
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and

= () (M), 7)™ 0 C,) - (H (M), 2) " &.C,).

where 7y is an element of B which vanishes with order 1 at A and nowhere else in U as in
Lemma 7.2.1.

Hence the map \Iffh corresponds to the matrix

UM = (b () 1<i<n -

1<j<m
Then our assumption on A implies that n > m and the rank of the matrix \I/)—<\h is exactly m.

This means there exists an m x m-minor of W5" = (b;;), say A, such that
det (A(N)) # 0.

Here, if A = (a;j)1<i<m is a square matrix with entries in B, we denote by A(\) the matrix
152m
(a;;(X)) with entries in C,,.

Now let b := det(A). Then b is a nonzero element of B by the above argument. Moreover,

we have

b - Coker (@&h) = 0.
O

Let Z; be the set of zeros of b, where b is as in the above lemma. Let U C U be a connected

affinoid subdomain defined over L such that
e U(C,)NZy =0 and

e there exists an integer A € (L) with the property that A\ > h —2 + [Fp : Q,].

196



Let Tgh denote the kernel of the map

s 1 (M(H, )3, Do) =" & Cy(1) — H® (M (w), w)*?

where Ay is the restriction of Ay to U, which is also the universal character attached to Q.
Moreover, Dy is just the étale sheaf associated to the distribution Dy = Dy(|y. By the above
notations, we have an exact sequence of (By® C,)-modules

psh

0—T5"—H"' (M(H, )3, D) ™" & C,(1)—~H" (M(w), w+2) =" & C,—0,

which is split (only as (By® C,)-modules here) since H® (M (w),wi‘}‘”)gh ® C, is a finite
free (By® C,)-module. Moreover, it follows that Tig" is a finite projective (By® C,)-module
hence is free, since the latter is a principal ideal domain.

Now we let

x: G = Gal(L/L) — O}

be the Lubin-Tate character of L (refer to Remark 6.2.1) and y"v be the character defined

by the following composition

G032 By —~(By® C,)* .

Let Sg" := Tg" (x"'(xgriv)=1). This is a free (By® C,)-module of rank [ = n — m with
continuous, semilinear action of G;. Let ¢y be the Sen operator attached to S%h and K a

finite, Galois extension of L in L satisfying

7 <h AN o .
(a) Wk, (Sﬁ ) = <S@ ) is a free (By® K )-module of rank [. Here Hy is the kernel
of the cyclotomic character

Xeye - GK — Z;a
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(b) there exists a (By®pKoo)-basis {e1,ea, -+ , e} of WKO@ <S§h> such that
W, := (By®r K)ey + -+ (By @ K)e
is stable under 'y := G /H;
(c) the action of v, a topological generator of ', on this basis is given by
(i) = exp (log (Xeye (7)) d) (€3),

for every 1 <i <.
Let A € U(L) be an integer such that A > h — 2+ [F5 : Q,]. We have the following exact
sequence of finite free (By® C,)-modules, with G, and Hecke actions
0 — Sy
— H' (M(H,m)%, Dg) =" @ C,p(1) (x (™) ")
oy (M(w), w{}f’“)gh & C, (X—I(X%niv)—l)
— 0.

Specializing the above exact sequence at A\, i.e., tensoring with L over By via the map

By — L sending f + f(\), we have a commutative diagram

0 0 0
g<h G<h g<h
by 20 A
Hy Hy Hi 0
00— quu,)m+2 - quu,)m+2 - H?u,/\+2
0 0 0,
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where

Hy = H' (M(H,m)%, Do)~ & C,(1) (x (™) ™).,

HL = H' (M(H,m)%, D))" &C, (=A),

H vy o = B (M), 27 6C, (™))
H?Uv)‘+2 = HO (M(w)7 w1)1\1+2)gh ® Cp (_)\ - 1) )

and the twist in the last equation is by the Lubin-Tate character. Then by Snake Lemma,
we have an exact sequence
Sy — Szt — S5 — 0,
which implies S/\Sh = S%h/ﬂ)\ . S%h.
Moreover, since A > h — 2+ [Fp : Q,], by classicality, we have the following commutative

diagram:

Then by Five Lemma we obtain
S = Ker (m§h> ~ gt (M(H, )0 ) &C,

as G -modules.
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The exact sequence

0— my- S5 — S5 — S5 — 0

induces the following exact sequence
0 — Wi <7T,\ : S§h> — Wi <S§h> — Wi <S§h> — H'(Hg, S3").
Since the extension L/K,, is almost étale, we have
H'(Hg, Sg") = 0.

Therefore, we have

12

e () = o () /. (o 59)

- T (5) /(T (55)).

where the last equality is true since m) € By.

Now let ¢, be the Sen operator attached to S/\Sh. We denote by
(dij) € My (Bm ®rL fA(oo>
the matrix of ¢y with respect to the (BQJ@L[?OO)—basis {e1, -+, e} of WKOO <S§h> as in the

assumption. Then the image of {ey,--- , ¢} is a basis of WKO@ (S/\Sh) of which ¢, has matrix

(dij(A)1<i<i -

1<5<1
Recall that we have the isomorphism

<h ~

Syt u! (M(H,7),w™)" & C,,

thus



So we have ¢, = 0, which implies that d;;(A\) =0 for all A € U(L) NZ with A > h—2+ N,
where n = [Fp : Q,] (we have infinitely many such A). Then we can deduce that ¢g(e;) =0
hence v fixes ¢; for all 1 <7 </, i.e., S%h has trivial semilinear G g-action.

Finally, by étale descent, Sg" is a free (By® C,)-module of rank [ with trivial Gz-action.

Now we rewrite our exact sequence as follows

H! (M(H, )%, Dy)~" & C,(1) — (7.5)

L )

Sg (x - )

Let

I o= Hom gy ey, (H (M(w),w)742) " @ €, 55" (0 xa™)) -

Then K is a finite free (By® C,)-module with continuous, semilinear action of G . Further-
more, the extension class of the above exact sequence corresponds to a cohomology class in
H! (G, H). Let ¢ denote the Sen operator associated to 3. Then by the argument in Sen
[1988], the cohomology group H! (G, H) is killed by ¢ := det(¢) € By. Since ¢ = det(¢) # 0,

we have a split short exact sequence of G -modules

0 (55" (x-xa™)). (1 (M(H, w2, Do) " & T,(1)) —
R (O (M(w), w2 )< 6T, 0.

Now let Z’ C U be the set of zeros of ¢, we obtain our theorem.
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