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ABSTRACT

Overconvergent Eichler-Shimura Isomorphisms on Shimura Curves over a

Totally Real Field

Shan Gao, Ph.D.

Concordia University, 2016

In this work we construct overconvergent Eichler-Shimura isomorphisms on Shimura curves

over a totally real field F . More precisely, for a prime p > 2 and a wide open disk U in the

weight space, we construct a Hecke-Galois-equivariant morphism from the space of families

of overconvergent modular symbols over U to the space of families of overconvergent modular

forms over U. In addition, for all but finitely many weights λ ∈ U, this morphism provides a

description of the finite slope part of the space of overconvergent modular symbols of weight

λ in terms of the finite slope part of the space of overconvergent modular forms of weight

λ + 2. Moreover, for classical weights these overconvergent isomorphisms are compatible

with the classical Eichler-Shimura isomorphisms.
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Chapter 1

Introduction

Let us review the classical Eichler-Shimura isomorphism on modular curves. Fix a prime

p ≥ 3, an integer N ≥ 3 such that (p,N) = 1 and let Γ := Γ1(N) ∩ Γ0(p) ⊆ SL2(Z).

Let X := X(N, p) be the modular curve for the group Γ over Spec(Z[1/(Np)]), E → X

the universal semi-abelian scheme and ω := ωE/X = e∗(Ω1
E/X) the invertible sheaf on X

of invariant 1-differentials, where e : X → E is the zero section. We have the following

theorem.

Theorem 1.0.1. (Deligne [1971b]) For every nonnegative integer k, we have a natural iso-

morphism:

H
1(Γ, Vk,C) ∼= H

0(XC, ω
k+2)⊕ H0(XC, ωk ⊗ Ω1

X/C),

where Vk,C := Symk(C2) and the overline on the second term of the right hand side is the

complex conjugation. Moreover, this isomorphism is compatible with the action of the Hecke

operators.

The elements of H1(Γ, Vk,C) are called classical weight k modular symbols. The elements

1



of H0(XC, ω
k+2), respectively H0(XC, ω

k ⊗ Ω1
X/C) are called classical modular, respectively

cusp forms of weight k + 2. The classical Eichler-Shimura isomorphism describes the space

of weight k modular symbols in terms of elliptic modular forms of weight k + 2. In Faltings

[1987] a more arithmetic version of this isomorphism is presented. Now fix a complete discrete

valuation field L of characteristic 0, ring of integers OL and residue field L, a perfect field

of characteristic p. We denote by Cp the p-adic completion of an algebraic closure L of L.

Let us consider the modular curve X over the p-adic field L and for a nonnegative integer

k, let Vk := Symk(Q2
p)(1), where (·)(k) is the Tate twist, with the natural action of Γ and

GL = Gal(L/L). The following theorem is obtained in Faltings [1987].

Theorem 1.0.2. With the above notations we have a canonical isomorphism compatible with

the actions of GL and all Hecke operators

H
1
(
Γ, Vk

)⊗L Cp
∼=
(
H

0(X,ωk+2)⊗L Cp

)
⊕
(
H

1(X,ω−k)⊗L Cp(k + 1)

)
.

In Coleman [1997] and Coleman and Mazur [1998], the authors show that modular eigen-

forms of finite slope can be p-adically interpolated. In fact there exists a geometric object

parameterizing such modular eigenforms called the eigencurve. On the other hand, modular

symbols have interesting p-adic properties. The work in Stevens [2015] defines overconvergent

modular symbols and shows that classical modular symbols can be interpolated in p-adic

families.

A natural question one could raise is if Faltings’ Eichler-Shimura isomorphism could be

p-adically interpolated in the weight variable. In Andreatta et al. [2015b], the authors

answer affirmatively to this question. They show a description of the finite slope part of

p-adic families of overconvergent modular symbols, in terms of the finite slope part of p-adic

2



families of overconvergent modular forms, for generic accessible weights. We can think of

this result as a comparison between two different approaches to construct eigenvarieties:

one using the theory of p-adic and overconvergent modular eigenforms, and the other using

cohomology of arithmetic groups (overconvergent modular eigensymbols). More precisely,

let W be the rigid analytic space associated to the complete noetherian semilocal algebra

Zp[[Z
×
p ]], called the weight space. Let T0 := Z×

p ×Zp, which can be viewed as a compact

subset of Z2
p, with natural actions of Z×

p and the Iwahori subgroup of GL2(Z). There are

two situations:

(a) For any weight λ ∈ W(L), we denote by Dλ the L-Banach space of analytic distribu-

tions on T0, homogenous of degree λ for the action of Z×
p .

(b) Let U ⊂ W∗ be a wide open disk, where W∗ ⊂ W is the rigid subspace of accessible

weights, i.e.,weight λ such that |λ(t)p−1 − 1| < p−1/(p−1). We denote by O(U) the

L-algebra of rigid functions on U , and by ΛU ⊂ O(U) the OL-algebra of bounded by

1 rigid functions, i.e., the set of f ∈ O(U) such that | f(λ) |≤ 1 for each λ ∈ U . We

denote by λU : Z×
p → Λ×

U the character defined by λU(s)(λ) = λ(s) for each s ∈ Z×
p

and λ ∈ U(L). This is called the universal character associated to U . Similarly denote

by DU the BU := ΛU ⊗ L-Banach module of analytic distributions on T0, with values

in BU , homogenous of degree λU for the action of Z×
p .

Both Dλ and DU are Γ-representations. There exists a Γ-equivariant map DU → Dλ if

λ ∈ U(L), called specialization. Similar to the classical case, the elements in H1
(
Γ, Dλ(1)

)
are called overconvergent modular symbols, while the ones in H1

(
Γ, DU(1)

)
are called p-adic

families of overconvergent modular symbols.

3



Moreover, for each w ∈ Q satisfying 0 < w < p/(p + 1), we denote by X(w) the strict

neighborhood of the component containing the cusp ∞ of the ordinary locus of radius pw in

the rigid analytic curve (X/L)
an. Then, for any weight λ ∈ W(L), there exists an invertible

modular sheaf ω†,λ
w on X(w) such that if λ = k ∈ Z, then ω†,k

w
∼= ωk|X(w). The elements of

H0(X(w), ω†,λ
w ) are called overconvergent modular forms of weight λ. Similarly, if U ⊂ W

is a wide open disk with universal weight λU , there exists a w and a modular sheaf of BU -

Banach modules ω†,λU
w , such that the elements of H0(X(w), ω†,λU

w ) are p−adic families of

overconvergent modular forms over U .

Fix U ⊂ W∗, a wide open disk defined over L. In Andreatta et al. [2015b] the authors

constructed a geometric (BU⊗̂Cp)-linear homomorphism

ΨU : H1 (Γ, DU) ⊗̂LCp(1)→ H0
(
X(w), ω†,λU+2

w

) ⊗̂LCp,

which is equivariant for the actions of GL and Hecke operators, also compatible with spe-

cializations.

Let h ≥ 0 be an integer and suppose that U is such that bothH1 (Γ, DU) andH0
(
X(w), ω†,λU

w

)
have slope ≤ h decompositions and that there exists an integer k0 > h − 1 satisfying

k0 ∈ U(L). Let Ψ
(h)
U denote the morphism induced by ΨU on slope ≤ h parts, we have

the following:

Theorem 1.0.3. (Andreatta et al. [2015b]) Let U , k0 and h as above. a) There exists a finite

set of weight Z ⊂ U(Cp) such that for each λ ∈ U(L) − Z, we have a natural isomorphism

of Cp-vector spaces, which is equivariant for the semilinear GL-action and the actions of the

Hecke operators Tl for (l, Np) = 1 and Ul for l dividing Np:

ΨES
λ : H1 (Γ, Dλ)

(h) ⊗L Cp(1) ∼=
(
H0

(
X(w), ω†,λ+2

w

)(h) ⊗̂LCp

)
⊕
(
S
(h)
λ (λ+ 1)

)
.

4



Here S
(h)
λ is a finite Cp-vector space with trivial semilinear GL-action and an action of the

Hecke operators.

b) We have a family version of a) above: for every wide open disk V ⊂ U defined over

L satisfying V (Cp) ∩ Z = ∅, there exists a finite free BV−module S
(h)
V on which the Hecke

operators of Tl (for l not dividing pN) and Ul (for l dividing pN) act, and we have a natural

GL and Hecke equivariant isomorphism

H1
(
Γ, D

(h)
V

)
⊗̂LCp(1) ∼=

(
H0

(
X(w), ω†,λV +2

w

)(h) ⊗L Cp

)
⊕ (

SV (χ
univ
V · χ)) ,

where χ is the cyclotomic character of L and

χuniv
V : GL

χ−→ Z×
p

λV−→ B×
V −→ (BV ⊗̂Cp)

×

is the universal cyclotomic character attached to V , where BV := ΛV ⊗ L.

Following the general line of arguments in Andreatta et al. [2015b], we would like to obtain

the similar overconvergent Eichler-Shimura isomorphisms on Shimura curves over a totally

real field F over Q. There are two cases:

• F = Q: The work was done in Barrera and Gao [2016] following the same argument

as in Andreatta et al. [2015b]. In this case, the weight space W and T0 are the same

as in the modular case. There the authors generalize the result by working with all

the weights in the weight space W not only the accessible ones. Moreover, working

on Shimura curves over Q instead of modular curves, simplifies some problems and

complicates others. Namely, the non-existence of cusps simplifies the log structures

on Faltings’ sites. On the other hand, the universal abelian scheme over the Shimura

curve has higher relative dimension and one has to use the quaternionic multiplication

5



in order to obtain objects (Tate modules, sheaves of differentials, canonical subgroups,

etc.) of the right size.

• F �= Q: This is the main goal of this thesis, to develop a similar theory of overcon-

vergent Eichler-Shimura isomorphisms as in Andreatta et al. [2015b] and Barrera and

Gao [2016] for modular forms over certain PEL Shimura curves over F . Similarly as in

the first case, we have higher relative dimension of the universal abelian scheme hence

we need to “cut” certain objects to get the right size. Moreover, in this case, both the

weight space W and T0 are different and we need to consider more structures to make

things work.

Here is a detailed description of the structure of this thesis. We will work mainly on curves

with three different level structures (Section 3.1.3.3). For the convenience of the reader, we

present the following table, which lists the analogy between the quaternionic curves we are

interested in and the classical modular curves. We will consider rigid analytic curves and

their corresponding formal models.

Quaternionic curve Level Classical curve Classical level

M(H) K(H) X1(N)an Γ1(N)

M(H, πn) K(H, πn) X1(N ; pn)an Γ1(N) ∩ Γ0(p
n)

M(Hπn) K(Hπn) X1(Npn)an Γ1(Npn)

Let F be totally real field of degree d > 1 over Q and denote by τ1, τ2, . . . , τd all its real

embeddings. Set τ = τ1. Let B be a quaternion algebra over F which is split at τ and

ramified at all other infinite places τ2, . . . , τd. Fix p �= 2 a prime integer. Choose an element

6



λ ∈ Q, λ < 0 such that Q(
√
λ) splits at p. Let E := F (

√
λ) be an imaginary quadratic

extension over F . We denote by P1, . . . ,Pm the primes of F lying above p, denote simply

by P = P1. Let FPi
be the completion of F at Pi. Let OP be the ring of integers of FP

and denote by e and f its ramification degree and residue degree, respectively. Fix π, a

uniformizer of OP and let κ be the residue field, with cardinality q = pf and characteristic

p. Let v(·) be the normalized valuation of FP, i.e., v(π) = 1,

In Chapter 2, we review some basic definitions and properties of log schemes. We defined

log smooth and log étale morphisms between fine and saturated log schemes. Then we give

a criterion of log smoothness (respectively log étaleness) in terms of charts. Moreover, we

introduce Kummer étale morphisms and Kummer étale sites, which play an important role

in the construction of Faltings’ site later.

Chapter 3 is a brief review of the work of Carayol [1986], Kassaei [2004] and Brasca [2013].

First we define the Shimura curves with different level structures over C following Carayol

[1986], which are Shimura varieties of PEL type (Section 3.1.2). These curves are moduli

spaces of abelian schemes with additional structures. We also give explicit description of

the moduli problems over both reflex field and local field (Section 3.1.3). Then we recall

the definition of the analogue of the Hasse invariant and the theory of canonical subgroup

developed in Kassaei [2004]. We also review the definition of the dlog map and the con-

struction of the Hodge-Tate sequence. These are the most important technic to construct

the modular sheaves and to define overconvergent (quartenionic) modular forms following

Brasca [2013]. Moreover, we introduce a suitable rigid analytic space W whose L points, for

L a finite extension of FP, correspond to continuous characters O×
P
→ L×. Following Brasca

[2013], we recall the construction of modular sheaves ωλ
w on M(w) for any weight λ ∈ W

7



and for families. At the end of this chapter, we give a construction of the Hecke operators,

namely, the U operator and the TL operators, which are analogous to the classical Up and

Tl operators, respectively.

In Chapter 4, first we review the basic construction of Faltings’ sites and topoi, introduced

by Faltings in Faltings [2002b] and generalized by F. Andreatta and A. Iovita in several papers

such as Andreatta and Iovita [2008], Andreatta and Iovita [2013] and Andreatta and Iovita

[2012]. Then we define Faltings’ sites associated to the Shimura curves which we discuss in

Section 4.3.2 and Section 4.3.3. Moreover, we define several continuous functors between

these sites which induce morphisms between their corresponding topoi. We also show the

localization functors, following Andreatta et al. [2015b], which allows us to calculate or prove

things locally.

Chapter 5 is devoted to introducing the right overconvergent cohomology, which can be

thought of as (families of) overconvergent modular symbols, to be related with the π-adic

families constructed in Brasca [2013]. First we define some modules Dλ called distributions

with the right action of the semigroup

Λπ =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ ∈ M2(OP) ∩GL2(FP) | a ∈ O×
P
, c ∈ πOP, d �= 0

⎫⎪⎪⎬⎪⎪⎭ .

The overconvergent modular symbols of weight λ are defined to be H1(M(H, π)et
L
,Dλ), which

can be identified with the group cohomology
⊕

x∈CL+
E
H1(Γ

x
, Dλ), where Γ

x
is a certain tor-

sion free arithmetic subgroup of G(Q). Furthermore, this isomorphism is compatible with the

action of Hecke operators and GL. This identification allows us to get slope decompositions

on H1(M(H, π)et
L
,Dλ) by working on

⊕
x∈CL+

E
H1(Γ

x
, Dλ).

Chapter 6 is the most important part of this thesis. We relate overconvergent modular

8



symbols H1
(
M(H, π)et

L
,Dλ

)
of weight λwith overconvergent modular forms H0

(
M(w), ωλ+2

w

)
of weight λ+2. We use some continuous functors and think of both Dλ, and ωλ+2

w as sheaves

on M(w) which is Faltings’ site associated to the pair (M(w),M(w)) (Section 4.3.2 and

Section 4.4). By calculating cohomology on M(w) (Corollary 6.2.1), we obtain a morphism

Ψ : H
1
(
M(H, π)et

L
,Dλ

) ⊗̂L Cp(1) −→ H
0
(
M(w), ωλU+2

w

) ⊗̂L Cp .

Eventually, in Chapter 7, we state and prove our main theorem as follows

Theorem 1.0.4. There exists a finite subset of weights Z ⊂ U(Cp) such that

(a) For each λ ∈ U(L)−Z, there exists a finite dimensional Cp-vector space S≤h
λ endowed

with trivial semilinear GL-action and Hecke operators, such that we have natural GL

and Hecke equivariant isomorphisms

H
1
(
M(H, π)et

L
,Dλ

)≤h ⊗̂LCp(1) ∼=
(
H

0
(
M(w), ωλ+2

w

)≤h ⊗̂LCp

)
⊕
(
S≤h
λ (λ+ 1)

)
,

where the first projection is Ψ≤h
λ .

(b) For every wide open disk V ⊂ U defined over L satisfying V(Cp)∩Z = ∅, there exists a

finite free BV⊗̂LCp−module S≤h
V endowed with trivial semilinear GL-action and Hecke

operators, for which we have a GL and Hecke equivariant exact sequence

0 S≤h
V

(
χ · χuniv

V

)
H1

(
M(H, π)et

L
,DV

)≤h ⊗̂Cp(1)

Ψ≤h
V

H0
(
M(w), ωλV+2

w

)≤h ⊗̂Cp 0.

Moreover, for any such open disk V, there exists a finite subset Z ′ ⊂ V with the

property that, for any wide open disk V′ ⊂ V with V′(Cp)∩ Z ′ = ∅, we have a natural

9



GL and Hecke equivariant isomorphism

H
1
(
M(H, π)et

L
,Dλ

V′

)≤h ⊗̂LCp(1)

∼=
(
H

0
(
M(w), ωλ

V′+2
w

)≤h ⊗̂LCp

)
⊕
(
S≤h
V′ (χ · χuniv

V′ )
)
,

where the first projection is determined by Ψ≤h
V .
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Chapter 2

Log Schemes and Log Smoothness

In this chapter, we will briefly recall some basic preliminaries on log schemes and a class of

log étale morphisms of log schemes, called Kummer étale morphisms. In particular, let X be

an fs log scheme (see Definition 2.2.4), we will describe the associated sites and topos, called

the Kummer étale site onX, which play an important role in the construction of the Faltings’

site. We will only list some basic propositions of log schemes and log étale morphisms and

omit most of the proofs. The main references of this chapter are Illusie [2002], Kato [1989],

Nakayama [1997] and Ogus [2006].

In the whole chapter, a monoid means a commutative monoid with a unit element 1.

(In general, a monoid is written multiplicatively. For some special cases, for example N,

the monoid is written additively and the unit element is denoted by 0 in such cases.) A

homomorphism of monoids is assumed to preserve the unit. We writeMon for the category of

monoids and homomorphisms of monoids. Let P be a monoid, there is a universal morphism

λ from P to a group P gp, such that any morphism, from P to a gp G, factors uniquely

through λ. In other words, there exists a unique group homomorphism P gp → G such that

11



the following diagram

P

λ

G

P gp

commutes. Moreover, P gp is called the group associated to P and

P gp = {ab−1; a, b ∈ P}

with the relation that

ab−1 = cd−1 ⇔ sad = sbc

for some s ∈ P . We denote by P ∗ the subgroup of all invertible elements of P and write

P = P/P ∗.

2.1 Monoids

Definition 2.1.1. Let P be a monoid.

• P is called sharp if P ∗ = {1}.

• P is called integral if ab = ac implies b = c in P . This is equivalent to saying that the

canonical map P → P gp is injective.

• P is called saturated if P is integral and for any a ∈ P gp, a is in P if and only if there

exists an integer n ≥ 1 such that an ∈ P .

• P is said to be fine if it is finitely generated and integral. Monoids which are both fine

and saturated are often called fs-monoids.
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Example 2.1.1. (1) A natural example of a monoid is N with respect to the natural

addition. It is a free monoid with generator 1 and integral since Ngp = Z. Moreover,

N is an fs-monoid.

(2) Let A be a commutative ring with identity 1. Then A with respect to its multiplication

is a monoid, denoted by (A, ·, 1).

Definition 2.1.2. Let Monint denote the full subcategory of Mon whose objects are the

integral monoids. For any monoid M , let Mint denote the image of M in Mgp under the

universal morphism λM : M →Mgp. Then M �→ Mint is left adjoint to the inclusion functor

Monint →Mon.

Definition 2.1.3. Let M be an integral monoid. We define Msat to be the set

Msat :=

{
x ∈Mgp

∣∣∣∣xn ∈M for some n ∈ Z, n ≥ 1

}
.

Msat is a saturated submonoid of Mgp, and the functor M �→ Msat is left adjoint to the

inclusion functor from the category Monsat of saturated monoids to Monint.

Definition 2.1.4. Let P be a monoid.

• A submonoid E of P × P which is also an equivalence relation on P is called a con-

gruence (or congruence relation) on P .

• If E is a congruence relation on P , then the set P/E of equivalence classes has a unique

monoid structure making the projection P → P/E a monoid morphism.

• If θ : P → M is a homomorphism of monoids, then the set E of pairs (p1, p2) ∈ P × P

such that θ(p1) = θ(p2) is a congruence relation on P , and if θ is surjective, M can be

recovered as the quotient of P by the equivalence relation E.
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Definition 2.1.5. The amalgamated sum Q1
v1 Q Q2

v2 of a pair of monoid morphisms

ui : P → Qi, i = 1, 2, often denoted by Q1 ⊕P Q2, is the inductive limit of the diagram

Q1 P
u1 u2

Q2 . That is, the pair (v1, v2) universally makes the diagram

P

u2

u1
Q1

v1

Q2 v2
Q

commute.

Remark 2.1.1. Indeed, the amalgamated sum Q can be thought of as the coequalizer of the

two maps (u1, 0) and (0, u2) from P to Q1 ⊕ Q2. As the following proposition shows, the

description of Q is considerably simplified if one of the monoids in question is a group.

Proposition 2.1.1. ([Ogus, 2006, Chapter I Proposition 1.1.4]) Let ui : P → Qi be a pair

of monoid morphisms, let P be their amalgamated sum and let E be the congruence relation

on Q1 ⊕Q2 given by the natural map Q1 ⊕Q2 → Q (Remark 2.1.1).

• Let E ′ be the set of pairs ((q1, q2), (q
′
1, q

′
2)) of elements of Q1⊕Q2 such that there exist

a and b in P with q1 + u1(b) = q′1 + u1(a) and q2 + u2(a) = q′2 + u2(b). Then E ′ is a

congruence relation on Q1 ⊕Q2 containing E, and if any of P , Q1, or Q2 is a group,

then E = E ′.

• If P is a group, then two elements of Q1 ⊕ Q2 are congruent modulo E if and only

if they lie in the same orbit of the action of P on Q1 ⊕ Q2 defined by p(q1, q2) =

(q1 + u1(p), q2 + u2(−p)).

• If P and Qi are groups, then so is Q1⊕P Q2, which is in fact just the fibered coproduct

(amalgamated sum) in the category of abelian groups.
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Proposition 2.1.2. ([Ogus, 2006, Chapter I Proposition 1.2.2]) Let Q be the amalgamated

sum of two homomorphisms ui : P → Qi in Mon. Then Qint is the amalgamated sum of

uinti : P int → Qint

i in the category Mon
int, and can be naturally identified with the image of

Q in Qgp
1 ⊕P gp Qgp

2 . If P , Q1, and Q2 are integral and any of these monoids is a group, then

Q is integral.

Remark 2.1.2. Note that even when P , Q1 and Q2 are integral monoids, the amalgamated

sum Q1⊕P Q2 need not be integral. Then same kind of problem arises for saturated monoids.

Example 2.1.2. Fix an a ∈ N and consider the following pair of morphisms of monoids:

N

Δ

ha N

N2

(2.1)

where ha sends n �→ an and Δ(n) = (n, n).

Let P := N2⊕N N be the amalgamated sum associated to the above diagram. We claim

that P ∼= 1
a
Δ(N) + N2 as a (additive) submonoid of Q2, where

1

a
Δ(N) + N2 =

{(n
a
+ s,

n

a
+ t

) ∣∣∣∣ n, s, t ∈ N

}
.

Note that we have natural morphisms of monoids:

h′ : N2 −→ 1

a
Δ(N) + N2

(s, t) �−→ (
0

a
+ s,

0

a
+ t) = (s, t)

and

h′′ : N −→ 1

a
Δ(N) + N2

n �−→ (
n

a
+ 0,

n

a
+ 0) = (

n

a
,
n

a
)
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such that the following square is commutative:

N

Δ

ha N

h′′

N2

h′

1
a
Δ(N) + N2 .

Then it suffices to show that

(
N2 h′

1
a
Δ(N) + N2 Nh′′

)
satisfies the universal property

of the amalgamated sum of the morphisms in (2.1).

Let Q be a (additive) monoid and suppose we have two morphisms α : N2 → Q and

β : N→ Q such that α ◦Δ = β ◦ ha.

N
ha

Δ

N

h′′

β
N2

h′

α

1
a
Δ(N) + N2

ψ

Q.

Define

ψ :
1

a
Δ(N) + N2 −→ Q

(
n

a
+ s,

n

a
+ t) �−→ β(n) + α(s, t).

If we have

(
n

a
+ s,

n

a
+ t) = (

m

a
+ s′,

m

a
+ t′)

in 1
a
Δ(N) + N2, then

n−m

a
= s′ − s = t′ − t.

Without loss of generality, we may assume n−m ≥ 0. Then we have

β(n) + α(s, t) = β (a(s′ − s) +m) + α(s, t)
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= β (a(s′ − s)) + β(m) + α(s, t)

= β ◦ ha(s
′ − s) + β(m) + α(s, t)

= α ◦Δ(s′ − s) + β(m) + α(s, t)

= β(m) + α(s′ − s, s′ − s) + α(s, t)

= β(m) + α(s′ − s, t′ − t) + α(s, t)

= β(m) + α(s′, t′).

This shows that ψ is well-defined. It is easy to check that ψ is a monoid homomorphism.

Moreover, for any (s, t) ∈ N2,

(ψ ◦ h′)(s, t) = ψ(s, t) = β(0) + α(s, t) = α(s, t),

and for any n ∈ N,

(ψ ◦ h′′)(n) = ψ(
n

a
,
n

a
) = β(n) + α(0, 0) = β(n).

The uniqueness of such ψ is obvious. This proves our claim that the amalgamated sum P

of the morphisms in (2.1) can be identified with the (additive) monoid 1
a
Δ(N) + N2. Under

this identification, we conclude that P is finitely generated and a set of generators can be

given by {(
1

a
,
1

a

)
, (1, 0), (0, 1)

}
.

Moreover, P gp ∼= 1
a
Δ(Z) + Z2 and P is fine and saturated (i.e., an fs-monoid).

Example 2.1.3. (Monoid Algebras) Let R be a commutative ring with identity and P

a monoid. We denote by 1R the identity of R and by 1P the unit element of P . Then we

construct an R-algebra R[P ] as follows. As an R-module, it is free with basis P , i.e., for any
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f ∈ R[P ], f can be written as f =
∑
p∈P

rp · p, where rp ∈ R and rp = 0 for all but finitely

many p ∈ P . For f =
∑
x∈P

rx · x and g =
∑
y∈P

ry · y, we define the multiplication of f and g by

fg =
∑
p∈P

∑
xy=p

(rxry) · p.

The R-algebra structure is given by the natural ring homomorphism R → R[P ] sending

r �→ r · 1P , for any r ∈ R. This R-algebra R[P ] is called the monoid algebra on P over R. If

we consider R[P ] as a monoid with respect to its multiplication, we have a canonical monoid

homomorphism P → R[P ] sending any element p ∈ P to 1R · p with the following universal

property:

For any R-algebra S and a monoid homomorphism θ : P → S (here we consider S as a

multiplicative monoid), there exists a unique R-algebra homomorphism R[P ] → S making

the following diagram commutative:

P

θ

R[P ]

∃!

S.

Monoid algebras have the following properties:

Proposition 2.1.3. Let P , Q (Q1, Q2) be monoids and R a (commutative) ring. Then

• P is finitely generated (as a monoid) if and only if R[P] is finitely generated (as an

R-algebra).

• R[P ] is noetherian if and only if R is noetherian and P is finitely generated.

• R[P ⊕Q] ∼= R[P ]⊗R R[Q].

• R[Q1 ⊕P Q2] ∼= R[Q1]⊗R[P ] R[Q2].
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• Moreover, if R is an integral domain and P is integral such that P gp is torsion free,

then R[P ] is an integral domain.

Proof. We refer to [Ogus, 2006, Chapter I §3.1, §3.3] for details.

2.2 Log Schemes

2.2.1 Log structures

Definition 2.2.1. Let (X,OX) be a scheme.

• A prelog structure on X is a pair (M,α) where M is a sheaf of monoids on the étale

site Xet and α is a homomorphism from M to the multiplicative monoid of OX .

• A prelog structure (M,α) is called a log structure if the induced map α−1(O∗
X)→ O∗

X

is an isomorphism.

• The log structure defined by the inclusion O∗
X ↪→ OX is called the trivial log structure

on X .

• A log scheme is a triple (X,M, α), usually simply denote by X, consisting of a scheme

X and a log structure (M,α) onX. The sheaf of monoids of a log scheme X is generally

denoted by MX , and the sheaf O∗
X is thought of as a subsheaf of MX by α.

• A morphism of log schemes is a morphism f : X → Y of the underlying schemes
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together with a morphism f 	 : MY → f∗(MX) such that the following diagram

MY

αY

f�

f∗(MX)

f∗(αX)

OY
f�

f∗(OX)

commutes.

Proposition 2.2.1. ([Ogus, 2006, Chapter II Proposition 1.1.5]) Let X be a scheme. The

inclusion functor from the category of log structures to the category of prelog structures on

X admits a left adjoint (M,α) → (Ma, αa), where Ma = M ⊕α−1(O∗
X) O

∗
X and αa is the

morphism defined by α and the inclusion of O∗
X in OX , i.e.,

α−1(O∗
X)

α
O∗

X

M

α

Ma

αa

OX .

One calls (Ma, αa) the log structure associated to the prelog structure (M,α).

Example 2.2.1. Recall R, P in Example 2.1.3 and let X := Spec(R[P ]). Endow X with the

log structure associated to the prelog structure induced by the canonical monoid morphism

P → R[P ]. The above log structure is called the canonical log structure on X = Spec(R[P ]).

Indeed, it is the inverse image of the canonical log structure on Spec(Z[P ]) under the natural

morphism X → Spec(Z[P ]).

Definition 2.2.2. Let f : X → Y be a morphism of schemes.

• If αX : MX → OX is a log structure on X, then the natural pair

(f∗(MX)×f∗(OX ) OY , β)
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in the following diagram

f∗(MX)×f∗(OX ) OY
β

OY

f∗(MX)
f∗(αX )

f∗(OX)

is a log structure on Y , called the direct image log structure induced by αX .

• If αY : MY → OY is a log structure on Y , then the composite

f−1(MY )
f−1(αY )

f−1(OY ) OX

is a prelog structure on X. The associated log structure is called the inverse image log

structure on X and denoted by (f ∗MY , f
∗αY ).

Definition 2.2.3. A map of log schemes

f : X = (X,M, α) −→ Y = (Y,N, β)

is called strict if the natural map f ∗N → M is an isomorphism.

2.2.2 Charts

Definition 2.2.4. Let α : M → OX be a log structure on a scheme X.

• A (global) chart, modeled on P, of a log scheme X is a strict map of log schemes

X → SpecZ[P ] for some monoid P , where SpecZ[P ] is endowed with its canonical log

structure. Giving such a chart is the same as giving a monoid P and a homomorphism

from the constant sheaf of monoids PX on X to M inducing an isomorphism on the

associated log structures.
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• A log structure α is called quasi-coherent (resp. coherent) if locally on X it admits a

chart (resp. a chart modeled on a finitely generated monoid).

• A log scheme X is called integral if the stalk of M at each geometric point of X is

integral.

• A log scheme X is called fine (resp. fine and saturated, or fs for short) if it is integral,

and locally for the étale topology it admits a chart modeled on a finitely generated and

integral (resp. finitely generated and saturated) monoid.

• Let f : X → Y be a map of log schemes. A chart of f is a triple (a, b, u) where

a : X → SpecZ[P ] and b : Y → SpecZ[Q] are charts of log schemes X and Y and

u : Q→ P is a morphism of monoids such that the following square of log schemes

X

f

a
SpecZ[P ]

Y
b

SpecZ[Q]

commutes, where the right vertical map is induced by u. Such chart of f is sometimes

written as (P,Q, u : Q→ P ).

Remark 2.2.1. If f : X → Y is a map of fine log schemes, a chart of f exists étale locally,

and, P and Q can be chosen to be fine and saturated monoids if X and Y are fs log schemes

(refer to [Ogus, 2006, Chapter II §2.2] for details).

Example 2.2.2. Let X be a locally noetherian regular scheme and let D ⊂ X be a divisor

with normal crossings. Let j : U = X − D ↪→ X be the corresponding open immersion.

Then the inclusion MX := OX ∩ j∗O
∗
U ↪→ OX is an fs log structure on X , which is called the
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log structure defined by X −D (or sometimes, by D). Étale locally X has a chart modeled

on Nr (if
∏

1≤i≤r t
ai
i is a local equation of D where (ti)1≤i≤r is a part of a system of local

parameters on X, Nr → OX , (ni) �→
∏

1≤i≤r t
ni
i is a local chart).

2.2.3 Fibered products of log schemes

Just as in the case of classical schemes, the existence of products in the category of log

schemes (resp. fine log schemes, resp. fs log schemes) has deep consequences. In this

section, we list some results for the existence of fibered product in several categories, for

details, please refer to [Ogus, 2006, Chapter II §2.4].

Proposition 2.2.2. ([Ogus, 2006, Chapter II Proposition 2.4.2]) The category of log schemes

admits fibered products, and the functor X → X taking a log scheme to its underlying scheme

commutes with fibered products. The fibered product of coherent log schemes is coherent.

Remark 2.2.2. • More explicitly, LetX, Y and Z be log schemes with underlying schemes

X , Y and Z, respectively. And let f : X → Z and g : Y → Z be morphisms

of log schemes. Their fibered product in the category of log schemes is obtained by

endowing the usual fibred product of schemes X×Z Y with the log structure associated

to the prolog structure p∗XMX ⊕p∗ZMZ
p∗YMY , where pX , pY and pZ are the obvious

projections. Consequently, if (Q1, P, u1 : P → Q1) and (Q2, P, u2 : P → Q2) are

charts for the morphisms fand g respectively, then the induced morphism X ×Z Y →

Spec(Z[Q1 ⊕P Q2]) is a chart as well.

• IfX is a log scheme, letX◦ denote the log scheme with the same underlying scheme but

with trivial log structure. Then there is a natural morphism of log schemes X → X◦,
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and a morphism f : X → Y of log schemes fitting into a commutative diagram:

X
f

Y

X◦

f◦
Y ◦.

If f is strict, this diagram is Cartesian.

Recall that the amalgamated sum of integral (resp. saturated) monoids need not be

integral (resp. saturated) (see Proposition 2.1.2), so the construction of fibered products in

the category of fine (or fs) log schemes is more delicate. We have the following properties:

Proposition 2.2.3. ([Ogus, 2006, Chapter II Proposition 2.4.5])

• The inclusion functor from the category of fine log schemes to the category of coherent

log schemes admits a right adjoint X �→ Xint, and the corresponding morphism of

underlying schemes (Xint)→ X is a closed immersion.

• The inclusion functor from the category of fs log schemes to the category of fine log

schemes admits a right adjoint X �→ Xsat, and the corresponding morphism of under-

lying schemes (Xsat)→ X is finite and surjective.

Remark 2.2.3. One should always keep in mind that the morphisms of topological spaces

underlying the maps Xint → X and Xsat → Xint are not in general homeomorphisms. In

particular, we cannot identify MXint (resp. MXsat), the log structure on Xint (resp. on Xsat),

with (MX)
int (resp. (MX)

sat) in general. Here, (MX)
int and (MX)

sat are defined similarly

as in the category of monoids (see Definition 2.1.2 and 2.1.3).

Corollary 2.2.1. ([Ogus, 2006, Chapter II Corollary 2.4.6]) The category of fine log schemes

(resp. of fs log schemes) admits finite projective limits. Moreover if we have the following
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diagram

Y

X Z

in the category of fine (resp. fs) log schemes, then the natural morphism of schemes

(X ×Z Y ) −→ X ×Z Y

is a closed immersion (resp. a finite morphism).

2.3 Log smooth and log étale morphisms

Definition 2.3.1. A morphism of log schemes i : (X,M) → (Y,N) is called a closed im-

mersion (resp. exact closed immersion) if the underlying morphism of schemes X → Y is a

closed immersion and i∗N → M is surjective (resp. an isomorphism).

Definition 2.3.2. Consider the following commutative diagram of log schemes

(T ′, L′)

i

s (X,M)

f

(T, L)
t

(Y,N)

(2.2)

such that i is an exact closed immersion and T ′ is defined in T by an ideal I such that I2 = 0.

A morphism f : (X,M)→ (Y,N) of fine log schemes is called log smooth (resp. log étale) if

the underlying morphism of schemes X → Y is locally of finite presentation and if for any

commutative diagram as in (2.2), there exists étale locally on T (resp. there exists a unique)

g : (T, L)→ (X,M) such that g ◦ i = s and f ◦ g = t.
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A standard example of a log smooth (resp. log étale) morphism is given by the following

proposition. In Theorem 2.3.1, we shall see that all log smooth (resp. log étale) morphisms

are essentially of the type of this standard example.

Proposition 2.3.1. ([Kato, 1989, Proposition (3.4)]) Let P , Q be two fine monoids, f :

Q→ P a homomorphism, R a ring, such that the kernel and the torsion part of the cokernel

(resp. the kernel and the cokernel) of Qgp → P gp are finite groups whose orders are invertible

in R. Let

X = Spec(R[P ]), Y = Spec(R[Q])

and endow them with the canonical log structures MX and MY , repectively (see Example

2.2.1). Then the morphism (X,MX)→ (Y,MY ) induced by f is log smooth (resp. log étale).

Theorem 2.3.1. ([Kato, 1989, Theorem (3.5)]) Let f : (X,MX)→ (Y,MY ) be a morphism

of fine log schemes. Assume that we are given a chart Q→MY of MY . Then the following

conditions are equivalent.

(1) f is log smooth (resp. log étale).

(2) There is a chart (P → MX , Q→ MY , Q→ P ) of f , étale locally on X, extending the

given chart Q→MY by satisfying the following conditions (a, b):

(a) The kernel and the torsion part of the cokernel (resp. the kernel and the cokernel)

of Qgp → P gp are finite groups of orders invertible on X.

(b) The induced morphism X → Y ×Spec(Z[Q]) Spec(Z[P ]) is a smooth (resp. étale)

map on the underlying schemes.
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Example 2.3.1. Let A be a discrete valuation ring and we fix a uniformizer π of A. Let R

be an A-algebra satisfying the following conditions:

• Spec(R) is connected, i.e., R has no nontrivial idempotents;

• There is an a ∈ N and an étale morphism ψR : R′ → R for which R′ = A[X, Y ]/(XY −

πa).

Denote by S = (S,M) the log scheme whose underlying scheme S = Spec(A), the log

structure is the one associated to the prelog structure given by the map ϕ : N→ A sending

1 �→ π.

Consider the following commutative diagram of monoids and morphisms of monoids:

N2 ϕR
R′

N

Δ

ϕa
A,

where ϕR(m,n) = XmY n, ϕa(n) = πan and Δ(n) = (n, n) for all m,n ∈ N. Then we can

identify R′ with A[N2]⊗A[N] A as A-algebras.

Let P := N2⊕N N be the amalgamated sum as in Example 2.1.2. Consider the log

structure on X = Spec(R) the one associated to the prelog structure induced by the map

P R′ ψR
R , where the maps are shown in the following diagram:

R
′

R

N2

ϕR

P

N

ϕa

Δ

ha
N

h

ϕ
A.

27



We denote by X = (X,N) the corresponding log scheme. Then the triple (P,N, h : N→

P ) is a chart for the morphism f : X → S. Moreover, we have the following property for

the above morphism of log schemes.

Lemma 2.3.1. The morphism f : X → S of log schemes in the above example is log smooth.

Proof. First, note that we have the following identifications from Example 2.1.2:

P ∼= 1

a
Δ(N) + N2 =

{(n
a
+ s,

n

a
+ t

) ∣∣∣∣ n, s, t ∈ N

}
,

and

P gp ∼= 1

a
Δ(Z) + Z2 .

Then h : N→ P can be replaced by the morphism

h′′ : N −→ 1

a
Δ(N) + N2,

n �−→
(n
a
,
n

a

)
,

thus the following commutative square satisfies the universal property of the amalgamated

sum

N

Δ

ha N

h′′

N2

h′

1
a
Δ(N) + N2 .

By Proposition 2.3.1, it is enough to prove that:

(a) The kernel and the torsion part of the cokernel of (h′′)gp : Ngp = Z→ 1
a
Δ(Z) + Z2 are

finite groups of orders invertible in R.

(b) The morphism Spec(R)→ Spec(A)×Spec(Z[N]) Spec(Z[P ]) is smooth on the underlying

schemes.
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Notice that (h′′)gp is injective and its image h′′(Z) = 1
a
Δ(Z), thus (a) follows immediately.

Part (b) can be verified by the fact

A⊗A[N] A[P ] ∼= A⊗A[N] A
[
N⊕N N

2
]

∼= A⊗A[N]

(
A[N]⊗A[N] A[N

2]
)

(Proposition 2.1.3)

∼= A⊗A[N] A[N
2]

∼= R′ (Example 2.3.1),

and our assumption that R′ → R is étale. This completes the proof.

Remark 2.3.1. In the above example, when a = 1, X is called of semistable reduction over

S. In this case ha = idN and P = N2. Let N ′ be the log structure on X defined by its

special fiber (see Example 2.2.2). Then N ′ coincides with the log structure N on X defined

above. In other words, the triple
(
N2,N,Δ : N→ N2

)
is a chart for the natural morphism

of log schemes (X,N ′)→ (S,M).

Log smooth (resp. log étale) morphisms enjoy most of the properties of classical smooth

(resp. étale) morphisms in the theory of schemes.

Proposition 2.3.2. (a) Log smooth (resp. log étale) morphisms are stable under compo-

sition and arbitrary base change (either in the category of fine or fs log schemes).

(b) Suppose we have the following commutative diagram of log schemes and morphisms:

X h

f

Y

g

S.

If f and g are log smooth (resp. log étale), so is h.
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(c) If f : X → Y is a map of schemes, viewed as a map of log schemes with the trivial log

structures, then f is log smooth (resp. log étale) if and only if f is classically smooth

(resp. étale).

Proof. These are consequences of Theorem 2.3.1.

2.4 Kummer étale topology

Definition 2.4.1. • A homomorphism of integral monoids h : Q→ P is said to be exact

if Q = (hgp)−1 (P ) in Qgp.

• A morphism f : X → Y of log schemes with integral log structures is said to be exact

if the homomorphism (f ∗MY )x →MX,x is exact for any x ∈ X.

• A morphism h : Q → P of fs monoids is said to be Kummer (or of Kummer type) if

h is injective and for all p ∈ P there exists n ∈ N, n ≥ 1, such that np ∈ h(Q) (the

monoid laws written additively).

• A morphism f : X → Y of fs log schemes is said to be Kummer (or of Kummer type)

if for all geometric point x̄ of X with image ȳ in Y , the natural map

MY,y −→MX,x

is Kummer.

• A morphism f : X → Y of fs log schemes is said to be Kummer étale if it is both log

étale and Kummer.
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Remark 2.4.1. (i) Let f : X → Y be a morphism of fs log schemes. If f has a chart

(P →MX , Q→MY , h : Q→ P ) such that h is Kummer, then f is Kummer.

(ii) Morphisms of Kummer type are stable under compositions and base changes in the

category of fs log schemes.

(iii) A morphism of Kummer type is exact.

(iv) Let f : X → Y be a log étale morphism of fs log schemes. Then f is Kummer if and

only if f is exact.

Another property of Kummer étale morphisms is the following:

Proposition 2.4.1. (Vidal [2001],1.3) Let f : Z → Y , g : Y → X be morphisms of fs log

schemes and h = g ◦ f . If g and h are Kummer étale, then f is Kummer étale.

Definition 2.4.2. Let X be an fs log scheme.

� The Kummer étale site of X, denoted by Xket, is defined as follows:

• The objects of Xket are the fs log schemes which are Kummer étale over X.

• If Y , Z are objects of Xket, a morphism from Y to Z is an X-map Y → Z. By

Proposition 2.4.1, any such map is again Kummer étale.

• The Kummer étale topology is the topology on Xket generated by the covering

families (fi : Yi → Y )i∈I of morphisms of Xket such that

Y =
⋃
i∈I

fi(Yi)

set theoretically.
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• The Kummer étale site of X is the category Xket endowed with the Kummer étale

topology.

� The Kummer étale topos of X, denoted by Top(Xket) (or simply Xket again if there is

no confusion), is the category of sheaves on Xket.

Remark 2.4.2. The datum for each object Y of Xket and the set of covering families of Y as

above define a pretopology on Xket in the sense of Grothendieck ([Artin et al., 1972, II 1.3]

). To verify the axioms of a pretopology the only nontrivial part is checking the stability

of covering families under base change. By Proposition 2.3.2 and Remark 2.4.1, Kummer

étale morphisms are stable under fs base change, thus it is enough to verify the universal

surjectivity of covering families. This follows from the following lemma:

Lemma 2.4.1. ([Nakayama, 1997, Lemma 2.2.2]) Suppose we have the following cartesian

square of fs log schemes

X4

f ′

g′

X3

f

X2 g X1.

Let x3 ∈ X3, x2 ∈ X2 be such that f(x3) = g(x2). Assume that f or g is exact. Then there

exists x4 ∈ X4 such that f ′(x4) = x2 and g′(x4) = x3.

Remark 2.4.3. Let X be a scheme with the trivial log structure. If f : Y → X is an object

of Xket, then f is strict, the log structure on Y is trivial and f is étale in the classical sense.

Thus the Kummer étale site Xket can be identified with the classical étale site Xet of X.
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Chapter 3

P-adic Modular Forms over Shimura Curves

In this chapter, we review the theory of P-adic modular forms over Shimura curves over

totally real fields of non-integral weights, which was established by R. Brasca in Brasca

[2011] and Brasca [2013]. Our main references for this chapter are Carayol [1986], Kassaei

[2004], Brasca [2011] and Brasca [2013].

3.1 Shimura Curves

3.1.1 Quaternionic Shimura curves MK(G,X)

First, we introduce some notations. Let F be totally real field of degree d > 1 over Q and

denote by τ1, τ2, . . . , τd its all real embeddings. Set τ = τ1. Let B be a quaternion algebra

over F which is split at τ and ramified at all other infinite places τ2, . . . , τd (these assumptions

imply that the Shimura datum we are going to construct later gives a Shimura variety of
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dimension one). In particular, we fix identifications

B ⊗F,τ R ∼= M2(R),

and for i = 2, . . . , d

B ⊗F,τi R ∼= H,

where H is the Hamilton quaternion algebra over R.

Let G be the reductive group over Q defined by

G := ResF/Q(B
×).

Then G(Q) = B× and G(R) ∼= GL2(R)× (H)d−1. We set S := ResC /R(Gm,C), hence S(R) =

C×. The morphism

C× −→ GL2(R)× (H)d−1

x+ iy �−→

⎛⎜⎜⎝
⎛⎜⎜⎝ x y

−y x

⎞⎟⎟⎠
−1

, 1, . . . , 1

⎞⎟⎟⎠
comes from a morphism

h : S −→ GR.

Now let X be the G(R)-conjugation class of h, then X can be identified with

X ∼= C−R = H+
⊔

H−

which is the union of two copies of the Poincaré half plane.

Let K be a compact open subgroup of G(Af). We define the following compact Riemann

surface to be the double cosets:

MK(G,X)(C) := G(Q)\G(Af)×X/K.
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Here the action of K on X is trivial and via right multiplication on G(Af ), G(Q) acts by

left multiplication on G(Af) and via the natural diagonal embedding induced by Q ↪→ Af .

By the theory of Shimura (Shimura [1970], Deligne [1971a]), there exists a canonical model

MK(G,X) of MK(G,X)(C), defined over F , where F is thought of as a subfield of C via the

embedding F
τ R C. Moreover, MK(G,X) is smooth and proper. The Shimura

curvesMK(G,X) are not of PEL type hence can not be described in terms of abelian varieties.

To modify this, we will introduce another reductive group G′ with the same derived group as

G and the G′(R)-conjugation class of a morphism of algebraic groups h′ : S→ G′
R such that

the corresponding Shimura curves M ′
K ′(G′, X ′) classify abelian varieties with polarizations,

endomorphisms and level structures (see Theorem 3.1.1).

3.1.2 Unitary Shimura curves M ′
K ′(G′, X ′)

Let F , B, S, G be as before. Fix p �= 2 a prime integer. Choose an element λ ∈ Q, λ < 0

such that Q(
√
λ) splits at p. Let E := F (

√
λ) be an imaginary quadratic extension over F .

By choosing a square root ρ of λ in C, we extend the embeddings τi : F ↪→ R to embeddings

τi : E ↪→ C, via τi(x + y
√
λ) = τi(x) + ρτi(y), for 1 ≤ i ≤ d, where x, y ∈ F . Similarly, we

fix the embedding

τ := τ1 : E ↪→ C

and consider E as a subfield of C via τ .

Now let T := ResF/Q(Gm,F ) and Z be the center of G. Then we can identify T by Z. Let

v : G→ T be the morphism obtained by the restriction of the reduced norm of B. Then we
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have an exact sequence of algebraic groups:

1 G1 G
v

T 1,

where G1 is the derived group of G. Let TE := ResE/Q(Gm,E) and UE be the subgroup of TE

defined by the equation z · z̄ = 1, where ·̄ denotes the natural conjugation of E with respect

to F . Let G′′ := G×T TE be the amalgamated product of the following pair of morphisms

TE ←− T ∼= Z −→ G.

We have the following commutative diagram of morphisms of algebraic groups:

T ∼= Z G

β
TE

α

G′′

v′

T × UE ,

where

α : TE −→ T × UE ,

z �−→ (
zz̄, z

/
z̄
)
,

and

β : G −→ T × UE ,

g �−→ (v(g), 1) .

This induces a morphism

v′ : G′′ −→ T × UE,
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(g, z) �−→ (
v(g)zz̄, z

/
z̄
)
.

Now consider T ′ := Gm,Q × UE , the sub-torus of T × UE, and let G′ be the inverse image of

T ′ via v′ in G′′, i.e.,

G′ = (v′)−1 (T ′)

v′

G′′ = (G×T TE)

v′

T ′ T × UE .

(3.1)

The complex embeddings τ1, . . . , τd of E into C give an isomorphism

TE(R) = (E ⊗Q R)× ∼= (
C×

)d
Let hE : S→ (TE)R be the morphism defined by

hE(R) : S(R) = C× −→ (
C×

)d
= TE(R),

z �−→ (
1, z−1, . . . , z−1

)
.

Recall that we have a morphism h : S → GR and the morphism S → (G×T TE)R, defined

by the composite

S
h×hE (G× TE)R

proj
(G×T TE)R ,

has image in T ′. Hence it factors through a morphism h′ : S→ (G′)R.

Now let X ′ be the G′(R)-conjugation class of h′, which can be identified with H+, the

Poincaré half plane. For any compact open subgroup K ′ of G′(Af ), we associate to (G′, X ′)

a Shimura curve over C, defined by

M ′
K ′(G′, X ′)(C) := G′(Q)\G′(Af)×X ′/K ′,

which is a compact Riemann surface.
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Now we give another description of the reductive group G′ as in [Carayol, 1986, §2.2].

We need both descriptions to state the moduli problem of the unitary Shimura curves. Let

D := B ⊗F E. Then D is a quaternion algebra over E. We define

·̄ : D −→ D,

b⊗ z �−→ b′ ⊗ z̄,

where ·′ : B → B is the canonical involution of B, and z �→ z̄ is the conjugation of E with

respect to F . It follows that ·̄ is an involution on D.

Choose an element δ ∈ D× such that δ̄ = δ and define another involution on D by

·∗ : D −→ D,

d �−→ δ−1d̄δ.

Let V be the underlying Q-vector space of D, with the left action of D by left multipli-

cation. We may consider V as a free left D-module of rank 1. Choose a non-zero element

α ∈ E such that ᾱ = −α and define a Q-bilinear form, for all v and w in V :

Θ : V × V −→ Q,

(v, w) �−→ TrE/Q

(
α trD/E(vδw

∗)
)
.

Then we have

Proposition 3.1.1. Θ is a symplectic form on V , i.e.,

(i) Θ(v, v) = 0 for any v ∈ V ( alternating).

(ii) If Θ(v, w) = 0 for all w ∈ V , then v = 0 ( non-degenerate).
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(iii) Θ(dv, w) = Θ(v, d∗w), for any v, w ∈ V and any d ∈ D.

Proof. See [Brasca, 2011, Lemma 1.2.2].

Definition 3.1.1. Let W be a free left D-module and let Θ a symplectic (see Prop. 3.1.1)

Q-bilinear form on W . We say an element g ∈ AutD(W ) is a D-linear symplectic similitude

of (W,Θ) if there exists μg ∈ Q× such that

Θ (g(v), g(w)) = μgΘ(v, w)

for all v, w ∈ W .

Remark 3.1.1. In our case, since V is a free left D-module of rank 1, we have AutD(V ) = D×

and a automorphism corresponds to the right multiplication by a unit in D. Then a D-linear

symplectic similitude of (V,Θ) is an element d ∈ D× such that for any v, w ∈ V

Θ(vd, wd) = μΘ(v, w) for some element μ ∈ Q× . (3.2)

Then by the Q-linenarity of Θ, the above equality is equivalent to

Θ
(
vdδd∗δ−1, w

)
= Θ (vμ, w) ,

which is equivalent to

dδd∗δ−1 = μ

since Θ is non-degenerate. Finally, using d∗ = δ−1d̄δ, we conclude that the original equation

(3.2) is equivalent to

dd̄ = μ ∈ Q× .
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Consider the reductive group over Q such that for any Q-algebra R, its R-points are the

D-linear symplectic similitudes of (VR,ΘR) (here we extend the above definition to (VR,ΘR)).

In particular, its Q-points can be identified with

{
d ∈ D×

∣∣∣ dd̄ ∈ Q×

}
.

Then we can identify the reductive group G′ (diagram (3.1)) with the one defined above.

This gives a morphism of algebraic groups G′
R → GL(VR) and the composite

S
h′

G′
R GL(VR)

defines a Hodge structure of type {(−1, 0), (0,−1)} on VR, where J = h′(i) gives a complex

structure on VR via

J · x = x · J−1

for any x ∈ VR. Moreover, we can choose δ so that Θ is a polarization for this Hodge

structure, i.e., the form on VR defined by

(x, y) �−→ Θ
(
x, y (h′(i))

−1
)

is positive definite (see [Carayol, 1986, §2.2.4] for details).

3.1.3 Moduli problems for unitary Shimura curves

3.1.3.1 The canonical model over the reflex field

For any d ∈ D, define t : D → C by

t(d) := TrC
(
d;VC/F

0(VC)
)
,
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where Fi(VC) is the Hodge filtration of VC defined by h′. Let E ′ be the subfield of C generated

by {
t(d)

∣∣ d ∈ D

}
.

We have the following results

Theorem 3.1.1. [Deligne, 1972, §6] The canonical model M ′
K ′(G′, X ′) is defined over E ′,

for any sufficiently small compact open subgroup K ′ ⊆ G′(Af ). Moreover, it represents the

functor

M1
K ′ : {E ′-algebras} −→ {Sets}

defined as follows:

For any E ′-algebra R, M1
K ′(R) is the set of isomorphism classes of quadruples (A, ι, θ̄, k̄)

where

(a) A is an abelian scheme over R, defined up to isogenies, with an action of D via ι :

D → End(A) such that for any d ∈ D

(∗) Tr (ι(d); Lie(A)) = t(d).

(b) θ̄ is a homogeneous polarization of A such that the Rosati involution sends ι(d) to ι(d∗),

for all d ∈ D.

(c) k̄ is a class modulo K ′ of a symplectic D-linear similitudes

k : V̂ (A)
∼−→ V ⊗A

f ,

where V̂ (A) = T̂ (A)⊗Q, with symplectic structure coming from the Weil pairings and

T̂ (A) =
∏

Tl(A) is the product of the Tate modules of A over all primes.
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From now on we always assume that K ′ is small enough to have a canonical model M ′
K ′.

By calculating t(d) for element d ∈ D, we have a more explicit description of the reflex field

E ′. Indeed, we have

Proposition 3.1.2. The reflex field for the canonical model M ′
K ′(G′, X ′) is E, where E is

thought of as a subfield of C via τ .

Proof. For 1 ≤ i ≤ d, let

Di := D ⊗F,τi R = D ⊗E,τi C

and let Vi be its underlying R-space. Then we have

VC/F
0(VC) = VC/V

0,−1
C

∼= V −1,0
C .

Using the notations above we obtain the decomposition

V −1,0
C =

d⊕
i=1

(Vi ⊗R C)−1,0 .

and the trace we want to calculate is just the sum of the various traces in the decomposition

above. We calculate the different traces in the following cases:

(a) If i = 1, then V1
∼= M2(C) and Vi ⊗R C

∼−→ M2(C) ⊕ M2(C) via v ⊗ z �→ (vz, v̄z).

J = h′(i) =

⎛⎜⎜⎝ 0 −1

1 0

⎞⎟⎟⎠ and for any M1, M2 ∈ M2(C),

J(M1,M2) =
(
M1J

−1,M2J
−1
)
=

⎛⎜⎜⎝M1

⎛⎜⎜⎝ 0 −1

1 0

⎞⎟⎟⎠
−1

,M2

⎛⎜⎜⎝ 0 −1

1 0

⎞⎟⎟⎠
−1⎞⎟⎟⎠ .

For any d1 ∈ D1 = M2(C),

d1 · (M1,M2) =
(
d1M1, d̄1M2

)
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where the ·̄ in the second component is the complex conjugation. By some basic

calculation on matrices, we have

(V1 ⊗R C)−1,0 =
{
(M1,M2)

∣∣J(M1,M2) = i(M1,M2)
}

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
⎛⎜⎜⎝ a −ai

di d

⎞⎟⎟⎠ ,

⎛⎜⎜⎝ a −ai

di d

⎞⎟⎟⎠
⎞⎟⎟⎠∣∣∣∣a, d ∈ C

⎫⎪⎪⎬⎪⎪⎭ .

Hence

Tr
(
d1; (V1 ⊗ C)−1,0) = tr(d1) + tr(d̄1) = tr(d1) + ¯tr(d1).

(b) For i ≥ 2, Di = M2(C) and Vi ⊗ C = M2(C)⊕M2(C).

J = h′(i) =

⎛⎜⎜⎝ −i 0

0 −i

⎞⎟⎟⎠
and for any M1, M2 ∈ M2(C),

J(M1,M2) = (iM1,−iM2) .

Then

(Vi ⊗ C)−1,0 =
{
(M1,M2)

∣∣J(M1,M2) = i(M1,M2)
}

= M2(C).

Hence Tr
(
di; (Vi ⊗ C)−1,0) = 2 tr(di) for any di ∈ Di.

From the above discussion, we deduce that for any d ∈ D

t(d) = tr(d1) + ¯tr(d1) + 2
d∑

i=2

tr(di)

= τ1
(
trD/E(d)

)
+ τ̄1

(
trD/E(d)

)
+ 2

d∑
i=2

τi
(
trD/E(d)

)
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= (τ1 + τ̄1 + 2τ2 + · · ·+ 2τd) (trD/E(d)).

Define a morphism σ : E → C by σ := τ1 + τ̄1 + 2τ2 + · · ·+ 2τd. Then for any d ∈ D

t(d) = σ(trD/E(d)).

For x, y ∈ F , we have the equalities

σ(x+ y
√
λ) = (τ1(x) + ρτ1(y)) + (τ1(x)− ρτ1(y)) + 2

d∑
i=2

(τi(x) + ρτi(y))

= 2 trF/Q(x) + 2ρ
(
trF/Q(y)− y

)
,

which imply that the image of σ in C generates E. Hence E ′ = E. This completes the

proof.

3.1.3.2 The canonical model over a local field

Let F , E, B, p be as before and denote by P1, . . . ,Pm the primes of F lying above p. We

denote simply by P = P1. Let FPi
denote the completion of F at Pi. Let OP be the ring of

integers of FP and denote by e and f its ramification degree and residue degree, respectively.

Fix π, a uniformizer of OP and let κ be the residue field, with cardinality q = pf and

characteristic p. Let v(·) be the normalized valuation of FP, i.e., v(π) = 1, and let | · | be a

norm on FP compatible with v(·).

Choose a square root μ of λ in Qp, which can be done since we assume that Q(
√
λ) splits

at p. The morphism

E −→ Fp ⊕ Fp =
(
F ⊗Q Qp

)⊕ (
F ⊗Q Qp

)
x+ y

√
λ �−→ (x+ yμ, x− yμ)
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extends to an isomorphism

E ⊗Qp
∼−→ Fp ⊕ Fp

∼−→ (FP1 ⊕ · · · ⊕ FPm)⊕ (FP1 ⊕ · · · ⊕ FPm) ,

which allow us to consider FP as an E-algebra via the following composition

E ↪→ E ⊗Qp
∼−→ (FP1 ⊕ · · · ⊕ FPm)⊕ (FP1 ⊕ · · · ⊕ FPm)

pr1−→ (FP1 ⊕ · · · ⊕ FPm)
pr1−→ FP.

From now on we base change the modelM ′
K ′ to FP and consider the FP-schemeM ′

K ′(G′, X ′)⊗E

FP, which is still denoted by M ′
K ′.

We assume that the quaternion algebra B is split at P and fix an isomorphism B⊗F FP
∼=

M2(FP). Let

Dp = D ⊗Qp = B
⊗
F

(E ⊗Qp).

Then the decomposition of E ⊗Qp induces a decomposition of Dp as

Dp =
(
D1

1 ⊕ · · · ⊕D1
m

)⊕ (
D2

1 ⊕ · · · ⊕D2
m

)
,

where Dk
i is an FPi

-algebra and Dk
i
∼= BPi

:= B ⊗F FPi
for i = 1, . . . , m and k = 1, 2. In

particular, D1
1 and D2

1 are identified with M2(FP). The involution ·∗ : D → D induces an

involution of Dp which switches D1
i with D2

i .

Now suppose Λ is a Dp-module. The decomposition of Dp induces a decomposition of Λ:

Λ =
(
Λ1

1 ⊕ · · · ⊕ Λ1
m

)⊕ (
Λ2

1 ⊕ · · · ⊕ Λ2
m

)
,

where Dp acts on Λk
i via Dk

i .

Recall that we have fixed isomorphisms D1
1
∼= D2

1
∼= M2(FP). This allows us to decompose

Λ2
1 into a direct sum of FP-vector spaces:

Λ2
1 = Λ2,1

1 ⊕ Λ2,2
1 ,
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where Λ2,1
1 (resp. Λ2,2

1 ) is the kernel of the idempotent

⎛⎜⎜⎝ 1 0

0 0

⎞⎟⎟⎠ (resp.

⎛⎜⎜⎝ 0 0

0 1

⎞⎟⎟⎠) of

D2
1. These two FP-vector spaces are isomorphic and can be switched by conjugation of the

element

⎛⎜⎜⎝ 0 1

1 0

⎞⎟⎟⎠ of D2
1.

Now let R be an FP-algebra and A an abelian scheme over R, defined up to isogenies, with

an action of D. Then the relative Lie algebra LieR(A) is an R ⊗D-module, in particular is

a Dp-module. Then we have a decomposition as before:

Lie(A) = Lie11(A)⊕ · · · ⊕ Lie1m(A)⊕ Lie21(A)⊕ · · · ⊕ Lie2m(A),

where Lieki (A) is a projective R-module with an action of Dk
i . Furthermore, the factor

Lie21(A) admits the decomposition

Lie21(A) = Lie2,11 (A)⊕ Lie2,21 (A)

of two projective R-modules with an FP-action. Using such decomposition, we obtain an

more explicit description of condition (∗) in the moduli problem (see part (a) in Theorem

3.1.1).

Proposition 3.1.3. Let R, A as above. The condition (∗) in Theorem 3.1.1 is equivalent

to the followings:

1. The relative dimension of A is 4d.

2. The projective R-module Lie2,11 (A) has rank 1, with an action of FP via the natural map

FP ↪→ R.

3. For i ≥ 2, Lie2i (A) = 0.
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Proof. See [Carayol, 1986, §2.4]

Now let (V,Θ) be as in section 3.1.2 and consider the Dp-module Vp = V ⊗Q Qp with an

decomposition

Vp = V 1
1 ⊕ · · · ⊕ V 1

m ⊕ V 2
1 ⊕ · · · ⊕ V 2

m.

We will also give a more explicit description in terms of decompositions of Vp for part (c)

of the moduli problem. The space Vp has a symplectic form Θp = Θ ⊗Q Qp such that the

components V k
i and V l

j are orthogonal unless i = j and k �= l. More generally, we have

Lemma 3.1.1. Let Λ be a Dp-module with a Qp-bilinear, alternating, nondegenerate form

Φ such that Φ(dv, w) = Φ(v, d∗w) for all d ∈ Dp, v, w ∈ Λ. Then Λk
i and Λl

j are orthogonal

unless i = j and k �= l.

The group G′(Qp) is identified with the group of Dp-linear symplectic similitudes of

(Vp,Θp). By the above lemma such a similitude is totally determined by

• its similitude ratio μ ∈ Q×
p ;

• its restriction to V 2
i .

Thus we have

G′(Qp) ∼= Q×
p ×

m∏
i=1

AutD2
i
(V 2

i )

∼= Q×
p ×

m∏
i=1

(
D2

i

)×
∼= Q×

p ×
m∏
i=1

(B ⊗F FPi
)×

∼= Q×
p ×GL2(FP)× (B ⊗F FP2)

× × · · · × (B ⊗F FPm)
× .
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Let A be an abelian scheme, defined up to isogenies, with an action of D via ι : D →

End(A) and a polarization θ such that the Rosati involution sends ι(d) to ι(d∗). Let Φ :

Vp(A)× Vp(A)→ Qp(1) be the pairing associated to θ. Then Φ is a Qp-bilinear, alternating,

nondegenerate from such that for any d ∈ Dp, v, w ∈ Vp(A),

Φ(dv, w) = Φ(v, d∗w).

Therefore, V k
i (A) and V l

j (A) are orthogonal with respect to Φ unless i = j and k �= l. To

give a D-linear symplectic similitude

k : V̂ (A)
∼−→ V ⊗A

f

is equivalent to give the followings:

• a D-linear symplectic similitude

kp : V̂ p(A) =
∏
l 	=p

Vl(A)
∼−→ V ⊗A

f,p;

• a similitude ratio μp ∈ Q×
p ;

• D2
i -linear isomorphisms

k2
i : V

2
i (A)

∼−→ V 2
i

for 1 ≤ i ≤ m.

In particular, giving a k2
1 is equivalent to giving an FP-linear isomorphism

k2,1
1 : V 2,1

1 (A)
∼−→ V 2,1

1 .

It is often necessary to describe the Shimura curve M ′
K ′(G′, X ′) as a moduli problem

defined in terms of abelian varieties, rather than isogeny classes of abelian schemes. To do
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this, we need to choose a maximal order of the quaternion algebra D. Let OD be a maximal

order of D and denote by VZ the corresponding lattice in V . The ring OD ⊗ Zp admits a

decomposition

OD ⊗ Zp = OD1
1
⊕ · · · ⊕ OD1

m
⊕ OD2

1
⊕ · · · ⊕ OD2

m⋂ ⋂ ⋂ ⋂ ⋂
D ⊗Qp = D1

1 ⊕ · · · ⊕ D1
m ⊕ D2

1 ⊕ · · · ⊕ D2
m.

Moreover we can choose OD, α, δ in such a way that:

(I) OD is stable under the involution d �→ d∗;

(II) each ODk
i
is a maximal order in Dk

i and OD2
1
⊂ D2

1 = M2(FP) is identified with M2(OP);

(III) the symplectic form Θ : V × V → Q defined by

Θ(v, w) = TrE/Q

(
α trD/E(vδw

∗)
)

takes integer values on VZ;

(IV) Θ induces a perfect pairing Θp on VZp = VZ ⊗ Zp.

Then every ODp = OD ⊗ Zp-module Λ admits a decomposition as

Λ = Λ1
1 ⊕ · · · ⊕ Λ1

m ⊕ Λ2
1 ⊕ · · · ⊕ Λ2

m

such that each Λk
i is an ODk

i
-module. The OD2

1

∼= M2(OP)-module Λ2
1 decomposes further as

the direct sum of two OP-modules Λ2
1 = Λ2,1

1 ⊕ Λ2,2
1 .

Let K ′ be an open compact subgroup of G′(Af ) small enough such that it keeps the adelic

lattice VẐ = VZ⊗ Ẑ ⊂ V ⊗Af invariant. We have the following theorem as in [Carayol, 1986,

§2.6.2]:
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Theorem 3.1.2. The functor M1
K ′ in Theorem 3.1.1 is isomorphic to the functor

M
2
K ′ : {E-algebras} −→ {Sets}

which is defined as follows:

For any E-algebra R, M2
K ′(R) is the set of isomorphism classes of quadruples (A, ι, θ, k̄)

where

(a) A is an abelian scheme over R of relative dimension 4d, with an action of D via

ι : D → End(A) such that the condition (∗) of Theorem 3.1.1 is satisfied.

(b) θ is a polarization of A, of degree prime to p, such that the corresponding Rosati

involution sends ι(d) to ι(d∗), for all d ∈ D.

(c) k̄ is a class modulo K ′ of OD-linear symplectic isomorphisms

k : T̂ (A)
∼−→ VẐ.

Example 3.1.1. Some level structure we are interested in.

Let

Γ′ := (B ⊗F FP2)
× × · · · × (B ⊗F FPm)

× ×G′(Af,p).

Then the finite adelic points of G′ can be described as

G′(Af) = Q×
p ×GL2(FP)× Γ′.

From now on, we will only consider the subgroup K ′ ⊂ G′(Af ) of the form

K ′ = Z×
p ×KP ×H,

where KP is a subgroup of GL2(FP) and H is an open compact subgroup of Γ′.
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Let (A, ι, θ, k̄) be an object of the moduli problem as in Theorem 3.1.2. We will use the

following notations to give a more explicit interpretation of a K ′-level structure k̄. Recall

that we have the decomposition of

Tp(A) = (Tp(A))
1
1 ⊕ · · · ⊕ (Tp(A))

1
m ⊕ (Tp(A))

2
1 ⊕ · · · ⊕ (Tp(A))

2
m

as an OD ⊗ Zp-module. Let

T P
p (A) := (Tp(A))

2
2 ⊕ · · · ⊕ (Tp(A))

2
m,

T̂ p(A) :=
∏
l 	=p

Tl(A),

T̂ (A) := T P
p (A)⊕ T̂ p(A),

Ŵ p := VZ ⊗ Ẑ
p
,

Ŵp := (VZp)
2
2 ⊕ · · · ⊕ (VZp)

2
m.

Then the level structure k̄ in the description of the functor M2
K ′ can be replaced with the

following data:

(�) k̄P is a class modulo KP of isomorphisms of OP-modules

kP : (Tp(A))
2,1
1

∼−→ (VZp)
2,1
1
∼= O2

P;

(��) k̄P is a class, modulo H , of isomorphisms

kP = kP
p ⊕ kp : T P

p (A)⊕ T̂ p(A)
∼−→W P

p ⊕ Ŵ p,

with kP
p : T P

p (A)
∼−→W P

p linear and kp : T̂ p(A)
∼−→ Ŵ p symplectic.

In particular, if KP = GL2(OP), then condition (�) disappears.
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3.1.3.3 Special level structures

From now on, we will only consider the following three cases of KP, whose corresponding

level structures can be described even more explicitly. We write A[πn]2,l1 for the πn-torsion

in A[pn]2,l1 and let A[πn]21 := A[πn]2,11 ⊕A[πn]2,21 . Define

K(H) := GL2(OP),

K(H, πn) :=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ ∈ GL2(OP)
∣∣∣c ≡ 0mod πn

⎫⎪⎪⎬⎪⎪⎭ ,

K(Hπn) :=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ ∈ GL2(OP)
∣∣∣a ≡ 1mod πn and c ≡ 0mod πn

⎫⎪⎪⎬⎪⎪⎭ .

In these cases, the Shimura curves M ′
K ′ are denoted, respectively, by M(H), M(H, πn) and

M(Hπn). They parametrize the following isomorphic classes, respectively:

(1) (A, ι, θ, k̄P) where

• (A, ι, θ) is as in Theorem 3.1.2;

• k̄P is as in Example 3.1.1 (��).

(2) (A, ι, θ, C, k̄P) where

• (A, ι, θ) is as in Theorem 3.1.2;

• k̄P is as in Example 3.1.1 (��);

• C is a finite flat subgroup scheme of rank qn of A[πn]2,11 , stable under OP.

(3) (A, ι, θ, Q, k̄P) where
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• (A, ι, θ) is as in Theorem 3.1.2;

• k̄P is as in Example 3.1.1 (��);

• Q is a point of exact OP-order π
n in A[πn]2,11 .

3.1.3.4 Integral models

One of the main results of Carayol [1986] is that the Shimura curves M(H), M(H, πn) and

M(Hπn) over FP admit canonical proper models over OP, denoted respectively by M(H),

M(H, πn) and M(Hπn), which solve the same moduli problems as M(H), M(H, πn) and

M(Hπn) do, respectively, for OP-algebras. More explicitly, we have

Theorem 3.1.3. When H ′ is small enough, the curve M(H), M(H, πn) and M(Hπn) rep-

resent the functors MH , MH,πn and MHπn, respectivly:

M : {OP-algebras} −→ {Sets}

such that for any OP-algebra R,

(1) MH(R) is the set of all isomorphism classes of (A, ι, θ, k̄P) where

• A is an abelian scheme over R of relative dimension 4d with an action of OD via

ι : OD EndR(A) such that

(a) the projective R−module Lie2,11 (A) has rank one and OP acts on it via OP ↪→

R,

(b) for j ≥ 2, Lie2j (A) = 0;

• θ is a polarization of A of degree prime to p such that the corresponding Rosati

involution sends ι(d) to ι(d∗) for any d ∈ D;
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• k̄P is a class, modulo H, of isomorphisms

kP = kP
p ⊕ kp : T P

p (A)⊕ T̂ p(A)
∼−→W P

p ⊕ Ŵ p,

with kP
p : T P

p (A)
∼−→ W P

p linear and kp : T̂ p(A)
∼−→ Ŵ p symplectic (for notations,

see Example 3.1.1).

(2) MH,πn(R) is the set of all isomorphism classes of (A, ι, θ, C, k̄P) where

• (A, ι, θ, k̄P) is as in (1);

• C is a finite flat subgroup scheme of rank qn of A[πn]2,11 , stable under the action

of OP.

(3) MHπn(R) is the set of isomorphism classes of (A, ι, θ, Q, k̄P) where

• (A, ι, θ, k̄P) is as in (1);

• Q is a point of exact OP-order πn in A[πn]2,11 in the sense of Drinfel’d.

We denote by A(H), A(H, πn) and A(Hπn) the universal objects of the moduli problems

of the curves M(H), M(H, πn) andM(Hπn), respectively. Let A(H), A(H, πn) and A(Hπn)

be the corresponding canonical integral models, respectively. Now let K be any of the level

structures K(H), K(H, πn) and K(Hπn) we described in Example 3.1.1, and let (M,A) be

any pair of (M(H),A(H)), (M(H, πn),A(H, πn)) and (M(Hπn),A(Hπn)) with correspond-

ing level structure K, respectively. The morphism A→M is denoted by ε with zero section

e : M→ A. Consider the sheaf of OM-modules ε∗Ω
1
A/M. It has an action of OD ⊗ Zp, which

allows us to define

ω := ωK :=
(
ε∗Ω

1
A/M

)2,1
1

.
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The condition on the abelian schemes of the moduli problem (Theorem 3.1.3) implies that

ω is a line bundle over M. If R is an OP-algebra, the pullback of ωK via the morphism

Spec(R) → M will be denoted by ωR. We usually drop the subscript and use ω whenever

no confusion arises. We have the following Kodaira-Spencer isomorphism.

Proposition 3.1.4. Let M, A, ω be as above. Then

(i) ω
A/M ⊗ ω

A∨/M
∼−→ Ω1

M/OP
.

(ii) There is a noncanonical isomorphism ω⊗2
A/M

∼−→ Ω1
M/OP

.

Proof. See [Kassaei, 2004, Proposition 4.1].

Definition 3.1.2. Let K, M be as above. Let R be an OP-algebra and k an integer. The

space of modular forms with respect to D, level K and weight k, with coefficients in R, is

defined as follows:

SD(R,K, k) := H
0(MR, ω

⊗k
R ).

3.2 Hasse Invariant and Canonical subgroups

3.2.1 Hasse invariant

Definition 3.2.1. Let X be an OP-scheme (or a formal scheme). A π-divisible group H → X

is a Barsotti-Tate group H over X, together with an embedding OP ↪→ End(H) such that

the induced action of OP on Lie(H) is the natural action via H → X → Spec (OP). If X is

connected, there is a unique integer ht(H), called the height of H , such that rk(H [πn]) =

qnht(H) for all n.
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Definition 3.2.2. Let X be a π-adic formal scheme over Spf(OP) and let G→ X a smooth

formal group. We say that G is a formal OP-module if there is an action of OP on G whose

action on Lie(G) is via the structure map G→ X→ Spf (OP).

Let R be an OP-algebra and (A, ι, θ, k̄P) be an object of the moduli problem M(H) (see

Theorem 3.1.3) with A defined over R. There is a natural action of OD ⊗ Zp on A[pn], for

all n. Hence A[pn]lj is defined and we also have A[pn]2,i1 for i = 1, 2, which has an action of

OP. Let A[πn]2,i1 be its πn-torsion and A[πn]21 := A[πn]2,11 ⊕A[πn]2,21 . Similarly we can define

A[πn]11. Then

A[π∞]2,11 := lim−→
n

A[πn]2,11

is a π-divisible group over A, called the π-divisible group associated to A. Let A be the

π-adic completion of A and Â be the formal completion of A along its zero section. Then

Â
2,1
1 is a formal OP-module of dimension 1. The formal OP-module associated to A[π∞]2,11 is

Â
2,1
1 . We will use the notation Â[πn]2,11 := Â

2,1
1 [πn]. The following proposition is proved in

[Kassaei, 2004, §4.3].

Proposition 3.2.1. Let R, Â2,1
1 be as above. There exists a coordiate x on Â

2,1
1 such that

the action of π takes the following special form

[π](x) = πx+ axq +
∞∑
j=2

cjx
j(q−1)+1,

where a, cj (j ≥ 2) ∈ R and cj ∈ πR unless j ≡ 1 mod q.

Moreover, the height of Â2,1
1 is either 1 or 2. We say that (A, ι, θ, k̄P), or simply A, is

ordinary if Â2,1
1 has height 1 and say that A is supersingular if Â2,1

1 has height 2.
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Let W = Spec(R) be an open affine subset of M(H)⊗ κ, let ω be the differential dual to

the coordinate x and define

H|W := aω⊗(q−1),

where x and a are as in the above proposition. It was showed in [Kassaei, 2004, §6] that

the above definition is independent of the choice of the coordinate and the dual differential.

Furthermore, these locally defined sections of ω⊗(q−1) glue together to give a global section

H, which is defined to be the Hasse invariant, a modular form of level K(H) and weight

q − 1 over κ.

Proposition 3.2.2. Let R0 be a κ-algebra. Then there is an H ∈ SD(R0, K(H), q−1) which

vanishes at a geometric point (A, ι, θ, k̄P) of M(H)⊗ R0 exactly when A is supersingular.

Proof. This is actually Proposition 6.1 in Kassaei [2004].

Moreover, it was proved in [Kassaei, 2004, §7] that the Hasse invariant can be lifted to a

modular form of level K(H) and weight q − 1, defined over OP.

Proposition 3.2.3. If H is small enough and q > 3, then there exists an element in

SD(OP, K(H), q − 1), denoted by Eq−1, such that

Eq−1 ≡ H mod π.

Remark 3.2.1. We want to use this lifting of the Hasse invariant to develop similar theory

as in Katz [1973], such as strict neighborhoods, cnonical subgroups. But such element is not

unique. Indeed [Kassaei, 2004, Corollary 13.2] shows that all the theory does not depend on

the choice of such Eq−1.
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Now let V be a finite extension of OP with fraction field L. Let 0 ≤ w < 1 be a rational

number such that V contains an element, denoted by πw, whose valuation is w. We define

M(H)(w)V := SpecM(H)V
(Sym(ω⊗(q−1))/ < Eq−1 − πw >).

Remark 3.2.2. M(H)(w)V is a moduli space over V . Indeed, for any V -algebraR,M(H)(w)V (R)

is naturally in bijection with the set of isomorphism class of (A, ι, θ, k̄P, Y ), where (A, ι, θ, k̄P)

is as in Theorem 3.1.3 part (1) and Y is a global section of ω
⊗(1−q)
R such that Y Eq−1 = πw.

Let M(H)(w) be the π-adic completion of M(H)(w). Then the space of π-adic modular

forms with respect to D, level K(H), weight k and growth condition w, with coefficients in

V is defined to be

SD(V, w,K(H), k) := H
0(M(H)(w)V , ω

⊗k).

Moreover, the rigidification of the mapM(H)V (w)→M(H)V is the immersionM(H)rigV (w) ↪→

M(H)rigV , where M(H)rigV (w) is the affinoid subdomain of M(H)rigV relative to Eq−1 and w (see

[Kassaei, 2004, Proposition 9.7]). We call M(H)V (0)
rig the ordinary locus. It is an affinoid

subdomain of M(H)rigV and its complement is a finite union of discs, called the supersingu-

lar discs. The points of the supersingular discs correspond to those objects of the moduli

problem that are supersingular.

By rigid GAGA, elements of SD(V,K(H), k)L (resp. SD(V, w,K(H), k)L) correspond

to sections of ω⊗k (after rigidification) over M(H)rigV (resp. M(H)V (w)
rig). Elements of

SD(V, w,K(H), k)L are called overconvergent (resp. convergent) modular forms with coeffi-

cients in L if w > 0 (resp. w = 0).
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3.2.2 Quotient of (A, ι, θ, k̄P) by a finite flat subgroup of A

Let (A, ι, θ, k̄P) be an object of the moduli problem M(H) over OP. Let C ⊂ A be a finite

flat subgroup scheme. In addition we assume that C satisfies the following conditions.

• C ⊂ A[q] is of rank q4d and stable under the action of OD;

• the isomorphism θ : A[q]
∼−→ A[q]∨ takes C onto (A[q]/C)∨ ⊂ A[q]∨;

• CP
p := C2

2 ⊕ · · · ⊕ C2
m = 0 or CP

p := (A[q])22 ⊕ · · · ⊕ (A[q])2m.

Definition 3.2.3. If C satisfies the above conditions, we say that C is of type 1 if CP
p = 0

and of type 2 if CP
p = (A[q])22 ⊕ · · · ⊕ (A[q])2m. Note that any such C is uniquely determined

by C2,1
1 .

Now let A′ := A/C. The assumption that C is OD-invariant implies that A′ inherits an

action of OD. We denote this OD-action on A′ by ι′ : OD → End(A′). Moreover, the natural

projection A
f−→ A′ is OD-equivariant.

Since θ : A[q]
∼−→ A[q]∨ takes C to (A[q]/C)∨, then there is a unique polarization

θ′ : A′ −→ (A′)∨

such that the associated Rosati involution sends ι′(d) to ι′(d∗) for any d ∈ D and the following

diagram is commutative:

A′

θ′

g
A

θ

(A′)∨
f∨

A∨,

where f is the natural projection and g is the unique isogeny such that g ◦ f = [q] on A.

Furthermore, deg(θ) = deg(θ′).
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Remark 3.2.3. Actually, a more general result is proved by Kassaei, see [Kassaei, 2004,

Lemma 4.4].

Now since rk(C) is relatively prime to any prime number l �= p, the map

T̂ p(g) : T̂ p(A′) −→ T̂ p(A)

induced by g is an isomorphism. Recall that we have a class, modulo H , of isomorphisms

kp : T̂ p(A)
∼−→ Ŵ p. Define

(kp)′ := kp ◦ T̂ p(g),

and

(
kP
p

)′
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kP
p ◦

(
T P
p (f)

)−1
, if C is of type 1,

kP
p ◦ T P

p (g) , if C is of type 2.

Finally we define (k̄P)′ as the class of (kP
p )

′ ⊕ (kp)′ modulo H . Then
(
A′ = A/C, ι′, θ′, (k̄P)′

)
is also a point of M(H), which is called the quotient of (A, ι, θ, k̄P) by C.

3.2.3 Canonical subgroups

Now we will briefly recall the theory of canonical subgroup of our abelian schemes, which

was developed in Kassaei [2004].

Theorem 3.2.1. (Canonical subgroups) Let V be an OP-algebra which is a complete discrete

valuation ring of characteristic 0 such that the valuation extends the one on OP described at

the beginning of section 3.1.3.2. Then

(1) Let r ∈ V with v(r) < q/(q + 1). There is a canonical way associating to every r-test

object (A, ι, θ, k̄P, Y ), where
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− (A, ι, θ, k̄P) is an object of the moduli problem defined over a V -algebra R,

− Y is a section of ω
⊗(1−q)
A/R satisfying Y · Eq−1 = r,

a finite flat subgroup scheme C of A such that

• C has rank q4d and is stable under the action of OD,

• C depends only on the R-isomorphism class of (A, ι, θ, k̄P, Y ),

• the formation of C commutes with arbitrary base change of π-adically complete

V -algebras,

• if π/r = 0 in R, then C can be identified with the kernel of Frobenius morphism

Frq : A→ A(q),

• CP
p := C2

2 ⊕ · · · ⊕ C2
m = 0.

(2) Let r ∈ V with v(r) < 1/(q + 1). There is a canonical way associating to every object

(A, ι, θ, k̄P, Y ) as in part (i), an rq-test object (A′, ι′, θ′, (k̄P)′, Y ′), where

− (A′, ι′, θ′, (k̄P)′) is the quotient of (A, ι, θ, k̄P) by C,

− Y ′ is a section of ω
⊗(1−q)
A′/R satisfying Y ′ · Eq−1 = rq,

such that

• Y ′ depends only on the R-isomorphism class of (A, ι, θ, k̄P),

• the formation of Y ′ commutes with arbitrary base change of π-adically complete

V -algebras,

• if π/rq+1 = 0 in R, then Y ′ is equal to Y (q) on A(q) = A/C.
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Proof. This is one of the main results in Kassaei [2004]. We refer [Kassaei, 2004, §10.1]

for the proof in details. Here we just give an outline for the construction of C. First,

C2,1
1 ⊂ (A[π])2,11 ⊂ (A[q])2,11 was constructed to be a subgroup scheme of (A[π])2,11 in a similar

way as the construction of the canonical subgroups for elliptic curves in Katz [1973]. Then

C2,2
1 ⊂ (A[π])2,21 ⊂ (A[q])2,21 was defined to be the image of C2,1

1 under the isomorphism

(A[q])2,11
∼−→ (A[q])2,21 . Then define

C2
1 := C2,1

1 ⊕ C2,2
1 ,

C2
j := 0, for 2 ≤ j ≤ m,

C1
j :=

(
(A[q])2j/C

2
j

)∨ ⊂ (
(A[q])2j

)∨ ∼= (A[q])1j .

Finally, C is defined to be

C := C1
1 ⊕ · · · ⊕ C1

m ⊕ C2
1 ⊕ · · · ⊕ C2

m.

In the sequel of this section, we fix an integer r ≥ 1 and suppose that w < 1/qr−2(q + 1).

Let A(H)(w) be the base change of A(H) via the natural map M(H)(w) → M(H). The

following proposition is an immediate consequence of the above theorem.

Proposition 3.2.4. A(H)(w)[qr] has a canonical subgroup, Cr, stable under the action of

OD and (Cr)
2,1
1 ⊂ (A(H)(w)[πr])2,11 has order qr.

Proof. This is [Brasca, 2013, Proposition 6.30].

We write M(H)(w) simply by M(w) in the rest of this section. The existence of the

canonical subgroup allows us to define a morphism

M(w) −→M(H, πr),

62



whose image is still denoted by M(w). Its rigidification is a section of the morphism

M(H, πr)rig −→M(H)rig,

defined over M(w)rig. Now let M(Hπr)(w)rig be the inverse image of M(w)rig under the

morphism M(Hπr)rig −→M(H, πr)rig. It is an affinoid subdomain ofM(Hπr)rig and the map

M(Hπr)(w)rig −→ M(w)rig is finite and étale. Then let M(Hπr)(w) be the normalization

of M(w) in M(Hπr)(w)rig. The rigid analytic fibre of M(Hπr)(w) is M(Hπr)(w)rig and the

rigidification of the morphism M(Hπr)(w) −→ M(w) is just the map M(Hπr)(w)rig −→

M(w)rig described above.

Now we writeMr(w) simply forM(Hπr)(w). LetM be any one ofM(w),M(H),M(H, πr),

M(Hπr) and Mr(w). We will denote simply by M instead of Mrig the rigidification of M.

We have the following commutative diagram of formal schemes and rigid spaces:

M(Hπr) M(H, π) M(H)

M r(w)

u

M(w)

u

M(w)

u

Mr(w) M(w) M(w)

M(Hπr) M(H, π) M(H).

Proposition 3.2.5. Let S be a normal and π-adically complete V -algebra. For any integer

r ≥ 0, there is a natural bijection between Mr(w)(S) and the set of isomorphism classes of

(A, ι, θ, k̄, Y ), where

• (A, ι, θ, k̄) is an object of moduli problem, with A defined over S, of M(Hπr). And the

canonical S-point of A[πr]2,11 generates, as OP-module, the canonical subgroup of A[πr];
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• Y is a section of ω
⊗(1−q)
A/S such that Y Eq−1 = πw.

Proof. See Brasca [2011] Propositions 2.3.2 and 2.3.7.

Definition 3.2.4. We define the space of π-adic modular forms with respect to D, level

K(Hπr), weight k and growth condition w, with coefficients in V , as

SD (V, w,K(Hπr), k) := H
0
(
Mr(w), ω⊗k

)
.

Note that we have

SD (V, w,K(Hπr), k)L := H
0
(
M r(w), ω⊗k

)
.

3.3 The map dlog and the Hodge-Tate sequence

3.3.1 Group schemes with strict OP-action

The theory of group schemes with strict OP-action, which was developed in Faltings [2002a],

is needed here, as a generalization of the theory of group schemes, to deal with the OP-action.

In particular, this gives a good duality theory instead of the usual Cartier duality by taking

into account of the action of OP (since Gm has no action of OP). Here we will briefly recall

some basic definitions and properties. For more details, please refer to Faltings [2002a], or

[Brasca, 2011, §1.7].

Let R be a π-adically complete and π-torsion free OP-algebra.

Definition 3.3.1. Let G be a finite and flat group scheme over R. We say that G has a

strict OP-action if there is a ring homomorphism OP → EndR(G) such that the action on
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the Lie algebra of G is the natural one. Homomorphisms between group schemes with strict

OP-action are homomorphisms which respect the action of OP.

Example 3.3.1. Let H be π-divisible group over R. Then the πn-torsion H [πn] is naturally

a group scheme with strict OP-action for any n.

Example 3.3.2. Consider the ring of power series R[[x]]. Then there exists a unique action

of OP such that the multiplication by π has the form

[π]x = xq + πx

and the action on the Lie algebra is the one induced by the structure map OP → R. This

is called Lubin-Tate π-divisible group, denoted by LT. Then the πn-torsion of LT is a group

scheme with strict OP-action for any n.

Now we fix G, a finite flat group scheme with strict OP-action over R.

Lemma 3.3.1. G is killed by πn for some n. In particular, any morphism G→ LT factors

through LT[πn].

Proof. This is [Faltings, 2002a, Lemma 7].

Theorem 3.3.1. The functor from the category of π-adically complete and torsion free R-

algebras to the category of groups, sending

S �−→ HomOP
(GS,LTS),

is representable by a finite flat group scheme over R, with strict OP-action. We will denote

this group scheme by G∨.
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Proof. This is [Faltings, 2002a, Theorem 8].

Remark 3.3.1. If OP = Zp and R contains a primitive p-th root of unity, then LT ∼= Ĝm,R.

In particular, G∨ as above coincides with the usual Cartier dual.

3.3.2 The map dlog

Definition 3.3.2. Let R be a V -algebra. We say that R is small if:

• R is π-adically complete;

• Spec(R) is connected, i.e., R has no nontrivial idempotents;

• there is a topologically of finite type and formally étale morphism Spf(R)→ Spf(R′),

where R′ := V {T1, . . . , Ts}/(T1 · · ·Tj − πa) and a ∈ N.

A small affine is a scheme of the form Spf(R) with R small.

Proposition 3.3.1. There is an open covering of M(w) by small affines.

Proof. This is [Brasca, 2011, Proposition 3.1.2].

Remark 3.3.2. Moreover, in the proof of [Brasca, 2011, Proposition 3.1.2], the ring R′ in the

above definition can be taken as R′ = V {X, Y }/(XY − πa) for some a ∈ N.

Let Spf(R) ⊂ M(w) be an open small affine and let Spf(Sr) be the pullback of Spf(R)

to Mr(w). We assume that ωA/R = (ε∗Ω
1
A/R)

2,1
1 is a free R-module, generated by ω, and we

write Eq−1

∣∣
Spf(R)

= Eω⊗(q−1). Let η = Spec(K) be a generic geometric point of Spec(R) and

denote by G for π1(Spec(RL), η). We denote by R the direct limit over all normal R−algebras

T ⊆ K such that TL is finite étale over RL, R̂ denotes the π-adic completion of R. Then

G = Gal(RL/RL) acts continuously on R̂.
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Definition 3.3.3. Let G be an abelian group with an OP-action.

• The Tate module of G is defined to be

Tπ(G) := lim←−
n

G[πn].

• If G is a π-divisible group, we define

Tπ(G) := Tπ

(
G(RL)

)
= lim←−

n

G[πn](RL).

• Let G be a π-divisible group and H a sub OP-module of Tπ (G
∨). By duality between

G and G∨, we obtain H⊥, the orthogonal of H , which is a sub OP-module of Tπ (G).

Now let G be a group scheme with an OP-action annihilated by πn and let ωG/R be

the module of invariant differential of G. Let W be a normal, Noetherian, π-torsion free

R−algebra. We define a map

dlogG := dlogG,W : G∨ (WL) −→ ωG/R ⊗R W/πnW

as follows: let x be a WL-valued point of G∨, it extends, by normality, to a W -valued point

of G∨, called again x. Such point gives a group scheme homomorphism fx : G→ LT, which

respects the action of OP and we set

dlogG,W (x) := f ∗
xd(T ).

The map dlog satisfies various functoriality properties (see [Brasca, 2011, Lemma 3.1.3]).

Applying the construction above to G = A[πn]2,11 , for n ≥ 1, we obtain the map

dlogn,W : (A[πn]2,11 )∨ (WL) −→ ω
A[πn]2,11

⊗R W/πnW.
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Taking the direct limit over all W , we have the map

dlogn,A : (A[πn]2,11 )∨
(
RL

) −→ ωA/R ⊗R R/πnR ∼= ω
A[πn]2,11

⊗R R/πnR.

By taking the projective limit, we get the morphism of G-modules

dlogA : Tπ

(
(A[π∞]2,11 )∨

) −→ ωA/R ⊗R R̂.

Suppose that R is a discrete valuation ring, whose valuation extends that of OP. From dlogA,

we obtain the maps dlogn,Â and the map

dlog
Â
: Tπ

(
(Â2,1

1 )∨
)
−→ ω

Â/R ⊗R R̂.

3.3.3 The Hodge-Tate sequence

Recall that we have the map

dlogA : Tπ

(
(A[π∞]2,11 )∨

)⊗OP
R̂ −→ ωA/R ⊗R R̂,

and its analogue for
(
A[π∞]2,11

)∨
,

dlogA∨ : Tπ

(
A[π∞]2,11

)⊗OP
R̂ −→ ωA∨/R ⊗R R̂.

Then we have an isomorphism of G-modules

Tπ

(
(A[π∞]2,11 )∨

) ∼= Tπ

(
A[π∞]2,11

)∗
(1),

where (·)∗ is the dual module and (·)(1) means the G-action is twisted by the Lubin-Tate

character. Let

aA := (dlogA)
∗ (1).
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Definition 3.3.4. The Hodge-Tate sequence of A is the following sequence of R̂-modules

with semi-linear action of G = Gal(RL/RL):

0 ω∗
A∨/R ⊗R R̂(1)

aA
Tπ

(
(A[π∞]2,11 )∨

)⊗OP
R̂

dlogA
ωA/R ⊗R R̂ 0.

Remark 3.3.3. Actually, we have the fact that Â
2,1
1 [π]∨ ∼= Â

1,1
1 [π] and ωA∨/R

∼= ω
A[π∞]1,11 /R.

See [Brasca, 2011, §3.2] for details.

For integer r ≥ 1, suppose w < 1/qr−2(q + 1) and let v := w/(q − 1). We denote

Rz := R/πzR. We have

Theorem 3.3.2. The homology of the Hodge-Tate sequence is killed by πv with v := w/(q−

1), and we have a commutative diagram of G−modules, with exact rows and vertical isomor-

phisms:

0 Ker (dlogA)r−v

�

Tπ((A[π∞]2,11 )∨)⊗OP
Rr−v Im (dlogA)r−v

�

0

0 (Dr)
2,1
1 ⊗OP

Rr−v (A[π]2,11 )∨ ⊗OP
Rr−v

(
(Cr)

2,1
1

)∨

⊗OP
Rr−v 0,

where (Dr)
2,1
1 := ((Cr)

2,1
1 )⊥. Furthermore, Im(dlogA) and Ker(dlogA) are free R̂-modules of

rank 1.

Proof. See [Brasca, 2013, §5].

Recall that there exists a natural morphism ϑr : M
r(w) → M(w), whose rigidification is

Galois, with Gr := (OP/π
rOP)

× as Galois group. Let U = Spf(R) ⊆M(w) be an open affine

and Vr = Spf(Sr) the inverse image of U under ϑr. It follows that (Cr)
2,1
1 becomes constant

over Sr,L. Furthermore, there exists a canonical point of (Cr)
2,1
1 , defined over Sr. We now fix

{ζn}n≥1, a sequence of Cp−points of LT such that the order of ζn is exactly πn. We assume
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that πζn+1 = ζn for each n, and that ζ1 is the fixed (−π)1/(q−1). If ζr ∈ V , we obtain γr, a

canonical Sr-point of ((Cr)
2,1
1 )∨. By [Brasca, 2013, Proposition 5.6], there exists an element

δr of Rr such that

dlogr,A (γr) = δrω,

where ω = ω ⊗ 1 is a basis of ωA/R ⊗ R̂. Let δ̃r ∈ R̂ be a lift of δr. Since γr is defined over

Sr we may assume that δr ∈ Sr/π
rSr and δ̃r ∈ Sr.

Proposition 3.3.2. Let F(Sr) ⊆ω
A/R
⊗RSr be the submodule generated by δ̃rω ⊗ 1. Then

we have

• F(Sr) is a free Sr-module of rank 1, with basis δ̃rω⊗ and F(Sr)⊗Sr R̂
∼= Im(dlogA).

• The Sr-module Im(dlogA)
Hr is equal to F(Sr), where Hr := Gal(RL/Sr,L).

• There exists an isomorphism F(Sr)r−v
∼= (

(Cr)
2,1
1

)∨⊗OP
(Sr)r−v, and its base change to

R̂ gives the isomorphism of Theorem 3.3.2, via F(Sr)⊗Sr R̂
∼= Im(dlogA).

• There is an isomorphism F(Sr)
∗(1)⊗Sr R̂

∼= Ker(dlogA).

Furthermore, all the above isomorphisms are Hr-equivariant.

Proof. See [Brasca, 2013, §6.5] and the Proposition 5.11 there.

Proposition 3.3.3. There exists a unique locally free sheaf of OMr(w)-modules of rank 1,

denoted by Fr, such that

Fr (Spf(Sr)) = F(Sr),

for Spf(Sr) as before. Furthermore, we have isomorphism of sheaves of OMr(w)-modules

Fr/π
r−vFr

∼= (
(Cr)

2,1
1

)∨ ⊗OP
OMr(w)/π

r−vOMr(w).
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Proof. This follows from the above proposition and [Brasca, 2013, Lemma 5.12].

3.4 Modular Sheaves

We assume that e ≤ p − 1. We will remark at the end of this section how to remove this

hypothesis.

3.4.1 The weight space

Let L be a finite field extension of FP. Take a L-affinoid algebra A, we consider the FP-locally

analytic characters

λ : O×
P
= μq−1 × (1 + πOP) −→ A×.

Let t ∈ O×
P
. We will use the following notations:

• [t] means [·], the Teichmüler character, applied to the reduction of t modulo π;

• 〈t〉 := t/[t].

Definition 3.4.1. Let r ≥ 1 be an integer. A character λ : O×
P
→ L× is said to be r-

accessible if it is of the form t �→ [t]i〈t〉s := [t]i exp(s log(〈t〉)) for all t with v(〈t〉 − 1) ≥ r,

where

� i ∈ Z/(q − 1)Z;

� s ∈ L is such that v(s) > (e/(p− 1))− r.

The 1-accessible characters are said simply to be accessible. In this case we write λ = (s, i).

Any integer k can be viewed as the accessible character t �→ tk. Note that any locally analytic

character is r−accessible for some r.
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Let W be the weight space for locally analytic characters: it is an FP-rigid analytic space

whose A-points, for any FP-affinoid algebra A, are W(A) = Homloc−an(O
×
P
, A×). There exists

a natural bijection between the set of connected components of W and Z/(q − 1)Z. Let

B be the component corresponding to the identity. We then have W =
∐

Z/(q−1)Z B. By

[Schneider and Teitelbaum, 2001, Theorem 3.6], we know that B is a twisted form, over Cp,

of the open disk of radius 1. Note that B is isomorphic to B(1) if and only if FP = Qp (see

[Schneider and Teitelbaum, 2001, Lemma 3.9]). In general B is a closed subvariety of BN(1),

the N -dimensional open polydisk of radius 1, where N = [FP : Qp].

Proposition 3.4.1. There exists an admissible covering {Wr}r≥0 of W by affinoid subdo-

mains such that any λ ∈ Wr is r-admissible. In particular, any λ ∈ W(L) lies in some

Wr(L).

Proof. See [Brasca, 2013, §6.1].

3.4.2 A torsor

Let r, w, v, R, Sr, Gr be as in section 3.3.3. Let Fr be the sheaf as in Proposition 3.3.3.

Then we define the sheaf F′
r,v on Mr(w) to be the inverse image of the constant sheaf of sets

which are given by the subset of
(
(Cr)

2,1
1

)∨
of points of order exactly πr under the natural

map

Fr −→ Fr/π
r−vFr

∼= (
(Cr)

2,1
1

)∨ ⊗OP
OMr(w)/π

r−vOMr(w).

Now let Sr,v be the sheaf of abelian groups, on Mr(w), defined by

Sr,v := O×
P
(1 + πr−vOMr(w)).

Then we have
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Proposition 3.4.2. F′
r,v is a Zariski Sr,v−torsor.

Proof. This is a consequence of Proposition 3.3.2 and 3.3.3.

3.4.3 Modular sheaves

Fix an r-accessible character λ and let s ∈ Cp be the element associated to λ. We assume

that ζr ∈ V . Since w < 1/(qr−2(q + 1)), the canonical subgroup of level r exists. Let x = ub

be a local section of Sr,v over Spf(Sr), where u is a section of O×
P

and b is a section of

1 + πr−vOSpf(Sr). Then bs := exp (s log(b)) makes sense and we let

xλ := λ(u)bs,

which is also a section of Sr,v.

We will write Oλ
Mr(w) for the sheaf OMr(w) with the action of Sr,v by multiplication, twisted

by λ. Since we have a natural action of Sr,v on F′
r,v, we can consider the sheaf

Ω̃λ
w := H omSr,v

(
F′
r,v,O

λ−1

Mr(w)

)
,

where H omSr,v (·, ·) means homomorphisms of sheaves with an action of Sr,v. By Proposition

3.4.2, Ω̃λ
w is an invertible sheaf on OMr(w). Since ϑr : Mr(w) → M(w) is finite, ϑr,∗Ω̃

λ
w is a

coherent sheaf of OM(w)-modules. The action of Gr on F′
r,v (induced by its action of the

subset of (Cr)
2,1
1 of points of exactly order πr) and on ϑr,∗O

λ−1

Mr(w) gives an action of Gr on

ϑr,∗Ω̃
λ
w. We define the sheaf Ωλ

w on M(w) as

Ωλ
w :=

(
ϑr,∗Ω̃

λ
w

)Gr

.
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Definition 3.4.2. The space of π-adic modular forms with respect to D, level K(Hπr),

weight λ and growth condition w, with cofficients in L, is defined as

SD(L,w,K(Hπr), λ) := H
0(Mr(w), Ω̃λ

w)L.

Definition 3.4.3. We define the space of π−adic modular forms with respect to D, level

K(H), weight λ and growth condition w, with coefficients in L, as

SD(L,w,K(H), λ) := H
0(M(w), Ω̃λ

w)L.

Let w′ ≥ w be a rational number that satisfies the same conditions of w. We have natural

morphisms fw,w′ : M(w)→M(w′) and gw,w′ : Mr(w)→Mr(w′).

Lemma 3.4.1. We have a natural isomorphism of OM(w)-modules ρ̃w,w′ : g∗w,w′(Ω̃λ
w′) ∼= Ω̃λ

w.

Then we have ρ̃w,w = id and, if w′′ ≥ w′ satisfies the same conditions of w, we have ρ̃w,w′′ =

ρ̃w,w′g∗w,w′ ◦ (ρ̃w′,w′′). Furthermore, we obtain a canonical morphism

ρw,w′ : f ∗
w,w′

(
Ωλ

w′

)→ Ωλ
w,

which is an isomorphism after rigidification.

Proof. This is [Brasca, 2013, Lemma 6.18].

Definition 3.4.4. Thanks to the above lemma, we are allowed to define the space of over-

convergent modular forms with respect to D, level K(H), weight λ and growth condition w,

with coefficients in L, as

SD
† (L,K(H), λ) := lim−→

w>0

SD(L,w,K(H), λ).
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Now let h be an integer with r ≥ h. Suppose that λ is h-accessible. We can repeat the

above construction starting with Mh(w), obtaining another sheaf on M(w). For r ≥ h, we

consider the natural morphism ϑr,h : Mr(w) → Mh(w). The rigidification of ϑr,h is Galois.

Its Galois group is Gr,h ⊆ Gr, the image of 1 + πhOP.

Proposition 3.4.3. We have an isomorphism of OM(w) ⊗ L-modules

σr,h :
(
ϑh,∗H omSh,v

(
F′
h,vO

(λ−1)

Mh(w)

)
⊗ L

)Gh

∼=
(
ϑr,∗H omSr,v

(
F′
r,vO

(λ−1)
Mr(w)

)
⊗ L

)Gr

Furthermore σr,r = id, and, if t ≤ h is an integer, we have σr,t = σh,t ◦ σr,h.

Proof. This is [Brasca, 2013, Proposition 6.34].

Proposition 3.4.4. • We have a canonical isomorphism ϑrig,∗Ωλ
w
∼= Ω̃λ

w.

• ω⊗k,rig
K(H) = Ω

(k,k),rig
w , for integer k.

Proof. See [Brasca, 2013, §6.3] and Remark 6.20 there.

Actually, in [Brasca, 2013, §6.6], it shows that the sheaves Ωλ
w can be put in families, we

have

Proposition 3.4.5. There exist locally free sheaves of OWr×M(w)−modules of rank 1, denoted

by Ωr,w, such that for any λ ∈Wr(L), the natural morphism

(λ, id)∗(Ωr,w) −→ Ωλ
w

is an isomorphism.

Proof. This is [Brasca, 2013, Proposition 6.37].

Remark 3.4.1. The assumption e ≤ p − 1 can be removed. For details and differences, see

[Brasca, 2013, §6.7]
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3.5 Hecke Operators

In this section, we recall the definitions of Hecke operators acting on the space of π-adic

modular forms, which was introduced by R. Brasca in [Brasca, 2013, §7]. There, he in-

troduced the U operator and TL operators, which are analogous to the classical Up and Tl

operators, respectively. Moreover, he showed that the U operator is a completely continuous

operator on the space of overconvergent modular forms. Eventually, he showed that all these

operators can be put in families.

3.5.1 The U operator

Let λ : O×
P
→ L× be a character in Wr and let 0 < w ≤ 1/(qr−2(q + 1)) be positive.

Proposition 3.5.1. There exists a norm on SD (L,w,K(Hπr), λ) making it a potentially

orthonormizable L-Banach module.

Proof. This is [Brasca, 2013, Proposition 7.1].

Definition 3.5.1. Let M be a Banach A−module, where A is an affinoid K−algebra.

Following [Buzzard, 2007, §I.2], we say that M satisfies the property (Pr), if there is a

Banach A−module N such that M ⊕N is potentially orthonormizable.

Corollary 3.5.1. The subspace SD(L,w,K(H), λ) ⊆ SD(L,w,K(Hπr), λ) is a L-Banach

module satisfying property (Pr).

To define the U operator we need to introduce another type of curve. We use the notations
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of section 3.1.3.2. We define

K (Hπr, q) :=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ ∈ K (Hπr) s.t. b ≡ 0 mod π

⎫⎪⎪⎬⎪⎪⎭ .

In the case KP = K(Hπr, q), a choice of a level structure is equivalent to a choice of

(Q,D, k̄P), where (here (A, ι, θ, k̄) is an object of the moduli problem for FP−algebras):

(1) Q is an R−point of exact OP-order π
r in A[πr]2,11 ;

(2) D is a finite and flat OP-submodule of A[πr]2,11 of order q which intersects the OP-

submodule scheme generated by Q trivially;

(3) k̄P are as in Section 3.1.3.2.

In this case, the curve M ′
K ′ will be denoted by M(Hπr, q). It is a proper and smooth scheme

over L. There exists a natural morphism π1 : M(Hπr, q) → M(Hπr), defined by forgeting

D and π1 is finite and flat.

Given D, a finite and flat OP-submodule of A[π]2,11 , we let t2(D) be the unique subgroup

scheme of A[q] satisfying the conditions of Section 3.2.2, of type 2, such that (t2(D))2,11 = D.

We can now define another morphism π2 : M(Hπr, q)→M(Hπr) by taking the quotient of

t2(D) on points. Since D intersects the OP-submodule scheme generated by Q trivially, the

image of Q under the natural map A → A/t2(D) is a point of exact OP-order π
r. Passing

to the rigidifications and using the same notations, we have morphisms of rigid spaces π1,

π2 : M(Hπr, q)→ M(Hπr). Furthermore, we write M r
q (w) for (π1)

−1(M r(w)) and define the

formal model Mr
q(w) as the normalization, via π1, of M

r(w) in M r
q (w). This gives a formal

model of π1, denoted by p1 : M
r
q(w)→Mr(w). Moreover, we can define the morphism

p2 : M
r
q(qw) −→Mr(w),
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by taking the quotient over D, on points (this is well defined by [Brasca, 2013, Lemma 7.5]).

Let Ar
q(w) be the base change of A

r(w), via p1, to Mr
q(w). Then Ar

q(w) has a subgroup of

order q of its πr-torsion, which is denoted by D and has trivial intersection with its canonical

subgroup. The isogeny

πD : Ar
q(qw) −→ Ar

q(qw)/D

is defined over Mr
q(qw). We have the following diagram

Ar
q(qw)

πD

Ar
q(qw)

/
D

Ar(qw)

Mr
q(qw)

p1

Mr
q(qw)

gw,qw◦p2

Mr(qw)

such that the left and right squares are Carterian and the square on the back is commutative.

Since g∗w,qwΩ̃
λ
qw
∼= Ω̃λ

w, we obtain a morphism

π̃λ
D : p∗2Ω̃

λ
w −→ p∗1Ω̃

λ
qw.
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Then we can define an operator Ũ to be the composition

H0
(
Mr(qw), Ω̃λ

qw ⊗V K
)

ρ̃rigw,qw

H0
(
Mr(w), Ω̃λ

w ⊗V K
)

p∗2
H0

(
Mr

q(w), p
∗
2Ω̃

λ
w ⊗V K

)

π̃λ
D

H0
(
Mr

q(w), p
∗
1Ω̃

λ
qw ⊗V K

)

π1,∗

H0
(
Mr(qw), Ω̃λ

qw ⊗V K
)
,

where π1,∗ is the map induced by the trace, which is well defined since π1 is finite and flat.

All the maps in the above composition are Gr−equivariant, so is Ũ.

Taking Gr−invariants we obtain a map, denoted still by Ũ,

Ũ : SD(L, qw,K(H), λ) −→ SD(L, qw,K(H), λ).

Then our U operator

U : SD(L, qw,K(H), λ) −→ SD(L, qw,K(H), λ)

is defined by U := 1
q
Ũ. Moreover, Brasca shows that

Proposition 3.5.2. The operator U is completely continuous.

Proof. See [Brasca, 2013, Proposition 7.7].

Everything we showed above can be repeated for families; in particular, we have the Ur

operator and the following proposition.
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Proposition 3.5.3. For any integer r ≥ 1 and any rational w ≤ 1/(qr−2(q+1)), H0(Ωr,w,Wr×

M(H)(w)rig) is a Banach OWr(Wr)−module that satisfies the property (Pr). Furthermore

the Ur operator is completely continuous.

Let λ : O×
P
→ L× be a locally analytic character and let h ∈ R, we have the following

proposition.

Proposition 3.5.4. Let h be in R and let f be in SD(L,w,K(H), λ)≤h. Then there exists

an affinoid V ⊆ W such that f can be deformed to a family of modular forms over V.

Furthermore, the U-operator acts with slope ≤ h on this family.

3.5.2 Other Hecke operators

We now sketch the definition of other Hecke operators. Let l �= p be a rational prime such

that l splits in Q(
√
λ). Let L be a prime of F above l such that B is split at L. We have

G′(Ql) ∼= Q×
l ×GL2(FL)×GL2(FL2)× · · · ×GL2(FLk

)

where L2, . . . ,Lk are the primes of F lying over l different from L, FLi
is the completion of

F at Li. We assume that the compact open subgroup H is of the form

H = Z∗
l ×GL2(OFL

)×H ′.

Let πl be a uniformizer of OFL
. If A is an abelian scheme as above, we have a decomposition

of A[�l] similar to that of A[�], so A[πl]
2,1
1 is defined and it has an action of κl := OFL

/πl.

Let λ : O×
P
→ L× be an r−accessible character. Let HL be the set of invertible 2 × 2

matrices with left lower corner congruent to 0 modulo πl. The Shimura curve corresponding

to the case KP = K(H�r) and H = Z∗
l ×HL ×H ′ will be denoted by M(l)(Hπr). It follows
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that M(l)(Hπr) parametrizes objects of the moduli problem of M(Hπr) plus a finite and flat

subgroup of A[πl]
2,1
1 of order |κl|, stable under the action of OFL

. If D is such a subgroup,

we can define t2(D) as in the case of subgroups of A[πl]
2,1
1 , and also the quotient of A by

t2(D) can be defined. We can repeat everything we have done for the U operator and define

the operator

TL : SD(L,w,K(Hπr), λ)→ SD(L,w,K(Hπr), λ)

exactly as in the case of U (using |κl| + 1 as normalization factor). Note that T̃L is a

continuous operator but not completely continuous. The operators T̃L can also be put in

families.
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Chapter 4

Faltings’ Sites

Let p > 2 be a prime integer and L a complete discrete valuation field of characteristic 0 and

perfect residue field L of characteristic p. We denote by OL the ring of integers of L and L

a fixed algebraic closure of L. We set GL := Gal(L/L).

4.1 Faltings’ topos: the smooth case

4.1.1 The algebraic setting

First, we let X be a smooth scheme of finite type over OL and let M , L ⊂ M ⊂ L, be an

algebraic field extension of L. We denote by Xet the small étale site on X and by Xfet
M the

finite étale site on XM .

Definition 4.1.1. Let EXM
be the category defined as follows.

(1) Objects: the objects of EXM
are the pairs (U,W ) where U is an object of Xet and W

is an object of Ufet
M .
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(2) Morphisms: a morphism (U ′,W ′) → (U,W ) in EXM
is a pair of morphisms (α, β)

where

• α : U ′ → U is a morphism in Xet;

• β : W ′ →W is a morphism of schemes such that the following diagram commutes.

W ′ β
W

U ′
M αM

UM

Remark 4.1.1. The category EXM
has a final object (X,XM).

Proposition 4.1.1. The finite projective limits are representable in EXM
. In particular,

fibre products exist.

Proof. It suffices to show that the fibre product of the morphisms

(U2,W 2)
(α2,β2)

(U,W ) (U1,W 1)
(α1,β1)

exists. We prove this by two steps.

(1) We claim that the pair (
U1 ×U U2,W 1 ×W W 2

)
is an object of EXM

.

First of all, by the properties of étale morphisms, it follows that U1×U U2 is an object

of Xet. Since the morphisms W 1 → U1
M , W 2 → U2

M are finite étale, the following

morphisms are also finite étale,

• W 1 ×UM
W −→ U1

M ×UM
W ,

83



• W 2 ×UM
W −→ U2

M ×UM
W .

Then the morphism

θ′ : W 1 ×UM
W ×UM

W 2 −→ U1
M ×UM

U2
M

defined by the composite of finite étale maps

(
W 1 ×UM

W
)×UM

W 2 −→ U1
M ×UM

W ×UM
W 2

−→ U1
M ×UM

W ×UM
U2
M

−→ U1
M ×UM

U2
M

is again finite étale (the last map of the composite is finite étale since W → UM is so).

Let f : W 1 →W be the unique map such that p1 ◦ f = β1, where p1 : W ×UM
W →W

is the first projection. Then the following commutative diagram

W 1

id

f

γ1

W 1 ×UM
W W ×UM

W

p1

W 1 β1

W

induces a morphism γ1 : W
1 → W 1×UM

W which is finite étale since W 1×UM
W →W 1

is. Moreover, there exists a finite étale morphism γ2 : W 2 → W 2 ×UM
W obtained in

a similar way. Now define

θ′′ : W 1 ×W W 2 −→ W 1 ×UM
W ×UM

W 2

as the composite

W 1 ×W W 2 id×γ2−→ W 1 ×W

(
W 2 ×UM

W
)
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γ1×id−→ (
W 1 ×UM

W
)×W

(
W 2 ×UM

W
)

∼−→ W 1 ×UM
W ×UM

W 2.

Each map in the above composite is finite étale then so is θ′′. Hence

θ := θ′ ◦ θ′′ : W 1 ×W W 2 −→ U1
M ×UM

U2
M

is finite étale. Our claim follows immediately by noting that

U1
M ×UM

U2
M
∼= (

U1 ×U U2
)
M

.

(2) We will show that (U1 ×U U2,W 1 ×W W 2) satisfies the universal property of the fibre

product of the given pair of morphisms

(U2,W 2)
(α2,β2)

(U,W ) (U1,W 1).
(α1,β1)

Suppose we have the following commutative diagram of morphisms in EXM

(U3,W 3)

(f2,g2)

(f1,g1)

(U1 ×U U2,W 1 ×W W 2) (U1,W 1)

(α1,β1)

(U2,W 2)
(α2,β2)

(U,W ).

Note that we have natural morphisms

α : U3 −→ U1 ×U U2 and

β : W 3 −→W 1 ×W W 2
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making the following diagrams commutes

U3

f2

f1

α

U1 ×U U2 U1

α1

U2 α2

U

W 3

g2

g1

β

W 1 ×W W 2 W 1

β1

W 2 β2

W.

Then it is enough to show that (α, β) is a morphism in EXM
, i.e., the following diagram

W 3 β
W 1 ×W W 2

θ

U3
M αM

(U1 ×U U2)M

(4.1)

commutes.
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By the universal property of the fibre products, we have the following diagram

W 3

β

W 1 ×W W 2

θ

W 2

W 1 W

U3
M

(U1 ×U U2)M U2
M

U1
M UM

such that each part of the above diagram is commutative except the one we need to

check (the square with dot arrows). Hence our diagram (4.1) is also commutative. The

propositions follows immediately.
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Definition 4.1.2. A site is given by a category C and a set Cov(C) of families of morphisms

with fixed target {Ui → U}i∈I , called coverings (or covering families) of C, satisfying the

following axioms.

(1) If V → U is an isomorphism in C, then {V → U} ∈ Cov(C).

(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ii ∈ Cov(C), then

{Vij → U}i∈I, j∈Ji
∈ Cov(C).

(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C, then Ui ×U V exists for all

i ∈ I and {Ui ×U V → V }i∈I ∈ Cov(C).

Definition 4.1.3. Let (U,W ) be an object of EXM

• A family of morphisms {(Ui,Wi)→ (U,W )}i∈I in EXM
is called a covering (family) of

type (α), respectively type (β) if

(α) {Ui → U}i∈I is a covering in Xet and Wi
∼= W ×U Ui for every i ∈ I. Here the

morphism W → U in the fibre product is the composite W → UM → U , or

(β) Ui
∼= U for all i ∈ I and {Wi → W}i∈I is a covering family in Xet

M .

• The topology TXM
generated by the covering families of type (α) and (β) on EXM

is

called Faltings’ topology associated to the data (X,M). The associated site and topos

of sheaves of sets are called Faltings’ site and Faltings’ topos, and denoted by XM ,

Sh(XM) respectively.

We now give an alternative definition of the topology TXM
.
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Definition 4.1.4. A family {(Uij,Wij)→ (U,W )}i∈I, j∈J of morphisms in EXM
is called a

strict covering (family) if the followings hold:

(a) For every i ∈ I, there exists an object Ui in Xet such that Uij
∼= Ui for all j ∈ J ,

(b) The family of morphisms {Ui → U}i∈I is a covering in Xet,

(c) For every i ∈ I, the family {Wij →W ×UM
Ui,M}j∈J is a covering in Xet

M .

We denote a strict covering family

{(Uij ,Wij)→ (U,W )}i∈I, j∈J

of (U,W ) simply by

{(Ui,Wij)→ (U,W )}i∈I, j∈J ,

where Ui is as in (a).

Remark 4.1.2. (1) Note that the covering families of type (α) and (β) are strict coverings.

(2) Let {(Ui,Wij)→ (U,W )}i∈I, j∈J be a strict covering of (U,W ) in EXM
. It can be

obtained by the composite

{
{(Ui,Wij)→ (Ui,W ×UM

Ui,M)}j∈J
}
i∈I
◦ {(Ui,W ×UM

Ui,M)→ (U,W )}i∈I ,

where the first term is a covering family of (Ui,W×UM
Ui,M) of type (β) and the second

term is a covering of (U,W ) of type (α). Hence a strict covering is a covering family

in XM .

(3) By the above discussion, the strict coverings also generate the topology TXM
.
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Definition 4.1.5. Let C be a category. A pretopology on C is: for each object X of C, define

a set Cov(X) of families of morphisms over X satisfying the following axioms:

(PT0) (Existence of fibre product) For all objects X of C, all morphisms X0 → X in Cov(X)

and all morphisms Y → X in C, the fibre product X0 ×X Y exists.

(PT1) (Stability under base change) For all objects X of C, all morphisms Y → X in C, and

all {Xi → X}i∈I in Cov(X), the family {Xi ×X Y → Y }i∈I is in Cov(Y ).

(PT2) (Local character) If {Xi → X}i∈I in Cov(X), and for all i, {Xij → Xi}j∈Ji in Cov(X),

then

{Xij → Xi → X}i∈I, j∈Ji

is also in Cov(X).

(PT3) (Isomorphisms) {X id−→ X} is in Cov(X).

Remark 4.1.3. The category EXM
with the strict covering families does not form a pretopol-

ogy. In fact the strict coverings satisfy (PT0), (PT1) and (PT3) of the above definition but

do not satisfy (PT2). However, the covering families of the pretopology PTXM
generated

by the strict coverings are composite of a finite number of strict coverings. The following

lemma shows that one can use strict covering families to compute the sheaf associated to a

presheaf on EXM
.

Lemma 4.1.1. Let (U,W ) be an object of EXM
. The strict coverings of (U,W ) are cofinal

in the collection of all covering families of (U,W ) in PTXM
.

Proof. This is [Andreatta and Iovita, 2010, Lemma 2.8].
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Note that for any object (U,W ) in EXM
we have a natural map f : W → U given by the

composite W → UM → U . Then we obtain a morphism of sheaves

f � : OU −→ f∗OW .

Taking global sections we get a morphism Γ(U,OU) −→ Γ(W,OW ).

Definition 4.1.6. Let (U,W ) be an object in EXM
. We define the following presheaves on

EXM

• The presheaf of OM -algebras on EXM
, denoted by OXM

, is defined as

OXM
(U,W ) := the normalization of Γ(U,OU) in Γ(W,OW ).

• Let M0 ⊆ M be the maximal absolutely unramified subfield of M and OM0 be the

ring of integers of M0. We define the sub presheaf of OM0-algebras Oun
XM

of OXM
as

follows: Oun
XM

(U,W ) is the subset of OXM
(U,W ) consisting of elements x with the

following property: there exist a finite unramified extension L ⊂ L′ ⊂M , a finite étale

morphism U ′ → UOL′ and a morphism W → U ′
M over UM such that x, thought of as

an element of Γ(W,OW ), lies in the image of Γ(U ′,OU ′).

Proposition 4.1.2. The presheaves OXM
and Oun

XM
are sheaves.

Proof. See Proposition 2.11 and Remark 2.12 in Andreatta and Iovita [2013].

4.1.2 The formal setting

Let L, OL, π, L and M be as before. Now let X be a formal scheme, flat over Spf(OL) and

with ideal of definition generated by π. Let Xet be the small étale site on X and let U→ X
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be an étale morphism, topologically of finite type of π-adic formal schemes. We define the

following sites.

(1) The site UM,fet:

� The objects of UM,fet are pairs (W,K) where

• K is a finite extension of L contained in M .

• W → (
Urig

)
K

is a finite étale cover of K-rigid analytic apaces, where Urig

denotes the L-rigid analytic space associated to U.

� The morphisms of two objects (W ′, K ′), (W,K) are defined as:

MorUM,fet
((W ′, K ′), (W,K)) :=

⎧⎪⎪⎨⎪⎪⎩
∅, if K � K ′,

Mor(W ′,WK ′), if K ⊆ K ′.

Here Mor(W ′,WK ′) denotes the morphisms of K ′-rigid analytic spaces.

� The coverings of a pair (W,K) in UM,fet are families of pairs {(Wi, Ki)}i∈I over

(W,K), where K ⊂ Ki such that there exists a finite extension K ′ over K,

Ki ⊂ K ′ ⊂M , and the induced map

∐
i∈I

Wi,K ′ −→WK ′

is surjective.

Remark 4.1.4. (a) The fibre product of the morphisms

(W1, K1)

(W2, K2) (W,K)
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exists in UM,fet and we have

(W1, K1)×(W,K) (W2, K2) = (W1 ×W W2, K3) ,

where K3 is the composite of K1 and K2.

(b) Let U2 → U1 be a morphism in Xet. Then we have a morphism

ρU1,U2 : U1
M,fet −→ U2

M,fet

(W,K) �−→
(
W ×

U
1,rig
K

U
2,rig
K , K

)
,

which sends covering families to covering families.

(2) The site Ufet
M :

Proposition 4.1.3. Let SU be the set of morphisms of pairs (W ′, K ′) → (W,K) in

UM,fet such that K ⊂ K ′, and g : W ′ → WK ′ be an isomorphism of K ′-rigid analytic

spaces. Then we have

• SU is stable under composition;

• SU is stable under base change via morphisms in UM,fet;

• given a morphism U2 → U1 in Xet, we have

ρU1,U2 (SU) ⊂ SU ,

where ρU1,U2 are defined as in Remark 4.1.4;

• if we have a commutative diagram of morphisms in UM,fet

(W1, K1)

f
h

(W2, K2)
g

(W,K)

with f and g in SU, then h is also in SU.
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Thanks to the above proposition, we may define the underlying category of Ufet
M to be

the localization of the underlying category of UM,fet with respect to SU. More explicitly

we have

� The objects of Ufet
M are pairs (W,K) as in UM,fet.

� The morphisms of two objects (W ′, K ′), (W,K) in Ufet
M are defined as follows

MorUfet
M

((W ′, K ′), (W,K)) := lim−→MorUM,fet
((W1, K1)→ (W,K)) ,

where the direct limit is taken over all morphisms (W1, K1) → (W ′, K ′) in SU.

Equivalently, this is the set of classes of morphisms (W ′, K ′) ← (W1, K1) →

(W,K), where (W1, K1) → (W ′, K ′) is in SU. Two such diagrams (W ′, K ′) ←

(W1, K1) → (W,K) and (W ′, K ′) ← (W2, K2) → (W,K) are equivalent if and

only if there is a third one (W ′, K ′)← (W3, K3)→ (W,K) mapping to the two.

Note that the fibre product of two pairs over a given pair exists in Ufet
M and it coincides

with the fibre product in UM,fet. If (W ′, K ′) ← (W1, K1) → (W,K) and (W ′′, K ′′) ←

(W2, K2) → (W ′, K ′) are two morphisms, their composition (W ′′, K ′′) ← (W3, K3) →

(W,K) is defined as:

(W3, K3) := (W1, K1)×(W ′,K ′) (W2, K2).

The covering families are defined similarly as in UM,fet. From now on we will write

an object (W,K) in Ufet
M simply by W but one should keep in mind that W is defined

over a finite extension K of L.

If U2 → U1 ia a morphism in Xet, by Proposition 4.1.3, the map ρU1,U2 extends to the

localized categories and defines a map of Grothendieck topologies Ufet
1,M → Ufet

2,M . We
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denote this morphism simply by

W �−→W ×
U
rig
1

U
rig
2

on objects.

Now we give a more explicit description of the site Ufet

L
.

• An object in Ufet

L
is a pair (W,K) where K is a finite extension of L contained

in L and W is an object of the finite étale site of UK .

• Given two objects (W,K) and (W ′, K ′) in Ufet

L
, the morphisms between them are

defined to be:

MorUfet

L
((W,K), (W ′, K ′)) := lim−→MorUK′′ (W ×K K ′′,W ′ ×K ′ K ′′) ,

where the direct limit is taken over all finite extensions K ′′ of L contained in L

and containing both K and K ′. The morphisms on the right hand side are the

ones of rigid analytic spaces over UK ′′.

(3) The site XM :

� The objects are pairs (U,W ) with U an object of Xet and W an object of Ufet
M .

� A morphism of (U1,W1) −→ (U,W ) is a morphism U1 → U in Xet and W1 →

W ×Urig U
rig
1 in Ufet

1,M . Here the fibre product W ×Urig U
rig
1 is taken after applying

base change to some finite field extension of L in M .

� The covering families are defined as in the algebraic case, see Definitions 4.1.3

and 4.1.4. Let the Faltings’ topology be the topologies generated by the strict

covering families.

95



Remark 4.1.5. We can define the presheaves OXM
and Oun

XM
as in Definition 4.1.6.

Moreover, these presheaves are sheaves by similar analogue of Proposition 4.1.2.

4.2 Faltings’ topos: the semistable case

4.2.1 Assumptions

Recall L, OL, π, L defined at the beginning of this chapter. Let S := Spec(OL) and M be

the log structure on S associated to the prelog structure given by the map N→ OL sending

n to πn ∈ OL. We denote by (S,M) the associated log scheme.

Now fix a positive integer a. We assume that we are in one of the following two cases:

(1) (The algebra case)

Let (X,N) be a log scheme. f : (X,N) → (S,M) is a morphism of log schemes of

finite type admitting a covering by étale open subschemes Spec(R) of the form

• Spec(R)→ X is étale;

• there is a commutative diagram of OL-algebras

OL[Q]
ψR

R

OL[N]

θ

ψa
OL,

where

(i) Q = Ns×Nt;

(ii) θ is the morphism of OL-algebras induced by the map on monoids N → Q
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sending

n �−→ ((n, n, · · · , n), (0, 0, · · · , 0)) ;

(iii) ψa is the morphism OL-algebras sending n �→ πan.

• The induced morphism of OL-algebras by the above commutative diagram

R′ := OL[Q]⊗OL[N] OL −→ R

is étale on associated spectra.

• The log structure on Spec(R) induced by (X,N) is the pullback of the fibre

product log structure on Spec(R′).

• For every subset Js ⊂ {1, · · · , s} and every subset Jt ⊂ {1, · · · , t}, the ideal of R

generated by ψR

(
NJs ×NJt

)
defines an irreducible closed subscheme of Spec(R).

(2) (The formal case)

We write (Sn,Mn)n∈N for the compatible system of log schemes given by Sn := Spec
(
OL

/
πnOL

)
,

and the log structure Mn is the one associated to the prelog structure given by

N→ OL

/
πnOL sending 1 �→ π.

For every n ∈ N, suppose we have a log scheme (Xn, Nn) over (Sn,Mn) of finite type,

which is denoted by

fn : (Xn, Nn) −→ (Sn,Mn) ,

such that (Xn, Nn) is isomorphic as log schemes over (Sn,Mn) to the fibre product of

the following pairs:

(Xn+1, Nn+1)

(Sn,Mn) (Sn+1,Mn+1) .
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Let Xform be the formal scheme associated to the Xn’s. We require that étale locally

on Xn the formal scheme Xform → Spf(OL) is of the form

(
OL

/
πnOL

)
[Q]

ψR,n
R
/
πnR

(
OL

/
πnOL

)
[N]

θ

ψa
OL

/
πnOL,

where Q, θ, ψa are as in the algebraic case, ψR,n induces a morphism

R′
n := OL[Q]⊗OL[N] OL

/
πnOL −→ R

/
πnR

which is étale. The log structure on Spec(R
/
πnR) induced from (Xn, Nn) is the

pullback of the fibre product log structures on Spec(R′
n).

Moreover, as in the algebraic case, we require that for every subset Js ⊂ {1, · · · , s} and

Jt ⊂ {1, · · · , t}, the ideal of R
/
πR generated by ψR,1

(
NJs ×NJt

)
defines an irreducible

closed subscheme of Spec(R
/
πR).

We have a morphism of sheaves of monoids from

Nform := lim←−Nn

to OXform
, which coincides with the inverse image ofN1 via the canonical map OXform

−→

OX1 . Nform is called the formal log structure on Xform. We write (X,N), or sometimes

X, for the inductive system of log schemes {(Xn, Nn)}n∈N. By the assumption, Xform

is a noetherian, π-adic formal scheme and has an étale open covering Spf(R)→ Xform

such that

• ψ̂R : Spf(R) −→ Spf
(
OL[Q]⊗̂OL[N]OL

)
is étale, where, ψR, Q are as before and ⊗̂

is the π-adic completion of the tensor product;
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• the formal log structure Nform on Spf(R) is induced by the formal log structure

on the fibre product Spf
(
OL[Q]⊗̂OL[N]OL

)
.

We end the assumptions by the following remark.

Remark 4.2.1. By Lemma 3.1 of Andreatta and Iovita [2012], the log schemes in both cases

((X,N) in the algebraic case and (Xn, Nn) in the formal case) are fine and saturated log

schemes.

4.2.2 Faltings’ sites

The notations are as in the previous section.

4.2.2.1 The site Xket

We write Xket for the Kummer étale site of (X,N) for both cases: the algebraic and the

formal. In the former case, Xket is just the one described in section 2.4. In the latter, we

define Xket as follows.

� The objects are system of Kummer étale morphisms

{gn : (Yn, NYn) −→ (Xn, Nn)}n∈N

such that gn is the base change of gn+1 via (Xn, Nn)→ (Xn+1, Nn+1) for every n ∈ N.

We simply write g : (Y,NY )→ (X,N) for such inductive system.

� The morphisms from one object

{gn : (Yn, NYn) −→ (Xn, Nn)}n∈N
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to another

{hn : (Zn, NZn) −→ (Xn, Nn)}n∈N

are the set of systems of morphisms of log schemes

{tn : (Yn, NYn) −→ (Zn, NZn)}n∈N

over (Xn, Nn), such that tn is the base change of tn+1 via (Xn, Nn)→ (Xn+1, Nn+1) for

every n ∈ N, which are simply denoted by t : (Y,NY )→ (Z,NZ).

� The coverings are collections of Kummer étale morphisms

{(
Y i, N i

Y

) −→ (X,N)
}
i∈I

such that X1 is the set theorectic union of images of Y i
1 ’s.

Note that we have a natural forgetful functor Xket → Xket
1 , sending a system

{gn : (Yn, NYn) −→ (Xn, Nn)}n∈N

to g1 : (Y1, NY1) −→ (X1, N1). Moreover this is an equivalence of categories.

4.2.2.2 Presheaves on Xket

In the algebraic case, we define presheaves OXket and NXket on Xket respectively as: for any

object (U,NU) in Xket,

OXket(U,NU) := Γ (U,OU) ,

NXket(U,NU) := Γ (U,NU) .
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In the formal case, for every h ∈ N, we define presheaves OXket ,h and NXket,h on Xket

respectively as: for any object (Un, NUn)n∈N in Xket,

OXket ,h ((Un, NUn)n) := Γ (Uh,OUh
) ,

NXket,h ((Un, NUn)n) := Γ (Uh, NUh
) .

Then Let

OXket
form

:= lim←−
h

OXket,h and NXket
form

:= lim←−
h

NXket,h.

Similarly, we can define subpresheaves O×
Xket of OXket in the algebraic case, O×

Xket,h of OXket ,h

and O×
Xket

form
of OXket

form
, respectively, in the formal case. We have

Proposition 4.2.1. (1) In the algebraic case the presheaves OXket , O×
Xket and NXket are

sheaves, and

α : NXket −→ OXket

is a morphism of sheaves of multiplicative monoids such that

α−1
(
O×

Xket

) ∼−→ O×
Xket .

(2) In the formal case the presheaves

OXket,h, O×
Xket,h and NXket,h

for every h ∈ N and the presheaves

OXket
form

, O×
Xket

form
and NXket

form

are sheaves. Moreover,

αh : NXket,h −→ OXket ,h for every h and
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α : NXket
form

−→ OXket
form

are morphisms of sheaves of multiplicative monoids such that

α−1
h

(
O×

Xket,h

)
∼−→ O×

Xket,h for every h, and

α−1
(
O×

Xket
form

)
∼−→ O×

Xket
form

.

4.2.2.3 Faltings’ sites

Let U be an object in Xket and let L ⊂ M ⊂ L. We assume that the log structure on UL

defined by NU coincides with the trivial log structure. Let Ufet
M be either the site of finite

étale covers of UM in the algebraic case or be the site as defined in Section 4.1.2 in the formal

case, respectively. Both are endowed with the trivial log structure. Let EXM
be the category

defined as follows:

• the objects are pairs (U,W ), where U is an object of Xket and W is an object of Ufet
M ;

• a morphism (U ′,W ′)→ (U,W ) in EXM
is a pair of morphisms (α, β), where α : U ′ → U

is a morphism in Xket, β : W ′ →W ×UL
U ′
L is a morphism in (U ′)fetM .

Remark 4.2.2. Some properties, such as the existence of the fibre products, can be proved

exactly the same way as in the smooth case. Moreover, we can also define covering families

of type (α), type (β) as well as strict covering in the same way. The associated site and

topos of sheaves of sets are denoted by XM , Sh(XM), respectively.

In the algebraic case we define the presheaf of OM -algebras on XM , denoted by OXM
, as

OXM
(U,W ) := the normalization of Γ (U,OU) in Γ (W,OW ) .
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In the formal case the definition is the same by replacing Γ (U,OU) with Γ (Uform,OUform
).

We may also define the subpresheaf of W(L)-algebras Oun
XM

of OXM
in the same way as we

did in the smooth case. Moreover, these presheaves are sheaves.

4.3 Faltings’ site associated to Shimura curves

4.3.1 Log structures

Recall that we have a commutative diagram of formal schemes and rigid analytic spaces (see

Section 3.2.3):

M(Hπr) M(H, π) M(H)

M r(w)

u

M(w)

u

M(w)

u

Mr(w) M(w) M(w)

M(Hπr) M(H, π) M(H).

(4.2)

Fix H , r and w as before. For M a formal scheme or a rigid analytic space , we write M

for its underlying scheme. We define some log formal schemes and log rigid spaces as follows:

• S := (S,M).

Let S = Spf(OL) and let M be the log structure on S defined by its closed point, i.e.,

the log structure associated to the prelog structure given by the morphism N → OL

sending n �→ πn.

• M(w) := (M(w), N).
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Take a small open affine U = Spf(R) ↪→ M(w), i.e., U is connected and there is a

formal étale morphism Spf(R)→ Spf(R′), where R′ := OL{X, Y }/(XY −πa) for some

a ∈ N (this can be done due to Proposition 3.3.1 and Remark 3.3.2). Then we are in

the situation as in Example 2.3.1. Let P := N2 ⊕N N be the amalgamated sum of the

morphisms Δ : N → N2, n → (n, n) and ψa : N → N, n → an. Then we have the

following commutative diagram of monoids:

R
′

R

N2

ψR

P

N

Δ

ψa
N

h

ψ
OL,

where ψR(m,n) = XmY n, OL, R and R
′

are the multiplicative monoids associated

to the respective rings. Let NU be the log structure on U associated to the prelog

structure given by the composition P ��� R
′ → R. Moreover M(w) is a fine saturated

log scheme, f : M(w)→ S is log smooth (see Example 2.1.2 and Lemma 2.3.1).

• Mr(w) := (Mr(w), Nr).

Here Nr is the inverse image log structure (see Proposition 2.2.2) on M
r(w) via the

morphism M
r(w)→M(w).

• M(H, π) is the log formal scheme whose underlying formal scheme is M(H, π), the log

structure is defined by its special fibre which is a divisor with normal crossing (since

M(H, π) has semistable reduction).

• Let M(w) (resp. M r(w), resp. M(H, π)) be the log rigid analytic space endowed M(w)

(resp. M r(w), resp. M(H, π)) with the trivial log structure.
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We have the following commutative diagram of log formal schemes and log rigid spaces:

M(w) ν
M(H, π)

M(w)

u

M(H, π).

u

4.3.2 The sites M(w) and M(H, π)

Both the pairs (M(w),M(w)) and (M(H, π),M(H, π)) satisfy the conditions of section 4.2.1.

Then we denote by M(w), respectively M(H, π) the Faltings’ sites associated to these pairs.

More explicitly, let (M,M) be one of the above pairs, the Faltings’ site associated to the

pair (M,M) is defined as follows. First, the category EML
is defined by:

(i) the objects consist of pairs
(
U, (W,K)

)
such that U ∈Mket and (W,K) ∈ Ufet

L
;

(ii) a morphism
(
U, (W,K)

)→ (
U′, (W ′, K ′)

)
in EML

is a pair of morphisms (α, β), where

α : U→ U′ is a morphism in Mket, β : (W,K)→ (W ′ ×U′
K′

UK ′, K ′) is a morphism in

Ufet

L
.

Then we endow the category EML
with the topology generated by the covering families

defined as in Definition 4.1.3. Note that this topology on EML
is the same as the one

generated by the strict coverings (see Definition 4.1.4). Now let M be either the site M(w)

or M(H, π). Recall that we have sheaves of OL-algebras on M, denoted by OM, defined as:

OM(U,W ) := the normalization of Γ(U,OU) in Γ(W,OW ).

We also have the subsheaf of W(L)-algebras Oun
M of OM, whose sections over (U,W ) consist of

elements x ∈ OM(U,W ) for which there exist a finite unramified extension M of L contained
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in L, a Kummer log étale morphism V→ U×OL
OM and a morphism W → VL over UL such

that x, viewed as an element of Γ(W,OW ), lies in the image of Γ(V,OV).

Then we denote by ÔM and Ôun
M the continuous sheaves on M defined by the projective

systems
{
OM/πnOM

}
n≥0

and
{
Oun

M/πnOun
M

}
n≥0

, respectively.

4.3.3 Induced sites

Let S be a site whose underlying category is denoted by C, and let E be the category of

sheaves of sets on S. Let X be an object in C. We then define the site S/X , called the site

induced by X, as follows.

• Its underlying category, denoted by C/X , consists of pairs (Y, φ), where Y is an object

of C and φ : Y → X is a morphism in C. A morphism (Y ′, φ′) → (Y, φ) in C/X is a

morphism f : Y ′ → Y in C such that the following diagram

Y ′

φ′

f
Y

φ

X

commutes in C.

• The topology on C/X is the one induced from S via the forgetful functor αX : C/X → C

sending (Y, φ) �→ Y on objects, i.e., a family of morphisms {Ui → U}i∈I of objects over

X is a covering family in C/X if and only if it is a covering in C.

Moreover, we denote by E/X the sheaves of sets on S/X , which are called the topos induced

by X. We have natural functors:

αX,∗ : E −→ E/X , and
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α∗
X : E/X −→ E

such that α∗
X is left adjoint to αX,∗.

Now suppose that the category C has a final object T and fibre products exist in C. Then

we obtain a functor

jX : C −→ C/X

defined by jX(Z) = (Z ×T X, pr2) on objects, where pr2 is the natural morphism Z×T X →

X.

Definition 4.3.1. Let C and D be sites with underlying categories C and D, respectively.

A functor u : C→ D is called continuous if for every covering family {Vi → V }i∈I ∈ Cov(C)

we have

(1) {u(Vi)→ u(V )}i∈I ∈ Cov(D);

(2) for any morphism V ′ → V in C, the morphism

u (V ′ ×V Vi) −→ u(V ′)×u(V ) u(Vi)

is an isomorphism for each i.

Then jX is a continuous functor and defines a morphism of sites. Indeed, we have mor-

phism of topos

j∗X : E −→ E/X , and

jX,∗ : E/X −→ E,

such that j∗X is left adjoint to jX,∗. Moreover, jX is right adjoint to αX and we have a

canonical isomorphism of functors j∗X
∼= αX,∗. Then jX has a canonical left adjoint, namely
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α∗
X . We denote this left adjoint of jX by jX,!, which can be described explicitly as follows.

For any sheaf F on S/X , jX,!(F) is the sheaf associated to the presheaf on S given by

Z �−→
∐

g∈MorC(Z,X)

F (Z, g) .

Recall that we denote by (M,M) be one of the two pairs (M(w),M(w)) and (M(H, π),M(H, π)),

and by M the Faltings’ site associated to the corresponding pair. Let Z → M be a finite

étale morphism of log rigid spaces. Then we get a morphism in Mfet

L
. Thus the pair (M, Z) is

an object of EML
. We denote by

(
EML

)
/(M,Z)

the induced category and by Z := M/(M,Z) the

induced Faltings’ site. Recall that the site M has an final object, namely (M,M) and fibre

products exist in EML
. We denote simply by α and j the forgetful functor α/(M,Z) : Z→M

and the functor j/(M,Z) : M→ Z defined by j(U,W ) = (U,W ×M Z, pr2), respectively. Then

we have the following functors:

α∗ : Sh(M) −→ Sh(Z),

α∗ : Sh(Z) −→ Sh(M),

j∗ : Sh(Z) −→ Sh(M),

j∗ : Sh(M) −→ Sh(Z),

j! : Sh(Z) −→ Sh(M),

such that α∗ and j∗ are left adjoint to α∗ and j∗, respectively, and j! is left adjoint to j∗.

Now let (U,W ) be an object of M and Z as above. We have

Proposition 4.3.1. There exists an object ZW in Mfet

L
such that there exists a canonical
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isomorphism

W ×M Z ∼=

⎛⎜⎝ ∐
g∈Mor

Mfet

L

(W,Z)

W

⎞⎟⎠∐
ZW . (4.3)

Proof. Let g : W → Z be a morphism in Mfet

L
. First we claim that there exists an object

Zg in Mfet

L
such that

W ×M Z ∼= W � Zg,

and the following diagram commutes

W ×M Z ∼ W � Zg

W

ϕg

W,

where the right vertical map is the natural inclusion and ϕg is the unique map (depending

on g) induced by the following commutative diagram:

W

g

id
ϕg

W ×M Z W

Z M.

Since Z → M is finite and étale, so is W ×M Z → W . Then our claim follows from the

following lemma.

Lemma 4.3.1. Let B be a finite separable A-algebra and f : B → A an A-algebra homo-

morphism. Then there exist an A-algebra C and an A-algebra isomorphism g : B
∼→ A× C

such that f = p1 ◦ g, where p1 is the projection A× C → A.

Proof. Clearly, f ∈ HomA(B,A). Since B is separable,

ψ : B −→ HomA(B,A)

109



b �−→
(
x �→ TrB/A(bx)

)
is an isomorphism. Let e ∈ B be such that ψ(e) = f , i.e., TrB/A(ex) = f(x) for all x ∈ B.

Since f is an A-algebra homomorphism, TrB/A(e) = f(1) = 1. Furthermore, for all x, y ∈ B,

TrB/A(exy) = f(xy) = f(x)f(y) = f(x) TrB/A(ey) = TrB/A(f(x)ey),

i.e., ψ(ex) = ψ(f(x)e) for all x ∈ B. Since ψ is an isomorphism thus injective, we have

ex = f(x)e . This implies that eKer(f) = 0. Then the diagram:

0 Ker(f)

0

B
f

me

A

mf(e)

0

0 Ker(f) B
f

A 0

commutes with both rows exact, where the first vertical arrow is just me

∣∣
Ker(f)

= 0 since

eKer(f) = 0. Then

1 = TrB/A(e) = trKer(f)/A(0) + trA/A(f(e)) = 0 + f(e) = f(e).

Note that we have ex = f(x)e for all x ∈ B. Taking x = e we get e2 = f(e)e = e, i.e., e

is an idempotent of B. 1 − e ∈ Ker(f) since f(1 − e) = f(1) − f(e) = 0. Then the map

A → Ker(f), a �→ a(1 − e) makes Ker(f) be an A-algebra. Acturally 1 − e is the identity

of Ker(f) since (1 − e)y = y − ey = y − f(y)e = y − 0 = y for all y ∈ Ker(f). Then the

projectivity of A implies B ∼= A × Ker(f), where the isomorphism g : B → A × Ker(f) is

given by x �→ (f(x), x − ef(x)). Using the identity ex = f(x)e and the fact that f is an

A-algebra homomorphism, we have

g(xy) =
(
f(xy), xy − ef(xy)

)
=

(
f(xy), xy − ef(y)f(x)− ef(x)f(y) + e2f(x)f(y)

)
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=
(
f(x)f(y), xy − eyf(x)− exf(y) + e2f(x)f(y)

)
=

(
f(x)f(y), (x− ef(x))y − (x− ef(x))ef(y)

)
=

(
f(x)f(y), (x− ef(x))(y − ef(y))

)
=

(
f(x), x− ef(x)

)(
f(y), y − ef(y)

)
= g(x)g(y),

for all x, y ∈ B. Thus g is also an isomorphism of A-algebras. Furthermore, for any x ∈ B,

p1 ◦ g(x) = p1
(
f(x), x − ef(x)

)
= f(x), i.e., p1 ◦ g = f . Now C := Ker(f) as required.

Moreover, C is a separable A-algebra. This completes the proof of the lemma.

Since Zg is also an object in Mfet

L
, repeating the above argument we get a canonical

isomorphism

W ×M Z ∼=

⎛⎜⎝ ∐
g∈Mor

Mfet

L

(W,Z)

W

⎞⎟⎠∐
ZW

for some object ZW in Mfet

L
.

Remark 4.3.1. If B is a separable A-algebra, then B ⊗A B is a separable B-algebra via

the second factor. Moreover, the map f : B ⊗A B → B, b ⊗ b′ �→ bb′ is a B-algebra

homomorphism. If we apply Lemma 4.3.1 to f , there is a B-algebra C and a B-algebra

isomorphism g : B ⊗A B
∼→ B × C making the following diagram

B ⊗A B
g

f

B × C

p

B

commute, where p is the first projection.
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Recall that we have functors j!, j∗ : Sh(Z) −→ Sh(M). More precisely, let F be a sheaf of

abelian groups on Z, for any object (U,W ) in M,

j∗(F) (U,W ) = F (j(U,W )) = F (U,W ×M Z, pr2) ,

and the sheaf j!(F) on M is the sheaf associated to the presheaf

(U,W ) �−→
⊕

g∈Mor
Mfet

L

(W,Z)

F (U,W, g) .

By the above proposition, we have a natural morphism

⊕
g∈Mor

Mfet

L

(W,Z)

F (U,W, g) −→ F (U,W ×M Z, pr2) ,

which induces a morphism of sheaves j!(F)→ j∗(F). This gives a natural transformation of

functors: j! → j∗. Indeed, we have the following facts.

Proposition 4.3.2. For any Z as before, the natural transformation j! → j∗ defined above

is an isomorphism of functors.

Proof. It suffices to prove that for any object (U,W ) in M, there is a surjective morphism

W ′ →W in Mfet

L
such that

W ′ ×M Z ∼=
∐

g∈Mor
Mfet

L

(W ′,Z)

W ′,

i.e., ZW ′ = ∅ in formula (4.3).

Let V := W ×M Z. Then the morphism V → W is finite étale and we have a map

degV/W : W −→ Z .

Moreover, we have degV/W (y) = degZ/M(y′) for any y ∈ W , where y′ is the image of y under

W → M . By restricting to a connected component of M we may assume that degZ/M is a
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constant equal to n. We prove by induction on n. If n = 0, then Z = ∅, our claim follows

by taking W ′ := W id W . Now let n ≥ 1 and suppose our claim is true when deg < n.

Consider the following commutative diagram:

V

Δ

V ×W V V

V W,

where Δ is the morphism induced by the local natural multiplication B ⊗ B → B sending

b ⊗ b′ �→ bb′. By Remark 4.3.1, there exists a V ′ in Mfet

L
such that the following diagram

commutes

V ×W V ∼ V � V ′

V

Δ

V.

Moreover V ′ → V if finite étale and degV ′/V = n − 1. Then by induction hypothesis, there

exists a surjective morphism h : W ′ → V ′ in Mfet

L
such that

V ′ ×V W ′ ∼=
∐
g

W ′,

where g is taken over MorMfet

L
(W ′, Z) such that g is not equivalent to pr2 ◦ h : W ′ → Z.

Then

W ′ ×M Z ∼= W ′ ×W (W ×M Z) = W ′ ×W V

∼= W ′ ×V (V ×W V )

∼= W ′ ×V (V � V ′)

∼= (W ′ ×V V ) � (W ′ ×V V ′)
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∼= W ′ �
( ∐

g 	=pr2◦h

W ′

)
∼=

∐
g∈Mor

Mfet

L

(W ′,Z)

W ′.

The composition W ′ → V → W is finite étale. Moreover, since degV/W = n ≥ 1, V → W

is also surjective. Hence W ′ →W is a surjective morphism in Mfet

L
, which proves the claim

and the proposition.

We have the following consequence immediately.

Corollary 4.3.1. Let Z → M be a morphism in Mfet

L
. Then we have

(a) The functor j∗ is exact.

(b) Ri j∗ = 0 for all i ≥ 1.

Proof. Part (a) follows form the fact that j∗ ∼= j! ∼= α∗ and (b) follows immediately from

(a).

By adjunction we obtain a morphism

j∗j
∗(F) ∼= j!j

∗(F) −→ F,

which is the functorial on the category of sheaves of abelian groups on the site EML
. It is

called the trace map relative to Z. More explicitly, given a sheaf of abelian groups F on EML
,

the above trace map is the morphism of sheaves associated to the morphism of presheaves:

j!j
∗(F)(U,W ) =

⊕
g

j∗(F)(U,W, g)

=
⊕
g

F(U,W ) −→ F(U,W ),
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where g runs over all the morphisms MorMfet

L
(W,Z).

Finally, we define the site Mr(w) to be the induced site

M(w)/(M(w),Mr(w)).

4.4 Continuous functors

Now we have defined several sites, namely Mket(w), Mket(N, pr), Mket

L
, M(w), M(N, pr)

and Mr(w). We have the following natural functors which send covering families to covering

families, commute with fibre products and send final objects to final objects. In particular

they induce morphisms of topoi.

(1) μ : Mket(H, π) −→Mket(w) is induced by the natural morphism of formal log schemes

M(w) ↪→M(H, π). More, explicitly, for any object U in Mket(H, π), μ sends

U �−→ U×M(H,π) M(w).

(2) ν : M(H, π) −→M(w) sending

((U,W )) �→ (
U×M(H,π) M(w),W ×UL

(U×M(H,π) M(w))L
)

∼= (
U×M(H,π) M(w),W ×M(H,π) M(w)

)
.

(3) vM : Mket −→M with vM(U) := (U,UL), where M is either M(w) orM(N, p) andM is

either M(w) or M(N, p), respectively. Moreover, we have v∗M(OMket) ∼= Oun
M ([Andreatta

and Iovita, 2012, Proposition 2.13]). We also have the following commutative diagram
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of sites:

Mket(H, π)
vM(H,π)

μ

M(H, π)

ν

Mket(w) vM(w)
M(w).

(4) u : M −→Met

L
with (U,W ) �−→ W , where M is one of the three sites: M(w), M(H, π)

and Mr(w).

(5) jr : M(w) −→Mr(w) sending (U,W ) �→ (
U,W ×M(w) M

r(w), pr2
)
. By the discussion

in Section 4.3.3, this morphism of topoi has the following properties

(i) The functor jr,∗ : Sh(M
r(w))→ Sh(M(w)) is an exact functor.

(ii) Rijr,∗ = 0 for all i ≥ 1.

(6) vr : M
ket(w) −→Mr(w), which is defined to be the composite vr := jr◦vM(w). Actually

vr(U) =
(
U,UK ×M(w) M

r(w), pr2
)
, vr(M(w)) = (M(w),M r(w), id). Moreover, we

have Rivr,∗ = Riv∗ ◦ jr,∗.

We denote by OMr(w) := j∗r (OM(w)) and by ÔMr(w) := j∗r (ÔM(w)). By the construction

of Mr(w), we have natural isomorphisms of sheaves on Mket(w):

(
vr,∗(OMr(w))

)Gr ∼= OM(w) and
(
vr,∗(ÔMr(w))

)Gr ∼= ÔM(w),

where Gr
∼= (

OP

/
πrOP

)×
is the Galois group of M r(w)/M(w) (see [Andreatta et al.,

2015b, Lemma 2.8]).

(7) for any object U in Mket, βU : Ufet

L
−→M sending W �−→ (U,W ), where M is either

M(w) or M(H, π).
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4.5 Localization functors

This section is a brief recall of [Andreatta et al., 2015b, §2.7]. Let M be one of the sites

M(w) or M(N, p) and U =
(
Spf(RU, NU)

)
a connected small affine object of Mket. We

denote by U := UL the log rigid generic fibre of U. Write RU ⊗ L =
n∏

i=1

RU,i with Spf(RU,i)

connected, let NU,i be the monoids giving the respective log structures, and Ui the respective

log rigid generic fibres. Let CU,i := Frac(RU,i), and ηU,i denote the log geometric point of

Ui :=
(
Spf(RU,i), NU,i

)
over CU,i. Let GU,i be the étale fundamental group of Ui. Then

the category Ufet
i is equivalent to the category of finite sets with continuous actions of GU,i.

Write (RU,i, NU,i) for the direct limit of all the normal extensions S of RU,i in CU,i such that

Spm(SL)→ Ui is finite étale. Also, we let RU :=
n∏

i=1

RU,i, NU :=
n∏

i=1

NU,i and GUL
:=

n∏
i=1

GU,i.

Then we have an equivalence of categories,

Sh(Ufet

L
) ∼ Rep(GUK

), F lim−→F(Spm(SL)),

where Rep(GUL
) is the category of discrete abelian groups with continuous GUL

-action. Com-

posing with βU,∗, we obtain a localization functor Sh(M) −→ Rep(GUL
), we donote by

F(RU, NU) the image of F in Rep(GUL
). We have

ÔM(RU, NU) ∼= R̂U

(see [Andreatta and Iovita, 2013, Proposition 2.15]).

Let F ∈ Sh(Mr(w)). U =
(
Spf(RU, NU)

)
is fixed as a connected small affine object of

M(w)ket as before. Let

ΥU :=

{
homomorphisms of RU ⊗ L-algebras ΓU := Γ

(
U r(w),OUr(w)

) −→ RU[p
−1]

}
,
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where U r(w) := UL ×M(w) M
r(w). For any g ∈ ΥU, write

F(RU, NU, g) := lim−→F(U, Spm(SL)),

where the limit is taken over all ΓU-subalgebras S of RU (via g) such that Spm(SL)→ U r(w)

is finite and étale. Let GUK ,r,g ⊆ GUL
be the subgroup fixing ΓU. Similarly as before we

obtain a localization functor Sh(Mr(w)) −→ Rep(GUL,r,g
) and donote by F

(
RU, NU, g

)
the

image of F ∈ Sh(Mr(w)).

Moreover, given a covering of M(w)ket by open small affines {Ui}i∈I , choosing gi ∈ ΥUi

for every i ∈ I, the map Sh(Mr(w)) −→ ∏
i∈I

Rep(GUi,K ,r,gi) is faithful. We also have

jr,∗(F)(RU, NU) ∼=
⊕
g∈ΥU

F
(
RU, NU, g

)
. (4.4)
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Chapter 5

Distributions and Overconvergent Co-

homology

In this chapter we will introduce the overconvergent cohomology which can be related to

the π-adic (families of) overconvergent modular forms constructed in Brasca [2013]. As

highlighted by the author in Brasca [2013], to make things work it is necessary “to consider

the action of OP everywhere”. Using this principle we define distributions in the classical

way and then we consider its cohomology as usual.

5.1 Distribution

5.1.1 Definitions

We fix an r ∈ N and let L be a finite field extension over FP containing an element ζr ∈

Cp := L̂, where {ζn}n≥1 is a fixed sequence of Cp points of LT satisfying

119



• the OP-order of ζn is exactly πn;

• πζn+1 = ζn for each n ≥ 1;

• ζ1 = (−π) 1
q−1 , where (−π) 1

q−1 is a fixed element in Cp.

Let U ⊂ Wr be a wide open disk defined over L. We denote by ΛU the OL-subalgebra of

O(U) consisting of functions

ΛU =
{
f ∈ O(U)

∣∣ |f(x)| ≤ 1 for all x ∈ U
}
.

We denote by

λU : O×
P
→ (ΛU)

×

the universal weight attached to U, i.e., the character defined by

λU(z)(λ) = λ(z)

for z ∈ O×
P
and λ ∈ U. As U is a wide open disk we have a (non canonical) isomorphism

ΛU
∼= OL[[T ]].

Thus it follows that ΛU is a complete, local, noetherian OL-algebra. Let πL ∈ OL be a

uniformizer. We then define a function

ord : ΛU → Z∪{∞}

by

ord(x) = sup{n ∈ N |x ∈ πn
LΛU}.

In this section we denote by (B, λ) one of the following pairs:
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• (OL, λ), where λ ∈ U(L) is a weight;

• (ΛU, λU), where ΛU and λU are as above,

and we denote by m the corresponding maximal ideal of B. In either case, there exists an

sλ ∈ B ⊗OL
L such that λ(1 + πrz) = exp(sλlog(z)) for all z ∈ OP (refer to [Brasca, 2013,

§6]).

Definition 5.1.1. We denote by A0
λ the space of functions f : O×

P
× OP → B satisfying:

• f(u(w, z)) = λ(u)f(w, z) for each u ∈ O×
P
and (w, z) ∈ O×

P
× OP;

• the function OP → B defined by z �→ f(1, z) is FP-analytic on disks of radius q−r,

i.e., for any z0 ∈ OP there exists a sequence {cm(z0)}m∈N in B such that for each

z ∈ z0 + πrOP we have:

f(1, z) =
∑
m∈N

cm(z0)

(
z − z0
πr

)m

,

where ord (cm(z0))→∞ as m→∞.

On the B-module A0
λ, we consider the topology given by the family {mmA0

λ}m∈N. We

denote by D0
λ the continuous dual of A0

λ, i.e., the B-module of continuous, B-linear homo-

morphisms A0
λ → B. Moreover, we let

Aλ = A0
λ ⊗OL

L

and

Dλ = D0
λ ⊗OL

L.

The (B ⊗OL
L)-module Aλ is in fact a (B ⊗OL

L)-Banach module with respect to the π-

adic topology. We can construct an explicit orthonormal basis of Aλ as follows. Fix S, a
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set of representatives of OP

/
πrOP in OP. Then for each zη ∈ S and m ∈ N, we consider the

function fzη ,m ∈ Aλ defined by:

fzη ,m(w, z) = λ(w)

( z
w
− zη

πr

)m

1zη+πrOP

( z

w

)
,

where 1zη+πrOP
: OP → L is the characteristic function of the subset zη + πrOP. By the

definition of A0
λ it follows that {fzη ,m}m∈N,zη∈S is a family in Aλ and it is an orthornormal

basis for Aλ.

As in Barrera and Gao [2016] and Andreatta et al. [2015b] we have the following fact:

Lemma 5.1.1. We have an isomorphism of topological B-modules:

ψ : D0
λ
∼=

∏
zη∈S

∏
m∈N

B,

given by μ �→ (μ(fzη,m))m∈N,zη∈S, where D
0
λ is endowed with its weak (m-adic) topology, which

corresponds to the product of the m-adic topologies on the right side.

These modules of distributions ( for either B = ΛU or B = OL) are main objects giving

rise to the right overconvergent cohomology which will be related to the π-adic (families of)

overconvergent modular forms constructed in Brasca [2013]. In order to obtain sheaves on

the Shimura curve M(H, π) from these modules, we need to endow them with an action

of the arithmetic groups described in Section 5.2.1. To do that we consider the following

semigroup:

Λπ =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ ∈ M2(OP) ∩GL2(FP) | a ∈ O×
P
, c ∈ πOP, d �= 0

⎫⎪⎪⎬⎪⎪⎭ .

We also define the Iwahori subgroup Iπ ⊂ Λπ by

Iπ := Λπ ∩GL2(OP).
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Now let T0 := O
×
P
× OP, which can be regarded as a compact subset of

O2
P =

{
(w, z)

∣∣ w, z ∈ OP

}
.

There are two natural actions on T0:

• a left action of O×
P
by scalar multiplication, i.e., for any u ∈ O×

P
,

u · (w, z) = (uw, uz) ;

• a right action of the semigroup Λπ by matrix multiplication on the right, i.e., for any

(w, z) ∈ T0, any γ =

⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ ∈ Λπ,

(w, z) · γ = (w, z)

⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ = (aw + cz, bw + dz) .

It is obvious that these two actions commute.

Then the semigroup Λπ acts in a natural way on A0
λ. More precisely, for any f ∈ A0

λ and

γ =

⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ ∈ Λπ, we define

γ · f : O×
P
× OP → B

to be the function

(γ · f) (w, z) = f (aw + cz, bw + dz) .

Then we have

Lemma 5.1.2. If f ∈ A0
λ and γ ∈ Λπ, then γ · f ∈ A0

λ.
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Proof. Let f ∈ A0
λ and γ =

⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ ∈ Λπ. We need to verify that γ · f satisfies the two

conditions in Definition 5.1.1.

First, let u ∈ O×
P
and (w, z) ∈ O×

P
× OP, we have

(γ · f) (u(w, z)) = f (u(w, z) · γ)

= f (u(aw + cz, bw + dz))

= λ(u)f (aw + cz, bw + dz)

= λ(u) (γ · f) (w, z) .

Now we consider the second condition in Definition 5.1.1. For z ∈ OP we write

γ(z) =
b+ dz

a + cz
.

If Z ∈ z0 + πrOP for some z0 ∈ OP, we denote by

z1 := γ(z0) =
b+ dz0
a+ cz0

,

then we have

γ(z)− z1

=
b+ dz

a+ cz
− b+ dz0

a+ cz0

=
det(γ)(z − z0)

(a+ cz)(a + cz0)
.

Since a ∈ O×
P
and c ∈ πOP, the denominator in the above equation is a unit of OP, hence

γ(z)− z1 ∈ πrOP.

Let cm(z1)m∈N be the sequence in B such that for any z ∈ z1 + πrOP,

f(1, z) =
∑
m∈N

cm(z1)

(
z − z1
πr

)m

,
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with ord (cm(z1)) → ∞ as m → ∞. Thus if we let u := (a+ cz0)
−1 and x := det(γ), which

are elements of OP, we have

f (1, γ(z))

=
∑
m∈N

cm(z1)

(
γ(z)− z1

πr

)m

=
∑
m∈N

cm(z1)

(
u

a+ cz

)m(
z − z0
πr

)m

=
∑
m∈N

cm(z1)u
m

(
1

a+ cz

)m(
z − z0
πr

)m

=
∑
m∈N

cm(z1) · (ux)m ·
(

1

(a+ cz0) + c(z − z0)

)m

·
(
z − z0
πr

)m

=
∑
m∈N

cm(z1) · (ux)m ·
(
u ·

∑
i∈N

(−1)i(cu)i(z − z0)
i

)m

·
(
z − z0
πr

)m

=
∑
m∈N

cm(z1) · u2mxm ·
(∑

i∈N

(−1)i(cu)i(z − z0)
i

)m

·
(
z − z0
πr

)m

,

Then

(γ · f)(1, z)

= f (a + cz, b+ dz)

= λ(a+ cz)f (1, γ(z))

= λ(a+ cz)f (1, γ(z))

= λ(a+ cz) ·
∑
m∈N

cm(z1) · u2mxm ·
(∑

i∈N

(−1)i(cu)i(z − z0)
i

)m

·
(
z − z0
πr

)m

.

Since λ is r-accessible, we deduce that the function z �→ (γ · f)(1, z) is FP-analytic on disks

of radius q−r. This completes the proof of the lemma.
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Thus we obtain a well defined left action of Λπ on A0
λ, which induces a right action on D0

λ

by duality, i.e., for any f ∈ A0
λ, μ ∈ D0

λ and γ ∈ Λπ we have

(
μ
∣∣γ) (f) = μ(γ · f).

The following result is important to prove the existence of spectral decompositions for the

overconvergent cohomology discussed in Section 5.2.1:

Lemma 5.1.3. Suppose that B = OL. Then the L-linear operator on Dλ obtained from the

action of

⎛⎜⎜⎝ 1 0

0 π

⎞⎟⎟⎠ is compact.

Proof. We follow the proof of [Urban, 2011, Lemma 3.2.2 and Lemma 3.2.8]. It suffices

to verify that the operator on Aλ obtained from the action of

⎛⎜⎜⎝ 1 0

0 π

⎞⎟⎟⎠ is compact. Let

Ar(OP, B) be the B-module of the functions f : OP → B that are FP-analytic on disks of

radius q−r. Then Ar(OP, B)⊗ L is a L-Banach module and we have a natural isomorphism

Aλ → Ar(OP, B)⊗ L induced from the map f(w, z) �→ f(1, z).

The corresponding operator on Ar(OP, B) ⊗ L is given by f(z) �→ f(πz). This operator

factors through the inclusion

Ar−1(OP, B)⊗ L ⊂ Ar(OP, B)⊗ L,

which is compact by [Urban, 2011, Lemma 3.2.2].

Remark 5.1.1. If we consider U to be a wide open disk in the weight space and we define

the modules of distributions in the same way, we can prove an analogue of the above lemma

for families of weights. This remark will be useful to deduce spectral properties for modules

over wide open disks (refer to the proof of Proposition 5.2.4).
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5.1.2 Filtration

We want to discuss the étale cohomology on the Shimura curve M(H, π) whose coefficients

are sheaves constructed using the modules of distributions defined in the previous section.

To construct these sheaves on the étale site of the Shimura curve, the filtrations defined in

this section are crucial. It is useful to remark that in the case B = ΛU, these filtrations have

nice properties because of our choice of U. This is the main reason for the choice of U to be

a wide open disk not an affinoid as usual in the literature.

Recall that we have fixed a set of representatives S in OP for OP/π
rOP.

Definition 5.1.2. Let n ≥ 0 be an integer. We define:

Filnλ :=
{
μ ∈ D0

λ

∣∣μ(fzη ,m) ∈mn−m ∀ m = 0, · · · , n− 1 and zη ∈ S
}
.

For each integer n ∈ N the set Filnλ is naturally a B-module. Recall that there is a right

action of the semigroup Λπ on D0
λ. We have

Proposition 5.1.1. For every n ∈ N, the B-module Filnλ is stable under the action of Λπ.

Proof. First we point out that there is a decomposition of Λπ as Λπ = N−TN+, where:

N− =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ 1 0

c 1

⎞⎟⎟⎠ | c ∈ πOP

⎫⎪⎪⎬⎪⎪⎭ ,

N+ =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ 1 b

0 1

⎞⎟⎟⎠ | b ∈ OP

⎫⎪⎪⎬⎪⎪⎭ ,

T =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ a 0

0 d

⎞⎟⎟⎠ | a ∈ O×
P
, d ∈ OP − {0}

⎫⎪⎪⎬⎪⎪⎭ .
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Let μ ∈ Filnλ and γ ∈ Λπ. For any zη ∈ S and m = 0, 1, · · · , n − 1, we will verify that(
μ
∣∣γ) (fzη,m) ∈ mn−m. We consider the following three cases for γ in each factor of the

above decomposition of Λπ.

Case 1: γ =

⎛⎜⎜⎝ 1 0

c 1

⎞⎟⎟⎠ ∈ N−.

First, note that for any (w, z) ∈ T0

z

w + cz
− zη

=
z − wzη − czzη

w + cz

=
z (1− czη)− wzη

w
(
1 + c z

w

)
=

1− czη
1 + c z

w

·
(
z

w
− zη

1− czη

)
.

Let z′η be the unique element in S satisfying

z′η ≡
zη

1− czη
mod πrOP.

Then we have

z

w + cz
− zη ∈ πrOP ⇐⇒ z

w
− z′η ∈ πrOP.

Thus

1zη+πrOP

(
z

w + cz

)
= 1z′η+πrOP

( z

w

)
.

Then

(
γ · fzη ,m

)
(w, z)

= fzη ,m (w + cz, z)

= λ(w + cz)

( z
w+cz

− zη

πr

)m

· 1zη+πrOP

(
z

w + cz

)
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= λ(w)λ
(
1 + c

z

w

)
·
( z

w
− z′η
πr

)m

·
(
1− czη
1 + c z

w

)m

· 1z′η+πrOP

( z

w

)
= λ

(
1 + c

z

w

)
·
(
1− czη
1 + c z

w

)m

· fz′η ,m (w, z) .

Let Gm(x) := λ(1 + cx) ·
(

1−czη
1+c z

w

)m

. Then by the hypothesis on λ, for x ∈ z′η + πrOP we

can write

Gm(x) =
∑
i≥0

di

(
x− z′η
πr

)i

with di ∈mi and ord(di/π
ri)→∞ as i→∞.

Moreover, the definition of the filtrations Filnλ is independent of the choice of the set of

representatives of OP/π
rOP. Now, to prove

(
μ
∣∣γ) (fzη,m) ∈ mn−m, it suffices to verify the

following:

for l ∈ N and d ∈ml, we have μ(d · fzη,m+l) ∈mn−m.

This claim is trivial when l ≥ n−m. Furthermore, for l < n−m we have m+ l < n, then

μ(d · fzη ,m+l) = d · μ(fzη ,m+l) ∈ ml+(n−m−l) = mn−m.

Case 2: γ =

⎛⎜⎜⎝ a 0

0 d

⎞⎟⎟⎠ ∈ T .

Then we have

(
γ · fzη ,m

)
(w, z)

= fzη ,m (aw, dz)

= λ(aw)

(
d

a

z

w
− zη

)m

1zη+πrOP

(
d

a

z

w

)
.

There exists a subset S ′ ⊂ S such that

(
γ · fzη ,m

)
(w, z) =

∑
ζ∈S′

m∑
i=0

bζ,ifζ,m−i(w, z)
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for some bζ,i ∈ B. It follows that

(
μ
∣∣γ) (fzη ,m) ∈ m∑

i=0

mn−m+i ⊂ mn−m.

Case 3: γ =

⎛⎜⎜⎝ 1 b

0 1

⎞⎟⎟⎠ ∈ N+.

In this case we have

(
γ · fzη ,m

)
(w, z)

= fzη ,m (w, bw + z)

= λ(w)

(
bw+z
w
− zη

πr

)m

1zη+πrOP

(
bw + z

w

)

= λ(w)

((
b+ z

w

)− zη

πr

)m

1zη+πrOP

(
b+

z

w

)
=

m∑
i=0

(
m

i

)
(b′)ifz′η,m−i,

where b′ ∈ πrOP and z′η is the unique element in S such that

zη − b = z′η − b′.

Therefore, we deduce (
μ
∣∣γ) (fzη ,m) ∈ m∑

i=0

mn−m+i ⊂ mn−m.

For any n ∈ N, we consider the B-module

D0
λ,n := D0

λ/Fil
n
λ,

we have
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Proposition 5.1.2. Let D0
λ,n be as above for n ∈ N. Then

(a) D0
λ,n is a finite (B/mnB)-module.

(b) The natural B-linear morphism

D0
λ −→ lim←−

n

D0
λ,n

is an isomorphism.

Proof. For (a), recall that we have a B-linear isomorphism (Lemma 5.1.1)

ψ : D0
λ
∼=

∏
zη∈S

∏
m∈N

B,

given by μ �→ (
μ(fzη,m)

)
m∈N,zη∈S

.

Then by definition, the image of Filnλ ⊆ D0
λ under the isomorphism ψ is the B-submodule

∏
zη∈S

[(
n−1∏
m=0

mn−m

)
×
(∏

m≥n

B

)]
,

i.e.,

Filnλ
∼=

∏
zη∈S

[(
n−1∏
m=0

mn−m

)
×
(∏

m≥n

B

)]
(5.1)

as B-modules. This implies that the B-linear map ψ induces an isomorphism

D0
λ,n
∼=

∏
zη∈S

n−1∏
m=0

B/mn−m (5.2)

of B-modules. Recall that either B = OL or B = ΛU, then by the choice of U, it follows that

in both cases B/mn−m are finite sets. This proves the first statement.

For (b), first let us point out that from the definition of Filnλ, we have

⋂
n∈N

Filnλ = {0} .
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Moreover, by the formula (5.2) above, we have

lim←−
n

D0
λ,n
∼= lim←−

n

∏
zη∈S

n−1∏
m=0

B/mn−m ∼=
∏
zη∈S

∏
m∈N

B ∼= D0
λ.

Remark 5.1.2. As an immediate consequence of the above proposition, we see that D0
λ,n is

an artinian OL-module for every n ∈ N.

5.1.3 Specialization

Let r, U, L be as in Section 5.1.1. We fix πL a uniformizor of OL. Recall that we denote by

(B, λ) for one of the following two pairs:

• (ΛU, λU), where U ⊂Wr is a wide open disk with ΛU being the OL-algebra of bounded

rigid analytic functions on U, λU being the universal weight attached to U;

• (OL, λ), where λ ∈ U(L).

Moreover, if B = ΛU (resp. OL), we denote by mU (resp.mL) its maximal ideal. There is

a natural structure morphism OL → ΛU. We may also relate ΛU and OL as follows. Let

λ ∈ U(L) and fix πλ ∈ ΛU a function which vanishes with order 1 at λ and nowhere else on

U. Such function is called a uniformizer at λ. Then

(πL, πλ) = mU.

We have an exact sequence

0 ΛU
·πλ ΛU

ρλ
OL 0,
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i.e., OL
∼= ΛU

/
πλΛU and ρλ (mU) = mL. Furthermore, for λ ∈ U(L), the distributions (for

(B, λ) is either (ΛU, λU) or (OL, λ)) defined in Section 5.1.1 can also be related by such a

uniformizor at λ. We introduce some notations we will use in this section. If B = ΛU and

λ = λU, we set

A0
U := A0

λU
, AU := AλU

,

D0
U := D0

λU
, DU := DλU

,

FilnU := FilnλU
, D0

U,n := D0
U/Fil

n
U.

If B = OL and λ ∈ U(L), we still use the notations as in Section 5.1.1, i.e., A0
λ, Aλ, D

0
λ,

Dλ, Fil
n
λ and D0

λ,n, respectively.

Now the two OL-modules of distributions D0
U and D0

λ are related as follows. First we have

a natural map

A0
λ −→ A0

U

f �−→ fU

where fU is defined by

fU(w, z) = λU(w)f(1,
z

w
).

This induces the so called specialization map

ηλ : D0
U −→ D0

λ

μ �−→ μλ

defined by

μλ(f) = μ(fU)(λ)
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for any f ∈ A0
λ.

We have the following properties for such specialization maps.

Proposition 5.1.3. Let U ⊂Wr be a wide open disk and λ ∈ U(L). Let πλ ∈ ΛU be a fixed

uniformizor at λ.

(a) We have an exact sequence of Λπ-modules

0 D0
U

·πλ D0
U

ηλ
D0

λ 0.

(b) ηλ (Fil
n
U) = Filnλ.

Proof. The proof of part (a) is the same as in [Andreatta et al., 2015b, Proposition 3.11].

For part (b), by Lemma 5.1.1 and equation (5.1) we have the following commutative

diagrams.

D0
U

∼ ∏
zη∈S

∏
m≥0 ΛU

FilnU
∼ ∏

zη∈S

[(∏n−1
m=0m

n−m
U

)× (∏
m≥n ΛU

)]
,

and

D0
λ

∼ ∏
zη∈S

∏
m≥0OL

Filnλ
∼ ∏

zη∈S

[(∏n−1
m=0m

n−m
L

)× (∏
m≥n OL

)]
.

Moreover the diagram

D0
U

∼

ηλ

∏
zη∈S

∏
m≥0 ΛU

D0
λ

∼ ∏
zη∈S

∏
m≥0OL

is also commutative since ρλ (m
n
U) = mn

L for any n ∈ N, where the right vertical map is the

product of ρλ. Thus we obtain our second statement.
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Now suppose that there exists an integer k ∈ N such that λ(t) = tk for each t ∈ OP. In

this case we say that λ is a classical weight and k is said to be attached to λ. Let

P 0
λ =

{
k∑

m=0

amw
k−mzm| am ∈ OL

}
⊂ A0

λ

be the subset of functions f : O×
P
× OP → OL consisting of homogeneous polynomials of

degree k. Moreover, we can verify that this OL-submodule is invariant under the action of

Λπ. Considering continuous duals we obtain a surjective and Λπ-equivariant morphism:

�λ : D0
λ → V 0

λ :=
(
P 0
λ

)∨
= HomOL

(
P 0
λ ,OL

)
.

Remark 5.1.3. Let T := (OP)
2. We may identify V 0

λ with Symk(T )⊗OP
OL, compatible with

the natural right action of Λπ. The map �λ induces a filtration on V 0
λ by

Filn
(
V 0
λ

)
:= �λ (Fil

n
λ) .

We denote by Pλ := P 0
λ

⊗
OL

L and Vλ := V 0
λ

⊗
OL

L. If U contains a classical weight λ, we

have the following Λπ-equivariant maps

DU
ηλ

Dλ
�λ

Vλ

which are compatible with the filtrations.

5.2 Overconvergent cohomology

5.2.1 Definitions

In this section we will work on the Shimura curve M(H, π). Our main goal is to relate the

group cohomology of its fundamental groups with coefficients in certain modules to its étale
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cohomology with coefficients in certain sheaves coming from those modules. Recall that the

curve M(H, π) is not necessarily connected. Moreover, this curve has a canonical model

defined on the number field E (Section 3.1.3.1) and we have:

M(H, π)(C) =
⊔

x∈CL+
E

M(H, π)
x
(C) ∼=

⊔
x∈CL+

E

Γ
x
\ H+,

where the arithmetic group Γ
x
is defined by Γ

x
= g

x
K(H, π)g−1

x
K∞ ∩G(Q) ⊂ G(Q), where

{g
x
}
x∈CL+

E
is a family in G(Af) such that each g

x
is trivial at p; and {det(g

x
)}

x∈CL+
E
is a set

of representatives of A∗
E /det(K(H, π))det(K∞), where K∞ is certain compact subgroup of

G(R).

Let x ∈ CL+
E . We fix a geometric generic point η

x
= Spec(K

x
) of the corresponding

connected component M(H, π)
x
/L of M(H, π). We denote by G

x
the geometric étale fun-

damental group attached to M(H, π)
x
and η

x
. Let C → M(H, π) be the level π-subgroup

of the universal object A → M(H, π). We denote by T
x

:= lim←−n
(A[πn]2,11 )∨L,ηx and let

p
x
: T

x
→ (C2,1

1 )∨L,ηx be the map obtained from the natural morphism (A[π]2,11 )∨ → (C2,1
1 )∨.

The Tate module T
x
is a free OP-module of rank 2 with continuous action of G

x
. Choose a

OP-basis {ε1, ε2} of Tx
, such that p

x
(ε1) = 0. Let

(T0)x :=
{
wε1 + zε2

∣∣ w ∈ O
×
P
, z ∈ OP

}
.

Then (T0)x is a compact subset of T
x
and can be identified with O×

P
× OP. Since the group

G
x
acts on T

x
and preserves (T0)x, using this fixed basis, we obtain a homomorphism of

groups G
x
→ GL2(OP). Now the special choice of the basis implies that the image of this

homomorphism is inside the Iwahori group Iπ ⊂ GL2(OP).

Here we will use the same notations as in Section 5.1.1. We denote by (B, λ) be either
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the pair (ΛU, λU) or (OL, λ) with maximal ideal m. Let A0
λ and D0

λ be the corresponding

B-modules of locally analytic functions and distributions for both cases.

We donote

A0
λ,n := A0

λ/m
nA0

λ

and

D0
λ,n = D0

λ/Fil
n
λ

From Proposition 5.1.3 it follows that these B-modules are in fact finite sets with an

action of Λπ. Then using the above discussion about the action of G
x
on the Tate module,

we obtain sheaves on the étale site of M(H, π)
x
, which are denoted by A0

λ,n,x,D
0
λ,n,x ∈

Sh((M(H, π)
x
)et
L
), respectively. Putting these sheaves together we obtain sheaves in the

entire Shimura curve:

A
0
λ,n , D

0
λ,n ∈ Sh(M(H, π)et

L
)

A0
λ := (A0

λ,n)n∈N , D0
λ := (D0

λ,n)n∈N ∈ Sh(M(H, π)et
L
)N and

Aλ , Dλ ∈ Ind− Sh(M(H, π)et
L
)N.

Recall that in this chapter we are going to relate two different kinds of π-adic objects

both of which are helpful to construct eigenvarieties. In Section 3.4.3 we introduced the

overconvergent modular forms constructed by Kasseai and Brasca. Now we are in position

to define the other p-adic object relevant in this chapter:

Definition 5.2.1. The space of Overconvergent Cohomology is defined to be the B-module

H1(M(H, π)et
L
,Dλ).
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The space of overconvergent cohomology is a B-module endowed with an action of GL :=

Gal(L/L), since the curve M(H, π) is defined over L.

We can define Hecke operators acting on the overconvergent cohomology. Similarly as in

Section 3.5, we define the U-operator:

U : H
1(M(H, π)et

L
,Dλ)→ H

1(M(H, π)et
L
,Dλ),

and the operator:

TL : H
1(M(H, π)et

L
,Dλ)→ H

1(M(H, π)et
L
,Dλ).

5.2.2 Group cohomology

Recall that we have

M(H, π)(C) ∼=
⊔

x∈CL+
E

Γ
x
\ H+,

where Γ
x
is a certain torsion free arithmetic subgroup of G(Q). Each variety Γ

x
\ H+ is

compact. Moreover, note that the image of each group Γ
x
in G(FP) is contained in Λπ,

thus the spaces of functions and distributions defined in Section 5.1.1 can be regarded as

Γ
x
-modules.

Proposition 5.2.1. We have the following isomorphism of B-modules:

H
1(Γ

x
, D0

λ)
∼= lim←−

n

H
1(Γ

x
, D0

λ,n)
∼= H

1
cont(Γx

, (D0
λ,n)n∈N).

Proof. We first prove the second isomorphism. Recall that as in [Andreatta et al., 2015b,

§3.2] we have the following exact sequence of R-modules:

0→ lim(1)
H

0(Γ
x
, D0

λ,n) −→ H
1
cont(Γx

, (D0
λ,n)n∈N) −→ lim←−

n

H
1(Γ

x
, D0

λ,n)→ 0,
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where lim(1) is the first right derived functor of the inverse limit functor (refer to [Weibel,

1994, §3.5]). From Proposition 5.1.3 we know that each R[Γ
x
]-moduleD0

λ,n is a finite set, thus

it follows that the projective system (H0(Γ
x
, D0

λ,n))n∈N satisfies the Mittag-Leffler condition

(Remark 5.2.1) and then lim(1)
H0(Γ

x
, D0

λ,n) = 0. This shows the second isomorphism.

For the first isomorphism we follow the arguments of [Andreatta et al., 2015b, lemma 3.13].

Let B1(Γ
x
, D0

λ) be the B-module of 1-coboundaries and Z1(Γ
x
, D0

λ) be the B-module of the

1-cocycles with coefficients in D0
λ; in the same way we define B1(Γ

x
, D0

λ,n) and Z1(Γ
x
, D0

λ,n).

We have the following commutative diagram:

H0(Γx,D0
λ)

β

B1(Γx, D0
λ)

d

δ

Z1(Γx, D0
λ)

θ

H1(Γx,D0
λ)

κ

0

lim
←−n

H0(Γx, D0
λ,n) lim

←−n
B1(Γx,D0

λ,n)
lim
←−n

dn

lim
←−n

Z1(Γx,D0
λ,n)

α
lim
←−n

H1(Γx,D0
λ,n).

Now using Proposition 5.1.3, it follows that the projective system

(B1(Γ
x
, D0

λ,n)/H
0(Γ

x
, D0

λ,n))n∈N

satisfies the Mittag-Leffler condition. Then the exact sequence

0 H0(Γ
x
, D0

λ,M) B1(Γ
x
, D0

λ,M)
dM Z1(Γ

x
, D0

λ,M) α
H1(Γ

x
, D0

λ,M) 0

implies that α is surjective. We then prove that β, δ and θ are isomorphisms. To do this,

we basically apply Proposition 5.1.3 and the fact that Γ
x
is a finitely generated group. The

proof of the first isomorphism is then completed applying Five Lemma.

Remark 5.2.1. A tower {Ai} of abelian groups satisfies the Mittag-Leffler condition if for

each k there exists a j ≥ k such that the image of Ai → Ak equals the image of Aj → Ak

for all i ≥ j.
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On the group cohomology we can define the action of the Hecke operators in the classical

way (refer to [Urban, 2011, §4.2]) by the following recipe. Let γ ∈ Λπ. We define [Γ
x
γΓ

x
] :

H1(Γ
x
, Dλ)→ H1(Γ

x
, Dλ) by the formula:

[Γ
x
γΓ

x
] := CorΓx∩γΓxγ−1

Γx

◦ [γ] ◦ ResΓΓx∩γ−1Γxγ ,

where CorΓx∩γΓxγ−1

Γx

and ResΓΓx∩γ−1Γxγ are the corestriction map and the restriction map,

respectively; and

[γ] : H
1(Γ

x
∩ γ−1Γ

x
γ,Dλ)→ H

1(Γ
x
∩ γΓ

x
γ−1, Dλ)

is the map given by the action of γ on Dλ.

Now considering γ =

⎛⎜⎜⎝ 1 0

0 π

⎞⎟⎟⎠, we obtain the operator U. Moreover, using the matrix

⎛⎜⎜⎝ 1 0

0 πL

⎞⎟⎟⎠ we obtain the operator TL (where πL is as in Section 3.5.2).

As a corollary of Proposition 5.2.1, we can interpret the overconvergent cohomology in

terms of group cohomology:

Corollary 5.2.1. We have an isomorphism of B-modules:

H
1(M(H, π)et

L
,Dλ) ∼=

⊕
x∈CL+

E

H
1(Γ

x
, Dλ),

which are compatible with the action of Hecke operators

Proof. By construction we have

H
1(M(H, π)et

L
,Dλ) =

⊕
x∈CL+

E

H
1((M(H, π)

x
)et
L
,Dλ,x),

where Dλ,x ∈ Ind− Sh((M(H, π)
x
)et
L
)N are defined using the sheaves D0

λ,M,x.
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For any embedding of L in C, the curve (M(H, π)
x
)C has fundamental group Γ

x
, then by

the fact that the curve (M(H, π)
x
)C is K(π, 1), we obtain

H
1((M(H, π)

x
)et
L
,D0

λ,n,x)
∼= H

1((M(H, π)
x
)etC ,D0

λ,n,x)
∼= H

1(Γ
x
, D0

λ,n).

Now it follows from Proposition 5.2.1 that:

H
1((M(H, π)

x
)et
L
,Dλ,x) ∼= H

1(Γ
x
, Dλ).

Remark 5.2.2. This corollary is useful in the following sense. On one hand, we will deduce

spectral properties for the étale cohomology from those proved for the group cohomology. On

the other hand, we can obtain a Galois action on H1(Γ
x
, Dλ) from the above identification.

5.2.3 Slope decomposition

Using a well known construction, we deduce good spectral properties for the group coho-

mology and then the overconvergent cohomology by using corollary 5.2.1. Before stating the

results we recall a classical construction of complexes.

Fix x ∈ CL+
E . Recall that Γ

x
\ H+ is a compact variety which is smooth and C∞. By

Munkres [1967] there exists a finite triangulation of it. We fix one of those triangulations,

then using the natural projection H+ → Γ
x
\H+ we obtain a triangulation of H+. We denote

by  t the set of simplexes of degree t ∈ N of this triangulation, it follows that the action of

Γ
x
on  t has a finite number of orbits, each of which is bijective with Γ

x
(since the group

Γ
x
is torsion free). Let Ct(Γx

) := Z[ t] be the free Z-module generated by  t. Then Ct(Γx
)

is a free Z[Γ
x
]-module of finite rank. Applying the standard boundary operators we obtain
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the following exact sequence of Z[Γ
x
]-modules:

0→ C2(Γx
)→ C1(Γx

)→ C0(Γx
)→ Z→ 0.

Now, let M be a module endowed with a left Γ
x
-action. We define the complex C•(Γ

x
,M)

by:

Ct(Γ
x
,M) := HomΓ(Ct(Γ),M).

This complex satisfies the following properties:

(I) The cohomology of C•(Γ
x
,M) computes the cohomology of Γ

x
i.e. the groups H•(Γ

x
,M);

(II) Ct(Γ
x
,M) is isomorphic to M rt , where rt is the number of orbits of the action of Γ

x

on  t.

Now, suppose that M admits an action of Λπ. Following the construction in [Urban, 2011,

§4.2.5 and §4.2.6] we obtain Hecke operators on the complex which are liftings of the Hecke

operators defined on the group cohomology:

U : Ct(Γ
x
,M)→ Ct(Γ

x
,M),

TL : Ct(Γ
x
,M)→ Ct(Γ

x
,M).

Proposition 5.2.2. Let λ ∈ W(L). The L-vector space H1
(
M(H, π)et

L
,Dλ

)
admits a ≤ h-

decomposition with respect to the operator U.

Proof. Using corollary 5.2.1 it suffices to prove that we have ≤ h-decomposition with respect

to the operator Uπ on each space H1(Γ
x
, Dλ). From general results about slope decompo-

sitions in [Urban, 2011, §2], it follows that it suffices to prove the slope decomposition for
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the action on every term of the complex Ct(Γ
x
, Dλ). This is a consequence of the fact that

Ct(Γ
x
, Dλ) is isomorphic to a finite number of copies of Dλ, together with applying Lemma

5.1.3 and [Urban, 2011, Theorem 2.3.8].

Now suppose that λ is a classical weight with k ∈ N being the integer attached to it.

Thus, we have a Λπ-equivariant surjective map of L-vector spaces Dλ → Vλ. Applying the

construction described in Section 5.2.1 to Vλ we obtain a sheaf:

Vλ ∈ Ind− Sh(M(H, π)et
L
)N.

From the functoriality of the construction, we obtain a Hecke and Galois equivariant mor-

phism of L-vector spaces:

H
1(M(H, π)et

L
,Dλ) −→ H

1(M(H, π)et
L
,Vλ).

Proposition 5.2.3. Let h ∈ Q be such that h < k+1. If we consider the slope decomposition

with respect to Uπ, the above morphism induces an isomorphism of vector spaces compatible

with the action of the Hecke operators and Gal(L/L):

H
1(M(H, π)et

L
,Dλ)

≤h ∼= H
1(M(H, π)et

L
,Vλ)

≤h.

Proof. We prove the proposition component by component. From Corollary 5.2.1, it suffices

to show that, for each x ∈ CL+
E , we have:

H
1(Γ

x
, Dλ)

≤h ∼= H
1(Γ

x
, Vλ)

≤h.

To prove this statement we follow the classical arguments in Pollack and Stevens [2013].

For any i ∈ Z we denote by Ai(L) the L[Λπ]-module of FP-analytic functions f : OP → L,

i.e., there exists a sequence {cm}m∈N in L satisfying cm → 0 as m→ ∞, such that we have
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f(z) =
∑

m∈N cmz
m for any z ∈ OP. The action of Λπ is given by the following rule:⎛⎜⎜⎝

⎛⎜⎜⎝ a b

c d

⎞⎟⎟⎠ · f
⎞⎟⎟⎠ (z) = (a + cz)if(

b+ zd

a+ zc
).

The assignation f(w, z) → f(1, z) induces an isomorphism of L[Λπ]-modules Aλ
∼= Ak(L).

Note that here we consider r = 0 in the definition of Aλ.

The operator (d/dz)k+1 induces a morphism of L[Λπ]-modules

Ak(L)→ A−2−k(L)(k + 1),

where the notation (k + 1) refers to the action of Λπ twisted by the (k + 1)st power of the

determinant. It follows from the definition that the kernel of this morphism is Vλ under the

identification Aλ
∼= Ak(L). Dualizing this morphism and considering the identification, we

obtain the following exact sequence of L[Λπ]-modules:

0→ D−2−k(L)(k + 1)→ Dλ → Vλ → 0.

Noticing the long exact sequence attached to this exact sequence and taking slope decom-

position with respect to U, we obtain an exact sequence:

H
1(Γ

x
, D−2−k(L))

≤h−k−1 → H
1(Γ

x
, Dλ)

≤h ∼= H
1(Γ

x
, Vλ)

≤h → H
2(Γ

x
, D−2−k(L))

≤h−k−1.

Note that we have the number h− k − 1 for the cohomology of D−2−k(L) from the twist in

the map (d/dz)k+1. Finally notice that D−2−k(L) has a natural OP-lattice stable under the

action of Γπ, thus the condition h < k − 1 implies:

H
2(Γ

x
, D−2−k(L))

≤h−k−1 = H
1(Γ

x
, D−2−k(L))

≤h−k−1 = {0}.
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Now, we have a result analogous to Proposition 5.2.3 for any degree of the cohomology

following a similar proof.

Corollary 5.2.2. Let h ∈ Q be such that h < k + 1. For any i ∈ N and any x ∈ CL+
E, we

have an isomorphism of vector spaces compatible with the action of the Hecke operators and

Gal(L/L):

H
i(Γ

x
, Dλ)

≤h ∼= H
i(Γ

x
, Vλ)

≤h.

Now we deal with the question about the spectral properties of the modules for families

of weights. Following the proofs of Lemma 3.5 and Corollary 3.6 in Andreatta et al. [2015b]

we obtain:

Lemma 5.2.1. Let {μj}j∈J be a family of elements in D0
U such that its image in D0

U/mD0
U

is a basis of this L := ΛU/mΛU
∼= OL/πLOL-vector space. Then for each m > 0 the natural

morphism

⊕j∈J (ΛU/m
mΛU)μj −→ D0

U/m
mD0

U

is an isomorphism of ΛU-modules. Moreover, for each μ ∈ D0
U there exists a unique family

{aj}j∈J in ΛU such that

(i) aj → 0 in the filter of complements of finite sets in J , in the weak topology, and

(ii) μ =
∑

j∈J ajμj.

Proposition 5.2.4. For each weight λ ∈ W(L), there exists a wide open disk U ⊂ W

defined over L and containing λ such that the ΛU ⊗OL
L-module H1(M(H, π)et

L
,DU) admits

a ≤ h-decomposition with respect to the operator Uπ.
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Proof. By the same argument in Proposition 5.2.2, it suffices to prove that we have ≤ h-

decomposition with respect to the operator Uπ for the complex C•(Γj,DU). Since we work

with wide open disks, this proposition is not a direct consequence of the theory developed in

Ash and Stevens [2008], however, the same proof of [Andreatta et al., 2015b, Theorem. 3.17]

can be adapted to our context, combining Lemma 5.2.1 above, our complexes C•(Γj,M),

remark after Lemma 5.1.3 and the theory described in Ash and Stevens [2008].

5.2.4 Sheaves on Faltings’ Site

In Section 5.2.2 we described the overconvergent cohomology in terms of group cohomology.

Let λ be either λU or λ ∈ U(L) for some wide open disk in Wr. In this section, we will explain

how to regard the étale sheaves A0
λ, D

0
λ ( respectively Aλ, Dλ and Vλ if λ is an integer)

on M(H, π)et
L

as continuous sheaves(respectively, ind-continuous sheaves) on Faltings’ site

M(H, π) associated to the pair (M(H, π),M(H, π)). This identification will be useful to

compare the sheaves defining overconvergent modular forms with those used to define the

overconvergent cohomology.

Recall that we have a functor (Section 4.4)

u : M(H, π) −→ M(H, π)et
L

(U,W ) �−→ W.

This functor u sends the final object to the final object, commutes with fiber products and

sends covering families to covering families. Hence it defines a morphisms of topoi. In

particular, we have

u∗ : Sh(M(H, π)et
L
) −→ Sh(M(H, π)),
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which extends to inductive systems of continuous sheaves. Using this functor we obtain

continuous sheaves u∗ (A
0
λ), u∗ (D

0
λ) and ind-continuous sheaves u∗ (Aλ), u∗ (Dλ) and u∗ (Vλ)

on M(H, π). For abuse of notations we omit u∗. Moreover, we can define Hecke operators

on H1 (M(H, π),Dλ) (Section 6.4):

U : H
1 (M(H, π),Dλ) −→ H

1 (M(H, π),Dλ) ,

TL : H
1 (M(H, π),Dλ) −→ H

1 (M(H, π),Dλ) .

Using the same argument as in [Andreatta et al., 2015b, Proposition 3.19] and [Faltings,

2002b, Theorem 9], we obtain the following proposition:

Proposition 5.2.5. The natural morphism

H
1 (M(H, π),Dλ) −→ H

1
(
M(H, π)et

L
,Dλ

)
is an isomorphism compatible with the action of Hecke operators and the Galois group GL :=

Gal(L/L). Moreover, it is also compatible with specializations.

Recall that we have a natural continuous functor

ν : M(H, π) −→M(w)

induced by the natural morphism of log formal schemes M(w) → M(H, π) (Section 4.4).

This fact allows us to obtain ind-continuous sheaves ν∗ (Aλ) and ν∗ (Dλ) on M(w).
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Chapter 6

The Morphism

We fix an r ∈ N and let L be a finite field extension over FP containing an element ζr ∈

Cp := L̂, where {ζn}n≥1 is a fixed sequence of Cp points of LT satisfying

• the OP-order of ζn is exactly πn;

• πζn+1 = ζn for each n ≥ 1;

• ζ1 = (−π) 1
q−1 , where (−π) 1

q−1 is a fixed element in Cp.

Let w > 0 be a rational number such that w < 1/qr−2(q+1). Such w is said to be adapted to

r. Let v := w/(q−1). Suppose L contains an element of valuation w, denoted by πw. We will

carry out the analogous construction of modular sheaves as in Section 3.4. For convenience,

we assume e ≤ p− 1.
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6.1 Modular sheaves on M(w)

6.1.1 The map dlog

Let A(w)→M(w) be the universal abelian scheme over M(w). Let

T := Tπ

(
(A(w)[π∞]2,11 )∨

)
,

which can be thought of as a continuous sheaf

T =
{(

A(w)[π∞]2,11

)∨}
n∈N

on M(w)et
L
.

Let ω :=
(
ε∗Ω

1
A(w)/M(w)

)2,1

1
, where ε : A(w) → M(w) is the natural morphism. Recall

that we have continuous functors (refer to Section 4.4 for details)

u : M(w) −→ M(w)et
L

(U,W ) �−→ W

and

vM(w) : M(w)ket −→ M(w)

U �−→ (U,UL) .

Let ωA/M(w) := v∗M(w)(ω). Since v∗M(w)

(
OM(w)ket

) ∼= Oun
M(w), ωA/M(w) can be thought of as

a locally free Ôun
M(w)-module of rank 1, a continuous sheaf on M(w). We also see T as a

continuous sheaf on M(w), via u∗, which will be omitted for abuse of notations. The usual

dlog map (refer to Section 3.3.2)

dlogn,A :
(
A(w)[πn]2,11

)∨ (
RL

) −→ ω
A/R ⊗R R/πnR
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induces a morphism of ÔM(w)-modules,

dlogM(w) : T ⊗ ÔM(w) −→ ωA/M(w) ⊗Ôun
M(w)

ÔM(w).

Similarly as in Section 3.3.3, we obtain a Hodge-Tate sequence of continuous sheaves and

morphisms of sheaves of ÔM(w)-modules

0 ω−1
A∨/M(w) ⊗Ôun

M(w)
ÔM(w)(1) T ⊗ ÔM(w)

dlogM(w)
ωA/R ⊗Ôun

M(w)
ÔM(w) 0,

where (·)−1 denotes the dual module. Moreover, we have the following properties.

Lemma 6.1.1. For every connected, small affine open object U = (Spf(RU), NU) of M(w)ket,

the localization of the above Hodge-tate sequence of sheaves at U is just the Hodge-Tate

sequence of continuous GU = Gal(RU,L/RU,L)-representations as in Section 3.3.3:

0 ω∗
A∨/R ⊗R R̂(1) Tπ

(
(A[π∞]2,11 )∨

)⊗OP
R̂ ωA/R ⊗R R̂ 0.

Proof. This follows immediately by the definition of T and the fact that

ÔM(w)

(
RU, NU

)
= R̂U.

Now let F0 := Im
(
dlogM(w)

)
and F1 := Ker

(
dlogM(w)

)
. Recall that we have defined a

functor:

jr : M(w) −→ Mr(w)

(U,W ) �−→ (
U,W ×M(w) M

r(w), pr2
)
.

Let Fi,r := j∗rF
i, i = 0, 1. Our assumption on w (adapted to r) implies the existence of

the canonical subgroup of A(w)[qr] (see Proposition 3.2.4). We denote this subgroup by Cr
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and we have (Cr)
2,1
1 ⊂ A(w)[πr]2,11 of order qr. Consider (Cr)

2,1
1 and

(
(Cr)

2,1
1

)∨
as the group

of points of their corresponding group schemes over M r(w), and we denote by the same

symbols the locally constant sheaves on (M r(w)L)
et. Similarly as before, they can be also

viewed as continuous sheaves on Mr(w), via u∗. Then we have

Lemma 6.1.2. Let r, w, v be at the beginning of this chapter, and define Fi, Fi,r as above

for i = 0, 1.

(1) F0 and F1 are locally free sheaves of ÔM(w)-modules of rank 1.

(2) We have the following isomorphisms of ÔM(w)-modules:

• F0
/
πr−vF0 ∼= (

(Cr)
2,1
1

)∨ ⊗ OM(w)

/
πr−vOM(w);

• F1
/
πr−vF1 ∼= (Dr)

2,1
1 ⊗ OM(w)

/
πr−vOM(w)

where (Dr)
2,1
1 =

(
(Cr)

2,1
1

)⊥
(refer to Definition 3.3.3).

(3) F0,r and F1,r are locally free sheaves of ÔMr(w)-modules of rank 1, where ÔMr(w) :=

j∗r

(
ÔM(w)

)
.

(4) We have a natural isomorphism of OMr(w)-modules with Gr-action:

vr,∗
(
F0,r

) ∼= Fr ⊗OK
OCp,

where Fr is the sheaf as in Proposition 3.3.3 and Gr is the Galois group of M r(w)→

M(w). Here we consider vr,∗ (F
0,r) ∈ Sh (M(w)ket) as a sheaf on Mr(w)ket via the

natural morphism ϑr : M
r(w)→M(w). Moreover,

F0,r
/
πr−vF0,r ∼= (

(Cr)
2,1
1

)∨ ⊗ OMr(w)

/
πr−vOMr(w).
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Proof. Let U = (Spf(RU), NU) be a connected, small affine open object of M(w)ket. The

localization of Fi at U are:

• F0
(
RU, NU

)
= Im(dlogU);

• F1
(
RU, NU

)
= Ker(dlogU),

where the map dlogU is the usual dlog map. Then (1) follows immediately by Theorem 3.3.2.

Taking localizations at U, (2) is a consequence of Theorem 3.3.2.

(3) follows from (1), (4) follows from (2) and the construction of Fr, refer to Section 3.3.3.

6.1.2 A torsor

Let

SMr(w) := O×
P
(1 + πr−vÔMr(w))

be the sheaf of abelian groups, let F′
Mr(w) be the inverse image of the constant sheaf of subsets

of
(
(Cr)

2,1
1

)∨
of points of order exactly πr under the natural map

F0,r F0,r
/
πr−vF0,r ∼

(
(Cr)

2,1
1

)∨ ⊗ OMr(w)

/
πr−vOMr(w) .

Then we have

Lemma 6.1.3. We have that F
′

Mr(w) is a SMr(w)-torsor. Moreover, it is trivial over a cov-

ering of the type {(Ui,Ui ×Mr(w))}i∈I , where {Ui}i∈I is a covering of M(w) by small affine

objects.

Proof. This is an immediate consequence of Theorem 3.3.2.
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Let T0 ⊂ T be the inverse image of the subset of
(
(Cr)

2,1
1

)∨
of points of order exactly πr

via the natural morphism

T
(
A(w)[πr]2,11

)∨ (
(Cr)

2,1
1

)∨
,

which can be also thought of as a sheaf on M(w)et
L

hence a continuous sheaf on M(w) via

u∗. Moreover, we have a natural morphism induced by the dlog map, which is denoted by

the same symbol:

dlog : j∗r (T0) −→ F
′

Mr(w),

compatible with the action of O×
P
on both sides.

Now we fix (B,m), λ, r and w such that

• (B,m) is a complete, regular, local, noetherian OL-algebra with m its maximal ideal.

B is complete and separated for itsm-adic topology, hence, also for the π-adic topology.

• λ ∈W(BL).

• r ∈ N, r > 0 is minimal such that λ ∈ Wr(BL). Then there is an element sλ ∈ BL

such that λ(1 + πry) = exp (sλ log(y)) for y ∈ OP.

• 0 < w < 1/qr−2(q + 1) and w < (q − 1)
(
ord(sλ) + r − e

p−1

)
.

Consider the following continuous sheaf on Mr(w) defined by

OMr(w)⊗̂B :=
{(

OMr(w)⊗̂B
)
n

}
n∈N

,

where (
OMr(w)⊗̂B

)
n
:=

(
OMr(w)

/
πnOMr(w)

)⊗ (B/mnB) .
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We denote by
(
OMr(w)⊗̂B

)λ
the continuous sheaf

{(
OMr(w)⊗̂B

)λ
n

}
n∈N

endowed with the

action of SMr(w), which is twisted by λ and defined as follows. Let (U,W, u) be an object of

Mr(w), for

ax ∈ SMr(w) (U,W, u) = O×
P

(
1 + πr−vÔMr(w) (U,W, u)

)
,

and y ∈ (
OMr(w)⊗̂B

)
(U,W, u), we define

(ax).y := λ(a)xsλy ∈ (
OMr(w)⊗̂B

)
(U,W, u) ,

where xsλ = exp (sλ log(x)) makes sense by the assumption on w.

Now let

Ωλ
Mr(w) := H omSMr(w)

(
F

′

Mr(w),
(
OMr(w)⊗̂B

)λ−1
)
.

It is a locally free OMr(w)⊗̂B-module of rank 1 by Lemma 6.1.3. Moreover, we have a natural

isomorphism of OMr(w)⊗̂B-modules

H omOMr(w)⊗̂B

(
Ωλ

Mr(w),OMr(w)⊗̂B
) ∼= Ωλ−1

Mr(w).

Now let ωλ
Mr(w) be the ind-continuous sheaf

ωλ
Mr(w) := Ωλ

Mr(w)[1/π].

If B = OL and λ ∈Wr(L), we have the following isomorphism of sheaves

vr,∗
(
Ωλ

Mr(w)

) ∼= Ω̃λ
w ⊗OL

OCp .

6.1.3 Action of Gr

Let Gr be the Galois group of M r(w) → M(w). For any σ ∈ Gr, we may consider it as a

functor

σ :
(
EM(w)L

)
/(M(w),Mr(w))

−→ (
EM(w)L

)
/(M(w),Mr(w))
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defined by sending (U,W, u) �→ (U,W, σ ◦ u) on objects and by identity on the morphisms.

This functor on the category
(
EM(w)L

)
/(M(w),Mr(w))

induces a continuous functor on the site

Mr(w). Moreover, if F is a sheaf (or a continuous sheaf) on Mr(w), we denote by Fσ the

sheaf

(U,W, u) �−→ F (σ (U,W, u)) = F (U,W, σ ◦ u) .

Then we have

Lemma 6.1.4. Let jr : M(w) −→Mr(w) be the functor as in Section 4.4.

(1) If F is a sheaf of abelian groups on M(w) and H = j∗rF, then Hσ = H for any σ ∈ Gr.

(2) For all σ ∈ Gr, then Hσ = H if H is one of the following sheaves:

F
′

Mr(w),
(
OMr(w)⊗̂B

)λ
,
(
OMr(w)⊗̂B

)λ−1

, Ωλ
Mr(w)and

Aλ−1

Mr(w) := H omO
×
P

(
j∗r (T0) ,

(
OMr(w)⊗̂B

)λ)
.

(3) Let H be a sheaf on Mr(w) such that Hσ = H for all σ ∈ Gr. Then each σ defines a

canonical automorphism

jr,∗ (H) −→ jr,∗ (H) .

In other words, we have a canonical action of the group Gr on the sheaf jr,∗ (H).

Proof.

(1) Since j∗r
∼= αr,∗, where

αr,∗ :
(
EM(w)L

)
/(M(w),Mr(w))

−→ EM(w)L

is the forgetful functor (see section 4.3.3), we have

(j∗rF) (U,W, u) = F (U,W )
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for any object (U,W, u) in Mr(w). This proves (1).

(2) This is true by the construction of the sheaves.

(3) Recall that jr : M(w) −→Mr(w) sending (U,W ) �→ (
U,W ×M(w) M

r(w), pr2
)
. Then

(jr,∗H) (U,W ) = H
(
U,W ×M(w) M

r(w), pr2
)
.

For any σ ∈ Gr, σ : M r(w)→ M r(w) is an automorphism over M(w), after base change to

a larger field (finite over L). We have the following commutative diagram

W ×M(w) M
r(w)

pr2W ×M(w) M
r(w)

pr2

W

M r(w)

M r(w)

σ

M(w).

Hence the morphism induced by σ gives an automorphism

(
U,W ×M(w) M

r(w), pr2
) −→ (

U,W ×M(w) M
r(w), σ−1 ◦ pr2

)
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in Mr(w). This gives an automorphism, denoted still by σ,

H
(
U,W ×M(w) M

r(w), pr2
)

H
(
U,W ×M(w) M

r(w), σ−1 ◦ pr2
)

(jr,∗H) (U,W ) Hσ−1 (
U,W ×M(w) M

r(w), pr2
)

H
(
U,W ×M(w) M

r(w), pr2
)

(jr,∗H) (U,W ) .

Moreover, such σ is compatible with morphisms in M(w) hence gives an automorphism of

sheaves

σ : jr,∗H −→ jr,∗H.

This completes the proof of the lemma.

6.1.4 Modular sheaves

Recall that we have defined a continuous sheaf

Ωλ
Mr(w) := H omSMr(w)

(
F

′

Mr(w),
(
OMr(w)⊗̂B

)λ−1
)
,

and an ind-continuous sheaf

ωλ
Mr(w) := Ωλ

Mr(w)[1/π].

on Mr(w). Thanks to Lemma 6.1.4, we can define sheaves on M(w) to be

Ωλ
M(w) :=

(
jr,∗Ω

λ
Mr(w)

)Gr
,

and

ωλ
M(w) :=

(
jr,∗ω

λ
Mr(w)

)Gr
.

We have the following properties
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Proposition 6.1.1. Let B, λ, r and w be as before. Then

(i) ωλ
M(w) is a locally free (OM(w)⊗̂B)[1/π]-module of rank 1.

(ii) vM(w),∗

(
ωλ
M(w)

) ∼= ωλ
w⊗̂L Cp, where ωλ

w is the rigidification of the sheaf Ωλ
w defined in

Section 3.4.3.

(iii) ωλ
M(w)

∼= ωλ
w ⊗ÔM(w)

ÔM(w).

Proof. Part (i) follows from Lemma 6.1.3. Let U = (Spf(RU), NU) be a connected, small

object of M(w)ket. After localization at U, (ii) and (iii) are clear by the construction of the

above sheaves.

Remark 6.1.1. Similarly as in Section 3.4.3, the constructions of such sheaves are compatible

for various r’s and w’s in the sense of Lemma 3.4.1 and Proposition 3.4.3.

6.2 Cohomology of the sheaf ωλ
M(w)

Let ϑ : Z →M(w) be a morphism in M(w)fet
L

and let Z := M(w)/(M(w),Z) be the associated

induced site (refer to Section 4.3.3 for details). Recall that we have a continuous functor

j : M(w) −→ Z

(U,W ) �−→ (
U,W ×M(w) Z, pr2

)
,

which induces a morphism of topoi. In this section, we will give a formula for the i-th

cohomology of

H
i
(
Z, j∗

(
ωλ
M(w)

))
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for all i ≥ 0. In particular, if ϑ : M(w) → M(w) is the identity map, we get an explicit

formula for Hi
(
M(w), ωλ

M(w)

)
for all i ≥ 0. To calculate the cohomology, we need the

following lemma:

Lemma 6.2.1. Let F be a locally free (OM(w)⊗̂B)[1/π]-module of finite rank. Then the sheaf

R
b vM(w),∗(F)

is the one associated to the presheaf

U = (Spf(RU), NU) �−→ H
b
(
GU,F(RU, NU)

)
on M(w)ket, where GU is the Kummer étale geometric fundamental group of U, for a choice

of a geometric generic point, i.e., GU = Gal
(
RU[1/π]

/
RUL

)
.

Proof. This is [Andreatta and Iovita, 2012, Proposition 2.10].

Theorem 6.2.1. We have the following isomorphisms of GL-modules.

(1) H0
(
Z, j∗

(
ωλ
M(w)(1)

)) ∼= H0
(
Z, ϑ∗

(
ωλ
w

)) ⊗̂L Cp(1);

(2) H1
(
Z, j∗

(
ωλ
M(w)(1)

)) ∼= H0
(
Z, ϑ∗

(
ωλ+2
w

)) ⊗̂LCp;

(3) Hi
(
Z, j∗

(
ωλ
M(w)(1)

))
= 0 for i ≥ 2.

Proof. First, by exactness of the functor j, we have

H
i
(
Z, j∗

(
ωλ
M(w)(1)

)) ∼= H
i
(
M(w), j∗j

∗
(
ωλ
M(w)(1)

))
for i ≥ 0. We set F := j∗j

∗
(
ωλ
M(w)(1)

)
. In order to calculate Hi (M(w),F), we will use the

following Leray spectral sequence

H
p
(
M(w)ket,R

q vM(w),∗(F)
)
=⇒ H

p+q (M(w),F) .
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By the above lemma, the sheaf Rq vM(w),∗(F) on the left hand side is just the sheaf associated

to the presheaf

U �−→ H
q
(
GU,F(RU, NU)

)
,

for U = (Spf(RU), NU) a connected, small affine object of M(w)ket and

GU = Gal
(
RU[1/π]

/
RUL

)
. We first calculate F

(
RU, NU

)
.

Using the formula (4.4) and note that j∗ = α∗, where α is the forgetful functor from Z to

M(w), we have

F
(
RU, NU

)
= ωλ

w(U)⊗RU,L
ϑ∗OZ(UL)⊗RU

R̂U(1)

Then by [Faltings, 1987, Theorem 3] (refer to Remark 6.2.1) and the Kodaira-Spencer iso-

morphism (refer to Proposition 3.1.4), we have

H
q
(
GU, R̂U,L

) ∼=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RU,L⊗̂L Cp(1) if q = 0,

ω2
w(U)⊗ RU,L⊗̂L Cp(−1) if q = 1,

0 if q ≥ 2.

Thus we can deduce the following formulas for Hq
(
GU,F

(
RU, NU

))
,

H
q
(
GU,F

(
RU, NU

))
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωλ
w(U)⊗RU,L

ϑ∗OZ(UL)⊗L Cp(1) if q = 0,

ωλ+2
w (U)⊗RU,L

ϑ∗OZ(UL)⊗L Cp if q = 1,

0 if q ≥ 2.

Now (1) and (3) follows immediately.
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For (2), if p + q = 1, the Leray spectral sequence degenerates to the following exact

sequence:

0 −→ H
1
(
M(w)ket,R

0 vM(w),∗F
) −→

−→ H
1 (M(w),F) −→

−→ H
0
(
M(w)ket,R

1 vM(w),∗F
) −→

−→ H
2
(
M(w)ket,R

0 vM(w),∗F
)
.

Since the sheaf ωλ
w⊗OM(w)

ϑ∗OZ⊗LCp(1) onM(w) is locally isomorphic to (ϑ∗OZ ⊗BL ⊗L Cp),

it is a sheaf of L-banach modules on M(w), which is an affinoid. Then by Kiehl’s vanishing

theorem (refer to [Andreatta et al., 2015a, Appendix]), we obtain that

H
i
(
M(w)ket, ωλ

w ⊗OM(w)
ϑ∗OZ ⊗L Cp(1)

)
=H

i
(
M(w), ωλ

w ⊗OM(w)
ϑ∗OZ ⊗L Cp(1)

)
= 0,

for all i ≥ 1. Therefore we have

H
1 (M(w),F) ∼= H

0
(
M(w)ket, ωλ+2

w ⊗OM(w)
ϑ∗OZ ⊗L Cp

)
and (2) follows.

Remark 6.2.1. In fact, if we denote by Cp := L̂, by

χ : GL := Gal(L/L) −→ O×
P

the Lubin-Tate character and by (n) the twist of Galois modules with the n-th power of χ.
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In [Faltings, 2002a, § 9], the author shows the following

H
i (GL,Cp) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L if i = 0,

L · χ if i = 1,

0 if i ≥ 2.

Moreover the nontrivial twists Cp(n) have trivial Galois cohomology. Then the arguments of

[Faltings, 1987, Theorem 3] can be generalized in a similar way to our situation by replacing

p-divisible groups with π-divisible groups.

In particular, if Z = M(w), we obtain the following corollary.

Corollary 6.2.1. We have the following isomorphisms of GL-modules.

(1) H0
(
M(w), ωλ

M(w)(1)
) ∼= H0

(
M(w), ωλ

w

) ⊗̂LCp(1);

(2) H1
(
M(w), ωλ

M(w)(1)
) ∼= H0

(
M(w), ωλ+2

w

) ⊗̂L Cp;

(3) Hi
(
M(w), ωλ

M(w)(1)
)
= 0 for i ≥ 2.

6.3 The morphism

6.3.1 Notations

We fix some notations for the rest of this chapter.

Let

D
0
λ :=

{
D

0
λ,n

}
n∈N

,

A0
λ :=

{
A0

λ,n

}
n∈N
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be the continuous sheaves and

Dλ := D0
λ[1/π],

Aλ := A0
λ[1/π]

be the ind-continuous sheaves on M(H, π) described as in Section 5.2.1.

Recall that we have a continuous functor ν : M(H, π) → M(w) induced by the natural

map M(w) → M(H, π) (refer to Section 4.4). Applying ν∗ to the sheaves described above,

we obtain continuous and ind-continuous sheaves on M(w), namely

A0,λ
w =

{
A0,λ

w,n

}
n∈N

:=
{
ν∗A0

λ,n

}
n∈N

= ν∗A0
λ,

D0,λ
w =

{
D0,λ

w,n

}
n∈N

:=
{
ν∗D0

λ,n

}
n∈N

= ν∗D0
λ,

and Aλ
w := ν∗Aλ, D

λ
w := ν∗Dλ.

Now let M be any one of the sites M(w), M(H, π) or Mr(w). We denote by OM⊗̂B the

inverse system {(
OM⊗̂B

)
n

}
n∈N

:= {(OM/πnOM)⊗ (B/mnB)}n∈N ,

and by
(
OM⊗̂B

)λ
the system {(

OM⊗̂B
)λ
n

}
n∈N

with an action of O×
P
(or sometimes SMr(w)) twisted by λ.

Recall that we have the following sheaves of
(
OMr(w)⊗̂B

)
-modules on Mr(w):

Ωλ−1

Mr(w) =
{
Ωλ−1

Mr(w),n

}
n∈N

:=
{

H omSMr(w)

(
F

′
Mr(w),

(
OMr(w)⊗̂B

)λ
n

)}
n∈N

,

and

Aλ−1

Mr(w) =
{
Aλ−1

Mr(w),n

}
n∈N
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:=
{
H omO

×
P

(
j∗rT0,

(
OMr(w)⊗̂B

)λ
n

)}
n∈N

.

6.3.2 Construction of the morphism

The goal of this section is to construct a morphism

H
1
(
M(H, π),Dλ ⊗

(
OM(H,π)⊗̂B

)) −→ H
1
(
M(w), ωλ

M(w)

)
.

To this end we proceed in the following four steps.

Step 1 :

First, let us point out that we have a natural morphism of continuous sheaves ÔM(H,π) −→

ν∗

(
ÔM(w)

)
obtained by adjunction a morphism ν∗

(
ÔM(H,π)

)
−→ ÔM(w). Since ν commutes

with tensor products, we obtain a morphism of ind-continuous sheaves on M(w):

ν∗
(
Dλ ⊗

(
OM(H,π)⊗̂B

)) −→ Dλ
w ⊗

(
OM(w)⊗̂B

)
.

Passing to cohomology and composing with the morphism

H
1
(
M(H, π),Dλ ⊗

(
OM(H,π)⊗̂B

)) −→ H
1
(
M(w), ν∗

(
Dλ ⊗ (OM(H,π)⊗̂B)

))
induced by ν, we obtain a morphism

H
1
(
M(H, π),Dλ ⊗

(
OM(H,π)⊗̂B

)) −→ H
1
(
M(w),Dλ

w ⊗
(
OM(w)⊗̂B

))
. (6.1)

Step 2 :

Let T0 and F′
Mr(w) be the continuous sheaves defined as in Section 6.1.2. Then we have a

natural map

dlog : j∗r (T0) −→ F′
Mr(w).
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The above map induces a morphism

αr : Ωλ−1

Mr(w) −→ Aλ−1

Mr(w),

which is Gr-invariant.

Moreover, for every n ∈ N, we have an inclusion of OL-modules

A0
λ

/
mnA0

λ ⊂ HomO
×
P

(
O×

P
× OP, (B/mnB)λ

)
,

where O×
P
acts on O×

P
× OP by scalar multiplication and acts on (B/mnB)λ via λ. Then we

have an injective morphism of sheaves on M(w)

A0,λ
w,n ↪→H omO

×
P

(
T0, (B/mnB)λ

)
,

hence a morphism of sheaves of
(
OMr(w)⊗̂B/

)
n
-modules

βr
n : j∗rA

0,λ
w,n ⊗

(
OMr(w)⊗̂B

)
n
−→H omO

×
P

(
j∗rT0,

(
OMr(w)⊗̂B

)λ
n

)
= Aλ−1

Mr(w).

These morphisms are compatible for varying n and give a morphism of continuous sheaves

of
(
OMr(w)⊗̂B

)
-modules

βr : j∗rA
0,λ
w ⊗ (

OMr(w)⊗̂B
) −→H om

O
×
P

(
j∗rT0,

(
OMr(w)⊗̂B

)λ)
= Aλ−1

Mr(w).

Now consider the following diagram of morphisms of sheaves:

Ωλ−1

Mr(w)
αr

Aλ−1

Mr(w)

j∗rA
0,λ
w ⊗ (

OMr(w)⊗̂B
)
.

βr

Proposition 6.3.1. Under the above notations, we have

(i) βr is injective and Gr-invariant.
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(ii) The map αr factors via βr.

Proof. To prove the statements, we consider first the following diagram of sheaves for each

n ∈ N,

Ωλ−1

Mr(w),n

αr
n

Aλ−1

Mr(w),n

j∗rA
0,λ
w,n ⊗

(
OMr(w)⊗̂B

)
n
.

βr
n

Then it is equivalent to prove that for all n ∈ N,

(a) βr
n is injective and Gr-invariant;

(b) the map αr
n factors via βr

n.

The Gr-invariance of βr
n follows immediately by its construction and Lemma 6.1.4. We

prove the above assertions by localizing at small affine objects of M(w)ket covering M(w).

Let U = (Spf(RU), NU) be a connected small affine object of M(w)ket. Let g ∈ ΥU and

η := Spec(K) be a geometric generic point of Spm(RL) (refer to Section 4.5 for details).

Consider the OP-module

T := Tπ

(
(A(w)[π∞]2,11 )∨

)
,

let T0 ⊂ T be the inverse image of the subset of
(
(Cr)

2,1
1

)∨
of points of OP-order exactly πr

under the natural map

θr : T −→ (A(w)[πr]2,11 )∨ −→ (
(Cr)

2,1
1

)∨
.

Moreover, we fix an OP-basis {ε0, ε1} of T such that θr(ε1) = 0 and θr(ε0) is a point of

OP-order exactly πr.

Let x, y : T → OP be the OP-linear map defined by

x(aε0 + bε1) = a, and y(aε0 + bε1) = b,
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for any a, b ∈ OP. Then we can identify T0 =
{
aε0 + bε1 | a ∈ O

×
P
, b ∈ OP

} ⊂ T .

Fix S, a set of representatives of OP

/
πrOP, the discussion in Section 5.1.1 implies that

j∗rA
0,λ
w,n

(
RU, NU, g

)
=
⊕
zη∈S

∞⊕
h=0

(B/mn)xλ

(
(y/x)− zη

πr

)h

1zη+πrOP
(y/x).

Set D :=
(
OMr(w)⊗̂B

)
n

(
RU, NU, g

)
, we have

(
j∗rA

0,λ
w,n ⊗

(
OMr(w)⊗̂B

)
n

) (
RU, NU, g

)
=
⊕
zη∈S

∞⊕
h=0

Dxλ

(
(y/x)− zη

πr

)h

1zη+πrOP
(y/x),

where xλ is the map T → OP such that xλ(aε0 + bε1) = λ(a), and

Aλ−1

Mr(w),n

(
RU, NU, g

)
= H omO

×
P

(
j∗rT0,

(
OMr(w)⊗̂B

)λ
n

) (
RU, NU, g

)
=
{
f : T0 → D

∣∣f is continuous and f(cz) = λ(c)f(z), for c ∈ OP, z ∈ T0

}
,

as D-modules.

After localization, the map βr
n is just the one sending

∑
zη∈S

∞∑
h=0

αzη,hx
λ

(
(y/x)− zη

πr

)h

1zη+πrOP
(y/x)

to the map ⎛⎝aε0 + bε1 �−→
∑
zη∈S

∞∑
h=0

αzη ,hλ(a)

(
(b/a)− zη

πr

)h

1zη+πrOP
(b/a)

⎞⎠ .

It is obvious that if the above map is zero then

∑∑
αzη ,hx

λ

(
(y/x)− zη

πr

)h

1zη+πrOP
(y/x) = 0.

Hence βr
n is injective.
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Now we have

Ωλ−1

Mr(w),n

αr
n

Aλ−1

Mr(w),n

j∗rA
0,λ
w,n ⊗

(
OMr(w)⊗̂B

)
n
.

βr
n

By the injectivity of βr
n, to prove αr

n factoring through βr
n, it is enough to prove that the

image of αr
n is contained in the image of βr

n.

Recall that we have the following commutative diagram for the map dlog

0 Ker(dlog)
πr−v Ker(dlog)

�

T ⊗ ̂RU

πr−v ̂RU

Im(dlog)
πr−v Im(dlog)

�

0

0 (Dr)
2,1
1 ⊗

̂RU

πr−v ̂RU

(A[πr]2,11 )∨ ⊗ ̂RU

πr−v ̂RU

(
(Cr)

2,1
1

)∨ ⊗ ̂RU

πr−v ̂RU

0,

with exact row and vertical isomorphisms (refer to Theorem 3.3.2).

Let {e0, e1} be a R̂U-basis of T ⊗OP
R̂U such that

• dlog(e0) is a R̂U-basis of Im (dlog) and e0 ≡ ε0modπr−v;

• e1 is a R̂U-basis of Ker (dlog) and e1 ≡ ε1mod πr−v.

Let X and Y denote the R̂U-linear maps

T ⊗OP
R̂U −→ R̂U

defined by

X(e1) = Y (e0) = 0, and Y (e1) = X(e0) = 1,

respectively. Then

Ωλ−1

Mr(w),n

(
RU, NU, g

)
= H omSMr(w)

(
F′
Mr(w),

(
OMr(w)⊗̂B

)λ
n

) (
RU, NU, g

)
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= HomSr,v

(
Sr,v · v, Dλ

)
,

where

Sr,v = O×
P

(
1 + πr−vR̂U

)
, v = dlog(e0)

and Dλ is the module Sr,v-module D with the action of Sr,v twisted by λ. Let Xλ denote

the map

Xλ : Sr,v · v −→ Dλ

ax · v �−→ λ(a)xsλ ,

for a ∈ O
×
P
, x ∈

(
1 + πr−vR̂U

)
, where sλ ∈ BL such that

λ(1 + πry) = exp (sλ log(y)) ,

for y ∈ OP. Then we have the identification

HomSr,v

(
Sr,v · v, Dλ

)
= D ·Xλ,

i.e.,

Ωλ−1

Mr(w),n

(
RU, NU, g

)
= D ·Xλ.

As a summary, after localization, we are now in the following situation:

D ·Xλ αr
n Hom

O
×
P

(
O×

P
· ε0 + OP · ε1, Dλ

)
⊕
zη∈S

∞⊕
h=0

Dxλ
(

(y/x)−zη
πr

)h

1zη+πrOP
(y/x).

βr
n

Then it suffices to show that Xλ, thought of as a map T0 → Dλ, can be written as a power

series of xλ and
(

(y/x)−zη
πr

)h

1zη+πrOP
(y/x).
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We write X = sx+ ty for some s, t ∈ R̂U. By our assumption we have

1 = X(e0) = sx(e0) + ty(e0) ≡ sx(ε0) + ty(ε0) = s mod πr−v,

0 = X(e1) = sx(e1) + ty(e1) ≡ sx(ε1) + ty(ε1) = t mod πr−v,

i.e., s ∈ 1 + πr−vR̂U mod πr−v and t ∈ πr−vR̂U. Then we have

αr
n(X

λ) = xλ (s+ ty/x)sλ ∈ Im(βr
n).

This completes the proof.

Now we obtain a Gr-invariant morphism of sheaves of OMr(w) ⊗ B-modules on Mr(w):

γr : Ωλ−1

Mr(w) −→ j∗rA
0,λ
w ⊗ (

OMr(w)⊗̂B
)
.

Step 3 :

Applying H omOMr(w)⊗̂B

(−,OMr(w)⊗̂B
)
to the above map γr and using the identification

H omOMr(w)⊗̂B

(
Ωλ−1

Mr(w),OMr(w)⊗̂B
) ∼= Ωλ

Mr(w),

we have a Gr-invariant morphism

δr : H omOMr(w)⊗̂B

(
j∗rA

0,λ
w ⊗ (

OMr(w)⊗̂B
)
,OMr(w)⊗̂B

) −→ Ωλ
Mr(w).

In particular, for each n ∈ N, we have a morphism

δrn : H om(OMr(w)⊗̂B)
n

(
j∗rA

0,λ
w,n ⊗

(
OMr(w)⊗̂B

)
n
, (OMr(w)⊗̂B)n

) −→ Ωλ
Mr(w),n.

We now have the following lemma.

Lemma 6.3.1. For each n ∈ N, there exist an integer kn ≥ n and a morphism

j∗rD
0,λ
w,kn

⊗ (
OMr(w)⊗̂B

)
n
−→ Ωλ

Mr(w),n,
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such that the following diagram is commutative

H om(OMr(w)⊗̂B)
kn

(
j∗rA

0,λ
w,kn

⊗ (
OMr(w)⊗̂B

)
kn

, (OMr(w)⊗̂B)kn

)
j∗rD

0,λ
w,kn

⊗ (
OMr(w)⊗̂B

)
n

H om(OMr(w)⊗̂B)
n

(
j∗rA

0,λ
w,n ⊗

(
OMr(w)⊗̂B

)
n
, (OMr(w)⊗̂B)n

)
δr
n

Ωλ
Mr(w),n,

where the maps will be described in the following remark.

Remark 6.3.1. Note that we can identify the
(
OMr(w)⊗̂B

)
n
-module

H om(OMr(w)⊗̂B)
n

(
j∗rA

0,λ
w,n ⊗

(
OMr(w)⊗̂B

)
n
, (OMr(w)⊗̂B)n

)
with

HomB

(
j∗rA

0,λ
w,n, B

/
mnB

)⊗ (
OMr(w)⊗̂B

)
n

for each n ∈ N. Hence the left vertical map is the natural one induced by

A0
λ

/
mknA0

λ −→ A0
λ

/
mnA0

λ

for kn ≥ n. Moreover, by the construction, we also have the identification of B
/
mnB-

modules

D0
λ

/
mnD0

λ
∼= HomB

(
A0

λ

/
mnA0

λ, B
/
mnB

)
.

Then the top horizontal map is just the one induced by the quotient

(
D0

λ

/
mknD0

λ

)/(
FilD

0
λ
/
mknD0

) ∼= D0
λ

/
Filkn D0

λ.

Proof. It suffices to prove the above lemma by localizing at small affine objects of M(w)ket

covering M(w). With the same notations as before and using the identification (equation

5.2)

D0
λ,n := D0

λ

/
FilnD0

λ
∼=
⊕
zη∈S

n−1⊕
h=0

(
B
/
mn−hB

)
,
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we have

Ωλ
Mr(w),n

(
RU, NU, g

)
= D · (Xλ

)∨
,

j∗rD
0,λ
w,n

(
RU, NU, g

)
=

⊕
zη∈S

n−1⊕
h=0

(
B
/
mn−hB

)(
xλ

(
(y/x)− zη

πr

)h

1zη+πrOP
(y/x)

)∨

,

and

HomB

(
j∗rA

0,λ
w,n, B

/
mnB

) (
RU, NU, g

)
=

⊕
zη∈S

∞⊕
h=0

(
B
/
mnB

)(
xλ

(
(y/x)− zη

πr

)h

1zη+πrOP
(y/x)

)∨

.

Let D′ :=
(
OMr(w)⊗̂B

)
kn

(
RU, NU, g

)
. We are now in the following situation:

⊕
zη∈S

∞⊕
h=0

(
B
/
mknB

) (
Zλ

)∨ ⊗D′
⊕
zη∈S

kn−1⊕
h=0

(
B
/
mkn−hB

) (
Zλ

)∨ ⊗D′

⊕
zη∈S

∞⊕
h=0

(
B
/
mnB

) (
Zλ

)∨ ⊗D
δrn

D · (Xλ
)∨

,

where Zλ :=

(
xλ

(
(y/x)−zη

πr

)h

1zη+πrOP
(y/x)

)
and D → D′ is the natural map.

Recall that in the proof of Proposition 6.3.1, we showed that Xλ can be written as a power

series of Zλ. Let Nn be the maximal number such that the coefficient of Xλ with respect to

Zλ is nonzero. Next we take an integer kn such that kn ≥ n+Nn, then the map δrn localized

at U factors through j∗rD
0,λ
w,kn

⊗ (
OMr(w)⊗̂B

)
n

(
RU, NU, g

)
as required. This completes the

proof of the lemma.

Step 4 :

Now for any n ∈ N, there is an integer kn ≥ n and a morphism

j∗rD
0,λ
w,kn

⊗ (
OMr(w)⊗̂B

)
kn
−→ Ωλ

Mr(w),n.
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We thus have a morphism of continuous sheaves of
(
OMr(w)⊗̂B

)
-modules

δ0,λw : j∗rD
0,λ
w ⊗ (

OMr(w)⊗̂B
) −→ Ωλ

Mr(w),

hence a morphism of continuous sheaves of
(
OM(w)⊗̂B

)
-modules

(
jr,∗

(
j∗rD

0,λ
w ⊗ (

OMr(w)⊗̂B
)))Gr −→ (

jr,∗Ω
λ
Mr(w)

)Gr
= Ωλ

M(w).

Since ÔMr(w) = j∗r ÔM(w), we have a natural morphism

D0,λ
w ⊗ (

OM(w)⊗̂B
) −→ (

jr,∗
(
j∗rD

0,λ
w ⊗ (

OMr(w)⊗̂B
)))Gr

.

Composing the above two morphisms of continuous sheaves of
(
OM(w)⊗̂B

)
-modules, and

passing to ind-continuous sheaves, we obtain

δλw : Dλ
w ⊗

(
OM(w)⊗̂B

) −→ ωλ
M(w). (6.2)

Finally, the above morphism gives a morphism on cohomology

H
1
(
M(w),Dλ

w ⊗
(
OM(w)⊗̂B

)) −→ H
1
(
M(w), ωλ

M(w)

)
.

Composing with the morphism in formula (6.1), we obtain the morphism

H
1
(
M(H, π),Dλ ⊗

(
OM(H,π)⊗̂B

)) −→ H
1
(
M(w), ωλ

M(w)

)
as we want from the beginning of this section, which is the main goal of this chapter.

6.4 Hecke operators

First, we define the U operator following the same line as in Section 3.5.1. Let M(Hπr, q),

M(Hπr, q), Mr
q(w) and M r

q (w) be as described in Section 3.5.1. Recall that we have two

173



morphisms

π1 : M
r
q (w) −→ M r(w),

π2 : M
r
q (qw) −→ M r(w),

where π1 is defined by forgeting the level struction given by the group D, π2 is defined by

taking quotient by D (refer to Section 3.5.1 for details). Similar as in [Andreatta et al., 2014,

§3.2], we can prove that π1 is finite and étale. Then (M(w),M r
q (w)) is an object of Mr(w)

hence also an object of M(w). Let Mr
q(w) denote the induced site

Mr
q(w) := M(w)/(M(w),Mr

q (w)) = Mr(w)/(M(w),Mr
q (w)).

Then we have natural continuous functors

p1 : M
r(qw) −→ Mr

q(qw)

(U,W ) �−→ (
U,W ×Mr(qw) M

r
q (qw), pr2

)
,

and

p2 : M
r(w) −→ Mr

q(qw)

(U,W, u) �−→ (
U,W ×Mr(w) M

r
q (qw), pr2

)
.

Note that p1 is just the functor j defined in Section 4.3.3, hence p1,∗ is exact.

Moreover, for fixed r, let w ≤ w′ be two rational numbers adapted to r such that they

satisfy the same conditions as w. Then we have natural morphisms and the following com-

mutative diagram:

M r(w)
gw,w′

M r(w′)

M(w)
fw,w′

M(w′).
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Let (U′,W ′, u′) be an object on Mr(w′), we have a natural commutative diagram:

W ′ ×Mr(w′) M
r(w) M r(w)

gw,w′

W ′ M r(w′)

U′
L ×M(w′) M(w) M(w)

fw,w′

U′
L M(w′).

If we denote by

U := U′ ×M(w′) M(w),

W := W ′ ×Mr(w′) M
r(w),

then W → UL
∼= U′

L×M(w′)M(w) is finite étale. In other words, (U,W, pr2) is also an object

of Mr(w). Thus we obtain a functor of sites:

ρw′,w : Mr(w′) −→Mr(w),
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such that ρ∗w′,wΩ
λ
Mr(w′)

∼= Ωλ
Mr(w). In particular, we have a functor

ρqw,w : Mr(qw) −→Mr(w).

Let Ar
q(w), A

r(w), D and πD : Ar
q(qw) −→ Ar

q(qw)/D be as in Section 3.5.1. Recall that we

have the following commutative diagram

Ar
q(qw)

πD

Ar
q(qw)

/
D

Ar(qw)

Mr
q(qw)

π1

Mr
q(qw)

gw,qw◦π2

Mr(qw)

(6.3)

where the left and right squares are Carterian and the square in the back is commutative.

Similar as in Section 3.5.1 we obtain a morphism

π̃D : p∗2Ω
λ
Mr(w) −→ p∗1Ω

λ
Mr(qw).
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We define an operator Ũ by the following composition:

Hi
(
Mr(qw),Ωλ

Mr(qw)

)
ρ∗qw,w

Hi
(
Mr(w), ρ∗qw,wΩ

λ
Mr(qw)

)

Hi
(
Mr(w),Ωλ

Mr(w)

)

p∗2
Hi

(
Mr

q(qw), p
∗
2Ω

λ
Mr(w)

)

π̃D

Hi
(
Mr

q(qw), p
∗
1Ω

λ
Mr(qw)

)

Hi
(
Mr

q(qw), p1,∗p
∗
1Ω

λ
Mr(qw)

)

Hi
(
Mr(qw),Ωλ

Mr(qw)

)
,

where the last map is the trace map as described by formula (4.4) in Section 4.3.3, since p1,∗

is exact. Passing to the ind-continuous sheaves and taking the Gr-invariants, we obtain an

operator (recall that both p1,∗ and jr,∗ are exact)

U : H
i
(
M(w), ωλ

M(w)

) −→ H
i
(
M(w), ωλ

M(w)

)
.

Moreover, we have the following commutative diagrams:

H0
(
M(w), ωλ

M(w)

)
∼

U

H0
(
M(w), ωλ

w

) ⊗̂Cp

U

H0
(
M(w), ωλ

M(w)

)
∼

H0
(
M(w), ωλ

w

) ⊗̂Cp,
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and

H1
(
M(w), ωλ

M(w)

)
∼

U

H0
(
M(w), ωλ+2

w

) ⊗̂Cp(−1)
U

H1
(
M(w), ωλ

M(w)

)
∼

H0
(
M(w), ωλ+2

w

) ⊗̂Cp(−1),

where the left vertical maps U are defined as above and the right vertical maps U are as in

Section 3.5.1. In other words, all the isomorphisms obtained in Corollary 6.2.1 are invariant

under the action of GL and the U operator.

Similarly, the commutative diagram (6.3) also induces a morphism

π̃D : p∗2
(
j∗rD

0,λ
w ⊗ (

OMr(w)⊗̂B

)) −→ p∗1
(
j∗rD

0,λ
qw ⊗

(
OMr(qw)⊗̂B

))
such that the following diagram

p∗2
(
j∗rD

0,λ
w ⊗ (

OMr(w)⊗̂B

)) π̃D

δ0,λw

p∗1
(
j∗rD

0,λ
qw ⊗

(
OMr(qw)⊗̂B

))
δ0,λw

p∗2Ω
λ
Mr(w)

π̃D

p∗1Ω
λ
Mr(qw)

commutes, where δ0,λw is the morphism obtained in Section 6.3.2. This implies the map

H
1
(
M(H, π),Dλ ⊗

(
OM(H,π)⊗̂B

)) −→ H
1
(
M(w), ωλ

M(w)

)
obtained at the end of the previous section is compatible with the U operator.

Similarly as in Section 3.5.2, we can define other Hecke operators and they are compatible

with the morphism obtained in previous section.
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Chapter 7

Eichler-Shimura isomorphisms

Recall that in last chapter we obtain a morphism

H
1
(
M(H, π),Dλ ⊗

(
OM(H,π)⊗̂B

)⊗ L
) −→ H

1
(
M(w), ωλ

M(w)

)
.

Moreover, by Corollary 6.2.1, we have an isomorphism

H
1
(
M(w), ωλ

M(w)(1)
) ∼= H

0
(
M(w), ωλ+2

w

) ⊗̂L Cp .

Composing the above we have

Ψ : H
1
(
M(H, π),Dλ ⊗

(
OM(H,π)⊗̂B

)⊗ L(1)
) −→ H

0
(
M(w), ωλU+2

w

) ⊗̂L Cp .

In particular, if U ⊂ Wr is an wide open disk, B = ΛU and λU is the universal weight

associated to U, then we have a morphism

ΨU : H
1
(
M(H, π),DU ⊗ ÔM(H,π)⊗̂BU(1)

)
−→ H

0
(
M(w), ωλU+2

w

) ⊗̂L Cp,

where BU := ΛU ⊗ L. If λ ∈ U(L) is a weight, we have

Ψλ : H
1
(
M(H, π),Dλ ⊗ ÔM(H,π)⊗̂L(1)

)
−→ H

0
(
M(w), ωλ+2

w

) ⊗̂L Cp .
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By construction, the following diagram

H1
(
M(H, π),DU ⊗ ÔM(H,π)⊗̂BU(1)

)
ΨU

H0
(
M(w), ωλU+2

w

) ⊗̂LCp

H1
(
M(H, π),Dλ ⊗ ÔM(H,π)⊗̂L(1)

)
Ψλ

H0
(
M(w), ωλ+2

w

) ⊗̂L Cp

is commutative, where the vertical maps are induced by the specializations.

The main goal of this chapter is to study the map Ψλ using the map ΨU. First we figure

out what happens when λ = k > 0 is an integer.

7.1 Classical weights

First we fix some notations for this section. Let M := M(H, π), M =: M(H, π) and M :=

M(H, π) the Faltings’ site associated to the pair (M,M). Let ε : A → M be the universal

abelian scheme and denote ω :=
(
ε∗Ω

1
A/M

)2,1

1
. Let T := Tπ

(
(A[π∞]2,11 )∨

)
. For any integer

k ≥ 0, consider Symk(T)⊗ ÔM⊗̂L as in ind-continuous sheaf on Met

L
, it can also be viewed

as an ind-continuous sheaf on M. We have the following proposition.

Proposition 7.1.1. With the above notations, we have a canonical isomorphism compatible

with the actions of GL and all Hecke operators

H
1
(
M, Symk(T)⊗ ÔM⊗̂L(1)

) ∼= (
H

0(M,ωk+2)⊗ Cp

)
⊕
(
H

1(M,ω−k)⊗ Cp(k + 1)

)
.

Proof. We prove the statement by localizing at connected small affine object ofMket covering

M. Let U = (Spf(R), N) be such an object such that ω restricted to U is a free R-module of

rank 1. Let A be the corresponding abelian scheme defined over R, T := Tπ

(
(A[π∞]2,11 )∨

)
,

V := Symk(T ) ⊗ R̂[1/π] and ωR the pullback of ω to U. Recall that we have a continuous
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functor v : Mket →M sending U to (U,UL). The Leray spectral sequence

H
i
(
Mket,R

j v∗

(
Symk(T)⊗ ÔM⊗̂L

))
=⇒ H

i+j
(
M, Symk(T)⊗ ÔM⊗̂L

)
for i+ j = 1 degenerates to the exact sequence

0→ H
1
(
Mket,R

0 v∗(Sym
k(T)⊗ ÔM⊗̂L Symk(T)⊗ ÔM⊗̂L)

)→
→ H

1
(
M, Symk(T)⊗ ÔM⊗̂L

)→ H
0
(
Mket,R

1 v∗(Sym
k(T)⊗ ÔM⊗̂L)

)→
→ H

2
(
Mket,R

0 v∗(Sym
k(T)⊗ ÔM⊗̂L)

)
.

By Lemma 6.2.1, the sheaf Rj v∗(Sym
k(T) ⊗ ÔM⊗̂L) is just the sheaf associated to the

following presheaf on Mket:

U �−→ H
j
(
Δ, (Symk(T)⊗ ÔM⊗̂L)(R,N)

)
,

where Δ := Gal
(
RL/RL

)
is a subgroup of G := Gal

(
RL/RL

)
and the localization

(
Symk(T)⊗ ÔM⊗̂L

)
(R,N) = Symk(T )⊗ R̂[1/π] = V.

First we claim that:

H
0(Δ, V ) ∼= ω−k

R ⊗ Cp(k),

H
1(Δ, V ) ∼= ωk+2

R ⊗ Cp(−1).

Granted this two claims we deduce:

H
0
(
Mket,R

1 v∗(Sym
k(T)⊗ ÔM⊗̂L)

)⊗ Cp
∼= H

0
(
M,ωk+2

)⊗ Cp(−1),

H
1
(
Mket,R

0 v∗(Sym
k(T)⊗ ÔM⊗̂L)

)⊗ Cp
∼= H

1
(
M,ω−k

)⊗ Cp(k).

Moreover we have

H
2
(
Mket,R

0 v∗(Sym
k(T)⊗ ÔM⊗̂L)

)⊗ Cp
∼= H

2
(
M,ω−k

)⊗ Cp(k) = 0
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since M has dimension 1. Therefore we have an exact sequence of Cp-modules compatible

with the actions of GL and the Hecke operators

0

H1
(
Mket,R0 v∗(Sym

k(T)⊗ ÔM⊗̂L(1))
)

H1(M,ω−k)⊗ Cp(k + 1)

H1
(
M, Symk(T)⊗ ÔM⊗̂L(1)

)

H0
(
Mket,R1 v∗(Sym

k(T)⊗ ÔM⊗̂L(1))
)

H0(M,ωk+2)⊗ Cp

0.

Similar to the main result proved in Tate [1967], the above sequence splits canonically and

we deduce the proposition.

Now we prove our claims. We start with the following exact Hodge-Tate sequence of

R̂[1/π]-modules with semilinear Δ-actions, associated to A:

0 ω−1
A∨/R ⊗R R̂[1/π](1) T ⊗ R̂[1/π]

dlog
ωA/R ⊗R R̂[1/π] 0.

Let e0, e1 be an R̂[1/π]-basis of T ⊗ R̂[1/π] such that

• e1 is a R̂[1/π]-basis of ω−1
A∨/R

and

• dlog(e0) is a basis of ωR, i.e., σdlog(e0) = dlog(e0) for any σ ∈ G.

This gives us the following filtration of V :

0 =: Fil−1(V ) ⊆ Fil0(V ) ⊆ Fil1(V ) ⊆ · · · ⊆ Filk−1(V ) ⊆ Filk(V ) := V,
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where Fili(V ) :=
i∑

n=0

R̂[1/π]ek−n
1 en0 , for i = 0, 1, . . . , k. For example,

Fil0(V ) = R̂[1/π]ek1,

Fil1(V ) = R̂[1/π]ek1 + R̂[1/π]ek−1
1 e0.

We have the following results (refer to Remark 6.2.1):

(i) H0(Δ, R̂[1/π]) = RCp ,

(ii) H1(Δ, R̂[1/π]) = ω2
R⊗̂Cp(−1),

where RCp represents the completed tensor product R⊗̂Cp. Using these we have:

H
0(Δ,Fil0(V )) ∼= H

0(Δ, ω−k
R ⊗ R̂[1/π](k))

∼= ω−k
R ⊗H

0(Δ, R̂[1/π](k)) ∼= ω−k
R ⊗̂Cp(k),

H
1(Δ,Fil0(V )) ∼= H

1(Δ, ω−k
R ⊗ R̂[1/π](k))

∼= ω−k
R ⊗H

1(Δ, R̂[1/π](k)) ∼= ω−k+2
R ⊗̂Cp(k − 1).

Moreover, for any 0 ≤ i ≤ k − 1, we have

H
0(Δ,Fili+1 /Fili) ∼= H

0(Δ, ω2i+2−k
R ⊗ R̂[1/π](k − i− 1))

∼= ω2i+2−k
R ⊗̂Cp(k − i− 1),

H
1(Δ,Fili+1 /Fili) ∼= H

1(Δ, ω2i+2−k
R ⊗ R̂[1/π](k − i− 1))

∼= ω2i+4−k
R ⊗̂Cp(k − i− 2).

The class of extension

0→ Fili /Fili−1 → Fili+1 /Fili−1 → Fili+1 /Fili → 0
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in H1
(
Δ, ω−2

R ⊗R R̂[1/π](1)
) ∼= ω−2

R ⊗R H1(Δ, R̂[1/π](1)) ∼= RCp can be computed from the

Kodaira-Spencer class and turns out to be a unit. Then by induction, for any i = 1, 2, . . . , k,

we have:

H
0(Δ,Fili) = ω−k

R ⊗̂Cp(k),

H
1(Δ,Fili) = ω−k+2+2i

R ⊗̂Cp(k − 1− i).

In particular,

H
0(Δ, V ) = H

0(Δ,Filk) = ω−k
R ⊗̂Cp(k),

H
1(Δ, V ) = H

1(Δ,Filk) = ωk+2
R ⊗̂Cp(−1).

This proves the claims and the proposition follows.

Remark 7.1.1. The analogue result for modular curves was proved by Faltings in Faltings

[1987]. The above proof follows from the main lines of the arguments in Faltings’ paper.

Recall that we have a natural isomorphism

H
1
(
Met

L
,Vk(1)

)⊗L Cp
∼= H

1
(
M, Symk(T)⊗ ÔM⊗̂L(1)

)
.

Let Φk be the composite of the following morphisms

H
1
(
Met

L
,Vk(1)

)⊗L Cp

∼−→ H
1
(
M, Symk(T)⊗ ÔM⊗̂L(1)

)
∼−→

(
H

1(M,ω−k)⊗ Cp(k + 1)

)⊕(
H

0(M,ωk+2)⊗ Cp

)
−→ H

0(M,ωk+2)⊗ Cp,

where the last map is the projection to the second factor. Then we have

184



Proposition 7.1.2. Let k ≥ 0 be an integer. Then the following diagram is commutative

H1
(
M(H, π)et

L
,Dk

)⊗L Cp(1)
Ψk

H0
(
M(w), ωk+2

w

) ⊗̂L Cp

H1
(
M(H, π)et

L
,Vk(1)

)⊗L Cp
Ψk

H0
(
M(H, π), ωk+2

) ⊗̂L Cp,

where the left vertical map is the one induced by specialization and the right vertical map is

the restriction.

Proof. Recall that we have the following commutative diagram (refer to Section 4.4):

Mket vM

μ

M

ν

Mket(w) vM(w)
M(w).

(7.1)

Let ωk
M := v∗Mωk⊗

Ôun
M

ÔM, where ω = ωA/M with A→M is the universal abelian scheme. Let

Tw := ν∗(T). We prove the proposition by showing that the following diagram commutes:

H1
(
Met

L
,Dk

)⊗ Cp(1)

∼=

H1
(
Met

L
,Vk(1)

)⊗ Cp

∼=

H1
(
M,Dk⊗̂ÔM ⊗ L(1)

)
H1

(
M,Vk⊗̂ÔM ⊗ L(1)

)

H1
(
M(w), ν∗(Dk)⊗̂ÔM(w) ⊗ L(1)

)
δkw

H1
(
M, Symk(T)⊗̂ÔM ⊗ L(1)

)

H1
(
M(w), ωk

M(w) ⊗ L(1)
)

H1
(
M, ωk

M ⊗ L(1)
)μ̃

H0
(
M(w), ωk+2

w

)⊗ Cp H0
(
M,ωk+2

)⊗ Cp
μ∗

(7.2)

where the two horizontal maps on the top are induced by the specializaion. Moreover, the

left and right vertical compositions are just Ψk and Φk, respectively. We will explain the

other maps in the proof.
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• The top square is obviously commutative.

• For the square at the bottom, we first explain how to obtain the horizontal map

μ̃ : H
1
(
M, ωk

M ⊗ L(1)
) −→ H

1
(
M(w), ωk

M(w) ⊗ L(1)
)
.

In fact μ̃ is defined by the following compositions:

H1
(
M, ωk

M ⊗ L(1)
)

H1
(
M, v∗Mωk⊗̂ÔM ⊗ L(1)

)

ν∗
H1

(
M(w), ν∗v∗Mωk⊗̂ÔM(w) ⊗ L(1)

)

(1)
H1

(
M(w), v∗M(w)μ

∗ωk⊗̂ÔM(w) ⊗ L(1)
)

H1
(
M(w), v∗M(w)ω

k
w⊗̂ÔM(w) ⊗ L(1)

)

H1
(
M(w), v∗M(w)

(
ωk
w⊗̂Cp(1)

))

(2)
H1

(
M(w), v∗M(w)

(
vM(w),∗ω

k
M(w)

)
⊗̂L(1)

)

H1
(
M(w), ωk

M(w)⊗̂L(1)
)

where equality (1) is obtained from the commutative diagram (7.1) and equality (2) is

by Proposition 6.1.1.

Now consider the Leray spectral sequence

H
p
(
Mket,R

q vM,∗(ω
k
M ⊗ L(1))

)
=⇒ H

p+q
(
M, ωk

M ⊗ L(1)
)
.
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For p+ q = 1, we get an edge map

H
1
(
M, ωk

M ⊗ L(1)
) −→ H

0
(
Mket,R

1 vM,∗(ω
k
M ⊗ L(1))

)
,

which is just the right vertical map in the bottom square of diagram 7.2. Recall from

Theorem 6.2.1 that we have isomorphisms

H
1
(
M(w), ωk

M(w) ⊗ L(1)
) ∼= H

0
(
Mket(w),R

1 vM(w),∗

(
ωk
M(w) ⊗ L(1)

))
∼= H

0
(
M(w), ωk+2

w

)⊗ Cp .

Thus we obtain a commutative diagram given by

H1
(
M(w), ωk

M(w) ⊗ L(1)
)

H1
(
M, ωk

M ⊗ L(1)
)μ̃

H0
(
Mket(w),R1 vM(w),∗

(
ωk
M(w) ⊗ L(1)

))
H0

(
Mket,R1 vM,∗(ω

k
M ⊗ L(1))

)μ̃

H0
(
M(w), ωk+2

w

)⊗ Cp H0
(
M,ωk+2

)⊗ Cp
μ∗

which implies the commutativity of the bottom square.

• We deduce that the middle square commutes since the following diagram is commuta-

tive

H1
(
M(w), ν∗(Dk)⊗̂ÔM(w) ⊗ L(1)

)
H1

(
M,Dk⊗̂ÔM ⊗ L(1)

)
ν∗

H1
(
M(w), ν∗(Vk)⊗̂ÔM(w) ⊗ L(1)

)
H1

(
M,Vk⊗̂ÔM ⊗ L(1)

)
ν∗

H1
(
M(w), Symk(Tw)⊗̂ÔM(w) ⊗ L(1)

)
H1

(
M, Symk(T)⊗̂ÔM ⊗ L(1)

)
ν∗

H1
(
M(w), ωk

M(w) ⊗ L(1)
)

H1
(
M, ωk

M ⊗ L(1)
)
.

μ̃
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Here, both vertical maps in the bottom square are induced by the dlog map. Note that

the left vertical composite is just the map δkw as obtained in formula (6.2). The proof

of the proposition is completed.

We end this section with the following proposition.

Proposition 7.1.3. Let U ⊂ Wr be a wide open disk defined over L and λU the universal

weight associated to U. Let λ ∈ U(L) ∩ Z such that k ≥ 0. Then the natural diagram

H1
(
M(H, π)et

L
,DU

) ⊗̂Cp(1)
ΨU

H0
(
M(w), ωλU+2

w

) ⊗̂Cp

H1
(
M(H, π)et

L
,Dλ

) ⊗̂Cp(1)
Ψλ

H0
(
M(w), ωλ+2

w

) ⊗̂Cp

H1
(
M(H, π)et

L
,Vλ

) ⊗̂Cp(1)
Φλ

H0
(
M(H, π), ωλ+2

) ⊗̂Cp

(7.3)

is commutative, where the left and the top right vertical maps are induced by the specializa-

tions

DU −→ Dλ −→ Vλ.

The lower right vertical map is the restriction.

7.2 Main result

7.2.1 Assumptions and notations

To state our main theorem, we first recall some notations and assumptions.

(I) r ≥ 1 is an integer.
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(II) L is a finite field extension over FP containing an element ζr ∈ Cp, where {ζn}n≥1 is a

fixed sequence of Cp points of LT satisfying

• the OP-order of ζn is exactly πn;

• πζn+1 = ζn for each n ≥ 1;

• ζ1 = (−π) 1
q−1 , where (−π) 1

q−1 is a fixed element in Cp.

(III) U ⊂Wr is a wide open disk defined over L, with ring of bounded analytic functions

ΛU =
{
f ∈ O(U)

∣∣ |f(x)| ≤ 1 for all x ∈ U
}
,

and universal weight

λU : O×
P
−→ Λ×

U .

(IV) w > 0 is a rational number which is adapted to r, i.e.,

w <
1

qr−2(q + 1)
.

Moreover, if we choose a weight λ ∈ U(L), we also assume that

w < (q − 1)

(
v(s) + r − e

p− 1

)
,

where s is an element in Cp depending on λ as in Definition 3.4.1, e is the ramification

degree of FP/Qp with the assumption that e ≤ p − 1 (Remark 3.4.1) and v is the

valuation on Cp which extends the one on FP, normalized by v(π) = 1.

(V) h ∈ Q, h ≥ 0 is a slope.

Furthermore, we also suppose that
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• there exists a weight λ ∈ U(L) corresponding to an integer k ≥ 0 and

h < λ+ 2−N,

where N = [FP : Qp];

• all H1
(
M(H, π)et

L
,DU

)
, H0

(
M(w), ωλU+2

w

)
and H2

(
M(H, π)et

L
,Dλ

)
have slope ≤ h

decompositions with respect to the U operator.

Remark 7.2.1. Note that both H0
(
M(w), ωλU+2

w

)≤h
and H1

(
M(H, π)et

L
,DU

)≤h
are finitely

generated BU-modules. Since BU is a principal ideal domain, H0
(
M(w), ωλU+2

w

)≤h
(resp.

H1
(
M(H, π)et

L
,DU

)≤h
) is a direct sum of a finite free BU-submodule and a finite torsion. We

have:

(1) Since H0
(
M(w), ωλU+2

w

)
is an orthonormalizable BU-module, one can easily prove that

the torsion part of H0
(
M(w), ωλU+2

w

)≤h
is 0. Hence H0

(
M(w), ωλU+2

w

)≤h
is a finite free

BU-module.

(2) It is not known yet whether H1
(
M(H, π)et

L
,DU

)≤h
is a free BU-module. We denote by

H1
(
M(H, π)et

L
,DU

)≤h

tor
and H1

(
M(H, π)et

L
,DU

)≤h

tf
the torsion and torsion free part of

H1
(
M(H, π)et

L
,DU

)≤h
, respectively. Then we have an exact sequence

0 H1
(
M(H, π)et

L
,DU

)≤h

tor
H1

(
M(H, π)et

L
,DU

)≤h

H1
(
M(H, π)et

L
,DU

)≤h

tf
0,

which is GL and Hecke-equivariant. The above sequence is split as BU-modules but

not as GL-modules. Since H0
(
M(w), ωλU+2

w

)≤h
is free, the morphism

Ψ≤h
U : H

1
(
M(H, π)et

L
,DU

)≤h ⊗̂Cp(1) −→ H
0
(
M(w), ωλU+2

w

)≤h ⊗̂Cp
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factors through the morphism

H
1
(
M(H, π)et

L
,DU

)≤h

tf
⊗̂Cp(1) −→ H

0
(
M(w), ωλU+2

w

)≤h ⊗̂Cp

which is still denoted by Ψ≤h
U . Moreover, we have the following isomorphism

H
1
(
M(H, π)et

L
,DU

)≤h /
πλ H

1
(
M(H, π)et

L
,DU

)≤h

∼= H
1
(
M(H, π)et

L
,DU

)≤h

tf

/
πλ H

1
(
M(H, π)et

L
,DU

)≤h

tf

for all but finite weights λ in U, where πλ is a uniformizer at λ. Hence if we replace

H1
(
M(H, π)et

L
,DU

)≤h
by H1

(
M(H, π)et

L
,DU

)≤h

tf
, we can also prove our main theorem

without assuming that H1
(
M(H, π)et

L
,DU

)≤h
is a free BU-module.

Now we state our main theorem and the proof is left to the following section. Let

χ : GL := Gal(L/L) −→ O×
P

be the Lubin-Tate character of L and χuniv
V be the character defined by the following com-

position

GL
χ

O×
P

λV B×
V

(
BV⊗̂Cp

)×
.

Theorem 7.2.1. There exists a finite subset of weights Z ⊂ U(Cp) such that

(a) For each λ ∈ U(L)−Z, there exists a finite dimensional Cp-vector space S≤h
λ endowed

with trivial semilinear GL-action and Hecke operators, such that we have natural GL

and Hecke equivariant isomorphisms

H
1
(
M(H, π)et

L
,Dλ

)≤h ⊗̂LCp(1) ∼=
(
H

0
(
M(w), ωλ+2

w

)≤h ⊗̂LCp

)
⊕
(
S≤h
λ (λ+ 1)

)
,

where the first projection is Ψ≤h
λ .
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(b) For every wide open disk V ⊂ U defined over L satisfying V(Cp)∩Z = ∅, there exists a

finite free BV⊗̂LCp−module S≤h
V endowed with trivial semilinear GL-action and Hecke

operators, for which we have a GL and Hecke equivariant exact sequence

0 S≤h
V

(
χ · χuniv

V

)
H1

(
M(H, π)et

L
,DV

)≤h ⊗̂L Cp(1)

Ψ≤h
V

H0
(
M(w), ωλV+2

w

)≤h ⊗̂L Cp 0.

Moreover, for any such open disk V, there exists finite subset Z ′ ⊂ V with the property

that, for any wide open disk V′ ⊂ V with V′(Cp) ∩ Z ′ = ∅, we have a natural GL and

Hecke equivariant isomorphism

H
1
(
M(H, π)et

L
,Dλ

V′

)≤h ⊗̂LCp(1)

∼=
(
H

0
(
M(w), ωλ

V′+2
w

)≤h ⊗̂LCp

)
⊕
(
S≤h
V′ (χ · χuniv

V′ )
)
,

where the first projection is determined by Ψ≤h
V .

7.2.2 The proof of the main theorem

We will divide the proof of our main result, Theorem 7.2.1 stated in the previous section,

into several steps.

Lemma 7.2.1. Let U, λU, w be as before and λ ∈ U(L) ∩ Z satisfying λ > h − 2 + N . Let

πλ ∈ BU be a rigid analytic function on U which vanishes with order 1 at λ and nowhere

else on U. Then the specialization maps DU → Dλ and ωλU

w → ωλ
w induce the following exact

sequences:

H1
(
M(H, π)et

L
,DU

) ·πλ
H1

(
M(H, π)et

L
,DU

)
H1

(
M(H, π)et

L
,Dλ

)
0,
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and

0 H0
(
M(w), ωλU

w

)
H0

(
M(w), ωλU

w

)
H0

(
M(w), ωλ

w

)
0.

Proof. We start from the exact sequence:

0 DU
·πλ

DU Dλ 0,

which induces the following exact sequence of BU-modules

H1
(
M(H, π)et

L
,DU

) ·πλ
H1

(
M(H, π)et

L
,DU

)
H1

(
M(H, π)et

L
,Dλ

)
H2

(
M(H, π)et

L
,DU

) ·πλ
H2

(
M(H, π)et

L
,DU

)
H2

(
M(H, π)et

L
,Dλ

)
.

Then the following sequence induced by the slope decomposition

H1
(
M(H,π)et

L
,DU

)≤h ·πλ
H1

(
M(H,π)et

L
,DU

)≤h

H1
(
M(H,π)et

L
,Dλ

)≤h

H2
(
M(H,π)et

L
,DU

)≤h ·πλ
H2

(
M(H,π)et

L
,DU

)≤h

H2
(
M(H,π)et

L
,Dλ

)≤h
,

is also exact. Since λ ∈ U(L) ∩ Z and λ > h− 2 +N , by Corollary 5.2.2 we have

H
2
(
M(H, π)et

L
,Dλ

)≤h
= H

2
(
M(H, π)et

L
,Vλ

)≤h
.

But the latter is equal to 0 since

H
2
(
M(H, π)et

L
,Vλ

)
= 0

by the same argument as in the proof of Proposition 7.1.1. This implies that

πλ · H2
(
M(H, π)et

L
,DU

)≤h
= H

2
(
M(H, π)et

L
,DU

)≤h
.

By our choice of πλ, we deduce that

H
2
(
M(H, π)et

L
,DU

)≤h
= 0,
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which gives the first exact sequence in the statement of the lemma.

Moreover, the exact sequence

0 ωλU

w ωλU

w ωλ
w 0.

gives another exact sequence of BU-modules

0 H0
(
M(w), ωλU

w

)
H0

(
M(w), ωλU

w

)
H0

(
M(w), ωλ

w

)
H1

(
M(w), ωλU

w

)
.

Since M(w) is an affinoid subdomain and ωλU

w is a sheaf of BU-Banach modules, we can

deduce from [Andreatta et al., 2015a, Appendix] that

H
1
(
M(w), ωλU

w

)
= 0.

Thus the second exact sequence in the lemma follows.

Now let r, U, w and h be as in Section 7.2.1. Let λ ∈ U(L) ∩ Z, λ ≥ 0. Recall that we

have the following commutative diagram

H1
(
M(H, π)et

L
,DU

) ⊗̂Cp(1)
ΨU

H0
(
M(w), ωλU+2

w

) ⊗̂Cp

H1
(
M(H, π)et

L
,Dλ

) ⊗̂Cp(1)
Ψλ

H0
(
M(w), ωλ+2

w

) ⊗̂Cp

H1
(
M(H, π)et

L
,Vλ

) ⊗̂Cp(1)
Φλ

H0
(
M(H, π), ωλ+2

) ⊗̂Cp .

By our assumptions, both H1
(
M(H, π)et

L
,DU

)
and H0

(
M(w), ωλU+2

w

)
have slope ≤ h decom-

positions. Then the induced diagram

H1
(
M(H, π)et

L
,DU

)≤h ⊗̂Cp(1)
Ψ≤h

U

H0
(
M(w), ωλU+2

w

)≤h ⊗̂Cp

H1
(
M(H, π)et

L
,Dλ

)≤h ⊗̂Cp(1)

ψ

Ψ≤h
λ

H0
(
M(w), ωλ+2

w

)≤h ⊗̂Cp

H1
(
M(H, π)et

L
,Vλ

)≤h ⊗̂Cp(1)
Φ≤h

λ
H0

(
M(H, π), ωλ+2

)≤h ⊗̂Cp

φ

(7.4)

194



is also commutative, where ψ is the specialization map and φ is the restriction. Moreover, the

surjectivity of Φλ implies that the bottom map Φ≤h
λ in the above diagram is also surjective.

We have the following two cases:

(I) h < λ + 2 − N . Then [Kassaei, 2009, Theorem 5.1] and Proposition 5.2.3 imply that

both ψ and φ in the above diagram are isomorphisms. Then Ψ≤h
λ is surjective since

Φ≤h
λ is so.

(II) h ≥ λ + 2 −N . Consider the lower rectangle in diagram (7.4). The commutativity of

this rectangle implies that the image of Ψ≤h
λ is contained in the set of classical modular

forms. In general, Ψ≤h
λ is not surjective.

Now we let B := BU⊗̂L Cp, we have the following result.

Lemma 7.2.2. There exits a nonzero element b ∈ B such that b · Coker
(
Ψ≤h

U

)
= 0.

Proof. Let λ ∈ U(L) ∩ Z be an integer such that λ > h − 2 + N . Note that both

H1
(
M(H, π)et

L
,DU

)≤h ⊗̂Cp(1) and H0
(
M(w), ωλU+2

w

)≤h ⊗̂Cp are finite free B-modules. We

denote by n and m their ranks as B-modules, respectively. Then we can choose basis for

both such that the map Ψ≤h
U corresponds to a matrix

Ψ≤h
U = (bij) 1≤i≤n

1≤j≤m
∈ Mn×m(B).

The exact sequences obtained in Lemma 7.2.1 give the following identifications:

H
1
(
M(H, π)et

L
,Dλ

)≤h ⊗̂Cp(1)

∼=
(
H

1
(
M(H, π)et

L
,DU

)≤h ⊗̂Cp(1)
)/

πλ ·
(
H

1
(
M(H, π)et

L
,DU

)≤h ⊗̂Cp(1)
)
,
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and

H
0
(
M(w), ωλ+2

w

)≤h ⊗̂Cp

∼=
(
H

0
(
M(w), ωλU+2

w

)≤h ⊗̂Cp

)/
πλ ·

(
H

0
(
M(w), ωλU+2

w

)≤h ⊗̂Cp

)
,

where πλ is an element of B which vanishes with order 1 at λ and nowhere else in U as in

Lemma 7.2.1.

Hence the map Ψ≤h
λ corresponds to the matrix

Ψ≤h
λ = (bij(λ)) 1≤i≤n

1≤j≤m
.

Then our assumption on λ implies that n ≥ m and the rank of the matrix Ψ≤h
λ is exactly m.

This means there exists an m×m-minor of Ψ≤h
U = (bij), say A, such that

det (A(λ)) �= 0.

Here, if A = (aij)1≤i≤m
1≤j≤m

is a square matrix with entries in B, we denote by A(λ) the matrix

(aij(λ)) with entries in Cp.

Now let b := det(A). Then b is a nonzero element of B by the above argument. Moreover,

we have

b · Coker
(
Ψ≤h

U

)
= 0.

Let Z1 be the set of zeros of b, where b is as in the above lemma. Let V ⊂ U be a connected

affinoid subdomain defined over L such that

• V(Cp) ∩ Z1 = ∅ and

• there exists an integer λ ∈ V(L) with the property that λ > h− 2 + [FP : Qp].
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Let T≤h
V denote the kernel of the map

Ψ≤h
V : H

1
(
M(H, π)et

L
,DV

)≤h ⊗̂Cp(1) −→ H
0
(
M(w), ωλV+2

w

)≤h ⊗̂Cp,

where λV is the restriction of λU to V, which is also the universal character attached to V.

Moreover, DV is just the étale sheaf associated to the distribution DV = DU|V. By the above

notations, we have an exact sequence of (BV⊗̂Cp)-modules

0 T≤h
V H1

(
M(H, π)et

L
,DV

)≤h ⊗̂Cp(1)
Ψ≤h

V

H0
(
M(w), ωλV+2

w

)≤h ⊗̂Cp 0,

which is split (only as (BV⊗̂Cp)-modules here) since H0
(
M(w), ωλV+2

w

)≤h ⊗̂Cp is a finite

free (BV⊗̂Cp)-module. Moreover, it follows that T≤h
V is a finite projective (BV⊗̂Cp)-module

hence is free, since the latter is a principal ideal domain.

Now we let

χ : GL := Gal(L/L) −→ O×
P

be the Lubin-Tate character of L (refer to Remark 6.2.1) and χuniv
V be the character defined

by the following composition

GL
χ

O×
P

λV B×
V

(
BV⊗̂Cp

)×
.

Let S≤h
V := T≤h

V

(
χ−1(χuniv

V )−1
)
. This is a free (BV⊗̂Cp)-module of rank l = n − m with

continuous, semilinear action of GL. Let φV be the Sen operator attached to S≤h
V and K a

finite, Galois extension of L in L satisfying

(a) ŴK∞

(
S≤h
V

)
:=

(
S≤h
V

)HK

is a free (BV⊗̂LK̂∞)-module of rank l. Here HK is the kernel

of the cyclotomic character

χcyc : GK −→ Z×
p ;
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(b) there exists a (BV⊗̂LK̂∞)-basis {e1, e2, · · · , el} of ŴK∞

(
S≤h
V

)
such that

W∗ := (BV ⊗L K)e1 + · · · (BV ⊗L K)el

is stable under ΓK := GK/HK ;

(c) the action of γ, a topological generator of ΓK , on this basis is given by

γ(ei) = exp (log (χcyc(γ))φV) (ei),

for every 1 ≤ i ≤ l.

Let λ ∈ V(L) be an integer such that λ > h− 2 + [FP : Qp]. We have the following exact

sequence of finite free (BV⊗̂Cp)-modules, with GL and Hecke actions

0 −→ S≤h
V

−→ H
1
(
M(H, π)et

L
,DV

)≤h ⊗̂Cp(1)
(
χ−1(χuniv

V )−1
)

−→ H
0
(
M(w), ωλV+2

w

)≤h ⊗̂Cp

(
χ−1(χuniv

V )−1
)

−→ 0.

Specializing the above exact sequence at λ, i.e., tensoring with L over BV via the map

BV → L sending f �→ f(λ), we have a commutative diagram

0 0 0

S≤h
V S≤h

V S≤h
λ

H1
V H1

V H1
λ 0

0 H0
w,λV+2 H0

w,λV+2 H0
w,λ+2

0 0 0,
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where

H
1
V := H

1
(
M(H, π)et

L
,DV

)≤h ⊗̂Cp(1)
(
χ−1(χuniv

V )−1
)
,

H
1
λ := H

1
(
M(H, π)et

L
,Dλ

)≤h ⊗̂Cp (−λ) ,

H
0
w,λV+2 := H

0
(
M(w), ωλV+2

w

)≤h ⊗̂Cp

(
χ−1(χuniv

V )−1
)
,

H
0
w,λ+2 := H

0
(
M(w), ωλ+2

w

)≤h ⊗̂Cp (−λ− 1) ,

and the twist in the last equation is by the Lubin-Tate character. Then by Snake Lemma,

we have an exact sequence

S≤h
V −→ S≤h

V −→ S≤h
λ −→ 0,

which implies S≤h
λ
∼= S≤h

V

/
πλ · S≤h

V .

Moreover, since λ > h− 2 + [FP : Qp], by classicality, we have the following commutative

diagram:

0 0

S
≤h
λ H1

(
M(H,π), ω−λ

)≤h ⊗̂Cp

0 H1
(
M(H,π)et

L
,Dλ

)≤h

⊗̂Cp (−λ)

Ψ≤h

λ

∼
H1

(
M(H,π)et

L
,Vλ

)≤h

⊗̂Cp (−λ)

Φ≤h

λ

0

0 H0
(
M(w), ωλ+2

w

)≤h ⊗̂Cp (−λ− 1)
∼

H0
(
M(H,π), ωλ+2

)≤h ⊗̂Cp(−λ− 1) 0

0 0.

Then by Five Lemma we obtain

S≤h
λ = Ker

(
Ψ≤h

λ

) ∼= H
1
(
M(H, π), ω−λ

)≤h ⊗̂Cp

as GK-modules.
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The exact sequence

0 −→ πλ · S≤h
V −→ S≤h

V −→ S≤h
λ −→ 0

induces the following exact sequence

0 −→ ŴK∞

(
πλ · S≤h

V

)
−→ ŴK∞

(
S≤h
V

)
−→ ŴK∞

(
S≤h
λ

)
−→ H

1(HK , S
≤h
V ).

Since the extension L/K∞ is almost étale, we have

H
1(HK , S

≤h
V ) = 0.

Therefore, we have

ŴK∞

(
S≤h
λ

) ∼= ŴK∞

(
S≤h
V

)/
ŴK∞

(
πλ · S≤h

V

)
= ŴK∞

(
S≤h
V

)/(
πλ · ŴK∞

(
S≤h
V

))
,

where the last equality is true since πλ ∈ BV.

Now let φλ be the Sen operator attached to S≤h
λ . We denote by

(dij) ∈ Ml×l

(
BV ⊗L K̂∞

)
the matrix of φV with respect to the (BV⊗̂LK̂∞)-basis {e1, · · · , el} of ŴK∞

(
S≤h
V

)
as in the

assumption. Then the image of {e1, · · · , el} is a basis of ŴK∞

(
S≤h
λ

)
of which φλ has matrix

(dij(λ))1≤i≤l
1≤j≤l

.

Recall that we have the isomorphism

S≤h
λ
∼= H

1
(
M(H, π), ω−λ

)≤h ⊗̂Cp,

thus

ŴK∞

(
S≤h
λ

) ∼= H
1
(
M(H, π), ω−λ

)≤h ⊗̂LK̂∞.
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So we have φλ = 0, which implies that dij(λ) = 0 for all λ ∈ V(L) ∩ Z with λ > h− 2 +N ,

where n = [FP : Qp] (we have infinitely many such λ). Then we can deduce that φV(ei) = 0

hence γ fixes ei for all 1 ≤ i ≤ l, i.e., S≤h
V has trivial semilinear GK-action.

Finally, by étale descent, S≤h
V is a free (BV⊗̂Cp)-module of rank l with trivial GL-action.

Now we rewrite our exact sequence as follows

0 S≤h
V

(
χ · χuniv

V

)
H1

(
M(H, π)et

L
,DV

)≤h ⊗̂Cp(1)

Ψ≤h
V

H0
(
M(w), ωλV+2

w

)≤h ⊗̂Cp 0.

(7.5)

Let

H := Hom(BV⊗̂Cp),GL

(
H

0
(
M(w), ωλV+2

w

)≤h ⊗̂Cp, S
≤h
V

(
χ · χuniv

V

))
.

Then H is a finite free (BV⊗̂Cp)-module with continuous, semilinear action of GL. Further-

more, the extension class of the above exact sequence corresponds to a cohomology class in

H1 (GL,H). Let φ denote the Sen operator associated to H. Then by the argument in Sen

[1988], the cohomology group H1 (GL,H) is killed by c := det(φ) ∈ BV. Since c = det(φ) �= 0,

we have a split short exact sequence of GL-modules

0
(
S≤h
V

(
χ · χuniv

V

))
c

(
H1

(
M(H, π)et

L
,DV

)≤h ⊗̂Cp(1)
)
c

Ψ≤h
V

(
H0

(
M(w), ωλV+2

w

)≤h ⊗̂Cp

)
c

0.

Now let Z ′ ⊂ V be the set of zeros of c, we obtain our theorem.
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