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Abstract

Estimating cure-rate is a popular research subject in testing the reliability of treat-

ment for terminal diseases such as cancers and HIV. So far, the publications mainly

proposed estimation techniques based on parametric methods, with a few exceptions.

In this thesis, under case-1 interval censoring, we develop and propose two novel

non-parametric estimators that improve upon previously proposed estimation tech-

niques (Sen and Tan, 2008), using smoothing. We show our estimators are strongly

consistent. In addition, their asymptotic normality is studied and we applied proposed

estimator to estimate cure-rate on data collected for lung tumor in mice (Finkelstein

and Wolfe, 1985). Finally, the smoothing parameter for optimum estimation has been

determined by using Jackknife method.
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Notation and abbreviations

a.s. Almost surely

BCH Bounded cumulative hazard

CDF Cumulative distribution function

CLT Central limit theorem

iid Independent and identically distributed

MSE Mean square error

NPMLE Non-parametric maximum-likelihood estimator
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Chapter 1

Introduction and Preliminaries

Cure-rate plays an important role in determining reliability of treatment for terminal

diseases such as cancers, human immunodeficiency virus (HIV), etc and often needs

to be considered in analyzing medical data. However, there are some technical issues

left in analyzing of cure-rate such as censoring which refers to a subject who does not

experience the event during monitoring time, and we may never observe cure due to

the finite monitoring time. Estimating the probability of cure can help scientists to

shed light on currently unknown factors relating terminal diseases. In this thesis we

develop two estimators for cure-rate under case-1 interval censoring (Gu et al., 2011).

1.1 Survival Analysis

Survival function is the probability of surviving beyond some time point, x. Tradi-

tionally in survival analysis, it is assumed that every case of study is susceptible to

the event of interest and eventually experiences it (Maller and Zhou, 1996). Survival

function is an essential tool to work with medical data (Vij, 2014) and can be define
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as:

S(x) = P{X ≥ x} (1.1)

1.2 Cure-Rate

Cure-rate defined as the probability that an individual survives or is immune to a

terminal disease. In clinical trials, estimation of cure-rate becomes important when a

significant proportion of individuals is assumed not to experience the event of interest.

Cure-rate is usually defined by (Vij, 2014):

p
Δ
= P (X = ∞) = S(∞) (1.2)

where S and X are a survival function and time-to-event of interest, respectively.

There are two well known models that have been used to model cure rate: 1)

mixture model (Berkson and Gage, 1952) and 2) bounded cumulative hazard (BCH)

model (Tsodikov, 1998).

1.2.1 Mixture Model

Mixture model is a non-parametric two component (binary) model that is being used

to analyze cure-rate in clinical trails (Sen and Tan, 2008). In this model, population

is divided in to two groups. In the first group, probability of cure is equal to p but

the others are susceptible to the event and at some point will experience the event

with probability 1− p and proper survival function S0(t)

2
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S0(t) = Pr{X ≥ t|X < ∞}. (1.3)

where X is a non-negative random variable denoting the lifetime of an individual.

If F0 and Fp denote the cumulative distribution function (CDF) for uncured pa-

tients and whole population respectively, survival function can be calculated as follow

Sp(t) = 1− Fp(t) = p+ (1− p)(1− F0(t)) (1.4)

where

p = P{X = ∞} = limt→∞P{X > t} = 1− limt→∞Fp(t) (1.5)

and

Fp(t) = (1− p)F0(t) ⇔ F0(t) =
Fp(t)

1− p
= P{X � t | X < ∞}. (1.6)

This model has few drawbacks when it involves with covariates such that not being

able to have proportional hazard structure which is required in many asymptotic and

computational result.

1.2.2 Bounded Cumulative Hazard (BCH) Model

BCH Model is another general representation of an improper survival time distribu-

tion (i.e. survival function with probability of cure) (Tsodikov, 1998). The motivation

of proposing BCH model was biological application and drawback which is mentioned

regarding to mixture model(Chen et al., 1999). In this model, it has been assumed

that for an individual in a population, the number of cancer cells, which are still

active after first treatment, is N . Assuming N has a Poisson distribution with mean

3
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θ and the random time related to the ith cancer cell is Zi, i = 1, 2, · · · which are iid

with common distribution

F (t) = 1− S(t) (1.7)

also Zi ⊥ N .

Furthermore, the time of deteriorate of cancer can be determined by the random

variable

X = min{Zi, 0 ≤ i ≤ N} (1.8)

where P (Z0 = ∞) = 1 and Zi ⊥ N .

Therefore, the survival function for X and population can be derived as follows

Sp(t) = P (no cancer by time t)

= P{N = 0}+ P (Z1 > t, Z2 > t, · · · , Zn > t,N ≥ 1)

= P (−θ) +
∞∑
n=1

S(t)θk/k!e−θ

= exp(−θ + θS(t)) = exp(−θF (t))

(1.9)

since Sp(∞) = exp{−θ} > 0 is not a proper survival function (Chen et al., 1999).

Finally, we want to point out that both mixture and BCH model are equal in

non-parametric frame work to estimate cure-rate. However, the situation is different

when S0(x) is defined parametrically (Sen and Tan, 2008).

1.3 Censoring

Censoring is one of the analytical problems in modeling cure-rate. It corresponds to

cases that the information about exact survival-time is incomplete (Kleinbaum and

4
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Klein, 2006). The following common forms of censoring:

1) Right censoring occurs when a subject leaves the study or its information is

lost before the occurrence of the event interest or end of study which is illustrated in

Fig. 1.1.

Figure 1.1: Right censoring

2) Interval censoring is corresponds to the case when the event happened in an

interval of time but its exact time is not known. It is shown in Fig. 1.2.

Figure 1.2: Interval censoring (Kleinbaum and Klein, 2006)

5
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3) Case-1 interval censoring is a special case of interval censoring when the event

happened before or after the first follow up which is demonstrated in Fig. 1.3.

Figure 1.3: Case-1 interval censoring

In most medical research, It is not possible to monitor the patients continuously

over a long period. Therefore, status of event is only available at random inspection

times and the exact time of the event is unknown. This refers to case-1 interval cen-

soring where the event was observed before or after some specific inspection time. In

this thesis, we work on a cure-rate estimation method under case-1 interval censoring

using mixture model.

1.4 Non-Parametric Case-1 Interval Cure-rate Es-

timation For Censored Data

We now discuss the analysis of case-1 interval censored survival data without para-

metric assumptions about the form of the distribution. If Xi is time of the event of

interest such as HIV infection and Yi is time of a check-up. Assume Xi’s are inde-

pendent and identically distributed (iid) random variables with distribution function

F . Here Yi are censoring variables with iid distribution function G, so the ’current

6
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statue’ of ith individual under case-1 interval censoring is

(δi, Yi) where δi = I(Xi ≤ Yi) (1.10)

It has been shown that the non-parametric maximum likelihood for estimator F

can be calculated by solving (Groeneboom and Wellner, 1992)

max
F

L(F1, ..., Fn) subject to 0 ≤ F1 ≤ ... ≤ Fn ≤ 1, (1.11)

where

L(F1, ..., Fn) =
n∑

i=1

(δ[i] log(Fi) + (1− δ[i]) log(1− Fi)), (1.12)

and Fi = F (Y(i)), Y(i) is order-statistic for Yi, δ[i] is concomitant of Y(i). The solution

is given by a ”max-min formula”. (Groeneboom and Wellner, 1992).

F̂i = max
h≤i

min
k≥i

∑k
j=h δ[j]

k − h+ 1
(1.13)

Sen and Tan (2008) showed that nonparametric maximum-likelihood estimator

(NPMLE) of cure-rate in Eq. (1.13) is non-unique and inconsistent (Sen and Tan,

2008) by stating following theorems:

Theorem 1 The likelihood function for p is given by

Lc(p) = max0≤F1≤...≤Fn≤1−p L(F1, ..., Fn). Further,

Lc(p) = L(F̂1 ∧ (1− p), ..., F̂n ∧ (1− p)), (1.14)

7
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where ∧ is minimum operator and F̂i are given by Eq. (1.13). Proof has been provided

in (Sen and Tan, 2008). This theorem proves the inconsistency and non-uniqueness

the NPMLE of p as following:

1) Non-uniqueness of NPMLE: Lc(p) is nonincreasing in interval 0 ≤ p ≤ 1,

and

Lc(p̂) = sup
0≤p≤1

Lc(p) = L(F̂1, ..., F̂n) for any 0 ≤ p̂ ≤ (1− F̂n) (1.15)

Therefore, p̂ is unique if and only if

p̂ = (1− F̂n) = 0. (1.16)

2) Inconsistency of NPMLE: Based on Eq. (1.13), we have

F̂n = max
i≤n

∑n
j=i δ[j]

n− i+ 1
(1.17)

so that F̂n = 1 if and only if δ[n] = 1. Therefore, for 0 < p < 1 and any 0 < ε < p,

P{| F̂n − (1− p) |> ε} ≥ P{F̂n = 1} = P{δ[n] = 1}

= (1− p)E((F (Y(n)))) → (1− p)F (sup{y | G(y) = 1})
(1.18)

So, F̂n is not a consistent estimator of 1− p which is in contrast of random censoring

(Sen and Tan, 2008).

Sen and Tan proposed two novel estimators by modifying F̂n. Note that F̂n may

be written as

8
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F̂n = max
y≤Y(n)

∑n
i=1 δiI(Yi ≥ y)∑n
i=1 I(Yi ≥ y)

(1.19)

Their proposed estimators are:

1) Note that

p1n(x) =

n∑
i=1

δiI(Yi ≥ x)

n∑
i=1

I(Yi ≥ x)
→ (1− p)

∫∞
x

FdG∫∞
x

dG
as n → ∞ (1.20)

Thus we may choose p1n(xn), xn large, as an estimator for (1− p)

2) Motivated by Fn, we may propose an alternative estimator as

p2n(xn) := max0≤y≤xn p1n(y), (1.21)

which is a partial maximum of tail-averages.

Furthermore, They used cross validation technique to choose a proper cut-off

point. Finally, they provided limiting distribution of estimators based on extreme-

value theorem (Sen and Tan, 2008).

However, these estimators are sensitive to choose of xn, their convergence is very

slow. In this thesis, we extend their work and propose two consistent estimators based

on smoothing. Furthermore, their asymptotic properties have been investigated. Fi-

nally, smoothing parameter selection has been done by jackknife-based (leave-one-out)

cross validation.

9
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1.5 Smoothing

Smoothing creates a connection between non-parametric approach which does not

contains any assumptions and a parametric approach that makes strong assumptions.

Smoothing methods in combination with non parametric method can help to extract

more information from data in comparison to non parametric method per se. Also,

this method provides reasonable assumption of smoothness which makes analysis

flexible and robust. Furthermore, it clears important structure of data. Therefore,

it is better to involve non-parametric methods with some kind of approximation or

smoothing method. (Simonoff, 2012).

1.5.1 Poisson Smoothing

In 1996, Chaubey and Sen proposed to use Poisson smoothing with survival functions.

Their estimation technique solved issues which were existed in previously published

kernel smoothing scheme for estimating function with non-negative random variable

such as survival data. In summary, issues can be listed as 1) Positive mass out-

side support (Silverman, 1986) and 2) Failure to estimate discontinuity at boundary

(Chaubey et al., 2010). Alternatively, (Marron and Ruppert, 1994) and (Bagai and

Rao, 1995) proposed transformation method and replacing kernel function by non-

negative density function to deal with mentioned issues, respectively. However, it is

still interesting to find a method close to kernel smoothing not transforming data.

Also, (Bagai and Rao, 1995) method was not able to use all of the data.

Chaubey and Sen proposed an alternative formulation for kernel smoothing which

incorporated generalized Hille’s smoothing lemma (Chaubey and Sen, 1996; Chaubey

et al., 2010).

10
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Following lemma (Hilles’Lemma) (Feller, 1968) is the key of Chaubey and Sen’s

work.

Lemma 1.1 Let u be any bounded and continuous function and Gx,n, n = 1, 2, . . .

be a family of distribution with mean μn and variance h2
n(x), then we have as μ → x

and hn(x) → 0

ũ(x) =

∫ ∞

−∞
u(t)dGx,n(t) −→ u(x) (1.22)

The convergence is uniform in every sub interval in which hn(x) → 0 and u is uni-

formly continues.

This lemma can be adapted to replace u(x) by, e.g., an empirical distribution

function Fn(x) for the smooth estimator as follow

F̃n(x) =

∫ ∞

−∞
Fn(x)dGx,n(t) (1.23)

Strong convergence of the empirical distribution function translates to the strong

convergence of F̃n(x) which is stated in the following theorem.

Lemma 1.2 If h ≡ hn(x) → 0 for every fix x as n → ∞ we have

supx|F̃n(x)− F (x)| a.s−→ 0 (1.24)

as n → ∞
For their estimator, they proposed using following nonnegative array

{Wnk(t, y); 0 ≤ k ≤ n;n ≥ 1} where

Wnk(t, y) =
(ty)k/k!∑n
i=0(ty)

i/i!
(1.25)

11
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and
n∑

k=0

Wnk(t, y) = 1 ∀t, y ∈ R+ (1.26)

Assume {λn;n ≥ 1} is a sequence of positive numbers such that λn → ∞ and

n → ∞ almost surely (a.s.) but λn/n → 0 (a.s.). Selection of λn enables them to use

Hill theorem and propose a smooth estimator for survival function as (Chaubey and

Sen, 1996).

Ŝn(t) =
n∑

k=0

Wnk(t, λn)Sn(
k

λn

) (1.27)

They have shown that when n increases for all fixed t ∈ R+ Eq.(1.25) behaves

similar to e−tλn(tλn)
k(k!)−1 for k ≤ n. As a result, for large n Eq. (1.25) can be

approximated as a Poisson mixture of survival function with parameter tλn. Also,

because of the right tiltedness of Poisson distribution result in the smooth and mono-

tone estimator (Chaubey and Sen, 1996).

In next chapters we will propose two smooth estimations of cure-rate based on

motivation from Hills lemma. Also, their consistency analysis and asymptotic behav-

ior will be studied. Finally, we will calculate the optimum smoothing parameter by

simulation.

12



Chapter 2

Poisson Smooth Estimator of

Cure-Rate

In this chapter, we will propose two estimators for cure-rate via Poisson smoothing.

Afterward, we demonstrate the consistency and asymptotic normality of the estima-

tors.

2.1 Estimator 1.

This section demonstrates the basis the smooth estimation of Eq. (1.20) using

Poisson process characteristics and the Hille’s Lemma which was reviewed in chapter

one.

Assuming, we have a Poisson random variable Nt ∼ Poisson(t), t > 0 then

E(Nt

t
) = 1, therefore

E(
Nt

t
− 1)2 → 0 (2.1)

13
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since,

V ar(
Nt

t
) =

t

t2
=

1

t
→ 0 as t → ∞. (2.2)

Now consider Ntx ∼ Poisson(tx), t > 0, x ≥ 0 then, we have

Ntx

t

P−→ x as t → ∞. (2.3)

So, for any continuous function such as f :

f(
Ntx

t
) −→ f(x) (2.4)

and

E[f(
Ntx

t
)] =

∞∑
k=0

f(
k

t
)e−tx (tx)

k

k!
−→ f(x) (2.5)

Chaubey and Sen (1996) replaced f(k
t
) with empirical survival function to create

smooth estimation of survival function as

ˆ̄F (x) =
1

n

∞∑
k=0

n∑
j=1

I(Yj ≥ k

t
)
e−tx(tx)k

k!
(2.6)

Now for the smooth the estimation of cure-rate p1n in Eq. (1.20), We propose Poison

smoothing of numerator and denominator in Eq. (1.20) separately. The numerator of

first Sen and Tan cure-rate estimator, p1n, is equal to (Sen and Tan, 2008)

1

n

n∑
i=1

δiI(Yi ≥ x) (2.7)

14
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Therefore, the smooth version of Eq. (2.7) when tn is large enough is

N(tn) :=
1

n

∞∑
k=0

n∑
i=1

δiI(Yi ≥ k)e−tntkn/k! (2.8)

Similarly, for the denominator of p1n is equal to

1

n

n∑
i=1

I(Yi ≥ x) (2.9)

and its corresponding smooth version when tn is large enough is

D(tn) :=
1

n

∞∑
k=0

n∑
i=1

I(Yi ≥ k)e−tntkn/k! (2.10)

Therefore, we introduce our smooth cure-rate estimator as p3n as following

p3n =

∞∑
k=0

1
n
(

n∑
i=1

δiI(Yi ≥ k))e−tn tkn
k!

∞∑
k=0

1
n
(

n∑
i=1

I(Yi ≥ k))e−tn tkn
k!

=
N(tn)

D(tn)
, for large tn > 0 (2.11)

Our proposed estimator, in contrast to Chaubey and Sen (1996) estimator, does not

estimate a function at a point; our goal is to estimate cure-rate in the limit as tn → ∞.

Fig. 2.1 is a sample plot of Eq. (2.11). We assumed cure-rate is equal to 0.3

and generated time to the event and the check-up times using exp(0.4) and exp(0.2)

distribution functions, respectively. Fig. 2.1 shows that the new estimator has bet-

ter performance in comparison to cure-rate estimated by Eq. (1.20) and Eq. (1.21),

respectively.

The green, blue, red and black curves in figure 2.1 demonstrates assumed cure-

rate, p1n, p2n and p3n, respectively.

15
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Figure 2.1: Sample-plot of cure rate estimation versus time. The green, blue, red and
black curves are assumed cure-rate, pn1, pn2 and pn3, respectively. (F (y) = exp(0.4),
G(y) = exp(0.2), n = 500 and 1− p = 0.7)

The main problems that we are dealing with them for this chapter are the following

1. Prove the consistency of p3n.

2. Reach limiting distribution of p3n.

16
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2.1.1 Consistency of the 1st Estimator

In this section, we study the consistency of our proposed smooth estimator as follows

p3n
P−→ (1− p) as tn → ∞ and n → ∞ (2.12)

Definition 2.1: Let X be a random variable with cdf F (x, θ) where θ ∈ Ω. Let

X1, · · · , Xn be a sample from the distribution of X and let Tn denote a statistics.

Then, Tn is a consistent estimate of θ if

Tn
P−→ θ (2.13)

Pθ(|Tn − θ| > ε) −→ 0 as n → ∞ for all ε > 0 (2.14)

Sufficient condition of consistency: Suppose that Tn is an estimator for θ. If

1) bias(Tn) → 0 as n → ∞

2) var(Tn) → 0 as n → ∞
(2.15)

then Tn is a consistent estimator for θ (Hogg, 2012).

We can apply the result of definition 2.1 on Eq. (2.11) to prove the consistency of

the proposed cure-rate smooth estimator, specifically

p3n =

1
n

∞∑
k=0

(
n∑

i=1

δiI(Yi ≥ k))e−tn tkn
k!

1
n

∞∑
k=0

(
n∑

i=1

I(Yi ≥ k))e−tn tkn
k!

−→ 1− p (2.16)

when tn approaching to ∞.
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Proving consistency by finding the variance of Eq. (2.11) is quite challenging since

it is a fraction. In this thesis, in order to overcome this difficulty, we will use the

result of Eq. (2.15) separately for numerator and denominator of p3n, via telescoping.

Let

N(tn) =
1

n

∞∑
k=0

(
n∑

i=1

δiI(Yi ≥ k))e−tn
tkn
k!

(2.17)

and

D(tn) =
1

n

∞∑
k=0

(
n∑

i=1

I(Yi ≥ k))e−tn
tkn
k!
. (2.18)

Based on definition 2.1, first, we need to prove that the bias of estimator

P3n(t) = N(tn)/D(tn) goes to zero for large tn. Expectation of N(tn) can be cal-

culated as

n(tn) = E(N(tn)) = E

( ∞∑
k=0

δ1I(Y1 ≥ k)e−tn
tkn
k!

)

=
∞∑
k=0

E (δ1I(Y1 ≥ k)) e−tn
tkn
k!

(2.19)

where

δ1 = I(X1 ≤ Y1) =

⎧⎪⎪⎨
⎪⎪⎩
1 if (X1 ≤ Y1)

0 if otherwise

and

E(δ1I(Y1 ≥ k)) = P ((X1 ≤ Y1), (Y1 ≥ k))

=

∫ ∞

0

P (X ≤ y, y ≥ k)P (Y = y)dy

= (1− p)

∫ ∞

k

F (y)dG(y)

(2.20)

Therefore,

n(tn) = (1− p)
∞∑
k=0

∫ ∞

k

F (y)dG(y)
e−tntkn
k!

(2.21)
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Similarly

d(tn) = E(D(tn)) =
∞∑
k=0

E(I(Y1 ≥ k)) =
∞∑
k=0

P (Y ≥ k) =
∞∑
k=0

∫ ∞

k

dG(y)
e−tntkn
k!

(2.22)

Therefore, the bias term is;

Bias =
n(tn)

d(tn)
− (1− p) (2.23)

Following Lemma is used to prove

bias(p3n) → 0 as tn → ∞ (2.24)

which is necessary for consistency of estimator.

Lemma 2.1: If G(.) is absolutely continuous with density g(.), then

n(tn)

d(tn)
→ 1− p if tn → ∞ (2.25)

Proof:

E(N(tn))

E(D(tn))
=

(1− p)
∞∑
k=0

∫∞
k

F(y) dG(y)e−tn tkn
k!

∞∑
k=0

∫∞
k

dG(y)e−tn tkn
k!

(2.26)

let

ak =

∫ ∞

k

F(y) dG(y)

bk =

∫ ∞

k

dG(y)

(2.27)
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it can be seen that when k → ∞,

ak → 0 and bk → 0 (2.28)

Using L’Hopital rule when k → ∞

lim
k→∞

ak
bk

= lim
k→∞

∂
∂k

∫∞
k

F(y) dG(y)
∂
∂k

∫∞
k

dG(y)
=

−F (k)g(k)

−g(k)
= 1 (2.29)

Therefor, the limit of n(tn)/d(tn) when tn → ∞ can be calculated as follow

lim
tn→∞

n(tn)

d(tn)
= lim

tn→∞
(1− p)

∑∞
k=0

akt
k
n

k!∑∞
k=0

bktkn
k!

(2.30)

Using repeated L’Hopital rule

lim
tn→∞

n(tn)

d(tn)
= lim

tn→∞
(1− p)

∑∞
k=0 ak+m

tkn
k!∑∞

k=0 bk+m
tkn
k!

(2.31)

based on Eq. (2.29) and for all k ≥ 0 and given ε > 0, for large m

∣∣∣∣1− ak+m

bk+m

∣∣∣∣ < ε (2.32)

It follows that

∣∣∣∣∣(1− p)− (1− p)
∑∞

k=0 ak+m
tk

k!∑∞
k=0 bk+m

tk

k!

∣∣∣∣∣ =
∣∣∣∣∣
(1− p)

∑∞
k=0(1− ak+m

bk+m
)bk+m

tk

k!∑∞
k=0 bk+m

tk

k!

∣∣∣∣∣ < (1− p)ε

(2.33)
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Therefore, bias goes to zero when tn → ∞ based on Lemma 2.1.

bias(p3n) =
n(tn)

d(tn)
− (1− p) → 0. (2.34)

Now, to prove consistency of estimator, we only need to show that

N(tn)

D(tn)
− n(tn)

d(tn)

p−→ 0 as n → ∞ (2.35)

Using telescopic method

p3n − (1− p) =
N(tn)

D(tn)
− n(tn)

d(tn)
+

n(tn)

d(tn)
− (1− p)

=
N(tn)

D(tn)
− n(tn)

d(tn)

D(tn)− d(tn)

D(tn)
+

n(tn)

d(tn)
− (1− p)

=

N(tn)−n(tn)
d(tn)

D(tn)
d(tn)

− n(tn)

d(tn)

D(tn)−d(tn)
d(tn)

D(tn)n(tn)
d(tn)

+
n(tn)

d(tn)
− (1− p)

=
n(tn)

d(tn)

N(tn)−n(tn)
n(tn)

D(tn)
d(tn)

− n(tn)

d(tn)

D(tn)−d(tn)
d(tn)

D(tn)
d(tn)

+
n(tn)

d(tn)
− (1− p)

(2.36)

Lemma 2.2: Suppose nd(tn) → ∞ as n → ∞

a) D(tn)
d(tn)

p−→ 1 when, n → ∞

b) Nn(t)
n(t)

p−→ 1 when, n → ∞
Proof:
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a) Based on Eq. (2.22)

D(tn)

d(tn)
=

1
n

∞∑
k=0

(
n∑

i=1

I(Yi ≥ k))e−tn tkn
k!

∞∑
k=0

e−tn tkn
k!

∫∞
k

dG(y)
(2.37)

obviously,

E(
D(tn)

d(tn)
) = 1 (2.38)

Further

var(
D(tn)

d(tn)
) =

E(D(tn)
2)− E(D(tn))

2

d2(tn)

=
1

n
·

∞∑
k=0

∞∑
l=0

P (Y ≥ k ∨ l) e
−2tn tk+l

n

k!l!
− d2(tn)

d2(tn)

=
1

nd(tn)

⎛
⎜⎜⎝

∞∑
k=0

∞∑
l=0

Ḡ(k ∨ l) e
−2tn tk+l

n

k!l!

d(tn)
− d(tn)

⎞
⎟⎟⎠

(2.39)

where

Ḡ(k) =

∫ ∞

k

dG(y). (2.40)

Note that

1) d(t) = d(tn) → 0 if tn → ∞

2) nd(t) = nd(tn) → ∞ , by our assumption

Also, we know that Ḡ is a decreasing function, therefore

Ḡ(k ∨ l) ≤ Ḡ(k) (2.41)
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and ∞∑
k=0

∞∑
l=0

Ḡ(k ∨ l) e
−2tn tk+l

n

k!l!

∞∑
k=0

Ḡ(k) t
k
n

k!

≤ 1. (2.42)

We have

var(
D(tn)

d(tn)
) → 0 (2.43)

as n → ∞ and tn → ∞.

b) Based on Eq. (2.19), we have

N(tn)

n(tn)
=

1
n

∞∑
k=0

(
n∑

i=1

δiI(Yi ≥ k))e−tn tkn
k!

∞∑
k=0

e−tn tkn
k!

∫∞
k
(1− p)F (y)dG(y)

(2.44)

Again,

E(
N(tn)

n(tn)
) → 1 (2.45)

and

var(
N(tn)

n(tn)
) =

E(N(tn)
2)− E(N(tn))

2

n2(tn)

=

1
n

(
(1− p)

∞∑
k=0

∞∑
l=0

e−2tn tk+l
n

k!l!

∫∞
max(k,l)

F(y) dG(y)− n2(tn)

)
n2(tn)

=
1

n · n(t)

⎛
⎜⎜⎝
(1− p)

∞∑
k=0

∞∑
l=0

e−2tn tk+l
n

k!l!

∫∞
max(k,l)

F(y) dG(y)

n(tn)
− n(tn)

⎞
⎟⎟⎠

(2.46)
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Again using

1) d(t) = d(tn) → 0 if tn → ∞

2) nd(t) = nd(tn) → ∞

Also, we know that Ḡ and
∫∞
0

FdG are decreasing functions, therefore

∞∑
k=0

∞∑
l=0

e−2tn tk+l
n

k!l!
(1− p)

∫∞
max(k,l)

F(y) dG(y)

∞∑
k=0

Ḡ(k) e
−ttkn
k!

≤ 1. (2.47)

We have

var(
N(tn)

n(tn)
) → 0. (2.48)

as n → ∞ and tn → ∞. As a result, based on Lemma 2.1 and Lemma 2.2, it can be

shown that

p3n
p−→ 1− p (2.49)

Therefore, based on Eqs (2.49) and (2.35) p3n is a consistence estimator.

Example 2.1: If Ḡ(k) corresponds to the exponential distribution with parameter

k

Ḡ(k) = e−k, (2.50)

then, if tn → ∞, ne−tn → c, where 0 < c ≤ ∞, we have

nd(tn) = ne−tn

∞∑
k=0

Ḡ(k)
tkn
k!

= ne−tn

∞∑
k=0

e−k t
k
n

k!
= ne−tnetn/e → ∞ (2.51)
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Again if F (k) have the exponential distribution with parameter k

if Ḡ(k) = e−k and F (k) = (1− e−k), (2.52)

then, if tn → ∞ and, ne−tn → c, 0 < c ≤ ∞. we have

n · n(tn) = (1− p)ne−tn(1− p)

∫ ∞

k

F (k)dG(k)

= (1− p)ne−tn

∞∑
k=0

∫ ∞

k

(1− e−k)e−k t
k
n

k!

= (1− p)[ne−tnetn/e − n

2
e−tnetn/e

2

] → ∞

(2.53)

2.1.2 Limiting Distribution of 1st Estimator

In this section, we start with definition of limiting distribution. Afterward, we study

the limiting distribution for our new smooth estimator p3n and previously proposed

estimator p1n.

Definition: Consider a sequence of random variable X1, X2, . . . and corresponding

sequence of cdfs FX1 , FX2 , . . . so that for n = 1, 2, . . . we have FXn(x) = P [Xn ≤ x].

Suppose that there exists a cdf such that for all X at which FX is continuous

lim
n→∞

FXn(x) = FX(x) (2.54)

Then X1, X2, . . . converge in distribution to random variable X with cdf FX denoted

Xn
d−→ X (2.55)
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FX is called limiting distribution (Severini, 2005).

Degenerate distributions is a special case of limiting distribution. The se-

quence of random variables X1, . . . , Xn converge in distribution to constant c if

the limiting distribution of X1, . . . , Xn is degenerate at c, that is Xn
d−→ X and

P [X = c] = 1 Severini (2005), so that

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩
0 if (x < c)

1 if (x ≥ c)

(2.56)

In order to determine the limiting distribution, we need to use Slutsky theorem

and central limit theorem (CLT).

Theorem (2.1) (Slutsky Theorem): Suppose thatXn and Yn are random variables

and let c be a constant

Xn
d−→ X

Yn
p−→ c

(2.57)

then (Hogg, 2012)

Xn + Yn
d−→ X + c

Yn · An
d−→ cX

Xn/Yn
d−→ X/c provided c �= 0

(2.58)

Theorem 2.2 (Central Limit Theorem): If X1, · · · , Xn are iid with

E(X2
1 ) < ∞ then

√
n(

1

n

n∑
i=1

Xi − E(X1)) (2.59)
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has Normal(0, σ2 ≡ var(X1)) limiting distribution. Equivalently

(
∑n

i=1 Xi − nE(X1))√
nσ

P−→ N(0, 1) (2.60)

We shall also need;

Theorem 2.3(Dominated Converge Theorem): If Xn, n ≥ 1, is a sequence of

random variable such that Xn
p−→ X and |Xn| ≤ Y for some Y

E|Y | < ∞, then E|Xn −X| → 0 as n → ∞ (2.61)

Asymptotic behavior of p1n

Sen and Tan (2008) used asymptotic theory of sample extremes to obtain limiting

distribution of

p1n(xn) =

∑n
j=1 δjI(Yj ≥ xn)∑n
j=1 I(Yj ≥ xn)

(2.62)

They defined

Z1n =

√∑n
j=1 I(Yj ≥ xn)(p1n(xn)− (1− p))√

p(1− p)
. (2.63)

and showed that if nḠ(xn) → ∞ and xn → ∞,

lim
n→∞

Z1n = N(0, 1). (2.64)

Here we have proposed another method for calculating limiting distribution of p1n

which can be easily modified to calculate limiting distribution for p3n. Lets start by

considering
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p1n(xn)−
(1− p)

∫∞
xn

FdG(y)∫∞
xn

dG(y)
=

1
n

∑n
j=1 δjI(Yj ≥ xn)

1
n

∑n
j=1 I(Yj ≥ xn)

− (1− p)
∫∞
xn

F (y)dG(y)∫∞
xn

dG(y)

= Z1
1n −

(1− p)
∫∞
xn

F (y)dG(y)∫∞
xn

dG(y)
· Z2

1n

(2.65)

where

Z1
1n =

1
n

∑n
j=1 δjI(Yj ≥ xn)− (1− p)

∫∞
xn

F (y)dG(y)
1
n

∑n
j=1 I(Yj ≥ xn)

(2.66)

and

Z2
1n =

1
n

∑n
j=1 I(Yj ≥ xn)−

∫∞
xn

dG(y)
1
n

∑n
j=1 I(Yj ≥ xn)

. (2.67)

The bivariate limiting distribution can be calculated as follow. For Z1
1n we have

Z1
1n =

1/Ḡ(xn)

1/Ḡ(xn)
·

1
n

∑n
j=1 δjI(Yj ≥ xn)− (1− p)

∫∞
xn

F (y)dG(y)
1
n

∑n
j=1 I(Yj ≥ xn)

=
Z11

1n − Z12
1n

Z13
1n

(2.68)

where

Z11
1n =

1
n

∑n
j=1 δjI(Yj ≥ xn)

Ḡ(xn)
(2.69)

Z12
1n =

(1− p)
∫∞
xn

F (y)dG(y)

Ḡ(xn)
(2.70)

Z13
1n =

1
n

∑n
j=1 I(Yj ≥ xn)

Ḡ(xn)
(2.71)

Ḡ(xn) =

∫ ∞

xn

dG(y). (2.72)
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For limiting distribution, first we show that if xn → ∞ and nḠ(xn) → ∞

1) lim
xn→∞

Z12
1n = 1− p

2) lim
xn→∞

Z13
1n = 1

(2.73)

Part one of Eq. (2.73) has been proved in Lemma 2.1. For the second part based on

result of consistency, we have

E(
1
n

∑n
i=1 I(Yj ≥ xn)

Ḡ(xn)
)− 1 = 0 (2.74)

and

var(
1
n

∑n
i=1 I(Yj ≥ xn)

Ḡ(xn)
) =

Ḡ(xn)(1− Ḡ(xn))

nḠ(xn)2
→ 0 (2.75)

when xn → ∞ and n.Ḡ(xn) → ∞, So, we have

lim
xn→∞

Z13
1n = lim

xn→∞

1
n

∑n
i=1 I(Yj ≥ xn)

Ḡ(xn)
= 1 (2.76)

Therefore

var(Z11
1n) = var(

1
n

∑n
j=1 δjI(Yj ≥ xn)

Ḡ(xn)
)

=
1

n · Ḡ2(xn)
· ((1− p)

∫ ∞

xn

F (y)dG(y))(1− (1− p)

∫ ∞

xn

F (y)dG(y))

=
1

n · Ḡ(xn)

(1− p)
∫∞
xn

F (y)dG(y)

Ḡ(xn)
· (1− (1− p)

∫ ∞

xn

F (y)dG(y))

(2.77)

We chose rn =
√
n · Ḡ(xn) as a normalizing constant and based on CLT theorem, we

have
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lim
xn→∞

√
nḠ(xn) · Z1

1n = N(0, 1− p) (2.78)

Similarly, the limiting distribution for Z2
1n in Eg. 2.67 can be calculated as

Z2
1n =

1/Ḡ(xn)

1/Ḡ(xn)
·

1
n

∑n
j=1 I(Yj ≥ xn)− (1− p)

∫∞
xn

F (y)dG(y)
1
n

∑n
j=1 I(Yj ≥ xn)

=
Z21

1n − Z22
1n

Z23
1n

(2.79)

where

Z21
1n =

1
n

∑n
j=1 I(Yj ≥ xn)

Ḡ(xn)
(2.80)

Z22
1n =

(1− p)
∫∞
xn

F (y)dG(y)

Ḡ(xn)
(2.81)

Z23
1n =

1
n

∑n
j=1 I(Yj ≥ xn)

Ḡ(xn)
(2.82)

Therefore

var(Z2
1n) = var(·

1
n

∑n
j=1 I(Yj ≥ xn)

Ḡ(xn)
)

=
1

n · Ḡ2(xn)
· (Ḡ(xn)(1− Ḡ(xn)))

=
1

n · Ḡ(xn)
· (1− Ḡ(xn))

(2.83)

We chose rn =
√
n · Ḡ(xn) as a normalizing constant and based on CLT theorem, we

have

lim
xn→∞

√
nḠ(xn) · Z2

1n = N(0, 1) (2.84)
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Finally,

cov(Z22
1n, Z

11
1n) =

(1− p)

nḠ(xn)
cov

(
n∑

j=1

δjI(Yj ≥ xn),
n∑

j=1

I(Yj ≥ xn)

)

=
1

nḠ(xn)
{(1− p)

∫ ∞

xn

F (y)dG(y)− (1− p)Ḡ(xn)

∫ ∞

xn

F (y)dG(y)}

=
(1− p)

∫∞
xn

F (y)dG(y)

nḠ(xn)
{1− Ḡ(xn)}

(2.85)

If we use normalizing constant as rn =
√

n · Ḡ(xn) for Z
1
1n and Z2

1n, the normalized

limiting covariance will be equal to

lim
xn→∞

nḠ(xn) · cov(Z1
1n, Z

2
1n) = (1− p) (2.86)

As a result, the limiting distribution of
√

nḠ(xn)(Z
1
1n − (1 − p)Z2

1n) is equal to

N(0, ((1− p) + (1− p)2 − 2(1− p)2) = p(1− p)). Since

√
nḠ(xn)

⎡
⎢⎣Z

1
1n

Z2
1n

⎤
⎥⎦ →

⎛
⎜⎝
⎡
⎢⎣0
0

⎤
⎥⎦ ,

⎡
⎢⎣1− p 1− p

1− p 1

⎤
⎥⎦
⎞
⎟⎠ (2.87)

provided xn → ∞, nḠ(xn) → ∞

Asymptotic behavior of p3n

In this section, we derive the limiting distribution of p3n by following the same ap-

proach which was p1n.
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Lets start by considering

p3n−n(tn)

d(tn)
=

∞∑
k=0

1
n
(

n∑
i=1

δiI(Yi ≥ k))e−tn tkn
k!

∞∑
k=0

1
n
(

n∑
i=1

I(Yi ≥ k))e−tn tkn
k!

− (1− p)
∑∞

k=0

∫∞
k=0

F (y)dG(y) e
−tn tk

k!∑∞
k=0

∫∞
k=0

dG(y) e
−tn tkn
k!

=
N(tn)− n(tn)

D(tn)
− n(tn)

d(tn)
· D(tn)− d(tn)

D(tn)

= Z1
3n −

n(tn)

d(tn)
Z2

3n

(2.88)

where

N(tn) =
1

n

∞∑
k=0

(
n∑

i=1

δiI(Yi ≥ k))e−tn
tkn
k!

(2.89)

D(tn) =
1

n

∞∑
k=0

(
n∑

i=1

I(Yi ≥ k))e−tn
tkn
k!

(2.90)

n(tn) = (1− p)
∞∑
k=0

∫ ∞

k=0

F (y)dG(y)
e−tntkn
k!

(2.91)

d(tn) =
∞∑
k=0

∫ ∞

k=0

dG(y)
e−tntkn
k!

(2.92)

and

Z1
3n =

N(tn)− n(tn)

D(tn)
(2.93)

Z2
3n =

n(tn)

d(tn)
· D(tn)− d(tn)

D(tn)
(2.94)

The bivariate limiting distribution can be calculated as follow. For Z1
3n we have
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Z1
3n =

1/d(tn)

1/d(tn)

N(tn)− n(tn)

D(tn)
=

Z11
3n − Z12

3n

Z13
3n

(2.95)

where

Z11
3n =

N(tn)

d(tn)
(2.96)

Z12
3n =

n(tn)

d(tn)
(2.97)

Z13
3n =

D(tn)

d(tn)
(2.98)

similar to previous section and based on Lemma 2.1 and 2.2

1) lim
tn→∞

Z12
3n = 1− p

2) lim
tn→∞

Z13
3n = 1

3) lim
tn→∞

n(tn) = 0

4) lim
tn→∞

d(tn) = 0

(2.99)

Next

var(
√
nd(tn)Z

1
3n) =

∑∞
k=0

∑∞
l=0 E(δI(Y ≥ k ∨ l)e−tn tkn

k!
e−tn tln

l!
− n(tn)

2

d(tn)

=
E[(1− p)

∫
M1(tn)∨M2(tn)

F (y)dG(y)]

E[Ḡ(M1(tn))]
− n(tn)

d(tn)
· n(tn)

(2.100)

where M1(tn) and M2(tn) are iid Poisson random variable with mean t. Therefore,

lim
tn→∞

var(
√

nd(tn)Z
1
3n) = lim

t→∞

E[(1− p)
∫
M1(tn)∨M2(tn)

F (y)dG(y)]

E[Ḡ(M1(tn))]
(2.101)

33



M.Sc. Thesis - Mehrnoosh Malekiha Concordia - Mathematics & Statistics

Next, the limiting distribution for Z2
3n can be calculated as follow

Z2
3n =

1/d(tn)

1/d(tn)
· n(tn)
d(tn)

· D(tn)− d(tn)

D(tn)
(2.102)

Similarly to Z1
3n, If we we define

Z22
3n =

D(tn)

d(tn)
(2.103)

Z21
3n =

n(tn)

d(tn)
(2.104)

Z23
3n =

D(tn)

d(tn)
(2.105)

The limiting variance of Z2
3n, with the normalizing constant rn =

√
nd(tn), is as

following;

lim
tn→∞

var(
√
ndtZ

2
3n) =

∑∞
k=0

∑∞
l=0 E(I(Y ≥ k ∨ l)e−tn tkn

k!
e−tn tln

l!
− d(tn)

2

d(tn)

= lim
tn→∞

E[Ḡ(M1(tn) ∨M2(tn))]

E[Ḡ(M1(tn))]
− dt

= lim
tn→∞

E[Ḡ(M1(tn) ∨M2(tn))]

E[Ḡ(M1(tn))]

(2.106)

Finally, the limiting covariance between Z1
3n and Z2

3n with normalizing constant is as

below

lim
tn→∞

cov(
√
nd(tn)Z

1
3n,

√
nd(tn)Z

2
3n) = lim

tn→∞

E[(1− p)
∫
M1(tn)∨M2(tn)

F (y)dG(y)]

E[Ḡ(M1(tn))]
− nt

= lim
tn→∞

E[(1− p)
∫
M1(tn)∨M2(tn)

F (y)dG(y)]

E[Ḡ(M1(tn))]
(2.107)
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In the section (2.2), it has been shown based on Eq. (2.41) that

E[
∫
M1(tn)∨M2(tn)

F (y)dG(y)]

E[Ḡ(M1(tn))]
≤ 1 (2.108)

and

E[Ḡ(M1(tn) ∨M2(tn))

E[Ḡ(M1(tn))]
≤ 1 (2.109)

Currently, for exponential distribution we were not able to calculate the limit of

Eqs. (2.108) and (2.109) analytically and we only found the upper bound for them.

This issue will be addressed in future publication. At this point, we used simulation

technique to study Eqs. (2.108) and (2.109) to get an understanding how variance

of our estimator behave.

Fig. 2.2 demonstrates variance histogram for limiting distribution p3n when F and

G have exponential distribution with normalizing constant,
√

nd(tn). It can be seen

that in the all of the variance are almost zero (6.8e− 4) for 1000 different simulations

cases. As a result, we conclude that the limiting variance goes to zero for large enough

tn. In this case, we have a degenerate distribution where its mass is placed on a single

point.

In the next section, we assumed that F and G with Pareto distribution and we

were able to find an analytical solution for normalized limiting distribution of p3n.

We need to use following Lemmas and concept of Regularly Varying Function for

analysis.

Lemma 2.3: If M1(t) and M2(t) are independent Poisson with mean of t,

1. M1(t)
t

P−→ 1 as t → ∞.

2. M1(t)∨M2(t)
t

P−→ 1 as t → ∞.
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Figure 2.2: Histogram plot For variance of p3n when F and G are exponential distri-
bution.

3. E|M1(t)
t

− 1| → 0 converge in mean.

Proof:

1)

E(M(t)/t) = 1

var(M(t)/t) =
1

t
→ 0 when t → ∞

(2.110)

2)
M1(t) ∨M2(t)

t
=

M1(t) +M2(t)

2t
+

| M1(t)−M2(t) |
2t

→ 1

When t → ∞

Based on proof of part 1

(2.111)

Lemma 2.4: If M1(t) and M2(t)are independent Poisson with mean t, and Ḡ(t) = 1
tα
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for t > 0 and some α > 0 (i. e. , G is Pareto)

lim
t→∞

∫
M1(t)∨M2(t)

F (y)dG(y)

Ḡ(M1(t) ∨M2(t))
→ 1 (2.112)

Proof:

lim
t→∞

∫
M1(t)∨M2(t)

F (y)dG(y)

Ḡ(M1(t) ∨M2(t))
= lim

t→∞
−F (M1(t) ∨M1(t))g(M1(t) ∨M1(t))

−g(M1(t) ∨M1(t))

= 1

(2.113)

Then the variances of Z11
3n is calculated as following

lim
tn→∞

var(
√
nd(tn)Z

11
3n) = lim

t→∞

E[(1− p)
∫
M1(tn)∨M2(tn)

F (y)dG(y)]

E[Ḡ(M1(tn))]

= lim
t→∞

E[(1− p)
∫
M1(tn)∨M2(tn)

F (y)dG(y)]

E[Ḡ(M1(tn))]

= lim
t→∞

(1− p)E[Ḡ(M1(tn) ∨M2(tn)) · −F (M1(tn)∨M1(tn))g(M1(tn)∨M1(tn))
−g(M1(tn)∨M1(tn)

]

E(Ḡ(M1(tn)))
(2.114)

Using L’Hospital’s rule and Dominate Converge Theorem, and assuming Ḡ has a

Pareto distribution (i.e. Ḡ(y) = 1
yα

= y−α and α > 0),

lim
tn→∞

var(
√
nd(tn)Z

11
3n) = lim

t→∞

(1− p)E[ 1
((M1(tn)∨M2(tn)))α

]

E[ 1
(M1(tn))α

]
(2.115)

To find limiting distribution of Eq. (2.115), we need the following two Lemmas

based on it.

Lemma 2.5: If M1(t) and M2(t) are independent process with mean t,

1.
Mα

1 (t)

tα
P−→ 1 as t → ∞.
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2. (M1(t)∨M2(t))α

tα
P−→ 1 as t → ∞.

Lemma 2.6: If M1(t) is a Poisson variable with mean t,

E[
tα

Mα
1 (t)

]
P−→ 1 as t → ∞ (2.116)

Proof: We have

Mα(t)

tα
P−→ 1 ⇒ tα

Mα(t)

P−→ 1 as t → ∞ (2.117)

Based on dominated convergence theorem (Bartle, 2014)for proving Lemma, it is

enough to check that

max
t≥0

E(
tα

Mα(t)
)1+ε < ∞ for some ε > 0. (2.118)

We can show that maxt≥0 E( tk

Mk(t)
) < ∞ for any k ≥ 1 when k is integer.

E(
tk

Mk(t)
) =

∞∑
r=1

tk

rk
e−t · t

r

r!

=
∞∑
r=1

1

rk
e−t · t

r+k

r!

=
∞∑
r=1

(r + k)!

r!
· 1

rk
e−t · tr+k

(r + k)!

=
∑

(1 +
1

r
)(1 +

2

r
) · · · (1 + k

r
)e−t tr+k

(r + k)!

≤ (k + 1)!
∞∑
r=1

e−t tr+k

(r + k)!
= (k + 1)!(1−

k∑
S=1

e−t t
S

S!
) ≤ (k + 1)!

(2.119)
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So based on Lemma 2.5 and 2.6 we can conclude that;

lim
tn→∞

var(
√

nd(tn)Z
11
3n) = lim

t→∞

(1− p)E[ 1
((M1(tn)∨M2(tn)))α

]

E[ 1
(M1(tn))α

]
= 1− p (2.120)

The limiting variance of Z2
3n when assuming Ḡ has a Pareto distribution (i.e. Ḡ(y) =

1
yα

= y−α and α > 0),

lim
tn→∞

var(
√

nd(tn)Z
2
3n) = lim

t→∞
E[((M1(tn) ∨M2(tn)))

−α]

E[(M1(tn))−α]
= 1 (2.121)

Finally, the normalized limiting covariance between Z1
3n and Z2

3n

lim
tn→∞

cov(
√
nd(tn)Z

1
3n,

√
nd(tn)Z

2
3n) = lim

t→∞

(1− p)E[ 1
((M1(tn)∨M2(tn)))α

]

E[ 1
(M1(tn))α

]
= 1− p

(2.122)

Therefore, p3n assuming Ḡ has a Pareto distribution (i.e. Ḡ(y) = 1
yα

= y−α and

α > 0) has a limiting bivariate normal distribution as below;

√
nd(tn)

⎡
⎢⎣Z

1
3n

Z2
3n

⎤
⎥⎦ → N

⎛
⎜⎝
⎡
⎢⎣0
0

⎤
⎥⎦ ,

⎡
⎢⎣1− p 1− p

1− p 1

⎤
⎥⎦
⎞
⎟⎠ (2.123)
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2.2 Estimator 2.

As we have seen in the previous section, we were not able to calculate analytically

the limiting distribution for P3n when time of event and check ups (i.e. F and G) had

exponential distribution. To overcome this problem a new smooth estimator proposed

as follows

P4n =
1
n

∑n
i=1 δi

∑∞
k=1 I(Yi ≥ ln(k))e−tn tkn

k!

1
n

∑n
i=1

∑∞
k=1 I(Yi ≥ ln(k))e−tn tkn

k!

(2.124)

Figure 2.3: Sample-plot of cure rate estimation versus time. The green, blue, red and
black curves are assumed cure-rate, pn1, pn2 and pn4, respectively. (F (y) = exp(0.4),
G(y) = exp(0.1), n = 500 and 1− p = 0.7)

Fig. 2.3 demonstrates sample plot of cure rate estimation versus time for Eq. (2.124).

We assumed that cure-rate is equal to 0.7 and generated time to the event and the

check ups using exp(0.4) and exp(0.2) distribution functions, respectively. Fig. 2.3

shows that the new modified smooth estimator p4n estimator has better performance
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in comparison to cure-rate estimated by Eq. (1.20) and Eq.(1.21); however, it cover-

ages slower than p3n.

Regularly Varying Function

Roughly speaking, regularly varying functions are the function such that their asymp-

totic behavior is like power functions.

Definition: f(x) is of regular variation of order α (f ∈ RVα) −∞ ≤ α ≤ ∞ if

lim
t→∞

f(tx)

f(t)
= xαfor all x > 0 (2.125)

A function which is satisfying Eq. (2.125) with α = 0 in called slowly varying

function (De Haan and Ferreira, 2007).

Theorem 2.3: Suppose {Nn, n ≥ 1} is a sequence of nonnegative random variable

such that (Resnick, 2007)

Nn

n

P−→ 1 (2.126)

If a(.) ∈ RVρ and P{N > 0} = 1, therefore, we have;

a(Nn)

a(n)

P−→ 1ρ (2.127)

Lemma 2.5: If M1(t) and M2(t) are independent process with mean t,

1. ln(M1(t)
t

)
P−→ 0 & ln(M1(t)∨M2(t)

t
)

P−→ 0 t → ∞

2. lnM1(t)
ln t

=
ln(

M1(t)
t

)+ln t

ln t

P−→ 1 t → ∞
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3. E| lnM1(t)
ln t

− 1| → 0 converge in mean.

4. lnM1(t)∨M2(t)
ln t

=
ln(

M1(t)∨M2(t)
t

)+ln t

ln t

P−→ 1 t → ∞

They can be proved simply based on Lemma 2.3 proof.

Lemma 2.6: Assuming Ḡ(x) is of regular variation of order α (f ∈ RVα) −∞ ≤
α ≤ ∞.

lim
t→∞

Ḡ(tx)

Ḡ(t)
→ x−α (2.128)

therefor

lim
t→∞

Ḡ(ln tx)

Ḡ(ln t)
→ 1 (2.129)

Proof:

f(tx)

f(t)
=

Ḡ(ln t+ ln x))

Ḡ(ln t)
=

Ḡ(ln t(1 + lnx
ln t

)))

Ḡ(ln t)
→ 1 (2.130)

2.2.1 Consistency of 2nd Estimator

Similarly as what we proved for p3n, we will apply the result of definition 2.1, specif-

ically

p4n =
1/n

∑n
i=1 δi

∑∞
k=1 I(Yi ≥ ln k)e−tn tkn

k!

1/n
∑n

i=1

∑∞
k=1 I(Yi ≥ ln k)e−tn tkn

k!

→ 1− p (2.131)

when tn are approaching to ∞.

Therefore, we need to prove that

Bias =
nln
t

dlnt
− (1− p) → 0 (2.132)
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and

N ln
t

Dln
t

− nln
t

dlnt
→ 0 (2.133)

Where

N ln
t = 1/n

n∑
i=1

δi

∞∑
k=1

I(Yi ≥ ln k)e−tn
tkn
k!

(2.134)

and

Dln
t = 1/n

n∑
i=1

∞∑
k=1

I(Yi ≥ ln k)e−tn
tkn
k!

(2.135)

Therefore, by repeating the same procedure that we have done to calculate expecta-

tion p3n, we will have expectation of p4n

nln
t = (1− p)

∞∑
k=1

∫ ∞

ln k

F(y) dG(y)e−tn
tkn
k!

(2.136)

and

dlnt =
∞∑
k=1

∫ ∞

ln k

dG(y)e−tn
tkn
k!

(2.137)

As a result, based on lemma 2.1

lim
t→∞

nln
t

dlnt
− (1− p) = 0 (2.138)

Next, for calculating variance

p4n − (1− p) =
N ln

t

Dln
t

− nln
t

dlnt
+

nln
t

dlnt
− (1− p)

=
N ln

t − nln
t

Dln
t

− nln
t

dlnt

Dln
t − dlnt
Dln

t

+
nln
t

dlnt
− (1− p)

=
nln
t

dlnt

N ln
t −nln

t

nln t

Dln
t

dlnt

− nln
t

dln t

Dln
t −dlnt
dln t

Dln
t

dlnt

+
nln
t

dlnt
− (1− p)

(2.139)
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Therefore, the limiting variance of p4n based on Lemma 2.1 and 2.2,

p4n − nln
t

dlnt

P−→ 0 (2.140)

2.2.2 Limiting Distribution of 2nd Estimator

In this section we will derive limiting distribution of p4n by following the same ap-

proach which was p3n and p1n, but assuming that Ḡ(ln x) is RV−α for some α > 0

p4n − nln
t

dlnt
=

1/n
∑n

i=1 δi
∑∞

k=1 I(Yi ≥ ln k)e−tn tkn
k!

1/n
∑n

i=1

∑∞
k=1 I(Yi ≥ ln k)e−tn tkn

k!

−
(1− p)

∞∑
k=1

∫∞
ln k

F(y) dG(y)e−tn tkn
k!

∞∑
k=1

∫∞
ln k

dG(y)e−tn tkn
k!

=
N ln

t − nln
t

Dln
t

− nln
t

dlnt
· D

ln
t − dlnt

ln
t

= Z1
4n −

nln
t

dlnt
Z2

4n

(2.141)

Where

Z1
4n =

N ln
t − nln

t

Dln
t

(2.142)

and

Z2
4n =

Dln
t − dlnt
Dln

t

(2.143)

The limiting variance of Z1
4n and Z2

4n have been calculated similar to preview section

as follow

lim
tn→∞

var(
√
ndln tZ

1
4n) = lim

tn→∞

E[(1− p)
∫
ln(M1(tn)∨M2(tn))

F (y)dG(y)]

E[Ḡ(ln(M1(tn)))]
(2.144)
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and

lim
tn→∞

var(
√
ndlnt Z

2
4n) = lim

tn→∞
E[Ḡ ln(M1(tn) ∨M2(tn))]

E[Ḡ ln(M1(tn))]

= lim
tn→∞

E[(M1(tn) ∨M2(tn))
−α]

E[(M1(tn))−α]

(2.145)

by our assumption that Ḡ(ln x) is RV−α and using theorem 2.4.

Finally, the limiting covariance between Z1
4n and Z2

4n with normalizing constant is

as below

lim
tn→∞

cov(
√
ndlnt Z

1
4n,

√
ndlnt Z

2
4n) = lim

tn→∞

E[(1− p)
∫
ln(M1(tn)∨M2(tn))

F (y)dG(y)]

E[Ḡ(ln(M1(tn)))]
(2.146)

As a result, the limiting distribution of modified estimator is the same as limiting

distribution of p3n with Pareto distribution for Ḡ(y) that has been provided in section

2.1.2 which is as follow

√
ndlnt

⎡
⎢⎣Z

1
4n

Z2
4n

⎤
⎥⎦ → N

⎛
⎜⎝
⎡
⎢⎣0
0

⎤
⎥⎦ ,

⎡
⎢⎣1− p 1− p

1− p 1

⎤
⎥⎦
⎞
⎟⎠ (2.147)

example 2.2: if we had assumed Pareto distribution for Ḡ, it would not have

changed the fact that we could found the limiting distribution.

The calculation is as following;

Suppose Ḡ(y) = 1
yα

with Pareto distribution, so

Ḡ(ln(y)) =
1

ln(y)α
(2.148)

As a result Ḡ(ln(y)) is a regular variation of order 0, based on Lemma 2.6.

For finding the liming distribution, we will follow the same steps that we did for p3n,
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and p4n .

√
ndlnt

⎡
⎢⎣Z

1
4n

Z2
4n

⎤
⎥⎦ →

⎛
⎜⎝
⎡
⎢⎣0
0

⎤
⎥⎦ ,

⎡
⎢⎣1− p 1− p

1− p 1

⎤
⎥⎦
⎞
⎟⎠ (2.149)

if tn → ∞, dlnt → ∞ →.

Assume Ḡ(y) = e−αy has an exponential distribution, so Ḡ(ln(y)) = 1
yα
, so the re-

sult is the same as what we got for limiting distribution of p3n with Pareto distribution

in Eq. 2.123.

Remark: In the above we showed that

√
nd(tn)(p3n − n(tn)

d(tn)
) → N(0, p(1− p))

√
ndlnt (p4n −

nln
t

dlnt
) → N(0, p(1− p))

(2.150)

if tn → ∞ and nd(tn) → ∞ and ndlnt → ∞, respectively.

It follows that
√

nd(tn)(p3n− (1−p)) and
√

ndlnt (p4n− (1−p)) also have the same

limiting distributions, provided

√
nd(tn)(

n(tn)

d(tn)
− (1− p)) → N(0, p(1− p))

√
ndlnt (

nln
t

dlnt
− (1− p)) → N(0, p(1− p))

(2.151)

respectively.

At this time we do not have any simple sufficient conditions for 2.151.
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Chapter 3

Selecting Optimum Smoothing

Parameter

There are many techniques for finding the optimum value that we have the best

estimate at it such as least squared error and likelihood based cross-validation. In this

chapter we applied jackknife (i.e. leave one out) least-squared-error cross-validation

method to find the Poisson parameter with the optimum estimated cure-rate.

3.1 Variance-Bias Trade-Off

We have used mean-square-error (MSE) scheme and we decompose the error term of

our estimation to bias and variance. Then the trade-off between them helps us to

choose the optimal estimated value.

MSE(p3n) = E(p3n − (1− p))2 (3.1)
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where p3n and p are proposed estimator and cure-rate, respectively and decomposition

form of MSE to variance and bias is as follow

MSE(p3n) = var(p3n) + bias(p3n)
2 (3.2)

In this study, we have used Jackknife method to estimate the bias. Also, variance

can be calculated directly based on (Sen and Tan, 2008) as

var(p3n) =
p3n(tn)(1− p3n(tn))

nD(tn)
(3.3)

Example 3.1: If Ḡ(y) and F (y) has exponential distribution (i.e. F (y) = 1 − e−y

and Ḡ(y) = e−y). Therefor,

d(tn) = e−tn

∞∑
k=0

Ḡ(k)
tkn
k!

= e−tn

∞∑
k=0

e−k t
k
n

k!

= e−tnetn/e

(3.4)

and

n(tn) = (1− p)e−tn

∞∑
k=0

∫ ∞

k

F (y)Ḡ(k)
tkn
k!

= (1− p)e−tn

∞∑
k=0

∫ ∞

k

(1− e−k)e−k t
k
n

k!

= (1− p)[e−tnetn/e − 1/2e−tnetn/e
2

]

(3.5)
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As a result, the bias is

Bias =
(1− p)[e−tnetn/e − 1/2e−tnetn/e]

e−tnetn/e
− (1− p)

= (1− p)

[
−1/2e−tnetn/e

2

e−tnetn/e

] (3.6)

and the variance is

var(p3n) =
p(1− p)

nD(tn)
(3.7)

where

D(tn) = 1/n
n∑

i=1

∞∑
k=0

e−ke−tn
tkn
k!

= e−tn (3.8)

Therefor, the MSE(p3n(tn)) is as follows

MSE = (1− p)2
e−2tne−1(1−e−1)

4
+

p.(1− p)

ne−tn
(3.9)

and the optimum smoothing parameter, tn, can be obtain as follows

∂

∂tn
MSE = −(1− p)2

2
(e−1)(1− (e−1))e−2tn(e−1)(1−(e−1) +

p(1− p)

n
etn (3.10)

as a result, the optimum tn is

tn =
ln
(

n(1−p)
p

(e−1)(1− (e−1)
)

1 + 2(e−1)(1− (e−1)
(3.11)

3.2 Jackknife Estimation: Illustration

Jackknife procedure has been proposed by Quenouille (1949) for bias estimation.

Chaubey and Sen (2009) proposed Jackknife method to select smoothing parameter.
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In this section we also use Jackknife technique to estimate the bias. Basically, the

jackknife is a resampling technique where the bias is estimated by removing one of

n observations and aggregating the estimates of each n − 1 remaining observations.

Therefore, the bias can be calculated as

Bias(p3n(tn)) =
1

n

n∑
j=1

(
Nj(tn)

Dj(tn)
− N(tn)

D(tn)

)
(3.12)

where N(tn) and D(tn) are defined Eqs. (2.89) and (2.90) and

Nj(tn) =
1

n− 1

∞∑
k=0

(
n∑

i=1,i �=j

δiI(Yi ≥ k)

)
e−tn

tkn
k!

(3.13)

Dj(tn) =
1

n− 1

∞∑
k=0

(
n∑

i=1,i �=j

I(Yi ≥ k)

)
e−tn

tkn
k!

(3.14)

As a result, Based on Eq. (3.3) and (3.12), the MSE is given by

MSE(p3n(tn)) =
p3n(tn)(1− p3n(tn))

nD(tn)
+

(
1

n

n∑
j=1

(
Nj(tn)

Dj(tn)
− N(tn)

D(tn)
)

)2

(3.15)

Optimum tn corresponds to the time with minimum mean square error and analyti-

cal analysis of finding time with minimum mean square error was postponed to the

future work. Here, we numerical calculated the optimum tn for the example provided

in Chapter 2 where we generated observation using exponential distribution and as-

suming cure-rate equal 0.3. Figure 3.1 demonstrates square error versus time for p3n.

It can be seen that at 8.29, MSE is minimum and we found that estimated curate is

0.31.
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Figure 3.1: Sample mean square error for p3n versus tn, (F (y) = Exp(0.4), G(y) =
Exp(0.2), n = 500 and cure-rate = 0.3)

Similarly, the bias for p4n can be calculated as

Bias(p4n(tn)) =
1

n

n∑
j=1

(
N ln

j (tn)

Dln
j (tn)

− N ln(tn)

Dln(tn)

)
(3.16)

where N ln(tn) and Dln(tn) are defined Eqs. (2.134) and (2.135) and

N ln
j (tn) =

1

n− 1

∞∑
k=0

(
n∑

i=1,i �=j

δiI(Yi ≥ ln(k))

)
e−tn

tkn
k!

(3.17)

Dln
j (tn) =

1

n− 1

∞∑
k=0

(
n∑

i=1,i �=j

I(Yi ≥ ln(k))

)
e−tn

tkn
k!

(3.18)

As a result, the MSE for p4n is;

MSE(p4n(tn)) =
p4n(tn)(1− p4n(tn))

nDln(tn)
+

(
1

n

n∑
j=1

(
N ln

j (tn)

Dln
j (tn)

− N ln(tn)

Dln(tn)
)

)2

(3.19)
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Here, we numerical calculated the optimum tn for the example provided in Chapter

2 where we generated observation using exponential distribution and assuming cure-

rate equal 0.3. Figure 3.2 demonstrates square error versus time for p4n. It can be

seen that at 17.95, MSE is minimum and we found that estimated curate is 0.36.

Figure 3.2: Sample mean square error for p4n versus tn, (F (y) = Exp(0.4), G(y) =
Exp(0.2), n = 500 and cure-rate = 0.3)

3.3 Example with Real Data

In this section, we used our proposed estimators with data reported in (Finkelstein

and Wolfe, 1985). The data was related to development lung tumor in mice germ-free

and conventional environments in presence of carcinogens. Table 3.3 summarizes the

data.
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Necropsy finding Indivial age at death (days)
A. Convetional mice (96)

Lung tumor
381,477,485,515,539,563,565,582,603,616,624,650,651,656,659,672,
679,698,702,709,723,731,775,779,795,811,839

No lung tumor

45,198,215,217,257,262,266,371,431,447,454,459,475,479,484,500,
502,503,505,508,516,531,541,553,556,570,572,575,577,585,588,594,
600,601,608,614,616,632,632,638,642,642,642,644,644,647,647,653,
659,660,662,663,667,667,673,673,677,689,693,718,720,721,728,760,
762,773,777,815,886

B. Germfree mice (48)

Lung tumor
546,609,692,692,710,752,753,781,782,789,808,810,814,842,846,851,
871,873,876,888,888,890,894,896,911,913,914,914,916,921,921,926,
936,945,1008

No lung tumor 412,524,647,648,695,785,814,817,851,880,913,942,986

Table 3.1: Ages at death of untreated male mice dying with lung cancer

We determined optimal tn numerically. It can be seen that in Fig 3.3, at 496.8 and

627.57 MSE is minimum for conventional and germ-free environments respectively.

Figure 3.3: MSE of p3n for Mice in (a) conventional and (b) germ-free environments
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Figure 3.4 demonstrates results of various estimator versus time. It can be seen

that our new estimator p3n has fast convergence and much smoother than frivolously

proposed estimation techniques (i.e. p1n and p2n).

Figure 3.4: Cure-rate estimation for mice in (a) conventional and (b) germ-free envi-
ronments.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

Estimating cure-rate for diseases with high rate of mortality helps to develop and test

the current treatments. In this work, we proposed two new estimators of cure-rate

under case-1 interval censoring via Poisson smoothing. Our first estimator is Eq. 2.11

,p3n, is the smooth version of Eq. 1.20 ,p1n, which was proposed by (Sen and Tan,

2008). The non-smooth estimator is noisy and there was not a clear cut-off-point for

it. In comparison to p1n, p3n is less noisy and the choice of cut-of-point is easier.

The fraction structure of our estimators always makes the analysis challenging,

therefore, we decided to write estimator via telescoping which let us to treat denom-

inator and numerator separately. However,we found out that the estimator has a

degenerate limit distribution if we assume exponential distribution for time of check-

up and time to the event; after trying Pareto distribution for the time of check-up

and time to the event we obtain limiting normal distribution.

The form of Pareto distribution which is a case of regularly varying function
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motivate us to proposed another estimator Eq. 2.124, p4n by modifying p3n. The new

estimator based on regularly varying functions and Poisson distribution characteristic

has limiting normal distribution.

Finally, in the last chapter we found the smoothing parameter by jackknife tech-

nique and we test our estimator on real data.

4.2 Future Work

For future work we can extend our study to

1. Obtain conditions for Eq. 2.151

2. Obtain limiting distribution for p3n under exponential distribution for F and

G, possibly we can choose different normalization.

3. Obtain theoretical analysis of cross-validation function, i. e. , optimal order of

the smoothing parameter, tn.

4. Estimate based on

F̃n(x) =
N∑
k=0

Fn(
k

λn

)pk(λnx)

N :
N

λn

= X(n)

(4.1)
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Appendix A

appendix

1) Pareto distribution: If X is a random variable with Pareto distribution;

F̄ (x) = Pr(X > x) =

⎧⎪⎪⎨
⎪⎪⎩
(xm

x
)α if x ≥ xm

1 if x < xm

(A.1)

where xm is necessary positive, minimum value of x, and a is a positive parameter.

f(x) =

⎧⎪⎪⎨
⎪⎪⎩
(αx

α
m

xα ) if x ≥ xm

0 if x < xm

(A.2)
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