Login | Register

Deformations of Galois representations

Title:

Deformations of Galois representations

Lacroce, Clara (2016) Deformations of Galois representations. Masters thesis, Concordia University.

[img]
Preview
Text (application/pdf)
Lacroce_MSc_F2016.pdf - Accepted Version
Available under License Spectrum Terms of Access.
832kB

Abstract

In this thesis we study a paper by Barry Mazur ([11]) about deforming Galois representations. In particular we will prove that, if $\bar{\rho}: \Pi \rightarrow \mathrm{GL}_N(k)$ is an absolutely irreducible residual representation, a universal deformation ring $R=R(\Pi,k,\bar{\rho})$ and a universal deformation $\boldsymbol{\rho}$ of $\bar{\rho}$ to $R$ exist. This result is part of the proof of the modularity conjecture.
The modularity conjecture is of great importance since it states a connection between modular forms and elliptic curves over $\Q$, providing a great tool to study the arithmetic properties of those elliptic curves. Andrew Wiles studied the conjecture as a part of the more general problem of relating two-dimensional Galois representations and modular forms and used [11] to complete his construction.
To better understand the proof of Mazur, we will analyze in detail the paper of Michael Schlessinger ([13]). This article, which is focused on functors over Artin rings, provides a criterion for a functor to be pro-representable. Moreover, it gives the definition of a "hull", which is a weaker property than pro-representability.

Divisions:Concordia University > Faculty of Arts and Science > Mathematics and Statistics
Item Type:Thesis (Masters)
Authors:Lacroce, Clara
Institution:Concordia University
Degree Name:M. Sc.
Program:Mathematics
Date:August 2016
Thesis Supervisor(s):Iovita, Adrian
ID Code:981813
Deposited By: Clara Lacroce
Deposited On:08 Nov 2016 19:45
Last Modified:18 Jan 2018 17:53
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top