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ABSTRACT 

Automatic Hardhat Wearing Detection to Enhance Construction Site Safety 

Nehad Elsafty 

Careers in the construction field are involved with risks and engender a wide range 

of dangers to which workers and professionals are exposed on a daily basis. Numerous 

injuries and deaths are reported annually. Injuries and deaths have multiple negative 

financial, emotional, and psychological consequences on the affected persons and their 

families. In addition, these accidents increase the time and costs of construction projects. 

Therefore, construction site safety is a critical issue that needs to be monitored and 

controlled throughout the construction project timeline by both professionals and 

contractors. Hardhat wearing is one of the basic safety regulations at construction sites, to 

which all workers and visitors should adhere all of the time. This study proposes a new 

automated method to determine if workers and others present on construction sites are 

wearing hardhats (or not). This method could automatically create alarms for those workers 

who are not wearing hardhats. The method comprises the following steps. First, video 

frames captured by fixed cameras on the construction site are used for the detection of 

human bodies and hardhats. Next, the detected human bodies and hardhats are matched 

using their geometric and spatial relationships. Those human bodies without their matched 

hardhats are highlighted to bring them to the attention of the onsite safety inspectors. This 

method has been tested using real site videos. The safety alert’s precision and recall 

demonstrates its effectiveness and potential to enhance onsite safety monitoring. 



iv 

 

DEDICATION 

 

I dedicate this thesis to my beloved parents and husband for their endless love, 

affection, support and inspiration in every step of my life. 

  



v 

 

ACKNOWLEDGEMENTS 

 

I am deeply grateful to my supervisor Dr. Zhenhua Zhu for encouraging, 

motivating, and supporting me throughout my Master’s program. He has contributed to me 

personally, academically and professionally. Honestly, Dr Zhenhua Zhu has taught me how 

to conduct efficient research and will always remain an important person in my life who 

inspired and motivated me. Without his guidance and constant help, this thesis would have 

been impossible. I would like also to thank my thesis committee members. First, 

Dr.Moselhi, who helped me to understand the concepts of total project management, which 

helped me define the breadth of my study, and who guided me in terms of reading materials 

and research methods. Second, Dr. Amin Hamad, for his valuable support and his 

meaningful feedback that helped me to choose the research methodology and focus on my 

research topic. 

 

I would also like to thank my colleagues in the Project Management MSc program, 

Omira and Cashyar, for their support and for making our study group motivating and fun. 

.I owe a special gratitude to my extended family, specifically my parents; Sabah 

Abdulrahaman and Mohtamed El Safty for believing in my personal commitments and 

standing by me providing me with constant support, motivation, and love.  

 



vi 

 

 Finally, and the most precious to me, I would like to thank my nuclear family, 

specifically my husband, Hani Badran for his love and support, and my precious children, 

Remas, Moemen, and Mostafa. I dedicate this thesis to my extended and nuclear families. 

  



vii 

 

Table of Contents: 

 INTRODUCTION ........................................................................ 1 

 Problem Statement and Motivation ........................................................... 1 

 Research Goal and Objectives................................................................... 4 

 Proposed Methodology ............................................................................. 5 

 BACKGROUND .......................................................................... 7 

 The Current Practice.................................................................................. 7 

 Sensor-Based Onsite Safety Enhancement ............................................... 8 

 Vision-Based Onsite Safety Enhancement .............................................. 11 

 OBJECTIVE SCOPE AND METHODOLOGY ........................ 15 

 Introduction ............................................................................................. 15 

 Human Body Detection ........................................................................... 17 

 Hardhat Detection ................................................................................... 24 

 Matching Between the Detected Human Bodies and Hardhats .............. 29 



viii 

 

 IMPLEMENTATION AND RESULT ....................................... 34 

 Implementation........................................................................................ 34 

 Evaluate the Performance of the Method ................................................ 35 

 Performance of Human Body Detection ................................................. 37 

 Performance of Hardhat Detection .......................................................... 40 

 Safety alert for not wearing hardhats ...................................................... 43 

 Comparison ............................................................................................. 46 

 DISCUSSION AND EXPECTED CONTRIBUTION ............... 49 

 CONCLUSION ........................................................................... 53 

 

 

 

  



ix 

 

List of figures: 

 

FIGURE 1-1: WORKERS WITHOUT HARDHATS. 3 

FIGURE 1-2: RESEARCH GOAL AND OBJECTIVE. 5 

FIGURE 3-1: IDENTIFY WORKERS WITHOUT HARDHATS. 15 

FIGURE 3-2: THE FRAMEWORK OF THE PROPOSED METHOD. 16 

FIGURE 3-3: HUMAN BODY DETECTION METHOD. 18 

FIGURE 3-4: MARGINS AROUND A HUMAN OBJECT IN THE HOG FEATURE 

TEMPLATE. 19 

FIGURE 3-5: HOG FOR HUMAN BODY. 20 

FIGURE 3-6: POSITIVE HUMAN BODY IMAGES COLLECTION. 21 

FIGURE 3-7: THE STEPS OF HUMAN BODY DETECTION. 22 

FIGURE 3-8: EXAMPLE OF THE HOG-BASED HUMAN BODY DETECTION IN 

FOREGROUND REGIONS. 23 

FIGURE 3-9: DARKEST IMAGE A, AND BRIGHTEST IMAGE B WITH THE 

RESULT OF HARDHATS DETECTION. ERROR! BOOKMARK NOT 

DEFINED. 

FIGURE 3-10: HARDHAT POSITIVE IMAGE COLLECTION. 27 

FIGURE 3-11: HARDHAT DETECTION METHOD. 28 

FIGURE 3-12: EXAMPLE OF THE HOG-BASED DETECTION AND MATCHING 

(A) HUMAN BODY AND HARDHAT DETECTION. (B) MATCHING 

BETWEEN THE DETECTION RESULTS. 30 



x 

 

FIGURE 3-13: POSSIBLE HARDHAT REGIONS.  (A) REGION I. (B) REGION II. 31 

FIGURE 3-14: MATCHING BETWEEN THE HUMAN BODY AND HARDHATS. (A) 

MATCHING IN REGION I.  (B) MATCHING IN REGION II. 32 

FIGURE 3-15: EXAMPLE OF REJECTED RESULT. 33 

FIGURE 4-1: TP, FN, AND FP FOR HUMAN BODY DETECTION. 37 

FIGURE 4-2: EXAMPLE OF CHALLENGING DETECTION RESULTS. 40 

FIGURE 4-3: TP, FP, AND FN FOR HARDHATS DETECTION 41 

FIGURE 4-4: THE COMPARISON OF SAFETY ALERTS ISSUED UNDER TWO 

HARDHAT DETECTION SCHEMES. (A) SAFETY ALERT IN SCHEME I. (B) 

SAFETY ALERT IN SCHEME II. 45 

FIGURE 4-5: EXAMPLES OF IDENTIFYING PEOPLE WITH HARDHATS (RED) 

AND WITHOUT HARDHATS (MAGENTA). 46 

FIGURE 4-6: COMPARISON OF SAFETY ALERTS ISSUED (A) PROPOSED 

METHOD AND (B) GUALDI ET AL.’S METHOD 48 

FIGURE 5-1: POTENTIAL SPATIAL AND GEOMETRIC RELATIONSHIP 

BETWEEN A HARDHAT AND A WORKER NOT STANDING OR WALKING

 50 

 

 

 

  



xi 

 

List of Tables: 

 

TABLE 4-1: HUMAN BODY DETECTION RESULT. ................................................. 38 

TABLE 4-2: HARDHAT DETECTION RESULT. ......................................................... 43 

TABLE 4-3: THE DEFINITIONS OF TP, FP, AND FN IN TERMS OF ISSUING 

SAFETY ALERTS ................................................................................................... 43 

TABLE 4-4: PRECISION AND RECALL FOR SCHEME 1 AND SCHEME2. ........... 44 

TABLE 4-5: COMPARISON BETWEEN PROPOSED METHOD (SCHEME 2) AND 

GUALDI’S METHOD.............................................................................................. 47 

  



xii 

 

LIST OF ABBREVIATIONS 

HOG       Histogram of Oriented Gradients 

SVM      Support vector machine 

P      Precision 

RC       Recall 

TP      True positive 

TN      True negative 

FP       False positive 

FN      False negative 

P/R curve      Precision-Recall curve 

XML      Extensible Mark-up Language 

OSHA     Occupational Safety and Health Administration 

 

VHF      Very-High Frequency 

RFID       Radio Frequency Identification 

GPS      Global Positioning System 

UWB      Ultra-Wide Band 

           WLAN      Wireless Local Areas Networks 

 RGB                                                    Red, green, and blue



1 

 

 1 

 INTRODUCTION 2 

 Problem Statement and Motivation 3 

One of the most dangerous job sectors is the construction field. In Canada, 4 

approximately 24 per 1000 workers were injured at construction sites during the year 2008 5 

(Abeid and Arditi 2002, Canada Statistics 2008), and from 2008 to 2010 there were 700 6 

injuries that resulted in death which are 23% of all workplace fatalities during this period 7 

(CBC News 2011). In 2009, a total of 7,230 nonfatal head injuries/illnesses involving days 8 

away from work were reported from the construction industry, which accounted for 9 

approximately 7.8% of the days-away-from-work cases due to nonfatal occupational 10 

injuries/illnesses (Bureau Of Labor Statistics 2010).  11 

Specially in Quebec, as reported by Jacques Nadeau of Quebec’s Occupational 12 

Health and Safety Commission, there are 19 injury cases per day, and this number increase 13 

to 26 in the month after holidays (CBC News 2011). Based on a calculation supported by 14 

data from the Association of Workers Compensation Boards of Canada, 21.5 per 1000 15 

workers were injured on construction sites inside Quebec in 2008 (Canada Statistics 2011, 16 

WorkSafeBC 2014). 17 

It was found that most workers who suffered impact injuries to the head (84%) were 18 

not wearing hardhats when performing their normal jobs at their regular worksites. In 19 
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addition, the Bureau of Labor Statistics noted that "hardhats were worn by only 16% of 20 

those workers who sustained head injuries, although two-fifths were required to wear them 21 

for certain tasks at specific locations" (OSHA 2014). Wearing hardhats is one of the basic 22 

ways to protect construction workers and other persons on construction sites from head 23 

injuries.  24 

The Safety Code for the Construction Industry mandates that "any person on a 25 

construction site shall wear a certified safety hat in accordance with CSA Standards" 26 

(Quebec 2014). A similar guideline or regulation can also be found in the OSHA. It 27 

stipulates that “Employees working in areas where there is a possible danger of head injury 28 

from impact, or from falling or flying objects, or from electrical shock and burns, shall be 29 

protected by protective helmets” (OSHA 2014). It is one of the top priority to confirm that 30 

all employees and site visitors wear hardhats all of the time on the construction sites. 31 

Regrettably, the number of easily-preventable injuries is increasing in developing 32 

countries. In many cases, there are no specified rules to ensure construction site safety, and 33 

even if there are, they are often not respected. For example, many workers whose roles are 34 

to load sand or count bricks are not motivated to use safety hardhats (Figure 1-1). For 35 

example of the seriousness,  in Turkey alone there were around 1,754 death cases in 36 

construction sites between the years 2008 and 2012 (Aguilar and Hewage 2013, Idiz 2014). 37 

In addition, in Jordan there were 13,843 injured cases reported (Accidents and Jobsite 38 

Injuries, 2004). The main causes of these injuries were the non-adherence of the workers 39 

to the safety codes and the reluctance in using the personal protective equipment. 40 
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 41 

Figure 1-1: workers without hardhats. 42 

The social costs of these accidents are very high.  Families not only lose a son or 43 

husband, these men (and sometimes women) were often major wage earners, sometimes 44 

for extended families (especially the case in the developing world). In addition, 45 

construction accidents are one of the main causes of delay in a project’s progress. For 46 

example, in Canada from 2009 to 2010 there were approximately 27,100 time-loss injuries 47 

and deaths in construction projects (Canada Statistics 2008). That figure translates into 48 

increases in the total direct and indirect cost of the projects affected. In the interest of 49 

mitigating the social, human and financial costs of construction site injuries, several 50 

governments in the developed countries are evaluating construction site safety regulations. 51 
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 Research Goal and Objectives 52 

The research goal is to propose a novel vision-based safety measure to facilitate the 53 

safety monitoring work of construction site safety inspectors. This worksite monitoring 54 

method is designed to automatically identify whether or not any individual persons, 55 

including construction workers, are wearing hardhats within construction sites. 56 

The objective is to create a unique on-time detection method that can detect the 57 

hardhats and the correspondent human bodies. The proposed detection method aims: (1) to 58 

avoid the previous detection methods’ limitations, as the proposed method work as on-time 59 

method to detect any persons without hardhats, whatever the color or the shape of the 60 

hardhats. In addition, the proposed method does not require the usage of physical tags to 61 

be attached to the persons nor the corresponding hardhats to ensure the used of the hardhats 62 

as in sensor based detection methods. The proposed method was modified for different 63 

construction environments (outdoor, with huge down to dimensions), and (2) help to 64 

decrease the number of accidents in the construction site and the total cost of different 65 

projects. The goal and objectives of the current research are illustrated in the Figure 1-2. 66 
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 67 

Figure 1-2: research goal and objective. 68 

 Proposed Methodology 69 

The proposed method includes three main steps. First, all the persons in a video 70 

frame from an onsite video camera are detected, even if they are not wearing hardhats 71 

(human body detection). Second, all the hardhats in that video frame are detected, even if 72 

they are not being worn by the people (hardhat detection). Third, matching between the 73 

detected persons and their corresponding hardhats is performed (human body and hardhat 74 

matching).  75 

Any individual without their matching hardhat could be identified and a safety alert 76 

issued to warn the safety inspector. Considering that hardhats may be on the construction 77 

site without being worn, the proposed method could not simply count the number of people 78 

and the number of hardhats detected in one video frame and subtract the numbers to 79 

determine how many are not wearing hardhats. As it is difficult to use the image subtract 80 
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method to insure that all the counting hardhats were worn by the corresponding human 81 

body. 82 

To validate the effectiveness of the proposed method, real onsite videos were tested. 83 

This test result showed that multiple people could be accurately monitored without the need 84 

for any signal sensors or tags to be physically pre-installed on workers, visitors or hardhats. 85 

This method would be suitable to be used at most large-scale construction sites, including 86 

those that contain hundreds of employees and other workers. The improvement in 87 

construction safety would increase the workers’ productivity, improve their morale and 88 

reduce project costs.  The prevention of one injury or death per day could lead to cost 89 

savings of millions of dollars per day. 90 

  91 
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 92 

 BACKGROUND 93 

 The Current Practice 94 

Several policies and procedures are created to ensure safety and decrease the 95 

number and extent of construction site accidents. For example, in Canada there is the Safety 96 

Code for Construction, which provides the general rules to protect the health and the safety 97 

of the workers and the subcontractors operating at construction sites (Quebec 2014). In the 98 

United States, the Occupational Safety and the Health Administration functions to ensure 99 

a suitable healthy and safe environment for all workers, with specific requirements for 100 

construction sites (OSHA 2014). 101 

To apply the various safety rules, the contractors for large projects hire qualified 102 

individuals (e.g., safety inspectors), who are responsible for applying the safety regulations 103 

at construction sites. In Quebec, they are known as construction site health and safety 104 

management guarantors. The guarantors identify and address onsite safety issues, if any. 105 

They take every measure necessary to ensure that the general contractors comply with a 106 

wide range of regulatory requirements as specified in the Safety Code for the Construction 107 

Industry (Quebec 2014). Existing regulatory requirements help to establish the safety 108 

policies and procedures on a construction site. However, the workers may forget and/or 109 

may not exactly follow the requirements due to fatigue, distractions, carelessness, etc., even 110 

if they have been educated and trained (Green and Tominack 2012). 111 

file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_29
file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_26
file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_29
file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_15
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Current safety inspection practices still rely heavily on inspectors' manual 112 

monitoring and reporting. For example, the inspectors might use construction safety 113 

inspection checklists to check the safety issues in the areas of Housekeeping and Facilities, 114 

Personal Protective Equipment, Fall Protection, Hand and Power Tools, etc. For safety 115 

assurance in the area of Personal Protective Equipment, the inspectors need to make sure 116 

that 1) hardhats are being worn; 2) high-visibility vests are being worn where needed; and 117 

3) proper footwear is being worn in material handling areas, among other specifications.  118 

An inspector’s experience and skills play an important role in evaluating the safety 119 

inspection performance. A less-skilled safety inspector or even a highly-experienced one 120 

may have difficulties in identifying all of the onsite safety issues, especially in a complex 121 

worksite (Zhang, Chi et al. 2012). As a result, the safety record of the entire construction 122 

industry is still not satisfactory. 123 

 Sensor-Based Onsite Safety Enhancement 124 

Construction site safety is one of the main concerns of researchers and industrial 125 

stakeholders. Sensor-based safety alert research has been undertaken to establish 126 

appropriate onsite safety alarm systems and procedures. A numbers of studies have 127 

investigated the possibility of adding an extra level of proactive safety measures. These 128 

studies have focused on the investigation of object locating and tracking methods, 129 

including those using radio frequency identification (RFID), the global positioning system 130 

(GPS), wireless local areas networks (WLAN), and ultra-wide band (UWB). 131 

file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_41
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In 2007, Ruff suggested several recommendations to evaluate and implement these 132 

safety systems on the equipment of surface mining, based on a comparison of these four 133 

monitoring methods.  Many of the locating and monitoring systems have been produced 134 

on a commercial basis. These systems can warn the equipment operators regarding 135 

impending collision or other unwanted incidents, thereby contributing to construction site 136 

safety (Ruff, Coleman et al. 2011). As a conclusion for his work, Ruff found that these 137 

feature may reduce the false alarms, but also has the disadvantage of increasing the 138 

potential of collisions with obstacles that are not outfitted with a tag. This is also true for 139 

GPS-based systems that require cooperative obstacles(Ruff, Coleman et al. 2011). 140 

In 2010, Teizer et al. investigated the use of a Very-High Frequency (VHF) active 141 

Radio Frequency (RF) technique to improve construction site safety. The main findings 142 

concluded that VHF active RF technique tracking systems can instantly warn the 143 

equipment operators regarding any impeding unwanted incident (e.g., when the equipment 144 

get too close to each other or to any other object) (Teizer, Allread et al. 2010). 145 

In 2011, Carbonari et al. implemented a proactive virtual fencing system using 146 

UWB technology, demonstrating the ability of such a system to enhance the 147 

implementation of safety management guidelines (Carbonari, Giretti et al. 2011). 148 

Chen and Teizer subsequently utilized a new technique, integrating the previously 149 

mentioned techniques (real time resource location data from GPS and UWB) into virtual 150 

reality applications that monitor the activities at a construction site and consequently 151 

enhance its safety (Cheng and Teizer 2013). 152 

file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_31
file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_31
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Monitoring technologies can be adopted to enhance construction site safety in other 153 

ways in addition to using it use for location, tracking, and proximity warning. For example, 154 

in 2013, Kelm et al. monitored workers at a construction site using a remote Radio 155 

Frequency Identification (RFID) portal. They tracked the workers personal protective 156 

equipment and verified if it complied with the safety policies (Kelm, Laußat et al. 2013). 157 

In 2013, Aguilar and Hewage developed an Information Technology (IT) based 158 

safety management system. They used wireless high resolution web cameras, gas and 159 

particulate matter wireless sensors combined with barcodes and RFID tags installed on 160 

construction equipment to provide real-time information access (Aguilar and Hewage 161 

2013). 162 

Despite the lacunae of the current remote locating and tracking techniques, they are 163 

currently being used to identify the adherence to construction site safety polices through 164 

hardhat detection. The United States Patent provide a full description for the work of 165 

(Hudgens et al, 2007). They used a special sensor on the different sectors of the 166 

construction site and an electronic circuitry formed as a part of each worker hardhat. The 167 

circuitry had each worker personal information. When the workers are on the construction 168 

site, a wireless communication link establish between the sensor and the electronic 169 

circuitry. The sensors detect the presence of hard hat electronic circuitry. When the 170 

circuitry comes within signal range of one or more of the sensors, location information 171 

associated with detected electronic circuitry is provided to the monitoring system along 172 

with personal information provided by the detected electronic circuitry. As such, personnel 173 

wearing hard hats at the construction site may be monitored when they in one of the sectors 174 

file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_22
file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_2
file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_2
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covered by one or more sensor .The main problems of using this system: first, this system 175 

require physical tags or circuitry to be assigned to each worker hardhat. Even though it is 176 

promising that the price of these tags or sensors is continuously dropping with massive 177 

production, the practical use of the physical tags and sensors would still be a burden for 178 

contractors due to its costs, even more onerous  if thousands of workers and hardhats must 179 

be tagged. Second, the tags or sensors only present an instant tracking of the persons and 180 

hardhats in the construction site. They track the presence of the person and of their hardhat 181 

inside the construction site, but they cannot identify the safety issues. For example, they 182 

cannot determine the use of hardhats and if individuals are appropriately following safety 183 

policies; an employee could simply hang up their hardhat inside the construction site and 184 

carry out their work bare headed. 185 

Finally, the tracking of individuals and equipment could face resistance from labour 186 

unions and civil rights groups, as it may violate privacy issues and negatively affect their 187 

health. This concern may also be an issue against installing cameras on construction sites, 188 

but cameras have been already been widely used on construction sites as they have proven 189 

their worth in terms of the worker safety and the investment in general (Bohn and Teizer 190 

2010). 191 

 192 

 Vision-Based Onsite Safety Enhancement 193 

Installing live streaming or time-lapse video cameras on construction sites offers 194 

more advantages than installing the RFID, GPS, WLAN, and UWB techniques. Live 195 

streaming or time-lapse videos report the built progress of a construction site and the jobsite 196 

file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_3
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activities, as they are recorded instantly through fixed cameras. The streaming videos thus 197 

contain very useful project site information. This can help general contractors to supervise 198 

and manage the construction sites dynamically from a remote site. These videos can also 199 

be used to investigate accidents or reported incidents (Abeid and Arditi 2002), safety 200 

training and as education resources (Liaw, Lin et al. 2012), monitor a project’s as-built 201 

progress (Golparvar-Fard, Peña-Mora et al. 2009), analyze the operation productivity of a 202 

project (Park, Koch et al. 2011, Rezazadeh Azar and McCabe 2011), and enhance and 203 

assure quality (Zhu, German et al. 2011, German, Jeon et al. 2013). 204 

Therefore, it is important to apply a monitoring and alarm system that will help to 205 

identify people who are not utilizing safety measures, and initiate an alarm when there is a 206 

violation. Tracing individuals without hardhats on a construction site is a problematic issue. 207 

First, the three dimensional appearance of people can be changed drastically with the 208 

changes of position relative to the camera and its viewing angle. Second, hardhats have 209 

different sizes, shapes and colors. Third, the background image may have an impact on the 210 

viewing results, as the individuals and hardhats in the image can be displayed with partial 211 

occlusions, against a disorganized background, and under different lighting conditions 212 

(Ulrich and Steger 2002, Zhang, Chi et al. 2012). 213 

It is now possible to create alarm systems that can be operated and integrated within 214 

the live streaming videos, using the advances in the computing and IT State of the art 215 

computer workstations can perform the video processing. Computer science visioning and 216 

pattern recognition techniques can create the basis with which to integrate an alarm in live 217 

streaming videos. For example, Semantic Texton Forests (Shotton, Johnson et al. 2008), a 218 

file:///C:/Users/Nehad/Desktop/NE-Automatic%20Hardhat%20Detection%20Final.docx%23_ENREF_1
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well-known segmentation and classification method, could be used to locate and track the 219 

equipment in a construction site (e.g., wheel loaders and trucks) (Jog, Park et al. 2011). 220 

Similarly, the Histogram of Oriented Gradients (HOG), which has visual features, can be 221 

used to detect the workers and equipment at the construction sites. It learns the features of 222 

each object (e.g., using numerous photos of an object in different views and visibility 223 

conditions) and then with additional training steps creates a precise model for each object 224 

(Park, Koch et al. 2011, Memarzadeh, Golparvar-Fard et al. 2013). In the fixed video 225 

cameras, the background pixel function will filter images, using background subtraction 226 

algorithms, which will help to identify the moving objects which can undergo real-time 227 

classification (Chi and Caldas 2011). 228 

Weerasinghe and Ruwanpura correlated a number of functions to detect hardhat 229 

forms (Weerasinghe and Ruwanpura 2009, Weerasinghe and Ruwanpura 2010), utilizing 230 

the edge maps of video frames (Weerasinghe and Ruwanpura 2009, Weerasinghe and 231 

Ruwanpura 2010). In addition, they used the eccentricity, the blob area, the distance 232 

between the blob centroid and the head coordinate, and the distance to the human figure 233 

for the prediction of construction hardhats to build a multivariate statistical model 234 

(Weerasinghe and Tharindu 2013). This work was designed to monitor construction 235 

workers’ performance on a construction site; but their experiments were limited to the 236 

laboratory (a small space: length: 5m, width: 5m, and height: 3m). 237 

In 2003, Steele et al. installed a stereo camera on the rear of an off-highway dump 238 

truck (Steele, Debrunner et al. 2003). This camera helped the driver to identify the possible 239 

obstacles in the mining site. The outcomes of this experiment were promising. They 240 
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subsequently addressed some limitations of the experiment in terms of practical issues 241 

(e.g., capture of image, calculation of distance, and fixing the camera on the moving 242 

equipment) (Steele, Debrunner et al. 2003). Some recent studies have focused on the use 243 

of video cameras to record and investigate workers' unsafe actions that may cause accidents 244 

or unwanted incidents (e.g. falling down from a ladder due to leaning too far) (Han, Achar 245 

et al. 2013). These studies focused on recording workers’ unsafe actions or behaviors by 246 

installing monitoring cameras which were installed several meters away from the workers 247 

(Han, Achar et al. 2013, Han and Lee 2013). 248 

In 2009 and 2011, Gualdi et al. designed a method to identify workers without 249 

hardhats on a construction site to enhance worker safety (Gualdi, Prati et al. 2009, Gualdi, 250 

Prati et al. 2011). They used a pedestrian classifier, which has covariance descriptors, to 251 

assign the location of construction workers, and then they employed head and hardhat 252 

detectors to monitor the usage of hardhats by construction workers (Gualdi, Prati et al. 253 

2009, Gualdi, Prati et al. 2011). It was not clear if the safety alarm was accurate for all 254 

workers without hardhats. Modeling the contextual information was the main core of their 255 

work (Gualdi, Prati et al. 2009, Gualdi, Prati et al. 2011). This helped them to improve the 256 

detection of objects, to outline the limitations of motion-based segmentation and to track 257 

the movement in distorted scenes. They learned that white hardhats could disable their 258 

detection method (Gualdi, Prati et al. 2009, Gualdi, Prati et al. 2011).  Collectively, there 259 

are many limitations in the existing research. T. M. Ruff has recommended using a remote 260 

sensing technique to integrate an alarming function with video cameras (Ruff 2007, Ruff, 261 

Coleman et al. 2011).  262 
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 263 

 OBJECTIVE SCOPE AND 264 

METHODOLOGY 265 

 Introduction 266 

The main objective of this study is to examine the use of computer-vision 267 

techniques to record construction worksite activities in order to identify anyone who is not 268 

wearing a hardhat, as shown in (Figure 3-1 a and b), and to alert the safety inspector. 269 

 270 

Figure 3-1: Identify workers without hardhats. 271 

The proposed method is illustrated in (Figure 3-2), which shows a complete 272 

framework with all the main steps. This method requires the detection of human bodies 273 

and the detection of hardhats, a process that is done instantly for each video frame. This 274 

detection step uses a software analysis integrated with streaming videos, which is followed 275 
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by a step that identifies their geometric and spatial relationships in order to find their 276 

matches. The human bodies with and those without the corresponding hardhats can thus be 277 

identified. The last step, the safety alert, is automatically generated to warn the onsite safety 278 

inspector regarding the reported issue (e.g., non-adherence to hardhat use). 279 

 280 

Figure 3-2: The framework of the proposed method. 281 

 282 
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 Human Body Detection 283 

To detect the human body, two main steps, (1) background subtraction and (2) HOG 284 

feature (Dalal and Triggs 2005) were applied. In the first step (background subtraction), 285 

foreground blobs corresponding to each object in motion were extracted using the 286 

background subtraction, and then the foreground blobs were the main source for human 287 

body detection. Background subtraction has two main advantages. First, it reduces the 288 

probability of false detections, specifically for human bodies in the background static areas. 289 

Second, it restricts the search area to the foreground, which can enhance the computational 290 

efficiency involved in searching for sections of human bodies. 291 

In 1995, Macfarlane and Schofield proposed the background subtraction method 292 

(McFarlane and Schofield 1995), providing a detailed explanation of the background 293 

subtraction method and its efficacy on the restriction of search areas, specifically for 294 

detecting construction workers (McFarlane and Schofield 1995, Park, Koch et al. 2011). 295 

Their method was adopted in this research project and follows the steps shown in 296 

(Figure 3-3). After extracting the moving blobs, morphological operations (e.g., dilation 297 

and erosion) were used for further processing of the results. During the dilation process, 298 

extra pixels are added to complete the missed component for the moving objects and 299 

adjacent moving blobs were merged into one blob. During the erosion the small-sized blobs 300 

were ignored.  The rest of the foreground blobs were fitted to the smallest possible 301 

rectangles around the blobs (see the white rectangles in Figure 3-3). These fitted rectangles 302 

were enlarged outwards by 40 pixels, because the template for human body detection 303 
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adopted in the paper is 64 pixels by 128 pixels. The human body template model also 304 

includes margins of 16 pixels from all the borders (Figure 3-4). 305 

 306 

 307 

Figure 3-3: Human body detection method. 308 

The background is updated in every frame of the streaming video (McFarlane and 309 

Schofield, 1995). This helps to reflect any changes of the illumination conditions and 310 

enhances the appearance of the background static objects (McFarlane and Schofield 1995). 311 

Therefore, the effect of light conditions changes become negligible. In addition, the effect 312 

of light was illustrated as a pre-processing stage for detecting construction workers.  313 
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                      314 

Figure 3-4: Margins around a human object in the HOG feature template. 315 

In the second step, the HOG features detection were applied for the subtracted 316 

foreground regions, following the morphological (dilation and erosion) (Figure 3-7). The 317 

histogram of oriented gradients (HOG) is a feature descriptor used in computer vision and 318 

image processing for the purpose of object detection. The technique counts occurrences of 319 

gradient orientation in localized portions of an image (Dalal and Triggs 2005) (Figure 3-5).  320 
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 321 

Figure 3-5: HOG for human body. 322 

 323 

HOG features work by training the SVM using a big number of images to create 324 

the human bodies’ detection model. During the image collecting process, around 300 325 

positive images were collected. Those positive images include one or more than one person 326 

inside each image. In addition, around 500 negative images were collected. Those negative 327 

images include any objects except the human bodies.  328 

The collected positive images had a huge variety. The images were collected from 329 

three different construction sites, in different light illuminations, indoor and outdoor, 330 

contained different position of the human body, and were taken from different distances as 331 

shown in (Figure 3-6). The wide variety of the collected images helped to provide a strong 332 

detection model that can detect any human body in any condition. 333 

 334 
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 335 

Figure 3-6: Positive human body images collection. 336 
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    337 

Figure 3-7: the steps of human body detection. 338 

The HOG features descriptor simply compares the HOG template with HOG 339 

features of the images’ patches. If the images’ patches are greater than the HOG template, 340 

they are reduced to the HOB’s template size. The template size used in human body 341 

detection is 64 pixels by 128 pixels. The proposed method followed this procedure to avoid 342 

any drop in its human body detection performance because of the reduction of the 343 

resolution when the workers’ pictures appear larger than the HOG template size. 344 

 345 

The next step was to initiate a training process for the support vector machine 346 

(SVM). This helped to reflect all the variations in human body shapes. The HOG detection 347 

feature, for each window, was extracted and classified as a human body or non-human 348 

body. For example, the foreground was represented by a white rectangle (the result of the 349 
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background subtraction), while the human bodies were represented by a red rectangle (the 350 

result of the HOG feature detection) (Figure 3-8). 351 

 352 

 353 

Figure 3-8: Example of the HOG-based human body detection in foreground 354 

regions. 355 

Even though the color histogram illustration approach may be able to distinguish 356 

construction workers from other human bodies (Park and Brilakis 2012), we did not include 357 

the color histogram illustration method in our human body detection model. The main 358 

reason is that our aim is to create a safety alarm in case anyone is not wearing a hardhat on 359 

a construction site (e.g., construction worker, contractor, supervisor, trainee or visitor) 360 

(Park and Brilakis 2012). 361 
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 Hardhat Detection 362 

Hardhats are usually made of resistant materials (e.g., fiberglass and rigid plastic), 363 

and they are produced by many different manufacturers. Hardhats have many different 364 

colors (e.g., white, brown, green, blue, orange, red, etc.). These colors may refer to the 365 

position of the person wearing it (e.g., managers, engineers, superintendents, laborers, or 366 

carpenters). Hardhat design varies from company to company based on the nature of the 367 

work and the location of the construction site. Hardhats were therefore identified 368 

considering all their colors and forms. This step was simplified by the fact that most 369 

hardhats have closely similar shapes, following a (human skull) cap-style, and they have a 370 

rigid and smooth surface without any kind of deformations (Figure 3-10). 371 

The HOG hardhat detection features were used as recognition cues. The HOG 372 

features detector can effectively provide detailed shape information, and it has proven its 373 

utility for shape-based detection in many research studies. As in our human body detection 374 

model, hardhat recognition has the following stages. First, construction images with 375 

different colors and poses for the hardhats were collected as a training database. The 376 

database images were collected from different construction sites and different light 377 

conditions. Based on our dataset collection the maximum amount of the brightness in the 378 

training images was 120 Lux, and the minimum amount was 107 Lux. as shown in 379 

(Figure 3-9). Image (A) is the image captured in the darkest illumination included in our 380 

dataset (indoor, unlighted construction site, illumination 107 Lux), while image (B) is the 381 

brightest image in the dataset (outdoor, sunny day in the summer, illumination 120 Lux.. 382 

The dataset images which used to test the method were randomly collected with an 383 
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illumination value ranged in between (107 lux-120 lux). The hardhats in the test images 384 

wear successful detected regardless the value of the illumination in the images.  385 

 386 

387 

Figure 3-9: Darkest image A, and brightest image B with the result of hardhats detection 388 
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To calculate the illumination, the value of the red, green, and blue color were used 389 

in the following equation. RGB value were calculated using Microsoft Photoshop (Stokes 390 

et al, 1996). 391 

𝐼𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 0.2126𝑅 + 0.7152𝐺 + 0.0722𝐵             Eq.1.  392 

The hardhats collected images were 300 images.  200 images used to train the 393 

model and 100 used to examine the method.Figure 3-10: Hardhat positive image collection. 394 

(Figure 3-10) show some examples of the collected dataset images. Next, the annotation of 395 

the hardhats in the collecting images were performed. To annotate the hardhats an 396 

annotation tool developed by Kor and Scheneider (2007) was used in MATLAB 397 

environment.  The annotation provide satisfactory answers to the questions like (which 398 

image is being annotated, what is the resolution of the image?). In addition, the annotation 399 

process provides detailed information about the image source.  400 

When all the images of the hardhats are annotated, the dataset is arranged into two 401 

folders. The first folder contains all the images and the second folder contains the 402 

corresponding annotation in XLM format files, and the same contents of the image file. All 403 

the annotation files were converted to be in the form of boundary polygons format. The 404 

boundary polygons format was required in the method of (Felzenszwalb, 2010) to create 405 

the final detection model. 406 

In order to generate the bounding box of the hardhat, the polygon information 407 

extracted and the polygon point coordination are compared. The maximum and minimum 408 
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value are obtained from the polygon points. The corners of the top left and bottom right 409 

are determined to create the bounding box. 410 

The dataset images and the converted files used to train the recognition model. 411 

Based on the method of (Felzenszwalb et al, 2010) a complete learning based system used 412 

to train object models. To create the detection model, 800 images were used: 300 images 413 

contains positive instances of the hardhat, and 500 images contains negative instances. The 414 

positive 300 images were divided into two groups: first group contained 200 images and 415 

they were used for the training of the model, and the second group contained 100 images 416 

and they were used for testing of the model.  The proposed method read the images dataset 417 

and their corresponding annotation files to start the training process and create the detection 418 

model.  419 
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 420 

Figure 3-10: Hardhat positive image collection. 421 
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 422 

Figure 3-11: Hardhat detection method. 423 

Using the proposed method, hardhats with different colors could be successfully 424 

identified, including white hardhats, while the method developed by (Gualdi, Prati et al. 425 

2009, Gualdi, Prati et al. 2011) could not detect white hardhats. 426 

After the trained of the hardhat detector and created the detection model, the 427 

recognition of the hardhat in any image could be performed. First, the method extracted 428 

the HOG feature map from the examine images. Second, a sliding detection window use 429 

to compere the HOG model feature with the one from the examine image. Third, the 430 

method searched for the matched parts in the model HOG and the examine image HOG. 431 

Fourth, the matched parts define as a positive detection and get a high value of the color 432 

response values. Fourth, the rest of the HOG examine image feature which had not any 433 

matched with the model defined as a false detection and get low value of the color response. 434 



30 

 

Finally, the method create a detection rectangles around the high values color to determine 435 

the detecting hardhats in the examine image as shown in (Figure 3-12). 436 

 437 

Figure 3-12: image processing for hardhat detection. 438 

 439 

 Matching Between the Detected Human Bodies and 440 

Hardhats 441 

After detecting the human bodies and the hardhats (Figure 3-13 (a)), the detection 442 

process results were the locations and the sizes of the human bodies and the hardhats. It 443 

was important to link each hardhat to the corresponding human body to be able to identify 444 

people with and without hardhats (Figure 3-13(b)). Three human bodies in (Figure 3-13(b)) 445 

are marked with blue color rectangles, identified by the tool that matched them with their 446 
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correspondent hardhats. Those human bodies without their corresponding hardhats are 447 

marked with magenta color rectangles. 448 

 449 

Figure 3-13: Example of the HOG-based detection and matching (a) Human body 450 

and hardhat detection. (b) Matching between the detection results. 451 

    452 

The matching process would be simple if the detected hardhat and human body 453 

regions had their actual shape and size. However, the hardhats’ and the human bodies’ 454 

detected regions were different from reality and they were not perfect. This could change 455 

the perspective and dislocate the actual hardhats or human bodies or regions. Therefore, 456 

we defined the hardhats’ regions to enhance the matching process. 457 

First, the hardhat’s positions in relation to the human body regions were divided 458 

into region I and region II (Figure 3-14). Region I represents the ideal and common cases 459 

when the detected parts human body properly locates in a rectangle enclosing the person 460 

(Figure 3-14(a)). The HOG detection feature template for human body parts contains 461 
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margins of 0.25w and 0.125h for the vertical and horizontal boundaries, respectively 462 

(Figure 3-14). The isolated human body location is a dotted rectangle 0.5h×0.75h at the 463 

center of the template (Figure 3-14). Consequently, hardhats will locate at the region 464 

adjacent to the upper border of the same rectangle. Hence, the detected region will be at 465 

the center half of the width and at the top 0.3h of the height in the HOG identification 466 

feature template (Figure 3-14 (a)). 467 

 468 

 469 

Figure 3-14: Possible hardhat regions.  (a) Region I. (b) Region II. 470 

Region II was used for the abnormal cases, when the detected region of the human 471 

body is slightly away from the actual person’s location. The identification rectangles in 472 

those cases are assigned the lower part of the detected persons (Figure 3-14 (b)). In this 473 

case, the hardhats locate at the upper part of the rectangle, and are not included in the 474 

human body detection rectangle. For example, hardhats were detected in two Regions I, 475 
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and II (Figure 3-15). Therefore, Region I, and II were checked to verify if the human body 476 

detection accurately identified a person. 477 

 478 

Figure 3-15: Matching between the human body and hardhats. (a) Matching in 479 

Region I.  (b) Matching in Region II. 480 

Any hardhats that were found in either of the detection regions I or II were 481 

considered candidates, with regard to each detection region of the human body. After the 482 

verification step, the examined results were filtered to remove the unrelated candidates 483 

(Figure 3-16). During the matching process, the priority in results was to Region I over 484 

Region II.  485 
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 486 

Figure 3-16: Example of rejected result. 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 
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 IMPLEMENTATION AND RESULT 496 

 Implementation 497 

The proposed method was implemented and each of its three components were 498 

tested: human body detection, hardhats detection, and matching the detected human bodies 499 

and hardhats. They were then integrated into the Microsoft Visual C++ NET Framework 500 

4.0 environment. 501 

To detect the parts of human bodies, we trained the detection model using the public 502 

INRIA person dataset to train the HOG identification features with the parts of human 503 

bodies using SVM. The histogram of oriented gradients (HOG) is a feature descriptor used 504 

in computer vision and image processing for the purpose of object detection. The technique 505 

counts occurrences of gradient orientation in localized portions of an image. HOG features 506 

descriptor can be applied for the subtracted foreground regions, following the 507 

morphological operations (dilation and erosion). The HOG descriptor is a well-known 508 

detection system that is generally used for human body detection (Dalal and Triggs 2005). 509 

We used the work of Dalal and Trigg (2005) for training the template as it is a well-known 510 

system for the identification of human bodies (Dalal and Triggs 2005). To train the model 511 

for hardhat detection, we collected one hundred images from different construction sites in 512 

Montreal, Canada. We outlined the hardhats in the images manually as samples for positive 513 

training. 514 
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The detection and matching system was tested on real construction site videos to 515 

confirm their validity. These videos were taken using a HD camcorder (Canon VISXIA 516 

HF S100, 8.59 megapixels).  To evaluate the method’s robustness, only new video frames 517 

were used in the evaluation process, not the same ones used for training. These test videos 518 

contained many individuals with and without hardhats, from different camera viewpoints 519 

in different light conditions, e.g. sunny bright, shady dim areas, and during rain and snow 520 

conditions. 521 

For rapid processing, the size of the frames used by the detection process in the test 522 

videos were 768 pixels by 432 pixels. The test video was 166 seconds long, with 20 frames 523 

per second (fps), and each video contained 3320 frames in total. In the validity tests, 10 524 

frames could be processed per second, which can be considered as almost meeting real-525 

time requirements, as it is very difficult for the workers during 1/10 second to change their 526 

situation and takeoff the hardhats. Human body detection was the most time consuming 527 

part in the video frame processing. The speed of the detection process was affected by the 528 

moving objects in the camera view (e.g., workers and mobile equipment). Moving objects 529 

increased the method search space, which in turn reduced the speed of the detection 530 

process. Considering the limited resources in our lab, there it would be possible to reduce 531 

the detection time with support from Graphics Processing Unit (GPU) computing. 532 

 Evaluate the Performance of the Method 533 

To analyze the effect of the method on the detection of construction workers 534 

without hardhats, the performance of three main steps in our proposed detection method 535 

(e.g., human body detection, hardhat detection, and issued the safety alert) was evaluated. 536 
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The precision and recall were the main determinants to measure the performance as 537 

suggested by (Wang, Cheng et al. 2011). The precision is an indication of the true positive 538 

accuracy (David L et al, 2008). High precision means many true safety alerts issued by the 539 

method to detect workers without hardhats inside the construction site. The recall is an 540 

indication of the true positive rate (David L et al, 2008). High recall means that many of 541 

the workers without hard hats are correctly detected by the method. The precision and recall 542 

were calculated as follows: 543 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ⁄ (𝑇𝑃 + 𝐹𝑃) Eq. 2 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) Eq. 3 

 544 

TP, FP, and FN represent the ‘True Positive’, ‘False Positive’, and ‘False Negative’ 545 

detections, respectively. The precision of the detection method is determined by the ratio 546 

of the number of true detections divided by the total number of detections made by the 547 

same method. The recall is the ratio of the numbers of true detections divided by the total 548 

number of objects that appear for detection. We summarized the precision and recall ratios 549 

for the detection of human bodies and hardhats, and the safety alert issued by the method 550 

in the following sections. 551 
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 Performance of Human Body Detection   552 

In human body detection, the numbers of correct human bodies’ detections are 553 

called the True Positives (TP), the numbers of the incorrect human bodies’ detections are 554 

the False Positives (FP), and the numbers of the human bodies missed, without detection, 555 

are the False Negatives (FN) (Figure 4-1). The false positive (FP) results were only 2.0%, 556 

as the results of the human body detection  tests only had 2.0% that were wrongly detected, 557 

and 8.8% were false negative (FN), as 8.8% of the workers who appeared in the test video 558 

frames were missed (Table 4-1). The precision has a higher importance than the human 559 

body detection recall when the objective is to determine if an individual is wearing a 560 

hardhat or not.  561 

 562 

Figure 4-1: TP, FN, and FP for human body detection. 563 



39 

 

 564 

Matric Human body detection 

TP 3026 

FP 61 

FN 291 

Precision% 98.0 

Recall% 91.2 

Table 4-1: Human body detection result. 565 

If the method can detect a human body every 10 frames, the recall is 10%, but it is 566 

still able to identify whether that person is wearing a hardhat once a second. On the other 567 

hand, if the precision is reduced, the probability of false alarms will increase. For example, 568 

when we have the false identification of a tree branches as a person, this will cause a false 569 

alarm, because its accompanying hardhat will not be detected in the region specified for it. 570 

Theoretically, 32 pixels by 96 pixels is the minimum size of the workers which can 571 

be detected by the method. This resolution was selected because the HOG template size is 572 

64 pixels by 128 pixels, which consists of a human body region (32 pixels by 96 pixels) 573 

and a 16-pixel-wide margin around the human body. Based on the test results, it was found 574 

that the proposed method was able to detect people with the size of 27 pixels by 80 pixels 575 

through the scaling up of the foreground regions by 20%. In other words, the acceptable 576 

size of the human body to be detected by the method in a video frame should be more than 577 

27 pixels by 80 pixels. Using the digital zooming functions of the camcorder in the test 578 
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video frames this size can be reached easily regardless of the distance between the camera 579 

and the person. 580 

(Figure 4-2) shows examples of video frames that are challenging for the proposed 581 

method. In these examples, it can be seen that many objects at construction sites, such as 582 

tree branches and equipment wheels, might be detected as human bodies by mistake. In 583 

addition, occlusions of the field of the camera can also occur, for example, a worker, onsite 584 

material or a piece of equipment can occlude the view field of a worker. These occlusions 585 

will negatively affect the human body detection performance. 586 
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      587 

Figure 4-2: Example of challenging detection results. 588 

 Performance of Hardhat Detection  589 

The TP in the hardhat detection is defined as the number of correct detections of 590 

hardhats. FP is the number of incorrect hardhat detections, and FN is the number of the 591 

undetected hardhats (Figure 4-3). The detection of hardhats does not depend on the results 592 

for the detection of human bodies, since those detections are made with different detection 593 

templates.  594 
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 595 

Figure 4-3: TP, FP, and FN for hardhats detection 596 

However, compared with high precision and recall for the detection of human 597 

bodies, it is difficult to guarantee both high precision and recall for the detection of hardhat 598 

at the same time. As the precision for the hardhat detection increases, the corresponding 599 

recall drops significantly, and as the recall for hardhat detection increases, the 600 

corresponding precision drops significantly. This may be due to several reasons. First, the 601 

differences in the size between the hardhat regions and the human bodies region were huge.  602 

Second, the shapes of the hardhats are more uniform compared with the human bodies’ 603 

shapes in the test scenarios. 604 

` In order to illustrate the effects of hardhat detection results on the final safety alerts 605 

issued when a hardhat is not being used, two hardhat detection schemes have been 606 

prepared. The first aims to maximize the detection precision even if the detection recall 607 
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may be low. The second detection scheme aims to maximize a high detection recall even 608 

if the detection precision is low. The preparation of these two detection schemes was done 609 

by manually changing the threshold in the SVM-based model for hardhat detection.  610 

Increasing the threshold increases the detection precision but reduces the detection recall. 611 

In contrast, reducing the threshold reduces the detection precision but increases the 612 

detection recall. More details about the threshold could be found in the works of  (Dalal 613 

and Triggs 2005, Felzenszwalb, Girshick et al. 2010). 614 

 In the proposed method, the threshold value in the hardhat detection scheme was 615 

selected when a higher hardhat detection precision could be achieved from the tests. The 616 

corresponding test results indicated that only 0.4% of the hardhat detection results were 617 

not correct (high precision), but almost 27.2% of the hardhats were missed (low recall). 618 

The threshold value in the second hardhat detection scheme was selected when a higher 619 

hardhat detection recall could be achieved from the tests. The corresponding results 620 

indicated that almost 38.8% of the hardhat detection results were not correct (low 621 

precision), but only 3.2% of the hardhats were missed by the detection (high recall) 622 

(Table 4-2). 623 

Matric Hardhat detection 

Scheme 1 Scheme2 

TP 2246 2984 

FP 9 1893 

FN 838 100 

Precision% 99.6 61.2 

Recall% 72.8 96.8 
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Table 4-2: Hardhat detection result. 624 

 Safety alert for not wearing hardhats 625 

When the proposed method identifies that a person is not wearing a hardhat on a 626 

construction site, a safety alert will be issued A comparison between the safety alert issued 627 

by the proposed method and with the issuing of safety alerts in reality was carried out to 628 

identify the value of the TP, FP and FN, as given in (Table 4-3). Specifically, if the safety 629 

alert should be issued in reality and a safety alert is issued by the method, then that safety 630 

alert is a true positive alert. If the safety alert does not have to be issued in reality but a 631 

safety alert is issued by the method, then that safety alert is a false positive. Moreover, if 632 

the alert is not issued by the method when a safety alert should be issued in reality, then 633 

that safety alert is a false negative alert for the method. When the numbers of TP, FP and 634 

FN are estimated, the safety alert precision and recall can be calculated using Eq. 1 and 2.  635 

Category of safety 

alert 

Whether a safety  alert 

should be issued in reality 

Whether a safety alert is 

issued by the proposed 

method 

TP Yes Yes 

FP No Yes 

FN Yes  No 

Table 4-3: The definitions of TP, FP, and FN in terms of issuing safety alerts 636 

(Table 4-4) show the result of the method’s test under scheme1 and scheme 2 for 637 

issuing the safety alert. Under scheme 1 the precision was 53.6% and a recall was 87.7%. 638 

In scheme 2 the precision was 94.3% and the recall was 89.4%. The second scheme gives 639 
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a higher safety alert precision and recall. In order to reach that result, the recall of detecting 640 

the hardhat in the second scheme was maximized manually by changing the value of the 641 

threshold in the SVM-based model (reducing the threshold increased the recall in the 642 

hardhat detection). 643 

Matrix Scheme 1 Scheme 2 

Precision 53.6 94.3 

Recall 87.7 89.4 

Table 4-4: Precision and Recall for Scheme 1 and Scheme2. 644 

The test videos were 166 seconds long, with 20 frames per second (fps), and each 645 

video contained 3320 frames in total. In the validity tests, 10 frames were processed per 646 

second, which can be considered as almost meeting real-time requirements, as it is very 647 

difficult for the workers during 1/10 second to change their situation and takeoff the 648 

hardhats. Human body detection was the most time consuming part in the video frame 649 

processing. The speed of the detection process was affected by the moving objects in the 650 

camera view (e.g., workers and mobile equipment). Moving objects increased the method 651 

search space, which in turn reduced the speed of the detection process. Considering the 652 

limited resources in our lab, there it would be possible to reduce the detection time with 653 

support from Graphics Processing Unit (GPU) computing. 654 

 (Figure 4-4) shows a part of the examination process. Under the scheme (1) the 655 

safety alert issued for five time during the examination. Three alerts were false as the 656 

assigned workers had the hardhats on head, and tow alert was true as the tow construction 657 

workers were without the hardhats during that time. Under scheme (2), the safety alert 658 
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issued for two times both times were true alert and the workers were without hard hats. 659 

That cause the higher recall percentage between scheme (1) and scheme (2).  660 

 661 

Figure 4-4: The comparison of safety alerts issued under two hardhat detection 662 

schemes. (a) Safety alert in scheme I. (b) Safety alert in scheme II. 663 
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 664 

Figure 4-5: Examples of identifying people with hardhats (red) and without 665 

hardhats (magenta). 666 

For example, if ten people are not wearing hardhats on a construction site, under a 667 

recall value of 89.3% for scheme2 the proposed method could successfully identify nine of 668 

them. (Figure 4-5) shows some examples of the successful detection of individuals without 669 

hardhats on a construction site. The overall test results for detecting whether people are 670 

wearing hardhats indicated 94.3% precision and 89.4% recall. 671 

 Comparison 672 

The proposed method has been quantitatively compared with the safety helmet 673 

detection method proposed by Gualdi. (2009, 2011) (Gualdi, Prati et al. 2009, Gualdi, Prati 674 

et al. 2011) with the same test dataset, as shown in (Table 4-5). Both methods aim at issuing 675 

a safety alert to detect any person not wearing a hardhat on a construction site. The 676 

precisions and recalls of both methods were calculated and summarized. The values of the 677 



48 

 

precision and recall were significantly improved by the proposed method compared with 678 

that of Gualdi et al (2009, 2011). 679 

Matrix Scheme 2 Gualdi’s Method 

Precision 94.3 14.3 

Recall 89.4 15.8 

Table 4-5: Comparison between proposed method (Scheme 2) and Gualdi’s 680 

method. 681 

For detecting the hardhats in Gualdi’s Method, a head detector is employed to 682 

obtain the different head position. The head appearance is dominated by a circular shape. 683 

The method used the polar image transformation for better result and to generate lighter 684 

classifiers that will benefit the detection process with a lower computational load (on 685 

average, over the three color spaces, polar classifiers use 23% less weak classifiers). The 686 

used of a polar transformation was negatively affected the detection of white hard hats, as 687 

the system could not function correctly. The failure of the detection of white hardhats 688 

makes the system generate a lot of false alerts when being applied in the construction site. 689 

In the proposed method the detection model used only the HOG features without color 690 

cues. Therefore, it could detect the hardhats with different colors. 691 

 (Figure 4-6) illustrates an example of comparing the safety alerts issued by the 692 

method proposed by the authors and the one proposed by (Gualdi et al. 2009, 2011) 693 

(Gualdi, Prati et al. 2009, Gualdi, Prati et al. 2011). In this example, the proposed method 694 

successfully identified the man who was not wearing a hardhat, but Gualdi’s method failed 695 

to identify him. Moreover, the safety alert issued by their method was false, since the 696 
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person identified as not wearing a hardhat (red box) was actually wearing a hardhat 697 

(Gualdi, Prati et al. 2009, Gualdi, Prati et al. 2011). 698 

 699 

Figure 4-6: Comparison of safety alerts issued (a) Proposed method and (b) 700 

Gualdi et al.’s method  701 

The neural network could be used also to detect the different objects. Neural 702 

network implement the last view based approach of the detected object. It can estimate 703 

the orientation of any potential object to recognize it.  There were some limitation that 704 

makes the neural network not suitable to apply in our method. It is slow for detecting 705 

profile objects, which made the system inaccurate and not fast enough for using in other 706 

application especially for the real time application (Rowley, 1999). 707 

 708 

 709 

 710 

 711 
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 DISCUSSION AND EXPECTED 712 

CONTRIBUTION   713 

Based on the test results of this proposed method, several limitations were noted, 714 

limitations that could be improved on the future. First, with the current detection template, 715 

the method can only detect people that are standing or walking. Individuals in other 716 

positions (e.g. crouching down, bending, and sitting) cannot be detected successfully Those 717 

who are bending or sitting can only be detected when they change their posture to being 718 

standing. This missed detection problem arose because the detection template adopted for 719 

this version of the method was trained using images of standing workers. As a solution, we 720 

can extend the detection template by training it with images of workers in different 721 

postures. Another solution would be to create different detection models for each posture. 722 

The \These two solutions will be investigated for their effectiveness and a more generalized 723 

method for detecting construction workers with different postures will be developed in 724 

future work.  725 

Second, the proposed method relies on the spatial and geometric relation between 726 

the recognition windows of people and hardhats to perform the people-hardhat matching. 727 

Closely related to the first problem, the matching process between the hardhats and human 728 

bodies gives a negative result when individuals inside the construction site not standing or 729 

not walking. If people have other postures, the matching parameters proposed here will 730 

have to be correspondingly adapted. For example, if a construction worker is crouching 731 

down or bending, the position of the hardhat might be in the left-top area of the worker's 732 
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recognition region, as illustrated in (Figure 5-1). However, the exact matching parameters 733 

cannot be determined until the recognition of construction workers with different postures 734 

is implemented.    735 

 736 

Figure 5-1: Potential spatial and geometric relationship between a hardhat and a 737 

worker not standing or walking 738 

Third, one of the major limitations that affect the performance of the proposed 739 

method is occlusion, a problem similar to that of other vision-based methods. If any objects 740 

partially or fully occlude a worker, that worker cannot be detected or monitored with the 741 

method. The method can detect the workers when they appear clearly in the camera’s view. 742 

Installing cameras inside a construction site at a certain height level in order to reduce the 743 

chances of occlusions and guarantee the effectiveness of the proposed method could be an 744 
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effective way to solve this problem. Also, placing multiple cameras would make it possible 745 

to cover a larger area of a construction site.  746 

There is another issue, related to the proposed method’s use of background 747 

subtraction to reduce the video processing time. This step enables the method to only detect 748 

moving workers, hence workers without movement are not identified. Static workers were 749 

considered as a part of the background and were subtracted during the background 750 

subtraction. However, there are opportunities to detect static workers. For example, turning 751 

off the background subtractions and considering the whole field of the camera view as the 752 

foreground will enable the method to detect static workers, but this will slow the creation 753 

of a safety alert. Static workers could also be detected when they first enter a camera’s 754 

view. Therefore, the integration of the detection and tracking of construction workers will 755 

provide another way to continuously monitor workers even if they are static.  756 

The automated recognition of workers without hardhats accomplished through this 757 

research work provides an automated and remote way to monitor and control the safety of 758 

the workers inside the construction site. In doing so, a matching process performed between 759 

each detected hardhat and its corresponding human body. When the hardhats didn’t locate 760 

in one of the expected regions shown in figure (3-13) the safety alert issued. In some cases 761 

the safety alert issued wrongly, as the hardhat didn’t located in the exact region.  In order 762 

to solve this problem other methods will be examined in the future work such as The 763 

Artificial Neural Network.  The Artificial Neural Network could be used in the matching 764 

and detection processes for detecting the workers without hardhats.  The ANN could 765 

decrees the time of creating the detection models as it use a smaller numbers of training 766 
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images compared with the used method. Also the ability of detection the workers in 767 

difference bosses with different location of the hardhats could be examine using ANN and 768 

could give an acceptable result. 769 

 770 

 771 

 772 

 773 

  774 
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 CONCLUSION 775 

The construction sector is one of the most dangerous job sectors, and it also 776 

employs a large number of people, often with different levels of training. Governments 777 

have established safety regulations and procedures to increase construction site safety, but 778 

they are not enough. Construction workers may slip up and not always follow the safety 779 

requirements due to fatigue, distractions, carelessness, etc. Therefore, it is very important 780 

to ensure that these safety regulations and procedures are followed inside any construction 781 

site, all of the time.  782 

Currently, it is inspectors who are responsible for verifying safety regulations at 783 

construction sites. An inspector monitors and controls the safety at a given site. This thesis 784 

proposed a novel, vision-based method to automatically check whether people at 785 

construction sites are wearing hardhats. This method is comprised of four parts: human 786 

body detection, hardhat detection, matching and then the issuing safety alerts when 787 

construction workers are not wearing hardhats. The method is expected to facilitate and 788 

automatically monitor the work of construction site safety inspectors. The method has been 789 

tested with real site videos. According to the test results, the safety alerts were successfully 790 

issued when construction workers were not wearing hardhats with an overall precision of 791 

94.3% and a recall of 89.4%. The second hardhat detection scheme gave a higher safety 792 

alert precision and recall, indicating that the worksite safety in terms of hardhat-wearing 793 

could be monitored with live streaming or time-lapse videos Maximizing the hardhat 794 

detection recall played an important role in improving the precision for issuing safety alerts 795 

due to not wearing hardhats.  796 

797 
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