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ABSTRACT

Health Monitoring of Nonlinear Systems with Application to Gas Turbine Engines

Najmeh Daroogheh, Ph.D.

Concordia University, 2016

Health monitoring and prognosis of nonlinear systems is mainly concerned with system

health tracking and its evolution prediction to future time horizons. Estimation and prediction

schemes constitute as principal components of any health monitoring framework. In this thesis,

the main focus is on development of novel health monitoring techniques for nonlinear dynamical

systems by utilizing model-based and hybrid prognosis and health monitoring approaches.

First, given the fact that particle filters (PF) are known as a powerful tool for performing state

and parameter estimation of nonlinear dynamical systems, a novel dual estimation methodology

is developed for both time-varying parameters and states of a nonlinear stochastic system based

on the prediction error (PE) concept and the particle filtering scheme. Estimation of system

parameters along with the states generate an updated model that can be used for a long-term

prediction problem.

Next, an improved particle filtering-based methodology is developed to address the predic-

tion step within the developed health monitoring framework. In this method, an observation

forecasting scheme is developed to extend the system observation profiles (as time-series) to

future time horizons. Particles are then propagated to future time instants according to a re-

sampling algorithm in the prediction step. The uncertainty in the long-term prediction of the

system states and parameters are managed by utilizing dynamic linear models (DLM) for de-

velopment of an observation forecasting scheme. A novel hybrid architecture is then proposed
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to develop prognosis and health monitoring methodologies for nonlinear systems by integration

of model-based and computationally intelligent-based techniques. Our proposed hybrid health

monitoring methodology is constructed based on a framework that is not dependent on the struc-

ture of the neural network model utilized in the implementation of the observation forecasting

scheme. Moreover, changing the neural network model structure in this framework does not

significantly affect the prediction accuracy of the entire health prediction algorithm.

Finally, a method for formulation of health monitoring problems of dynamical systems

through a two-time scale decomposition is introduced. For this methodology the system dy-

namical equations as well as the affected damage model, are investigated in the two-time scale

system health estimation and prediction steps. A two-time scale filtering approach is developed

based on the ensemble Kalman filtering (EnKF) methodology by taking advantage of the model

reduction concept. The performance of the proposed two-time scale ensemble Kalman filters is

shown to be more accurate and less computationally intensive as compared to the well-known

particle filtering approach for this class of nonlinear systems.

All of our developed methods have been applied for health monitoring and prognosis of a

gas turbine engine when it is affected by various degradation damages. Extensive comparative

studies are also conducted to validate and demonstrate the advantages and capabilities of our

proposed frameworks and methodologies.
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Chapter 1

Introduction

1.1 Motivation

The maintenance cost reduction is one of the challenging goals in today’s highly complex and

interconnected engineering systems. Highly correlated to this objective is prediction of the

future health of a system. This problem has recently become important and an active area

of research for production and maintenance optimization goals. Research on reliable health

monitoring techniques can potentially reduce the downtime and breakdowns of a system, and

consequently enhance the cost savings and operational safety [6–13]. To achieve these goals,

prognosis and health management (PHM) techniques have been pursued as principal active

fields of research in various disciplines [13–18]. Moreover, research and development of new

prognosis and health monitoring techniques for nonlinear complex engineering systems have

1



a potential to lead to significant improvements in their safety and reliability and reductions in

their maintenance costs [8–12, 19–23].

The prognosis problem can be described as the prediction of the system’s long-term behav-

ior based on the evolution of its health indicators. In the domain of reliability engineering which

is a common field of research among electrical, mechanical and material engineering, this prob-

lem is called "failure prognostics". It consists of two main steps: tracking anomalous behavior

caused by a hidden damage from the system (noisy) observations, and predicting the remaining

useful life (RUL) of affected components in the system. Two principal approaches for solv-

ing the prognostics problem exist: data-based and model-based methods. Whereas data-based

methods are more efficient in cases where the experimental plant data is available, model-based

methods are considered to be more useful for systems with available mathematical models.

In prognosis and health management (PHM) systems there are two principal components,

namely: (i) the system health tracking that is to be achieved by analyzing the system behavior

signatures or its health parameters (also known as estimation module), and (ii) the system health

prediction that is to be achieved by analyzing the evolution of system signatures in the long term

horizon (also known as prediction module) for predicting the RUL of the system. Prognostic

methods attempt to predict the future health of a system for determining its RUL before failure

occurs [6]. Performance of prognostic schemes are mainly influenced by the accuracy of the

prediction method, that in turn can be affected by activities such as maintenance actions [24].

Therefore, uncertainty management is an important and challenging problem that should be

considered in development of a prognostic framework [25].
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In this thesis, we try to solve the health estimation and prediction problems for a class of

nonlinear systems using nonlinear filtering methods. The linear stochastic methods rely on the

linear and Gaussian model structures for performing the diagnosis and the prognosis parts in an

on-line health monitoring scheme. These methods may have proper results for fault diagnosis

of nonlinear systems, but for prognosis, in which we are particularly interested in the long-

term prediction of system health, they cannot necessarily guarantee convergence to an accurate

solution with acceptable bounded error margins. Therefore, the nonlinear filtering methods can

be used as solutions to overcome this problem. The considered application for this thesis is the

gas turbine engine system.

Generally, as far as the assumptions for the damage model are concerned, the health mon-

itoring problem is solved in two different levels according to two separate approaches. In the

first approach, no dynamics is considered for the damage and the system health tracking is done

based on the system health parameters estimation. In the second approach, the dynamics of the

hidden damage is augmented to the system state equations with slower dynamics which leads

to a two-time scale system formulation. In this direction, the following general problems can be

considered:

• How can the damage/degradation model be embedded in the system equations within a math-

ematical formulation?

• How can the problem of system health estimation and prediction be addressed in this frame-

work?
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1.2 Literature Review

In this section the literature related to the aforementioned problems and the approaches we

would like to follow in order to solve them is presented. The main approaches for establishing

the prognostics framework are known as data-based and model-based methods [26, 27]. There

exists also another approach in the literature known as hybrid approach which is a combination

of model-based and data-based prognostic approaches [24, 28]. However, our main focus in

this thesis is on model-based health monitoring and prognosis approaches, the main part of the

literature review is devoted to these methods. As an extension to our proposed model-based

prognosis and health monitoring approach, a hybrid prognosis approach has also been devel-

oped in this thesis. Therefore, a brief literature review regarding data-driven based methods in

prognosis has also been presented in this section.

When the mathematical model of a system and its affected damage mechanisms are known,

model-based prognostic methods have been proposed in the literature [29,30]. The model-based

approaches for solving the prognosis problem are useful when mathematical physical model of

the system and of the damage that affects it, are available. It should be noted that in model-

based prognosis methods the type of damage and the corresponding affected component must

be known, and damage identification is not considered in this framework [25, 31–41].

There are two frameworks for addressing the prognosis problem in model-based approaches.

The first approach was developed by electrical engineers first, proposed in [25] and further de-

veloped with other researchers in [38–41]. They consider the following two main parts for
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prognostics: (i) a joint state-parameter estimation problem, in which by using the model, the

health of a system or its components can be determined based on the observations; (ii) a predic-

tion problem in which the state-parameter distribution is simulated forward in time to compute

RUL and end of life (EOL) [25,38,39,42–46]. In this approach, the fault diagnosis and the fail-

ure prognosis are integrated on a single framework. The Particle Filtering (PF) methodology is

used as a general solution to a joint state-parameter estimation problem and for prediction prob-

lem where the prediction is made using hypothesized future inputs of the system. It is assumed

that these future inputs are known in advance.

The second model-based prognosis approach is mainly developed by mechanical engineers

[31–35, 47, 48] and mainly utilized to address the crack damage in rotary mechanical systems

bearings, and battery discharge process propagation. They have used the idea of time scale

separation in which damage is considered as a hidden slow process and causes non-stationary

behavior in the dynamics of the fast observable system. The two main parts of this algorithm

are: (i) damage tracking to estimate the changes in the slow variables of the system using a

tracking function based on the reference model short term prediction error and (ii) prediction of

the remaining useful life (RUL) of the system components based on tracking metrics and math-

ematical damage evolution models. Recursive methods for RUL prediction are also proposed

in [33], [36].
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1.2.1 Model-based Health Monitoring Methods Based on Particle Filters

System state estimation, as one of the main steps in health monitoring approaches, is a fun-

damental problem in control, signal processing, and fault diagnosis fields [49]. Investigations

on both linear and nonlinear state estimation and filtering in stochastic environments have been

an active area of research during the past several decades. Linear state estimation methods use

a simpler representation of an actual nonlinear system and can provide an acceptable perfor-

mance only locally around an operating point and in the steady state operational condition of

the system. Kalman filter based methods are used for performing prognosis in [50, 51], and a

multiple model moving horizon estimation algorithm is developed for online prediction of the

system health in [52]. However, as nonlinearities of the system dynamics become dominant, the

performance of linear approaches deteriorates and linear algorithms will not necessarily con-

verge to an accurate solution. Although an optimal state estimation solution for linear filtering

methods exists, nonlinear filtering methods suffer from generating sub-optimal or near-optimal

solutions. Consequently, investigation of nonlinear estimation and filtering problems remain a

challenging research area.

As mentioned earlier, linear filtering methods such as Kalman filters can have a suitable

result for the estimation scheme and might be useful for diagnosis, but as the prediction horizon

extends, the linear methods fail in predicting the nonlinear system behavior. Therefore, nu-

merous studies have appeared in the literature to solve and analyze standard nonlinear filtering

problems [53–59]. As a general classification these methods are grouped into the following [58]:

• Linearization methods (Extended Kalman Filter): the nonlinear problem is linearized in small
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time steps and then the linear Kalman filter is applied [53].

• Approximation using finite-dimensional nonlinear filters: the filtering problem is solved by

using approximation with exact nonlinear filters [54].

• Particle methods: the conditional distribution is approximated by utilizing a set of particles

for which a resampling algorithm is applied at each time step when a new observation is avail-

able [55, 60, 61].

• Classical Partial Differential Equation (PDE) method: the Zakai equation which is a stochastic

PDE (SPDE) is solved [53, 56, 62–64].

• Wiener chaos expansions: the Zakai equation is solved by means of decomposition into

Wiener integrals [57].

• Moment methods: approximation of conditional distribution is achieved by using its mo-

ments [58].

Particle filter (PF) is one of the most popular recursive nonlinear state estimation methods

which solves the Bayesian recursive relations by using Sequential Monte Carlo (SMC) meth-

ods [55, 60]1. These methods are the best known methods for numerically approximating the

solution of the filtering problem [58]. The PF-based methods are flexible and easy to imple-

ment [65] and they provide a general solution for the problem of state estimation in the nonlinear

state space system equations that are described by the Bayesian recursive methods. The main

challenge in the implementation of such methods appears when the system has a high dimension

(large number of states) and hence simulating and storing a large number of particles are neces-

sary in order to have a proper estimation of the system states. On the other hand, these methods

1SMC methods are a set of simulation-based methods that provide an approach to compute the posterior distri-

butions of the states, therefore the statistical estimates can be easily computed [55].
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suffer from the curse of dimensionality problem which causes particle degeneracy in a sample.

As the system dimension increases, the particle degeneracy effect grows exponentially [65].

One of the most important recent applications of nonlinear filtering methods is in the area

of fault diagnosis of dynamical systems that can include fault detection, isolation, and identi-

fication (FDII) modules. Diagnosis methods that are based on linearization techniques suffer

from poor detection and high rates of false alarms. Therefore, Monte Carlo filtering approach

based on particle filters was first proposed in [66] to address the fault detection and isolation

problem of nonlinear systems. In this work, the negative log-likelihood, which is calculated

for a predefined time window, is considered as a measure for the fault detection. The fault

isolation was achieved by using the augmentation of the fault parameters vector to the system

states to perform the estimation task. However, the augmented state space model tends to in-

crease the dimensionality of the model and as a result increases the number of required particles

for achieving a sufficiently accurate result. For decreasing the computational burden of this

method, the augmented model is used only after the fault detection stage and for only the fault

isolation stage. An external covariance adjustment loop was added to this augmented model

in [25] to enable the estimation algorithm to track changes in the system parameters in case of

fault occurrences.

The combination of a particle filtering algorithm and the log-likelihood ratio (LLR) test

in the multiple model environment, has led to the development of sensor/actuator FDI scheme

in [67] for a general class of nonlinear non-Gaussian dynamical systems but with the assumption

of full state measurements. The fault detection problem recently is addressed for a mobile
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robot based on the combination of the negative LLR test and particle filtering approach in [68].

However, both methods in [67] and [68] suffer from the high computational burden for on-line

implementation of the algorithms. Hence, the idea of parallelized particle filters for on-line fault

diagnosis is introduced in [68] to improve the algorithm performance.

A PF-based robust navigation approach was proposed in [69] to address multiple and si-

multaneous faults occurrences in both actuators and sensors in an underwater robot where an

anomaly is modeled by a switching-mode hidden Markov system. The component and actuator

fault detection and isolation of a point mass satellite was tackled in [70] by introducing several

particle filters that run in parallel and each rejects a different subset of the faults. A fault-

tolerant control strategy based on particle filter has been developed in [71] for unmanned aerial

systems where the prognostic information has been used in the reconfiguration mechanism of

the controller to increase the system reliability.

Generally, the main issues with applying standard particle filters to the fault diagnosis prob-

lem can be stated as follows [72]: (i) false diagnosis decisions due to low probabilities of tran-

sitions to fault states when there are fewer samples of states, and (ii) the exponential growth of

the required samples for accurately approximating the a posteriori distributions as dimension-

ality of the estimation problem increases. The risk-sensitive PF is introduced to address the first

problem and the variable resolution PF is developed to overcome the second problem in [73].

Moreover, Gaussian PF (GPF) is also introduced in [74] as an efficient algorithm for performing

fault diagnosis of hybrid systems faster than traditional methods that are based on PFs. Finally,

the sample impoverishment problem in particle filters due to fault occurrence in a hybrid sys-
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tem is addressed in [75]. The developed algorithm enables the PF method to be implemented

by fewer number of particles even under faulty conditions.

The on-line estimation of the system time-varying parameters by using particle filters is

another challenging and active area of research which can be indirectly related to the health

monitoring problem where the changes in the system health parameters can affect the state esti-

mation accuracy. There are two main classes of PF-based parameter estimation algorithms (for

on-line as well as off-line implementations) [76] known as Bayesian and maximum likelihood

(ML) approaches. In the Bayesian approach, a priori distribution is considered for the unknown

parameters and the a posteriori distribution of the parameters is approximated given the observa-

tions [77,78], whereas in the ML approach the estimated parameter is the maximizing argument

of the likelihood function given the observations [79–82]. In the ML framework for parameter

estimation, the maximization of any cost function can be performed based on gradient-based

search methods [79]. On the other hand, expectation maximization (EM) methods are only

applicable for maximization of the likelihood functions [82]. However, EM methods are not

suitable for on-line applications due to their high computational cost for implementation. The

recursive maximum likelihood method (RML) is recognized as a promising method for on-line

parameter estimation based on a stochastic gradient algorithm [80]. In order to avoid the direct

computation of the likelihood function gradient, an alternative method is proposed in [3] that

is known as the gradient-free ML parameter estimation. Despite the above, the on-line ML

methods suffer from the practical point of view of slow convergence rates and requiring large

number of particles to achieve accurate estimates [83].
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In the Bayesian framework, on-line implementation of particle filter-based parameter es-

timation algorithms are computationally intensive [84]. A general method that is capable of

simultaneously estimating the static (i.e., constant or fixed) parameters and time-varying states

of a system is developed in [2]. The work is based on the sequential Monte Carlo (SMC) method

in which an artificial dynamic evolution model is considered for unknown model parameters. In

order to overcome the degeneracy concerns arising from the particle filtering, kernel smoothing

technique as a method for smoothing the approximation of the parameters conditional density

has been utilized in [77]. The estimation algorithm is further improved by re-interpretation of

the artificial evolution algorithm according to the shrinkage scaling concept. However, the pro-

posed method in [2, 77] is only applicable for estimating fixed parameters of the system and it

uses the augmented state/parameter vector for the estimation task.

Among all the model-based approaches for prognosis, particle filtering (PF) Monte Carlo

schemes are considered as representing the state-of-the-art in failure prognosis [25,85,86]. Their

capability for taking into account and incorporating system parameters as augmented states

in the estimation scheme enables them to be suitable for uncertainty management in failure

prognosis through joint state and parameter estimation modules. This functionality performs

model adaptation along with the state tracking, and thus produces an adjusted model that can be

used for long term predictions.

A comprehensive review over around 50 papers dealing with the application of particle

filters in prognosis can be found in [87], in which a variety range of applications in different

systems such as rotary machines, Li-ion battery, water tank, pneumatic valve, wind turbine, etc.
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are discussed. According to this study, particle filters have a lot of advantages in the context of

prognosis when dealing with nonlinear non-stationary models and with non-necessary Gaussian

noises. The application of particle filters for health monitoring of Li-ion batteries when they are

affected by aging and degradation is also investigated in [88].

A statistical characterization of consumption profiles for Li-Ion batteries is addressed in [89]

where a state space model is used to modify the observation equation that incorporates most of

the non-linearities in the battery curves. This modification improves the convergence of the

state estimate and provides suitable initial conditions for the prognosis stage. However, particle

filters are subjected to exponential growth of computational complexity by increasing the state

dimension. Several methods are developed to overcome the curse of dimensionality in particle

filters [42–46]. Moreover, particle filters are not suitable for multi-parameter estimations in the

case of multi-damage problems and modifications are supposed to be done to utilize them for

this purpose. The model-based prognosis method based on PF is also used for addressing the

problem of fatigue damage and crack propagation in a turbine blade [25, 44].

It is important to note that the predictive capabilities of particle filters are limited and can

be used only for learning the current health of the system. Therefore, lots of issues regarding

the choice of the particle filter and its adaptation to the requirements of a specific industrial sys-

tem can be raised [87]. Hence, an uncertainty management system for a long-term prediction

horizon using particle filters was developed in [25] by utilizing the invariant particle weights

for future propagation of the particles whereas the regularization of particles is utilized to char-

acterize the future uncertainties by modifying the position of the particles. The accuracy of
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the prediction algorithm is shown to be improved by employing an outer correction loop to

modify the hyper-parameters of the process noise used in the nonlinear dynamical model of the

system specifically in the artificial evolution law utilized for estimating the system unknown

parameters.

The outer feedback correction loops in particle filtering based prognosis approaches have

been introduced in several works [38, 90, 91]. On the other hand, in another simpler prediction

approach in terms of computational efforts in [25], the particle weights are considered fixed for

future propagation since it was assumed that the error that can be generated by considering the

invariant particle weights for future time instants is negligible as compared to the other sources

of error that may affect the system in the practical application. A Bayesian approach has been

developed in [92] to address the uncertainty management problem in online condition-based

health monitoring based on the principle of subjective probability. Furthermore, for systems

with large number of states (as well as parameters) particle filters are not the best choice for

performing estimation.

1.2.2 Model-Based Health Monitoring Approaches Based on Two-Time

Scale Systems

The literature review related to health monitoring based on two-time scale formulation of dy-

namical systems including damage mechanism [31–35, 47, 48] can be limited to the progresses

that have been made so far in the development of estimation and prediction methods for such

systems. Therefore, we have mainly reviewed the estimation methods developed for such sys-
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tems which can also be applicable to fault diagnosis and failure prognosis schemes.

Singular Perturbation and Two-Time Scale Systems Overview

Two-time scale systems, also known as singularly perturbed systems are quantified by a discon-

tinuous dependence of the system properties on a small perturbation parameter that is usually

denoted by ε. Many physical systems, such as electrical power systems, electronic systems, me-

chanical systems, biological systems, economical systems and Quantum physics are examples

of singularly perturbed systems. These systems do exhibit a two-time scale behavior known as

the fast and slow dynamics. The two-time scale property makes the analysis and control of these

systems more complicated than conventional regular systems [93, 94].

Study of systems with two-time scale separation is necessary for development of the next

generation of health monitoring and condition based maintenance methods [31, 37]. For exam-

ple, micro cracks in a spinning shaft, the misalignment of machinery parts during operation,

corrosion process in the system components, and moisture accumulation in the composite ma-

terials of electrical circuits, etc. can be modeled as two-time scale systems [37].

Most of the significant work that have been conducted on singularly perturbed systems are

related to more than a decade ago which were mainly concentrated on stability analysis and

control of theses systems due to their important role in control system theory [94]. The filtering

problem for singularly perturbed systems has been considered as a challenging issue that cannot

be easily investigated through the deterministic observer based methods [93, 94]. Nevertheless,

several works have been conducted in order to address the stochastic filtering problem in linear
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singularly perturbed systems [95–98].

The problem of linear filtering in linear stochastic singularly perturbed systems was first

considered in [95] in which the main estimation framework is developed for continuous-time

systems with a composite type of filter. Exact decomposition of the fast and slow states in

design of Kalman filters was proposed in [96, 97] as per the decomposition approach in [99].

The filtering methodology based on fast-slow decomposition of Kalman filter gains has also

been addressed in [98].

Although, most of the work on singularly perturbed systems have been developed for continuous-

time systems, discrete-time singularly perturbed systems have also been extensively studied

in [100, 101]. Various filtering methods for linear discrete-time singularly perturbed systems

have been proposed in [102, 103] based on the decomposition approach and in [104] based on

outer and inner series for Kalman filter gain approximations in composite structures. Utiliza-

tion of H∞ concept in linear filtering theory has led to the development of H∞-based filtering

methods for state estimation in linear singularly perturbed systems as in [98, 105].

The nonlinear filtering problem of nonlinear singularly perturbed systems has been investi-

gated in only a few works [106–109]. In [106] sufficient conditions for solvablity of the filtering

problem in nonlinear singularly perturbed systems is obtained based on H2/H∞ approaches,

nevertheless the approximations to the filter gains were not addressed. In [107,108], the authors

proposed a hybrid homogenized method based on the particle filter approach to approximate

the nonlinear system states. This method is computationally very complex and its complexity

grows exponentially as the number of states increases, and therefore it is not computationally
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practical or efficient.

In [109], we have investigated the filtering problem in nonlinear singularly perturbed sys-

tems by using a hybrid robust extended Kalman filter approach. However, this method is not

capable of achieving accurate prediction results in the framework of health monitoring problem

as the prediction horizon time is extended.

Ensemble Kalman Filters (EnKF) Overview

The main problem associated with nonlinear filtering methods which rely on linearization as

in extended Kalman filter (EKF) is that they characterize the distribution of the state only by

its first and second moments (the same as in the linear case) and discard the higher order mo-

ments [110]. Although several methods have been proposed to address the estimation problem

in nonlinear systems, the related results are either too narrow in applicability or are computa-

tionally expensive [54, 111, 112]. As a result, a numerous range of suboptimal methods have

been developed for practical applications [110, 113, 114].

On the other hand by using Monte Carlo based nonlinear estimation methods, such as par-

ticle filters and ensemble Kalman filtering (EnKF) method, one can derive the Fokker-Planck

partial differential equation for the time evolution of the probability density function which

includes all the required information related to prediction error statistics [115, 116]. In other

words, the EnKF can be considered as an extension of the classical Kalman filter to large scale

nonlinear systems. It works by propagating an ensemble of N members which capture the

mean and covariance of the current state estimate [117]. Our main motivation for choosing
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EnKF method to develop a new two-time scale filter for addressing the health monitoring prob-

lem is related to the capability of EnKF approach in decreasing the dimensionality of the system

dynamics as the number of the system states increases.

A comprehensive survey on the EnKF is conducted in [116], where the EnKF is introduced

as a suboptimal solution for the general Bayesian problem of finding the a posteriori distri-

bution of the states given the a priori state estimation and the observation densities (Gaussian

densities). However, in [118] the convergence of the ensemble Kalman filter in the limit for

large ensembles to the Kalman filter is shown. The main application of the EnKF is identified

to be in atmospheric data assimilation, since one is dealing with high-dimensional states (large

number of states). Unfortunately, EnKF estimation approach has not been studied extensively

outside of this specific application domain and only a few works have been conducted outside

of the weather forecasting and oceanography related applications [119, 120].

The ensemble Kalman filter has a large group of users and numerous research has been

conducted on the application and theoretical aspects of this estimation and data assimilation

method [115,121–123]. The EnKF is related to the particle filter approach where a particle rep-

resents an ensemble member. The main difference between these two filters is on the assumption

that all the probability distributions involved in the EnKF are Gaussian. In circumstances that

this assumption is applicable, the EnKF method is more efficient than the particle filter [116].

The ensemble Kalman filter is a Monte Carlo approximation method for the Bayesian update

problems. There are around one hundred different implementations for the EnKF [122]. In the

original Kalman filter, it is assumed that all the probability distribution functions (pdfs) are
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Gaussian and the change of the mean and covariance matrices are linear. However, storing the

covariance matrix for advancing it in time is not computationally feasible for high-dimensional

systems (high order systems). For this reason, EnKFs were developed [124].

In the EnKF method, the distribution of the system state is represented by selecting a collec-

tion of state vectors, that is designated as an ensemble, and by replacing the covariance matrix

by the sample covariance which is computed from the ensembles. Consequently, advancing the

probability density function in time can be achieved by simply advancing each ensemble mem-

ber [125]. The main advantage of the EnKF approach over the classical Kalman filter as well

as extended Kalman filter (EKF) methods is that it does not require any model linearization and

can also be used to assimilate asynchronous observations. However, its main disadvantage is

considered to be a possible dynamic imbalance and sub-optimality [126].

As stated above, the computational cost in implementing a Kalman filter for large scale

systems is rather high. In order to overcome this challenge several methods have been proposed

in the literature based on the idea of reduced estimation. There are two ways to obtain a reduced

rank estimate of the a priori error covariance matrix [123, 127, 128]. There are those methods

that are based on linearizatin of the model dynamics to reduce the rank of the a priori covariance

matrix by projecting the model state on to a basis that has a much lower dimensionality than the

full model space [129,130]. The main reason for using EnKF in data assimilation applications is

due to the ease of its implementation and the low computational cost and storage requirements

[120].

In the other set of approaches, a relatively small set of ensembles are used to estimate the a
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priori error covariance [125, 131]. The ensembles are operated in such a manner that they are

random samples, however the ensemble members are actually not independent and the EnKF

will fuse them appropriately. The advantage of this method is that the advancing of the pdfs in

time is achieved by simply advancing each ensemble member individually.

In the EnKF-based state estimation method, the a priori ensembles are generated by prop-

agating the ensembles of initial conditions which are distributed according to the results of the

previous analysis [123]. The generation of the a posteriori ensemble members can be achieved

through different methods. One group is based on perturbed observations [116]. In this ap-

proach, a posteriori ensemble is obtained by assimilating a different set of observations to each

a priori ensemble member. Different sets of observations are created by adding random noise

to real observations, where this random noise is generated according to the observational error

covariance matrix.

In another group of methods, such as Kalman square-root filters, the analysis for a posteriori

state update is performed only once to obtain both the a posteriori state estimation mean and

the error covariance matrix. Subsequently, the a posteriori ensemble perturbations (to the mean

of the analysis) are generated by transforming the a priori ensemble perturbations to a set of

vectors that can represent the a posteriori error covariance matrix. Therefore, the a posteriori

analysis is rendered to the subspace of ensembles. Since there is an infinite set of a posteriori

perturbations that can be used to represent the a posteriori error covariance matrix, numerous

methods can be applied following the works in [124, 132–134]. An iterative extension to the

ensemble Kalman filter has been developed in [135] to improve the estimation capabilities of the
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filter in case that the relationship between the measurements and the system states is nonlinear.

One of the main goals in this thesis is to develop the EnKF estimation framework for two-

time scale systems known as singularly perturbed systems. Inspired from the local EnKF

method proposed in [123] in which the idea of covariance localization is proposed, we take

advantage of this covariance definition in order to reduce the dimension of the covariance ma-

trix in our estimation scheme to develop the Kalman filter in the dominant direction of the state

space (slow time scale) which results in a reduced ensemble size as well. Then, a correction is

made to the estimated slow states by taking into account the effects of fast states of the system

whereas the remaining system states are also estimated.

1.2.3 A Brief Literature Review on Data-Based and Hybrid Health Mon-

itoring Approaches

In this thesis, as mentioned earlier, the main focus is on developing new algorithms and/or

methods to enhance the existing model-based health monitoring approaches. Therefore, the

data-based health monitoring and prognosis approaches are not reviewed in detail. The main

reason that we intend to state a brief literature review over such methods is that in part of this

thesis our novel proposed hybrid health monitoring approach is introduced as a bridge between

data-based and model-based methods.

The data-driven based prognosis and health management as well as condition-based mon-

itoring approaches have been recently studied in detail in [136, 137] for different engineering
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applications. Data-based prognosis approaches can be based on statistical methods or neural

network schemes [138–141]. The bond graph (BG) modeling framework has been utilized

in [142] where parametric uncertainty is modeled in the interval form. The system parameter

is assumed to be affected by known a priori degradation model. Therefore, the prognostics

problem is addressed as joint state-parameter estimation problem where the degradation detec-

tion is achieved based on a passive manner. In [143] various data-driven techniques have been

compared for estimating the remaining useful life (RUL) of Li-ion batteries. The utilized data-

driven methodologies include neural networks, neuro-fuzzy networks, group method of data

handling, and random forests as an ensemble-based system. It is shown that the random forests

and neuro-fuzzy techniques have superior performance in terms of the RUL prediction error and

root mean square error.

Among prognosis methods that are concerned with avoiding time-based maintenance al-

ternatives, the rotary machinery systems are known to be an emerging field of application

[20–23, 144–146]. The PHM is also considered as the main step in the condition-based main-

tenance technology, known as the CBM for programming the maintenance policies in rotary

machinery systems [147, 148]. Given the importance of rotary machinery systems, the main

application in this thesis is considered to be a gas turbine engine where the compressor and the

turbine components are considered to be affected by degradation damages.

In the prognosis framework, the future health of the system is predicted in order to de-

termine the RUL of the system or its components before the failures occur [6]. However, as

mentioned earlier, the performance of the prognosis algorithm is closely related to the accuracy
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of the employed prediction method. This performance can be affected by activities such as

maintenance actions [24]. In order to achieve a reliable health prediction for prognosis, several

data-driven and soft computing or computationally intelligence methods have been developed

in the literature [136,137]. Data-driven and computational intelligence-based approaches tackle

the PHM task by considering the prediction error (where the prediction is accomplished by a

computational intelligent method) [149].

In other words, the discrepancy between the observation and its prediction is the only infor-

mation that is used for the purpose of developing the PHM scheme. Methods which are based on

neural networks and fuzzy logic are utilized in [150, 151]. In [150], uncertainty is represented

through a confidence distribution and managed by a learning procedure for the prediction step

to predict the system RUL.

In [151] the residual life of the system is predicted through projecting the fault estimate that

affects the system RUL. Given that data-driven and computational intelligent-based methods do

not require to consider the dynamical model of the system for developing a prediction scheme

[152], it is therefore reasonable that one would require a large set of historical data. However,

the main challenge in data-driven and computational intelligent-based prognostic methods is the

necessity of assuming sufficient available system historical data. This limitation of intelligent

based methods is one of the features to be addressed in the hybrid health monitoring structures

by combining intelligent-based prognostic methods with model-based algorithms [28, 153].

On the other hand, in model-based prognostic methods it is assumed that the mathematical

model of the system and its affected damage mechanisms are known and available [29]. How-
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ever, the mathematical model of a complex industrial system can be very complicated such that

in most of the approaches a simpler dynamics of the system which consists of fewer system

dynamics as compared to the real system, is considered for further investigation. Therefore, ig-

noring some of the system dynamics without considering their effect on the other dynamic of the

system can lead to erroneous estimation and prediction results in real applications. Therefore,

the utilization of hybrid methods which are the combination of both model-based and intelligent

based methods can potentially achieve more accurate results in the estimation and prediction of

the system health indicators.

Neural networks are known as effective tools for designing fault-tolerant control schemes

for MIMO discrete-time systems via online reinforcement learning algorithms [154]. By taking

advantage of the strength and capabilities of both model-based and computational intelligent-

based methods, a hybrid structure is expected to achieve a more robust health prediction result

that could lead to a more reliable RUL estimate as compared to utilizing only one of the above

methods alone. In [155] a machine condition prediction method based on adaptive neuro-fuzzy

(ANFIS) and high order particle filters has been proposed in the framework of hybrid prognosis

scheme. In this method the ANFIS constitutes a hidden Markov model to describe the fault

propagation process, therefore development of the ANFIS requires a large amount of historical

data to train the network for different fault scenarios. The high order particle filter in this method

is only utilized for predicting the time evolution of the fault indicator in the long term time

horizon. In [156], multilayer perceptron (MLP) and recurrent networks are used for performing

filtering and smoothing purposes (to increase the accuracy of the PHM system), and it was

shown that recurrent networks provide more promising results.
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1.3 General Problem Statement and Thesis Outline

The main objective of this thesis is to develop solid frameworks for health monitoring and

prognosis of nonlinear systems based on Monte Carlo nonlinear estimation methodologies. For

this purpose, two modeling frameworks are introduced. The first one which is based on dual

state/parameter estimation would not increase the computational cost of the estimation problem.

On the other hand, the second approach which is based on modeling the damage mechanism

with slower dynamics as compared to the system dynamics, results in a two-time scale system

formulation with augmented states (damage model). Therefore, the problem of health tracking

for such systems is converted to the problem of state estimation in singularly perturbed systems.

The main concerns in the development of the proposed frameworks are as follows:

1. Development of a general model structure for the damage mechanism which is capable

of representing a broad range of damages affecting the nonlinear system. The damage

mechanism is considered to be known in health monitoring frameworks for the prognosis

purpose. Hence, the methods that have been developed so far in the literature can only

work for a specific damage model.

2. Establishment of the entire health monitoring framework in stochastic environment due

to the fact that the damage model cannot be defined precisely in a deterministic mode.

3. Estimation of the time-varying health parameter of the system, which is an active re-

search area in estimation domain, in order to develop an online fault diagnosis and failure

prognosis framework for nonlinear systems.
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4. The accurate prediction of the system health based on the available observations in or-

der to overcome uncertainties that are originated from different sources such as model

inaccuracy, estimation error, assumed Gaussian noise model for the process, etc.

5. The developed frameworks should be capable of addressing more than one damage mech-

anism, when the system is subjected to more than one type of damage (multi-damage

mechanism).

In Chapters 2 to 6 of this thesis we try to address the aforementioned challenges related to

health monitoring and prognosis and improve the present methods in the literature. The main

focus is on health monitoring of rotary machinery systems (gas turbine application). These very

important and expensive systems are subjected to degradation damage due to their continuous

operation. Moreover, the main part of our research is devoted to system health tracking and

prediction. In what follows, a summary of the thesis chapters is given.

In Chapter 2, the background information and models related to the main case study utilized

in this thesis, i.e., gas turbine engine and its degradation mechanism formulation are reviewed.

In Chapter 3, a novel dual estimation methodology is developed for both time-varying pa-

rameters and states of a nonlinear stochastic system based on the recursive prediction error

(RPE) concept and the particle filtering scheme. Estimation of the system parameters along

with the states generate an updated model that can be used for a long-term prediction problem.

The developed estimation methodology is utilized to address the component fault diagnosis

problem in a nonlinear system when it is assumed to be affected by multiple faults.
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In Chapter 4, an improved particle filtering-based methodology is developed to address the

prediction step within the developed health monitoring framework. In this method an observa-

tion forecasting scheme is developed to extend the system observation profiles (as time-series) to

future time horizons. Particles are then propagated to future time instants according to a resam-

pling algorithm in the prediction step. The uncertainty in the long-term prediction of the system

states and parameters are managed by utilizing dynamic linear models (DLM) for development

of an observation forecasting scheme. The developed particle filtering-based methodology in

this chapter has been quantified in terms of the algorithm computational cost (for the implemen-

tation) as compared to standard prediction methods based on particle filters.

In Chapter 5, which is a joint work with my colleague Dr.Baniamerian, as an extension

to the prediction method developed in Chapter 4, a hybrid architecture is proposed to develop

prognosis and health monitoring methodologies for nonlinear systems by integration of model-

based and computationally intelligent-based techniques. Our proposed hybrid health monitoring

methodology is constructed based on a framework that is not dependent on the structure of the

neural network model utilized in the implementation of the observation forecasting scheme.

Moreover, changing the neural network model structure in this framework does not significantly

affect the prediction accuracy of the entire health prediction algorithm.

In Chapter 6, a method for formulation of health monitoring problem of dynamical systems

through a two-time scale decomposition is introduced. For this methodology the system dy-

namical equations as well as the affected damage model are investigated in the two-time scale

system health estimation and prediction steps. A two-time scale filtering approach is developed
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based on the ensemble Kalman filtering (EnKF) methodology by taking advantage of the model

reduction concept. The performance of the proposed two-time scale ensemble Kalman filters is

shown to be more accurate and less computationally intensive as compared to the well-known

particle filtering approach for this class of nonlinear systems.

Finally, all of our developed methods have been applied for health monitoring and prognosis

of a gas turbine engine when it is affected by various degradation damages. Extensive compar-

ative studies are also conducted to validate and demonstrate the advantages and capabilities of

our proposed frameworks and methodologies using MATLAB as a powerful design engineering

software.

1.4 Thesis Contributions

In this thesis, the health monitoring and prognosis problem of nonlinear systems is tackled. The

main contributions of this thesis are as follows:

1. Development of a unified model-based framework for health monitoring, diagnosis, and

prognosis of nonlinear systems based on particle filters which consists of the following

principal steps:

(a) Propose a general modeling strategy for damage mechanism that affects the system

health parameters which are themselves a function of the system hidden states (non-

measurable states).

(b) Development of a dual state and parameter estimation methodology based on par-
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ticle filters to address the nonlinear system health tracking step in the health mon-

itoring and prognosis problem, when the system health parameters are affected by

time-varying damages.

(c) Extend the developed dual estimation method to predict the future health of the

affected nonlinear system. This methodology is developed by incorporating the dy-

namical linear models (DLM) for Bayesian forecasting of uni-variate time-series in

an observation forecasting module which is enhanced to the particle filtering-based

dual estimation method.

2. Development of a hybrid framework for health monitoring and prognosis methodology by

extending the previously developed particle filtering-based prediction strategy and incor-

porating nonlinear time-series forecasting methods based on neural networks as opposed

to linear time-series methodologies.

3. Develop a solid health monitoring and prognosis framework according to two-time scale

formulation strategy using the ensemble Kalman filtering (EnKF) approach:

(a) Introduce a new strategy to incorporate the hidden damage model in the nonlinear

system dynamics by utilizing the singular perturbation theory.

(b) Develop a two-time scale ensemble Kalman filter (EnKF) methodology to address

the system health tracking and prediction steps in the health monitoring and prog-

nosis problem.
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Chapter 2

Background Information

As the main case study in this thesis, all of the developed health monitoring and prognosis ap-

proaches have been applied to a gas turbine engine model as a complex industrial system. The

main reason to choose the gas turbine engine is related to the increasing demand on aerospace

industry that has resulted in higher usage of aircraft engines. The growth rate in usage have

caused a faster aircraft engine deterioration and considering the importance of safety, it is es-

sential to predict the effects of the engine deterioration, which helps improve the engine utiliza-

tion. Engine degradation is due to different damages that can change the specific thrust, fuel

consumption, spool speed and turbine entry temperature. More serious effects of damage can

cause a shorter engine life.

In the past recent years there has been an increasing interest in the field of prognosis and

predicting the remaining useful life of jet engines components which can result in better safety
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and less expenses by avoiding late or early replacement of the components. In the prognosis

problem, in addition to the component faults, damages occurred to the components due to un-

balanced operating conditions of the system and also aging effects of the components must be

considered. The damage has a slower dynamics compared to fault and the aging effect can ac-

celerate the damage propagation process. The damage itself is not a fault but if it is accumulated

during time it can lead to failure of the entire system.

The main causes of degradation in a jet engine system can be categorized as erosion, corro-

sion, fouling and thermal distortion which can initiate and/or accelerate creep, low-cycle fatigue,

high-cycle fatigue and thermal fatigue damages. These kinds of damages may lead to crack ini-

tiation and propagation in turbine blades. In a gas turbine engine many components are subject

to deterioration but only a few of them have a significant impact on the engine life. These are

rotating components which are subject to cyclic and steady-state stresses. The turbine blade is

a very important part because it is under both highest rotating speed and gas temperature.

In this thesis, we study the effects of fouling and erosion phenomena as the main engine

performance degradation causes and consequently their effects on the life consumption of the

engine turbine component.

2.1 Model Overview

The mathematical model of a gas turbine used in this paper is a single spool jet engine as de-

picted in Figure 2.1 that was developed in [157,158]. The four engine states are the combustion
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Figure 2.1: Diagram of a typical gas turbine jet engine (Photo credit: Wikipedia).

chamber pressure and temperature, PCC and TCC, respectively, the spool speed S, and the nozzle

outlet pressure PNLT. The continuous-time state space model of the system is given as follows,

ṪCC =
1

cvṁcc

[(cpTCṁC + ηCCHuṁf − cpTCCṁT)− cvTCC(ṁC + ṁf − ṁT)],

Ṡ =
ηmechṁTcp(TCC − TT)− ṁCcp(TC − Td)

JS( π
30
)2

,

ṖCC =
PCC

TCC

1

cvṁcc

[(cpTCṁC + ηCCHuṁf − cpTCCṁT)− cvTCC(ṁC + ṁf

− ṁT)] +
γRTCC

VCC

(ṁC + ṁf − ṁT),

ṖNLT =
TM
VM

(ṁT +
β

β + 1
ṁC − ṁNozzle),

(2.1)

where the physical significance of all the model parameters is provided in Table 2.1. The five gas

turbine measured outputs are considered to be the compressor temperature (y1), the combustion

chamber pressure (y2), the spool speed (y3), the nozzle outlet pressure (y4), and the turbine

temperature (y5), namely

y1 = TC = Tdiffuser[1 +
1

ηC
[(

PCC

Pdiffuzer

)
γ−1
γ − 1]],

y2 = PCC, y3 = S, y4 = PNLT,

y5 = TCC[1− ηT(1− (
PNLT

PCC

)
γ−1
γ ].

(2.2)
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Table 2.1: Model Parameters Description

parameter description parameter description

cv Specific heat at constant pressure, J
kg.K

TT Turbine temperature, K

cp Specific heat at constant volume, J
kg.K

Td Intake temperature, K

ṁcc Combustion chamber mass flow rate, kg/s J Rotor moment of inertia, kg.m2

TC Compressor temperature, K R Gas constant, J
kg.K

Hu Fuel specific heat, J
kg

γ Heat capacity ratio

ηCC Combustion chamber efficiency VCC Combustion camber Volume, m3

ṁf Fuel flow, kg/s TM Mixer temperature, K
ṁT Turbine mass flow rate, kg/s VM Mixer volume, m3

ηT Turbine efficiency ṁnozzle Nozzle mass flow rate, kg/s
ṁC Compressor mass flow rate, kg/s Pdiffuzer Diffuzer pressure, bar
ηC Compressor efficiency Tdiffuzer Diffuzer temperature, K

ηmech mechanical efficiency β bypass ratio

2.1.1 Degradation Model Description

In this subsection degradation model that can be originated from different sources in the single

spool jet engine system are discussed. The introduced models are utilized as a bench test for

studying health monitoring and prognosis of the system components based on model based ap-

proaches when empirical data are not available. To validate the developed degradations caused

by fouling and erosion, GSP software is used [159]. This software is a powerful tool to study

the behavior of the jet engine system.

The main causes of degradation in gas turbine engine system can be generally classified as

follows [160]:
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1. Fouling:

Fouling is introduced as accumulation of unwanted particles on solid surfaces which cause the

degradation of flow capacity and efficiency in jet engine. Fouling can be formed in different

parts of the air path (stators, guide vanes and blades) and affects the aerodynamic behavior of

the system and eventually reduce its flow rate. As a result, reduction of power, loss of efficiency

and increase the fuel consumption, are the consequences of fouling in a jet engine system [161].

Fouling phenomena mostly occurs in compressor part. Decreasing the mass flow area and

efficiency will result in the engine performance reduction and also increase in either the ro-

tational speed or turbine entry temperature (TET) in order to maintain the required thrust. In

the present model providing the required thrust is achieved by an increase in the turbine entry

temperature.

These factors together will cause a shorter remaining useful life time of the engine [160].

To represent the fouling effect on the engine performance, fouling index (FI) is used based on

the work of Naeem [162]. This index is determined based on the reduction ratio of 1 : 2 for

compressor mass flow rate to compressor efficiency, and it is presented by FI. For example

FI = 1% means 0.5% reduction in mass flow rate while 1% reduction in the compressor effi-

ciency. Therefore, by applying the effects of the fouling to the system dynamics (2.1) and output

equation (2.2) result in manipulating the compressor efficiency and mass flow rate as follows

ηC → (1− FI(t))ηC, and ṁC → (1− 0.5FI(t))ṁC (2.3)
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2. Erosion:

Erosion is defined as the removal of the material from the flow path components by hard parti-

cles that can cause aerodynamic changes in the behavior of the blades [161]. This phenomenon

will result in increasing the pressure losses, performance degradation and even blade failure.

Erosion can reduce up to 5% of performance in compressor or turbine and consequently the

engine life [160]. Erosion Index (EI) is applied as a linear degradation per cycle.

To represent the erosion effect on the engine performance in a quantitative way, the erosion

index is determined and is represented by EI. This index is determined based on the ratio of

the reduction of turbine efficiency and increase in the turbine mass flow with the ratio of 1:2.

For example if EI = 1% means 0.5% increase in mass flow rate while 1% decrease in turbine

efficiency [160]. Erosion Index is also applied as a linear degradation per cycle. Thus, by

applying the effects of the erosion to the system dynamics (2.1) and output equation (2.2) result

in manipulating the turbine efficiency and mass flow rate as follows

ηT → (1− EI(t))ηT, and ṁT → (1 + 0.5EI(t))ṁT (2.4)

It must be mentioned that to maintain a constant maximum take-off thrust in the degraded

engine during cycles of operation, fuel flow injection to the combustion chamber has to be

increased to have higher temperature in the turbine inlet. So the amount of increase in the fuel

flow for each cycle is approximated through a PID mechanism based on the error between the

desired pressure ratio which generates the desired thrust and the calculated pressure ratio of the

engine in different scenarios.
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2.2 Summary

In this chapter, the background information related to the main case study in this thesis, namely,

gas turbine engine are presented. The introduced models have been extensively used in other

chapters of this thesis to validate the developed methodologies for the proposed health monitor-

ing and prognosis frameworks. The fouling and erosion phenomena have also been introduced

and formulated in this chapter to be utilized as the degradation damage that affects the gas

turbine engine health condition which can lead to failure of the entire system.
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Chapter 3

Particle Filter-Based Fault Diagnosis of

Nonlinear Systems Using a Dual Particle

Filters Scheme

In this chapter, a dual estimation methodology is developed for both time-varying parameters

and states of a nonlinear stochastic system based on the Prediction Error (PE) concept and the

Particle Filtering (PF) scheme. In this method we utilize nonlinear Bayesian and Sequential

Monte Carlo (SMC) methods to develop, design, analyze, and implement a unified framework

for both the state and parameter estimation as well as fault diagnosis problems of nonlinear

systems. An on-line parameter estimation scheme is developed inspired from the recursive pre-

diction error (RPE) method by using the particle filters (PF) approach. Specifically, by using
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the prediction error to correct time-varying changes in the system parameters, a novel method is

proposed for parameter estimation of nonlinear systems based on the PF. In the implementation

of our proposed scheme, a dual structure for both state and parameter estimation is developed

within the PF approach. In other words, the hidden states, and variations of the system param-

eters are estimated through two concurrent filters. Convergence and stability of our proposed

dual estimation strategy are shown to be guaranteed formally under certain conditions.

The proposed dual estimation framework is then utilized for addressing the challenging

problem of fault diagnosis of nonlinear systems. The performance capabilities of our proposed

fault diagnosis methodology are demonstrated and evaluated by its application to a gas turbine

engine through accomplishing state and parameter estimation under simultaneous and concur-

rent component fault scenarios. The health parameters of the system are considered to be slowly

time-varying during the engine operation. Extensive simulation results are provided to substan-

tiate and justify the superiority of our proposed fault diagnosis methodology when compared

with another well-known alternative diagnostic technique that is available in the literature.

The main contributions of this chapter are now summarized as below:

1. Propose a general modeling strategy for damage mechanism that affects the system health

parameters which are themselves a function of the system hidden states.

2. Development of a dual state and parameter estimation methodology based on particle

filters to address the nonlinear system health tracking step in the health monitoring and

prognosis problem, when the system health parameters are affected by time-varying dam-
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ages.

The remainder of this chapter is organized as follows. In Section 3.1, the statement of the

nonlinear filtering problem is presented. Our proposed dual state/parameter estimation scheme

is developed in Section 3.2, in which state and parameter estimation methods are first devel-

oped concurrently and subsequently integrated together for simultaneously estimating the sys-

tem states and parameters. The stability and convergence properties of the proposed schemes

under certain conditions are also provided in Section 3.2. Our proposed fault diagnosis frame-

work and formulation are also provided in Section 3.2. In Section 3.3, extensive simulation

results and case studies are provided to demonstrate and justify the merits of our proposed

method for fault diagnosis of a gas turbine engine under simultaneous (the same time in all

components) and concurrent (one component after the other) component faults. Finally, the

chapter is concluded in Section 3.4.

3.1 Problem Statement

The problem under consideration is to obtain an optimal estimate of states as well as time-

varying parameters of a nonlinear system whose dynamics is governed by a discrete-time stochas-

tic model,

xt+1 = ft(xt, θt, ωt), (3.1)

yt = ht(xt, θt) + νt, (3.2)

where xt ∈ R
nx is the system state, t ∈ N, ft : R

nx ×R
nθ ×R

nω −→ R
nx is a known nonlinear

function, θt ∈ R
nθ is an unknown and possibly time-varying parameter vector governed by
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an unknown dynamics. The function ht : R
nx × R

nθ −→ R
ny is a known nonlinear function

representing the map between the states, parameters and the system measurements, and ωt and νt

are uncorrelated stochastic process and measurement noise sequences with covariance matrices

Lt and Vt, respectively. The following assumption is made regarding the dynamical system (3.1)

and (3.2).

Assumption 3.1. The vector {xt, θt} ranges over a compact set denoted by DN , for which the

functions ft(xt, θt, ωt) and ht(xt, θt) are continuously differentiable with respect to the state xt

as well as the parameter θt.

The main objective of the dual state and parameter estimation problem is to approximate the

following conditional expectations:

E(φ1(xt)|y1:t, θt−1) =

∫
φ1(xt)p(xt|y1:t, θt−1)dxt, (3.3a)

E(φ2(θt)|y1:t, xt) =
∫
φ2(θt)p(θt|y1:t, xt)dθt, (3.3b)

where y1:t = (y1, y2, ..., yt) denotes the available observations up to time t, φ1 : Rnx → R and

φ2 : R
nθ → R are functions of states and parameters, respectively, that are to be estimated. The

conditional probability functions p(xt|y1:t, θt−1)dxt and p(θt|y1:t, xt)dθt are to be approximated

by the designed particle filters (PFs) through determining the filtering distributions according to

p̂N(xt|y1:t, θt−1)dxt =
N∑

i=1

w(i)
xt
δ
x
(i)
t

(dxt),

p̂N(θt|y1:t, xt)dθt =
N∑

j=1

w
(j)
θt
δ
θ
(j)
t

(dθt),

(3.4)

where the subscript N in p̂N(.) implies that the state/parameter conditional probability dis-

tributions are obtained from N particles. Each state particle x
(i)
t has a weight w

(i)
xt and each

parameter particle θ
(j)
t has a weight w

(j)
θt

, where δ(.) denotes the Dirac-delta function mass that

is positioned at xt or θt.
39



Based on the approximations used in equation (3.4), our goal is to address the convergence

properties of the subsequently designed estimators to their true optimal estimates and also to

develop and demonstrate under what conditions this convergence remains valid.

3.2 Proposed Dual State/Parameter Estimation and Fault Di-

agnosis Framework

In this section, the main theoretical framework for our proposed dual state/parameter filtering as

well as the fault diagnosis methodology of the nonlinear system (3.1) and (3.2) are introduced

and developed.

3.2.1 Dynamic Model in Presence of Time-Varying Parameters

Our first task is to represent the model (3.1) and (3.2) into another framework for our subse-

quent theoretical developments. Let (Ω,F , P ) denote the probability space on which the three

real vector-valued stochastic processes X = {Xt, t = 1, 2, ...},Θ = {Θt, t = 1, 2, ...}, and

Y = {Yt, t = 1, 2, ...} are defined. The nx-dimensional process X describes the evolution of

the hidden states, the nθ-dimensional process Θ describes the evolution of the hidden system

parameters that are conditionally independent of the states, and the ny-dimensional process Y

denotes the observation process of the system.

The processes X and Θ are Markov processes with the associated initial state and parameter
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X0 and Θ0, respectively. They are drawn from the initial distributions πx0(dx0) and πθ0(dθ0),

respectively. The dynamic evolution of states and parameters are modeled by the Markov tran-

sition kernels Kx(dxt|xt−1, θt−1) and Kθ(dθt|θt−1, xt), that also admit densities with respect to

the Lebesgue measure 1, such that

P (Xt ∈ A1|Xt−1 = xt−1,Θt−1 = θt−1) =

∫

A1

Kx(xt|xt−1, θt−1)dxt, (3.5)

P (Θt ∈ A2|Θt−1 = θt−1, Xt = xt) =

∫

A2

Kθ(θt|θt−1, xt)dθt, (3.6)

for all A1 ∈ B(Rnx) and A2 ∈ B(Rnθ), where B(Rnx) and B(Rnθ) denote the Borel σ-algebra

on R
nx and R

nθ , respectively. The transition kernel Kx(xt|xt−1, θt−1) is a probability distribu-

tion function (pdf) that follows the pdf of the stochastic process in process (3.1). The probability

density function for approximating the parameter kernel transition Kθ(θt|θt−1, xt) is to be pro-

vided in the subsequent subsections.

Given the states and parameters, the observations Yt are conditionally independent and have

the marginal distribution with a density with respect to the Lebesgue measure as given by,

P (Yt ∈ B|Xt = xt,Θt = θt) =
∫
B
ρ(yt|xt, θt)dyt, (3.7)

where ρ(yt|xt, θt) is a probability density function that follows the probability density function

of the stochastic process in equation (3.2).

In the dual state/parameter estimation framework, at first the state xt is estimated (which

1The transition kernel K(dxt|xt−1) admits density with respect to the Lebesgue measure if one can write

P (Xt ∈ dxt|Xt−1 = xt−1) = K(dxt|xt−1) = K(xt|xt−1)dxt.
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is denoted by x̂t|t). The estimated value at time t is then used to estimate the parameter θt

at time t (which is denoted by θ̂t|t). In the Bayesian framework for parameter estimation, the

prior evolution of parameters are not specified, therefore it is necessary to consider a given

evolution for the parameters in order to design an estimation filter. In our proposed dual structure

for the state estimation filter, first the parameters are assumed to be constant at time t − 1 at

their estimated value θ̂t−1|t−1, and then for the parameter estimation filter they are evolved to

the next time instant by applying an update law that is inspired from the recursive prediction

error method. The details regarding our proposed methodology are presented in the subsequent

subsections in which the filtering of states and parameters are fully described and developed.

3.2.2 The Dual State/Parameter Estimation Framework

In our proposed dual state/parameter estimation framework, two filters are running concurrently.

At every time step, the first PF-based state filter estimates the states by using the current avail-

able estimate of the parameters, θ̂t−1|t−1, whereas the second PF-based parameter filter estimates

the unknown parameters by using the current estimated states, x̂t|t. The developed schematic is

shown in Figure 3.1.

In our dual estimation framework, the well-known maximum a posteriori (MAP) solution

corresponding to the marginal estimation methods based on the decoupled approach is used for

solving the dual estimation problem [163]. In this method, the joint state/parameter marginal

density p(xt, θt|y1:t) is expressed as

p(xt, θt|y1:t) = p(xt|θt, y1:t)p(θt|y1:t), (3.8)
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Figure 3.1: The schematic of the dual particle filter.

where p(xt|θt, y1:t) and p(θt|y1:t) denote the state and parameter marginal densities, respec-

tively. Assuming that the variations of parameters are slow when compared to the system state

time variations, one can use the approximation θt ≈ θt−1, so that the joint marginal density is

approximated as

p(xt, θt|y1:t) ≈ p(xt|θt−1, y1:t)p(θt−1|y1:t). (3.9)

Our ultimate goal is to maximize the two marginal distribution terms in expression (3.9) sepa-

rately according to the decoupled approach in [163] as follows

x̂t|t = argmaxxt
p(xt|θt−1, y1:t), θ̂t|t = argmaxθt−1

p(θt−1|y1:t). (3.10)

In the above decoupled methodology, one attribute is optimized at a time by keeping the

other attribute as fixed and then alternating them. Associated with optimization of both marginal

distributions, different cost functions can be chosen [163]. For developing a dual extended

Kalman filter, corresponding to specific cost functions of the parameter marginal density, vari-

ous estimation methods have been proposed in the literature [163, 164]. For example, the max-

imum likelihood (ML) and prediction error approaches are selected for marginal estimations.

The main motivation for choosing these two approaches is due to the fact that one considers to
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maximize only the marginal density p(θt−1|y1:t) as opposed to the joint density p(xt, θt−1|y1:t).

However, in order to maximize the parameter marginal density, it is also necessary to generate

state estimates that are produced by maximizing the state marginal density p(xt|θt−1, y1:t).

It should be noted that in marginal estimation methods no explicit cost function is considered

for maximization of the state marginal distribution, since the state estimation is only an implicit

step in marginal approaches and the joint state/parameter cost is used that may have variety of

forms in different filtering algorithms [163]. In our proposed dual particle filtering framework,

p(xt|θt−1, y1:t) is approximated by the state filtering distribution p̂N(xt|θt−1, y1:t) from equation

(3.4). Next, the prediction error cost function is chosen for maximization of the parameter

marginal density, where this cost function is implemented in a recursive manner in order to

attain a less computational cost [165].

In the subsequent subsections, specific details regarding the concurrent state and parameter

estimation filters design and development are provided.

3.2.3 The State Estimation Problem

For designing the state and parameter estimation filters, our main objectives are to approximate

the integrals in equations (3.5) and (3.6) by invoking the particle filter (PF) scheme as well

as to approximate the estimate of the conditional state and parameter distributions. Consider

πxt|t−1
(dxt) =

∫
Rnx

πxt−1|t−1
(dxt−1)Kx(dxt|xt−1, θt−1) to denote the a priori state estimation

distribution before the observation at time t becomes available, and πθt−1|t−1
(dθt−1) to denote

44



the marginal distribution of the parameter at time t− 1. The a posteriori state distribution after

the observation at the instant t becomes available is obtained according to the following rule,

πxt|t
(dxt) ∝ ρ(yt|xt, θt−1)πxt|t−1

(dxt)πθt−1|t−1
(dθt−1). (3.11)

In the above it is assumed that θ̂t−1|t−1 is known for this filter. Therefore, the last distribution in

the right hand side of equation (3.11) is set to one.

The particle filter (PF) procedure for implementation of the state estimation and for deter-

mining πxt|t
(dxt) consists of two main steps, namely (a) the prediction step (time update step),

and (b) the measurement update step. Consider one states in the N particles at time t. The

prediction step utilizes the knowledge of the previous distribution of the states as well as the

previous parameter estimate, these are denoted by {x̂(i)t−1|t−1, i = 1, ..., N} (corresponding to N

estimated state particles that follow the distribution πxt−1|t−1
(dxt−1)) and θ̂t−1|t−1, respectively,

as well as the process model given by equation (3.1). In other words, the prediction step is

explicitly governed by the following equations for i = 1, ..., N , namely

x̂
(i)
t|t−1 = ft(x̂

(i)
t−1|t−1, θ̂t−1|t−1, ω

(i)
t ), (3.12a)

ŷ
(i)
t|t−1 = ht(x̂

(i)
t|t−1, θ̂t−1|t−1), (3.12b)

Σx̂t|t−1
= (x̂

(i)
t|t−1 −

1

N

N∑

i=1

x̂
(i)
t|t−1)(x̂

(i)
t|t−1 −

1

N

N∑

i=1

x̂
(i)
t|t−1)

T, (3.12c)

where ω
(i)
t denotes the process noise related to each particle x̂

(i)
t|t−1 and is drawn from the noise

distribution with the probability distribution function pωt
(.), and x̂

(i)
t|t−1 denotes the independent

samples generated from equation (3.12a) for i = 1, ..., N particles. Moreover, ŷ
(i)
t|t−1 denotes the

independent samples of the predicted outputs that are evaluated at x̂
(i)
t|t−1 samples, and Σx̂t|t−1

denotes the a priori state estimation covariance matrix.
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For the first step, the one-step ahead prediction distribution known as the a priori state

estimation distribution is now given by,

π̃N
xt|t−1

(dxt) ,
1

N

N∑

i=1

δ
x̂
(i)
t|t−1

(dxt), (3.13)

For the second step, the information on the present observation yt is used. This results in

approximating πxt|t
(dxt), where θ̂t−1|t−1 is considered to be given from a parameter estimation

filter and obtained from the distribution πN
θt−1|t−1

(dθt−1). Consequently, the particle weights w
(i)
xt

are updated by the likelihood function (the importance function) according to w
(i)
xt ∼ pνt(yt −

ŷ
(i)
t|t−1) = ρ(yt|x̂(i)t|t−1, θ̂t−1|t−1), where pνt(.) denotes the probability distribution function of the

additive noise of the output and is evaluated at yt − ŷ
(i)
t|t−1.

In this thesis, since our ultimate goal is in developing a fault diagnosis algorithm that is

practically stable, the structure of regularized particle filters (RPF) is chosen that has a better

performance in cases that the sample impoverishment is severe, that is quite common and almost

the case in all practical applications [166]. This characteristics of the RPFs are related to the

fact that they are capable of transforming the discrete-time approximation of the a posteriori

state estimation distribution πN
xt|t

(dxt) into a continuous-time one. Consequently, the resam-

pling step is modified in such a manner that the new resampled particles are obtained from an

absolutely continuous-time distribution with N different locations x̂
(i)
t|t from that of x̂

(i)
t|t−1 [167].

Therefore, where the probability for taking the k-th particle is P (x̂
(i)
t|t = x̂

(k)
t|t−1) = w̃

(k)
xt ,

ρ(yt|x̂(k)
t|t−1

,θ̂t−1|t−1)
∑N

k=1 ρ(yt|x̂
(k)
t|t−1

,θ̂t−1|t−1)
, and w̃

(k)
xt for k = 1, ..., N denotes the normalized particle weights. In

other words, the particle selection in the resampling step is performed for particles that have

higher probabilities of ρνt(yt − ŷ
(k)
t|t−1).
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For the resampling step, two main choices can be considered that are known as (i) Bayesian

bootstrap, and (ii) Sampling importance resampling (SIR) [55]. Although both approaches are

applicable for this filter, the bootstrap method is chosen in this chapter. Therefore, the a poste-

riori state estimation distribution is approximated by π̃N
xt|t

(dxt) before one performs the resam-

pling by using the RPF structure [167], and by πN
xt|t

(dxt) after one performs the resampling that

is provided below,

π̃N
xt|t

(dxt) ≈
Nreg∑

l=1

N∑

i=1

w̃(i)
xt

|A−1
t |
bnx

K(
1

b
A

−1
t (x

regl
t − x̂

(i)
t|t−1)),

w̃(i)
xt

,
ρ(yt|x̂(i)t|t−1, θ̂t−1|t−1)

∑N
i=1 ρ(yt|x̂

(i)
t|t−1, θ̂t−1|t−1)

,

πN
xt|t

(dxt) =
1

N

N∑

i=1

δ
x̂
(i)
t|t

(dxt) → x̂t|t =
1

N

N∑

i=1

x̂
(i)
t|t ,

(3.14)

where x
regl
t , l = 1, .., Nreg denotes the regularized state vector that is evaluated at Nreg points

that are obtained from the absolutely continuous-time distribution of the particles as given by

Xt|t−1 = [x̂
(1)
t|t−1, ..., x̂

(N)
t|t−1],

x
reg1
t = min(Xt|t−1)− std(Xt|t−1), x

regNreg

t = max(Xt|t−1) + std(Xt|t−1),

dxreg = (x
regNreg

t − x
reg1
t )/(Nreg − 1),

x
regl
t = x

regl−1

t + dxreg, l = 2, ..., Nreg,

(3.15)

where std denotes the first standard deviation of the particles from their mean. Hence, {x̂(i)t|t}Ni=1

is obtained from the continuous-time distribution through the regularization kernel K that is

considered to be a symmetric density function on R
nx [167]. The matrix At in equation (3.14)

is chosen to yield a unit covariance value in the new x̂
(i)
t|t population and AtA

T
t = Σx̂t|t−1

. The

constant b denotes the bandwidth of the kernel, and x̂t|t denotes the a posteriori state estimation

at time t.
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We are now in a position to introduce our overall particle filter (PF) scheme for imple-

menting the state estimation filter. Our goal for proposing this algorithm is to ensure that an

approximation to E(φ(xt)|y1:t, θt−1) by φ(xt) = xt takes x̂t|t ∼ πN
xt|t

(dxt) =
1
N

∑N
i=1 δx̂(i)

t|t

(dxt),

where πN
xt|t

(dxt) denotes the a posteriori distribution of {x̂(i)t|t}Ni=1 (after the resampling from

{x̂(i)t|t−1}Ni=1), that is given by x̂t|t =
1
N

∑N
i=1 x̂

(i)
t|t . The estimated output from the state estimation

filter is also given by ŷt = ht(x̂t|t, θ̂t−1|t−1).

The State Estimation Particle Filter Scheme

1. Initialize the PF scheme with N particles, {x(i)0 }Ni=1 ∼ πx0(dx0) and the parameters θ0

(the mean of the parameter initial distribution πθ0(dθ0)).

2. Draw ω
(i)
t ∼ pωt

(.), where pωt
(.) denotes a given distribution for the process noise in the

filter, and then predict the state particles x̂
(i)
t|t−1 according to equation (3.12a).

3. Compute ŷ
(i)
t|t−1 from equation (3.12b) to obtain the importance weights {w(i)

xt }Ni=1 as

w
(i)
xt = ρ(yt|x̂(i)t|t−1, θ̂t−1|t−1), i = 1, ..., N, and normalize them to w̃

(i)
xt =

w
(i)
xt

∑N
i=1 w

(i)
xt

.

4. Resampling: Draw N new particles with the replacement for each i = 1, ..., N , according

to P (x̂
(i)
t|t = x̂

(k)
t|t−1) = w̃

(k)
xt , k = 1, ..., N , from the regularized kernel K where x̂

(i)
t|t ∼

π̃N
xt|t

(dxt) as given by equation (3.14).

5. Calculate x̂t|t from the conditional distribution that is given by equation (3.14),

πN
xt|t

(dxt) =
1
N

∑N
i=1 δx̂(i)

t|t

(dxt) with equally weighted x̂
(i)
t|t as x̂t|t =

1
N

∑N
i=1 x̂

(i)
t|t .

6. Update the parameters from the parameter estimation filter (to be specified in the next
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subsection).

7. Set t := t+ 1 and go to Step 2.

Following the implementation of the above state estimation filter, the parameter estimation

filter that is utilized for adjusting the parameters is now described in detail in the next subsection.

3.2.4 The Parameter Estimation Problem

One of the main contributions of this thesis is to develop a novel PF-based parameter estimation

filter within our proposed dual state/parameter estimation framework by utilizing the prediction

error (PE) concept. For this methodology it is assumed that the a priori distribution of the time-

varying parameters is not known. Moreover, the estimated states that are generated by the state

estimation filter provided in the previous subsection will be used. Therefore, it is imperative that

one considers a dynamical model associated with the parameters evolution in order to estimate

the density function πθt|t(dθt).

The most common dynamical model that is considered for the parameter propagation (in

case of the system with constant parameters) is the conventional artificial evolution law. In this

representation small random disturbances are added to the state particles (parameters) between

each consecutive time step [2]. However, in our work, the conventional update law for the

parameters is modified to include the output prediction error as an extra term to the parameter

evolution law to allow one to deal with time variations in the parameters that can affect the

system output.

49



In order to derive the parameter update law, an algorithm based on the prediction error (PE)

method is proposed by minimizing the expectation of a quadratic performance index J̄(θt−1)

with respect to θt−1. This is due to the fact that our parameter estimation algorithm for obtaining

the distribution of the a posteriori parameter estimate is based on the kernel smoothing that

uses the shrinkage of the particle locations. This method attempts to force the particles towards

their mean from the previous time step, i.e. the estimated value of θt−1, and is denoted by

θ̂t−1|t−1 (before adding noise to the particles). This is also used in the state estimation filter for

approximating x̂t|t. Therefore, our goal is to investigate the convergence properties of θ̂t−1|t−1

whose boundedness ensures the boundedness of θ̂t|t. Towards this end, the performance index

is now selected as E(J̄(θt−1)|y1:t−1, xt) =
∫
J̄(θt−1)p(θt−1|y1:t−1, xt)dθt−1, where the integral

is approximated in the PF by E(J̄(θt−1)|y1:t−1, xt) ≈ 1
N

∑N
j=1 J̄(θ̂

(j)
t−1|t−1).

The term J̄(θ̂
(j)
t−1|t−1) now represents a quadratic function of the output prediction error

related to each particle j, j = 1, ..., N . The prediction error is now defined according to

ε(t, θ̂
(j)
t−1|t−1) , ε

(j)
t = yt − ht(x̂t|t, θ̂

(j)
t−1|t−1), where θ̂

(j)
t−1|t−1 denotes the particle related to the

estimated value of the parameter whose true value is denoted by θ?t−1 (this is clearly assumed to

be unknown). Therefore, we define J̄(θ̂
(j)
t−1|t−1) =

1
κ

∑τ=t
τ=t−κ E(Q(ε(τ, θ̂

(j)
t−1|t−1))), in which the

expectation is taken over the observation sequence of κ samples. Let us now select the quadratic

criterion Q(ε(t, θ̂
(j)
t−1|t−1)) as

Q(ε(t, θ̂
(j)
t−1|t−1)) =

1

2
ε(t, θ̂

(j)
t−1|t−1)ε

T(t, θ̂
(j)
t−1|t−1). (3.16)

The following modified artificial evolution law is now proposed for the parameter update

in the particle filters for generating j = 1, ..., N parameter particles that correspondingly de-
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termine the distribution from which the a priori parameter estimate θ̂
(j)
t|t−1 is considered to be

the same as θ̂
(j)
t−1|t−1, and the a posteriori parameter estimate is obtained in two steps that are

denoted by θ̃
(j)
t|t and θ̂

(j)
t|t , respectively. In the first step one gets (the second step is described on

the next page)

m
(j)
t = θ̂

(j)
t−1|t−1 + γtR

(j)
t ψ

(j)
t ε(t, θ̂

(j)
t−1|t−1), (3.17a)

θ̃
(j)
t|t = Am

(j)
t + (I − A)m̄t−1 + ζ

(j)
t , m̄t−1 =

1

N

N∑

j=1

θ̂
(j)
t−1|t−1, (3.17b)

where ψt = ∂ŷt
∂θ̂t−1|t−1

=
∂ht(x̂t|t,θ̂t−1|t−1)

∂θ̂t−1|t−1
, which when evaluated at θ̂

(j)
t−1|t−1 is denoted by ψ

(j)
t ,

γt denotes the step size design parameter, ζ
(j)
t ∼ N (0, (I − A2)Vθ̂t−1|t−1

) denotes the zero-

mean normal increment particles to the parameter update law at each time step with the covari-

ance matrix (I − A2)Vθ̂t−1|t−1
through the use of the kernel smoothing concept, A denotes the

shrinkage matrix, and Vθ̂t−1|t−1
denotes the covariance of the parameter estimates in the previ-

ous time step t − 1. The kernel shrinkage algorithm attempts to force the distribution of the

parameter particles towards the mean of their distribution in the previous time instant that was

denoted by m̄t−1, by applying the shrinkage coefficient matrix A to the obtained m
(j)
t . The pro-

cesses θ̂
(j)
t−1|t−1 and ζ

(j)
t are conditionally independent given observations up to time t. Moreover,

R
(j)
t =

√
trace(E (j)

t E (j)T

t ) where E (j)
t = εt(θ̂

(j)
t−1|t−1) − 1

ny

∑l=ny

l=1 ε
(l)
t (θ̂

(j)
t−1|t−1) and ε

(l)
t (θ̂

(j)
t−1|t−1)

denotes the l-th element of the vector εt(θ̂
(j)
t−1|t−1). The term R

(j)
t denotes a time-varying coef-

ficient that determines the updating direction and is a positive scalar to ensure that the criterion

(3.16) can be minimized by changing m
(j)
t in the steepest descent direction. Therefore, the first

step estimate of the a posteriori parameter estimation particle is denoted by θ̃
(j)
t|t . The conver-

gence of the update law (3.17a)-(3.17b) will be shown in the Subsection 3.2.6.

The parameter update law according to (3.17a)-(3.17b) contains a term in addition to the
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independent normal increment ζ
(j)
t . The estimated parameter from this update law is invoked in

the PF-based parameter estimation filter to represent the distribution from which the parameter

particle population for the next time step is chosen. Therefore, the above proposed prediction

error based modified artificial evolution law enables the PF-based estimation algorithm to han-

dle and cope with the time-varying parameter scenarios. The time-varying term γtR
(j)
t acts

as an adaptive step size in equations (3.17a)-(3.17b), and therefore our algorithm can also be

considered as an adaptive step size scheme.

In order to ensure that the obtained θ̃
(j)
t|t from the modified artificial evolution law given by

equations (3.17a)-(3.17b) remains in DN (refer to Assumption 3.1), the following projection

algorithm is utilized that forces θ̃
(j)
t|t to remain inside DN according to the following procedure

[165],

1. Choose a factor 0 ≤ µ ≤ 1,

2. Compute θ̆
(j)
t|t := γtR

(j)
t ψ

(j)
t ε(t, θ̂

(j)
t−1|t−1),

3. Construct m
(j)
t := θ̂

(j)
t−1|t−1 + θ̆

(j)
t|t ,

4. If m
(j)
t ∈ DN go to Step 6, else go to Step 5,

5. Set θ̆
(j)
t|t = µθ̆

(j)
t|t , and go to Step 3,

6. Stop.

It should be noted that the main reason for considering the above mapping is related the fact

that the actual dynamics of the parameters are not known, therefore such mapping ensures that
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the assumed dynamics for the parameters based on modified artificial evolution model does not

cause instability of the entire system.

Consequently, the a priori distribution of the parameter θt is assumed to have the same dis-

tribution as in the previous time step. On the other hand, as the present observation yt becomes

available in the measurement update step, the a posteriori distribution of the parameter is ob-

tained through two steps that denoted by π̃N
θ̃t|t

(dθt) and π̃N
θt|t

(dθt), respectively. In what follows,

more details related to these distributions are presented.

Consider equations (3.17a)-(3.17b). The first step a posteriori distribution of the parameters

calculated from the distribution of the parameter particles θ̃
(j)
t|t is given by,

π̃N
θ̃t|t

(dθt) ,
1
N

∑N
j=1 δθ̃(j)

t|t

(dθt), (3.18)

and the measurement equation is expressed as,

ȳ
(j)
t|t = ht(x̂t|t, θ̃

(j)
t|t ), (3.19)

where ȳ
(j)
t|t denotes the evaluated output that is obtained by the parameter estimation filter that is

different from the one that is obtained by the state estimation filter, as provided in the Subsection

3.2.3.

Now, in the second step for estimating the a posteriori parameter estimate distribution, con-

sider the present observation yt, so that the particle weights w
(j)
θt

are updated by the likelihood

function according tow
(j)
θt

∼ pνt(yt−ȳ(j)t|t ) = ρ(yt|x̂t|t, θ̃(j)t|t ). This can now be expressed by using

the normalized weights w̃
(j)
θt

as π̃N
θt|t

(dθt) =
∑N

j=1 w̃
(j)
θt
δ
θ̃
(j)
t|t

(dθt), where w̃
(j)
θt

,
ρ(yt|x̂t|t,θ̃

(j)
t|t

)
∑N

j=1 ρ(yt|x̂t|t,θ̃
(j)
t|t

)
.

Following the resampling/selection step, an equally weighted particle distribution πN
θt|t

(dθt) is

obtained as πN
θt|t

(dθt) =
1
N

∑N
j=1 δθ̂(j)

t|t

(dθt) for approximating πθt|t(dθt), and the resampled (se-
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lected) particles that are denoted by θ̂
(j)
t|t follow the distribution π̃N

θt|t
(dθt). Therefore, the a

posteriori parameter estimation distribution is approximated by a weighted sum of the Dirac-

delta masses as π̃N
θt|t

(dθt) before one performs the resampling and with an equally weighted

particle distribution approximation as πN
θt|t

(dθt) according to

π̃N
θt|t

(dθt) ≈
N∑

j=1

w̃
(j)
θt
δ
θ̃
(j)
t|t

(dθt),

w̃
(j)
θt

,
ρ(yt|x̂t|t, θ̃(j)t|t )∑N
j=1 ρ(yt|x̂t|t, θ̃

(j)
t|t )

,

πN
θt|t

(dθt) =
1

N

N∑

j=1

δ
θ̂
(j)
t|t

(dθt) → θ̂t|t =
1

N

N∑

j=1

θ̂
(j)
t|t ,

(3.20)

where w̃
(j)
θt

denotes the normalized parameter particle weight, {θ̂(j)t|t }Nj=1 is obtained from the

resampling/selection step of the scheme by duplicating the particles θ̃
(j)
t|t having large weights

and discarding the ones with small values to emphasize the zones with higher a posteriori

probabilities according to P (θ̂
(j)
t|t = θ̃

(k)
t|t ) = w̃

(k)
θt
, k = 1, ..., N . In our proposed filter the

residual resampling method is used to ensure that the variance reduction among the resampled

particles is guaranteed [168].

Therefore, an approximation to E(φ(θt)|y1:t, xt) by φ(θt) = θt takes on the form θ̂t|t ∼

πN
θt|t

(dθt) = 1
N

∑N
j=1 δθ̂(j)

t|t

(dθt), where πN
θt|t

(dθt) denotes the a posteriori distribution of the

parameter estimate (after performing the resampling from θ̃
(j)
t|t ). The resulting estimated output

of this filter is obtained by ŷt = ht(x̂t|t, θ̂t|t). The explicit details for implementation of the

parameter estimation filter are now provided below.
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The Parameter Estimation Filter

The particle filter for implementation of the parameter estimation is described as follows:

1. Initialize the N particles for the parameters as {θj0}Nj=1 ∼ πθ0(dθ0), and use the initial

values of the states as x0 that represents the mean of the states initial distribution πx0(dx0).

2. Draw ζ
(j)
t ∼ N (0, (I − A2)Vθ̂t−1|t−1

).

3. Predict θ̃
(j)
t|t , j = 1, ..., N from equations (3.17a)-(3.17b) with the projection algorithm.

4. Compute the importance weights {w(j)
θt
}Nj=1, w

(j)
θt

= ρ(yt|x̂t|t, θ̃(j)t|t ), j = 1, ..., N , and nor-

malize them to w̃
(j)
θt

=
w

(j)
θt

∑N
j=1 w

(j)
θt

.

5. Resampling: Draw N new particles with replacement for each j = 1, ..., N , P (θ̂
(j)
t|t =

θ̃
(k)
t|t ) = w̃

(k)
θt
, k = 1, ..., N , where θ̃

(j)
t|t ∼ π̃N

θt|t
(dθt) =

∑N
j=1 w̃

(j)
θt
δ
θ̃
(j)
t|t

(dθt).

6. Construct θ̂t|t from the conditional distribution πN
θt|t

(dθt) =
1
N

∑N
j=1 δθ̂(j)

t|t

(dθt) with equally

weighted θ̂
(j)
t|t as θ̂t|t =

1
N

∑N
j=1 θ̂

(j)
t|t .

7. Set t = t + 1 and go to Step 2 of the state estimation filter as provided in the Subsection

3.2.3.

As stated earlier, the kernel from which the parameter particles i.e. θ̃
(j)
t|t for the next time step

is chosen is a Gaussian kernel and its mean is obtained from m
(j)
t and its variance is obtained

based on the kernel smoothing consideration that is provided in the next Subsection 3.2.5. In the
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subsections below, the required conditions for boundedness of the parameter transition kernel

Kθ(.) are also investigated and developed.

3.2.5 Kernel Smoothing of the Parameters

In this subsection, the kernel smoothing approach [77] is utilized to ensure that the variance of

the normal distribution which is obtained according to the modified artificial evolution law for

the parameter estimates remains bounded.

Consider the modified artificial evolution law (3.17a)-(3.17b) in which ζ
(j)
t is a normal zero-

mean uncorrelated random increment to the parameter that is estimated at time t− 1. If A = I ,

i.e. when there is no kernel shrinkage, as t → ∞, the variance of the added evolution increases

and can therefore yield θ̃
(j)
t|t in (3.17b) completely unreliable. This phenomenon is known as

the loss of information that can also occur between two consequent sampling times [77]. On

the other hand, since θt is time-varying, generally there will not exist an optimal value for the

variance of the evolution noise ζ
(j)
t that remains suitable for all times.

Consequently, the idea of the kernel shrinkage has been proposed in [77] and later updated

in [78]. In the kernel shrinkage approach [2], for the next time step one takes the mean of the

estimated parameter distribution in the particle filter according to the following normal distri-

bution

Kθ(dθt|θ(j)t−1, xt) ∼ N (Am
(j)
t + (I − A)m̄t−1, (I − A2)Vθ̂t−1|t−1

), (3.21)

where m
(j)
t for j = 1, ..., N, is obtained from (3.17a). By utilizing this kernel shrinkage rule,
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the resulting normal distribution retains the mean m̄t−1 and has the appropriate variance for

avoiding over-dispersion relative to the a posteriori sample. The kernel shrinkage forces the

parameter samples towards their mean before the noise ζ
(j)
t is added. In our proposed approach

the changes due to the parameter variations are considered in the mean of the parameter esti-

mate distribution through the modified artificial evolution rule. Consequently, the mean of the

distribution, i.e. m̄t−1, itself is time-varying and the kernel shrinkage ensures a smooth tran-

sition in the estimated parameters even when they are subjected to changes. To eliminate the

information loss effect, by taking the variance from both sides of equation (3.17b) results in

Vθ̂t|t−1
= A2Vθ̂t−1|t−1

+(I −A2)Vθ̂t−1|t−1
= Vθ̂t−1|t−1

. This ensures that the variance of the added

random evolution would not cause over-dispersion in the parameter estimation algorithm for all

time.

The following proposition specifies an upper bound on the shrinkage factor. This upper

bound is calculated in the worst case, that is when the parameter is considered to be constant

but the modified evolution law (3.17a)-(3.17b) is used in the parameter estimation filter for

estimating it. Utilization of this upper bound in the kernel shrinkage algorithm ensures the

boundedness of the variance of the estimated parameters distribution that is obtained according

to the PE-based artificial evolution update law and the kernel smoothing augmented with the

shrinkage factor.

Proposition 3.1. Upper bound on the kernel shrinkage factor: Given the parameter update

law (3.17a)-(3.17b), the estimated parameters conditional normal distribution based on the

kernel smoothing as given by equation (3.21), results in an upper bound forA that is obtained as

A ≤ I(1−
√

σmin(P 2
maxΨVyΨTV −1

θ̂
)

σmax(P 2
maxΨVyΨTV −1

θ̂
)
), where Ψ denotes the ψ

(j)
t in equation (3.17a) but considered
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as a constant parameter between the time steps t and t−1. Moreover, σmin and σmax denote the

minimum and the maximum eigenvalues of a matrix, respectively, Vy denotes the upper-bound on

the variance of the measurement noise Rt, Vθ̂ denotes the variance of the parameters when they

are constant that can be assumed to be the same as the initial covariance of the parameters,

and Pmax = γ0

√
trace(EmaxEmax

T), where γ0 denotes the initial value of the step size, and

EmaxEmax
T is a design parameter that denotes the maximum acceptable variance among the

prediction error vector elements.

Proof: Let us consider the modified artificial evolution law by assuming that A = I in equation

(3.17b). Let us substitute m
(j)
t from equation (3.17a) where the superscript (j) is omitted in

order to define the modified artificial evolution law in a more general form that is also applicable

to each single particle as

θ̃t|t = θ̂t−1|t−1 + Ptψtε(t, θ̂t−1|t−1) + ζt, (3.22)

where Pt = γtRt. Now, let V (.|y1:t) denote the variance of the stochastic process assuming

that the observations up to time t are available, and C(., .|y1:t) denotes the covariance of the

two stochastic processes by assuming that the observations up to time t are available. By taking

into account the relationship between the variance of both sides of equation (3.22) when the

covariance matrix is assumed to be non-singular and when the prediction error at time t is

uncorrelated with the parameter estimate at time t, given that θ̂t−1|t−1 is independent of PtΨεt,

therefore we get V (θ̃t|t|y1:t) = V (θ̂t−1|t−1|y1:t) + P 2
t ΨVyΨ

T + Wt + 2C(θ̂t−1|t−1, ζt|y1:t) +

2C(PtΨεt, ζt|y1:t). Furthermore, since Pt = γtRt = γt
√
trace(EtET

t ) is a scalar, one can write

V (PtΨεt|y1:t) = (E[Pt|y1:t])2V (Ψεt|y1:t) + (E[Ψεt|y1:t])2V (Pt|y1:t) + V (Pt|y1:t)V (Ψεt|y1:t) =

P 2
t ΨVtΨ

T.
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In order to ensure that there is no information loss (particularly in the case that θt is constant),

one must have, V (θ̃t|t|y1:t) = V (θ̂t−1|t−1|y1:t) = Vθ̂t−1|t−1
, which implies that, C(θ̂t−1, ζt|Yt) +

C(PtΨεt, ζt|Yt) = −1
2
Wt − 1

2
P 2
t ΨVtΨ

T. Therefore, negative correlations are needed to remove

the effects of unwanted information loss. In case of approximate joint normality of the stochastic

process (θ̂t−1|t−1, ζt|Yt) and (PtΨεt, ζt|Yt), the conditional normal evolution is obtained as

p(θ̂t|t|θ̂t−1|t−1) ∼ N (θ̂t|t|Atθ̃t|t + (I − At)θ̂t−1|t−1, (I − A2
t )Vθ̂t−1|t−1

), (3.23)

where the mean of this Gaussian distribution at each time step is found from equation (3.17a),

when θ̂t−1|t−1 is substituted by its modified version according to the shrinkage kernel. The

shrinkage matrix At, is obtained as At = I − [1
2
(WtV

−1
θt−1|t−1

+ P 2
t ΨVyΨ

TV −1
θt−1|t−1

)]. Assuming

that in the kernel shrinkage method, the variance of the evolution noise is interpreted as Wt =

(I − A2
t )Vθ̂t−1|t−1

, therefore by replacing Wt in the equation that was obtained for At results in

At = I − 1

2
[(I − A2

t ) + P 2
t ΨVtΨ

TV −1
θt−1|t−1

]. (3.24)

Let us assume that our main goal is to obtain and determine the shrinkage matrix At as

A = aI , therefore the matrix equation (3.24) can be written as

(a2 − 2a+ 1)I − P 2
t ΨVtΨ

TV −1
θt−1|t−1

= 0. (3.25)

We are interested in obtaining an upper bound for the shrinkage matrix that can be used for

all time. Assuming that the last term in the right hand side of equation (3.24) has an upper bound

given by |P 2
t ΨVtΨ

TV −1
θt−1|t−1

| ≤ P 2
maxΨVyΨ

TV −1

θ̂
, where Pmax = γ0

√
trace(EmaxET

max) with γ0

denoting the initial step size, therefore Emax is considered as the maximum acceptable variance

of the prediction error, Vy is an upper bound of the measurement noise covariance, and Vθ̂ is

the minimum bound of the parameter estimation covariance that is considered to be similar to

the initial covariance of the parameters (before adding the evolution noise in time). Therefore,
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a bound on aI and consequently A can be obtained as A = aI ≤ I −
√

σmin(P 2
maxΨVyΨTV −1

θ̂
)

σmax(P 2
maxΨVyΨTV −1

θ̂
)
I ,

where the normalization of the eigenvalue is performed to ensure that the associated fraction

remains less than 1. Let a = 1 −
√

σmin(P 2
maxΨVyΨTV −1

θ̂
)

σmax(P 2
maxΨVyΨTV −1

θ̂
)
, therefore, the shrinkage matrix be-

comes A = aI . The smoothing matrix corresponding to the normal distribution variance is now

obtained from the shrinkage factor as (1− a2)I . This guarantees that the distribution (3.23) has

a finite variance as t→ ∞ for both constant and time-varying parameter estimation cases. This

completes the proof of the proposition. �

The convergence of the estimated parameter particles θ̂
(j)
t−1|t−1, j = 1, ..., N to the local

minimum of E(J̄(θ̂
(j)
t−1|t−1)|y1:t−1, x̂t) is now investigated in the following subsection. The de-

veloped convergence proof does not ensure the convergence of the PE-based parameter estima-

tion method to the true parameter value, but only to a set of zeros of the gradient of the chosen

performance index. The conditions under which the convergence of the estimated parameters to

their optimal values can be guaranteed as N → ∞ is stated in Remark 1.

3.2.6 Convergence of the PE-based Parameter Update Law

In this subsection, it will be shown that the update law (3.17a)-(3.17b) can guarantee the conver-

gence of the parameter estimate particles θ̂
(j)
t−1|t−1, j = 1, ..., N (after the resampling step), to a

local minimum of E(J̄(θ̂
(j)
t−1|t−1)|y1:t−1, x̂t), that is located in a compact set of {xt, θt}, denoted

by DN as per Assumption 3.1.

In order to investigate the convergence of our proposed PE-based modified artificial evolu-

60



tion law for updating the parameter particles distribution and to achieve a local minimization of

E(J̄(θt−1)|y1:t−1, xt), consider equation (3.17a), where γt denotes a time-varying step size such

that limt→∞ γt = µ0 > 0, where µ0 is a small positive constant. The introduction of the step

size γt is necessary to transform the discrete-time model (3.17a)-(3.17b) into a continuous-time

representation as shown subsequently.

First, we need to state the following two assumptions 3.2-3.3 according to [165], to guaran-

tee the convergence of our proposed algorithm as presented in our main result below in Theorem

1. Specifically, we have:

Assumption 3.2. The function Q(ε(t, θ̂t−1|t−1)) is sufficiently smooth and twice continuously

differentiable w.r.t. ε, and |Qεε(ε(t, θ̂t−1|t−1))| ≤ C for θ̂t−1|t−1 ∈ DN , where Qεε(ε(t, θ̂t−1|t−1))

denotes the second derivative of Q(ε(t, θ̂t−1|t−1)) w.r.t. ε.

Assumption 3.3. The observation sequence yt (generated from equation (3.2)), is such that

Ē(Q(ε(t, θ̂t−1|t−1))) = J̄(θ̂t−1|t−1) and Ē[ d

dθ̂t−1|t−1
Q(ε(t, θ̂t−1|t−1))] = −g(θ̂t−1|t−1) exist for all

θ̂t−1|t−1 ∈ DN , where Ē(Q(ε(t, θ̂t−1|t−1))) =
1
κ

∑t
τ=t−κ EQ(ε(τ, θ̂t−1|t−1)).

It must be noted that the kernel shrinkage method, as stated earlier, attempts to retain the

mean of the parameter estimation particles at time t near the estimated parameter in the previous

time step t− 1, i.e. θ̂t−1|t−1. Therefore, in the following theorem the convergence properties of

θ̂t−1|t−1 is addressed. The main result of this section is stated below.

Theorem 3.1 Consider the parameter estimation algorithm as specified by the equations (3.17a)-

(3.19). Also consider the a posteriori parameter estimate as governed by equation (3.20). Let

Assumptions 3.1 to 3.3 hold. It now follows that the particles θ̂
(j)
t−1|t−1, j = 1, ..., N , and conse-
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quently the distribution of the estimated parameter particles approximated by the particle filter

πN
θt−1|t−1

(dθt−1), w.p.1 converge either to the setDC = {θ̂(j)t−1|t−1|θ̂
(j)
t−1|t−1 ∈ DN ,

d

dθ̂
(j)
t−1|t−1

J̄(θ̂
(j)
t−1|t−1)

= 0, j = 1, ..., N} or to the boundary of DN as t→ ∞.

Proof: The existence of the projection algorithm in the parameter estimation scheme ensures

that θ̃
(j)
t|t remains inside DN . According to equation (3.20), the a posteriori estimate of the

parameter at time t is obtained from the resampled particles of the parameter estimate θ̂
(j)
t|t ,

as θ̂t|t = 1
N

∑N
j=1 θ̂

(j)
t|t , where θ̂

(j)
t|t is selected from the N particles of θ̃

(j)
t|t for which ρνt(yt −

h(x̂t|t, θ̃
(j)
t|t )) yields higher probabilities. In order to avoid the discontinuity that is caused by

resampling, in this procedure only the particles that are maintained from time t− 1, i.e. θ̂
(j)
t−1|t−1

and are propagated to time t as θ̂
(j)
t|t , are considered. However, the rest of the particles that are

to be discarded in the resampling process will be replaced by the kept particles. Therefore, the

results can be generalized to all the particles.

Consider equation (3.17b) for generating θ̃
(j)
t|t and let us substitute m

(j)
t from the PE-based

update rule of (3.17a)-(3.17b) to obtain the following expression for the resampled particles θ̂
(j)
t|t ,

namely

θ̂
(j)
t|t = Aθ̂

(j)
t−1|t−1 + (I −A)

1

N

N∑

i=1

θ̂
(i)
t−1|t−1 +AγtR

(j)
t ψ

(j)
t ε(t, θ̂

(j)
t−1|t−1) +

√
I −A2ζ

(j)
t , (3.26)

where
√
I − A2ζ

(j)
t denotes the evolution noise by taking into account the kernel smoothing
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concept. By applying the sum operator to both sides of equation (3.26) to construct θ̂t|t yields,

1

N

N∑

j=1

θ̂
(j)
t|t = A

1

N

N∑

j=1

θ̂
(j)
t−1|t−1 +

1

N

N∑

i=1

1

N

N∑

i=1

θ̂
(j)
t−1|t−1 −A

1

N

N∑

i=1

1

N

N∑

i=1

θ̂
(j)
t−1|t−1

+A
1

N

N∑

j=1

γtR
(j)
t ψ

(j)
t ε(t, θ̂

(j)
t−1|t−1) +

√
I −A2

1

N

N∑

j=1

ζ
(j)
t =

1

N

N∑

j=1

θ̂
(j)
t−1|t−1

+A
1

N

N∑

j=1

γtR
(j)
t ψ

(j)
t ε(t, θ̂

(j)
t−1|t−1),

which results in θ̂t|t = θ̂t−1|t−1 + A 1
N

∑N
j=1 γtR

(j)
t ψ

(j)
t ε(t, θ̂

(j)
t−1|t−1). Assumptions 3.1 and 3.2

ensure that the regularity conditions are satisfied according to [165]. Consequently, a differential

equation associated with (3.17a)-(3.17b) can be obtained by considering that ∆τ is a sufficiently

small number and t, ť are specified such that
∑ť

k=t γk = ∆τ . Through a change of time-scales

as t→ τ and ť→ τ+∆τ , for a sufficiently small ∆τ , and by assuming that θ̂t−1|t−1 = θ̌, R
(j)
t =

Ř(j), A = aI is a constant matrix, the difference equation for θ̂
(j)
t|t is now expressed as

θ̂
(j)

ť
≈ θ̌(j) + a∆τŘ(j)g(θ̌(j)), (3.27)

where g(θ̌(j)) = 1
∆τ

∑t=ť
k=t ψ

(j)
t ε(k, θ̂

(j)
t−1|t−1). In the above derivation it is assumed that the θ̂

(j)
t|t

particle is kept after resampling (that is θ̂
(j)
t−1|t−1 → θ̃

(j)
t|t → θ̂

(j)
t|t ). Consequently, considering

Assumption 3.3, the differential equation associated with the evolution of each single particle is

obtained as,

dθ
(j)
D

dτ
= aR

(j)
D (τ)g(θ̂

(j)
D (τ)) = −aR(j)

D (τ)[
d

dθ̂
(j)
D

J̄(θ̂
(j)
D )]T, (3.28)

where the subscript D is used to differentiate the solution of the differential equation (3.28)

from the solution of the difference equation (3.27). Now, the required convergence analysis is

reduced to investigating the properties of the deterministic continuous-time system (3.28).

Consider the positive definite function L(θ̂
(j)
t−1|t−1) = E(J̄(θ̂

(j)
t−1|t−1)) = 1

N

∑N
j=1 J̄(θ̂

(j)
t−1|t−1)
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that represents the expectation of a positive definite function through N data points for θ̂
(j)
t−1|t−1.

Our goal is to evaluate the derivative of this function along the trajectories of the system (3.28).

According to Assumption 3.2, the second derivative of Q(ε(t, θ̂
(j)
t−1|t−1)) is bounded, therefore

the summation and derivative operations commute. According to Assumption 3.3 for θ̂
(j)
t−1|t−1 ∈

DN , ´̄J(θ̂
(j)
D (τ)) = d

dθ̂
(j)
t−1|t−1

J̄(θ̂
(j)
t−1|t−1)|θ̂(j)

t−1|t−1
=θ̌(j)

= Ē( d

dθ̂t−1|t−1
Q(ε(t, θ̂

(j)
t−1|t−1)), exists and is

approximated by −g(θ̌(j)). Therefore, let us define V (θ̂
(j)
D ) = E(J̄(θ̂

(j)
D (τ)), and given that

a > 0, and R
(j)
D (τ) is a positive scalar for j = 1, ..., N (which represents the trace of a positive

definite matrix at time τ ), one gets

d

dτ
V (θ̂

(j)
D ) = E(

d

dτ
J̄(θ̂

(j)
D (τ)) =

1

N

N∑

j=1

´̄J(θ̂
(j)
D )

d

dτ
θ̂
(j)
D (τ)

=
−a
N

N∑

j=1

[g(θ̂
(j)
D (τ))]R

(j)
D (τ)[g(θ̂

(j)
D )(τ)]T ≤ 0,

(3.29)

where the equality is obtained only for θ̂D(τ) ∈ DC . Therefore, as t → ∞ either θ̂
(j)
t−1|t−1 and

consequently, πN
θt−1|t−1

w.p.1 tends to DC or to the boundary of DN , where w.p.1 is with respect

to the random variables related to the parameter estimate particles. It should be noted that for

particles that have been replaced in the resampling this equality is valid since they are replaced

by particles that have satisfied (3.29). This completes the proof of the theorem. �

The main reason that our proposed dual state/parameter estimation method for its implemen-

tation does not necessarily need more particles than the one that we needed for only the state

estimation scheme, is illustrated by the result that one can extract and obtain from Theorem

3.1. According to this theorem, PE-based modified artificial evolution law enables each single

particle to tend to DC . Therefore, even increasing the number of particles would not affect the

convergence properties of the filter but it can certainly result in a more accurate state/parameter
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estimates. It was indicated earlier that the above theorem can only guarantee the boundedness

of the estimated parameter distribution from the particle filters and not its convergence to the

optimal distribution. However, in reality it is not possible to find an exact dynamical equation

for the variations of the system health parameters since they can be affected by fault and/or dam-

ages during the normal operation of the system. As a result, the optimal values of the estimated

parameters can not be guaranteed unless the Assumptions 3.1, 3.2, and 3.3 are not violated.

Therefore, based on the results of Theorem 3.1 and Proposition 3.1 one can ensure that the

probability density function and its related kernel Kθ(dθt|θt−1, xt−1) (in the particle filter) do

remain bounded. Then, the convergence of the dual state and parameter estimation algorithm

can be investigated based on Theorem 3.1 in [169].

Remark 3.1 Using the extended setting that is introduced in [169], and also by assuming that

ρ(yt|xt, θ̂t) < ∞, and Kx(xt|xt−1, θ̂t−1) < ∞, the boundedness of the parameter estimation

transition kernel Kθ(θ̂t|θ̂t−1, x̂t) is also ensured from the Proposition 3.1 and Theorem 3.1.

Therefore, the convergence of the proposed dual state/parameter estimation filter to their opti-

mal distributions, for {xt, θt} ∈ DN as N → ∞ can be investigated according to Theorem 3.1

that is provided in [169].

3.2.7 Equivalent Flop Complexity Analysis of Dual State/Parameter Esti-

mation Algorithm

In this section, the computational complexity of our proposed dual state and parameter estima-

tion method is quantitatively obtained and analysed. The analysis is based on the number of
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floating-point operations (flops) that are required by the selected algorithms. A flop is defined

as one addition, subtraction, multiplication, or division of two floating-point numbers. How-

ever, there are certain algorithms where their complexity cannot be measured by using flops, for

example for generating random numbers and for evaluating a nonlinear function.

On the other hand, the relationship between flop complexity and time complexity in execu-

tion of an algorithm depends on many other factors that are not necessarily reflected in the flop

complexity measure. Therefore, in this chapter the equivalent flop (EF) complexity introduced

in [170] for an operation will be utilized for conducting the complexity analysis. In the EF

complexity, the number of flops that result in the same computational time as a given operation

is evaluated through the so-called proportionality coefficients. Thereby, it follows how the com-

putational time will increase as the problem size increases. The EF metric is mostly evaluated

for those operations that depend on matrix and vector manipulations.

The dimensions and definitions of some of the entities that are used in the EF analysis of

our proposed PF-based state and parameter estimation algorithm are provided in Table 3.1. The

coefficients c1, c2, and c3 are used to represent the complexity of random number generation,

resampling, and reguralization, respectively, since their complexities cannot be measured by

using flops. Therefore, their complexities have to be estimated by analyzing the actual compu-

tational time that is consumed by various segments of the algorithm [170]. It should be noted

that Gaussian likelihood calculations are also included in the resampling step. The Schur de-

composition is also used in the process of covariance matrix decomposition to generate the new

particle populations in the filters. The complexity of the above operation increases cubic as the
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Table 3.1: Definitions and Dimensions of the entities in the dual state and parameter estimation

algorithm

Variable Dimension Definition

xt R
nx state vector

θt R
nθ parameter vector

Σx R
nx×nx state estimate covariance matrix

Pt Z
+ adaptive step size

A R
nθ×nθ shrinkage matrix

Σθ R
nθ×nθ parameter estimate covariance matrix

Wt R
nx×nx process noise variance

Vθt R
nθ×nθ parameter estimate distribution variance

yt R
ny measurement output

ft(xt, θ
T
t λ(xt), ωt) R

nx×1 state dynamic function

ht(xt, θ
T
t λ(xt)) R

ny×1 observation function

Table 3.2: Computational Complexity of some Common Matrix Operations

Operation Matrix size Multiplication Addition

A+ A A ∈ R
n×m − nm

A.B A ∈ R
n×m, B ∈ R

m×l lmn (m− 1)ln
B.C B ∈ R

m×n, C ∈ R
n×1 nm (n− 1)m

D−1 D ∈ R
n×n n3 −

dimension of the problem increases. The complexity related to initialization is ignored in the

tables since initialization of state and parameter estimation filters are performed only once and

in the start of the algorithm execution.

The details regarding to EF complexity analysis of our proposed dual algorithm, conven-

tional Bayesian method for state and parameter estimation [2] (where Regularized particle filter

structure is utilized to implement the filter), and recursive maximum likelihood method ac-

cording to simultaneous perturbation stochastic approximation algorithm are presented in Ta-

bles 3.6, and 3.7. According to the summarized results in Tables 3.4, 3.5, 3.6, and 3.7, the

EF complexity of the presented algorithms are presented in Table 3.3 where only dominant

parts of C(nx, nθ, c1, c2, c3, N) (that represents the EF complexity of our proposed dual algo-

rithm), Ć(nx, nθ, c1, c2, c3, N) (that represents the EF complexity of the conventional Bayesian
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method [2]), and
´́
C(nx, nθ, c1, c2, c3, N) (that represents the EF complexity of the recursive

maximum likelihood method according to SPSA algorithm) are provided. This selection is jus-

tified by the fact that N � 1, therefore the dominant parts are the parts that are related to

N .

To achieve the same complexity in the dual estimation algorithm, Bayesian method and

RML parameter estimation algorithm based on particle filters, the number of required particles

in our proposed dual estimation method can be determined based on the number of the particles

in the other two methods denoted by Ń , and
´́
N as

N = Ń(1− 2n2
θ + 5nθ + 2nθny + 6ny + 2nθ − 6nxnθ − c3nθ

3n2
x + 5n2

θ + 6nθ + 2nθny + 7ny + 3nx + c1(nx + nθ) + c2(nx + nθ) + c3nx)
)

(3.30)

N =
´́
N(1− n2

x + 5n2
θ + 2nθ + nx + 2nθny + 7ny + c2nθ

3n2
x + 5n2

θ + 6nθ + 2nθny + 7ny + 3nx + c1(nx + nθ) + c2(nx + nθ) + c3nx)
)

(3.31)

Consider that in equation (3.30) 2n2
θ+5nθ+2nθny+6ny+2nθ−6nxnθ−c3nθ > 3n2

x+5n2
θ+

6nθ+2nθny+7ny+3nx+c1(nx+nθ)+c2(nx+nθ)+c3nx) , since the complexity corresponding

to regularization (c3) is assumed to be the dominant complexity term in the nominator of the

coefficient of Ń , therefore the coefficient of Ń is greater than one which indicates that in order to

achieve the same complexity from dual estimation algorithm and conventional Bayesian method

using regularized particle filter structure, the number of the required particles in the Bayesian

method should be selected less than the number of particles in the dual estimation method. On

the other hand, the similar analysis for the RML method according to (3.31) shows that since

n2
x+5n2

θ +2nθ +nx+2nθny +7ny + c2nθ < 3n2
x+5n2

θ +6nθ +2nθny +7ny +3nx+ c1(nx+
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Table 3.3: The Approximated Total Equivalent Complexity of the Filters

Prediction Method Total Equivalent Complexity

Dual Estimation Algorithm C(nx, nθ, c1, c2, c3, N) ≈ N(3n2
x + 5n2

θ + 6nθ + 2nθny + 7ny + 3nx

+c1(nx + nθ) + c2(nx + nθ) + c3nx)

Standard Bayesian PF-Based estimation Method Ć(nx, nθ, c1, c2, c3, N) ≈ N(3n2
x + 3n2

θ + 6nxnθ

+(1 + c1 + c2 + c3)nx + (1 + c1 + c2 + c3)nθ + ny)

PF-based RML Parameter Estimation Method
´́
C(nx, nθ, c1, c2, c3, N) ≈ N(2n2

x + 4nθ + 2nx

+c1(2nx + nθ) + c2nx + c3nx)

Table 3.4: The Equivalent Complexity for the state estimation step in Dual Structure

Instruction Mult. Add Func. Eval. Other

[U1, T1] = schur(Σx̂t−1|t
) − − − 10n3

x

R1 = randn(nx, N) − − − Nnxc1
ω
(i)
t = (U1

√
T1)R1 n3

x +Nn2
x (nx − 1)n2

x +N(nx − 1)nx − n2
x

x̂
(i)
t|t−1 = ft(x̂

(i)
t−1|t−1, θ̂

T
t−1|t−1λ(x̂

(i)
t|t−1), ω

(i)
t ) − − Nnx −

ŷ
(i)
t|t−1 = ht(x̂

(i)
t|t−1, θ̂

T
t−1|t−1λ(x

(i)
t|t−1)) − − Nny −

Σx̂t|t−1
= 1

N−1

∑N
i=1(x̄

(i)
t|t−1 − x̂t|t−1)(x̄

(i)
t|t−1 − x̂t|t−1)

T Nn2
x 2Nnx − −

Regularization and resampling to find weights w
(i)
xt and x̂

(i)
t|t − − − Nnxc2 +Nnxc3

x̂t|t =
1
N

∑N
i=1 x̂

(i)
t|t nx Nnx − −

Total n3
x + 2Nn2

x + nx n3
x + (N − 1)n2

x + 2Nnx N(nx + ny) 10n3
x + n2

x

Nnx(c1 + c2 + c3)

nθ)+c2(nx+nθ)+c3nx), therefore unlike the Bayesian method, in the RML method one needs

more particles in order to achieve the same computational complexity with the dual estimation

algorithm. Finally, we utilize, the EF complexity results to measure the time complexity of

each algorithm considering the fact that EF complexity is proportional to the time complexity

of the algorithm. In the following tables the EF complexity for three different methods i.e. our

proposed dual algorithm, conventional Bayesian method for state and parameter estimation [2]

(where Regularized particle filter structure is utilized to implement the filter), and recursive

maximum likelihood method according to simultaneous perturbation stochastic approximation

algorithm are presented, respectively.

Our proposed dual state and parameter estimation scheme is an effective methodology for

the purpose of fault diagnosis of nonlinear systems, where without loss of any generality one

initiates operating the system from the healthy mode of operation. During the healthy operation
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Table 3.5: The Equivalent Complexity for the parameter estimation step in Dual Structure

Instruction Mult. Add Func. Eval. Other

ȳ
(j)
t|t−1 = ht(x̂t|t, θ

(j)T

t−1|t−1λ(x̂t|t)) − − Nny −
Σθ = (I − A2)Σθ̂t−1|t−1

n3
θ (nθ − 1)n2

θ + n2
θ − −

ε
(j)
t = yt − ȳ

(j)
t|t−1 − Nny − −

ψ
(j)
t = dh

dθ
|
x̂t|t,θ

(j)
t−1|t−1

− − nynθ −

P
(j)
t = γt(

√
trace(ε

(j)
t ε

(j)T

t ) N +Nny N(ny − 1) +Nny − −
[U2, L2] = schur(Σθ) − − − 10n3

θ

R2 = randn(nθ, N)) − − − Nnθc1
ζ
(j)
t = (U2

√
L2)R2 n3

θ +Nn2
θ (nθ − 1)n2

θ +N(nθ − 1)nθ n2
θ −

m
(j)
t = θ̂

(j)
t−1|t−1 + P

(j)
t ψ

(j)
t ε

(j)
t N(nynθ + nθ) N(ny − 1)nθ +Nnθ − −

θ̃
(j)
t|t = Am

(j)
t + (I − A) 1

N

∑N
j=1 θ̂

(j)
t−1|t−1 + ζ

(j)
t Nn2

θ + nθ Nn2
θ + 2Nnθ +Nnθ + n2

θ − −
ȳt|t = ht(x̂t|t, θ̃

(j)T

t|t λ(x̂t|t)) − − Nny −
Resampling to find weights, w

(j)
θt

, and θ̂
(j)
t|t − − − Nnθc2

θ̂t|t =
1
N

∑N
j=1 θ̂

(j)
t|t nθ Nnθ − −

Σθ̂t|t
= 1

N−1

∑N
i=1(θ̂

(j)
t|t − θ̂t|t)(θ̂

(j)
t|t − θ̂t|t)T Nn2

θ 2Nnθ − −
Total 2n3

θ + 3Nn2
θ 2n3

θ + 2Nn2
θ n2

θ + 2Nny 10n3
θ +Nnθc1 +Nnθc2

+(N + 2)nθ +Nnθny +5Nnθ + 3Nny −N +nynθ −
+N(ny + 1) +Nnθny −

Table 3.6: The Equivalent Complexity for the augmented state and parameter estimation

scheme [2]

Instruction Mult. Add Func. Eval. Other

[U1, T1] = schur(Σx,θ) − − − 10(nx + nθ)
3

R1 = randn(nx + nθ, N) − − − N(nx + nθ)c1
ω
(i)
t = (U1

√
T1)R1 (nx + nθ)

3 +N(nx + nθ)
2 (nx + nθ − 1)(nx + nθ)

2 − (nx + nθ)
2

+N(nx + nθ − 1)(nx + nθ)

ω
(i)
xt = ω

(i)
t (1 : nx) − − − −

ωθt = (I − A2)ω
(i)
t (nx + 1 : nx + nθ) n3

θ (nθ − 1)n2
θ + n2

θ − −
state/parameter augmentation: [x̂

(i)
t|t−1; θ̂

(i)
t|t−1] =

[ft(x̂
(i)
t|t−1, θ̂

(i)T

t|t−1λ(x̂
(i)
t|t−1), ω

(i)
xt ); θ̂

(i)
t|t−1] − − N(nx + nθ) −

ŷ
(i)
t|t−1 = ht(x̂

(i)
t|t−1, θ̂

(i)T

t|t−1λ(x̂
(i)
t|t−1)) − − Nny −

Σx,θ =
1

N−1

∑N
i=1([x̄

(i)
t|t−1; θ̄

(i)
t|t−1]− [x̂t|t−1; θ̂t|t−1])

×([x̄
(i)
t|t−1; θ̄

(i)
t|t−1]− [x̂t|t−1; θ̂t|t−1])

T N(nx + nθ)
2 2N(nx + nθ) − −

Regularization to find weights and resampling

to find, x̂
(i)
t|t and θ̂

(i)
t|t − − − N(nx + nθ)(c3 + c2)

[x̂t|t; θ̂t|t] = [ 1
N

∑N
i=1 x̂

(i)
t|t ;

1
N

∑N
i=1 θ̂

(i)
t|t ] nx + nθ N(nx + nθ) − −

Total 2n3
θ + n3

x + n2
x(2N + 3nθ) n3

x + 2n3
θ + n2

x(3nθ − 1 +N) N(nx + nθ) 10n3
x + 10n3

θ

+n2
θ(3nx + 2N) + 4Nnθnx +n2

θ(N − 1 + 3nx) +Nny n2
x(30nθ + 1)

+nx + nθ +nxnθ(2N − 2) +n2
θ(30nx + 1)

+nx(Nc1 + 2nθ +Nc3)
+nθ(Nc1 +Nc3)
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Table 3.7: The Equivalent Complexity for the Recursive Maximum Likelihood Parameter

scheme based on Particle Filters Using SPSA [3]

Instruction Mult. Add Func. Eval. Other

[U1, T1] = schur(Σx) − − − 10n3
x

R1 = randn(nx, N) − − − Nnxc1
ω
(i)
t = (U1

√
T1)R1 n3

x +Nn2
x (nx − 1)n2

x +N(nx − 1)nx − n2
x

Generate random perturbation vector ∆t − − − nθc1
for i = 1, ..., N sample: − − − −

x̃
(i)
t,+ = ft(x̂

(i)
t−1|t−1, (θ̂t−1|t−1 + ct∆t)

Tλ(x̂
(i)
t−1|t−1), ω

(i)
t ) − − − Nnx

x̃
(i)
t,− = ft(x̂

(i)
t−1|t−1, (θ̂t−1|t−1 − ct∆t)

Tλ(x̂
(i)
t−1|t−1), ω

(i)
t ) − − − Nnx

Evaluate: − − − N(nx + nθ)c1
aθ(yt, x̃

(i)
t,+, x̂

(i)
t−1|t−1), and aθ(yt, x̃

(i)
t,−, x̂

(i)
t−1|t−1) − − − 2Nnθ

Evaluate: − − − −
∇̂J t,µ(θ̂t−1|t−1) =

Ĵt(θ̂t−1|t−1+ct∆t)−Ĵt(θ̂t−1|t−1−ct∆t)

2ct∆t,µ
nθ + 1 2nθ − 1 − −

where: − − − −
∇̂J t,µ(θ̂t−1|t−1 ± ct∆t) = log{ 1

N

∑N
i=1 aθ(yt, x̃

(i)
t,±, x̂

(i)
t−1|t−1)} 2nθ 2Nnθ 2nθ −

Parameter Update: − − − −
θ̂t|t = θ̂t−1|t−1 + γt∇̂J t(θ̂t−1|t−1), n2

θ nθ + (nθ − 1)nθ − −
∇̂J t(θ̂t−1|t−1) = [∇̂J t,1(θ̂t−1|t−1), ..., ∇̂J t,nθ

(θ̂t−1|t−1)] − − − −
for i = 1, ..., N sample: − − − −

x̃
(i)
t = ft(x̂

(i)
t−1|t−1, θ̂

T
t|tλ(x̂

(i)
t−1|t−1), ω

(i)
t ) − − Nnx −

Regularization to evaluate weights and resampling − − − Nnx(c2 + c3)
Total n3

x +Nn2
x + n2

θ n3
x + (N − 1)n2

x −Nnx Nnx + 2nθ 10n3
x + n2

x

+3nθ + 1 +n2
θ + (2N + 2)nθ − 1 − +nx(2Nc1 + 2N +Nc2)

− − +nθ(c1 +Nc1 + 2N)

of the system our proposed dual state and parameter estimation strategy can provide one with

an accurate and reliable information on the health parameters of the system. This information

can then be readily used to perform the tasks of fault detection, isolation and identification,

following the presence or injection of faults in the components of the system. In the following

subsection, the application of our proposed approach in previous subsections for addressing the

fault diagnosis problem of nonlinear systems is investigated.

3.2.8 The Fault Diagnosis Formulation

Determination and diagnosis of drifts in unmeasurable parameters of a system require an on-line

parameter estimation scheme. In parametric modeling of a system anomaly or drift, generally it

is assumed that the parameters are either constant or dependent on only the system states [171].
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Hence, drifts in the parameters must be estimated through estimation techniques.

In [172], various parameter estimation techniques such as least squares, instrumental vari-

ables and estimation via discrete-time models have been surveyed. The main drawbacks and

limitation with such methods arise due to the complexity and nonlinearity of the systems that

we are considering in this thesis that render the parameter estimation here a nonlinear opti-

mization problem that must be solved in real-time. In [173] a nonlinear least squares (NLS)

optimization scheme is developed for only the fault identification of a hybrid system.

Parameter estimation techniques that are used for fault diagnosis of system components gen-

erate residuals by comparing the estimated parameters that are obtained by either the ordinary

least squares (OLS) or the recursive least squares (RLS) algorithms with parameters that are

estimated under the initial fault free operation of the system [174].

The fault diagnosis problem under consideration in this thesis deals with obtaining an opti-

mal estimate of the states as well as the time-varying parameters of a nonlinear system whose

dynamics is governed by the discrete-time stochastic model,

xt+1 = ft(xt, θ
T
t λ(xt), ωt), (3.32)

yt = ht(xt, θ
T
t λ(xt)) + νt, (3.33)

where ft : R
nx × R

nθ × R
nω −→ R

nx is a known nonlinear function, θt ∈ R
nθ is the unknown

and time-varying parameter vector that for a healthy system is set to 1, λt : R
nx −→ R

nθ is a

differentiable function that determines the relationship between the system states and the health

parameters. The function ht : R
nx × R

nθ −→ R
ny is a known nonlinear function, ωt and νt are

uncorrelated noise sequences with covariance matrices Lt and Vt, respectively. According to the
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formulation used in equations (3.32) and (3.33), the parameter θt is a multiplicative fault vector

whose value is considered to be set equal to 1 under the healthy mode of the system operation.

The model (3.32) and (3.33) is now used to investigate the problem of fault diagnosis (FD),

which in this thesis is defined as the problem of fault detection, isolation, and identification

(FDII) when the system health parameters are considered to be affected by an unknown and

potentially time-varying multiplicative fault vector θt.

The system health parameters are known functions of the system states, λ(xt), and the mul-

tiplicative fault vector θt is to be estimated. In other words, the a posteriori estimated parameter

θ̂t|t will be used to generate residual signals for accomplishing the fault diagnosis goal and

objective. It is worth noting that based on our proposed formulation in (3.32) and (3.33) for

capturing the variations in the system health parameters, the system health parameter itself is

considered as a function of the system states whereas its variations are captured by introducing

the fault vector. Therefore, the changes due to variations in the system states are not considered

as faults and determination of the thresholds for fault diagnosis scheme is always based on the

health system in which the fault vector is supposed to be equal to one.

The required residuals are obtained as the difference between the estimated parameters under

the healthy operational mode that is denoted by θ̂0, and the estimated parameters under the faulty

operational mode of the system that is denoted by θ̂t|t as follows

rt = θ̂0 − θ̂t|t. (3.34)

It should be pointed out that the true value of the parameter is denoted by θ?t , which is assumed

to be unknown.
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For the implementation of our proposed fault diagnosis strategy that is constructed based on

the previously developed state/parameter estimation framework, the parameter estimates will be

considered as the main indicators for detecting, isolating, and identifying the faults in the system

components. The residuals are generated from the parameter estimates under the healthy and

faulty operational modes of the system according to equation (3.34). The estimation of the

parameters under the healthy operational mode is determined according to,

θ̂0 = argmax(−log(p̂(θ0|y1:T )), (3.35)

where p̂(θ0|y1:T ) denotes the probability density (conditioned on the observations up to time T

associated with the healthy data), that is obtained from the collected estimates and fitted to a

normal distribution. The time window T is chosen according to the convergence time of the

parameter estimation algorithm. The thresholds to indicate the confidence intervals for each

parameter are obtained through Monte Carlo analysis that is performed under different single-

fault and multi-fault scenarios. The estimated parameters θ̂t|t are generated by following the

procedure that was developed and proposed in previous subsections.

3.3 Fault Diagnosis of a Gas Turbine Engine

In this section, the utility of our proposed dual estimation framework when applied to the prob-

lem of fault diagnosis of a nonlinear model of a gas turbine engine is demonstrated and inves-

tigated. The performance of our proposed state/parameter estimation scheme will be evaluated

and investigated when the gas turbine is subjected to deficiencies in its health parameters due to

injection of simultaneous faults.
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3.3.1 Model Overview

The mathematical model of a gas turbine as described in Chapter 2, is utilized in this chapter

to evaluate the performance of the proposed dual state/parameter estimation method based on

particle filtering approach to address the fault diagnosis problem in the single spool gas turbine

engine. The continuous-time state space model of the gas turbine considering the formulation

presented in equations (3.32), and (3.33), is given as follows,

ṪCC =
1

cvṁcc
[(cpTCθmCṁC + ηCCHuṁf − cpTCCθmTṁT)− cvTCC(θmCṁC + ṁf − θmTṁT)],

Ṡ =
ηmechθmTṁTcp(TCC − TT)− θmCṁCcp(TC − Td)

JS( π
30)

2
,

ṖCC =
PCC

TCC

1

cvṁcc
[(cpTCθmCṁC + ηCCHuṁf − cpTCCθmTṁT)− cvTCC(θmCṁC + ṁf − θmTṁT)]

+
γRTCC

VCC
(θmCṁC + ṁf − θmTṁT),

ṖNLT =
TM
VM

(θmTṁT +
β

β + 1
θmCṁC − ṁNozzle). (3.36)

For the physical significance of the model parameters and details refer to Chapter 2. The five

gas turbine measured outputs are also presented as

y1 = TC = Tdiffuser[1 +
1

θηCηC
[(

PCC

Pdiffuzer

)
γ−1
γ − 1]],

y2 = PCC, y3 = S, y4 = PNLT,

y5 = TCC[1− θηTηT(1− (
PNLT

PCC

)
γ−1
γ ].

(3.37)

In order to discretize the above model for implementation of our proposed dual state/parameter

estimation particle filters, a simple Euler Backward method is applied with the sampling period

of Ts = 10 msec.
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The system health parameters are represented by the compressor and the turbine efficiency,

ηC and ηT, respectively, and the compressor and turbine mass flow capacities, ṁC and ṁT, re-

spectively. A fault vector is incorporated in the above model to manifest the effects of system

health parameters that are denoted by θ = [θηC , θmC
, θηT , θmT

]T. By introducing a new param-

eter as θ́ηC = 1
θηC

, the measurement equations (3.37) can be represented as smooth functions

with respect to the fault parameters. Each parameter variation can be a manifestation of changes

in the fault vector that is considered as a multiplicative fault type. All the simulations that are

conducted in this section corresponds to the cruise flight condition mode.

In order to demonstrate the effectiveness and capabilities of our proposed algorithms, we

have also conducted simulation results corresponding to the conventional Bayesian method [2],

and well-known recursive maximum likelihood (RML) parameter estimation method based on

PF [3, 80, 81]. It should be noted that the number of particles in each algorithm is chosen

based on the execution time of the algorithm such that approximately the same execution time

is achieved for each algorithm. Moreover, the gradient free PF-based RML method [3] could

not also yield an acceptable performance in this application given the large number of tuning

parameters that are associated with each parameter in this method. Therefore, the RML based

on the direct gradient method is utilized for the purpose of performance comparison.

In our schemes, the adaptive step size (P
(j)
t = γtR

(j)
t ) is defined as the product of the

constant γt(γt = 0.9) with R
(j)
t , which is evaluated on-line from the trace of the prediction error

covariance matrix that is estimated from the maximum likelihood method. On the other hand,

the step size in the RML method was chosen as γt = 0.05 = const. that is obtained by trial and
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error. The residuals corresponding to the parameter estimates are also obtained. Based on the

percentage of the maximum absolute error criterion, a convergence time of 2 seconds is obtained

in simulations for estimating both the states and parameters corresponding to 25 Monte Carlo

runs of simultaneous faults with severities ranging from 1% to 10% loss of effectiveness of the

healthy condition magnitudes.

To choose the number of particles for implementation of the state and parameter estima-

tion filters, a quantitative study is conducted. Specifically, based on the mean absolute error

(MAE%) that was obtained at the steady state estimation process and by taking into account the

algorithm’s computational time, the number of particles is chosen as N = 50 for both the state

and parameter estimation filters in this application. On the other hand, considering the average

execution time of 18sec for one iteration of the dual estimation algorithm, the equivalent execu-

tion time is achieved for Bayesian algorithm with Ń = 45 and in RML algorithm with
´́
N = 150

number of particles.

Subsequently, it was confirmed that acceptable performance and convergence times are ob-

tained. The shrinkage matrix is also selected as 0.93I . The initial distributions (i.e., the mean

and covariance matrices) of the states and parameters are selected to correspond to the cruise

flight operational condition as provided in [158]. In what follows, the two main simulation sce-

narios for conducting the fault diagnosis investigation of the gas turbine engine are presented.

Scenario I: Concurrent Faults in the Compressor and Turbine Health Parameters.

In this scenario, the input fuel flow rate to the engine is changed by decreasing it by 2% from

its nominal value one second after reaching the steady state condition. Next, the effects of con-
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current faults in both the compressor and the turbine are studied by injecting sequential fault

patterns affecting the system components. Specifically, at time t = 4 sec the compressor effi-

ciency is reduced by 5% (this represents the level of the fault severity), followed by at t = 9 sec

the same fault type affecting the compressor mass flow capacity, and at t = 14 sec the same

fault type affecting the turbine efficiency, and finally at t = 19 sec the same fault type is applied

to the turbine mass flow capacity.

The results corresponding to changes in the fault parameters are depicted in Figure 3.2. The

dotted lines depict the confidence bounds for residuals that are determined based on 50 Monte

Carlo simulation runs under various concurrent and simultaneous single and/or multiple fault

scenarios using the PE-based method. By analyzing the residuals, the detection time of a fault

in each component and its severity can be determined and identified. It follows from this figure

that the constructed residuals corresponding to the dual estimation method according to PE-

based method and the RML method almost do not exceed their confidence bounds subject to

changes in the engine input (applied at t = 1 sec). On the other hand, the Bayesian method

shows false alarm for the residuals corresponding to the turbine heath parameters, and also this

method is not able to track the changes in the fault vector in the selected time window in all the

residual signals after fault occurrence.

In order to obtain a quantitative measure on the precision of our proposed estimation algo-

rithm the results related to the 5% fault severity in terms of the mean absolute error (MAE%) of

estimates corresponding to the last 2 sec of simulations (following the algorithm convergence)

after each change are provided and summarized in Table 3.8. The state/parameter estimation

78



0 5 10 15 20
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Residual for the Compressor Efficiency Fault

0 5 10 15 20
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02
Residual for the Compressor Mass Flow Fault

 

 

Residual upper bound

Residual lower bound

PE-based method

RML-based method

Bayesian KS-based method

0 5 10 15 20
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02
Residual for the Turbine Efficiency Fault

0 5 10 15 20
0.92

0.94

0.96

0.98

1

1.02

1.04

Residual for the Turbine Mass Flow Fault

Figure 3.2: Residuals corresponding to the concurrent fault scenarios in the turbine and the

compressor parameters.

MAE% for our proposed dual estimation algorithm according to PE-based method withN = 50,

the conventional Bayesian method based kernel smoothing (KS-based) with Ń = 45, and the

RML method with
´́
N = 150 are presented. In this table, the i-th fault for i = 1, ..., 4 denotes the

last 2 sec of simulations after the i-th fault occurrence, and the first column refers to the healthy

system before the fault occurrence.

The results shown in Table 3.8 demonstrate that for the PE-based method the maximum

MAE% for the states is between 0.03% − 1.06% of their nominal values. In case of the health

parameters, for ηC and ṁC the maximum MAE% is around 0.91% and for ηT and ṁT it is around

0.98% of their nominal values. On the other hand, according to results presented in Table 3.8

(b), the maximum MAE% for the states corresponding to the RML method is between 0.1% −

1.16% of their nominal values. In case of the health parameters, the maximum MAE% ranges
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between 0.8% − 2.8% of their nominal values, where both mass flow rates are estimated with

higher MAE%. The results corresponding to Table 3.8 (c) indicate that the maximum MAE%

for the state estimation results in Bayesian KS-based method ranges between 0.2% − 18.3%,

for compressor health parameters between 0.53% − 19.3%, and for turbine health parameters

between 0.15%− 3.0%

The MAE% for the estimated measurements (outputs) of the engine are also provided in

Table 3.9 for the PE-based ,RML , and Bayesian KS-based methods. From the results presented

in Table 3.9 (a) one can conclude that the maximum MAE% for the temperatures (of the turbine

and the compressor) corresponding to our proposed PE-based method is less than 0.3%, and

for the spool speed is less than 0.16%, and for the compressor pressure is less than 1.4%, and

for the turbine pressure is less than 2.5%. On the other hand, the results presented in Table

3.9 (b) for the RML method show that the maximum MAE% for the compressor and turbine

temperatures is less than 0.4% and 0.6%, respectively. For the spool speed the MAE% is less

than 0.2%, and for the compressor pressure it is less than 1.5% and for the turbine pressure it

is less than 2.5%. In the Bayesian KS-based method, instead of compressor temperature and

spool speed outputs, the maximum MAE% exceeds 13% of the nominal values. Consequently,

the results presented in these two tables confirm that the Bayesian KS-based method does not

have acceptable estimation accuracy as compared to other two alternative methods. On the other

hand, PE-based method outperforms the RML method significantly. The accuracy in the mea-

surement estimation is an important aspect and factor given that from practical considerations

the system states and parameters are unknown. Therefore, it is generally necessary to judge the

estimation accuracy based on the output estimation error performance and behaviour.
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In order to demonstrate and illustrate the precision of our proposed fault detection algorithm

based on the dual state/parameter estimation scheme, at the end of this section a quantitative

study is conducted by performing a confusion matrix analysis [175] in presence of various

fault scenarios having different fault severities and in presence of the same level of process and

measurement noise that are stated in [158] for the PE-based method, the RML method, and the

Bayesian KS-based combined state and parameter estimation algorithm.

Scenario II: Simultaneous Faults in the Compressor and the Turbine Health Parameters.

In the second scenario, a simultaneous fault in all the 4 health parameters of the engine is applied

at t = 9 sec. The compressor and the turbine efficiencies faults follow the pattern of a drift fault

that starts at t = 9 sec and causes a 5% loss of effectiveness in the compressor efficiency by

the end of the simulation time (i.e. at t = 19 sec), and a 3% loss of effectiveness in the turbine

efficiency by the end of the simulation time. Simultaneously, the mass flow rate capacities of

both the compressor and the turbine are affected by a fault that causes a 5% loss of effectiveness.

The residuals corresponding to the three previous estimation methods are provided in Figure

3.3. The simulations show that in case of changes in the engine input (applied at t = 1 sec)

the RML method residuals has high false alarm rates as compared to dual estimation method

according to PE-based algorithm, similar to the first scenario for the concurrent faults. More

quantitative analysis on the performance of the RML method that is compared to the PE-based

method is provided in the subsequent subsection. The presented results admit that the Bayesian

KS-based method is not able to track the variations in the fault vectors in the case of simultane-

ous fault scenario.
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Table 3.8: State/Parameter MAE% in case of concurrent fault scenarios for (a) Dual estimation

algorithm according to PE-based method with N = 50 and (b) RML method with N = 150 (c)

Bayesian KS-based method with N = 45.

(a)

State No Fault 1nd Fault 2rd Fault 3th Fault 4th Fault

PCC 0.3529 0.2097 0.3614 0.4336 0.2374

N 0.1473 0.0761 0.1087 0.1624 0.0296

TCC 0.2683 0.1674 0.1678 0.3838 0.1155

PNLT 0.8575 0.5325 0.3978 1.0614 0.3213

ηC 0.2702 0.1785 0.2749 0.3879 0.2107

ṁC 0.6621 0.4229 0.3682 0.9132 0.2236

ηT 0.2865 0.1648 0.1743 0.4885 0.1873

ṁT 0.4744 0.4557 0.4889 0.9757 0.5037

(b)

State No Fault 1nd Fault 2rd Fault 3th Fault 4th Fault

PCC 0.5352 0.6342 0.3921 0.8934 0.5882

N 0.0995 0.0912 0.1018 0.2060 0.1383

TCC 0.2064 0.2443 0.2574 0.5174 0.3374

PNLT 0.7181 0.8112 0.7771 1.1603 0.5666

ηC 0.9268 1.9195 2.1698 1.4508 1.4651

ṁC 1.6338 1.8037 1.0761 2.6062 2.2717

ηT 0.9252 0.7876 0.8714 1.6517 1.1411

ṁT 1.3719 1.7858 1.6162 1.9666 2.7653

(c)

State No Fault 1nd Fault 2rd Fault 3th Fault 4th Fault

PCC 1.8961 2.6032 6.1590 18.2816 7.9636

N 0.2127 0.5032 0.4490 4.7275 2.5564

TCC 0.4789 1.0029 1.6025 8.6930 6.5029

PNLT 0.6841 1.3838 3.6558 14.9288 8.9250

ηC 0.7248 3.3660 3.0788 6.3141 4.9584

ṁC 0.5306 1.3399 4.3086 19.3026 11.8476

ηT 0.1445 0.7394 0.9198 1.0082 1.8379

ṁT 1.4943 1.6979 2.6633 3.0198 1.7125
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Table 3.9: Output estimation MAE% in case of concurrent fault scenarios for (a) Dual

estimation algorithm according to PE-based method with N = 50 and (b) RML method with

N = 150 (c) Bayesian KS-based method with N = 45.

(a)

Output No Fault 1nd Fault 2rd Fault 3th Fault 4th Fault

TC 0.2893 0.2319 0.2749 0.2805 0.2357

PC 1.3548 1.2332 1.2507 1.4070 1.1813

N 0.1473 0.0761 0.1087 0.1624 0.0296

TT 0.2034 0.1857 0.1911 0.2804 0.1322

PT 2.2231 2.1696 2.1839 2.4577 2.0783

(b)

Output No Fault 1nd Fault 2rd Fault 3th Fault 4th Fault

TC 0.2902 0.3240 0.2956 0.3985 0.2991

PC 1.4012 1.3755 1.3030 1.4779 1.2902

N 0.0995 0.0912 0.1018 0.2060 0.1383

TT 0.2181 0.2461 0.2122 0.5786 0.5206

PT 2.3446 2.3994 2.1356 2.5220 2.2474

(c)

Output No Fault 1nd Fault 2rd Fault 3th Fault 4th Fault

TC 0.9416 0.7569 0.6033 3.4434 0.3789

PC 1.9784 2.6211 6.5484 18.0905 7.8644

N 0.2127 0.5032 0.4490 4.7275 2.5564

TT 0.3428 0.7125 2.6660 13.3328 8.6219

PT 2.2715 2.7023 3.9467 14.9107 8.7964
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The results in Table 3.10 (a) show that for our proposed PE-based method, the maximum

MAE% for both state and parameter estimates are between 0.1%−0.5% of their nominal values.

However, in the worst case the post fault estimated MAE% of the ṁT is 0.47% of its nominal

value. Moreover, in the results shown for the RML method in Table 3.10 (b) it follows clearly

that the state estimation MAE% can be achieved within 0.1% − 0.8% of the nominal values,

whereas the parameter estimation MAE% is achieved within 0.7%− 3% of the nominal values

with higher error rates after the fault occurrence, specially in the compressor and turbine mass

flow rate capacities. However, for the Bayesian KS-based method in Table 3.10 (c) the maxi-

mum MAE% is achieved within 0.19% − 8.4% of the nominal values for the estimated states

and within 0.25%− 7.2% of the nominal values for the estimated parameters.

The MAE% measurement (output) estimate error given in Table 3.11 (a) for the PE-based

method shows that after simultaneous fault occurrences the error increases when compared to

their values before the fault occurrences. This is caused due to accumulation of parameter es-

timation errors while all the four parameters are affected by a fault. On the other hand, the

results corresponding to the output estimation as given in Tables 3.11(a)-(c) show that with

the exception of the turbine pressure, our PE-based method outperforms the RML method for

estimating the other four measurement outputs. However, the maximum MAE% for the out-

puts from Bayesian KS-based method performs high level of errors after fault occurrence in all

measurement outputs as compared to the other two estimation methods.

To summarize, our proposed PE-based fault diagnosis algorithm is capable of detecting, iso-

lating and estimating the component faults of a gas turbine engine with an average accuracy of
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Figure 3.3: Residuals corresponding to the simultaneous fault scenarios.

0.3% for the compressor and 0.5% for the turbine faults. In contrast the RML algorithm is capa-

ble of achieving the performance of an average 3% for the compressor and 1.6% for the turbine

faults. The Bayesian KS-based method does not have acceptable accuracy for simultaneous

fault diagnosis application.

Fault Diagnosis Confusion Matrix Analysis

Finally, in this subsection a quantitative study is performed by utilizing the confusion matrix

analysis [175] to evaluate the increase in the false alarms and/or misclassification rates of the

faults in our considered application when the fault diagnosis algorithm is implemented by our

proposed PE-based method with N = 50 particles, the RML method with N = 150, and the

Bayesian KS-based method with N = 45 particles. The thresholds corresponding to each al-

gorithm are determined from 25 Monte Carlo runs on simultaneous fault scenarios that are not
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Table 3.10: State/Parameter MAE% in case of simultaneous fault scenarios for (a) PE-based

method with N = 50 and (b) RML method with N = 150 (c) Bayesian KS-based method with

N = 45.

(a)

State Before Fault After Fault

PCC 0.2217 0.2372

N 0.0535 0.1061

TCC 0.2086 0.1928

PNLT 0.3970 0.4291

ηC 0.1735 0.1821

ṁC 0.2811 0.3293

ηT 0.1016 0.1485

ṁT 0.4589 0.4744

(b)

State Before Fault After Fault

PCC 0.4865 0.4383

N 0.1025 0.1053

TCC 0.2247 0.1888

PNLT 0.7540 0.5264

ηC 0.9295 1.7956

ṁC 1.7291 2.9729

ηT 0.7306 1.0040

ṁT 1.4290 1.5923

(c)

State Before Fault After Fault

PCC 0.5186 8.3590

N 0.1906 2.7197

TCC 0.2834 4.5219

PNLT 0.6506 5.0157

ηC 0.5992 4.8358

ṁC 0.5775 7.2215

ηT 0.2463 4.8958

ṁT 0.2861 4.3080
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Table 3.11: Output estimation MAE% in case of simultaneous fault scenarios for (a) PE-based

method with N = 50 and (b) RML method with N = 150 (c) Bayesian KS-based method with

N = 45.

(a)

Output Before Fault After Fault

TC 0.2207 0.2852

PC 1.2926 1.3729

N 0.0535 0.1027

TT 0.1565 0.1650

PT 2.1210 2.2348

(b)

Output Before Fault After Fault

TC 0.2482 0.2832

PC 1.4051 1.4369

N 0.1025 0.1053

TT 0.2058 0.1774

PT 2.1413 2.1580

(c)

Output Before Fault After Fault

TC 0.3250 3.5756

PC 1.3621 8.1037

N 0.1906 2.7197

TT 0.4126 4.9311

PT 2.2252 5.0404

necessarily the same for the three algorithms. The confusion matrix data is obtained by perform-

ing simulations for another 35 Monte Carlo simultaneous fault scenarios having different fault

severities and in presence of the same process and measurement noise covariances correspond-

ing to 50% of the nominal values of the process and measurement noise covariances (according

to [158]). In these scenarios, at each time more than one of the system health parameters are

affected by component faults.

The results are shown in Tables 3.12(c)-3.12(a) corresponding to PE-based method with

N = 50 particles, the RML method with N = 150, the RML method with N = 150, and the

Bayesian KS-based method with N = 45 particles, respectively. In these tables the rows depict

the actual number of fault categories that are applied and the columns represent the number of

estimated fault categories. The diagonal elements represent the true positive rate (TP ) for each
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Table 3.12: Confusion matrix for (a) PE-based method with N = 50 and (b) RML method with

N = 150 (c) Bayesian KS-based method with N = 45.

(a)

Fault η̇C ṁC η̇T ṁT No Fault

ηC 31 0 2 2 0

ṁC 0 30 2 3 0

ηT 1 1 28 4 1

ṁT 1 1 3 29 1

No Fault 0 0 1 1 33

(b)

Fault η̇C ṁC η̇T ṁT No Fault

ηC 28 2 3 2 0

ṁC 1 27 1 4 2

ηT 2 3 26 3 1

ṁT 1 3 4 26 1

No Fault 0 2 1 1 31

(c)

Fault η̇C ṁC η̇T ṁT No Fault

ηC 10 5 6 4 10

ṁC 9 13 8 6 9

ηT 6 6 9 7 7

ṁT 5 7 8 11 4

No Fault 10 9 7 4 5

fault occurrence. The accuracy (AC), precision (P ), and the false positive rate (FP ) of the

three algorithms are also evaluated from the confusion matrix results according to the following

formulae [175],

AC =

∑5
j=1 cjj∑5

i=1

∑5
j=1 cij

, Pj =
cjj∑5
i=1 cij

, FP =

∑4
j=1 c5j∑5
j=1 c5j

,

where cij, i, j = 1, ..., 5 denote the elements of the confusion matrix. In Table 3.13, the confu-

sion matrix results according to the above metrics for the Tables 3.12(a)-3.12(c) are provided.

The results demonstrate that the accuracy of the fault diagnosis for the dual PE-based estima-

tion algorithm outperforms RML method with 7.43% and the false positive rate of 5.71% less

than RML method. The precision of the algorithm for all the system four health parameters
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is more than the ones from RML method. However, the Bayesian KS-based method indicates

poor accuracy and high false alarm rate for the fault diagnosis of the system. Consequently,

the PE-based method with N = 50 outperforms the other two methods significantly in terms of

higher accuracy, lower false positive rate, and higher precision for all the four health parameters

of the gas turbine engine.

Table 3.13: Confusion matrix Analysis results.

Noise Level AC% FP% PηC
% PṁC

% PηT
% PṁT

%

PE-based Method with 50 Particles 86.29 5.71 93.94 93.75 77.78 74.36

RML Method with 150 Particles 78.86 11.43 87.50 72.97 74.29 72.22

Baysian KS-based Method with 45 Particles 25.95 85.71 25.00 32.50 23.68 34.38

3.4 Conclusion

In this chapter, a novel dual estimation filtering scheme is proposed and developed based on

particle filters (PF) to estimate a nonlinear stochastic system states and time variations in its

parameters. The dual structure is based on the extension of the Bayesian parameter estimation

framework. A dual structure is proposed for achieving simultaneous state and parameter esti-

mation objectives. Performance results of the application of our method to a gas turbine engine

under healthy and faulty scenarios are provided to demonstrate and illustrate the superior capa-

bility and performance of our scheme for a challenging fault diagnostic application as compared

to the well-known recursive maximum likelihood (RML) method based on particle filters and

conventional Bayesian method for combined state and parameter estimation based on particle

filters while the computational complexity of all the algorithms remains the same. On the other
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hand, the false alarm rate of our proposed dual algorithm is significantly lower than the RML

and conventional Bayesian methods. These two main characteristics justify and substantiate the

observation that our proposed algorithm is more suitable for the purpose of fault diagnosis of

critical nonlinear systems that require lower fault detection times and false alarm rates. More-

over, the estimation results accuracy in terms of the fault identification are also provided. The

obtained results are demonstrated and validated by performing a confusion matrix analysis.
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Chapter 4

An Improved Particle Filtering Based

Approach for Health Prediction and

Prognosis of Nonlinear Systems

In this chapter the previously developed dual state and parameter estimation algorithm based

on particle filters, as presented in Chapter 3, is extended for long-term prediction of nonlinear

systems states and health parameters. In our proposed approach, an observation forecasting

scheme is developed to extend the system observation profiles (as time-series) to future. Par-

ticles are then propagated to future time instants according to a resampling algorithm instead

of considering constant weights for the particles propagation in the prediction step. The uncer-

tainty in the long-term prediction of the system states and parameters are managed by utilizing
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dynamic linear models for development of an observation forecasting scheme. This task is

addressed through an outer adjustment loop for adaptively changing the sliding observation in-

jection window based on the Mahalanobis distance criterion. Our proposed approach is then

applied to predict the health condition of a gas turbine engine that is affected by degradations in

the system health parameters for demonstrating and illustrating the capabilities and performance

characteristics of developed schemes.

In our proposed method, it is shown that the previously developed dual state and param-

eter estimation algorithm in Chapter 3 along with the newly developed DLM-based predic-

tion method where the particles resampling is maintained for future time instants can yield

improved long-term prediction performance and achieve more accurate RUL estimation of

the system. These constitute as the main goals of the second component of any PHM strat-

egy [38], [176–179]. The above results are obtained by evaluating the percent of root mean

square error criterion and its effect on the accuracy of the RUL prediction for the prognosis

problem [180]. The online performance of the developed prognosis approach is evaluated using

prognosis metrics as introduced in [181, 182] in comparison with other well-known methods in

the literature [25]. Furthermore, we have conducted an extensive study on the computational

complexity of our proposed method in terms of the number of flop operations. Moreover, the

conditions under which the equivalent time complexity of our proposed method including the

observation prediction and the resampling scheme for the prediction horizon can be compara-

ble to the previously developed method in [25] with augmented state and parameter vector and

constant particle weight propagation, are obtained.
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Dynamic linear models (DLM) represent flexible approaches for modeling a variety of fixed,

time-varying, univariate or multivariate systems using Bayesian analysis [183]. The key feature

in working with the DLM models is that their estimation and prediction schemes can be obtained

recursively by using Bayesian approaches. One can generate useful models for forecasting

non-stationary observations where the implementation and analysis are not as complicated as

nonlinear time-series analytic methods used for forecasting [77], [183]. In the present work,

DLM models and particle filters are integrated into a module for managing uncertainty in the

long-term prediction of the system health condition. This is achieved by introducing fixed-lag

DLM models that are updated according to an adaptive scheme. This adaptive updating scheme

is developed based on the Mahalanobis distance metric that enables the prediction algorithm

manage uncertainties originated from the non-Gaussian process noise. Mahalanobis distance is

an important metric that has been used for fault detection of dynamical systems [184].

Finally, our proposed prediction strategy is applied to a gas turbine engine application to

predict the system health parameters variations when it is subjected to soft degradation damages.

Based on the predicted health parameters, the remaining useful life of the engine is determined.

In this thesis, we concentrate and mainly investigate the effects of the fouling and the erosion

phenomena as the main causes of the engine performance degradation. The probabilities of an

engine failure due to these degradation phenomena are approximated based on the developed

health prediction scheme.

The main contribution of this chapter is now summarized as below:

1. Extend the developed dual estimation method to predict the future health of the affected
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nonlinear system. This methodology is developed by incorporating the dynamical linear

models (DLM) for Bayesian forecasting of uni-variate time-series in an observation fore-

casting module which is enhanced to the particle filtering-based dual estimation method.

The remainder of this chapter is organized as follows. In Section 4.1, the nonlinear filter-

ing problem is formulated to include changes in the health parameters of the system through a

multiplicative fault vector. A brief background information related to our previously developed

dual state and parameter nonlinear filtering schemes based on the particle filter method is also

presented in this section. Our proposed framework for predicting the future propagation of the

nonlinear system states and parameters is developed in Section 4.2. Section 4.3 provides the

complexity analysis of our proposed prediction scheme based on the equivalent flop complexity

analysis. The utilization and implementation of our proposed prediction method in evaluating

the system remaining useful life (RUL) is presented in Section 4.4. Finally, simulation results

corresponding to the application of our proposed method for failure prognosis of a gas turbine

engine that is affected by degradations due to compressor fouling and turbine erosion are pro-

vided in Section 4.5.

4.1 Problem Statement and Backgroung Information

In model-based prognosis and health monitoring approaches, the first module in the problem

statement is characterizing the damage model. Consider the following nonlinear dynamical
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system,

xt+1 = ft(xt, θ
T
t λ(xt), ωt), (4.1)

yt = ht(xt, θ
T
t λ(xt)) + νt, (4.2)

where xt ∈ R
nx is the system state, λ(.) : Rnx −→ R

nθ is a known differentiable function

that determines the relationship between the health parameters and the system states, θt ∈ R
nθ

is an unknown and possibly time-varying multiplicative fault vector that represents the damage

effect on the system health parameter where for a healthy system, θt is set to 1, yt ∈ R
ny is

the output measurement, ωt and νt are uncorrelated noise sequences with covariance matrices

Wt and Vt, respectively, ft : Rnx × R
nθ × R

nω −→ R
nx , and ht : Rnx × R

nθ −→ R
ny are

known nonlinear functions representing the relationship between the states, parameters and the

output measurements (observations). For example, the degradation phenomenon in mechanical

systems can be identified from the changes it causes on the efficiency of the system, where

the efficiency is designated as the health parameter that can be analytically obtained from the

states and measurements of the system. The process noise is not considered as an additive noise

since corresponding to our main focused application (that is, mechanical systems application)

the additive process noise assumption is not necessarily valid.

The main objective of this thesis is to develop a novel framework for performing system fail-

ure prognosis according to the following two principle modules [25], namely: (a) joint state and

parameter estimation (health tracking), and (b) prediction of the state and parameter distribution

(health prediction). The first module, that is the joint state and parameter estimation, has already

been developed in our work presented in Chapter 3 [4], where the particle filtering (PF) method

was used to develop a novel dual state and parameter estimation scheme that can be utilized for
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health tracking problems. In this chapter, which represents an extension to our work in [185],

additional theoretical and simulation results are developed and provided corresponding to the

second module of the proposed prognosis approach. The developed method can be utilized for

predicting the propagation of the system states and changes in the system health parameters in

the long-term horizon and its effects on the accuracy of the system remaining useful life predic-

tion. In the subsequent sections, more details are explained regarding the development of our

proposed methodology.

In Table 4.1, the summary corresponding to our previously developed dual state and param-

eter estimation filter for the nonlinear system (4.1)-(4.2) is provided. More details regarding

this algorithm can be found in Chapter 3.

We are now in the position to present our proposed prediction framework based on par-

ticle filters by utilizing the dynamic linear models (DLM) as local models for obtaining and

developing observation profiles forecasting.
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Table 4.1: Summary of our developed dual state and parameter estimation algorithm [4, 5]

• Initialization of the states and parameters: x0 ∼ πx0 and θ0 ∼ πθ0 , where πx0 and πθ0 are the initial distributions of states and parameters, respectively,

[x̂t|t, {x̂(i)t|t}Ni=1, θ̂t|t, {θ̂(j)t|t }Nj=1,Σθ̂t|t
] = DualPF({x̂(i)t−1|t−1}Ni=1, {θ̂(j)t−1|t−1}Nj=1,Σθ̂t−1|t−1

, yt)

1. Estimation of the a priori state distribution:

(a) Generate the a priori state particles: x̂
(i)
t|t−1 = ft(x̂

(i)
t−1|t−1, θ̂

T
t−1|t−1λ(x̂

(i)
t−1|t−1), ω

(i)
t ), i = 1, ..., N

(b) A priori state covariance approximation: Σx̂t|t−1
= 1

N−1

∑N
i=1(x̂

(i)
t|t−1 − 1

N

∑N
j=1 x̂

(j)
t|t−1)(x̂

(i)
t|t−1 − 1

N

∑N
j=1 x̂

(j)
t|t−1)

T.

2. Estimation of the a posteriori state distribution:

(a) Calculate the state particles weights: w̃
(i)
xt ,

ρ(yt|x̂(i)
t|t−1

,θ̂t−1|t−1)
∑N

i=1 ρ(yt|x̂
(i)
t|t−1

,θ̂t−1|t−1)
, i = 1, ..., N where ρ(yt|.) is the conditional probability density function of yt,

(b) Regularization of the a priori state distribution: π̃N
xt|t

(dxt) ≈
∑Nreg

l=1

∑N
i=1 w̃

(i)
xt

|A−1
t |

bnx
K(1

b
A

−1
t (x

regl
t − x̂

(i)
t|t−1)), AtA

T
t = Σx̂t|t−1

,

(c) Resampling to approximate a posteriori state estimate distribution: πN
xt|t

(dxt) =
1
N

∑N
i=1 δx̂(i)

t|t

(dxt),

(d) Estimate the a posteriori state: x̂t|t =
1
N

∑N
i=1 x̂

(i)
t|t .

3. Estimation of the a priori parameter distribution:

(a) Calculate the prediction error as: εt(θ̂
(j)
t−1|t−1) = yt − h(x̂t|t, θ̂

(j)T

t−1|t−1λ(x̂t|t)), j = 1, ..., N,

(b) Calculate m
(j)
t from the PE-based modified artificial law: m

(j)
t = θ̂

(j)
t−1|t−1 + γtR

(j)
t ψ

(j)
t εt(θ̂

(j)
t−1|t−1), j = 1, ..., N ,

(c) Apply the kernel smoothing concept through the shrinkage matrix A to obtain the first step a posteriori parameter estimation distribution: θ̃
(j)
t|t = Am

(j)
t + (I − A)m̄t−1 +

ζ
(j)
t , m̄t−1 =

1
N

∑N
j=1 θ̂

(j)
t−1|t−1, ζ

(j)
t ∼ N (0, (I − A2)Σθ̂t−1|t−1

),

(d) Calculate the predicted output from the parameter estimation filter: ȳ
(j)
t|t−1 = ht(x̂t|t, θ̂

(j)T

t|t−1λ(x̂t|t)), j = 1, ..., N .

4. Estimation of the a posteriori parameter distribution:

(a) Calculate the parameter particles weights: w̃
(j)
θt

,
ρ(yt|x̂t|t,θ̃

(j)
t|t

)
∑N

j=1 ρ(yt|x̂t|t,θ̃
(j)
t|t

)
, j = 1, ..., N ,

(b) Calculate the first step a posteriori parameter estimation distribution: π̃N
θt|t

(dθt) ≈
∑N

j=1 w̃
(j)
θt
δ
θ̃
(j)
t|t

(dθt),

(c) Resampling to approximate a posteriori parameter estimate distribution: πN
θt|t

(dθt) =
1
N

∑N
j=1 δθ̂(j)

t|t

(dθt),

(d) Obtain the a posteriori parameter estimate: θ̂t|t =
1
N

∑N
j=1 θ̂

(j)
t|t ,

(e) Calculate the a posteriori parameter estimate covariance: Σθ̂t|t
= 1

N−1

∑N
j=1(θ̂

(j)
t|t − θ̂t|t)(θ̂

(j)
t|t − θ̂t|t)T.

The definition of the notations in the above algorithm is as follows:

• ω
(i)
t denotes the process noise added to each particle for i = 1, ..., N ,

• K(.) : The regularization kernel,

• At is chosen such that AtA
T
t = Σx̂t|t−1

,

• x
regl
t : The regularized points around which K(.) is evaluated for l = 1, ..., Nreg(number of regularized steps),

• γtR
(j)
t : The adaptive step size in the parameter estimation where R

(j)
t =

√
trace(E (j)

t E (j)T

t ), E (j)
t = εt(θ̂

(j)
t−1|t−1)− 1

ny

∑l=ny

l=1 ε
(l)
t (θ̂

(j)
t−1|t−1), where ε

(l)
t (θ̂

(j)
t−1|t−1) denotes the l-th element

of the εt(θ̂
(j)
t−1|t−1) vector, and γt is a constant or decreasing step size,

• ψ
(j)
t : The Jacobian of h(x̂t|t, θ̂

(j)
t−1|t−1) with respect to θ̂

(j)
t−1|t−1 evaluated for j-th particle,

• ζ
(j)
t : The evolution noise added to each parameter particle.

• A: The shrinkage matrix and chosen as, A ≤ I(1 −
√

σmin(P 2
maxΨVyΨTV −1

θ̂
)

σmax(P 2
maxΨVyΨTV −1

θ̂
)
), where ψ

(j)
t is considered as constant between the time steps t and t − 1 and is denoted by Ψ, W denotes

the upper-bound on the variance of the added noise Wt, Vy denotes the upper-bound on the variance of the measurement noise Rt, Vθ̂ denotes the variance of the parameters when

they are constants that can be assumed the same as the initial covariance of the parameters, and Pmax = γ0

√
trace(EmaxEmax

T), with γ0 denotes the initial value of the step size, and

EmaxEmax
T is a design parameter denotes the maximum acceptable variance among the prediction error vector elements.
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4.2 Prediction Framework

In this section, the second module in our proposed model-based prognosis approach (system

health prediction), as described in Section 4.1, is developed and presented. This is accomplished

by extending our previously developed PF-based dual state and parameter estimation scheme to

the future time instants, where the weight update in the long-term prediction with particle filters

cannot be easily implemented in the absence of future observations.

Our proposed strategy is to first forecast the system observations from the available historical

data for a predefined time horizon where the observation forecasting algorithm is adaptively

adjusted whenever a new observation batch becomes available. However, the nonlinearity of the

system and non-normality of the measurement noise coupled with the degradations effect lead

to a non-stationary behavior in the system observations [186]. Hence, to model the observations

of a dynamical system as a time-series, instead of nonlinear models, dynamical linear models

known as the DLM are utilized that are constructed based on the assumptions of local normality

and linearity of the time-series in each short-term time interval in which the observation time-

series manifest a stationary behavior [186].

The DLM model essentially represents a special class of state space linear and Gaussian

models, in which the time-series is considered as the output of a dynamical system that is per-

turbed by random disturbances. In our proposed fixed-lag DLM model, in each time window

the available observation history that originates from a stochastic non-stationary process is ap-

proximated by a stationary process based on a linear regression method, and the observation
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forecasting is performed for a specific time horizon window.

By augmenting and integrating the observation forecasting module with the PF-based es-

timation scheme, the PF algorithm can be extended to future time steps by utilizing the same

weight update rule (through performing a resampling). This is accomplished in the same manner

as the estimation module to predict the system state and parameters for the long-term horizon

according to the previously described estimation algorithm (Section 3.2).

The DLM structure for observation forecasting is constructed according to the well-known

autoregressive moving average (ARMA) models. In the next subsection, a brief overview to

forecasting with ARMA models within the DLM formulation is provided.

4.2.1 Forecasting with ARMA Models

ARMA models are well-known as suitable modeling strategies for forecasting or predicting the

value of a stationary zero-mean stochastic process. Although, the observation process yt in (4.2)

is non-stationary, one can still approximate it as an ARMA process using locally dynamic linear

models (DLM) in a short-term time window. It is assumed that the variations in the observation

time-series are not very fast during this time window, therefore the assumption of the stationarity

remains valid. This assumption is indeed not going to be restrictive for degradation forecasting

in dynamical systems, since the degradations affect the system dynamical behavior quite slowly

in time. Next, we analyze ARMA models in our developed fixed-lag DLM framework.

Towards this goal, let us denote yj,t, j = 1, ..., ny as the j-th element of the output mea-
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surement vector yt (implying a univariate time-series). Since yt and consequently yj,t are non-

stationary process, to model each yj,t as a stationary time-series one has to consider time in-

tervals during which the process behavior can be approximated as a stationary process. It is

assumed that yj,t is a stationary process between the time instants tl and tl+1, where l ∈ N and

the τ number of available data in the time window (tl − τ, tl] are used for constructing the l-th

DLM model related to each output in the interval [tl, tl+1) . Later, it will be shown how the

time instants tl, l ∈ N are specified based on the Mahalanobis distance criterion [187].

The DLM models in the observation forecasting module are constructed according to the

ARMA process model. Consequently, corresponding to each output j individually in the time

interval (tl − τ, tl], the ARMA(pj, qj) structure is stated as follows,

(1− φj,l,1L− φj,l,2L
2 − ...− φj,l,pjL

pj )(yj,t − µj,l) = (1 + θj,l,1L+ θj,l,2L
2 + ...+ θj,l,qjL

qj )εj,t,

(4.3)

where φj,l,i, i = 1, ..., pj , and θj,l,i, i = 1, ..., qj are the coefficients of the autoregressive

and moving average parts, respectively, the pj and qj denote the delay orders corresponding to

the autoregressive and moving average parts in the ARMA model formulation, respectively, L

denotes the delay operator, µj,l denotes the mean of the j-th historical observation yj,t in the

time window (tl − τ, tl], and the sequence {εj,t} is a white noise error process with zero mean

and variance σεj .

Remark 4.1 The order of ARMA(pj, qj) can be different for each l-th DLM model related to

each observation time-series yj,t. Therefore, the DLM model can be implemented based of fixed
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order or variable order ARMA process. In the case of variable order ARMA model, the well-

known Akaike information criterion [188] can be applied for finding the order of the ARMA

process.

Another representation for ARMA process in (4.3) can be obtained as

yj,t − µj,l =
(1 + θj,l,1L+ θj,l,2L

2 + ...+ θj,l,qjL
qj )

(1− φj,l,1L− φj,l,2L2 − ...− φj,l,pjL
pj )
εj,t, (4.4)

which yields,

yj,t − µj,l = ψj,l,1εj,t + ψj,l,2εj,t−1 + · · · , (4.5)

where ψj,l,i, i = 1, 2, ... denote the coefficients corresponding to the quotient of the term in

the right hand side of (4.4), and refer to the fact that the stationary process yj,t − µj,l can be

written as an infinite autoregressive problem [186]. Therefore, the realisation of (4.5) at t + 1

based on the information set {εj,t+1, εj,t, εj,t−1, · · · } is obtained as yj,t+1 − µj,l = ψj,l,1εj,t+1 +

ψj,l,2εj,t+ · · · . Now, let us define a forecasting function based on the information set up to time

t, i.e. {εj,t, εj,t−1, · · · } as Ŷj,t+1|t − µj,l = ρj,l,1εj,t + ρj,l,2εj,t−1 + · · · , it was clearly shown in

the literature [186,189,190] that the mean-square error which minimizes E{(yj,t+1− Ŷj,t+1|t)2}

is achieved by setting ρj,l,i = ψj,l,i. This can also be derived from (4.3) which generates the

true value of yj,t+1 by setting the unobserved noise εj,t+1 to zero. Therefore, the one-step ahead

forecast at time t using ARMA process (4.3) model is now obtained as,

Ŷj,t+1|t − µj,l = φj,l,1(yj,t − µj,l) + φj,l,2(yj,t−1 − µj,l) + ...+ φj,l,pj(yj,t−pj+1 − µj,l)

+ θj,l,1εj,t + θj,l,2εj,t−1 + ...+ θj,l,qj+1εj,t−qj+1.

(4.6)

The ARMA model parameters can be estimated by applying any recursive parameter estimation
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method, such as the least-mean squares (LMS), the recursive-least squares (RLS) or the Kalman

filters [188] such that the desired cost function Vτ (φj,l,n, θj,l,m) =
1
τ

∑tl
t=tl−τ+1(yj,t − Ŷj,t|t−1)

2

is minimized for the available data in time window t ∈ (tl − τ, tl], where n = 1, ..., pj and

m = 1, ..., qj .

We utilize this stationary process for constructing the locally dynamic linear model rep-

resented by ARMA process. Afterwards, the observation forecast is performed based on the

obtained DLM model. The window size τ refers to the fixed number of available data points

used to construct the DLM model and as the new observations become available, the DLM

model is updated according to the Mahalanobis distance [187] through an external adjustment

loop. In general, the observation forecasting task is accomplished recursively for the window

time interval [t+1, t+k], denoted by Ŷt+i|t = (Ŷ1,t+i|t, ..., Ŷny ,t+i|t)T, i = 1, ..., k. More details

regarding the DLM update is investigated as follows.

The DLM Update Law

As stated before, at t = tl a new DLM model is developed based on the available data (tl−τ, tl].

The next step is to check when the developed DLM should be updated. It is assumed that the

batch of new observation data are received with the size s, where the minimum value of s is 1

and its maximum value depends on the size of the observation batch data that becomes available

at each step. For example, for an aircraft engine the number of recorded data at each flight cycle

might be more than one data point for each measurement. Therefore, at t = tl + s it is required

to check the validity of the stationarity assumption.
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The validation data set is the available observations in the time interval [tl+s− ś+1, tl+s],

where ś is the size of validation data. To check the changes in the observation data, a sliding

window of size q́ is moved over the validation data and the Mahalanobis distance metric [187] is

used to detect the change as follows. Let us define two q́-tuples which determine the two sliding

windows in the calculation of Mahalanobis distance metric for the observation vector as Qi,1 =

(ytl+s−ś+i, ..., ytl+s−ś+q́+i−1), andQi,2 = (ytl+s−ś+i+1, ..., ytl+s−ś+q́+i), for i = 1, ..., ś−q́. Next,

the mean of the data for these two vectors are calculated as

µQi,1
=

1

q́

q́−1∑

j=0

ytl+s−ś+i+j, µQi,2
=

1

q́

q́−1∑

j=0

ytl+s−ś+i+1+j, (4.7)

and the corresponding covariance matrices are calculated as

ΣQi,1
= 1

q́−1

∑q́−1
j=0(ytl+s−ś+i+j − µQi,1

)(ytl+s−ś+i+j − µQi,1
)T, (4.8)

ΣQi,2
= 1

q́−1

∑q́−1
j=0(ytl+s−ś+i+1+j − µQi,2

)(ytl+s−ś+i+1+j − µQi,2
)T. (4.9)

The Mahalanobis distance is calculated for the data points in Qi,1, and Qi,2 as follows,

DM(Qi,1) =
√
(Qi,1 − µQi,1

)TΣ−1
Qi,1

(Qi,1 − µQi,1
),

DM(Qi,2) =
√
(Qi,2 − µQi,2

)TΣ−1
Qi,2

(Qi,2 − µQi,2
),

(4.10)

where, DM(.) denotes the Mahalanobis distance for the observation vector. The change in

the observation data at time tl + i is detected if the following condition is satisfied according

to [187, 191], as

∃i ∈ {2, ..., ś− q́} such that |DM(Qi,1)−DM(Qi,2)| > δ|DM(Qi−1,1)−DM(Qi−1,2)|,

(4.11)

where δ ≥ 1 is a positive constant which along with |DM(Qi−1,1)−DM(Qi−1,2)| determines the

threshold for the change detection and its determination is application specific and the window

length ś, and q́ are chosen such that ś− q́ > 2. Once the change is detected in the observations

at tl + i, then tl+1 = tl + i and the new DLM model is obtained based on the observations in the

time interval (tl+1 − τ, tl+1], otherwise the DLM model is not updated. However, the validation
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algorithm is performed whenever a new s observation data become available, therefore it is

executed at time instant tl + ḱs, where ḱ denotes the number of data batches received after

the last DLM update. The schematic of our proposed DLM update algorithm based on the

calculation of Mahalanobis distance is provided in Figure 4.1 on a sample trajectory of yj,t.

Remark 4.2 The Mahalanobis distance metric for determining when the DLM model should be

updated can be also defined based on the error between the predicted observations from DLM

model and the real observations which are available in the time window (tl, tl + s] as in [185].

In such case, more data is required for evaluating the error based on this criterion.

4.2.2 Fixed-Lag DLM Model Error Analysis for Observation Forecasting

The error analysis corresponding to the observation forecasting scheme is now presented in this

subsection. Based on the ARMA(pj, qj) model in (4.3), the l-th general univariate DLM (for the

j-th output of the dynamical system) can be written by the following state space representation

according to [183],

Yj,t = Gj,lYj,t−1 + Fj,lεj,t,

yj,t − µj,l = HYj,t,

(4.12)

where yj,t for t ∈ (tl − τ, tl] refers to the available observations in the time interval of

size τ , dj = max(pj, qj + 1), Fj,l = (1 θj,l,1 ... θj,l,dj−1)
T, H = (1 0 ... 0), Yj,t =

(yj,t−µj,l, yj,t−1−µj,l, ..., yj,t−dj+1−µj,l)
T ∈ R

dj , εj,t denotes the sequence of white noise error,
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Figure 4.1: Change detection in a sample observation trajectory for DLM update.
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Gj,l =




φj,l,1 1 0 · · · 0

φj,l,2 0 1 · · · 0

...
...

...
...

...

φj,l,dj−1 0 0 · · · 1

φj,l,dj 0 0 · · · 0




,

φj,l,i, i = 1, ..., dj and θj,l,i, i = 1, ..., dj − 1 denote constant ARMA model coefficients of

the l-th DLM of the j-th output. Corresponding to the resulting stationary model, the back

substitution of the state equation from (4.12) yields,

Yj,t = Gj,lYj,t−1 + Fj,lεj,t =
∞∑

i=0

(Gj,l)
iFj,lεj,t−i. (4.13)

It should be pointed out that the stationarity condition requires that all the eigenvalues of Gj,l

are located inside the unit circle and, moreover (Gj,l)
i decreases in (4.13) by increasing i.

Definition 4.1. The forecast of the nonlinear non-stationary observation at time instant k, i.e.

yj,t+k made at time t + k − 1 using ARMA model based on its linear projection on the last

available pj observations {yj,t+k−1, ..., yj,t+k−pj}, is denoted by ylinj,t+k which is a linear approx-

imation of the actual nonlinear observation process. By applying the one-step ahead prediction

algorithm (4.12), ylinj,t+k is obtained as

ylinj,t+k − µj,l = H(Gj,lYj,t+k−1 + Fj,lεj,t+k) = H(
∞∑

i=0

(Gj,l)
iFj,lεj,t+k−i). (4.14)

We denote the k-step ahead forecast of yj,t+k made at time t based on the linear approxi-

mation according to ARMA model (4.12) as Ŷj,t+k|t. The most commonly used criterion for

evaluating the performance of the predictor Ŷj,t+k|t is considered to be its mean-square error

(MSE) from ylinj,t+k that is defined by E{(ylinj,t+k − Ŷj,t+k|t)2}. To this aim, Ŷj,t+k|t is obtained by
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back substitution of (4.12) into (4.14) when the noise error terms related to the future time are

set to zero (i.e., εj,t+i = 0 for i > 0) and applying (4.13), as follows

Ŷj,t+k|t − µj,l = H((Gj,l)
k+1Yj,t−1 + (Gj,l)

kFj,lεj,t) = H((Gj,l)
k

∞∑

i=0

(Gj,l)
iFj,lεj,t−i). (4.15)

The above implies that once the matrix Gj,l is determined from the available data within the

specified time window, the linear forecast and prediction of the observation can be obtained

from (4.15) for a specific prediction horizon by assuming that the process remains stationary.

Below, in Theorem 4.1, an upper bound on the mean square error (MSE) of the k-step

ahead forecasting using the ARMA process with the DLM model formulation is obtained. It

should be noted that the total forecast error has to be computed from the deviation between the

predicted values of the observations, Ŷj,t+k|t and their values from the nonlinear non-stationary

observation process, yj,t+k as governed by (4.2). In Theorem 4.2, this total forecast error will

be stated as a function of the prediction horizon (k).

First, the following lemma is stated following the results in [192] which is necessary for the

proof of Theorem 4.1.

Lemma 4.1. Let A represent a real square matrix with all its eigenvalues located inside the unit

circle, and B represent any real matrix having proper dimension. Then,

‖
k−1∑

i=0

AiB(Ai)T‖ ≤ ‖B‖κ(1− rk)

1− r
, (4.16)

where ‖B‖ denotes the matrix norm and is defined as the spectral norm ρ1/2(BTB), κ and r are

positive constants such that ρ(A) < r < 1, and ‖Ai‖2 ≤ κri where ρ(X) denotes the maximum

eigenvalue of the matrix X .
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Proof: Let us define S =
∑k−1

i=0 A
iB(Ai)T. Given that ‖Ai‖ = ‖(Ai)T‖, one gets

‖S‖ ≤ ‖B‖
k∑

i=1

‖Ai‖2. (4.17)

Assuming that ‖Ai‖2 ≤ κri, the summation in (4.17) represents a geometric series with com-

mon ratio that is less than one (r < 1). Therefore, it follows that
∑k

i=1 ‖Ai‖2 ≤ ∑k−1
i=0 κr

i =

κ(1−rk)
1−r

. Consequently, equation (4.17) can be re-written as

‖S‖ ≤ ‖B‖κ(1− rk)

1− r
, (4.18)

where ‖B‖κ(1−rk)
1−r

is an upper bound for ‖∑k−1
i=0 A

iB(Ai)T‖ which is the function of k. This

completes the proof of the lemma. �

The result in Lemma 4.1 is now used to find an upper bound on the MSE observation fore-

casting error as a function of the prediction horizon (k).

Theorem 4.1 Consider the ARMA model with the DLM formulation as given by (4.12). Using

this model, the k-step ahead forecast of the observation at time t, denoted by Ŷj,t+k|t has a

bounded mean square error of E{(ylinj,t+k − Ŷj,t+k|t)2} ≤ σ2
εj
‖Fj,lF

T
j,l‖(

κj(1−rkj )

1−rj
), where ylinj,t+k

is defined in Definition 4.1, σ2
εj

= E{εj,tεj,t} denotes the variance of the noise error to εj,t,

and Fj,l denotes the vector related to the moving average part of the ARMA model in the DLM

formulation, κj and rj denote positive constants such that ρ(Gj,l) < rj < 1, and for any integer

i > 0, ‖(Gj,l)
i‖2 ≤ κjr

i
j .

Proof: Consider the state space representation of the ARMA model corresponding to each

output that is modeled as a univariate time-series with the DLM structure. The MSE related to

the k-step ahead forecast of the j-th output after substituting ylinj,t+k and Ŷj,t+k|t from (4.14) and
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(4.15), respectively, can be obtained as follows. First, we have

E{(ylinj,t+k − Ŷj,t+k|t)
2} = E{(H(

∞∑

i=0

(Gj,l)
iFj,τεj,t+k−i − (Gj,l)

k
∞∑

i=0

(Gj,l)
iFj,lεj,t−i))

2}. (4.19)

Expanding the term inside the expectation in the right hand side of (4.19) results in

ylinj,t+k − Ŷj,t+k|t = H(Fj,lεj,t+k +Gj,lFj,lεj,t+k−1 + ...+ (Gj,l)
k−1Fj,lεj,t+1 + (Gj,l)

kFj,lεj,t

+ ...− (Gj,l)
kFj,lεj,t − (Gj,l)

k+1Fj,lεj,t−1 − ...) = H(
k−1∑

i=0

(Gj,l)
iFj,lεj,t+k−i).

(4.20)

Hence, the mean-square error is written as

E{(ylinj,t+k − Ŷj,t+k|t)
2} = E{H(Fj,lεj,t+k +Gj,lFj,lεj,t+k−1 + ...+ (Gj,l)

k−1Fj,lεj,t+1)

× (Fj,lεj,t+k +Gj,lFj,lεj,t+k−1 + ...+ (Gj,l)
k−1Fj,lεj,t+1)

THT}.

Consequently, by considering that E{εj,t−nεj,t−m} =





σ2
εj

, if n = m

0 , if n 6= m

, we have

E{(ylinj,t+k − Ŷj,t+k|t)
2} = σ2

εj
H(

k−1∑

i=0

(Gj,l)
iFj,lF

T
j,l(Gj,l)

iT)HT. (4.21)

By applying the result from Lemma 4.1 to the right hand side of (4.21), the following upper

bound on the forecast error is resulted,

E{(ylinj,t+k − Ŷj,t+k|t)
2} ≤ σ2

εj
‖Fj,lF

T
j,l‖(

κj(1− rkj )

1− rj
). (4.22)

Consequently, the upper bound on the MSE as E{(ylinj,t+k − Ŷj,t+k|t)2} is dependent on the pre-

diction horizon k. This completes the proof of Theorem 4.1. �
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It can now be concluded that a threshold for the bound on the forecast error can be chosen

by considering it as a percent of the mean µj,l within the window. Hence, one can find the

maximum acceptable value for k in the observation forecasting algorithm for each observation

vector (within the time window (t, t+k]), by using the l-th DLM model, such that k satisfies the

condition σ2
εj
‖Fj,lF

T
j,l‖(

κj(1−rkj )

1−rj
) ≤ ιµj,l, where ι denotes the desired percentage of the error in

the k-step ahead prediction as a percentage of the mean within the window interval (tl−τ, tl]. It

is pointed out that based on this criterion for finding k, it can be different for each DLM model.

Therefore, for ease of notation k is considered as the minimum step ahead prediction horizon

that satisfies the mentioned condition for all DLM models.

Our proposed observation forecasting scheme based on the DLM models is only capable

of forecasting the observations as univariate time-series. In health prediction strategies one

is generally more interested in predicting the system hidden states (that are not necessarily

measurable) as well as the system health parameters to evaluate the dynamical system health

condition. Our ultimate goal in the proposed health monitoring strategy is to utilize the above

developed observation forecasting scheme to predict the propagation of the system states and

parameters. Using the k-step ahead forecast of observations, an online prediction method is

now developed based on the particle filter to predict the evolution of the system states and

parameters. In the following subsections the observation forecasting scheme is integrated with

particle filter for enhancements in the prediction performance and capabilities.
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4.2.3 Enhancement of Particle Filters for State and Parameter Prediction

Now, the observation forecasting scheme is integrated with the previously developed PF-based

dual state and parameter estimation filter, as discussed in Chapter 3. This will allow us to con-

struct a dual estimation algorithm for forecasting and predicting the system states as well as the

system slowly time-varying hidden parameters for a k-step ahead horizon. This prediction task

is performed by replacing the real observation matrix yt+k, where yt+k = (y1,t+k, y2,t+k, ..., yny ,t+k)
T

and is not available after the time instant t, by the forecaseted observation matrix Ŷt+k|t, where

Ŷt+k|t = (Ŷ1,t+k|t, Ŷ2,t+k|t, ..., Ŷny ,t+k|t)T. Therefore, the resampling algorithm for both state and

parameter estimation filters is performed by utilizing the predicted measurements. It should

be noted that to differentiate the forecasted output that is obtained from the fixed-lag DLM

forecasting algorithm and the one that is estimated from the particle filters, we use Ŷj,t to des-

ignate the forecasted output obtained from the DLM-based algorithm, and ŷj,t to designate the

estimated output obtained from the particle filter algorithm.

Consider the dynamical system (4.1) and the associated dual state and parameter estimation

filtering expressions given in Table 4.1 for estimation of the a priori and a posteriori state

and parameter distributions. Applying the forecasted measurements Ŷt+k|t, the a priori and a

posteriori distributions of the system states and parameters for k-step ahead prediction horizon,

are approximated accordingly. The flowchart of our proposed methodology for system state and

health parameters prediction is provided in Figure 4.2.

111



Historical and present 

data

DLM algorithm 

for observation 

forecast model 

generation 

according to 

equation (4.12)

k-step ahead 

observation 

forecasting 

according to 

equation (4.15)

k-step ahead 

state/parameter 

prediction 

according to 

Subsection 4.2.3

M-distance calculation 

of the recent available 

data according to 

equation (4.10)

M-distance metric 

exceeds the 

threshold 

Continue with the 

present DLM 

model

Modify the DLM 

model based on the 

recent observations

No

Yes

System on-line 

observations 

from equation 

(4.2)

Figure 4.2: Flowchart of the health prediction methodology based on the DLM framework.

k-step Ahead State and Parameter Prediction Algorithm

The details corresponding to states and parameters predictions procedures are provided and

summarized below where r = 1, ..., k, namely,

1. The r-step ahead a priori state prediction:

(a) Predict the a priori state particles as: x̂
(i)
t+r|t = ft(x̂

(i)
t+r−1|t, θ̂

T
t+r−1|tλ(x̂

(i)
t+r−1|t), ω

(i)
t+r),

where ω
(i)
t+r is the noise particle added to the state particle at t + r and is generated

from the same distribution as ω
(i)
t ,

(b) Approximate a priori state covariance matrix as:

Σx̂t+r|t
= 1

N−1

∑N
i=1(x̂

(i)
t+r|t − 1

N

∑N
j=1 x̂

(j)
t+r|t)(x̂

(i)
t+r|t − 1

N

∑N
j=1 x̂

(j)
t+r|t)

T.

2. The r-step ahead a posteriori state prediction:
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(a) Calculate the state estimation filter weights for resampling as:

w̃
(i)
xt+r ,

ρ(Ŷt+r|t|x̂(i)
t+r|t

,θ̂t+r|t)
∑N

i=1 ρ(Ŷt+r|t|x̂(i)
t+r|t

,θ̂t+r−1|t)
,

(b) Approximate the a posteriori state distribution from:

π̃N
xt+r|t

(dxt+r) ≈
∑Nreg

l=1

∑N
i=1 w̃

(i)
xt+r

|A−1
t |

bnx
K(1

b
A

−1
t (x

regl
t+r − x̂

(i)
t+r|t)), AtA

T
t = Σx̂t+r|t

,

where the kernel density K is not the optimal kernel i.e. Epanechnikov kernel [193]

but it is a simple Gaussian kernel,

(c) Resample the state estimate particles according to the filter weights w̃
(i)
xt+r , denoted

by x̄
(i)
t+r|t and approximate the a posteriori state estimation distribution after resam-

pling according to: πN
xt+r|t

(dxt+r) =
1
N

∑N
i=1 δx̄(i)

t+r|t

(dxt+r),

(d) Approximate the a posterior state: x̂t+r|t =
1
N

∑N
i=1 x̄

(i)
t|t−1.

3. The first step r-step ahead a posteriori parameter prediction:

(a) Calculate the corrected output prediction error as:

εt+r(θ̂
(j)
t+r−1|t) = Ŷt+r|t − ht(x̂t+r|t, θ̂

(j)T

t+r−1|tλ(x̂t+r|t)),

(b) Calculate m
(j)
t+r as: m

(j)
t+r = θ̂

(j)
t+r−1|t + γt+rR

(j)
t+rψ

(j)
t+rεt+r(θ̂

(j)
t+r−1|t),

(c) Calculate the first step a posteriori parameter prediction by applying the kernel

shrinkage algorithm as: θ̃
(j)
t+r|t = Am

(j)
t+r + (I − A)m̄t+r−1 + ζ

(j)
t+r, m̄t+r−1 =

1
N

∑N
j=1 θ̂

(j)
t+r−1|t, ζ

(j)
t+r ∼ N (0, (I − A2)Σθ̂t+r−1|t

),

4. The second step r-step ahead a posteriori parameter prediction:

(a) Calculate the weights in the parameter estimation filter for performing resampling

as:

w̃
(j)
θt+r

,
ρ(Ŷt+r|t|x̂t+r|t,θ̃

(j)
t+r|t

)
∑M

j=1 ρ(Ŷt+r|t|x̂t+r|t,θ̃
(j)
t+r|t

)
,
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(b) Approximate the first step a posteriori parameter distribution according to:

π̃N
θt+r|t

(dθt+r) ≈
∑N

j=1 w̃
(j)
θt+r

δ
θ̃
(j)
t+r|t

(dθt+r),

(c) Perform resampling to approximate the a posteriori parameter prediction distribu-

tion based on the resampled parameter predicted particles θ̄
(j)
t+r|t as:

πN
θt+r|t

(dθt+r) =
1
N

∑N
j=1 δθ̄(j)

t+r|t

(dθt+r),

(d) Obtain the a posteriori parameter prediction: θ̂t+r|t =
1
N

∑N
j=1 θ̄

(j)
t+r|t,

(e) Calculate the a posteriori parameter prediction covariance:

Σθ̂t+r|t
= 1

N−1

∑N
i=1(θ̄

(j)
t+r|t − θ̂t+r|t)(θ̄

(j)
t+r|t − θ̂t+r|t)T.

Consequently, the state and parameter probability density functions can be generated for the

k-step ahead prediction time instants by utilizing the predicted observations and by maintaining

resampling for the future time instants.

Remark 4.3 Consider the set DN as a set for which the functions ft(xt, θt, ωt), and ht(xt, θt)

are sufficiently smooth. Using a projection as stated in Chapter 3, ensures that θ̂
(j)
t|t−1, j =

1, ..., N and consequently θ̂
(j)
t|t in the estimation algorithm as stated in Table 4.1 will remain

inside the subset D̄ of DN (D̄ ⊂ DN ). On the other hand, for any dynamical system ∀(xt, θt) ∈

DR, where DR denotes the stability region of the dynamical system, the function ht(xt, θ
T
t λ(xt))

is bounded, where DN ⊂ DR. Therefore, the existence of the mentioned mapping in the estima-

tion and also r-step ahead prediction algorithm for system states and parameters guarantees

that for r > 1, ht(x̂t+r|t+r, θ̂
(j)T

t+r−1|t+r−1λ(x̂t+r|t+r)), and ht(x̂t+r|t, θ̂
(j)T

t+r−1|tλ(x̂t+r|t)) remains

bounded where these bounds are denoted by C1, and C2, respectively.
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It is pointed out that in the parameter estimation filter, the prediction error εt+r(θ̂
(j)
t+r−1|t) is

used to generate a propagation law for the unknown parameters of the system. Due to lack of

observations after time instant t, the forecasted observations utilizing the fixed-lag DLM mod-

els are used for this purpose. Therefore, as the error increases in the observation forecasting

scheme, it can lead to incorrect predicted parameters as well as states. Consider the prediction

error regarding to j-th parameter particle calculated at time instant t+ r assuming that observa-

tions up to t + r become available as: ε
(j)
t+r = yt+r − ht(x̂t+r|t+r, θ̂

(j)T

t+r−1|t+r−1λ(x̂t+r|t+r)), and

the r-step ahead prediction of ε
(j)
t+r|t assuming that observations up to time instant t are avail-

able, as: ε
(j)
t+r|t = Ŷt+r|t−ht(x̂t+r|t, θ̂

(j)T

t+r−1|tλ(x̂t+r|t)). Therefore, the discrepancy between these

two quantities will affect the accuracy of the state and parameter prediction algorithm, which is

calculated as,

|ε(j)t+r − ε
(j)
t+r|t| = |yt+r − Ŷt+r|t + ht(x̂t+r|t, θ̂

(j)
t+r−1|t)− ht(x̂t+r|t+r, θ̂

(j)
t+r−1|t+r−1)|

≤ |yt+r − Ŷt+r|t|+ |ht(x̂t+r|t, θ̂
(j)
t+r−1|t)− ht(x̂t+r|t+r, θ̂

(j)
t+r−1|t+r−1)|

≤ |yt+r − Ŷt+r|t|+ |C1|+ |C2|,

(4.23)

where the last inequality is obtained based on the results summarized in Remark 4.3. Now, the

main goal is to investigate the boundedness of |yt+r − Ŷt+r|t| to ensure the boundedness of the

prediction algorithm. To this aim, an element-wise approach based on the error generated for

each forecaseted observation as compared to the real nonlinear non-stationary process (4.2), for

the long-term horizon prediction is developed in the following theorem.

Theorem 4.2 Consider the stochastic nonlinear system as described by (4.1) and (4.2), where

the observation noise to yj,t is considered to be generated from a non-stationary stochastic

process with bounded variance σ2
yj,t

. The k-step ahead observation prediction based on DLM

model using ARMA process followed by particle filter, results in the following bound on the
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mean square error,

E{(yj,t+k − Ŷj,t+k|t)
2} ≤ σ2yj,t + Cj,l +Dj,l + Bj,l + 2

√
(σ2yj,t + Cj,l +Dj,l)Bj,l,

where Bj,l = σ2
εj
‖Fj,lF

T
j,l‖(

κ1(1−rkj )

1−rj
), assuming κj and rj, j = 1, ..., ny denote positive con-

stants that satisfy ‖Gi
j,l‖ ≤ κjr

i
j .

Moreover, Cj,l = h2j,t+k(xt+k, θ
T
t+kλ(xt+k)) + µ2j,l − 2µj,lhj,t+k(xt+k, θ

T
t+kλ(xt+k)), and Dj,l =

σ2εj‖Fj,lF
T
j,l‖(

κj

1−rj
).

Proof: Let us construct a vector of k-step ahead predicted observations that are obtained through

ny univariate time-series through the fixed-lag DLM models as:

Ŷt+k|t = (Ŷ1,t+k|t, Ŷ2,t+k|t, ..., Ŷny ,t+k|t)T. At the time instant t the forecasted observations (from

the linear regression model according to ARMA process), Ŷj,t+k|t are independent from one

another since each observation is constructed only from its own historical data, i.e.,

cov(Ŷn,t+k|tŶm,t+k|t) = 0, for n 6= m. Consequently, the covariance matrix of Ŷt+k|t reduces to

the variance matrix with the diagonal entities as var(Ŷj,t+k|t), j = 1, ..., ny.

The k-step ahead prediction error of the j-th observation, when it is obtained based on

the fixed-lag DLM model using ARMA process, is approximated along the lines described in

Theorem 4.1. In the referred theorem, the nonlinear observation yj,t was approximated with its

linear projection according to ARMA process introduced in (4.3) and defined in Definition 4.1,

i.e. at time t, yj,t ≈ ylinj,t . Therefore, the error due to mismatch between the actual nonlinear

observation and its corresponding linear projection (4.14) in k-step ahead prediction horizon is
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calculated as,

E{(yj,t+k − ylinj,t+k)
2} = E{(yj,t+k − µj,l −H

∞∑

i=0

(Gj,l)
iFj,lεj,t+k−i)(yj,t+k − µj,l

−H

∞∑

i=0

(Gj,l)
iFj,lεj,t+k−i)

T}

= E{y2j,t+k} − 2E{yj,t+kµj,l} − 2E{yj,t+k(
∞∑

i=0

(Gj,l)
iFj,lεj,t+k−i)

THT}

+ E{µ2j,l}+ 2E{µj,l(
∞∑

i=0

(Gj,l)
iFj,lεj,t+k−i)

THT}

+ E{H(
∞∑

i=0

(Gj,l)
iFj,lεj,t+k−i)(

∞∑

i=0

(Gj,l)
iFj,lεj,t+k−i)

THT}.

(4.24)

Assume that the white noise process εj,t and the measurement noise process νt in (4.2) are zero-

mean process with covariance matrices σ2
εj,t

, and Vt = diag(σ2
ν1,t
, · · · , σ2

νny,t
), respectively.

Moreover, vt and εj,t are two independent process which yields that E{yj,tεj,t} = 0, ∀t, and

E{yj,t} = E{ht(xt, θTt λ(xt)) + νj,t} = ht(xt, θ
T
t λ(xt)). Furthermore, considering that yj,t+k

is conditionally independent from εj,t+k (since εj,t+k is used to construct ylinj,t+k not yj,t+k) then

(4.24) reduces as,

E{(yj,t+k − ylinj,t+k)
2} = σ2νj,t+k

+ h2j,t+k(xt+k, θ
T
t+kλ(xt+k))− 2µj,lhj,t+k(xt+k, θ

T
t+kλ(xt+k))− 0

+ E{µ2j,l}+ σ2εjH(
∞∑

i=0

(Gj,l)
iFj,lF

T
j,l(Gj,l)

iT)HT.

(4.25)

Now, one requires to calculate the error due to the k-step ahead forecast of the observation

vector according to ARMA process, denoted by Ŷj,t+k|t with the original nonlinear observations

yj,t+k, where Ŷj,t+k|t is considered to be obtained from (4.15) in the selected time window as

long as the l-th DLM is valid. Hence, considering the linear projection ylinj,t+k for k-step ahead
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prediction horizon, the expectation of the error between yj,t+k, and Ŷj,t+k|t can be stated as,

E{|yj,t+k − Ŷj,t+k|t|} = E{|yj,t+k − ylinj,t+k + ylinj,t+k − Ŷj,t+k|t|}. (4.26)

Consider the MSE representationE{|yj,t+k−ylinj,t+k+y
lin
j,t+k−Ŷj,t+k|t|2}, Minkowski’s inequality

[194] is utilized for obtaining the following inequality

E{|yj,t+k − ylinj,t+k + ylinj,t+k − Ŷj,t+k|t|2} ≤ E{(yj,t+k − ylinj,t+k)
2}+ E{(ylinj,t+k − Ŷj,t+k|t)

2}

+ 2
√

E{yj,t+k − ylinj,t+k}2E{ylinj,t+k − Ŷj,t+k|t}2.
(4.27)

Finally, the upper bound on the error is obtained as

E{|yj,t+k − Ŷj,t+k|t|2} ≤ E{(yj,t+k − ylinj,t+k)
2}+ E{(ylinj,t+k − Ŷj,t+k|t)

2}

+ 2
√
E{yj,t+k − ylinj,t+k}2E{ylinj,t+k − Ŷj,t+k|t}2,

≤ σ2yj,t + Cj,l +Dj,l + Bj,l + 2
√

(σ2yj,t + Cj,l +Dj,l)Bj,l,

(4.28)

where Dj,l is obtained according to Lemma 4.1 as an upper bound for the last term in the right

hand side of (4.25). Moreover, Bj,l is an upper bound on the observation forecast error from

the DLM model according to Theorem 4.1. Consequently, considering that for any dynamical

system ∀(xt, θt) ∈ DR, the function ht(xt, θ
T
t λ(xt)) and as a result Cj,l is bounded, hence the k-

step ahead prediction error due to observations remains bounded. This therefore completes the

proof of the theorem. �

In the following section computational complexity of our developed algorithm for the dual

state and parameter estimation and their propagation prediction is evaluated and studied. The

complexity results are compared with the ones corresponding to a conventional augmented pa-

rameter and state estimation method [25, 195] based on the particle filters with the fixed weight
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equally weighted propagation law for the particles for the long-term prediction horizon.

4.3 Complexity Analysis

In this section, the computational complexity of our proposed prediction algorithm based on our

previously developed dual state and parameter estimation method integrated with the fixed-lag

DLM model observation forecasting scheme for the prediction of the long-term behavior of the

system states and parameters is quantitatively obtained and analyzed. The analysis is based on

the number of floating-point operations (flops) that are required by the selected algorithms as

explained in Chapter 3. The dimensions of the entities in the dual state and parameter estimation

algorithm is considered according to Table 3.1. The coefficient c4 in this chapter is used to

represent the complexity of the ARMA model.

The complexity of our proposed dual state and parameter estimation and its propagation pre-

dictions can be compared with the complexity of a conventional algorithm for state and constant

parameter estimating using particle filters when the particles are propagated with fixed weights

to the future time instants [25, 195] as stated in Table 4.4. In the standard and conventional

algorithm the parameters are augmented to the state vector, therefore the dimension of the aug-

mented state and parameter system becomes nx + nθ and the complexity associated with the

resampling step, i.e., c2 was removed from the EF complexity evaluation.

In Table 4.5, the EF complexity of the two methods are summarized. To compare the EF

complexity results, only the dominant parts of C(nx, nθ, c1, c2, c3, c4, N) (that represents the EF
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Table 4.2: The Equivalent Complexity for the state estimation/prediction step

Instruction Mult. Add Func. Eval. Other

[U1, T1] = schur(Σx̂t+r−1|t
) − − − 10n3

x

R1 = randn(nx, N) − − − Nnxc1
ω
(i)
t+r = (U1

√
T1)R1 n3

x +Nn2
x (nx − 1)n2

x +N(nx − 1)nx − n2
x

x̂
(i)
t+r|t = ft(x̂

(i)
t+r−1|t, θ̂

T
t+r−1|tλ(x̂

(i)
t+r−1|t), ω

(i)
t+r) − − Nnx −

ŷ
(i)
t+r|t = ht(x̂

(i)
t+r|t, θ̂

T
t+r−1|tλ(x

(i)
t+r|t)) − − Nny −

Σx̂t+r|t
= 1

N−1

∑N
i=1(x̄

(i)
t+r|t − x̂t+r|t)(x̄

(i)
t+r|t − x̂t+r|t)T Nn2

x 2Nnx − −
Regularization and resampling to find weights w

(i)
xt+r and x̄

(i)
t+r|t − − − Nnxc2 +Nnxc3

x̂t+r|t =
1
N

∑N
i=1 x̄

(i)
t+r|t nx Nnx − −

Total n3
x + 2Nn2

x + nx n3
x + (N − 1)n2

x + 2Nnx N(nx + ny) 10n3
x + n2

x

Nnx(c1 + c2 + c3)

Table 4.3: The Equivalent Complexity for the parameter estimation/prediction step using the

Observation prediction scheme

Instruction Mult. Add Func. Eval. Other

ȳ
(j)
t+r|t = ht(x̂t+r|t, θ

(j)T

t+r−1|tλ(x̂t+r|t)) − − Nny −
Σθ = (I − A2)Σθ̂t+r−1|t

n3
θ (nθ − 1)n2

θ + n2
θ − −

ε
(j)
t+r = Ŷt+r − ȳ

(j)
t+r|t − Nny − −

ψ
(j)
t+r =

dh
dθ
|
x̂t+r|t,θ

(j)
t+r−1|t

− − nynθ −

P
(j)
t+r = γt+r(

√
trace(ε

(j)
t+rε

(j)T

t+r ) N +Nny N(ny − 1) +Nny − −
[U2, L2] = schur(Σθ) − − − 10n3

θ

R2 = randn(nθ, N)) − − − Nnθc1
ζ
(j)
t+r = (U2

√
L2)R2 n3

θ +Nn2
θ (nθ − 1)n2

θ +N(nθ − 1)nθ n2
θ −

m
(j)
t+r = θ̂

(j)
t+r−1|t + P

(j)
t+rψ

(j)
t+rε

(j)
t+r N(nynθ + nθ) N(ny − 1)nθ +Nnθ − −

θ̃
(j)
t+r|t = Am

(j)
t+r + (I − A) 1

N

∑N
j=1 θ̂

(j)
t+r−1|t + ζ

(j)
t+r Nn2

θ + nθ Nn2
θ + 2Nnθ +Nnθ + n2

θ − −
ŷt+r|t = ht(x̂t+r|t, θ̂

(j)T

t+r|tλ(x̂t+r|t)) − − Nny −
Resampling to find weights, w

(j)
θt+r

, and θ̄
(j)
t+r|t − − − Nnθc2

θ̂t+r|t =
1
N

∑N
j=1 θ̄

(j)
t+r|t nθ Nnθ − −

Σθ̂t+r|t
= 1

N−1

∑N
i=1(θ̄

(j)
t+r|t − θ̂t+r|t)(θ̄

(j)
t+r|t − θ̂t+r|t)T Nn2

θ 2Nnθ − −
M-Distance calculation for ś observations − − − ś(q−1)ny

ARMA evaluation after τ observations − − − τc4ny

Total 2n3
θ + 3Nn2

θ 2n3
θ + 2Nn2

θ n2
θ + 2Nny 10n3

θ +Nnθc1 +Nnθc2
+(N + 2)nθ +Nnθny +5Nnθ + 3Nny −N +nynθ +ś(q́)−1ny

+N(ny + 1) +Nnθny +τc4ny
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Table 4.4: The Equivalent Complexity for the augmented state and parameter

estimation/prediction scheme

Instruction Mult. Add Func. Eval. Other

[U1, T1] = schur(Σx,θ) − − − 10(nx + nθ)
3

R1 = randn(nx + nθ, N) − − − N(nx + nθ)c1
ω
(i)
t+r = (U1

√
T1)R1 (nx + nθ)

3 +N(nx + nθ)
2 (nx + nθ − 1)(nx + nθ)

2 − (nx + nθ)
2

+N(nx + nθ − 1)(nx + nθ)

ω
(i)
xt+r = ω

(i)
t+r(1 : nx) − − − −

ωθt+r
= (I − A2)ω

(i)
t+r(nx + 1 : nx + nθ) n3

θ (nθ − 1)n2
θ + n2

θ − −
state/parameter augmentation: [x̂

(i)
t+r|t; θ̂

(i)
t+r|t] =

[ft(x̂
(i)
t+r−1|t, θ̂

(i)T

t+r−1|tλ(x̂
(i)
t+r−1|t), ω

(i)
xt+r); θ̂

(i)
t+r−1|t] − − N(nx + nθ) −

ŷ
(i)
t+r|t = ht(x̂

(i)
t+r|t, θ̂

(i)T

t+r|tλ(x̂
(i)
t+r|t)) − − Nny −

Σx,θ =
1

N−1

∑N
i=1([x̄

(i)
t+r|t; θ̄

(i)
t+r|t]− [x̂t+r|t; θ̂t+r|t])

×([x̄
(i)
t+r|t; θ̄

(i)
t+r|t]− [x̂t+r|t; θ̂t+r|t])T N(nx + nθ)

2 2N(nx + nθ) − −

Regularization without resampling

to find, x̄
(i)
t+r|t and θ̄

(i)
t+r|t − − − N(nx + nθ)c3

[x̂t+r|t; θ̂t+r|t] = [ 1
N

∑N
i=1 x̄

(i)
t+r|t;

1
N

∑N
i=1 θ̄

(i)
t+r|t] nx + nθ N(nx + nθ) − −

Total 2n3
θ + n3

x + n2
x(2N + 3nθ) n3

x + 2n3
θ + n2

x(3nθ − 1 +N) N(nx + nθ) 10n3
x + 10n3

θ

+n2
θ(3nx + 2N) + 4Nnθnx +n2

θ(N − 1 + 3nx) +Nny n2
x(30nθ + 1)

+nx + nθ +nxnθ(2N − 2) +n2
θ(30nx + 1)

+nx(Nc1 + 2nθ +Nc3)
+nθ(Nc1 +Nc3)

Table 4.5: The Total Equivalent Complexity of the Filters

Prediction Method Total Equivalent Complexity

DLM-Based Prediction Method C(nx, nθ, c1, c2, c3, c4, N)= 12n3
x + 14n3

θ +N(3n2
x + 5n2

θ + 6nθ

+2nθny + 7ny + 3nx + c1(nx + nθ) + c2(nx + nθ) + c3nx) + c1(nx + nθ)
+c2(nx + nθ) + c3nx) + nx + n2

θ + 2nθ + nynθ + ny(τc4 + (q́)−1ś)

Standard PF-Based Prediction Method Ć(nx, nθ, c1, c3, N) = 12n3
x + 14n3

θ +N(3n2
x + 3n2

θ + 6nxnθ

+(1 + c1 + c3)nx + (1 + c1 + c3)nθ + ny) + 36n2
θnx + 36n2

xnθ + nx + nθ
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complexity of our proposed method) and Ć(nx, nθ, c1, c3, N) (that represents the conventional

state and parameter prediction method based on particle filters in the literature [25, 195]) are

provided. This selection is justified by the fact that N � 1, therefore the dominant parts are the

parts that are related to N .

Let us assume that the time interval τ = βN, and β < 1 is a constant. To quantitatively

evaluate the EF complexity, two cases are considered now. In the first case, it is assumed that

the measurement dimension, ny as well as the parameter dimension (nθ ≤ ny) is much smaller

than the state dimension. Consequently, the components related to only nx are considered, that

is

C(nx, nθ, c1, c2, c3, c4, N) ≈ N(3n2
x + 3nx + c1nx + c2nx + c3nx),

Ć(nx, nθ, c1, c2, c3, N0) ≈ N0(3n
2
x + 6nxnθ + nx + c1nx + c3nx),

(4.29)

where N0 denotes the number of particles that are required for implementation of the conven-

tional method.

It follows from (4.29) that for achieving the same EF complexity in the two methods, the

number of particles that are required in our proposed method can be determined based on the

number of the particles that are required in the conventional method as follows,

N = N0(1−
2nx + c2nx − 6nxnθ

3n2
x + 3nx + c1nx + c2nx + c3nx

), (4.30)

It should be pointed out that resampling algorithm deals with ordering, therefore it is assumed

that in the worst case its computational complexity is much greater than other operations in the

algorithm. Hence, it follows clearly that for a given complexity, since c2 +2 > 6nθ (this results

in N < N0), one should use fewer particles in our proposed method as compared to the con-

ventional method. Therefore, the conventional method can be implemented with more particles
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as compared to our proposed method to achieve the same complexity, whereas increasing the

particles in our proposed methods results in more computational complexity and consequently

more implementation cost. To decrease the cost of implementing our proposed algorithm, the

coefficient of N0 in (4.30) has to be as much as possible near to 1. As a result, one should get

3n2
x + 3nx + c1nx + c2nx + c3nx � 2nx + c2nx − 6nxnθ. (4.31)

The above inequality is always satisfied since the left-hand side term in (4.31) is much more

greater than the right-hand side term due to the existence of the terms corresponding to the EF

complexity of the random number generation (c1), and regularization (c3). The most interesting

result in this case is that the choice of resampling algorithm does not affect the inequality stated

in (4.31).

In the second case, it is assumed that the measurement dimension ny and the state dimension

nx are larger than the dimension of the parameters nθ, i.e. nx, ny � nθ. Hence, to evaluate the

EF complexity of the two methods (according to Table 4.5), the dominant terms are selected as

the ones that are functions of N , nx and/or ny, while the terms that are dependent on only N

and nθ are ignored. Therefore, the EF complexity evaluations in this case become,

C(nx, nθ, c1, c2, c3, c4, N) ≈ N(3n2
x + 2nθny + 7ny + 3nx + c1nx + c2nx + c3nx

+ nyβc4),

Ć(nx, nθ, c1, c2, c3, N0) ≈ N0(3n
2
x + 6nxnθ + (1 + c1 + c3)nx + ny).

(4.32)

Finally, from (4.32) to achieve the same EF complexity for two methods, the number of particles

that are required in our proposed method is determined based on the number of particles that

are required in the conventional method (the number of particles is set to N0) and is set to

N = N0(1−
c2nx + 6ny + 2nx + 2nθny + nyβc4 − 6nθnx

3n2
x + 2nθny + (3 + c1 + c2 + c3)nx + 7ny + nyβc4

). (4.33)
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Applying the same analysis as the first case, to achieve less cost in the implementation of

our proposed algorithm as compared to the conventional method, one must have

3n2x + 2nθny + (3 + c1 + c2 + c3)nx + 7ny + nyβc4 � c2nx + 6ny + 2nx + 2nθny + nyβc4 − 6nθnx.

Assume that nx, ny � nθ, the above inequality can be simplified as follows

3n2
x + nx + c1nx + c3nx + 7ny � 6ny − 6nxnθ,

where this condition is always satisfied due to the high EF complexity of c1 and c3 and the

evaluation of the implementation cost of our proposed algorithm is independent from choice of

c2 and c4 (the ARMA model calculation). In simulation results that are presented in Section

4.5, it will be shown that under this circumstance where one employs the same number of

particles in the two methods, the computational time (which is equivalent to the EF complexity)

of our method when the ARMA structure with variable order is used (for implementing the

observation forecasting scheme), would be comparable and in some cases significantly less

than the conventional method with invariant particle weights.

4.4 Remaining Useful Life (RUL) Evaluation

The system model that is defined in (4.1) and (4.2) is suitable for model-based prognosis specifi-

cally in the case that the system health parameters (denoted by λ(xt)) are affected by degradation

damage through the fault vector θt. Performing a system health tracking and its evolution pre-

diction to the future, the remaining useful life (RUL) of the system can be evaluated by taking

into account the probability of failure distribution. This is accomplished according to a known
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criterion on the maximum acceptable changes (critical bounds) of the system health parameters.

In the implementation of the health tracking step, the filtering method presented in Chapter 3 is

used. The developed and proposed prediction algorithm presented in Section 4.2 is also utilized

for implementing the health prediction step.

It follows from Theorem 4.2 that as the prediction horizon is extended, the parameters pre-

diction errors do increase accordingly. For evaluating the performance of our prediction scheme

in terms of changes in the system health parameters, given that the true values of the parame-

ters are assumed to be unknown, the percentage root mean square error (PRMSE) criterion is

used for the estimated outputs instead of the parameters. This is computed according to [180]:

PRMSEyj(i) = 100
√

1
M

∑j=tlM
j=tl1

(
ŷj,m+i−yj,m+i

yj,m+i
)2, where ŷj,m+i denotes the predicted value of

the j-th system output from the particle filters at time m + i when m denotes the time instants

at which the DLM model is updated and m ∈ {tl1 , ..., tlM} and M refers to the total number of

DLM models in the entire observation trajectory, yj,m+i denotes the actual measured output (ob-

servation) at time m+ i, and the mean is taken about all m+ i, m = tl1 , ..., tlM , time instants in

the prediction horizon and i = 1, ..., k. The number of steps ahead prediction for the parameters

is chosen from the PRMSEyj results of the outputs based on the considered acceptable threshold

for each output. It is emphasized that the prediction error εt+i, which is used in the state and

parameter prediction algorithm based on particle filters utilizing the forecasted observations ob-

tained from the DLM models, is calculated as the difference between the forecasted observation

and the predicted observation from the particle filter after estimating state and parameters as

εt+i = Ŷt+i|t − ŷt+i. Therefore, to evaluate the performance of the prediction scheme for states

and parameters, ŷt+i = h(x̂t+i|t, θ̂Tt+i−1|tλ(x̂t+i|t)) is utilized which also includes the error due
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to state and parameter prediction algorithm.

To calculate the RUL of the system when multiple health parameters are estimated we first

denote and select θ
(s)
cr , s = 1, ..., nθ, as the critical value for the s-th health parameter. The fol-

lowing rule is now utilized for evaluating the RUL at time t [196], namely: RUL(t) = tj − t,

where tj is tj = mintj{θ̂(s)tj − θ
(s)
cr ≥ 0, s = 1, ..., nθ}, i.e. the time at which the first parameter

associated with the specific degradation damage reaches its critical value. Once reaching the

critical value in one of the parameters, maintenance must be performed. Choosing the suitable

value for θ
(s)
cr is application specific and is generally determined based on the system perfor-

mance and operator experience. In most applications and problems defining an exact value for

the RUL is not possible. Therefore, an acceptable bound is considered as a confidence interval

for the RUL prediction. The above procedure is estimating the RUL at most k-steps before the

occurrence of the failure. As one gets closer to the failure time the RUL is approximated more

accurately due to readjustments in the prediction scheme based on more recent observations.

4.5 Failure Prognosis of a Gas Turbine Engine

The application of our proposed PF-based prediction method for health monitoring and progno-

sis of a gas turbine engine is presented in this section. The approach is used for failure prognosis

of the engine, when the system is assumed to be affected by health degradations phenomena.

Our proposed and developed prediction scheme is demonstrated and illustrated to be capable

of handling cases when non-Gaussian process noise is applied to the system. Moreover, the

performance of our proposed state and parameter prediction scheme is evaluated and investi-
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gated under general scenarios of degradations in both turbine and compressor components due

to erosion and fouling phenomena.

4.5.1 Simulation Scenarios

In Chapter 3, the capabilities of the developed state and parameter estimation algorithm were

shown in case of abrupt degradation damages that are modeled as multiplicative faults vector.

In the present scenarios the engine is assumed to be subjected to degradation damages that

are due to the compressor fouling and turbine erosion that cause gradual drifts in the system

health parameters. A slowly changing linear degradation model is applied to the compressor

health parameters during 1000 cycles of operation that cause a 3% drop in the compressor

efficiency and 1.5% drop in its mass flow capacity, followed by a recovery through washing after

1000 cycles. A cycle refers to a single ground-air-ground (GAG) flight cycle [197], where the

recorded cruise data related to each flight cycle is used for prognosis of the engine due to gradual

degradations. The erosion degradation in the turbine is propagated through a quadratic evolution

during the entire 1500 cycles of simulation that causes a 6% drop in the turbine efficiency and

a 3% increase in its mass flow capacity. It should be noted that fouling and erosion degradation

phenomena follow linear propagation pattern under low degradation index values, however as

the degradation index increases they would not necessarily follow a linear profile [198].

A moving window of 150 observation data is used with N = 150 particles, where the

window is moved according to the previously described Mahalanobis distance (M-distance)

criterion after each batch of 10 observations become available (s = 10). We use the available
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150 observation data points (τ = 150) 1 in the observation forecasting scheme for developing

the fixed-lag DLM model and the last 35 data points for validation of the DLM model (ś = 35).

The size of sliding window in M-distance algorithm is chosen as q́ = 10, and δ in the change

detection algorithm (4.11) is set to δ = 1.5. The parameters of the ARMA models related to

each observation time window are adjusted based on the RLS method. The order of the time-

varying ARMA structure is considered to be variable. For the AR part of the ARMA model

the number of delays varies from 1 to 4, while the order of the MA part is fixed and set to 1.

The criterion for choosing the order of ARMA model in each time window for generating DLM

model, is applied based on Akaike information criterion or AIC [188]. To compare the results

of the variable order time-varying ARMA model for forecasting the system observations with

the fixed order ARMA model, an ARMA structure with the order of 4, i.e., AR(4) and MA(1)

is also considered. The summary of the proposed prediction algorithm is shown in Table 4.6.

To show the effectiveness of our proposed prediction algorithm compared to the developed

prediction algorithm with constant weights in particle filtering estimation method in the litera-

ture [25, 195], the PRMSEyj(i) results for i = 1, ..., 60, and j = 1, ..., 5 corresponding to three

methods, namely (a) the DLM-based particle filtering prediction with the constant model order

for the observation forecasting (b) the variable DLM model order, and finally (c) particle filter-

ing prediction with equally weighted particles without resampling ( [25, 195]) are presented in

Table 4.7 and in Figure 4.3 depicting the predicted observations.

From the results obtained it can be seen that our developed DLM-based particle filtering pre-

1The minimum number of data points needed for the convergence of the RLS algorithm for the estimation of

the DLM model parameters, for this application is 150 data points.
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Table 4.6: Summary of our proposed prediction algorithm

1. Collect 150 available observations.

2. For j = 1 : ny

(a) Construct the input-output database for the ARMA model,

(b) Use the recent 150 data points for DLM models construction,

(c) Find the best DLM structure according to ARMA model with the maximum or-

der ARMA(4,1) that fits yj , by using the AIC (Akaike Information Criterion)

criterion [188]. In case of a constant model order, a fixed order model structure

ARMA(4,1) is selected in this step,

(d) Apply the RLS to obtain the coefficients of the ARMA model (DLM model pa-

rameters) recursively for the selected data set,

(e) Predict the behavior of yj for the next 60-steps ahead (Ŷj,t+k|t, k = 1, ..., 60)
using the approximated DLM model.

3. Run the PF algorithm by applying the forecasted observation vector Ŷt+k|t, to obtain

the k-step ahead prediction of states and parameters.

4. Move the observation window for the minimum s ≥ 10 of the recently observed data

points.

(a) Calculate the M-distance for the recently received s observations and the last

available 35 data points in the time window of 150 data points (which were used

for DLM model construction),

(b) If the M-distance exceeds the threshold go to Step 2 and re-calculate the DLM

parameters,

(c) If the M-distance does not exceed the threshold continue with the previously con-

structed DLM model for the 60-steps ahead prediction of the observations and go

to Step 3.
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diction algorithm (fixed order model (FOM) and variable order model (VOM)) for prediction of

system states and health parameters outperforms the conventional PF-based prediction method

in the sense of PRMSEyj values on the predicted observations. This is clearly shown when the

prediction horizon is extended to 60-steps ahead. Note that the PRMSEyj results corresponding

to the compressor and the turbine pressures are almost the same for the three methods.

The maximum step-ahead prediction horizon is chosen based on the mean PRMSEyj (per-

centage of the mean square error for the measurement outputs) as stated in Table 4.7, whereas

beyond the chosen horizon k = 60 the error becomes unacceptable due to the deviation of

E{(yj,t+k − Ŷj,t+k|t)2} from ιµj,l, ι = 0.01 (according to Result 1). The PRMSE analysis is

done based on the 48 different DLM models which are generated throughout the whole scenar-

ios.

In the next subsection, the obtained parameter estimates are used to evaluate the remaining

useful life (RUL) of the gas turbine engine in both fouling and erosion scenarios.

Table 4.7: PRMSE Results for the predicted outputs using Variable Order Model (VOM),

Fixed Order Model (FOM) and the method without resampling (W/O).

Output

Max PRMSE Mean PRMSE

V OM FOM W/O V OM FOM W/O

TC 1.5729 1.6043 1.6653 1.5160 1.5387 1.5946

PCC 4.7397 4.8860 5.0903 4.0564 4.1217 4.3287

N 1.7625 1.7782 1.8481 1.7487 1.7577 1.8147

PNLT 5.0001 5.2708 5.1541 2.9853 3.0272 3.0720

TT 4.1064 4.1173 4.1971 4.0757 4.0872 4.1488
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PRMSE results for DLM−based prediction of system outputs

Figure 4.3: PRMSE values of the predicted outputs using Fixed Order Model (FOM), Variable

Order Model (VOM) and the model without resampling (W/O).

4.5.2 RUL Prediction

For evaluating the RUL of the gas turbine engine, as per the criteria stated in Section 4.3, all

the four parameters are considered for health evaluation and estimating of the system RUL in

a prediction horizon of 60-steps ahead. The RUL is evaluated within the prediction windows

starting from two subsequent flight cycles 854 and 877 (these two windows are corresponding

to two updated DLM models) that include the ground truth failure cycle in their 60-steps ahead

prediction horizon. The ground truth failure cycle for compressor health evaluation due to

fouling phenomenon is located at the cycle 900. For turbine health evaluation, the windows

starting from the cycles 1114 and 1138 are considered (this is due to the same reason as stated

for the compressor failure time windows) while the ground truth failure cycle due to erosion is

located at the cycle 1162. The predicted health parameters and their fault parameters along with
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Figure 4.4: The predicted compressor health parameters and their related fault vectors.

the actual degradations are depicted in Figures 4.4 and 4.5 for the compressor and the turbine,

respectively.

The ±1% confidence intervals for the compressor efficiency and the mass flow capacity

indicate that the two predicted parameters, are located within the confidence intervals for most

of the time in the simulations. For the turbine parameters these confidence intervals are found to

be ±1% for the turbine efficiency and ±2% for the turbine mass flow capacity. It should be noted

that the first 150 data points in these plots are corresponding to the estimated health parameters

(one-step ahead prediction) which are calculated in the presence of the system observations. As

it was mentioned earlier, as the new observations become available the k-step ahead prediction

of the system states and parameters is performed based on the recent received observations.

Therefore, regarding to each prediction window for the health parameters in Figures 4.4, and 4.5
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Figure 4.5: The predicted turbine health parameters and their related fault vectors.

there are 150 data points of their estimated values which are only shown for the first prediction

window and they are removed from the figures for the rest of prediction windows to have more

clear figures for distinguishing the predicted parameters from the estimated ones.

The critical values for the parameter degradations are considered to be a 3% decrease in

the compressor efficiency [198] along with a 1.5% decrease in the mass flow capacity due to

the fouling phenomenon. This implies that after achieving this level of deficiency in any of

these parameters, the compressor must be taken for a wash up. On the other hand, the critical

values for detecting erosion in the gas turbine are considered to be a 6% decrease in the turbine

efficiency and a 3% increase in the mass flow capacity.
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Fouling Scenario

Corresponding to the obtained prediction results for the fault parameters of the compressor

health parameters, two subsequent time windows are considered. These time windows are

starting from flight cycles 854 and 877, respectively. For determination of the flight cycle at

which the maximum probability of failure is occurred, a probabilistic analysis method is pro-

posed. In this method the distribution of the predicted data related to the system health pa-

rameters (i.e. in compressor mass flow capacity and efficiency in fouling scenario and turbine

mass flow capacity and efficiency in erosion scenario) in each time window of 60-step ahead

horizon, is fitted to a Gaussian distribution. Hence, the amount of changes in the mean value

of this distribution through consequence prediction windows, determine the changes in its re-

lated health parameter. Consider the health indicator vector in fouling scenario as HIt+1:t+k =


θ̂ηCt+1|t
· · · θ̂ηCt+k|t

θ̂mCt+1|t
· · · θ̂mCt+k|t


, where its mean value is presented as mean(HIt+1:t+k) = (µηC , µmC

)T,

and its variance in denoted by var(HIt+1:t+k) =




δ2θηC
0

0 δ2θmC


. Hence, the Gaussian prob-

ability function value corresponding to each health indicator (compressor health parameters) is

calculated as

Gpdf(θ̂ηCt+i|t
|µηC , δ

2
ηC
) =

1

δηC
√
2π
e
−

(θ̂ηCt+i|t
−µηC

)2

2δ2
θηC ,

Gpdf(θ̂mCt+i|t
|µmC

, δ2mC
) =

1

δmC

√
2π
e
−

(θ̂mCt+i|t
−µmC

)2

2δ2
θmC .

Moreover, the failure cycle corresponding to each health indicator, is calculated as the cycle at

which the predicted health parameter exceeds the 99.5% confidence bound around the critical

value of that health parameter. Therefore, considering that the fouling phenomenon is identified
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by its decreasing effect on both compressor health parameters, the upper bound on the critical

values of the compressor health parameters is considered as the criteria for determination of

the system failure cycle due to fouling. Because, the failure cycle according to this rule can

be more than one cycle, the one corresponding to the maximum probability density function

is considered as the failure cycle due to the assumed health parameter which is calculated as

follows

FailureCycleηC = t+ j, such that θ̂ηCt+j|t
≤ (1.05)θcrηC and t+ j = argmaxkj=1Gpdf(θ̂ηCt+j|t

),

FailureCyclemC
= t+ l, such that θ̂mCt+l|t

≤ (1.05)θcrmC
and t+ l = argmaxkl=1Gpdf(θ̂mCt+l|t

),

where θcrηC and θcrmC
are the critical values of the compressor efficiency and mass flow capac-

ity, respectively. Finally, the failure cycle of the system is considered as the minimum of

FailureCycleηC , and FailureCyclemC
, as FailureCycle = min(FailureCycleηC ,FailureCyclemC

).

Performing the probabilistic study on the distribution of the predicted data in the considered

two time windows, the results summarized in Table 4.8 and Figures 4.6, 4.7 are obtained for

the prediction performed from all three methods as stated before. Assume that the ground truth

failure cycle, which is the flight cycle 900, corresponds to θcrηC = 0.97, and θcrmC
= 0.985.

In Table 4.8, the mean and standard deviation of the distribution for the 60-step ahead pre-

dicted data (when they are fitted to a Gaussian distribution), are shown which are based on the

results depicted in Figures 4.6, and 4.7. In these figures the changes in the distributions of the

compressor fault parameters for the two considered time windows which are close to the failure

cycle, are presented for the three prediction methods. In addition to the distributions related to

the changes in the fault vector of the mentioned health parameter, the cycles at which the cal-
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culated probabilities are achieved, are also plotted in Figure 4.6 for the compressor efficiency

and Figure 4.7 for the compressor mass flow capacity. In the cases that these distributions are

reliable Gaussian distributions, the failure cycle can be predicted from their results as the cycle

at which the probability distribution reaches its maximum value.

The presented results in Table 4.8 guarantee that as one gets closer to the failure cycle, the

means of the distributions related to the prediction results for both compressor health param-

eters faults are located within the 99.5% confidence bound around the actual critical values.

However, the results corresponding to the conventional method (W/O) do not follow the correct

direction for the degradation propagation. While the mean of the distribution for the predicted

values is located around 0.9674 in the first time window, as the window moves towards closer

points around the failure cycle, the mean of the distribution increases to 0.9705 which is not

correct because the fouling phenomenon causes gradual degradation in the compressor health

parameters which has decreasing effect on the compressor health parameters (not decreasing in

one window and increasing in the consequent one). Therefore, the RUL prediction for the com-

pressor fouling scenario from this method cannot give us a reliable result in terms of the failure

cycle. As one can see from the results presented in Figure 4.6, the maximum probability of fail-

ure is achieved at several cycles (instead of one cycle). Considering the probability distributions

around the related flight cycles presented in Figure 4.6, the failure cycle can be predicted from

both windows for VOM and FOM, whereas for W/O only from the first time window one can

obtain a reliable prediction for the failure cycle.

Similar to the results of the compressor efficiency fault vector, the corresponding results for
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Table 4.8: Predicted values distributions due to compressor fouling

Parameter
Prediction from cycle 854 Prediction from cycle 877

method mean ± std mean ± std within ±99.5% of critical value

θηC VOM 0.967 0.0003 0.967 0.0009 yes

FOM 0.966 0.0006 0.967 0.0017 yes

W/O 0.967 0.0028 0.970 0.0009 yes

θmC
VOM 0.986 0.0004 0.985 0.0001 yes

FOM 0.985 0.0004 0.985 0.0001 yes

W/O 0.984 0.0018 0.982 0.0002 yes

the compressor mass flow capacity are also located in the 99.5% confidence bound around the

actual critical value. Moreover, for predicting the failure cycle, from the results presented in

Figure 4.7 one can use the distributions related to VOM from both windows for the purpose of

failure cycle prediction. However, W/O is not suitable for failure cycle prediction from the first

window due to the unreliable probability distribution in this time window which causes several

cycles with maximum probability of failure values, and FOM is not suitable for failure cycle

prediction from the second window for the same reason.

Finally, the predicted RUL from the starting point of the two considered time windows

is calculated as the difference between the start cycle in the considered time window and the

predicted failure cycle in that window for each health parameter separately as shown in Table

4.9. The predicted failure cycle is calculated as the cycle at which the maximum probability

distribution value in the related time window is reached (for both fault vectors of compressor and

turbine). Assume that in the first time window starting at 854 the actual RUL is 46 (900−854 =

46), and in the second time window starting at 877 the actual RUL is 23 (900− 877 = 23). The

RUL error is also indicated in Table 4.9 which is calculated as the difference between the actual

RUL and the predicted RUL from different methods.

From the presented results in this table, it is concluded that VOM is able to predict the
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Figure 4.6: Predicted probability of the failure for the compressor efficiency from two

prediction windows.

RUL from two time windows for both compressor health parameters and as the time window

moves towards the actual failure cycle, the RUL prediction becomes more accurate such that in

the second time window the RUL can be predicted within ±5 cycles around the actual RUL.

Moreover, FOM method can determine the RUL based on both health parameter in the first time

window within ±14 cycles around the actual RUL, but in the second time window only one

of the parameters can be used for RUL prediction. However, the prediction method based on

W/O does not have enough accuracy for RUL prediction based on both health parameters of

the system from the two time windows. The criterion for evaluating the failure cycle based on

multiple system health parameters is according to parameter that predicts an earlier failure cycle

(according to the discussion in Section 4.4).
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Figure 4.7: Predicted probability of the failure for the compressor mass flow capacity from two

prediction windows.

Table 4.9: RUL prediction in compressor fouling scenario

Parameter
Prediction from cycle 854 Prediction from cycle 877

method failure cycle predicted RUL RUL error failure cycle predicted RUL RUL error

θηC VOM 883 29 +17 908 31 -8

FOM 888 34 +12 910 33 -10

W/O 880 26 +20 - - -

θmC
VOM 885 31 +15 905 28 -5

FOM 886 32 +14 - - -

W/O - - - 896 19 +4
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Erosion scenario

For the erosion scenario, the accomplished prediction results for the fault parameters of the

turbine health parameters from two subsequent time windows close to the failure cycle are con-

sidered. These time windows are starting from flight cycles 1114 and 1138, respectively. The

health indicator vector in this scenario consists of the turbine efficiency and mass flow capac-

ity HIt+1:t+k =




θ̂ηTt+1|t
· · · θ̂ηTt+k|t

θ̂mTt+1|t
· · · θ̂mTt+k|t


. The probability analysis similar to the fouling

scenario is also performed for this scenario assuming the turbine health parameters as the sys-

tem health indicators. However, considering that the erosion phenomenon is identified by its

decreasing effect on the turbine efficiency and increasing effect on its mass flow capacity, the

upper bound on the critical value of the turbine efficiency and the lower bound on the critical

value of the turbine mass flow capacity are considered as the criteria for determination of the

system failure cycle due to erosion. Hence, in the calculation of failure cycle in this scenario

the following criteria is considered

FailureCycleηT = t+ j, such that θ̂ηTt+j|t
≤ (1.05)θcrηT and t+ j = argmaxj=k

j=1Gpdf(θ̂ηTt+j|t
),

FailureCyclemT
= t+ l, such that θ̂mTt+l|t

≥ (0.995)θcrmT
and t+ l = argmaxl=k

l=1Gpdf(θ̂mTt+l|t
),

where θcrηT and θcrηT are the critical values of the turbine efficiency and mass flow capacity, re-

spectively. The results summarized in Table 4.10 and Figures 4.8, 4.9 are obtained based on the

probabilistic analysis of the prediction results. Assume that the ground truth failure cycle, which

is the flight cycle 1162, corresponds to θcrηT = 0.94, and θcrmT
= 1.03. The presented results in

Table 4.10, show that from both time windows the means of the distributions related to the tur-

bine faults parameters are located within the 99.5% confidence bound around the critical value
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Table 4.10: Predicted values distributions due to turbine erosion

Parameter
Prediction from cycle 1114 Prediction from cycle 1138

method mean ± std mean ± std within ±99.5% of critical value

θηT VOM 0.957 0.0011 0.957 0.0017 yes

FOM 0.955 0.0002 0.961 0.0028 yes

W/O 0.956 0.0015 0.959 0.0012 yes

θmT
VOM 1.033 9.013e−4 1.033 0.0015 yes

FOM 1.029 9.486e−4 1.045 0.0049 no

W/O 1.029 9.033e−4 1.040 0.0037 no

for the turbine efficiency fault parameter. However, FOM and W/O do not result in prediction

results distributions within 99.5% confidence bounds. According to the results indicated in Fig-

ures 4.8 and 4.9, the VOM method can be used for failure cycle prediction from both windows

for both turbine health parameters, whereas FOM cannot be used for this purpose from the first

time window for the turbine efficiency and W/O can not be used from the first window for the

turbine mass flow capacity.

Consequently, the predicted RUL from the starting point of the two considered time windows

in erosion scenario, is calculated and presented in Table 4.11. Since the actual failure cycle is

located at 1162, the actual RUL in the first time window starting at 1114 is 48 (1162− 1114 =

48), and in the second time window starting at 1138 the actual RUL is 24 (1162− 1138 = 24).

The RUL error is also indicated in this table. From the results presented in Table 4.11 one can

find that RUL prediction based on FOM and W/O according to the variations in both health

parameters of the turbine is possible only from the second window, i.e. as one gets closer to

the failure cycle, whereas VOM is able to predict RUL based on both turbine health parameters

from both time windows. However, as the time window moves towards the actual failure cycle,

the RUL prediction based on VOM becomes more accurate such that in the second time window

RUL can be predicted within ±5 cycles from the actual failure cycle. Moreover, FOM and W/O
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Figure 4.8: Predicted probability of the failure for the turbine efficiency from two prediction

windows.

can determine the RUL based on both turbine health parameters only from the second window

within ±9, and ±4 cycles from the actual failure cycle, respectively.

Table 4.11: RUL prediction in turbine erosion scenario

Parameter
Prediction from cycle 1114 Prediction from cycle 1138

method failure cycle predicted RUL RUL error failure cycle predicted RUL RUL error

θηT VOM 1139 25 +23 1167 29 -5

FOM - - - 1153 15 +9

W/O 1134 20 +28 1158 20 +4

θmT
VOM 1170 56 -8 1170 32 -8

FOM 1147 33 +15 1156 18 +6

W/O - - - 1162 24 0

142



1.026 1.028 1.03 1.032 1.034 1.036 1.038
0

0.2

0.4

0.6

0.8

1

Predicted turbine massflow capacity fault

P
ro

b
a
b

il
it

y
 d

is
tr

ib
u

ti
o

n
 v

a
lu

e

1100 1120 1140 1160 1180
0

0.2

0.4

0.6

0.8

1

Predicted failure cycle

P
ro

b
a
b

il
it

y
 o

f 
fa

il
u

re
 d

is
tr

ib
u

ti
o

n

Predicted probability of failure for turbine massflow capacity from cycle 1114

1.025 1.03 1.035 1.04 1.045 1.05
0

0.2

0.4

0.6

0.8

Predicted turbine massflow capacity fault

P
ro

b
a
b

il
it

y
 d

is
tr

ib
u

ti
o

n
 v

a
lu

e

1120 1140 1160 1180 1200
0

0.2

0.4

0.6

0.8

1

Predicted failure cycle

P
ro

b
a
b

il
it

y
 o

f 
fa

il
u

re
 d

is
tr

ib
u

ti
o

n

Predicted probability of failure for turbine massflow capacity from cycle 1138

 

 

VOM

FOM

W/O Resampling

Figure 4.9: Predicted probability of the failure for the turbine mass flow capacity from two

prediction windows.
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4.5.3 RUL Performance Analysis with Different DLM Parameters

In this subsection, the performance of RUL prediction is evaluated when different parameters

in the DLM are varying around their designed values for the prognosis of the gas turbine engine

in both fouling and erosion scenarios. It is pointed out that the designed parameters are selected

as: the DLM fixed lag window size τ = 150 where 35 data points are used in the validation

step (ś = 35), the sliding window size in M-distance algorithm is q́ = 10, the number of recent

available observation at each time instant is selected as s = 10, and the threshold in the M-

distance for change detection is δ = 1.5. To evaluate the performance of prognosis in terms of

RUL prediction error, several scenarios are performed where in each scenario only one of the

above mentioned parameters has been changed while the rest of the DLM tuning parameters are

considered to be fixed at their designed values. Moreover, the parameter ι = 0.01 is selected

fixed for all scenarios for obtaining the maximum k-step ahead prediction horizon that satisfy

the desired threshold on the PRSMEyj value (based on ι) in all the considered scenarios which

results in a maximum 30-step ahead prediction horizon for all scenarios. Therefore, all the

comparisons among different conditions are done in a prediction window 30-step before the

failure occurrence.

In Figures 4.10 (a)-(d) the effects of changes of the DLM parameters in the absolute error

of RUL prediction are plotted for two more values around the designed value of the selected

parameter. The summarized results are obtained from a window located in the 30-step before

reaching the ground truth failure cycle in each scenario. The presented results in Figure 4.10

(a) shows that decreasing the number of data points used in constructing the DLM model (τ )
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results in higher error in the RUL prediction in both fouling and erosion scenarios. From Figure

4.10 (b) one can find out that whereas changes in the sliding window q́ do not affect the RUL

error in fouling scenario significantly, the error due to erosion scenario is rather high when q́ is

selected as a small or high value compared to the number of recent available data in each time

instant, s. From the presented graphs in Figure 4.10 (c) one can also conclude that over increas-

ing/decreasing the length of s can affect the RUL error significantly in both scenarios. Finally,

the results related to changes in the threshold which is utilized in the M-distance algorithm for

change detection as presented in Figure 4.10 (d) show that selecting smaller values for δ can

lead into erroneous RUL prediction results.

4.5.4 Time Complexity Analysis of the Prediction Scheme

To compare the efficiency of our developed prediction schemes based on the variable order

DLM (VOM) and the fixed order DLM (FOM) models, with a conventional method based on

augmented state and parameter estimation algorithm according to reguralized particle filters

and without performing resampling [25], the execution times of these schemes are obtained for

each iteration of prediction step. Assuming that the computational complexity of the prediction

step is proportional to the EF complexity of the algorithms [170]. These metrics are estimated by

using an Intel Xeon CPU E31230, 3.2GHz processor with 16GB memory. Therefore, the time

complexity as a measure of time (in seconds) that are required to execute the algorithms for the

best scenario (that is the minimum execution time), the average scenario (that is the average

execution time), and the worst scenario (that is the maximum execution time) are obtained for

the VOM, the FOM and the W/O schemes in Table 4.12. In these methods the number of
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Figure 4.10: RUL performance using different DLM parameters.
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particles are considered to be the same and is set to N0 = N = 150.

From the shown results it can be concluded that the time required for execution of the VOM

is less than that of the FOM and W/O. It is further concluded that even with equal number of

particles when the dimensions of the states and measurements are comparable with the dimen-

sion of the parameters (nθ = nx = 4, ny = 5), the resampling algorithm that we have used

(namely, the residual resampling) did not increase the time complexity (which is equivalent

to the EF complexity) of our developed VOM algorithm compared to a conventional method

without performing resampling.

Table 4.12: Computational Time Corresponding to the VOM, FOM and W/O Algorithms in

seconds.

Model Best Scenario Average Scenario Worst Scenario

V OM 88 136.0208 190

FOM 94.0146 138.9729 194.5736

W/O 92.4846 138.2435 193.9752

4.5.5 Prognosis Online Performance Assessment

In this subsection, the performance of our developed particle filtering based prediction scheme

for prognosis of a gas turbine engine is evaluated according to the introduced online prognosis

assessment metrics in [181, 182]. The obtained results are also compared with the other two

presented prognosis approaches in [25] with the same performance metric measures. These

metrics are RUL online precision index (RUL-OPI), RUL accuracy precision index (RUL-API),

and RUL online steadiness index (RUL-OSI) as elaborated below.
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RUL-OPI: Considers the 95% confidence interval computed at time t denoted by CIt,when

compared to the RUL. According to this metric the more data the algorithm processes, the more

precise the prognosis results should be and in the best case it should be close to one. The RUL-

OSI is denoted by I1(t) for all t ∈ [1,Et{TOF}], t ∈ N as I1(t) = e
−(

sup(CI)t−inf(CI)t
Et{RUL}

)
, where

Et{RUL} is the estimate of the expectation of the system RUL at time t, and where Et{TOF}

is the estimate of the expectation of the system time of failure at time t.

RUL-API: Represents the error of time of failure estimates relative to the width of the cor-

responding 95% confidence interval, CIt and denoted by I2(t). This metric penalizes whenever

the Et{TOF} is greater than the ground truth failure cycle, i.e. whenever actual failure happens

before the expected time and is introduced as I2(t) = e
−(

GroundTruth{TOF}−Et{TOF}
sup(CI)t−inf(CI)t

)
. The accurate

prognosis results correspond to the values of I2(t) such that 0 ≤ 1 − I2(t) ≤ ς , where ς is a

small positive constant.

RUL-OSI: Considers the current TOF expectation which is calculated given the measure-

ments at time t. According to this metric, the more data the algorithm processes, the steadier

the prognostic result will be. It is denoted by I3(t) and calculated as

I3(t) =
√

Var(Et{TOF}), I3(t) ≥ 0, ∀t ∈ N.

Next, utilizing the aforementioned prognosis indices, the performance of our developed pre-

diction method with variable order model structure (VOM) is compared with other two methods

from the literature [25], i.e. the prediction method based on particle filters with invariant weights

for future propagation of the particles with the standard structure for particle filter implemen-

tation (PF method), and the particle filtering-based prediction method using the regularization
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(with optimal kernel density) of particles with invariant weights and applying outer feedback

loop for online adjustment of hyper parameters (RPF method). The summarized prognosis

results according to the above mentioned indices are presented in Figures 4.11, and 4.12 for

fouling and erosion scenarios, respectively assuming the compressor and turbine efficiency as

the health indicators (according to the mentioned criterion in Section 4.4).

For the fouling scenario, as presented in Figure 4.11, the analysis results are plotted from

the cycle 854 to cycle 900 which is the failure cycle due to fouling. In this interval, the VOM

algorithm is updated two times, therefore the steps in the curves related to our developed VOM

method are because of this update in the DLM models of the observation forecasting part of the

algorithm. From the presented results in Figure 4.11, VOM can maintain RUL-OPI more than

0.9 for all the analysis in the considered time window. The RPF method with outer feedback

loop follows very close results to VOM instead of some spikes. On the other hand, the standard

PF method shows the least precise results by decreasing to near 0.8. The RUL-API results for

VOM and RBF even in the most conservative case, lie below 2, whereas PF has continuously

increasing RUL-API curve. Finally, the RUL-OSI index results for all three methods are located

in the same range. It should be noted that the fluctuations in the RPF methods are because of

updates in the outer feedback loop which enables the RPF algorithm to cope with the parameter

changes. The RUL-OSI for PF and RPF methods is calculated by considering a moving window

of size 20 of the predicted results.

In the erosion scenario, the presented results in Figure 4.12 show that all three performance

curves which are calculated based on the results of PF and RPF method follow similar patterns
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Figure 4.11: Prognosis performance indices for compressor efficiency in fouling scenario.

and even the outer feedback loop is not able to cope with the changes in the turbine efficiency

more effectively. The main reason can be related to the fact that outer feedback adjustment loop

can compensate the changes in the parameter for a limited range of parameter variations and if

the parameter changes exceed this range the outer loop is not able to compensate the changes

perfectly. However, our developed VOM method shows compromising results from all three

prognosis performance metrics for erosion scenario as well as fouling scenario.
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Figure 4.12: Prognosis performance indices for turbine efficiency in erosion scenario.

4.6 Conclusions

In this chapter, conventional particle filtering schemes are extended to predict the future be-

havior of a nonlinear dynamical system states and parameters by utilizing the observation fore-

casting concept and using time-series methods. This observation forecasting scheme is de-

veloped based on fixed/variable order DLM models which are adjusting online according to

an adaptive external adjustment loop. It is shown that despite its improved performance, our

proposed scheme does not impose additional computational complexity when compared to the

other available methods in the literature. The developed model is applied for the purpose of fail-

ure prognosis in a gas turbine engine. The results for the remaining useful life (RUL) prediction

demonstrate and illustrate the acceptable performance of our developed scheme.
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Chapter 5

Prognosis and Health Monitoring of Gas

Turbine Engines using a Hybrid Scheme

through Integration of Particle Filters and

Neural Networks

In this chapter, which is investigated in collaboration with Dr. Baniamerian, a hybrid archi-

tecture is proposed to develop prognosis and health monitoring methodologies for nonlinear

systems by integration of model-based and computationally intelligent-based techniques. In

our proposed prognosis algorithm in this chapter the propagation of the health indicator is es-

timated and predicted through particle filters where the intelligent based methods are utilized
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as add-ons to enhance the accuracy of the overall particle filtering based method by taking into

account the effect of hidden damages which are not modeled in the system dynamics based on

their effect on the system on line observations. Hence, significantly less historical data in this

method is required without need for pre-training the system for different fault scenarios. More-

over, due to explicitly utilizing a mathematical model in our proposed hybrid methodology, the

required data for training purposes would be lower than those required for only a computational

intelligent-based method [199].

In our proposed approach, the neural networks are continuously adjusted according to the

most recent available observations through a sliding window process. This ensures that the

networks are adapted in cases when maintenance actions are performed on the system and

the process should then be considered as starting its operation from a new healthy condition.

As demonstrated subsequently through extensive simulation case studies, our proposed hybrid

methodology remains robust when implemented with different neural networks that are utilized

in the observation forecasting scheme.

In this chapter, we utilize three neural networks to predict the observation profile of the

system for a future time horizon. These predictions are then utilized in our particle filter-based

prognosis method for performing the health monitoring task. Consequently, the proposed hybrid

approach enables one to select the appropriate signatures critical for determining the remaining

useful life (RUL) of the system and its components based on the system hidden states/parameters

that are made possible with integration of model-based and computationally intelligent-based

neural networks. Finally, our proposed methodology is utilized in prognosis of a gas turbine en-
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gine that is affected by degradation damages due to compressor fouling and turbine erosion. The

robustness and performance capabilities of our proposed methodology are investigated when

the RUL of the system is estimated under three cases, namely when the observation forecasting

scheme is implemented by utilizing three different types of neural networks. It has been shown

that our hybrid framework is capable of dealing with scenarios when maintenance actions have

also been performed on the gas turbine engine.

The main contribution of this chapter is now summarized as below:

1. Development of a hybrid framework for health monitoring and prognosis methodology by

extending the previously developed particle filtering-based prediction strategy and incor-

porating nonlinear time-series forecasting methods based on neural networks as opposed

to linear time-series methodologies.

The remainder of this chapter is organized as follows. The problem statement is provided in

Section 5.1. The proposed hybrid prediction strategy that is developed in Section 5.2 is based on

a nonlinear observation forecasting scheme that integrates neural networks with particle filters.

The details related to three selected neural networks are also provided. In Section 5.4, the

application of our proposed prediction method is verified by utilizing it in the RUL prediction

of a gas turbine engine that is affected by degradations due to the compressor fouling and turbine

erosion. Finally, the chapter is concluded in Section 5.5.
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5.1 Problem Statement

Considering that the damage affects θt on the system health parameters λ(.) (as a multiplicative

faults vector), the system equations are then governed by:

xt = ft(xt−1, θ
T
t−1λ(xt−1), ωt),

yt = ht(xt, θ
T
t λ(xt), νt),

(5.1)

where ft : R
nx×R×R

nu×R
nw −→ R

nx and ht : R
nx×R×R

nv −→ R
ny denote the nonlinear

functions defining and representing the state at the next time step t (t ∈ N) and the relationship

between the state, parameters and measurements at time t, respectively. Also, θt ∈ R
nθ denotes

the unknown fault parameter vector at time t, where for a healthy system it is set equal to 1,

λ : Rnx −→ R
nθ is a differentiable function in terms of system states that determines the health

parameters. Moreover, ωt, νt denote the uncorrelated white noise sequences with zero-mean

and covariance matrices Qt and Rt, respectively.

Our main objective in this chapter is to develop a hybrid framework for accomplishing fail-

ure prognosis by employing the previously stated two principle steps in health monitoring and

prognosis, namely the joint state/parameter estimation, and their propagation prediction. The

first step has been previously developed in Chapter 3 through design of a dual state/parameter

estimation filter based on particle filters (PF). In this chapter, the second step of our proposed hy-

brid prognosis approach is implemented by predicting the long-term propagation of the system

states and variations in the system health parameters. For this purpose, the previously devel-

oped PF-based prediction algorithm for the system states as well as health parameters variations

(due to the fault vector θt) are utilized. The proposed prediction method is developed based
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on extending the particle filters to future time horizons by utilizing an observation forecast-

ing scheme. This scheme is developed by utilizing a neural network approach as a nonlinear

time-series forecasting tool vs the linear time-series forecasting approach as discussed in Chap-

ter 4. The developed hybrid framework for the system failure prognosis is shown to be robust

against the choice of the neural network that is employed in the observation forecasting module.

Moreover, it is shown that our hybrid methodology outperforms the approach that only utilizes

the particle filters for achieving prediction. This justifies and substantiates development of the

strategy that is introduced in this chapter.

The required background associated with the dual state/parameter estimation algorithm that

has already been developed in Chapter 3 and briefly presented in Table 4.1 in Chapter 4. We are

now in a position to present our proposed prediction framework by utilizing the neural network

structures that are used as local models for obtaining and developing the observation profiles

prediction.

5.2 Neural Network-based Prediction Framework

The challenging step in prognosis and health monitoring involves the system health prediction to

future time horizons. In this section, the second step in our proposed hybrid prognosis approach

(namely, the system health prediction) is developed. Our main goal is to extend and enhance the

performance of conventional prediction frameworks that are based on particle filters as they rely

on constant particle weights for their propagation to future time horizons (refer to [200]). This

is achieved by invoking the concept of nonlinear univariate time-series approach [1] that is now
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based on neural networks, where dual state/parameter estimation algorithm is extended to future

time horizons according to the forecasted observations. In our proposed method, unlike the

works in [200] and [1], the assumption of observation stationarity in each window is removed,

since the neural networks will be trained adaptively based on the newly received data when the

deviations between the forecasted observation from the neural network and the real observation

increase from one test data set to another test data set.

By enhancing the observation forecasting component for the PF-based estimation algorithm,

the PF scheme can now be extended to future time horizons by utilizing the same weight update

rule as in the estimation step. The details corresponding to the observation forecasting module

are now presented in the following subsections.

5.2.1 Neural Networks for Observation Prediction

As stated earlier, in this chapter we develop and implement three different types of neural net-

works for the purpose of observation forecasting. Specifically, we utilize MLP, wavenet, and

recurrent neural networks, where the first two networks are feed forward and static, whereas the

last one is equipped with delayed feedback that is more suitable for dynamical system represen-

tation and modeling.

In the remainder of this subsection, we briefly review the basics on neural networks. In the

next subsection, we propose our hybrid approach by using neural networks for the purpose of

prediction. Figure 5.1 depicts the structure of the recurrent neural networks (with one hidden
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Figure 5.1: Structure of a recurrent neural network [1].

layer) that is utilized in this thesis. The schematic of the MLP and wavenet are standard based

on the well known methods presented in the literature [1, 201]

Let the measurement vector at time t be denoted by yt = [y1,t, ..., yny ,t]
T, where yj,t for

j = 1, ..., ny refers to the j-th measurement output in the system (5.1). The output of a feed

forward neural network (that is for both the MLP and the wavenet) can be represented by

yj,t =
nn∑

k=1

w2
j,knetk(t) + b2j ,

where the index j refers to the j-th output, nn denotes the number of neurons in the hidden layer,

netk(t) denotes the output of the k-th neuron of the hidden layer, and w2
j,k and b2j denote the

weights matrix and bias vector related to all MLPs used in the feed forward network structure.

The main difference between the MLP and the wavenet lies on how one computes netk(t). In

the MLP network, we have

netk(t) = sa(wkz(t) + b1k),
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where sa denotes an activation function (in this thesis we use sa(r) = 1
1+e−r ), and z(t) is the

input vector to the network that is selected from the measurement outputs yt of the system (5.1),

wk is a row weight vector with appropriate dimension, and b1k a scalar denotes the bias parameter

of the network. The structure of a wavenet can be expressed as

netk(t) = wa(||Dk(z(t)− tk)||),

where Dk denotes a diagonal matrix, tk denotes the translation vector and wa denotes a wavelet

function (in this thesis we use the Mexican-hat wavelet, namely wa(r) = (1 − r2)er
2
) [201].

The main reason for this selection has its roots in the fact that as compared to the Haar wavelet,

the Mexican-hat is differentiable, and hence the training processes (that involves the derivative

of the activation function) is well-defined.

To represent and model a dynamical system with a feed forward neural network, it is nec-

essary that delayed system outputs are also used in the set of inputs to the network. In other

words, one can obtain an approximate representation or map as follows

yj,t = F(yj,t−1, yj,t−2, · · · , yj,t−nd
)

where F denotes the function that the network is realizing. In this chapter, one can invoke the

Akaike information criterion (AIC) [188] to determine nd (the number of delayed outputs).

Therefore, for the MLP and the wavenet networks the input vector is expressed as z(t) =

[yj,t−1, yj,t−2, · · · , yj,t−nd
]T. However, when a recurrent neural network is employed one only

needs the output yj,t−1 as an input to the network. Consequently, one has z(t) = yj,t−1.

For the recurrent neural network we have

netk(t) = sa(wkz(t) + b1k + wd
knet(t− 1) + b1k),

159



where wd
k denotes the weight matrix related to delayed outputs, and

net(t− 1) =

[
net1(t− 1), net2(t− 1), · · · , netk(t− 1)

]T
.

Eventually, it is worth nothing that all the parameters in the feedforward network, i.e. w2
j,k,

and b2j , as well as Dk, and tk in the wavenet network, and also wj , and b1k, in recurrent network

are tuned and adopted by using the Levenberg-Marquardt (LM) algorithm [202] in all these three

networks. The main reason for this selection is related to the stability and fast convergence rate

of the LM algorithm for solving the nonlinear least square problems as discussed in [1].

5.2.2 Neural Network Updating

For accomplishing the prediction task we consider each output as a time-series. A neural net-

work such as the MLP, the wavenet or the recurrent network is applied for this purpose. When

new observations are made available we measure performance of the network by using the j-th

mean square error of the output vector yt and its estimate vector ŷt as given by

Ej =
1

nts

nts∑

t=1

(ŷj,t − yj,t)
2, j = 1, ..., ny (5.2)

where ŷj,t denotes the estimation of yj,t obtained from the neural network with fixed parameters

as calculated in the previous training step of the algorithm, and nts denotes the number of

observations that are used to validate the neural network. We consider two windows with lengths

ntr and nts (where ntr denotes the number of observations that are used to train the neural

network and nts is used to test the performance of the neural network). If Ej is larger than a

predefined threshold, one needs to retrain the network by using the last ntr observations.
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5.2.3 Observation Forecasting Module

The observation forecasting module is constructed with the use of neural networks. We are

interested in first constructing yj,t from the previous available observations yj,t−pi as a univariate

time-series, where pj denotes the number of delayed outputs that are utilized. The proposed

algorithm that utilizes neural networks is now summarized in Table 5.1. Note that the threshold

th is selected according to a desirable accuracy that one expects from the overall prognosis

scheme. To accomplish a more accurate prognosis one needs to specify a smaller th.

Table 5.1: Algorithm to retrain the neural networks that are used for observation forecasting

that is integrated with the particle filters.

1. For each output, yj,t, j = 1, ..., ny, implement the following

steps:

(a) If the network is feedforward, apply the AIC

algorithm [188] to determine the number of delayed

outputs yj,t−pi, where pj is the order of delay for the

j-th output, that are used as inputs to the network,

i.e. yj,t = F(yj,t−1, ..., yj,t−pi).

(b) By using the last ntr observations, that is

{yj,t, ..., yj,t−ntr+1}, train and validate the neural network.

(c) When nts new observations are available (we set

nts < h), test the performance of the network by

utilizing the equation (5.2).

(d) If the network error (that is, Ej as defined in

equation (5.2)) is larger than the threshold th, go to

Step a). Otherwise, go to Step c).
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5.2.4 Hybrid Prediction Methodology

The algorithm corresponding to our proposed hybrid prediction methodology that is achieved

by integration of the neural networks with the particle filters (PF) is provided in Table 5.2. The

neural networks are now used for generating the h-step ahead prediction of the measurement, i.e.

ŷj,t+h. Finally, the h-step ahead prediction of the system hidden states/parameters is achieved

by using the generated ŷj,t+h from the particle filter scheme.

In other words, the h-step ahead predicted observations are denoted by ŷj,t+h for j =

1, ..., ny and are computed from

ŷj,t+h =
nn∑

k=1

w2
j,knetk(t+ h) + b2j ,

where netk(t+ h) is obtained from the predicted observations in the previous time step as

netk(t+ h) = sa(wkx+ b1k + wd
knet(t+ h− 1) + b1k),

with

net(t+ h− 1) = [net1(t+ h− 1), · · · , netk(t+ h− 1)]T

Moreover, integration of the neural networks with particle filters (PF) is established through the

DualPF function (DualPF(x̂t+h−1|t, {x̂(i)t+h−1|t}Ni=1, θ̂t+h−1|t, {θ̂(j)t+h−1|t}Nj=1,Σθ̂t+h−1|t
, ŷt+h)), that

accepts the predicted observations ŷt+h = [ŷ1,t+h, ..., ŷny ,t+h]
T along with

1. the predicted state from the previous time step x̂t+h−1|t,

2. the corresponding state particles {x̂(i)t+h−1|t}Ni=1 (N denotes the number of particles),

3. the predicted parameters in the previous time step θ̂t+h−1|t,
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Table 5.2: Algorithm of the proposed hybrid prediction methodology.

1. Select the first M available observations.

2. For j = 1 : ny

(a) Generate the input-output data set for the neural networks training,

(b) Run the code that is described in Table 5.1 for observation prediction that is based

on the neural networks,

3. Run the PF algorithm with the predicted measurement ŷj,t+h to obtain the h-steps ahead

prediction of the states and parameters (e.g., h is set to 40 in Section 5.2). Utilize the

neural networks to predict the observations for the h-steps ahead according to ŷj,t+h =∑nn

k=1w
2
j,knetk(t + h) + b2j . Implement the dual particle filter algorithm for achieving

the h-steps ahead prediction of the states/parameters by applying the predicted observa-

tions ŷt+h = [ŷ1,t+h, ..., ŷny ,t+h], as: [x̂t+h|t, {x̂(i)t+h|t}Ni=1, θ̂t+h|t, {θ̂(j)t+h|t}Nj=1,Σθ̂t+h|t
] =

DualPF(x̂t+h−1|t, {x̂(i)t+h−1|t}Ni=1, θ̂t+h−1|t, {θ̂(j)t+h−1|t}Nj=1,Σθ̂t+h−1|t
, ŷt+h) as specified in

Table 4.1.

4. Move the observation window for the minimum of nts = 10 recently observed data

points.

(a) If the calculated MSE exceeds the threshold th go to Step 2 and re-train the neural

networks based on the most recent M data points,

(b) If the MSE does not exceed the threshold th continue with the observation pre-

diction with the previously trained neural networks and go to Step 2.

5. If the available observation data set is exhausted, exit the algorithm, otherwise go to

Step 1 with the most recent M data points.

4. the corresponding parameter particles {θ̂(j)t+h−1|t}Nj=1, and

5. the parameter estimation covariance matrix that is denoted by Σθ̂t+h−1|t
,

all as input arguments. The function DualPF produces the predicted states/parameters and the

predicted parameters covariance matrix for the next time step (refer to Step 3 in Table 5.2).
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Figure 5.2: The Hybrid structure block diagram for state and parameter prediction.

A simple block diagram of our proposed hybrid structure for state and parameter prediction

scheme based on the algorithms summarized in Tables 4.1, 5.1 and 5.2 is presented in Figure

5.2.

5.3 Remaining Useful Life (RUL) Evaluation

Our proposed hybrid scheme is conceived based on integration of model-based and neural

network-based prognostic methods. It enables the user to define system health signatures for

the purpose of obtaining and estimating the remaining useful life (RUL) of the system or its

components. This is achieved not only through monitoring the changes in system observations,

but also based on the changes in the internal system states as well as health parameters. In

order to evaluate the health condition of the system, it is necessary to obtain information on the

dynamics of the system.
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In neural network-based prognosis methods, due to absence of a system mathematical model

one requires to employ a large volume of historical data to capture and represent the dynamical

behavior of the system [203]. On the other hand, without incorporating an observation forecast-

ing module to a model-based prognosis approach, the prediction of system health parameters

variations (through the fault vectors) will not be readily feasible. Moreover, performing the

RUL prediction that is only based on the dynamical model of the system and its components

can generally lead to erroneous results.

Hence, by properly taking advantage of the strength and capabilities of neural network-

based and model-based approaches in our proposed hybrid methodology, the health evaluation

of the system can be performed more robustly and effectively. Specifically, we will now de-

termine the health signatures that are corresponding to the system health parameters (as well

as observations) without explicitly requiring to have a large amount of historical data at our

disposal.

Once the system health tracking and its evolution prediction to the future are accomplished,

the RUL of the system can be evaluated by taking into account the probability of the failure

distribution. This is accomplished according to a known criterion on the maximum acceptable

change (critical bounds) of the system health parameters. In this approach, the system health

evaluation for the RUL prediction will be performed based on changes in the system predicted

health parameters. The observations are then utilized to evaluate only the performance of the

prediction scheme in terms of changes in the system health parameters.

It is assumed clearly that the true values of the parameters are unknown and unmeasurable.
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The percentage root mean square error (PRMSE) criterion for the estimated outputs is then used

instead of the parameter estimation errors (that are practically unknown and unmeasurable) for

evaluating the performance of the prediction algorithm. Specifically, for the output yj at the

time instant i the PRMSE is defined according to [180]:

PRMSEyj(i) = 100

√√√√√ 1

M

m=tlM∑

m=tl1

(
ŷj,m+i − yj,m+i

yj,m+i

)2,

where ŷj,m+i denotes the predicted j-th system output obtained from the particle filter at the

time instant m+ i, where m denotes the time instant at which the neural network is updated. In

other words, m = tl1 , ..., tlM denote the time instants in the prediction horizon, i = 1, ..., h, and

M refers to the total number of updated neural networks corresponding to the entire observation

trajectory. Moreover, yj,m+i denotes the actual measured output (observation) at the time instant

m + i, and the mean is taken over all m + i. The number of steps-ahead prediction is selected

from the above PRMSE results based on an acceptable user pre-specified threshold th for each

observation output (refer to Table 5.2).

The system RUL when multiple health parameters are estimated is now determined by first

denoting and selecting θ
(l)
cr , l = 1, ..., nθ, as the critical value for the l-th health parameter. The

following rule is now utilized for evaluating the RUL at the time instant t [196] according to:

RUL(t) = tj − t,

where tj is defined as

tj = min
tj

{θ̂(l)tj − θ(l)cr ≥ 0, l = 1, ..., nθ},

In other words, as described in Chapter 4, the RUL is determined to be the time at which

the first parameter associated with a specific degradation damage reaches its associated criti-
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cal threshold value. Once the critical threshold value in one of the parameters is reached, the

maintenance action must be performed on the system or its components. Choosing a suitable

value for the threshold θ
(l)
cr is application specific and is generally determined based on the sys-

tem performance and the operator or maintenance engineers experience. For most applications

and problems defining an exact or a specific value for the RUL is not meaningful and feasible.

Therefore, in general an acceptable bound is considered as a confidence interval or range for the

RUL prediction. The above procedure is now used in the next section for estimating the RUL

for an h-steps ahead horizon before the occurrence of a failure.

5.4 Gas Turbine Engine Failure Prognosis

The application of our proposed hybrid particle filter (PF)-based and neural network-based pre-

diction method for health monitoring and prognosis of a gas turbine engine is presented in this

section. Our interest is in investigating and determining failure prognosis of the engine, when

the system components are assumed to be affected by health degradation phenomena. The pro-

posed and developed hybrid prediction scheme is demonstrated and shown to be capable of

prognosis the gas turbine engine when non-Gaussian process noise are applied to the system.

Moreover, performance of our proposed state/parameter prediction scheme is evaluated and in-

vestigated under quite general degradation scenarios corresponding to both the turbine and the

compressor components due to erosion and fouling phenomena, respectively.

In order to illustrate the effects of the choice on various neural networks that can be used

for implementation of the neural network-based module of the hybrid methodology, simulation
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scenarios under three different choices of neural networks are conducted. Specifically, we con-

sider the following neural networks (i) MLP networks, (ii) recurrent neural networks, and (i)

wavelet neural networks. The abbreviations "NN", "RNN" and "WNN" are used subsequently

for the MLP, the recurrent and the wavenet neural networks, respectively.

Moreover, performance of the parameter prediction scheme will also be compared with the

case when the observation forecasting module is not utilized. In other words, we will compare

our proposed hybrid methodology with the prognosis scheme that is implemented by only the

particle filtering scheme (this is denoted by "PF" in the simulation results). Specifically, in

the latter approach, the state/parameter particles are propagated to the future time instants with

constant weights (that is, without performing resampling) since the predicted observations are

not available.

In order to discretize the gas turbine engine continuous-time model (as stated in Chapter

2) for implementation of our hybrid prognosis approach, an Euler Backward method is applied

with a sampling period of Ts = 10 msec.

The gas turbine engine health parameters are again represented by the compressor and the

turbine efficiency, ηC and ηT, respectively, and the compressor and the turbine mass flow capac-

ities, ṁC and ṁT, respectively. A fault vector is therefore incorporated in the model to represent

the effects of the system health parameters that are denoted by θ = [θηC , θmC
, θηT , θmT

]T. Each

parameter variation is a manifestation of changes in the fault vector and is considered as a mul-

tiplicative fault type injected to the gas turbine engine.
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5.4.1 Simulation Scenarios

The capability of our proposed hybrid methodology is now verified through its application to

a gas turbine engine as given by the dynamical model (2.1) in Chapter 2. Two scenarios are

considered by incorporating the effects of degradation damages to the engine compressor and

turbine that are modeled as multiplicative faults. The main assumption that is made is that the

only damage affecting the engine during the entire 300 simulation cycles (or flights) of operation

will be due to the above two degradations.

It should be pointed out that for network training, after 48 number of Monte-Carlo sim-

ulation runs for the system degradation scenario, the fixed number of 200 data point has been

selected for implementation of the algorithm. This window size is selected based on the average

number of data which is required to achieve a training error less than 3e−5 and at the same time

greater than 1e−5 to eliminate the risk of network overtraining.

The maximum number of step ahead prediction horizon for presenting the prognosis results

has been selected according to a quantitative analysis on the predicted measurement outputs

obtained from the particle filter corresponding to 48 Monte-Carlo simulation runs utilizing the

powerful PRMSE metric. Based on the obtained results a 40-step ahead prediction horizon

is chosen which shows an acceptable PRMSE error for all system measurements which were

calculated in hybrid structure when the neural network part of the algorithm was implemented

from all three mentioned neural network structures. This 40-step ahead prediction horizon is

used to evaluate the probability of failure for accomplishing the prognosis task from the hybrid
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Table 5.3: Number of neurons in the hidden layer of neural networks that are used for each

output.

Network Output y1 y2 y3 y4 y5
MLP (NN) 8 10 7 15 8

Recurrent (RNN) 5 3 8 10 3

Wavenet (WNN) 4 5 4 4 4

framework.

A fixed number of M = 200 data points are used (as stated in Table 5.2). As new observa-

tions become available, if the deviation between the output of the neural network estimate and

the actual observation according to equation (5.2) exceeds a pre-defined threshold criterion, the

network is retrained by including the latest and recent observed data points.

The number of hidden layer neurons in the three neural networks that are used for simu-

lations is provided in Table 5.3. The simulation scenarios are described in detail below. The

corresponding results are presented in Figure 5.3. According to the results shown in this figure,

it can be observed that as the number of steps-ahead prediction horizon exceeds beyond the

40 steps, the PRMSE value for the compressor pressure (PC) and the turbine temperature (TT )

become over 4.2% of their nominal values. Consequently, the prediction horizon is set to 40 for

all the subsequent simulation scenarios.

5.4.2 Compressor fouling scenario

For the compressor fouling scenario, a slowly changing linear degradation model is applied

to the compressor health parameters during 300 cycles (or flights) of operation that cause a
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Figure 5.3: The PRMSE results for the gas turbine engine predicted outputs.

3% drop in the compressor efficiency and 1.5% drop in its mass flow capacity. In order to

determine the compressor failure time based on the prediction results, variations in the system

health parameters that are modeled by the fault vector are utilized. Assuming that the gas

turbine engine starts operating from its healthy condition, the initial fault parameters are set to

1 (in other words, engine is 100% healthy). Therefore, if the fault parameter of the compressor

efficiency (θηC ) and the mass flow capacity (θmC
) are set to 0.97 and 0.985, respectively, this

implies that the compressor reaches a 3% fouling degradation that may cause failure of the gas

turbine engine if a maintenance action was not performed.

For the remaining useful life (RUL) determination one requires to specify a threshold as-

sociated with the system health parameters. In view of the fault parameters critical values (as

explained above), the related critical value for the compressor health parameter is obtained as
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θcr = 0.7832. This corresponds to θηC = 0.97 and θmC
= 0.985.

Note that the percent of change in each health parameter is calculated with respect to the

parameter under the healthy mode of the engine under the cruise condition of the flight. Fouling

and erosion degradation phenomena follow linear propagation patterns under the low degrada-

tion index (equivalent to the fault severity level) of 1% to 3%, however as the degradation index

increases (beyond 3%) they do not necessarily follow a linear profile [198].

To evaluate the performance of our proposed hybrid prediction strategy for the compressor

failure prognosis, a prediction window of 40-steps ahead is now considered around the failure

cycle. By assuming that the required amount of data for training the neural networks are 200

cycles (M = 200), the last 40 data points as shown in Figure 5.4 do correspond to the predicted

health parameters of the compressor. Following the flight cycle 240 the compressor fouling

degradation will go through a maintenance action and will be recovered by washing. Our interest

here is in determining an acceptable approximation to the compressor failure time subject to the

fouling degradation before its occurrence.

The results shown in Figure 5.4 demonstrate and illustrate that the PF method without its in-

tegration with the neural network-based observation prediction module, is incapable of tracking

the compressor efficiency changes correctly, and has indeed over-estimated the health parameter

in such a manner that it cannot be located within the ±99% confidence interval around the true

value. Although as far as the mass flow capacity of the compressor is concerned the PF method

has for some times estimated the health parameter within the confidence interval. However, the

direction of changes corresponding to the predicted mass flow capacity is not correct. Therefore,
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the use of the PF method alone will be excluded for further investigation on the system health

evaluation for the fouling scenario as considered in the following studies. In contrast associated

with both compressor health parameters (namely, the efficiency and the mass flow capacity),

all the three neural network-based strategies are capable of predicting these parameters within

the ±99% of the confidence bound around the true values (these are depicted by dash lines in

Figure 5.4).

For determining the failure cycle as the result of the compressor fouling, a probabilistic

analytical method is now proposed and implemented below. In our proposed method the distri-

bution of the predicted data associated with the compressor system health parameters in each

time window of 40-steps ahead horizon is fitted to a Gaussian distribution. Consequently, the

changes in the mean of this distribution through subsequent prediction windows determine the

changes in its related health parameter.

Let the health indicator vector under the fouling scenario be denoted by

HIt+1:t+k =




θ̂ηCt+1|t
· · · θ̂ηCt+k|t

θ̂mCt+1|t
· · · θ̂mCt+k|t


, where the mean is expressed as mean(HIt+1:t+k) =

(µηC , µmC
)T, and the variance is denoted by var(HIt+1:t+k) =




δ2θηC
0

0 δ2θmC


. Therefore,

the Gaussian probability density function corresponding to each health indicator (related to the

compressor health parameters) is computed as

Gpdf(θ̂ηCt+i|t
|µηC , δ

2
ηC
) =

1

δηC
√
2π
e
−

(θ̂ηCt+i|t
−µηC

)2

2δ2
θηC ,

Gpdf(θ̂mCt+i|t
|µmC

, δ2mC
) =

1

δmC

√
2π
e
−

(θ̂mCt+i|t
−µmC

)2

2δ2
θmC .
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FailureCycleηC = k?, such that θ̂ηCk?|t
≤ (1.05)θcrηC and k? = argmaxt+h

k=t+1Gpdf(θ̂ηCk|t
),

FailureCyclemC
= l?, such that θ̂mCl?|t

≤ (1.05)θcrmC
and l? = argmaxt+h

l=t+1Gpdf(θ̂mCl|t
),

(5.3)

Moreover, the failure cycle corresponding to each health indicator is determined and de-

clared as the cycle at which the predicted health parameter exceeds the 99.5% confidence in-

terval around the critical value of that health parameter. Therefore, given that the fouling phe-

nomenon is identified by its decreasing effects on both compressor health parameters, the upper

bound on the critical values of the compressor health parameters is considered as the criterion

for declaring the system failure cycle. However, since the failure cycle according to this guide-

line and rule can yield more than one cycle, the one corresponding to the maximum probability

density function is considered as the appropriate failure cycle. This is formally obtained from

equation (5.3) below, where θcrηC and θcrmC
denote the compressor efficiency and the mass flow

capacity critical values, respectively. Finally, given the two failure cycles that are obtained from

equation (5.3) the selected system failure cycle is taken as the minimum of FailureCycleηC and

FailureCyclemC
, that is FailureCycle = min(FailureCycleηC ,FailureCyclemC

).

For determining an approximation to the RUL for this scenario, the health parameters dis-

tributions that are predicted from the three considered neural networks along with the cycle

at which the maximum probability of the failure has occurred, are shown in Figure 5.5. The

ground truth failure cycle due to the critical values considered for the compressor health param-

eters is expected to be at the cycle 230. It is assumed that the predicted data distribution for the

considered prediction window of size 40 (starting from the cycle 200) has a Gaussian distribu-

tion with its maximum that is located at the mean of the distribution. Therefore, the maximum
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probability of failure is considered as the probability that is associated with the cycle at which

the mean of the distribution is determined in all the three neural networks.

In Table 5.4, the fouling scenario results are summarized for comparing the predicted failure

cycle. Towards this end, the predicted compressor health parameters (the compressor efficiency

and the mass flow capacity) are selected as the health signatures for evaluating the system RUL.

In this table, the predicted compressor health parameters along with the cycles at which these

critical values were obtained are presented. It should be pointed out that the recorded values are

related to the cycles at which the maximum probability of failure (based on the critical bounds

for the fouling scenario) is reached. Moreover, the RUL is calculated as the difference between

the predicted failure cycle and the ground truth failure cycle (namely the cycle 230) within the

prediction window (starting at the cycle 200).

It can be concluded from Table 5.4 that for the hybrid prediction algorithms that are im-

plemented with the RNN, WNN and NN neural networks, the predicted critical values that are

considered as the values at which the maximum probability of the failure are obtained (refer

to Figure 5.5) are located within the ±99% confidence interval around the actual critical value.

Therefore, the predicted cycles at which these confidence intervals have exceeded are consid-

ered as the failure cycle due to the fouling. From the summary of the results and based on the

criteria that are elaborated above, the failure cycle corresponding to the first health parameter

that exceeds the critical interval should be considered as the failure cycle.

Corresponding to the mass flow rate capacity health parameter the predicted failure cycle

corresponding to the RNN is at the cycle 215, and for the WNN is at the cycle 220, and finally
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Figure 5.4: The predicted compressor health parameters where the prediction window starts at

the cycle 200.

Table 5.4: RUL estimates due to the compressor fouling.

Par.

Prediction from the cycle 200 within ±99% of

(ground truth cycle is 230) the critical value

network predicted value failure cycle RUL error

ηC RNN 0.777 221 +9 yes

WNN 0.788 231 -1 yes

NN 0.79 226 +4 yes

mC RNN 19.995 215 +15 yes

WNN 20.09 220 +10 yes

NN 20.181 222 +8 yes

for the NN is at the cycle 222. This demonstrates that our proposed hybrid prediction algorithms

are capable of predicting the failure cycle within 8 to 15 cycles before the gas turbine engine

failure due to the fouling degradation, which is practically acceptable as it provides sufficient

time to the ground personnel to perform the required maintenance tasks.
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capacity.

5.4.3 Turbine erosion scenario

In this scenario, the turbine erosion degradation is propagated through a quadratic evolution dur-

ing the entire 300 flight cycles of the simulations that cause a 6% drop in the turbine efficiency

and a 3% increase in its mass flow capacity. In order to determine the turbine failure time by

utilizing our proposed hybrid prediction schemes, the same variations as in the first scenario in

the health parameters are considered. Therefore, if the fault parameters of the turbine efficiency

(θηT ) and the mass flow capacity (mmT
) reach 0.94 and 0.97, respectively, this implies that the

turbine has reached a 6% erosion that can cause failure in the gas turbine engine.

The health indicator vector in this scenario consists of the turbine efficiency and mass flow
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FailureCycleηC = k?, such that θ̂ηTk?|t
≤ (1.05)θcrηT and k? = argmaxt+h

k=t+1Gpdf(θ̂ηTk|t
),

FailureCyclemT
= l?, such that θ̂mTl?|t

≥ (0.995)θcrmT
and l? = argmaxt+h

l=t+1Gpdf(θ̂mTl|t
),

(5.4)

capacity and is denoted by HIt+1:t+k =




θ̂ηTt+1|t
· · · θ̂ηTt+k|t

θ̂mTt+1|t
· · · θ̂mTt+k|t


. A probability analysis

similar to the fouling scenario is also performed here. However, given that the erosion phe-

nomenon is identified by its decreasing effects on the turbine efficiency and increasing effects

on its mass flow capacity, exceeding the upper bound on the turbine efficiency critical value

and exceeding the lower bound on the turbine mass flow capacity critical value are considered

as indicators for determining the gas turbine engine failure cycle. Consequently, in deciding

the failure cycle for this scenario the criterion of equation (5.4) given below will be consid-

ered, where θcrηT and θcrηT denote the turbine efficiency and the mass flow capacity critical values,

respectively.

As in the previous scenario, for defining the system RUL, the related turbine health parame-

ters critical values are obtained as θcr = 0.8317, that corresponds to θηT = 0.94 and θmT
= 0.97

(with respect to the gas turbine engine health parameters under the cruise condition).

Similar to the fouling scenario, a prediction window of 40-steps ahead is considered around

the failure cycle. Assuming that one requires 200 data points for training the neural networks

(M = 200), the last 40 data points in Figure 5.6 corresponds to the predicted health parame-

ters of the turbine subject to the erosion. Note that the results shown in both Figures 5.4 and

5.6 show that the PF method is not capable of providing an accurate predictions based on the

turbine health parameters within the acceptable confidence bounds, therefore it is not a suitable
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strategy for performing the turbine health evaluation. This is due to the fact that the PF method

results within the selected time window (around the ground truth failure) are located outside the

confidence interval for almost all the prediction horizons. This implies that for the PF method

the failure cycle has already been reached before the selected time window (which is clearly

not correct). On the other hand, for both turbine health parameters, the three neural network

hybrid schemes are capable of predicting the turbine health parameters within the ±98% of the

confidence interval around the true values.

It should be pointed out that the main reason for the discrepancy between the prediction

accuracy of the compressor and the turbine health parameters is related to simplifications that

have been applied in modeling of the compressor dynamics in equation (2.1). Specifically, the

turbine subsystem contains dynamics whereas the compressor subsystem is simpler and contains

no dynamics. This does lead to a more accurate compressor prediction.

The RUL approximation results that are obtained from the predicted turbine health param-

eters distributions (by using the three proposed neural networks) along with the cycle where

the maximum probability of failure has occurred are shown in Figure 5.7. The ground truth

failure cycle given the critical values of the turbine health parameters is expected to be at the

cycle 230. The comparative results are summarized in Table 5.5. These results imply that the

hybrid prediction schemes implemented with the three neural network methods yield predicted

critical values that correspond to when the maximum probability of the failure is achieved (refer

to Figure 5.7) and do not exceed the ±98% confidence interval around the actual critical values.

Consequently, the failure cycle corresponding to the RNN neural network is at the cycle 221,
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for the WNN neural network is at the cycle 212, and finally for the NN neural network is at the

cycle 220. This implies that the hybrid prediction schemes are capable of predicting the failure

cycle due to erosion degradation within the 8 to 18 cycles before the gas turbine engine failure

occurs.

Table 5.5: RUL estimates due to the turbine erosion.

Par.

Prediction from cycle 200 within ±99% of

(ground truth cycle is 230) the critical value

method predicted value failure cycle RUL error

ηT RNN 0.836 221 +9 yes

WNN 0.835 212 +18 no

NN 0.833 225 +5 yes

mT RNN 5.324 238 -8 yes

WNN 5.366 219 +11 yes

NN 5.296 220 +10 yes

5.5 Conclusion

In this chapter, a particle filtering scheme is integrated with neural network paradigms for pre-

dicting the future behavior (prognosis) of a nonlinear dynamical system states and parameters.

The main advantages of our proposed hybrid prognosis framework can be summarized as fol-

lows:

1. Achieving more accurate prediction results as compared to model based particle filtering

based method.

2. The combination of model based and intelligent based algorithms proposes a prediction

structure which is not closely dependent on the structure of the network selected in the
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intelligent based part, unlike pure intelligent based methods for time series forecasting

where the structure of the neural network is not easily exchangeable.

3. The hybrid structure enables the prediction algorithm to predict not only the nonlinear sys-

tem observations (which is the case in most of the intelligent based prediction algorithms)

but also the system hidden states as well as health parameters which are not measurable

in reality.

4. In the framework of prognosis, our proposed hybrid structure enables the users to consider

more comprehensive set of indicators to track the health of the system. Actually, in this

method the health indicators can be considered as the combination of the indicators one

can consider in model based as well as intelligent based schemes.

5. For the neural network part, it is not needed to consider a complicated multi layer neural

network to address the nonlinear system observations dynamics since the model based

part is utilized as a add-on to neural network to compensate for achieving more accurate

prediction results.

6. Finally, the application of the hybrid prognosis approach for health monitoring and failure

prognosis of a gas turbine engine is firstly applied in this thesis.

It is noted that all of the codings related to neural networks in this chapter have been

done by my colleague Dr. Baniamerian.
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Chapter 6

Ensemble Kalman Filters for State

Estimation and Prediction of Two-time

Scale Nonlinear Systems

An alternative method for formulation of the health monitoring problem in dynamical systems,

suggests to model the dynamic of the damage mechanism as a slow state augmented to the

system fast dynamical equations. This augmentation results in a two-time scale system to be

investigated in the system health estimation and prediction steps in the health monitoring frame-

work. In this chapter, a two-time scale filtering approach is developed for this purpose based on

ensemble Kalman filtering method by taking advantages of model reduction concept. The per-

formance of the proposed two-time scale ensemble Kalman filter is shown to be more accurate
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and less expensive in terms of equivalent flop complexity, as compared to to the well-known

particle filtering approach. Utilizing the augmentation of state equations and damage mecha-

nism, our developed two-time scale ensemble Kalman filter is applied for health monitoring of

a gas turbine engine when it is assumed to be affected by degradation phenomenon, i.e. erosion

of the turbine, as the damage mechanism.

The main contributions of this chapter are now summarized as below:

1. Develop a solid health monitoring and prognosis framework according to two-time scale

formulation strategy using the ensemble Kalman filtering (EnKF) approach:

(a) Introduce a new strategy to incorporate the hidden damage model in the nonlinear

system dynamics by utilizing the singular perturbation theory.

(b) Develop a two-time scale ensemble Kalman filter (EnKF) methodology to address

the system health tracking and prediction steps in the health monitoring and prog-

nosis problem.

The remainder of this chapter is organized as follows. In Section 6.1, the statement of the

nonlinear singularly perturbed problem is presented. The necessary background information

regarding the nonlinear singularly perturbed systems and ensemble Kalman filtering approach

is presented in Section 6.2. In Section 6.3, our main methodology for addressing the state esti-

mation problem in nonlinear two-time scale systems is developed. In Section 6.4 our proposed

method for state propagation prediction of nonlinear two-time scale systems in developed. Ex-

tensive simulation results and case studies are presented in Section 6.5. Finally, the chapter is
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concluded in Section 6.6.

6.1 Problem Statement

Consider the time-invariant nonlinear singularly perturbed (NSP) system Σε given by,

Σε :





ẋ1(t) = f1(x1(t), x2(t), ε) + g1(x1(t), x2(t), ε)ω1(t), x1(t0) = x1(0),

εẋ2(t) = f2(x1(t), x2(t), ε) +
√
εg2(x1(t), x2(t), ε)ω2(t), x2(t0) = x2(0),

y(t) = h(x1(t), x2(t), ε) + ν(t),

(6.1)

where x1(t) ∈ R
ns and x2(t) ∈ R

nf denote the slow and fast state vectors, respectively. The

output y(t) ∈ R
ny denotes the vector of system measurements, and the parameter 0 < ε � 1 is

a small parameter that determines the two-time scale separation of the system as ε → 0+. For

some ε? > 0, the functions f1(.), g1(.) : R
ns ×R

nf × [0, ε?) → R
ns , f2(.), g2(.) : R

ns ×R
nf ×

[0, ε?) → R
nf , and h(.) : Rns × R

nf × [0, ε?) → R
ny are nonlinear continuous functions. The

initial conditions x1(0), and x2(0) are assumed to be deterministic [204] and the noise inputs

ω1(t), ω2(t), and ν(t) are zero-mean uncorrelated noise processes with variances Q1(t), Q2(t),

and R(t), respectively.

The dynamical system Σε is utilized to characterize the two-time scale property in physi-

cal systems. One of the recent interesting applications of such modeling strategy is in damage

modeling of mechanical systems as suggested in [31]. The main reason for using the singular

perturbation strategy for representing the damage mechanism in physical systems is motivated

by the slow dynamics (i.e., slowly changing) of the damage mechanism (x1(t) in (6.1)) as com-
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pared to the other main physical component dynamics that are changing fast (x2(t) in (6.1)).

Therefore, we utilize the model Σε to represent the effects of the degradation damage on the

health parameters of the dynamical system.

The system formulation Σε can be utilized to develop a unified framework for health mon-

itoring of the nonlinear systems which are assumed to be affected by degradation damages.

Towards this aim, the slowly time-varying health parameters of the system (which are affected

by degradation phenomenon) are augmented to the system states (fast states) as system slow

states. More details regarding this formulation is presented in Subsection 6.5.3.

In the following section, the necessary background regarding the stochastic singular per-

turbation theory and the sufficient conditions that are required for its exponential stability are

presented according to [204].

6.2 Background Information

Consider the system model Σε where the following assumptions are held according to [204]:

Assumption 6.1. For each ε ≥ 0, f1(0, 0, ε) = 0, f2(0, 0, ε) = 0, g1(0, 0, ε) = 0, and

g2(0, 0, ε) = 0.

Assumption 6.2. For each x1(t) ∈ R
ns , t ≥ 0, the equation 0 = f2(x1(t), x2(t), 0) has a

unique solution for x2(t) denoted by x?2(t) = ψ(x1(t), 0), where ψ(.) is continuously twice

differentiable.
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The second assumption leads to the reduced order model (slow dynamics) corresponding to

Σε by setting ε = 0 and x2(t) = ψ(x1(t), 0) in (6.1) as follows

ẋ1(t) = f1(x1(t), ψ(x1(t), 0), 0) + g1(x1(t), ψ(x1(t), 0), 0)ω1(t). (6.2)

Let us now define a new time variable τ = (t−t0)
ε

, as the fast time scale or the stretched

time [93] for any t0 > 0, so that the other new state variables x1f (τ) , x1(t0 + ετ) = x1(t)

and x2f (τ) , x2(t0 + ετ) = x2(t), and the noise processes w1(τ) =
√
εω1(t0 + ετ) and

w2(τ) =
√
εω2(t0 + ετ) are obtained. Therefore, the state space representation of Σε in terms

of these new variables takes the form
dx1f (τ)

dτ
= εf1(x1f (τ), x2f (τ), ε) +

√
εg1(x1f (τ), x2f (τ), ε)w1(τ),

dx2f (τ)

dτ
= f2(x1f (τ), x2f (τ), ε) + g2(x1f (τ), x2f (τ), ε)w2(τ).

(6.3)

By setting ε = 0, equation (6.3) becomes
dx1f

(τ)

dτ
= 0, which results in x1f (τ) = constant =

x1f (0) = x1(t0). Therefore, the so-called boundary-layer system dynamics is described by

dx2f (τ)

dτ
= f2(x1(t0), x2f (τ), 0) + g2(x1(t0), x2f (τ), 0)w2(τ), (6.4)

where x1(t0) is considered as a constant parameter.

We now introduce the boundary-layer or the fast state as η(t) = x2(t)− ψ(x1(t), 0). In the

new coordinate system the singularly perturbed system Σε can be represented as

ẋ1(t) = F1(x1(t), η(t), ε) +G11(x1(t), η(t), ε)ω1(t), x1(t0) = x1(0),

εη̇(t) = F2(x1(t), η(t), ε) +G21(x1(t), η(t), ε)ω1(t) +G22(x1(t), η(t), ε)ω2(t),

η(t0) = x2(t0)− ψ(x1(t0), 0),

(6.5)

where the i-th and the l-th components of F1, F2, G11, G21, andG22, for i, j, k = 1, ..., ns, l =
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1, ..., nf are specified according to [204] as

F1i(x1(t), η(t), ε) = f1i(x1(t), η(t) + ψ(x1(t), 0), ε),

F2l(x1(t), η(t), ε) = f2l(x1(t), η(t) + ψ(x1(t), 0), ε)

− ε[

ns∑

j=1

∂ψl(x1(t), 0)

∂x1j
f1j (x1(t), η(t) + ψ(x1(t), 0), ε)]

+
1

2

ns∑

j=1

ns∑

k=1

∂2ψl(x1(t), 0)

∂xj∂xk
g1j (x1(t), η(t) + ψ(x1(t), 0), ε)g1k(x1(t), η(t)

+ ψ(x1(t), 0), ε),

G11i(x1(t), η(t), ε) = g1i(x1(t), η(t) + ψ(x1(t), 0), ε),

G21l(x1(t), η(t), ε) = ε

ns∑

j=1

∂ψl(x1(t), 0)

∂xj
g1j (x1(t), η(t) + ψ(x1(t), 0), ε),

G22l(x1(t), η(t), ε) =
√
εg2l(x1(t), η(t) + ψ(x1(t), 0), ε).

It should be noted that the reduced order slow subsystem that is given by

ẋ1(t) = F1(x1(t), 0, 0) + g1(x1(t), 0, 0)ω1(t), x1(t0) = x1(0), (6.6)

at ε = 0 has an equilibrium at x1(t) = 0 and ω1(t) = 0, and the boundary-layer fast subsystem

is given by

dη

dτ
= F2(x1(0), η(τ), 0) + g2(x1(0), η(τ), 0)w2(τ), (6.7)

that has an equilibrium at η(τ) = 0, where x1(0) is considered as a fixed parameter.

Definition 6.1. [204] Consider the nonlinear stochastic system

ẋ(t) = f(t, x) +
M∑

i=1

gi(t, x)ωi(t), x(t0) = x0 (6.8)

where t ∈ R
+ is the time, x = [x1, ..., xn]

T is the state vector, f(.), gi(.) : R
+×R

n → R
n, i =

1, ...,M are nonlinear deterministic vector functions as f(.) = [f1, ..., fn]
T, gi = [gi1 , ..., gin ]

T,

and ωi(t) is Gaussian noise process. Let us define the operator L?
(6.8)(.), where the index (6.8)
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refers to the corresponding equation that this operator is applied to, as follows

L?
(6.8)(.) =

∂(.)

∂t
+

n∑

i=1

fi(t, x)
∂(.)

∂xi
+

1

2

n∑

i=1

n∑

j=1

M∑

k=1

gik(t, x)gjk(t, x)
∂2(.)

∂xi∂xj

We now state the following assumptions that are necessary for introducing Theorem 6.1 on

exponential stability of the system (6.5) according to [204].

Assumption 6.3. A positive-definite function V : Rns → R
+ exists which is twice differen-

tiable with respect to x1(t), and positive constants α?
x1

and γk, k = 1, ..., 4 exist such that the

following inequalities are satisfied:

γ1‖x1(t)‖2 ≤ V (x1(t)) ≤ γ2‖x1(t)‖2,

L?
(6.2)V (x1(t)) ≤ −2α?

x1
V (x1(t)),

| ∂V
∂x1i

| ≤ γ3‖x‖, |
∂2V

∂x1i∂x1j
| ≤ γ4, i, j = 1, ..., ns.

(6.9)

Assumption 6.4. A positive-definite function W : R
ns × R

nf → R
+ exists which is con-

tinuously twice differentiable with respect to η(t) and x1(0), and positive constants α?
η and

νp, p = 1, ..., 5 exist such that the following inequalities are satisfied for i, j = 1, ..., ns, and

k, l = 1, ..., nf :

ν1‖η(t)‖2 ≤ W (x1(0), η(t)) ≤ ν2‖η(t)‖2,

L?
(6.4)W (x1(0), η(t)) ≤ −2α?

ηW ((x1(0), η(t))),

| ∂W
∂x1i

| ≤ ν3‖η‖, |
∂W

∂ηl
| ≤ ν4‖η‖,

| ∂2W

∂x1i(0)∂ηk
| ≤ γ5, |

∂2W

∂ηk∂ηl
| ≤ ν5.

(6.10)

Assumption 6.5. The functions f1(.), f2(.), g1(.), and g2(.) are continuously differentiable

with respect to x1 and x2, the function ψ(x1(t), ε) is twice continuously differentiable with

respect to x1, and a real number M1 > 0 exists such that for all x1 ∈ R
ns and x2 ∈ R

nf ,
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i, j = 1, ..., ns, and k, l = 1, ..., nf , we have

| ∂f1i
∂x1j

| ≤M1, |
∂f1i
∂x2k

| ≤M1, |
∂f2k
∂x1j

| ≤M1, |
∂f2k
∂x2l

| ≤M1,

| ∂ψk

∂x1j
| ≤M1, |

∂g1i
∂x1j

| ≤M1, |
∂g1i
∂x2l

| ≤M1, |
∂g2i
∂x1j

| ≤M1, |
∂g2i
∂x2l

| ≤M1.

(6.11)

Assumption 6.6. The continuous functions kf1 , kf2 , kg1 , kg2 : [0, ε?) → R
+, with kf1(0) =

kf2(0) = kg1(0) = kg2(0) = 0 and positive constants df2 , dg1 , and dg2 exist such that for all

x1 ∈ R
ns , x2 ∈ R

nf and ε ∈ (0, ε?), i = 1, ..., ns, l = 1, ..., nf , we have

|f1i(x1, x2, ε)− f1i(x1, x2, 0)| ≤ kf1(ε)(|x1|+ |η|),

|f2l(x1, x2, ε)− f2l(x1, x2, 0)| ≤ kf2(ε)(|x1|+ |η|),

|g1i(x1, x2, ε)− g1i(x1, x2, 0)| ≤ kg1(ε)(|x1|+ |η|),

|g2l(x1, x2, ε)− g2l(x1, x2, 0)| ≤ kg2(ε)(|x1|+ |η|),

(6.12)

where η(t) = x2(t)− ψ(x1(t), ε), kf2/ε ≤ df2 , kg1/ε ≤ dg1 , and kg2/ε ≤ dg2 .

The Main Criterion. Suppose that Assumptions 6.1-6.6 hold, and assume positive constants

αx1 < α?
x1

and αx2 < α?
x2

. Then, the positive constants ε+, c and continuous functions αs, αf :

(0, ε?), φ : (0, ε?) → R
+ exist such that the following conditions hold for t0 ∈ R

ns and

η0 ∈ R
nf , namely

1) For every ε ∈ (0, ε?) and t ≥ t0, the solutions of (6.5) are bounded as follows:

E|x1(t, t0, x1(0), η(0))| ≤ c(|x1(0)|+ φ(ε)|η(0)|)exp{−αs(t− t0)}

E|η(t, t0, x1(0), η(0))| ≤ c|η(0)|exp{−αf (ε)

ε
(t− t0)}+ ε(|x1(0)|+ φ(ε)|η(0)|)exp{−αs(t− t0)}.

(6.13)

and

2) limε→0 αs(ε) = αx1 , limε→0 αf (ε) = αη, and limε→0 φ(ε) = 0.
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Theorem 6.1 [204] If the Assumptions 6.1-6.6 hold, for any positive αx1 < α?
x1

, a positive

constant ε+ and a positive continuous function αs : (0, ε
+) → R

+ exist such that for every ε ∈

(0, ε+), the full-order system (6.5) is exponentially stable with the rate αs(ε) and limε→0 αs(ε) =

αx1 , and the gain of the exponential convergence of the full-order system remains finite.

Finding an explicit and exact solution to ψ(x1(t), ε) is extremely difficult in general, for

example by using Gröbner formula, the solution to ψ(x1(t), ε) can be locally computed as

proposed in [205]. Therefore, a common method is to consider the Taylor series expansion

[93, 206, 207] of ψ(.) with respect to ε as

ψ(x1(t), ε) = ψ0(x1(t)) + εψ1(x1(t)) +O(ε2). (6.14)

Substituting ψ(.) into x2(t) in Σε and applying the Assumption 6.2 results in the zeroth-order

slow model [207] as

ẋ1(t) = f1(x1(t), ψ0(x1(t)), 0) + g1(x1(t), ψ0(x1(t)), 0)ω1(t), (6.15)

which describes the slow dynamics of the system Σε, when the solution to x1(t) in equation

(6.15) is denoted by x1s(t). The discrepancy between the response of the zeroth-order slow

model (6.15) with ε = 0 and that of the full model Σε represents the fast dynamics. Furthermore,

one can assume that for the time interval t ∈ [t0, T ] over which x1s(t) exists, the following

approximation is satisfied,

x1(t) = x1s(t) +O(ε). (6.16)

The second term in (6.14) is now used to specify and define a first-order slow dynamics
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according to

ẋ1(t) = f1(x1(t), ψ0(x1(t)) + εψ1(x1(t)), ε) + g1(x1(t), ψ0(x1(t)) + εψ1(x1(t)), ε)ω1(t).

(6.17)

This process can be extended similarly to higher order corrected slow dynamics.

To describe the behavior of x2(t) in the fast-time scale, as mentioned earlier it is conven-

tional to define a fast time-scale by setting τ = t−t0
ε

, [93, 206], where τ = 0 at t = t0 implies

that η(τ) = x2(τ)− ψ0(x1(t)) is defined, such that

dη

dτ
= f2(x1(0), η(τ) + ψ0(x1(0))) +O(ε), (6.18)

where η(0) = x2(0) − ψ0(x1(0)). The solution for η(τ) from the above initial condition value

problem is used as a boundary layer correction to x2(t) approximation as follows,

x2(t) = η(
t− t0
ε

) + ψ0(x1(t)) +O(ε). (6.19)

In order for (6.19) to converge to the slow approximation of x2(t) = ψ0(x1(t)) + O(ε) (as

per Assumption 6.2), the correction term η(τ) must as τ → ∞ decay to some O(ε) quantity.

In what follows, the sampled-data representsation of the nonlinear singularly perturbed sys-

tem Σε is presented according to [208] which is essential for our further investigation of the

proposed two-time scale estimation method that is based on the ensemble Kalman filtering ap-

proach.

It should be noted that in our proposed two-time scale ensemble Kalman filter (TTS-EnKF)

approach, x1s(t) is approximated and the boundary layer correction of x2(t) is performed at

each time step. Therefore, Theorem 6.1 ensures that the error in the approximation of x1(t) and
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x2(t) is bounded to be of the O(ε) magnitude.

Now before presenting our developed TTS-EnKF approach, let us introduce the "Exact"

EnKF estimation method for the nonlinear singularly perturbed system (NSP) which requires

the discritization of the system state equations. The comparative performance of our proposed

TTS-EnKF with the "Exact" EnKF are provided in the subsequent sections. Consequently, an

overview of NSP systems discritization will be presented in the subsection below.

6.2.1 Sampled-Data Nonlinear Singularly Perturbed Dynamics

In this subsection, we introduce the sampled-data scheme for nonlinear singularly perturbed

dynamics which is essential for investigating the state estimation scheme that is based on the

EnKF through an exact state estimation approach. In the exact EnKF approach for addressing

the estimation of the fast and slow states of a nonlinear singularly perturbed system, the estima-

tion is performed without the use of the slow and fast states decomposition. It should also be

noted that EnKF method is only applicable to discrete-time systems [116], and this is the reason

we do not develop EnKF for the continuous-time NSP systems.

Consider the continuous-time nonlinear singularly perturbed system that is described by Σε.

Let us assume that ι denotes a sampling period where over the time interval of the length ι, the

following conditions are satisfied,

ωi(t) := ωik , kι ≤ t < (k + 1)ι, i = 1, 2,

ν(t) := νk, kι ≤ t < (k + 1)ι.

(6.20)
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Consequently, the system Σε is first rewritten as Dε, according to

Dε :





ẋ1(t) = f1(x1(t), x2(t), ω(t), ε), x10 = x1(0),

εẋ2(t) = f2(x1(t), x2(t), ω(t), ε), x20 = x2(0),

y(t) = h(x1(t), x2(t), ε)) + ν(t),

(6.21)

where f1(.) : R
ns × R

nf × R → R
ns and f2(.) : R

ns × R
nf × R → R

nf are smooth functions

in their arguments with obvious definitions from Σε. The discrete-time representation of Dε is

approximated according to [208, 209] based on the following remark.

Remark 6.1. Assume that the fixed sampling period ι is sufficiently close to ε, such that one

can express ι as ι = αε, where α is a real number close to one. The fast sampled-data model of

Dε is given by

Dz :





x1k+1
= x1k + ε(αf1(x1k , x2k , ω1k , ε) +O(α2)) +O(ε2), x10 = x1(0),

x2k+1
= x2k + αf2(x1k , x2k , ω2k , ε) +O(α2) +O(ε), x20 = x2(0),

yk = h(x1k , x2k , ε) + νk,

(6.22)

where the error due to the higher-order approximation of the system dynamics is also incorpo-

rated into the O(ε2) term in x1k+1
and O(ε) term in x2k+1

.

Definition 6.2. According to Remark 6.1, the discrete-time NSP system Σε can be represented

as

Dε :





x1k = x1k−1
+ ε(αf1(x1k−1

, x2k−1
, ε) + αg1(x1k−1

, x2k−1
, ε)ω1k +O(α2)) +O(ε2),

x10 = x1(0),

x2k = x2k−1
+ αf2(x1k−1

, x2k−1
, ε) + α

√
εg2(x1k−1

, x2k−1
, ε)ω2k +O(α2) +O(ε),

x20 = x2(0),

yk = h(x1k , x2k , ε) + νk,

(6.23)

The discrete-time dynamical model Dε is utilized in the remainder of this work for designing
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the state estimation and prediction schemes that are based on exact EnKF approach. This is

motivated by the fact that to compare our accomplished results with our proposed TTS-EnKF

method discretization of the entire system dynamics is not necessary. Hence, a general overview

on the theory of EnKF is provided in the next subsection.

6.2.2 An Overview on Ensemble Kalman Filter (EnKF) Theory

As stated earlier, the EnKF is a suboptimal estimation methodology where by utilizing the

Monte-Carlo integration, the Fokker Planck equation is approximately solved [120]. Consider

a general discrete-time nonlinear system with the following dynamics and measurements

xk+1 = f(xk) + ωk,

yk = h(xk) + νk,

(6.24)

where xk, ωk ∈ R
n, yk, and νk ∈ R

p. The zero-mean white noise process ωk and νk have

covariance matrices Qk and Rk, respectively. The ensemble Kalman filtering (EnKF) method is

based on two main steps that are designated as the a priori state estimation (forecast) step and

the a posteriori state estimation (analysis) step [115, 120].

First, at the time instant k, we generate N ensemble members from the forecasted (a priori)

state estimates with a random sample error that is generated from a normal distribution with the

covariance Qk, where the ensembles are denoted by {x̂(i)k|k−1, i = 1, ..., N} and generated from

the dynamics,

x̂
(i)
k|k−1 = f(x̂

(i)
k−1|k−1) + ω

(i)
k , (6.25)

where i = 1, ..., N refers to the ensemble number, x̂
(i)
k|k−1 denotes the i-th ensemble member in

the forecast step, x̂
(i)
k−1|k−1 denotes the estimated ensemble member from the previous analysis
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step, and ω
(i)
k denote samples from a normal distribution with the covariance Qk. Note that the

sample error covariance matrix which is calculated from the members of ω
(i)
k converges to Qk

as N → ∞.

The ensemble mean ˆ̄xk|k−1 is defined as the most probable forecast estimate of the state

according to the Gaussian probability distribution function (in the classic Kalman filter), as

ˆ̄xk|k−1 =
1

N

N∑

i=1

x̂
(i)
k|k−1. (6.26)

The main idea in the EnKF is to replace the error covariance matrix in the state estimation

process with the ensemble covariance matrix since the actual value of the state xk is not actually

known. Therefore, the so-called a priori ensemble perturbation matrix Ek|k−1 ∈ R
n×N around

the ensemble mean is defined as

Exk|k−1
= [x̂

(1)
k|k−1 − ˆ̄xk|k−1, ..., x̂

(N)
k|k−1 − ˆ̄xk|k−1]

T, (6.27)

and the output ensembles, their mean, and their ensemble perturbation matrix are accordingly

computed as

ŷ
(i)
k|k−1 = h(x̂

(i)
k|k−1),

ˆ̄yk|k−1 =
1

N

N∑

i=1

ŷ
(i)
k|k−1,

Eyk|k−1
= [ŷ

(1)
k|k−1 − ˆ̄yk|k−1, ..., ŷ

(N)
k|k−1 − ˆ̄yk|k−1]

T.

(6.28)

Next the covariance matrices P xx
k|k−1, P yy

k|k−1, and P xy
k|k−1 are approximated by P̂ xx

k|k−1, P̂ yy
k|k−1, and

P̂ xy
k|k−1, respectively as follows

P̂ xx
k|k−1 ,

1

N − 1
Exk|k−1

ET
xk|k−1

,

P̂ xy
k|k−1 ,

1

N − 1
Exk|k−1

ET
yk|k−1

,

P̂ yy
k|k−1 ,

1

N − 1
Eyk|k−1

ET
yk|k−1

.

(6.29)
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In fact, the ensemble members mean is interpreted as the best forecast estimate of the state,

and the spread of the ensemble members around the ensemble mean is assumed to be the error

between the best estimate and the actual value of the state (which is unknown) [120, 122].

In the second step of the EnKF algorithm, which is known as the analysis step or a posteriori

state estimation step in classical Kalman filter, the error between the observed measured outputs

and the estimated outputs from the forecast step is utilized to reduce the error covariance of the

a posteriori estimated state by applying the Kalman gain according to,

x̂
(i)
k|k = x̂

(i)
k|k−1 + K̂k(yk − ŷ

(i)
k|k−1),

(6.30)

where the Kalman gain K̂k is defined as

K̂k = P̂ xy
k|k−1(P̂

yy
k|k−1 +Rk)

−1. (6.31)

Finally, the a posteriori error covariance matrix is approximated according to,

P̂ xx
k|k ,

1

N − 1
Exk|k

ET
xk|k

, (6.32)

where Exk|k
is defined in (6.27) with x̂

(i)
k|k−1 replaced by x̂

(i)
k|k and ˆ̄xk|k−1 replaced by the mean of

the analysis estimate ensemble members, ˆ̄xk|k.

It should be pointed out that the perturbed observation concept can also be used in the

analysis step in order to generate the a posteriori ensemble members [116]. This method takes

advantage of parallel data assimilation cycles, where for i = 1, ..., N , the a posteriori ensemble

members are updated by

x̂
(i)
k|k = x̂

(i)
k|k−1 + K̂k(y

(i)
k − ŷ

(i)
k|k−1),

(6.33)

where y
(i)
k denotes the perturbed observations that are given by

y
(i)
k = yk + ν

(i)
k , (6.34)
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where ν
(i)
k is a zero-mean random variable with normal distribution and covariance Rk. The

sample error covariance matrix that is computed from ν
(i)
k converges to Rk as N → ∞.

We are now in a position to propose and develop our proposed two-time scale estimation

algorithm that is based on the EnKF for the nonlinear singularly perturbed system Dz in the

next section.

6.3 Ensemble Kalman Filters for State Estimation of Nonlin-

ear Two-Time Scale Systems

A popular method for formulation of health monitoring problems of dynamical systems, sug-

gests to model the corresponding dynamics of the damage mechanism as a "slow" state that is

augmented to the system "fast" dynamical equations. This augmentation results in a two-time

scale system to be investigated for the health estimation and prediction steps within a health

monitoring framework. In this thesis, a two-time scale filtering approach is developed for this

purpose based on the ensemble Kalman filtering approach by taking advantages of the model

reduction concepts. The performance of our proposed two-time scale ensemble Kalman filter

is shown to be more accurate and less computationally intensive in terms of the equivalent flop

complexity, as compared to the well-known particle filtering approach. By utilizing an augmen-

tation of the state equations and damage mechanism, our developed two-time scale ensemble

Kalman filter can then be applied for health monitoring of complex nonlinear systems. Specif-

ically, in this chapter our proposed methodology is applied to a gas turbine engine where it is
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assumed that it is affected by degradation phenomenon, i.e. erosion of the turbine, as the dam-

age mechanism. Extensive comparative studies are conducted to validate and demonstrate the

advantages and capabilities of our proposed framework and methodology.

6.3.1 Exact EnKF Filtering Approach for Nonlinear Singularly Perturbed

Systems

Consider the overall system state vector xk = [xT1k , x
T
2k
]T ∈ R

ns+nf . Assume that the state

vector is updated over time by evolving according to the dynamics ˆ̄xk|k−1 = [ˆ̄x
T
1k|k−1

, ˆ̄x
T
2k|k−1

]T,

where ˆ̄xk|k−1 denotes the most probable a priori state which is obtained from the dynamical

model Dz. Consider that the a priori state estimates have Gaussian distributions, as is the case

in classical Kalman filters [210]. Now, let F (xk|k−1) denote an approximation to the probability

density function for xk|k−1 at the current time step k. Therefore, it can be approximated by a

Gaussian probability density function as

F (xk|k−1) ∼ exp[−1

2
(xk|k−1 − ˆ̄xk|k−1)

T(Pk|k−1)
−1(xk|k−1 − ˆ̄xk|k−1)], (6.35)

where Pk|k−1 and ˆ̄xk|k−1 denote a priori covariance matrix and the most probable state associ-

ated with F (xk|k−1).

According to the EnKF methodology, the a priori state ˆ̄xk|k−1 is approximated through N

ensemble members {x̂(i)k|k−1, i = 1, ..., N}, that are generated from the system state trajectories

Dz as x̂
(i)
k|k−1 = [(x̂

(i)
1k|k−1

)T, (x̂
(i)
2k|k−1

)T]T, such that

x̂
(i)
1k|k−1

= x̂
(i)
1k−1|k−1

+ εα(f1(x̂
(i)
1k−1|k−1

, x̂
(i)
2k−1|k−1

, ε) + g1(x̂
(i)
1k−1|k−1

, x̂
(i)
2k−1|k−1

, ε)ω
(i)
1k
),

x̂
(i)
2k|k−1

= x̂
(i)
2k−1|k−1

+ α(f2(x̂
(i)
1k−1|k−1

, x̂
(i)
2k−1|k−1

, ε) +
√
εg2(x̂

(i)
1k−1|k−1

, x̂
(i)
2k−1|k−1

, ε)ω
(i)
2k
),

(6.36)
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where x̂
(i)
1k−1|k−1

and x̂
(i)
2k−1|k−1

refer to the updated ensemble members in the previous time step

(these are computed in the time update step of the estimation algorithm).

Consider the a priori ensemble perturbations from their most probable state that is given by

δx̂
(i)
k|k−1 = x̂

(i)
k|k−1 − ˆ̄xk|k−1, (6.37)

such that 1
N

∑N
i=1 δx̂

(i)
k|k−1 = 0, and δx̂

(i)
k|k−1 is defined as the ensemble perturbation vector, N

denotes the number of ensemble members, N ≥ ns + nf , and ˆ̄xk|k−1 denotes the most probable

a priori state estimate that is approximated by the ensemble members as,

ˆ̄xk|k−1 =
1

N

N∑

i=1

x̂
(i)
k|k−1,

Hence, the a priori state estimation error covariance matrix Pk|k−1 can be approximated using

the EnKF approach as described in Section 6.2 as follows,

Pk|k−1 = X̂k|k−1X̂
T
k|k−1, (6.38)

where X̂k|k−1 =
1√
N−1

[δx̂
(1)
k|k−1, ..., δx̂

(N)
k|k−1]

T.

For the two-time scale singularly perturbed systemDz, we assume that the covariance matrix

can be represented through the eigenvalues and their related eigenvectors of the a priori state

estimation error covariance as,

Pk|k−1 =

ns+nf∑

j=1

λ
(j)
k u

(j)
k [u

(j)
k ]T, where λ

(1)
k > ... > λ

(ns)
k > ... > λ

(ns+nf )

k , (6.39)

where the covariance matrix Pk|k−1 has (ns + nf ) eigenvalues λ
(j)
k , j = 1, ..., ns + nf , and its

corresponding eigenvectors u
(j)
k .

Assumption 6.7. For the a priori state estimate ensemble members that are generated from the

two-time scale system Dz, the a priori error covariance matrix Pk|k−1 has ns + nf eigenvalues

λ
(1)
k > ... > λ

(ns)
k > ... > λ

(ns+nf )

k , where for j = 1, ..., nf , it is assumed that
λ
(ns+j)
k

λ
(ns)
k

≤ ε.
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This means that the important uncertainties in the a priori state estimate tend to lie in a low-

dimensional subspace of dimension ns.

According to Assumption 6.7, it follows that the error covariance in all the other directions

are much less than the variance
∑ns

j=1 λ
(j)
k . In the next step, the measurement update is per-

formed by using the most recent observations. Towards this end, let us introduce the output

ensemble members as,

ŷ
(i)
k|k−1 = h(x̂

(i)
1k|k−1

, x̂
(i)
2k|k−1

, ε). (6.40)

Next, the measurement ensemble perturbation matrix is computed from

Ŷk|k−1 =
1

N − 1
[δŷ

(1)
k|k−1, ..., δŷ

(i)
k|k−1]

T, (6.41)

where δŷ
(i)
k|k−1 = ŷ

(i)
k|k−1 − 1

N

∑N
i=1 ŷ

(i)
k|k−1. Hence, the output prediction error ensembles ỹ

(i)
k|k−1

are obtained as

ỹ
(i)
k|k−1 = yk − h(x̂

(i)
1k|k−1

, x̂
(i)
2k|k−1

, ε). (6.42)

After applying the Kalman gain to the filter model (6.36), the a posteriori ensemble mem-

bers and their most probable a posteriori state estimates using the exact EnKF scheme are

obtained from 


x̂
(i)
1k|k

x̂
(i)
2k|k


 =




x̂
(i)
1k|k−1

x̂
(i)
2k|k−1


+Kkỹ

(i)
k|k−1, (6.43)

where Kk ∈ R
(ns+nf )×ny denotes the Kalman gain that is designed using

Kk = P xy
k|k−1(P

yy
k|k−1 +Rk)

−1, (6.44)

where P xy
k|k−1 = X̂k|k−1Ŷ

T
k|k−1, and P yy

k|k−1 = Ŷk|k−1Ŷ
T
k|k−1.

We are now in the position to introduce our proposed TTS-EnKF methodology for the NSP
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system Σε.

6.3.2 The TTS-EnKF Filtering Strategy

Our proposed TTS-EnKF strategy for state estimation of the NSP system Σε is based on the de-

composition of the fast and slow dynamics of the system according to Section 6.1. By invoking

Assumption 6.2, one can approximate x2(t) as x2(t) = ψ0(x1(t)). Consequently, the dynamics

of the slow states x1(t) can be approximated by

ẋ1(t) = f1(x1(t), ψ0(x1(t)), 0) + g1(x1(t), ψ0(x1(t), 0)ω1(t). (6.45)

To design the EnKF corresponding to the slow states of the system, first we discretize its

dynamics given by equation (6.45). Applying the Euler discretization procedure will lead to the

following discrete-time slow model

x1k = x1k−1
+ ιf1(x1k−1

, ψ0(x1k−1
), 0) + ιg1(x1k−1

, ψ0(x1k−1
), 0)ω1k , (6.46)

where ι denotes the sampling period which is assumed to be sufficiently small that does not

violate the two-time scale property of the system.

The slow states of the system that correspond to the first ns largest eigenvalues of Pk|k−1,

are estimated by our proposed slow filter through two main steps namely, the time update and

the measurement update steps as follows:

1. Time update for the slow filter: Time update step is accomplished through the following

procedure:
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• A priori state ensemble members are generated according to,

x̂
(i)
1k|k−1

= x̂
(i)
1k−1|k−1

+ ιf1(x̂
(i)
k−1|k−1, ψ0(x̂

(i)
1k−1|k−1

), 0) + ιg1(x̂
(i)
1k−1|k−1

, ψ0(x̂
(i)
1k−1|k−1

), 0)ω
(i)
1k

(6.47)

where x̂
(i)
1k−1|k−1

denotes the i-th ensemble member of the slow states in the previous

time step, ψ0(x̂
(i)
1k−1|k−1

) denotes the i-th ensemble member of the approximated fast

state that is obtained from the reduced order model.

• A priori ensemble perturbation is generated from,

ˆ̄x1k|k−1
=

1

N

N∑

i=1

x̂
(i)
k|k−1,

δx̂
(i)
1k|k−1

= x̂
(i)
1k|k−1

− ˆ̄x1k|k−1
, i = 1, ..., N.

(6.48)

• A priori error covariances are computed according to,

X̂1k|k−1
=

1√
N − 1

[δx̂
(1)
1k|k−1

, ..., δx̂
(N)
1k|k−1

]T,

P̌ s
1k|k−1

= X̂1k|k−1
X̂T

1k|k−1
,

where the covariance matrix P̌ s
k|k−1 corresponds to the first ns largest eigenvalues of

P1k|k−1
in (6.38) for which the fast eigenvalues of Pk|k−1 that satisfy

λ
(ns+j)
k

λ
(ns)
k

≤ ε, for

j = 1, ..., nf , are ignored.

2. Measurement update for the slow filter: For the measurement update step as the observa-

tions become available at the time instant k, the a posteriori state estimates of the first

ns slow states are obtained. In this step, the output equation in Σε is replaced by its Tay-

lor series expansion with respect to ε after substituting for x1k and x2k with x̂
(i)
1k|k−1

and

ψ0(x̂
(i)
1k−1|k−1

), respectively. Therefore, the output ensembles are computed according to

ŷ
(i)
k|k−1 = h0(x̂

(i)
1k|k−1

, ψ0(x̂
(i)
1k−1|k−1

), 0). (6.49)
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Following the above steps, the measurement ensemble perturbation matrix is obtained

from

Ŷk|k−1 =
1

N − 1
[δŷ

(1)
k|k−1, ..., δŷ

(i)
k|k−1]

T, (6.50)

where δŷ
(i)
k|k−1 = ŷ

(i)
k|k−1 − 1

N

∑N
i=1 ŷ

(i)
k|k−1.

Consequently, the output prediction error ensembles ỹ
(i)
k|k−1 are obtained from,

ỹ
(i)
k|k−1 = yk − h0(x̂

(i)
1k|k−1

, ψ0(x̂
(i)
1k−1|k−1

), 0). (6.51)

Furthermore, the a posteriori ensemble members corresponding to the slow states and

their most probable a posteriori state estimate are obtained from the slow filter dynamics

x̂
(i)
1k|k

= x̂
(i)
1k|k−1

+ Ǩs
kỹ

(i)
k|k−1,

ˆ̄x1k|k = ˆ̄x1k|k−1
+ Ǩs

k
˜̄yk|k−1,

(6.52)

where ˜̄yk|k−1 =
1
N

∑N
i=1 ỹ

(i)
k|k−1, and Ǩs

k ∈ R
ns×ny denotes the Kalman gain of the slow fil-

ter. In order to select the Kalman gain for the slow filter, the a posteriori error covariance

matrix of the slow filter is defined according to the following definition.

Definition 6.3. The covariance matrices P̌ xy
k|k−1 and P̌ yy

k|k−1 associated with the EnKF

are approximated by P̌ xy
k|k−1 = X̂1k|k−1

Ŷ T
k|k−1 and P̌ yy

k|k−1 = Ŷk|k−1Ŷ
T
k|k−1, respectively.

Furthermore, let the a posteriori estimation error be defined as x̃1k|k = x1k − ˆ̄x1k|k , so

that the a posteriori error covariance matrix of the slow filter can be obtained as P̌ s
k|k =

E[x̃1k|k x̃
T
1k|k

], where associated with the EnKF it is approximated by P̌ s
k|k = X̂1k|kX̂

T
1k|k

,

where X̂1k|k corresponds to the ensemble perturbation matrix that is generated from the a

posteriori estimation of the ensemble members.

Consequently, the following lemma which is inspired from the work [211] is utilized to

obtain and select the Kalman gain corresponding to the slow filter.

Lemma 6.1. Consider the cost function defined as Jk(Ǩ
s
k) = E[x̃T

1k|k
Wkx̃1k|k

] = trace(P̌ s
k|k

Wk),
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where Wk denotes a positive definite matrix, x̃1k|k denotes the a posteriori estimation

error, and P̌ s
k|k denotes the a posteriori error covariance matrix corresponding to the

slow system dynamics. The Kalamn gain Ǩs
k that minimizes this function is obtained as

Ǩs
k = P̌ xy

k|k−1(P̌
yy
k|k−1 +Rk)

−1, where P̌ xy
k|k−1 = X̂1k|k−1

Ŷ T
k|k−1 and P̌ yy

k|k−1 = Ŷk|k−1Ŷ
T
k|k−1.

Proof: To show this claim, we follow the same approach as the one in the classical

Kalman filter to design the gain. All the covariance matrices in the Kalman gain are

replaced by their equivalent covariance matrices that are approximated through the EnKF

approach.

Assume that in the classical Kalman filter the a posteriori state estimation error is obtained

from

x̃1k|k = x1k − x̂1k|k−1
+ Ǩs

k(ŷk|k−1 − yk),

= x̃1k|k−1
+ Ǩs

k(ŷk|k−1 − yk),

(6.53)

therefore, the covariance of the a posteriori state estimation error is obtained from

E{x̃1k|k x̃T1k|k} = E{(x̃1k|k−1
+ Ǩs

k(ŷk|k−1 − yk))(x̃1k|k−1
+ Ǩs

k(ŷk|k−1 − yk))
T}. (6.54)

Now, by expanding (6.54) one gets

J(Ǩs
k) = E{x̃1k|k x̃T1k|k} = E{x̃1k|k−1

x̃T1k|k−1
}+ E{Ǩs

k(ŷk|k−1 − yk)x̃
T
1k|k−1

}

+ E{x̃1k|k−1
(ŷk|k−1 − yk)

TǨsT

k }+ E{Ǩs
k(ŷk|k−1 − yk)(ŷk|k−1 − yk)

TǨsT

k }

= E{x̃1k|k−1
x̃T1k|k−1

}+ E{Ǩs
k(ŷk|k−1 − yk)x̃

T
1k|k−1

}

+ E{x̃1k|k−1
(ŷk|k−1 − yk)

TǨsT

k } − E{Ǩs
k(yk − ŷk|k−1)(yk − ŷk|k−1)

TǨsT

k })

(6.55)

By taking the derivative of (6.55) in terms of the Kalman gain Ǩs
k and considering that

the output process yk is independent of the estimated state and measurement process, i.e.

E{x̃1k|k−1
yTk } = 0 and E{ŷk|k−1y

T
k } = 0, and also by noting that the covariance of the
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measurement noise is defined as E{ykyTk } = Rk, it now follows that

∂J(Ǩs
k)

∂Ǩs
k

= 0 =⇒ ∂

∂Ǩs
k

(E{x̃1k|k−1
x̃T1k|k−1

}+ E{Ǩs
kŷk|k−1x̃

T
1k|k−1

}+ E{x̃1k|k−1
ŷTk|k−1Ǩ

sT

k }

− E{Ǩs
kŷk|k−1ŷ

T
k|k−1Ǩ

sT

k } − Ǩs
kRkǨ

sT

k ) = 0

=⇒ Ǩs
k = E{x̃1k|k−1

ŷTk|k−1}(E{ŷk|k−1ŷ
T
k|k−1}+Rk)

−1,

(6.56)

where E{x̃1k|k−1
ŷTk|k−1} = P̌ xy

k|k−1 and E{ŷk|k−1ŷ
T
k|k−1} = P̌ yy

k|k−1, which are obtained in

the EnKF scheme as P̌ xy
k|k−1 = X̂1k|k−1

Ŷ T
k|k−1 and P̌ yy

k|k−1 = Ŷk|k−1Ŷ
T
k|k−1. This completes

the proof of the lemma. �

Finally, the main three steps that are required in the measurement update of the slow states

are as follows:

(i) Measurement ensemble members and ensemble perturbation matrices are obtained

according to (6.50),

(ii) Kalman gain selection is accomplished from Lemma 6.1,

(iii) A posteriori state estimation results are obtained according to (6.52).

In the next step of the algorithm, the NSP system fast states are updated by assuming that

the slow states are considered as constant at their initial values at k − 1, i.e. ˆ̄xk−1|k−1 for

the time interval [k − 1, k).

Next, the same approach that is based on the EnKF is applied in order to obtain approxi-

mation to the NSP fast system states.

In our designed filter, it is assumed that τ = t−t0
ε

, so that the state equations in Σε can be
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rewritten as

dx1f
dτ

= εf1(x1(τ), x2(τ), ε) +
√
εg1(x1(τ), x2(τ), ε)w1(τ) (6.57)

dx2f
dτ

= f2(x1(τ), x2(τ), ε) + g2(x1(τ), x2(τ), ε)w2(τ) (6.58)

where the subscribe f denotes that the related states are in the fast-time scale (τ ). There-

fore, by setting ε = 0 it results in

x1f (τ) = x1f (0) = x1(t0),

ẋ2f (τ) = f2(x1f (0), x2f (τ), 0) + g2(x1f (0), x2f (τ), 0)w2(τ),

(6.59)

where the differentiation ẋ2f (τ) is defined with respect to the time scale τ . Consequently,

the discrete-time model of (6.59) that will be utilized in design of the EnKF is obtained

as

x2fk = x2fk−1|k−1
+ ιf2(ˆ̄x1k−1|k−1

, x2fk−1|k−1
) + ιg2(ˆ̄x1k−1|k−1

, x2fk−1|k−1
)w2k .

Note that τ ∈ [tb, t1], where tb > t0. Now, the fast filter state estimation is accomplished

through two main steps, namely the time update and the measurement update steps.

3. Time Update of the Fast Filter: The time update is now performed in an nf -dimensional

space according to the following procedures,

(a) A priori fast states ensemble generation according to,

x
(i)
2fk

= x
(i)
2fk−1|k−1

+ ιf2(ˆ̄x1k−1|k−1
, x

(i)
2fk−1|k−1

) + ιg2(ˆ̄x1k−1|k−1
, x

(i)
2fk−1|k−1

)w
(i)
2k
,

where x
(i)
2fk−1|k−1

denotes the fast ensemble members in the previous time step for

i = 1, ..., N ensembles.

(b) A priori fast ensemble perturbation matrix generation that is based on the following
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procedure,

ˆ̄x2fk|k−1
=

1

N

N∑

i=1

x̂
(i)
2fk|k−1

,

δx̂
(i)
2fk|k−1

= x̂
(i)
2fk|k−1

− ˆ̄x2fk|k−1
, i = 1, ..., N,

X̂2k|k−1
=

1√
N − 1

[x
(1)
2fk|k−1

− ˆ̄x2fk|k−1
, ..., x

(N)
2fk|k−1

− ˆ̄xf2k|k−1
]T.

In the next step, the a posteriori estimate of the fast system states are provided and ap-

proximated.

4. Measurement Update of the Fast Filter: It was pointed out earlier that the assumption that

is used for health monitoring is that measurements are available at the fast-time scale

of the system (unlike what is usually assumed in the analysis of two-time scale systems

[206]). Therefore, the measurement update step should be performed for both slow and

fast filters. The measurement update in this filter is also obtained through three main

steps, namely, (i) measurement ensemble perturbation matrix computation, (ii) Kalman

gain approximation, and (iii) a posteriori fast state estimation.

Definition 6.4. Let us define the output perturbation matrix Ŷ f
k|k−1 as follows

Ŷ f
k|k−1 =

1√
N − 1

[ŷf
(1)

k|k−1 − ˆ̄yfk|k−1, ..., ŷ
f (N)

k|k−1 − ˆ̄yfk|k−1]
T, (6.60)

where ŷf
(i)

k|k−1 , h0(ˆ̄x1k−1|k−1
, x̂

(i)
2fk|k−1

), i = 1, ..., N , and ˆ̄yfk|k−1 =
1
N

∑N
i=1 ŷ

f (i)

k|k−1. There-

fore, the following covariance matrices can be defined,

P̆ xy
k|k−1 = X̂2k|k−1

Ŷ fT

k|k−1,

P̆ yy
k|k−1 = Ŷ f

k|k−1Ŷ
fT

k|k−1.

Consequently, the Kalman gain for the fast filter can be approximated according to the

Lemma 6.1 and Definition 6.4 as,

K̆f
k = P̆ xy

k|k−1(P̆
yy
k|k−1 +Rk)

−1. (6.61)
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Subsequently, the most probable a posteriori fast filter state estimate is obtained as

x̂
(i)
2fk|k

= x̂
(i)
2fk|k−1

+ Ǩ f
kỹ

f (i)

k|k−1,

ˆ̄x2fk|k = ˆ̄x2fk|k−1
+ Ǩ f

k
˜̄yfk|k−1,

(6.62)

where ỹf
(i)

k|k−1 = yk − ŷf
(i)

k|k−1 and ˆ̄x2fk|k is corrected according to the received observations

by applying the Kalman gain K̆f
k .

Finally the most probable state vector ˆ̄xk|k is updated according to

ˆ̄xk|k = [ˆ̄x1k|k , ˆ̄x2fk|k ]
T. (6.63)

6.3.3 Error Analysis of the TTS-EnKF Algorithm

The convergence of conventional EnKF to the classical Kalman filter, and consequently to the

optimal estimation of the system states for a linear problem has been addressed in [118]. How-

ever, in case when the problem is nonlinear the convergence of the EnKF to the optimal estimate

is not guaranteed. Therefore, for our proposed TTS-EnKF approach, the boundedness of the es-

timated fast and slow states are analyzed under certain conditions and the error as a result of the

decomposition of the full order dynamics into slow and fast dynamics is also analyzed. First,

the following assumption is stated.

Assumption 6.8. Consider the system Dz for all {x1k , x2k}, and p ∈ [1,∞) such that

‖x1k‖p ≤ b1(k, p, ε), ‖x2k‖p ≤ b2(k, p, ε), ‖f1(x1k , x2k , ε)‖p ≤ d1(k, p, ε), ‖f2(x1k , x2k , ε)‖p ≤

d2(k, p), ‖g1(x1k , x2k , ε)ω
(i)
1k
‖p ≤ d3(k, p, ε), ‖g2(x1k , x2k , ε)w

(i)
2k
‖p ≤ d4(k, p, ε), ‖ψ0(x1k)‖ ≤ c2(k, p, ε),

and ‖h(x1k , x2k , ε)‖p ≤ d5(k, p, ε) are bounded for some parameters ci and dj with i = 1, 2 and

j = 1, ..., 5, where for a real positive number p > 1, the norm of a vector x ∈ R
n×1 is defined

as ‖x‖p := (
∑n

i=1 |xi|p)
1
p , with xi for i = 1, ..., n denoting the elements of the vector x.
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The following theorem, guarantees the boundedness of the TTS-EnKF scheme a posteri-

ori estimation error by considering the boundedness of the system state and output equations

according to Assumption 6.8.

Theorem 6.2 Consider the discrete-time nonlinear singularly perturbed system (6.23). Let the

state estimation problem be accomplished by utilizing the TTS-EnKF strategy through the a

posteriori ensemble members update according to equations (6.52) and (6.62) for the slow and

the fast states, respectively. Provided that Assumption 6.8 holds, then there exist parameters

c1(k, p, ε) and c2(k, p, ε) for all k and all p ∈ [1,∞) such that ‖x̂(i)1k|k
‖p ≤ c1(k, p, ε) and

‖x̂(i)2k|k
‖p ≤ c2(k, p, ε).

Proof: We invoke induction to show the result. For k = 0, each x
(i)
10

, and x
(i)
20

for i = 1, ..., N

is a normal distribution and bounded. Assume that for k − 1, ‖x̂(i)1k−1|k−1
‖p ≤ c1(k − 1, p, ε) and

‖x̂(i)2k−1|k−1
‖p ≤ c2(k − 1, p, ε) for all i, then for the time instant k associated with the slow filter

according to (6.52) we have

x̂
(i)
1k|k

= x̂
(i)
1k|k−1

+ Ǩs
kỹ

(i)
k|k−1.

By considering Assumption 6.8, from the boundedness of x̂
(i)
1k−1|k−1

and ψ0(x̂
(i)
1k−1|k−1

) one ob-

tains ‖f1(x̂(i)1k−1|k−1
, ψ0(x̂

(i)
1k−1|k−1

)‖p ≤ d1(k − 1, p, ε) and ‖g1(x̂(i)1k−1|k−1
, ψ0(x̂

(i)
1k−1|k−1

)ω
(i)
1k−1

‖p ≤

d3(k − 1, p, ε). Consequently, for the a priori state estimate of the slow state according to (6.47)

we have

‖x̂(i)1k|k−1
‖p ≤ c1(k − 1, p, ε) + εαd1(k − 1, p, ε) + εαd3(k − 1, p, ε). (6.64)

Now, by considering the boundedness of ‖x̂(i)1k|k−1
‖p according to (6.64) and Assumption 6.8, the
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boundedness of the output equation follows since we have

‖ŷ(i)k|k−1‖ ≤ ‖h0(x̂(i)k|k−1, ψ0(x̂
(i)
k|k−1)‖

≤ d5(k − 1, p, ε).

(6.65)

Note that for computing of the Kalman gain in the measurement update step based on Lemma

6.1, we have Ǩs
k = P̌ xy

k|k−1(P̌
yy
k|k−1 + Rk)

−1, where P̌ xy
k|k−1 = X̂1k|k−1

Ŷ T
k|k−1 and P̌ yy

k|k−1 =

Ŷk|k−1Ŷ
T
k|k−1. Now, to show the boundedness of the Kalman gain we have to show the bounded-

ness of P̌ xy
k|k−1 and P̌ yy

k|k−1, as follows

‖P̌ xy
k|k−1‖p =

1

N − 1
‖(x̂(i)1k|k−1

− ˆ̄x1k|k−1
)(ŷ

(i)
k|k−1 − ˆ̄yk|k−1)

T‖p

=
1

N − 1
‖x̂(i)k|k−1ŷ

(i)T

k|k−1 − x̂
(i)
1k|k−1

ˆ̄yTk|k−1 − ˆ̄x1k|k−1
ŷ
(i)T

k|k−1 + ˆ̄x1k|k−1
ˆ̄yTk|k−1‖p

≤ 1

N − 1
(‖x̂(i)1k|k−1

ŷ
(i)T

k|k−1‖p + ‖ˆ̄x1k|k−1
ˆ̄yTk|k−1‖p).

(6.66)

By invoking the Cauchy inequality [194] the two terms in the last inequality in (6.66) can be

rewritten as

‖x̂(i)1k|k−1
ŷ
(i)T

k|k−1‖p ≤ E(‖x̂(i)1k|k−1
‖p‖ŷ(i)

T

k|k−1‖p)
1
p ,

≤ E(‖x̂(i)1k|k−1
‖2p) 1

2pE(‖ŷ(i)
T

k|k−1‖2p)
1
2p ,

≤ ‖x̂(i)1k|k−1
‖2p‖ŷ(i)

T

k|k−1‖2p

(6.67)

which yields

‖P̌ xy
k|k−1‖p ≤

1

N − 1
(‖x̂(i)1k|k−1

‖2p‖ŷ(i)
T

k|k−1‖2p + ‖ˆ̄x1k|k−1
‖2p‖ˆ̄yTk|k−1‖2p)

≤ 2

N − 1
c1(k − 1, p, ε)d5(k − 1, p, ε).

(6.68)

Similar to the derivations used in ‖P̌ xy
k|k−1‖p, for ‖P̌ yy

k|k−1‖p we can also get

‖P̌ yy
k|k−1‖p ≤

1

N − 1
(‖ŷ(i)k|k−1ŷ

(i)T

k|k−1‖2p + ‖ˆ̄yk|k−1 ˆ̄y
T
k|k−1)‖2p)

≤ 1

N − 1
(‖ŷ(i)k|k−1‖22p + ‖ˆ̄yk|k−1‖22p)

≤ 2

N − 1
d25(k − 1, p, ε).

(6.69)

Now to show the boundedness of Ǩs
k, note that P yy

k|k−1 is a symmetric and semi-positive definite
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and Rk is a symmetric positive definite matrix. Therefore, we have

‖(P̌ yy
k|k−1 +Rk)

−1‖ ≤ ‖R−1
k ‖ ≤ cte(k) (6.70)

where cte(k) denotes a constant parameter at the time instant k. The inequality in (6.70) together

with the bound on ‖P̌ xy
k|k−1‖p according to (6.68) gives

‖Ǩs
k‖p ≤ ‖P̌ xy

k|k−1‖pcte(k)

≤ 2

N − 1
c1(k − 1, p, ε)d5(k − 1, p, ε)cte(k),

(6.71)

where N is a sufficiently large number (N → ∞).

Finally, to show the boundedness of the a posteriori slow state estimate, consider equation

(6.52) that yields,

‖x(i)1k|k
‖p ≤ ‖x(i)1k|k−1

‖p + ‖Ǩs
kỹ

(i)
k|k−1‖p

≤ c1(k − 1, p, ε) + εα(d1(k − 1, p, ε) + d3(k − 1, p, ε)) + ‖Ǩs
k‖2p‖ŷ(i)k|k−1‖2p

≤ c1(k − 1, p, ε) + εα(d1(k − 1, p, ε) + d3(k − 1, p, ε))

+
2

(N − 1)
c1(k − 1, p, ε)d25(k − 1, p, ε)cte(k).

(6.72)

Hence, by applying the Jensen’s inequality [194] for any x̂
(i)
1k|k

, we obtain

‖ 1

N

N∑

i=1

x̂
(i)
1k|k

‖p ≤
1

N

N∑

i=1

‖x̂(i)1k|k
‖p,

which yields

‖ˆ̄x1k|k‖p ≤ c1(k − 1, p, ε) + εα(d1(k − 1, p, ε) + d3(k − 1, p, ε))

+
2

(N − 1)
c1(k − 1, p, ε)d25(k − 1, p, ε)cte(k),

≤ c1(k, p, ε).

(6.73)

Now, we investigate the boundedness of the estimation error based on the error analysis

associated with the a posteriori slow state estimation and the one that is obtained from the

real reduced order system model. If we substitute x2k−1
in Dε with ψ0(x1k−1

), the reduced
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order model for estimating xs1k is obtained, where according to Lemma 6.1, and (6.16), x1k =

xs1k + O(ε). In our developed TTS-EnKF filter, xs1k is estimated. Therefore, the estimation

error is represented by,

es1k = xs1k − ˆ̄x1k|k ,

where es1k denotes the slow filter estimation error. Hence, an upper bound on this error can be

obtained as

‖es1k‖p ≤ ‖xs1k‖p + ‖ˆ̄x1k|k‖p +O(ε),

≤ ‖x1k−1
‖p + εα(‖f1(x1k−1

, x2k−1
)‖p + ‖g1(x1k−1

, x2k−1
)ω1k‖p)

+ εO(α2) +O(ε) + ‖ˆ̄x1k|k‖p,

≤ 2c1(k − 1, p, ε) + 2εα(d1(k − 1, p, ε) + d3(k − 1, p, ε))

+
2

(N − 1)
c1(k − 1, p, ε)d25(k − 1, p, ε)cte(k) +O(ε),

(6.74)

where the last inequality is obtained by applying Assumption 6.8 and replacing ‖ˆ̄x1k|k‖p with

the bound from (6.73). The error of O(ε) magnitude is added due to the resulting discritization

error as shown in the derivation ofDz and considering that α is very close to 1. Now, asN → ∞,

if c1(k − 1, p, ε)d25(k − 1, p, ε)cte(k) � N , the term 2
(N−1)

c1(k − 1, p, ε)d25(k − 1, p, ε)cte(k)

will tend to zero, and one can approximate 2εα(d1(k−1, p, ε)+d3(k−1, p, ε))+O(ε) = O(ε).

Consequently, the upper bound on the estimation error corresponding to the reduced order model

is obtained as

‖es1k‖p ≤ 2c1(k − 1, p, ε) +O(ε).

Now, the error in the estimation of x1k can be obtained as

e1k = xs1k +O(ε)− ˆ̄x1k|k . (6.75)
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Similarly, the upper bound on e1k can be expressed as

‖e1k‖p ≤ 2c1(k − 1, p, ε) +O(ε).

In the next step, the boundedness of the a posteriori estimation of the fast states through

the fast filter are investigated. Again by invoking induction we assume that ‖x(i)1k−1|k−1
‖p ≤

c1(k − 1, p, ε) and ‖x(i)2k−1|k−1
‖p ≤ c2(k − 1, p, ε). Using the same approach as in the slow filter,

an upper bound on the estimated a posteriori fast state is obtained as

‖ˆ̄x2k|k‖p ≤ c2(k − 1, p, ε) + εα(d2(k − 1, p, ε) + d4(k − 1, p, ε))

+
2

(N − 1)
c2(k − 1, p, ε)d25(k − 1, p, ε)cte(k),

≤ c2(k, p, ε).

Therefore, the estimation error based on the discrepancy between the real x2k from Dε and the

estimated ˆ̄x2k|k can be expressed as,

e2k = x2k − ˆ̄x2k|k ,

where e2k denotes the estimation error of the fast filter. Hence, an upper bound on this error can

be obtained as

‖e2k‖p ≤ ‖x2k‖p + ‖ˆ̄x2k|k‖p,

≤ ‖x2k−1
‖p + α(‖f2(x1k−1

, x2k−1
)‖p + ‖g2(x1k−1

, x2k−1
)ω2k‖p) +O(α2) + ‖ˆ̄x2k|k‖p,

≤ 2c2(k − 1, p, ε) + α(d2(k − 1, p, ε) + d4(k − 1, p, ε))

+ εα(d2(k − 1, p, ε) + d4(k − 1, p, ε)) +
2

(N − 1)
c2(k − 1, p, ε)d25(k − 1, p, ε)cte(k)

+O(α2),

≤ 2c2(k − 1, p, ε) + α(d2(k − 1, p, ε) + d4(k − 1, p, ε)) +O(α2) +O(ε).

(6.76)

Finally, the error of the fast filter is propagated with the order of O(α), whereas for the slow
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filter it is propagated with the order of O(ε). This completes the proof of the theorem. �

In the next section, we have applied and extended our developed TTS-EnKF filter to the

problem of long-term prediction of system states/health parameters for the health monitoring

problem.

6.4 Prediction Scheme Based on Two-Time Scale EnKF

In this section, our previously developed two-time scale EnKF scheme is utilized for long-

term prediction of the nonlinear system’s slowly time-varying health parameters as well as its

fast states. This problem is generally considered as the second module in development of an

integrated framework for health monitoring of complex engineering systems.

6.4.1 Prediction Framework Based on the Two-Time Scale EnKF Strat-

egy

The main challenge in the prediction problem is that the prediction errors increase as the pre-

diction horizon is extended. This problem is directly related to absence of actual observations

after the time instant k, so that information on actual observations cannot be used for reducing

the resulting error covariances in the a posteriori state estimation process.

In our proposed framework, we follow the main idea of the EnKF which substitutes the

actual states with their sequence of ensemble members to obtain the estimation error where we
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now also replace the observation vector in the measurement update step with the approximated

observation vector in both the slow and fast filters that result from the approximated observation

ensembles.

Our proposed prediction scheme also consists of two filters, namely the slow and the fast

filters for updating the health parameters as well as the states, respectively. Consequently, our

proposed prediction algorithm based on the two-time scale EnKF scheme can be summarized

as follows.

6.4.2 Prediction of the Slow States

Our prediction strategy is performed through two main steps (similar to the estimation strategy),

namely time update and measurement update (based on the approximated measurements).

Time Update for the Slow Filter

The state vector for this filter is defined as xs1k . Consequently, the ensemble members are gen-

erated in the time update step from the following equations for the l > 1 step ahead prediction

horizon

x̂
(i)−

1k+l|k
= x̂

(i)+

1k+l−1|k
+ ιf1(x̂

(i)+

1k+l−1|k
, ψ0(x̂

(i)+

1k+l−1|k
), 0) + ιg1(x̂

(i)+

1k+l−1|k
, ψ0(x̂

(i)+

1k+l−1|k
), 0)ω

(i)
1k+l−1

,

(6.77)

where i = 1, ..., N , and the superscript (−) refers to the predicted state in the previous time

step before performing the covariance correction in the measurement update step while the
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superscript (+) refers to the approximated value of the state after performing the measurement

update step.

The most probable states and their corresponding ensemble perturbations are generated ac-

cording to

ˆ̄x
−
1k+l|k

=
1

N

N∑

i=1

x̂
(i)−

1k+l|k
,

δx̂
(i)−

1k+l|k
= x̂

(i)−

1k+l|k
− ˆ̄x

−
1k+l|k

.

(6.78)

We now define the vector X̂−
s1k+l|k

= X̂−
1k+l|k

= 1√
N−1

[δx̂
(1)−

1k+l|k
, ..., δx̂

(N)−

1k+l|k
]T.

Measurement Update for the Slow Filter

For the measurement update step, as stated earlier due to absence of observations one requires

to apply another alternative approach to reduce the prediction error in this step. We suggest

to utilize the following approximation for the l-step ahead prediction of the observation vector,

namely

ysk+l ≈ h0(ˆ̄x
−
1k+l|k

, ψ0(ˆ̄x
−
1k+l|k

), 0), (6.79)

where ysk+l denotes the predicted observations of the slow filter. Hence, the approximated ob-

servation vector according to (6.79) is utilized in the slow filter to predict the system slow states.

To summarize, the prediction scheme for the slow filter is performed according to the following

steps:

1. The output perturbation matrix is computed from: Ŷ s
k+l|k = [δŷs

(1)

k+l|k, ..., δŷ
s(N)

k+l|k]
T, where

for i = 1, .., N , δŷs
(i)

k+l|k = h0(x̂
(i)−

1k+l|k
, ψ0(x̂

(i)−

1k+l|k
), 0)− 1

N

∑N
i=1 h0(x̂

(i)−

1k+l|k
, ψ0(x̂

(i)−

1k+l|k
), 0),
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2. The Kalman gain is computed from: Ǩs
k+l = P̌ xy

k+l|k(P̌
yy
k+l|k + Rk)

−1, where P̌ xy
k+l|k =

X̂−
1k+l|k

Ŷ sT

k+l|k and P̌ yy
k+l|k = Ŷ s

k+l|kŶ
sT

k+l|k.

3. The prediction of a posteriori state ensemble members is computed from:

x̂
(i)+

1k+l|k
= x̂

(i)−

1k+l|k
+ Ǩs

k+lỹ
s(i)

k+l|k, (6.80)

where ỹs
(i)

k+l|k = ysk+l − h0(x̂
(i)−

1k+l|k
, ψ0(x̂

(i)−

1k+l|k
), 0).

4. The most probable a posteriori state estimate is computed from: ˆ̄x+1k+l|k
= 1

N

∑N
i=1 x̂

(i)+

1k+l|k
.

In the subsequent subsection, the prediction scheme for predicting the fast states of the

system is provided in detail.

6.4.3 Prediction of the Fast States

The prediction scheme of this filter is also performed through two main steps, namely the time

update and the measurement update where the ensemble perturbations update is also performed

in this step.

Time Update for the Fast Filter

For this filter, the slow states of the system are considered as fixed and equal to their most prob-

able predicted values obtained from the previous time step, i.e., x1k+l
≈ ˆ̄x

(+)
1k+l−1|k

. Therefore,
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the time update step is performed according to the following equations

x̂1k+l|k
= ˆ̄x

(+)
1k+l−1|k

,

ˆ̄x
(i)−

2k+l|k
= x̂

(i)+

2k+l−1|k
+ ιf2(ˆ̄x

(+)
1k+l−1|k

, x
(i)+

2k+l−1|k
) + ιg2(ˆ̄x

(+)
1k+l−1|k

, x
(i)+

2k+l−1|k
) + w

(i)
2k+l

,

(6.81)

where x̂
(i)+

2k+l−1|k
denotes the predicted fast ensembles from the previous time step for i = 1, ..., N

members. We can now define the vector X̂ f−

k+l|k = X̂−
2k+l|k

= 1√
N−1

[δx̂
(1)−

2k+l|k
, ..., δx̂

(N)−

2k+l|k
]T.

Measurement Update for the Fast Filter

For the measurement update step, similar to the slow filter we suggest to utilize an approxima-

tion for the l-step ahead prediction of the observation vector as follows,

yfk+l ≈ h0(ˆ̄x
+
1k+l−1|k

, ˆ̄x
−
2k+l|k

), (6.82)

where yfk+l denotes the predicted observations from the fast filter. Therefore, the approximated

observation vector according to (6.82) is used in the fast filter to predict the system fast states

according to the following steps:

1. The output perturbation matrix is computed from: Ŷ f
k+l|k = [δŷf

(1)

k+l|k, ..., δŷ
f(N)

k+l|k]
T, where

for i = 1, .., N , δŷf
(i)

k+l|k = h0(ˆ̄x
+
1k+l−1|k

, x̂
(i)−

2k+l|k
)− 1

N

∑N
i=1 h0(ˆ̄x

+
1k+l−1|k

, x̂
(i)−

2k+l|k
),

2. The Kalman gain is computed from: K f
k+l = P̆ xy

k+l|k(P̆
yy
k+l|k + Rk)

−1, where P̆ xy
k+l|k =

X̂−
2k+l|k

Ŷ fT

k+l|k, and P̆ yy
k+l|k = Ŷ f

k+l|kŶ
fT

k+l|k.

3. The prediction of a posteriori state ensemble members of fast states is computed from:

x̂
(i)+

2k+l|k
= x̂

(i)−

2k+l|k
+ K̆ f

k+lỹ
f(i)

k+l|k, where ỹf
(i)

k+l|k = yfk+l − h0(ˆ̄x
+
1k+l−1|k

, x̂
(i)−

2k+l|k
).

4. The most probable a posteriori state estimate is computed from: ˆ̄x+2k+l|k
= 1

N

∑N
i=1 x̂

(i)+

2k+l|k
.
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However, it is obvious that as the step-ahead prediction horizon is extended, errors in the

prediction of the system states do also increase. The following theorem which is inspired from

Theorem 6.2, provides bounds on the state estimation results for the TTS-EnKF as a function

of the l-step ahead prediction horizon.

Theorem 6.3 Let Assumption 6.8 and Theorem 6.2 results hold. The l-step ahead prediction

error of the slow and fast states of the system that is provided in (6.23) and that utilize the TTS-

EnKF scheme remains bounded with an error of the order of (l + 2)O(ε) for ˆ̄x+1k+l|k
and of the

order (l + 1)O(α2) + (l + 2)O(ε) for ˆ̄x+2k+l|k
.

Proof: From the prediction scheme it is known that the predicted state from the previous time

step is utilized to predict the state in the next time instant. Therefore, the error due to discretiza-

tion of the system as well as the fast-slow decomposition of the system states do propagate

through the prediction algorithm to the future time steps. Therefore, by back substituting the

predicted values of x̂
(i)−

1k+j|k
and x̂

(i)−

2k+j|k
for j = 0, ..., l−1 into equations (6.77) and (6.80) for the

slow filter, we can obtain

x̂
(i)+

1k+l|k
= x̂

(i)+

1k+l−1|k
+ εα(f1(x̂

(i)+

1k+l−1|k
, ψ0(x̂

(i)+

1k+l−1|k
), 0) + g1(x̂

(i)+

1k+l−1|k
, ψ0(x̂

(i)+

1k+l−1|k
), 0)ω

(i)+

1k+l
)

+ Ǩs
k+lỹ

s(i)

k+l|k

= x̂
(i)+

1k|k
+ εα

l−1∑

j=0

(f1(x̂
(i)+

1k+j|k
, ψ0(x̂

(i)+

1k+j|k
), 0) + g1(x̂

(i)+

1k+j|k
, ψ0(x̂

(i)+

1k+j|k
), 0)ω

(i)
k+j+1)

+

l∑

j=1

Ǩs
k+j ỹ

s(i)

k+j|k
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Now, a bound on the predicted state x̂
(i)+

1k+l|k
and prediction error can be obtained by considering

the Assumption 6.8 and Theorem 6.2 as follows

‖x̂(i)
+

1k+l|k
‖ ≤ c1(k, p, ε) + αε

l−1∑

j=0

(d1(k + j, p, ε) + d3(k + j, p, ε))

+

l∑

j=1

2

(N − 1)
c1(k + j, p, ε)d25(k + j, p, ε)cte(k + j)

‖es1k+l
‖ ≤ c1(k + l − 1, p, ε) + c1(k, p, ε) + εα(d1(k + l − 1, p, ε) + d3(k + l − 1, p, ε))

+ αε

l−1∑

j=0

(d1(k + j, p, ε) + d3(k + j, p, ε))

+

l∑

j=1

2

(N − 1)
c1(k + j, p, ε)d25(k + j, p, ε)cte(k + j) +O(ε),

assuming l � N , and the bound on the prediction error corresponding to the slow states is

given by

‖es1k+l
‖ ≤ c1(k + l − 1, p, ε) + c1(k, p, ε) + (l + 2)O(ε).

The same procedure can be applied to x̂
(i)+

2k+l|k
to obtain the higher bound on the l-step ahead
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prediction as follows

x̂
(i)+

2k+l|k
= x̂

(i)+

2k+l−1|k
+ αε(f2(ˆ̄x

+
1k+l−1|k

, x̂
(i)+

2k+l−1|k
) + g2(ˆ̄x

+
1k+l−1|k

, x̂
(i)+

2k+l−1|k
)ω

(i)
2k+l

) + Ǩ f
k+lỹ

f(i)

k+l|k

= x̂
(i)+

2k|k
+ αε

l−1∑

j=0

(f2(ˆ̄x
+
1k+j|k

, x̂
(i)+

2k+j|k
) + g2(ˆ̄x

+
1k+j|k

, x̂
(i)+

2k+j|k
)ω

(i)
2k+j

) +
l∑

j=1

Ǩ f
k+j ỹ

f(i)

k+j|k,

≤ c2(k, p, ε) + αε
l−1∑

j=0

(d2(k + j, p, ε) + d4(k + j, p, ε))

+
l∑

j=1

2

N − 1
c2(k + j, p, ε)d25(k + j, p, ε)cte(k + j).

‖e2k+l
‖ ≤ c2(k + l − 1, p, ε) + c2(k, p, ε) + α(d2(k + l − 1, p, ε) + d4(k + l − 1, p, ε)) +O(ε)

+O(α2) + αε
l−1∑

j=0

(d2(k + j, p, ε) + d4(k + j, p, ε))

+
l∑

j=1

(
2

(N − 1)
c2(k + j, p, ε)d25(k + j, p, ε)cte(k + j) +O(ε) +O(α2)),

≤ c2(k + l − 1, p, ε) + c2(k, p, ε) + α(d2(k + l − 1, p, ε) + d4(k + l − 1, p, ε))

+ (l + 2)O(ε) + (l + 1)O(α2)

Therefore, the highest bounds on the l-step ahead predicted states as well as the order of the

propagated error as a function of the prediction horizon are obtained. This completes the proof

of the theorem. �

The results from the Theorem 6.3 show that although the l-step prediction of the system

states remains bounded for a bounded l, however as the prediction horizon extends the errors

due to approximation of the exact system into slow and fast subsystems cause additional errors

in the resulting predictions. Therefore, the prediction horizon should be chosen carefully such

that ignoring the slow-fast decomposition errors in the developed TTS-EnKF scheme cannot be

significant. In Section 6.5, our developed TTS-EnKF estimation/prediction strategies are ap-
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plied to track the degradation phenomenon and its propagation prediction for long-term horizon

in a gas turbine engine system.

In addition to the prediction accuracy of our methods that have been developed for nonlinear

systems based on the nonlinear filtering strategies, the computational cost of our developed

schemes when implemented is also an important issue that should be investigated to determine

a trade-off between the accuracy and the cost. In the next subsection, the computational cost of

our developed TTS-EnKF method is quantified and is compared with the well-known particle

filtering approach in prediction applications.

6.4.4 Complexity Analysis of the TTS-EnKF Estimation/Prediction Schemes

In this subsection, the computational complexity of our proposed TTS-EnKF estimation/prediction

schemes are quantitatively obtained and analyzed. The analysis is based on the number of

floating-point operations (flops) that are required by the analyzed algorithm, known as equiv-

alent flop (EF) analysis. The dimension and definitions of certain entities that are used in the

EF analysis of our proposed TTS-EnKF state estimation and prediction schemes are provided

in Table 6.1. Given that the computational complexity of certain common matrix manipulations

as given in Chapter 3, the EF complexity of our proposed scheme is now summarized in Table

6.2 for the slow state estimation/prediction module and in Table 6.3 for the fast state estima-

tion/prediction module. The EF quantities in the two tables correspond to only one iteration

of the scheme. The coefficient c1 is used to represent the complexity of the random number

generation.
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Table 6.1: Definition and Dimension of the entities in the TTS-EnKF estimation/prediction

Schemes

Variable Dimension Definition

x1k R
ns slow state vector

x2k R
nf fast state vector

e1k R
ns modeling error to the slow state

e2k R
nf modeling error to the fast state

Ǩs
k R

ns×ny Kalman gain for the slow filter

Ǩ f
k R

nf×ny Kalman gain for the fast filter

yt R
ny measurement output

f1(.) R
ns×1 slow state dynamic function

f2(.) R
nf×1 fast state dynamic function

h(.) R
ny×1 observation function

Table 6.2: The Equivalent Complexity for the slow states estimation/prediction step for the

TTS-EnKF scheme.

Instruction Mult. Add Func. Eval. Other

ω
(i)
k+l = [ω

(i)
1k+l

, ω
(i)
2k+l

]T =
√
Qkrandn(ns + nf , N) (ns + nf )

2N − − N(ns + nf )c1

x̂
(i)−

1k+l|k
= x̂

(i)+

1k+l−1|k
+ ι(f1(x̂

(i)+

1k+l−1|k
, ψ0(x̂

(i)+

1k+l−1|k
), 0) + g1(x̂

(i)+

1k+l−1|k
, ψ0(x̂

(i)+

1k+l−1|k
), 0)ω

(i)
1k+1

) Nns Nns N(ns + nf ) −
δx̂

(i)−

1k+l|k
= x̂

(i)−

1k+l|k
− ˆ̄x−1k+l|k

, X̂−
1k+l|k

= 1√
N−1

[δx̂
(1)−

1k+l|k
, ..., δx̂

(N)−

1k+l|k
] Nns Nns − −

δŷs
(i)

k+l|k = h0(x̂
(i)−

1k+l|k
, ψ0(x̂

(i)−

1k+l|k
), 0)− 1

N

∑N
i=1 h0(x̂

(i)−

1k+l|k
, ψ0(x̂

(i)−

1k+l|k
), 0), ny 2Nny Nny −

Ŷ s
k+l|k =

1√
N−1

[δŷs
(1)

k+l|k, ..., δŷ
s(N)

k+l|k]

P̌ xy
k+l|k = X̂−

1k+l|k
Ŷ sT

k+l|k Nnsny (N − 1)nsny − −
P̌ yy
k+l|k = Ŷ s

k+l|kŶ
sT

k+l|k Nn2
y (N − 1)ny − −

Ǩs
k+l = P̌ xy

k+l|k(P
yy
k+l|k +Rk)

−1 n3
y + nsn

2
y n2

y + nsny(ny − 1) − −
ỹs

(i)

k+l|k = h0(ˆ̄x
−
1k+l|k

, ψ0(ˆ̄x
−
1k+l|k

), 0)− h0(x̂
(i)−

1k+l|k
, ψ0(x̂

(i)−

1k+l|k
), 0) − ny ny + nf −

x̂
(i)+

1k+l|k
= x̂−1k+l|k

+ Ǩs
k+l|kỹ

s(i)

k+l|k Nnsny nsN − −
ˆ̄x+1k+l|k

= 1
N

∑N
i=1 x̂

(i)+

1k+l|k
ns Nns − −

Total N(n2
s + n2

f + n2
y + 2nsnf N(6ns + 4ny N(ns + nf Nc1(ns + nf )

+2nsny + 2ns) + n3
y +nsny) + n2

y − ny +ny) + ny

+2nsn
2
y + ny + 2ns +nsn

2
y − 2nsny +nf

Table 6.3: The Equivalent Complexity for the fast state estimation/prediction step for the

TTS-EnKF scheme.

Instruction Mult. Add Func. Eval. Other

x̂
(i)−

2k+l|k
= x̂

(i)+

2k+l−1|k
+ ι(f2(ˆ̄x

+
1k+l−1|k

, x̂
(i)+

2k+l−1|k
) + g2(ˆ̄x

+
1k+l−1|k

, x̂
(i)+

2k+l−1|k
)w

(i)
2k+l

) 2Nnf 2Nnf Nnf −
δx̂

(i)−

2k+l|k
= x̂

(i)−

2k+l|k
− ˆ̄x−2k+l|k

, X̂−
2k+l|k

= 1√
N−1

[δx̂
(1)−

2k+l|k
, ..., δx̂

(N)−

2k+l|k
] Nnf Nnf − −

δŷf
(i)

k+l|k = h0(ˆ̄x
+
1k+l−1|k

, x̂
(i)−

2k+l|k
)− 1

N

∑N
i=1 ŷ

f(i)

k+l|k, ny 2Nny Nny −
Ŷ f
k+l|k =

1√
N−1

[δŷf
(1)

k+l|k, ..., δŷ
f(N)

k+l|k]

P̆ xy
k+l|k = X̂−

2k+l|k
Ŷ fT

k+l|k Nnfny 2(N − 1)nfny − −
P̆ yy
k+l|k = Ŷ f

k+l|kŶ
fT

k+l|k Nn2
y (N − 1)ny − −

K̆ f
k+l = P̆ xy

k+l|k(P̆
yy
k+l|k +Rk)

−1 n3
y + nfn

2
y n2

y + nfny(ny − 1) − −
ỹf

(i)

k+l|k = h0(ˆ̄x
+
1k+l−1|k

, x̂−2k+l|k
)− h0(ˆ̄x

+
1k+l−1|k

, x̂
(i)−

2k+l|k
) nf N(nf + ny) ny −

x̂
(i)+

2k+l|k
= x̂−1k+l|k

+ K̆ f
k+l|kỹ

f(i)

k+l|k nfnyN nfN − −
ˆ̄xf

+

k+l|k =
1
N

∑N
i=1 x̂

f(i)
+

k+l|k nf nfN − −
Total N(3nf + 2nfny + n2

y) N(6nf + 3ny + nfny) N(nf + ny) −
+n3

y + nfn
2
y + 2nf +nfn

2
y + n2

y − 2nfny − ns +ny

+ny

Table 6.4: The Total Equivalent Complexity of the Filters

Prediction Method Total Equivalent Complexity

DLM-Based Prediction Method [185] CA(ns, nf , c1, c2, c3, c4, N) ≈ N(3n2
s + 5n2

f + 6nf + 2nfny + 7ny + 3ns

+c1(ns + nf ) + c2(ns + nf ) + c3ns)
Standard PF-Based Prediction Method [25] CB(ns, nf , c1, c3, N) ≈ N(3n2

s + 3n2
f + 6nsnf + (1 + c1 + c3)ns

+(1 + c1 + c3)nf + ny)
TTS-EnKF Prediction Method (this work) CC(ns, nf , c1, N) ≈ N(n2

s + n2
f + 2n2

y + 2nsnf + 3nsny + 3nfny

+(9 + c1)ns + (11 + c1)nf + 9ny)
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Our goal here is to develop a comprehensive measure and comparison between the complex-

ity of our proposed TTS-EnKF prediction algorithm with other commonly used and well-known

particle filtering (PF) estimation/prediction schemes [55, 185]. Towards this end, the complex-

ity of the particle filters prediction algorithm with a regularized structure is also presented in

Table 6.4. This has already been used for prediction purposes in various applications as in [25].

We have also included our previously developed prediction algorithm that is based on combina-

tion of the particle filters with dynamically linear models (DLM) [185]. In Table 6.4, where c1

denotes the complexity of the random number generation, c2 denotes the complexity of the re-

sampling step of the particle filtering algorithm, c3 denotes the complexity corresponding to the

regularization step of the particle filtering algorithm, and c4 denotes the complexity correspond-

ing to the DLM models construction. The EF complexity of the DLM-based prediction method,

the standard PF-based prediction method, and the TTS-EnKF prediction method are denoted by

CA(ns, nf , c1, c2, c3, c4, N), CB(ns, nf , c1, c3, N), and CC(ns, nf , c1, N), respectively. In the

above first two methods N represents the number of particles, whereas in the last method N

represents the number of ensembles that are chosen in the TTS-EnKF approach.

From the results that are presented in this table, it follows that the PF-based prediction meth-

ods yield a computationally more intensive implementation cost. This is quantified by the EF

complexity (which is a measure of the algorithm time complexity) due to presence of resam-

pling (c2) and/or regularization (c3) steps that deal with ordering as one of the most complex

implementation procedures [170].
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6.5 Development of a Health Monitoring of a Gas Turbine

Engine

The considered application of our proposed two-time scale EnKF method for health monitoring

and prognosis of a gas turbine engine is presented in this section. The approach can be used for

failure prognosis of the engine, when the system is assumed to be affected by health degrada-

tion phenomenon. Our proposed prediction scheme is demonstrated to be capable of tracking

the system health parameters that enjoy a slow time dynamics as compared to the other gas

turbine dynamical system states that enjoy a fast time dynamics. Moreover, the performance of

our proposed two-time scale EnKF method is evaluated and investigated under a general degra-

dation scenario in the turbine component due to the erosion phenomenon. The main idea of

our method is to model the dynamics of the system health parameters and augment them to the

gas turbine system state equations to achieve a more accurate estimation as well as prediction

results. Therefore, the gas turbine engine model as presented in [157] is modified in this work

to include the dynamical model that is associated with the system health parameters.

6.5.1 Overall Model Overview

The formulation for degradation damage of a gas turbine engine is now proposed as follows. In

this new methodology the system health parameters, which have a slowly time-varying behavior

(due to the fault vector), are modeled as state variables with slow dynamics. The most important

aspect of this modeling process is that the degradation is assumed to have started from the
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starting time of the engine/turbine operation. This assumption is not very restrictive since a real

engine is subjected to various types of degradation (such as erosion) from the first initiation of

its operation that propagate during the time.

For the class of nonlinear systems that we are investigating here (the gas turbine application),

the health parameters of the system are denoted by θ and are considered to be smooth functions

of the system states (fast states) and time, i.e., θ(x, t). The effects of the degradation is modeled

by a multiplicative time-varying vector function, k(t, ε), known as a fault vector, where 0 < ε�

1, is a sufficiently small parameter that quantifies the time-scale separation. In other words, the

health parameter is represented by

θ(x, t) = k(t, ε)θ1(x(t)), (6.83)

where θ1(x(t)) is a smooth function of x. The function k(t, ε) ∈ C2 has an asymptotic power

series expansion of ε 1 [212], i.e., for k(t, ε) and its first derivative we have,

k(t, ε) = k0(t, 0) + ε
∂

∂ε
k(t, 0) +O(ε2), k0(t, 0) = 0,

k̇(t, ε) = k̇0(t, 0) + ε
∂

∂ε
k̇(t, 0) +O(ε2), k̇0(t, 0) = 0,

(6.84)

where k̇ = ∂
∂t
k(t, ε). Hence, the dynamics of the health parameters that are augmented to the

system state equations are obtained as,

θ̇(x, t) = k̇(t, ε)θ1(x(t)) + k(t, ε)
∂θ1
∂x

ẋ. (6.85)

By considering the expansions given in equation (6.84), the system state equations including

the augmented health parameter states, can be represented in the standard singularly perturbed

form by introducing a new time variable τ = εt, as follows

ε
dx

dτ
= f(x, θ, ε, τ),

dθ

dτ
= g(x, θ, ε, τ),

(6.86)

1A function f(ε) has an asymptotic power series expansion if as ε→ 0, f(ε) ≈ ∑
∞

j=0
fjε

j
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where the time derivatives are taken with respect to τ , x ∈ R
nx , θ ∈ R

nθ and f : Rnx × R
nθ ×

R
2 → R

nx , g : Rnx ×R
nθ ×R

2 → R
nθ belong to C2. In the following simulation scenarios that

are conducted the effects of the turbine erosion degradation on the gas turbine system health

propagation are investigated. Therefore, the dynamics of the mass flow capacity and efficiency

of the turbine are augmented to the system state equations.

The mathematical model of a gas turbine that is used in this work is a single spool jet

engine that was developed in [157] and presented in Chapter 2. The four engine states are the

combustion chamber pressure and temperature, PCC and TCC, respectively, the spool speed S,

and the nozzle outlet pressure PNLT. The continuous-time state space model of the gas turbine

is given as follows,

ṪCC =
1

cvmcc

[(cpTCmC + ηCCHumf − cpTCCθmT
)− cvTCC(mC +mf − θmT

)],

Ṡ =
ηmechθmT

cp(TCC − TT)−mCcp(TC − Td)

JS( π
30
)2

,

ṖCC =
PCC

TCC

1

cvmcc

[(cpTCmC + ηCCHumf − cpTCCθmT
)− cvTCC(mC +mf − θmT

)]

+
γRTCC

VCC

(mC +mf − θmT
),

ṖNLT =
TM
VM

(θmT
+

β

β + 1
mC −mNozzle),

(6.87)

The five gas turbine measured outputs are considered to be the compressor temperature (y1),

the combustion chamber pressure (y2), the spool speed (y3), the nozzle outlet pressure (y4), and

the turbine temperature (y5), namely

y1 = TC = Tdiffuser[1 +
1

ηC
[(

PCC

Pdiffuzer

)
γ−1
γ − 1]],

y2 = PCC, y3 = S, y4 = PNLT,

y5 = TT = TCC[1− θηT(1− (
PNLT

PCC

)
γ−1
γ )].

(6.88)
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By augmenting the turbine health parameters to the system state equations we obtain

θ̇ηT = k̇1(t, ε)ηT(S, PCC) + k1(t, ε)(
∂ηT
∂S
Ṡ + ∂ηT

∂β
β̇), (6.89)

θ̇mT
= k̇2(t, ε)mT(S, PCC) + k2(t, ε)(

∂mT

∂S
Ṡ + mT

∂β
β̇). (6.90)

where the physical significance of all the above model parameters is provided in Table 2.1, and

the functions k1(.) and k2(.) model manifestation in the turbine health parameters due to ero-

sion and are considered as polynomial functions with asymptotic series expansion of ε. These

functions are chosen as k1(t, ε) = 1 − εt and k2(t, ε) = 1 + 0.5εt, in order to model the ero-

sion degradation as a linear degradation model [213]. The functions ηT(S, β) and mT(S, PCC)

are obtained as polynominal functions by curve-fitting from the turbine performance maps as

utilized in [157] as follows,

ηT(S, β) = 1.31− 2.622(
S

Sref
) + 0.3739β + 3.691(

S

Sref
)2 + 0.3125

S

Sref
β − 1.119β2

− 2.076(
S

Sref
)3 + 1.36(

S

Sref
)2β − 1.254(

S

Sref
)β2 + 0.9428β3

mT(S, β) = 2.765 + 1.779(
S

Sref
) + 11.49β − 0.6761(

S

Sref
)2 − 4.16(

S

Sref
)β − 20.85β2

+ 0.4114(
S

Sref
)2β + 3.509(

S

Sref
)β2 + 17.99β3 + 0.3475(

S

Sref
)2β2

− 1.655(
S

Sref
)β2 − 5.815β4

(6.91)

where Sref is a reference design parameter chosen as 12000, and the bypass ratio β is computed

from the following function based on the surface-fitting of the turbine performance maps in

[157]

β(S, PCC, PNLT) =− 0.1107− 0.9083(
S

Sref
) + 0.4225(

PCC

PNLT
) + 0.4334(

S

Sref
)2

− 0.09009(
S

Sref
)(
PCC

PNLT
)− 0.002457(

PCC

PNLT
)2

(6.92)

In order to model the overall gas turbine engine state equations with the turbine health

parameters in the two-time scale framework, it is assumed that τ = εt, so that one can rewrite
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the system equation (6.87) as

ε
dTCC

dτ
=

1

cvmcc

[(cpTCmC + ηCCHumf − cpTCCθmT
)− cvTCC(mC +mf − θmT

)],

ε
dS

dτ
=
ηmechθmT

cp(TCC − TT)−mCcp(TC − Td)

JS( π
30
)2

,

ε
dPCC

dτ
=
PCC

TCC

1

cvmcc

[(cpTCmC + ηCCHumf − cpTCCθmT
)− cvTCC(mC +mf − θmT

)]

+
γRTCC

VCC

(mC +mf − θmT
),

ε
dPNLT

dτ
=
TM
VM

(θmT
+

β

β + 1
mC −mNozzle).

(6.93)

Similarly associated with the turbine health parameters we have

dθηT
dτ

= −εηT(S, β) + (1− τ)(
∂ηT
∂S

dS

dτ
+
∂ηT
∂β

(
∂β

∂PCC

dPCC

dτ
+

∂β

∂PNLT

dPNLT

dτ
)),

dθmT

dτ
= 0.5εmT(S, β) + (1 + 0.5τ)(

∂mT

∂S

dS

dτ
+
∂mT

∂β
(
∂β

∂PCC

dPCC

dτ
+

∂β

∂PNLT

dPNLT

dτ
)).

(6.94)

The reduced order slow model that is obtained by setting ε = 0 in (6.93), and substituting PNLT

from the equation of y5 in εdS
dτ

= 0, yields the following algebraic equations

TCC =
cpTCmC + ηCCHumf

cv(mc +mf − θmT
) + cpθmT

,

PCC =
γRcvmCC

VCC

T 2
CC

(θmT
−mC −mf )

(cpTCmC + ηCCHumf − cpTCCθmT
)− cvTCC(mC +mf − θmT

)
,

β =
mNozzle − θmT

mC −mNozzle + θmT

,

PNLT = PCC(1 +
mC(TC − Td)

ηmechθmT
TCCθηT

)
γ

γ−1 ,

(6.95)

where S can also be approximated by replacing β from (6.92) as its positive root.

The terms ηT and mT are polynomial functions of PCC and S (following (6.87)-(6.92))

which are dependent on the performance maps of the turbine and in our simulations we follow
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a numerical algorithm to compute the derivatives of these maps in terms of PCC and S.

To discretize the above continuous-time model, the first order approximation of the algo-

rithm that was presented in Remark 6.1 was used which shows an acceptable result for es-

timation of both the fast and the slow states of the system with a sampling period of Ts =

1 msec (ι = 0.001).

6.5.2 Simulation Scenario

In the simulation scenario considered here the engine is assumed to be subjected to degradation

damage due to turbine erosion. This causes a gradual drift in the system health parameters,

and as a result the system states. A slowly varying linear degradation model is applied to the

turbine health parameters during the 500 cycles of operation that causes a 3% drop in the turbine

efficiency and 1.5% increase in its mass flow capacity. The time-scale separation parameter ε is

selected as 0.005 to provide this degradation rate in the turbine.

6.5.3 Erosion Estimation Results

Our developed two-time scale filtering methodology is now utilized for estimating the system

states as well as the turbine health parameters that are represented as the augmented slow states

to the gas turbine state equations. The results corresponding to the percent of the mean abso-

lute error (MAE) within an estimation window of 5 seconds for different number of ensemble

members are presented in Table 6.5 using our proposed TTS-EnKF estimation scheme. We
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now compare the errors that are obtained from this method with the ones that are obtained by

using the "exact" EnKF approach (that is when no fast-slow decomposition of the overall states

of the system is performed), where the same scenario having the same number of ensembles

are applied. The MAE% results obtained corresponding to this method are presented in Table

6.6. It should be pointed out that the exact EnKF approach does not converge, due to numerical

ill-conditioning, when the number of ensembles is less than 20 (N/C in the table denotes Not

Convergent).

It is noted that the covariance matrix in the exact EnKF method is dependent to the time-

scale separation parameter ε, which can cause non-singularity of the covariance matrix in some

scenarios and as a result divergence of the Kalman filtering algorithm due to ill-conditioning of

the estimation problem (in calculating the Kalman gain). This problem in exact EnKF method

is more obvious for smaller values of ε and/or low number of ensemble members in the EnKF

algorithm.

A comparison between the TTS-EnKF and the exact EnKF estimation results shows that

although the exact method is not capable of performing the system state estimation for lower

number of ensembles, the TTS-EnKF approach is still capable of performing the estimation ob-

jective with a fewer number of ensembles, and consequently it can yield a less computationally

costly algorithm.

The results presented in Tables 6.5 indicate that by increasing the number of ensemble mem-

bers to more than N = 100 does not necessarily result in a more accurate estimation perfor-

mance. The best estimation results that are achieved are for 100 ensembles with the maximum
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percentage of the mean absolute error (MAE %) of 0.95% for the state estimation obtained for

the nozzle pressure, and the MAE% of 2.28% for the output estimation obtained for the turbine

pressure. However, due to the approximations we made to obtain the algebraic equations in

Subsection for turbine health parameters, in this specific scenario with ε = 0.005, in almost all

cases, the exact EnKF method results in a lower MAE% for both the state and output estima-

tions. Moreover, the discrepancy between the TTS-EnKF and the exact EnKF approaches for

the output estimation problem is lower than that of the state estimation problem.

By selecting N = 100, the estimation results for states and outputs associated with both

methods are depicted in Figures 6.1 and 6.2, respectively. The results shown in these two

figures confirm that although the exact method has lower errors for estimating the fast states of

the system, the TTS-EnKF method shows a more accurate result for estimating the system slow

states, specially the turbine mass flow capacity.

Table 6.5: Estimation MAE% using different number of ensembles for the TTS-EnKF method

(a) states and (b) measurement outputs.
(a)

State N = 10 N = 50 N = 100 N = 200

PCC 0.7481 0.7440 0.6532 0.6510

N 0.1185 0.0806 0.0515 0.0495

TCC 0.1220 0.0668 0.0613 0.0611

PNLT 1.1822 1.1774 0.9521 0.9213

θηT 0.6831 0.5938 0.4281 0.4210

θmT
0.0614 0.0342 0.0322 0.0341

(b)

Output N = 10 N = 50 N = 100 N = 200

TC 0.4118 0.3013 0.2451 0.2510

PC 1.5231 1.4867 1.3047 1.3045

N 1.1148 0.0806 0.0655 0.06122

TT 0.3147 0.2338 0.2001 0.2170

PT 2.6250 2.6287 2.2830 2.3030
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Table 6.6: Estimation MAE% using different number of ensembles for the exact EnKF method

(a) states and (b) measurement outputs (N/C means not convergent).
(a)

State N = 10 N = 50 N = 100 N = 200

PCC N/C 0.3355 0.3022 0.3020

N N/C 0.0504 0.0492 0.0497

TCC N/C 0.0714 0.0661 0.0670

PNLT N/C 0.2254 0.2142 0.2145

θηT N/C 0.3021 0.2815 0.2781

θmT
N/C 0.0746 0.0526 0.0532

(b)

Output N = 10 N = 50 N = 100 N = 200

TC N/C 0.1589 0.1322 0.1323

PC N/C 1.1821 1.1620 1.1400

N N/C 0.0504 0.0454 0.0427

TT N/C 0.1353 0.1132 0.1151

PT N/C 2.3484 2.2550 2.2260
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Figure 6.1: Estimated states corresponding to N = 100 by using the TTS-EnKF and the Exact

EnKF approaches.

To show the effect of ε in the performance of both exact EnKF, and TTS-EnKF methods,

the degradation scenario is repeated with different ε magnitudes and selecting N = 100, as

presented in Tables 6.7, and 6.8. The summarized results in these two tables show that the

estimation accuracy of the TTS-EnKF is not affected by ε, whereas exact EnKF estimation
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Figure 6.2: Estimated outputs corresponding to N = 100 by using the TTS-EnKF and the

Exact EnKF approaches.

accuracy is highly related to ε such that for ε values less than or equal to 0.001 the algorithm

becomes ill-conditioned and cannot converge.

Table 6.7: Estimation MAE% using different values of ε for the TTS-EnKF method (a) states

and (b) measurement outputs.
(a)

State ε = 0.005 ε = 0.003 ε = 0.001 ε = 0.0001

PCC 0.6532 0.6481 0.6320 0.6505

N 0.0515 0.05000 0.05325 0.05260

TCC 0.0613 0.0608 0.0615 0.0611

PNLT 0.9521 0.9484 0.9511 0.9491

θηT 0.4281 0.4312 0.4255 0.4380

θmT
0.0322 0.0356 0.0327 0.0351

(b)

Output ε = 0.005 ε = 0.003 ε = 0.001 ε = 0.0001

TC 0.2451 0.2266 0.2219 0.2205

PC 1.3047 1.3164 1.3083 1.3085

N 0.0655 0.0602 0.0637 0.0652

TT 0.2001 0.2109 0.2012 0.2149

PT 2.2830 2.2583 2.2530 2.3072
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Table 6.8: Estimation MAE% using different values of ε for the exact EnKF method (a) states

and (b) measurement outputs (N/C means not convergent).
(a)

State ε = 0.005 ε = 0.003 ε = 0.001 ε = 0.0001

PCC 0.3022 0.6255 N/C N/C

N 0.0492 0.0651 N/C N/C

TCC 0.0661 0.1200 N/C N/C

PNLT 0.2142 0.3541 N/C N/C

θηT 0.2815 0.4537 N/C N/C

θmT
0.0526 0.1070 N/C N/C

(b)

Output ε = 0.005 ε = 0.003 ε = 0.001 ε = 0.0001

TC 0.1322 0.2220 N/C N/C

PC 1.1620 1.2811 N/C N/C

N 0.0454 0.0567 N/C N/C

TT 0.1132 0.2112 N/C N/C

PT 2.2550 2.6372 N/C N/C

6.5.4 Erosion Prediction Results

In this scenario, our prediction strategy that is developed based on the two-time scale EnKF

method is utilized to predict the propagation of the system states (fast states) and the turbine

health parameters (slow states) when the degradation due to the erosion has affected the system

during its entire operating horizon (that is 500 cycles of flight).

For the prediction case study, N = 100 is selected for both the TTS-EnKF and the exact

EnKF schemes. However, the prediction case study also includes the classical PF-based predic-

tion method [55] (according to the results of Subsection 6.4.4) using 100 particles in order to

compare the execution time of all the three methods as a measure of EF complexity that was

described in Subsection 6.4.4.

The prediction horizon is also extended from the 100 steps-ahead to 500 steps-ahead and the

MAE% results corresponding to the first and the last prediction windows are provided in Tables
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6.9 and 6.10, respectively. These results are in accordance with those shown in Figures 6.3 and

6.4 for the state and the output prediction results. From the results shown in the two tables and

two figures, one can realize that the PF-based prediction algorithm with 100 particles does not

show an acceptable prediction performance. In other words, beyond the 100 steps-ahead predic-

tion horizon the MAE% increases drastically for both the state and output prediction results. On

the other hand, as the prediction horizon extends, the MAE% also increases for prediction results

associated with both the exact EnKF and the TTS-EnKF approaches. However, the TTS-EnKF

scheme shows a better prediction accuracy results as compared to the exact EnKF method. For

example, the maximum 100 steps-ahead MAE% for θηT prediction using the TTS-EnKF method

is 0.34%, whereas it is around 0.42% for the exact EnKF scheme. We emphasize here again that

for this specific scenario with ε = 0.005 the exact EnKF method does not diverge.

Finally, the execution time associated with one iteration of each scheme is measured and

provided in Table 6.11. The results show a large difference between the PF-based prediction

scheme execution time and that associated with and compared to the EnKF-based approaches.

Table 6.9: 100-step ahead prediction MAE% using three different methods (a) states and (b)

measurement outputs.

(a)

State TTS-EnKF Exact EnKF PF-Based Method

PCC 0.2118 0.2843 0.4149

N 0.0474 0.0816 0.1017

TCC 0.1220 0.1437 0.1653

PNLT 0.2854 0.3778 0.6373

θηT 0.3439 0.4283 0.5030

θmT
0.0087 0.0099 0.0109

(b)

Output TTS-EnKF Exact EnKF PF-Based Method

TC 0.1052 0.1232 0.1895

PC 1.3338 1.3285 1.3801

N 0.0474 0.0816 0.1017

TT 0.1989 0.2090 0.1937

PT 1.8963 1.8666 1.9765
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Table 6.10: 500-step ahead prediction MAE% using three different methods (a) states and (b)

measurement outputs.

(a)

State TTS-EnKF Exact EnKF PF-Based Method

PCC 1.0542 1.2994 3.5630

N 0.5168 0.6374 1.7717

TCC 0.5700 0.7287 1.9753

PNLT 1.2063 1.5131 4.0037

θηT 1.8358 2.1622 6.4120

θmT
0.0287 0.0342 0.1037

(b)

Output TTS-EnKF Exact EnKF PF-Based Method

TC 0.3993 0.4859 1.4007

PC 1.6270 1.7990 3.8850

N 0.5168 0.6374 1.7717

TT 1.1358 1.3814 3.9448

PT 2.2675 2.3229 4.1315

Table 6.11: Time Complexity Analysis for the TTS-EnKF, Exact EnKF and the PF-Based

Prediction Methods in seconds corresponding to one iteration of each scheme.

Method Best Scenario Average Scenario Worst Scenario

TTS-EnKF 1.1676 1.3112 2.9235

Exact EnKF 0.8898 0.9310 1.0020

PF-based 24.4211 33.5490 64.0247
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Figure 6.3: Predicted states corresponding to N = 100 by using the TTS-EnKF, the Exact

EnKF and the PF-based approaches.

239



0 100 200 300 400 500
570

575

580

585

590

Time (seconds)

T
e

m
p

e
ra

tu
re

 (
K

e
lv

in
) Compressor Temperature

0 100 200 300 400 500
7.5

8

8.5

9

Time (seconds)

P
re

s
s
u

re
 (

b
a

r)

Compressor Pressure

0 100 200 300 400 500
1.1

1.12

1.14

1.16
x 10

4

Time (seconds)

S
p

e
e

d
 (

rp
m

)

Spool Speed (N)

0 100 200 300 400 500
850

900

950

1000

Time (seconds)

T
e

m
p

e
ra

tu
re

 (
K

e
lv

in
) Turbine Temperature

0 100 200 300 400 500

2.6

2.8

3

3.2

Time (seconds)

P
re

s
s
u

re
 (

b
a

r)

Turbine Pressure

 

 

TTS−EnKF

Exact EnKF

PF−Based

Real Output

 (Cycles)

 (Cycles)

  (Cycles)

  (Cycles)

  (Cycles)

Figure 6.4: Predicted outputs corresponding to N = 100 by using the TTS-EnKF, the Exact

EnKF and the PF-based approaches.
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6.6 Conclusion

In this chapter, a novel two-time scale estimation filter is developed and designed based on an

ensemble Kalman filtering (En-KF) approach to estimate the fast and slow states of a nonlinear

system. One of the main applications of our proposed estimation strategy is in investigating

the health monitoring and damage tracking problems. Based on our developed estimation al-

gorithm, a two-time scale prediction methodology is also proposed to predict the long-term

behavior of the system dynamical states. Our proposed estimation and prediction methodolo-

gies were applied to a gas turbine engine system to illustrate and validate our results when the

system is affected by a gradual degradation damage. The resulting estimation and prediction

observations indicate an acceptable performance of our methods and confirm that our strategy

is quiet suitable for further investigation in the domain of health and condition monitoring re-

search.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, the health monitoring framework for nonlinear systems was considered to ad-

dress the prognosis problem in dynamical systems. Towards this end, two different problem

formulation strategies have been utilized to include the damage mechanism which affects the

system dynamics. Consequently, each damage modeling formulation strategy has led to a dif-

ferent health monitoring framework. Both of these frameworks include two main steps namely,

the estimation and the prediction steps that are based on nonlinear filtering methodologies. The

developed estimation and prediction methodologies in this thesis are considered as either en-

hancement of the current Monte Carlo based estimation/prediction methods or proposing new

filtering methodologies.
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In Chapter 2, the necessary background information regarding the gas turbine engine system,

as the main case study considered in this thesis, have been presented. The degradation due to

fouling and erosion damages have also been formulated in this chapter.

In Chapter 3, a dual estimation methodology is developed for both time-varying parame-

ters and states of a nonlinear system based on the Recursive Prediction Error (RPE) concept

and the Particle Filtering (PF) scheme. Our developed methodology in based on a concurrent

implementation of state and parameter estimation filters as opposed to using a single filter for

simultaneously estimating the augmented states and parameters. The convergence and stability

of our proposed dual estimation strategy are shown formally to be guaranteed under certain con-

ditions. The proposed dual estimation framework is then utilized for addressing the challenging

problem of fault diagnosis of nonlinear systems. The performance capabilities of our proposed

fault diagnosis methodology is demonstrated and evaluated by the application to a gas turbine

engine through accomplishing state and parameter estimation under simultaneous and concur-

rent component fault scenarios. The health parameters of the system are considered to be slowly

time-varying during the engine operation. Extensive simulation results are provided to substan-

tiate and justify the superiority of our proposed fault diagnosis methodology when compared to

another well-known alternative diagnostic technique that is available in the literature.

In Chapter 4, an improved method for uncertainty management in long-term prediction of

nonlinear systems by using particle filters was developed. In our proposed approach, an obser-

vation forecasting scheme is developed to extend the system observation profiles (as time-series)

to future. Particles are then propagated to future time instants according to a resampling algo-
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rithm instead of considering constant weights for the particles propagation in the prediction step.

The uncertainty in the long-term prediction of the system states and parameters are managed by

utilizing dynamic linear models for development of an observation forecasting scheme. This

task is addressed through an outer adjustment loop for adaptively changing the sliding obser-

vation injection window based on the Mahalanobis distance criterion. Our proposed approach

is then applied to predict the health condition of a gas turbine engine that is affected by degra-

dations in the system health parameters for demonstrating and illustrating the capabilities and

performance characteristics of developed schemes.

In Chapter 5, the proposed prediction method in Chapter 4 is utilized to develop a hybrid

architecture for prognosis and health monitoring of nonlinear systems by integration of model-

based and computationally intelligent-based techniques. In our proposed framework the well-

known particle filter method is utilized to estimate the states as well as the health parameters of

the system. Simultaneously, the system observations are predicted through an observation fore-

casting scheme that is developed based on neural network paradigms to construct observation

profiles for future time horizons. Our proposed on-line training process for observation fore-

casting enables the neural network model to track the non-ergodic changes in the observations

profiles, whereas such behavior happens as a result of hidden damage that affects the system

health parameters. The forecasted observations are utilized in the particle filters to predict evo-

lution of the system states as well as health parameters (these are considered to be time-varying

due to effects of degradation and damage) into future time horizons. The proposed hybrid archi-

tecture enables one to select health signatures for determining the remaining useful life (RUL) of

the system or its components not only based on the system observations but also by taking into
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account the system health parameters that are not physically measurable. Our proposed hybrid

health monitoring methodology is constructed based on the framework which is not dependent

on the structure of the neural network model utilized in the implementation of the observation

forecasting scheme, however changing the neural network model structure in this framework

does not affect the prediction accuracy of the entire health prediction algorithm, significantly.

As a case study, our proposed hybrid approach is also applied to predict the health condition of

a gas turbine engine when it is affected by fouling and erosion degradation and fault damages.

In Chapter 6, another popular method for formulation of health monitoring problem in dy-

namical systems is utilized which suggests to model the dynamics of the damage mechanism

as a slow state augmented to the system fast dynamical equations. This augmentation results in

a two-time scale system to be investigated in the system health estimation and prediction steps

of the health monitoring framework. In this chapter, a two-time scale filtering approach is de-

veloped for this purpose based on the ensemble Kalman filtering approach by taking advantage

of the model reduction concept. The performance of the proposed two-time scale ensemble

Kalman filter is shown to be more accurate and less expensive in terms of equivalent flop com-

plexity, as compared to the well-known particle filtering approach. By utilizing the augmenta-

tion of state equations and damage mechanism, our developed two-time scale ensemble Kalman

filter is applied for health monitoring of a gas turbine engine when it is assumed to be affected

by degradation phenomenon, i.e. erosion of the turbine, as the damage mechanism.

In conclusion, two main frameworks for addressing the health monitoring problem of non-

linear systems which are subjected to degradation damage, are presented. While in the first
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framework (Chapters 3 to 5) it is assumed that the dynamic of the damage is not known and

it is modeled based on its effect on the system health parameters, in the second framework the

mathematical model corresponding to damage propagation is assumed to be known (Chapter

6). Therefore, the prediction results obtained from the second framework can be extended for

longer prediction horizon as compared to the ones obtained from the first framework. However,

in the case that more accurate model for damage propagation is accessible, the second approach

is preferred, otherwise the first approach can be more general for addressing the health moni-

toring and prognosis problems in nonlinear systems.

The proposed methodologies in this thesis are applied to component fault diagnosis and/or

failure prognosis of a gas turbine engine model simulating under different degradation scenarios.

All the simulations and codings are performed by utilizing the powerful MATLAB software.

7.2 Suggestions for Future Work

Some of the future extensions of the present research are as follows:

1. To develop an optimal, computationally efficient parameter estimation approach based

on particle filters (which is an open problem in the domain of estimation theory) and to

investigate the optimality gap of using the proposed sub-optimal solutions for parameter

estimation problem.

2. To extend the proposed framework based on particle filters to include more complicated

damage models of the physical dynamical systems. The uncertainty in the damage dy-
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namics can be modelled as time-varying parameters to be estimated.

3. To extend the proposed methodology for prediction based on the combination of particle

filters and observation forecasting module by utilizing multi-variate time series forecast-

ing methods such that the prediction horizon can be extended with lower prediction error.

4. To develop a hybrid health monitoring and prognosis framework based on the combination

of data-driven and EnKF approaches to make case for utilization of EnKF method for

problems with non-Gaussian process and measurement noises.

5. To investigate the utilization of the EnKF approach as a solid and computationally effi-

cient alternative method for particle filters in prognosis and health monitoring applications

and identify the limitations to achieve this goal. The EnKF approach has not been studied

extensively in health monitoring and prognosis applications.

6. To develop an optimal solution for the EnKF problem inspired from the convergence

results for particle filters as developed in [169] considering that in EnKF resampling step

does not exist. The convergence of EnKF to Kalman filter in linear case has only been

shown so far.

7. To propose novel prognosis metrics to quantify the judgements regarding the RUL and

EOL predictions which would not be application specific. Most of the prognosis metrics

which are available in the literature are ad-hoc and application specific. On the other hand,

they only rely on the RUL and EOL prediction results whereas in prognosis the RUL pre-

diction accuracy is closely related to the performance of either estimation or prediction

steps before predicting RUL and/or EOL. Therefore, introducing a metric that is capa-
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ble of taking into account the effect of uncertainty regarding the estimation/prediction

approach which is selected to predict RUL, can be rewarding.
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[76] A. Doucet and V. B. Tadić. Parameter estimation in general state-space models using

particle methods. Annals of the institute of Statistical Mathematics, 55(2):409–422, 2003.

[77] M. West. Mixture models, Monte Carlo, Bayesian updating, and dynamic models. Com-

puting Science and Statistics, 24:325–325, 1993.

[78] T. Flury and N. Shephard. Bayesian inference based only on simulated likelihood: par-

ticle filter analysis of dynamic economic models. Econometric Theory, 27(05):933–956,

2011.

[79] N. Kantas, A. Doucet, S. Singh, and J. Maciejowski. An overview of sequential Monte

Carlo methods for parameter estimation in general state-space models. In the IFAC Sym-

posium on System Identification (SYSID), 2009.

[80] G. Poyiadjis, A. Doucet, and S. Singh. Particle methods for optimal filter derivative:

Application to parameter estimation. In the IEEE International Conference on Acoustics,

Speech, and Signal Processing, (ICASSP’05), volume 5, pages v–925, 2005.

260



[81] G. Poyiadjis, A. Doucet, and S. Singh. Particle approximations of the score and ob-

served information matrix in state space models with application to parameter estimation.

Biometrika, 98(1):65–80, 2011.

[82] T. Schön, A. Wills, and B. Ninness. System identification of nonlinear state-space mod-

els. Automatica, 47(1):39–49, 2011.

[83] J. Westerborn and J. Olsson. Efficient particle-based online smoothing in general hidden

Markov models. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 8003–8007, 2014.

[84] A. Doucet, M. K. Pitt, G. Deligiannidis, and R. Kohn. Efficient implementation of

Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika,

page asu075, 2015.

[85] J. Sun, H. Zuo, and M. G. Pecht. Advances in sequential Monte Carlo methods for joint

state and parameter estimation applied to prognostics. In Prognostics and System Health

Managment Confernece, pages 1–7. IEEE, 2011.

[86] B. E. Olivares, C. Muñoz, M. E. Orchard, and J. F. Silva. Particle-filtering-based prog-

nosis framework for energy storage devices with a statistical characterization of state-of-

health regeneration phenomena. IEEE Transactions on Instrumentation and Measure-

ment, 62(2):364–376.

261



[87] M. Jouin, R. Gouriveau, D. Hissel, M. Péra, and N. Zerhouni. Particle filter-based prog-

nostics: Review, discussion and perspectives. Mechanical Systems and Signal Process-

ing, 72:2–31, 2016.

[88] M. Samadi and M. Saif. Health monitoring of li-ion batteries: A particle filtering ap-

proach. In IEEE 24th International Symposium on Industrial Electronics (ISIE), pages

831–836, 2015.

[89] D. A. Pola, H. F. Navarrete, M. E. Orchard, R. S. Rabie, M. A. Cerda, B. E. Olivares, J. F.

Silva, P. A. Espinoza, and A. Perez. Particle-filtering-based discharge time prognosis for

lithium-ion batteries with a statistical characterization of use profiles. IEEE Transactions

on Reliability, 64(2):710–720, 2015.

[90] M. Orchard, F. Tobar, and G. Vachtsevanos. Outer feedback correction loops in particle

filtering-based prognostic algorithms: Statistical performance comparison. Studies in

Informatics and Control, 18(4):295–304, 2009.

[91] M. Orchard, L. Tang, B. Saha, K. Goebel, and G. Vachtsevanos. Risk-sensitive particle-

filtering-based prognosis framework for estimation of remaining useful life in energy

storage devices. Studies in Informatics and Control, 19(3):209–218, 2010.

[92] S. Sankararaman. Significance, interpretation, and quantification of uncertainty in prog-

nostics and remaining useful life prediction. Mechanical Systems and Signal Processing,

52:228–247, 2015.

[93] H. Khalil and J. Grizzle. Nonlinear systems, volume 3. Prentice hall New Jersey, 1996.

262



[94] V. R. Saksena, J. O’reilly, and P. Kokotovic. Singular perturbations and time-scale meth-

ods in control theory: survey 1976–1983. Automatica, 20(3):273–293, 1984.

[95] H. E. Rauch. Order reduction in estimation with singular perturbation. In 4 th Symposium

on Nonlinear Estimation Theory and Its Applications, pages 231–241, 1974.

[96] A. H. Haddad. Linear filtering of singularly perturbed systems. IEEE Transactions on

Automatic Control, 21(4):515–519, 1976.

[97] Z. Gajic and M. Lim. A new filtering method for linear singularly perturbed systems.

IEEE Transactions on Automatic Control, 39(9):1952–1955, 1994.

[98] X. Shen, M. Rao, and Y. Ying. Decomposition method for solving Kalman filter gains in

singularly perturbed systems. Optimal Control Applications and Methods, 14(1):67–73,

1993.

[99] K. W. Chang. Singular perturbations of a general boundary value problem. SIAM Journal

on Mathematical Analysis, 3(3):520–526, 1972.

[100] D. S. Naidu and A. Rao. Singular perturbation analysis of discrete control systems,

volume 1154. Springer-Verlag Berlin, 1985.

[101] D. S. Naidu. Singular perturbation methodology in control systems. Number 34. IET,

1988.

263



[102] B. S. Kim, Y. J. Kim, and M. T. Lim. LQG control for nonstandard singularly per-

turbed discrete-time systems. Journal of dynamic systems, measurement, and control,

126(4):860–864, 2004.

[103] M. R. Azimi-Sadjadi and K. Khorasani. Reduced order strip Kalman filtering using

singular perturbation method. IEEE Transactions on Circuits and Systems, 37(2):284–

290, 1990.

[104] A. Rao and D. S. Naidu. Singular perturbation method for Kalman filter in discrete

systems. In IEE Proceedings on Control Theory and Applications, volume 131, pages

39–46, 1984.

[105] D. S. Naidu, C. Charalambous, K. L. Moore, and M. A. Abdelrahma. H∞-optimal control

of singularly perturbed discrete-time systems, and risk-sensitive control. In the 33rd IEEE

Conference on Decision and Control, volume 2, pages 1706–1711, 1994.

[106] M. Aliyu and E. Boukas. H∞-filtering for singularly perturbed nonlinear systems. Inter-

national Journal of Robust and Nonlinear Control, 21(2):218–236, 2011.

[107] J. H. Park, H. C. Yeong, and N. S. Namachchivaya. Particle filters in a multiscale environ-

ment: homogenized hybrid particle filter. Journal of Applied Mechanics, 78(6):061001,

2011.

[108] P. Imkeller, N. S. Namachchivaya, N. Perkowski, and H. C. Yeong. A homogenization

approach to multiscale filtering. Procedia IUTAM, 5:34–45, 2012.

264



[109] N. Daroogheh, N. Meskin, and K. Khorasani. Robust hybrid EKF approach for state es-

timation in multi-scale nonlinear singularly perturbed systems. In 53rd IEEE Conference

on Decision and Control, pages 1047–1054, 2014.

[110] A. Gelb. Applied optimal estimation. MIT press, 1974.

[111] F. E. Daum. Exact finite-dimensional nonlinear filters. IEEE Transactions on Automatic

Control, 31(7):616–622, 1986.

[112] A. J. Krener and A. Duarte. A hybrid computational approach to nonlinear estimation. In

the 35th IEEE Conference on Decision and Control, volume 2, pages 1815–1819, 1996.

[113] C. Jaganath, A. Ridley, and D. S. Bernstein. A SDRE-based asymptotic observer for

nonlinear discrete-time systems. In the American Control Conference, pages 3630–3635,

2005.

[114] A. Smith, A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo methods in

practice. Springer Science & Business Media, 2013.

[115] G. Evensen. Sequential data assimilation for nonlinear dynamics: the ensemble Kalman

filter. In Ocean Forecasting, pages 97–116. Springer, 2002.

[116] G. Evensen. The ensemble Kalman filter: Theoretical formulation and practical imple-

mentation. Ocean dynamics, 53(4):343–367, 2003.

[117] S. Gillijns and B. De Moor. Model error estimation in ensemble data assimilation. Non-

linear Processes in Geophysics, 14(1):59–71, 2007.

265



[118] J. Mandel, L. Cobb, and J. D. Beezley. On the convergence of the ensemble Kalman

filter. Applications of Mathematics, 56(6):533–541, 2011.

[119] H. Moradkhani, S. Sorooshian, H. Gupta, and P. R. Houser. Dual state–parameter estima-

tion of hydrological models using ensemble Kalman filter. Advances in Water Resources,

28(2):135–147, 2005.

[120] S. Gillijns, O. B. Mendoza, J. Chandrasekar, B. De Moor, D. S. Bernstein, and A. Ridley.

What is the ensemble kalman filter and how well does it work? In American Control

Conference, pages 6–pp, 2006.

[121] G. Triantafyllou, I. Hoteit, X. Luo, K. Tsiaras, and G. Petihakis. Assessing a robust

ensemble-based Kalman filter for efficient ecosystem data assimilation of the cretan sea.

Journal of Marine Systems, 125:90–100, 2013.

[122] G. Evensen. The ensemble Kalman filter for combined state and parameter estimation.

IEEE Control Systems, 29(3):83–104, 2009.

[123] E. Ott, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay,

D. Patil, and J. A. Yorke. A local ensemble Kalman filter for atmospheric data assimila-

tion. Tellus A, 56(5):415–428, 2004.

[124] J. L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Monthly

weather review, 129(12):2884–2903, 2001.

266



[125] J. L. Anderson and S. L. Anderson. A Monte Carlo implementation of the nonlinear

filtering problem to produce ensemble assimilations and forecasts. Monthly Weather

Review, 127(12):2741–2758, 1999.

[126] P. Sakov and P. R. Oke. A deterministic formulation of the ensemble Kalman filter: an

alternative to ensemble square root filters. Tellus A, 60(2):361–371, 2008.

[127] S. J. Greybush, E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt. Balance and ensemble

Kalman filter localization techniques. Monthly Weather Review, 139(2):511–522, 2011.

[128] S. Otsuka and T. Miyoshi. A Bayesian optimization approach to multimodel ensem-

ble kalman filter with a low-order model. Monthly Weather Review, 143(6):2001–2012,

2015.

[129] I. Fukumori and P. Malanotte-Rizzoli. An approximate kaiman filter for ocean data as-

similation: An example with an idealized gulf stream model. Journal of Geophysical

Research: Oceans (1978–2012), 100(C4):6777–6793, 1995.

[130] M. A. Cane, A. Kaplan, R. N. Miller, B. Tang, E. C. Hackert, and A. J. Busalacchi.

Mapping tropical pacific sea level: Data assimilation via a reduced state space Kalman

filter. Journal of Geophysical Research: Oceans (1978–2012), 101(C10):22599–22617,

1996.

[131] G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model us-

ing Monte Carlo methods to forecast error statistics. Journal of Geophysical Research:

Oceans, 99(C5):10143–10162, 1994.

267



[132] E. Kwiatkowski and J. Mandel. Convergence of the square root ensemble Kalman filter in

the large ensemble limit. SIAM/ASA Journal on Uncertainty Quantification, 3(1):1–17,

2015.

[133] M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker. Ensemble

square root filters. Monthly Weather Review, 131(7):1485–1490, 2003.

[134] C. H. Bishop, B. J. Etherton, and S. J. Majumdar. Adaptive sampling with the ensemble

transform Kalman filter. part I: Theoretical aspects. Monthly weather review, 129(3):420–

436, 2001.

[135] R. J. Lorentzen and G. Nævdal. An iterative ensemble Kalman filter. IEEE Transactions

on Automatic Control, 56(8):1990–1995, 2011.

[136] G. Niu. Data-driven Technology for Engineering System Health Management: Design

Approach, Feature Construction, Fault Diagnosis, Prognostics, Fusion and Decisions.

Springer, 2016.

[137] S. Shrikhande, P. Varde, and D. Datta. Prognostics and health management: Methodolo-

gies & soft computing techniques. In Current Trends in Reliability, Availability, Main-

tainability and Safety Conference, pages 213–227. 2016.

[138] L. Cristaldi, G. Leone, R. Ottoboni, S. Subbiah, and S. Turrin. A comparative study on

data-driven prognostic approaches using fleet knowledge. In IEEE International Instru-

mentation and Measurement Technology Conference Proceedings, pages 1–6, 2016.

268



[139] V. George, L. Frank, R. Michael, H. Andrew, and W. Biqing. Intelligent fault diagnosis

and prognosis for engineering systems, 2006.

[140] ZN.S. Vanini, N. Meskin, and K. Khorasani. Multiple-model sensor and components

fault diagnosis in gas turbine engines using autoassociative neural networks. Journal of

Engineering for Gas Turbines and Power, 136(9):091603, 2014.

[141] ZN.S. Vanini, K. Khorasani, and N. Meskin. Fault detection and isolation of a dual

spool gas turbine engine using dynamic neural networks and multiple model approach.

Information Sciences, 259:234–251, 2014.

[142] M. S. Jha, G. Dauphin-Tanguy, and B. Ould-Bouamama. Particle filter based hybrid prog-

nostics for health monitoring of uncertain systems in bond graph framework. Mechanical

Systems and Signal Processing, 75:301–329, 2016.

[143] R. Razavi-Far, M. Farajzadeh-Zanjani, S. Chakrabarti, and M. Saif. Data-driven prognos-

tic techniques for estimation of the remaining useful life of lithium-ion batteries. In IEEE

International Conference on Prognostics and Health Management (ICPHM), pages 1–8,

2016.

[144] J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel. Prognostics and health man-

agement design for rotary machinery systems, reviews, methodology and applications.

Mechanical Systems and Signal Processing, 42(1):314–334, 2014.

269



[145] E. Tsoutsanis, N. Meskin, M. Benammar, and K. Khorasani. Transient gas turbine perfor-

mance diagnostics through nonlinear adaptation of compressor and turbine maps. Journal

of Engineering for Gas Turbines and Power, 137(9):091201, 2015.

[146] S. Rahme and N. Meskin. Adaptive sliding mode observer for sensor fault diagnosis of

an industrial gas turbine. Control Engineering Practice, 38:57–74, 2015.

[147] A. K. Jardine, D. Lin, and D. Banjevic. A review on machinery diagnostics and prog-

nostics implementing condition-based maintenance. Mechanical systems and signal pro-

cessing, 20(7):1483–1510, 2006.

[148] E. Tsoutsanis, N. Meskin, M. Benammar, and K. Khorasani. Dynamic performance

simulation of an aeroderivative gas turbine using the matlab simulink environment. In

ASME 2013 International Mechanical Engineering Congress and Exposition. American

Society of Mechanical Engineers.

[149] M. Schwabacher. A survey of data-driven prognostics. In the AIAA Infotech Aerospace

Conference, pages 1–5, 2005.

[150] C. Chen, B. Zhang, and G. Vachtsevanos. Prediction of machine health condition us-

ing neuro-fuzzy and Bayesian algorithms. IEEE Transactions on instrumentation and

Measurement, 61(2):297–306, 2012.

[151] B. T. Thumati, M. A. Feinstein, and S. Jagannathan. A model-based fault detection

and prognostics scheme for takagi–sugeno fuzzy systems. IEEE Transactions on Fuzzy

Systems, 22(4):736–748, 2014.

270



[152] N. Puggina and M. Venturini. Development of a statistical methodology for gas turbine

prognostics. Journal of Engineering for Gas Turbines and Power, 134(2):022401, 2012.

[153] Y. Zhou and M. Huang. Lithium-ion batteries remaining useful life prediction based

on a mixture of empirical mode decomposition and ARIMA model. Microelectronics

Reliability, 2016.

[154] Z. Wang, L. Liu, H. Zhang, and G. Xiao. Fault-tolerant controller design for a class

of nonlinear MIMO discrete-time systems via online reinforcement learning algorithm.

IEEE Transactions on Systems, Man and Cybernetics, 45(5):611–622, 2016.

[155] C. Chen, B. Zhang, G. Vachtsevanos, and M. Orchard. Machine condition prediction

based on adaptive neuro–fuzzy and high-order particle filtering. IEEE Transactions on

Industrial Electronics, 58(9):4353–4364, 2011.

[156] F. O. Heimes. Recurrent neural networks for remaining useful life estimation. In IEEE

Prognostics and Health Management Conference (PHM), pages 1–6, 2008.

[157] E. Naderi, N. Meskin, and K. Khorasani. Nonlinear fault diagnosis of jet engines by

using a multiple model-based approach. Journal of Engineering for Gas Turbines and

Power, 134(1):011602, 2012.

[158] N. Meskin, E. Naderi, and K. Khorasani. A multiple model-based approach for fault

diagnosis of jet engines. IEEE Transactions on Control Systems Technology, 21(1):254–

262, 2013.

[159] N L R Group. Gsp software, June 2011.

271



[160] M. Naeem, R. Singh, and D. Probert. Implications of engine deterioration for creep life.

Applied energy, 60(4):183–223, 1998.

[161] N. Daroogheh, A. Vatani, M. Gholamhossein, and K. Khorasani. Engine life evalua-

tion based on a probabilistic approach. In ASME International Mechanical Engineering

Congress and Exposition, pages 347–358, 2012.

[162] M. Naeem, R. Singh, and D. Probert. Implications of engine deterioration for a high-

pressure turbine-blade’s low-cycle fatigue (LCF) life-consumption. International journal

of fatigue, 21(8):831–847, 1999.

[163] S. Haykin. Kalman filtering and neural networks. Wiley Online Library, 2001.

[164] F. L. Lewis and F. Lewis. Optimal estimation: with an introduction to stochastic control

theory. Wiley New York et al., 1986.

[165] L. Ljung and T. Söderström. Theory and practice of recursive identification. MIT press,

1983.

[166] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle fil-

ters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal

Processing, 50(2):174–188, 2002.

[167] C. Musso, N. Oudjane, and F. LeGland. Improving regularised particle filters. Sequential

Monte Carlo methods in practice, pages 247–271, 2001.

272



[168] A. Budhiraja, L. Chen, and C. Lee. A survey of numerical methods for nonlinear filtering

problems. Physica D: Nonlinear Phenomena, 230(1):27–36, 2007.

[169] H. Xiao-Li, T. Schon, and L. Ljung. A general convergence result for particle filtering.

IEEE Transactions on Signal Processing, 59(7):3424–3429, 2011.

[170] R. Karlsson, T. Schön, and F. Gustafsson. Complexity analysis of the marginalized par-

ticle filter. IEEE Transactions on Singnal Processing, 53(11):4408–4411, 2005.

[171] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S.N. Kavuri. A review of process

fault detection and diagnosis: Part I: Quantitative model-based methods. Computers &

Chemical Engineering, 27(3):293–311, 2003.

[172] R. Isermann. Process fault detection based on modeling and estimation methods - a

survey. Automatica, 20(4):387–404, 1984.

[173] D. Wang, M. Yu, C. B. Low, and S. Arogeti. Model-based Health Monitoring of Hybrid

Systems. Springer, 2013.

[174] S. Simani. Model-based fault diagnosis in dynamic systems using identification tech-

niques. PhD thesis, dell Universita di Ferrara, 2003.

[175] R. Kohavi and F. Provost. Confusion matrix. Machine Learning, 30(2-3):271–274, 1998.

[176] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel. Metrics for offline evaluation of

prognostic performance. International Journal of Prognostics and Health Management,

1(1):4–23, 2010.

273



[177] A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha, and M. Schwabacher.

Metrics for evaluating performance of prognostic techniques. In International Confer-

ence on Prognostics and Health Management, 2008.

[178] S. Uckun, K. Goebel, and P. Lucas. Standardizing research methods for prognostics. In

International Conference on Prognostics and Health Management, 2008.

[179] X. Guan, Y. Liu, R. Jha, A. Saxena, J. Celaya, and K. Geobel. Comparison of two prob-

abilistic fatigue damage assessment approaches using prognostic performance metrics.

International Journal of Prognostics and Health Management, 1(005), 2011.

[180] M. Daigle and K. Goebel. Multiple damage progression paths in model-based prognos-

tics. In IEEE Aerospace Conference, 2011.

[181] M. E. Orchard, L. Tang, K. Goebel, and G. Vachtsevanos. A novel RSPF approach

to prediction of high-risk, low-probability failure events. In Annual Conference of the

Prognostics and Health Management Society, 2009.

[182] L. Tang, M. E. Orchard, K. Goebel, and G. Vachtsevanos. Novel metrics and method-

ologies for the verification and validation of prognostic algorithms. In IEEE Aerospace

Conference, pages 1–8, 2011.

[183] J. Harrison and M. West. Bayesian Forecasting & Dynamic Models. Springer, 1999.

[184] A. Soylemezoglu, S. Jagannathan, and C. Saygin. Mahalanobis-taguchi system as a

multi-sensor based decision making prognostics tool for centrifugal pump failures. IEEE

Transactions on Reliability, 60(4):864–878, 2011.

274



[185] N. Daroogheh, N. Meskin, and K. Khorasani. A novel particle filter parameter prediction

scheme for failure prognosis. In American Control Conference, 2014, pages 1735–1742,

2014.

[186] A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. Cam-

bridge University Press, 1990.

[187] G. Verdier and A. Ferreira. Adaptive Mahalanobis distance and k -nearest neighbor rule

for fault detection in semiconductor manufacturing. IEEE Transactions on Semiconduc-

tor Manufacturing, 24(1):59–68, 2011.

[188] L. Ljung. System Identification: Theory for the User. Prentice Hall Information and

System Sciences Series, New Jersey, 7632, 1987.

[189] J. D. Hamilton. Time series analysis, volume 2. Princeton university press Princeton,

1994.

[190] S. Jaggia. Forecasting with ARMA models. Case Studies In Business, Industry And

Government Statistics, 4(1):59–65, 2014.

[191] E. Ahmed, A. Clark, and G. Mohay. A novel sliding window based change detection

algorithm for asymmetric traffic. In IEEE International Conference on Network and

Parallel Computing, pages 168–175, 2008.

[192] R. A. Smith. Matrix equation xa+bx=c. SIAM Journal on Applied Mathematics,

16(1):198–201, 1968.

275



[193] N. Oudjane and C. Musso. Progressive correction for regularized particle filters. In the

Third IEEE International Conference on Information Fusion, volume 2, pages THB2–10,

2000.

[194] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. reprint of the 1952 edition.

cambridge mathematical library, 1988.

[195] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for

Bayesian filtering. Statistics and computing, 10(3):197–208, 2000.

[196] M. Daigle, I. Roychoudhury, S. Narasimhan, S. Saha, B. Saha, and K. Goebel. Inves-

tigating the effect of damage progression model choice on prognostics performance. In

the Annual Conference of the Prognostics and Health Management Society, 2011.

[197] M. Naeem, R. Singh, and D. Probert. Implications of engine’s deterioration upon an

aero-engine HP turbine blade’s thermal fatigue life. International journal of fatigue,

22(2):147–160, 2000.

[198] Y. Li and P. Nilkitsaranont. Gas turbine performance prognostic for condition-based

maintenance. Applied Energy, 86:2152–2161, 2009.

[199] N. Daroogheh, A. Baniamerian, N. Meskin, and K. Khorasani. Prognosis and health mon-

itoring of nonlinear systems using a hybrid scheme through integration of particle filters

and neural networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

PP(99):1–15, 2016.

276



[200] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for

Bayesian filtering. Statistics and computing, 10(3), 2000.

[201] Q. Zhang and A. Benveniste. Wavelet networks. IEEE Transactions on Neural Networks,

3(6):889–898, 1992.

[202] M. T. Hagan and M. B. Menhaj. Training feedforward networks with the marquardt

algorithm. IEEE Transactions on Neural Networks, 5(6):989–993, 1994.

[203] X. Si, W. Wang, C. Hu, and D. Zhou. Remaining useful life estimation–a review on the

statistical data driven approaches. European Journal of Operational Research, 213(1):1–

14, 2011.

[204] L. Socha. Exponential stability of singularly perturbed stochastic systems. IEEE Trans-

actions on Automatic Control, 45(3):576–580, 2000.

[205] J. P. Barbot and N. Pantalos. Using symbolic calculus for singularly perturbed nonlinear

systems. In Algebraic Computing in Control, pages 40–49. Springer, 1991.

[206] P. Kokotovic, H. Khali, and J. O’reilly. Singular perturbation methods in control: analy-

sis and design, volume 25. Society for Industrial Mathematics, 1987.

[207] M. Spong, K. Khorasani, and P. Kokotovic. An integral manifold approach to the

feedback control of flexible joint robots. IEEE Journal on Robotics and Automation,

3(4):291–300, 1987.

277



[208] J. P. Barbot, M. Djemai, S. Monaco, and D. Normand-Cyrot. Analysis and control of

nonlinear singularly perturbed systems under sampling. Control and Dynamic Systems,

79:203–246, 1996.

[209] J. P. Barbot, S. Monaco, D. Normand-Cyrot, and N. Pantalos. Discretization schemes for

nonlinear singularly perturbed systems. In the 30th IEEE Conference on Decision and

Control, pages 443–448, 1991.

[210] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of

Fluids Engineering, 82(1):35–45, 1960.

[211] B. Teixeira, J. Chandrasekar, H. J. Palanthandalam-Madapusi, L. Tôrres, L. Aguirre, and

D. S. Bernstein. Gain-constrained kalman filtering for linear and nonlinear systems. IEEE

Transactions on Signal Processing, 56(9):4113–4123, 2008.

[212] C. Kuehn. Multiple Time Scale Dynamics. Springer, 2015.

[213] Rolls Royce. The jet engine. John Wiley & Sons, 2015.

278


