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Abstract 

Robust Radiotherapy Appointment Scheduling 

Farnaz Haji Pour 

Optimal scheduling of patients waiting for radiation treatments is a quite challenging operational 

problem in radiotherapy clinics. Long waiting times for radiotherapy treatments is mainly due to 

imbalanced supply and demand of radiotherapy services, which negatively affects the 

effectiveness and efficiency of the healthcare delivered. On the other hand, variations in the time 

required to set-up machines for each individual patient as well as patient treatment times make this 

problem even more involved. Efficient scheduling of patients on the waiting list is essential to 

reduce the waiting time and its possible adverse direct and indirect impacts on the patient. This 

research is focused on the problem of scheduling patients on a prioritized radiotherapy waiting list 

while the rescheduling of already booked patients is also possible. The aforementioned problem is 

formulated as a mixed-integer program that aims for maximizing the number of newly scheduled 

patients such that treatment time restrictions, scheduling of patients on consecutive days on the 

same machine, covering all required treatment sessions, as well as the capacity restriction of 

machines are satisfied. Afterwards, with the goal of protecting the schedule against treatment time 

perturbations, the problem is reformulated as a cardinality-constrained robust optimization model. 

This approach provides some insights into the adjustment of the level of robustness of the patients 

schedule over the planning horizon and protection against uncertainty. Further, three 

metaheuristics, namely Whale Optimization Algorithm, Particle Swarm Optimization, and Firefly 

Algorithm are proposed as alternative solution methods. Our numerical experiments are designed 

based on a case study inspired from a real radiotherapy clinic. The first goal of experiments is to 

analyze the performance of proposed robust radiotherapy appointment scheduling (ASP) model in 

terms of feasibility of schedule and the number of scheduled patients by the aid of Monte-Carlo 

simulation. Our second goal is to compare the solution quality and CPU time of the proposed 

metaheuristics with a commercial solver. Our experimental results indicate that by only 

considering half of patients treatment times as worst-case scenario, the schedule proposed by the 

robust RAS model is feasible in the presence of all randomly generated scenarios for this uncertain 

parameter. On the other hand, protecting the schedule against uncertainty at the aforementioned 

level would not significantly reduce the number of scheduled patients. Finally, our numerical 
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results on the three metaheuristics indicate the high quality of their converged solution as well as 

the reduced CPU time comparing to a commercial solver. 
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1. Chapter 1: Introduction 

As healthcare costs increase rapidly in developed countries and the demand for health services and 

the patients’ expectations of service quality grows, providing efficient health systems would be 

inevitable. In other words, healthcare decision makers seek to more effective healthcare plans 

while facing with scarce resources and multiple stakeholders who often have conflicting goals to 

provide timely access to quality care for all patients. These complexities have made healthcare 

systems to become an attractive application area for operations research (OR). Various decision 

support techniques, developed based on OR methodologies and solution algorithms, are widely 

used in healthcare systems that provide the opportunity to reduce costs simultaneously and 

improve access to healthcare services (Ahmadi-Javid et al. 2016).  

Outpatient medical centers such as radiotherapy clinics have become more central in healthcare 

systems in recent years due to the emphasis on preventive medical practices, shorter hospital stays, 

and more services being provided on an outpatient basis. An appropriate appointment system, as 

an essential component of efficient care delivery in outpatient clinics, enables such centers to 

deliver care at the right time, utilize medical resources optimally, and maximize patient and 

physician satisfaction (Cayirli & Veral 2003). 

Radiotherapy is a way for treating many kinds of cancer, aiming at destroying a tumor or stopping 

its growth, and also relieving pain. In the radiation process, admitted patients undergo a set of 

clinical examinations, which allows oncologist assess their pathological condition. Based on the 

evaluation done by the oncologist, the total amount of radiation to be delivered is determined by 

the radiotherapist who fractionates this total amount to determine the dose fraction of the radiation 

to be given at each treatment session. Afterward, the treatment plan is defined based on the number 

of sessions patients are required to be treated each week. 

After determining the treatment plan, the simulation phase occurs in order to setup all parameters 

related to the plan, such as linear accelerators (linacs) features. Linacs are special electrical devices 

that concentrate in beams and accelerate the emission of subatomic particles. The treatment 

scheduling takes place after the simulation phase, where the patients are assigned to machines, 

days and shifts assuring that all the sessions required are done in consecutive days and without any 

interruptions.  
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In this study, we confine our attention to an offline appointment scheduling system over a given 

planning horizon, where the maximum number of patients with the highest priorities on a waiting 

list of radiotherapy treatment must be assigned to specific days and shifts on a particular linac. 

This problem is formulated as a Binary-Integer-program (BIP) that assures: i) patients are 

scheduled based on several time restrictions such as release dates, due dates, and latest starting 

date; ii) patients are scheduled in consecutive days on the same machine such that the total number 

of prescribed sessions are covered; and iii) the schedule does not exceed the capacity of linacs on 

each day. Further, the model incorporates the list of previously booked patients on a certain linac, 

where the patients can be rescheduled on the days and shifts that they are available. This will 

provide more flexibility in scheduling the maximum number of non-booked patients over the 

planning horizon. It is worth noting that the proposed RAS model in this thesis extends the model 

in (Conforti et al. 2010) by incorporating more time restrictions (e.g., release and due dates) that 

must be taken into consideration while treating patients in such clinics.  

Radiotherapy appointment scheduling (RAS) is featured with uncertain set-up times, treatment 

times, patients’ availability (cancellation/no-show), and linacs availability (machine breakdown). 

Such uncertainties not only could increase the waiting time for scheduled patients but also might 

lead to underutilization of linacs. There are two approaches to deal with uncertain parameters in 

optimization models namely robust optimization (RO) (Ben-Tal & Nemirovski 1998; Bertsimas 

& Sim 2004) and  stochastic programming (SP) (Birge and Louveaux 2011). While RO method 

seeks an optimal solution that is feasible in the presence of all outcomes of uncertain factors, SP 

approach revolves around defining proper corrective actions in the presence of various uncertain 

outcomes such that the expected performance of the system is optimized. Although stochastic 

programming is less conservative in comparison with robust optimization, it requires exact 

information on the probability distribution of uncertain parameters. Further, reformulating the 

RAS problem as a stochastic program with recourse would lead to a large-scale BIP model that is 

difficult to solve in real-size instances.   

In this thesis, with the goal of protecting the schedule against treatment time perturbations, the 

aforementioned problem is reformulated as a cardinality-constrained robust optimization model 

(Bertsimas & Sim 2004). More precisely, the RO model finds an optimal schedule that is feasible 

for all outcomes of uncertain treatment times under a given budget of uncertainty. This approach 
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provides the possibility to control the degree of conservatism of the robust solution in the sense 

that a trade-off between the cost and degree of robustness can be obtained through choosing an 

appropriate budget of uncertainty.  

The proposed RAS models, both in deterministic and uncertain contexts, are large-scale BIP’s that 

are hard to solve for long planning horizons (i.e., more than one week) and large number of 

paitients on a waitng lists in a real-size radiotherapy clinic with a large number of linacs. Hence, 

we propose three metaheuristics, namely Whale Optimization Algorithm (WOA), Particle Swarm 

Optimization (PSO), and Firefly Algorithm (FA) to alleviate the computational complexity in the 

aforementioned cases. 

Finally, a radiotherapy patient scheduling case study inspired from real data provided in (Conforti 

et al. 2010) is carefully designed for validating proposed deterministic and robust optimization 

models as well as metaheuristics. Further, we conduct an extensive set of Monte-Carlo simulation 

experiments in order to better analyze the impact of budget of uncertainty on the feasibility and 

cost of the schedule. In other words, by considering various budgets of uncertainty and several 

uncertainty sets, modeled as uniform intervals with different variances, we verify the feasibility 

and cost of schedules proposed by the RO and deterministic models.  

The main contributions of the thesis, thus, revolve around i) extending the existing RAS models 

by including more time restrictions; ii) incorporating uncertain traetmnet times into the RAS 

problem and formulating it as a cardinality-constrained robust optimization model; iii) proposing 

three metaheuristics (i.e., WOA, PSO, and FA) to aleviate the complexity of the RAS model for 

large instances in terms of size of the waiting list, clinic, and length of planning horizon; and iv) 

conducting Monte-carlo simulation experimnets on a case study, carefully designed based on real 

data in the literature, so as to validate the robustness of proposed schedule in a realistic context 

The rest of thesis is organized as follow. The detailed review of relevant literature is presented in 

Chapter 2. Chapter 3 provides a brief description of cardinality-constrained robust optimization 

approach and the three metaheuristics (WOA, PSO, and FA). In chapter 4, we present the problem 

description and formulation in both deterministic and uncertain contexts. The details of 

implementing metaheuristics on RAS problem is summarized in chapter 5. The experimental 

results are presented in chapter 6 while chapter 7 concludes the thesis and provides insights into 

future avenues of research.  
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2. Chapter 2: Literature review 

In this chapter, we first provide a brief literature review on outpatient appointment scheduling. 

Then we narrow down into the existing literature on radiotherapy appointment scheduling problem 

which is directly related to the problem investigated in this thesis. The chapter is concluded by 

highlighting the current gaps in the literature. 

2.1. Outpatient appointment scheduling 

Healthcare systems can be approached either on an inpatient or an outpatient basis. An "Inpatient" 

system refers to the procedure by which the patient is admitted to the hospital primarily so that 

he/she can be closely monitored during the procedure and afterward, during recovery; whereas in 

an "Outpatient" system there is no need for hospital admission and treatment might be performed 

outside of the hospital. On the other hand, the environment of these systems can be divided into 

three categories: 1) primary care clinics, 2) specialty clinics, and 3) surgery clinics (Gupta, 

Diwakar; Denton 2008).  

According to (Cayirli & Veral 2003), outpatient services are becoming a central component of 

health care because of an emphasis on pre-emptive medical practices and the shorter length of stay 

in hospitals. 

A review of the literature on outpatient appointment systems, especially appointment scheduling, 

can be found in (Cayirli & Veral 2003; Gupta, Diwakar; Denton 2008; Ahmadi-Javid et al. 2016). 

In (Cayirli & Veral 2003), the primary goal was to review prior formulations, performance criteria 

used to evaluate appointment systems, classification of appointment systems studied in the 

literature, and analysis of methodologies adopted for appointment scheduling in outpatient 

services; whereas (Gupta, Diwakar;Denton 2008) focused on describing the most prevalent types 

of health care delivery systems with particular attention on the factors that make appointment 

scheduling conflicting and challenging. 

Very recently, (Ahmadi-Javid et al. 2016) introduced a broader framework for categorizing 

outpatient appointment scheduling models based on 3 groups of strategic, tactical, or operational 

decisions. According to the authors, main strategic decisions incorporate access policy, number of 

servers, policy on acceptance of walk-in patients, and types of scheduling. As for tactical-level 

decisions, they refer to allocation of capacity to different patient groups, appointment intervals, 
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appointment scheduling window, block size, number of appointments per consultation session, 

panel size, and priority of patient groups. And finally among the most studied operational 

decisions, we can mention allocation of patients to servers, appointment day, appointment time, 

patient acceptance/rejection, patient selection from waiting list, and patient sequence. The authors 

also discussed the most common problem formulations, solution methods, and environmental 

factors in the outpatient appointment systems literature. Among such environmental factors, we 

can refer to patient unpunctuality, physician lateness, interruptions, patient no-show and 

cancellation, patient preferences, random service time, patient heterogeneity, and type of 

appointment required by patients. Inspired by abovementioned decision levels, this thesis focuses 

on the operational level. 

2.2. Radiotherapy appointment scheduling  

In the outpatient scheduling context, particular attention has been given to radiotherapy treatments 

(Conforti et al. 2009). Managing and scheduling patients in radiotherapy clinics is a quite 

challenging issue. According to Conforti et al. (2010), due to large dimension of the waiting lists 

in most cases, the time between the submissions of a radiotherapy request to the initiation of the 

delivery of the ionising radiation dose is typically long which potentially harms patient both 

directly (tumor growth) and indirectly (psychological distress for the patient). Therefore, there is 

a need for optimal patient scheduling based on reliable quantitative approaches. A review of 

radiotherapy appointment scheduling (RAS) problems and open research questions related to this 

topic can be found in Kapamara et al. (2006). In this section, we first provide an overview of 

radiotherapy treatment process. Afterward, we elaborate on various radiotherapy scheduling 

approaches investigated in the literature of RAS.  

2.2.1. Overview of radiotherapy treatment process  

Radiotherapy is a way for treating different kinds of cancer. It is often performed to destroy a 

tumor and to cure cancer. In this regard, it is defined as curative radiotherapy to provide long-term 

benefits to the patient. The radiotherapy may also be given before surgery to shrink cancer cells or 

after surgery to stop the growth of remaining ones. On the other hand, it can be deployed before, 

during, or after chemotherapy to improve treatment result. Sometimes, when it is not possible to 

cure cancer, the radiotherapy is used to relieve pain (Conforti et al. 2009). 
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The radiotherapy treatment process is complex and patients must undergo a set of steps in the pre-

treatment stage before starting the treatment (Burke et al. 2011). These steps are as depicted in Fig. 

1 (Conforti et al. 2010). According to the authors, after admission, the radiation oncologist carries 

out a clinical examination to assess the pathological conditions and evaluate the radiotherapy 

treatment. In this case, the total amount of radiation to be delivered and the dose fractions which 

will be delivered in the course of the treatment sessions during the planned time horizon are 

determined by a radiotherapist. This amount depends on the site, size and type of cancer, and 

pathological conditions of the patient.  

Figure 1- Radiotherapy treatment process [adopted from Conforti et al. (2010)] 

 

The procedure called fractionating the dose is a process in which a significant amount of radiation 

is  delivered to a tumor safely over a time span of several weeks and allows to save healthy tissue 

from damage and gives it time to recover (Kapamara & Petrovic 2009). Afterward, the simulation 

phase takes place to set up all the parameters relevant to the most effective radiation treatment. In 

this phase, patient anatomical and pathological conditions and linear accelerator (linac) 

configuration must be carefully considered (Kapamara et al. 2006). After completing all phases 

preceding the treatment planning, the oncologist assigns a priority value to the patient based on 

the “severity” of pathological conditions. According to (Conforti et al. 2010) the literature on 

incorporating the priority of patients into radiotherapy appointment scheduling is scarce. Burke et 

al. (2011) classified patients under three different categories of emergency, urgent or routine. 

(Conforti et al. 2010) on the other hand, introduced the following four categories for assessing the 

priority for treatment: Priority A: emergency radiation treatment; priority B: curative radiation 

treatment; priority C: palliative and other radical radiation treatments; and priority D: combined 

chemotherapy and radiation treatment. According to the same authors, the treatment plan usually 

starts many days after the simulation phase, since it is essential to verify the current validity of the 
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parameter values specified at the time of simulation. In order to ensure that the therapy destroys 

as many of the cancer cells as possible, while avoiding adverse effects on healthy cells, a suitable 

“break”, defined as a certain number of days, between two consecutive weeks, during which no 

treatments are delivered, should also be planned. Depending on a treatment plan and dosage 

fraction, the patient has to visit the treatment center several times along a week, for a number of 

weeks (Conforti et al. 2008). The length of the treatment depends on different factors and is very 

variable. In general, each treatment session takes from 5 to 15 minutes. Some other criteria required 

to estimate the actual treatment time has been reviewed in (Conforti et al. 2010). In the first 

treatment session, the linear accelerator is set up manually, whereas in the following sessions all 

parameters are automatically setup. Therefore, the first treatment session generally needs more 

time than the subsequent ones (Conforti et al. 2008; Conforti et al. 2010; Conforti et al. 2009). 

It is worth to mention that the treatment is generally performed in an outpatient setting, where 

patients visit the hospital on a daily basis during their treatment period (Conforti et al. 2010). If an 

immediate booking is not possible, the patient is added into a waiting list. Therefore, the waiting 

list is partitioned into ordered sub-lists, in which patients with the same assigned priority are 

assigned to each sub-list. In many clinics, even with overbooking, there are more patients on the 

waiting list than the available capacity. In such cases, the patients are selected to be served based 

on various criteria, such as the patients' priority level and waiting time. In some studies, it is 

assumed that the priority assigned to each patient does not change until the patient is served. 

However, in reality, the priorities change in case the condition of the tumor could become more 

severe due to long waiting time (Kolisch & Sickinger 2008). Also, radiotherapy clinics face the 

challenge of selecting who will be served next when demand comes from emergency patients in 

the waiting list as well as pre-scheduled patients. To conclude, the main requirements that should 

be taken into account in scheduling the radiotherapy appointments encompass: 

 The number of treatment sessions prescribed by the oncologist is fixed and has to be carried 

out on consecutive days in each week; 

 Each patient should be delivered only one treatment session per day;  

 the same linac must be used during the entire treatment plan since technical characteristics 

could vary among different  machines; 



  

8 
 

 The capacity of each machine, given by the number of working hours (minutes), must not 

be exceeded on any given day; 

 Each patient cannot start treatment before the release date in which the pre-treatment is 

finished (Castro & Petrovic 2012).  

 The treatment should be completed before the due date assigned to each patient. This due 

date indicates the day by which the treatment sessions have to be finished.  

 Patients usually prefer a specific day and physician over other days and service providers. 

These preferences often differ from one patient to another and may change over time. Also 

service providers might have various preferences (Gupta, Diwakar; Denton 2008). 

 In reality, linacs have different performances, and each linac is used for a specific type of 

radiation (Burke et al. 2011) 

2.2.2. Scheduling approach 

There are two scheduling approaches in RAS problems: online and offline. In the online approach, 

patients are scheduled immediately upon the arrival of their request, while in the offline approach 

appointments are scheduled after all requests have arrived. In this section we classify the literature 

into online and offline scheduling approach separately. 

2.2.2.1. Online radiotherapy appointment scheduling 

Some decisions in an online scheduling, such as allocation of patients to servers, appointment day 

and time, are dynamic and determined during the continuous patient call-in process. The Markov 

decision process is one of the most useful tool for dealing with dynamic behavior of online 

systems. For instance, in (Kolisch & Sickinger 2008), this approach is used to model a system with 

multiple identical servers in which  patients are selected from a waiting list in each period. They 

dynamically modeled the radiology departments of two German university medical centers with 

more than 1,200 and 1,400 beds, respectively by only considering the CT-devices. A CT 

(Computed Tomography) device makes use of computer-processed combinations of many X-ray 

images taken from different angles to produce cross-sectional (tomographic) images of specific 

areas of a scanned tissue, allowing the physician to see inside it without cutting. The goal is to 

allocate the available resources dynamically to the patients of the groups such that the expected 

total reward including revenues, waiting costs, and penalty costs is maximized. The authors also 

considered no-shows for inpatients, random arrival for outpatients and emergency as uncertain 

https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Tomography
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parameters into the problem. It is worth mentioning that no-shows refer to when scheduled patients 

do not show up for their appointments. This is one of the major problems that almost all 

radiotherapy clinics are confronted with. Patients’ no-show behavior reduces system efficiency 

and provider productivity by wasting medical resources. They also adopted two ways to manage 

the negative effects of no-show: 1) booking extra patients beyond the facility’s capacity, which is 

called over-time; and 2) reducing appointment intervals. 

Sauré et al. in (Sauré et al. 2012)  developed an infinite-horizon Markov decision process (MDP) 

the dynamic multi-priority patient scheduling problem by introducing multiple appointment 

requests, multiple session durations and allowing parts of the appointments to be delivered using 

overtime. In order to deal with an intractable number of states and actions, they first transform 

their MDP model into its equivalent linear programming formulation. Then, the linear model is 

solved using column generation and uncertain parameters (i.e., number of sessions, session 

durations, wait time penalties, and demand rates) are validated by exploiting simulation. 

Another frequently applied method in the radiotherapy online scheduling is simulation-based 

optimization that combines optimization and simulation modeling approaches to facilitate the 

search procedure in stochastic and online complex systems. For instance, (Kapamara et al. 2007) 

investigated the treatment process and identified bottlenecks from the interactions between patients 

(i.e., random arrivals) and resources (i.e., number of staffs, working hours,doctor availability, and 

machine breakdowns) by means of discrete-event simulation. They simulated the radiotherapy 

system of the University Hospitals of Coventry and Warwickshire (UHCW) in England by 

including additional radiotherapy services such as brachytherapy and unsealed sources therapy and 

extending the work in (Proctor et al. 2007). (Kapamara et al. 2007) and (Petrovic et al. 2009) 

proposed a daily scheduling approach which considered both the radiotherapy pre-treatment and 

treatment stages together.  

Ogulata et al. in (Ogulata et al. 2009) proposed a slack capacity approach to minimize delays in 

treatments posed by potential lengthening in current patients treatments and to maintain efficient 

use of daily treatment capacity in a radiation oncology department. According to this approach, 

some part of the daily patient capacity is reserved as a slack (unused) capacity in order to prevent 

the treatment delays. They also conducted a simulation analysis of the scheduling approach in 
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order to assess the proposed approach under different environmental conditions and to determine 

appropriate scheduling policy parameter values. 

(Liang et al. 2014) simulated the Department of Hematology and Oncology in Lahey Hospital 

(USA). They considered no-show probabilities, unpunctual arrivals, and also the uncertainty of 

service time with some realistic distributions for modeling heterogeneous (patient dependent / 

service dependant) service times. Unpunctual arrival is defined as the difference between a patient 

appointment time and actual arrival time. 

The optimization models proposed for online scheduling in (Pérez et al. 2016) were formulated 

based on the data provided by the Scott & White Healthcare Clinic Nuclear Medicine Department 

(USA) with different type of resources. They assumed each patient follows an ordered sequence 

of examinations, referred as a pathway, which is determined based on the classification of the 

patient and site of the tumor. Along with a sequence, different resources (staff and machines) are 

also required to be assigned to each patient. Moreover, they are faced with a situation in which a 

patient requires a resource more than once, referred as recirculation, and resource concurrence 

when an operation requires more than one resource simultaneously. In this situation, resources are 

not continuously available throughout the scheduling horizon since their schedules are partially 

filled with other appointments. They developed heuristic algorithms (namely, fixed resource (FR) 

and procedure resource assignment (PRA)) as well as simulation models for scheduling nuclear 

medicine patients and resources. Both algorithms schedule patients following a general scheduling 

structure. The algorithms first search for the patient’s preferred day for the appointment. If the 

search results in an appointment for which the patient has to wait more than a month, then an 

earlier appointment on an alternate day is considered.  

Some studies used the results obtained from the offline case to examine the online case. for instance, 

(Pérez et al. 2013) formulated the problem of scheduling patients and resources in nuclear 

medicine clinics in three forms: offline, online, and stochastic online. The offline model is 

formulated by using integer linear programming and assigns patients to a specific server, step, and 

time slot. In the online model, patient requests are not known in advance; rather, they arrive 

sequentially one at a time and are scheduled as they arrive. At each specific time the offline model 

is used to decide how to schedule requests received at that time by fixing  all the other patients 

already scheduled. Stochastic online model is formulated using two-stage stochastic programming. 
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The proposed stochastic online scheduling model is similar to the online one, except that possible 

future requests are also taken into account when scheduling patients. The goal is to find the best 

day and time to accommodate the current request such that the expected performance measures 

are improved.  

(Marie-andr & Rousseau 2015) investigated online scheduling adopted from offline scheduling 

approach for patients in a radiotherapy clinic in Cancer Centre of Laval, Canada. The offline 

system is modeled using integer programming in order to assign patients to appointment days and 

time slots. The stochastic online system is formulated by exploiting two-stage stochastic 

programming approach. In this model, the first stage decision variables are appointment times and 

the second stage variables are auxiliary variables such as the patients’ waiting times, server's idle 

time, and system's overtime. 

2.2.2.2. Offline radiotherapy appointment scheduling 

Offline scheduling systems are more popular than the online ones in the literature. The reason may 

be that these systems are easier to model than the online systems. Moreover, as the electronic 

appointment scheduling systems are rapidly developing, the importance of offline scheduling is 

also growing.  In such systems, the appointment requests are collected via an IT tool (e.g., email 

ore web-based portal) over a specific time period; afterwards, patients can be informed of their 

appointment time, according to the offline scheduling approach. 

Almost all deterministic models in the offline scheduling systems are formulated by using integer 

linear programming. Deterministic models are often used to formulate problems that are less 

affected by the uncertainty caused by random arrivals and random treatment times. Typical 

complications for these models include capacity and due date constraints with multi-resource and 

multi-stage treatment procedures. For instance, Burke et al. (2011) modeled a system in which 

patients are assigned to a numbers of the linacs with different performances while appointment 

day is also to be determined. They assumed that each machine could emit a specific type of 

radiation; hence, the patients should be assigned to an appropriate linac according to the specific 

radiation they require.  

Castro & Petrovic (2012) modeled the appointment time scheduling of radiotherapy pre-treatment, 

in which each patient follows a specific sequence of operations. Hence, the decisions are to assign 

patients to servers, steps, day, and time. They also adopted a multi-objective solution procedure 
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by developing some dispatching rules aimed at minimizing the weighted number of patients 

exceeding the waiting time targets, maximum lateness, and sum of weighted lateness.  

Conforti et al. (2010) considered only one group of identical machines for scheduling of patients 

in a waiting list both in terms of appointment day and time. The strategy adopted into their model 

is based on a non-block system. Basically, the radiotherapy scheduling strategies adapted in the 

literature can be categorized into two systems: block and non-block. In the former, the workday is 

split into a fixed number of time blocks, which usually are same in duration (typically 10 - 15 

minutes). In the non-block system, different treatment times are assigned to patients. It is important 

to observe that the use of uniform appointment blocks, adopted in many radiotherapy centers, is in 

general a poor real workload representation becouase the effective treatments can take either more 

or less time than the specified time block. This means that the total surplus of time assigned to 

each scheduled patient over the working day could be used for scheduling other patients waiting 

for treatment. Thus, the non-block scheduling strategy turns to be more efficient than the block 

one. The Model in (conforti et a. 2010) reschedules some patients, who have a treatment plan in 

progress, only when it is necessary by exploiting their availabilities. This provides the possibility 

of scheduling urgent patients. 

Dynamic disruption/disturbances compound the complexity of RAS problems while affect the 

choice of solution approches. One way of responding to the disturbances is the rescheduling 

approach. Rescheduling can be interpreted in two ways: 1) only the time slots could change with 

respect to the last planned week, and 2) it is possible to delay the day of the first weekly session. 

Frequent revision is necessary for better scheduling results although it is not always beneficial to 

reschedule after every unexpected event. This helps to further define RAS as a patient 

scheduling/rescheduling problem. In these situations, appointment times of most pre-scheduled 

patients are postponed and the RAS systems must decide which pre-scheduled and which urgent 

patients should be seen based on available resources; or the system must make decisions about 

rescheduling pre-scheduled patients and how to manage new requests during the disruption period.  

Conforti et al. in (Conforti et al. 2008; Conforti et al. 2009) proposed models for offline scheduling 

of patients in a single server radiotherapy clinic by adopting block strategy. The models proposed 

in (Conforti et al. 2008; Conforti et al. 2009) provide the possibility to reschedule booked patients 

in order to improve system’s performance through booking patients with higher priorities. The 



  

13 
 

decisions in their models involve appointment day and time for patients on the waiting list. Authors 

in (Conforti et al. 2009) extended the work in (Conforti et al. 2008) by taking into account the time 

constraints such as due dates and release dates. The due date reffers to the date by which the 

treatment sessions of the patient have to be completed. Whereas, release date defines the first day 

after the pre-treatment stage is completed and the patient is available/ready to be treated.  

Heuristics form an important class of inexact solution methods to solve radiotherapy patients 

scheduling problems. Although these methods do not guarantee optimal solutions, sometimes they 

are indispensable in practical or real-size problems because of the presence of complex 

environmental characteristics and stochastic factors. Metaheuristic algorithms are among other 

inexact solution methods for integer programming problems. Although metaheuristics can help to 

solve problems with more realistic assumptions or in less computational time, there are a limited 

number of studies that have employed them for solving RAS models. For instance, (Petrovic & 

Leite-Rocha 2008), proposed four constructive approaches namely target approach, utilisation 

threshold approach, schedule creation day, and maximum number of day in advance  for 

radiotherapy scheduling. They also developed a GRASP (Greedy Randomized Adaptive Search 

Procedure)-based algorithm for improving the solution obtained by the constructive approaches. 

The target approach operates in a forward (backward) procedure from the release date (due date) 

of each patient, while trying to schedule the required number of sessions subject to the given 

constraints. If it is not possible to accommodate all the required sessions, the algorithms move the 

start day forward (backward) and tries again. In the utilisation threshold approach, a threshold of 

machine utilisation is defined for each priority of patients. In the third constructive approach, 

schedule creation day approach, specific days of the week are selected for each patient priority 

whenever a schedule can be created. If a patient arrives on a day when it is not specified to create 

a schedule for that priority, the schedule will be created on the first following allowed day. The 

Maximum number of days in Advance approach introduces waiting times (days) before creating a 

schedule for the patient after he/she has arrived. In this way, it is possible to reserve more space 

for the patients of higher priorities in the earlier dates. The GRASP-based algorithm has two 

phases; in the first phase, patients are ordered lexicographically in the same way as in the 

constructive approaches; while in the second phase, after the initial solution has been constructed, 

a local search is applied. 
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(Kapamara & Petrovic 2009) proposed an algorithm for scheduling patients in a radiotherapy 

department while undergoing numbers of steps with multiple servers aimed at minimizing the 

weighted lateness. An initial solution is created using a rule-based heuristic; then the hill climbing 

method is used to improve this initial solution.  

(Petrovic et al. 2011) applied multi-objective Genetic Algorithm (GA) models to generate 

schedules for radiotherapy patients at Arden Centre Cancer, Coventry, UK. They considered 

different sets of identical linacs in their mathematical models formulated for the scheduling and 

sequencing of patients. Due to the stochastic nature of the GAs and uncertainty in the daily number 

of newly arrived patients and their categories, they used the GA to generate schedules for 10 

different sets of daily arrived patients and repeated it 10 times for each set of patients with different 

initial populations. Three GAs are developed and implemented which treat radiotherapy patient 

categories, namely emergency, palliative and radical patients in different ways: i) Standard-GA, 

which considers all patient categories equally, ii) Weighted-GA, which operates with different 

weights assigned to the patient categories and iii) KB-GA, which has an embedded knowledge on 

the scheduling of emergency patient category. 

(Kapamara et al. 2006) formulated RAS as a job shop scheduling problem and reviewed exact and 

metaheuristic approaches for solving similar job shop scheduling problems. 

2.3. Summary of relevant literature 

In this chapter, we presented a comprehensive review of analytic studies on RAS problems. The 

aim of this work was to provide an overview on appointment scheduling in radiotherapy clinics 

and identifying the aspects that have received limited attention in operation research literature. We 

summarize some of major findings as follows. 

Tables (1) and (2) classify reviewed papers according to different criteria. Table (1) categorizes 

current literature into operational decisions investigated, type of scheduling, uncertain factors, 

objective function(s), modeling approaches adopted, and solution methodologies. Whereas, in 

Table (2), the literature is categorized into the problem settings such as number of servers, number 

of steps, stage (i.e., pre-treatment and treatment), blocking strategy (i.e., block or non-block), time 

constraints, resource performance (i.e., identical resources or resource with same performances), 
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and rescheduling policy. Finally, Table (3) provides some additional definitions for the 

characteristics mentioned in Tables (1) and (2). 

Our survey on the existing literature indicate that most analytic studies have neglected some time 

constraints that may further complicate mathematical models (i.e., lead time of operations in multi-

step RAS, radio-pharmaceutical shelf life, breaks, due dates, and release dates). These restrictions 

appear in realistic problems; hence, considering them can increase the applicability of the resulting 

models. 

Due to inherent uncertainty and sequential property of RAS decisions, stochastic programming, 

and Markov decision process have been used most frequently. In most presented models, the time-

based measures have been used to evaluate system performance. However, to the best of our 

knowledge no studies have been done on adapting robust optimization approaches to protect the 

models against uncertain parameters perturbations. 

With respect to solution methods, we noticed that most of the literature is directed toward heuristic 

methods that are easy to implement and have reasonable computation time for real-life problems. 

Recently, due to increased interest in modeling more realistic RAS, the mathematical models 

presented in the literature are difficult to solve optimally in an acceptable amount of time. 

Therefore, finding a good solution procedure in terms of quality and computation time for nearly 

realistic models is an important and challenging issue in this context. 

In this thesis, we fill some of the aforementioned gaps by extending the non-block RAS model, 

proposed in (Conforti et al. 2010), where we incorporate more realistic time constraints (i.e., due 

dates and release dates of patients). Then, we propose the robust counterpart of the model to protect 

the schedule against perturbations in treatment times. Finally, we implement three metaheuristic 

algorithms namely Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), 

and Firefly Algorithm (FA) in order to solve the models.
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Table 1- Characteristics of reviewed papers 

Reference Operational decisions 
Type of 

scheduling 
Uncertainties Objective  

Modeling 

approach 
Solution methods 

Burke et al. 

(2011) 
day, time, server offline   

minimize the number of patients who 

miss the breach date+ weighted number 

of patients who miss the JCCO 

maximum acceptable target+ weighted 

number of patients who miss the JCCO 

good practice target+ weighted average 

squared waiting times 

BIP   

Castro et al. 

(2012) 
day, time, server, operation offline   

minimise the weighted number of 

patients exceeding the waiting time 

targets+ maximum lateness+ sum of 

weighted lateness 

BIP 
multi-objective by 

dispatching rules 

Conforti et al. 

(2010) 
day, time, server offline   

maximize the weighted number of new 

scheduled patients 
BIP CPLEX 

Conforti et al. 

(2008) 
day, time offline   

maximize the weighted number of new 

scheduled patients 
BIP LINGO 

Conforti et al. 

(2009) 
day, time offline   

maximize the weighted sum of booked 

and newly scheduled patients 
BIP CPLEX 

Kapamara et 

al. (2009) 
day, time, server, operation offline   

minimise the total weighted lateness for 

the received patients 
  

tabu search, hill 

climbing heuristic 

Kapamara et 

al. (2006) 
        Job Shop meta heuristics 

Kapamara et 

al. (2007) 
server, operation online 

Number of staffs, working 

hours,  

Doctor availability, Machine 

breakdowns  

minimise waiting time to first session   
discrete-event 

simulation 

Kolisch & 

Sickinger 

(2008) 

time, server online 

No-shows for inpatients, 

random  

arrival for outpatients and 

emergency 

maximize expected total reward 

consisting of revenues, waiting costs, 

and penalty costs 

MDP 

Linear Capacity 

Allocation, first 

come first served, 

random selection 
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Reference Operational 

decisions 

Type of 

scheduling 
Uncertainties Objective  

Modeling 

approach 

Solution 

methods 

Perez et al. 

(2016) 

time, server, 

step 
online   

minimize waiting time from the time of the 

procedure request until the time of the 

appointment+ maximize performance ratio 

(number of times patients are scheduled on the 

date requested above all patient requests) + 

minimize cycle time (time patient spends in the 

system) +maximize equipment utilization+ 

maximize human resource utilization+ maximize 

number of patients served per day  

BIP 

The fixed 

resource (FR) 

algorithm 

+The 

procedure 

resource 

assignment 

(PRA) 

algorithm+ 

Simulation 

Petrovic et al. 

(2011) 

time, server, 

step 
offline 

daily number of newly arrived 

patients,  

their categories and treatment plans 

minimize average waiting time+ average tardiness 

of the patients 
  

Standard-GA, 

KB-GA, 

Weighted-GA  

Petrovic & 

Leite-Rocha 

(2008) 

day offline   minimize average weighted tardiness of patients   

Target 

Approach  

Utilisation, 

Threshold 

Approach, 

Schedule 

Creation Day 

Approach,  

Maximum 

Number of 

Days in 

Advance 

Approach, and 

Grasp 

Proctor et al. 

(2007) 

time, server, 

operation 
online arrival (demand), resource capacity minimize waiting time   simulation 

Sauré et al 

(2012) 
day, time online 

 number of sessions, session 

durations,  

wait time penalties, demand rates 

minimize penalties associated with the resulting 

patient wait times, the cost associated with the use 

of overtime, and the penalties associated with 

postponing some of the booking decisions 

infinite-

horizon 

Markov 

decision 

process 

and its 

equivalent 

LP 

column 

generation + 

simulation for 

uncertainties 
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Reference Operational 

decisions 

Type of 

scheduling 
Uncertainties Objective  

Modeling 

approach 

Solution 

methods 

Larsson 

(1993) 
servers offline       Macro 

Liang et al. 

(2014) 

time, server, 

step 
online 

unpunctual arrivals, stochastic  

service times and treatment 

durations 

minimize patient waiting times  

+ balance clinic workload 
  

discrete-event 

simulation 

Marie-andre & 

Rousseau 

(2015) 

day, server 
offline 

online 
arrival of patients at the center minimize cost of scheduling and overtime 

MIP 

two-stage 

SP  

rule-based: 

ASAP 

online: the 

greedy 

algorithm and 

the primal-

dual algorithm 

Ogulata et al. 

(2009) 
day online 

patients arriving frequency, slack 

capacity 

minimize the percentage of unaccepted patients, 

treatment delay, the quantity of the patients 

waiting in queue  

maximize normal capacity usage ratio, slack 

capacity usage ratio 

  

Slack Capacity 

approach+ 

Discrete-event 

simulation 

Perez et al. 

(2013) 

time, server, 

step 

offline 

online 
future arrivals 

maximize number of newly scheduled 

minimize total waiting time 

BIP 

two-stage 

SP 

stochastic 

online 

scheduling 

algorithm 

(heuristic) 
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Table 2- Characteristics of reviewed papers (problem settings) 

Reference 

Number 

of 

servers 

Number of 

steps 
Stage  

Blocking 

Strategy 
Time Constraints 

Resources 

Performance 

Reschedule 

Booked 

Patients 

Burke et al.  

(2011) 
Multiple Single treatment non-block 

Due dates, release 

dates 
different no 

Castro et al.  

(2012) 
Multiple Multiple pre-treatment block 

Due dates, release 

dates, lead time of 

operations, waiting 

time targets 

different no 

Conforti et al.  

(2010) 
Multiple Single treatment non-block latest starting date same yes 

Conforti et al.  

(2008) 
Single Single treatment block latest starting date   yes 

Conforti et al.  

(2009) 
Single Single treatment block 

latest starting date, 

due dates, release 

dates 

  yes 

Kapamara et al.  

(2009) 
Multiple Multiple 

pre-treatment 

and treatment 
block   different no 

Kapamara et al. (2006)               

Kapamara et al.  

(2007) 
Multiple Multiple pre-treatment non-block   different   

Kolisch & Sickinger 

(2008) 
Multiple Single treatment block   same no 
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Reference 

Number 

of 

servers 

Number of 

steps 
Stage  

Blocking 

Strategy 
Time Constraints 

Resources 

Performance 

Reschedule 

Booked 

Patients 

Larsson  

(1993) 
Multiple Single treatment     different no 

Liang et al.  

(2014) 
Multiple  Multiple 

pre-treatment 

and treatment 
non-block   same no 

Marie-andre & Rousseau 

(2015) 
Multiple Single treatment block (22 min) 

deadline for first 

treatment or the 

latest starting date, 

release dates 

same no 

Ogulata et al.  

(2009) 
Single Single treatment non-block     no 

Perez et al.  

(2013) 
Multiple  Multiple  

pre-treatment 

and treatment 
block (10 min)  

imposed by the 

decay of the radio- 

pharmaceuticals 

  no 

Perez et al.  

(2016) 
Multiple Multiple 

pre-treatment 

and treatment 
block (10 min)       no 

Petrovic et al.  

(2011) 
Multiple Multiple 

pre-treatment 

and treatment 
non-block 

release dates, due 

dates 
different  no 

Petrovic & Leite-Rocha 

(2008) 
Multiple Single treatment   

due dates, release 

dates 

different (low, high, 

electron energy type) 
no 

Proctor et al.  

(2007) 
Multiple Multiple 

pre-treatment 

and treatment 
non-block   different no 

Sauré et al  

(2012) 
Single Single treatment 

block (10 or 12 

min) 
  same no 
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Table 3- Additional definitions 

Operational 

decisions 

allocating patients to servers 

Deals with the problem of selecting which service provider should serve 

a particular patient. This category of decisions is involved in multi-

server systems.  

appointment day scheduling 

In RAS with multi-day scheduling horizon, the appointment day for each 

patient must be determined so that indirect waiting time for each patient 

is reasonable according to the patient’s priority level.  

appointment time scheduling 
Deals with finding a specific time when a patient is scheduled to start 

receiving care so that a performance criterion is optimized. 

allocation patients to operations/steps 
In multi-step RAS, the pathway for each patient should be determined 

through operation allocation decisions. 

Problem 

settings 

Number of servers Refers to how many servers there are to meet patient demand.  

Time constraints 

Lead time of operations 
This lead time is the latency between the demand initiation and 

execution of the operation. 

Latest starting date 
Indicates the latest day by which the first treatment session could be 

planned. 

break 

In order to guarantee that the therapy destroys as many of the cancerous 

cells as possible, avoiding negative effects on many healthy cells, a 

suitable ‘‘break” between sets of consecutive sessions should be also 

planned, defined as a certain number of days during which no treatments 

are delivered.  

shelf life of pharmaceuticals 

As far as the radio-pharmaceuticals have specific shelf life, the 

putrefaction of these materials is highly probable and may pose lots of 

costs on the system. Hence, taking into account this sort of time 

restriction has large impact on the system efficiency.  

Objective 

JCCO waiting time targets 

These targets have been established by the Joint Council for Clinical 

Oncology. They determine the good practice and the maximum 

acceptable waiting times from the date the patient is first visited for 

suspected cancers to the first session of treatment for each category of 

patients.  

breach dates 

States that patients must start their treatment no later than 62 days from 

the date on which they are referred to an oncologist by their general 

physician and no later than 31 days from the date when the decision to 

treat with radiotherapy was made. 

lateness/tardiness 
Is defined as the difference between the completion day of the pre-

treatment phase and the due date.  
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3. Chapter 3: Methodology 

In this chapter, we elaborate on the main methodology adopted to formulate RAS problem under 

uncertain treatment times. We also provide the detailed description of the three metaheuristics 

adopted to solve deterministic and robust RAS models. 

3.1. Cardinality-constrained robust optimization approach 

In this research, we implement the cardinality-constrained robust optimization approach proposed 

by Bertsimas and Sim (Bertsimas & Sim 2004) for linear programming problems. In what follows, 

we present the core idea and a summary of this method. Let consider the following uncertain linear 

programming (LP) model: 

𝑀𝑎𝑥 𝑍 = 𝑐𝑇𝑥 

s.t. 

∑ �̃�𝑗
𝑛
𝑗=1 𝑥𝑗 ≤ 𝑏𝑖    ∀𝐴𝑗 ∈ 𝐾𝑗, 𝑗 = 1, … , 𝑛  

𝑥 ≥ 0                                                                                                                                                  (1)                                                      

Consider the ith constraint of the nominal problem �̃�𝑖
𝑇𝑥 ≤ 𝑏𝑖. Let 𝐽𝑖 be the set of coefficients that 

are subject to parameter uncertainty, i.e., 𝑎𝑖𝑗, 𝑗 ∈ 𝐽𝑖 take values in the interval [�̅�𝑖𝑗 − �̂�𝑖𝑗 , �̅�𝑖𝑗 +

�̂�𝑖𝑗 ], where �̅�𝑖𝑗 denotes the nominal (estimated) value of �̃�𝑖𝑗, and half-length �̂�𝑖𝑗 measures the 

precision of the estimate. We define the scaled deviation 𝜂𝑖𝑗 of �̃�𝑖𝑗 from its nominal value as: 

𝜂𝑖𝑗 =  
�̃�𝑖𝑗 − �̅�𝑖𝑗

�̂�𝑖𝑗
 

The scaled deviation of a parameter always belongs to [-1, 1]. 

Although the aggregate scaled deviation for constraint i, ∑ 𝜂𝑖𝑗
𝑛
𝑗=1  , can take any value between –n 

and n, the fact that aggregate forecasts are more precise than individual ones suggests that the true 

values taken by ∑ 𝜂𝑖𝑗
𝑛
𝑗=1  will belong to a much narrower range. Intuitively, some parameters will 



  

23 
 

exceed their nominal values while others will fall below estimate, so the 𝜂𝑖𝑗 will tend to cancel 

each other out.  

This approach protects against violation of constraint i deterministically, when only a pre-specified 

number Γ𝑖 of coefficients changes. In other words, it guaranties that the solution is feasible if less 

than Γ𝑖 uncertain coefficients change. Accordingly, for every constraint i, we introduce a parameter 

Γ𝑖 (not necessarily integer) that take values in the interval [0,|𝐽𝑖|]. The role of this parameter is to 

adjust the robustness of the proposed method against the level of conservatism of the solution. It 

is unlikely that all of the �̃�𝑖𝑗, 𝑗 ∈ 𝐽𝑖 will change. The nature will be restricted in its behavior, in that 

only a subset of the coefficients will change in order to adversely affect the solution. The goal is 

to be protected against all changes up to ⌊Γ𝑖⌋ of these coefficients are allowed to change by �̂�𝑖𝑡, 

and one coefficient 𝑎𝑖𝑡 changes by (Γ𝑖 − ⌊Γ𝑖⌋)�̂�𝑖𝑗. 

We first consider the following nonlinear model to formulate the above situation, where the first 

constraint represents a protection function for each uncertain constraint i: 

𝑀𝑎𝑥 𝑍 = 𝑐𝑇𝑥 

s. t. ∶  

∑ �̅�𝑖𝑗𝑥𝑗 + max
{𝑆𝑖∪𝑡𝑖|𝑆𝑖⊆𝐽𝑖,|𝑆𝑖|=⌊Γ𝑖⌋,𝑡𝑖∈𝐽𝑖\𝑆𝑖}

{∑ �̂�𝑖𝑗
𝑗∈𝑆𝑖

𝑦𝑗 + (Γ𝑖 − ⌊Γ𝑖⌋)�̂�𝑖𝑡𝑖
𝑦𝑡} ≤ 𝑏𝑖   ∀𝑖

𝑗

  

−𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗  ∀𝑗 

𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗  ∀𝑗 

𝑦𝑗 ≥ 0 ∀𝑗                                                                                                                                  (2) 

 

In order to reformulate model (2) as an LP we need the following propositions: 

 Proposition 1: Given a vector 𝑥∗, the protection function of the ith constraint 

𝛽𝑖(𝑥∗, Γ𝑖) = max
{𝑆𝑖∪𝑡𝑖|𝑆𝑖⊆𝐽𝑖,|𝑆𝑖|=⌊Γ𝑖⌋,𝑡𝑖∈𝐽𝑖\𝑆𝑖}

{∑ �̂�𝑖𝑗𝑗∈𝑆𝑖
|𝑥𝑗

∗| + (Γ𝑖 − ⌊Γ𝑖⌋)�̂�𝑖𝑡𝑖
|𝑥𝑗

∗|}                                   (3)     

equals the objective function of the following optimization problem: 
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𝛽𝑖(𝑥∗, Γ𝑖) = 𝑚𝑎𝑥 ∑ �̂�𝑖𝑗|𝑥𝑗
∗|𝑧𝑖𝑗𝑗∈𝐽𝑖

  

s.t. 

∑ 𝑧𝑖𝑗𝑗∈𝐽𝑖
≤ Γ𝑖  

0 ≤ 𝑧𝑖𝑗 ≤ 1   ∀𝑗 ∈ 𝐽𝑖                                                                                                                    (4) 

Proof: the optimal solution of (4) consist of ⌊Γ𝑖⌋ variables at Γ𝑖 − ⌊Γ𝑖⌋. This is equivalent to the 

selection of subset {𝑆𝑖 ∪ 𝑡𝑖|𝑆𝑖 ⊆ 𝐽𝑖 , |𝑆𝑖| = ⌊Γ𝑖⌋, 𝑡𝑖 ∈ 𝐽𝑖\𝑆𝑖} with corresponding cost 

function ∑ �̂�𝑖𝑗𝑗∈𝑆𝑖
|𝑥𝑗

∗| + (Γ𝑖 − ⌊Γ𝑖⌋)�̂�𝑖𝑡𝑖
|𝑥𝑗

∗|. 

In order to formulate model (2) as an LP, we first consider the dual of problem (4) as follows: 

𝑚𝑖𝑛 ∑ 𝑝𝑖𝑗𝑗∈𝐽𝑖
+ 𝑧𝑖Γ𝑖  

s.t. 

𝑧𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗|𝑥𝑗
∗|   ∀𝑗 ∈ 𝐽𝑖 

𝑝𝑖𝑗 ≥ 0   ∀ 𝑗 ∈ 𝐽𝑖 

𝑧𝑖 ≥ 0                                                                                                                                              (5) 

 

By strong duality theorem, since problem (4) is feasible and bounded for all Γ𝑖 ∈ [0, |𝐽𝑖|], then the 

dual problem (5) is also feasible and bounded and their objective values coincide. Using 

proposition 1, we have that 𝛽𝑖(𝑥∗, Γ𝑖) is equal to the objective function of problem (5). Substituting 

to problem (10), we obtain: 

𝑀𝑎𝑥 𝑍 = 𝑐𝑇𝑥 

s. t. ∶ 

 ∑ �̅�𝑖𝑗𝑥𝑗 + 𝑧𝑖Γ𝑖 + ∑ 𝑝𝑖𝑗

𝑗∈𝐽𝑖𝑗

≤ 𝑏𝑖   ∀i  

𝑧𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗𝑦𝑗    ∀𝑖, 𝑗 ∈ 𝐽𝑖 

−𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗  ∀𝑗 

𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗  ∀𝑗 

𝑦𝑗 ≥ 0 ∀𝑗 
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𝑧𝑖 ≥ 0 ∀𝑖 

𝑝𝑖𝑗 ≥ 0   ∀𝑖, 𝑗 ∈ 𝐽𝑖                                                                                                                (6) 

3.2. Metaheuristic Algorithms 

metaheuristics are formally defined as some iterative generation processes that guide a subordinate 

heuristic by combining intelligently different concepts for exploring and exploiting the search 

space. Further, learning strategies are used to structure information in order to find efficiently near-

optimal solutions (Osman and Kelly, 1996). Techniques that constitute metaheuristic algorithms 

range from simple local search procedures to complex learning processes. Such algorithms are 

approximate and usually non-deterministic. They may incorporate mechanisms to avoid getting 

trapped in confined areas of the search space. Metaheuristics are not problem-specific and may 

make use of domain-specific knowledge in the form of heuristics that are controlled by the upper 

level strategy. Today’s more advanced metaheuristics use search experience (embodied in some 

form of memory) to guide the search. 

Metaheuristics are becoming more and more popular in engineering applications because they: (i) 

rely on rather simple concepts and are easy to implement; (ii) do not require gradient information; 

(iii) can bypass local optima; and (iv) can be utilized in a wide range of problems covering different 

disciplines (Yang 2010a). 

Most metaheuristic algorithms are nature-inspired as they have been developed based on some 

abstraction of nature. Nature-inspired metaheuristic algorithms solve optimization problems by 

mimicking biological or physical phenomena. Nature has evolved over millions of years and has 

found perfect solutions to almost all the problems she faced. We can thus learn the success of 

problem-solving from nature and develop nature-inspired heuristic and/or metaheuristic 

algorithms. More particularly, some nature-inspired algorithms are inspired by Darwin's 

evolutionary theory. Consequently, they are said to be biology-inspired or simply bio-inspired. 

Two major components of any metaheuristic algorithms are: selection of the best solutions and 

randomization. The selection of the best solutions ensures that the solutions will converge to 

optimality, while the randomization avoids the solutions being trapped at local optima and, at the 

same time, increase the diversity of the solutions. The good combination of these two components 

will usually guarentee that the global optimum is achieved (Osman & Kelly 1996). 
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Nature-based metaheuristic algorithms can be classified into many ways. One way is to classify 

them as: population-based and trajectory-based. Population-based (or agent-based) metaheuristics  

share a common feature regardless of their nature. The search process is divided into two phases: 

exploration and exploitation. The optimizer must include operators to globally explore the search 

space: in this phase, movements (i.e. perturbation of decision variables) should be randomized as 

much as possible. The exploitation phase follows the exploration phase and can be defined as the 

process of investigating in detail the promising area(s) of the search space. Exploitation hence 

pertains to the local search capability in the promising regions of decision space found in the 

exploration phase. Finding a proper balance between exploration and exploitation is the most 

challenging task in the development of any metaheuristic algorithm due to the stochastic nature of 

the optimization process. On the other hand, trajectory-based metaheuristics use a single agent or 

solution that moves through the decision space or search space in a piecewise style. A better move 

or solution is always accepted while a not-so-good move can also be accepted with certain 

probability. The steps or moves trace a trajectory in the search space with a non-zero probability 

that this trajectory can reach the global optimum (Yang 2010a). 

Nature-inspired metaheuristic algorithms can also be grouped into three main categories: 

evolution-based, physics-based, and swarm-based methods. Evolution-based methods are inspired 

by the laws of natural evolution. The search process starts with a randomly generated population 

which is evolved over subsequent generations. The strength point of these methods is that the best 

individuals are always combined together to form the next generation of individuals. This allows 

the population to be optimized over the course of generations. The most popular evolution-inspired 

technique is Genetic Algorithms (GA) that simulates the Darwinian evolution (Mirjalili & Lewis 

2016). Physics-based methods imitate the physical rules in the universe. The most popular 

algorithms are Simulated Annealing (SA),  Gravitational Local Search (GLSA), and Big-Bang 

Big-Crunch (BBBC).  

The third group of nature-inspired methods includes swarm-based techniques that mimic the social 

behavior of groups of animals. The most popular algorithm is Particle Swarm Optimization (PSO), 

originally developed by (Eberhart & Kennedy 1995). PSO is inspired by the social behavior of 

bird flocking or insect swarming. It uses a number of particles (candidate solutions) that fly around 

in the search space to find the best solution (i.e. the optimal position). Meanwhile, they all trace 
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the best location (best solution) in their paths. In other words, particles consider their own best 

solutions as well as the best solution the swarm has obtained so far. Another popular swarm-based 

algorithm is Firfly Algorithm (FA), first proposed by Yang (2010). This algorithm is inspired by 

the social behavior of firflies in a firefly colony. In fact, the social intelligence and flashing 

behaviour of fireflies to attract potential prey, and to attract mating partners is the main inspiration 

of this algorithm. The positions of fireflies are evolved over the course of iterations by which 

fireflies with lower light intensity move toward the brighter ones. Another swarm-based technique 

is whale optimization algorithm (WOA). This algorithm mimicks the hunting behavior of 

humpback whales, where a group of whales encircle the prey along a circle or a ‘9’-shaped path 

as shown in figure 2. The population of whales create distinctive bubbles called bubble net, so that 

each of them can update their position according to other whales’ position closer to the prey. The 

main characteristics of this algorithm incorporate the simulated hunting behavior with random or 

the best search agent to chase the prey and the use of a spiral to simulate bubble-net attacking 

mechanism of humpback whales (Mirjalili & Lewis 2016).  

Swarm-based metaheuristic methods started to be attractive since PSO was proven to be very 

competitive with evolution-based and physical-based algorithms. Generally speaking, swarm-

based algorithms have some advantages over evolution-based algorithms. For example, they 

preserve search space information over subsequent iterations while evolution-based algorithms 

discard any information as soon as a new population is formed. They also include less operators 

compared to evolutionary approaches (e.g. selection, crossover, mutation, elitism, in sGA) and 

hence are easier to implement (Yang 2010a). 

In what follow we discuss three major modern swarm-based metaheuristic methods applied in this 

thesis, including Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and 

Firefly Algorithm (FA). 
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Figure 2- Bubble-net feeding behavior of humpback whales[adopted from (Mirjalili & Lewis 2016)] 

 

3.2.1. Whale Optimization Algorithm 

Whale Optimization Algorithm (WOA) mimics the social behavior of humpback whales. The 

algorithm is proposed by (Mirjalili & Lewis 2016) inspired by the bubble-net hunting strategy. 

Humpback whales prefer to hunt a school of krill or small fishes close to the surface. This is done 

by creating distinctive bubbles along a circle. It is worth to mention that a whale in this algorithm 

corresponds to one feasible solution and the prey refers to the optimal solution. Humpback whales 

encircle the prey within a shrinking mechanism and along a spiral-shaped path simultaneously; 

therefore, each whale is assumed to choose between the shrinking mechanism or the spiral-shaped 

method to update its position by probability of 50%. The mathematical formulation of the 

aforementioned hunting strategies is as follows: 

�⃗�(𝑡 + 1) = {
𝑋∗⃗⃗ ⃗⃗⃗(𝑡) − 𝐴 . �⃗⃗⃗�                                                 𝑖𝑓 𝑝 < 0.5

𝐷′⃗⃗⃗⃗⃗ . 𝑒𝑏𝑙 . cos(2𝜋𝑙) +  𝑋∗⃗⃗ ⃗⃗⃗(𝑡)                       𝑖𝑓 𝑝 ≥ 0.5
                                                    (7) 

Where �⃗�(𝑡 + 1) denotes updated position for the next iteration (t + 1) and p is a random number 

in [0, 1]. In what follows, we introduce all parameters and variables in (7). First the shrinking 

mechanism formulation (𝑝 < 0.5) is disscussed, afterward we focuse on the parameters and 

variables of spiral-shaped mechanism formaulation (𝑝 ≥ 0.5). In the shrinking mechanism 

formulation (𝑝 < 0.5), 𝑋∗⃗⃗ ⃗⃗⃗(𝑡) denotes a random whale chosen from current population if the 

algorithm is in the exploration phase (|𝐴| > 1). On the other hand, it stands for the best feasible 

solution obtained so far if the algorithm is in the exploitation phase (|𝐴| < 1). It is worth 
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mentioning that in the shrinking mechanism, the variation of the 𝐴 vector can be exploited to 

choose between exploration phase (Search for prey) and exploitation phase (Bubble-net attacking 

method). In fact, in exploration phase, humpback whales search randomly according to the position 

of each other. Therefore, 𝐴  is used as the random values greater than 1 or less than −1 to force 

each search agent (whale) to move, respectively, toward or far away from a reference whale. The 

idea is to search different regions of the search space (i.e. feasible set). The position of a search 

agent (whale) in the exploration phase is updated according to a randomly chosen search agent 

(whale) instead of the best position found so far. Thus |𝐴| > 1 emphasizes exploration and allow 

the WOA algorithm to perform a global search (see Figure 3.a). The formulation is as follows: 

�⃗⃗⃗� = |𝐶 .  𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − �⃗�|                                                                                                                         (8)  

�⃗�(𝑡 + 1) =  𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −  𝐴 . �⃗⃗⃗�                                                                                                                 (9) 

Where  𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is a random agent (whale) chosen from the current population and �⃗� is the current 

position of the whale. The vectors, 𝐴 and 𝐶 are calculated as follows: 

𝐴 = 2 �⃗� . 𝑟 −  �⃗�                                                                                                                                     (10) 

𝐶 = 2 . 𝑟                                                                                                                                             (11) 

Where �⃗�  is linearly decreased from 2 to 0 over the course of iterations and  𝑟  is a random vector 

in [0, 1]. 

On the other hand, in the exploitation phase (|𝐴| < 1), Humpback whales can recognize the 

location of prey and encircle them to hunt. Based on this behaviour, the optimal position in the 

search space is not known a priori. Thus, it is assumed that the current best candidate solution 

(position of agent 𝑋∗⃗⃗ ⃗⃗⃗(𝑡)) is the optimum one or is close to the optimum. After the best search agent 

(whale) is determined, the other search agents (whales) will then try to update their positions 

towards it (see Figure 3.b). The following equations demonstrate this behavior: 

�⃗⃗⃗� = |𝐶 . 𝑋∗⃗⃗ ⃗⃗⃗(𝑡) − �⃗�(𝑡)|                                                                                                                        (12) 

�⃗�(𝑡 + 1) = 𝑋∗⃗⃗ ⃗⃗⃗(𝑡) − 𝐴 . �⃗⃗⃗�                                                                                                                     (13) 
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Where t is the current iteration, 𝐴  and  𝐶  are coefficient vectors discussed previously, X*(t) is the 

best solution obtained so far, and  �⃗�(𝑡) is the current position vector for the search agent. It is 

worth to mention that, X*(t) should be updated in each iteration once a better solution is obtained 

for the population’s position. 

In the spiral-shaped mechanism (𝑝 ≥ 0.5 in (7)), the distance between the current position (X (t)) 

and incumbent position (X*(t)) is first calculated. A spiral equation is then created between the 

current position of the whale and the prey to mimic the helix-shaped movement of humpback 

whales (see figure 4) as:   

�⃗�(𝑡 + 1) = 𝐷′⃗⃗⃗⃗⃗ . 𝑒𝑏𝑙 . cos(2𝜋𝑙) +  𝑋∗⃗⃗ ⃗⃗⃗(𝑡)                                                                                                 (14) 

Where 𝐷′⃗⃗⃗⃗⃗ = |𝑋∗⃗⃗ ⃗⃗⃗(𝑡) − �⃗�(𝑡)| and indicates the distance of the current position to the best one so 

far,  b  is a constant for defining the shape of the logarithmic spiral, and  l  is a random number in 

[−1, 1]. 

To conclude, the WOA algorithm starts with a set of random feasible solutions as initial position 

of the whales from the population. At each iteration, depending on the value of  p, WOA is able to 

switch between a spiral and shrinking movement. In the shrinking mechanism, search agents 

(whales) update their positions with respect to either a randomly chosen position (exploration 

phase) or the best position obtained so far (exploitation phase). Finally, the WOA algorithm is 

terminated by the satisfaction of a termination criterion, for instance the maximum number of 

iterations. 
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Figure 3- Shrinking mechanism; a) Exploration phase, b) Exploitation phase [adopted from (Mirjalili & Lewis 2016)] 

 

Figure 4- Spiral-shaped mechanism [adopted from (Mirjalili & Lewis 2016)] 

 

The pseudo code of the WOA algorithm is presented in Algorithm 1. It is worth mentioning that, 

index permutation matrices represent the members of population. In the RAS problem, each 

representing schedule as will be further elaborated in chapter 5 (section 5.1). Imax refers to the 

population size and tmax denote the maximum number of iterations. Also, the fitness function is 

described in Algorithm 2. 
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1. Generate initial index permutation matrices for the members of population (pop (i)) randomly; 

2. For i=1 to Imax 

2.1. pop (i) = fitness (pop (i)); 

2.2. bestpop = best population; 

3. while (tmax < 15)     

3.1. for each index permutation matrix 

3.2. Update a, A, C, l, and p according to equations (10) and (11); 

3.3. if ( p < 0.5 ) 

3.3.1. if ( |𝐴| < 1 ) 

3.3.1.1. Update the matrices of the current population by the Eq. (8- 9); 

3.3.2. else if ( |𝐴| ≥ 1 ) 

 3.3.2.1. Select a random matrix; 

3.3.2.2. Update the matrices of the current population by the Eq. (12- 13); 

3.3.3. end 

 3.4. else if (p ≥ 0.5) 

3.4.1. Update the matrices of the current population by Eq. (14); 

 3.5. end 

3.6. end 

3.7. Check if any matrix goes beyond the search space and amend it (divide whole row by ceil of 

maximum element of the row); 

3.8. Pop (i) = fitness (pop (i)); 

3.9. bestpop= best population; 

3.10. t = t + 1; 

4. end 

5. return best pop; 

Algorithm 1- WOA 
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3.2.2. Particle Swarm Optimization 

Particle swarm optimization (PSO) is a metaheuristic developed by (Eberhart & Kennedy 1995) 

inspired from swarm intelligence. It  is based on the bird and fish flock movement behavior. While 

searching for food, the birds are either scattered or go together before they locate the place where 

they can find the food. While the birds are searching for food from one place to another, there is 

always a bird that can smell the food very well. In other words, the bird is perceptible of the place 

where the food can be found, while having the better food resource information. Since they are 

transmitting the information, especially the good information at any time while searching the food 

from one place to another, the birds will eventually flock to the place where food can be found. As 

far as particle swam optimization algorithm is concerned, the solution swam is compared to the 

bird swarm; i.e., the birds’ moving from one place to another is equivalent to the development of 

the solution swarm; good information corresponds to the best solution; and the food resource is 

equivalent the optimal solution during the whole process. The optimal solution can be worked out 

in particle swarm optimization algorithm by the cooperation of each individual bird (feasible 

solution).  

In the particle swarm optimization algorithm, the swarm consists of “n” particles, and the position 

of each particle corresponds to the potential solution in the search space. Each particle changes its 

position according to the following three principles: i) to keep its inertia; ii) to change the condition 

according to the swarm’s best position; and iii) to change the condition according to its best 

position. The position of each particle in the swarm is affected both by the best position during its 

movement (individual experience) and the position of the best particle in its surrounding (near 

1. Get index permutation matrix; 

2. For all permutation of indices in the obtained order in the index permutation matrix 

2.1. If all constraints are satisfied 

2.1.1. Assign 1 to decision variables; otherwise, assign 0 to them. 

3. Calculate the objective function and return it; 

Algorithm 2- fitness function  
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experience). Hence, each particle can be shown by its current velocity (vi) and position (xi), the 

best position of each individual, and the best position of the surrounding (see Figure 5). The 

velocity and position of each particle change according the following equations :  

vi
t+1= ω vi

t +φp rp (pi-xi
t)+φg rg (g-xi

t)                                                                                         (15)  

xi
t+1 = xi

t + vi
t                                                                                                                                                                                              (16)  

Where vi
t+1 is the updated velocity vector of particle i in the next iteration (t+1). vi

t is current 

velocity vector for particle i; xi
t is current position of particle i; pi represents the best position of 

the individual i at its best position; g is the quantity of the swarm at its best position; rp and rg are 

two random vectors taking values between 0 and 1. The parameter ω is the velocity importance 

coefficient; φp and φg are the learning parameters or acceleration constants regulating the length 

when flying to the best particle of the whole swarm and to the best individual particle, respectively. 

If the constant is too small, the particle is probably far away from the target field; while if it is too 

big, the particle will maybe fly to the target field suddenly or fly beyond the target field. The proper 

constants can control the velocity of the particle’s flying. These constants can typically be taken 

as ω≈ 1 𝑎𝑛𝑑 φp ≈ φg ≈ 2.  

The initial locations of all particles should distribute relatively uniformly so that they represent 

most regions of the search space. The initial velocity of a particle can be set as zero, that is, vi
0
=0. 

Although vi can take any values, it is usually bounded in some range [0, vmax] · Particles' velocities 

in each dimension are clamped to a maximum velocity vmax.  

 

 

 

 

 

 

 

Figure 5- Vector representation of PSO [adapted from (Eberhart & Kennedy 1995)] 
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Figure 5 is a vector representation of PSO velocity and position updates in a two-dimensional 

space. At each iteration t, a particle xi
t
 updates its velocity and position according to equations (14) 

-(15). 

The pseudo code of the PSO algorithm is presented in Algorithm 3. It is worth mentioning that 

index permutation matrices represent the members of population (i.e., a schedule in RAS problem). 

These matrices are further discussed in chapter 5 (section 5.1). Imax refers to the population size 

and tmax is the maximum number of iterations.  

 

3.2.3. Firefly Algorithm  

The flashing light of fireflies is a stupendous sight in the summer sky of the tropical regions. There 

are lots of firefly species, and most of them produce short and rhythmic flashes. Two main 

 

1. For each particle i = 1, ..., Imax do: 

1.1. Initialize the particle's position (index permutation matrix) with a uniformly 

distributed random vector: xi ~ U(0, 1) 

1.2. Initialize the particle's best known index permutation matrix to its initial one: pi ← xi 

1.3. If (fitness (pi) > fitness (g)) update the swarm's best known matrix: g ← pi 

1.3.1. Initialize the particle's velocity: vi  

2. Until a termination criterion is met (tmax), repeat: 

2.1. For each particle i = 1, ..., Imax 

2.1.1. generate the uniformly distributed random parameters: rp, rg ~ U (0, 1) 

2.1.2. Update the particle's velocity by: vi ← ω vi + φp rp (pi -xi) + φg rg (gd-xi) 

2.1.3. Update the particle's position (matrix) by following equation: xi ← xi + vi 

2.1.4. If (fitness (xi) > fitness (pi)) do: 

2.1.4.1.  Update the particle's best known position (matrix): pi ← xi 

2.1.5.  If (fitness (pi) > fitness (g))  

2.1.5.1. update the swarm's best known position (matrix): g ← pi 

3. end for 

4. return g as the best solution. 

Algorithm 3- PSO 

https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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functions of such flashes are to attract potential prey, and mating partners (communication). 

Inspired by this social behaviour of fireflies, Firefly Algorithm (FA), developed by (Yang 2010b), 

starts with a random initial population of fireflies as initial feasible solutions to an optimization 

model. At each iteration of this algorithm, after checking the light intensity of each pair of fireflies 

their positions are updated in such a way that fireflies with lower light intensity are attracted to the 

ones with higher light intensity. The new population is accordingly obtained and sorted based on 

the light intensity and the firefly with the highest light intensity is selected as the optimal solution.  

The light intensity at a specific distance r from the light source follows the inverse square law. In 

other words, the light intensity I decreases as the distance r increases (  𝐼 ∝
𝐼

𝑟2 ).  

In the Firefly Algorithm (FA) the following three idealized rules are used: 

 All fireflies are unisex. Thus, one firefly attracts other fireflies regardless of their sex; 

 Attractiveness is associated with their brightness, thus for any pair of flashing fireflies, the 

less bright one will move towards the brighter one. The attraction of each pair decrease as 

their distance increases; 

 The brightness of a firefly is determined or affected by the objective function perspective. 

In other words, the flashing signal can be formulated in such a way that it is related to the 

objective function to be optimized. For a maximization problem, the light intensity can 

simply be commensurate with the objective value.  

There are two important issues in firefly algorithm to address: the light intensity variation and 

attractiveness formulation. For simplicity, it can always be assumed that the attractiveness of a 

firefly is determined by its light intensity which is associated with the objective function. 

In the simplest case for maximization problems, the brightness I of a firefly at a specific location 

x can be chosen as I(x) ∝ f(x). However, the attractiveness ß is relative, it should be judged by 

other fireflies or seen in the eyes of the beholder. Therefore, it will change with the distance 

between firefly i and firefly j (rij). In addition, light intensity decreases with the distance from its 

source, and light is also absorbed in the air, so the attractiveness should be allowed to change with 

the absorption scale. 

In the simplest form, the light intensity I(r) varies according to the inverse square law:  
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𝐼(𝑟) =
𝐼𝑠

𝑟2                                                                                                                                      (17) 

Where Is is the source intensity. For a given environment with a fixed light absorption coefficient 𝛾, 

the light intensity I varies with the distance r. That is 

𝐼 = 𝐼0𝑒−𝛾𝑟                                                                                                                                   (18) 

Where I0 is the initial light intensity. Avoiding the singularity at r = 0 in the expression 
𝐼𝑠

𝑟2 
 , the 

combined effect of both the inverse square law and absorption can be approximated as the 

following Gaussian function  

𝐼(𝑟) = 𝐼0𝑒−𝛾𝑟2
                                                                                                                            (19) 

Since the firefly's attractiveness is proportional to the light intensity seen by adjacent fireflies, the 

attractiveness ß of a firefly can be defined as 

𝛽 = 𝛽0𝑒−𝛾𝑟2
                                                                                                                                (20) 

Where ßo is the attractiveness at r = 0. As it is often faster to calculate 
1

(1+𝑟2)
 than an exponential 

function, the above function, if necessary, attractiveness can conveniently be approximated as 

𝛽 =
𝛽0

1+𝛾𝑟2                                                                                                                                    (21) 

Equations (19) - (21) define a characteristic distance Γ =
1

√𝛾
 over which the attractiveness changes 

significantly as the distance is increased (i.e. from ßo to ß0 e
-1 in equation (20) or 

𝛽0

2
  in (21)). 

In the actual implementation, the attractiveness function ß(r) can be any monotonically decreasing 

function such as the following generalized form  

𝛽(𝑟) = 𝐵0𝑒−𝛾𝑟𝑚
, (𝑚 ≥ 1)                                                                                                        (22) 

The distance between any pair of fireflies i and j at xi and xj, respectively, is the Cartesian distance 

𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2𝑑
𝑘=1                                                                                       (23) 

Where 𝑥𝑖,𝑘 is the kth element of the spatial coordinate xi of ith firefly. In 2-D case, we have 

𝑟𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2                                                                                                   (24) 
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The movement of the attracted firefly i to another more attractive (brighter) firefly j is determined 

by: 

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗 − 𝑥𝑖) + 𝛼𝜖𝑖                                                                                             (25) 

Where the second term in (25) is due to attraction; while the third term is due to randomization 

with 𝛼 being the randomization parameter, and 𝜖𝑖 is a vector of random numbers drawn from a 

Gaussian or uniform distribution. For most of our implementation, we can take ßo = 1 and a ∈[0,1]. 

It is worth pointing out that the movement equation is a random walk tendentious to the brighter 

fireflies. If ßo = 0, the equation becomes a simple random walk. Furthermore, the randomization 

term can easily be extended to other distributions. The parameter 𝛾 specifieses the variation of the 

attractiveness, and its value is difinitely important in determining the speed of the convergence 

and how FA behaves. In theory, 𝛾 ∈ [0, ∞), but in practice, 𝛾 is determined by the characteristic 

length (Γ) of the system to be optimized. Thus, in most applications, it typically varies between 

0.1 and 10. For a fixed 𝛾, the characteristic length becomes 

Γ = 𝛾
−1

𝑚⁄                                                                                                                                    (26) 

And as 𝑚 → ∞ , Γ → 1. Hence, from (25), for a given length scale Γ in an optimization problem, 

the parameter 𝛾 can be initialized as 𝛾 =
1

Γ𝑚 . 

The pseudo code can be summarized as Algorithm 4. It is worth mentioning that, index permutation 

matrices are the members of population each representing a schedule in RAS problem. These 

matrices are discussed in chapter 5 (section 5.1). Imax refers to the population size (or the number 

of particles) and tmax is the maximum number of iterations. 
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1. Define absorption coefficient 𝛾 ; 

2. Generate initial index permutation matrices for the members of population (pop (i)) 

randomly; 

3. For i=1 to Imax 

3.1. pop (i) = fitness (pop (i)); 

4. While (t < tmax) 

4.1. for i = 1 : n (all n matrixes) 

4.1.1. for j = 1 : n (n matrixes) 

4.1.1.1. if fitness (j) > fitness( i) 

4.1.1.1.1. Move matrix (firefly) i towards j by:𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗 − 𝑥𝑖) + 𝛼𝜖𝑖  ; 

4.1.1.1.2. Evaluate new matrices and update the objective value (light intensity); 

4.1.1.2. end if  

4.1.2. end for j 

4.2. end for i 

4.3. Rank matrices and find the current best; 

5. end while 

6. return the current best firefly 

Algorithm 4- FA 
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4. Chapter 4: Problem description and formulation 

In this section, we first present the deterministic mathematical model for RAS problem; then we 

develop its robust counterpart in section 4.2.1. 

4.1. Deterministic appointment scheduling model in 

radiotherapy clinics 

4.1.1. Assumptions and Notations 

In what follows, we describe the details on the specific radiotherapy appointment scheduling 

problem that allows maximizing the number of newly scheduled patients, chosen from patients 

waiting to start their treatment (waiting list). Given a set of already booked patients (in the previous 

planning horizon), the aim is to schedule patients when at least one linear accelerator (linac) is 

available, ensuring that all treatment sessions specified for each patient in pre-treatment phase, 

will be carried out. We extend the model proposed by (Conforti et al. 2010) by considering time 

constraints (i.e. release dates and due dates). The due date refers to the date by which the treatment 

sessions of the patient have to be completed. Whereas, release date defines the first day after the 

pre-treatment stage is completed and the patient is available/ready to be treated. The scheduling 

policy is based on priority categories assigned by the physician based on the pathological 

conditions evaluated at the beginning of each planning horizon. 

We first report the following notations used in mathematical models: 

 K, set of weekdays in the planning horizon; 

 F, set of available shifts in each workday; 

 M, set of linacs (machines) with same performance; 

 BP, set of patients that have already started the treatment (booked patients); 

 WP, waiting list of patients waiting to start the radiotherapy plan (waiting patients); 

 Tmkf , capacity of machine m during shift f of day k (minutes). 

We first remark the validity of following assumptions:  
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 The planning horizon is considered as six consecutive weekdays (from Monday to 

Saturday), then we assume that |𝐾| = 6. The schedule is generated weekly, generally 

on Saturday; in this way, the patients have sessions fixed in advance. 

 Each patient should be assigned only to one shift in a day.  

 Booked patients are available to be re-scheduled and assigned to the same machine at 

least in one known shift.  

 During the first treatment session, a set-up stage is carried out before the radiation in 

order to validate the parameters fixed during the simulation phase.  

 The treatment sessions have to be performed within consecutive days. There is no 

preemption in the treatment plan. 

 Patients in WP are previously sorted in decreasing priority values. Similar priorities are 

also sorted by arrival time (FIFO basis). 

 The modeling procedure is ‘‘offline” with respect to the radiotherapy treatments. 

For all patients p ∈ BP and j ∈ WP, the following parameters are available: 

 tp (tj), the number of consecutive days required in weekly treatment sessions. 

 ldp (ldp), latest day by which the patient can start the tp (tj) weekly therapy sessions.  

 rp (rj) , release day by which the patient is ready to start the treatment sessions. 

 dp (dp), due day by which the patient has to finish the weekly treatment sessions. 

Moreover, other parameters required to schedule patients belonging to WP and BP are reported in 

what follows.  

4.1.1.1. Parameters of patients in WP 

 prj, priority value assigned by the oncologist based on the ‘‘severity” of the tumor’s 

condition. 

 �̃�𝑚𝑗, radiation duration of patient j on the machine m. 

 set1
mj, set-up time for patient j on machine m during the first session of the treatment 

plan. This value is evaluated during the simulation phase. 

 setmj, set-up time for treating the patient j on machine m, in the sessions following the 

first one. 
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 𝑠𝑚𝑗
1 = 𝑠𝑒𝑡𝑚𝑗

1 + �̃�𝑚𝑗 , time of the first treatment of the treatment plan for patient j on 

machine m. 

 𝑠𝑚𝑗 = 𝑠𝑒𝑡𝑚𝑗 + �̃�𝑚𝑗 , time of the treatments following the first one for patient j on 

machine m. 

 wj , the weight assigned to patient j. Let |𝑊𝑃| be the number of patients belonging to 

WP, the values of the weight wj are determined by setting 𝑤|𝑊𝑃| = 𝑎; 𝑤|𝑊𝑃|−1 = 𝑏; and 

𝑤𝑗 = 𝑤𝑗+1 + 𝑤𝑗+2 + (|𝑊𝑃| − 𝑗) ∀𝑗 = 1, … , |𝑊𝑃| − 2, where a and b are non-

negative integer values and typically small. Hence, we obtain a decreasing sequence 

that allows to discriminate among patients with the same priority value and the same 

number of treatment sessions on the basis of the entering time to the waiting list (WP). 

As mentioned earlier, we assume that those patients that have already started the treatment plan in 

the past (booked patients) can be rescheduled by taking into account their availability during the 

shifts on each day. Also, such patients must be treated on the same machine started before for the 

entire treatment plan. It is worth noting that booked patients refer to those patients who require 

several non-consecutive weeks of treatment sessions and by the time of scheduling during the new 

planning horizon (current week) have already completed a certain number of treatment weeks. 

Nevertheless, their previously booked sessions during current week are subject to change. This 

provides more flexibility in scheduling patients on the waiting list.   

4.1.1.2. Parameters related to booked patients  

 lptp, last weekday of the last planned treatment session. 

 breakp, possible interval (in days) between two consecutive planned weeks. 

 delayp, possible delay (in days) in starting the first weekly treatment. 

 smp, the treatment time of patient p assigned to machine m. 

 sdp, the starting day during which the first treatment session of the current planning 

week is delivered. In reality, when booking a patient p, the ‘‘break” between two 

consecutive planned weeks has to be taken into account. 

𝑠𝑑𝑝 =  {
𝑏𝑟𝑒𝑎𝑘𝑝 − |𝐾| + 𝑙𝑝𝑡𝑝        𝑖𝑓 𝑏𝑟𝑒𝑎𝑘𝑝 > |𝐾| − 𝑙𝑝𝑡𝑝

1                                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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 lsdp , the latest weekly starting day refer to the latest day the patient p can start the 

weekly treatment. In some cases a patient p ∈ BP could delay the weekly starting day 

by the maximum delay (delayp ≥ 0) days, assuring the completion of t sessions.  

𝑙𝑠𝑑𝑝 = 𝑚𝑖𝑛{𝑠𝑑𝑝 + 𝑑𝑒𝑙𝑎𝑦𝑝, |𝐾| − 𝑡𝑝 + 1} 

 avpkf = {
1,           𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑜 𝑏𝑒 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 

𝑖𝑛 𝑠ℎ𝑖𝑓𝑡 𝑓 𝑜 𝑑𝑎𝑦 𝑘
0,                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

the decision variables are described as follows: 

 �̅�𝑝𝑘𝑓 = {
1,                               𝑖𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑛 𝐵𝑃 

               𝑖𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 𝑜𝑢𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠ℎ𝑖𝑓𝑡 𝑓 𝑜𝑛 𝑑𝑎𝑦 𝑘
0,                                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 �̅�𝑝𝑘𝑓 = {
1,                                            𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑛 𝐵𝑃 𝑖𝑠 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 

        𝑠ℎ𝑖𝑓𝑡 𝑓 𝑜𝑛 𝑑𝑎𝑦 𝑘
0,                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 𝑧𝑚𝑗𝑘𝑓 = {
 1,                           𝑖𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑗 𝑖𝑛 𝑊𝑃 
       𝑖𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 𝑜𝑢𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠ℎ𝑖𝑓𝑡 𝑓 𝑜𝑛 𝑑𝑎𝑦 𝑘 𝑎𝑛𝑑  𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚
0,                                                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 𝑦𝑚𝑗𝑘𝑓 =  {
1,                          𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑗 𝑖𝑛 𝑊𝑃 𝑖𝑠 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 

𝑑𝑢𝑟𝑖𝑛𝑔 𝑠ℎ𝑖𝑓𝑡 𝑓 𝑜𝑛 𝑑𝑎𝑦 𝑘
0,                                                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 Xmj= {
1,                                             𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑗 𝑖𝑛 𝑊𝑃 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑜𝑛

 𝑚𝑎𝑐ℎ𝑖𝑛𝑒  𝑚
0,                                                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This binary variable has been introduced with the aim to simplify formulating certain conditions. 

4.1.2. Model formulation 

Max ∑ ∑ 𝑤𝑗 𝑋𝑚𝑗
|𝑀|
𝑚=1

|𝑊𝑃|
𝑗=1                                                                                                                           (27)         

Subject to 

∑ 𝑋𝑚𝑗
|𝑀|
𝑚=1 ≤ 1                                                                                                                            ∀𝑗 ∈ 𝑊𝑃 (28)                       

𝑋𝑚𝑗 = ∑ ∑ 𝑍𝑚𝑗𝑘𝑓
|𝐹|
𝑓=1

𝑙𝑑𝑗

𝑘=1                                                                                        ∀𝑗 ∈ 𝑊𝑃 ∀𝑚 ∈ 𝑀 (29)                      

∑ ∑ ∑ 𝑍𝑚𝑗𝑘𝑓
|𝐹|
𝑓=1

|𝐾|
𝑘>𝑙𝑑𝑗

|𝑀|
𝑚=1 = 0                                                                                                ∀𝑗 ∈ 𝑊𝑃 (30)                         
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∑ 𝑦𝑚𝑗𝑘𝑓
|𝐹|
𝑓=1 ≤ 𝑋𝑚𝑗                                                                               ∀𝑚 ∈ 𝑀  ∀𝑗 ∈ 𝑊𝑃  ∀𝑘 ∈ 𝐾    (31)              

∑ ∑ ∑ 𝑍𝑚𝑗𝑘𝑓 = 0                                                                                                  ∀𝑗 ∈ 𝑊𝑃
|𝐹|
𝑓=1

𝑟𝑗−1

𝑘=1
|𝑀|
𝑚=1  (32) 

∑ ∑ ∑ 𝑦𝑚𝑗𝑘𝑓 = 0                                                                                              ∀𝑗
|𝐹|
𝑓=1

|𝐾|
𝑘=𝑑𝑗+1

|𝑀|
𝑚=1 ∈ 𝑊𝑃 (33) 

∑  (
|𝐹|
𝑓=1 𝑦𝑚𝑗𝑘𝑓 + 𝑍𝑚𝑗𝑘𝑓) ≤  𝑋𝑚𝑗                                                            ∀𝑗 ∈ 𝑊𝑃 ∀𝑘 ∈ 𝐾 ∀𝑚 ∈ 𝑀  (34) 

 ∑ ∑ 𝑦𝑚𝑗𝑑𝑓
|𝐹|
𝑓=1

𝑘+𝑡𝑗−1

𝑑=𝑘+1 ≥ (𝑡𝑗 − 1) ∑ 𝑍𝑚𝑗𝑘𝑓
|𝐹|
𝑓=1                     ∀𝑚 ∈ 𝑀 ∀𝑗 ∈ 𝑊𝑃 ∀𝑘 ∈ 𝐾: 𝑘 ≤ 𝑙𝑑𝑗   (35) 

∑ ∑ 𝑦𝑚𝑗𝑘𝑓
|𝐹|
𝑓=1

|𝐾|
𝑘=1 + ∑ ∑ 𝑧𝑚𝑗𝑘𝑓

|𝐹|
𝑓=1

𝑙𝑑𝑗

𝑘=1 = 𝑡𝑗𝑋𝑚𝑗                                                ∀𝑚 ∈ 𝑀  ∀𝑗 ∈ 𝑊𝑃  (36) 

∑ (𝑆𝑚𝑗
1|𝑊𝑃|

𝑗=1 𝑍𝑚𝑗𝑘𝑓+𝑆𝑚𝑗𝑦𝑚𝑗𝑘𝑓) +  ∑ 𝑆𝑚𝑝𝑎𝑣𝑝𝑘𝑓�̅�𝑝𝑘𝑓
|𝐵𝑃|
𝑝=1 ≤ 𝑇𝑚𝑘𝑓       ∀𝑚 ∈ 𝑀 ∀𝑘 ∈ 𝐾 ∀𝑓 ∈ 𝐹  (37) 

�̅�𝑝𝑘𝑓 ≤ 𝑎𝑣𝑝𝑘𝑓                                                                                                ∀𝑝 ∈ 𝐵𝑃 ∀𝑘 ∈ 𝐾 ∀𝑓 ∈ 𝐹 (38) 

∑ ∑ 𝑎𝑣𝑝𝑘𝑓�̅�𝑝𝑘𝑓
|𝐹|
𝑓=1

𝑙𝑠𝑑𝑝

𝑘=1 = 1                                                                                                      ∀𝑝 ∈ 𝐵𝑃 (39) 

�̅�𝑝𝑘𝑓 ≥ �̅�𝑝𝑘𝑓                                                                                                 ∀𝑝 ∈ 𝐵𝑃 ∀𝑘 ∈ 𝐾 ∀𝑓 ∈ 𝐹  (40) 

∑ ∑ 𝑎𝑣𝑝𝑘𝑓�̅�𝑝𝑘𝑓
|𝐹|
𝑓=1

|𝐾|
𝑘=1 = 𝑡𝑝                                                                                                     ∀𝑝 ∈ 𝐵𝑃 (41) 

∑ ∑ 𝑎𝑣𝑝𝑑𝑓�̅�𝑝𝑘𝑓
|𝐹|
𝑓=1

𝑘+𝑡𝑝−1

𝑑=𝑘+1 ≥ (𝑡𝑝 − 1) ∑ �̅�𝑝𝑘𝑓
|𝐹|
𝑓=1                                 ∀𝑝 ∈ 𝐵𝑃 ∀𝑘 ∈ 𝐾: 𝑘 ≤ 𝑙𝑑𝑝 (42) 

∑ 𝑎𝑣𝑝𝑘𝑓�̅�𝑝𝑘𝑓
|𝐹|
𝑓=1 ≤ 1                                                                                                 ∀𝑝 ∈ 𝐵𝑃 ∀𝑘 ∈ 𝐾  (43) 

∑ ∑ �̅�𝑝𝑘𝑓 = 0                                                                                                           ∀𝑝 ∈ 𝐵𝑃
|𝐹|
𝑓=1

|𝐾|
𝑘=𝑑𝑝+1   (44) 

∑ ∑ �̅�𝑝𝑘𝑓 = 0                                                                                                                ∀𝑝 ∈ 𝐵𝑃
|𝐹|
𝑓=1

𝑟𝑝−1

𝑘=1   (45) 

𝑦𝑚𝑗𝑘𝑓 , 𝑍𝑚𝑗𝑘𝑓 ∈ {0,1}                                                                 ∀𝑚 ∈ 𝑀 ∀𝑗 ∈ 𝑊𝑃 ∀𝑘 ∈ 𝐾 ∀𝑓 ∈ 𝐹 (46) 

𝑋𝑚𝑗 ∈ {0,1}                                                                                                               ∀𝑚 ∈ 𝑀 ∀𝑗 ∈ 𝑊𝑃  (47) 

�̅�𝑝𝑘𝑓 , �̅�𝑝𝑘𝑓 ∈ {0,1}                                                                                        ∀𝑝 ∈ 𝐵𝑃 ∀𝑘 ∈ 𝐾 ∀𝑓 ∈ 𝐹 (48) 
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Detailing the structure of the model, we first remark that the objective function (27), to be 

maximized, is a weighted sum of newly scheduled patients chosen from the waiting list, where the 

weights represent patients’ priorities. 

To ensure that each newly scheduled patient is assigned only to one machine during the entire 

planning horizon, the following constraints are formulated: 

∑ ∑ ∑ 𝑍𝑚𝑗𝑘𝑓

|𝐹|

𝑓=1

𝑙𝑑𝑗

𝑘=1

|𝑀|

𝑚=1

≤ 1 ∀𝑗                                                                                                                         (49) 

By introducing the auxiliary variables Xmj, constraints (28) are obtained from (49). These 

constraints, together with constraints (29) and (30), assure that only one machine is assigned to 

each newly scheduled patient, and only one first treatment session of the entire planning horizon 

is booked. Constraints (31) guarantee that each treatment session, following the first one, can be 

assigned to the same machine as the one used in the first session, only to one shift per day. To 

assure that exactly t treatments will take place in consecutive weekdays for each newly scheduled 

patient on the same assigned machine during the entire planning horizon, constraints (34)– (36) 

are formulated. Indeed, a new session will be booked only and only if the available machine time 

per shift, in each day, is greater than the duration required for the patient, as formulated by 

constraints (37). The treatment sessions in consecutive weekdays, without interruption, have to be 

also ensured for patients belonging to BP who have already started their treatment. Therefore, 

taking into account the availability, given by avpkf, each session is booked only when the patient is 

available, as formulated by constraints (38). Constraints (39) fix the first treatment day in the 

considered planning horizon, whereas constraints (40) imply that the first treatment is a booked 

session. In other words, constrains (40) assign the first session (�̅�𝑝𝑘𝑓) from generally booked 

sessions (�̅�𝑝𝑘𝑓). Constraints (41) and (42) ensure that the number of scheduled treatments is 

exactly equal to the number of required treatments tp and in consecutive days. Since each patient 

can undergo exactly one treatment per day, constraints (43) are introduced. Constraints (32), (33), 

(44) and (45) are the time constraints that assure the session cannot be assigned before release 

dates and after the due dates for both types of patients. Finally, constraints (46) – (48) define the 

domains of decision variables. 
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4.2. Radiotherapy appointment scheduling under uncertainty 

The RAS problem is affected by three sources of uncertainty namely random duration of the first 

treatment, the treatment times following the first one for patients on the waiting list and treatment 

time of booked patients. Notice that these uncertain parameters affect constraints (37) in model 

(27)-(48). In this study, we model the aforementioned treatment times as uncertain intervals. Let’s 

denote �̃�𝑚𝑗
1  as the uncertain time of the first treatment for patients on the waiting list with the 

nominal value of  �̅�𝑚𝑗
1 , �̃�𝑚𝑗 as uncertain time of treatments following the first one with a nominal 

value of  �̅�𝑚𝑗, and �̃�𝑚𝑝 as uncertain treatment time for booked patients with a nominal value of 

�̅�𝑚𝑝. �̃�𝑚𝑗
1  is assumed symmetric and takes values in the interval [�̅�𝑚𝑗

1 − �̂�𝑚𝑗
1 , �̅�𝑚𝑗

1 + �̂�𝑚𝑗
1 ]. Then, the 

scaled deviation 𝑎𝑚𝑗 (belonging to [−1, 1]) of �̃�𝑚𝑗
1  from its nominal value is defined as 𝑎𝑚𝑗 =

�̃�𝑚𝑗
1 −�̅�𝑚𝑗

1

�̂�𝑚𝑗
1 . Thus, we can also write �̃�𝑚𝑗

1 = �̅�𝑚𝑗
1 ± �̂�𝑚𝑗

1 𝑎𝑚𝑗 . Furthermore, �̃�𝑚𝑗 and �̃�𝑚𝑝 take values in 

the intervals [�̅�𝑚𝑗 − �̂�𝑚𝑗 , �̅�𝑚𝑗 + �̂�𝑚𝑗] and [�̅�𝑚𝑝 − �̂�𝑚𝑝, �̅�𝑚𝑝 + �̂�𝑚𝑝], respectively. We consider the 

scale deviation of �̃�𝑚𝑗 and �̃�𝑚𝑝 from their nominal values as 𝑏𝑚𝑗 = 
�̃�𝑚𝑗−�̅�𝑚𝑗

�̂�𝑚𝑗
  and 𝑐𝑚𝑝 =

 
�̃�𝑚𝑝−�̅�𝑚𝑝

�̂�𝑚𝑝
  that belongs to [−1, 1]. Similarly, the random treatment times following the first one for 

patients on the waiting list and treatment times for booked patients might be rewritten as �̃�𝑚𝑗= 

�̅�𝑚𝑗 ±  𝑏𝑚𝑗�̂�𝑚𝑗 and �̃�𝑚𝑝= �̅�𝑚𝑝 ±  𝑐𝑚𝑝�̂�𝑚𝑝, respectively. In what follows, we provide the robust 

counterpart of RAS model (27)-(48) according to the above-mentioned uncertain intervals. 

4.2.1. Robust counterpart of RAS problem 

Constraints (37) in the deterministic model (27) - (48) are affected by uncertain treatment times. 

These constraints indicate that the total time needed to treat patients on each machine in each shift, 

on a day must not exceed the machine capacity. Recall from chapter 3 that the schedule is robust 

if constraint (37) is satisfied for the worst-case treatment times under a given budget of uncertainty. 

In other words, robust counterpart of (37) is equivalent to satisfying this constraint in case the total 

treatment time of all patients (left hand side of (37)) takes its maximum value. This is equivalent 

to the case where the uncertain treatment times (i.e. �̃�𝑚𝑗 , �̃�𝑚𝑝, and �̃�𝑚𝑗
1 ) take their maximum value 

under a given budget of uncertainty. Accordingly, for a given m, k, and f we define a budget of 

uncertainty, Γ𝑚𝑘𝑓
1 , Γ𝑚𝑘𝑓

2  and Γ𝑚𝑘𝑓
3  for �̃�𝑚𝑗 , �̃�𝑚𝑝, �̃�𝑚𝑗

1 , that indicate the maximum number of 
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uncertain treatment times that can take their worst-case value. Let 𝑧𝑚𝑗𝑘𝑓
∗ , 𝑦𝑚𝑗𝑘𝑓

∗  and 𝑦
𝑝𝑘𝑓

∗
 be the 

optimal schedules of booked and new patients, the following protection function is defined for 

(37). 

𝑀𝑎𝑥 ∑ (�̂�𝑚𝑗
1  𝑎𝑚𝑗 𝑧𝑚𝑗𝑘𝑓

∗|𝑊𝑃|
𝑗=1 + �̂�𝑚𝑗 𝑏𝑚𝑗  𝑦𝑚𝑗𝑘𝑓

∗ ) + ∑ �̂�𝑚𝑝 𝑐𝑚𝑝 𝑦
𝑝𝑘𝑓

∗
 𝑎𝑣𝑝𝑘𝑓

|𝐵𝑃|
𝑝=1                              (50)  

𝑠. 𝑡.: 

∑ 𝑎𝑚𝑗 ≤ Γ𝑚𝑘𝑓
1|𝑊𝑃|

𝑗=1                                                                              ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (51)   

∑ 𝑏𝑚𝑗 ≤ Γ𝑚𝑘𝑓
2|𝑊𝑃|

𝑗=1                                                                              ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (52)    

∑ 𝑐𝑚𝑝 ≤ Γ𝑚𝑘𝑓
3|𝐵𝑃|

𝑝=1                                                                               ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (53)    

0 ≤ 𝑎𝑚𝑗 ≤ 1                                                                                                 ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑊𝑃 (54)     

0 ≤ 𝑏𝑚𝑗 ≤ 1                                                                                                 ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑊𝑃 (55)  

0 ≤ 𝑐𝑚𝑝 ≤ 1                                                                                                 ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝐵𝑃 (56)                

For the above protection function, we define 𝑒𝑚𝑘𝑓 , 𝑔𝑚𝑗 , ℎ𝑚𝑘𝑓 , 𝑖𝑚𝑗, 𝑙𝑚𝑘𝑓 and 𝑛𝑚𝑝 as the dual 

variables corresponding to its constraints. The dual counterpart of this protection function is the 

following optimization problem. 

𝑀𝑖𝑛 Γ𝑚𝑘𝑓
1  𝑒𝑚𝑘𝑓 + Γ𝑚𝑘𝑓

2  ℎ𝑚𝑘𝑓 + Γ𝑚𝑘𝑓
3  𝑙𝑚𝑘𝑓  + ∑ (𝑔𝑚𝑗 + 𝑖𝑚𝑗)

|𝑊𝑃|

𝑗=1

+ ∑ 𝑛𝑚𝑝

|𝐵𝑃|

𝑝=1

                                (57) 

s.t.: 

𝑒𝑚𝑘𝑓 + 𝑔𝑚𝑗 ≥ �̂�𝑚𝑗
1  𝑧𝑚𝑗𝑘𝑓                                                 ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑊𝑃, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (58)    

ℎ𝑚𝑘𝑓 +  𝑖𝑚𝑗  ≥  �̂�𝑚𝑗 𝑦𝑚𝑗𝑘𝑓                                               ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑊𝑃, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (59)    

𝑙𝑚𝑘𝑓 +  𝑛𝑚𝑝  ≥  �̂�𝑚𝑝 𝑎𝑣𝑝𝑘𝑓 𝑦
𝑝𝑘𝑓

                                    ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝐵𝑃, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (60)    

𝑒𝑚𝑘𝑓 , ℎ𝑚𝑘𝑓 , 𝑙𝑚𝑘𝑓 ≥ 0                                                                        ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (61)    

𝑔𝑚𝑗 , 𝑖𝑚𝑗 , 𝑛𝑚𝑝 ≥ 0                                                                                        ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝐵𝑃 (62) 
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We finally substitute the dual of the protection function in constraint (37) in order to find its robust 

counterpart as follows: 

∑ (�̅�𝑚𝑗
1|𝑊𝑃|

𝑗=1 𝑍𝑚𝑗𝑘𝑓+�̅�𝑚𝑗𝑦𝑚𝑗𝑘𝑓) +  ∑ �̅�𝑚𝑝𝑎𝑣𝑝𝑘𝑓�̅�𝑝𝑘𝑓
|𝐵𝑃|
𝑝=1  +  Γ𝑚𝑘𝑓

1  𝑒𝑚𝑘𝑓 + Γ𝑚𝑘𝑓
2  ℎ𝑚𝑘𝑓 +

 Γ𝑚𝑘𝑓
3  𝑙𝑚𝑘𝑓  + ∑ (𝑔𝑚𝑗 + 𝑖𝑚𝑗)

|𝑊𝑃|
𝑗=1 + ∑ 𝑛𝑚𝑝

|𝐵𝑃|
𝑝=1 ≤ 𝑇𝑚𝑘𝑓                           ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (63)   

𝑒𝑚𝑘𝑓 + 𝑔𝑚𝑗 ≥ �̂�𝑚𝑗
1  𝑧𝑚𝑗𝑘𝑓                                                                ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑊𝑃, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (64)    

ℎ𝑚𝑘𝑓 +  𝑖𝑚𝑗  ≥  �̂�𝑚𝑗 𝑦𝑚𝑗𝑘𝑓                                                             ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑊𝑃, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (65)    

𝑙𝑚𝑘𝑓 +  𝑛𝑚𝑝  ≥  �̂�𝑚𝑝 𝑎𝑣𝑝𝑘𝑓𝑦
𝑝𝑘𝑓

                                                   ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝐵𝑃, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (66)    

𝑒𝑚𝑘𝑓 , ℎ𝑚𝑘𝑓 , 𝑙𝑚𝑘𝑓 ≥ 0                                                                                      ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (67)    

𝑔𝑚𝑗 , 𝑖𝑚𝑗 , 𝑛𝑚𝑝 ≥ 0                                                                                      ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝐵𝑃, 𝑗 ∈ 𝑊𝑃 (68)    

Finally, the robust counterpart of the deterministic model can be formulated as follows: 

Max ∑ ∑ 𝑤𝑗 𝑋𝑚𝑗
|𝑀|
𝑚=1

|𝑊𝑃|
𝑗=1                                                                                                                           (69) 

Subject to 

(28) - (36) 

∑ (�̅�𝑚𝑗
1|𝑊𝑃|

𝑗=1 𝑍𝑚𝑗𝑘𝑓+�̅�𝑚𝑗𝑦𝑚𝑗𝑘𝑓) +  ∑ �̅�𝑚𝑝𝑎𝑣𝑝𝑘𝑓�̅�𝑝𝑘𝑓
|𝐵𝑃|
𝑝=1  +  Γ𝑚𝑘𝑓

1  𝑒𝑚𝑘𝑓 + Γ𝑚𝑘𝑓
2  ℎ𝑚𝑘𝑓 +

 Γ𝑚𝑘𝑓
3  𝑙𝑚𝑘𝑓  + ∑ (𝑔𝑚𝑗 + 𝑖𝑚𝑗)

|𝑊𝑃|
𝑗=1 + ∑ 𝑛𝑚𝑝

|𝐵𝑃|
𝑝=1 ≤ 𝑇𝑚𝑘𝑓                         ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹   (70)   

𝑒𝑚𝑘𝑓 + 𝑔𝑚𝑗 ≥ �̂�𝑚𝑗
1  𝑧𝑚𝑗𝑘𝑓                                                              ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑊𝑃, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (71)                      

ℎ𝑚𝑘𝑓 +  𝑖𝑚𝑗  ≥  �̂�𝑚𝑗 𝑦𝑚𝑗𝑘𝑓                                                            ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑊𝑃, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (72)    

𝑙𝑚𝑘𝑓 +  𝑛𝑚𝑝  ≥  �̂�𝑚𝑝𝑎𝑣𝑝𝑘𝑓  𝑦
𝑝𝑘𝑓

                                                   ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝐵𝑃, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (73)  

(36) - (48)   

𝑒𝑚𝑘𝑓 , ℎ𝑚𝑘𝑓 , 𝑙𝑚𝑘𝑓 ≥ 0                                                                                      ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹   (74) 

𝑔𝑚𝑗 , 𝑖𝑚𝑗 , 𝑛𝑚𝑝 ≥ 0                                                                                         ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑊𝑃   (75) 
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The robust counterpart of model (27)-(48) is a mixed-integer program that contains more decision 

variables and constraints compared to the deterministic model. Nevertheless, it has a similar 

structure as deterministic model; hence, similar solution algorithms can be employed to efficiently 

solve this model. Also, this model protects patients’ schedules against the uncertainty in treatment 

times. In other words, under a given budget of uncertainty, the feasibility of schedules with regard 

to the capacity of linacs during regular shifts is guaranteed in the robust RAS model. 
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5. Chapter 5: Implementation of metaheuristics on radiotherapy 

appointment scheduling model 

In this chapter we explain how the metaheuristics discussed in chapter 3 are implemented on our 

models by the aid of a small example. Recall from chapter 3, all metaheuristics start with a 

population of solutions. In what follows, we first describe how these populations are generated; 

then we confine our attention to the details of operations used in each algorithm. 

5.1. Population generation details 

Recall from chapter 4, our binary integer programming model consists of 5 decision 

variables, �̅�𝑝𝑘𝑓 , �̅�𝑝𝑘𝑓 , 𝑍𝑚𝑗𝑘𝑓 , 𝑦𝑚𝑗𝑘𝑓 , and 𝑋𝑚𝑗. Thus, an index permutation matrix including 8 rows 

is defined as a representative of a feasible solution (schedule). The first 3 rows of this matrix are 

dedicated to the indices of variables �̅�𝑝𝑘𝑓and �̅�𝑝𝑘𝑓 ; the next 4 rows are dedicated to the indices of 

variables 𝑍𝑚𝑗𝑘𝑓 and 𝑦𝑚𝑗𝑘𝑓; and the last row is designated for index j of decision variable 𝑋𝑚𝑗. 

Each row defines an order for the indices, so that the combination of rows determines the 

permutation of the decision variable indices, by which binary variables are assigned. For instance, 

assume that we have a system in which the booked patients belong to p = 1,2; the machines belong 

to m =1, 2; the patients on the waiting list belong to j = 1,2,3; the weekdays in time horizon belong 

to k = 1,2,3,4,5,6; and the shifts in each day belong to f = 1,2. Thus, the dimension of the matrix is 

8×6, in which 6 is the maximum of all the indices, and the entries in the matrix are random numbers 

uniformly distributed in [0, 1]. Table (4) provides an example for the permutation matrix. 

Table 4- index permutation matrix 

 

index 1 2 3 4 5 6

p 0.78303 0.78788

k 0.73586 0.75928 0.82658 0.5581 0.85493 0.35336

f 0.01406 0.43094

m 0.69724 0.68427

j 0.01628 0.36028 0.44087

k 0.45438 0.36547 0.39722 0.87565 0.77292 0.93509

f 0.56892 0.03699

j 0.9277 0.56323 0.70615
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In each row of table (4), the random numbers in [0, 1] are only assigned to cells belonging to the 

range of each index. The rest of cells are assigned an infinite value, which means they cannot take 

any value. For instance, p =1, 2; hence, the first two elements of row p are assigned random 

numbers and the rest are infinity. After generating the aforementioned random numbers, the 

elements of each row (except the last row) are sorted and priorities are assigned to indices in such 

a way that the index with the highest random value has the lowest priority and the one with the 

smallest value has the highest priority as depicted in table (5). 

Table 5- prioritized indices in the index permutation matrix 

 

According to table (5), the combination of the first 3 rows gives us the permutations of p, k, and f 

indices for variables �̅�𝑝𝑘𝑓  and �̅�𝑝𝑘𝑓, and the combination of next 4 rows determines the 

permutations of m, j, k, f indices for variables 𝑍𝑚𝑗𝑘𝑓  𝑎𝑛𝑑 𝑦𝑚𝑗𝑘𝑓. Therefore, the permutations for 

(p, k, f) respectively are: (1,6,1)- (1,6,2)- (1,4,1)- (1,4,2)- (1,1,1)- (1,1,2)- (1,2,1)- (1,2,2)- (1,3,1)- 

(1,3,2)- (1,5,1)- (1,5,2)- (2,6,1)- (2,6,2)- (2,4,1)- (2,4,2)- (2,1,1)- (2,1,2)- (2,2,1)- (2,2,2)- (2,3,1)- 

(2,3,2)- (2,5,1)- (2,5,2). In a similar fashion, the order of permutations for m, j, k, f indices of 

variables  𝑍𝑚𝑗𝑘𝑓 and 𝑦𝑚𝑗𝑘𝑓could be obtained. According to this order of permutations, the 

variables are plugged into the fitness function (see Algorithm 5) and binary values are assigned to 

them accordingly. Therefore, patient 1 in day 6 and shift 1 is checked first; if all the constraints in 

the fitness function are satisfied,  �̅�161 and �̅�161 take 1; otherwise, they remain as 0. This is 

followed by patient 1, day 6 and shift 2, and so on. It is worth noting that the constraints indicated 

in Algorithm 5 are described in chapter 4 (section 4.1.2 – model (27) - (48)). 

 

 

index 1 2 3 4 5 6

p 1 2

k 3 4 5 2 6 1

f 1 2

m 2 1

j 1 2 3

k 4 6 5 2 3 1

f 1 2
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The last row of permutation matrix is associated with assigning machines to each patient on the 

waiting list (decision variable 𝑋𝑚𝑗). To this end, we multiply this row by 2 and subtract by 1 to 

create numbers in [-1, 1]. Then, the values less than zero (in [-1, 0]) are assigned 0; in other words, 

this space could be exploited to determine patients that are not assigned to any machine; the 

positive values remain with no change. The new row is multiplied by the number of machines 

which is 2, and rounded up as depicted in table (6). In this way, patients who are supposed to be 

assigned to a machine (in [0, 1]), are assigned to one of machines 1 and 2. 

Initialize all the decision variables as 0; 

1. Get the index permutation matrix; 

2. For all permutations of (p, k, f) in the obtained order in the index permutation matrix 

2.1. If all constraints (44), (38), (43), (41), (37) (in the mentioned sequence) are satisfied  

2.1.1. Assign 1 to decision variable �̅�𝑝𝑘𝑓: �̅�𝑝𝑘𝑓 

2.2. If all constraints (45), (40), (39), (40) (in the mentioned sequence) are satisfied 

2.2.1. Assign 1 to decision variable �̅�𝑝𝑘𝑓:�̅�𝑝𝑘𝑓 = 1; 

3. For all permutations of (m, j, k, f) in the obtained order in the index permutation matrix 

3.1. If all constraints (29), (28), (30), (32), (35), (36), (37) (in the mentioned sequence) are 

satisfied 

3.1.1. Assign 1 to decision variable 𝑍𝑚𝑗𝑘𝑓: 𝑍𝑚𝑗𝑘𝑓; 

3.2. Assign binary values to  𝑋𝑚𝑗 according to the last row of the index permutation matrix; 

3.3. Check constraint (28) and revise the value assign to 𝑋𝑚𝑗 in case of infeasibility; 

3.4. If all constraints (31), (35), (33), (31), (32), (37), (34) (in the mentioned sequence) are 

satisfied 

3.4.1. Assign 1 to decision variable 𝑦𝑚𝑗𝑘𝑓: 𝑦𝑚𝑗𝑘𝑓; 

4. Calculate the objective function and return it. 

Algorithm 5- Fitness function for RAS model 
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Table 6- permutation matrix for machine assignment to patients 

 

According to the last row, the first patient has been assigned to machine 2, and the rests are 

assigned to machine 1. These assignments are checked again by fitness function (Algorithm 5) and 

corrected in case of infeasibility. Finally, the fitness function returns the solution obtained and also 

the objective value to the algorithms. 

It is worth mentioning here that the fitness function is coded in MATLAB and provided in 

Appendix (section 9.1). In what follows, we explain the procedures performed for each of the 

metaheuristic algorithms described in section 3. 

5.2. Whale Optimization Algorithm  

This section provides the operations used in WOA. Let’s consider a population of 2 solutions 

(schedules). Thus, 2 index permutation matrices have been randomly generated as depicted in 

tables (7) and (8). Recall from section 5.1, these matrices correspond to two different schedules 

and are generated randomly for two machines, two booked patients, 6 days, two shifts, and 3 

patients on the wating list. The patients’ priority is assumed to decrease from 3 to 1. 

Table 7- initial index permutation matrix (a) for WOA 

index 1 2 3 4 5 6 

p 0.4636 0.48065     

k 0.84304 0.93951 0.26635 0.03943 0.3367 0.09388 

f 0.28527 0.10426     

m 0.49187 0.72472     

j 0.38461 0.48464 0.96331    

k 0.93221 0.97896 0.01738 0.050759 0.88065 0.04097 

f 0.34743 0.83789     

j 0.07515 0.76332 0.94705    

index 1 2 3 4 5 6

j 0.9277 0.56323 0.70615

( )×2-1 0.85539 0.12646 0.41231

×m 1.71078 0.25292 0.82462

round up 2 1 1
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Table 8- initial index permutation matrix (b) for WOA 

 

By using fitness function, the 2 schedules (only Xmj decision variable is presented) would be as 

shown in tables (9) and (10): 

Table 9- the schedule corresponding to index permutation matrix (a) 

  

Table 10- the schedule corresponding to index permutation matrix (b) 

Xmj  Obj. 

1 0 0 
5 

0 1 0 

 

Then for the maximum number of iterations, we follow the procedure below: 

First, parameters a, A, C, l and p are updated. Recall from chapter 3, a decreases from 2 to 0, its 

value can be updated as  𝑎 = 2 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟.
2

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 . 

Also, r is random vector in [0, 1]; while A and C are updated according to equations (10) and (11) 

(chapter 3), respectively. As an example, assume that at an iteration, the algorithm has updated 

parameters values as depicted in table (11): 

 

 

 

index 1 2 3 4 5 6

p 0.12656 0.51339

k 0.39278 0.3288 0.24844 0.02611 0.83368 0.6318

f 0.28668 0.02227

m 0.59807 0.01528

j 0.86327 0.24522 0.60927

k 0.35519 0.16909 0.73519 0.96691 0.83503 0.83197

f 0.51423 0.6731

j 0.69212 0.95076 0.47988

Obj.

0 0 0

0 1 1

X mj 

3
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Table 11- updated parameters for shrinking mechanism in the exploration phase(WOA) 

p 0.23908 

a 1.91931 

r 0.12107 

A -1.4546 

C 0.24215 

 

According to the above values, since p < 0.5 and |𝐴|> 1, the algorithm chooses the exploration 

phase with shrinking mechanism. Thus, the schedule of current population is updated by equations 

(8) and (9) based on a randomly chosen schedule.  

As an example, we assume that the index permutation matrix (b) (table (8)) is the randomly 

chosen one as depicted in table (12). 

Table 12- randomly selected matrix from initial population (WOA) 

index 1 2 3 4 5 6 

p 0.12656 0.51339     

k 0.39278 0.3288 0.24844 0.02611 0.83368 0.6318 

f 0.28668 0.02227     

m 0.59807 0.01528     

j 0.86327 0.24522 0.60927    

k 0.35519 0.16909 0.73519 0.96691 0.83503 0.83197 

f 0.51423 0.6731     

j 0.69212 0.95076 0.47988    
 

Then each schedule matrix ((a) and (b)) is updated using equations (8) and (9). Table 13 provides 

vector D in exploration phase with shrinking mechanism. Therefore, the updated index 

permutation matrices for the members of the population would be tables (14) and (16). 
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Table 13- updated vector D for matrix (a) in exploration phase with shrinking mechanism (WOA) 

index 1 2 3 4 5 6 

p 0.43295 0.35633     

k 0.47793 0.85989 0.20619 0.03311 0.13483 0.05911 

f 0.21585 0.09887     

m 0.34705 0.72102     

j 0.17558 0.42526 0.81577    

k 0.8462 0.93801 0.16063 0.27346 0.67845 0.05911 

f 0.22292 0.6749     

j 0.09245 0.5331 0.83084    
 

Table 14- updated position for matrix (a) in exploration phase with shrinking mechanism (WOA) 

index 1 2 3 4 5 6 

p 0.75631 1.0317     

k 1.48069 1.57957 0.5483 0.07426 1.0298 0.71778 

f 0.60065 0.16608     

m 1.10288 1.06405     

j 1.11865 0.86378 1.79586    

k 1.58605 1.53349 0.96884 1.36467 1.82188 1.06541 

f 0.83847 1.65478     

j 0.82659 1.72618 1.68839    
 

Now, the WOA algorithm fits the matrix with search space boundaries ([0, 1]) (i.e., the whole row 

is divided by the ceil of maximum value at the row) and assigns binary values according to the 

fitness function (Algorithm 5). Table (15) presents the updated schedule (a) (only Xmj is provided). 

Table 15- updated schedule corresponding to matrix (a) in exploration phase with shrinking mechanism 

Xmj  Obj. 

1 0 0 
5 

0 1 0 

 

Finally, for the second index permutation matrix (b), the updated position is presented in table 

(16). 
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Table 16- updated vector D for matrix (b) in exploration phase with shrinking mechanism (WOA) 

 

Table 17- updated position for matrix (b) in exploration phase with shrinking mechanism (WOA) 

 

Fitting with boundaries and constraints, we have the new schedule (b) as depicted in table (18). 

Table 18- updated schedule corresponding to matrix (b) in exploration phase with shrinking mechanism 

Xmj  Obj. 

1 0 0 
3 

0 0 0 

 

Afterwards, assume that in another iteration of the WOA, the updated parameters are those 

provided in table (19). 

Table 19- updated parameters for spiral-shaped mechanism (WOA) 

p 0.53193 

a 1.53008 

r 0.40884 

A -0.279 

C 0.81768 

index 1 2 3 4 5 6

p 0.27528 0.10155

k 0.79696 0.77733 0.95938 0.33504 0.66054 0.22414

f 0.06874 0.30799

m 0.05219 0.85847

j 0.92193 0.76524 0.45982

k 0.28248 0.03612 0.06478 0.2514 0.52062 0.70711

f 0.14794 0.34212

j 0.35238 0.12357 0.9122

index 1 2 3 4 5 6

p 0.26608 1.07932

k 0.96409 0.80705 0.60409 0.06409 2.04632 1.5508

f 0.70368 0.05466

m 1.46801 0.03751

j 2.11849 0.60191 1.49548

k 0.87183 0.41504 1.80456 2.37334 2.04964 2.04213

f 1.26221 1.65217

j 1.69886 2.3337 1.1779



  

58 
 

Because 𝑝 > 0.5, the algorithm chooses the spiral-shaped mechanism and update the matrices 

using equation (14). In this example the best matrix so far is schedule presented in table (14) and 

current positions of matrices in the population are provided in tables (14) and (16). Also, Recall 

from chapter 3, l is generated as a random vector in [-1, 1] (e.g., 𝑙 = 0.12146). 

Using equation (14), for the schedule (a) (the matrix depicted in table (14) we have the updated 

vector D’, updated position, and the new schedule for the first member of population in tables (20) 

to (22).  

 Table 20- updated vector D' for schedule (a) in spiral-shaped mechanism  

 

Table 21-updated position for matrix (a) in spiral-shaped mechanism 

Index 1 2 3 4 5 6 

p 0.75631 0.0317     

k 0.48068 0.57957 0.54835 0.07426 1.0298 0.71778 

f 0.60064 0.16608     

m 0.10288 0.06405     

j 0.11865 0.86378 0.79586    

k 0.58604 0.53349 0.96884 0.36467 0.82188 0.06541 

f 0.83847 0.65478     

j 0.82658 0.72618 0.68839    

 

Table 22- updated schedule corresponding to matrix (a) in spiral-shaped mechanism 

 

And finally, the updated vector D’, updated position for the schedule (b) (table 16), and the new 

schedule for the second member of population are depicted in tables (23) to (25). 

index 1 2 3 4 5 6

p 0 0

k 0 0 0 0 0 0

f 0 0

m 0 0

j 0 0 0

k 0 0 0 0 0 0

f 0 0

j 0 0 0

Obj.

0 1 1

1 0 0

X mj 

6
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Table 23- updated vector D' for schedule (b) in spiral-shaped mechanism 

Index 1 2 3 4 5 6 

p 0.49023 1.04762     

k 0.48341 0.22749 0.06145 0.01017 1.01652 0.83302 

f 0.10303 0.11142     

m 1.36512 0.02655     

j 2.00028 0.26188 0.69961    

k 0.28579 0.11845 0.83572 2.00867 1.22776 1.97672 

f 0.26064 0.78391     

j 0.12773 0.39248 0.5105    

 

Table 24- updated position for matrix (b) in spiral-shaped mechanism 

Index 1 2 3 4 5 6 

p 0.81962 2.26223     

k 1.50992 1.06362 0.67918 0.07558 3.19412 2.49139 

f 0.82002 0.18047     

m 3.00942 0.06748     

j 4.37754 0.8976 2.28544    

k 1.19453 0.54878 2.7482 4.6414 3.43595 4.27412 

f 1.39342 2.32383     

j 0.84308 0.77687 0.75432    

 

Table 25- updated schedule corresponding to matrix (b) in spiral-shaped mechanism 

 

As an example of an exploitation phase in shrinking mechanism in the algorithm, assume that the 

updated parameter values are as depicted in table (26). 

Table 26- updated parameters for exploitation phase in shrinking mechanism 

p 0.03892 

a 0.63477 

r 0.20229 

A -0.378 

C 0.40459 

 

Obj.

0 0 0

1 1 1

X mj 

6



  

60 
 

 The best index permutation matrix so far is the one shown in table (21). Current positions of the 

matrices in the population are depicted in tables (21) and (24). Using equations (12) and (13), for 

the first schedule (index permutation matrix (a) (table (21)) we have the updated vector D, updated 

position, and the new schedule for the first member of population in tables (27) to (29). 

Table 27- updated vector D for schedule (a) in exploitation phase with shrinking mechanism 

Index 1 2 3 4 5 6 

p 0.0.45031 0.01887     

k 0.28620 0.34508 0.32649 0.04422 0.61316 0.42738 

f 0.35763 0.34508     

m 0.06125 0.03814     

j 0.07064 0.51431 0.47386    

k 0.34893 0.31764 0.57686 0.21713 048936 003895 

f 0.49923 0.38987     

j 0.49216 0.43238 0.40987    

 

Table 28- updated position for the matrix (a) in exploitation phase with shrinking mechanism 

Index 1 2 3 4 5 6 

p 0.92651 0.03883     

k 0.58886 0.70999 0.67175 0..9098 1.26154 0.87931 

f 0.73581 0.20345     

m 0.12603 007847     

j 0.14535 1.05817 0.97496    

k 0.71792 0.65354 1.18687 0.44673 1.00683 0.8013 

f 1.02716 0.80213     

j 1.01260 0.8896 0.84330    
 

Table 29- updated schedule corresponding to matrix (a) in exploitation phase with shrinking mechanism 

 

Finally, we have similar results for the schedule (b) (table (24)) in tables (30) to (32). 

 

 

Obj.

0 0 0

0 1 1

X mj 

3
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Table 30- updated vector D for schedule (b) in exploitation phase with shrinking mechanism 

index 1 2 3 4 5 6 

p 0.51363 2.2494     

k 1.31544 0.82943 0.45732 0.04553 2.77747 2.20099 

f 0.57701 0.11328     

m 2.9678 0.04157     

j 4.32953 0.54813 1.96345    

k 0.95742 0.33294 2.35622 4.49386 3.10342 4.24766 

f 1.05418 2.05891     

j 0.50866 0.48306 0.4758    
 

Table 31- updated position for matrix (b) in exploitation phase with shrinking mechanism 

index 1 2 3 4 5 6 

p 0.95044 0.88186     

k 0.97786 0.89305 0.7212 0.09147 2.07955 1.54965 

f 0.81873 0.20889     

m 1.22457 0.07976     

j 1.75501 1.07095 1.53795    

k 0.94791 0.65932 1.85939 2.06313 1.99482 1.67082 

f 1.2369 1.43295     

j 1.01884 0.90876 0.86623    
 

Table 32- updated schedule corresponding to matrix (b) in exploitation phase with shrinking mechanism 

 

WOA is coded in MATLAB (see Appendix in 9.2).  

5.3. Particle Swarm Optimization  

This section provides the operations used in PSO. Let’s consider a population of 2 solutions 

(schedules). Thus, 2 index permutation matrices have been randomly generated as depicted in 

tables (33) and (34). Recall from section 5.1, these matrices correspond to two different schedules 

and are generated randomly for two machines, two booked patients, 6 days, two shifts, and 3 

patients on the wating list. The patients’ priority is assumed to decrease from 3 to 1.  

  

Obj.

0 0 0

0 1 1

X mj 

3
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Table 33- initial index permutation matrix (a) for PSO 

index 1 2 3 4 5 6 

p 0.0502 0.59834     

k 0.90856 0.07201 0.02827 0.54202 0.2774 0.18616 

f 0.3544 0.42172     

m 0.13834 0.56272     

j 0.18094 0.31042 0.75462    

k 0.97621 0.73559 0.73529 0.77261 0.81971 0.62075 

f 0.77979 0.76131     

j 0.40976 0.23814 0.64819    
 

Table 34- initial index permutation matrix (b) for PSO 

index 1 2 3 4 5 6 

p 0.72293 0.06117     

k 0.14396 0.78338 0.76538 0.64839 0.39877 0.90142 

f 0.27883 0.62092     

m 0.48864 0.82401     

j 0.67109 0.65851 0.27301    

k 0.38742 0.31073 0.33147 0.24409 0.75742 0.92352 

f 0.16393 0.23124     

j 0.06473 0.6748 0.46191    
 

By using fitness function the 2 schedules (only Xmj decision variable is presented) would be as 

shown in tables (35) and (36): 

Table 35- the schedule corresponding to index permutation matrix (a) 

 

Table 36- the schedule corresponding to index permutation matrix (b) 

Xmj  Obj. 

0 1 0 
2 

0 0 0 

 

Obj.

0 0 1

0 0 0

X mj 

1
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So far, tables (33) and (34) are the particle’s best known positions and table (35) is the global best 

known position since it has the highest objective value. The velocity has been initialized as 0. 

Recall from section 3.2.2, ω is velocity importance coefficient; φp is the personal best learning 

coefficient; φg is the global best learning coefficient; and rp and rg are randomly generated 

parameters. These parameters are set as table (37). 

Table 37- parameters for PSO 

ω 1 

φp 2 

φg 2 

rp 0.64228 

rg 0.35753 

 

Therefore, the particle’s velocity is updated using equation (15) as depicted in tables (38) and (39): 

Table 38- updated velocity for the matrix (a) 

index 1 2 3 4 5 6 

p 0.48105 -0.3841     

k -0.5467 0.50867 0.52709 -0.1024 0.26528 0.51146 

f -0.054 0.14244     

m 0.25049 0.18648     

j 0.35049 0.24891 -0.3444    

k -0.421 -0.3038 -0.2888 -0.3779 -0.0445 0.2165 

f -0.4404 -0.379     

j -0.2467 0.31224 -0.1332    
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Table 39- updated velocity for matrix (b) 

index 1 2 3 4 5 6 

p 0 0     

k 0 0 0 0 0 0 

f 0 0     

m 0 0     

j 0 0 0    

k 0 0 0 0 0 0 

f 0 0     

j 0 0 0    
 

Then the particles’ positions are updated using equation (16) and fitted with fitness function as 

depicted in tables (40) - (43). 

Table 40- updated position for index permutation matrix (a) 

index 1 2 3 4 5 6 

p 0.53125 0.21423     

k 0.36182 0.58069 0.55536 0.43959 0.54269 0.69762 

f 0.30036 0.56416     

m 0.38883 0.74956     

j 0.53143 0.55933 0.41023    

k 0.55519 0.43178 0.44653 0.39468 0.77517 0.83725 

f 0.3394 0.38227     

j 0.16304 0.55039 0.51498    
 

Table 41- updated schedule corresponding to index permutation matrix (a) 

Xmj  Obj. 

0 1 1 
3 

0 0 0 
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Table 42- updated position for index permutation matrix (b) 

index 1 2 3 4 5 6 

p 0.72293 0.06117     

k 0.14396 0.78338 0.76538 0.39877 0.64839 0.90142 

f 0.27883 0.62092     

m 0.48864 0.82401     

j 0.67109 0.65851 0.27301    

k 0.38742 0.31073 0.33147 0.24409 0.75742 0.92352 

f 0.16393 0.23124     

j 0.06473 0.6748 0.46191    
 

Table 43- updated schedule corresponding to matrix (b) 

Xmj  Obj. 

0 1 0 
2 

0 0 0 

 

Now the schedule in table (40) with the objective value of 3 is the global best known particle. 

These operations continue until we reach the maximum number of iterations. PSO is coded in 

MATLAB (see Appendix in 9.3).  

5.4. Firefly Algorithm 

This section provides a small example on the implementation details of the Firefly algorithm. Let’s 

consider the population of 3 fireflies (index permutation matrices). The initial population is 

generated randomly and fitted by fitness function as depicted in tables (44) – (49): 

Table 44- initial index permutation matrix (a) for FA 

index 1 2 3 4 5 6 

p 0.10523 0.57438     

k 0.19983 0.29994 0.94442 0.22135 0.8185 0.07545 

f 00.90172 0.06238     

m 0.86607 0.46082     

j 0.69062 0.83844 0.32285    

k 0.33835 0.68923 0.19952 0.71903 0.57006 0.64212 

f 0.9651 0.19841     

j 0.81869 0.73209 0.17082    
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Table 45- schedule for corresponding to matrix (a) 

Xmj  Obj. 

0 1 0 
5 

1 0 0 
 

Table 46- initial index permutation matrix (b) for FA 

index 1 2 3 4 5 6 

p 0.60899 0.75672     

k 0.85433 0.56268 0.81677 0.30833 0.89148 0.93103 

f 0.7327 0.3041     

m 0.27032 0.92639     

j 0.75749 0.76524 0.66652    

k 0.66608 0.89877 0.70059 0.80023 0.41961 0.89371 

f 0.14692 0.21798     

j 0.57543 0.83622 0.7421    
 

Table 47- schedule corresponding to matrix (b) 

Xmj  Obj. 

1 0 1 
6 

0 1 0 
 

Table 48- initial index permutation matrix (c) for FA 

index 1 2 3 4 5 6 

p 0.49681 0.48742     

k 0.69213 0.82618 0.0403 0.53828 0.01229 0.50142 

f 0.08449 0.5544     

m 0.99588 0.68717     

j 0.11088 0.30472 0.09906    

k 0.74118 0.26566 0.27693 0.73223 0.15178 0.44415 

f 0.38212 0.31457     

j 0.09647 0.24814 0.58953    
 

Table 49- schedule corresponding to matrix (c) 

Xmj  Obj. 

0 0 1 
1 

0 0 0 
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According to tables (44) – (49), the first firefly (table (44)), with light intensity (objective value) 

of 5, searches for a firefly (schedule) with higher light intensity and moves toward it. Thus, the 

first firefly (table (44)) would move toward second one (table (46)) and will have one new position. 

The second firefly (table (46)) with the light intensity of 6 does not move toward any firefly, since 

it has the highest light intensity. Finally, the third firefly (table (48)) with the light of 1 moves 

toward the first and the second ones with higher light intensity. As a result, we will have three new 

positions in addition to the previous three positions we had. These 6 schedules are sorted according 

to their light intensity (objective values) and the three positions with the highest light intensity 

would be accepted as the new population for the next iteration. This procedure will continue until 

we reach the maximum number of iterations. Finally, the firefly with the highest objective value 

(light intensity) is chosen as the best schedule. Tables (51) to (53) provide the movement 

operations of firefly 1 (table (44)) toward firefly 2 (table (46)). The parameters are initialized as 

shown in table (50). 

Table 50- Parameters for FA 

𝛽 0.5 

𝛾 1 

𝛼 0.9 

 

 𝜖𝑡 is a vector drawn from a uniform distribution in [0, 1] (see table (51)). 

Table 51- uniformly distributed vector 𝜖𝑡 in [0, 1] 

index 1 2 3 4 5 6 

p 0.26277 0.31005     

k 0.52464 0.46388 0.29767 0.55262 0.90479 0.59898 

f 0.19067 0.52165     

m 0.95096 0.79364     

j 0.38914 0.17041 0.66954    

k 0.06969 0.7527 0.19832 0.81755 0.12988 0.74237 

f 0.46773 0.3025     

j 0.77929 0.32806 0.75621    
 

Equation (25) provides the new position of the index permutation matrix (a) (table (44)) as: 
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Table 52- updated position of index permutation matrix (a) 

index 1 2 3 4 5 6 

p 0.53715 0.94161     

k 0.88522 0.84004 1.14953 0.76187 1.66911 0.82027 

f 0.99119 0.64587     

m 1.51305 1.36252     

j 1.07414 0.9554 1.07813    

k 0.54825 1.46699 0.57292 1.49516 0.61341 1.42833 

f 1.1766 0.48044     

j 1.40541 1.07885 1.05751    
 

Table 53- updated schedule corresponding to matrix (a) 

 

FA is coded in MATLAB (Appendix section 9.4).  

  

Obj.

1 1 1

0 0 0

Xmj 

6
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6. Chapter 6: Experimental result 

In this chapter we present some numerical results on the application of proposed robust RAS model 

as well as the 3 metaheuristics on a real case study adopted from literature (Conforti et al. 2010). 

Our goal is twofold: i) to analyze the relationship between the budget of uncertainty and the 

feasibility/cost of robust appointment schedules; and ii) to compare the performance of 3 

metaheuristics with a commercial solver in terms of solution quality and CPU time. 

6.1. Case data and implementation details 

Adopted from (Conforti et al. 2010), we consider two test instances corresponding to a 

radiotherapy clinic characterized by the following primary data: 

 Two machines (linear accelerators) M1 and M2 (test instance 1) and three machines (test 

instance 2) 

 planning horizon of 6 days (from Monday to Saturday);  

 Two shifts per day. 

 |𝐵𝑃| =76 already booked patients. The number of treatment sessions to be carried out is 

equal to 4 or 5 for all patients. The treatment time is patient-dependent and lasts either 10 

or 15 minutes (used as nominal values). For each patient p, the last treatment day of the 

previous week is known (lptp). This information is related to the maximum feasible number 

of days between two consecutive weekly sessions and is required to determine the first 

treatment session in the current week. 

 |𝑊𝑃| =40 patients waiting to start their weekly treatment. The number of treatment 

sessions (t) to be carried out for them during the planning horizon, is set to 5 for all patients 

on this list. The treatment times are patient-dependent; in addition, it is assumed that they 

are the same on both machines. Patients are grouped according to the assigned priority. 

pr=10 is assigned if the patient belongs to priority class B; whereas pr=1 is assigned to a 

patient who belongs to priority class C. 

 Tmkf = 300; ∀ m, k, f.  

 Each booked patient is available either in the morning or in the afternoonon each day;  

 delayp = 1 ∀p ∈ BP. 

parameters related to patients on the waiting list are summarized in Table (54). 
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Table 54- Nominal treatment times and assigned priority values for patients on WP list  

patient on WP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝑠𝑒𝑡1 20 10 10 10 15 15 15 15 15 15 15 15 10 10 10 10 10 10 10 15 

set 8 5 5 5 7 7 7 7 7 7 7 7 5 5 5 5 5 5 7 5 

s 4 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 3 3 3 3 

�̅�1 24 12 12 12 18 18 18 18 18 18 18 18 14 14 14 14 13 13 13 18 

�̅� 12 7 7 7 10 10 10 10 10 10 10 10 9 9 9 9 8 8 10 8 

pr 10 1 10 10 10 10 10 10 10 1 1 1 1 10 10 10 10 10 10 10 

patients on WP 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

𝑠𝑒𝑡1 15 15 15 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

set 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 5 5 5 5 5 

s 3 3 3 3 3 3 4 4 4 2 2 2 2 2 2 2 2 2 2 2 

�̅�1 18 18 18 18 18 18 14 14 14 12 12 12 12 12 12 12 12 12 12 12 

�̅� 8 8 8 8 8 8 11 11 11 9 9 9 9 9 9 7 7 7 7 7 

pr 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 10 10 10 10 

 

Also, the priority weights in the objective function of RAS model are determined by  seting  a=1 

and b=3. 

Both the deterministic and robust RAS models are solved by using the MIP solver of CPLEX 

12.6.1, on a PC Pentium IV, under the Windows 7 Enterprise operating system , with 2 GB of 

RAM, and 2.8 GHz CPU. Also, the 3 metaheuristic algorithms (WOA, PSO, and FA) are coded in 

MATLAB R2012a. 

6.2. Analysis of the robust RAS model 

In this section, we test the proposed robust RAS model through a set of numerical experiments 

implemented on the case study presented in 6.1. The purpose of the numerical experiments is three-

fold. Our first goal is to analyze the trade-off between the level and the cost of robustness. More 

precisely, we are interested to see how increasing the budget of uncertainty affects the feasibility 

and optimality of the deterministic schedule. This is important for the decision maker in order to 

set a budget of uncertainty so that the plan obtained by the robust model is feasible in the presence 

of future uncertainties while it is not too costly (i.e., overprotected against uncertainty). This goal 
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is achieved through comparison between the objective function value of the robust model and the 

nominal one for different levels of budget of uncertainty. Our second goal is to verify the feasibility 

of the robust optimal schedule in the presence of randomly generated uncertain treatment times. 

Monte Carlo simulation is employed for this purpose because it is a more realistic approach for 

evaluating the impact of the budget of uncertainty on the feasibility and the cost of the schedule. 

We finally compare the objective function value of the robust RAS model with a worst-case 

scenario deterministic model to compare their degree of conservatism. This measure is used to 

verify whether or not the solution of robust model is overprotected against uncertainty. 

The analyses mentioned above are carried out on four sets of test problems that are distinguished 

by the level of variability of uncertain parameters. More precisely, we define γ as the level of 

variability of uncertain treatment times comparing to their nominal values and consider four 

classes of test problems corresponding to γ = 5%,10%,20% and 30%. While considering 

uncertainty, we assume that Γ𝑚𝑘𝑓
1  and Γ𝑚𝑘𝑓

2  vary from 0 to |𝑊𝑃| =40 (the worst-case) and 

Γ𝑚𝑘𝑓
3  vary from 0 to |𝐵𝑃| = 76. We also consider 0%, 10%, 30%, 50%, 70%, 90% and 100% of 

the maximum budget of uncertainty in our experimental results. Finally, the Monte-Carlo 

simulation is based on generating random scenarios for uncertain setup time and treatment times 

from their corresponding uniform distributions. Afterwards, for each scenario, the optimal solution 

of the robust model is plugged into the deterministic model where the uncertain parameters are 

substituted by the simulated value. Afterwards, the feasibility and the actual objective function 

value of the robust solution are verified.  

6.2.1. Experimental results on the RAS model 

As we mentioned in chapter 4, the uncertain treatment times affect the feasibility of constraint (37) 

in model (27) - (48) which is related to the machines capacity. Also, it is evident that such 

uncertainty has an impact on the number of newly scheduled patients from the waiting list; hence, 

it has an impact on the optimality of the deterministic schedule. 

The trade-off between robustness (i.e., the budget of uncertainty) and the cost of robustness is 

estimated by calculating the objective value deviation 
𝑍𝑅

𝑁−𝑍𝑅
𝑅

𝑍𝑅
𝑁 , where 𝑍𝑅

𝑁 and 𝑍𝑅
𝑅 are the nominal 

and robust optimal objective values, respectively. 
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Figure 6- The trade-off between budget of uncertainty and objective function value in robust RAS model 

 

 

 

Figure 6 represents the percentage decrease in the objective function value versus the nominal one 

(i.e., objective function deviation) for four levels of treatment time variability and different values 

of the budget of uncertainty. As expected, when robustness is enforced to the model, the objective 

function (i.e., the number of newly scheduled patients) is decreased in order to envisage worst-

case values for a certain number of treatment time parameters in the capacity constraint (constraint 

37). The decrease in the robust objective function value is the effect of considering such worst-

case time values on scheduling patients appointments. It is worth noting that such worst cases 

occur when time parameters take their highest value. In such cases, fewer patients are scheduled.  

Additionally, we can conclude from Figure 6, when the variability level of uncertain parameters is 

small (i.e., 5%), the impact of imposing robustness on the objective function is less significant in 

comparison with the higher level of variability.  

On the other hand, when the budget of uncertainty is increased, it indicates that the number of 

uncertain parameters that take their worst-case value are increased which in turn, is expected to 

decrease the number of newly scheduled patients. 
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Another important issue is the analysis of the robust schedule by considering a given budget of 

uncertainty (less than the maximum budget) is associated with its feasibility. In other words, when 

the budget of uncertainty achieves its maximum value, the robust solutions are always feasible. In 

contrast, the feasibility condition cannot be guaranteed by considering smaller values for the 

budget of uncertainty. In order to resolve this issue, we conduct a set of Monte-Carlo simulation 

experiments, where we randomly generate 100 random treatment times based on different 

variability levels for each value of budget of uncertainty. Afterwards, we solve the deterministic 

RAS model for each scenario, where the schedule obtained from the robust RAS model is plugged 

into the aforementioned deterministic models. Consequently, we solved 100×6×4 = 2400 

deterministic models corresponding to each randomly generated scenario. Through such 

experiments, we first verify the feasibility of the robust solution in the deterministic problem with 

simulated random treatment times. These results are depicted in Figure 7 for the four classes of 

test instances. 

 

Figure 7- Feasibility of robust solutions with simulated treatment times

 

 

 

As is shown in Figure 7, when the budget of uncertainty is greater than 50%, the number of 

infeasible instances equal to zero. Thus, by considering Γ ≥ 50%, it is possible to guarantee the 

feasibility of solutions for random treatment times, and it is not necessary to increase the value of 

Γ and enforce less assignments. This will cause less than 15% decrease in objective value for all 
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of the variabilities. Hence, the robust solution with 50% budget of uncertainty has the high quality 

in terms of feasibility with an acceptable underestimation of the patients’ assignment.  

Finally, we compare the robust problem with the worst-case deterministic model (WC). 

𝑍𝑊𝐶  denotes the optimal nominal objective value when the deterministic nominal model is solved 

by considering the worst-case bound in the given uncertain interval. If (𝑍𝑅
𝑅 − 𝑍𝑊𝐶) ≥ 0, it can be 

concluded that the robust problem proposes a solution with higher number of newly scheduled 

patients compared with the worst-case deterministic model. The latter analysis is presented in 

Table (55). 

Table 55- Comparison of ZWC and ZR
R  

  𝛾=5% 𝛾 =10% 𝛾 =20% 𝛾 =30% 

𝑍𝑊𝐶 

1,373,566,128 

(18 patients) 

1,373,059,835 

(18 patients) 

1,372,503,424 

(16 patients) 

1,372,503,233 

(16 patients) 

𝑍𝑅
𝑅 

1,569,350,701 

(29 patients) 

1,382,439,028 

(22 patients) 

1,378,131,711 

(19 patients) 

1,375,955,015 

(19 patients) 

 

Since (𝑍𝑅
𝑅 − 𝑍𝑊𝐶) ≥ 0 for all variability levels in Table (55), it is evident that the robust RAS 

model outperforms the worst-case deterministic problem in terms of the weighted number of newly 

scheduled patients. 

6.3.  Application of metaheuristics to radiotherapy 

appointment scheduling model 

In this section, we present the results of implementing the 3 meatheuristics, discussed in chapters 

3 and 5, on deterministic and robust RAS models. The performance of the aforementioned 

algorithms is validated via comparison with the results of a commercial solver (CPLEX 12.6.1).   

Table 56 depicts population size and maximum number of iterations exploited in each algorithm. 

Afterwards, we discuss the results of implementing these algorithms on 2 test instances that differ 

in terms of the number of machines (2 and 3, respectively).  

Table 56- Maximum population and iteration size of metaheuristics 

 Population size (Imax) Maximum number of iterations (tmax) 

WOA 10 15 

PSO 10 15 

FA 10 15 
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Table (56) summarizes the objective value, CPU time, and optimality gap obtained after 

implementing each metaheuristic.  It is worth noting that the optimality gap is calculated as the 

relative difference between the optimal objective function value obtained by CPLEX and the 

converged solution of metaheuristics. It is noteworthy that CPLEX can provide optimal solutions 

in the second test instance for both deterministic and robust RAS models in 4,212.19 and 11,427.60 

seconds, respectively.  

Table 57- Metaheuristics results on two test instances 

 

As it can be observed in table (57), all metaheuristics provide high quality feasible schedules 

(lower bounds) with an average optimality gap of 1.6% and 1.7% in test instances 1 and 2 for 

deterministic and robust RAS models, respectively. Also, the CPU time of WOA and PSO are also 

smaller than the solver (94.6131% in average). This CPU time gap is more significant for the 

robust RAS model that includes higher number of decision variables and constraints. The FA 

algorithm, on the contrary converges slowly despite the high quality of its solution. This can be 

explained by the large number of operations carried out in each iteration of this algorithm due to 

investigating all possible neighborhoods for improving current schedule. In other words, in each 

iteration of FA, the position of all pairs of fireflies are updated according to the best one. However, 

    CPLEX WOA PSO FA 

Deterministic RAS model 

instance 

1  

Objective function 

value 
1,548,757,647 1,547,193,937 1,536,264,406 1,547,380,290 

optimality gap  0.001009 0.008066 0.000889 

CPU time(seconds) 76.85 64.8945 66.02 373.53 

instance 

2 

Objective function 

value 
1,553,374,602 1,548,714,612 1,548,408,930 1,547,976,496 

optimality gap  0.002999 0.003196 0.003475 

CPU time(seconds) 4212.19 88.2515 92.0928 504.9971 

Robust RAS model 
Variability=10% 

gama=0.5 

instance 

1 

Objective function 

value 
1,523,622,370 1,471,899,608 1,449,556,953 1,519,245,428 

optimality gap  0.033947 0.048611 0.002872 

CPU time(seconds) 156.63 78.1048 75.8457 428.2536 

instance 

2 

Objective function 

value 
1,553,326,619 1,481,060,707 1,517,052,600 1,519,274,301 

optimality gap  0.046523 0.023352 0.021922 

CPU time(seconds) 11427.60 112.8926 101.9051 578.4286 
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in PSO this is done only according to the best particle and best global solution. Also, in WOA 

updates are done towards either the best position or a random one.     

Figures 8-19 depict the improvement in the objective function at each iteration of PSO, WOA, and 

FA metaheuristics in deterministic and robust RAS models for instances 1 and 2. As it can be 

observed in figures 8-9, for both instances, both PSO and WOA algorithms converge to a high 

quality feasible solution in 5 iterations while applied to the deterministic RAS model. On the 

contrary, the robust RAS model includes more decision variables and constraints; hence in this 

case (figures 11-12), theses algorithms converge slightly slower.  

Figure 8- PSO performance in deterministic RAS model (instance 1)

 

Figure 9- WOA performance in deterministic model (instance 1) 

 



  

77 
 

Figure 10- FA performance in deterministic model (instance 1) 

 

 

Figure 11- PSO performance  in robust  RAS model (instance 1) 
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Figure 12- WOA performance  in robust RAS model (instance 1) 

 

Figure 13- FA performance  in robust RAS model (instance 1) 
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Figure 14-WOA performance in deterministic model (instance 2) 

 

Figure 15- PSO performance in deterministic model (instance 2) 
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Figure 16- PSO performance in deterministic model (instance 2) 

 

Figure 17- WOA performance in robust RAS model (instance 2) 

 



  

81 
 

Figure 18- PSO performance in robust RAS model (instance 2) 

 

Figure 19- FA performance in robust RAS model (instance 2) 

 

From the above experimental results, it can be concluded that CPLEX could obtain an optimal 

solution for the test instance with two machines in 76.85 and 156.63 seconds for deterministic and 

robust RAS models, respectively. Nonetheless, for larger number of machines (test instance 2) it 

can obtain an optimal solution in 4,212.19 and 11,427.6 seconds for deterministic and robust RAS 

models, respectively. In the first test instance, the WOA and PSO metaheuristics outperform 

CPLEX regarding the CPU time. Nonetheless, for the larger test instance (instance 2), the CPU 
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time of all metaheuristics are significantly smaller than CPLEX. Among the 3 metaheuristics, 

WOA seems to be the fastest algorithm followed by PSO and FA. Despite the slow convergence 

rate, FA outperforms the two other metaheuristics in terms of quality of lower bound (optimality 

gap) due to a full neighborhood search in each iteration. These results could be further validated 

through substantially larger problem instances.  
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7. Chapter 7: Conclusion and future research 

Motivated by several challenges radiotherapy clinics are facing in order to schedule new 

patients from a waiting list while dealing with a large number of patients who have already 

started their treatments, in this thesis, we investigated an offline radiotherapy appointment 

scheduling problem. In order to maximize the number of scheduled patients, we assumed that 

the patients who have already started their treatment in a previous planning horizon (booked 

patients) would accept to be rescheduled during the current horizon. Furthermore, to add more 

flexibility, we also incorporated treatment time windows for both groups of booked and new 

patients. Such time windows represent the earliest, due, and latest dates where those patients 

could receive treatments according to their treatment plan. The problem was then formulated 

as a deterministic mixed-integer-program with the objective of maximizing the number of 

newly scheduled patients subject to the continuity of treatments on the same machine per 

patient, capacity of machines, treatment duration, and patients’ priorities as some constraints 

among others. On the other hand, patients in these clinics require variable treatment times 

depending on the type, stage, and severity of cancer. Such variability might make the schedule 

determined by a deterministic radiotherapy appointment scheduling (RAS) model infeasible in 

terms of available capacity of radiotherapy machines during regular daily shifts. In other 

words, some patients won’t be able to receive treatments due to unavailability of machines. 

Hence, with the goal of protecting the schedule against the treatment time perturbations, we 

reformulated the above-mentioned RAS model as a cardinality-constrained robust 

optimization model. This approach provides the possibility to define a budget of uncertainty 

and accordingly find a trade-off between schedule robustness (i.e., protection of feasibility of 

schedule in the presence of high treatment times) and the cost of robustness (i.e., the reduction 

in the number of newly scheduled patients).  

Both deterministic and robust RAS models incorporate high number of binary decision 

variables that make them hard for a commercial solver to find an optimal solution in reasonable 

time for large-scale instances with large number of machines and long patient lists. In order to 

alleviate this computational complexity, we proposed three swarm-based, nature-inspired 

metaheuristics, namely whale optimization algorithm, particle swarm optimization, and firefly 

algorithm.  
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8. Finally, we designed a case study inspired from a real radiotherapy clinic with the goal of 

validating the proposed robust RAS model and the three metaheuristics. The first part of our 

numerical experiments, conducted as a set of Monte-Carlo simulation tests, revealed that by 

considering half of treatment times at their worst-case scenario, the feasibility of schedule can 

be guaranteed in the presence of a large number of randomly generated scenarios without a 

significant reduction in the number of newly scheduled patients. Although this result is valid 

for the case study under investigation, the proposed RAS model and Monte-Carlo simulation 

platform provide the possibility to the decision-maker to evaluate the feasibility and cost of 

schedule for different budgets of uncertainty. Finally, our numerical results on the application 

of the three proposed metaheuristics revealed that these algorithms provide high quality 

schedules with negligible optimality gap at a significantly reduced CPU time, for two realistic 

instances, comparing with a commercial solver.  

9. As a general remark, the proposed robust RAS model and the solution algorithms are expected 

to enable radiotherapy clinics to provide more reliable and efficient treatment services. Further, 

as possible exploitation, the robust model and algorithms can be properly implemented and 

embedded into a software system that could be one of the core modules of a more sophisticated 

decision support system able to organize and manage all the clinical procedures of a 

radiotherapy clinic in a hospital. Also, current model and solution approaches can be further 

validated through more case instances that incorporate more machines and patients. Future 

research could also focus on the integration of proposed offline scheduling tool with an online 

scheduling module with the goal of maximizing the utilization of machines/staff in the 

presence of patient no-shows and maximising the number of scheduled patients who are 

referred to the clinic as emergency cases.  
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9. Appendix  

9.1. Fitness function MATLAB code 

function sol=fitness(sol,data) 
load data 
pos=sol.x; 
 

%assigns random numbers in [0, 1] to solution matrix elements 

 

pos(8,:)=CB(pos(8,:),0,1);  

 

%assigns infinity value to elements beyond indices  

pos(1,np+1:end)=inf; 
pos(2,nk+1:end)=inf; 
pos(3,nf+1:end)=inf; 
pos(4,nm+1:end)=inf; 
pos(5,nj+1:end)=inf; 
pos(6,nk+1:end)=inf; 
pos(7,nf+1:end)=inf; 
  
%decision variable definition  

ZP=zeros(np,nk,nf); 
YP=zeros(np,nk,nf); 
SSS=zeros(nm,nk,nf); 
SSS0=zeros(nm,nk,nf); 
CH=zeros(1,18); 
 

%sorts rows to determine a permutation for p, k, and f  

[~,P]=sort(pos(1,:));P=P(1:np); 
[~,K]=sort(pos(2,:));K=K(1:nk);K=nk:-1:1; 
[~,F]=sort(pos(3,:));F=F(1:nf); 
  
%these three loops check constraints related to zpkf and ypkf variables to assign them 0 and 1 values  

for p=P 
    for k=K 
        for f=F 
             
            syp1(:,:)=sum(YP,3); 
            C14L=sum(sum(YP.*av,3),2); 
             
            m=1:nm; 
            A=YP(p,k,f).*av(p,k,f); 
             
            C10L=sum(Sp(:,p).*A,2);C10L=C10L<T(:,k,f); 
             
            SSS(m,k,f)=sum(Sp(:,p).*A,2); 
             
            if k<=dp(p) && av(p,k,f)==1 && syp1(p,k)==0 && C14L(p)<tp(p) && sum(C10L)==nm 
                YP(p,k,f)=1; 
            end 
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            ZPP=ZP;ZPP(p,k,f)=1; 
             
            zp1=ZP(p,1:idp(p),:); 
            C12L=sum(sum(zp1,3),2); 
             

             

             
            C15=1; 
            if k<=idp(p) 
                dk=k+1:k+tp(p)-1; 
                A=[];A=YP(p,dk,:).*av(p,dk,:);C15l=sum(A(:)); 
                A=(tp(p)-1).*ZPP(p,k,:);C15r=sum(A(:)); 
                if C15l<C15r;C15=0;end 
            end 
             
            A=ZPP(p,1:idp(p),:).*av(p,1:idp(p),:);C12=sum(A(:)); 
            pkf=[p k f]; 
            rp(p):nk; 
            1:idp(p); 
            aa=[];aa(:,:)=av(p,1:idp(p),:); 
             
            if k>=rp(p) && YP(p,k,f)==1 && C12L==0 && C15==1  
                ZP(p,k,f)=1; 
            end 
             

             

             

             

             
        end 
         

         
        if k<=idp(p) 
            dk=k+1:k+tp(p)-1; 
            A=[];A=YP(p,dk,:).*av(p,dk,:);C15l=sum(A(:)); 
            A=(tp(p)-1).*ZP(p,k,:);C15r=sum(A(:)); 
            CH(15)=CH(15)+max(C15r-C15l,0); 
        end 
         
    end 
end 
  

  

  
tmj=repmat(tj',nm,1); 
SS1=repmat(S1,[1,1,nk,nf]); 
SSj=repmat(Sj,[1,1,nk,nf]); 
  
%decision variables definition  

Z=zeros(nm,nj,nk,nf); 
Y=zeros(nm,nj,nk,nf); 
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%define permutation for last row  

x8=pos(8,:);x8=x8*2;x8=x8-1;x8(x8<0)=0;x8=ceil(x8.*nm); 
  
%decision variables definition  

  
X=zeros(nm,nj); 
SZT=zeros(nm,nj); 
  

  
%define permutation for m, j, k, f  

  
[~,M]=sort(pos(4,:));M=M(1:nm); 
[~,J]=sort(pos(5,:));J=J(1:nj); 
[~,K]=sort(pos(6,:));K=K(1:nk);K=nk:-1:1; 
[~,F]=sort(pos(7,:));F=F(1:nf); 
  
%these four loops check the constraints related to xmj, zmjkf and ymjkf to assign them 0 and 1 values 

for m=M 
    for j=J 
        for k=K 
            for f=F 
                 

                 
                ZZ=Z;ZZ(m,j,k,f)=1; 
                 

                 

                 
                C9=1; 
                C9L=sum(sum(Y(m,j,:,:),3),4)+sum(sum(ZZ(m,j,1:dj(j),:),3),4); 
                C9R=tmj(m,j).*X(m,j); 
                 
                C10sy=sum(Y(m,:,k,f).*Sj(m,:)); 
                C10sz=sum(ZZ(m,:,k,f).*S1(m,:)); 
                SSS0(m,k,f)=C10sy+C10sz; 
                 
                C8=1; 
                if k<=id(j) 
                    dk=k+1:k+tj(j)-1; 
                    A=Y(m,j,dk,:);C8l=sum(A(:)); 
                    A=(tj(j)-1).*ZZ(m,j,k,:);C8r=sum(A(:)); 
                    if C8l<C8r;C8=0;end 
                end 
                 

                 
                if m==x8(j); 
                    X(m,j)=1; 
                    SZ=sum(sum(Z(m,j,1:dj(j),:),3),4); 
                    if SZ==0 && X(m,j)==1 && k<=id(j) && k>=rj(j)                        
                        if  C8==1 && C9L<=C9R  && C10sy+C10sz+SSS(m,k,f)<=T(m,k,f) 
                            Z(m,j,k,f)=1; 
                        end 
                    end 
                end 
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                YY=Y;YY(m,j,k,f)=1; 
                 

                 
                C7L=[];C7L(:,:,:)=sum(YY+Z,4); 
                C7=(C7L>repmat(X,[1,1,nk]));C7=any(C7(:)); 
                 
                C8=1; 
                if k<id(j) 
                    dk=k+1:k+tj(j)-1; 
                    A=YY(m,j,dk,:);C8l=sum(A(:)); 
                    A=(tj(j)-1).*Z(m,j,k,:);C8r=sum(A(:)); 
                    if C8l<C8r;C8=0;end 
                end 
                 
                C9L=sum(sum(YY(m,j,:,:),3),4)+sum(sum(Z(m,j,1:dj(j),:),3),4); 
                C9R=tmj(m,j).*X(m,j); 
                 
                C10sy=sum(YY(m,:,k,f).*Sj(m,:)); 
                 

                 
                C4L=sum(YY(m,j,k,:)); 
                 
                if X(m,j)==1 && C8==1 && k<=dj(j) && C4L<=X(m,j) && C9L<=C9R && 

C10sy+SSS(m,k,f)<=T(m,k,f) && C7==0 
                    Y(m,j,k,f)=1; 
                end 
                 

                 

                 

                 
                C10sy=sum(Y(m,:,k,f).*Sj(m,:)); 
                C10sz=sum(ZZ(m,:,k,f).*S1(m,:)); 
                SSS0(m,k,f)=C10sy+C10sz; 
                 

                 
                if k<=id(j) 
                    dk=k+1:k+tj(j)-1; 
                    A=Y(m,j,dk,:);C8l=sum(A(:)); 
                    A=(tj(j)-1).*Z(m,j,k,:);C8r=sum(A(:)); 
                    CH(8)=CH(8)+max(C8r-C8l,0); 
                end 
                 

                 

                 

                 
            end 
             
            A=[];A=Y(m,j,k,:);CH(4)=CH(4)+sum(max(A-X(m,j),0)); 
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        end 
         
        SZT(m,j)=sum(sum(Z(m,j,1:dj(j),:),3),4); 
         
    end 
end 
  
%calculates violation for each constraint 

CH(1)=sum(sum(abs(SZT-X))); 
CH(2)=sum(max(sum(X,1)-1,0)); 
  
for j=1:nj 
    A=[];A=Z(:,j,id(j)+1:end,:);CH(3)=CH(3)+sum(A(:)); 
    A=[];A=Z(:,j,1:rj(j)-1,:);CH(5)=CH(5)+sum(A(:)); 
    A=[];A=Y(:,j,dj(j)+1:end,:);CH(6)=CH(6)+sum(A(:)); 
end 
  
A=Z+Y;C7L=[];C7L(:,:,:)=sum(A,4);A=max(C7L-repmat(X,[1,1,nk]),0);CH(7)=sum(A(:)); 
A=sum(sum(Y,3),4)+sum(sum(Z,3),4);B=tmj.*X;CH(9)=sum(sum(abs(A-B))); 
A=max(SSS0+SSS-T,0);CH(10)=sum(A(:)); 
A=max(YP-av,0);CH(11)=sum(A(:)); 
A=max(ZP-YP,0);CH(13)=sum(A(:)); 
A=max(sum(YP.*av,3)-1,0);CH(16)=sum(A(:)); 
  

  
for p=1:np 
    A=[];A(:,:)=ZP(p,1:idp(p),:).*av(p,1:idp(p),:);CH(12)=CH(12)+0*abs(sum(A(:))-1); 
    A=[];A=YP(p,:,:).*av(p,:,:);CH(14)=CH(14)+abs(sum(A(:))-tp(p)); 
    tpp(p)=sum(A(:)); 
    A=[];A=YP(p,dp(p)+1:end,:);CH(17)=CH(17)+sum(A(:)); 
    A=[];A=ZP(p,1:rp(p)-1,:);CH(18)=CH(18)+sum(A(:)); 
     
end 
  

  

  
%objective function  

  
obj=repmat(W',nm,1).*X; 
  
SCH=sum(CH); 
  

  

  
OBJ=sum(obj(:)); 
fit=1/OBJ; 
%considering violations to correct and solutions 

sol.fit=fit*(1+1000*SCH); 
sol.info.X=X; 
sol.info.Y=Y; 
sol.info.YP=YP; 
sol.info.Z=Z; 
sol.info.ZP=ZP; 
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sol.info.X=X; 
sol.info.OBJ=OBJ; 
sol.info.CH=CH; 
sol.info.CH=CH; 
sol.info.SCH=SCH; 
sol.info.C10L=SSS0+SSS; 
sol.info.SZT=SZT; 
sol.info.C10=SSS0+SSS; 
end 
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9.2. WOA MATLAB code 

clc 
clear 
close all 
format shortG 
  
%% Parameters Definiterion 
data=InsertData();load data 
  
lb=0*ones(8,nvar); 
ub=1*ones(8,nvar); 
  
npop=10; 
maxiter=15; 
  

  
data.lb=lb; 
data.ub=ub; 
%% Initialization 
tic 
emp.x=[]; 
emp.info=[]; 
emp.fit=[]; 
emp.info.SCH=[]; 
  
pop=repmat(emp,npop,1); 
  

  

  
for i=1:npop 
pop(i).x=unifrnd(lb,ub); 
pop(i)=fitness(pop(i),data); 
end 
  

  
[~,ind]=min([pop.fit]); 
gpop=pop(ind); 
  
Size.x=size(pop(1).x); 
  

  
%% Main loop 
BEST=zeros(maxiter,1); 
MEAN=zeros(maxiter,1); 
  

  
for iter=1:maxiter 
     

     
    for i=1:npop 
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        % Return back the search agents that go beyond the boundaries of the search space 
        Flag4ub=pop(i).x>ub; 
        Flag4lb=pop(i).x<lb; 
        pop(i).x=(pop(i).x.*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; 
         
        % Calculate objective function for each search agent 
         pop(i)=fitness(pop(i),data); 
         
        % Update the leader 
        if pop(i).fit<gpop.fit  
            gpop=pop(i); % Update alpha 
        end 
         
    end 
     
    a=2-iter*((2)/maxiter); % a decreases linearly from 2 to 0  
     
    % a2 linearly decreases from -1 to -2 to calculate t  
    a2=-1+iter*((-1)/maxiter); 
     
    % Update the Position of search agents  
    for i=1:npop 
        r1=rand(); % r1 is a random number in [0,1] 
        r2=rand(); % r2 is a random number in [0,1] 
         
        A=2*a*r1-a;   %equation 10 
        C=2*r2;      %equation 11 
 

         

         
        b=1;              %parameter b 

        l=(a2-1)*rand+1;   %parameter l 

         
        p = rand();       %probability 

         
        for j=1:Size.x(2) 
             
            if p<0.5     
                if abs(A)>=1                        %exploration phase 

                    k =randi([1 npop]); 
                    D_X_rand=abs(C*pop(k).x(:,j)-pop(i).x(:,j)); %equation 8 
                    pop(i).x(:,j)=pop(k).x(:,j)-A*D_X_rand;      %equation 9 

                     

                elseif abs(A)<1                     %exploitation shrinking mechanism phase 

                    D_Leader=abs(C*gpop.x(:,j)-pop(i).x(:,j)); %equation 12 

                    pop(i).x(:,j)=gpop.x(:,j)-A*D_Leader;      %equation 13 
                end 
                 
            elseif p>=0.5           %exploitation spiral mechanism 
               
                distance2Leader=abs(gpop.x(:,j)-pop(i).x(:,j)); 
                 
                pop(i).x(:,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+gpop.x(:,j)%equation 14 
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            end 
             
        end 
    end 
     

     
    BEST(iter)=gpop.info.OBJ; 
    MEAN(iter)=mean([pop.fit]); 
  
    FL=' Feasible'; if gpop.info.SCH>0;FL=' Infeasible';end 
     
    disp(['iter ' num2str(iter) ' Best= ' num2str(BEST(iter)) FL]); 
     

  

     
end 
  
%% Results 
  
disp(' ') 
disp([ ' BEST fitness = '  num2str(BEST(iter))]); 
disp([ ' Time = '  num2str(toc)]); 
  
figure() 
plot(BEST(1:iter),'r') 
  
xlabel(' iteration ') 
ylabel(' fitness') 
legend( 'BEST') 
title('Whale Algorithm') 
  

  
write4D(gpop.info.Z,'Z') 
write4D(gpop.info.Y,'Y') 
write3D(gpop.info.ZP,'ZP') 
write3D(gpop.info.YP,'YP') 
write3D(gpop.info.C10,'C10') 
write2D(gpop.info.X,'X') 
write2D(gpop.info.SZT,'SumZ') 
  
info=gpop.info;save out 
Z=info.Z; 
Y=info.Y; 
ZP=info.ZP; 
YP=info.YP; 
X=info.X; 
SZT=info.SZT; 
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9.3. PSO MATLAB code 

 

clc 
clear 
close all 
format shortG 
%% Parameters Setting 
  
data=InsertData();load data 
  
lb.x=0*ones(8,nvar); 
ub.x=1*ones(8,nvar); 
  

  
lb.v=-0.8; 
ub.v=0.8; 
  

  
Npar=10; % Population Size 
Maxiter=15; % Max Iteration 
  
W=1; 
C1=2; 
C2=2; 
  
W_RF=0.97; 
  
FinalBEST=-1; 
  

  
%% Initial Population 
tic 
emp.x=[]; 
emp.v=[]; 
emp.fit=[]; 
emp.info=[]; 
par=repmat(emp,Npar,1); 
  

  
for i=1:Npar 
 par(i).x=unifrnd(lb.x,ub.x); 
 par(i).v=0; 
 par(i)=fitness(par(i),data); 
end 
  

  
bpar=par; 
  
[~,ind]=min([par.fit]); 
gpar=par(ind); 
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%% Main Loop Pso 
  
BEST=zeros(Maxiter,1); 
MEAN=zeros(Maxiter,1); 
  

  
for iter=1:Maxiter 
  

     
   for i=1:Npar  
  
  % Update Velocity 
           par(i).v=W*par(i).v+... 
           C1*rand(size(lb.x)).*(bpar(i).x-par(i).x)+... 
           C2*rand(size(lb.x)).*(gpar.x-par(i).x); 
        
           par(i).v=CB(par(i).v,lb.v,ub.v); 
  
 % Update Position 
   
           par(i).x=par(i).x+par(i).v; 
           par(i).x=CB(par(i).x,lb.x,ub.x); 
   
  % Call Fitness 
           par(i)=fitness(par(i),data); 
   

   
  % Update gpar and bpar 
   
  if par(i).fit<bpar(i).fit 
      bpar(i)=par(i); 
  end 
   
  if par(i).fit<gpar.fit 
      gpar=par(i); 
  end   
   
   end 
   

  

  

  
BEST(iter)=gpar.info.OBJ; 
MEAN(iter)=mean([bpar.fit]); 
  
    FL=' Feasible'; if gpar.info.SCH>0;FL=' Infeasible';end 
  

  
disp([ 'Iter = ' num2str(iter) ' BEST = ' num2str(BEST(iter)) FL]) 
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W=W*W_RF; 
 end 
%% Results 
  
BEST=BEST(1:iter); 
MEAN=MEAN(1:iter); 
  

  
disp([ ' Best Fitness = ' num2str(gpar.fit) ]) 
disp([ ' Time = ' num2str(toc) ]) 
  

  
figure(1) 
plot(BEST,'r') 
  

  
xlabel('Iteration ') 
ylabel(' Fitness ') 
legend('BEST') 
title('PSO') 
gpop=gpar; 
write4D(gpop.info.Z,'Z') 
write4D(gpop.info.Y,'Y') 
write3D(gpop.info.ZP,'ZP') 
write3D(gpop.info.YP,'YP') 
write3D(gpop.info.C10,'C10') 
write2D(gpop.info.X,'X') 
write2D(gpop.info.SZT,'SumZ') 
  
info=gpop.info;save out 
Z=info.Z; 
Y=info.Y; 
ZP=info.ZP; 
YP=info.YP; 
X=info.X; 
SZT=info.SZT; 
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9.4. FA MATLAB code 

clc 
clear 
close all 
format shortG 
  
%% Parameters Definiterion 
data=InsertData();load data 
  
lb=0*ones(8,nvar); 
ub=1*ones(8,nvar);     
  
maxiter=15;          % Maximum Number of iterations 
  
npop=10;              % Number of Fireflies 
  

  
L=1; 
gamma=1./sqrt(L);            % Light Absorption Coefficient 
  
beta0=0.5;                     % Attraction Coefficient Base Value 
  
alpha=0.9;                   % Mutation Coefficient 
  
alpha_RF=0.95;                %Radius Reduction Factor  
  

  
%% Initialization 
tic 
emp.x=[]; 
emp.SCH=[]; 
emp.info=[]; 
emp.fit=[]; 
  
pop=repmat(emp,npop,1); 
  

  

  
for i=1:npop 
pop(i).x=unifrnd(lb,ub); 
pop(i)=fitness(pop(i),data); 
end 
  

  
[~,ind]=min([pop.fit]); 
gpop=pop(ind); 
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%% Main Loop 
  
BEST=zeros(maxiter,1); 
MEAN=zeros(maxiter,1); 
  
for iter=1:maxiter 
     
    newpop=pop; 
     
    k=npop; 
     
    for i=1:npop 
        for j=1:npop 
            if pop(j).fit<=pop(i).fit 
                k=k+1; 
                newpop(i)=pop(i); 
                newpop(i).x=MoveSol(pop(i).x,pop(j).x,alpha,beta0,gamma,lb,ub); 
                newpop(i)=fitness(newpop(i),data); 
                newpop(k)=newpop(i); 
                 
            end 
        end 
    end 
     
    % Merge 
    [pop]=[pop;newpop;gpop]; 
     

  

  

       
    % Sort and Select 
    [~, ind]=sort([pop.fit]); 
    pop=pop(ind); 
    pop=pop(1:npop); 
  
    % Select Best Sol  
    gpop=pop(1);      
     
    BEST(iter)=gpop.info.OBJ; 
    MEAN(iter)=mean([pop.fit]); 
  
     NO=' Feasible'; 
      
     if any([gpop.info.SCH]>0) 
         NO=' Infeasible'; 
     end     
     
    disp(['iter ' num2str(iter) ' Best= ' num2str(BEST(iter)) NO]); 
     
    % Reduction Mutation Coefficient 
    alpha=alpha*alpha_RF; 
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end 
  
%% Results 
  
disp(' ') 
disp([ ' BEST fitness = '  num2str(gpop.fit)]); 
disp([ ' Time = '  num2str(toc)]); 
  
figure() 
plot(BEST(1:iter),'r','LineWidth',2) 
  
xlabel(' iteration ') 
ylabel(' fitness') 
legend( 'BEST') 
title('Firefly Algorithm') 
  
write4D(gpop.info.Z,'Z') 
write4D(gpop.info.Y,'Y') 
write3D(gpop.info.ZP,'ZP') 
write3D(gpop.info.YP,'YP') 
write3D(gpop.info.C10,'C10') 
write2D(gpop.info.X,'X') 
write2D(gpop.info.SZT,'SumZ') 
  
info=gpop.info;save out 
Z=info.Z; 
Y=info.Y; 
ZP=info.ZP; 
YP=info.YP; 
X=info.X; 
SZT=info.SZT; 
 
 

 

  

  

 
 


