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ABSTRACT

Robust Sensor Fault Detection and Isolation of Gas Turbine Engines

Bahareh Pourbabaee, Ph.D.

Concordia Unviersity, 2016

An effective fault detection and isolation (FDI) technology can play a crucial

role in improving the system availability, safety and reliability as well as reducing

the risks of catastrophic failures. In this thesis, the robust sensor FDI problem

of gas turbine engines is investigated and different novel techniques are developed

to address the effects of parameter uncertainties, disturbances as well as process

and measurement noise on the performance of FDI strategies. The efficiencies of

proposed techniques are investigated through extensive simulation studies for the

single spool gas turbine engine that is previously developed and validated using the

GSP software. The gas turbine engine health degradation is considered in various

forms in this thesis. First, it is considered as a part of the engine dynamics that is

estimated off-line and updated periodically for the on-board engine model. Second,

it is modeled as the time-varying norm-bounded parameter uncertainty that affects

all the system state-space matrices and third as an unknown nonlinear dynamic that

is approximated by the use of a dynamic recurrent neural network..

In the first part of the thesis, we propose a hybrid Kalman filter (HKF) scheme

that consists of a single nonlinear on-board engine model (OBEM) augmented with

piecewise linear (PWL) models constituting as the multiple model (MM) based

estimators to cover the entire engine operating regime. We have integrated the

generalized likelihood ratio (GLR)-based method with our MM-based scheme to

estimate the sensor fault severity under various single and concurrent fault scenarios.

In order to ensure the reliability of our proposed HKF-based FDI scheme during the
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engine life cycle, it is assumed that the reference baselines are periodically updated

for the OBEM health parameters.

In the second part of the thesis, a novel robust sensor FDI strategy using

the MM-based approach is proposed that remains robust with respect to both

time-varying parameter uncertainties and process and measurement noise. The

scheme is composed of robust Kalman filters (RKF) that are constructed for mul-

tiple PWL models. The parameter uncertainty is modeled by using a time-varying

norm bounded admissible structure that affects all the PWL state space matrices.

The robust Kalman filter gain matrices are designed by solving two algebraic Riccati

equations (ARE) that are expressed as two linear matrix inequality (LMI) feasibil-

ity conditions. The main objective is to propose a robust filter that satisfies the

overall performance requirements and is not affected by system perturbations. The

requirements include a quadratically stable filter that ensures bounded estimation

error variances having predefined values.

In the third part of the thesis, a novel hybrid approach is proposed to improve

the robustness of FDI scheme with respect to different sources of uncertainties.

For this purpose, a dynamic recurrent neural network (DRNN) is designed to ap-

proximate the gas turbine engine uncertainty due to the health degradations. The

proposed DRNN is trained offline by using the extended Kalman filter (EKF) al-

gorithm for an engine with different levels of uncertainty, but with healthy sensors.

The convergence of EKF-based DRNN training algorithm is also investigated. Then,

the trained DRNN with the fixed parameters and topology is integrated with our

online model-based FDI algorithm to approximate the uncertainty terms of the real

engine. In this part, the previously proposed HKF and RKF are integrated with the

trained DRNN to construct the hybrid FDI structure.
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Chapter 1

Introduction

An effective fault detection, isolation and identification (FDII) technology can play

a critical role in improving the system availability, safety and reliability as well as

reducing the maintenance costs and risks of catastrophic failures. Over the past few

years, many researchers have focused on developing sophisticated fault detection and

isolation (FDI) schemes constituting as a significant component of an FDII solution

[5,6]. There are many challenging problems regarding the FDII problem namely as

the fault detection promptness, FDII accuracy, rates of false alarms, incorrect fault

detections and robustness with respect to different sources of uncertainties.

1.1 Fault Detection, Isolation and Identification

There is an ever-increasing demand on reliability and safety of many engineering

systems, such as aero-engines, chemical processes, manufacturing systems, electrical

machines, power networks, vehicle dynamics and industrial electronic equipments

that are subjected to multiple faults and abnormalities. As a result, it is paramount

to detect, isolate and identify any kind of sensor, actuator and component faults as

early as possible to implement different fault tolerant control (FTC) mechanisms to

minimize the performance degradation and to avoid any dangerous situations. A
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Figure 1.1: The concepts of hardware and analytical redundancies for FDI purposes.

fault is defined as a non-allowed sudden or gradual deviation of at least one param-

eter of the system from its normal and acceptable condition. In order to monitor,

locate and detect the type and severity of various faults in safety critical systems

the concept of redundancy, either hardware redundancy or analytical redundancy is

utilized. The basic idea of hardware redundancy is to have two or more identical

components with the same inputs whose corresponding output signals are compared

using different approaches, such as limit checking or majority voting to report a

fault within that component. However, the hardware redundancy cannot be applied

to the whole system due to the cost, weight and the essential space for hardware

installation. As a result, the analytical redundancy has become the main stream

in fault detection and isolation (FDI) research since the 1980s [7], although it is a

more challenging approach since the robustness should be always maintained against

model uncertainties, noise and unknown disturbances. The analytical redundancy

makes use of a mathematical model of the system. The hardware and analytical

redundancy concepts are illustrated in Figure 1.1.
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The general analytical redundancy methodology for an FDII strategy consists

of several important steps including: (a) the generation of residuals as indicators of

faults, (b) the isolation of the faulty actuator, or sensor, or component element, and

(c) the identification and estimation of the fault severity. The residual generation

is a very important and challenging step in which the residual signal is supposed to

be ideally zero under no-fault conditions. It should also be minimally sensitive to

noise and disturbances and maximally sensitive to faults. In some FDII schemes,

multiple residuals are generated for the purpose of fault isolation. In such schemes,

each residual is sensitive to only one or a set of selected faults. Using statistical

tools, the residuals are tested to determine any kind of deviation from zero. Finally,

a fault tolerant controller is reconfigured to respond to any detected, isolated and

identified fault and to yield the closed-loop system efficiency in presence of faults.

The effectiveness of any fault tolerant control mechanism highly depends on the

accuracy of the information that is provided by the fault diagnosis strategy. The

overall structure of a fault tolerant control system as well as the fault detection and

isolation structure is illustrated in Figure 1.2.

Generally, fault diagnosis approaches can be categorized into three distinct
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groups including model-based, process history data-based and hybrid methods. The

model-based methods are usually developed based on the governing physics rules

that represent the behavior of the system. In contrast to the data-based approaches

which usually face a problem in finding a generalized model that works for a wide

range of operating conditions, the model-based methods can be the more accurate

class of fault diagnosis methodologies if the comprehensive model of the system is

available. These two methods’ drawbacks can be solved by applying a hybrid method

of fault diagnosis through integrating the model-based and data-based approaches.

More details will be given in this chapter regarding different popular and available

approaches corresponding to the aforementioned FDI categories. Multiple surveys

are also available in the literature in which the history of FDI approaches and

ongoing challenges are explained [6–13].

1.2 Motivation

An effective fault diagnosis, prognosis and health monitoring (DPHM) solution is an

important and challenging problem in many disciplines in order to ensure the safe

and acceptable operation of a system and to reduce the maintenance cost and the

risks of catastrophic failures. Over the past few years, many researchers have focused

on proposing different fault detection and isolation (FDI) schemes constituting as

a significant component of the DPHM system. Since early research on FDI, gas

turbines have been one of the challenging application areas which have received

much attention. The main theme of research in gas turbines FDI is based on the

Gas Path Analysis (GPA) which enables actuators, sensors and components fault

diagnosis by observing engine’s parameters such as the rotor speed, temperature

and pressure at each stage and the fuel flow rates [14,15]. Fault diagnosis problems

include detection, isolation and identification of different kinds of sensor, actuator
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and component faults. The component faults are categorized into two groups of

slow variations of engine parameters due to the turbine blade erosion and corrosion,

worn seals, excess of clearance or a sudden effect due to the foreign or domestic

object damage. All these faults have an effect on engine health parameters including

the compressor and the turbine efficiencies and mass flow rates. The sensor faults

include different kinds of bias, drift and accuracy changes, while the actuator faults

are usually the loss of effectiveness and perhaps saturation.

In addition to the faults and the failures, the system is always influenced by

noise, disturbances and various sources of uncertainties. Therefore, an effective

FDI strategy should be capable of detecting and isolating different types of faults

while keeping its robustness with respect to noise, disturbances and the uncertain-

ties. This will avoid the risk of the false alarm generation. One of the important

sources of uncertainty is the system’s parameters variations like the health parame-

ters degradations due to the gas turbine engine aging and deterioration. Therefore,

the designed FDI strategy should be robust with respect to the health parameters

degradations or be capable of being updated for the recent values of the health pa-

rameters in case the percentages of their degradations are available by the use of a

certain health monitoring method.

Despite the dedication of a large body of works to study FDII problem for the

gas turbine engines, there are still some challenging problems in this area among

them are designing an applicable strategy to detect and isolate different faults in

presence of health parameters degradation, noise and disturbances. Most of the

available FDI approaches in the literature that are applied for gas turbine engine does

not consider the health parameters degradation due to the gradual aging process of

the engine. Also, the proposed approaches are mainly applied to the cruise condition

rather than the entire engine operating regime. There are also complicated FDI

methods in the literature that cannot be easily applied to real-time applications due
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to the essential computational time and cost.

The main motivation for this thesis is to design and propose a sensor FDI

scheme applied to the gas turbine engine considering all the aforementioned limi-

tations and challenges. Our objective is to construct an FDI methodology that is

not only able to detect and isolate different types of faults with different severities

faster than the available methods, but also perform robustly with respect to various

sources of uncertainties, such as the engine health degradation, noise and distur-

bances. To demonstrate the superiority of our proposed methodologies as compared

to the examined methods in the literature, different performance indices are de-

fined that are computed for our proposed methods and are compared with the other

approaches.

In this thesis, the model-based and hybrid FDI methodologies are used to

address the same sensor FDI problem and are applied to the single spool turbojet

engine. The Chapters 3 and 4 of this thesis are on model-based methodology in

which two filters namely as the hybrid Kalman filter (HKF) and robust Kalman

filter (RKF) are designed to be applied as the detection filter in multiple-model

structure and to be utilized for solving sensor FDI problem in presence of engine

compressor and turbine health degradation. Moreover, in Chapter 5, our main

motivation is to improve the sensor FDI algorithm efficiency by integrating the

previously designed filters with the dynamic recurrent neural network structure to

improve the robustness. The details regarding the problem statements and the main

objectives of this thesis will be given in the following sections.

1.3 Literature Review

During the last four decades, fruitful results have been reported on fault detection

and isolation methods as well as their applications in various industrial processes
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and systems. A number of survey papers were written on three distinct categories

of FDI approaches including the model-based, data-based and hybrid methods. In

this section, we review the literature on available FDI approaches.

1.3.1 Model-Based Fault Diagnosis Approaches

In model-based methods, the system models are required to be available, which can

be obtained by using either physical principles or system identification techniques.

Based on the model, FDI algorithms are developed to monitor the consistency be-

tween the measured outputs of the practical systems and the model-predicted out-

puts. The model-based FDI approaches have been introduced in multiple survey

papers [5, 6, 10, 16, 17] and can be grouped into basic approaches, namely as the (i)

Kalman filter or observer based approaches, (ii) parity relations, (iii) optimization-

based algorithms, (iv) parameter estimation and identification techniques, and (v)

geometric approach.

The Kalman filter is capable of generating the residual signal whose statisti-

cal features determine the occurrence of a fault [18]. The common statistical tools

for testing the Kalman filter residuals are the maximum likelihood method, or the

generalized likelihood ratio (GLR). The concept of the parity relation-based FDI

approach is to form residuals as the difference between the system and model out-

puts. These residuals are then subjected to a linear transformation. These two

steps together constitute the residual generator that provides the desired FDI prop-

erties [19, 20]. The optimization based techniques are also capable of minimizing

the sensitivity of residual signal towards different sources of uncertainty and maxi-

mizing the residual fault sensitivity [21]. The parameter estimation is another FDI

technique in which the identification approaches are used to identify the faults that

are reflected in system parameters. The estimated parameters are compared with

the reference parameters obtained initially under healthy conditions [22]. The FDI
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problem can also be formulated using the geometric techniques such as invariant

subspaces [23, 24]. Multiple model approach is also a popular structure for FDI

purposes in which different models are constructed for different healthy and faulty

scenarios working in parallel with certain switching mechanism among the available

modes. It enables one not only to detect and isolate different faults but it also

provides one with information on the magnitude of the fault and its identification

information [3, 25–28].

The efficiency of approaches that are used to perform different types of fault

diagnosis can be measured by computing various factors such as the promptness of

the fault detection, sensitivity to incipient fault, low false alarms and missed fault

detections rates, and accuracy of the fault identification. The compromises among

these criteria require extensive knowledge of the monitored system as well as the

operating system conditions [29]. The above factors can also be affected by the

accuracy of the system model used and a fault diagnosis method, the severity of the

injected fault and also the current health condition of the operational system.

Another important criterion of the FDI strategy is its robustness with respect

to the un-modeled or uncertain dynamics, disturbances and noise, and the parameter

variations. Therefore, a number of approaches have been proposed in the literature

to improve the FDI strategy robustness, by applying different methods like the

adaptive threshold that is varied by the control activity [30], generating complete

decoupling between different fault effects and unknown inputs that are independent

of the fault modes by using methods such as the detection filter approach [31],

the parity space approach [32, 33], the Eigen structure assignment [34, 35], the H∞

optimization in the frequency domain [36] and the unknown input observer (UIO)

approaches [6,37–39]. Moreover, the robust observers are another active area within

the robust model-based FDI techniques.

As per available discussions and comparisons for FDI methods in the literature,
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it is shown that various observer-based methods, such as eigenstructure assignment,

fault detection filters, and unknown input observers give identical residuals with

that of an equivalent parity relation method. Similar as the observer-based methods,

the parity relation method is capable of yielding directional or structural residual

vectors using the system input-output transfer function or state-space model. Note

that the observer-based and the parity relation approaches generally do not consider

model uncertainties. In most cases, they are also limited to linear time-invariant

(LTI) systems. Therefore, in the presence of model uncertainties, the fault detection

algorithm would fail to yield zero-mean residual in the absence of faults. This

problem can almost be rectified by selecting a higher threshold for statistical decision

making. However, this normally leads to the longer fault detection delay [10,40].

Conceptually, the modeling uncertainties are categorized into two distinct

groups, namely the structured and unstructured uncertainties [41]. The structured

uncertainty is normally denoted as a product of a known signature matrix by an

unknown linear/nonlinear function. The unstructured uncertainty is defined using

the upper bound which may be a constant value or a function of the state variables,

inputs and the time. In order to make the FDI strategy robust with respect to

the unstructured uncertainty, an adaptive threshold can be defined based on the

upper bound of the uncertainty which is used for a fault detection. The structured

type of uncertainty is a kind of unknown input for the system and its effects can be

decoupled from the residual signal by the use of unknown input observers [42, 43].

The authors of [29, 39] found a transformed system with a reduced order which is

disturbance decoupled while it is still affected by a fault. Their system is linear with

respect to the fault and the uncertainty but it is nonlinear with respect to the state

variables and inputs. However, the drawback of their approach is that convergence

of the error dynamics is not proven or discussed.

In UIO-based robust FDI approaches, the structured modeling uncertainty is
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added as an unknown input to the system dynamic equation, then an observer is de-

signed whose estimation error converges to zero regardless of the uncertainty effect

and the remaining design degree of freedom is used for a fault detection and isola-

tion. This approach has been mostly used for linear systems, while the necessary and

sufficient conditions for the existence of UIO has been found by Kudva in 1980 [44].

Recently, in [45] the unknown input observer problem is addressed without satisfying

the sufficient condition through utilizing the double-model adaptive estimation ap-

proach. In [46], it has been shown that there are two possible equivalent approaches

to make the estimation procedure robust with respect to the disturbance including

the design of a disturbance decoupled observer for a disturbed system or design a

standard observer for a disturbance decoupled system. The linear UIO-based FDI

approaches have been also extended to nonlinear systems by linearizing them at dif-

ferent operating points and considering them as multiple model systems [47]. Some

other nonlinear systems have also been expressed in terms of linear parts and a

Lipschitz nonlinear state dependent part [48]. Unlike the UIO approaches, in H∞

optimization process the sensitivity of the residual signal is maintained less than

a predefined bound whereas the sensitivity to the faults is increased over the fre-

quency range of them [36, 49]. Therefore, the effect of the modeling uncertainty on

a residual signal can be fully decoupled by the use of the UIO procedure; however

it can be attenuated by applying the H∞ optimization approach. Keep in mind

that the solvability conditions for the UIO method is more restrictive than the H∞

approach.

The modeling uncertainty can also be represented as polytopic-type struc-

ture parameter uncertainty affecting the system matrices and time-varying norm-

bounded matrices [50,51]. Neglected nonlinearities, un-modeled dynamics, and mod-

eling inaccuracies, including physical component faults can also be represented as

sources of parameter uncertainties [10]. Two main robust observer methodologies,
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that is algebraic Riccati equation (ARE) [52] and linear matrix inequality (LMI)

approaches have been pursued in the literature to address systems with above un-

certainties. Through the use of parametric Lyapunov functions, the LMI approach is

capable of dealing with these uncertainties by designing less conservative filters [53].

It can also be used to solve multi-objective optimization problems by adjusting the

sensitivity of the residual with respect to faults and different uncertainties. One of

the advantages of the ARE approach is that the structure and gain of a designed esti-

mator can incorporate and represent effects of parameter uncertainties. By utilizing

the aforementioned two approaches, various filtering solutions have been proposed to

compensate for the effects of parameter uncertainties, namely as robust H∞ and H2

filters [53–55], robust Kalman filters (RKF) [56] and set-valued filters. The robust

H∞ filter is constructed such that the H∞ norm from the disturbance inputs to the

filter error output is minimized. It makes no assumption on the spectral properties

of the disturbance signal and is only designed for the worst case signal conditions.

To address fault isolation problem in the literature, normally a bank of filters

can be used with one of two possible configurations namely as the generalized and

the dedicated observer schemes. In generalized observer configurations, the ith filter

is sensitive to all faults except the ith fault and also the uncertainty. In dedicated

observer configurations, the ith observer is only sensitive to the ith fault and it is

insensitive to all the other faults and the uncertainty. The second configuration is

better for multiple simultaneous faults isolation [6].

Most of the model-based fault diagnosis approaches are based on the system

linear model, extracted by linearizing the nonlinear model of the system. These

models are applicable only around the operating point. In order to cover the entire

operating range of the system, a certain number of linear models are designed at

different operating points and are interpolated by the use of some techniques men-

tioned in the literature including Takagi-Sugeno fuzzy models [57], the functional
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state approach using a discrete representation like automaton for describing the

transitions between regions and multi-layer perceptron neural networks to recognize

transitions between states [58], and also Markov mixtures of experts to define the

transitions [59].

In some other works, the linear approaches are extended to be applied for fully

nonlinear models of the system which leads to the nonlinear extension forms of the

Kalman filter like the extended Kalman filter (EKF) [60], the unscented Kalman

filter (UKF) [61] and the cubature Kalman filter (CKF) [62]. They are all subopti-

mal state estimators approximating the nonlinear system through linearization and

assuming that the noise is Gaussian. Particle filter is another nonlinear state esti-

mator that is widely used to solve FDI problems using the sequential Monte Carlo

method without performing any linearization or restricting the noise to be Gaussian.

In [63], the particle filters are used to generate a sequence of hidden states which

are then used in a log-likelihood ratio to detect and isolate the faults. The general

particle filter always suffers from the particle impoverishment problem, which can

lead to the misleading state estimation results. In [64] an intelligent particle filter

is proposed using the genetic algorithm to improve the particle diversity.

1.3.2 Data-Based Fault Diagnosis Approaches

In contrast to the model-based FDI approaches, the process history data-based ap-

proaches need a large amount of system history data in different healthy and faulty

conditions. The data is presented as a priori knowledge to the diagnostic system.

The procedure is known as the feature extraction that can be conducted in time

or frequency domain. This extraction can be either qualitative or quantitative in

nature [16]. The expert systems [65] and trend monitoring methods [66] are two ma-

jor qualitative methods. The expert system FDI approach was initialized in 1980s

and is based on a set of rules that are designed by the human expert using the
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past experience. The quantitative methods are also categorized into two statistical

and non-statistical methods. For instance, the neural networks (NN) are the non-

statistical methods whereas the principal component analysis (PCA) [67,68], partial

least square (PLS) [69,70] and support vector machine (SVM) [71,72] methods are

the major statistical feature extraction methods. Generally, the quantitative meth-

ods are similar to pattern recognition problems in which different types of features

are extracted and then classified. The feature extraction process normally needs

sufficient domain knowledge and is an application-dependent procedure. Different

signal processing techniques and classification methods are developed in the litera-

ture to extract informative features and to classify them for various purposes [73–76].

Neural networks (NN) are promising tools for fault diagnosis due to their

proven success in system identification and strong capability in learning nonlinear

transformations that map a set of inputs to a set of outputs [77, 78]. In terms

of topology, the NN can be classified into radial basis function networks, dynamic

recurrent networks, self organizing maps and back-propagation networks. According

to the learning strategy, NN-based fault diagnosis can be categorized into supervised-

learning-based fault diagnosis and unsupervised-learning-based fault diagnosis [12].

In recent years in addition to the static multi-layer perceptron neural networks,

the dynamic neural networks have been extensively used in fault diagnosis problems

in order to incorporate dynamics to artificial neural networks [79]. Some of the other

most applied neural networks which have been used for dynamic systems are the

recurrent [80, 81] and time-delay [82] neural networks. In recurrent or time-delay

network, the network is fed with current or delayed values of the system inputs and

outputs whereas the structure of the network is still static. On the other hand,

the dynamic NN have dynamic neurons within their structure which makes them

highly flexible and capable to be used for dynamic complex nonlinear systems as an

approximator.
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In general, the design, training and application of neural networks are case de-

pendent, particularly for complex dynamic system, an inappropriate neural network

structure can memorize the noise and become insensitive to the real variations in the

signal of interest. One of the challenging problems for the NN-based FDI approach

is the design of a proper learning algorithm. The researchers have to train the NN

for all the original data representing the entire operational regime. In [83], the au-

thors have tried to use a sequential training called Bootstrap method based on the

stored pseudo-data which has the same statistical and parametric dependencies as

the original data. The sequential NN training is helpful when there is not sufficient

memory for storing all the original data for the entire operational regime and the

data is also collected in a piecewise manner. Although, the pseudo-data does not

generate the same original data, it has the same statistical information leading to

similar estimated residuals.

One of the common forms of the neural network learning algorithms is the back

propagation (BP) algorithm which trains and updates the neural network parameters

by minimizing the sum of squared error and calculating the gradient of error. The BP

algorithm is a supervised learning procedure whose normalized inputs are generated

by the real system simulation. The number of hidden layer neurons is defined based

on the convergence criterion. The BP approach has some limitations such as it

converges very slow and the convergence is not guaranteed and it may converge

to any local minimum on the error surface. In addition to the BP algorithm, the

hybrid NN is another approach which uses the mixture of BP and variable structure

surface. The convergence and the stability of this network has been proved using

the Lyapunov function. It is also much faster and more accurate than the BP

algorithm [15, 84]. Comparing with the first-order NN learning algorithm like BP

which has a low speed of convergence and constant learning rate, the second-order

methods like the quasi-Newton and Levenberg-Marquardt have better performance

14



but still with the problem of local minima [85].

The EKF-based NN is another form of the second-order learning algorithm

which does not have any convergence problem since it encodes the information in

terms of the state estimation error covariance matrix [86]. This method can be

applied for both feed forward and recurrent networks in the forms of general EKF

and decoupled EKF-based learning algorithms. The smooth variable structure filter

(SVSF) is another NN learning approach as a kind of recursive sliding mode state

and parameter estimator which forces the NN weights to the existing sub-space

around a true system state trajectory [87]. Then, the states are forced to switch

along the true state trajectory and the saturation term is used in this region to

reduce the magnitude of chattering and to smooth the results [86,88].

There are multiple work in the literature addressing the convergence and sta-

bility of various feed forward and recurrent neural networks training mechanisms.

In [89], the stability of a discrete-time recurrent high-order neural network (RHONN)

that is trained by the EKF algorithm is proved based on the Lyapunov approach.

In [90], an effective EKF-based RNN training approach with the controllable train-

ing convergence is developed. Using the Lyapunov and the maximum likelihood

methods, two adaptation laws are developed for the covariance matrices of the pro-

cess and measurement noise. Moreover, the convergence of an EKF-based RNN

training is investigated in [91] in which the dead-zone Kalman filter algorithm is

utilized to improve the training robustness. The Lyapunov method is also used to

show the stability of the proposed training approach for the RHONN.

In some practical applications, the statistical and non-statistical data-driven

approaches are combined to improve the FDI performance. For instance, in [92] the

Bayesian network is integrated with a recurrent NN in which the network is trained

for the system under normal and known faulty conditions, whereas the Bayesian

network is employed to generate random residuals. Moreover, in [93] a dynamic PCA
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and feed-forward back-propagation network are combined to detect stator insulation

failures, broken rotor bars, and bearing faults. The PCA is used to extract different

features that are then applied to the NN to finally detect potential faults.

1.3.3 Hybrid Fault Diagnosis Approaches

Model-based and data-based fault diagnosis approaches have their distinctive advan-

tages and various constraints. The model-based approaches can detect and isolate

different types of faults with small amount of real-time data. However, its perfor-

mance highly depends on the accuracy of the mathematical model that has been

derived based on the physics principles or input-output identification techniques. On

the other hand, the data-based approaches do not need any particular model and so

they are more suitable to be applied for complicated industrial applications in which

a comprehensive model is not available or it is challenging to be derived. However,

the data-based approaches hardly consider the system dynamics which may lead to

their degraded performance in presence of disturbances and system uncertainties.

Therefore, in order to leverage the strength of various fault diagnosis approaches

the hybrid structures are proposed in which two or more approaches are integrated.

In [94], the signal-based method and data-based methods are integrated to

detect the plastic bearing faults, where a statistical approach is also used to isolate

the outer race fault from other types of faults using the frequency-domain features

that are extracted by the fast Fourier transform. The other types of faults are

diagnosed using the K nearest neighbors (KNN) which is a data-based fault classifier

on the basis of time-domain features. The vibration based analysis fault diagnosis

is developed in [95] in which the wavelet transform is used to extract the features

from the vibration signals and the PCA plus the probabilistic NN are then used to

classify the extracted features. In [75], a wavelet transform is used to extract the

features from stator currents, the PCA method is employed to reduce the dimension
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and to eliminate the linear dependency among the features and the fuzzy SVM is

then used to classify the features in order to detect the type and degree of a fault in a

permanent-magnet synchronous generator motor. In [96], an SVM is used to detect

a fault in chemical reactors that are subjected to high nonlinearities and variability

of dynamic, however it is not capable of locating the fault due to highly transitional

dynamics. Therefore, to improve fault isolation an observer is combined with the

SVM, where the model is corrected using the information provided by the SVM in

non-faulty conditions. Moreover, different hybrid approaches are presented in [97]

to address the transmission line fault detection and isolation problem.

1.3.4 Fault Diagnosis Techniques Applied to the Gas Tur-

bine Engines

Since early research on FDII, gas turbines have been one of the challenging applica-

tion areas which have received much attention. The main approach in gas turbines

FDII is based on the GPA, which enables one to accomplish the actuator, sensor

and component diagnosis by observing the engine’s parameters such as the rotor

speed, temperature and pressure at different stages and the fuel flow rates [15].

Various fault diagnosis techniques have been developed for gas turbines based on

GPA ranging from Kalman filters [98–101], neural networks [102], fuzzy logic [103],

genetic algorithms [104], sliding mode observers [105], component adaptation ap-

proach [106, 107], particle filters [108–110], H∞ filter for linear parameter varying

engine models [111] and hybrid diagnosis [112]. Some of the linear approaches have

been extended to fully nonlinear models of the engine that have led to nonlinear

extensions of the Kalman filters to extended Kalman filters (EKF) and unscented

Kalman filters (UKF) [3, 113].

Most of the proposed approaches for different types of fault diagnosis applied to
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the gas turbines are based on the nominal engine modeling, while the engine perfor-

mance deteriorates during its life cycle. The gas turbine engine health deterioration

influences the fuel economy, and impact emissions, component life consumption, and

thrust response of the engine. Therefore, in many applications the operational data

is collected and used to evaluate the system parameters in order to improve the

safety and reduce the operating costs. There are also various methods to estimate

the health parameters, such as the weighted least squares [114], expert systems [115],

Kalman filters [99,116,117], neural networks [118], and genetic algorithms [119].

In Kalman filter based parameter estimation algorithms, the parameters are

augmented to the state vector and are simultaneously estimated with the state

variables. This method has some numerical problem; therefore, the dual estimation

procedure for estimating the parameters and state variables by the use of two parallel

observers has been proposed to overcome the aforementioned numerical problem

[85, 120]. Moreover, in [121] a Kalman filter and a maximum a posteriori (MAP)

estimator are used to estimate the engine performance parameters, whereas a sensor

selection procedure is also proposed to minimize health parameters estimation errors.

The proposed method is finally applied to the linear turbofan engine model.

Generally, the engine health deterioration can be considered as one of non-fault

related factors which may influence the rate of false alarms and/or incorrect fault

detections. To address this issue, there are multiple model-based and data-based

approaches are proposed in the literature that are robust with respect to different

modeling uncertainties such as engine health degradation, noise and disturbances.

For instance, in [122] a multiple model-based robust fault detection and isolation

approach is proposed and tested on single-shaft industrial gas turbine working on

different operating points. The MLP is also employed to perform FDI task and is

combined with the locally linear neuro-fuzzy model to improve the robustness and

fault detection accuracy particularly for incipient faults. In [123], a novel unknown
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input observer is designed to estimate the faults of the system subjected to process

disturbances. In this study, the disturbance is not decoupled completely by the use

of the UIO, however it is attenuated by combining the UIO technique with linear

matrix inequality (LMI). In [124] a dual robust Kalman filter is developed to estimate

engine state state variables and health parameters to improve the FDI robustness

for the turbofan engine. A fault detection estimator is developed in [112] that is

combined with a bank of nonlinear adaptive fault isolation estimators to determine

the type and location of a fault. The proposed FDI architecture is applied to a

realistic nonlinear aircraft engine model recently developed by NASA researchers,

whereas the robustness with respect to the normal engine health degradation is also

maintained by means of an adaptive threshold.

The neural networks have been also extensively used for the gas turbine en-

gines fault diagnosis. In [125] multiple neural networks are proposed for single shaft

gas turbine fault diagnosis. The authors of [126] have extended the multiple neural

networks to a cascaded network in order to isolate sensor and component faults.

Probabilistic and hybrid neural networks are the other two important kinds of net-

works that have been used for gas turbine fault diagnosis [118, 127]. In [128], an

ensemble of dynamic neural networks are designed for gas turbine health monitor-

ing purposes in which various dynamic networks namely as, multi-layer perceptron

(MLP), radial basis function (RBF) and dynamic SVM are individually trained to

represent gas turbine dynamics. Next, three different ensemble homogeneous and

heterogeneous configurations are constructed that are more accurate in engine dy-

namic identification. The jet engine component fault detection and isolation problem

is also addressed by the use of multiple dynamic neural networks corresponding to

various operating healthy and faulty modes of the engine in [129]. The FDI effective-

ness is also investigated in presence of un-modeled dynamic, noise and disturbances.

In [130], multiple auto-associative neural networks are used to solve sensor and
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component FDI problem for an aircraft engine. The sensor data validation is also

conducted in this study for the purpose of engine health monitoring. The multi

sensor health diagnosis methodology is also proposed in [131] in which a hierar-

chical structure of deep belief network with multiple stacked restricted Boltzmann

machines is employed to address aircraft engine health diagnosis using the sensor

measurements.

Unlike the adaptive neural-network-based fault diagnosis approaches which

need the upper bound of the uncertainty as an a priori knowledge, the hybrid frame-

work is capable of working with any unknown uncertainty. In this framework, the

empirical-based method like the NN is applied for different types of uncertainty ap-

proximation. In [132,133], the NN is applied to approximate the linearization error

as a source of modeling error for adjusting the linear observer. The authors have

linearized the aircraft engine model for designing a linear Kalman Filter (LKF) to

estimate the unmeasured performance parameters like the high pressure turbine in-

let temperature, compressor stall margin and the thrust. For this purpose, the LKF

is integrated with an RBF network with the growing and pruning learning algorithm

which adds or deletes neurons to the hidden layer based on the RBF inputs [134].

The network is trained at different percentages of health degradations for a certain

range of operational regime. Therefore, it is essential to have a large training data

to cover the entire operational regime and the levels of health degradations which

leads to increasing the size of the network as well as the computational complexity.

Hence, it seems better to have different smaller networks each designed for a partic-

ular range of the operational regime and then have a method for scheduling among

different networks.

The fusion of different processing techniques enables us to have a more re-

liable engine modeling and a fault diagnosis strategy. In [135, 136] the authors

have worked on the hybrid engine model building for tracking the engine outputs.
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They have proposed an Enhanced Self Tuning On-Board Real-Time Engine model

(eSTORM). The eSTORM is the improved version of STORM. The STORM con-

sists of two parts: the nominal state variable model (SVM) and a tuner which uses

the residual between the real engine and the SVM outputs to adapt the SVM by

estimating a set of health parameters representing the health deterioration of the

engine. In eSTORM, a data-based approach such as a neural network is integrated

with STORM while receiving the residuals (differences between the real engine and

STORM outputs) and engine inputs to capture the un-modeled dynamics and uncer-

tainties which influence the diagnostic information in STORM tuner. For training

the neural network, first the tuner module is disabled and the engine input is applied

just to the SVM to find the residual between the real engine and the SVM. Then, the

engine inputs and the residuals are stored for training the NN. The network output

is the estimated residual and the SVM is the piecewise linear (PWL) models being

interpolated in terms of one of the variables. The tuner module is a linear Kalman

filter which augments the health parameters to the state vector while its estimated

outputs are used to adjust the SVM to the off-nominal performance condition. For

capturing the modeling uncertainties and errors, the authors have used the non-

linear autoregressive moving average method to find the transfer function between

the input and the estimated residual vector. This approach has been mainly used

for engine performance tracking, but not for the FDI applications. Also, the NN

training is conducted using the back-propagation technique which converges slowly

and may stuck in local optimum.

1.3.5 Piecewise Linear Models

Piecewise linear (PWL) systems have been extensively used in multiple control sys-

tem applications to approximate a nonlinear system. In practical control systems,

there are many components such as the dead-zone, saturation, relays and hysteresis
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that can be modeled by the use of piecewise linear systems. Deriving the neces-

sary and sufficient conditions for the stability of PWL models is an active field of

research. There are many work in the literature in which the stability of switched

PWL models is investigated for different switching mechanisms. In [137], the PWL

model stability is studied based on a piecewise smooth Lyapunov function. It is

shown that the system stability can be established if the Lyapunov function is ob-

tained by solving a set of linear matrix inequalities. In [138], the stability and

optimal performance are investigated for the PWL models based on the continuous

Lyapunov function. The authors in [139] discussed stability analysis and controller

design of PWL systems which may involve multiple equilibrium points based on a

common quadratic Lyapunov function and a piecewise quadratic Lyapunov function.

Moreover, piecewise affine system is a class of PWL models that is utilized in several

papers including [140–142]. It is a broad modeling class that has been extensively

used in hybrid and nonlinear system modeling.

1.4 General Problem Statement

One of the main challenges in the area of gas turbine engine health monitoring is the

design of a robust FDI strategy to be applied for the entire engine life cycle. In other

words, the FDI strategy should be not only robust with respect to different modeling

uncertainties to avoid the false alarm generations, but it should be also capable of

maintaining its performance during the entire engine life cycle. For this purpose,

three different FDI approaches including multiple hybrid Kalman filters, multiple

robust Kalman filters and the hybrid dynamic recurrent neural network based struc-

tures are proposed in this thesis to address the sensor fault detection and isolation

problem in presence of engine health degradations, noise and disturbances for the

single spool turbojet engine. In all the proposed FDI schemes, the engine health
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parameters degradation is assumed as a major source of the time-varying modeling

uncertainty. The other uncertainty effects such as process and measurement noise as

well as the modeling errors due to the linearization process will also be investigated

in our work.

In most of the available work in the literature, the aircraft engine FDI prob-

lem is addressed without considering the robustness with respect to the engine aging

process during the life cycle. Moreover, most of the FDI approaches are employed

in the cruise condition, whereas there is a high risk of fault occurrence during the

climbing and landing modes. Therefore, in this thesis the FDI robustness is the

main goal that is addressed using different model-based and hybrid structures. In

Chapters 3 and 4 of this thesis two model-based FDI approaches namely as Hy-

brid Kalman Filter and Robust Kalman Filter are developed to solve sensor FDI

problem. In Chapter 5, the previously developed filters are integrated with a Dy-

namic Recurrent Neural Network that is trained offline using the Extended Kalman

Filter to improve the robustness and FDI performance in presence of various un-

certainty sources. Moreover, to investigate the performance of our proposed FDI

approaches multiple simulation studies are conducted and the results are compared

with different available methods in the FDI literature.

For simulation studies, a single-spool aircraft engine that was previously cre-

ated and validated by the commercially available GSP software is utilized. This

model was developed in Simulink based on the real engine rotor and volume dynam-

ics with common sensors measuring the temperatures and pressures at the exits of

compressor and turbine as well as the spool rotational speed. As per the Monte-

Carlo simulation studies as well as the computed performance metrics, it can be

claimed that our proposed methodologies in this thesis are applicable to the real

engine and various gas turbine engine benchmarks in literature.
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1.5 Thesis Objectives

As stated earlier, the robustness of FDI approaches towards different non-fault re-

lated factors including the modeling uncertainties, parameter variations, noise and

disturbances is one the challenging topic in the area of fault diagnosis, particularly

the safety critical systems as the aircraft engines. This problem is addressed in

different ways in this thesis.

In the first part of the thesis, we propose a hybrid Kalman filter (HKF) scheme

that consists of a single nonlinear on-board engine model (OBEM) augmented with

piecewise linear (PWL) models constituting as the multiple model (MM) based

estimators to cover the entire engine operating regime. Therefore, multiple HKFs

are constructed to ensure that the FDI algorithm works effectively in a wide range

of operating conditions by decomposing the engine operating range into sub-regions

each represented by a PWL model. We then apply a Bayesian approach to generate

a general combined model based on the PWL models normalized weights. This

provides us with a soft transition or interpolation among the PWL models. Towards

this end, we have integrated the generalized likelihood ratio (GLR)-based method

with our MM-based scheme to estimate the sensor fault severity under various single

and concurrent fault scenarios. In this part of the thesis, it is assumed that the

reference baselines for the engine health parameters, namely the efficiencies and the

mass flow rates of the turbine and the compressor, can be estimated after a certain

number of flights by using an off-line health monitoring module for determining

the percentages of degradations. Consequently, in order to ensure the reliability

of our proposed FDI scheme during the engine life cycle, the reference baselines

are periodically updated for the OBEM health parameters. This procedure will be

useful in preventing occurrence of false alarms due to the engine health parameters

degradations. Despite this updating process, there is always a mismatch between the

values of the real engine health parameters and the ones that are used in the OBEM
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due to the off-line estimation errors of the health monitoring method. Therefore, the

robustness of our proposed FDI scheme with respect to various health parameters

estimation errors is also investigated through performing extensive Monte Carlo

simulations.

In the second part of the thesis, a robust sensor FDI strategy using the MM-

based approach is proposed that remains robust with respect to both time-varying

parameter uncertainties and process and measurement noise in all the channels. The

scheme is composed of robust Kalman filters (RKF) that are constructed for mul-

tiple PWL models. The parameter uncertainty is modeled by using a time-varying

norm bounded admissible structure that affects all the PWL state space matrices.

The robust Kalman filter gain matrices are designed by solving two algebraic Riccati

equations (ARE) that are expressed as two linear matrix inequality (LMI) feasibil-

ity conditions. The main objective is to propose a robust filter that satisfies the

overall performance requirements and is not affected by system perturbations. The

requirements include a quadratically stable filter that ensures bounded estimation

error variances having predefined values. The proposed multiple RKF-based FDI

scheme is simulated for an entire flight profile of a single spool turbojet engine to

diagnose various sensor faults despite the presence of parameter uncertainties, pro-

cess and measurement noise. Our comparative studies confirm the superiority of

our proposed FDI method in terms of promptness of the fault detection, estima-

tion accuracy, lower false alarms and missed detection rates, as well as robustness

with respect to the engine health parameters degradations when compared to the

methods that are available in the literature.

In the third part of the thesis, a hybrid approach is proposed to improve the

robustness of FDI scheme with respect to different sources of uncertainties. For

this purpose, a dynamic recurrent neural network (DRNN) is designed to approxi-

mate the turbojet engine uncertainty due to the health degradations. The proposed
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DRNN is trained offline by using the extended Kalman filter (EKF) algorithm for

an engine with different levels of uncertainty, but with healthy sensors. The trained

DRNN with the fixed parameters and topology is integrated with our online model-

based FDI algorithm to approximate the uncertainty terms of the real engine. The

approximated uncertainty is then removed from the sensor measurements and the

modified sensor measurements are then applied into our proposed bank of filters to

detect and isolate the engine sensor faults. In this part, the previously proposed

HKF and RKF are integrated with the trained DRNN to construct the hybrid FDI

structure. Different properties such as the fault detection time, false alarm, missed

and incorrect fault detection rates as well as the ranges of detectable sensor faults are

determined for our proposed hybrid FDI approach. Finally, the efficiency of different

proposed FDI schemes is compared in terms of the faults detection times, robustness

with respect to the engine health degradation, FDI accuracy and applicability for

the entire flight profile.

1.6 Thesis Contributions

The main contributions of this thesis are summarized as follows:

• Multiple HKF-based sensor FDI scheme

– The explicit derivations of the discrete-time HKF scheme is formally pro-

vided in Chapter 3.

– A modular and hierarchical non-interacting MM-based HKF structure is

developed to detect and isolate single and concurrent sensor faults during

the entire engine operating regime (flight profile) having lower fault de-

tection time and better robustness towards the engine health parameters

degradations as compared with the other linear and nonlinear filtering

methods in the literature. Our method is capable of operating during
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the entire engine life cycle through periodically updating the reference

baselines of the engine health parameters for the nonlinear OBEM. In

addition, the computational time of our proposed method is lower than

the investigated linear and nonlinear methods.

– Through performing extensive simulation studies and measuring the mean

of residual signals, it is shown that the HKF is capable of estimating the

engine outputs more accurately with less number of operating points and

false alarm rates as compared to the linear Kalman filter (LKF) method.

– Our proposed MM-based HKF structure is integrated with the GLR

scheme to estimate the fault severity. This is accomplished by specif-

ically eliminating the estimation of the fault detection time which is a

necessary step in the standard GLR scheme.

– Our proposed multiple HKF-based FDI scheme is compared with the

MM-based schemes that utilize various linear and nonlinear filtering ap-

proaches such as the linear Kalman filter (LKF), extended Kalman filter

(EKF), unscented Kalman filter (UKF) and the cubature Kalman filter

(CKF) in terms of the promptness of the fault detection, false alarm

and incorrect fault detection rates, robustness with respect to the engine

degradations and computational time.

• Multiple RKF-based sensor FDI scheme

– An RKF is proposed and designed for a system with time-varying para-

metric uncertainties in all the process matrices. It is formally shown that

the filtering process is quadratically stable and is guaranteed to satisfy

the individually prescribed a priori bounds on the state estimation error

variances.

– Multiple RKFs are designed associated to different PWL models that are
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created at various operating points. Afterwards, a Bayesian approach is

applied to generate a general integrated model as well as the combined

residuals and covariance matrices that are associated with the robust

filters based on the normalized PWL models weights to address the ro-

bust estimation problem for the entire operating range of an uncertain

nonlinear system.

– The proposed multiple RKFs with their corresponding combined residual

vectors and covariance matrices are then applied to solve the sensor FDI

problem by using the MM-based approach for detecting and isolating

sensor bias faults corresponding to various severities. Consequently, a

robust MM-based approach is proposed to solve the sensor FDI problem.

Unlike some of the available work in the literature, our proposed robust

FDI scheme does no longer need to design any static or adaptive threshold

for the fault detection algorithms based upon the a priori assumption on

the uncertainty level.

– Unlike the first part of the thesis, the RKF-based FDI scheme is formally

designed to remain robust against time-varying norm bounded parameter

uncertainties by utilizing our proposed RKF approach without requiring

one to estimate and update the system health parameters.

– The proposed robust MM-based FDI scheme is used to solve sensor FDI

problem for the single spool turbojet engine. For this purpose, the devi-

ations of engine health parameters from their healthy reference baselines

are considered as time-varying parameter uncertainties. Moreover, our

proposed robust FDI structure is evaluated in terms of its (a) estimation

accuracy, (b) promptness in sensor fault detection time, and (c) its low

false alarms and low incorrect fault detection rates by performing ex-

tensive simulation studies. The results are also compared with available
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methods in the literature.

• Hybrid sensor FDI scheme

– A hybrid structure as an integration of the DRNN-based identifier with

the mathematical model of the system is proposed to approximate dif-

ferent uncertainty sources due to the turbojet engine modeling errors,

health parameter variations, process and measurement noise. The DRNN

is trained offline by using the EKF method which has a higher conver-

gence rate and fitting accuracy as compared to the first order conventional

learning approaches namely as, back-propagation learning method.

– The proposed hybrid engine modeling strategy is integrated with our

previously developed Hybrid Kalman Filter (HKF) and Robust Kalman

Filter (RKF). Invoking such this integration leads to the superior sensor

FDI results which decreases the fault detection time in different engine

operating regime, enhances the robustness level and improves the FDI

accuracy and performance outcomes as compared to our previously pro-

posed pure model-based FDI approaches.

– The convergence of our proposed recurrent neural network that is trained

by means of the EKF algorithm is also investigated in Chapter 5.

– Using extensive simulation studies and comparing different performance

indices, it is demonstrated that the fusion of multiple HKFs with our pro-

posed DRNN scheme is the superior method that is highly recommended

as compared to the other methods that are either developed in this thesis

or in the literature to be applied for gas turbine engine fault diagnosis.
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1.7 Thesis Organization

In Chapter 2, we briefly review the gas turbine engine modeling as well as the

required formulations corresponding to popular available estimators in the literature

to which our proposed FDI approaches are compared. Various engine parameters

and degradation factors are also introduced in this chapter.

In Chapter 3, we propose the overall hybrid Kalman filter structure as well as

the onboard engine model in Section 3.1, whereas Section 3.2 presents the integration

process of piecewise linear models. The sensor FDI multiple-model-based scheme is

explained in details in Section 3.3 as well as the corresponding MM structures that

are utilized to detect and isolate single and concurrent sensor faults. Our proposed

HKF-based FDI approach is also integrated with the GLR method to estimate the

severity of sensor fault in Section 3.4. In Section 3.5 multiple simulation case studies

are presented in details to investigate the effectiveness of our proposed multiple

HKF-based FDI scheme for different healthy and faulty scenarios under various

engine health degradation magnitudes. In this section, our proposed approach is also

compared with multiple popular estimators in the literature namely as, the extended

kalman filter, unscented Kalman filter and the cubature Kalman filter [60–62, 143].

Finally, Section 3.6 concludes the chapter.

Chapter 4 focuses on robust multiple-model-based FDI scheme for the lin-

earized system with time-varying norm-bounded parameter uncertainty affecting all

the state-space matrices as presented in Section 4.1. A robust Kalman filter is de-

signed for the introduced uncertain system in Section 4.2. In this section, it is also

shown that the proposed RKF is quadratically stable and satisfies the performance

requirements on state estimation error variances. The corresponding piecewise lin-

ear models interpolation is explained in Section 4.3. Section 4.4 gives information

on the structure of robust multiple-model scheme to address sensor FDI problem.
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Multiple simulation case studies are conducted in Section 4.5 to investigate the ef-

fectiveness of our proposed robust MM-based FDI scheme and to compare it with

similar approaches in the literature [4]. Finally, Section 4.6 concludes the chapter.

Chapter 5 is devoted to the novel hybrid FDI approach in which the dynamic

recurrent neural network (DRNN) is integrated with the engine mathematical model

to improve the modeling accuracy and to finally combine with our previously pure

model-based FDI approaches including the HKF and RKF. The elements of our

proposed hybrid FDI scheme are presented in Section 5.1. The DRNN structure as

well as the offline network learning process in which an extended Kalman filter is

employed to train the network parameters are explained in Section 5.2. Afterwards,

Section 5.3 presents the analytical investigations on the convergence behavior of our

proposed DRNN. Multiple simulation case studies are presented in Section 5.4 in

which the optimal network parameters are determined for different engine uncer-

tainty magnitudes. The hybrid DRNN-HKF and DRNN-RKF based FDI schemes

are also compared in Section 5.3 in terms of their corresponding fault detection

times, estimation accuracy, false alarm and incorrect fault detection rates as well as

the ranges of detectable faults. Finally, Section 5.5 concludes the chapter.

Chapter 6 concludes the thesis and provides suggestions for future work.
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Chapter 2

Background Information

In this chapter, the thesis background information is given on two important topics

namely, the gas turbine engine history, operation and health degradation as well as

some background of various filtering methods in the literature that are compared

with our proposed filtering methods in the following chapters of this thesis.

2.1 Gas Turbine Engine History

Since the end of World War II, the jet engines have become at the forefront of

aviation development. The first jet engine with centrifugal compressor driven by the

radial turbine was developed by a German physicist, Hans Von Ohain, who worked

for Ernst Heinkel, specializing in advanced engines in 1939. Following Ohain, Frank

Whittle, a British scientist, also designed a centrifugal compressor driven by an axial

turbine completely on his own. The General Electric and Pratt & Whiteney are the

two Americans jet builders who added the German lessons to those of Whittle and

other British designers to design different fuel efficient and high thrust engines in

aerospace industry [144]. The aircraft engine produces the hydraulic power, electric

power, propulsion force and bleed air for the pneumatic system in order to provide

the movement of the aircraft in the atmosphere over a long distance. The turbojet,
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turbofan, turboprop and auxiliary power unit are the four important types of jet

engines.

The turbojet engine is the first developed gas turbine engine that is used in less

fuel efficient high-speed aircrafts generating substantial noise due to the extremely

exhaust gas speed. The turbofan engines are also designed based on the turbojet

engine fundamentals. They still provide high speed, but with better fuel efficiency

which makes more efficient to be used in modern aircrafts. The turboprop engines

are particularly designed to produce shaft horsepower that is used to drive the

propeller. They provide us with the proper compromise between the high speed and

fuel efficiency. The auxiliary power unit produces electric and pneumatic power for

the aircrafts when the engines are not available. All of the above types of aircraft

engines are the reaction engines that work similarly. They produce a propulsion

force which is in the opposite direction of the mass flow through the jet nozzle and

follows the Newton’s laws of motion. Figure 2.1 illustrates different types of engines.

2.2 Principles of Jet Propulsions

In order to produce the propulsion force, the air has to be accelerated with pressure

that can be increased by means of two methods: first it can be increased mechanically

by the compressor, and second it can be increased thermally by increasing the volume

of the air while the mixture of the fuel and air is heated in the combustion chamber.

By the late of 1930’s there has not been any efficient compressor which was able to

yield the large continuous airflow to produce the suitable thrust. The combination of

the above two methods did finally provide the aircraft with the suitable propulsion

force.

The gas turbine engines generate the thrust by accelerating the ambient air.

33



(a)

(b)

(c)

Figure 2.1: Different engine diagrams: (a) Turbojet, (b) Turbofan and (c) Turboprop
[1].
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The turbojet engines produce the high velocity gas, of which certain portion is used

to drive the compressor or the accessories and is converted to the thrust. The high

outlet gas velocity leads to the high aircraft speed as well as the loud noise sound.

The turboprop engines produce small acceleration in a large quantity of the air with

a propeller. The propeller is driven directly by means of the compressor shaft or

the free turbine. There is also a reduction gear in turboprop engines that reduces

the turbine rotation to the speeds that can be managed by the propeller. The

turboprop engines are sufficiently efficient since all the air associated with them is

converted to the torque. The turbofan engines use the advantages of both turbojet

and turboprop engines. Their fan is enclosed in a casing instead of the propeller

and is driven by the turbine shaft. They are mostly twin or triple spool engines,

but without any reduction gear. In turbofan engines, a large portion of the air is

converted to the torque that is applied to the fan and compressor, whereas its small

portion is discharged by the engine core where it is converted to the thrust. Hence,

the total thrust is produced by both fan and the core engine. The air portion value

depends on the bypass ratio (the amount of air passes through fan duct comparing

with the one passes through the core engine). The bypass ratio is usually between

4:1 to 9:1 [145].

2.3 Gas Turbine Engine Operation

The conversions between the mechanical and thermal energy are conducted accord-

ing to thermodynamics laws, showing the relations between gas pressure, temper-

ature and volume. A basic principle of physics called the law of conservation of

energy governs the jet engine operation. A jet engine is designed to hoover up huge

amounts of air and to burn it with vast amounts of fuel. The air intake, com-

pression, combustion, and exhaust are the four important operational stages of an
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aircraft engine working cycle that happen simultaneously. Each stage is conducted

in a particular engine element as follows [146].

First the ambient airflow is led to the engine through the gas inlet which pro-

vides sufficient air during different flight conditions. In this stage, the inlet air static

pressure is increased. Then the air is led to the compressor which increases the pres-

sure and provides continuous air for different subsystems namely, the combustion

chamber, the pneumatic, cooling and anti-icing systems. Then a large quantity

of air and fuel is mixed in the combustion chamber. In this section, the energy

increase should be maximized, the pressure decrease and any damage to the com-

bustion chamber materials should be minimized. The turbine provides torque for

the compressor and also the gearbox. It also delivers the power to the fuel pump,

oil pump, pneumatic pump, generator and other accessories. In turboprop engines

the turbine deliver the power to the propeller. Finally, the exhausting duct lead

the exhaust gas in to the atmosphere and prevents the contact of this gas from the

below part of the wings. The jet nozzle increases the exhaust gas speed and sends

it in to the correct direction [145].

Note that when the air passes through the turbine its temperature and pressure

are decreased, whereas the volume is increased, and when it leaves the engine through

the exhausting duct and the jet nozzle its temperature and pressure is continuously

decreased and the velocity is increased. Moreover, the above working cycle is called

the Brayton cycle which ideally has four important stages as below [147]:

• isentropic process: ambient air is drawn into the compressor, where it is pres-

surized,

• isobaric process: the compressed air moves towards the combustion chamber,

where the fuel is burned, air is heated in a constant-pressure process,
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Figure 2.2: Information flow diagram associated with several gas turbine engine
physical problems [2].

• isentropic process: the heated, pressurized air then gives up its energy, ex-

panding through a turbine, where some of the extracted work is used to drive

the compressor,

• isobaric process: heat rejection to the atmosphere.

2.4 Gas Turbine Engine Health Degradation

During the engine lifetime, the compressors and turbines undergo degradation due

to various effects. The degradation level or the engine effective age determines the

engine general health status. In the gas path, the health condition of each engine

component is defined by its health parameters namely, the efficiency and mass flow

rate that are slowly changed due to the engine aging process. These parameters

cannot be measured directly, however their associated variations can be observed

using the engine sensor measurements. Figure 2.2 displays different types of engine

damages and physical problems as well as the information flow for the gas turbine

engines [2].

In addition to the engine gas path sensors that are measuring the temperature,

pressure and rotational speed at different stages of the engine, the vibration and oil

monitoring sensors are also essential to complete the health monitoring process. The
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aforementioned sensors can be used to detect degradation with bearings, gearing and

other accessories as well as the lubrication system.

In this thesis, the robustness of our proposed fault detection and isolation

approaches is investigated with respect to the engine health degradation, particularly

the compressor degradation which is the major cause of output and efficiency loss in a

gas turbine [148]. As per the information flow diagram in Figure 2.2, there are several

factors affecting the compressor performance, whereas the most common cause is

the compressor fouling. The compressor fouling is mostly caused by adherence

of particles to the compressor surfaces. It increases the surface roughness and so

decreases the compressor efficiency and mass flow rate. The compressor fouling is

the recoverable deterioration that can be alleviated by online or offline compressor

washing. During the fouling process, the reduction in compressor flow rate is almost

twice as much as that in compressor efficiency. This in turn will lead to increase in

fuel or electric demand driving the compressor [149,150].

2.5 Gas Turbine Engine Mathematical Model

In this chapter, we review the main application details that is used in this thesis.

All the developed approaches in this thesis are applied for a commercial single spool

gas turbine engine that is previously developed in [3]. This model is generated based

on the rotor and volume dynamics as defined below:

• Rotor dynamics: It shows the power imbalances between the compressor and

turbine which causes the acceleration or deceleration of the rotor connecting

the compressor and turbine shafts together.

• Volume dynamics: It shows any mass flow imbalance among the engine com-

ponents that cause changes in pressure.
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Figure 2.3: Information flow diagram associated with single spool turbojet engine [3].

Our model is validated by the commercially available standard software GSP

10 [151]. The responses corresponding to our mathematical model and the GSP

match each other within an acceptable error tolerance (below 5%). The more de-

tailed description of the model is given in [152, 153]. Figure 2.3 illustrates our

single spool jet engine modular diagrams with the associated information flow in

the SIMULINK model.

Note that in this model the heat transfer dynamics is not considered due to its

negligible effects on engine behavior as compared to the rotor and volume dynamics.

In the following, the detailed mathematical expressions corresponding to our engine

dynamics are presented.
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2.5.1 Rotor Dynamics

The following differential equation displays the energy balance among the compres-

sor and turbine:

dE

dt
= ηmechWT −WC, (2.1)

where E =
J(N.2π

60
)2

2
. Refer to the list of symbols for finding the descriptions corre-

sponding to other different terms and variables.

2.5.2 Volume Dynamics

As explained in the previous section, the volume dynamics represents the mass flow

rate imbalances among the engine components. This dynamics can be described as

follows:

Ṗ =
γRT

V
(
∑

ṁin −
∑

ṁout). (2.2)

where R = 8.31447(Joul/mol.K), γ, ṁ(Kg/s), V (m3), T (K) and P (Pascal) denotes

the gas constant, heat capacity ratio, mass flow rate, volume, temperature and

pressure corresponding to different engine components including the compressor and

turbine.

2.6 Set of Nonlinear Equations

In this section, a set of nonlinear equations corresponding to a single spool jet engine

is provide. In this thesis, our model is extended to the entire flight profile and is

simulated in the SIMULINK to be used as both the actual engine and the on-board

engine model(OBEM). Both the actual engine and the OBEM models operate in

almost the same ambient conditions. The set of nonlinear state-space equations that
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are used for the engine model are given as follows:

ṖCC(t) =
PCC(t)

TCC(t)cvṁCC(t)
[(cpTC(t)αṁC

ṁC(t) + ηCC(t)Huṁf(t)− cpTCC(t)αṁT
ṁT(t))

− cvTCC(t)(αṁC
ṁC(t) + ṁf(t)− αṁT

ṁT(t))]

+
γRTCC(t)

VCC(t)
(αṁC

ṁC(t) + ṁf(t)− αṁT
ṁT(t)),

Ṅ(t) =
ηmech(t)αṁT

ṁT(t)cp(TCC(t)− TT(t))− αṁC
ṁC(t)cp(TC(t)− Td(t))

JN(t)( π
30

)2
,

ṪCC(t) =
1

cvṁCC(t)
[(cpTC(t)αṁC

ṁC(t) + ηCC(t)Huṁf(t)− cpTCC(t)αṁT
ṁT(t))

− cvTCC(t)(αṁC
ṁC(t) + ṁf(t)− αṁT

ṁT(t))],

ṖT(t) =
RTM(t)

VM(t)
(αṁT

ṁT(t) +
β

β + 1
αṁC

ṁC(t)− ṁn(t)), (2.3)

where X(t) = [PCC(t), N(t), TCC(t), PT(t)]T denotes the state variable vector that

includes the combustion chamber pressure PCC(t) and temperature TCC(t), the ro-

tational speed N(t) and the turbine pressure PT(t). There is a single actuator

that supplies the fuel flow (U(t) = ṁf(t)) as well as five sensors measuring Y (t) =

[TC(t), PC(t), N(t), TT(t), PT(t)]T, where TC(t) = Td(t)
[
1 + 1

αηCηC(t)
[(PCC(t)

Pd(t)
)
γ−1
γ − 1]

]
and TT(t) = TCC(t)

[
1− αηTηT(t)[1− ( PT(t)

PCC(t)
)
γ−1
γ ]
]

denote the compressor and the

turbine temperatures, respectively. The variables PC(t) and PT(t) denote the pres-

sures of the compressor and turbine, respectively.

Moreover, H(t) = [ηC(t), ηT(t), ṁC(t), ṁT(t)]T denotes the health parameter

vector, where ηC(t) and ηT(t) denote the compressor and the turbine efficiencies, and

ṁC(t) and ṁT(t) denote their mass flow rates, respectively. The health parameters

are also multiplied by their corresponding fixed health parameter degradation factors

or the reference baselines α = [αηC , αηT , αṁC
, αṁT

]T. The sensors are affected by the

Gaussian measurement noise with the standard deviations of SDv corresponding

to the percentages of output vector at the cruise condition as defined in [3]. More

details on other variables and constants in (2.1) are provided in [3].

The flight condition is defined by two environmental variables, namely the
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altitude and the Mach number. The ambient temperature and pressure can be com-

puted according to Tamb = Ts− 6.5Alt
1000

and Pamb = Psexp(−gMnAlt
288R

), where Ts = 288 ◦K

and Ps = 1.01325 bar are set to the standard condition, g is the gravitational accel-

eration, and Mn and Alt denote the Mach number and the altitude, respectively.

Moreover, the ambient variables are affected by the Gaussian process noise with the

standard deviations of SDw corresponding to the percentages of standard conditions

of ambient variables.

For our simulations, the noise factors associated with measurement and process

noise are considered as Kv and Kw , respectively. It is assumed that the noise stan-

dard deviations that are defined above are multiplied by the noise factors. Different

values are assigned to the noise factors for various simulation studies.

2.7 Background of Filtering Methods Formula-

tions

In this thesis, our proposed filters are compared with the most common filtering

methods in the literature, namely as the Linear Kalman Filter (LKF), Extended

Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Cubature Kalman Filter

(CKF). Here, their brief formulations are given as an essential background. Mean-

while, more details can be found in [60–62,143].

2.7.1 Linear Kalman Filter (LKF)

The linear Kalman filter is the linear quadratic estimation problem which has two

steps namely, the prediction and correction. The state variables are estimated in

the prediction step and are then corrected upon receiving the next measurement.

The algorithm is recursive and no additional past information is required. The LKF
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can be derived for the linear system as follows:

X(k + 1) = A(k)X(k) +B(k)U(k) + w(k), X(0) = X0,

Y (k) = C(k)X(k) + v(k), (2.4)

where X(k), Y (k), w(k), v(k) and X0 display the system state variables, outputs,

process and measurement noise and the initial values of the states, respectively.

Moreover, A(k), B(k) and C(k) are the time-varying state-space matrices. It is

assumed that w(k) and v(k) are the zero mean Gaussian noise with the correspond-

ing covariance matrices W (k) and V (k), respectively. Moreover, it is assumed that

p(X0) = N (X̂(0|0), P (0|0)), where P (0|0) is the diagonal matrix with sufficiently

small diagonal elements. Hence, the LKF prediction step is formulated as:

X̂(k|k − 1) = A(k)X̂(k − 1|k − 1) +B(k − 1)U(k − 1),

P (k|k − 1) = A(k)P (k − 1|k − 1)AT(k) +W (k), (2.5)

where the X̂(k|k−1) and P (k|k−1) are the predicted a priori state and covariance

estimates. Finally, the correction step is formulated as:

γ(k) = Y (k)− C(k)X̂(k|k − 1),

S(k) = C(k)P (k|k − 1)CT(k) + V (k),

K(k) = P (k|k − 1)CT(k)S−1(k),

X̂(k|k) = X̂(k|k − 1) +K(k)γ(k),

P (k|k) = (I −K(k)C(k))P (k|k − 1), (2.6)

where γ(k), S(k) and K(k) represent the innovation signal, residual covariance and

Kalman gain matrix, respectively. Also, the X̂(k|k) and P (k|k) are the a posteriori

state and covariance estimates. It follows from the theory that the LKF is optimal

in case the model perfectly matches the system, the noise signals are really Gaussian

white noise and their corresponding covariances are exactly known. For more details

regarding the LKF operation, refer to [143].
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2.7.2 Extended Kalman Filter (EKF)

The Extended Kalman Filter is the nonlinear extension of the linear Kalman filter.

Hence, the state transition and observation models do not need to be necessarily

linear. Consider the following nonlinear dynamic system:

X(k) = F(X(k − 1), u(k)) + w(k),

Y (k) = G(X(k)) + v(k). (2.7)

To design the EKF, at each time step the Jacobian matrix is evaluated with

current predicted states and the nonlinear functions F and G are linearized at the

current estimate. The EKF prediction step is formulated as:

X̂(k|k − 1) = F(X̂(k − 1|k − 1), U(k)),

P (k|k − 1) = A(k − 1)P (k − 1|k − 1)AT(k) +W (k), (2.8)

where A(k − 1) = ∂F
∂X
|X̂(k−1|k−1),U(k). Then, the EKF correction step is as follows:

γ(k) = Y (k)− G(X̂(k|k − 1)),

S(k) = C(k)P (k|k − 1)CT(k) + V (k),

K(k) = P (k|k − 1)CT(k)S−1(k),

X̂(k|k) = X̂(k|k − 1) +K(k)γ(k),

P (k|k) = (I −K(k)C(k))P (k|k − 1), (2.9)

where C(k) = ∂G
∂X
|X̂(k|k−1). Unlike the LKF, the EKF is not optimal. Therefore,

if there is any error in system modeling or initial estimation values the EKF may

diverge. The EKF can be improved by employing the robust techniques. For more

details regarding the EKF operation, refer to [60].

2.7.3 Unscented Kalman Filter (UKF)

The unscented Kalman filter is another filter that is utilized for nonlinear systems.

The UKF approximates the probability density by deterministic sampling of points
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(called sigma points) representing the underlying distribution as a Gaussian. The

nonlinear transformation of these points are supposed to be the posterior distribu-

tion. The UKF tends to be more accurate and more robust than the EKF particu-

larly for highly nonlinear systems. During the prediction step, the estimated state

and covariance are augmented with the mean and covariance of the process noise as

follows:

Xa(k − 1|k − 1) =
[
X̂T(k − 1|k − 1) E(wT(k))

]T

,

P a(k − 1|k − 1) =

P (k − 1|k − 1) 0

0 W (k)

 . (2.10)

Then, a set of 2n + 1 sigma points is derived as follows from the augmented

state and covariance where n is the dimension of the state:

X 0(k − 1|k − 1) =Xa(k − 1|k − 1),

X i(k − 1|k − 1) =Xa(k − 1|k − 1)

+
(√

(n+ λ)P a(k − 1|k − 1)
)
i
, i = 1, . . . , n

X i(k − 1|k − 1) =Xa(k − 1|k − 1)

−
(√

(n+ λ)P a(k − 1|k − 1)
)
i−n

, i = n+ 1, . . . , 2n (2.11)

where
(√

(n+ λ)P a(k − 1|k − 1)
)
i

is the ith column of the matrix square root of

(n + λ)P a(k − 1|k − 1) that can be calculated using the Cholesky decomposition

method [154]. Then, the sigma points are propagated through the transition function

as X i(k|k − 1) = F(X i(k − 1|k − 1)), for i = 0, . . . , 2n. The weighted sigma points

are recombined to produce the predicted state and covariance as follows:

X̂(k|k − 1) =
2n∑
i=0

W i
sX i(k|k),

P (k|k − 1) =
2n∑
i=0

W i
c[X i(k|k − 1)− X̂(k|k − 1)][X i(k|k − 1)− X̂(k|k − 1)]T,

(2.12)
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with the state and covariance weights are given by:

W0
s =

λ

n+ λ
,

W0
c =

λ

n+ λ
+ (1− α2 + β),

W i
s = W i

c =
1

2(n+ λ)
,

λ = α2(n+ κ)− n, (2.13)

where α and κ control the spread of sigma points and β is related to the distribution

of X. The normal values are α = 10−3, β = 2 and κ = 0.

Afterwards, during the correction step the predicted state and covariance are

augmented again with the mean and covariance of the measurement noise as follows:

Xa(k|k − 1) =
[
X̂T(k|k − 1) E(vT(k))

]T

,

P a(k|k − 1) =

P (k|k − 1) 0

0 V (k)

 . (2.14)

Similarly, a set of 2n+1 sigma points is derived from the augmented state and

covariance as follows:

X 0(k|k − 1) =Xa(k|k − 1),

X i(k|k − 1) =Xa(k|k − 1)

+
(√

(n+ λ)P a(k|k − 1)
)
i
, i = 1, . . . , n

X i(k|k − 1) =Xa(k|k − 1)

−
(√

(n+ λ)P a(k|k − 1)
)
i−n

, i = n+ 1, . . . , 2n (2.15)

Also,

X (k|k − 1) =
[
XT(k|k − 1) E(vT(k))

]T

±
√

(n+ λ)V a(k), (2.16)

where V a(k) =

0 0

0 V (k)

. Then, the sigma points are predicted through the
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observation function G as follows:

Y i(k) = G(X i(k|k − 1)), i = 0, . . . , 2n (2.17)

and then, they are recombined to compute the predicted measurement and predicted

measurement covariance as:

Ŷ (k|k − 1) =
2n∑
i=0

W i
sγ

i(k),

S(k|k − 1) =
2n∑
i=0

W i
c[Y i(k)− Ŷ (k|k − 1)][Y i(k)− Ŷ (k|k − 1)]T. (2.18)

The state-measurement cross covariance matrix is given by:

PXY (k|k − 1) =
2n∑
i=0

W i
c[X i(k|k − 1)− X̂(k|k − 1)][Y i(k)− Ŷ (k|k − 1)]T, (2.19)

that is used to compute the Kalman gain as well as the updated state and covariance

as follows:

K(k) = PXY (k|k − 1)S−1(k|k − 1),

X̂(k|k) = X̂(k|k − 1) +K(k)(Y (k)− Ŷ (k|k − 1)),

P (k|k) = P (k|k − 1)−K(k)S(k|k − 1)KT(k). (2.20)

According to the above procedure, it can be concluded that the UKF removes

the requirement to explicitly calculate the Jacobian which is a complicated task for

highly complex nonlinear systems. For more details regarding the UKF operation,

refer to [61].

2.7.4 Cubature Kalman Filter (CKF)

The cubature Kalman filter which is the systematic solution for high-dimensional

nonlinear filtering problems is so similar to the UKF. Similarly 2n certain points,

called cubature points, ζ i are computed through intersecting the unit sphere with
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the xy axes and scaling by
√
n as follows:

ζi =
√
nei, i = 1, . . . , n

ζi = −
√
nei−n. i = n+ 1, . . . , 2n (2.21)

where ei denotes a unit vector to the direction of coordinate axis i. The generated

cubature points are then propagated as follows:

X i(k − 1|k − 1) = X̂a(k − 1|k − 1) +
√
P a(k − 1|k − 1)ζi, (2.22)

where Xa(k− 1|k− 1) and P a(k− 1|k− 1) are the augmented state and covariance

that are computed in (2.10). The state and covariance prediction steps are derived

as:

X i(k|k − 1) = F(X i(k − 1|k − 1)),

X̂(k|k − 1) =
1

2n

2n∑
i=1

X i(k|k − 1),

P (k|k − 1) =
1

2n

2n∑
i=1

[X i(k|k − 1)− X̂(k|k − 1)][X i(k|k − 1)− X̂(k|k − 1)]T,

(2.23)

where all the weights associated to the state and covariance are equal to 1
2n

. Using

the same augmentation in (2.14), the cubature points recomputed as:

X i(k|k − 1) = X a(k|k − 1) +
√
V a(k|k − 1)ζi, (2.24)

where V a(k) =

0 0

0 V (k)

. Then, the cubature points are projected through the

observation function as:

Y i(k|k − 1) = G(X i(k|k − 1)). (2.25)

48



The weighted cubature points are recombined to compute the predicted mea-

surement and its corresponding covariance as:

Ŷ (k|k − 1) =
1

2n

2n∑
i=1

Y(k|k − 1),

S(k|k − 1) =
1

2n

2n∑
i=1

[Y i(k|k − 1)− Ŷ (k|k − 1)][Y i(k|k − 1)− Ŷ (k|k − 1)]T. (2.26)

The state-measurement cross-covariance matrix is also given by:

PXY (k|k − 1) =
1

2n

2n∑
i=1

[X (k|k − 1)− X̂(k|k − 1)][Y i(k|k − 1)− Ŷ (k|k − 1)]T,

(2.27)

that is used to compute the Kalman gain as well as the updated state and covariance

as follows:

K(k) = PXY (k|k − 1)S−1(k|k − 1),

X̂(k|k) = X̂(k|k − 1) +K(k)(Y (k)− Ŷ (k|k − 1)),

P (k|k) = P (k|k − 1)−K(k)S(k|k − 1)KT(k). (2.28)

The CKF is the special case of UKF with α = 1, κ = 0, and β = 0. It

uses the spherical cubature rule for Gaussian filter approximation. For more details

regarding the CKF operation, refer to [62].

2.8 Summary

In this chapter, a brief history of gas turbine engine as well as the basic principles of

jet propulsion are explained. Different engine types namely, the turbojet, turbofan

and turboprop engines with their corresponding operational cycles are also summa-

rized. Then, four important stages of the Brayton cycle is explained in details.

This chapter also gives information on several engine physical problems be-

sides their corresponding effects on engine health parameters. Afterwards, a set of
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nonlinear equations of a single spool gas turbine engine that is used in this thesis is

presented. The applied engine has four state variables representing the combustion

chamber pressure and temperature, rotational speed and the turbine exit pressure.

There are also five sensors measuring the temperatures and pressures at the exits of

compressor and turbine as well as their connecting shaft rotational speed.

Finally, a brief background is also given for the most common filtering methods

in the literature namely the LKF, EKF, UKF and CKF that are used in this thesis

to be compared with our different proposed filtering schemes.
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Chapter 3

Hybrid Kalman Filter Based Fault

Detection, Isolation and

Identification Scheme

In this chapter, a novel sensor fault detection, isolation and identification (FDII)

strategy is proposed by using the multiple model (MM) approach. The scheme is

based on multiple hybrid Kalman filters (HKF) which represents an integration of

a nonlinear mathematical model of the system with a number of piecewise linear

(PWL) models. The proposed fault detection and isolation (FDI) scheme is capable

of detecting and isolating sensor faults during the entire operational regime of the

system by interpolating the PWL models using a Bayesian approach. Moreover, the

proposed multiple HKF-based FDI scheme is extended to identify the magnitude of

a sensor fault by using a modified generalized likelihood ratio (GLR) method which

relies on the healthy operational mode of the system.

To illustrate the capabilities of our proposed FDII methodology, extensive sim-

ulation studies are conducted for a nonlinear gas turbine engine. Various single and

concurrent sensor fault scenarios are considered to demonstrate the effectiveness of
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our proposed on-line hierarchical multiple HKF-based FDII scheme under different

flight modes. Finally, our proposed HKF-based FDI approach is compared with var-

ious filtering methods such as the linear, extended, unscented and cubature Kalman

filters (LKF, EKF, UKF and CKF, respectively) corresponding to both interacting

and non-interacting multiple model (MM) based schemes. Our comparative studies

confirm the superiority of our proposed HKF method in terms of promptness of the

fault detection, lower false alarm rates, as well as robustness with respect to the en-

gine health parameters degradations. It must be noted that the main achievements

in this chapter are published in [155] and [156].

3.1 Hybrid Kalman Filter (HKF) Design

An actual aircraft gas turbine engine, used for deriving the on-board engine model

(OBEM), and which is used for on-line diagnostic analysis can be described according

to the following representation:

Ẋ(t) = Fc(X(t), H(t), U(t), w(t)),

Y (t) = Gc(X(t), H(t)) + v(t), (3.1)

where X(t) ∈ Rn, H(t) ∈ Rr, Y (t) ∈ Rq , U(t) ∈ Rp , w(t) ∈ R2 and v(t) ∈ Rq

denote the engine state variables, health parameters, sensor measurements, input

signals, and Gaussian zero-mean process and measurement noise at time t, respec-

tively. The engine dynamics is also an implicit function of the ambient condition

parameters including the ambient temperature and pressure. The ambient parame-

ters are defined in terms of the environmental parameters including the altitude and

the Mach number. The engine health parameters in (3.1) will become degraded from

their healthy reference baselines during the entire engine life cycle. Moreover, it is

assumed that the inputs and outputs of an actual engine are discretized with suffi-

ciently small sampling period for performing simulation and implementation of our
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proposed on-line fault detection, isolation and identification (FDII) scheme. The

discrete-time representation of the variables in (3.1) are denoted by X(k), Y (k),

H(k), U(k), w(k) and v(k) with the discrete dynamic functions F and G replacing

Fc and Gc, respectively.

The hybrid Kalman filter (HKF) consists of two main blocks that include a

nonlinear on-board engine model (OBEM) and multiple piecewise linear (PWL)

models derived at different operating points to cover the entire engine operating

range. The continuous-time fault-free representation of the OBEM which can also

be derived based on thermodynamics laws is now given as follows:

ẊOBEM(t) = fc(XOBEM(t), HOBEM(t), U(t)),

YOBEM(t) = gc(XOBEM(t), HOBEM(t)), (3.2)

where XOBEM(t) ∈ Rn and YOBEM(t) ∈ Rq denote the OBEM state variables and

outputs. Both the actual engine and the OBEM operate in parallel under the same

flight conditions. Moreover, HOBEM(t) ∈ Rr denotes the OBEM health parameters

that can be represented by HOBEM(t) = αTh(XOBEM(t)), in which α defines the

OBEM health parameters degradation factors (reference baselines) . This parame-

ter is an all-ones vector for the OBEM that represents a healthy or non-degraded

engine. It is also assumed that the OBEM health parameters can be periodically

updated and α is considered as fixed in between the updating intervals. In addi-

tion, h(XOBEM(t)) denotes a state-dependent smooth function that corresponds to

the compressor and the turbine performance maps and is modeled as a polynomial

function for our developed gas turbine engine model. The updating process for the

OBEM health parameters will be described below in detail. Moreover, for perform-

ing simulation and implementations, the continuous-time OBEM model is assumed

to be discretized with sufficiently small sampling period. The discrete-time represen-

tation of the variables in (3.2) are denoted by XOBEM(k), YOBEM(k), HOBEM(k) and

U(k) with the discrete dynamic functions f and g replacing fc and gc, respectively.
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The continuous-time OBEM model is linearized and discretized at multiple

operating points (corresponding to engine steady-state values) that are denoted by

(Xssi , Ussi , Yssi) with sufficiently small sampling period. The constructed multiple

linear discrete-time state-space models is now given by:

∆Xi(k + 1) = A|Xssi
∆Xi(k) +B|Ussi

∆Ui(k),

∆Yi(k) = C|Xssi
∆Xi(k), (3.3)

where i ∈ 1, . . . , L (L is the number of the operating points), A|Xssi
, B|Ussi

and

C|Xssi
denote the state-space matrices associated with the ith operating point, and

∆Xi(k) = XOBEM(k)−Xssi , ∆Yi(k) = YOBEM(k)−Yssi and ∆Ui(k) = U(k)−Ussi . In

the Subsection 3.1.1, the linearization and discretization process of the continuous-

time OBEM model is described in more detail. In this chapter, it is assumed that

the OBEM linearized models are obtained with the health parameters that are set to

their healthy reference baselines. Also, the health parameter effects due to changes

in the engine state variables have been implicitly incorporated into the matrices

A and C , although the deviations from the healthy reference baselines are not

incorporated in the linear models.

For each linearized model, an off-line linear Kalman filter is designed to esti-

mate both the actual engine states and sensor outputs as follows:

∆X̂i(k + 1) = A|Xssi
∆X̂i(k) +B|Ussi

∆Ui(k) +Ki
ss(Y (k)− Ŷi(k)),

∆Ŷi(k) = C|Xssi
∆X̂i(k), (3.4)

where ∆X̂i(k) = X̂(k) − Xssi , ∆Ŷi(k) = Ŷ (k) − Yssi and Ki
ss denotes the steady-

state Kalman filter gain matrix . For the purpose of constructing the multiple

model HKFs, the steady-state Kalman gain matrices as well as the matrices A|Xssi

and C|Xssi
that are constructed associated with multiple operating points are stored

in a look-up table. According to (3.4), the linear Kalman filter does not take into
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account the effects of the health parameter degradations from their healthy refer-

ence baselines since the state-space matrices have already been determined for an

all-ones α. Consequently, it does not have the required level of robustness for han-

dling a vast number of health degradations that occur during the entire engine life

cycle. Therefore, it is essential to update the health parameter reference baselines

of the OBEM to maintain the reliability and accuracy of the state estimates and the

performance of the FDII scheme through out the entire engine life cycle operation.

For this purpose, the health parameter reference baselines can be estimated by an

off-line health monitoring system and then periodically updated in the discrete-time

OBEM model. Therefore, the on-line FDII scheme is integrated with an off-line

health monitoring system.

The frequency of the health monitoring system updates is significantly lower

than that of the on-line FDII algorithm, since the health degradation process is slow

and gradual during one flight, although their accumulated effects after a number of

flights may generate a large discrepancy between the OBEM and the actual engine.

The off-line health monitoring module can either be a single augmented Kalman

filter that estimates the health parameters based on the collected data during several

flights or a nonlinear approximation method such as a neural network that receives

the engine historical data. It must be noted that both the health monitoring and

updating mechanism can be performed on-line having a sufficiently large sampling

interval. However, the health parameter estimation process needs to be terminated

whenever a fault occurs in the engine to avoid generating incorrect estimates of the

health parameters.

The off-line health monitoring module uses the collected input and the mea-

sured output data to estimate the health parameter reference baselines, that is α̂.

The estimated α̂ is updated periodically in the OBEM model within a determined
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time interval T that is usually a given number of flights or days. The update pro-

cess feeds α̂ into the OBEM model so that the on-line FDII scheme can operate

within the neighborhood of the degraded actual engine condition. Consequently,

the OBEM model can now be re-written as follows:

XOBEM(k + 1) = f(XOBEM(k), α̂h(XOBEM(k)), U(k)),

YOBEM(k) = g(XOBEM(k), α̂h(XOBEM(k))). (3.5)

It must be noted that the OBEM model that is provided in (3.2) is used

only once for performing the linearization process with α set to an all-ones vector,

although the OBEM model in (3.5), with its reference baselines periodically updated,

is the one that is utilized in our proposed HKF structure as well as in our on-line

FDII scheme. For sake of notational simplicity, we use the same notations for the

above two versions of the OBEM model.

To construct the HKF representation we modify (3.4) where the steady-state

variables are replaced by the OBEM states and outputs that are obtained from

(3.5) and also by using the previously stored steady-state Kalman filter gain and

state-space matrices as follows:

X̂i(k + 1)−XOBEM(k + 1) = A|Xssi
(X̂i(k)−XOBEM(k)) +Ki

ss(Y (k)− Ŷi(k)),

Ŷi(k) = C|Xssi
(X̂i(k)−XOBEM(k)) + YOBEM(k). (3.6)

In the above model the effects of the input and the B matrix are eliminated from the

HKF formulation given the fact that these have already been accounted for by the

OBEM model. The procedure for derivation of the discrete-time HKF is formally

shown in Subsection 3.1.1.

Consequently, multiple HKFs are designed by using (3.6) for multiple operat-

ing points. After updating the OBEM health parameter reference baselines, there is

no longer a need to recalculate the A|Xssi
, C|Xssi

and Ki
ss matrices for each operating
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point, since the effects of the health parameter degradations have been incorporated

into the XOBEM and YOBEM as given by (3.5).

One of the factors that can affect the efficiency of our proposed FDII algo-

rithm is the estimation error of the off-line health monitoring module, that leads to

mismatches between the actual engine and the OBEM outputs. Larger estimation

errors may increase the fault detection time, and lead to occurrence of false alarms

and incorrect fault detection rates. The acceptable ranges of the estimation errors

that do not lead to false alarms and incorrect fault detection rates will be specified

subsequently in Section 3.5 for different health parameters under various healthy

and faulty scenarios. Moreover, the reliability of our proposed on-line FDII strat-

egy as a function of different mismatching factors between the actual operational

engine and the OBEM (as represented by the reference baseline estimation errors

(RBEE = |α−α̂|
α

)) and the magnitude of the process and measurement noise signals

will be investigated subsequently in Section 3.5 by means of a confusion matrix

analysis.

In order to develop our proposed HKF-based scheme as an FDII strategy, mul-

tiple piecewise linear (PWL) models need to be generated for each fault hypothesis

at various operating points. Moreover, the PWL models will be integrated and fused

to cover the entire operational regime of an engine. The detail description of this

process is provided in Section 3.2.

3.1.1 Discrete-Time HKF Derivation Analysis

In Section 3.1, for the sake of notational simplicity the same notations were used for

both versions of the OBEM. However, here we use XNOBEM and YNOBEM to designate

the nominal OBEM (α = 1) that is equivalent to (3.2), and XOBEM and YOBEM to

designate the OBEM with the updated health parameters (α̂ 6= 1) that is equivalent

to (3.5).
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Let the nominal continuous-time OBEM model (NOBEM) be represented by:

ẊNOBEM(t) = fc(XNOBEM(t), HNOBEM(t), U(t)),

YNOBEM(t) = gc(XNOBEM(t), HNOBEM(t)). (3.7)

To construct the HKF, the nominal continuous-time OBEM is initially lin-

earized at a certain operating point (Xss, Uss, Yss) without considering degradations

as follows:

ẊNOBEM(t) =fc(Xss, Uss) +
∂fc

∂XNOBEM

|Xss(XNOBEM(t)−Xss) +
∂fc
∂U
|Uss(U(t)− Uss)

+ ∆fc,

YNOBEM(t) =gc(Xss, Uss) +
∂gc

∂XNOBEM

|Xss(XNOBEM(t)−Xss) + ∆gc, (3.8)

where fc(Xss, Uss) ≡ 0 and gc(Xss, Uss) ≡ Yss. The health parameters are the state-

dependent functions whose effects are incorporated in the above partial derivatives.

The linear continuous-time model is now discretized by using a sufficiently small

sampling period to yield the corresponding discrete-time linear model:

XNOBEM(k + 1)−Xss = A|Xss(XNOBEM(k)−Xss) +B|Uss(U(k)− Uss) + ∆F,

YNOBEM(k) = Yss + C|Xss(XNOBEM(k)−Xss) + ∆G, (3.9)

where A|Xss = exp(Ac|XssTs), B|Uss = (
∫ Ts

0
exp(Ac|Xssτ)dτ)Bc|Uss , and C|Xss = Cc|Xss

are obtained in terms of the state-space matrices that are associated with the

continuous-time linear model Ac|Xss = ∂fc
∂XNOBEM

|Xss , Bc|Uss = ∂fc
∂U
|Uss , and Cc|Xss =

∂gc
∂XNOBEM

|Xss , and the sampling period is denoted by Ts. Also, ∆fc, ∆gc, ∆F and

∆G represent the higher order terms in the linearization process. To construct the

HKF, it is necessary to update the OBEM health parameters. Therefore, the nomi-

nal model is only used once to derive the state-space matrices and the steady-state

values.

Assumption 3.1 The linearization of the nominal OBEM with α = 1 and
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the updated OBEM with α̂ 6= 1 generate approximately the same matrices and

steady-state values.

Therefore, given that Assumption 1 holds, the linearized version of the updated

OBEM can be derived as follows:

XOBEM(k + 1)−Xss ≈ A|Xss(XOBEM(k)−Xss) +B|Uss(U(k)− Uss) + ∆F,

YOBEM(k) ≈ Yss + C|Xss(XOBEM(k)−Xss) + ∆G. (3.10)

Moreover, the relationship between the instantaneous values of XOBEM(k) and

YOBEM(k) and the steady-state values associated with each linearized model can be

given by:

XOBEM(k) = Xss +Xl(k),

YOBEM(k) = Yss + Yl(k), (3.11)

where Xl(k) and Yl(k) represent the perturbations from the steady-state values as

well as variations of the OBEM state variables and outputs due to updating the

health parameters reference baselines. The linear Kalman filter can be designed as

follows:

X̂(k + 1)−Xss = A|Xss(X̂(k)−Xss) +B|Uss(U(k)− Uss) +Kss(Y (k)− Ŷ (k)),

Ŷ (k) = Yss + C|Xss(X̂(k)−Xss), (3.12)

which can be rewritten by using (3.11) as follows:

X̂(k + 1)−XOBEM(k) +Xl(k) =A|Xss(X̂(k)−XOBEM(k)) +Kss(Y (k)− Ŷ (k))

+ A|XssXl(k) +B|Uss(U(k)− Uss),

Ŷ (k) = YOBEM(k) + C|Xss(X̂(k)−XOBEM(k)) + C|XssXl(k)− Yl(k). (3.13)

Using (3.10), the last two terms in the R.H.S of (3.13) can be rewritten as
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follows:

A|Xss(XOBEM(k)−Xss) +B|Uss(U(k)− Uss) ≈ XOBEM(k + 1)−Xss −∆F,

C|Xss(XOBEM(k)−Xss)− Yl(k) ≈ YOBEM(k)− Yss − Yl(k)−∆G = −∆G. (3.14)

Therefore, the discrete-time form of the HKF can be obtained as follows:

X̂(k + 1)−XOBEM(k + 1) ≈ A|Xss(X̂(k)−XOBEM(k)) +Kss(Y (k)− Ŷ (k))−∆F,

Ŷ (k) ≈ YOBEM(k) + C|Xss(X̂(k)−XOBEM(k))−∆G, (3.15)

which will lead to (3.6) for the particular operating point if the higher order terms

∆F and ∆G as well as the approximation error due to Assumption 3.1 are neglected.

3.2 Piecewise Linear Models (PWL) Interpola-

tion

Any given linear model of a nonlinear system has a limited operating range in which

it remains valid. Nevertheless, our ultimate goal is to obtain a globally valid model

which is valid for the entire operating regime. Therefore, the full operating range

is divided into several sub-regions where each is defined around an operating point

for which a piecewise linear (PWL) model can be derived [157]. The PWL models

can then be integrated in order to construct a parameter-varying general model

whose parameters are the PWL models weights that are obtained through an on-line

Bayesian approach. This will provide one with a soft interpolation among the PWL

models as opposed to a hard switching among them. In this thesis, the engine inputs

including the fuel flow rate and ambient variables are used to partition the engine

operational regime into multiple operating points for which the PWL models are

constructed. These operating points are associated with different flight conditions

such as climbing, cruise and landing modes. The selected number of operating
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points depends on (a) the required HKF state estimation accuracy, (b) the FDII

strategy reliability on correct decisions, and (c) false alarm rates within the range

of the applied health parameter degradations. Hence, if there are no concerns on

the memory utilization, the number of the operating points can be selected to be

as high as possible to enhance the HKF estimation accuracy and the FDII scheme

valid decision rates and also to decrease the false alarm rates.

One of the important advantages of our proposed HKF scheme is in requiring

a smaller number of operating points as compared to standard linear Kalman filters

for covering an entire operational regime of the engine. This is facilitated and made

possible due to substitutions of the steady-state variables in (3.6) by the OBEM

state and output variables. The operating range of a PWL model in (3.4) is only

limited to the neighborhood of a corresponding operating point, although this can

be extended to a larger range in (3.6) given that XOBEM and YOBEM are changed

according to the engine operating condition, which enable the PWL model to be

valid in a wider range.

Since, the sensor fault is injected into the actual gas turbine engine and not

the OBEM, we have for the faulty engine

X(k + 1) = F(X(k), H(k), U(k), w(k)),

Y (k) = G(X(k), H(k)) +

q∑
s=1

bszsδ(k − kfs) + v(k), (3.16)

where F and G represent the discrete-time dynamic equations of the actual gas

turbine engine, q is the number of sensors, bs represents the sth sensor bias fault

magnitude and zs represents the fault location vector that has a unit value for the

sth element while the other elements are set to zero, and δ(k − kfs) denotes a unit

step function that occurs at the sample kfs corresponding to the sth fault occurrence

time. The bias is set to zero for the healthy sensor scenario. Therefore, there are

a total of q + 1 sensor modes (corresponding to one healthy and q faulty sensor
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modes).

The PWL models constructed for multiple operating points are now used to

compute the corresponding Ki
ss for various sensor modes of the (3.16). The matrices

A|Xssi
, C|Xssi

and Ki
ss are finally stored in a look-up table and are used to construct

multiple HKFs (MHKFs) as given by (3.6) for all the sensor modes.

Therefore, the HKF for the jth sensor mode at the ith operating point is de-

signed as follows:

X̂(i,j)(k + 1)−XOBEM(k + 1) = Ai(X̂(i,j)(k)−XOBEM(k)) +Ki
ss(Y (k)− Ŷ (i,j)(k)),

Ŷ (i,j)(k) = Ci(X̂(i,j)(k)−XOBEM(k)) + YOBEM(k) + bdjajδj(k), (3.17)

where i = 1, . . . , L, j = 1, . . . , (q + 1), bdj denotes the pre-determined sensor bias

fault that can be different from the actual sensor fault bs that is injected into (3.16),

aj denotes the q-dimensional vector and is one of q + 1 modes of a which is the

fault parameter vector. For the healthy mode or j = 1, the fault parameter vector,

a, is set to a zero vector whereas for j = 2, . . . , q + 1, aj has a unit value for the

(j − 1)th element and all the other elements are set to zero. Moreover, Ai = A|Xssi
,

Ci = C|Xssi
and Ki

ss are the previously stored state-space and Kalman gain matrices

that depend on the ith operating point. Therefore, L× (q+1) HKFs are constructed

covering the entire engine operating range corresponding to different sensor modes.

It must be noted that the state-space matrices depend only on the operating points

but the Kalman gain matrices depend on both the operating points and the noise

covariance matrices that are the same for all the sensor fault modes, given that the

OBEM does not take into account the effects of sensor faults.

Although the operating range of a PWL model in the HKF scheme can be

increased as compared to that of the one that uses the standard linear Kalman

filters by replacing the steady-state values with the OBEM variables, still none

of the PWL models are solely valid over the entire operating range of an engine.

Therefore, corresponding to each PWL model one can associate a validity function
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that is based on its normalized weight as obtained by means of the Bayes formula

in (3.19). For this purpose, the residual vectors γ(i,j) and the covariance matrices

S(i,j) that are generated by the multiple HKFs are used to compute the likelihood

function f (i,j) for the jth sensor mode at the ith operating region as follows:

γ(i,j)(k) = Y (k)− Ŷ (i,j)(k), S(i,j)(k) = cov(γ(i,j)(k)),

f (i,j)(γ(i,j)(k)) =
1

(2π)q/2
√
|S(i,j)(k)|

× exp[
−1

2
(γ(i,j)(k))T(S(i,j)(k))(−1)(γ(i,j)(k))],

(3.18)

where it is assumed that the innovation sequence generated by the hybrid Kalman

filter, γ(i,j)(k) , is a Gaussian white noise process with zero mean and covariance

matrix S(i,j)(k) . The normalized weights for the jth sensor mode are updated

recursively by using the Bayes formula as follows:

µ(i,j)(k) =
f (i,j)(γ(i,j)(k))µ(i,j)(k − 1)∑L
i=1 f

(i,j)(γ(i,j)(k))µ(i,j)(k − 1)
. (3.19)

The weights computed above should also remain outside a narrow bound to

avoid becoming close to zero as:

if µ(i,j)(k) > ρ then µ(i,j)(k) = µ(i,j)(k),

if µ(i,j)(k) ≤ ρ then µ(i,j)(k) = ρ, (3.20)

where ρ is a design parameter that is determined by trial and error and it invokes the

PWL models that have very small weights and it avoids them from being removed

from the set of L models. It is also useful for numerical robustness of the recursive

weight algorithm [158].

Following the computation of the normalized weights, multiple time-varying

models are now constructed subject to various sensor modes. For each sensor mode,

the corresponding model state-space matrices as well as the weighted innovation

vector and the covariance matrix are obtained by using the PWL model state-space
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matrices and their associated normalized weights as follows:

Ajc(k) =
L∑
i=1

µ(i,j)(k)Ai,

Cj
c (k) =

L∑
i=1

µ(i,j)(k)Ci,

γjc(k) =
L∑
i=1

µ(i,j)(k)γ(i,j)(k),

Sjc (k) =
L∑
i=1

(µ(i,j)(k))2S(i,j)(k), (3.21)

where Ajc(k) and Cj
c (k) denote the weighted state-space matrices of a linear time-

varying model associated with the jth sensor mode. Also, γjc(k) and Sjc (k) denote

the weighted innovation vector and the covariance matrix of the jth sensor mode,

respectively. The above procedure is now designated as the PWL models interpo-

lation. Consequently, (q + 1) weighted innovation vectors and covariance matrices

that operate through out the entire engine operational regime are used in the next

two sections to develop our proposed FDII scheme.

3.3 Sensor FDI via Multiple-Model-Based Scheme

In this section, the overall structure of our proposed MM-based FDI scheme is

presented. It is assumed that the fault parameter vector can take on only one of

(q+1) sensor modes as aj. Therefore, at each operating point there are (q+1) PWL

models; one for the healthy sensors scenario and q corresponding to various faulty

sensor scenarios, that have been designed and integrated with only one OBEM for

constructing the multiple HKF (MHKF)-based scheme as formulated in (3.17). The

innovation vectors and the covariance matrices that are generated by the MHKFs are

fused and weighted as given by (3.21). Finally, there are (q+1) weighted innovation

vectors and covariance matrices that are used in the MM-based FDI scheme, where
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they are operating under different healthy and faulty sensor scenarios during the

entire engine operational regime.

3.3.1 Single Fault Detection and Isolation (FDI) Scheme

In the MM-based approach [3, 27, 28], the hypothesis conditional probability Pj(k)

is defined as the probability that the fault parameter a assumes the mode aj, j =

1, . . . , q+ 1, conditioned on the observed measurement history up to the kth sample,

that is:

Pj(k) = Pr[a = aj|Y(k) = Yk], (3.22)

where Y(k) is the random vector measurement history with Y (1), Y (2), . . . , Y (k)

partitions displaying the available measurements up to the kth sample time. Sim-

ilarly, Yk is the measurement history vector realization that has the partitions of

Y1, Y2, . . . , Yk. Therefore, the conditional probability can be computed recursively

as follows:

Pj(k) =
fY (k)|a,Y(k−1)(Yj|aj,Yk−1)Pj(k − 1)∑q+1
~=1 fY (k)|a,Y(k−1)(Yj|a~,Yk−1)P~(k − 1)

, (3.23)

where fY (k)|a,Y(k−1)(Yj|aj,Yk−1) denotes the Gaussian density function for the current

measurement given by:

fY (k)|a,Y(k−1)(Yj|aj,Yk−1) =
1

(2π)q/2
√∣∣Sjc (k)

∣∣ × exp[
−1

2
(γjc(k))T(Sjc (k))(−1)(γjc(k))],

(3.24)

where γjc(k) and Sjc (k) are given by (3.21).

If the jth sensor mode occurs, the probability associated with the jth model

will be larger than that of the others since its corresponding innovation vector and

also the determinant of the covariance matrix will be much smaller than those that

are predicted by the other filters and which are mismatched with the assumed fault

scenario. Hence, the condition of the system and the location of a single faulty

65



sensor can be detected and isolated based on evaluating Pj(k) and determining

its maximum value. Consequently, our proposed MM-based approach is capable of

detecting and isolating sensor faults. Figure 3.1 shows the structure of the MM-based

FDI scheme that employs the MHKFs for the entire engine operational regime.

Our contribution here is the modification of our previously developed MM-

based structure in [27] and [28] that utilizes only multiple standard linear Kalman

filters and is designed for a single operating point into a general strategy that is

applicable to the entire engine operational regime by means of the multiple HKF

scheme and fusion and integration of the corresponding innovation vectors and co-

variance matrices.

As we will describe in more detail in Section 3.5, in this chapter five sensor

faults are considered. Therefore, the total number of modes corresponding to each

operating point of the jet engine is six, where mode #1 (P1) corresponds to the

healthy engine sensors and modes #2 to #6 (P2 to P6) correspond to a 3% sensor

bias fault injected into sensors measuring the compressor exit temperature (P2) and

pressure (P3), shaft rotational speed (P4), the turbine exit temperature (P5) and

pressure (P6), respectively.

3.3.2 Concurrent Fault Detection and Isolation (FDI) Scheme

For detection and isolation of two concurrent faults in the gas turbine engine, a

hierarchical MM approach is proposed in [26] and [28] as shown in Table 3.1. In this

scheme, it is assumed that the engine starts operating with healthy sensors when

the first level of filters are active and the FDI scheme observes the sensors condition

for occurrence of one of the five faulty modes. The active bank of filters operate

based on the weighted innovation vectors and covariance matrices that are obtained

in Section 3.2.
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Table 3.1: Operational modes corresponding to various possible two concurrent
sensor faults.

Level
Operational Modes

#1 #2 #3 #4 #5 #6
First Healthy P2 P3 P4 P5 P6

Second

P2 P2 P2 P2 P2 P2

P2 P3 P4 P5 P6

P3 P3 P3 P3 P3 P3

P2 P3 P4 P5 P6

P4 P4 P4 P4 P4 P4

P2 P3 P4 P5 P6

P5 P5 P5 P5 P5 P5

P2 P3 P4 P5 P6

P6 P6 P6 P6 P6 P6

P2 P3 P4 P5 P6

Once the first fault is detected and isolated according to the maximum proba-

bility criterion, the FDI scheme will activate the second level of the filters as shown

in Table 3.1 for detection of the second concurrent faults. In our hierarchical MM

scheme, it is assumed that the sensor faults do not occur simultaneously and there

exists always a minimum time interval between the occurrence of two sensor faults

that are called concurrent faults. Table 3.1 indicates all the possible configurations

for the second bank of filters that are considered in the simulation results in Section

3.5. The first filter in the second level always corresponds to the detected faulty mode

in the first level. For example, if the first filter detects a 3% bias in the compressor

exit temperature sensor (P2), then the first and the second filters in the second level

respectively correspond to P2 and the possibility of a larger bias fault within the

compressor exit temperature sensor. Moreover, the third filter corresponds to the

concurrent bias faults in the compressor exit temperature and pressure sensors (P2

and P3), the forth filter corresponds to P2 and P4, etc. This structure can easily be

extended to the third and higher levels that correspond to occurrence of multiple

concurrent sensor faults. It must be noted that when the new bank of filters is

activated in the second level, the first bank will be disabled in order to avoid adding
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any unnecessary computational burden. Therefore, at any given time only six filters

are operating on-line.

Remark 3.1 In this chapter, the value of the pre-determined sensor bias fault

severity, bdj as given by (3.17), is considered to be the same for all the filters and only

one level of fault severity is considered for the hierarchical MM scheme, although

various pre-determined sensor bias faults can easily be incorporated into our strategy

by correspondingly increasing the number of filters that are used in this scheme.

3.4 Sensor Fault Identification

One of the important requirements of a general control system is the capability to

integrate the FDI scheme with a fault identification or estimation module in order

to estimate the severity of a fault that has occurred in different components of the

system such as sensors and actuators. In this chapter, a modified version of the

generalized likelihood ratio (GLR) scheme is developed to estimate the severity of a

sensor bias fault. The GLR was initially proposed by Willsky in [8] and was subse-

quently modified in [159–161] and [162]. This method is capable of estimating the

time, location and severity of an occurred fault using a selected threshold. However,

in this chapter the occurrence time and location of a fault have already been deter-

mined by means of our proposed MHKF-based approach as presented in Section 3.3.

Hence, the fault severity will be estimated through the development of a modified

version of the GLR scheme. The GLR method is a detection-estimation scheme in

which the time of a fault is an a priori information input to the estimation stage.

In this chapter, the GLR method is simplified by removing the detection process

through integrating the GLR method with our proposed MM-based FDI scheme,

and hence there is no longer a need to select a threshold for our FDII scheme.

Let us assume that a bias fault has occurred in the sth sensor with the severity
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bs at the sample kfs and it is detected and isolated at the sample kds when the

P1(k) mode probability intersects with the P(s+1)(k) mode probability. Also, for

k ≥ kds, P(s+1)(k) has the highest value among the other mode probabilities as

shown mathematically by (s + 1) = argj max Pj(k). Therefore, the effects of the

sth sensor fault still remain in the residual of the MHKF that is associated with the

healthy mode. There are L PWL models corresponding to the healthy mode that

will be used subsequently to estimate the fault severity as follows:

X̂(i,1)(k + 1)−XOBEM(k + 1) = Ai(X̂(i,1)(k)−XOBEM(k)) +Ki
ss(Y (k)− Ŷ (i,1)(k)),

Ŷ (i,1)(k) = Ci(X̂(i,1)(k)−XOBEM(k)) + YOBEM(k), (3.25)

in which the jth index and bdj in (3.17) are equal to one and zero, respectively, that

are designated to the healthy sensor mode. Therefore, the residual vector of the

MHKF that is designed for the healthy sensor mode at any subsequent time can be

expressed as follows:

γ(i,1)(k) = bsG
i
s(k, kds)zs + v(k) for k ≥ kds, (3.26)

where zs is defined in (3.16) and Gi
s(k, kds) denotes the failure signature matrix

that provides one with the information on the failure propagation through the filter,

and which also depends on both kds and the sample time k at which the set of L

innovation vectors are computed for the MHKFs associated with the healthy mode.

The signature matrices for a sensor bias fault can be computed by using the recursive

relations for the healthy mode MHKFs as follows [159]:

Gi
s(k, kds) = I − CiAiJ is(k − 1, kds),

J is(k, kds) = AiJ is(k − 1, kds) +Ki
ssG

i
s(k, kds), (3.27)

where J is(k, kds) denotes the signature matrix for the state correction. The signature

matrices J is(k, kds) and Gi
s(k, kds) are defined separately for the L operating points

over a window of duration [kds, kds+N ], where N denotes the data samples window
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length. Also, it is assumed that J is(kds−1, kds) = 0. The weighted signature matrices

for a detected fault that cover the entire operating range of the gas turbine engine

can be computed as follows:

Gs(k, kds) =
L∑
i=1

µ(i,1)(k)Gi
s(k, kds),

Js(k, kds) =
L∑
i=1

µ(i,1)(k)J is(k, kds), (3.28)

where µ(i,1)(k) denotes the assigned weight to the ith PWL model that is designed

for the healthy sensor mode. Therefore, the modified GLR test which consists of

a maximum likelihood estimation (MLE) of bs when kds is known is used. For

performing the maximization process, normally the log likelihood function is chosen

as the GLR criterion as follows:

J =

kds+N∑
k=kds

γ1
c
T

(k)(S1
c (k))(−1)γ1

c (k)−
kds+N∑
k=kds

[γ1
c (k)

− bsGs(k, kds)zs]
T (S1

c (k))(−1)[γ1
c (k)− bsGs(k, kds)zs], (3.29)

where γ1
c (k) and S1

c (k) denote the weighted innovation vector and covariance matrix

for the healthy sensor mode that are computed from (3.21). The maximization of the

log likelihood function is associated with the minimization of the second summation

in (3.29). It can easily be shown that the optimal solution to the MLE problem

above is the estimated fault b̂s = ds
cs

, that is the unbiased estimate of bs having the

minimum variance as follows:

ds = zT
s

kds+N∑
k=kds

GT
s (k, kds)(S

1
c (k))(−1)γ1

c (k),

cs = zT
s

kds+N∑
k=kds

GT
s (k, kds)(S

1
c (k))(−1)Gs(k, kds)zs. (3.30)

The above procedure can also be employed for estimating the severities of

multiple concurrent faults that have already been detected and isolated by means

of our proposed hierarchical MM-based FDI approach.
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Remark 3.2 In this chapter, it is assumed that there is no feedback and

information sent from the fault identification module to the FDI scheme; otherwise,

the FDI scheme needs to have a variable structure for updating the pre-determined

sensor bias faults based on the estimated faults severities.

3.5 Simulation Results

In this section, simulation results and performance evaluation of our proposed sen-

sor FDII scheme as applied to several fault scenarios are presented for a nonlinear

mathematical model of a commercial single spool jet engine that is described in

Chapter 2. For this study, our model is extended to the entire flight profile and

is simulated in the SIMULINK for use as both the actual engine and the OBEM

model. The actual engine operates at a given health condition subject to the effects

of process and measurement noise signals, whereas the OBEM health parameters

reference baselines are periodically updated to their recently estimated values that

are assumed to be generated by an off-line health monitoring module as described

in Section 3.1.

Both the actual engine and the OBEM models operate in almost the same

ambient conditions. The set of nonlinear state-space equations that are used for

the engine model are given in (2.3). The ambient parameters are affected by the

Gaussian process noise with the standard deviations of SDζ = [0.01, 0.01]T corre-

sponding to the percentages of standard conditions of ambient variables, and the

sensors are affected by the Gaussian measurement noise with the standard devia-

tions of SDv = [0.23, 0.164, 0.051, 0.097, 0.164]T corresponding to the percentages of

output vector at the cruise condition as defined in [3].

The noise free values of the ambient parameters are applied to the OBEM

model. Also, the same control input is applied to both the actual engine and the
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Figure 3.2: Profiles of (a) the fuel flow rate, (b) altitude, and (c) the Mach number
during a flight mission.

OBEM models. The system is simulated for 520 sec with the sampling rate of 0.01

sec. The profiles of the altitude, Mach number and the fuel flow rate are shown in

Figure 3.2.

According to the overall structure of our proposed scheme, as shown in Figure

3.1, six PWL models are constructed (q = 5) corresponding to each operating point

for the five faulty sensor modes as well as the one healthy mode with the pre-

determined sensor bias faults set to 3% of the engine steady-state outputs under

the cruise condition. The states and sensor outputs are estimated by means of our

proposed MHKFs. Finally, six weighted matrices are calculated according to (3.21)

and are applied in the MM-based scheme for detecting and isolating the sensor bias

faults that occur at different points of the flight profile.

For our simulations, the measurement and process noise covariance matrices

are set to 0.01I and 0.1I, respectively, where I denotes an identity matrix. In

this chapter, the FDII scheme is implemented for the entire flight profile including

the climbing, cruise and landing modes. Therefore, we assume and consider five

operating points handling the entire flight profile (L = 5). This is the minimum

number of the operating points that are obtained for each faulty mode that prevents

the occurrence of a false alarm in the range of the applied health degradations. The

number of the operating points depends on the dynamics of the engine as well as the

73



Table 3.2: The operating point specifications corresponding to the designed PWL
models, where ṁf and Alt are measured in Kg/m2 and ft, respectively.

Models Corresponding ṁf Mn Alt
to Flight Conditions

Operating Point 1 (Climbing) 0.38 0.2109 4070.538
Operating Point 2 (Climbing) 0.38 0.6585 12708.33

Operating Point 3 (Cruise) 0.25 0.85 16404.2
Operating Point 4 (Landing) 0.3 0.5402 10424.87
Operating Point 5 (Landing) 0.3 0.1203 2322.835

range of the applied fuel flow rate and the environmental parameters. We simulated

our proposed FDII scheme with different number of operating points and also derived

a confusion matrix for each case in order to analyze the false alarm rates and to

decide on the minimum required number of the operating points that does not lead

to any false alarms for the injected health degradations.

Table 3.2 shows the corresponding fuel flow rates as well as the flight conditions

corresponding to all the applied PWL models that are designed for each sensor mode.

The selected operating points are also displayed in Figure 3.2 using the red solid

circles. In order to efficiently track the variations of the system input during the

climbing and landing conditions, two operating points are selected for each of these

two modes; whereas only one operating point is selected for the cruise condition

given the presence of a constant input.

During the fault detection and isolation process, a mode probability Pj(k) is

generated for each weighted model using (3.23) and by determining the maximum

Pj(k), j = 1, . . . , q + 1, the sensor fault is detected and isolated.

The health parameter degradations due to the engine aging is one of the non-

fault related factors that should be considered for a reliable and an accurate FDII

strategy. Therefore, the performance of the FDII strategy is evaluated in presence of

compressor or turbine health parameters degradations from their healthy reference

baselines. Generally, there is a difference between the actual and the estimated
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health parameter reference baselines due to off-line health monitoring estimation

errors and also due to effects of noise and disturbances. Therefore, the robustness of

our proposed FDII scheme will also be evaluated subsequently in this section with

respect to the percentage of the reference baselines estimation errors.

3.5.1 Case 1: False Alarms Evaluation

Many factors such as (i) the dynamic mismatch between the OBEM model and the

actual engine model, (ii) the large estimation errors for an off-line health monitoring

module, and (iii) the process and measurement noise, may lead to false alarm flags.

In order to evaluate the reliability and the efficiency of our proposed FDII scheme

in terms of avoiding false alarms, our proposed scheme is simulated over the entire

flight profile as shown in Figure 3.2. The estimated reference baselines (α̂) may differ

form the actual degraded engine (α) and this can play a source of uncertainty in our

FDII scheme in addition to the process and measurement noise. It should be noted

that the dynamic mismatch between the actual engine and the OBEM models is also

another source of uncertainty, but this is not investigated in this thesis. Therefore,

the robustness of the FDII scheme against the percentage of the reference baselines

estimation error RBEE (RBEE% = 100 × ∆α
α

, where ∆α = |α − α̂| and α ∈ [0, 1])

is investigated in this section.

Based on our simulation studies for the healthy sensors scenario, the FDII

algorithm is robust to the maximum percentage of reference baselines estimation

error of 3% for the compressor health parameters and a maximum of 2% for the

turbine health parameters. Our proposed FDII algorithm has declared no false

alarms in the range of the above RBEEs, however the possibility of false alarms will

increase if the RBEEs are increased beyond these upper limits. In case that one is

within these limits, the mode probability of the healthy sensors is near one whereas

the other probabilities corresponding to the faulty sensor scenarios are all almost
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zero during the entire flight profile. The values for the probabilities depend on the

design parameter ρ. In general the MM-based FDI is independent of ρ as long as it

is selected as sufficiently small.

3.5.2 Case 2: A 3% Sensor Bias Fault Detection and Isola-

tion

In this section, the performance of the sensor FDI scheme with respect to the fault

detection time and the robustness of the algorithm with respect to the percent-

age of reference baselines estimation error (RBEE) are evaluated. This evaluation

is performed during the entire flight profile which lasts for 520 sec, when a pre-

determined bias fault with the severity of 3% of the engine steady-state output

values under cruise condition occurs for a single sensor. Table 3.3 shows the fault

detection times for each single sensor fault scenario at different stages of the flight

profile including the climbing, cruise and landing modes. It also shows the maxi-

mum tolerable percentages of the RBEE of engine health parameters that is denoted

by ∆α. It is assumed that α = 0.99. The limits are obtained through preserving

two performance requirements for our proposed FDI scheme, namely: 1) the sensor

fault detection time (FDT) should be less than 8 sec, and 2) no false alarms should

be generated. This implies that our proposed FDI scheme can tolerate the refer-

ence baselines estimation error as long as the above performance requirements are

fulfilled.

In addition, Figure 3.3 depicts the mode probabilities for three selected fault

scenarios when the bias fault occurs at different instants of the flight profile. The

value of the injected fault is set to 3% of the engine steady-state output values, while

the percentage of the estimation errors for the compressor health parameters refer-

ence baselines (RBEE) are set at their maximum tolerable levels that are indicated

in Table 3.3.
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Table 3.3: Fault detection time (FDT) corresponding to the maximum tolerable
percentage of the RBEE (∆α) at different stages of the flight profile.

Faulty Scenario Maximum Tolerable RBEE%
Sensor FDT (sec)
kf = 50 kf = 250 kf = 450

Fault on TC
Compressor ∆αṁC

= 2.52 ∆αηC = 2.52 3.7 4.1 6.3
Turbine ∆αṁT

= 2.52 ∆αηT = 1.51 3.5 5.1 5.9

Fault on PC
Compressor ∆αṁC

= 1.01 ∆αηC = 1.01 7.8 5.9 8
Turbine ∆αṁT

= 1.01 ∆αηT = 0.30 3.4 2.7 2.5

Fault on N
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Figure 3.3: Mode probabilities for 3% bias fault applied at (a) kf = 50 sec to the
TC sensor, (b) kf = 250 sec to the PC sensor, and (c) kf = 450 sec to the N sensor
in presence of the obtained maximum tolerable percentage of the estimation errors
in Table 3.3 for the compressor health parameter reference baselines.

By comparing the results in Table 3.3, it can be concluded that the sensor

fault detection times during the cruise mode are much less than that of the other

flight modes since there is less variation of thrust and ambient conditions. In spite of

a large input and ambient condition variations during the climbing and the landing

modes, it is still possible to detect a sensor fault by applying our proposed FDI

scheme. In order to show this capability, the sensor faults occur at kf = 50 sec

during the climbing mode, at kf = 250 sec during the cruise mode and at kf = 450

sec during the landing mode. The fault detection times are all indicated in Table

3.3 for various fault scenarios.

To quantify the effectiveness and reliability of our proposed FDI scheme in
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Table 3.4: The confusion matrix for 3% RBEE of the compressor health parameters.

TC PC N TT PT No Fault
TC 50 0 0 0 0 0
PC 1 49 0 0 0 0
N 0 0 50 0 0 0
TT 12 0 0 27 10 1
PT 17 0 0 0 29 4

No Fault 0 0 0 0 0 50

Table 3.5: The confusion matrix for 3% RBEE of the turbine health parameters.

TC PC N TT PT No Fault
TC 50 0 0 0 0 0
PC 0 50 0 0 0 0
N 1 0 48 0 0 1
TT 2 0 0 41 0 7
PT 0 1 0 0 44 5

No Fault 0 1 0 0 0 49

presence of the mismatch between the OBEM model and the actual engine, confu-

sion matrices are obtained for both the healthy and the faulty scenarios subject to

different health parameter degradations and measurement noise. The rows in the

confusion matrix are the fault conditions and the columns are the actual isolated

faults. The element in the ith row and jth column (CMij) shows the rate that fault j

is isolated when fault i occurs. Ideally, the confusion matrix should be a purely di-

agonal matrix. To obtain the confusion matrix for our sensor FDI scheme, 50 Monte

Carlo simulations are performed in which the percentage of the RBEE exceeds the

maximum tolerable limit that is reported in Table 3.3. Tables 3.4 and 3.5 show the

confusion matrices for the healthy and 3% faulty scenarios as applied to the gas

turbine engine sensors during the cruise mode subjected to 3% RBEE of both the

compressor and the turbine health parameters, respectively.

In addition to the percentage of the RBEE, the measurement noise is another

factor that can affect the performance of our proposed FDI scheme. Consequently,

Table 3.6 depicts the confusion matrix that is obtained for investigating the effects
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Table 3.6: The confusion matrix for the measurement noise signals where the SDs
are multiplied by a factor of 20.

TC PC N TT PT No Fault
TC 48 0 0 0 0 2
PC 0 46 0 0 0 4
N 0 0 49 0 0 1
TT 0 0 0 48 0 2
PT 0 0 0 1 47 2

No Fault 0 0 0 0 1 49

of measurement noise signals, when their original standard deviations (SDv) are

multiplied by a factor of 20.

According to our simulations, the initial impact of any increase in either the

standard deviation of the noise measurements or the percentage of the RBEE is to

delay the fault detection time. Moreover, the occurrence of false alarms and incorrect

fault detections are the other consequences due to increases in the above uncertainty

sources. Different performance indices can be defined to quantify the robustness of

our proposed sensor FDI algorithm with respect to the levels of uncertainty sources

[163], namely:

FPR =

∑5
j=1 CM6j∑6
j=1 CM6j

, ACC =

∑6
i=1 CMii∑6

j=1

∑6
i=1 CMij

,

IFDR =

∑5
j=1

∑5
i=1 CMij(i 6= j)∑6

j=1

∑5
i=1 CMij

, (3.31)

where FPR, ACC and IFDR denote the false positive (false alarm) rate, accuracy

and incorrect fault detection rate, respectively, that are calculated in Table 3.7 to

investigate the effects of various uncertainty sources.

According to Table 3.7, increasing the levels of the uncertainty sources results

in decrease of ACC, but increase in FPR and IFDR. Notwithstanding these observa-

tions, our proposed sensor FDI scheme still works sufficiently robust against a high

level of measurement noise as well as discrepancies between the OBEM model and

the actual engine health parameters reference baselines.
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Table 3.7: Sensor FDI algorithm performance indices corresponding to different
levels of uncertainties.

Scenarios FPR ACC IFDR
3% Compressor RBEE 0 0.85 0.16
4% Compressor RBEE 0.12 0.66 0.376

3% Turbine RBEE 0.02 0.94 0.016
4% Turbine RBEE 0.04 0.91 0.076

Noise SD×20 0.02 0.956 0.0004
Noise SD×25 0.02 0.91 0.012

3.5.3 Case 3: Sensor Fault Detection and Isolation for Dif-

ferent Fault Severities

In real applications, there is no guarantee that the sensor bias fault severity al-

ways matches the 3% pre-determined fault for which the MM structure is designed.

Therefore, it is essential to investigate the performance of our proposed MM-based

FDI scheme for an applied sensor bias fault having different severities starting from

the minimum detectable bias. Table 3.8 shows the average detection times for all

the faulty modes as a function of the fault severities, when the applied faults occur

at different stages of the flight profile with also the maximum tolerable RBEE% for

the compressor health parameters that are indicated in Table 3.3. It can be observed

from Table 3.8 that the higher the fault severity with respect to the pre-determined

3% fault, the later the detection time, given that the actual fault becomes further

different from the pre-determined bias fault. Note that the minimum detectable

sensor bias fault is 2% that requires larger time to be detected as compared to the

higher fault severities, especially during the climbing and landing flight modes.

It should be pointed out that our proposed MM-based structure is designed for

a 3% sensor bias fault and is not capable of detecting and isolating sensor bias faults

that have far greater severities. For this purpose, Table 3.9 shows the maximum de-

tectable sensor bias faults by using our proposed FDI scheme by also considering
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Table 3.8: The average sensor fault detection times for all fault modes as a function
of the fault severity at different stages of the flight profile, under the maximum
tolerable RBEE% for the compressor health parameters.

Fault Time 2% 3% 4% 5% 6%
kf = 50 sec 14.18 6.56 6.74 7.42 8.6
kf = 250 sec 8.34 3.64 3.98 4.76 5.7
kf = 450 sec 17.66 5.18 5.32 6.66 7.52

Table 3.9: The average of the maximum detectable sensor bias fault (as percentage
of the engine steady-state outputs) over the entire flight profile by using our FDI
scheme when the corresponding maximum tolerable RBEE% reported in Table 3.3
are applied to the compressor and turbine health parameters.

Fault Modes Max. Tolerable Max. Tolerable
Compressor RBEE% Turbine RBEE%

TC 25% 70%
PC 20% 50%
N 12% 100%
TT 10% 14%
PT 70% 75%

the maximum tolerable RBEE% for the compressor and the turbine health parame-

ters. The reported detectable fault severities in Table 3.9 correspond to the average

fault severities for all the flight modes. However, if an applied sensor bias fault

increases beyond the corresponding maximum detectable fault as indicated in Table

3.9, an incorrect fault may be detected. Therefore, it is recommended that one

incorporates more models within the MM-based structure corresponding to higher

pre-determined sensor faults to become capable of detecting and isolating faults with

higher magnitudes in shorter durations of time.

3.5.4 Case 4: Sensor Fault Severity Identification

One of the advantages of our proposed MM-based FDI scheme is its capability in

providing information on the occurred fault severity. However, this method is not

precise for fault severity estimation, since it provides one with only information on

the level of an occurred fault instead of the exact fault severity. Therefore, the
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modified GLR method introduced in Section 3.4 is integrated with our MM-based

FDI scheme to estimate the sensor bias fault magnitude and severity. In order

to investigate the performance of our proposed fault severity estimation method,

the notion of the percentage of weighted mean square normalized residual errors

(WMSNE) are obtained for various detected fault scenarios as follows:

WMSNE% =
1

L

L∑
i=1

∑K
k=kds

w(i,s+1)(k)( (Y (k)−Ŷ (i,s+1)(k))
Y (k)

)2∑κ
k=kds

w(i,s+1)(k)
× 100,

Ŷ (i,s+1)(k) =Ci(X̂(i,s+1)(k)−XOBEM(k)) + YOBEM(k)

+ b̂szsδ(k − kds), s = 1, . . . , q (3.32)

whereK is the total simulation samples and Ŷ (i,s+1)(k) is the numerically constructed

output associated with the (s+1)th operational mode corresponding to the sth fault,

in which the fault vector effect is generated based on the estimated fault magnitude

b̂s and the fault occurrence detected time kds. It must be noted that there is no

feedback and information sent from the fault estimation module to the filters for

updating their pre-determined bias faults. Table 3.10 shows the average percentage

of the WMSNE that is measured for different stages of the flight profile as a function

of the bias fault severity as applied to various sensors.

Table 3.10: The average WMSNE% for all flight modes as a function of the bias
fault severity applied to various sensors without considering any estimation error for
the health parameter reference baselines.

Fault 2% 3% 4% 5% 6%
TC 0.0085 0.0067 0.0073 0.0124 0.0195
PC 0.1360 0.1106 0.1293 0.1689 0.2537
N 0.0111 0.0109 0.0107 0.0105 0.0104
TT 0.0137 0.0066 0.0128 0.0312 0.0944
PT 0.1313 0.1269 0.1359 0.1503 0.1615

According to Table 3.10, the average percentage of WMSNE is less than 0.5%

for various faults that are limited within the operational range of our FDI scheme

as was defined in the preceding case. It can also be observed that the percentage
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of the WMSNE is lower for the cruise flight mode as compared to the climbing and

landing modes due to the high variations of the engine thrust.

3.5.5 Case 5: Concurrent Fault Detection, Isolation and

Identification

In previous simulations only a single sensor fault is applied to the gas turbine engine.

In this case study, our proposed FDII scheme is used for concurrent fault scenarios

that occur at different stages of the flight profile. For this purpose, the hierarchical

scheme described in Section 3.3.2 is used to diagnose the concurrent sensor faults.

The fault detection times and the percentages of the WMSNE as given by (3.32)

are obtained for two selected scenarios with concurrent sensor faults. The first

scenario simulates the effects of a 6% bias fault applied to the TC sensor at kf = 50

sec during the climbing mode and the concurrent 5% bias fault applied to the N

sensor at kf = 250 sec during the cruise mode. The estimated concurrent faults are

depicted in Figure 3.4.

The concurrent faults for the first scenario are detected and isolated after 1.7

and 2.4 seconds, respectively from their occurrence instants, whereas the percent-

ages of the WMSNEs are 0.0208% and 0.106%, respectively. The second scenario

simulates the effects of a 4% bias fault that is applied to the TT sensor at kf = 250

sec during the cruise mode and the concurrent 6% bias fault that is applied to the

PT sensor at kf = 450 sec during the landing mode. The concurrent faults for the

second scenario are detected and isolated after 0.9 and 0.4 seconds, respectively from

their occurrence instants, whereas the percentages of the WMSNEs are 0.0125% and

0.1702%, respectively.

83



0 100 200 300 400 500 600
-20

0

20

40

Time (sec)

S
e
n

s
o

r 
T

C
 B

ia
s
 F

a
u

lt

 

 

Estimated Fault

Real Fault 

0 100 200 300 400 500 600
-200

0

200

400

600

Time (sec)

S
e
n

s
o

r 
N

 B
ia

s
 F

a
u

lt

 

 

Estimated Fault

Real Fault 

(a)

(b)

Figure 3.4: Estimated two concurrent sensor fault severities (a) a 6% bias fault
that is applied to the TC sensor at kf = 50 sec, and (b) a 5% bias fault that is
applied to the N sensor at kf = 250 sec without considering any health parameter
degradations.
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3.5.6 Case 6: Comparison

In this section, the efficiency of our proposed MM-based sensor FDI scheme which

utilizes the MHKF as a detection filter is compared with different filtering methods

including the linear Kalman filter (LKF) [143], extended Kalman filter (EKF) [60],

unscented Kalman filter (UKF) [61], and the cubature Kalman filter (CKF) [62].

It must be noted that in the following conducted experiments, multiple combined

residual vectors and covariance matrices associated with multiple operating points

are computed for both the HKF and LKF filtering methods to construct the multiple

HKF (MHKF) and multiple LKF (MLKF)-based FDI schemes, respectively. More-

over, our MM-based FDI scheme is compared with the interacting multiple model

(IMM) approach [164, 165]. Different experiments are conducted in this section to

compare the promptness of the fault detection and isolation scheme as well as the

degree of robustness towards the health parameters degradations among the above

filtering methods. In all the experiments, similar process and measurement noise

signals are applied to the gas turbine engine and similar noise covariance matrices

are used to construct the above filters. The sampling rates for simulating the actual

engine and the nonlinear filtering approaches are 0.01 sec and 0.1 sec, respectively.

Also, 2n+ 1 sigma points, where n is the dimension of the state variable vector, are

generated in the UKF method with the tuning parameters α = 10−3, β = 2 and

κ = 0. For the CKF method, 2n cubature points are generated through intersecting

the unit sphere with the Cartesian axes and are then scaled by
√
n. The details

regarding the formulations of the above applied filtering methods are included in

Chapter 2.

Experiment 1: The 3% single bias fault is applied to different sensors at

kf = 250 sec during the cruise mode with no health parameter degradations. All

the filters are capable of detecting and isolating the injected fault correctly with
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Figure 3.5: Mode probabilities for a 3% bias fault that is applied at kf = 250 sec
to the TC sensor by applying multiple (a) HKF, (b) LKF, (c) EKF, (d) UKF and
(e) CKF based FDI approaches with 2.5% degradations applied to the compressor
health parameters of the actual engine.

different fault detection times. The sensor FDTs are shown in Table 3.12 for the

detection filters that are utilized in the MM-based FDI scheme. It can be concluded

from Table 3.12 that our proposed approach is capable of detecting and isolating

the sensor faults faster than other methods, particularly the MLKF method, given

that the OBEM can capture the nonlinear behavior of the engine more effectively

than others. Although, the EKF, UKF, and CKF are well-known nonlinear filtering

methods, however they detect and isolate the injected sensor faults with more delay

than our proposed method. According to our observations that are included in

Table 3.11, the HKF has smaller estimation error as compared to the EKF, UKF,

and CKF, which leads to faster FDI performance. It is also expected that in case the

OBEM is subjected to certain un-modeled dynamics with respect to a real engine,

the FDTs that are obtained with multiple EKF, UKF, and CKF based FDI schemes

are more comparable with our proposed MHKF-based FDI scheme.
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Table 3.11: Absolute mean of residual signals associated with various types of non-
linear filters corresponding to the healthy mode in the MM-based scheme for the
healthy engine sensors without health degradation.

Sensor
Absolute Mean of Residual Signal
MHKF EKF UKF CKF

TC 8.8329× 10−4 0.00063 0.0058 0.0039
PC 0.0044 0.0186 0.0127 0.0105
N 4.0454× 10−4 0.0032 0.0011 0.0009
TT 8.1498× 10−4 0.0081 0.0085 0.0069
PT 0.0014 0.0028 0.0082 0.0074

Experiment 2: The robustness of our developed MHKF-based FDI approach

is compared with the other filtering methods here. The 3% bias fault is applied to

the TC sensor at kf = 250 sec during the cruise mode with 2.5% degradations that

are applied to the compressor health parameters. In this experiment, it is assumed

that the OBEM health parameters are not updated and the 2.5% degradation is

only applied to the compressor health parameters of the actual engine. Therefore,

the reference baselines associated with the compressor health parameters are one for

both the OBEM model and the nonlinear model that is used for deriving the other

nonlinear filtering methods. The mode probabilities that are generated in this sce-

nario are depicted in Figure 3.5. It can be concluded that our method outperforms

the other approaches in terms of robustness with respect to the health parameters

degradations. It is also shown in Figure 3.5 that the applied fault can be detected

by using the EKF and MLKF methods in addition to our method, but false alarms

are generated by these methods before the occurrence of the fault.

Experiment 3: Our proposed MHKF method is similar to the EKF in the

sense of the linearization process at certain operating points instead of the entire

flight profile. Therefore, one may expect that the EKF method can yield similar

results to that of the MHKF method in case the health parameters are also updated

for the nonlinear engine model used for deriving the EKF. In this experiment, the
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same engine model where its health parameters are updated is used for the MM-

based structures that utilize the MHKF and EKF schemes. The 3% bias fault is

applied to the TC sensor at kf = 250 sec during the cruise mode with α = 0.99

and α̂ = 0.975. The estimated health parameters are updated similarly for both

the EKF and MHKF schemes. Figure 3.6 shows the mode probabilities that are

generated in this scenario. According to Figure 3.6, the EKF is also capable of

correctly detecting and isolating the applied fault by using the health parameters

updating mechanism. However, the fault detection time and the computational time

of the EKF is far greater than that of the MHKF. The MM-based FDI method is

capable of detecting and isolating the applied fault in 2.7 sec and 20.8 sec by using

the MHKF and EKF methods, respectively. The same results are also obtained for

the other fault scenarios.

Experiment 4: In this experiment, the performance of the FDI algorithm

that utilizes our proposed MHKF as well as the other filtering methods are com-

pared in the interacting multiple model (IMM) structure. For the IMM-based FDI

structure, the sensor FDTs are computed for the 3% single bias fault that is applied

to the sensors with no health parameter degradations as represented in the Table

3.13. According to the simulation results, the fault is detected sooner by using the

IMM structure that utilizes all the detection filters except the MHKF. It appears

that the interactions among the multiple models do not improve the MHKF-based

FDI scheme performance. For simulating the IMM scheme which utilizes our pro-

posed MHKF, the off-diagonal elements of the transition probability matrix should

be selected less than 0.001; otherwise, the probability of the healthy mode mono-

tonically decreases to reach almost 0.8 before the occurrence of a sensor fault which

can enhance the risk of a false alarm. Therefore, it is not recommended to use the

IMM scheme for the MHKF method.
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Table 3.12: Sensor fault detection times using multiple non-interacting HKF, LKF,
EKF, UKF and CKF based FDI approaches without considering health parameter
degradation.

MM-Based Fault Detection Time (FDT) (sec)
FDI Approach TC PC N TT PT

HKF 0.2 0.2 0.2 0.2 0.3
LKF 8.3 38.2 16.9 12.1 12.4
EKF 1 1 0.9 0.8 0.9
UKF 0.6 0.7 0.6 0.7 2.7
CKF 0.6 0.6 0.7 0.7 2.3
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Figure 3.6: Mode probabilities for a 3% bias fault applied at kf = 250 sec to the TC

sensor using (a) the MHKF and (b) the EKF-based FDI methods, with α = 0.99
and α̂ = 0.975.

Experiment 5: In this experiment, the computational time of all the above

filtering methods are obtained and compared with our proposed MHKF approach in

Table 3.14. This comparison confirms the advantages of implementing the MHKF

approach in real-time applications. The computational time is measured for only

the filters corresponding to the healthy mode by the use of “tic-toc” command in

Matlab. It must be noted that the computational time of the MHKF includes the

time for not only simulating the healthy mode but also for running the OBEM model.

Therefore, based on the information provided in Table 3.14, the MHKF scheme is
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Table 3.13: Sensor fault detection times using multiple interacting HKF, LKF, EKF,
UKF and CKF based FDI approaches without considering any health parameter
degradation.

MM-Based Fault Detection Time (FDT) (sec)
FDI Approach TC PC N TT PT

HKF 0.3 0.4 0.3 0.3 0.5
LKF 6.3 35.8 15.7 11.6 11.8
EKF 0.9 0.9 0.7 0.8 0.8
UKF 0.5 0.5 0.5 0.6 2.3
CKF 0.5 0.5 0.5 0.5 1.9

Table 3.14: Computational time as measured in seconds for different filtering meth-
ods.

MHKF MLKF EKF UKF CKF
131.21 526.81 1184.2 2856.4 2673.44

faster and more suitable than the other filtering methods to be utilized during the

entire flight profile. Computing the Jacobian functions in each time step for the EKF

method and also the cubature and sigma points with their corresponding mean and

covariance weight matrices for the CKF and UKF methods, respectively are time

consuming operations that lead to the higher computational time compared to our

proposed MHKF scheme. Moreover, the MLKF approach computes the Kalman gain

matrices on-line, whereas the MHKF utilizes the previously stored gain matrices.

However, if the same steady-state Kalman gain matrices are computed off-line and

stored for use in the MLKF approach, the average computational time associated

with the healthy mode filters in the MLKF scheme is about 80 seconds, which is

less than that of the MHKF method. Under this situation, the extra computational

time required by the MHKF is associated with the OBEM operations. Therefore,

the only disadvantage of the MHKF method is the amount of memory that is needed

for storing the look-up tables that include the matrices Ai, Ci and Ki
ss at different

operating points.
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Experiment 6: In this experiment, the number of the required operating

points is investigated by measuring the mean of the combined residual signals in

presence of the health parameter degradations for the LKF and HKF methods.

To cover the entire flight profile, five operating points are generated for the HKF

method as described in Table 3.2. Note that the LKF method still needs more

operating points since it is not capable of tracking rapid variations of the thrust

during the climbing and landing modes, and therefore it generates false alarms due

to the higher estimation error as compared to the HKF scheme. Table 3.15 compares

the mean of the HKF and LKF combined residual signals that are associated with

the healthy mode as a function of the number of operating points. The Figure 3.7

displays the mode probabilities that are generated for the HKF and LKF methods

for different numbers of operating points. In this experiment, the engine has no

sensor fault, but a 3% degradation is applied to the actual engine compressor health

parameters. As stated in Section 3.5.1, the HKF is robust with respect to the applied

health degradations even without updating the OBEM model health parameters,

although the HKF needs to be updated for larger degradation levels. Based on

the results obtained, it can be concluded that the mean of the combined residual

signal associated with the healthy mode can be reduced by increasing the number

of the operating points. It is expected that the LKF estimation error decreases

further by increasing the number of the operating points. However, we are not

capable of perfectly avoiding generation of a false alarm by using the LKF method

corresponding to our particular flight profile by increasing the number of operating

points, since the LKF cannot track high variations of the thrust in our application.

Therefore, it may be feasible to apply the LKF with the combined PWL models if

the engine thrust increases with the slower speed than ours since the PWL model

weights calculation is a time-consuming process which may diminish the ability of

the LKF to track the rapid variations of the thrust.
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Figure 3.7: Mode probabilities that are generated for the MM-based FDI method
by utilizing (a-c) the HKF and (d-f) the LKF with one, three and five operating
points.

Table 3.15: Mean of the combined residual signals (γ1
c) associated with the healthy

mode for both the HKF and LKF methods in terms of the number of the operating
points.

γ1
c

1 operating point 3 operating points 5 operating points
HKF LKF HKF LKF HKF LKF

Measurement 1 0.109 0.2305 0.077 0.1091 0.0119 0.0857
Measurement 2 0.2286 0.943 0.0771 0.1523 0.0216 0.1315
Measurement 3 0.0255 0.0123 0.0167 0.0053 0.0003 0.0014
Measurement 4 0.0813 0.3339 0.0745 0.2372 0.0197 0.1008
Measurement 5 0.0152 0.0477 0.0116 0.036 0.0006 0.0049

92



Therefore, it can be concluded that the MM-based FDI scheme which utilizes

our proposed HKF approach is capable of promptly detecting and isolating various

sensor bias faults during the entire flight profile by updating the OBEM health pa-

rameters reference baselines and even without updating the OBEM model for certain

levels of health parameter degradations. Our scheme also estimates the engine state

and output variables with more accuracy and smaller number of operating points as

compared to that by the MLKF based FDI scheme.

3.6 Summary

In this chapter, a single and concurrent fault detection, isolation and identification

method is proposed in which a novel hybrid Kalman filter (HKF) is constructed us-

ing a nonlinear on-board engine model (OBEM) as well as multiple piecewise linear

models that are derived in different operating points to cover the entire operating

regime. The proposed HKF is capable of capturing the system nonlinearities and

can cover the entire operating regime of a nonlinear system with less number of oper-

ating points as compared to the linear Kalman filter. In this chapter, it is assumed

that the engine health parameters are estimate offline using a health monitoring

tool and will be updated periodically for the OBEM. Nevertheless, the robustness

of our proposed multiple HKF-based FDI scheme is investigated with respect to

different health parameters degradation magnitudes. Our proposed FDI scheme is

also integrated with the GLR method to estimate the severity of a sensor fault at

different stages of the flight profile for the single spool gas turbine engine. Finally,

it is demonstrated through extensive simulation studies that the accuracy and the

robustness of our multiple HKF-based FDI approach against the engine health pa-

rameters degradations are higher than those of generated by the LKF, EKF, UKF

and CKF based multiple model FDI approaches.
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Chapter 4

Robust Kalman Filter Based Fault

Detection and Isolation

In this chapter, a novel robust sensor fault detection and isolation (FDI) strategy

using the multiple model-based (MM) approach is proposed that remains robust

with respect to both time-varying parameter uncertainties and process and mea-

surement noise in all the channels. The scheme is composed of robust Kalman

filters (RKF) that are constructed for multiple piecewise linear (PWL) models that

are constructed at various operating points of an uncertain nonlinear system. The

parameter uncertainty is modeled by using a time-varying norm bounded admissible

structure that affects all the PWL state space matrices. The robust Kalman filter

gain matrices are designed by solving two algebraic Riccati equations (ARE) that

are expressed as two linear matrix inequality (LMI) feasibility conditions.

The main goal of the multi-objective formulation is to propose a robust filter

that satisfies the overall performance requirements and is quadratically stable. The

requirements include a quadratically stable filter that ensures bounded estimation

error variances having predefined values. Moreover, our proposed fault detection

and isolation (FDI) scheme is capable of detecting and isolating sensor faults during
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the entire operational regime of the system by interpolating the PWL models using a

Bayesian approach. The proposed multiple RKF-based FDI scheme is simulated for

a single spool gas turbine engine to diagnose various sensor faults despite the pres-

ence of parameter uncertainties, process and measurement noise. Our comparative

studies confirm the superiority of our proposed FDI method in terms of promptness

of the fault detection, estimation accuracy, lower false alarms and missed detection

rates, as well as robustness with respect to the engine health parameters degrada-

tions when compared to the methods that are available in the literature. It must be

noted that the main achievements in this chapter are published in [166] and [167].

4.1 Problem Statement

Let us consider a nonlinear, discrete-time closed-loop system that is governed by:

X(k + 1) = F(X(k), w(k)),

Y (k) = G(X(k), v(k)) +

q∑
s=1

bszsδ(k − kfs), (4.1)

where X(k) ∈ Rn and Y (k) ∈ Rq denote the state and measured output variables,

respectively, w(k) ∈ Rp and v(k) ∈ Rq denote uncorrelated zero-mean Gaussian

white noise signals with respective covariances W > 0 and V > 0. Moreover, bs

denotes the sth sensor bias fault severity and zs denotes the fault location vector

that has a unit value for the sth sensor and zero for the other elements, and δ(k−kfs)

represents a unit step function that is activated at the time kfs corresponding to

the occurrence of the sth fault. For the healthy sensor the bias is set to a value of

zero. Consequently, q+1 sensor modes, representing q faulty and one healthy sensor

modes are considered.

To design multiple linear filters for accomplishing the sensor fault detection and

isolation that operates during the entire operating range of the system, the fault-free

form of the nonlinear system is linearized at multiple operating points. These points
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are denoted by (Xssi , Yssi , wssi , vssi), i ∈ 1, . . . , L (L denotes the required number of

operating points that cover the entire operating region of the nonlinear system).

The constructed multiple PWL models associated with the healthy sensors are now

given by:

∆X i(k + 1) = A|Xssi
∆X i(k) +B|wssi

∆wi(k),

∆Y i(k) = C|Xssi
∆X i(k) +D|vssi∆v

i(k), (4.2)

where A|Xssi
, B|wssi

, C|Xssi
and D|vssi denote the ith operating point system matrices

and ∆X i(k) = X(k) − Xssi , ∆Y i(k) = Y (k) − Yssi , ∆wi(k) = w(k) − wssi and

∆vi(k) = v(k) − vssi . In this chapter, it is assumed that wssi and vssi are zero

without loss of any generality.

The system matrices can be influenced by norm-bounded time-varying pa-

rameter uncertainties, which correspond to subcategory of linear fractional norm-

bounded uncertainties, due to either imperfect knowledge on some parameters, or

system components degradation, or deviations from the operating point when the

system is linearized or there are uncertainties in the noise variances. Hence, multiple

PWL models that are constructed in (4.2) can represent the parametric uncertainties

as follows:

∆X i(k + 1) = (Ai + ∆Ai(k))∆X i(k) + (Bi + ∆Bi(k))∆wi(k)

∆Y i(k) = (Ci + ∆Ci(k))∆X i(k) + (Di + ∆Di(k))∆vi(k), (4.3)

where Ai = A|Xssi
, Bi = B|wssi

, Ci = C|Xssi
and Di = D|vssi . Note that ∆Ai(k),

∆Bi(k), ∆Ci(k) and ∆Di(k) denote admissible time-varying parameter uncertain-

ties that are associated with the ith operating point. Moreover, it is assumed that

the uncertainties satisfy the following relationship:∆Ai(k) ∆Bi(k)

∆Ci(k) ∆Di(k)

 =

M i
1

M i
2

F i(k)
[
N i

1 N i
2

]
,

F i(k)F iT(k) ≤ I, (4.4)
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where F i(k) represents an uncertain norm-bounded time-varying matrix that satis-

fies the above condition for the ith operating point. The matrices M i
1 and M i

2 yield

perturbed elements of the system matrices through the parameter uncertainties,

whereas the matrices N i
1 and N i

2 are employed to represent the maximum possible

uncertainties that may occur in the matrices that are associated with the ith operat-

ing point. The parameter uncertainties are said to be admissible if they can satisfy

the above condition. We now state our first definition.

Definition 1. The linear uncertain system (4.3) is said to be quadratically stable if

a positive definite matrix Qi exists such that

(Ai + ∆Ai(k))Qi(Ai + ∆Ai(k))T −Qi < 0, (4.5)

for all the admissible uncertainties ∆Ai(k) [168].

We are now in a position to state the main objective of this chapter. Specifi-

cally, our goal is to design multiple quadratically stable linear robust Kalman filters

that are capable of detecting and isolating sensor faults having predefined upper

bounds on the estimation error variances in presence of parameter uncertainties.

To address the above problem, first a linear RKF is designed for a single operating

point and then the methodology is extended to multiple operating points as well as

for uncertain PWL models in the following sections.

4.2 Robust Kalman Filter Design

For the ith uncertain PWL model that is given by (4.3) and satisfies the Definition

1, a linear RKF is designed with the parameters Āi, C̄i and Ki as follows:

∆X̂ i(k + 1) = Āi∆X̂ i(k) +Ki(∆Y i(k)−∆Ŷ i(k)) = Gi∆X̂ i(k) +Ki∆Y i(k),

∆Ŷ i(k) = C̄i∆X̂ i(k), i = 1; . . . , L, (4.6)
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where Gi = Āi − KiC̄i (Āi, C̄i and Ki are the ith filter gain matrices defined

subsequently in this section), the estimated vectors are defined as ∆X̂ i(k) = X̂(k)−

Xssi and ∆Ŷ i(k) = Ŷ (k) − Yssi . The problem is to design the gain matrices Gi

and Ki such that for all admissible uncertainties that satisfy the condition (4.4),

the designed filter is ensured to be quadratically stable, and moreover it satisfies

Var(eil(k)) < (σil)
2 for l = 1, . . . , n, where eil(k) denotes the lth element of the

estimation error vector defined as eil(k) = ∆X i
l (k)−∆X̂ i

l (k) associated with the ith

filter and (σil)
2 denotes the individually predefined upper bound for the lth element

of the estimation error variance associated with the ith filter.

The state estimation error for the ith filter that is denoted by ei(k) = ∆X i(k)−

∆X̂ i(k) has an associated covariance matrix P i(k), where its steady-state is denoted

by P i. For notational simplicity, the superscript letter i is removed for the filter

design process in this section. Therefore, the error dynamics is governed by:

e(k + 1) = Ge(k) +

(
(A−G−KC) + (M1F (k)N1 −KM2F (k)N1)

)
∆x(k)

+ (B +M1F (k)N2)∆w(k)− (KD +KM2F (k)N2)∆v(k). (4.7)

By defining the matrices:

Af =

 A 0

A−G−KC G

 , Bf =

B 0

B −KD

 ,
M1f =

 M1

M1 −KM2

 , N1f =
[
N1 0

]
,

M2f =

M1 0

M1 −KM2

 , N2f =

N2 0

0 N2

 ,

∆Af (k) = M1fF (k)N1f , ∆Bf (k) = M2f

F (k) 0

0 F (k)

N2f , (4.8)
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for the augmented state variable, and Xf (k) = [∆X(k)T e(k)T]T, the dynamic model

becomes:

Xf (k + 1) = (Af + ∆Af (k))Xf (k) + (Bf + ∆Bf (k))wf (k), (4.9)

where wf (k) = [∆w(k)T ∆v(k)T]T. Assuming a quadratically stable augmented

system, X(k) which is the covariance matrix of Xf (k) satisfies the discrete-time

Lyapunov equation:

X(k + 1) = (Af + ∆Af (k))X(k)(Af + ∆Af (k))T

+ (Bf + ∆Bf (k))Wf (k)(Bf + ∆Bf (k))T, (4.10)

where Wf =

W 0

0 V

 and X =

Xxx Xxe
XT
xe P

 represent the steady-state covariance

matrices of wf (k) and Xf (k), respectively.

Before presenting our main result for design of the RKF, we first present a

useful preliminary result below.

Lemma 1. Let ε be a positive scalar and Pf denotes a symmetric positive definite

matrix such that N1fPfN
T
1f < εI. Then,

(Af + ∆Af (k))Pf (Af + ∆Af (k))T ≤ Af (P
−1
f − ε

−1NT
1fN1f )

−1AT
f + εM1fM

T
1f .

(4.11)

Proof: According to Lemma 2 in [169], let us define

Z(k) = AfPfN
T
1f (εI −N1fPfN

T
1f )
−1/2 −M1fF (k)(εI −N1fPfN

T
1f )

1/2, (4.12)

In view of the fact that F (k)FT(k) ≤ I, and by invoking the matrix inversion lemma,

it can be shown that Z(k)ZT(k) ≥ 0, and the inequality (4.11) holds as follows. Let

us define:

Z(k) = AfPfN
T
1f (εI −N1fPfN

T
1f )
−1/2 −M1fF (k)(εI −N1fPfN

T
1f )

1/2. (4.13)
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It follows that, the positive semi-definite matrix Z(k)ZT(k) can be expressed

as

Z(k)ZT(k) =AfPfN
T
1f (εI −N1fPfN

T
1f )
−1N1fPfA

T
f − AfPfNT

1fF
T(k)MT

1f

−M1fF (k)N1fPfA
T
f +M1fF (k)(εI −N1fPfN

T
1f )F

T(k)MT
1f

= AfPfN
T
1f (εI −N1fPfN

T
1f )
−1N1fPfA

T
f −

(
AfPf∆Af

T(k)

+ ∆Af (k)PfA
T
f + ∆Af (k)Pf∆Af

T(k)

)
+ εM1fF (k)F (k)TMT

1f . (4.14)

Since F (k)FT(k) ≤ I, it can be concluded that

Z(k)ZT(k) ≤ Σ(k), (4.15)

where

Σ =AfPfN
T
1f (εI −N1fPfN

T
1f )
−1N1fPfA

T
f

−
(

(Af + ∆Af (k))Pf (Af + ∆Af (k))T

)
+ AfPfA

T
f + εM1fM

T
1f . (4.16)

It follows from Z(k)ZT(k) ≥ 0 that Σ ≥ 0. Hence,

(Af + ∆Af (k))Pf (Af + ∆Af (k))T ≤ Af

(
Pf + PfN

T
1f (εI −N1fPfN

T
1f )
−1N1fPf

)
AT
f

+ εM1fM
T
1f (4.17)

and by using the matrix inversion lemma, the R.H.S of the above inequality is

Af (εI −N1fPfN
T
1f )
−1AT

f + εM1fM
T
1f . This completes the proof of the lemma.

Lemma 2. Let λ denote a positive scalar and N2fWfN
T
2f < λI, it then follows that

(Bf + ∆Bf (k))Wf (Bf + ∆Bf (k))T ≤ Bf (W
−1
f − λ

−1NT
2fN2f )

−1BT
f + λM2fM

T
2f .

(4.18)
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Proof: Let us define

Z(k) = BfWfN
T
2f (λI −N2fWfN

T
2f )
−1/2 −M2fF (k)(λI −N2fWfN

T
2f )

1/2. (4.19)

The result follows along the same lines as those used for the proof of the Lemma 1

above, and therefore the details are not included. This completes the proof of the

lemma.

We now state the main result of this section.

Theorem 1. Suppose the uncertain system (4.3) satisfies the Definition 1. Let us

select β1 > 0 and β2 > 0 as sufficiently small constants and let Uo ∈ Rq×q denote

an arbitrary orthogonal matrix. Provided that the parameters ε > 0 and λ > 0 and

a matrix H ∈ Rn×q exist where the following two conditions hold, namely:

(a) A positive definite matrix P1 > 0 exists as the solution to the algebraic

Riccati equation (ARE1):

AP1A
T − P1 + AP1N

T
1 (εI −N1P1N

T
1 )−1N1P1A

T + (ε+ λ)M1M
T
1

+B(W−1 − λ−1NT
2 N2)−1BT + β1I = 0. (4.20)

(b) There exists a positive definite solution P2 > 0 for the algebraic Riccati

equation (ARE2):

ĀP2Ā
T − P2 − θR−1θT +

(
(ε+ λ)M1M

T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)
Γ(

(ε+ λ)M1M
T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)T

+HHT

+ (ε+ λ)M1M
T
1 +B(W−1 − λ−1NT

2 N2)−1BT + β2I = 0, (4.21)

where

φ = (P−1
1 − ε−1NT

1 N1)−1AT,

Γ = φ−1(P−1
1 − ε−1NT

1 N1)−1(φ−1)T,

Ā = A+

(
(ε+ λ)M1M

T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)
φ−1,

C̄ = C + εM2M
T
1 φ
−1,

101



θ = ĀP2C̄
T +

(
(ε+ λ)M1M

T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)
Γ(εM1M

T
2 )

+ (εM1M
T
2 )

R = C̄P2C̄
T + (εM2M

T
1 )Γ(εM1M

T
2 ) + (ε+ λ)M2M

T
2

+D(V −1 − λ−1NT
2 N2)−1DT, (4.22)

and with the inequality constraints that are given by

N1P1N1 < εI, N2fWfN
T
2f < λI, (4.23)

then the detection filter with the gains selected according to

K = θR−1 +HUoR
− 1

2 , (4.24)

G = Ā−KC̄, (4.25)

can be designed such that the augmented system (4.9) is quadratically stable for

all the admissible parameter uncertainties. Moreover, if there exists a positive def-

inite solution P2 > 0 for (4.21) which satisfies the condition [P2]ll ≤ σ2
l (l =

1, 2, . . . , n), then the filter with the gains designed according to (4.24) and (4.25)

satisfies Var[el(k)] = [P ]ll ≤ [P2]ll ≤ σ2
l (where [.]ll denotes the lth diagonal element

of a square matrix). This implies that the designed robust filter is a priori variance

constrained.

Proof: First, it is shown that the augmented system (4.9) is quadratically stable.

Define Pf = diag(P1, P2), it then follows from (4.11) and (4.18) that

(Af + ∆Af (k))Pf (Af + ∆Af (k))T − Pf

+ (Bf + ∆Bf (k))Wf (Bf + ∆Bf (k))T ≤ Ψ (4.26)

where Ψ = Af (P
−1
f −ε−1NT

1fN1f )
−1AT

f +εM1fM
T
1f−Pf+Bf (W

−1
f −λ−1NT

2fN2f )
−1BT

f +
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λM2fM
T
2f , and

Ψ11 =A(P−1
1 − ε−1NT

1 N1)−1AT + εM1M
T
1 − P1 +B(W−1 − λ−1NT

2 N2)−1BT

+ λM1M
T
1

=A(P1 + P1N
T
1 (εI −N1P1N

T
1 )−1N1P1)AT + (ε+ λ)M1M

T
1 − P1

+B(W−1 − λ−1NT
2 N2)−1BT, (4.27)

Ψ12 =A(P−1
1 − ε−1NT

1 N1)−1(A−G−KC)T + (ε+ λ)M1M
T
1 − εM1M

T
2 K

T

+B(W−1 − λ−1NT
2 N2)−1BT, (4.28)

Ψ22 =(A−G−KC)(P−1
1 − ε−1NT

1 N1)−1(A−G−KC)T +GP2G
T

+ ε(M1 −KM2)(M1 −KM2)T − P2 +B(W−1 − λ−1NT
2 N2)−1BT

+KD(V −1 − λ−1NT
2 N2)−1DTKT + λM1M

T
1 + λKM2M

T
2 K

T

=ĀP2Ā
T − P2 +

(
(ε+ λ)M1M

T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)
Γ(

(ε+ λ)M1M
T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)T

+ (ε+ λ)M1M
T
1

+B(W−1 − λ−1NT
2 N2)−1BT − θR−1θT

+ (KR
1
2 − θR−

1
2 )(KR

1
2 − θR−

1
2 )T. (4.29)

It follows from (4.27) and the ARE1 that Ψ11 = −β1I. Also, Ψ21 = ΨT
12,

which becomes zero by substituting (4.25) into (4.28). Furthermore, the ARE2 and

(4.25) result in Ψ22 = −β2I, given that UoU
T
o = I. Consequently, Ψ < 0, and from

the Lyapunov stability theory it can be concluded that the augmented system is

quadratically stable.

Finally, to show Var[el(k)] = [P ]ll ≤ [P2]ll ≤ σ2
l , let us define Ω by invoking

(4.26) as follows:

Ω = Ψ−
(

(Af + ∆Af (k))Pf (Af + ∆Af (k))T − Pf

+ (Bf + ∆Bf (k))Wf (Bf + ∆Bf (k))T

)
, (4.30)
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which is a positive definite matrix. Then, from (4.10) and (4.30), it follows that

(Af + ∆Af (k))(Pf −X)(Af + ∆Af (k))T − (Pf −X) + Ω−Ψ = 0, (4.31)

where Pf and X denote steady-state matrices that result in (Af + ∆Af (k))(Pf −

X )(Af + ∆Af (k))T− (Pf −X ) ≤ 0. Given the quadratically stable augmented pro-

cess, then Pf − X ≥ 0 and [X ]22 ≤ [Pf ]22, which imply that P ≤ P2. Therefore, it

can easily be shown that if [P2]ll ≤ σ2
l (l = 1, 2, . . . , n), where σ2

l s denote the pre-

defined a priori upper bounds on the estimation error variances, then the designed

filter satisfies Var[el(k)] = [P ]ll ≤ [P2]ll ≤ σ2
l . This now completes the proof of the

theorem.

In order to represent the a priori individually predefined state estimation error

variances conditions as stated in Theorem 1 into the solution process for the AREs,

equations (4.20) and (4.21) are expanded into two quadratic matrix inequalities

(QMI) as follows:

AP1A
T − P1 + AP1N

T
1 (εI −N1P1N

T
1 )−1N1P1A

T + (ε+ λ)M1M
T
1

+B(W−1 − λ−1NT
2 N2)−1BT < 0, (4.32)

ĀP2Ā
T − P2 − θR−1θT +

(
(ε+ λ)M1M

T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)
Γ(

(ε+ λ)M1M
T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)T

+HHT

+ (ε+ λ)M1M
T
1 +B(W−1 − λ−1NT

2 N2)−1BT < 0. (4.33)

In order to simplify the process of solving the QMIs, they are converted into

two feasibility linear matrix inequality (LMI) conditions. The first QMI can be

re-arranged into M̄ + L̄TQ̄L̄ < 0, where

M̄ = AP1A
T − P1 +B(W−1 − λ−1NT

2 N2)−1BT + (ε+ λ)M1M
T
1 ,

L̄ = N1P1A
T, Q̄ = (εI −N1P1N

T
1 )−1. (4.34)
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According to the constraint N1P1N
T
1 < εI, the matrix Q̄ is positive definite.

The matrices M̄ and Q̄ are also symmetric. By using the Schur complement lemma,

M̄ + L̄TQ̄L̄ < 0 is satisfied if and only if the following LMI is feasibleM̄ L̄T

L̄ −Q̄−1

 < 0. (4.35)

Following along the same lines, the second QMI can be re-arranged into M̃−L̃TQ̃L̃ <

0, where

M̃ = ĀP2Ā
T − P2 +

(
(ε+ λ)M1M

T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)
Γ(

(ε+ λ)M1M
T
1 +B(W−1 − λ−1NT

2 N2)−1BT

)T

+HHT

+ (ε+ λ)M1M
T
1 +B(W−1 − λ−1NT

2 N2)−1BT,

L̃ = θT, Q̃ = R−1, (4.36)

and θ and R are defined in (4.22). The matrices M̃ and Q̃ represent symmetric

matrices and Q̃ is a positive definite matrix. Using the Schur complement lemma,

M̃ − L̃TQ̃L̃ < 0 is satisfied if and only if the following LMI is feasibleM̃ L̃T

L̃ Q̃−1

 < 0. (4.37)

To solve for P1 > 0 and P2 > 0, the predefined a priori upper bound condi-

tions on the state estimation error variances ([P2]ll ≤ σ2
l l = 1, . . . , n), should also

be added to the above LMI feasibility conditions. To summarize, at each operating

point the positive definite matrices P1 and P2 are obtained such that the LMI condi-

tions in (4.35) and (4.37) are feasible, while ensuring that the conditions [P2]ll ≤ σ2
l

are also satisfied. These results are then used to determine the RKF gain matrices

by using (4.24) and (4.25).

For each uncertain PWL model given by (4.3), the filter parameters are ob-

tained off-line by satisfying the LMI feasibility conditions as well as the constraints
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associated with the estimation error variances. Consequently, multiple RKFs corre-

sponding to L PWL models are designed as follows:

∆x̂i(k) = Gi∆x̂i(k) +Ki∆y(k),

∆ŷi(k) = C̄i∆x̂i(k), i = 1, . . . , L, (4.38)

that cover the entire operating region of the nonlinear system with healthy sen-

sors. For developing our proposed multiple RKF-based scheme for accomplishing

our proposed FDI strategy, multiple PWL models corresponding to various oper-

ating points are generated for each sensor fault hypothesis. Moreover, the PWL

models need to be integrated together in order to cover the entire operating region

of the nonlinear system in (4.1). The detailed description and development of this

process is provided in the next section.

4.3 Piecewise Linear Models Integration Method-

ology

Similar to Chapter 3, the system operating region is partitioned into multiple sub-

regions where each region is associated with a certain operating point for which

a PWL model is derived. To construct a general model with varying parameters,

the PWL models are then integrated. The PWL models normalized weights are

calculated by utilizing an on-line Bayesian technique.

The PWL models that are previously constructed corresponding to multiple

operating points in (4.3) are now used to obtain the RKF gains Ki and Gi for various

sensor modes of equation (4.1). Therefore, multiple RKFs are designed for various

sensor modes and multiple operating points. Associated with the jth sensor mode
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and corresponding to the ith operating point the RKF is designed according to:

∆X̂(i,j)(k + 1) = Gi∆X̂(i,j)(k) +Ki∆Y i(k),

∆Ŷ (i,j)(k) = C̄i∆X̂(i,j)(k) + bdjajδj(k), (4.39)

with i = 1, . . . , L, j = 1, . . . , (q + 1), bdj is the pre-determined sensor bias fault that

can be possibly nonidentical to the actual sensor fault bs (injected and applied to

the equation (4.1)), aj denotes a q-dimensional vector and represents one of the q+1

modes of a representing the fault. For the healthy mode j = 1, the fault parameter

a is assigned to a1 = 0, which leads to a bank of filters that are denoted by (4.38).

On the other hand for j = 2, . . . , q+1, aj has a value of one for the (j−1)th element

with the rest assigned to zero.

Therefore, a total of L × (q + 1) RKFs are designed that cover and handle

all the operating regions of the nonlinear system associated with the various sensor

modes. It should be pointed out that the system matrices that depend on only

the operating points will be identical corresponding to all the sensor fault modes

associated with a particular operating point.

The normalized weights that are associated with the PWL models are deter-

mined by using the Bayes formula in (4.41). Specifically, the likelihood function

f (i,j)(γ(i,j)(k)) for the jth sensor mode corresponding to the ith operating region is

computed by using the residuals γ(i,j)(k) and covariance matrices S(i,j)(k) which are

determined by using multiple RKFs as follows, respectively:

γ(i,j)(k) = ∆Y i(k)−∆Ŷ (i,j)(k),

S(i,j)(k) = cov(γ(i,j)(k)),

f (i,j)(γ(i,j)(k)) =
1

(2π)q/2
√
|S(i,j)(k)|

× exp

(
−1

2
(γ(i,j)(k))T(S(i,j)(k))(−1)(γ(i,j)(k))

)
,

(4.40)

In the above expression the residual vector γ(i,j)(k) is assumed to be a Gaussian

white noise process having a mean of zero and a covariance matrix S(i,j)(k). The
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jth sensor mode normalized weights are adjusted iteratively by utilizing the Bayes

formula according to:

µ(i,j)(k) =
f (i,j)(γ(i,j)(k))µ(i,j)(k − 1)∑L
i=1 f

(i,j)(γ(i,j)(k))µ(i,j)(k − 1)
. (4.41)

To avoid the weighs from becoming too close to zero we assume that they

remain outside a narrow band according to:

if µ(i,j)(k) > ρ then µ(i,j)(k) = µ(i,j)(k),

if µ(i,j)(k) ≤ ρ then µ(i,j)(k) = ρ, (4.42)

where ρ is a design parameter as defined in Chapter 3.

Once the normalized weights, multiple time-varying models corresponding to

various sensor modes are constructed, the entire operating region of the nonlinear

system is fully covered. Corresponding to each sensor mode, the original PWL model

system matrices and their corresponding normalized weights are utilized so that the

respective time-varying model matrices as well as the weighted residual vectors and

the covariance matrices are computed as follows:

Ajc(k) =
L∑
i=1

µ(i,j)(k)Ai, Cj
c (k) =

L∑
i=1

µ(i,j)(k)Ci,

Bj
c(k) =

L∑
i=1

µ(i,j)(k)Bi, Dj
c(k) =

L∑
i=1

µ(i,j)(k)Di,

γjc(k) =
L∑
i=1

µ(i,j)(k)γ(i,j)(k), Sjc (k) =
L∑
i=1

(µ(i,j)(k))2S(i,j)(k), (4.43)

where Ajc(k), Cj
c (k), Bj

c(k) and Dj
c(k) represent the weighted linear time-varying

system matrices associated with the sensor jth mode. Furthermore, γjc(k) and Sjc (k)

represent the weighted residuals and covariance matrix of the sensor jth mode, re-

spectively. The methodology that is outlined above will now be referred to as the

PWL models integration. Therefore, a total of (q + 1) weighted residuals and co-

variance matrices are monitored corresponding to all the operational region of the
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system that will be utilized in the following section for developing our proposed

robust MM-based FDI scheme.

4.4 Robust Sensor FDI by Using a Multiple Model-

Based Strategy

In the preceding sections, multiple robust Kalman filters (MRKF) are designed to

operate during the entire operating region of a nonlinear system in presence of time-

varying parameter uncertainties. This was accomplished by means of solving two

feasibility LMI conditions that are associated with each operating point for com-

puting the filter gains independent of the uncertainty levels. The designed multiple

RKFs are now utilized in the MM-based structure to detect and isolate various

sensor faults.

Similar to Chapter 3, it is assumed that the fault parameters can take on only

one of (q+ 1) sensor modes that is denoted by aj. In other words, corresponding to

each operating point there will be (q + 1) PWL models; one model associated with

the healthy sensors case as well as q models associated with various faulty sensors

cases in order to construct the multiple RKF-based scheme as represented in (4.39).

Moreover, the residuals and covariance matrices as generated by the MRKFs will be

fused as governed by (4.43). In other words, there will be (q+1) fused residuals and

covariance matrices to be utilized in the MM-based FDI scheme. These quantities

will operate under various healthy and faulty sensor cases corresponding to the full

operating region of the nonlinear system.

In the multiple model scheme we define the hypothesis conditional probability

Pj(k) as the probability where a fault parameter a takes on the value aj (for j =

1, . . . , q + 1) conditioned on the observed measurements up to the kth sample time.

In other words, Pj(k) = Pr[a = aj|Y(k) = Yk], where Y(k) denotes the random
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measurement history with Y (1), Y (2), . . . , Y (k) partitions displaying the available

measurements up to the kth sample time. Moreover, Yk represents the measurement

history realization with the partitions Y1, Y2, . . . , Yk. The conditional probability

can therefore be computed iteratively according to:

Pj(k) =
fY (k)|a,Y(k−1)(Yj|aj,Yk−1)Pj(k − 1)∑q+1
h=1 fY (k)|a,Y(k−1)(Yh|ah,Yk−1)Ph(k − 1)

, (4.44)

where fY (k)|a,Y(k−1)(Yj|aj,Yk−1) represents the Gaussian density function for the cur-

rent measurement that is given by

fY (k)|a,Y(k−1)(Yj|aj,Yk−1) =
1

(2π)q/2
√∣∣Sjc (k)

∣∣
× exp

(
−1

2
(γjc(k))T(Sj(k))(−1)(γjc(k))

)
, (4.45)

where γjc(k) and Sjc (k) are given by (4.43).

For a given fault parameter having the value aj, the jth model probability will

have a larger value than all the others that are mismatched with the considered fault

scenario. Consequently, the system condition and location of a faulty sensor can be

detected and isolated by evaluating Pj(k) and determining its maximum value.

Hence, our proposed MM-based scheme is capable of detecting and isolating

different sensor faults. Figure 4.1 depicts the structure of the MM-based FDI scheme

where the MRKFs corresponding to the entire operating range of an uncertain non-

linear system are utilized. It should be emphasized that the contribution that we

have made above is related to the modification and extension of our previously de-

veloped standard MM-based structures in [28] and [27], where we have only utilized

multiple standard linear Kalman filters that were designed for a single operating

point now into a robust scheme that utilizes multiple robust Kalman filters for the

entire operational region of a nonlinear system by means of their corresponding in-

tegrated residual vectors and covariance matrices as specified in (4.43) and (4.45).

Moreover, a novel robust MM-based FDI structure is introduced in this chapter
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that utilizes our proposed robust detection filters rather than standard filters that

generally are not formally designed to be robust with respect to parameter uncer-

tainties. The robustness and estimation accuracy of our proposed robust MM-based

FDI method is subsequently compared with other standard available methods in the

literature in Section 4.5.

Remark 4.1 The above MM structure can also be extended to detect and isolate

multiple concurrent sensor faults by the use of a hierarchical MM-based structure as

developed in Chapter 3. In the hierarchical structure, the original nonlinear system

is assumed to start operating with healthy sensors so that the first level of filters

are active and our proposed FDI scheme observes the sensor conditions for the first

occurrence of only a faulty mode. Once the first fault is detected and isolated, by

invoking the maximum probability criteria, the second level of RKF filters will be

activated by the FDI scheme for detection and isolation of the second concurrent

faults. Moreover, for avoiding any unnecessary computational burden, the first bank

of filters will be disabled when the second bank of filters are activated in the second

level. Therefore, at any given time only (q + 1) filters are operating on-line. These

details are rather straightforward to develop and therefore are not included here due

to space limitations.

4.5 Simulation Studies

Below we provide simulation results corresponding to a nonlinear model of a single

spool jet engine. Moreover, performance evaluations of our developed robust sensor

FDI scheme when applied to various fault scenarios are also presented to demonstrate

the capabilities and effectiveness of our proposed scheme. It should be noted that

the gas turbine engine was previously introduced in Chapter 2.

For our study, the actual engine is simulated and developed in SIMULINK
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Figure 4.2: The profiles of (a) the fuel flow rate (ṁf), (b) altitude, and (c) the Mach
number during a flight mission.

and the PWL models are obtained by linearizing the nonlinear model at multiple

operating points during the entire engine flight profile. The residual vectors and co-

variance matrices are integrated by using the algorithm that is introduced in Section

4.3. These are then utilized in the robust MM-based structure to detect and isolate

various sensor faults. Also, the RKF gain matrices are obtained individually for each

operating point. Various uncertainty sources including the engine health parameters

degradations due to normal aging process as well as process and measurement noise

that influence the system operation are considered in this chapter. It should be

pointed out that in this section no predefined upper bounds are considered for the

state estimation error variances since these are more essential for tracking and fault

tolerant control systems rather than fault detection and isolation problems.

The sensors are affected by measurement noise with the standard deviations

of SDv = [0.23, 0.164, 0.051, 0.097, 0.164] that is associated with the output vector.

The process noise has the standard deviations of SDw = [0.1, 0.1, 0.001], which is

also applied to the ambient temperature and pressure as well as the Mach number,

respectively.

The system is simulated for 520 sec and the profiles of the altitude, Mach

number and the fuel flow rate during a designed flight mission are shown in Figure

4.2.

For simulations, it is assumed that there are five operating points to fully
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Table 4.1: The operating point specifications corresponding to multiple PWL mod-
els.

Operating Points Corresponding ṁf Mn Alt
to Flight Conditions Kg/m2 ft
Operating Point 1 (Climbing) 0.1557 0.1077 2077.9
Operating Point 2 (Climbing) 0.38 0.4255 8211.9
Operating Point 3 (Cruise) 0.25 0.85 16404.2
Operating Point 4 (Landing) 0.3 0.5313 10253
Operating Point 5 (Landing) 0.2142 0.2847 5495.4

handle the entire flight profile (L = 5). It should be pointed out that five is the

minimum number of operating points that can be obtained for each faulty mode to

prevent occurrence of a false alarm corresponding to the selected compressor health

parameters degradations. Generally speaking, the number of operating points de-

pends on the engine dynamics as well as the range of the applied fuel flow rate and

the environmental parameters. Table 4.1 shows the corresponding fuel flow rates

as well as the flight conditions for which the PWL models associated to each sen-

sor mode are designed. The selected operating points are also displayed in Figure

4.2 using the red solid circles. In order to efficiently follow system input variations

corresponding to the climbing and landing situations, two operating points are des-

ignated corresponding to each mode; whereas only one operating point is designated

corresponding to the cruise condition given that in this situation the input is taken

as constant for the duration of the flight.

Moreover, it is assumed that the engine parameter uncertainties due to health

parameters degradations satisfy the condition of equation (4.4) in which M1, M2,

N1 and N2 are obtained by the use of a singular value decomposition method that is

applied to the matrices ∆A, ∆B, ∆C and ∆D. For simulation studies, these matri-

ces are determined at each operating point corresponding to degradations of 5% and

2.5% that are applied to the compressor mass flow rate and efficiency, respectively,

due to the fouling effects that represent as the major compressor degradation factor
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caused by adherence of particles to the compressor surfaces. Unlike other types of

compressor degradation factors such as corrosion and erosion, fouling is recoverable

through periodic online and/or offline compressor washing. The washing mechanism

is capable of recovering the compressor to reach its maximum power and to main-

tain the gas turbine operating as new. According to [150], after almost 3000 hours

of operation 7% degradation would occur in the compressor assuming no degraded

parts are replaced and no washing process is applied. However, the washing process

is normally performed sooner to reduce the cost of fuel or electricity demand driving

the compressor. Also, a reliable FDI scheme needs to be robust with respect to the

engine health degradation before performing any maintenance or washing process.

It must also be noted that in this chapter only the compressor health parameters

degradations are considered, however the same design procedure and case studies

can be applied to the turbine health parameters degradation.

The filter gain matrices are obtained by solving two LMI feasibility conditions

with the use of the YALMIP toolbox [170]. The effectiveness of our proposed robust

MM-based FDI scheme is evaluated for various percentages of the compressor health

parameters degradation. The arbitrary matrix H in the Theorem 1 is set to a

zero matrix. The filter gain matrices associated with a certain operating point are

fixed for all the sensor modes that are included in the MM-based scheme, however

the residuals, covariance matrices and the associated pre-determined bias faults are

different.

For simulations, different layers of multiple models associated with different

ranges of the sensor bias faults are constructed, whereas each has the overall struc-

ture that is shown in Figure 4.1. The first layer of robust multiple models is com-

posed of six linear models (q = 5). These modes correspond to the operating point

that is constructed for one healthy and including five faulty sensor modes. They

are specified based on the pre-determined sensor bias fault set to 3% of the engine
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steady-state outputs.

In the first layer, mode #1 (P1(k)) corresponds to the healthy engine sen-

sors, modes #2 to #6 (P2(k) to P6(k)) correspond to the sensor bias faults that are

respectively applied to sensors measuring the compressor exit temperature and pres-

sure, shaft rotational speed, and the turbine exit temperature and pressure. During

the fault detection and isolation process, a mode probability Pj(k) is generated for

each linearized model by using the equation (4.44) as well as by determining the

maximum of the Pj(k), j = 1, . . . , q + 1, so that the sensor fault can be detected

and isolated. In general, when the sensors are healthy, the first mode probability

that is associated with the mode that is healthy reaches its maximum value. Upon

the occurrence of a fault, the probability of the healthy mode is reduced and the

probability mode corresponding to the occurred fault is increased to the point where

it reaches the maximum among all the other mode probabilities.

However, a single layer of multiple models is only capable of detecting and

isolating a sensor fault within a certain fault severity range; therefore, multiple

layers corresponding to multiple models that all operate simultaneously will clearly

enhance the range of the detectable sensor faults. The number of layers depends on

the desired and acceptable fault detection delay time corresponding to various faulty

modes as well as the range of applied sensor faults. In this chapter, two layers of

multiple models are constructed to detect and isolate sensor faults within less than

10 seconds after the fault injection. The maximum detectable sensor bias fault is

obtained individually for each sensor. It is obvious that one may need more number

of layers to achieve either higher sensor bias faults or to obtain smaller acceptable

fault detection delay times.

In the following subsections, various case studies are simulated to investigate

and demonstrate the advantage of our proposed robust FDI scheme performance as

compared to the standard MM-based FDI structure that uses linear Kalman filters
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(LKF) as well as the robust MM-based FDI structure that uses the RKF designed

in [4] in terms of fault promptness detection, fault estimation accuracy, false alarms

and incorrect fault detection rates. In [4], the RKF is designed for time varying

parameter uncertainties that only affect the state and measurement matrices but

not the process and measurement noise distribution matrices.

Three simulation case studies are conducted in this chapter as summarized

below:

• Case 1: To evaluate the robustness of our proposed robust MM-based FDI

method, the engine model in (2.3) is simulated without a sensor fault but with

various compressor health degradations during the entire flight profile. Our

objective is to compare the false alarm rates and estimation accuracy between

our proposed robust MM-based method and the MM-based structures that

utilize the LKF and the RKF as designed in [4].

• Case 2: To evaluate the effectiveness of our proposed robust MM-based FDI

method, the engine model in (2.3) is simulated with a single sensor bias fault

that occurs during the flight cruise condition by using a single layer of multiple

models that is developed for a pre-determined 3% sensor bias fault. Moreover,

the compressor health parameters degradation is set to αṁC
= 0.95 (5% degra-

dation) and αηC = 0.975 (2.5% degradation). Our objective is to compare the

fault detection delay time, the FDI accuracy and the incorrect fault detection

rates corresponding to our proposed robust MM-based method with the MM-

based structure that utilizes the RKF as designed in [4]. Moreover, detection

ranges corresponding to our single layer multiple models for various sensor

faults are obtained given that the fault detection time delay should be less

than 10 seconds.

• Case 3: To improve the performance of our proposed robust MM-based FDI
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method, the engine model in (2.3) is simulated with a single sensor bias fault

that occurs during the flight cruise condition by using two layers of the multiple

models. These models are developed for various pre-determined sensor bias

faults. Our objective is to investigate the fault detection delay times as a

function of the sensor fault severities and different levels of the compressor

health parameters degradation.

4.5.1 Case 1: False Alarms and Estimation Accuracy Eval-

uation

In this case study simulation, no fault is applied to the engine sensors. Therefore,

the mode probability corresponding to healthy sensor mode should be approximately

close to one and other probabilities associated with the faulty sensor modes should

be all almost close to zero. In other words, it is required that the FDI system

should declare no false alarms despite presence of parameter uncertainties. Figure

4.3 provides a comparison between the mode probabilities for healthy sensors that

are generated by our proposed robust FDI method, the standard MM-based FDI

scheme (which uses the LKF approach), and the robust MM-based FDI method that

utilizes the RKF as designed in [4]. All the above FDI schemes are composed of a

single layer of multiple models.

According to Figure 4.3 (c) the standard MM-based FDI method generates

many false alarms for the healthy sensors due to the effects of compressor health

degradation, however the other two robust MM-based structures do not generate any

false alarms. Moreover, Figure 4.4 displays the real and estimated shaft rotational

speed for the healthy sensors subjected to degradations of 5% and 2.5% applied to

the compressor mass flow rate and efficiency, respectively. The results are displayed

for almost 60 seconds of climbing and 100 seconds of landing conditions.

According to Figure 4.4 our proposed RKF yields lower estimation errors than
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Figure 4.3: Mode probabilities for healthy sensors in presence of degradation of
5% when applied to the compressor mass flow rate and degradation of 2.5% when
applied to the compressor efficiency by using (a) our proposed MRKF-based FDI,
(b) the MRKF-based FDI according to [4] and (c) the standard MM-based FDI.
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Figure 4.4: Real and estimated shaft rotational speed (N), during the (a) climbing
and (b) landing flight conditions. These are generated by the healthy mode in
the single-layer MM-based structures that utilize our proposed RKF and the one as
proposed in [4] in presence of degradations of 5% and 2.5% applied to the compressor
mass flow rate and the efficiency, respectively.
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the one designed in [4]. Therefore, although both methods detect no fault in Figure

4.3 (a) and (b), our proposed RKF has less estimation error. In another experiment,

the metric known as the weighted mean absolute percentage error (WMAPE) is

calculated for all the engine outputs during the flight profile as follows:

WMAPE% =
1

L

L∑
i=1

∑κ
k=1 µ

(i,1)(k)(|∆y
i(k)−∆ŷ(i,1)(k)

yssi
|)∑κ

k=1 µ
(i,1)(k)

× 100, (4.46)

where κ denotes the total number of simulation samples and ∆ŷ(i,1)(k) denotes the

estimated output vectors generated by the RKFs as constructed for the ith operating

point and are associated with the healthy mode in the MM-based structure.

To evaluate the estimation accuracy of our proposed robust FDI method, the

WMAPE% is calculated for the engine healthy sensor measurements in presence

of various percentages of the compressor health parameters degradation during the

entire flight profile. The results are provided in Table 4.2. The estimation accu-

racy of our proposed MRKF-based FDI method is compared with the robust MM

structure that utilizes the RKF as proposed in [4], where again all the sensors are

healthy. Note that, the estimation accuracies are obtained corresponding to higher

compressor health degradations as opposed to the degradation for which the robust

filters are designed. The higher levels of degradations occur due to either special

environmental conditions or that the compressor washing process was not performed

on-time.

According to Table 4.2, for both robust estimation methods, the estimation

error does increase by enhancing the health degradation level, however our proposed

robust method is still more accurate than the robust filter that is designed in [4].

The higher estimation error may lead to false alarms generation if either the process

and measurement noise levels or the health degradation levels is increased.

To investigate the false alarms rates corresponding to both robust methods,

confusion matrices are obtained through increasing the level of noise and parameter

uncertainty associated with 50 Monte Carlo simulation runs. The results are shown
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Table 4.3: True positive (TP), false positive (FP) and false alarm rate (FAR) that are
obtained for both robust methods if either the SDw for the process noise is multiplied
by a factor of 5 and degradations of 7% and 3.5% applied to the compressor mass
flow rate and the efficiency, respectively.

Scenario
TP FP FAR

PRKF RKF [4] PRKF RKF [4] PRKF RKF [4]
SDw × 5 48 42 2 8 0.04 0.16

αṁC
= 0.93 αηC = 0.965 48 44 2 6 0.04 0.12

in Table 4.3. It must be noted that true positive (TP) is associated to cases where

the healthy sensors are diagnosed healthy and false positive (FP) is associated to

healthy cases in which a false alarm is generated due to non-fault related factors.

Therefore, false alarm rate (FAR) can be computed according to: FAR= FP
TP+FP

.

It follows from Table 4.3 that our proposed robust FDI method generates less

false alarm rates as compared to the robust method that is developed in [4].

4.5.2 Case 2: Sensor FDI Using Single Layer of Multiple

Models

In this case study simulation, only the first layer of multiple models that are de-

signed for a pre-determined 3% sensor bias fault is used to detect and isolate the

sensor faults having different severities that are limited within the detection range

of the first layer. To compare the effectiveness of our proposed robust MM-based

FDI method with the one that uses the RKF as proposed in [4], a single sensor bias

fault that is similar to the a priori pre-determined sensor fault for which the mul-

tiple models are constructed for is now injected into our engine model. The mode

probabilities that are generated by the single-layer MM-based structure using our

proposed RKF and the RKF as developed in [4] are depicted in Figures 4.5 to 4.9

corresponding to five faulty sensor scenarios having the severity of 3% during the

cruise condition that are applied at kfs = 250 sec.

According to Figures 4.5 to 4.9 all sensor faults are accurately detected and
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Figure 4.5: Mode probabilities by the first layer of MM-based FDI scheme for a
single 3% bias fault when applied to the compressor exit temperature sensor using
(a) our proposed RKF and (b) the RKF as proposed in [4] with degradations of 5%
and 2.5% applied to the compressor mass flow rate and the efficiency, respectively.

isolated by utilizing our proposed robust method in shorter duration of times as

compared to the FDI scheme that utilizes the RKF that is proposed in [4]. More-

over, the method in [4] cannot detect and isolate the fault that is applied to the

turbine temperature sensor. Moreover, in all the above simulation studies, the MM-

based structure that utilizes the LKF generates numerous false alarms before the

occurrence of a fault and also detects an incorrect fault when a sensor is faulty.

Therefore, our proposed method is sufficiently robust as far as the engine health

parameter degradations are concerned and can correctly and reliably detect and iso-

late various sensor faults more accurately and promptly than all the other examined

methods.

To investigate the robustness of our proposed robust MRKF-based FDI method,

two confusion matrices are provided in Tables 4.4 and 4.5. These represent the re-

sults of 50 Monte Carlo simulation runs for faulty and healthy scenarios correspond-

ing to performing two experiments, namely: (1) the SDw is multiplied by a factor

of 5 and degradations of 5% and 2.5% applied to the compressor mass flow rate and

the efficiency, respectively, and (2) 7% and 3.5% degradations are applied to the
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Figure 4.6: Mode probabilities by the first layer of MM-based FDI scheme for a
single 3% bias fault when applied to the compressor exit pressure sensor using (a)
our proposed RKF and (b) the RKF as proposed in [4] with degradations of 5% and
2.5% applied to the compressor mass flow rate and the efficiency, respectively.
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Figure 4.7: Mode probabilities by the first layer of MM-based FDI scheme for a
single 3% bias fault when applied to the shaft rotational speed sensor using (a) our
proposed RKF and (b) the RKF as proposed in [4] with degradations of 5% and
2.5% applied to the compressor mass flow rate and the efficiency, respectively.
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Figure 4.8: Mode probabilities by the first layer of MM-based FDI scheme for a
single 3% bias fault when applied to the turbine exit temperature sensor using (a)
our proposed RKF and(b) the RKF as proposed in [4] with degradations of 5% and
2.5% applied to the compressor mass flow rate and the efficiency, respectively.
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(b) 

Figure 4.9: Mode probabilities by the first layer of MM-based FDI scheme for a
single 3% bias fault when applied to the turbine exit pressure sensor using (a) our
proposed RKF and (b) the RKF as proposed in [4] with degradations of 5% and
2.5% applied to the compressor mass flow rate and the efficiency, respectively.
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Table 4.4: The confusion matrix when the process noise standard deviations are
multiplied by a factor of 5.

TC PC N TT PT No Fault
TC 50 0 0 0 0 0
PC 2 48 0 0 0 0
N 2 0 46 0 0 2
TT 0 0 0 46 2 1
PT 0 0 0 0 48 2

No Fault 2 0 0 0 0 48

Table 4.5: The confusion matrix when degradations of 7% and 3.5% are applied to
the compressor mass flow rate and the efficiency, respectively.

TC PC N TT PT No Fault
TC 50 0 0 0 0 0
PC 3 46 0 0 0 1
N 2 1 45 0 0 2
TT 3 0 0 45 2 0
PT 2 0 0 0 47 1

No Fault 2 0 0 0 0 48

compressor mass flow rate and the efficiency, respectively, but the SDw is fixed at

[1, 0.1, 0.1].

Based on our simulation results, the first consequence of increasing either

the standard deviation of the process noise or the compressor health parameters

degradation would be to delay the fault detection times. Moreover, false alarms

and incorrect fault detections do occur as a consequence of increase in the above

uncertainty sources. Various performance metrics and indices have been defined

now to formally quantify and measure the robustness of our proposed sensor FDI

algorithm as a function of the levels of uncertainties, namely:

ACC =

∑6
i=1 CMii∑6

j=1

∑6
i=1 CMij

, IFDR =

∑5
j=1

∑5
i=1 CMij(i 6= j)∑6

j=1

∑5
i=1 CMij

, (4.47)

where CMij, ACC and IFDR denote the element that is placed in the ith row and jth

column of the confusion matrix, the accuracy, and the incorrect fault detection rate,

respectively. Based on the obtained results from Tables 4.4 and 4.5, the performance
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Table 4.6: Our proposed robust sensor FDI scheme performance indices for different
uncertainty levels.

Scenario ACC% IFDR%
SDw × 5 95.33 2.4
SDw × 7 91 5.6

αṁC
= 0.93 αηC = 0.965 93.66 5.2

αṁC
= 0.91 αηC = 0.955 86.66 8.8

indices are now given in Table 4.6.

According to this table, by increasing the uncertainty levels one would result

in the decrease in the ACC, although an increase in the IFDR. Notwithstanding the

above observations, the sensor FDI scheme that we have developed in this chapter

still yields performance that is acceptably robust against high level uncertainty

sources.

In practical applications, one cannot guarantee that a given sensor bias fault

severity always exactly matches the 3% pre-determined fault for which the MM-

based filters are constructed. Consequently, it is imperative that we investigate

the performance of the proposed MRKF-based FDI scheme corresponding to sensor

bias faults that have other severity levels starting from the minimum detectable

bias. Table 4.7 depicts the resulting detection times corresponding to all the faulty

modes as a function of the fault severity, when the injected faults occur at kfs = 250

sec during the cruise condition. The results are indicated for both robust methods

when 5% and 2.5% degradations are injected to the compressor mass flow rate and

the efficiency, respectively.

According to Table 4.7, our proposed robust method successfully detects and

isolates sensor faults having different severities in presence of the engine compressor

health parameters degradations with a shorter delay time and with smaller incorrect

fault detection rates. It can also be observed that higher fault severities yield larger

detection time delays. This is due to the fact that the actual fault severity becomes

further away from the pre-determined 3% bias fault. It should be pointed out that
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Table 4.7: Fault detection delay times for all sensor fault modes as a function of
the fault severity for the single-layer MM-based FDI scheme by using the proposed
RKF and the one designed in [4] when degradations of 5% and 2.5% are applied to
the compressor mass flow rate and the efficiency, respectively. (×) denotes incorrect
fault detection cases.

Fault
Fault Detection Delay Time (sec)

2% 3% 4% 5% 6% 7%
PRKF RKF [4] PRKF RKF [4] PRKF RKF [4] PRKF RKF [4] PRKF RKF [4] PRKF RKF [4]

TC 0.2 0.9 0.1 0.7 3 4.7 5.8 8.1 7.4 11.9 10 14.1
PC 1.5 3.1 1.3 3 0.2 1 2.1 3.7 5.4 7.9 8.1 11.1
N 2.1 × 1.3 × 0.8 2.2 0.9 2.7 2.8 5.1 5.7 8.9
TT 1.7 × 1 × 0.3 × 0.5 × 2 × 4.7 ×
PT 7.5 18.4 0.1 10.3 1.3 41.8 4.2 87.3 11.8 116.4 18.4 148.2

Table 4.8: The maximum detectable sensor bias fault achievable in less than 10
seconds of delay by using the first layer of robust multiple models during the cruise
flight condition when degradations of 5% and 2.5% are applied to the compressor
mass flow rate and the efficiency, respectively.

Maximum Detectable Fault
TC PC N TT PT

7% 8% 8% 11% 5%

the minimum detectable sensor bias fault is 2% but one requires a larger time to

detect this fault with respect to higher fault severities. Table 4.8 shows the maximum

detectable faults that can be achieved in less than 10 seconds by using only the first

layer of the multiple models. It can then be implied that more multiple models layers

are needed to improve the fault detection range and to reduce the fault detection

delay time of our proposed robust MM-based FDI method.

Consequently, a second layer of multiple models are designed to detect and

isolate sensor faults with higher magnitudes under shorter detection times. Using

the results in Table 4.8, the second layer of multiple models is constructed for the

pre-determined sensor faults set to 8%, 9%, 9%, 12% and 6% that are associated

with the sensors measuring TC, PC, N , TT and PT, respectively. These results are

presented in the next subsection.
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Table 4.9: Fault detection delay times for all sensor fault modes as a function of
fault severity using the double-layer MM-based FDI scheme of the proposed RKF
when degradations of 5% and 2.5% are injected to the compressor mass flow rate
and the efficiency, respectively.

Fault Severity
Fault Detection Delay Time (sec)
TC PC N TT PT

2% 0.2 1.5 2.1 1.7 7.5
3% 0.1 1.3 1.3 1 0.1
4% 3 0.2 0.8 0.3 1.3
5% 5.3 2.1 0.9 0.5 4.2
6% 1.1 5.4 2.8 2 0.4
7% 0.3 7.4 4.8 4.7 0.1
8% 0.1 3 1.7 5.7 0.2
9% 0.6 0.7 0.1 4.6 0.9
10% 1.4 0.1 0.5 4.6 1.8
11% 2.5 0.1 0.9 0.6 3.3
12% 3.5 0.1 1.6 0.2 4.2
13% 4.7 0.7 2.5 0.1 6.6
14% 5.7 1.9 4 0.1 7.9
16% 7.4 4.1 7 0.2 16.1
18% 9.4 5.5 9.8 0.3 19.6

4.5.3 Case 3: Sensor FDI by Using Two Layers of Multiple

Models

In this case study simulation, two layers of multiple models are used for detecting

and isolating sensor faults corresponding to various severities. The faults are applied

during the cruise flight condition, whereas 5% and 2.5% degradations are applied to

the compressor mass flow rate and the efficiency, respectively. As compared to the

previous case study simulation, our robust MM-based FDI approach is capable of

detecting and isolating a wider range of faults and with less detection time delays.

Table 4.9 shows the fault detection time delays for different percentages of sensor

bias faults for the two layers of multiple models.

According to Table 4.9, some of the faults that were previously detected by the

first layer in the case study #2, are now detectable with shorter delay times through
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Table 4.10: The maximum detectable sensor bias fault achievable in less than 10
seconds of delay by using double-layer robust multiple models during the cruise flight
condition when degradations of 5% and 2.5% are injected to the compressor mass
flow rate and the efficiency, respectively.

Maximum Detectable Fault
TC PC N TT PT

18% 24% 18% 44% 14%

activating the models that are included in the second layer. However, it can still

be observed that the higher the fault severity with respect to the pre-determined

faults that are defined for the second layer, the more delay in the detection time.

Table 4.10 shows the maximum detectable faults that are achievable in less than

10 seconds of delay for various sensors using the two layers of multiple models in

presence of 5% and 2.5% degradations that are injected to the compressor mass flow

rate and the efficiency, respectively.

Similarly, more layers can be added to the multiple model structure to improve

the fault detection range and to reduce the fault detection time delays for those faults

that are limited in the detection range of the FDI algorithm. Moreover, multiple

layer MM structure enables one to define the level of a fault severity through the

corresponding activated layer of multiple models, given that each layer is associated

with a certain range of fault severities.

Finally, to investigate the effects of the various levels of compressor health

parameters degradations on the fault detection times, Figure 4.10 shows the fault

detection times for three selected faulty sensors, namely TC, N and PT as a func-

tion of the fault severity under various degradation levels that are applied to the

compressor mass flow rate and the efficiency during the cruise flight condition.

According to Figure 4.10, a sensor fault is detected and isolated sooner for

lower levels of the compressor health parameters degradations. Therefore, the max-

imum faults that are detectable in less than 10 seconds of delay by our proposed
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Figure 4.10: Fault detection time delays by using our proposed two layer robust
MM-based FDI approach for a single bias fault when injected at kfs = 250 sec to
the sensors (a) TC, (b) N and (c) PT as a function of the fault severity and the
compressor health parameters degradation levels.
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two-layer MM-based FDI scheme will be increased subject to lower levels of com-

pressor health parameters degradations. For instance, if 3% and 1.5% degradations

are instead applied to the compressor mass flow rate and the efficiency respectively,

the maximum faults that are detectable in less than 10 seconds of delay are 19%,

24% and 24% for TC, N and PT, respectively. However, when there is no compressor

degradation, the maximum faults that are detectable in less than 10 seconds of delay

are 20%, 28% and 41% for TC, N and PT, respectively.

Consequently, our proposed RKF outperforms the existing RKF designs in

the literature in which the time-varying parameter uncertainties are only compen-

sated for in the state and measurement matrices instead of all state space matrices.

Moreover, our proposed method is capable of detecting and isolating smaller par-

tial sensor faults as compared with the adaptive variable-structure multiple-model

scheme [165] that has a limited robustness against parameter uncertainties. Un-

like data-driven methods such as FDI neural networks schemes [171], our proposed

method does neither need memory for collecting data nor extensive computational

resources for training and designing the structure of the estimator. However, the

order of the model is always a critical concern for multiple-model based schemes that

can be partially rectified by integrating the FDI scheme with a proper fault identi-

fication approach for estimating the severities of fault parameters and by providing

the MM-based scheme with a feedback from the fault identification module.

4.6 Summary

In this chapter, a novel robust multiple model based fault detection and isolation

methodology is proposed. The proposed methodology builds on development of a ro-

bust Kalman filters that are designed for multiple piecewise linear models associated

with healthy and faulty sensor scenarios in which all the state space matrices are
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affected by time-varying norm bounded parameter uncertainties. The filter gain ma-

trices are computed using two LMI feasibility conditions where the predefined state

estimation error upper bounds are imposed. The proposed robust multiple model

structure is then applied to solve sensor FDI problem for single spool gas turbine

engine during the entire flight profile in which the compressor health parameters are

degraded. To investigate the effectiveness of our proposed robust MM-based FDI

approach, extensive simulation studies are conducted to compare various factors in-

cluding the fault detection time, estimation accuracy, false alarm and incorrect fault

detection rates among our proposed method and available work in the literature. Fi-

nally, it is observed that our proposed robust method has lower fault detection time

as well as smaller false alarm and incorrect fault detection rates. It is also capable

of estimating nonlinear system states more accurately as compared to the examined

methods in the literature in presence of parameter uncertainties.
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Chapter 5

Hybrid Fault Detection and

Isolation Scheme

In this chapter, a novel hybrid scheme is proposed to solve the sensor fault detection

and isolation problem for the single spool gas turbine engine. The hybrid scheme is

composed of two elements: 1) the dynamic recurrent neural network (DRNN) that

is utilized to approximate the engine degradation effects on sensor measurements,

and 2) the bank of observers that are developed based on the engine dynamic model.

The DRNN is trained off-line by using the extended Kalman filter algorithm that has

a higher convergence rate and fitting accuracy as compared to the back-propagation

learning (gradient descent) method [172]. The uncertainty dynamics that are ap-

proximated by our proposed DRNN is then removed from the sensor measurements

and the modified sensor measurements are then applied to our proposed bank of

observers for detecting and isolating the engine sensor faults. Two types of ob-

servers that have been previously proposed in preceding chapters namely the hybrid

Kalman filter (HKF) and the robust Kalman filter (RKF) are used to construct the

bank of observers to be integrated with the DRNN. Finally, using extensive simu-

lation studies it is demonstrated that our proposed hybrid DRNN-HKF-based FDI
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scheme is capable of reducing the fault detection time, increasing the robustness

level and improving the FDI accuracy and performance outcomes as compared to

our previously proposed pure model-based FDI approaches.

5.1 Proposed Hybrid Fault Detection and Isola-

tion Structure

Robust model-based fault diagnosis strategies have restricted robustness to a partic-

ular source of uncertainty. It is not actually possible to design a completely robust

strategy for all sources of uncertainties, although it is possible to improve the ro-

bustness by applying the hybrid approach. In this chapter, a hybrid gas turbine

engine modeling is proposed which improves the robustness with respect to different

types of modeling uncertainties when it is integrated with our proposed model-based

sensor FDI approach which uses a bank of HKFs or RKFs.

In this problem, it is assumed that the discrete-time fault-free version of the

actual gas turbine engine is given by,

X(k + 1) = F(X(k), U(k), H(k), w(k)), X(0) = X0,

Y (k) = G(X(k), U(k), H(k)) + v(k), (5.1)

where X(k) ∈ Rn, Y (k) ∈ Rq, U(k) ∈ Rp and H(k) ∈ Rr are the real engine state

variables, sensor measurements, control inputs and health parameters, respectively.

For performing simulations and implementation of our proposed online FDI scheme,

it is assumed that the continuous-time actual gas turbine engine is discretized with

a sufficiently small sampling period to derive the model (5.1). The engine health

parameters, namely the compressor and turbine mass flow rates and efficiencies,

are the state-dependent variables that are degraded from their healthy reference

baselines during the engine life cycle. They depend on the engine compressor and

135



turbine performance maps.

Moreover, the process and measurement noise are also indicated by w(k) and

v(k) that are assumed to be Gaussian zero mean noise signals applied to the engine

ambient parameters and sensor measurements, respectively. The nominal nonlin-

ear on-board engine model (OBEM) that is designed for the engine based on the

thermodynamics laws is also defined as follows:

XOBEM(k + 1) = f(XOBEM(k), U(k), HOBEM(k)), XOBEM(0) = XOBEM0

YOBEM(k) = g(XOBEM(k), HOBEM(k)), (5.2)

where XOBEM(k) ∈ Rn, YOBEM(k) ∈ Rq and HOBEM(k) ∈ Rr denote the OBEM state

variables, system outputs and health parameters, respectively that are not exactly

the same as the actual engine variables due to different uncertainty sources and

neglected dynamics. In fact, the uncertainty affects the engine modeling process

and so it is desirable to approximate the severity of uncertainty to be compensated

in actual engine sensor measurements for further uses in our FDI scheme.

In this chapter, to approximate the uncertainty, a novel hybrid engine modeling

strategy is proposed to also improve the robustness of our proposed FDI scheme as

compared to our previously developed pure model-based approaches in the preceding

chapters. Our proposed hybrid DRNN-based FDI scheme is composed of two main

components, namely the dynamic recurrent neural network (DRNN) to estimate the

effects of uncertainties, and a bank of HKFs/RKFs to utilize the modified measure-

ments for performing sensor fault detection and isolation. The DRNN is designed

off-line in a fault-free situation and is used in our proposed online FDI scheme to

estimate the output error due to the model uncertainty, Yun(k) = Y (k)−YOBEM(k).

The DRNN outputs are Ŷun(k) that are removed later from the actual engine sensor

measurements to form the modified measurements as Ym(k) = Y (k)− Ŷun(k). Then,

the modified sensor measurements, Ym(k), are used in a bank of HKFs/RKFs by

using a multiple-model scheme to detect and isolate different sensor faults. The
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Figure 5.1: Overall structure of our proposed hybrid FDI scheme.

overall structure of our proposed on-line hybrid FDI approach is depicted in Figure

5.1. More details regarding the main components of our proposed on-line hybrid

DRNN-based FDI scheme are explained in the following sections.

5.1.1 Dynamic Recurrent Neural Network (DRNN)

DRNN is a class of neural network models in which the connections among many of

its neurons form a directed cycle which is defined as a recurrent. Such a recurrence

or cycle is associated with the time delay operation. The time delay recurrence over

temporal dimension leads to a memory structure which is defined as the internal

state that enables the DRNN to represent temporal dynamic behavior. The DRNN

itself can be considered as a deep structure since the temporal unfolding of DRNN

generates many layers as many as the length of an input signal. The DRNN works

based on the input signals and internal states to encode the past information in the
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temporal sequence that is already processed by a DRNN.

Generally, the dynamic neural network (DNN) is categorized into two main

groups: a) the DNN that uses the current and time-delayed inputs in which the

number of delays in the tapped delay line must be set a priori and is correlated

with the order of the original dynamic system, and b) the DRNN with internal

recurrent connections to the input, hidden and output layer neurons. Training the

DRNN is more complex than a static feed forward network due to the additional

degrees of freedom and a more complicated error surface and also the problem of

vanishing gradient.

In this chapter, the DRNN is used to approximate the engine modeling uncer-

tainty terms due to the its health parameters degradation. To train the DRNN, the

data can be collected from either a fault-free actual gas turbine engine or an engine

simulator for the entire operating range. The differences between the actual engine

sensor measurements and nonlinear OBEM outputs are also found to be utilized in

the DRNN training process. The DRNN is designed to identify Yun(k) which is the

output error that is generated due to different sources of uncertainties. The training

process is performed offline to minimize the sum of mean squared error cost function

that is defined as 1
2

∑T
k=1(Ŷun(k) − Yun(k))2, where Ŷun(k) is the estimated output

generated by our proposed DRNN and T denotes the total length of the training

samples. The overall structure of our proposed offline DRNN training is shown in

Figure 5.2.

In this chapter, the state-space model of the DRNN is used as an architectural

framework which is a proper choice for sequential state estimation methods that

are applied for DRNN training process. In the state-space model, there are certain

number of states that are associated with hidden neurons as well as feedbacks from

the hidden layer to the input layer. In this structure, the layer which stores the

hidden neurons outputs for one time-step and then feeds them to the input layer is
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Figure 5.2: Offline training procedure of the DRNN for the hybrid engine modeling.

called the context layer. A nonlinear mapping is commonly performed by the hidden

layer, but the output layer is generally linear, leading to the following equations:

X (k + 1) = Φ(WxxX (k) +WxuU(k)), X (0) = X0,

Ŷun(k) = WyxX (k), (5.3)

where X (k) ∈ Rl and U(k) ∈ R(q+p+1) are the network internal state variables and

inputs.

In Figure 5.2, the input signal is the augmented vector of the engine control

input signal U(k), OBEM outputs YOBEM(k) and the bias term. The network output

signals, Ŷun(k) ∈ Rq, represent the engine output errors due to the uncertainty which

are generated by the output layer of the DRNN. Moreover, Wxx, Wxu and Wyx

represent the synaptic weights from the context layer to the hidden neurons, and

from the input source neurons to the hidden neurons and from the hidden neurons

to the output neurons, respectively. The activation function of the hidden neurons

are denoted by Φ, that is a sigmoidal function. It typically takes the form of a

hyperbolic tangent or logistic function. The feedback is also a unit-time delay from

139



Multilayer 
Perceptron

Linear Output 
Layer

Bank of q unit-
time delays

Bank of l unit-
time delays 

DRNN

𝒀 𝐮𝐧 
X(k)

X(k+1)
U(k)

𝒀 𝐮𝐧 (k+1) (k)

Figure 5.3: State-space model of the DRNN.

the hidden neurons to the input nodes. In case it is desired to add feedback from

output neurons to the hidden neurons, the state-space equation will be changed

to X (k + 1) = Φ(WxxX (k) + WxuU(k) + WxyŶun(k)), in which Wxy denotes the

corresponding feedback weights. Figure 5.3 displays the state-space model of the

DRNN with the feedback part that is shown in red and is composed of l unit-time

delays as part of the context layer corresponding to the network internal state vector

elements. Note that in Figure 5.3 the output feedback is not considered.

Different methods namely, the back-propagation through time (BPTT), real-

time recurrent learning (RTRL), and extended Kalman filter will be introduced in

the following sections as the DRNN supervised learning approaches [172,173]. More

details regarding the formulation of different supervised learning methods for the

DRNN are explained in Section 5.2. When the DRNN is trained offline, all the

synaptic weights are fixed and it is then applied in our proposed online FDI scheme

in conjunction with a bank of HKFs/RKFs which constitutes the second element of

our proposed hybrid FDI approach.

5.1.2 Bank of Hybrid/Robust Kalman Filters

The HKF and RKF are previously introduced in Chapters 3 and 4 and it was shown

that the HKF is intuitively robust with respect to certain levels of engine health
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parameters degradation. As compared to conventional estimation approaches in the

literature, the HKF is demonstrated to be more accurate in detecting and isolating

single and concurrent sensor faults in different operating modes of the engine. How-

ever, it cannot operate robustly for the higher levels of health parameters degrada-

tions, unless the OBEM health parameters reference baselines are estimated off-line

and updated periodically. Therefore, there is a risk of generating false alarms or

incorrect fault detections in case the health parameters reference baselines are not

updated for the OBEM or their estimation error is not sufficiently small. Also, the

fault detection time may increase rapidly in case of a higher mismatch between the

real engine and the associated OBEM. To rectify the above problems, it is pro-

posed to improve the HKF-based FDI robustness through being integrated with our

proposed DRNN structure.

Moreover, the previously proposed RKF-based FDI framework is formally de-

signed to be robust to certain levels of health parameter degradations, that are

2.5% degradation on the compressor efficiency and 5% degradation on the compres-

sor mass flow rate. However, for higher percentage of degradation, the proposed

RKF-based FDI framework does not operate sufficiently robust and may generate

false alarms and incorrect fault detections. Therefore, it is necessary to improve the

robustness of the RKF-based FDI scheme through integrating it with our proposed

DRNN structure.

As demonstrated in Chapters 3 and 4, a bank of HKFs and RKFs are con-

structed for different healthy and faulty sensor scenarios and are utilized in the

multiple-model structure to detect and isolate different sensor bias faults. Let us

assume a sensor fault is injected to the actual gas turbine engine in (5.1) as,

X(k + 1) = F(X(k), U(k), H(k), w(k)), X(0) = X0,

Y (k) = G(X(k), U(k), H(k)) +

q∑
i=1

bszsδ(k − kfs) + v(k), (5.4)
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where q is the total number of sensors, bs and zs respectively represent the sth sensor

bias fault magnitude and a fault location vector that has a unit value for the sth

sensor and the other elements are zero. δ(k− kfs) denotes a unit step function that

occurs at sample kfs corresponding to the sth sensor.

The bank of HKFs/RKFs receives the modified sensor measurements, Ym(k) =

Y (k) − Ŷun(k) as well as the engine control input. Hence, it is expected to achieve

lower uncertainty effects on the engine sensor measurements due to removal of

the DRNN outputs from the actual engine sensor measurement. The bank of

HKFs/RKFs are also expected to be more robust while receiving the modified sensor

measurements.

Remark 5.1: The DRNN is trained offline by using the signals U(k), YOBEM(k)

and Yun(k) for the entire operating regime of the gas turbine engine. It is assumed

that the training data is collected for the fault-free engine. The reason that the

DRNN uses the OBEM outputs rather than the sensor measurements is to avoid

the DRNN to be adapted with the fault terms that may occur during an online

operation and that can affect the engine sensor measurements. The DRNN must be

specialized to solely approximate the uncertainty effects, but not an engine fault.

5.2 DRNN Structure and the Training Process

In general, there are two modes of training for different types of neural networks,

namely the batch mode and the sequential mode. In the batch mode, the network

parameters are adjusted for the entire training samples, however in the sequential

mode the parameter adjustment is performed after the presentation of each training

pattern. Similar modes are also defined in the literature for DRNN as epochwise and

continuous training procedures. Based on these two modes, two gradient descent-

based training algorithms that involve the propagation of derivatives are developed
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for DRNN training that are back-propagation through time (BPTT) and real-time

recurrent learning (RTRL). The derivative information is propagated in the back-

ward direction for the former one and in a forward direction for the latter [172].

The BPTT is the extension of the standard back-propagation algorithm. It

can be derived by unfolding the temporal operation of the DRNN into the layered

feedforward topology in which the temporal behavior is represented by one layer in

each time step. The BPTT training can be performed in two forms of epochwise

and continuous forms. In the epochwise BPTT training algorithm, the sum of mean

square errors is minimized as,

E =
1

2

T∑
k=1

q∑
j=1

(Y j
un(k)− Ŷ j

un(k))2, (5.5)

where T and q denote the total number of training samples and the number of

network outputs, respectively. The DRNN weight parameters, wji(k) (the elements

of Wxx, Wxu and Wyx weight matrices) are updated according to the following rule,

wji(k + 1) = wji(k)− γ ∂E
∂wji(k)

, (5.6)

where γ is the learning rate and wji(k) is the synaptic weight from the ith neuron

to the jth neuron.

To compute the gradients, the error term associated with the jth neuron can

be defined as,

δj(k) = − ∂E
∂Oj(k)

, (5.7)

where Oj(k) is the jth term of O(k) that is the induced local field or potential of

neurons. The induced local field is computed as O(k) = WxxX (k) + WxuU(k) for

the hidden neurons and as O(k) = WyxX (k) for the output neurons. The jth error

term at k = T is computed as,

δj(T ) = Φ
′
(Oj(T ))(Y j

un(T )− Ŷ j
un(T )), (5.8)
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where Φ
′
(·) is the derivative of an activation function. For all the other time steps

in the time frame, k = T − 1, T − 2, . . . , 1, the error term is recursively computed

as,

δj(k) = Φ
′
(Oj(k))

[
(Y j

un(k)− Ŷ j
un(k)) +

∑
i

wjiδi(k + 1)

]
, (5.9)

where the error term associated with the output neurons are propagated back from

the output layer at time k, and the error term associated with the hidden neurons

are propagated back at time k + 1. Once the computation of the back propagation

has been performed, the synaptic weight wji is adjusted as,

∆wji = −γ ∂E
∂wji

= γ
T∑
k=1

δj(k)Ii(k − 1), (5.10)

where Ii(k − 1) is the input applied to the ith synapse of neuron j at time k − 1.

The computational complexity of the BPTT is O(M2) per time step, where

M is the total number of weight parameters. Compared to the standard BP, the

BPTT converges more slowly due to dependencies between time frames and it is more

likely to be stuck in a poor local minimum due to exploding and vanishing gradient

effects. Different techniques, such as the echo-state property that is used in primal-

dual learning algorithm as a constrained optimization problem, are introduced in

the literature to avoid the exploding and vanishing gradient effects [174].

The BPTT has also a continuous version in which the cost function is com-

puted at each time step and the weights are individually adjusted for each training

pattern. For this purpose, a relevant history of inputs and internal states are saved

for a time called truncation depth. Only the history over a truncation depth is

restored. This property can control the computational complexity and improve the

practicality of the learning process. It must be noted that the truncation depth

must be sufficiently large to keep the convergence of derivatives and small enough

to control the computational complexity.
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To use the truncated BPTT algorithm the instantaneous value of the cost

function is used as,

E(k) =
1

2

q∑
j=1

(Y j
un(k)− Ŷ j

un(k))2. (5.11)

If h indicates the truncation depth, the error term associated with the jth neuron

is given by,

δj(t) = − ∂E(t)

∂Oj(t)
, k − h < t ≤ k (5.12)

which ends in the following error terms associated with the kth sample and the

preceding samples with the depth of h, k − h < t ≤ k, that is

δj(t) =


Φ
′
(Oj(k)(Yun(k)− Ŷun(k)), t = k

Φ
′
(Oj(t))

∑
iwji(t)δi(t+ 1), k − h < t < k.

(5.13)

Similarly, once the back propagation computation has been performed the

weights are updated as,

∆wji(k) = γ
k∑

t=k−h+1

δj(t)Ii(t− 1), (5.14)

where γ should be sufficiently small to avoid the weight values change significantly.

Moreover, the real-time recurrent learning (RTRL) method is another learning

method that is more suitable for online learning, although the corresponding com-

putational cost is O(l+ q)4, and therefore it is recommended to be utilized for small

size networks. The details regarding this learning method are explained further

in [172].

One of the remedies for solving the vanishing gradient problem is to use the

second-order training algorithm such as the quasi-Newton, Levenberg-Marquardt

and conjugate gradient methods, however they are sometimes trapped in a local

solution. The nonlinear sequential state estimation methods are capable of not only

evolving the weight parameters of a network in a sequential manner, but also provide
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one with the second-order information of data by means of calculating the prediction-

error covariance matrix that is also evolved sequentially. The Kalman filter (KF)-

based training is a popular method for nonlinear sequential state estimation that is

developed to train a neural network in the late 1980s [175].

The KF-based training methods have better fitting accuracy, faster conver-

gence speed and use second-order derivative information unlike the gradient descent

methods. They are also less likely to converge to a local optimum due to their

stochastic training process and do not also need any regularization to avoid over

fitting.

In this chapter, the DRNN training is considered as a state estimation problem

of an unknown ideal network that provides zero residual. The states are the neural

network weight parameters W (k) in which the Wxu(k), Wxx(k) and Wyx(k) elements

are included in an orderly fashion such that the weights associated to the first neuron

in the first layer are followed by those of the second neuron, carrying on in this

manner until all the neurons are accounted for in W (k). The residual vector is also

the current training error Yun(k)− Ŷun(k).

Let us assume that the ideal state-space model of the network is given by:

W (k + 1) = W (k) + ςw(k), W (0) = W0,

Yun(k) = F (W (k), U(k),X (k)) + ςv(k), (5.15)

where ςw(k) and ςv(k) are assumed to be the zero mean Gaussian process and mea-

surement noise, respectively. The corresponding fixed diagonal noise covariance

matrices that are used for the Kalman filter-based training process are Q and R,

respectively. Note that the covariance matrices can also be considered time-varying

particularly for adjusting the network convergence speed. Moreover, F is a nonlin-

ear function which defines an ideal network structure to generate the output Yun(k)

and indicates the overall nonlinearity of the network from the input to the output

layer, and X (k) denotes the network internal states. It must be noted that Yun(k)
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is the desired output of the DRNN that is perfectly matched with the engine sensor

measurements difference, Y (k) − YOBEM(k), however their corresponding predicted

value is indicated as Ŷun(k), that is used to measure the residual or innovation

process. Moreover, F has a known structure but with unknown parameters.

The training data set includes the pairs of {U(k), Yun(k)}Tk=1 samples. The

relevant formulations associated with the EKF-based DRNN training algorithm is

as follows,

K(k) = P (k|k − 1)HT(k)
[
H(k)P (k|k − 1)HT(k) +R

]−1
,

r(k) = Yun(k)−F (Ŵ (k|k − 1),X (k),U(k)),

Ŵ (k|k) = Ŵ (k|k − 1) +K(k)r(k),

Ŵ (k + 1|k) = Ŵ (k|k),

P (k|k) = P (k|k − 1)−K(k)H(k)P (k|k − 1),

P (k + 1|k) = P (k|k) +Q, (5.16)

where K(k), P (k) and H(k) denote the Kalman gain matrix, the prediction-error

covariance matrix (carries the second-order derivative information) and the measure-

ment matrix, respectively. The predicted network output Ŷun(k|k − 1) is calculated

by the use of predicted weight parameters Ŵ (k|k − 1), network inputs U(k) and

internal state vector X (k) as indicated in (5.3). Thus, the DRNN supplies the EKF

with Ŷun(k|k − 1) as the predicted estimate of the observable Yun(k) in order to

compute the residual vector.

The measurement matrix of the linearized model is also obtained by calculating

the partial derivatives of the actual network outputs with respect to the network
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weight parameters vector as,

H(k) =



∂F1

∂W1(k)
∂F1

∂W2(k)
. . . ∂F1

∂WM (k)

∂F2

∂W1(k)
∂F2

∂W2(k)
. . . ∂F2

∂WM (k)

...
...

...
...

∂Fq

∂W1(k)

∂Fq

∂W2(k)
. . . ∂Fq

∂WM (k)


, (5.17)

where M is the total number of weight parameters and H(k) ∈ Rq×M . In this thesis,

the above partial derivatives are calculated by using the truncated BPTT algorithm.

The computational complexity of the EKF-based training process is O(qM2). To

compute the measurement matrix, the partial derivatives in (5.17) are evaluated at

W (k) = Ŵ (k|k − 1).

In the EKF-based supervised learning process, the DRNN utilizes Ŵ (k|k− 1)

to compute Ŷun(k|k− 1) in response to the input vector U(k). Then, Ŷun(k|k− 1) is

supplied to the EKF algorithm and is taken as F (Ŵ (k|k−1),U(k),X (k)) according

to the second line in (5.16). As per the following lines of the equations in (5.16)

and using the innovation process, the EKF updates the old estimate of the weight

vector and computes Ŵ (k|k). Finally, the updated weight vector is supplied to the

DRNN by EKF via a bank of unit-time delays. Therefore, according to Figure 5.4

the DRNN performs the role of the predictor and the EKF learning process provides

the supervision and performs the role of the corrector.

5.3 Hybrid DRNN-based FDI Scheme

The hybrid DRNN-based FDI scheme is constructed using multiple hybrid Kalman

filters or robust Kalman filters as proposed in Chapters 3 and 4. As per explanations

in Sections 3.2 and 4.3, the piecewise linear (PWL) models are derived at multiple

operating points to cover the entire flight profile.

In the DRNN-HKF-based scheme, the PWL models are used to compute the
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Figure 5.4: EKF-based training of the DRNN weights.

corresponding steady-state Kalman gain matrices for various sensor modes in (5.4).

Therefore, the HKF for the jth sensor mode at the ith operating point is designed

as follows:

X̂(i,j)(k + 1)−XOBEM(k + 1) = Ai(X̂(i,j)(k)−XOBEM(k)) +Ki
ss(Ym(k)− Ŷ (i,j)(k)),

Ŷ (i,j)(k) = Ci(X̂(i,j)(k)−XOBEM(k)) + YOBEM(k) + bdjajδj(k), (5.18)

which is similar to (3.17) with its defined variables in Section 3.2. Note that unlike

our proposed HKF methodology in Chapter 3, in this chapter the OBEM health

parameters are fixed at their corresponding healthy reference baselines and the HKF

receives the modified measurements rather than the real ones.

In DRNN-RKF-based scheme, using the uncertain PWL models state-space

matrices the RKF for the jth sensor mode at the ith operating point is designed as
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follows:

∆X̂(i,j)(k + 1) = Gi∆X̂(i,j)(k) +Ki∆Y i
m(k),

∆Ŷ (i,j)(k) = C̄i∆X̂(i,j)(k) + bdjajδj(k), (5.19)

which is similar to (4.39) with its defined variables in Section 4.3. Note that

∆Ym(k) = Y (k) − Yss − Ŷun(k) denotes the perturbation of the modified measure-

ments from their corresponding steady-state operating points.

Following the design of multiple HKFs and RKFs, their corresponding residu-

als, covariance matrices and likelihood functions are respectively given by:

γ(i,j)(k) = Ym(k)− Ŷ (i,j)(k),

S(i,j)(k) = cov(γ(i,j)(k)),

f (i,j)(γ(i,j)(k)) =
1

(2π)q/2
√
|S(i,j)(k)|

× exp[
−1

2
(γ(i,j)(k))T(S(i,j)(k))(−1)(γ(i,j)(k))],

(5.20)

The normalized weights are also computed as follows:

µ(i,j)(k) =
f (i,j)(γ(i,j)(k))µ(i,j)(k − 1)∑L
i=1 f

(i,j)(γ(i,j)(k))µ(i,j)(k − 1)
. (5.21)

Corresponding to each sensor mode, the weighted residual and the covariance

matrices are computed as follows:

γjc(k) =
L∑
i=1

µ(i,j)(k)γ(i,j)(k),

Sjc (k) =
L∑
i=1

(µ(i,j)(k))2S(i,j)(k), (5.22)

Finally, to detect and isolate sensor fault by using our proposed DRNN-HKF

or DRNN-RKF based frameworks, the hypothesis conditional probability Pj(k) is

defined as (3.23) or (4.44) and is computed recursively. Hence, the condition of the

system and the location of a single faulty sensor can be detected and isolated based

on evaluating Pj(k) and determining its maximum value. In other words, a similar

sensor FDI logic is utilized in both DRNN-HKF and DRNN-RKF based schemes.

150



5.4 Convergence Analysis

In this section, the convergence of our proposed dynamic recurrent neural network

that is trained by the EKF algorithm is investigated. The analysis is performed for a

more general DRNN that is called the modified Elman neural network [176]. In this

network, in addition to the unit-time delay feedback connections from the hidden

neurons to input neurons, the auto-feedback connections with fixed gains exist from

the context layer to the hidden layer. Note that the context layer includes the nodes

receiving the feedback connections from the hidden neurons. It must be noted that

the following analysis is completely valid for our proposed DRNN which has an

Elman structure without the above auto-feedback connections.

Let us consider the following unknown discrete-time nonlinear system:

X(k + 1) = F(X(k), U(k)), (5.23)

where U(k) ∈ Rp is the input vector, X(k) ∈ Rn is the state vector. U(k) and X(k)

are known and F is an unknown general nonlinear smooth function. To identify the

nonlinear system, the state-space model of the modified Elman DRNN is given by:

X̂(k + 1) = AX̂(k) +W y(k)Φ(W x(k)X̂(k) +W uU(k)), (5.24)

where X̂(k) ∈ Rn represents the internal state of the modified Elman DRNN. The

matrix A ∈ Rn×n is a stable fixed and known matrix with the elements showing the

auto-feedback connection gains. W x(k) ∈ Rn×n, W u(k) ∈ Rn×p and W y(k) ∈ Rn×n

represent the synaptic weights from the context layer to the hidden layer, from the

input layer to hidden layer and from the hidden layer to the output layer, respec-

tively. Also, Φ is an n-dimensional sigmoidal vector function Φ = [Φ1,Φ2, . . . ,Φn]T
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that is given by:

Φ(W x(k)X̂(k) +W u(k)U(k)) =[Φ1(
n∑
j=1

wx1j(k)x̂j(k) +

p∑
h=1

wu1h(k)uh(k)),

Φ2(
n∑
j=1

wx2j(k)x̂j(k) +

p∑
h=1

wu2h(k)uh(k)), . . . ,

Φn(
n∑
j=1

wxnj(k)x̂j(k) +

p∑
h=1

wunh(k)uh(k))]T, (5.25)

where x̂j(k) and uh(k) are the jth and hth elements of state and input vectors,

respectively. The unknown nonlinear system in (5.23) can be written as follows:

X(k + 1) = AX(k) +W y(k)Φ(W x(k)X(k) +W u(k)U(k)) + η(k), (5.26)

where η(k) = F(X(k), U(k)) − AX(k) − W y(k)Φ(W xX(k) + W u(k)U(k)) is the

modeling error with respect to the weights. The identification error η(k) can be

made sufficiently small by locating appropriate number of neurons in the hidden

layer. The state-space model in (5.3) is similar to (5.23), in which the auto-feedback

connections are removed.

Using the Taylor series approximation, the nonlinear term of (5.26) can be ex-

pressed around the equilibrium points W̄ x = W x(0), W̄ u = W u(0) and W̄ y = W y(0).

The wights deviations are also denoted as ∆W y(k) = W y(k) − W̄ y, ∆W x(k) =

W x(k)− W̄ x and ∆W u(k) = W u(k)− W̄ u. Specifically, we have

W y(k)Φ(W x(k)X(k) +W u(k)U(k)) = W y(k)[Φ1,Φ2, . . . ,Φn]T (5.27)

where the Φ vector function elements are given by (5.25) in which the x̂j(k) is

replaced by xj(k). Using the following set of equations, it can easily be shown that

the Taylor series can be expressed as:

W y(k)Φ(W x(k)X(k) +W u(k)U(k)) =W̄ yΦ(W̄ xX(k)

+ W̄ uU(k)) +BT(k)W (k) + ε(k), (5.28)
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where B(k) =


Bu(k)

Bx(k)

By(k)

 ∈ R(pn2+n3+n2)×n and W (k) =


θu(k)

θx(k)

θy(k)

 ∈ R(pn2+n3+n2)×1

and ε(k) represents the higher order terms of the Taylor series. B(k) is the scaling

matrix of W (k) as the parameter matrix showing the deviations of the network

synaptic weights as follows:

θu(k) = [Wu(k),Wu(k), . . . ,Wu(k)]T,

θx(k) = [Wx(k),Wx(k), . . . ,Wx(k)]T,

θy(k) = [∆W y
1 (k),∆W y

2 (k), . . . ,∆W y
n (k)]T, (5.29)

whereWu(k) = [∆W u
1 (k),∆W u

2 (k), . . . ,∆W u
i (k), . . . ,∆W u

n (k)],Wx(k) = [∆W x
1 (k),

∆W x
2 (k), . . . ,∆W x

i (k), . . . ,∆W u
x (k)] in which ∆W u

i (k), ∆W x
i (k) and ∆W y

i (k) are

the ith rows of the matrices ∆W u(k), ∆W x(k) and ∆W y(k), respectively. Moreover,

θu(k) ∈ Rpn2×1, θx(k) ∈ Rn3×1 and θy(k) ∈ Rn2×1. Note that the blocks of B(k) are

also given as follows:

Bu(k) =



Bu
1 (k) 0 . . . 0

0 Bu
2 (k) . . . 0

...
...

. . .
...

0 0 . . . Bu
n(k)



T

Bx(k) =



Bx
1 (k) 0 . . . 0

0 Bx
2 (k) . . . 0

...
...

. . .
...

0 0 . . . Bx
n(k)



T

By(k) =



By
1(k) 0 . . . 0

0 By
2(k) . . . 0

...
...

. . .
...

0 0 . . . By
n(k)



T

(5.30)

where Bu(k) ∈ Rpn2×n, Bx(k) ∈ Rn3×n and By(k) ∈ Rn2×n. Also, their corre-

sponding blocks are displayed as follows in which the sample time k is removed for
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simplicity,

Bu
i =

[
w̄yi1Φ

′

W̄u
1

diag(U), w̄yi2Φ
′

W̄u
2

diag(U), . . . , w̄yijΦ
′

W̄u
j

diag(U), . . . , w̄yinΦ
′

W̄u
n

diag(U)

]
,

Bx
i =

[
w̄yi1Φ

′

W̄x
1
diag(X), w̄yi2Φ

′

W̄x
2
diag(X), . . . , w̄yijΦ

′

W̄x
j
diag(X), . . . , w̄yinΦ

′

W̄x
n
diag(X)

]
,

By
i =

[
Φ1(0),Φ2(0), . . . ,Φi(0), . . . ,Φn(0)

]
(5.31)

where i = 1, 2, . . . , n. The diag(X) ∈ Rn×n and diag(U) ∈ Rp×p are diagonal

matrices in which the diagonal elements are constructed by using X and U vector

elements, respectively. Also, Φ
′

W̄u
j

and Φ
′

W̄x
j

are n and p-dimensional row vectors

representing the partial derivatives of Φ with respect to the jth rows of W x and

W u matrices that are evaluated at their corresponding equilibrium points W̄ u
j and

W̄ x
j , respectively. And w̄yij is the ith row and jth element of W y that is evaluated

at its corresponding equilibrium point. Moreover, Φi(0) denotes the ith element

of the matrix Φ in which all the weight matrices elements are replaced by their

corresponding equilibrium points.

The Taylor series approximation is given in (5.28), where the unknown non-

linear system (5.26) can be rewritten as follows:

X(k + 1) =AX(k) + W̄ yΦ(W̄ xX(k) + W̄ uU(k))

+BT(k)W (k) + ε(k) + η(k), (5.32)

where ςv(k) = ε(k) + η(k) is the updated definition of the modeling error. Let us

consider

Y (k) = BT(k)W (k) + ςv(k), (5.33)

where

Y (k) = X(k + 1)− AX(k)− W̄ yΦ(W̄ xX(k) + W̄ uU(k)). (5.34)

Now, we use the EKF to train the modified Elman DRNN weight param-

eters such that the identification error ex(k) = X̂(k) − X(k) remains bounded.
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The parameter matrix W (k) is also modeled as W (k + 1) = W (k) + ςw(k), where

ςw(k) = [ςw1(k), ςw2(k), . . . , ςwn(k)]T represents the process noise. Therefore, the

weight parameters dynamic equations are given as follows:

W (k + 1) = W (k) + ςw(k),

Y (k) = BT(k)W (k) + ςv(k), (5.35)

ςw(k) and ςv(k) denote the process and measurement noise, respectively. It is as-

sumed that the process and measurement noise are uncorrelated and their corre-

sponding covariance matrices are Q and R, respectively. The equation (5.35) is the

random walk model for the weight parameters in which the parameters are assumed

to be unknown with a small random walk component to provide the adaptive esti-

mation. The EKF which updates the weight parameters can be designed as follows:

Ŵ (k + 1) = Ŵ (k) +K(k)ey(k),

Ŷ (k) = BT(k)Ŵ (k),

ey(k) = Y (k)− Ŷ (k), (5.36)

where Ŷ (k) is the estimated Kalman output and K(k) is the Kalman gain. The

parameter estimation error is defined as:

W̃ (k) = W (k)− Ŵ (k). (5.37)

Using (5.35) and (5.37), the parameter estimation error dynamic can be ex-

pressed as:

W̃ (k + 1) = [I −K(k)BT(k)]W̃ (k) + ςw(k)−K(k)ςv(k). (5.38)

The parameter estimation error covariance matrix is P (k) ∈ R(pn2+n3+n2)×(pn2+n3+n2)

that can easily be defined as:

P (k) = E{W̃ (k)W̃T(k)} (5.39)
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Substituting (5.38) into (5.39) yields

P (k + 1) = E{W̃ (k + 1)W̃T(k + 1)}

= E{[(I −K(k)BT(k))W̃ (k) + ςw(k)−K(k)ςv(k)]

× [(I −K(k)BT(k))W̃ (k) + ςw(k)−K(k)ςv(k)]T}

= (I −K(k)BT(k))E{W̃W̃T(k)}(I −K(k)BT(k))T + E{ςw(k)ςT
w (k)}

+K(k)E{ςv(k)ςT
v (k)}KT(k)

+ cross-terms(W̃ (k), ςw(k), ςv(k)). (5.40)

The cross-terms of (W̃ (k), ςw(k), ςv(k)) are zero since they are independent.

Therefore, P (k + 1) can be rewritten as follows:

P (k + 1) =P (k) +Q− P (k)B(k)(R +BT(k)P (k)B(k))−1BT(k)P (k)

+ [K(k)− P (k)B(k)(R +BT(k)P (k)B(k))−1](R +BT(k)P (k)B(k))

[K(k)− P (k)B(k)(R +BT(k)P (k)B(k))−1]T, (5.41)

The [·](R+BT(k)P (k)B(k))[·]T, P (k) and Q are positive semi-definite matri-

ces. Therefore, to minimize P (k+1), the termK(k)−P (k)B(k)(R+BT(k)P (k)B(k))−1

should be made equal to zero. Consequently, the Kalman filter gain is obtained as:

K(k) = P (k)B(k)(R +BT(k)P (k)B(k))−1. (5.42)

Therefore, P (k + 1) becomes

P (k + 1) = P (k) +Q− P (k)B(k)(R +BT(k)P (k)B(k))−1BT(k)P (k)

= Q+ [I −K(k)BT(k)]P (k) (5.43)

The network parameters are trained by using the EKF algorithm that is de-

veloped in (5.36),(5.42) and (5.43). The Kalman error ey(k) = Y (k) − Ŷ (k) is not

the same as the identification error X̂(k) − X(k), however they are minimized at

the same time. It can easily be shown that

ex(k + 1) = Aex(k) + ey(k). (5.44)
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Hence, it can be shown that for k ≥ 1, ex(k) = Akex(0) +
∑k−1

j=0 A
k−j−1ey(j).

Since ex(0) is constant and A is a stable matrix, the minimization of the Kalman

error ey(j) implies that the upper bound of the identification error ex(k) is minimized

as follows:

|ex(k)| ≤ |ex(0)|+
k−1∑
j=0

|ey(j)|. (5.45)

It must be noted that in the EKF-based training algorithm, the learning rate

is adjusted by K(k) that is not always positive definite matrix and is also changed

through the time. This is the main reason why the EKF-based training method

has a faster convergence rate than the back propagation method. The speed of

convergence can be increased by means of the Q adaptation law using the maximum

likelihood method [90]. Moreover, note that the above convergence analysis can be

applied to the standard Elman DRNN without auto-feedback connections with only

slight modifications.

5.5 Simulation Results

In this section, different simulation cases are presented to investigate the efficiency

and performance of our proposed hybrid FDI approach. For this purpose, the DRNN

that is proposed in Section 5.2 is integrated with the bank of HKFs, as designed in

Chapter 3, and the RKFs as designed in Chapter 4. In each experiment, different

factors, namely the fault detection time, false alarm rate, accuracy and incorrect

fault detection rate are investigated.

To perform simulations, two complete flight profiles are considered. The first

flight profile (FP1) is used to simulate the hybrid scheme constituting the DRNN

and a bank of HKFs and the second flight profile (FP2) is used to simulate the

hybrid scheme constituting DRNN and a bank of RKF. The FP1 and FP2 that are

respectively used in Chapters 3 and 4 are displayed in Figure 5.5. For each flight
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Figure 5.5: (a-c) FP1 fuel flow rate, altitude and Mach number, (d-f) FP2 fuel flow
rate, altitude and Mach number.

profile the changes of the fuel flow rate, altitude and Mach number are displayed.

5.5.1 DRNN Training Process

To construct the online hybrid DRNN-HKF-based (HNNHKF) FDI scheme, first

the DRNN has to be trained offline for the gas turbine engine with healthy sensors

and different values of the health parameters degradations. During the training pro-

cess, the network parameters are specified through the cost function minimization.

The number of hidden neurons, number of epochs, the initial values for covariance

matrices P , Q and R as well as the window size (truncation depth) constitute the

set of parameters that have to be defined through the learning process. The over-

all structure of the proposed DRNN is displayed in Figure 5.6 including the input,

context, hidden and output layers. The input and output nodes are set to 7 and 5,

respectively. The input vector is constructed by augmenting the engine input (fuel

mass flow rate), OBEM outputs as well as the bias term. The output vector also rep-

resents the estimated uncertainty effects associated with five sensor measurements.
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Figure 5.6: DRNN structure

As per explanations given in Section 5.2, the engine control input, OBEM

outputs and actual engine sensor measurements construct the training data set that

are assumed to be collected during the entire flight profile. The same set of nonlinear

state space equations as used in (2.3) are used for both the actual engine and the

OBEM. The actual engine and the OBEM are simulated for the flight profiles that

are displayed in Figure 5.5. For more details regarding the engine dynamic equations,

environmental parameters and ambient condition, refer to the descriptions in (2.3).

For our simulations, the OBEM operates at the healthy reference baselines of

the engine health parameters, however the actual engine is degraded gradually due

to the aging process during a set of flights. The process and measurement noise

are respectively applied on ambient parameters and engine sensor measurements.

Similar noise standard deviations as defined in Chapter 2 are used in this chapter.

The associated process and measurement noise factors are Kw = 0.2 and Kv = 1.

The DRNN is designed to approximate the corresponding differences between the

actual engine sensor measurements and the OBEM outputs.
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The learning process is performed by collecting the training and validation

data and using the 5-fold cross-validation method. For this purpose, the FP1 and

FP2 are simulated five times with respectively αṁC
= 0.93 and αηC = 0.965 as

well as αṁC
= 0.82 and αηC = 0.91. The engine control input, OBEM outputs

and the engine sensor measurements are recorded to construct the training and

the validation data sets. The data is generated for different values of the health

parameters degradations. Note that the health parameters degradations are the

ones for which the previously HKF and RKF based FDI schemes generate many false

alarms. The initial values of the other parameters are also set as: Diag(P ) = 100,

Diag(Q) = 0.000001, Diag(R) = 10 and h = 10.

The first step of the learning process is to define the number of hidden neurons.

As per (5.5), the mean square error (MSE) is computed for the DRNN with various

number of hidden neurons. Figure 5.7 displays the trends of the mean square errors

corresponding to the training and validation data in terms of the hidden neurons

number for both FP1 and FP2. To obtain these errors, four flights data are consid-

ered as the training set and the last one is used as the validation data. The 5-fold

cross-validation is used and finally the average of MSEs associated to five clusters

of training and validation data are measured. The simulations are performed for 10

epochs.

Using Figure 5.7, the proper number of hidden neurons are determined for

both FP1 and FP2. The neurons are set to the number for which the training and

validation errors are started to be almost fixed or increased, otherwise the DRNN

will be over-trained and the network generalization ability will be diminished. In

our simulation studies, the proper number of hidden neurons that are determined

for FP1 and FP2 are 6 and 5, respectively.

The second step is to determine the number of epochs. An epoch is a single
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Figure 5.7: (a) Average of MSEs for five clusters of training and validation data, for
(a) FP1 under αṁC

= 0.93 and αηC = 0.965, and (b) FP2, under αṁC
= 0.82 and

αηC = 0.91, versus the number of hidden neurons.

pass through the entire training set, followed by testing of the validation set. Fig-

ure 5.8 displays the trends of the mean square errors corresponding to the training

and validation data in terms of the number of epochs for both the FP1 and FP2.

Similarly, the 5-fold cross-validation method is used and finally the average of MSEs

associated to five clusters of training and validation data are measured. The corre-

sponding DRNNs are simulated with the best number of hidden neurons that are

obtained in Figure 5.7.

Using Figure 5.8, the proper number of epochs are determined for both FP1

and FP2, that are equal to 9 and 11, respectively. The higher number of epochs

does not necessarily improve the DRNNs performance.

In the last step, similar simulations are also performed to determine the other

DRNN parameters. The same 5-fold cross-validation is used to determine the proper

sets of parameters that lead to minimum MSE values associated to FP1 and FP2.

Table 5.1 displays the other parameters for the two DRNNs that are trained for FP1

and FP2.
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Figure 5.8: (a) Average of MSEs for five clusters of training and validation data,
for (a) FP1 under αṁC

= 0.93 and αηC = 0.965, and (b) FP2 under αṁC
= 0.82 and

αηC = 0.91 versus the number of epochs.

Table 5.1: The network parameters that are determined during the DRNNs trainings
associated with FP1 and FP2, respectively.

Flight Profile Diag(P ) Diag(Q) Diag(R) h

FP1 160 0.000001 10 6

FP2 140 0.000001 10 10

5.5.2 DRNN Integration with Bank of Hybrid Kalman Fil-

ters

In this section, the DRNN that is trained for FP1 in the preceding section is inte-

grated with a bank of HKFs to construct the hybrid DRNN-HKF-based FDI scheme.

The bank of HKFs are previously developed in Chapter 3 for different healthy and

faulty sensor scenarios. As per the simulation studies in Chapter 3, the bank of

HKFs are intuitively robust with respect to certain limited engine health parame-

ters degradation. However, for higher values of the degradation, false alarms will

occur. In this chapter, it is expected to improve the robustness by integrating the

DRNN with the bank of HKFs as displayed in Figure 5.1.

In the following subsections, various case studies are simulated to investi-

gate and demonstrate the advantages of our proposed hybrid DRNN-HKF-based
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(HNNHKF) FDI scheme performance as compared to multiple HKF-based FDI

scheme that is designed in Chapter 3 in terms of fault promptness detection, fault

estimation accuracy, false alarms and incorrect fault detection rates. It must also be

noted that, similar to the previous chapters, the multiple-model scheme is utilized

to detect and isolate sensor faults. Three simulation case studies are conducted in

this section as summarized below:

• Case (a.1): To evaluate the robustness of our proposed hybrid MM-based

FDI method, the engine model in (5.4) is simulated without a sensor fault but

with compressor health degradations as well as the process and measurement

noise during the entire FP1. Our objective is to compare the false alarm rates

and estimation accuracy between our proposed hybrid DRNN-HKF-based FDI

scheme and the multiple HKF-based FDI scheme that is proposed in Chapter

3. For this purpose, different levels of degradation as well as the disturbance

noise are applied to the actual engine.

• Case(b.1): To evaluate the effectiveness of our proposed hybrid DRNN-HKF-

based FDI scheme, the engine model in (5.4) is simulated with a 3% single

sensor bias fault that occurs at different stages of the flight profile namely

at climbing, cruise and landing. The multiple-model structure is developed

for 3% pre-determined sensor bias fault. The compressor health parameters

degradations are set to αṁC
= 0.93 and αηC = 0.965. Our objective is to

compare the fault detection time, FDI accuracy and incorrect fault detection

rates for 3% single sensor fault that may occur at different states of FP1.

• Case (c.1): To evaluate the effectiveness of our proposed hybrid DRNN-HKF-

based FDI scheme, the engine model in (5.4) is simulated with a single sensor

bias fault with various severities that occur at different stages of FP1. Our

objective is to investigate the fault detection times in terms of sensor fault
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Figure 5.9: Mode probabilities for healthy sensors for the engine with αṁC
= 0.93

and αηC = 0.965 during FP1 using the (a) hybrid DRNN-HKF-based FDI scheme,
and (b) multiple HKF-based FDI scheme.

severities as well as to obtain the maximum bias fault than can be detected in

less than 20 seconds using the same MM structure that is constructed for 3%

pre-determined fault and the DRNN that is previously trained for FP1.

Case (a.1): False Alarm and Estimation Accuracy Evaluation

In this case study simulation, no fault is applied to the actual engine sensors, hence

the mode probability corresponding to the healthy sensor should be approximately

close to one and other probabilities associated with the faulty sensor modes should

be all almost close to zero. Figure 5.9 provides a comparison between the mode

probabilities for healthy sensors that are generated by our proposed hybrid DRNN-

HKF-based FDI scheme and the multiple HKF-based FDI scheme that is designed

in Chapter 3.

Figure 5.9 demonstrates the robustness of our proposed hybrid FDI approach

as compared to the multiple HKF-based FDI scheme. The latter one generates many

false alarms for the healthy engine due to effects of compressor health degradation.

In another experiment, the metric known as the weighted mean absolute percentage

error (WMAPE) is calculated for all the engine outputs during the entire FP1 as
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defined in (4.46).

To compare the estimation accuracy of our proposed hybrid DRNN-HKF-

based FDI method with that of multiple HKF-based FDI scheme, the WMAPE%

is calculated for the engine healthy sensor measurements in presence of various per-

centages of the compressor health parameters degradation during the entire FP1.

Moreover, the effects of different noise factors, associated with the process and mea-

surement noise, on WMAPE% are investigated. The results are provided in Table

5.2.

According to Table 5.2, for both FDI schemes, the estimation error does in-

crease by enhancing either the health degradation level or process and measurement

noise factors, however our proposed hybrid DRNN-HKF-based FDI scheme is still

more accurate than the multiple HKF-based FDI scheme that is proposed in Chap-

ter 3. The higher estimation error may lead to false alarms generation if either the

process and measurement noise levels or the health degradation levels are increased.

To investigate the false alarms rates corresponding to hybrid and multiple

HKF-based FDI schemes, confusion matrices are obtained through increasing the

level of noise and parameter uncertainty associated with 50 Monte Carlo simulation

runs. The results are shown in Table 5.3. It must be noted that true positive (TP)

is associated to cases where the healthy sensors are diagnosed healthy and false

positive (FP) is associated to healthy cases in which a false alarm is generated due

to non-fault related factors. Therefore, false alarm rate (FAR) can be computed

according to FAR = FP
TP+FP

.

The process and measurement noise factors are changed in the first three rows

of Table 5.3, and the compressor health degradation level is only changed in the

last three rows. It follows from Table 5.3 that our proposed hybrid DRNN-HKF-

based FDI method generates significantly lower false alarm rates as compared to

the multiple HKF-based method. Note that although the DRNN is trained for
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Table 5.3: True positives (TP), false positives (FP) and false alarm rates (FAR)
that are obtained for HNNHKF and MHKF based FDI methods if either the Kw

and Kv for the process and measurement noise or the compressor health degradation
is increased.

Scenario
TP FP FAR

HNNHKF MHKF HNNHKF MHKF HNNHKF MHKF
Kw = 0.2 Kv = 1 50 3 0 47 0 0.94
Kw = 0.5 Kv = 1.5 50 1 0 49 0 0.98
Kw = 1 Kv = 2 48 0 2 50 0.04 1.00

αṁC
= 0.92 αηC = 0.96 50 2 0 48 0 0.96

αṁC
= 0.90 αηC = 0.95 48 0 2 50 0.04 1.00

αṁC
= 0.87 αηC = 0.935 47 0 3 50 0.06 1.00

αṁC
= 0.93 and αηC = 0.965, the FAR is still sufficiently low for higher health

degradation magnitudes.

Case (b.1): A 3% Sensor Bias Fault Detection and Isolation

In this section, the fault detection time (FDT) is measured for the 3% single sensor

bias fault that occurs in different modes of FP1 including the climbing, cruise and

landing. Similar to Chapter 3, the MM scheme is used to calculate the probabilities

associated with the derived healthy and faulty models to evaluate the maximum

probability and to detect and isolate the single sensor fault. The MM scheme is

constructed for the pre-determined bias faults with the severity of 3% of the engine

steady-state output values under cruise condition.

Table 5.4 shows the fault detection times for different 3% single sensor fault

scenarios at different stages of the flight profile. It also compares the FDTs that are

obtained by using our proposed hybrid DRNN-HKF-based FDI scheme with that

generated by the multiple HKF-based FDI scheme. To show the capability of our

proposed hybrid FDI schemes, the sensor fault is injected at kf = 50 sec during the

climbing mode, at kf = 250 sec during the cruise mode and at kf = 450 sec during

the landing mode. Note that the degradation factors associated with the compressor

health parameters are set to αṁC
= 0.93 and αηC = 0.965.

167



Table 5.4: Comparison of FDTs between the HNNHKF and MHKF based FDI
schemes associated with a single 3% sensor bias fault that occurs at different stages
of FP1 with αṁC

= 0.93 and αηC = 0.965. (×) denotes incorrect fault detection cases
and (∗) denotes false alarms and/or incorrect fault detections besides the correctly
detected fault.

Faulty Scenario FDI Method
Sensor FDT (sec)

kf = 50 kf = 250 kf = 450

Fault on TC
HNNHKF 63.3 5.2 49.7
MHKF 405.9 10∗ 36.8

Fault on PC
HNNHKF 38.2 3.9 16.8
MHKF 437.6 251.9∗ 23.4∗

Fault on N
HNNHKF 43 3.6 17.5
MHKF 454.5∗ 254.5∗ 52∗

Fault on TT
HNNHKF 51.1 8.7 32.8
MHKF × × ×

Fault on PT
HNNHKF 49.8 3.3 19.2
MHKF 57.8 39.2 25.1∗

By comparing the results in Table 5.4, it can be concluded that the sensor

fault detection times during the cruise mode are much less than that of the other

flight modes since there are fewer variations of thrust and ambient conditions. In

spite of a large input and ambient condition variations during the climbing and the

landing modes, it is still possible to detect a sensor fault by applying our proposed

hybrid DRNN-HKF-based FDI scheme.

In addition, Figures 5.10, 5.11 and 5.12 depict the mode probabilities for three

selected fault scenarios when the bias fault occurs at different instants of the flight

profile. The value of the injected fault is set to 3% of the engine steady-state

output value, while the degradation factors associated with the compressor health

parameters are set to αṁC
= 0.93 and αηC = 0.965. As per Figures 5.10, 5.11

and 5.12, our proposed DRNN-HKF-based FDI scheme is capable of detecting and

isolating different sensor faults that occur during the entire flight mode within a

certain limited time delay, however the multiple HKF-based FDI scheme generates

many false alarms before the occurrence of a fault and detects various incorrect

faults instead of the one that occurs.
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Figure 5.10: Mode probabilities generated by (a) our proposed hybrid DRNN-HKF-
based FDI scheme and (b) multiple HKF-based FDI scheme, for 3% bias fault applied
at kf = 50 sec to the N sensor with αṁC

= 0.93 and αηC = 0.965.
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Figure 5.11: Mode probabilities generated by (a) our proposed hybrid DRNN-HKF-
based FDI scheme and (b) multiple HKF-based FDI scheme, for 3% bias fault applied
at kf = 250 sec to the TC sensor with αṁC

= 0.93 and αηC = 0.965.

To quantify the effectiveness and reliability of our proposed hybrid DRNN-

HKF-based FDI scheme, two confusion matrices (CM) are obtained in which ei-

ther the compressor health degradation magnitude or disturbance noise factor is

increased. For this purpose, 50 Monte Carlo simulations are performed. The first

confusion matrix corresponding to αṁC
= 0.90 and αηC = 0.95 is displayed in Table

5.5. The second one is corresponding to Kw = 0.5 and Kv = 1.5 that is displayed

in Table 5.6.
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Table 5.5: The confusion matrix that is obtained for hybrid DRNN-HKF-based FDI
scheme for 3% single sensor bias fault that is applied to the engine under αṁC

= 0.90
and αηC = 0.95.

CM1 TC PC N TT PT No Fault
TC 50 0 0 0 0 0
PC 0 50 0 0 0 0
N 0 0 50 0 0 0
TT 5 0 3 40 2 0
PT 5 0 0 0 45 0

No Fault 2 0 0 0 0 48

Table 5.6: The confusion matrix that is obtained for hybrid DRNN-HKF-based FDI
scheme for 3% single sensor bias fault that is applied to the engine under Kw = 0.5
and Kv = 1.5.

CM2 TC PC N TT PT No Fault
TC 50 0 0 0 0 0
PC 0 50 0 0 0 0
N 0 0 50 0 0 0
TT 2 0 0 43 5 0
PT 3 0 0 0 47 0

No Fault 0 0 0 0 0 50
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Figure 5.12: Mode probabilities generated by (a) our proposed hybrid DRNN-HKF-
based FDI scheme and (b) multiple HKF-based FDI scheme, for 3% bias fault applied
at kf = 450 sec to the PC sensor with αṁC

= 0.93 and αηC = 0.965.

Table 5.7: Hybrid DRNN-HKF-based Sensor FDI algorithm performance indices
corresponding to different levels of uncertainties.

Scenarios FPR ACC IFDR
Kw = 0.2 Kv = 1 0 1 0
Kw = 0.5 Kv = 1.5 0 0.967 0.04

αṁC
= 0.93 αηC = 0.965 0 1 0

αṁC
= 0.90 αηC = 0.943 0.04 0.95 0.06

According to our simulations, the initial impact of any increase in either the

noise factors or the engine health degradation magnitudes is to delay the fault detec-

tion time. Moreover, the occurrence of false alarms and incorrect fault detections are

the other consequences due to increases in the above uncertainty sources. Different

performance indices can be defined to quantify the robustness of our proposed hybrid

DRNN-HKF-based sensor FDI algorithm with respect to the levels of uncertainty

sources. False positive (false alarm) rate (FPR), accuracy (ACC) and incorrect fault

detection rate (IFDR) are the indices defined in (3.31) and are computed in Table

5.7 for our proposed hybrid DRNN-HKF-based FDI scheme to investigate the effects

of various uncertainty sources.

According to Table 5.7, increasing the levels of uncertainty sources results in
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decrease of ACC, but increase in FPR and IFDR. Notwithstanding these observa-

tions, our proposed hybrid DRNN-HKF-based FDI scheme still works sufficiently

robust with respect to engine health degradation as well as the process and mea-

surement noise, particularly as compared to the previously developed MHKF-based

FDI scheme which is a totally model-based structure.

Case (c.1): Sensor Fault Detection and Isolation for Different Fault Sever-

ities

In real applications, there is no guarantee that the sensor bias fault severity always

matches the 3% pre-determined fault for which the MM structure is designed. There-

fore, it is essential to investigate the performance of our proposed hybrid DRNN-

HKF-based FDI scheme for an applied sensor bias fault having different severities

starting from the minimum detectable bias. Table 5.8 shows the detection times for

all faulty modes as a function of the fault severities, when the applied faults occur

during the cruise mode of FP1 with also αṁC
= 0.93 and αηC = 0.965.

It can be observed from Table 5.8 that the higher the fault severity with respect

to the pre-determined 3% fault, the later the detection time, given that the actual

fault becomes further different from the pre-determined bias fault. Note that the

minimum detectable sensor bias fault is 2% that requires larger time to be detected

as compared to the higher fault severities.

Table 5.8: The sensor fault detection times for all fault modes as a function of the
fault severity during the cruise of FP1, with αṁC

= 0.93 and αηC = 0.965.

Fault Time 2% 3% 4% 5% 6%
TC 5.3 5.2 5.3 7.4 9.2
PC 27.4 3.9 7.7 15.8 33.1
N 31.6 3.6 2.5 6 13.1
TT 40.9 8.7 12.5 19.8 45.6
PT 11.3 3.3 3.6 3.9 4.7

It should be pointed out that our proposed hybrid DRNN-HKF-based structure
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Table 5.9: The maximum sensor bias fault (as percentage of the engine steady-state
outputs) that can be detected in less than 20 seconds during the cruise mode of FP1
by using our proposed hybrid DRNN-HKF-based FDI scheme under αṁC

= 0.93
and αηC = 0.965.

Sensor Fault TC PC N TT PT

Maximum Detectable Fault% 37 5.8 10 5 20

is designed for a 3% sensor bias fault and is not capable of detecting and isolating

sensor bias faults that have far greater severities. For this purpose, Table 5.9 shows

the maximum sensor bias faults that are detectable in less than 20 seconds by

using our proposed hybrid DRNN-HKF-based FDI scheme under αṁC
= 0.93 and

αηC = 0.965. The reported fault severities in Table 5.9 are obtained for the cruise

mode of FP1. However, if an applied sensor bias fault increases far beyond the

corresponding maximum detectable fault as indicated in Table 5.9, an incorrect fault

may be detected. Therefore, it is recommended that one incorporates more models

within the MM-based structure corresponding to higher pre-determined sensor faults

to become capable of detecting and isolating faults with higher magnitudes in shorter

durations of time.

5.5.3 DRNN Integration with a Bank of Robust Kalman

Filters

In this section, the DRNN that is trained for FP2 in Section 5.5.1 is integrated with a

bank of RKFs to construct the hybrid DRNN-RKF-based FDI scheme. The bank of

RKFs are previously developed in Chapter 4 for different healthy and faulty sensor

scenarios. As per the derivations in Chapter 4, the RKF is formally designed to be

robust with respect to compressor health degradation with αṁC
= 0.95 and αηC =

0.975. However, a risk of a false alarm is increased for higher engine degradation

magnitudes. In this section, the DRNN is combined with the previously designed

bank of RKFs to investigate the robustness with respect to engine health parameters
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degradations.

In the following subsection, various case studies similar to those in the preced-

ing section are performed to investigate the pros and cons of our proposed hybrid

DRNN-RKF-based (HNNRKF) FDI scheme as compared to multiple RKF-based

FDI scheme that is designed in Chapter 4 in terms of fault promptness detec-

tion, fault estimation accuracy, false alarms and incorrect fault detection rates.

The single-layer multiple-model approach is also utilized as explained in Chapter 4.

Three simulation case studies are conducted in this section as summarized below:

• Case (a.2): To evaluate the robustness of our proposed hybrid DRNN-RKF-

based FDI method, the engine model in (5.4) is simulated without a sensor

fault but with compressor health degradations as well as the process and mea-

surement noise during the entire FP2. Our objective is to compare the false

alarm rates and estimation accuracy between our proposed hybrid DRNN-

RKF-based FDI scheme and the multiple RKF-based FDI scheme that is pro-

posed in Chapter 4. For this purpose, different levels of degradation as well

as the disturbance noise are applied to the actual engine.

• Case(b.2): To evaluate the effectiveness of our proposed hybrid DRNN-RKF-

based FDI scheme, the engine model in (5.4) is simulated with a 3% single

sensor bias fault that occurs at different stages of the flight profile namely

at climbing, cruise and landing. The multiple-model structure is developed

for 3% pre-determined sensor bias fault. The compressor health parameters

degradation are set to αṁC
= 0.82 and αηC = 0.91. Our objective is to

compare the fault detection time, hybrid FDI accuracy and incorrect fault

detection rates for 3% single sensor fault that may occur at different stages of

FP2.
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Figure 5.13: Mode probabilities for healthy sensors for the engine with αṁC
= 0.82

and αηC = 0.91 during FP2 using the (a) hybrid DRNN-RKF-based FDI scheme,
and (b) multiple RKF-based FDI scheme.

• Case (c.2): To evaluate the effectiveness of our proposed hybrid DRNN-RKF-

based FDI scheme, the engine model in (5.4) is simulated with a single sensor

bias fault with various severities that occur at different stages of FP2. Our

objective is to investigate the fault detection times in terms of sensor fault

severities as well as to obtain the maximum bias fault than can be detected

in less than 20 seconds using the same single-layer MM structure that is con-

structed for 3% pre-determined fault and the DRNN that is previously trained

for FP2.

Case (a.2): False Alarm and Estimation Accuracy Evaluation

In this case study simulation, no fault is applied to the actual engine sensors. Fig-

ure 5.13 provides a comparison between the mode probabilities for healthy sensors

that are generated by our proposed hybrid DRNN-RKF-based FDI scheme and the

multiple RKF-based FDI scheme that is designed in Chapter 4.

The Figure 5.13 demonstrates the robustness of our proposed hybrid FDI

approach as compared to the multiple RKF-based FDI scheme. The latter one

generates a false alarm for the healthy engine due to the effects of compressor health
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degradation. In another experiment, the WMAPE is calculated for all the engine

outputs during the entire FP2 as defined in (4.46).

To compare the estimation accuracy of our proposed hybrid DRNN-RKF-

based FDI method with that of multiple RKF-based FDI scheme, the WMAPE%

is calculated for the engine healthy sensor measurements in presence of various

percentages of the compressor health parameters degradation during the entire FP2.

Moreover, the effects of different noise factors on WMAPE%, associated to the

process and measurement noise are investigated. The results are provided in Table

5.10.

According to Table 5.10, for both FDI schemes, the estimation error does

increase by enhancing either the health degradation level or the process and mea-

surement noise factors, however our proposed hybrid DRNN-RKF-based FDI scheme

is still more accurate than the multiple RKF-based FDI scheme.

To investigate the false alarm rates corresponding to hybrid and multiple RKF-

based FDI schemes, confusion matrices are obtained through increasing the level of

noise and parameter uncertainty associated with 50 Monte Carlo simulation runs.

The results are shown in Table 5.11.

The process and measurement noise factors are changed in the first three rows

of Table 5.11, and the compressor health degradation level is only changed in the

last three rows. It follows from Table 5.11 that our proposed hybrid DRNN-RKF-

based FDI method generates significantly lower false alarm rates as compared to

the multiple HKF-based method. Note that although the DRNN is trained for

αṁC
= 0.82 and αηC = 0.91, the FAR is still sufficiently low for higher health

degradation magnitudes.
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Table 5.11: TP, FP and FAR that are obtained for HNNRKF and MRKF based
FDI methods if either the Kw and Kv for the process and measurement noise or the
compressor health degradation is increased.

Scenario
TP FP FAR

HNNRKF MRKF HNNRKF MRKF HNNRKF MRKF
Kw = 0.2 Kv = 1 50 1 0 49 0 0.98
Kw = 0.5 Kv = 1.5 48 0 2 50 0.04 1.00
Kw = 1 Kv = 2 45 0 5 50 0.1 1.00

αṁC
= 0.81 αηC = 0.905 50 0 0 50 0 1.00

αṁC
= 0.8 αηC = 0.9 45 0 5 50 0.1 1.00

αṁC
= 0.78 αηC = 0.989 43 0 7 50 0.14 1.00

Case (b.2): A 3% Sensor Bias Fault Detection and Isolation

In this section, the FDT is measured for the 3% single sensor bias fault that occurs

in different modes of FP2 including the climbing, cruise and landing. The MM

scheme is constructed for the pre-determined bias faults with the severity of 3% of

the engine steady-state output values under cruise condition.

Table 5.12 shows the fault detection times for each 3% single sensor fault

scenario at different stages of the flight profile. It also compares the FDTs that

are obtained by using our proposed hybrid DRNN-RKF-based FDI scheme with

that generated by the multiple RKF-based FDI scheme. To show the capability of

our proposed FDI schemes, the sensor fault is injected at kf = 50 sec during the

climbing mode, at kf = 250 sec during the cruise mode and at kf = 450 sec during

the landing mode. Note that the degradation factors associated to the compressor

health parameters are set to αṁC
= 0.82 and αηC = 0.91.

By comparing the results in Table 5.12, it can be concluded that the sensor

fault detection times during the cruise mode are much less than that of the other

flight modes since there is less variation of thrust and ambient conditions. In spite of

a large input and ambient condition variations during the climbing and the landing

modes, it is still possible to detect a sensor fault by applying our proposed hybrid

DRNN-RKF-based FDI scheme.
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Table 5.12: Comparison of FDTs between the HNNRKF and MRKF based FDI
schemes associated with a single 3% sensor bias fault that occurs at different stages
of FP2 with αṁC

= 0.82 and αηC = 0.91.(×) denotes not detectable fault and
(∗) denotes false alarms and/or incorrect fault detections besides the correct fault
detection.

Faulty Scenario FDI Method
Sensor FDT (sec)

kf = 50 kf = 250 kf = 450

Fault on TC
HNNRKF 89.2 6.1 53.7
MRKF 368.4∗ 21.1∗ 24.9

Fault on PC
HNNRKF 47.5 5.3 23
MRKF × × ×

Fault on N
HNNRKF × × ×
MRKF × 69.8∗ ×

Fault on TT
HNNRKF 300.5 51∗ 9.3∗

MRKF 7.2∗ 2.8∗ 3.3∗

Fault on PT
HNNRKF 63.1 5.7 27.6
MRKF × × ×

In addition, Figures 5.14, 5.15 and 5.16 depict the mode probabilities for three

selected fault scenarios when the bias fault occurs at different instants of the flight

profile. The value of the injected fault is set to 3% of the engine steady-state output

values, while the degradation factors associated with the compressor health param-

eters are set to αṁC
= 0.82 and αηC = 0.91. As per Figures 5.14, 5.15 and 5.16, our

proposed DRNN-RKF-based FDI scheme is more capable of detecting and isolating

different sensor faults occur during the entire flight mode in a certain limited time

delay as compared to the multiple RKF-based FDI scheme that generates many false

alarms before the occurrence of a fault and detects various incorrect faults instead

of the one that occurs. Nevertheless, our proposed hybrid DRNN-RKF-based FDI

scheme is not capable of detecting a sensor fault with N sensor.

To quantify the effectiveness and reliability of our proposed hybrid DRNN-

RKF-based FDI scheme, two confusion matrices (CM) are obtained in which either

the compressor health degradation magnitude or the disturbance noise factor is

increased. For this purpose, 50 Monte Carlo simulations are performed. The first

confusion matrix corresponding to αṁC
= 0.80 and αηC = 0.90 is displayed in Table
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Figure 5.14: Mode probabilities generated by (a) our proposed hybrid DRNN-RKF-
based FDI scheme and (b) multiple RKF-based FDI scheme, for 3% bias fault applied
at kf = 50 sec to the PC sensor with αṁC

= 0.82 and αηC = 0.91.
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Figure 5.15: Mode probabilities generated by (a) our proposed hybrid DRNN-RKF-
based FDI scheme and (b) multiple RKF-based FDI scheme, for 3% bias fault applied
at kf = 250 sec to the TC sensor with αṁC

= 0.82 and αηC = 0.91.

5.13. The second one is corresponding to Kw = 0.5 and Kv = 1.5 that is displayed

in Table 5.14.

Using the simulation results, different performance indices can be defined to

quantify the robustness of our proposed hybrid DRNN-RKF-based sensor FDI algo-

rithm with respect to the levels of uncertainty sources. The FPR, ACC and IFDR

are computed in Table 5.15 for our proposed hybrid DRNN-RKF-based FDI scheme

to investigate the effects of various uncertainty sources. According to Table 5.15,
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Table 5.13: The confusion matrix that is obtained for hybrid DRNN-RKF-based FDI
scheme for 3% single sensor bias fault that is applied to the engine under αṁC

= 0.80
and αηC = 0.90.

CM1 TC PC N TT PT No Fault
TC 50 0 0 0 0 0
PC 0 50 0 0 0 0
N 39 0 0 0 11 0
TT 2 0 0 40 8 0
PT 5 0 0 0 45 0

No Fault 5 0 0 0 0 45

Table 5.14: The confusion matrix that is obtained for hybrid DRNN-RKF-based FDI
scheme for 3% single sensor bias fault that is applied to the engine under Kw = 0.5
and Kv = 1.5.

CM2 TC PC N TT PT No Fault
TC 50 0 0 0 0 0
PC 0 50 0 0 0 0
N 37 0 0 0 13 0
TT 4 0 0 32 14 0
PT 0 0 0 0 50 0

No Fault 2 0 0 0 0 48

Table 5.15: Hybrid DRNN-RKF-based Sensor FDI algorithm performance indices
corresponding to different levels of uncertainties.

Scenarios FPR ACC IFDR
Kw = 0.2 Kv = 1 0 0.78 0.264
Kw = 0.5 Kv = 1.5 0.04 0.767 0.272

αṁC
= 0.82 αηC = 0.91 0 0.783 0.24

αṁC
= 0.80 αηC = 0.90 0.1 0.767 0.26
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Figure 5.16: Mode probabilities generated by (a) our proposed hybrid DRNN-RKF-
based FDI scheme and (b) multiple RKF-based FDI scheme, for 3% bias fault applied
at kf = 450 sec to the PT sensor with αṁC

= 0.82 and αηC = 0.91.

increasing the levels of uncertainty sources results in decrease of ACC, but increase

in FPR and IFDR.

Case (c.2): Sensor Fault Detection and Isolation for Different Fault Sever-

ities

In this section, the performance of our proposed hybrid DRNN-RKF-based FDI

scheme is investigated for an applied sensor bias fault having different severities

starting from the minimum detectable bias. Table 5.16 shows the detection times

for all faulty modes as a function of the fault severities, when the applied faults

occur during the cruise of FP2 with also αṁC
= 0.82 and αηC = 0.91.

It can be observed from Table 5.16 that the higher the fault severity with

respect to the pre-determined 3% fault, the later the detection time, given that

the actual fault becomes further different from the pre-determined bias fault. Note

that the minimum detectable sensor bias fault is 2% that requires larger time to be

detected as compared to the higher fault severities.

Moreover, Table 5.9 shows the maximum sensor bias faults that are detectable

in less than 20 seconds by using our proposed hybrid DRNN-RKF-based FDI scheme
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Table 5.16: The sensor fault detection times for all fault modes as a function of
the fault severity during the cruise of FP2, with αṁC

= 0.82 and αηC = 0.91. (×)
denotes a non-detectable fault, and (∗) denotes the incorrect fault detection besides
the correctly detected fault.

Fault Time 2% 3% 4% 5% 6%
TC 14.9 6.1 7.4 10.3 12.1
PC 37.4 5.3 8.7 19.2 34.7
N × × × × ×
TT 100.1∗ 51∗ 59.1∗ 61.3∗ 68.9∗

PT 15.7 5.7 6.4 7.1 7.8

Table 5.17: The maximum sensor bias fault (as percentage of the engine steady-state
outputs) that are detected in less than 20 seconds during the cruise mode of FP2 by
using our proposed hybrid DRNN-RKF-based FDI scheme under αṁC

= 0.82 and
αηC = 0.91. (×) denotes non-detectable fault.

Sensor Fault TC PC N TT PT

Maximum Detectable Fault% 32 5.1 × N/A 16.7

under αṁC
= 0.82 and αηC = 0.91. The reported fault severities in Table 5.17 are

obtained for the cruise mode of FP2. However, if an applied sensor bias fault in-

creases far beyond the corresponding maximum detectable fault as indicated in Ta-

ble 5.17, an incorrect fault may be detected. Therefore, it is recommended that one

incorporates more models within the MM-based structure corresponding to higher

pre-determined sensor faults to become capable of detecting and isolating faults with

higher magnitudes in shorter durations of time.

5.5.4 Comparison

In this chapter, two hybrid FDI schemes using the previously designed HKF and

RKF are developed to address the senor fault detection and isolation problem for

the single spool gas turbine engine. Different factors including the fault detection

times, estimation accuracy, false alarm rates, incorrect fault detection rates and the

ranges of detectable faults corresponding to different engine sensors are obtained in

preceding sections. As per the above observations, the hybrid DRNN-HKF-based
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FDI scheme is a more reliable and applicable method as compared to the hybrid

DRNN-RKF-based FDI scheme. Table 5.18 displays the comparison results among

the two proposed hybrid FDI schemes.

The comparison results that are provided in Table 5.18 confirm that the hy-

brid DRNN-HKF-based FDI scheme is more accurate and reliable than the hybrid

DRNN-RKF-based FDI scheme. It detects different sensor faults in less delay time

and has a wider range of detectable faults using the single-layer multiple-model

structure. It also provides one with smaller FAR, IDFR and WMAPE values as

compared to the hybrid DRNN-RKF-based FDI scheme. Unlike the hybrid DRNN-

HKF, the hybrid DRNN-RKF is not sufficiently reliable for detecting and isolating

all faulty sensors, particularly N and TT sensors for which the FDI scheme can-

not detect a fault or detects an incorrect one. The reason for insufficient accuracy

and reliability of DRNN-RKF-based FDI scheme is the compensation that is made

towards the applied uncertainty using two simultaneous tools as the DRNN and

RKF. According to results in Chapter 4, the RKF is designed for αṁC
= 0.95 and

αηC = 0.975. Hence, part of uncertainty is compensated twice using the RKF as well

as the DRNN that is designed to approximate the uncertain terms that are removed

later from the engine measurements. This leads to the defective operation of hybrid

DRNN-RKF methods in specific faulty scenarios.

It must be noted that that there is no limitation to apply the proposed hybrid

DRNN-HKF-based FDI scheme in real-time applications since the DRNN is trained

offline and most of the simulation time is dedicated to the OBEM simulation, but

not the HKF and DRNN structures since the Kalman gains and network parameters

are already obtained in an offline mode.
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ṁ

C
=

0.
82

an
d
α
η
C

=
0.

91
fo

r
F

P
2

th
at

is
u
se

d
fo

r
D

R
N

N
-R

K
F

m
et

h
o
d
s.

(×
)

d
en

ot
es

th
e

n
on

-d
et

ec
te

d
fa

u
lt

,
an

d
(∗

)
d
en

ot
es

in
co

rr
ec

t
fa

u
lt

d
et

ec
ti

on
ca

se
s

b
es

id
es

th
e

co
rr

ec
tl

y
d
et

ec
te

d
fa

u
lt

.

In
d
ic

es
H

y
b
ri

d
D

R
N

N
-H

K
F

-b
as

ed
F

D
I

H
y
b
ri

d
D

R
N

N
-R

K
F

-b
as

ed
F

D
I

T
C

P
C

N
T

T
P

T
T

C
P

C
N

T
T

P
T

F
D

T
(s

ec
)

5.
2

3.
9

3.
6

8.
7

3.
3

6.
1

5.
3

×
51
∗

5.
7

M
ax

F
au

lt
(%

)
37

5.
8

10
5

20
32

5.
5

×
N

/A
16
.7

W
M

A
P

E
(%

)
0.

89
71

0.
53

23
0.

61
04

0.
21

4
0.

02
12

2.
31

43
3.

27
12

0.
00

1
0.

39
08

3.
45

92
F
A

R
0

0
A

C
C

1
0.

78
3

ID
F

R
0

0.
24

185



5.6 Summary

In this chapter, two hybrid DRNN-based FDI schemes are proposed using the pre-

viously designed HKF and RKF methods that are designed in Chapters 3 and 4,

respectively. The DRNN is trained offline by the use of the EKF approach to mini-

mize the error and to determine network parameters. The convergence of EKF-based

training of an Elman DRNN is also shown in this chapter. Finally, the trained net-

work is then used in an online FDI algorithm to approximate the uncertain terms

associated with the engine sensor measurements. The network outputs are removed

from the actual engine measurements to obtain the modified measurements that are

finally applied to the bank of filters for sensor FDI purposes. This allows one to im-

prove the robustness with respect to the engine uncertainty and modeling errors as

compared to the pure model-based approaches that are previously developed either

in this thesis or in the literature.

Using extensive simulation case studies and computing different performance

indices, it is demonstrated that the hybrid DRNN-HKF-based FDI scheme is more

accurate and reliable to be applied in real-time applications as compared to the

hybrid DRNN-RKF-based FDI scheme. It generates less FAR and IFDR as well

as more estimation accuracy. The fault detection delay time is sufficiently low for

different faulty scenarios and a large range of sensor faults can be detected using

only one layer of the multiple-model structure.
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Chapter 6

Conclusions and Future Directions

of Research

This dissertation was mainly concerned with the robust sensor fault detection and

isolation of single spool gas turbine engine using different model-based and hybrid

structures. We developed pure model-based FDI algorithms by constructing two

particular filters namely, hybrid Kalman filter and robust Kalman filter, where in

the former approach an online onboard engine model is used to follow the actual

engine during the entire flight profile and in the latter one a quadratically stable ro-

bust filter is designed for a linear uncertain system with time-varying norm bounded

uncertainties that affect all the system state equation matrices. The proposed filters

are utilized in multiple-model structure in which different models are constructed

corresponding to healthy and faulty sensors scenarios. In another part of this disser-

tation, a hybrid structure in which a dynamic recurrent neural network is integrated

with a bank of hybrid/robust Kalman filters is proposed to improve the robustness

with respect to the engine health degradation. Extensive simulation studies are

conducted to investigate the effectiveness of our proposed FDI methods. Below, we

provide the thesis summary based on the results that were provided in Chapters 3
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to 5.

6.1 Multiple HKF-based Fault Detection, Isola-

tion and Identification

In Chapter 3, a novel approach for both single and concurrent sensor fault detection,

isolation and identification/estimation (FDII) for single spool gas turbine engine is

proposed. Our methodology is based on the developed Hybrid Kalman Filter (HKF)

as the detection filter of a hierarchical multiple-model based structure. Despite the

use of linear Kalman filters, the HKF is capable of capturing the nonlinearities of the

system by integrating a nonlinear on-board engine model (OBEM) with piecewise

linear (PWL) models to cover the entire operating range of the engine. Compared

to the multiple linear Kalman filter (MLKF), our proposed approach requires fewer

number of operating points although each corresponds to a larger operating range.

Another important contribution of this work is in the inclusion of the effects

of health parameter degradations in our proposed sensor FDII scheme through up-

dating the OBEM health parameters reference baselines that enables one to prevent

false alarms and incorrect fault detections. Therefore, unlike most of the previous

work in the literature that have not considered the influence of health parameters

variations on the performance of the developed FDII approaches, our proposed sen-

sor FDII scheme is sufficiently more effective for use in the entire flight profile. It

is furthermore suitable during the engine life cycle by updating the OBEM health

parameters reference baselines, and by replacing the steady-state values with the

OBEM states and outputs and integration of the designed PWL models. Moreover,

our proposed MM-based sensor FDI scheme is integrated with the modified GLR

method to estimate a sensor fault severity.
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Finally, it is demonstrated through extensive simulation studies that the accu-

racy and robustness of our proposed MHKF-based FDI approach against the engine

health parameter degradations are significantly superior to that of those generated

by other investigated methods such as the MLKF, EKF, UKF, and CKF.

The future directions for research can be summarized as follows:

• As mentioned in Chapter 3, the OBEM uses the same dynamic equations as

the actual engine, but with different compressor and turbine health parame-

ters. Therefore, one may consider the situation in which there is a dynamic

mismatch between the OBEM and the actual engine.

• As per the last experiment in Chapter 3, the number of required operating

points covering the entire flight profile is determined by computing mean of

the combined residual signals in presence of health parameters degradations

for the MLKF and MHKF methods. Based on these results, it was concluded

that the mean of the combined residual signal associated with the healthy

mode can be reduced by increasing the number of the operating points. Nev-

ertheless, one may propose a technical approach to determine the number of

required operating points using the residual signal, operating range of the

given nonlinear system and the system state dynamics.

• A formal approach can also be presented to investigate the stability property

of a soft switching mechanism among the PWL models.

6.2 Multiple RKF-based Fault Detection and Iso-

lation

In Chapter 4, a novel robust multiple-model based fault detection and isolation

methodology is proposed and developed. Our methodology builds on development
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of a Robust Kalman Filter as the detection filter. Multiple robust filters are designed

for the piecewise linear models that are associated with various faulty and healthy

sensor modes in which all the state space matrices are affected by time-varying

parameter uncertainties. The filter gain matrices are obtained by reformulating two

algebraic Riccati equations into linear matrix inequality (LMI) feasibility conditions

where predefined upper bounds on the state estimation errors are imposed. This is

done to avoid restricting the degrees of freedom in optimizing the error covariance

matrix upper bound when one is not critical. The robust filters can be applied to

the entire operating range of a nonlinear system by means of integrating the PWL

models based on their associated normalized weights. The multiple RKF-based FDI

strategy is then applied to solve and address the sensor FDI problem in a single

spool gas turbine engine during its entire flight profile in which the engine health

parameter degradations are considered as a source of uncertainty in addition to the

external process and measurement noise.

We have further demonstrated and illustrated through extensive simulation

studies that the estimation accuracy and its robustness with respect to the engine

health degradation of our proposed robust FDI scheme are superior to those that are

developed by standard MM-based structures utilizing the linear Kalman filter (LKF)

as well as the one which uses the robust filter that is designed in [4]. Moreover, the

robust MM-based FDI scheme we have proposed has lower fault detection delay

times and lower rates of false alarms and incorrect fault detections as compared

to the above methods. We have also shown that our proposed robust sensor FDI

strategy was extended to detect and isolate multiple concurrent faults corresponding

to the full flight profile by utilizing a hierarchical MM-based structure.

The future directions of research is this area can be summarized below:

• In Chapter 4, the RKF is designed for the linear uncertain system with time-

varying norm bounded parameter uncertainties that affect system states and
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noise signature matrices. In this problem, it is assumed that the input is the

state-feedback control signal whose uncertainty is included as part of A and

C matrices in the closed-loop system. However, one may extend our proposed

RKF design to work for an open-loop system with an already known input

signal that has an uncertain signature matrix.

• In Chapter 4, it is assumed that the process and measurement noise are in-

dependent Gaussian noise which is a common assumption in the literature.

However, our proposed RKF can be extended for the linear uncertain system

in which the noise elements are auto-correlated and cross-correlated. The dis-

tributed weighted robust Kalman filter fusion technique is a potential method

to address this problem.

• A formal study is also proposed to be performed to verify whether the filtering

process is quadratically stable and does satisfy the performance requirements

when the corresponding PWL models are combined for the entire operating

regime.

6.3 Hybrid DRNN-based Fault Detection and Iso-

lation

In Chapter 5, two hybrid DRNN-based FDI schemes are proposed using the pre-

viously designed HKF and RKF methods that are developed in Chapters 3 and 4,

respectively. The DRNN is trained offline by using the EKF approach to minimize

the mean square error to determine network parameters including the number of

hidden neurons and epochs, the diagonal elements of P , Q and R matrices as well

as the truncation depth. The actual engine input and output signals as well as the

OBEM outputs are used to construct the training and validation data sets. A 5-fold
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cross-validation process is also used to determine network parameters. To perform

training, the network parameters are modeled as state variables that are predicted

by DRNN and are corrected by EKF. The measurement matrix is computed using

the truncated back propagation method. Finally, the trained network is used in an

online FDI algorithm to approximate the uncertain terms associated with the en-

gine sensor measurements. The network outputs are removed from the actual engine

measurements to obtain the modified measurements that are finally applied to the

bank of filters for sensor FDI purposes. This allows one to improve the robustness

with respect to the engine uncertainty and modeling errors as compared to the pure

model-based approaches that are previously developed either in this thesis or in the

literature.

Different simulation case studies are conducted to investigate the robustness

of our proposed hybrid FDI approach with respect to various levels of uncertainty,

the promptness of the fault detection, the estimation accuracy, the false alarm and

incorrect fault detection rates as well as the range of detectable faults. Using ex-

tensive simulation case studies and computing different performance indices, it is

clearly demonstrated that the hybrid DRNN-HKF-based FDI scheme is more accu-

rate and reliable to be applied in real-time applications as compared to the hybrid

DRNN-RKF-based FDI scheme. It generates lower FAR and IFDR as well as higher

estimation accuracy. The fault detection delay time is sufficiently low for different

faulty scenarios and a wider range of sensor faults can be detected by using only

one layer of the multiple models structure.

The future directions of research is this area can be summarized below:

• In this thesis, an EKF algorithm is used to train the DRNN parameters. The

trained network is used to address the sensor FDI problem for the single spool

gas turbine engine whose model order is equal to four. However, a vanishing

gradient may happen for a more complex system during the measurement
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matrix computation. Therefore, it is proposed to utilize the gradient-free

observer-based algorithms namely, the unscented and cubature Kalman filters

to train the network parameters.

• In this chapter, the DRNN is used to approximate the engine health degrada-

tion terms associated with sensor measurements. Since the engine degradation

is a slow and gradual process, the network is trained offline and then it is com-

bined with the bank of filter in an online FDI scheme. However, one may

design a DRNN to approximate engine modeling error or neglected dynamics

that is not necessarily changed slowly. Therefore, in this case it is recom-

mended to train the network online while it is combined with the model-based

part of the FDI scheme. This is a challenging problem in which the network

training should be sufficiently robust with respect to any engine sudden fault

that may affect the network training output.

Finally, as per the results that are presented in this thesis, the hybrid structure

in which a bank of HKFs are used is the recommended approach over the other pro-

posed methodologies. It is capable of detecting and isolating sensor faults in shorter

durations of time, estimating the engine state variables with higher accuracy, gener-

ating lower rates of false alarms and incorrect fault detections. It is also sufficiently

robust with respect to health parameter degradation at different levels. Unlike the

pure robust model-based filters that are designed for the particular form of modeling

uncertainty, the hybrid structure is the more general approach that is designed to

be robust against different sources of modeling uncertainties. Although the hybrid

FDI strategy is the more reliable and accurate approach as compared to the other

proposed methodologies, it is still recommended to compute the complexity order

associated with our proposed techniques to select the best approach for real-time

applications. One may select the proper FDI strategy for a nonlinear system based

on the available processing resource as well as the required level of reliability and
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accuracy.
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