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Abstract

Hybrid Hidden Markov Model and Generalized Linear

Model for Auto Insurance Premiums

Lucas Berry

We describe a new approach to estimate the pure premium for automobile insurance. Using

the theory of hidden Markov models (HMM) we derive a Poisson-gamma HMM and a hybrid

between HMMs and generalized linear models (HMM-GLM). The hidden state is meant to

represent a driver’s skill thus capturing an unseen variable. The Poisson-gamma HMM and

HMM-GLM have two emissions, severity and claim count, making it easier to compare to

current actuarial models. The proposed models help deal with the overdispersion problem

in claim counts and introduces dependence between the severity and claim count. We derive

maximum likelihood estimates for the parameters of the proposed models and then using

simulations with the Expectation Maximization algorithm we compare the three methods:

GLMs, HMMs and HMM-GLMs. We show that in some instances the HMM-GLM outper-

forms the standard GLM, while the Poisson-gamma HMM under-performs the other models.

Thus in certain situations it may be worth the added complexity of a HMM-GLM.
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Introduction

Auto insurance makes up a large portion of the Property and Casualty realm. Accurate

predictions of future automobile claims is crucial for a company’s survival. The most com-

mon techniques rely on generalized linear models (GLMs). Actuaries typically forecast two

quantities, the number of claims or claim count and the average cost of a claim or claim

severity. Claim counts are usually modeled with a Poisson distribution and claim severity

with a gamma distribution. Commonly included in both models is a covariate that attempts

to capture a driver’s skill. This is something typically unseen by the actuary and thus is

hard to determine. In this thesis we propose a Poisson-gamma hidden Markov model and a

combination of an HMM and a generalized linear model (HMM-GLM) to capture this effect.

Chapter 1 gives a quick overview of classical linear regression, the exponential dispersion

family and generalized linear models. Included is the process for deriving the maximum

likelihood estimates and more advanced topics.

Chapter 2 provides an introduction to hidden Markov models and the expectation maxi-

mization (EM) algorithm, which is commonly used to estimate the parameters of an HMM.

For HMMs the EM algorithm is also known as the Baum-Welch algorithm.

Chapter 3 is a description of the proposed Poisson-gamma HMM and the estimators for

the parameters according to the expectation maximization algorithm. The estimators were

derived assuming an actuary has one or multiple observation sequences. Also contained is

the mathematical methodology for making future forecasts.

Chapter 4 introduces the HMM-GLM and goes over the derivation of the estimators

of the model parameters. Again the model was considered for one or multiple observation

sequences.

Chapter 5 provides three simulation studies each with different underlying assumptions.

1



A comparison of the models is also included. Before the results is an overview of implemen-

tation issues, the scaling problem for observation sequences with too long time horizons and

the issue with zero claim counts.
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Chapter 1

Linear Models

1.1 Introduction

Generalized Linear Models (GLMs) are an essential part of a statistician’s tool box, one

might say the hammer because it is used with such frequency. This tool has thus made its

way into insurance and today is one of the most widely used methods to forecast losses. Thus

there exists many research papers extending previous concepts to tackle different problems.

GLMs themselves are an extension of the linear regression model. This chapter reviews the

main GLM concepts with the help of De Jong et al. [2008].

1.2 Classical Linear Regression

Linear regression is taught in most first year Statistics courses and is the foundation for

GLMs. Thus this topic will be covered first. Linear regression attempts to explain a rela-

tionship between a response variable, y, and a linear combination of explanatory variables,

xi’s. As many fields use linear regression there exist different names for the response y, such

as dependent variable, outcome, output, or target. The xi’s suffer from the same problem

where covariates, independent variables, inputs, risk factors, features, or predictors. Note

this can make it cumbersome when speaking to experts from different fields. To fit a model

one needs a matrix X, n×(p+1), containing data for the recorded explanatory variables and

a vector y, n× 1, containing the recorded response variables. Here n refers to the number of

3



observations and p refers to the number of explanatory variables, the +1 is for the intercept

term. The intercept term denotes the predicted value of the response given zeros for the

explanatory variables. Note that future response values are often unobservable and therefore

useful to model. In other cases the predicted value is compared to the current y value and

then leveraged to gain a competitive edge. The classical linear regression model is written

as

y = β0 + β1x1 + ...+ βpxp + ε, ε ∼ N(0, σ2). (1.1)

Here the βi’s are the coefficients to the explanatory variables and ε is an error term. Note

one can transform the explanatory variables however one likes, such as xbi , where b ∈ R. Also

one can include interaction terms, xbix
c
j, where b, c ∈ R and i 6= j.

After choosing the appropriate explanatory variables one must derive estimates of the

β’s. Let β be a (p+ 1)× 1 vector containing the coefficients. Thus having:

y =


y1

y2

...

yn

 , X =


1 x11 . . . x1p

1 x21 . . . x2p

...
... . . .

...

1 xn1 . . . xnp

 , β =


β0

β1

...

βp

 .

In classical linear regression to estimate β one must minimize the least squared error,

S = (y−Xβ)′(y−Xβ). (1.2)

This optimization problem can be solved using calculus:

β̂ = (X′X)−1X′y.

With this solution and new data points one can then move on to forecasting. To arrive at a

4



point estimate solution one must take the expectation of (1.1),

E(y|x) = β0 + β1x1 + ...+ βpxp.

When making important decisions, practitioners often take this value under consideration.

It is unlikely for future y values to be precisely equal to their point estimates and thus it

helps to derive a confidence interval for y. Thankfully given the model assumptions we know

the distribution of y given X,

y|X ∼ N(Xβ, σ2I). (1.3)

When applying classic linear regression there are four assumptions that are implicit:

1. E(ε)=0.

2. Homoskedasticity. The variance of ε is constant and does not vary with different values

of the explanatory variables.

3. Normality. ε is normally distributed.

4. Uncorrelation. Each observation is independent of every other observation or at least

uncorrelated.

Each one of these assumptions can be tested, for the appropriate tests refer to Chapter 4 of

De Jong et al. [2008].

The simplicity of classical linear regression has aided its popularity. Linear regression

models are used across many different fields to make informed decisions. These models are

one of the building blocks for GLMs. Please note there is an endless supply of literature

on linear regression. Therefore there exists many more tests and different ways to improve

one’s model, if interested consult De Jong et al. [2008].

5



1.3 Exponential Family

The exponential dispersion family of distributions is another key building block to GLMs.

Any density or probability function that can be written as

f(y) = c(y, τ)exp

{
yζ − a(ζ)

τ

}
, (1.4)

where ζ and τ are parameters, denotes a member in the exponential dispersion family for

the variable y. Note that ζ is referred to as the canonical parameter and τ as the dispersion

parameter. Functions a(ζ) and c(y, τ) determine the exact density/probability function of

y. Distributions that can be written in this form have the following nice properties.

From (1.4) one can show that ∂a(ζ)
∂ζ

= E(y). Let ȧ(ζ) be the partial derivative of a with

respect to ζ. Then

∂f(y)

∂ζ
= f(y)

[
y − ȧ(ζ)

τ

]
.

Integrating both sides over y gives

0 =
E(y)− ȧ(ζ)

τ
. (1.5)

The left side is zero because

∫
∂f(y)

∂ζ
=

∂

∂ζ

∫
f(y)dy =

∂

∂ζ
1 = 0.

Thus for the right side of (1.5) to equal zero the numerator must equal zero which implies

that ȧ(ζ) = E(y). Also from (1.4) one can show that ∂2a(ζ)
∂ζ2

= V(y)
τ

, where V(y) is the variance

of y. Let ä(ζ) be the second partial derivative of a with respect to ζ. Then

∂2f(y)

∂ζ2
= f(y)

[
y − ȧ(ζ)

τ

]2

− f(y)
ä(ζ)

τ
.
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Integrating both sides over y yields

0 =
E[(y − ȧ(ζ))2]

τ 2
− ä(ζ)

τ
.

The left side is zero by the same logic as before, switching the order of integration and

differentiation. Using our previous result, ȧ(ζ) = E(y),

E[(y − E(y))2]

τ 2
− ä(ζ)

τ
=

V(y)

τ 2
− ä(ζ)

τ
.

Thus for this difference to equal zero ä(ζ) must equal V(y)
τ

, where ä(ζ) is known as the

variance function. Note that the calculations above assume that the derivative and integral

are interchangeable on the left-hand side of the equation.

These properties are very useful but a distribution must be member of the exponential

family first. Using (1.4) one can derive a new form for the exponential family,

ln[f(y)] = ln[c(y, τ)] +
yζ − a(ζ)

τ
. (1.6)

Next rewriting distributions in this new form shows members of the exponential family. The

following two examples show in detail why the Poisson and gamma distributions are part of

the exponential family. Let y ∼ Poi(λ) and f represent the probability mass function then

f(y) =
λye−λ

y!
=⇒ ln[f(y)] = y ln(λ)− λ− ln(y!) = − ln(y!) +

yζ − a(ζ)

τ
,

if we set τ = 1, ζ = ln(λ), a(ζ) = eζ and c(y, τ) = y!−1. Checking the mean and variance

relations with a(ζ), ȧ(ζ) = eζ = λ and τ ä(ζ) = eζ = λ.

Moving on to the gamma distribution, y ∼ G(k, θ),

f(y) =
yk−1e

−y
θ

Γ(k)θk
=⇒ ln[f(y)] = (k − 1) ln(y)− y

θ
− ln [Γ(k)]− k ln(θ)

= (k − 1) ln(y)− ln [Γ(k)] +
yζ − a(ζ)

τ
,

where ζ = −1
kθ

, τ = 1
k
, a(ζ) = − ln

(−ζ
k

)
and c(y, τ) = y

1
τ −1

Γ( 1
τ

)
. Checking the mean and variance

7



relation with a(ζ), ȧ(ζ) = −1
ζ

= kθ and τ ä(ζ) = τ 1
ζ2

= kθ2. Thus the Poisson and gamma

distributions are members of the exponential family. Table 1.1 provides a description of how

to parameterize other distributions as members of the exponential dispersion family.

Distribution ζ a(ζ) τ

B(n, p) ln
(

p
1−p

)
n ln(1 + eζ) 1

Poi(λ) ln(λ) eζ 1

N(µ, σ2) µ ζ2

2
σ2

G(k, θ) −1
kθ

− ln
(−ζ
k

)
1
k

IG(µ, σ2) −1
2µ2

−
√
−2ζ σ2

NB(µ, κ) ln
(

κµ
1+κµ

)
−1
κ

ln(1− κeζ) 1

Table 1.1: Exponential Dispersion Family of Distributions

1.4 Generalized Linear Models

As in linear regression, GLMs attempt to capture a relationship between a response

variable, y, and explanatory variables, xi’s. GLMs differ from linear regression in two ways:

(i) The response is no longer normal but can be chosen from the exponential family of

distributions.

(ii) A transformation of the mean of the response variable can be applied to get a linear

combination of the explanatory variables, as in (1.1).

This allows GLMs the freedom to fit more different types of data sets than classical linear

regression. One draw back is that the response might no longer be homoskedastic and

therefore its variance will vary with the explanatory variables, heteroskedastic.

A GLM model is defined as a response distribution and mean response:

f(y) = c(y, τ)exp

{
yζ − a(ζ)

τ

}
, g(µ) = xβ, (1.7)

where g(µ) is known as the link function, x is a 1× (p+ 1) vector representing a data point

and µ is the mean of the response. f(y) guarantees that the distribution is in the exponential

8



family and g describes the relationship between the response and the explanatory variables.

Given a data set, building a GLM involves the following steps:

(i) Pick a distribution for the response variable f(y), choose a(ζ) in (1.7). The response

variable is chosen based on the data.

(ii) Determine which link function, g(µ), to use. Note later in table 1.2 a list of common

link functions is given.

(iii) Fit the model by estimating β and τ . This is commonly done using packages in SAS

or R that implement maximum likelihood estimation or a variant.

(iv) After determining estimates for β, generate predictions for y given observations and

evaluate how well the model fits new data.

The choice of link function is not clear and therefore one might want to try different possi-

bilities.

There exist special types of link function referred to as the canonical link functions. If

g(µ) = ζ then g is said to be the canonical link function. Using the canonical link function

simplifies the estimation, but given the computing power of today one can choose different

link functions. Table 1.2 lists some commonly used link functions and their canonical links.

Link Function g(µ) Canonical link for
identity Xβ = µ normal

log Xβ = ln(µ) Poisson
inverse Xβ = µ−1 gamma, exponential

inverse squared Xβ = µ−2 inverse Gaussian
square root Xβ =

√
µ

logit Xβ = ln
(

µ
1−µ

)
binomial, Bernoulli, multinomial

Table 1.2: Commonly used Link Functions

9



1.5 Further Topics and Applications to Actuarial Sci-

ence

When fitting linear models of any kind there are a plethora of problems one can run into,

overfitting is one such issue. Overfitting occurs when the model does a good job of fitting

past data, but does a poor job of forecasting new data points. This problem can be caused

by too many explanatory variables being considered and thus the model is too complex.

To resolve it some researchers have proposed regularization. Regularization penalizes large

values of the β’s. Some being sent to zero thereby eliminating their covariates and simplifying

the model. There are two common types of regularization techniques, L1 and L2. Rewriting

(1.2) as a sum one can pose the L1 regularization optimization problem as,

min
β

n∑
i=1

(yi − xiβ)2 + ν||β||1, (1.8)

where

||β||1 =

p∑
j=1

|βj|,

and xi represents a row vector of covariates fore one observation. Changing the L1-norm to an

L2-norm in (1.8) is how L2 regularization is applied. The effect of regularization is controlled

by the ν parameter, larger values of ν produce smaller coefficients. L2 regularization is more

likely to keep all the β’s while L1 regularization will send them to zero faster as ν increases.

Also one can apply linear combinations of the two as in Zou and Hastie [2005], which they

call an elastic net. They go further and state that one can use any norm that one wants.

Any form regularization helps prevent overfitting.

Another issue that can arise is in the instance of outliers. In (1.2) the errors are squared

and thus outliers, points that lie far from the mean response, will cause the model to shift

greatly. To mitigate this problem researchers have proposed more robust linear regression

10



models. Huber [1973] developed the following model

min
β

n∑
i=1

g(yi − xiβ), (1.9)

where

g(yi − xiβ) =


1
2
(yi − xiβ)2 for |(yi − xiβ)| < b

b|(yi − xiβ)| − 1
2
b2 for |(yi − xiβ)| ≥ b

.

Note that b can be a predetermined value or depend on the size of the data set. Huber [1973]

states that one does not need to choose g as above but is free to tailor it to the problem.

Though it is usually convex. Optimizing (1.9) helps mitigate the effect of outliers, thus

helping model the majority of the data and not deviate due to a small proportion of the

data.

GLMs have become more popular in the actuarial field, as their data is typically non

normal. Thus actuaries usually build models that have gamma or Poisson responses, for

severity and counts respectively. Quijano and Garrido [2015] built off this line of thinking

to develop a model with a Tweedie response. Their model allowed them to aggregate the

claims and thus model the severity and counts together. This is typically done separately

and can lead to problems. Another instance of GLMs being applied to actuarial data is in

Kafková et al. [2014]. Their paper explores the efficacy of applying generalized linear models

to automobile insurance. They analyze their data using different models and then report the

performance of each. These are just two examples of how researchers are applying GLMs to

actuarial problems.
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Chapter 2

Hidden Markov Models

2.1 Introduction

Hidden Markov models (HMMs) have been applied to numerous problems with successful

results: speech recognition, text processing, DNA analysis, mobile robot sensor processing,

modeling hurricanes, etc. Many of these areas impact our daily lives and are shaping the

world that we live in today. This has made the modeling technique very popular, and today

researchers are adding their own unique twists to the model so as to best suit their problems.

The model relies on the same properties of a Markov Process. This chapter introduces the

basics of a Markov chain and an HMM with the help from Fink [2014].

2.2 Markov Process

Markov models have been used to model many different sequential time series data for ex-

ample, biological sequences, temperature variations, speech utterances, financial data, etc...

Markov models benefit greatly from the Markov Property, making them computationally

efficient and tractable. Each observation depends on a selection of the previous ones, al-

lowing one to store only the necessary observations as the others have no bearing on the

future. Markov models rely on the basics of probability and thus some prior knowledge will

be assumed, for a refresher please refer to Chapter 3 of Fink [2014].

Let us define a simple Markov chain in which the next observation only depends on the
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previous one, also known as a first order model. Note that you can make each observation

depend on as many previous observations as you deem relevant. Let X1, X2, X3, ... denote a

sequence of random variables, i, j ∈ {1, .., L} the possible states of a Markov chain. Thus

Pr(Xt|Xt−1, ..., X1) = Pr(Xt|Xt−1), t ≥ 2 (Markov Property).

A Markov model is not fully defined without the initial state and transition probabilities.

Let aij be the probability of starting in state i at time t − 1 and going to state j at time t,

i.e. a transition probability,

aij = Pr(Xt = j|Xt−1 = i), t ≥ 2, i, j ∈ {1, ..., L}.

Note that the transition probabilities are independent of time, t, thus making the model

stationary. One can build a model in which these transition probabilities do depend on time.

They are called non stationary models and tend to be less common as they add another

dimension to the model thus making it less tractable. Lastly let πi be the probability of

starting the sequence in state i, i.e. a initial state probability,

πi = Pr(X1 = i), i ∈ {1, ..., L}.

Thus the Markov chain (MC) model is summarized by the vector π containing all the initial

state probabilities, the matrix A containing all the transition probabilities and the set S

containing all possible states, denoted MC(π,A,S).

2.3 Definitions

HMMs build off the Markov chain model and add an additional dimension of variability

and unknown. The basic HMM is a two stage stochastic process. Let St denote the state at

time t, where St ∈ S and t = 1, 2, ..., T . This is the first stage which involves latent or hidden

transitions from state St−1 to St. Set S contains all possible states given the problem. This
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S1 S2 S3

O1 O2 O3

...

Figure 2.1: Graphical Representation of an HMM

model takes advantage of the Markov property,

Pr(St|S1, ..., St−1) = Pr(St|St−1), t ≥ 2.

The probability distribution of the next state only depends on the previous state, if known,

and all prior states are therefore superfluous information. This property makes the model

computationally efficient because less information needs to be stored. Note that these stages

are called hidden as that are not observed.

The second stage captures the observations, what the researcher or practitioner actually

observes. Let Ot denote the observation at time t, these can be discrete or continuous. The

probability distribution for Ot is dependent on state St and none of the previous states,

Pr(Ot|O1, ..., Ot−1, S1, ..., St) = Pr(Ot|St).

In the literature this property is referred to as the output independence assumption.

HMMs are thus a way to model time series data and capture a hidden variable or uncer-

tainty that changes with time. These models have a nice graphical representation depicted

in Figure 2.1. An HMM is not complete without defining the necessary parameters, like a

Markov chain. Given the model described above one would need:

• a matrix A containing the transition probabilities given L states A will be L× L:

A = {aij|aij = Pr(St = j|St−1 = i)}; i, j ∈ {1, 2, ...L}.

• a vector π of the initial probabilities which will be L× 1:
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π = {πi|πi = Pr(S1 = i)}; i ∈ {1, ..., L}.

• and conditional/output probability distributions for specific states:

B = {bi(ot)|bi(ot) = Pr(Ot = ot|St = i)}; t ∈ {1, ..., T} i ∈ {1, ..., L}.

Note that ot represents the value of the emissions at time t and the transition probabilities,

aij, do not depend on t. The emissions can be discrete or continuous depending on the

problem. After defining the model three problems remain: model evaluation, decoding, and

parameter estimation.

2.4 Evaluation

The most widely used measure to evaluate a HMM’s efficacy is the total production

probability. Let φ denote the set of model parameters, φ = {π,A,B}, then the total output

probability is defined as Pr(O|φ), where O denotes a sequence of observations up to T , the

terminal time. Another criterion sometime considered is the probability of the observation

sequence when traveling along the optimal state sequence. This is referred to as the optimal

output probability. The total output probability considers all possible paths and takes the

sum whereas the optimal path probability considers just the most likely path given the data.

Currently, there exists no algorithm to find the optimal HMM model given the observations

and a criterion. Therefore one has to consider a finite number of models and choose a

criterion to evaluate said models.

2.4.1 Total Output Probability

If more than one HMM φi’s are under consideration one would want to choose the model,

φj, that best represents the sequence of data. One considers a space of models, φi ∈ Ωi, and

chooses the model that maximizes the posterior in that space:

Pr(φj|O) = max
i

Pr(O|φi) Pr(φi)

Pr(O)
. (2.1)
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In practice when calculating this expression, the denominator can be dropped as it does not

depend on φi,

φj = argmax
φi

Pr(φi|O) = argmax
φi

Pr(O|φi) Pr(φi)

Pr(O)
= argmax

φi

Pr(O|φi) Pr(φi). (2.2)

Also for this probability to be attainable the prior probabilities Pr(φi) need to be specified.

This is often not the case and the priors tend to be difficult or impossible to calculate. Thus

when choosing a model the Pr(φi) term is often dropped. Next let us see how this quantity

is calculated.

In order for us to compute the total output probability we will fist consider the probability

of an observation sequence and a state sequence given φ, Pr(O,S|φ). Both the observation

and state sequence must be the same length, T . Then if we marginalize over the possible

state sequences S’s we get,

∑
S

Pr(O,S|φ) = Pr(O|φ).

Therefore we can use this to tabulate the total output probability. Using properties of

conditional probabilities one can rewrite this sum as,

∑
S

Pr(O,S|φ) =
∑
S

Pr(O|S, φ) Pr(S|φ).

Then taking advantage of independences in the structure of HMMs and using the definitions

from Section 2.3 we get

Pr(O|S, φ) =
T∏
t=1

bst(Ot),

Pr(S|φ) = πs1

T∏
t=2

ast−1st .

Thus after estimating the parameters of the model we can then find the total output proba-

bility. Before writing out the full expression let us set a0s1 = πs1 and S0 = 0, this will simplify
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the notation. Given these new definitions we can now write the total output probability as

Pr(O|φi) =
∑
S

Pr(O,S|φ) =
∑
S

T∏
t=1

ast−1stbst(Ot).

Note that this brute force approach is typically avoided as the algorithm is computation-

ally complex, O(TLT ) where L is the number of states. There exists faster computational

methods.

A more commonly used method is the forward algorithm, which exploits the model’s

structure. It allows us to compute the total output probability in a recursive fashion. Let

αt(i) = Pr(O1, ..., Ot, St = i|φ), which is known as the forward variable, then the forward

algorithm is

1. Initialization:

α1(i) := πibi(O1), i ∈ {1, ..., L}.

2. Recursion for t = 2, ..., T :

αt(j) :=
∑
i

(αt−1(i)aij) bj(Ot), j ∈ {1, ..., L}.

3. Termination:

Pr(O|φ) =
L∑
i=1

αT (i).

This nice recursion can be shown using properties of conditional probability. Beginning with

the initialization,

α1(i) = Pr(O1, S1 = i|φ) (by definition)

= Pr(O1|S1 = i, φ) Pr(S1 = i|φ) (properties of conditional probability)

= bi(O1)πi (parameters).
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Next we need to show the recursion. Let us proceed by induction; first base case

α2(j) = Pr(O1, O2, S2 = j|φ)

=
∑
i

Pr(O1, O2, S1 = i, S2 = j|φ)

=
∑
i

Pr(O2|O1, S1 = i, S2 = j, φ) Pr(S2 = j|S1 = i, O1, φ) Pr(O1, S1 = i|φ)

=
∑
i

Pr(O2|S2 = j, φ) Pr(S2 = j|S1 = i, φ) Pr(O1, S1 = i|φ)

=
∑
i

(α1(i)aij) bj(O2).

Assuming that αt(j) :=
∑

i (αt−1(i)aij) bj(Ot) we will show this implies the t+ 1 case:

αt+1(j) = Pr(O1, ..., Ot+1, St+1 = j|φ)

=
∑
i

Pr(O1, ..., Ot+1, St = i, St+1 = j|φ)

=
∑
i

Pr(Ot+1|O1, ..., Ot, St = i, St+1 = j, φ) Pr(St+1 = j|St = i, O1, ..., Ot, φ)

Pr(St = i, O1, ..., Ot|φ)

=
∑
i

Pr(Ot+1|St+1 = j, φ) Pr(St+1 = j|St = i, φ) Pr(St = i, O1, ..., Ot|φ)

=
∑
i

(αt(i)aij) bj(Ot+1).

Then to find the total output probability, termination of the algorithm, one needs to sum

over all states at time T . Like the name suggests there is a backward algorithm as well.

Also one can combine the two and use the forward-backward algorithm. It is left up to the

practitioner which one to use, they both provide the same result.

2.4.2 Optimal Output Probability

Total output probability, which captures how well the model works on average, might not

select the model that performs the best for a certain case, sequence of states. In this instance

one could use the optimal output probability as the criterion, max
S

Pr(O,S|φ). This value can
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also be calculated in a recursive fashion. Let δt(i) := max
S1,...,St−1

Pr(O1, ..., Ot, S1, ..., St−1, St =

i|φ), then the algorithm can be written as follows:

1. Initialization:

δ1(i) := πibi(O1), i ∈ {1, ..., L}.

2. Recursion for t = 2, ..., T :

δt(j) := max
i

(δt−1(i)aij) bj(Ot), j ∈ {1, ..., L}.

3. Termination:

max
S

Pr(O,S|φ) = maxi δT (i).

This recursion can be shown using the same properties as before. Starting with the initial-

ization,

δ1(i) = Pr(O1, S1 = i|φ) (by definition the max is dropped)

= Pr(O1|S1 = i, φ) Pr(S1 = i|φ) (properties of conditional probability)

= bi(O1)πi (parameters).

Like before we will use induction, first the base case:

δ2(j) = max
S1

Pr(O1, O2, S1, S2 = j|φ)

= max
S1

Pr(O2|O1, S1, S2 = j, φ) Pr(S2 = j|S1, O1, φ) Pr(O1, S1|φ)

= max
S1

Pr(O2|S2 = j, φ) Pr(S2 = j|S1, φ) Pr(O1, S1|φ)

= max
i

(δ1(i)aij) bj(O2).
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Next we need to show that case t implies case t+1 by assuming that δt(j) := max
i

(δt−1(i)aij)

bj(Ot),

δt+1(j) = max
S1,...,St

Pr(O1, ..., Ot+1, S1, ...., St, St+1 = j|φ)

= max
S1,...,St

Pr(Ot+1|O1, ..., Ot, S1, ..., St, St+1 = j, φ) Pr(St+1 = j|O1, ..., Ot, S1, ..., St, φ)

Pr(O1, ..., Ot, S1, ..., St|φ)

= max
S1,...,St

Pr(Ot+1|St+1 = j, φ) Pr(St+1 = j|st, φ) Pr(O1, ..., Ot, S1, ..., St|φ)

= max
i

(δt(i)aij) bj(Ot).

Then to terminate the recursion we need to find the state at time T that maximizes δ.

This algorithm, like the one listed before can be carried out in a backward fashion or a

combination of forward and backward. In practice to carry out the computation one usually

transforms the probabilities by taking the log. This changes the product into a sum without

affecting the max.

2.5 Decoding

Decoding is the process of finding the state sequence that best fits the observations. Often

these states have no real life interpretation and thus decoding is not necessary. In certain

cases the states have meaningful interpretations, in these instances decoding becomes an

interesting problem. One can use the brute force method described at the beginning of

Section 2.4.1 to find the optimal state sequence (S∗ = argmax
S

Pr(S|O, φ)). Like before this

method is computationally expensive.

In applications practitioners tend to use the Viterbi algorithm as it is more computation-

ally efficient. Using the algorithm defined before to calculate the optimal output probability

one can find the optimal path. It is performed in a backward fashion. Let ψ1(i) := 0 and

ψt+1(j) := argmax
i
{δt(i)aij}, then picking up at the end of the algorithm:

3. Termination:

max
s

Pr(O, s|φ) = maxi δT (i)
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s∗T := argmax
j

δT (j).

4. Back-Tracking of the Optimal Path:

for t = T − 1, ..., 1,

s∗t := ψt+1(s∗t+1).

Unfortunately given the backward direction of the algorithm one cannot find the optimal

path until one has computed the optimal output probability. This can become a problem for

interactive systems, in such cases there exists algorithms to provide partial feedback while

the computation is ongoing. These methods suffer from the problem of finding sub optimal

solutions.

2.6 Parameter Estimation

All the algorithms described require that the parameters of the model be estimated. In

general one should choose an HMM architecture that best resembles the statistical properties

of the data and then estimate the required parameters. One is free to change the model

architecture, the number of states and the emission probabilities. For instance, given a

problem with continuous non zero emissions one might want to stay away from the common

choice of normal distributions. After doing so there are multiple algorithms to optimize

the parameters. We will focus on one, the expectation-maximization (EM) algorithm also

known as the Baum-Welch algorithm for HMMs. This is the most commonly used method

and focuses on maximizing the total output probability. Other algorithms exist such as the

Viterbi and Segmental k-Means algorithms which focus on maximizing the optimal output

probability.

Before describing the EM algorithm in further detail there are a few more quantities

that are important to define. Let βt(j) = Pr(Ot+1, ..., OT |St = j, φ), which is known as

the backward variable. When implementing the forward-backward algorithm one uses the

backward variable in tandem with αt(i). Note it is calculated in a recursive fashion. βT (j) =
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1 for all j ∈ {1, ..., L}, then for 1 ≤ t ≤ T − 1

βt(j) = Pr(Ot+1, ..., OT |St = j, φ), j ∈ {1, ..., L},

=
∑
i

Pr(Ot+1, ..., OT , St+1 = i|St = j, φ)

=
∑
i

Pr(Ot+1|Ot+2, ..., OT , St+1 = i, St = j, φ) Pr(Ot+2, ..., OT |St+1 = i, St = j, φ)

Pr(St+1 = i|St = j, φ)

=
∑
i

Pr(Ot+1|St+1 = i, φ) Pr(Ot+2, ..., OT |St+1 = i, φ) Pr(St+1 = i|St = j, φ)

=
∑
i

bi(Ot+1)βt+1(i)aji, j ∈ {1, ..., L}.

One can use the backward variable to compute the total output probability thus giving us

the backward algorithm,

Pr(O|φ) =
L∑
i

πibi(O1)β1(i).

Using this, one can now imagine how to program the forward-backward algorithm.

Another important value to define is the probability of being in state i at time t given

an observation sequence,

γt(i) = Pr(St = i|O, φ), i ∈ {1, ..., L}, t ≥ 0,

=
Pr(O1, ..., OT , St = i|φ)

Pr(O|φ)

=
Pr(O1, ..., Ot, St = i|φ) Pr(Ot+1, ..., OT |St = i, φ)

Pr(O|φ)

=
αt(i)βt(i)

Pr(O|φ)
.

We now have a way to compute the probability of being in state i at time t, next we will
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find the probability of going from state i to j at time t:

γt(i, j) = Pr(St = i, St+1 = j|O, φ), i, j ∈ {1, ..., L}, t ≥ 0,

=
Pr(St = i, St+1 = j,O|φ)

Pr(O|φ)

=
1

Pr(O|φ)
Pr(O1, ..., Ot, St = i|φ) Pr(St+1 = j|St = i, φ)

Pr(Ot+1|St+1 = j, φ) Pr(Ot+2, ..., OT |St+1 = j, φ)

=
αt(i)aijbj(Ot+1)βt+1(j)

Pr(O|φ)
.

Note that γt(i) =
∑

j γt(i, j), a relationship that can be helpful in the numerical calculations.

These three quantities are used in the derivation of the EM algorithm. It is also worth

pointing out that these quantities might be different depending on the architecture of your

model. We can now proceed to the EM algorithm.

First one must clearly define the parameters, φ = {A,π,B} and initialize values for

these parameters. Note that this step is important as EM does not guarantee convergence

to the global maximum. It can get stuck at a local solutions if these exist. So initializing

the parameters close to their optimal values would be ideal. This is why EM is usually

run multiple times with different initial parameters. After initialization the EM algorithm

has two steps, the E step and the M step. In order to proceed let us define the likelihood

assuming complete data, including the hidden Markov chain states:

LcT (φ) = Pr(O1 = o1, ..., OT = oT , S1 = s1, ..., ST = sT )

= Pr(OT = oT |O1 = o1, ..., OT−1 = oT−1, S1 = s1, ..., ST = sT )...

Pr(O1 = o1|S1 = s1, ..., ST = sT ) Pr(ST = sT |S1 = s1, ..., ST−1 = sT−1)...Pr(S1 = s1)

= πs1bs1(o1)
T∏
i=2

asi−1sibsi(oi).

23



Summing over s1, ..., sT we obtain the likelihood for the incomplete data,

LT (φ) = Pr(O1 = o1, ..., OT = oT )

=
∑
s1

....
∑
sT

πs1bs1(o1)
T∏
i=2

asi−1sibsi(oi).

Given our situation of incomplete data the natural thing to do is to use the EM algorithm,

to maximize the expected likelihood over the complete data. After defining the likelihoods

we can now continue to describe the E and M steps. Given a set of observed but incomplete

data, O = {o1, ..., oT}:

1. Initialize the parameters in φ0.

2. Compute

Q(φ;φk) = Eφk (ln(LcT (φ)|O)) .

3. Find φk+1 that maximizes Q(φ;φk).

4. Repeat Steps 2 and 3 in an alternating way until

ln(LT (φk+1))− ln(LT (φk))

is sufficiently small.

Wu [1983] showed that EM converges to at least a local maximum. The actual calculation

of Steps 3 and 4 vary depending on the assumed emission distributions, this decision is left

up to the practitioner.

2.6.1 Example

To demonstrate the EM algorithm we will consider a simple case, a discrete emission

distribution only taking observed values (i.e. bsj(ok) = P (Ot = ot|Sj = sj) where ot are only

observed values). For notation and simplicity let us assume that ot ∈ {1, ..., K}, also let L

denote the number of states. First initialize our parameters φ0, this should be done respecting
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the fact that
∑L

i=1 πi = 1,
∑L

j=1 aij = 1 and
∑K

k=1 bj(k) = 1. Second we must calculate

Eφ0 (ln(LcT (φ)|O)), using the result from before LcT (φ) = πs1bs1(o1)
∏T

i=2 asi−1sibsi(oi), we get

Eφ0 (ln(LcT (φ)|O)) = Eφ0

(
ln

(
πs1bs1(o1)

T∏
i=2

asi−1sibsi(oi)

))

= Eφ0(ln(πs1)) +
T∑
i=1

Eφ0(ln(bsi(oi))) +
T∑
i=2

Eφ0(ln(asi−1si))

=
L∑
j=1

Pr(S1 = j|O, φ) ln(πj) +
L∑
j=1

T∑
i=1

ln(bsi=j(oi)) Pr(Si = j|O, φ)

+
L∑
k=1

L∑
j=1

T∑
i=2

ln(asi−1=k,si=j) Pr(Si−1 = k, Si = j|O, φ)

=
L∑
j=1

γ1(j) ln(πj) +
L∑
j=1

T∑
i=1

ln(bsi=j(oi))γi(j)

+
L∑
k=1

L∑
j=1

T∑
i=2

ln(asi−1=k,si=j)γi−1(k, j).

With our initial set of parameters this value can be calculated thus completing the E-step.

Moving to the M-step we need to maximize the above with respect to φ, under a few

constraints, as probability mass functions need to sum to one. Thus the problem can be

written as,

maxQ(φ;φ0)

with repect to π, A, B and subject to

g1(π) =
L∑
j=1

πj = 1, (2.3)

g2(ak1, ..., akL) =
L∑
j=1

akj = 1, for all k ∈ {1, ..., L} (2.4)

g3(B) =
K∑
k=1

bj(k) = 1, for all j ∈ {1, ..., L}. (2.5)
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Then we can introduce a new function F using the theory of Lagrange multipliers,

F (φ0,κ) = Q(φ;φ0) + κ1

(
1−

L∑
j=1

πj

)
+ κ2

(
1−

L∑
j=1

akj

)
+ κ3

(
1−

K∑
k=1

bj(k)

)

where κ = {κ1, κ2, κ3} are the Lagrange multipliers. Now first consider the initial state

probabilities. Taking the derivative of F with respect to πi we get

∂F

∂πi
=
γ1(i)

πi
− κ1, i ∈ {1, ..., L}.

Setting equal to zero and solving for πi gives

πi =
γ1(i)

κ1

.

Using our Constraint (2.3) and the fact that the derivative would be the same for all π’s we

get

1 =
L∑
j=1

γ1(j)

κ1

=⇒ κ1 =
L∑
j=1

γ1(i) =⇒ κ1 = 1.

This is because γ1(j) represents the probability of being in state j at time 1 and summing

over all j makes the left side equal to 1. Thus the optimal initial stat probabilities are given

by:

πi = γ1(i), i ∈ {1, ..., L}.

Next we need to optimize our transition probabilities. Taking the derivative with respect to

akj gives

∂F

∂akj
=

∑T
i=2 γi−1(k, j)

akj
− κ2, k, j ∈ {1, ..., L}.
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Setting equal to zero and solving for akj,

akj =

∑T
i=2 γi−1(k, j)

κ2

.

Then plugging the above solution for akj into the Constraint 2.4 we obtain

1 =
L∑
j=1

∑T
i=2 γi−1(k, j)

κ2

=⇒ κ2 =
L∑
j=1

T∑
i=2

γi−1(k, j)

κ2 =
T∑
i=2

L∑
j=1

γi−1(k, j) =
T∑
i=2

γi−1(k).

Thus the optimal transition probabilities are given by

akj =

∑T
i=2 γi−1(k, j)∑T
i=2 γi−1(k)

, k, j ∈ {1, ..., L}.

Last, to derive an estimate for our emission probabilities, take the derivative with respect to

bj(k):

∂F

∂bj(k)
=

∑
i:oi=k

γi(j)

bj(k)
− κ3.

Setting equal to zero and solving for bj(k) gives

bj(k) =

∑
i:oi=k

γi(j)

κ3

.

Then substituting into Constraint (2.5) and solving for κ3 yields

1 =
K∑
k=1

∑
i:oi=k

γi(j)

κ3

=⇒ κ3 =
K∑
k=1

∑
i:oi=k

γi(j)

and summing over all possible k allows us to simplify to

κ3 =
T∑
i=1

γi(j).
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Thus

bj(k) =

∑
i:oi=k

γi(j)∑T
i=1 γi(j)

, j, k ∈ {1, ..., L}.

We know that we are moving in the direction of a critical point. Thus to ensure that it is

at least a local maximum we can check the Hessian. This is the matrix of all the second

derivatives. Using our function F the Hessian becomes

H =


∂2F
∂π2

1
0 . . . 0

0 ∂2F
∂π2

2
. . . 0

...
...

. . .
...

0 . . . 0 ∂2F
∂bN (K)2

 .

Note the diagonal captures the second derivative with respect to each parameter (π,A,B).

Here the matrix is diagonal as the sums break apart nicely, the second derivative with respect

to two different parameters becomes zero. Also notice that we can ignore the Lagrange

multipliers as we they were created as dummy variables. Now inputing the derivatives we

get

H =



−γ1(1)

π2
1

0 . . . 0

0 −γ1(2)

π2
2

. . . 0
...

...
. . .

...

0 . . . 0
−

∑
i:oi=k

γi(j)

bN (K)2

 .

Notice how the elements on the diagonal are negative because the numerator and denomina-

tor of each fraction are probabilities, which by definition are greater than zero. This implies

that H is negative definite and therefore the point we are marching towards is indeed a

local maximum. This provides the estimates for Steps 2 and 3 of the EM algorithm for the

simplest case HMM and ensures that is moving towards a maximum.
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2.7 Further Topics

Another popular variation of HMMs is to change the emissions to a normal distribution

or a sum of normals, for more information refer to Fink [2014]. One can also derive estimates

for an HMM with multiple observation sequences of varying length; we discuss this idea in

Chapter 3. Another extension is that the dependency arrows, as in Figure 2.1, can be drawn

in more general patterns. Longer time dependencies can be created to fit different problems.

Similarly, the number of observations for each latent state can be changed. The model

architecture is flexible and can be made to fit different settings, leading to the popularity of

HMMs. For other algorithms or more examples of HMMs please refer to Fink [2014].
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Chapter 3

An HMM for Modeling Claims

3.1 Introduction

Automobile insurance plays a pivotal role in the property and casualty realm. The

problem of forecasting claim counts and claim severity within auto insurance is vital for a

business and companies are constantly looking for new state of the art methods to gain a

competitive edge. Their very livelihood depends on accurate models. Thus far actuaries

have used loss models based on GLMs to predict claims. Alternatively, here we derive a

model using HMMs to forecast auto insurance claims. Note that without loss of generality,

this type of model could be used for many other kinds of insurance.

3.2 HMMs for Auto Insurance

Unlike common loss models HMMs have a time dependency; in particular the model

considered here has a one time period dependency. This dependency can be changed by

either increasing the number of past states that influence the current state or by changing

the state that influences the current state, that is have state t depend on state t − i where

i > 1. In the case of auto insurance the latent states could be viewed as representing the

driving ability of the policy holder in the past year, for example s1 = good driving year,

s2 = average driving year, and s3 = bad driving year. Note that the the time period does

not need to be a year. This builds a nice intuitive reasoning as the insurer does not see
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S1 S2 S3

C1N1 C2N2 C3N3

...

Figure 3.1: Graphical Representation of a Poisson-Gamma HMM

directly how well a policy holder drove in the past year, unless they have a remote control

sensor in the car, the only information that the insurer sees is the claims. Also this approach

views driving skills as a dynamic ability, a diver can change from a good to a bad driver

over different time periods. This allows for hypothetical situations like: given a bad driving

year a policyholder might become more cautious/better driver, or given a few good years

one might become overconfident and take more risks to become a bad driver. Before testing

if these situations are possible and should be accommodated for we must build an HMM for

insurance.

First we need to determine the type of distributions for our emissions. As is common in

auto insurance, we propose the Poisson distribution to model claim counts and the gamma

distribution to model the claim severity. Thus the model will have two outputs, count

and severity, and these distributions we chose so we can compare any results to other loss

models. Above is a graphical depiction of the proposed model as in Figure 2.1, where Ni is

the claim count and Ci refers to the average severity incurred during the ith time period.

The model described in Figure 3.1 has the advantage of estimating the parameters of the

gamma and Poisson distribution together through a similar latent variable making them

dependent on a hidden variable. Commonly these two quantities are estimated separately

and then multiplied together, which some find controversial as there could be a dependence

at play.

The idea of applying HMMs to model non life insurance is not new, see for instance Paroli

et al. [2000]. In their research they use Poisson hidden Markov models (PHMMs), where

the emissions are Poisson distributed, to model the daily frequencies of injury in the work
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place in Italy. They derive maximum likelihood estimates for the λ parameters that govern

the Poisson distributions. They claim that this helps deal with the overdispersion problem

in count data, the fact that the Poisson distribution cannot handle too much variability.

Overdispersion occurs when there is greater variability in the data than would be expected

given the statistical model, which usually manifests in car insurance with too many zero

observations. Switching λ based on latent states provides a more accurate model for the

overdispersion by distributing the variability across multiple Poisson distributions. Lu and

Zeng [2012] also used PHMMs to model hurricanes to assess the risk of an insurer. They

proposed using a non homogeneous PHMM, the parameters changed with time, to better

predict the seasonal variations.

The idea of an HMM with gamma emissions has also been researched, see Zhang et al.

[2012] and Mohammadiha et al. [2013]. The first paper builds a model to represent ozone

levels, while Mohammadiha et al. [2013] propose a similar model for speech signals. In

both Zhang et al. [2012] and Mohammadiha et al. [2013], maximum likelihood estimates are

derived for the parameters (k, θ) that summarize the gamma distribution. Thus far no one

has written about the above Poisson-gamma HMM in any field nor has anyone written about

a gamma HMM for insurance.

3.3 MLE Estimates

The proposed model differs from the one described in Chapter 2 as it emits two ob-

servations, which describes a compound Poisson-gamma with a latent state changing their

parameters. Also the field of application will be different, unlike Paroli et al. [2000] we are

not just curious about number of claims but also the severity. Let L be the number of states,

there will be L2 transition probabilities, L initial probabilities, and 3L parameters for the

Poisson and gamma distributions to estimate.

3.3.1 Single Observation Sequence

First we will deal with the case of modeling all policy holders in a portfolio as individuals.

We will need estimates for our parameters φ = {A,π,λ,k,θ}, where λ is a vector of

32



the parameters for the Poisson distributions and k and θ are vectors of the parameters

for the gamma distributions. Also let Oi denote the random vector of observations, i.e.

Oi = (Ni, Ci), and O be all the observed values in the sequence. First we write the Q

function:

Q(φ;φ0) = Eφ0 (ln(LcT (φ)|O))

= Eφ0

(
ln

(
πs1bs1(o1)

T∏
i=2

asi−1sibsi(oi)

)
|O

)

= Eφ0 (ln(πs1)|O) +
T∑
i=2

Eφ0
(
ln(asi−1si)|O

)
+

T∑
i=1

Eφ0 (ln(bsi(oi))|O)

=
L∑
j=1

ln(πs1=j) Pr(S1 = j|O) +
L∑
k=1

L∑
j=1

T∑
i=2

ln(asi−1=k,si=j) Pr(Si = k, Si−1 = j|O)

+
L∑
j=1

T∑
i=1

ln(bsi=j(oi)) Pr(Si = l|O)

=
L∑
j=1

γ1(j) ln(πj) +
L∑
k=1

L∑
j=1

T∑
i=2

ln(asi−1=k,si=j)γi−1(k, j) +
L∑
j=1

T∑
i=1

ln(bsi=j(oi))γi(j).

Again we started at the first iteration to simplify the notation. The Q function will be the

same at each iteration making the results applicable at each update. Thanks to the nice

structure of the model the Q function breaks up very nicely, making the estimation of the

parameters easier. Next, split bsi=j(oi) by following model structure:

L∑
j=1

T∑
i=1

ln(bsi=j(oi))γi(j) =
L∑
j=1

T∑
i=1

ln(Pr(Ni = ni, Ci = ci|Si = j))γi(j)

=
L∑
j=1

T∑
i=1

ln(Pr(Ni = ni|Si = j) Pr(Ci = ci|Si = j))γi(j)

=
L∑
j=1

T∑
i=1

[
ln
(

Pr(Ni = ni|Si = j)
)

+ ln
(

Pr(Ci = ci|Si = j)
)]
γi(j).

Here ni is the observed number of claims and ci is the observed average claim. The Q

function breaks apart again nicely because the random variables Ci and Ni are conditionally

33



independent given our latent state Si. Thus the Q function becomes,

Q(φ;φ0) =
L∑
j=1

γ1(j) ln(πj) +
L∑
k=1

L∑
j=1

T∑
i=2

ln(asi−1=k,si=j)γi−1(k, j)

+
L∑
j=1

T∑
i=1

[
ln
(

Pr(Ni = ni|Si = j)
)

+ ln
(

Pr(Ci = ci|Si = j)
)]
γi(j). (3.1)

Therefore with initialized values of the parameters this Q function can be calculated, lead-

ing to the second step of the EM algorithm. Next we must derive optimal values for our

parameters so we can iterate.

Fortunately since the expectation of the log likelihood separated nicely the estimates for

the initial state probabilities are the same as before:

πi = γ1(i), i ∈ {1, ..., L}.

This is true of the transition probabilities as well:

akj =

∑T
i=2 γi(k, j)∑T
i=2 γi(k)

, k, j ∈ {1, ..., L}.

Unlike before here we need to derive estimates for the Poisson and gamma distribution

parameters, (λ,k,θ). Starting with the Poisson parameters, take the partial derivative of Q

with respect to λj, which refers to the λ value at the hidden state j:

∂Q

∂λj
=

T∑
i=1

(
ni
λj
− 1

)
γi(j), j ∈ {1, ..., L}.

This is done by replacing Pr(Ni = ni|Si = j) by the probability mass function of the Poisson

distribution, and noticing that the rest of the sum does not depend on λj. Setting it equal
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to zero and solving gives

T∑
i=1

(
ni
λj
− 1

)
γi(j) = 0 =⇒

T∑
i=1

(ni − λj) γi(j) = 0,

λj

T∑
i=1

γi(j) =
T∑
i=1

niγi(j) =⇒ λj =

∑T
i=1 niγi(j)∑T
i=1 γi(j)

, j ∈ {1, ..., L}.

This is consistent with the result from Paroli et al. [2000]. All that is left is the estimation

of the parameters for the gamma distribution. Since it is continuous and therefore has prob-

ability 0 of taking a particular value we use the probability density function, as is commonly

done when deriving the maximum likelihood estimates for continuous distributions. We use

the following parameterization of the PDF

f(ci) =
c
kj−1
i e

−ci
θj

Γ(kj)θ
kj
j

, j ∈ {1, ..., L}, kj, θj > 0,

where ci represents the average claim severity of the ith observation, i ∈ {1, ..., T}, while

kj and θj are the parameters of the gamma distribution for hidden state j. Thus we can

proceed to derive estimates for kj and θj, beginning with θj:

∂Q

∂θj
=

T∑
i=1

(
ci
θ2
j

− kj
θj

)
γi(j), j ∈ {1, ..., L}.

This time replace Pr(Ci = ci|Si = j) by the density function of the gamma and disregard

the rest of the sum as it does not depend on θj. Setting equal to zero and solving gives

T∑
i=1

(
ci
θ2
j

− kj
θj

)
γi(j) = 0 =⇒

T∑
i=1

(ciγi(j)− kjθjγi(j)) = 0,

T∑
i=1

kjθjγi(j) =
T∑
i=1

ciγi(j) =⇒ θj =

∑T
i=1 ciγi(j)∑T
i=1 kjγi(j)

, j ∈ {1, ..., L}.

This allows us to write θj in terms of kj, so now we must derive an estimate for kj . Simpli-
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fying notation gives

c̄T =

∑T
i=1 ciγi(j)∑T
i=1 γi(j)

=⇒ θj =
c̄T
kj
, j ∈ {1, ..., L}.

Substituting this estimate for θj into Equation (3.1) and taking the partial derivative with

respect to kj yields

∂Q

∂kj
=

T∑
i=1

(
ln(ci)−

ci
c̄T
− ψ0(kj)− ln

(
c̄T
kj

)
+ 1

)
γi(j),

where ψ0(kj) is the digamma function. Setting equal to zero does not lead to an analytical

solution, therefore a numerical technique is needed. Note that the estimates of kj and θj

are consistent with Zhang et al. [2012] and Mohammadiha et al. [2013]. Then, as before, we

need to verify that we are moving towards a local maximum. Writing the Hessian out gives

H =



−γ1(1)

π2
1

0 . . . 0

0 −γ1(2)

π2
2

. . . 0
...

...
. . .

...

0 . . . 0
∑T

i=1

(
−ψ1(kK) + 1

kK

)
γi(K)

 .

The diagonal represents the second derivatives with respect to the parameters of the model,

i.e. φ = {A,π,λ,k,θ}. By the same reasoning as before the second derivatives with respect

to aij and πi are negative, thus we must check the second derivatives with respect to our

emission probability parameters. Since we replaced θj by a value dependent on kj we can

disregard the second derivatives with respect to θj and this explains why we have a diagonal

matrix, the second derivatives with respect to two different parameters is zero as before.

Then, consider the second derivative of Q with respect to λj,

∂2Q

∂λ2
j

=
T∑
i=1

(
−ni
λ2
j

)
γi(j), j ∈ {1, ..., L}.

This value is negative because ni is positive as it represents claim counts, then γi(j) is a

probability thus nonnegative and λj > 0 by definition of the Poisson Distribution. The next
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part is more complicated and will require the use of the results of others. Calculating the

second derivative of Q with respect to kj we have

∂2Q

∂k2
j

=
T∑
i=1

(
−ψ1(kj) +

1

kj

)
γi(j), j ∈ {1, ..., L},

where ψ1(kj) is the trigamma function, i.e. ψ1(kj) = ψ
′
0(kj). Since by definition kj > 0 we

will only be concerned with that space. Also γi(j) > 0 and ψ1(kj) > 0, and for this reason

all that is left to show is that ψ1(kj) >
1
kj

.

Proof: To prove this, split the space into two sections, (0, 1] and (1,∞). Dealing with the

first part, (0, 1], we need to rewrite the trigamma function like in Sebah and Gourdon [2002]

ψ1(kj) =
∞∑
p=0

1

(p+ kj)2
, kj 6= 0,−1,−2, ...

Then if we look at the first term in this sum, 1
k2j

, this is clearly larger than 1
kj

for kj ∈ (0, 1).

Similarly when kj = 1 just take the first two terms in the series. Next for the second part if

we let

θ1(kj) = (ψ1)−1

(
1

kj

)
− kj, j ∈ {1, ..., L}.

Batir [2007] showed that θ1(kj) > 0 for all kj > 0 and

1

kj
= ψ1(kj + θ1(kj)), j ∈ {1, ..., L}.

This implies that ψ1(kj) >
1
kj

, as we showed that ψ1(kj) starts off larger than 1
kj

in the

considered region. �

Thus ∂2Q
∂k2j

< 0 which makes all the diagonal elements of the Hessian negative. Therefore it

is negative definite and we are moving towards a local maximum. One more thing to note

is that by definition we need λj, θj and kj to be greater than zero which is easily verified as

they are defined by a sum and product of strictly positive values.
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3.3.2 Multiple Observation Sequences

In the case of a new policy holder there is a lack of data and therefore it is impossible to

estimate the necessary parameters for the described HMM model. Luckily one can use an

unsupervised learning algorithm to split the policy holders into classes/groups, i.e. clustering

procedures, and leverage similar policy holders to estimate parameters for the new policy

holder. In credibility theory the problem of estimating premiums is often presented by

assuming that the insurance company will have a portfolio already split into different risk

classes that have similar characteristics. Therefore the assumption of an insurance portfolio

already split by classes is not so far fetched and adding this to the model does not require

much additional work. What is needed is the machinery to estimate parameters for multiple

observation sequences.

Let O now represent a set containing multiple observation sequences,

O = {O(1), O(2), ..., O(M)},

where

O(m) = {o(m)
1 , ..., o

(m)
Tm
},

and 1 ≤ m ≤ M . Note that different sequences are allowed to be of varying lengths, which

we can take advantage of, as policy holders beginning at different times are bound to have

dissimilar sequence lengths. Let Tm denote the length of the mth sequence. One usually

does not know if the sequences are independent or not and if independence is assumed and

then proven not to be the case a catastrophe can occur. In either circumstance let us rede-

fine the total output probability for multiple sequences, thanks to properties of conditional
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probability we can write it in m different ways:

Pr(O|φ) = Pr(O(1)|φ) Pr(O(2)|O(1), φ)...Pr(O(M)|O(M−1), ..., O(1), φ)

Pr(O|φ) = Pr(O(2)|φ) Pr(O(3)|O(2), φ)...Pr(O(1)|O(M), ..., O(2), φ)

...

Pr(O|φ) = Pr(O(M)|φ) Pr(O(1)|O(M), φ)...Pr(O(M−1)|O(M), O(M−2), ..., O(1), φ).

Summing the above expressions we can rewrite the total out probability as,

Pr(O|φ) =
M∑
m=1

wm Pr(O(m)|φ), (3.2)

where

w1 =
1

M
Pr(O(2)|O(1), φ)...Pr(O(M)|O(M−1), ..., O(1), φ)

w2 =
1

M
Pr(O(3)|O(2), φ)...Pr(O(1)|O(M), ..., O(2), φ)

...

wK =
1

M
Pr(O(1)|O(M), φ)...Pr(O(M−1)|O(M), O(M−2), ..., O(1), φ).

These weights are conditionals probabilities and thus capture the dependence relationship

between different observation sequences. Using the above relations Li et al. [2000] showed

that the Q function can be rewritten as

Q(φ;φk) =
M∑
m=1

wmQm(φ;φk), (3.3)

where

Qm(φ;φk) =
∑
S

Pr(O(m), S|φ) ln(Pr(O(m), S|φk)).

Li et al. [2000] first built the hardware needed to derive estimates given multiple observa-

tion sequences. As they switched from expectations to probabilities let us verify that this
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coincides with our previous results for the case of M = 1. Note that w1 = 1 for M = 1, thus

making

Qm(φ;φk) =
∑
S

Pr(O, S|φ) ln(Pr(O, S|φk))

=
∑
S

Pr(O, S|φ)

(
ln

(
πs1bs1(o1)

T∏
i=2

asi−1sibsi(oi)

))

=
∑
S

Pr(S|O, φ) Pr(O|φ)

(
ln(πs1) +

T∑
i=1

ln(bsi(oi)) +
T∑
i=2

ln(asi−1si)

)

= Pr(O|φ)

(∑
S

Pr(S|O, φ) ln(πs1) +
∑
S

Pr(S|O, φ)
T∑
i=1

ln(bsi(oi))

+
∑
S

Pr(S|O, φ)
T∑
i=2

ln(asi−1si)

)

= Pr(O|φ)

(
L∑
j=1

γ1(j) ln(πs1=j) +
L∑
j=1

T∑
i=1

γi(j) ln(bsi=j(oi))

+
L∑
k=1

L∑
j=1

T∑
i=2

γi−1(k, j) ln(asi−1=k,si=j)

)
.

When optimizing this equation for φ the Pr(O|φ) cancels out and thus we are left with the

same estimates as before.

Next we must derive estimates for our parameters with M > 1. Like before we can set

up a Lagrange multiplier problem,

F (φk,κ) = Q(φ;φk) + κ1

(
1−

L∑
j=1

πj

)
+ κ2

(
1−

L∑
j=1

akj

)
, (3.4)

where Q(φ;φk) is the same as Equation (3.3), κ = {κ1, κ2} are the Lagrange Multipliers and

the constraints are the same as before

g1(π) =
L∑
j=1

πj = 1, (3.5)

g2(ak1, ..., akL) =
L∑
j=1

akj = 1. (3.6)
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Given a similar set up as before and we need to optimize our parameters. Commencing with

the initial state probabilities

∂F

∂πi
=
∑
m

wm Pr(O(m)|φ)

(
γ

(m)
1 (i)

πi

)
− κ1, i ∈ {1, ..., L},

where γ
(m)
t (i) refers to the Pr(St = i|O(m), φ). Note the calculation for this value is the same

as before it is just with respect to the mth observation sequence. Then setting equal to zero

and solving for πi,

∑
m

wm Pr(O(m)|φ)

(
γ

(m)
1 (i)

πi

)
− κ1 = 0 =⇒

∑
m

wm Pr(O(m)|φ)

(
γ

(m)
1 (i)

πi

)
= κ1∑

m

wm Pr(O(m)|φ)
(
γ

(m)
1 (i)

)
= κ1πi =⇒ πi =

1

κ1

∑
m

wm Pr(O(m)|φ)
(
γ

(m)
1 (i)

)
.

Using our constraint 3.5 we can then solve for κ1,

L∑
j=1

1

κ1

∑
m

wm Pr(O(m)|φ)
(
γ

(m)
1 (j)

)
= 1 =⇒ κ1 =

L∑
j=1

∑
m

wm Pr(O(m)|φ)
(
γ

(m)
1 (j)

)
,

κ1 =
∑
m

wm Pr(O(m)|φ)

(
L∑
j=1

γ
(m)
1 (j)

)
=
∑
m

wm Pr(O(m)|φ).

Thus making the estimate

πi =

∑
mwm Pr(O(m)|φ)

(
γ

(m)
1 (i)

)
∑

mwm Pr(O(m)|φ)
. (3.7)

Proceeding to the transition probabilities, akj. Taking the derivative of F with respect to

akj we get

∂F

∂akj
=
∑
m

wm Pr(O(m)|φ)

(
Tm∑
i=2

γ
(m)
i−1 (k, j)

akj

)
− κ2, k, j ∈ {1, ..., L}

where γ
(m)
i (k, j) = Pr(Si = k, Si+1 = j|O(m), φ). Again this is similar to the previous

calculation for this value just with respect to the mth observation sequence. Then to find a
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critical point we set the derivative equal to zero and solve for akj,

∑
m

wm Pr(O(m)|φ)

(
Tm∑
i=2

γ
(m)
i−1 (k, j)

akj

)
− κ2 = 0 =⇒

∑
m

wm Pr(O(m)|φ)

(
Tm∑
i=2

γ
(m)
i−1 (k, j)

akj

)
= κ2,

1

κ2

∑
m

wm Pr(O(m)|φ)

(
Tm∑
i=2

γ
(m)
i−1 (k, j)

)
= akj.

Then applying this to Constraint (3.6)

L∑
j=1

1

κ2

∑
m

wm Pr(O(m)|φ)

(
Tm∑
i=2

γ
(m)
i−1 (k, j)

)
= 1

κ2 =
L∑
j=1

∑
m

wm Pr(O(m)|φ)

(
Tm∑
i=2

γ
(m)
i−1 (k, j)

)

κ2 =
∑
m

wm Pr(O(m)|φ)

(
Tm∑
i=2

L∑
j=1

γ
(m)
i−1 (k, j)

)

κ2 =
∑
m

wm Pr(O(m)|φ)

(
Tm∑
i=2

γ
(m)
i−1 (k)

)
.

Substituting this in to our previous solution for akj gives

akj =

∑
mwm Pr(O(m)|φ)

(∑Tm
i=2 γ

(m)
i−1 (k, j)

)
∑

mwm Pr(O(m)|φ)
(∑Tm

i=2 γ
(m)
i−1 (k)

) . (3.8)

Both the result for akj and πi are consistent with Li et al. [2000]. This makes sense as the

sum for F splits nicely. Now to estimate our emission probability parameters, as we are

still in the auto insurance realm, let us continue with the assumption of Poisson and gamma

emissions. As in Section 3.3.1, we split bsi=j(oi) by claim count and severity in our Qm

42



functions,

Qm(φ;φk) = Pr(O(m)|φ)

(
L∑
j=1

γ
(m)
1 (j) ln(πs1=j)

+
L∑
j=1

Tm∑
i=1

γ
(m)
i (j)

[
ln
(

Pr(Ni = n
(m)
i |Si = j)

)
+ ln

(
Pr(Ci = c

(m)
i |Si = j)

)]

+
L∑
k=1

L∑
j=1

Tm∑
i=2

γ
(m)
i−1 (k, j) ln(asi−1=k,si=j)

)
, (3.9)

where n
(m)
i and c

(m)
i are the number of claims and the claim severity at time i for the

mth observation sequence respectively. We were able to disregard the other parameters

when deriving estimates for πi and akj because this sum breaks apart nicely as we took the

derivative. Then to derive an estimate for λj, the Poisson parameter for the jth state, let

us take the derivative of F with respect to λj,

∂F

∂λj
=
∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

(
n

(m)
i

λj
− 1

)
γ

(m)
i (j), j ∈ {1, ..., L}.

Setting equal to zero and solving

∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

(
n

(m)
i

λj
− 1

)
γ

(m)
i (j) = 0

1

λj

∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

(
n

(m)
i − λj

)
γ

(m)
i (j) = 0

∑
m

Tm∑
i=1

(
wm Pr(O(m)|φ)n

(m)
i − wm Pr(O(m)|φ)λj

)
γ

(m)
i (j) = 0

λj
∑
m

Tm∑
i=1

wm Pr(O(m)|φ)γ
(m)
i (j) =

∑
m

Tm∑
i=1

wm Pr(O(m)|φ)n
(m)
i γ

(m)
i (j)

λj =

∑
m

∑Tm
i=1wm Pr(O(m)|φ)n

(m)
i γ

(m)
i (j)∑

m

∑Tm
i=1wm Pr(O(m)|φ)γ

(m)
i (j)

. (3.10)

Last but not least we must optimize our gamma parameters. Taking the derivative of F
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with respect to θj,

∂F

∂θj
=
∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

(
c

(m)
i

θ2
j

− kj
θj

)
γ

(m)
i (j), j ∈ {1, ..., L}.

Following the theme

∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

(
c

(m)
i

θ2
j

− kj
θj

)
γ

(m)
i (j) = 0

∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

(
c

(m)
i − kjθj

)
γ

(m)
i (j) = 0

∑
m

Tm∑
i=1

(
c

(m)
i wm Pr(O(m)|φ)− kjθjwm Pr(O(m)|φ)

)
γ

(m)
i (j) = 0

θj
∑
m

Tm∑
i=1

kjwm Pr(O(m)|φ)γ
(m)
i (j) =

∑
m

Tm∑
i=1

c
(m)
i wm Pr(O(m)|φ)γ

(m)
i (j)

θj =

∑
m

∑Tm
i=1 c

(m)
i wm Pr(O(m)|φ)γ

(m)
i (j)∑

m

∑Tm
i=1 kjwm Pr(O(m)|φ)γ

(m)
i (j)

, j ∈ {1, ..., L}. (3.11)

To simplify notation let

c̄(m) =

∑
m

∑Tm
i=1 c

(m)
i wm Pr(O(m)|φ)γ

(m)
i (j)∑

m

∑Tm
i=1wm Pr(O(m)|φ)γ

(m)
i (j)

then

θj =
c̄(m)

kj
, j ∈ {1, ..., L}.

Substituting this into Equation (3.4) and taking the derivative with respect to kj yields

∂F

∂kj
=
∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

γ
(m)
i (j)

(
ln(c

(m)
i )− c

(m)
i

c̄(m)
− ψ0(kj)− ln

(
c̄(m)

kj

)
+ 1

)
, (3.12)

for j ∈ {1, ..., L}. When setting equal to zero this is again impossible to solve analytically

and thus a numerical procedure is needed. Next we must check if we are moving towards a
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local maximum. Taking the second derivatives gives

∂2F

∂π2
i

=
∑
m

wm Pr(O(m)|φ)

(
−γ(m)

1 (i)

π2
i

)
, (3.13)

∂2F

∂a2
kj

=
∑
m

wm Pr(O(m)|φ)

(
Tm∑
i=2

−γ(m)
i−1 (k, j)

a2
kj

)
, (3.14)

∂2F

∂λ2
j

=
∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

−n(m)
i

λ2
1

γ
(m)
i (j), (3.15)

∂2F

∂k2
j

=
∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

γ
(m)
i (j)

(
−ψ1(kj) +

1

kj

)
. (3.16)

The Hessian therefore becomes a diagonal matrix, as the second derivatives with respect

to two different parameters are zero, with the previous second derivatives as it’s diagonals.

Note that ψ1(kj) and ψ0(kj) represent the same functions as before, trigamma and digamma

respectively. To ensure that the critical point is a local maximum the Hessian must be

negative definite. Equation (3.15) is negative because wm > 0, as it is a probability, and

Pr(O(m)|φ) > 0. The rest of values in Equation (3.15) are greater than zero by the same

logic as before. This reasoning holds true for Equation (3.14) and (3.13) as well. Then for

Equation (3.16), this value is negative as by the same logic as the proof from Section 3.3.1.

The value is just being multiplied by
∑

mwm Pr(O(m)|φ) which is positive as it represents a

probability. Therefore the algorithm is moving in the direction of a local maximum.

Considering multiple observation sequences has the advantage of modeling a dependence

relation between policy holders, wm. In the past it was often thought that the observations

were independent but in light of what has transpired in the past couple years that seems not

to be the case. Companies and government regulators have been transitioning to predictive

models that capture dependencies to help safeguard from economic catastrophes. With this

being said let us point out two special cases of dependence. First, assuming independent

observation sequences allows for nice simplifications of the model parameters. The total

output probability from (3.2) can be rewritten as

Pr(O|φ) =
M∏
m=1

Pr(O(m)|φ),
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and the weights as

wm =
Pr(O|φ)

M Pr(O(m)|φ)
, m ∈ {1, ...,M}. (3.17)

Substituting (3.17) into (3.7) and (3.8) gives

πi =

∑
m

Pr(O|φ)

M Pr(O(m)|φ)
Pr(O(m)|φ)γ

(m)
1 (i)∑

m
Pr(O|φ)

M Pr(O(m)|φ)
Pr(O(m)|φ)

=
1

M

∑
m

γ
(m)
1 (i), i ∈ {1, ..., L},

akj =

∑
m

Pr(O|φ)

M Pr(O(m)|φ)
Pr(O(m)|φ)

(∑Tm
i=2 γ

(m)
i−1 (k, j)

)
∑

m
Pr(O|φ)

M Pr(O(m)|φ)
Pr(O(m)|φ)

(∑Tm
i=2 γ

(m)
i−1 (k)

) =

∑
m

∑Tm
i=2 γ

(m)
i−1 (k, j)∑

m

∑Tm
i=2 γ

(m)
i−1 (k)

, k, j ∈ {1, ..., L}.

These results coincide with Li et al. [2000]. Then replacing again (3.17) into (3.10) and

(3.11) yields

λj =

∑
m

∑Tm
i=1

Pr(O|φ)

M Pr(O(m)|φ)
Pr(O(m)|φ)n

(m)
i γ

(m)
i (j)∑

m

∑Tm
i=1

Pr(O|φ)

M Pr(O(m)|φ)
Pr(O(m)|φ)γ

(m)
i (j)

=

∑
m

∑Tm
i=1 n

(m)
i γ

(m)
i (j)∑

m

∑Tm
i=1 γ

(m)
i (j)

, j ∈ {1, ..., L},

θj =

∑
m

∑Tm
i=1 c

(m)
i

Pr(O|φ)

M Pr(O(m)|φ)
Pr(O(m)|φ)γ

(m)
i (j)∑

m

∑Tm
i=1 kj

Pr(O|φ)

M Pr(O(m)|φ)
Pr(O(m)|φ)γ

(m)
i (j)

=

∑
m

∑Tm
i=1 c

(m)
i γ

(m)
i (j)∑

m

∑Tm
i=1 kjγ

(m)
i (j)

, j ∈ {1, ..., L}.

Lastly substituting (3.17) into (3.12),

∂F

∂kj
=
∑
m

wm Pr(O(m)|φ)
Tm∑
i=1

γ
(m)
i (j)

(
ln(c

(m)
i )− c

(m)
i

c̄(m)
− ψ0(kj)− ln

(
c̄(m)

kj

)
+ 1

)

=
∑
m

Pr(O|φ)

M Pr(O(m)|φ)
Pr(O(m)|φ)

Tm∑
i=1

γ
(m)
i (j)

(
ln(c

(m)
i )− c

(m)
i

c̄(m)
− ψ0(kj)− ln

(
c̄(m)

kj

)
+ 1

)

=
Pr(O|φ)

M

∑
m

Tm∑
i=1

γ
(m)
i (j)

(
ln(c

(m)
i )− c

(m)
i

c̄(m)
− ψ0(kj)− ln

(
c̄(m)

kj

)
+ 1

)
,

for j ∈ {1, ..., L}, where

c̄(m) =

∑
m

∑Tm
i=1 c

(m)
i γ

(m)
i (j)∑

m

∑Tm
i=1 γ

(m)
i (j)

.

Note that a numerical procedure is still required to solve for kj when determining for a
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critical point. The second special case is assuming that there is a uniform dependence across

all observation sequences. This allows us to rewrite the weights as

wm = a, m ∈ {1, ...,M}, (3.18)

where a is a constant that does not depend on m. Using this (3.13) and (3.14) become

πi =

∑
m aPr(O(m)|φ)

(
γ

(m)
1 (i)

)
∑

m aPr(O(m)|φ)
=

∑
m Pr(O(m)|φ)

(
γ

(m)
1 (i)

)
∑

m Pr(O(m)|φ)
, i ∈ {1, ..., L}

akj =

∑
m aPr(O(m)|φ)

(∑Tm
i=2 γ

(m)
i−1 (k, j)

)
∑

m aPr(O(m)|φ)
(∑Tm

i=2 γ
(m)
i−1 (k)

) =

∑
m Pr(O(m)|φ)

(∑Tm
i=2 γ

(m)
i−1 (k, j)

)
∑

m Pr(O(m)|φ)
(∑Tm

i=2 γ
(m)
i−1 (k)

) ,

for k, j ∈ {1, ..., L}. This again accords with the Li et al. [2000]. Proceeding to the other

parameters, substituting (3.18) into (3.10) and (3.11) gives

λj =

∑
m

∑Tm
i=1 aPr(O(m)|φ)n

(m)
i γ

(m)
i (j)∑

m

∑Tm
i=1 aPr(O(m)|φ)γ

(m)
i (j)

=

∑
m

∑Tm
i=1 Pr(O(m)|φ)n

(m)
i γ

(m)
i (j)∑

m

∑Tm
i=1 Pr(O(m)|φ)γ

(m)
i (j)

, j ∈ {1, ..., L},

θj =

∑
m

∑Tm
i=1 c

(m)
i aPr(O(m)|φ)γ

(m)
i (j)∑

m

∑Tm
i=1 kjaPr(O(m)|φ)γ

(m)
i (j)

=

∑
m

∑Tm
i=1 Pr(O(m)|φ)c

(m)
i γ

(m)
i (j)∑

m

∑Tm
i=1 Pr(O(m)|φ)kjγ

(m)
i (j)

, j ∈ {1, ..., L}.

Then using (3.18) in (3.12) yields

∂F

∂kj
=
∑
m

aPr(O(m)|φ)
Tm∑
i=1

γ
(m)
i (j)

(
ln(c

(m)
i )− c

(m)
i

c̄(m)
− ψ0(kj)− ln

(
c̄(m)

kj

)
+ 1

)
,

for j ∈ {1, ..., L}, where

c̄(m) =

∑
m

∑Tm
i=1 Pr(O(m)|φ)c

(m)
i γ

(m)
i (j)∑

m

∑Tm
i=1 Pr(O(m)|φ)γ

(m)
i (j)

.

As before a numerical procedure is needed to find the critical point. Note that the actuary

can set these dependencies how wanted, one is not forced to choose one of the cases described.

The multiple observation twist makes it easy to use the HMM model in credibility. One

can use the whole portfolio and derive an estimate for the next time period claims and then
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derive the estimate for risk class or individual policy holder. Using these two quantities one

can take a weighted sum, as is done in credibility, and use that as a pure premium. Thus

the application of the proposed HMM model would be an easy transition for most actuaries

as they would be able to easily incorporate some methods that they already apply.

3.4 Prediction

After computing the model parameters starts the part of forecasting future values. First

begin with the expected number of claims for the next time period. We can use the mecha-

nisms we defined earlier to find the probabilities of our terminal states:

γT (j) = Pr(ST = j|O, φ), j ∈ {1, ..., L}.

Then we can use this probability and propagate forward with our estimated transition prob-

abilities to the next time period. Thus allowing us to find the expected number of claims,

using the tower property:

E(NT+1|φ) = E(E(NT+1|ST+1, φ))

= E(λj)

=
∑
j

λj Pr(ST+1 = j)

=
∑
i

∑
j

λjγT (i)aij.

The expected claim severities are calculated in the same manner except for λj, which is the

mean of the Poisson, here is replaced by the mean of the gamma kjθj,

E(CT+1|φ) =
∑
i

∑
j

kjθjγT (i)aij.

These values can be used as estimates of pure premiums for the next time period and then

a company can apply the appropriate premium loading.

After short term planning comes the question of long term forecasting. The further down
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the road you look the more computationally expensive the calculation becomes. Let us define

the probability of the first step after T,

Pr(ST+1 = j) =
∑
i

γT (i)aij.

This result agrees with the previous derivation of the T + 1 estimates. Then the probability

of the next step becomes,

Pr(ST+2 = j) =
∑
i

Pr(sT+1 = i)aij.

Thus if we let r = 3, 4, .... then

Pr(ST+r = j) =
∑
i

Pr(ST+r−1 = i)aij.

Making it possible to estimate the probability of being in state j for any future time T + r.

This makes the expected values of future total severity and claim counts calculable:

E(NT+r|φ) =
∑
j

λj Pr(ST+r = j),

E(CT+r|φ) =
∑
j

kjθj Pr(ST+r = j).

The algorithm becomes more expensive when we increase the number of states but thanks

to the Markov property if we know the probability distribution of the previous hidden state

we can iterate forward easily. Thus one would store these probabilities while progressing

through the HMM.

Together with the pure premium actuaries often like to estimate intervals around these

point estimates. This is because it is often extremely unlikely that the next observation will

be the same as the estimated one. Using the distributions for all the states we can build

intervals of any percentage for any future time period. The following result can be viewed

as creating risk measures for HMMs. Start with the interval for the claim count of the time

period T + r, where r is as defined above. We want to find the point, call it b, at which we
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capture 1− α of the possible values of claim counts given our model:

b = inf {b ∈ N : Pr(NT+r ≤ b) > 1− α} .

The distribution for NT+r becomes a weighted sum of the different Poissons which we can

write down and thus solve for b. Let fNT+r
(nT+r) denote the probability mass function

and FNT+r
(nT+r) be the cumulative distribution function (CDF) for NT+r. One can write

fNT+r
(nT+r) as

fNT+r
(nT+r) =

∑
j

λ
nT+r

j eλj

nT+r!
Pr(ST+r = j).

Using this one can then write the CDF:

FNT+r
(nT+r) =

nT+r∑
i=0

∑
j

λije
λj

i!
Pr(ST+r = j). (3.19)

Thus b becomes the lowest value for which (3.19) is at least 1− α. Then proceeding in the

same manner for severities, let d be

d = inf {d ∈ R : Pr(CT+r ≤ d) > 1− α} .

Also let fCT+r
(cT+r) denote the probability mass function:

fCT+r
(cT+r) =

∑
j

c
kj−1
T+r e

−cT+r
θj

Γ(kj)θ
kj
j

Pr(ST+r = j),

and then the CDF, FCT+r
(cT+r), can be written as

FCT+r
(cT+r) =

∫ cT+r

0

∑
j

xkj−1e
−x
θj

Γ(kj)θ
kj
j

Pr(ST+r = j)dx. (3.20)

Thus d is the lowest such value for which (3.20) is at least 1 − α. Unfortunately both the

sum and integral for the Poisson and gamma CDF respectively do not simplify nicely. The
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procedure described above provides a method for determining the value at risk, VaR, using

an HMM. Note that in practice one can choose the risk measure that one deems relevant,

CVaR, EVaR or etc. These risk measures are useful for regulatory institutions to prevent

economic catastrophe.

3.5 Conclusion

The above results describe how to create an HMM for auto insurance and then proceeds

to derive values, using this model, that actuaries often consider when making decisions.

The above model, Poisson-gamma HMM, has never been proposed in actuarial science nor

in another field and can be used to estimate any data that exhibits a time series Poisson-

gamma distribution. The model does not need to be relegated to actuarial science. The

model was conceived as trying to capture the hidden ability of a policy holder’s capacity

to drive. Even though some current actuarial models, based on GLMs, have a bonus-malus

variable that tries to capture the hidden driving ability of a policyholder they do not provide

a model that intuitively and dynamically captures this effect. Instead they are forced to

create an explanatory variable as a proxy to capture this effect thus forcibly adding it to

their model. The HMM model provides a more realistic interpretation of what the actuary

sees and thus better describes the real life situation without adding to the model complexity.
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Chapter 4

HMM-GLM Hybrid

4.1 Introduction

Thus far the ideas of HMMs and GLMs have been introduced separately. This chapter

combines the two and introduces a HMM-GLM hybrid, which has been proposed before in

Fan [2015]. Unlike the proposal in Fan [2015] the model described here has two emissions, one

Poisson and the other gamma. Fan [2015] derived a HMM-GLM with one GLM emission.

This proposal is similar to that in Figure 3.1, except that after determining the hidden

state there is a set of covariates used to estimate the emissions. The HMM-GLM relies on

estimation techniques used for both HMMs and GLMs.

4.2 Definitions

The first step is to simplify the notation. Let W and U denote the matrices of coefficients

for Ct and Nt, respectively, in Figure 3.1. Assuming that the same number of covariates are

used to estimate Ct and Nt makes

W =


w10 w11 . . . w1p

w20 w21 . . . w2p

...
... . . .

...

wL0 xL1 . . . xLp

 , U =


u10 u11 . . . u1p

u20 u21 . . . u2p

...
... . . .

...

uL0 uL1 . . . uLp

 .
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Note that both these matrices are L×(p+1). This can be adapted to dissimilar matrices but

similar ones allow for simpler notation. Also let Rt = (Rt,1, ..., Rt,L) denote a 1 × L vector

with Rt,i = 1, if St = i, and zero otherwise. Please note that all other definitions stand as

before.

4.3 Parameter Estimation

Combining GLMs with HMMs adds parameters to estimate and also another hyper-

parameter known as the link function. The derivation of the coefficients changes when

choosing different link functions. There are two cases often considered, the canonical link

function and other link functions. Also one can adapt HMMs to multiple observation se-

quences as before.

4.3.1 Single Observation Sequence

Before estimating the parameters the likelihood function, given complete data, must be

rewritten to represent the new model. Let g1 and g2 be the probability density functions of

the Poisson and gamma respectively. Then,

LcT (φ) = πs1bs1(o1)
T∏
i=2

asi−1sibsi(oi),

ln(LcT (φ)) = ln(πs1) +
T∑
i=1

ln(bsi(oi)) +
T∑
i=2

ln(asi−1si).

Then taking the expectation the Q function becomes,

Q(φ;φk) = E(ln(LcT (φ)))

=
L∑
j=1

ln(πs1=j)γ1(j) +
L∑
j=1

T∑
i=1

ln(bsi=j(oi))γi(j)

+
L∑
j=1

L∑
k=1

T∑
i=2

ln(asi−1si)γi−1(k, j). (4.1)
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Notice how in (4.1) the maximization of Q with respect to πi and aij do not depend on the

part of the sum with ln(bsi=j(oi)). Therefore the estimates from the previous chapters are

still valid, however the forward and backward variable will need to be altered slightly.

Consider first the case of the canonical link function, one must then estimate W, U, τ1

and τ2. Note that one must estimate different τ1 and τ2 corresponding to the gamma and

Poisson GLM respectively. Disregarding the nonessential parts of the sum, the optimization

problem for W can be rewritten as

max
W

Q(φ;φk) = max
W

L∑
j=1

T∑
i=1

ln(bsi=j(oi))γi(j)

= max
W

L∑
j=1

T∑
i=1

γi(j)

(
ln(c(yi, τ1)) +

{
yiζi − p(ζi)

τ1

})

= max
W

L∑
j=1

T∑
i=1

γi(j)

({
yiζi − p(ζi)

τ1

})
. (4.2)

Note that here bsi=j(oi) splits into a sum of two parts, the other not depending on W and

in this case ζi = xiW
′R′i, where xi is the ith row of X corresponding to the covariates at

time step i. This expression is very similar to the MLE for GLMs except for the γi(j) term.

Plugging the canonical inverse link function for the gamma and applying the chain rule to

(4.2) yields

X′Γky = X′Γkµk, k ∈ {1, .., L}, (4.3)

where µt,k = g−1
1 (xtw

′
k) = 1

xtwk
, µk = (µ1,k, ..., µT,k), and Γk = diag(γ1(k), ..., γT (k)). Note

that (4.3) is used to estimate the coefficients for hidden state k and the subscript to the link

function was added to distinguish the links for the gamma and Poisson. Proceeding along

the same steps one can show that

X′Γky = X′Γkmk, k ∈ {1, .., L}, (4.4)

where mt,k = g−1
2 (xtu

′
k) = exp(xtuk) and mk = (m1,k, ...,mT,k). One can then apply Fisher’s

scoring, Newton-Raphson, or other numerical procedures to solve for uk and wk. In the case
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of the gamma distribution one might not want to choose the canonical link as it can map

the mean outside its support.

The procedure for non-canonical links is identical. This produces the following likelihood

equations of

X′ΓkZkGky = X′ΓkZkGkµk, k ∈ {1, .., L},

where Zk = diag(z1,k, ..., zT,k), zt,k =
[
v(µt,k)g

2
1,µ(µt,k)

]−1
, v(µt,k) = V(yt)/τ

2
1 is the variance

function, Gk = diag(g1,µ(µ1,k), ..., g1,µ(µT,k)) and g1,µ = ∂g/∂µ.

The result for the Poisson coefficients are of the same form,

X′ΓkZkGky = X′ΓkZkGkmk, k ∈ {1, .., L},

where g1,µ is replaced by g2,µ for the other link function and τ1 replaced by τ2. Arriving at

these two estimates one still needs to choose a numerical procedure to evaluate the coefficients

and estimate the τi’s.

Using a moment estimator for τi, and its relation with yt, McCullagh and Nelder [1989]

showed that

τ̂ =
1

n− p
∑
i

(yi − µ̂i)2

v(µ̂i)
.

This expression can be adapted to the HMM-GLM setting,

τ1 =
1

Ts − (p+ 1)

L∑
l=1

T∑
j=1

(yj − µ̂j,l)2

v(µ̂j,l)
γj(l), (4.5)

and

τ2 =
1

T − (p+ 1)

L∑
l=1

T∑
j=1

(yj − m̂j,l)
2

v(m̂j,l)
γj(l), (4.6)

where Ts is the number of observations of the gamma. Note that Ts ≤ T . These derivations

take advantage of the HMM-GLM model, that is given a state St the severity and count, Ct
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and Nt, are independent of all other observations and of the hidden states. For more details

please refer to Fan [2015].

Given our new model the forward and backward variables need to be redefined. In place

of bi(Ot) put f(Nt|St)h(Ct|St), where f and h are the conditional distributions given a hidden

state. Note that these values are dependent on the coefficients. Thus the new iterative rules

become

αt(j) =
L∑
i=1

(αt−1(i)aij) f(Nt|St = j)h(Ct|St = j), j ∈ {1, ..., L},

and

βt(j) =
L∑
i=1

ajif(Nt+1|St+1 = i)h(Ct+1|St+1 = i)βt+1(i), j ∈ {1, ..., L}.

In addition to these alterations one needs to change the form of γt(i, j). Using the same

reasoning as before,

γt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

Pr(O|φ)

=
αt(i)aijf(Nt+1|St+1 = i)h(Ct+1|St+1 = i)βt+1(j)

Pr(O|φ)
.

All previous derivations involving these values are the same since the Q function broke apart

nicely.

This summarizes some of the results of Fan [2015]. If interested this PhD thesis also goes

on to approximate the Kullback-Leibler divergence of a HMM-GLM. They use it iteratively

to choose a model and illustrate this in a simulation study at the end.

4.3.2 Multiple Observation Sequences

As has been demonstrated one can generalize the HMM model to multiple observation

sequences. In Fan [2015] he does not give an interpretation to the model and thus does

not consider multiple observation sequences. An actuary would want to build a multiple

sequence model for new policy holders and young police holders whose Markov chain are not
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long enough, or nonexistent, to estimate parameters accurately. Firstly the case of a general

HMM-GLM will be shown and then an adaption to the considered insurance specific model.

Recalling the Q function from multiple sequences (3.9),

Q(φ;φk) =
M∑
m=1

wmQm(φ;φk)

=
M∑
m=1

wm Pr(O(m)|φ)

(
L∑
j=1

γ
(m)
1 (j) ln(πs1=j) +

L∑
j=1

Tm∑
i=1

γ
(m)
i (j) ln(bsi=j(oi))

+
L∑
k=1

L∑
j=1

Tm∑
i=2

γ
(m)
i−1 (k, j) ln(asi−1=k,si=j)

)
.

The derivations for the transition probabilities and initial state probabilities do not depend

on the emissions and thus the formulas from before are still valid. Therefore the MLE for the

coefficients and an estimate for the dispersion parameters complete the model. Like before

the forward and backward variables need to be redefined. Considering the part of Q that

depends on W,

max
W

Q(φ;φk) = max
W

M∑
m=1

wm Pr(O(m)|φ)
L∑
j=1

Tm∑
i=1

γ
(m)
i (j)

(
exp

{
yi,mζi,m − p(ζi,m)

τ1

})
.

This expression is very similar to the one for a single sequence from the previous section,

except for the extra sum out front. Assuming that one is using the canonical link function

and using the chain rule like before one can show that the estimators are of this form

M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mym =
M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mµk,m, (4.7)

where the subscript m denotes the observation sequence and the variables are the same as

(4.3) except that the appropriate ones need to be denoted with a subscript m.

A similar process can be followed to derive the estimates for the non-canonical case. Thus
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making the likelihood equations,

M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mZk,mGk,mym =
M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mZk,mGk,mµk,m. (4.8)

Again Z and G need to be subscripted by m to signify the different sequences. Using the

above equations one can calculate the parameters needed for a HMM-GLM model.

The wm captures the dependencies between the observation sequences and the prudent

actuary might want to try a finite number of options and choose the best, cross-validation.

Two cases will be shown as they are often considered. Independence is often assumed,

justifiably or not, which in turn provides for nice simplifications. The HMM-GLM model is

no different. Recall from (3.17) that assuming independence implies

wm =
Pr(O|φ)

M Pr(O(m)|φ)
, m ∈ {1, ...,M}.

Thus making the likelihood equations in (4.7) and (4.8)

M∑
m=1

X′mΓk,mym =
M∑
m=1

X′mΓk,mµk,m,

M∑
m=1

X′mΓk,mZk,mGk,mym =
M∑
m=1

X′mΓk,mZk,mGk,mµk,m.

Next assuming that the sequences are uniformly dependent implies that

wm = a, m ∈ {1, ...,M},

where a is constant. Inputting this into (4.7) and (4.8) yields,

M∑
m=1

Pr(O(m)|φ)X′mΓk,mym =
M∑
m=1

Pr(O(m)|φ)X′mΓk,mµk,m,

M∑
m=1

Pr(O(m)|φ)X′mΓk,mZk,mGk,mym =
M∑
m=1

Pr(O(m)|φ)X′mΓk,mZk,mGk,mµk,m.

Both cases provide for nice simplifications but in practice these assumptions probably do
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not hold. In applications, one is not restricted to either case and can model any dependence

that seems reasonable.

Following the theme, the model will now be adapted to Poisson and gamma emissions.

Keeping with the same notation as before the likelihood equations become

M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mym =
M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mµk,m, k ∈ {1, .., L},

M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mym =
M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mmk,m, k ∈ {1, .., L},

when using the canonical link function. When using the non-canonical link function these

change to

M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mZk,mGk,mym =
M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mZk,mGk,mµk,m,

M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mZk,mGk,mym =
M∑
m=1

wm Pr(O(m)|φ)X′mΓk,mZk,mGk,mmk,m,

for k ∈ {1, .., L}. Note one must be careful to change the link function appropriately changing

Zk,m and Gk,m in the two above lines. The solutions can also be adapted for the two

special cases of uniform dependence and independence. Also the estimate for the dispersion

parameter changes,

τ̂ =
1

T̃ − (p+ 1)

M∑
m=1

L∑
l=1

Tm∑
j=1

(
y

(m)
j − µ̂(m)

j,l

)2

v
(
µ̂

(m)
j,l

) γ
(m)
i (l),

where

T̃ =
M∑
m=1

Tm.

Note the values for T̃ should be different for the Poisson and gamma emissions as before.
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4.4 Conclusion

The considered model outputs different sets of coefficients depending on the hidden state.

Given that one does not see the latent state to make predictions one has to marginalize over

the hidden state and the covariates. It also becomes harder to make long term forecasts

as one can probably not collect accurate covariates further in the future, as policy holders

are bound to move, or values for other covariates change as well. Assuming one can gather

covariates all the results from Section 3.4 are still valid. The work described extends the

previous work of Fan [2015] and derives a model specific to insurance. There exists other

methods beside MLE to derive estimates that can be used.
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Chapter 5

Numerical Implementation

5.1 Introduction

Predictive modeling can be tricky at the implementation stage. The theory can be very

nice but if the model cannot be used on a computer then this is a problem as then applications

of this model cannot be realized. Many packages already exist, in R, Python, MatLab, etc.,

that will estimate the parameters to build an HMM. Given the model described in Figure 3.1

there exists no code to estimate the parameters. This chapter describes the implementation

steps of the algorithms required to estimate the model parameters and simulate data to

see their theoretical properties. These algorithms were derived with the assistance of R

Development Core Team [2008], Shen [2008], Soetaert [2009] and Soetaert and Herman

[2009].

5.2 Implementation Issues

Issues can arise when implementing the Baum-Welch algorithm to build an HMM model;

one such issue is known as the scaling problem. This occurs when a data set has a large time

horizon, say T . Recall the forward variable from Chapter 2, αt(i) = Pr(O1, ..., Ot, st = i|φ),

which was recursively defined as,

1. Initialization:
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α1(i) := πibi(O1), i ∈ {1, ..., L}.

2. Recursion for t = 2, ..., T :

αt(j) :=
∑
i

(αt−1(i)aij) bj(Ot), j ∈ {1, ..., L}.

This value involves recursively multiplying together probabilities whose values are less than

one. Thus the summation goes to zero exponentially fast as t grows. Thus given the current

capabilities of computer processors this values goes to zero with a large enough data set

and thus researchers, such as Rabiner [1989], have developed solutions. His solution involves

scaling the parameters appropriately, such that they remain probabilities. The algorithm

changes to:

1. Initialization:

α̈1(i) := πibi(O1)

d1 := 1∑L
i=1 α̈1(i)

α̂1(i) := d1α̈1(i), i ∈ {1, ..., L}.

2. Recursion for t = 2, ..., T :

α̈t(j) :=
∑
i

(α̂t−1(i)aij) bj(Ot)

dt = 1∑L
i=1 α̈1(i)

α̂t(i) := dtα̈t(i), j ∈ {1, ..., L}.

Thus dt becomes the scaling by which we ensure that the αt(i) does not go to zero. Note

that dt only depends on t and not i. This makes
∑L

i=1 α̂t(i) always equal to one and thus a

new method is needed to find the total output probability. By induction, one can show that

α̂t(i) =

(
t∏

j=1

dj

)
αt(i).
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Using this modified forward algorithm one can then redefine the total output probability

such that it does not go to zero,

1 =
N∑
i=1

α̂T (i) =
N∑
i=1

(
T∏
j=1

dj

)
αT (i)

=

(
T∏
j=1

dj

)
N∑
i=1

αT (i) =

(
T∏
j=1

dj

)
Pr(O|φ).

Manipulating the above result gives

D = ln (Pr(O|φ)) = −
T∑
j=1

ln(dj). (5.1)

This is a more useful criterion for determining, given a large T , when to stop the EM

algorithm. Notice how the left-hand side of (5.1) increases to zero as the sum on the left

approaches zero as well. Thus we want the right-hand side to be as close as possible to zero.

As was true with the forward variables, the backward variable also suffers from the same

problem and scaling becomes appropriate with a large T . Consider the algorithm:

1. Initialization:

β̈T (i) := 1

β̂T (i) := dT β̈T (i), i ∈ {1, ..., L}.

2. Recursion for t = T − 1, ..., 1:

β̈t(j) :=
∑
i

(
β̂t−1(i)aij

)
bi(Ot+1)

β̂t(i) := dtβ̈t(i), j ∈ {1, ..., L}.

Using this recursion one can show that β̂t(i) =
∏T

i=t diβt(i). Given our new definitions of

the forward and backward variables we can rewrite our γt(j) and γt(i, j) as:

γt(i) =
α̂t(i)β̂t(i)

dt
, γt(i, j) = α̂t(i)aijbj(ot+1)β̂t+1(i).

These new definitions make it easier to implement the algorithm and help in the case of a

large time horizon.
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The proposed model has a subtlety that has yet to be discussed. In the case of zero claims

there is no corresponding severity output. The gamma distribution is not defined at zero

and thus one needs to be careful when implementing the EM algorithm. When estimating

the forward and backward variables for example, one should be careful with the value for

bi(Ot). Let fi and gi be the probability function of the Poisson and the density of the gamma

for state i respectively. Then

bi(Ot) = fi(nt)gi(ct),

if nt > 0 and

bi(Ot) = fi(nt),

otherwise. Note that there will be less severity observations to calculate the MLE estimates

for the gamma severity distribution. Thus it should take longer for it to converge.

5.3 Simulations

In this section we will compare the three methods, HMMs, GLMs and HMM-GLM, to

see which performs better under certain assumptions. All the parameters were estimated

using the algorithms described in the previous sections. We will see how different values of

T and L affect our estimates, first examining the case of one observation sequence and then

expanding to multiple observation sequences.

5.3.1 One Observation Sequence

First we will assume that the data follow an HMM-GLM type model with two hidden

states. The data was simulated according to the following scheme (simulation scheme 1):

(ni|Si = j) ∼ Poisson(λij), i ∈ {1, . . . , T} j ∈ {1, . . . , L},

(ci|Si = j) ∼ Gamma(θij, k), i ∈ {1, . . . , T} j ∈ {1, . . . , L},
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where

ln(λij) = xi1uj1 + xi2uj2 + xi3uj3,

ln(θijk) = xi1wj1 + xi2wj2 + xi3wj3.

Note that the same covariates were used for severity and claim counts in this simulation

and no intercept term was included. The covariate values were drawn independently from a

uniform (0,1) distribution. We used the following true parameter matrices to simulate our

data:

π =

π1

π2

 =

.3
.7

 A =

a11 a12

a21 a22

 =

 .8 .2

.35 .65


U =

u11 u12 u13

u21 u22 u23

 =

 .5 .25 .75

−.5 1.75 1.0

 W =

w11 w12 w13

w21 w22 w23

 =

 .1 .46 .8

−.6 1.2 2

 ,
and the shape parameter was set to k = 3

7
.

The first state represents a good driver while the second state represents a bad driver,

this is shown by both sets of coefficients. State 2 produces higher average claims with higher

severities. Also the initial probabilities π depict that it is more likely to start in the bad

state as we are assuming that this is the policyholder’s first year driving. The transition

matrix conveys that a driver’s skill is more likely to stay the same, though it is easier to

transition from the bad to the good state than vice versa. For each value of T we randomly

initialized our parameters 100 times, ran the EM algorithm for 2 hidden states and chose

the set of parameters which produced the lowest total output probability. Below in Table

5.1 and 5.2 show the results for different values of T .

The EM algorithm performed well for T = 1000, 5000 for all parameters except for the

initial probabilities as with one observation sequence there is only one initial value to derive

estimates. This problem should be alleviated when we transition to multiple observation

sequences. When T = 500 the algorithm had trouble converging to the coefficients for the

severity as there were less observations, recall that when the count is 0 there is no severity
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T π̂1 π̂2 â11 â12 â21 â22 k̂ ln (Pr(O|φ))
100 .01 .99 .81 .19 .18 .82 .51 -305.34
500 .05 .95 .76 .24 .23 .77 .48 -1666.85
1000 .03 .97 .75 .25 .36 .64 .46 -3367.56
5000 .01 .99 .73 .27 .39 .61 .42 -16833.34

Table 5.1: Estimated Probabilities for an HMM-GLM using Simulation Scheme 1

T û11 û12 û13 û21 û22 û23 ŵ11 ŵ12 ŵ13 ŵ21 ŵ22 ŵ23

100 1.07 −.23 .34 -.81 1.87 1.10 .54 -1.98 1.65 -.15 .57 1.70
500 .52 .21 .73 -.45 1.62 1.04 .18 1.06 .08 -.61 1.43 1.68
1000 .58 .39 .53 -.63 1.75 1.11 .09 .47 .62 -.63 .96 2.19
5000 .57 .19 .68 -.5 1.72 1.00 .17 .39 .87 -.79 1.19 1.94

Table 5.2: Estimated Coefficients for an HMM-GLM using Simulation Scheme 1

observation. Therefore for the part of the model related to severity there will always be a

number of observations less than or equal to T . When comparing the distances according to

absolute value,

adT = |(w11 − ŵ11)|+ |(w12 − ŵ12)|+ ...+ |(w23 − ŵ23)|,

one can clearly see that the estimates for T = 500 were worse, in fact ad500 = 1.96 which

is considerably greater than ad1000 = .65 or ad5000 = .48. For T = 100 the algorithm had

difficulties converging in general. Figure 5.1 shows one random initialization of the EM

algorithm with D = ln (Pr(O|φ)) on the vertical axis and the number of iterations on the

horizontal axis. The algorithm stopped when the relative logarithm of the total output

probability had reached a level .001 or smaller. This occurred after 8 iterations.

Of course when running the algorithm for real data one will not know the number of

hidden states. Therefore one will need a criterion to choose the number of hidden states. For

this we use the Akaike Information Criterion (AIC) and the Bayesian Information Criterion

(BIC) defined as:

AIC = 2 ln (Pr(O|φ))− 2ι, BIC = ln (Pr(O|φ))− ln(T )ι

2
,
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where ι represents the number of parameters to be estimated. One wants to pick the number

of hidden states that maximizes either AIC or BIC. Tables 5.3 and 5.4 below show the AIC

and BIC values for different number of hidden states, were the subscript denote the number

of hidden states. Both statistics favor the model with two hidden states, which makes sense

as the simulation included two hidden states.

T AIC2 AIC3 AIC4 AIC5

100 −648.68 −664.04 -677.12 -685.70
500 −3371.70 −3391.54 -3405.26 -3420.54
1000 −6773.12 −6793.00 -6828.16 -6854.98

Table 5.3: AIC Statistic for HMM-GLM using Simulation Scheme 1

T BIC2 BIC3 BIC4 BIC5

100 −349.09 −372.40 -379.18 -422.31
500 −1725.89 −1761.10 -1797.46 -1838.82
1000 −3433.18 −3472.57 -3524.50 -3577.18

Table 5.4: BIC Statistic for HMM-GLM using Simulation Scheme 1

Using the same simulation scheme and stopping criterion we will now fit a Poisson-gamma

HMM to the data. The results are summarized in Table 5.5. As expected the model provided

a worse fit, which can be seen by the column of the log likelihood. This is due to the fact

that we simulated according to a HMM-GLM, therefore the Poisson-gamma HMM does not

capture all the details of the data. Also, when estimating the shape parameter, the Poisson-

gamma HMM estimates two different values when the data was simulated using one, though

as T increases they both approach the true value of 3
7
.

Figure 5.2 illustrates initialization of the EM algorithm. On average it took more itera-

tions to converge than the HMM-GLM, but the code executed a lot faster as the HMM has

fewer parameters. Like before a comparison of the AIC and BIC statistics is given in Tables

5.6 and 5.7. Both statistics for each value of T favor the fitted model with 2 hidden states.

Next we fitted a standard GLM to the data using the R function glm.fit(). The data

were fitted to two separate GLMs, Poisson and gamma, both with log link functions as
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T π̂1 π̂2 â11 â12 â21 â22 λ̂1 λ̂2 θ̂1 θ̂2 k̂1 k̂2 ln (Pr(O|φ))
100 .97 .03 .81 .19 .72 .28 1.67 6.30 5.50 8.70 .36 .50 -328.02
500 .01 .99 .41 .59 .18 .82 5.30 2.00 14.19 4.55 .49 .41 -1764.99
1000 .99 .01 .86 .14 .81 .19 2.18 6.64 5.17 19.22 .43 .39 -3538.99
5000 .01 .99 .85 .15 .76 .24 2.05 5.98 4.84 17.38 .43 .39 -17564.45

Table 5.5: Estimated Parameters for a Poisson-Gamma HMM using Simulation Scheme 1

T AIC2 AIC3 AIC4 AIC5

100 −680.04 −688.70 -688.68 -707.64
500 −3553.98 −3560.12 -3565.80 -3586.64
1000 −7101.98 −7113.94 -7132.78 -7148.72

Table 5.6: AIC Statistic for Poisson-Gamma HMM using Simulation Scheme 1

in the HMM-GLM example. Table 5.8 gives the results for different values of T . The

estimates always lie in between the two true values for both hidden states. This is because

the simulation is switching between the two as the hidden Markov chain progresses.

Now that all model types have been fitted an analysis to determine how they perform

in predicting future values is carried out. We are interested in forecasting total claims and

therefore will consider the product of number of claims and average severity. To compare

the models we will consider the root mean squared error (RMSE) of future values,

RMSE =

√∑n
t=1(ŷt − yt)

n
,

where ŷt and yt are the predicted and actual values, respectively. Using the estimates after

5000 observations, as these appear to be the most accurate, and simulating another 1000

observations with respect to the final hidden state produced the following RMSEs described

in Table 5.9. The HMM performed the worst while the difference between the HMM-GLM

and GLM seems rather negligible. This is not surprising as the further into the future you

forecast the advantages of the HMM-GLM over the GLM should get averaged out with the

two performing relatively the same. If instead we simulated the next value in the HMM-GLM

a 1000 times the HMM-GLM should outperform the GLM. Doing so we arrive at the results

in Table 5.10. This time the HMM-GLM outperformed the GLM. Thanks to the estimates
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T BIC2 BIC3 BIC4 BIC5

100 −355.65 −371.70 -386.02 -412.44
500 −1802.28 −1824.31 -1850.33 -1888.15
1000 −3580.44 −3608.50 -3644.91 -3684.78

Table 5.7: BIC Statistic for Poisson-Gamma HMM using Simulation Scheme 1

T û1 û2 û3 ŵ1 ŵ2 ŵ3

100 −.17 1.16 .89 -.05 -.22 1.82
500 −.56 1.06 .94 -.45 1.32 1.22
1000 −.09 1.11 .88 -.37 .73 1.56
5000 .03 .98 .84 -.33 .83 1.41

Table 5.8: Estimated Coefficients for a GLM using Simulation Scheme 1

for the probability of the hidden state at time T , γT (i), the HMM-GLM was able to exploit

its hidden Markov chain. If the values of γT (i) were more extreme like in the example with

1000 observations the advantage could be greater, as is shown in Table 5.11. Let the relative

gain be defined as,

rgT =
RMSEGLM −RMSEHMM−GLM

RMSEGLM
.

Thus rg1000 = .10 and rg5000 = .02, rg1000 being larger indicates more of an impact. If

γT (i) placed all the weight on the correct hidden state this advantage would be at its max.

Of course these estimates need to be accurate for the advantage to be realized. This short

term benefit bodes well for a whole portfolio of observation sequences as there will be more

sequences to forecast.

Model RMSE
GLM 31.12
HMM 32.36

HMM-GLM 31.10

Table 5.9: RMSE for Different Models with Simulation Scheme 1

Given the fact that the current models typically rely on GLMs, a simulation of a GLM is

needed for comparison. Note that this is equivalent to an HMM-GLM with just one hidden
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Model RMSE
GLM 74.16

HMM-GLM 72.71

Table 5.10: RMSE-Next Value, for Different Models with Simulation Scheme 1

Model RMSE
GLM 12.55

HMM-GLM 11.26

Table 5.11: RMSE-Next Value, for Different Models with Simulation Scheme 1 and the
Estimates of T = 1000

state. The data was simulated according to the following scheme (simulation scheme 2):

(ni) ∼ Poisson(λi), i ∈ {1, . . . , T},

(ci) ∼ Gamma(θi, k), i ∈ {1, . . . , T},

where

ln(λi) = xi1u1 + xi2u2 + xi3u3,

ln(θik) = xi1w1 + xi2w2 + xi3w3.

The true parameters for the coefficients and the shape parameter are as follows,

U =
[
u1 u2 u3

]
=
[
.7 .68 1.3

]
W =

[
w1 w2 w3

]
=
[
.45 2.2 1.69

]
,

where the shape parameter k = 7/9. The covariates were again drawn from a uniform

(0,1) distribution, independently. As opposed to the previous simulation the drivers no

longer switch from good to bad and vice versa. Therefore the true values represent an all

encompassing state.

For this scheme it is unclear what the correct number of hidden states is, so let us first

compare the AIC and BIC statistics to determine an appropriate value. Tables 5.12 and

5.13 show the different AIC and BIC statistics for a varying T for a HMM-GLM. For all
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values of T the statistics seem to agree on two hidden states. This is not surprising as the

simulation had one hidden state thus making two the closest option. Therefore we will now

fit an HMM-GLM with two hidden states for varying values of T , as before.

T AIC2 AIC3 AIC4 AIC5

100 −995.54 −996.18 -1004.54 -1002.14
500 −5075.52 −5101.18 -5124.38 -5136.56
1000 −10180.14 −10207.08 -10232.68 -10261.02

Table 5.12: AIC Statistic for a HMM-GLM using Simulation Scheme 2

T BIC2 BIC3 BIC4 BIC5

100 −522.52 −538.47 -560.89 -580.53
500 −2577.80 −2615.92 -2657.02 -2696.83
1000 −5136.69 −5179.61 -5226.76 -5280.20

Table 5.13: BIC Statistic for a HMM-GLM using Simulation Scheme 2

Using the same stopping criterion as before Tables 5.14 and 5.15 contain the values for

the fitted parameters. In each case one state seems to be closer to the true parameters and

the Markov chain favors that state. For example when T = 5000 the absolute distances for

state one and two for the Poisson GLM are ad5000 = 2.36 and ad5000 = .03, respectively.

The gamma portion favors the same state as well, the distance for state one and two are

ad5000 = .90 and ad5000 = .20, respectively. Then looking at the probability of transitioning

to state two is much higher from each state, .87 and .99. This same phenomenon can be

found for each value of T . Also the total distance for each the Poisson and gamma coefficients

is decreasing as T increases, suggesting that they are converging to the correct values. In

addition the shape parameter seems to be converging nicely. After 1000 observations the

estimate is within .1 of the true value. The initial state probabilities are hard to interpret

as there are no initial values to compare them to.

We would like to compare the three models therefore a Poisson-gamma HMM will be

fitted to the data next. Tables 5.16 and 5.17 give the AIC and BIC statistics for the model.

Comparing both indicates that an Poisson-gamma HMM with two hidden states should be
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T π̂1 π̂2 â11 â12 â21 â22 k̂ ln (Pr(O|φ))
100 .01 .99 .20 .80 .26 .74 1.17 -478.77
500 .01 .99 .80 .20 .71 .29 .91 -2518.76
1000 .03 .97 .16 .84 .21 .79 .76 -5071.07
5000 .01 .99 .12 .87 .01 .99 .78 -25403.20

Table 5.14: Estimated Probabilities for a HMM-GLM using Simulation Scheme 2

T û11 û12 û13 û21 û22 û23 ŵ11 ŵ12 ŵ13 ŵ21 ŵ22 ŵ23

100 −.10 .84 2.04 .98 .38 1.22 .41 -.54 -1.02 .08 2.41 2.10
500 .81 .60 1.24 .41 .79 1.33 .41 2.40 1.94 .66 1.14 .90
1000 .53 −.55 1.42 .74 .76 1.25 .66 1.39 1.25 .52 2.27 1.68
5000 .18 −.93 1.54 .72 .67 1.3 .58 1.55 1.57 .54 2.10 1.68

Table 5.15: Estimated Coefficients for a HMM-GLM using Simulation Scheme 2

fitted. The models estimates are provided in Table 5.18. In the cases when T = 500, 1000,

or 5000 the HMM seems to slightly favor the state which more correctly estimates the shape

parameter, giving more weight to transitioning in the more correct state. When T = 100 the

results were inconclusive in that regard. Also for all values of T the model did an adequate

job for k̂. As with the HMM-GLM it is difficult to compare the probabilities as the simulation

did not include any.

T AIC2 AIC3 AIC4 AIC5

100 −1110.16 −1119.48 -1132.54 -1147.84
500 −5466.42 −5533.08 -5555.62 -5579.60
1000 −11024.08 −11029.74 -11052.40 -11080.84

Table 5.16: AIC Statistic for a Poisson-Gamma HMM using Simulation Scheme 2

Proceeding to a generalized linear model, note that Poisson and gamma GLM were fitted

to the simulation. The results are contained in Table 5.19. As expected the model fits the

true parameters very well as it was the model used to simulate the data.

Next we want to compare the predictive power of each model given the simulation scheme.

Using the estimates for T = 5000 and simulating another 1000 values produced Table 5.20.

The HMM this time performs a lot worse than the other two models. This is probably due to
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T BIC2 BIC3 BIC4 BIC5

100 −579.83 −600.12 -624.89 -653.38
500 −2800.25 −2831.87 -2872.64 -2918.35
1000 −5558.66 −5590.94 -5636.62 -5690.11

Table 5.17: BIC statistic for a Poisson-Gamma HMM using Simulation Scheme 2

T π̂1 π̂2 â11 â12 â21 â22 λ̂1 λ̂2 θ̂1 θ̂2 k̂1 k̂2 ln (Pr(O|φ))
100 .99 .01 .51 .49 .30 .70 6.85 2.36 38.44 5.41 .57 .80 -536.08
500 .01 .99 .25 .75 .29 .71 6.81 2.96 43.02 8.70 .66 .73 -2741.21
1000 .01 .99 .40 .60 .44 .56 6.49 2.59 28.02 7.53 .68 .73 -5493.04
5000 .99 .01 .47 .53 .36 .64 6.51 2.75 32.12 8.38 .64 .71 -27634.70

Table 5.18: Estimated parameters for a Poisson-Gamma HMM using Simulation Scheme 2

the fact that this time it is a cruder approximation to the data. It does not include covariates

and the data was not simulated according to a hidden Markov chain. The GLM and HMM-

GLM provide relatively the same performance, with the GLM performing slightly better.

This is suggesting that given a GLM scheme for the simulation the models have relatively

equal predictive capabilities. Note that given the simulation one cannot simulate the next

observation, given the ending hidden state, as the simulation did not rely on a hidden Markov

chain.

T û1 û2 û3 ŵ1 ŵ2 ŵ3

100 .76 .49 1.40 .04 2.22 1.95
500 .72 .64 1.26 .42 2.26 1.80
1000 .70 .72 1.28 .52 2.16 1.62
5000 .72 .67 1.30 .54 2.10 1.68

Table 5.19: Estimated Coefficients for a GLM using Simulation Scheme 2

5.3.2 Multiple Observation Sequences

Now consider simulation Scheme 1 but with multiple observation sequences. Recall that

the number of sequences is represented by M . This more realistically depicts an insurance

portfolio with many policyholders. In the simulation described below each insuree had
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Model RMSE
GLM 77.30634

HMM-GLM 77.30656
HMM 93.03

Table 5.20: RMSE for Different Models using Simulation Scheme 2

equivalent time horizons, but note that this assumption can be relaxed and all algorithms

still hold. Fitting the proposed HMM-GLM produces Tables 5.21 and 5.22. The initial

state probabilities π converge nicely at M ≥ 500. Thus given a new driver one can more

accurately predict their initial state than before. Note that R does not need to invert large

matrices to find the estimates for the HMM-GLM fit as before with a single sequence. When

using multiple sequences the estimates rely on the sums of matrices thus reducing the size

of the matrices needed.

M T π̂1 π̂2 â11 â12 â21 â22 k̂ ln (Pr(O|φ))
100 5 .69 .31 .75 .25 .45 .55 .39 -1693.21
100 10 .21 .79 .72 .18 .47 .53 .44 -3398.38
500 5 .31 .69 .63 .37 .42 .58 .39 -8514.41
500 10 .35 .65 .75 .25 .48 .52 .44 -16867.95
1000 5 .34 .66 .82 .18 .38 .62 .47 -17077.13
1000 10 .32 .68 .78 .22 .37 .63 .44 -33967.57
5000 5 .31 .69 .77 .23 .36 .64 .42 -86179.40
5000 10 .30 .70 .79 .21 .36 .64 .43 -169874.60
10000 5 .31 .69 .81 .19 .35 .65 .42 -172455.80
10000 10 .29 .71 .79 .21 .37 .63 .43 -340206.50

Table 5.21: Estimated Probabilities for an HMM-GLM using Simulation Scheme 1 with
Multiple Observation Sequences

Following the same theme as before, a Poisson-gamma HMM will now be fitted to the

data. The results are contained in Table 5.23. The estimates seem to converge and do

a better job recovering the initial state probabilities than before, but the model still does

a poorer job to fit the data than a HMM-GLM. This can be seen by comparing the last

columns of Tables 5.23 and 5.21 for similar M ’s and T ’s. The Poisson-gamma HMM cannot

capture all the variability in the data as it was simulated according to an HMM-GLM. It
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M T û11 û12 û13 û21 û22 û23 ŵ11 ŵ12 ŵ13 ŵ21 ŵ22 ŵ23

100 5 .22 .44 1.06 -.77 2.12 .67 .48 .06 1.10 -1.40 1.88 1.69
100 10 .46 .12 .89 -.45 1.77 .91 -.07 .19 1.58 -.25 1.48 1.13
500 5 .44 .11 .86 -.47 1.75 .91 .35 -.07 .98 -.64 1.08 .98
500 10 .47 .32 .75 -.52 1.81 .96 -.06 .54 .84 -.37 1.15 .84
1000 5 .37 .31 .82 -.52 1.79 .99 .03 .30 1.15 -.54 1.22 2.01
1000 10 .48 .28 .74 -.47 1.78 .93 .07 .52 .73 -.47 1.12 1.97
5000 5 .53 .22 .75 -.53 1.74 1.02 .14 .37 .78 -.59 1.25 1.99
5000 10 .47 .25 .76 -.50 1.74 1.00 .04 .49 .82 -.54 1.17 2.00
10000 5 .51 .26 .74 -.52 1.75 1.02 .13 .36 .82 -.62 1.19 1.94
10000 10 .48 .25 .76 -.49 1.74 1.00 .07 .47 .82 -.58 1.21 1.99

Table 5.22: Estimated Coefficients for an HMM-GLM using Simulation Scheme 1 with Mul-
tiple Observation Sequences

does seem to converge to certain values which appear difficult to determine, though the shape

parameters converge nicely. k̂1 and k̂2 approach the true value of k = 3
7
. As was true with

the HMM-GLM, the Poisson-gamma HMM estimates also require matrices of smaller size.

Thus the EM algorithm does not need to invert a large matrix but many smaller ones.

M T π̂1 π̂2 â11 â12 â21 â22 λ̂1 λ̂2 θ̂1 θ̂2 k̂1 k̂2 ln (Pr(O|φ))
100 5 .24 .76 .26 .74 .29 .71 5.41 1.91 18.21 4.83 .34 .43 -1798.45
100 10 .29 .71 .34 .66 .25 .75 5.03 1.89 14.06 4.46 .43 .44 -3589.54
500 5 .21 .79 .21 .79 .15 .85 6.39 2.15 20.42 5.60 .40 .41 -8980.15
500 10 .22 .78 .20 .80 .12 .88 6.77 2.19 19.24 5.39 .42 .42 -17809.48
1000 5 .26 .74 .21 .79 .16 .84 6.23 2.09 21.25 5.67 .40 .40 -18050.16
1000 10 .24 .76 .22 .78 .13 .87 6.52 2.15 19.56 5.37 .41 .42 -35777.48
5000 5 .25 .75 .22 .78 .15 .85 6.45 2.12 21.14 5.39 .40 .42 -91248.68
5000 10 .26 .74 .24 .76 .13 .87 6.43 2.13 19.79 5.41 .41 .42 -179007.70
10000 5 .25 .75 .22 .78 .14 .86 6.56 2.14 21.61 5.46 .40 .42 -182745.60
10000 10 .26 .74 .23 .77 .13 .87 6.48 2.14 19.87 5.38 .41 .42 -358479.00

Table 5.23: Estimated Parameters for a Poisson-Gamma HMM using Simulation Scheme 1
with Multiple Observation Sequences

Lastly a GLM model will be fitted. Table 5.24 provide the results. As before the estimates

lie in between the values for both hidden states. Using the three fitted models at values of

M = 10000 and t = 10, Table 5.25 gives a comparison of the RMSE’s based on simulating

the claims in the next time period for each policyholder. The HMM-GLM outperforms the
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M T û1 û2 û3 ŵ1 ŵ2 ŵ3

100 5 −.22 1.22 .90 -.37 .98 1.43
100 10 −.01 .99 .91 -.17 .91 1.33
500 5 −.13 1.15 .89 -.35 .74 1.67
500 10 −.04 1.09 .87 -.30 .91 1.40
1000 5 −.13 1.14 .92 -.35 .87 1.64
1000 10 −.03 1.09 .86 -.29 .90 1.45
5000 5 −.11 1.13 .93 -.38 .97 1.57
5000 10 −.05 1.06 .90 -.33 .91 1.49
10000 5 −.10 1.14 .92 -.39 .93 1.60
10000 10 −.04 1.05 .91 -.34 .92 1.48

Table 5.24: Estimated Coefficients for a GLM using Simulation Scheme 1 with Multiple
Sequences

other models. Using the values of γ
(m)
T (i) the model can leverage these values to accurately

predict the next emission. Another value of interest would be the estimates of the initial time

period. Since the simulation included multiple observations the estimates for the initial state

probabilities are more accurate. Simulating 1000 initial values and comparing the RMSE of

the three models shows that HMM-GLM again outperforms the other two. These values are

contained in Table 5.26. This time the gains are higher.

Model RMSE
GLM 38.57

HMM-GLM 37.26
HMM 40.15

Table 5.25: RMSE-NEXT Value, for Different Models using Simulation Scheme 1 with Mul-
tiple Observation Sequences

Model RMSE
GLM 62.14

HMM-GLM 59.10
HMM 65.75

Table 5.26: RMSE-Initial Value, for Different Models using Simulation Scheme 1 with Mul-
tiple Observation Sequences

76



5.4 Conclusion

Once accounting for the scaling issue all the simulations converged. Note that normally,

depending on the time period considered, for insurance data one would not need to scale.

For instance if a company was considering a model with yearly time periods it is unlikely

that they would have data for more than 10 years for each policyholder, but if instead

they considered seasonal data scaling might be needed. This need should be alleviated as

computers become more efficient. The simulations for single observation sequences do a

poorer job of representing reality, therefore considering a large set of multiple observation

sequences with short time horizons more accurately depicts an insurance portfolio.
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Figure 5.1: Convergence of HMM-GLM
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Figure 5.2: Convergence of Poisson-Gamma HMM

78



Conclusion

GLMs are often used to model claims and in most models there is a covariate created

to capture a driver’s skill based on their past claims. The HMM aspect of both proposed

models views skill as something unseen which better depicts reality and considers that there

are multiple distributions that the claims are generated from. In other words, good and

bad drivers draw from different distributions. The Markov chain allows drivers to switch

from bad to good dynamically. The proposed models also have the benefit of creating

dependence between count and severity. Often in practice these two quantities are estimated

independently and then multiplied together. Some researchers find this controversial as there

could be dependence at play (see Garrido et al. [2016]). Another common problem in auto

insurance data is there are too many zero claim counts to model effectively with the Poisson

distribution. HMMs help alleviate this by spreading the zeros across multiple states. Thus

the HMM-GLM could provide a better fit to reality.

Unfortunately we were unable to procure real data as insurance companies consider this

material very sensitive. Given the simulations in Chapter 5 we think that the HMM-GLM

could provide more accurate forecasts. In addition to the described models, one might want to

consider HMM type models with longer time period dependencies. Also one could consider

other emissions, such as Tweedie or Erlang. Another extension to GLMs are generalized

linear mixed models which one could consider as emissions instead of GLMs. This concept

has been researched before in Altman [2007]. Dr. Altman develops a mixed hidden Markov

model, a hybrid HMM and GLMM, to model lesion counts in patients with multiple sclerosis.

In conclusion we believe that HMM-GLMs can provide a more realistic interpretation of

reality and thus more accurately depict insurance portfolios.
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