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Abstract

Identification and Control of Nonlinear Singularly Perturbed Systems Using
Multi-time-scale Neural Networks

Dongdong Zheng, Ph.D.

Concordia University, 2017

Many industrial systems are nonlinear with “slow” and “fast” dynamics because of the pres-

ence of some “parasitic” parameters such as small time constants, resistances, inductances, capaci-

tances, masses and moments of inertia. These systems are usually labeled as “singularly perturbed”

or “multi-time-scale” systems. Singular perturbation theory has been proved to be a useful tool to

control and analyze singularly perturbed systems if the full knowledge of the system model param-

eters is available. However, the accurate and faithful mathematical models of those systems are

usually difficult to obtain due to the uncertainties and nonlinearities.

To obtain the accurate system models, in this research, a new identification scheme for the

discrete time nonlinear singularly perturbed systems using multi-time-scale neural network and

optimal bounded ellipsoid method is proposed firstly. Compared with other gradient descent based

identification schemes, the new identification method proposed in this research can achieve faster

convergence and higher accuracy due to the adaptively adjusted learning gain. Later, the optimal

bounded ellipsoid based identification method for discrete time systems is extended to the identi-

fication of continuous singularly perturbed systems. Subsequently, by adding two additional terms

in the weight’s updating laws, a modified identification scheme is proposed to guarantee the ef-

fectiveness of the identification algorithm during the whole identification process. Lastly, through

introducing some filtered variables, a robust neural network training algorithm is proposed for the

system identification problem subjected to measurement noises.
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Based on the identification results, the singular perturbation theory is introduced to decompose

a high order multi-time-scale system into two low order subsystems – the reduced slow subsystem

and the reduced fast subsystem. Then, two controllers are designed for the two subsystems sepa-

rately. By using the singular perturbation theory, an adaptive controller for a regulation problem

is designed in this research firstly. Because the system order is reduced, the adaptive controller

proposed in this research has a simpler structure and requires much less computational resources,

compared with other conventional controllers. Afterwards, an indirect adaptive controller is pro-

posed for solving the trajectory tracking problem. The stability of both identification and control

schemes are analyzed through the Lyapunov approach, and the effectiveness of the identification

and control algorithms are demonstrated using simulations and experiments.
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Chapter 1

Introduction

1.1 Motivation

Many industrial systems are nonlinear with “slow” and “fast” dynamic states because of the

presence of some “parasitic” parameters such as small time constants, resistances, inductances,

capacitances, masses and moments of inertia. These phenomenons can be found in harmonic

drive systems [1], flight test trajectory control systems [2], flexible link manipulators [3], and

power systems [4], etc. These systems are usually labeled as “singularly perturbed” or “multi-

time-scale” systems. For example, in the DC motor system, the current is the fast dynamic while

the angular velocity is the slow dynamic [5]. In the flexible joint robot, the joint angle is the slow

dynamic while the difference between the joint angle and the motor angle is the fast dynamic [6].

In the aircraft, the heading is the slow dynamic while the altitude and flight path angle are the fast

dynamics [7]. Typical SPS is presented in Fig. 1.1. Due to the existence of the fast dynamic states,

the singularly perturbed systems usually have high system orders, which greatly increases the

difficulties in system modeling, analysis and controller design. A simple way to reduce the system

order is to neglect those fast dynamic system states. However, a design based on a simplified

model may result in a system with much worse performance, or even in an unstable system [5].

An effective way to overcome this problem is to separate the original system states into those that
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JJM
DC

M
DC

(a) DC motor. (b) Flexible joint robot [8]. (c) Aircraft [9].

Figure 1.1: Typical singularly perturbed systems.

change rapidly and those that vary slowly on the chosen time scale using singularly perturbation

technique.

Singular perturbation theory (SPT) has been proved to be a useful tool to control and analyze

the singularly perturbed systems (SPSs), because of its remedial features of both dimensional re-

duction and stiffness relief [10]. The extensive research in the field of singular perturbations and

time-scales has resulted in the publication of numerous survey papers, reports and proceedings

of conferences [5, 10–14]. So far, many well-established theories are focused on linear or non-

linear systems with full knowledge of system model parameters [3, 5, 11, 14, 15]. Nevertheless,

the accurate and faithful mathematical models of those systems are usually difficult to obtain due

to the uncertainties and nonlinearities. In this case, system identification becomes important and

necessary before a singular perturbation theory based control scheme can be designed.

Recently, the identification of nonlinear singularly perturbed system using multi-time-scale

neural networks (NNs) has been investigated by some researchers. In [16, 17], the single layer

recurrent neural network (RNN) with different time scales were used to identify the nonlinear

systems. System identification schemes via two-time-scale multilayer RNN were proposed in

[18] later. In [19–21], the stability properties of RNN with different time scales were discussed.

Robustness stability results for uncertain two-time scale RNN under parameter perturbations were

established in [22]. However, it should be pointed out that the most popular training methods

for the NNs were gradient-like learning laws, such as backpropagation (BP) method. The main

drawback of these methods was that their convergence speed was relatively slow.
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In [23–25], the direct adaptive control using singular perturbation theorem and neural network

was discussed. Nevertheless, the indirect adaptive control using singular perturbation theorem and

multi-time-scale NN was rarely studied. In [26,27], the indirect adaptive controllers were designed

based on the multi-time-scale NN identification results. However, the authors did not take advan-

tage of the identified model to design two controllers for the slow and fast subsystems respectively

using singular perturbation theorem. Instead, the authors treated the system as a regular system,

and designed a controller for the whole system. Thus, the order of the matrices in the controller

could be very high if the slow and fast system states have high dimensions, and the matrices in the

controller could be ill-conditioned because the inverse of the singular perturbation parameter was

involved, and the singular perturbation parameter was usually very small.

Due to the slow learning speed of existing training methods for multi-time-scale neural net-

works, a new identification scheme is expected to achieve faster convergence. Meanwhile, since

the combination of multi-time-scale neural network and singular perturbation theory is not well in-

vestigated, it is meaningful to conduct research on how to design an adaptive controller to achieve

satisfactory closed-loop system properties based on the identified system model using the multi-

time-scale neural networks. These are the main motivations of this research project.

1.2 Research Objectives

After reviewing the identification and control methods for nonlinear singularly perturbed sys-

tems that have been presented in literature so far, it is noted that there are still many problems

remaining unsolved. For instance:

1) Although multi-time-scale NNs have been applied in identification for nonlinear SPSs, the

most widely used training methods are based on gradient descent updating algorithm with fixed

“learning gain”, such as BP and RTRL algorithm. The main drawback of these training methods is

that the convergence speed may be very slow [28]. To solve this problem, a weight estimation algo-

rithm based on extended Kalman filter theory, or optimal bounded ellipsoid theory could be used.

3



In this Ph.D. research project, the neural network training algorithm based on optimal bounded

ellipsoid (OBE) theory will be investigated, because the theoretical analysis of EKF based training

algorithm requires the modeling uncertainty of the NN to be Gaussian process, which may not be

true in the real applications [29].

2) Most research works on controller design for singularly perturbed systems presented in

literature are focused on linear or nonlinear SPSs with known system model and parameters. Very

rare research results on indirect adaptive control for nonlinear SPSs with unknown system model

and parameters are found in the literature. The other objective of this Ph.D. research project is

to study the indirect adaptive controller design scheme for nonlinear singularly perturbed systems

using multi-time-scale neural networks and singular perturbation theory.

A roadmap of this research is presented in Fig. 1.2.

System Identification Adaptive Control

Multilayer NN Identification 

(Section 3.2)

Feedback Linearisation Based Control

 (Section 3.3)

Discrete OBE Based NN Identification 

(Section 4.2)

Continuous OBE Based NN Identification 

(Section 4.3)

Modified OBE Based Identification 

(Section 4.4)

Regulation Control Based on SPT

 (Section 6.2)

Tracking Control Based on SPT

 (Section 6.3)

Robust Identification Based on Filtered Variables

(Section 4.4)

To identify unknown system

Faster convergence

Extend to continuous case

To guarantee the effectiveness during

the whole identification process

Measurement noises

System decomposition 

and order reduction

Extend to tracking problem

Figure 1.2: Roadmap of the research.
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1.3 Contributions

In this Ph.D research, the identification and control of the nonlinear singularly perturbed sys-

tems using multi-time-scale neural networks are investigated. The contributions of this Ph.D re-

search are listed as follows:

1) An identification scheme using the multilayer neural network is proposed which can achieve

more accurate identification results due to the extra hidden layer.

2) The optimal bounded ellipsoid algorithm based identification scheme is proposed for a dis-

crete time system. This new scheme can achieve faster convergence because the learning gain can

be adjusted adaptively during the identification process.

3) The discrete time OBE based identification scheme is extended to a continuous case.

4) A modified identification scheme is proposed where two extra terms are added into the

weight’s updating laws. As a result, the gain matrix will converge to a user-defined equilibrium

instead of 0, thus the identification scheme will remain effective during the whole identification

process.

5) In order to avoid using the derivatives of the identification errors, which usually magni-

fies the noises, a robust identification scheme using filtered variables is proposed. Thus this new

identification scheme is more robust to measurement noises.

6) An indirect adaptive controller using feedback linearisation and sliding mode technique is

designed based on the identified models.

7) To solve the regulation problem, an indirect adaptive controller is designed based on the PAS

theory. By using the singular perturbation theory, the original high order multi-time-scale system

can be decomposed into two reduced order subsystems. The indirect controllers are designed

for the reduced order subsystems. Thus the controller structure is simplified and the required

computational resources are reduced.

8) To solve the trajectory tracking problem, an adaptive controller is designed without using

the PAS theory. Through Lyapunov approach, the upper bound of ε is found, and the closed-loop

stability is guaranteed for any 0 < ε < ε∗.
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9) A harmonic drive DC motor system is set up for experimental purpose. The identification

and control schemes proposed in this research are tested on this DC motor system, and the effec-

tiveness of the proposed schemes are verified.

1.4 Publications

The presented research work is documented in a number of journals and conference proceed-

ings. The following is the list of author’s publications.

Journal Publications:

1. D.-D. Zheng and W.-F. Xie, “Identification and trajectory tracking control of nonlinear sin-

gularly perturbed system,” IEEE Transactions on Industrial Electronics, 2016, accepted.

2. D.-D. Zheng, W.-F. Xie, X. Ren, and J. Na, “Identification and control for singularly per-

turbed systems using multitime-scale neural networks,” IEEE Transactions on Neural Net-

works and Learning Systems, vol. PP, no. 99, pp. 1–13, 2016.

3. D.-D. Zheng, Z. Fu, W.-F. Xie, and W. Luo, “Indirect adaptive control of nonlinear system

via dynamic multilayer neural networks with multi-time scales,” International Journal of

Adaptive Control and Signal Processing, vol. 29, no. 4, pp. 505–523, 2015.

Conference Publications:

1. D.-D. Zheng and W.-F. Xie, “Indirect adaptive control of flexible joint robotic manipulator,”

in Proceedings of the World Congress of the International Federation of Automatic Control,

Submitted for publication.

2. ——, “Robust identification for nonlinear singularly perturbed systems using multi-time-

scale recurrent neural network,” in Proceedings of the American Control Conference, Sub-

mitted for publication.
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3. D.-D. Zheng, W.-F. Xie, and X. Ren, “Identification and control for singularly perturbed sys-

tems using multi-time-scale neural networks,” in Proceedings of the 2015 IEEE International

Conference on Information and Automation, Lijiang, China, Aug. 2015, pp. 1233–1239.

4. D.-D. Zheng and W.-F. Xie, “Identification for nonlinear singularly perturbed system us-

ing recurrent high-order multi-time scales neural network,” in Proceedings of the American

Control Conference, Chicago, USA, Jul. 2015, pp. 1824–1829.

5. D.-D. Zheng, W.-F. Xie, and S. Dai, “Identification of singularly perturbed nonlinear system

using recurrent high-order neural network,” in Proceedings of the 11th World Congress on

Intelligent Control and Automation, Shenyang, China, Jul. 2014, pp. 5770–5775.

1.5 Thesis Organization

The rest of the thesis is organized as follows. A comprehensive literature review is presented

in Chapter 2. In Chapter 3, a system identification scheme for a class of nonlinear SPSs using

multilayer multi-time-scale neural network is proposed, where the NN weights are updated by a

gradient-like training algorithm. Based on the identified system model, a feedback controller is

designed for a trajectory tracking problem. In Chapter 3, the identification for both discrete time

and continuous time nonlinear SPSs based on the OBE algorithm are discussed. Also, a modified

OBE based training algorithms are proposed to guarantee the effectiveness of the identification

scheme during the whole identification scheme. In Chapter 5, a new identification scheme using

filtered variables is proposed, which is more robust to measurement noises. In Chapter 6, an

indirect adaptive controller using the SPT based on the identified NN models is proposed firstly

for a regulation problem. Subsequently, the SPT based indirect adaptive controller for a trajectory

tracking problem is also investigated. The Chapter 7 presents the conclusions of the thesis and the

future work based on current research.
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Chapter 2

Literature Review

2.1 Neural Networks

In 1943, a computational model for neural networks was created by W. McCulloch and W.

Pitts based on mathematics and algorithms [38]. This model is called threshold logic. Since then,

the investigation on application of neural networks to artificial intelligence has been conducted

by more and more researchers, especially after the backpropagation algorithm, which effectively

solved the exclusive-or problem, was created by P. Werbos in 1974 [39].

From a control engineer’s point of view, the most significant ability of neural networks is

its universal approximation to any nonlinear function, which can be used to deal with nonlinear

systems [40]. In order to control these nonlinear systems with different time scales, one may

need to construct the system model. Although many control methods are not dependent on system

model, such as PID controller or Bang-bang controller, some other controllers can only be designed

when a precise system model is built. However, in real systems, it is a nontrivial task to know the

exact system model and its parameters. Sometimes, the system plants are even considered to be a

black box.

To solve this problem, neural networks have been extensively studied in the past decades, since

they have many excellent properties such as parallel distributed processing, learning and adaption,
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data fusion, multi-input multi-output processing. The research results demonstrate that neural

network is very effective in identification and control of nonlinear systems with unknown dynamics

due to its powerful nonlinear approximation property. For instance, in [41–43], feedforward neural

networks (FNNs) were utilized to identify the system models. In [44], an adaptive feedforward

neural network tracking controller was proposed for a robotic manipulator with input deadzone

and output constraint. In [45], an adaptive predictor incorporated with a high-order neural network

(HONN) observer was proposed to obtain the future system states predictions, which were used in

the control design to circumvent the input delay and nonlinearities. An adaptive neural network

control method was investigated in [46] to stabilize a class of uncertain nonlinear strict-feedback

systems with full-state constraints.

Recent results show that recurrent neural network (RNN) is more effective than feedforward

neural network in system identification, since RNN incorporates feedback, and has dynamic mem-

ory, which provides more powerful representation capability [47–49]. The identification of nonlin-

ear singularly perturbed systems using multi-time-scale RNN was further established in [16–18].

In [16, 17], single layer RNN with two time scales were used in system identification. Later, a

multilayer RNN with different time scales was used in [18] for system identification purpose.

2.1.1 Feedforward and Recurrent Neural Networks

Until now, the most popular neural networks used by the researchers are feedforward neural

networks and recurrent (dynamic) neural networks. Feedforward neural networks are usually used

as the representation of a nonlinear function in the right-hand side of the equations of the dynamic

system models [40, 48]. The structure of a typical FNN is shown in Fig. 2.1. It is noticed from

Fig. 2.1 that in a feedforward neural network, the information always moves in one direction and

never comes back. Feedforward neural networks have been widely implemented in identification

and controller design for many systems. For instance, F. L. Lewis et al. used a multilayer neural

network to design a controller for a general serial-link rigid robot arm [50]. In [51], W. Chen et

al. used multilayer neural network to design an adaptive controller for a class of strict-feedback

9



Input Layer Hidden Layer Output Layer

Input 1

Input 2

Input 3

Output 1

Output 2

Figure 2.1: Structure of the feedforward neural network.

systems with unknown time-varying disturbance of known periods which appear in unknown non-

linear functions. FNN was also used to study the problem of identification for nonlinear systems

in the presence of unknown driving noise in [41]. The methods for identification and control of

dynamic systems by using different types of FNNs and generalized weight adaptation algorithms

were discussed in [42].

In spite of its immense popularity in nonlinear system approximation and control, feedforward

neural networks have some drawbacks, such as long computation time, sensitivity to external noise

and difficulty in obtaining an independent system simulator [52]. Also the information on the

local data structure is not used in weights updating, and the function approximation is sensitive

to the training data [47]. Unlike the feedforward neural networks, the recurrent neural networks

incorporate feedback, and have dynamic memory, which provides more powerful representation

capabilities. Hence dynamic neural network is more suitable for representing dynamic systems

[47, 52]. The structure of a common recurrent neural network is shown in Figure 2.2.

2.1.2 Single Layer, Mulilayer and High Order Neural Networks

Neural networks can be generally classified as single layer NN and multi-layer NN. The struc-

ture of a single layer NN is shown in Fig. 2.3, and the FNN and RNN shown in Fig. 2.1 and 2.2
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Figure 2.2: Structure of the recurrent neural network.

are multi-layer NN. Both the single layer NN and multi-layer NN have been widely used [53–55].

Single layer NN has a simple structure, but the approximation capability is poor. Multilayer NN

is more powerful in nonlinearity approximation, but it requires a great deal of computational time

due to its complex structure, which hinders its application in real-time identification and control.

Unlike the single layer NN or the multilayer NN, high order neural network can achieve superior

approximation capability with simple structure, because it allows higher-order interconnections

between the neurons. It is also demonstrated that if enough high-order connections are allowed,

this HONN can be used to approximate arbitrary dynamic system [56]. The feasibility and ad-

vantages of HONN in applications for system identification and control are demonstrated by many

researchers [45, 57–59].

2.1.3 Multi-time-scale Neural Networks

In 1995, Meyer-Base et al. studied the short-term and long-time memory of competitive neural

networks with different time-scale using quadratic-type Lyapunov functions in [60]. New methods

of analyzing the dynamics of a multi-time-scale competitive neural system was proposed in [61].
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Figure 2.3: Structure of the single layer neural network.

Later, a global stability method and a modality of detecting the local stability behavior around in-

dividual eqilibrium points was presented in [62]. In [63], a new method of analyzing the dynamics

of a neural network with different time-scale based on the theory of flow invariance was proposed.

Recent results on stability property analysis of multi-time-scale neural networks could be found

in [20, 21].

The identification of nonlinear singularly perturbed systems using multi-time-scale RNN was

investigated in [16–18]. In [16, 17], single layer RNN with two time-scale were used in sys-

tem identification, where the identification of the linear part matrices of the RNN was proposed

and dead-zone indicators were introduced to prevent the weights of neural network from drifting.

Although single layer RNN has a simple structure, which does not require much computation re-

sources, it has limited approximation capability. To overcome this drawback, a multilayer RNN

with different time-scale was used in [18], because the extra hidden layer offers the possibility of

more complex nonlinear mapping between the NN inputs and outputs, which led to better approx-

imation performance. But the computational load of multi-time-scale multilayer RNN is also very

high, which limits its application in real time identification and control.
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2.1.4 Training Methods for Neural Networks

In 1974, the backpropagation algorithm was proposed by P. Werbos, which effectively solved

the exclusive-or problem [39]. Since then, backpropagation has become a common method in

training different kinds of neural networks. BP algorithm is used in conjunction with an optimiza-

tion method such as gradient descent, which calculates the gradient of a loss function with respects

to all the weights in the neural network. The limitation for BP and other gradient descent training

methods are that the convergence speed may be very slow, and the training process of the NN is

sensitive to measurement noise, etc. [28].

To overcome these drawbacks, some researchers treated the learning algorithm as parame-

ter estimation problem for a nonlinear system. By introducing the estimation methods, such as

extended Kalman filter, which was originally developed for parameter estimation of the general

nonlinear systems, the minimum variance estimation of the link weights of the neural networks

could be obtained. For instance, Y. Iiguni et al. proposed a real-time training algorithm for a

multilayer neural network based on the EKF in [28], which could converge in fewer iterations

than BP method. Meanwhile, the tuning parameters that crucially govern the convergence prop-

erties were not included which could make its application easier. In [64], the authors developed

an effective EKF based RNN training approach with a controllable training convergence, and the

training convergence problem was proposed and studied by updating two artificial training noise

parameters. In [65], the usage of dual extended Kalman filter (DEKF) in estimation of both hidden

layer states and RNN weights, and the removal of some unimportant weights from a trained RNN

were discussed. The DEKF algorithm was also used in the training of RNN with special emphasis

on its application to control system design in [66]. The drawback of Kalman Filter based training

methods is that the modeling uncertainty of NN needs to be Gaussian process in their theoretical

analysis [29].

In 1979, L. G. Khachiyan first indicated how an ellipsoid method for linear programming could

be implemented in polynomial time [67]. This result has caused great excitement and led to mas-

sive research on this topic. Recent results show that bounded ellipsoid is effective in improving the
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learning speed of NN. For instance, a modified optimal bounded ellipsoid algorithm was proposed

to train the weights of a RNN in the identification process of a nonlinear system in [68]. In [69], the

OBE algorithm was applied to feedforward NN weights training. Wen Yu and Jose de Jesus Rubio

proposed an ellipsoid propagation algorithm to train the weights of both hidden layer and output

layer of a RNN, and analyzed the stability property of the identification process in [29]. It should

be pointed out that most of previous research were conducted for discrete time single-time-scale

systems. The identification for continuous multi-time-scale systems using OBE algorithm had not

been developed.

2.2 Singularly Perturbed Systems and Singular Perturbation

Theory

Many industrial systems are nonlinear with“slow” and“fast” dynamics because of the presence

of some parasitic parameters such as small time constants, resistances, inductances, capacitances,

masses and moments of inertia. These parasitic parameters are often the cause of the increased

order and “stiffness” of a real physical system. These systems in which the suppression of a small

parameter will result in the degeneration of dimension, are called “singularly perturbed” systems,

or more generally, multi-time-scale systems [11, 12]. The “curse of dimensionality” of singularly

perturbed systems often poses formidable amount of computation in analysis and controller design.

Although many control theories are valid for any system order, their actual use is often limited to

lower order models. The interaction of “slow” and “fast” dynamics in high order systems results

in “stiff” numerical problems which require expensive integration routines [11].

The singular perturbation theory, a traditional tool of fluid dynamics, is recognized to be effec-

tive in reducing the dimensions and relieving stiffness, since it first became a means for simplified

computation of optimal trajectories in 1960s [12]. This methodology has an impressive record

of applications in wide spectrum of fields, and a lot of research surveys, journal papers and book

chapters have been published so far [5, 10–14].
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A fundamental feature of control methods based on singular perturbation theory is a decompo-

sition of the feedback control design problem into two design subproblems for the slow and fast

dynamics respectively. The two sub-designs are then combined to give the design for the full sys-

tem. It should be pointed out that most publications are focused on linear or nonlinear singularly

perturbed systems with known system model and parameters. For example, in [3, 70], the integral

manifold concept was used to design nonlinear controllers for tip position trajectory tracking of

the flexible link manipulators. In [71], Narang addressed the control problem for a general class

of non-affine, non-standard singularly perturbed continuous-time systems. Other control methods,

such as composite fast-slow model predictive control (MPC) [72], bond graph approach [73], com-

posite observer-based feedback control based on the Lyapunov stability theorem and linear matrix

inequality (LMI) [74], feedback linearizion control [75], linear-quadratic regulator [76], sliding

mode control [15, 77], and switched output feedback control [78] were also reported in literature.

More examples can be found in [10, 12, 13] and references therein.

To solve the control problem for SPSs with uncertainties, different robust control methods have

been proposed in literature. In [79], a robust controller was designed for a nonlinear SPS with van-

ishing uncertainties. A robust output feedback control scheme was developed for nonlinear SPSs

with time-varying uncertain variables in [80]. In [81], passivity-based integral sliding-mode con-

trol of uncertain SPSs was discussed. Wang et al. investigated the robust asymptotic stablization

of a class of nonlinear uncertain SPSs by using the nonlinear PI control techniques in [82]. An

adaptive control based on on-line estimated system parameters was also adopted to handle the

SPSs with uncertainties. In [83–87], the unknown system parameters of robotic manipulators were

estimated during the control process, and different controllers were designed based on the esti-

mated system parameters, such as integral manifold concept controller, sliding mode controller,

feedback linearisation controller and H∞ controller. Zheng et al. [88] investigated the nonlinear

adaptive sliding mode control problem of induction motors, in which the estimated fluxes and the

rotor resistance were guaranteed to converge to their true values.

Adaptive neural networks control is classified into two kinds of structure: indirect and direct
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adaptive control. In direct adaptive control, the parameters of the controller are changed directly

without determining the characteristics of the process and its disturbance first [89–93]. In in-

direct adaptive control, the controller is designed based on the process model and possibly the

disturbance model which are determined first [48, 49, 94, 95]. Although there are limited adaptive

control methods developed for few specific class of systems with unknown parameters, they are

not applicable when the system model is not known, or when the system plant is considered to be

a “black box” [86]. The research on indirect adaptive control for nonlinear SPSs based on neural

networks is rare, because the structure of the neural networks is usually very complicated, and it is

very difficult to decompose the original system into reduced slow subsystem and reduced fast sub-

systems such that the SPT can be applied, if the original system are represented by NN. Although

the identification algorithms for nonlinear SPSs using multi-time-scale RNN have been well de-

veloped, the controller design based on the identified model is still a very challenging problem.

In [26, 27], a multi-time-scale RNN was employed for the identification purpose, but the authors

did not make the best use of the identified model, i.e., they did not use singular perturbation theory

to reduce the system order in the controller design process. When the system order is high, the

controller could be very complex and require huge computational resource.
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Chapter 3

Identification and Control Using Gradient

Descent and Feedback Linearisation

3.1 Introduction

In literature, the adaptive identification and control for nonlinear singularly perturbed systems

via multi-time-scale neural networks have been established. However, the dynamic neural net-

works used in [16, 26, 27] only contain single output layer. In order to improve the system perfor-

mance, it is reasonable to implement multilayer dynamic neural networks instead of single layer

one for system identification and control, since the extra hidden layer gives the possibility of more

complex nonlinear mapping between the inputs and the outputs [40,47,50] which can improve the

approximation performance [40].

So far, some techniques have been developed to solve the potential singularity problem and

ensure bounded control signal. In [96, 97], the control law was set to zero when the system pa-

rameter went into a ball near the singularity point. Lewis proposed a control structure consists of

a robustifying portion which keeps the control signal bounded in [98]. In [48], an identification

and control scheme based on projection algorithm was designed to solve the singularity problem.

However, none of the above mentioned method was designed for a multi-time scale system with
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multilayer neural networks.

In this chapter, a new system identification scheme based on multi-time-scale multilayer neural

network is presented. Then, based on the identified system model, an indirect adaptive controller

is designed for a trajectory tracking problem. As a main contribution of this chapter, the on-line

updating laws for both the hidden layers and output layers of the recurrent neural networks are

proposed. In addition, the e-modification [99] and a novel correction term are introduced in the

on-line updating laws to guarantee bounded parameter estimations. Also, the potential singularity

problem is solved by designing the identification algorithm so that the determinant of the control

gain matrix will stay away from zero all the time during the identification process. The stability

property of the identification and control scheme are discussed via Lyapunov approach.

3.2 Preliminaries

In this section, some basic definitions and terminologies will be introduced.

1. Smoothness.

The smoothness of a function is a property described by the number of its continuous deriva-

tives. A function f is said to be differentiable of class Ck (or f is Ck) if the derivatives f ′,

f ′′, · · · , fk exist and are continuous. The function f is C∞, or smooth if it has derivatives of all

orders [100].

2. Norm.

(1) Frobenius Norm. The Frobenius norm of a m× n matrix A is defined as:

∥A∥F =

√ m∑
i=1

n∑
j=1

a2ij, (3.1)

where aij is the element in ith row and jth column of A.
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(2) L1-Norm. The L1-norm of a vector x ∈ ℜn is defined as:

∥x∥1 =
n∑

i=1

|xi|, (3.2)

where xi is the ith element of x.

(3) L2-Norm. The L2-norm of a vector x ∈ ℜn is defined as:

∥x∥2 =

√ n∑
i=1

|xi|2, (3.3)

where xi is the ith element of x.

3. Semi-globally Uniformly Boundedness (SGUUB).

The solution of ẋ = f(x, t) is SGUUB if for any compact set Ω0, there exists an S > 0 and

T (S, x(t0)) such that ∥x(t)∥ ≤ S for all x(t0) ∈ Ω0 and t ≥ t0 + T .

4. Affine-in-control system.

A nonlinear system is called a control-affine system or affine-in-control system if it can be

expressed as

ẋ = f(x) +
m∑
i=1

gi(x)ui, (3.4)

where x ∈ ℜn is the system state, u ∈ ℜm is the control input, f and gi are smooth functions with

appropriate dimensions [101].
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3.3 System Identification Using Multilayer Neural Network

In this section, a new identification scheme will be proposed for a class of singular perturbed

nonlinear systems with two different time scales described by [5]:

ẋ = f1(x, y, u, t),

εẏ = f2(x, y, u, t),

(3.5)

where x ∈ ℜn and y ∈ ℜm are slow and fast state variables, u ∈ ℜm+n is the control input vector

and ε is a small parameter. f1(·), f2(·) are unknown smooth functions.

In order to identify the nonlinear dynamic system (3.5), the following recurrent neural network

with two-time-scale is employed:

˙̂x = Ax̂+W1Ψ1(V1[x; y]) +W2Ψ2(V2[x; y])u,

ε ˙̂y = Bŷ +W3Ψ3(V3[x; y]) +W4Ψ4(V4[x; y])u,

(3.6)

where x̂ ∈ ℜn, ŷ ∈ ℜm are the estimation of the slow and fast state variables using neu-

ral networks, A ∈ ℜn×n and B ∈ ℜm×m are stable matrices, W1 ∈ ℜn×(n+m), W2 =

[diag(w21, · · · , w2n),0] ∈ ℜn×(n+m), W3 ∈ ℜm×(n+m), W4 = [0, diag(w41, · · · , w4m)] ∈

ℜm×(n+m) are the weights in the output layers, Vi ∈ ℜ(n+m)×(n+m), i = 1, · · · , 4 are the

weights in the hidden layers, Ψi(Vi[x; y]) =
[
ψi

(
(Vi[x; y])1

)
, · · · , ψi

(
(Vi[x; y])n+m

)]
∈ ℜ(n+m),

i = 1, 3, Ψj(Vj[x; y]) = diag
[
ψj

(
(Vj[x; y])1

)
, · · · , ψj

(
(Vj[x; y])n+m

)]
∈ ℜ(n+m)×(n+m), j = 2, 4.

(Vi[x; y])q, q = 1, · · · , n+m and (Vj[x; y])q, q = 1, · · · , n+m are qth elements of (Vi[x; y]) and

(Vj[x; y]) respectively. Typical presentation of ψi(·) is the sigmoid function of the form

ψi(z) =
αi,1

1 + e−αi,2z
+ αi,3, i = 1, · · · , 4. (3.7)

When ε is equal to 1, the recurrent neural network(3.6) becomes a normal one [102].

Remark 3.1. In a general case, the parameters αi,1, αi,2, i = 1, · · · , 4 in (3.7) are positive real
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numbers and αi,3, i = 1, · · · , 4 are real numbers. These parameters can be chosen a priori based

on trial and error. The most commonly selected values are αi,1 = αi,2 = 1, αi,3 = 0, where the

logistic function can be obtained. The other common selection is αi,1 = αi,2 = 2, αi,3 = −1,

where a hyperbolic tangent function is obtained [103]. In this section, the parameters αi,j, i =

1, 3, j = 1, 2, 3 can be chosen arbitrarily, and αi,j, i = 2, 4, j = 1, 2, 3 are chosen to guarantee

the existence of [Ψi(Vi[x; y])]
−1, i = 2, 4.

The structure of the NN identifier is shown in Fig. 3.1.
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Figure 3.1: Structure of the NN identifier.

Assume that a nominal neural network model of the nonlinear system (1) with modeling error

is described by the following equations

ẋ = A∗x+W ∗
1Ψ1(V

∗
1 [x; y]) +W ∗

2Ψ2(V
∗
2 [x; y])u+ ζx,

εẏ = B∗y +W ∗
3Ψ3(V

∗
3 [x; y]) +W ∗

4Ψ4(V
∗
4 [x; y])u+ ζy,

(3.8)

where W ∗
i , i = 1, · · · , 4, V ∗

j , j = 1, · · · , 4 are unknown nominal constant matrices, A∗, B∗ are

unknown nominal constant Hurwitz matrices, the vectors ζx, ζy are modeling errors.
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Assumption 3.1. The nominal weight values and the modeling errors are bounded as

∥W ∗
1 ∥ ≤ W̄1, ∥W ∗

2 ∥ ≤ W̄2, ∥W ∗
3 ∥ ≤ W̄3, ∥W ∗

4 ∥ ≤ W̄4, ∥ζx∥ ≤ ζ̄x,

∥V ∗
1 ∥ ≤ V̄1, ∥V ∗

2 ∥ ≤ V̄2, ∥V ∗
3 ∥ ≤ V̄3, ∥V ∗

4 ∥ ≤ V̄4, ∥ζy∥ ≤ ζ̄y,

where W̄i, V̄i, Z̄i, i = 1, · · · , 4, ζ̄x, ζ̄y are prior known boundaries, ∥ · ∥ is the Frobenius norm.

Remark 3.2. It is reasonable to assume that the modeling errors are bounded by upper bounds.

Similar assumptions can be found in [16, 29, 65, 69] and many other references. In fact, arbitrary

small modeling errors can be obtained by increasing the number of neurons used in the NN [104].

For notational convenience, define

W̌ ∗
i =

⎡⎢⎣W ∗
i

0

⎤⎥⎦ ∈ ℜ(n+m)×(n+m),W̌i =

⎡⎢⎣Wi

0

⎤⎥⎦ ∈ ℜ(n+m)×(n+m),

Z∗
i =

⎡⎢⎣W̌ ∗
i 0

0 V ∗
i

⎤⎥⎦ ∈ ℜ2(n+m)×2(n+m),Zi =

⎡⎢⎣W̌i 0

0 Vi

⎤⎥⎦ ∈ ℜ2(n+m)×2(n+m).

Thus the nominal weights can be further bounded as

∥Z∗
i ∥ ≤ Z̄i.

It is assumed that the system states are measurable. The identification errors are defined by

ςx = x− x̂,

ςy = y − ŷ.

(3.9)

From (3.6) and (3.8), one can obtain the error dynamic equations

ς̇x = A∗ςx + Ãςx +W ∗
1 Ψ̃1 + W̃1Ψ1(V1[x; y]) +W ∗

2 Ψ̃2u+ W̃2Ψ2(V2[x; y])u+ ζx,

ες̇y = B∗ςy + B̃ςy +W ∗
3 Ψ̃3 + W̃3Ψ3(V3[x; y]) +W ∗

4 Ψ̃4u+ W̃4Ψ4(V4[x; y])u+ ζy,

(3.10)
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where Ã = A∗−A, B̃ = B∗−B, W̃i = W ∗
i −Wi, Ψ̃i = Ψi(V

∗
i [x; y])−Ψi(Vi[x; y]), i = 1, · · · , 4.

With Taylor’s series expansion, it can be obtained that:

Ψ̃i = DΨi
Ṽi[x; y] +O(Ṽi[x; y])

2, i = 1, 3,

Ψ̃ju = DΨj
Ṽj[x; y] +O(Ṽj[x; y])

2, j = 2, 4,

DΨi
=
∂Ψi(Vi[x; y])

∂(Vi[x; y])
, DΨj

=
∂Ψj(Vj,q[x; y])u

∂(Vj[x; y])
, (3.11)

where Ṽi = V ∗
i − Vi, Ṽj = V ∗

j − Vj .

The error system is further represented as:

ς̇x =A∗ςx + Ãςx +W1DΨ1Ṽ1[x; y]− W̃1DΨ1V1[x; y] + W̃1Ψ1(V1[x; y]) +W2DΨ2Ṽ2[x; y]

− W̃2DΨ2V2[x; y] + W̃2Ψ2(V2[x; y])u+ ξx,

ες̇y =B
∗ςy + B̃ςy +W3DΨ3Ṽ3[x; y]− W̃3DΨ3V3[x; y] + W̃3Ψ3(V3[x; y]) +W4DΨ4Ṽ4[x; y]

− W̃4DΨ4V4[x; y] + W̃4Ψ4(V4[x; y])u+ ξy,

(3.12)

and the disturbance terms are

ξx = W̃1DΨ1V
∗
1 [x; y] + W̃2DΨ2V

∗
2 [x; y] +W ∗

1O(Ṽ1[x; y])
2 +W ∗

2O(Ṽ2[x; y])
2u+ ζx,

ξy = W̃3DΨ3V
∗
3 [x; y] + W̃4DΨ4V

∗
4 [x; y] +W ∗

3O(Ṽ3[x; y])
2 +W ∗

4O(Ṽ4[x; y])
2u+ ζy.

(3.13)

For sigmoid, Radial Basis Function (RBF) and tanh activation functions, the higher-order terms

in the Taylor series are bounded by [89]

∥O(Ṽi[x; y])2∥ ≤ Ci1 + Ci2∥Ṽi∥∥[x; y]∥, i = 1, 3,

∥O(Ṽj[x; y])2u∥ ≤ Cj1∥u∥+ Cj2∥Ṽj∥∥[x; y]∥∥u∥, j = 2, 4,

(3.14)

where Ci,1, Ci,2, Cj,1, Cj,2 are positive constants.
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Based on Assumption 3.1 and using (3.14), the disturbance terms (3.13) are bounded as

∥ξx∥ ≤ Cx1 + Cx2∥Z̃1∥+ Cx3∥Z̃2∥,

∥ξy∥ ≤ Cy1 + Cy2∥Z̃3∥+ Cy3∥Z̃4∥,
(3.15)

where Cx1, Cx2, Cx3, Cy1, Cy2, Cy3 are positive constants, Z̃i = Z∗
i − Zi, i = 1, · · · , 4.

For stable nominal matrices A∗, B∗ and any positive definite matrices Qx, Qy, there exist

positive definite matrices Px, Py satisfying the following equations [105]:

A∗TPx + PxA
∗ = −Qx,

B∗TPy + PyB
∗ = −Qy.

(3.16)

Rewrite (3.6) as

⎡⎢⎣ ˙̂x

˙̂y

⎤⎥⎦ =

⎡⎢⎣ Ax̂

(1/ε)Bŷ

⎤⎥⎦+

⎡⎢⎣ W1Ψ1(V1[x; y])

(1/ε)W3Ψ3(V3[x; y])

⎤⎥⎦+

⎡⎢⎣ W2Ψ2(V2[x; y])

(1/ε)W4Ψ4(V4[x; y])

⎤⎥⎦u, (3.17)

and define

M =

⎡⎢⎣ W2Ψ2(V2[x; y])

(1/ε)W4Ψ4(V4[x; y])

⎤⎥⎦ . (3.18)

M can be viewed as a control gain matrix for system. In order to avoid the potential singularity

problem in controller design, det(M) ̸= 0 should be guaranteed. It can be proved that if only

w2i > ϖ, i = 1, · · · , n and w4j > ϖ, j = 1, · · · ,m, where ϖ is a sufficiently small constant,

then the eigenvalues of M will not equal zero, therefore det(M) ̸= 0. Inspired by [48], the authors

propose the following NN weight update rules for w2i, i = 1, · · · , n in W2 and w4j, j = 1, · · · ,m

in W4:
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1) Whenever any |w2i| = ϖ, i = 1, · · · , n or |w4j| = ϖ, j = 1, · · · ,m, use

ẇ2i =

⎧⎪⎪⎨⎪⎪⎩
Ẇ2i, if Ẇ2isign(w2i) > 0

0, if Ẇ2isign(w2i) ≤ 0

, ẇ4j =

⎧⎪⎪⎨⎪⎪⎩
Ẇ4j, if Ẇ4jsign(w4j) > 0

0, if Ẇ4jsign(w4j) ≤ 0

. (3.19)

2) Otherwise, the updating law is given as:

ẇ2i = Ẇ2i, ẇ4j = Ẇ4j, (3.20)

where Ẇ2i is the ith element of ith row in Ẇ2, and Ẇ4j is the (n + j)th element of j th row in Ẇ4.

Ẇ2 and Ẇ4 are defined in (3.21).

The updating laws for NN weights are given as follows:

Ȧ = sx(kAςxx̂
T ),

Ẇ1 = sx{K1PxςxΨ
T
1 (V1[x; y])−K1Pxςx(V1[x; y])

TDΨ1 − kxK1∥ςx∥W1},

Ẇ2 = sx{K2Px[u
TΨ2(V2[x; y])ςx]−K2Pxςx(V2[x; y])

TDΨ2 − kxK2∥ςx∥W2},

V̇1 = sx{L1(W1DΨ1)
TPxςx[x; y]

T − kxL1∥ςx∥V1},

V̇2 = sx{L2(W2DΨ2)
TPxςx[x; y]

T − kxL2∥ςx∥V2},

Ḃ = sy(ε
−1kBςyŷ

T ),

Ẇ3 = sy{ε−1K3PyςyΨ
T
3 (V3[x; y])− ε−1K3Pyςy(V3[x; y])

TDΨ3 − kyK3∥ςy∥W3},

Ẇ4 = sy{ε−1K4Pyςy[Ψ4(V4[x; y]u)]
T − ε−1K4Pyςy(V4[x; y])

TDΨ4 − kyK4∥ςy∥W4},

V̇3 = sy{ε−1L3(W3DΨ3)
TPyςy[x; y]

T − kyL3∥ςy∥V3},

V̇4 = sx{ε−1L4(W4DΨ4)
TPyςy[x; y]

T − kyL4∥ςy∥V4},

(3.21)
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with

sx =

⎧⎪⎪⎨⎪⎪⎩
1, ∥ςx∥ ≥ bx

0, ∥ςx∥ < bx

, sy =

⎧⎪⎪⎨⎪⎪⎩
1, ∥ςy∥ ≥ by

0, ∥ςy∥ < by

, (3.22)

where Li, i = 1, · · · , 4, Ki, i = 1, 3 are positive definite matrices, Kj, j = 2, 4 are diagonal

positive definite matrices. kA, kB, kx, ky are positive constants. bx, by are specified as:

bx =
2−1(kxC

2
x4 + kxC

2
x5) + 2∥Px∥Cx1

λmin(Qx)
, by =

2−1ε(kyC
2
y4 + kyC

2
y5) + 2∥Py∥Cy1

λmin(Qy)
, (3.23)

where Cx4, Cx5, Cy4, Cy5 are positive constants to be defined later.

Theorem 3.1. Consider the nonlinear system (3.5) and identification model (3.6). With the updat-

ing laws proposed in (3.19), (3.20), (3.21), the identification process can guarantee the following

stability properties:

ςx, ςy, A, B, Wi, Vi ∈ L∞.

Proof. Case I: sx = 1 and sy = 1. Consider the following Lyapunov function candidate:

VI =Vx + Vy, (3.24)

Vx =ςTx Pxςx + tr{W̃ T
1 K

−1
1 W̃1}+ tr{W̃ T

2 K
−1
2 W̃2}+ tr{Ṽ T

1 L
−1
1 Ṽ1}+ tr{Ṽ T

2 L
−1
2 Ṽ2}

+ k−1
A tr{ÃTPxÃ},

Vy =ς
T
y Pyςy + tr{W̃ T

3 K
−1
3 W̃3}+ tr{W̃ T

4 K
−1
4 W̃4}+ tr{Ṽ T

3 L
−1
3 Ṽ3}+ tr{Ṽ T

4 L
−1
4 Ṽ4}

+ k−1
B tr{B̃TPyB̃}.
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Differentiating (3.24) and using (3.12) yield

V̇x = LA + LW1 + LW2 + LV 1 + LV 2 − ςTx Qxςx + 2ςTx Pxξx,

V̇y = LB + LW3 + LW4 + LV 3 + LV 4 − ε−1ςTy Qyςy + 2ςTy Pyξy,

(3.25)

where

LA = 2k−1
A tr{ ˙̃ATPxÃ}+ 2ςTx PxÃx̂,

LW1 = 2tr{ ˙̃W T
1 K

−1
1 W̃1}+ 2ςTPxW̃1Ψ1(V1[x; y])− 2ςTx PxW̃1DΨ1V1[x; y],

LW2 = 2tr{ ˙̃W T
2 K

−1
2 W̃2}+ 2ςTx PxW̃2Ψ2(V2[x; y])u− 2ςTx PxW̃2DΨ2V2[x; y],

LV 1 = 2tr{ ˙̃V T
1 L

−1
1 Ṽ1}+ 2ςTx PxW̃1DΨ1Ṽ1[x; y],

LV 2 = 2tr{ ˙̃V T
2 L

−1
2 Ṽ2}+ 2ςTx PxW̃2DΨ2Ṽ2[x; y],

LB = 2k−1
B tr{ ˙̃BTPyB̃}+ 2ε−1ςTy PyB̃ŷ,

LW3 = 2tr{ ˙̃W T
3 K

−1
3 W̃3}+ 2ε−1ςTy PyW̃3Ψ3(V3[x; y])− 2ε−1ςTy PyW̃3DΨ3V3[x; y],

LW4 = 2tr{ ˙̃W T
4 K

−1
4 W̃4}+ 2ε−1ςTy PyW̃4Ψ4(V4[x; y])u− 2ε−1ςTy PyW̃4DΨ4V4[x; y],

LV 3 = 2tr{ ˙̃V T
3 L

−1
3 Ṽ3}+ 2ε−1ςTx PxW̃3DΨ3Ṽ3[x; y],

LV 4 = 2tr{ ˙̃V T
4 L

−1
4 Ṽ4}+ 2ε−1ςTx PxW̃4DΨ4Ṽ4[x; y].

Using updating rules (3.21), one has

V̇x =− ςTx Qxςx + 2kx∥ςx∥tr{(W ∗
1 − W̃1)

T W̃1}+ 2kx∥ςx∥tr{(V ∗
1 − Ṽ1)

T Ṽ1}

+ 2kx∥ςx∥tr{(W ∗
2 − W̃2)

T W̃2}+ 2kx∥ςx∥tr{(V ∗
2 − Ṽ2)

T Ṽ2}+ 2ςTx Pxξx

=− ςTx Qxςx + 2kx∥ςx∥tr{(Z∗
1 − Z̃1)

T Z̃1}+ 2kx∥ςx∥tr{(Z∗
2 − Z̃2)

T Z̃2}+ 2ςTx Pxξx V̇y = −ε−1ςTy Qyςy + 2ky∥ςy∥tr{(W ∗
3 − W̃3)

T W̃3}+ 2ky∥ςy∥tr{(V ∗
3 − Ṽ3)

T Ṽ3}

+ 2ky∥ςy∥tr{(W ∗
4 − W̃4)

T W̃4}+ 2ky∥ςy∥tr{(V ∗
4 − Ṽ4)

T Ṽ4}+ 2ε−1ςTy Pyξy

=− ε−1ςTy Qyςy + 2ky∥ςy∥tr{(Z∗
3 − Z̃3)

T Z̃3}+ 2ky∥ςy∥tr{(Z∗
4 − Z̃4)

T Z̃4}+ 2ε−1ςTy Pyξy.

Since tr{(Z∗−Z̃)T Z̃} =
⟨
Z∗, Z̃

⟩
F
−∥Z̃∥2 ≤ ∥Z̃∥∥Z∗∥−∥Z̃∥2 and using (3.13), the following
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inequality holds

V̇x ≤− λmin(Qx)∥ςx∥2 + 2kx∥ςx∥∥Z̃1∥(Z̄1 − ∥Z̃1∥) + 2kx∥ςx∥∥Z̃2∥(Z̄2 − ∥Z̃2∥) + 2∥ςx∥∥Px∥∥ξx∥

=− ∥ςx∥Lx,

V̇y ≤− 1

ε
λmin(Qy)∥ςy∥2 + 2ky∥ςy∥∥Z̃3∥(Z̄3 − ∥Z̃3∥) + 2ky∥ςy∥∥Z̃4∥(Z̄4 − ∥Z̃4∥) +

2

ε
∥ςy∥∥Py∥∥ξy∥

=− 1

ε
∥ςy∥Ly,

where

Lx =λmin(Qx)∥ςx∥+ 2kx∥Z̃1∥(∥Z̃1∥ − Z̄1)− 2∥Px∥(Cx1 + Cx2∥Z̃1∥) + 2kx∥Z̃3∥(∥Z̃3∥ − Z̄3)

− 2Cx3∥Px∥∥Z̃3∥,

Ly =λmin(Qy)∥ςy∥+ 2εky∥Z̃1∥(∥Z̃1∥ − Z̄1)− 2∥Py∥(Cy1 + Cy2∥Z̃1∥) + 2εky∥Z̃3∥(∥Z̃3∥ − Z̄3)

− 2Cy3∥Py∥∥Z̃3∥,

Thus, V̇I is negative as long as Lx, Ly are positive.

Define Cx4 = Z̄1 +
∥Px∥Cx2

kx
, Cx5 = Z̄2 +

∥Px∥Cx2

kx
, Cy4 = Z̄3 +

∥Py∥Cy3

ky
, Cy5 = Z̄4 +

∥Py∥Cy4

ky
,

then Lx and Ly become:

Lx =λmin(Qx)∥ςx∥+ 2kx∥Z̃1∥(∥Z̃1∥ − Cx4)− 2∥Px∥Cx1 + 2kx∥Z̃2∥(∥Z̃2∥ − Cx5)

=2kx(∥Z̃1∥ −
Cx4

2
)2 − kxC

2
x4

2
+ λmin(Qx)∥ςx∥ − 2∥Px∥Cx1 + 2kx(∥Z̃2∥ −

Cx5

2
)2 − kxC

2
x5

2
,

Ly =λmin(Qy)∥ςy∥+ 2εky∥Z̃3∥(∥Z̃3∥ − Cy4)− 2∥Py∥Cy1 + 2εky∥Z̃4∥(∥Z̃4∥ − Cy5)

=2εky(∥Z̃3∥ −
Cy4

2
)2 −

εkyC
2
y4

2
+ λmin(Qy)∥ςy∥ − 2∥Py∥Cy1 + 2εky(∥Z̃4∥ −

Cy5

2
)2 −

εkyC
2
y5

2
.

The above terms are guaranteed positive as long as either

∥ςx∥ >
2−1(kxC

2
x4 + kxC

2
x5) + 2∥Px∥Cx1

λmin(Qx)
= bx,
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∥ςy∥ >
2−1ε(kyC

2
y4 + kyC

2
y5) + 2∥Py∥Cy1

λmin(Qy)
= by,

or

∥Z̃1∥ > Cx4/2 +
√

(C2
x4 + C2

x5)/4 + ∥Px∥Cx1/kx,

∥Z̃2∥ > Cx5/2 +
√

(C2
x4 + C2

x5)/4 + ∥Px∥Cx1/kx,

∥Z̃3∥ > Cy4/2 +
√

(C2
y4 + C2

y5)/4 + ε−1∥Py∥Cy1/ky,

∥Z̃4∥ > Cy5/2 +
√

(C2
y4 + C2

y5)/4 + ε−1∥Py∥Cy1/ky,

then V̇I < 0 is true. According to standard Lyapunov theorem extension [89,99], this demonstrates

the uniformly ultimately boundedness (UUB) of ∥ςx∥, ∥ςy∥, ∥Z̃1∥, ∥Z̃2∥, ∥Z̃3∥, ∥Z̃4∥. This implies

ςx, ςy, Wi, Vi, i = 1, · · · , 4, A, B ∈ L∞.

Case II: sx = 0 and sy = 0. In this case, the learning process is stopped (all right-hand sides

of the differential equations in (3.21) are equal to 0) and NN weights remain constants, then the

identification error and weight matrices remain bounded, i.e., ςx, ςy, Wi, Vi, i = 1, · · · , 4, A,

B ∈ L∞.

Case III: sx = 0, sy = 1 or sx = 1, sy = 0. When sx = 0, sy = 1, the learning process for A,

W1, W2, V1, V2 are stopped, and remain constants. Because ∥ςx∥ < bx, it can be concluded that ςx,

W1, V1, W2, V2, A ∈ L∞.

Following the same analysis procedure, it can be proved that V̇y is negative definite as long as

either

∥ςy∥ >
2−1ε(kyC

2
y4 + kyC

2
y5) + 2∥Py∥Cy1

λmin(Qy)
= by,

or

∥Z̃3∥ > Cy4/2 +
√
(C2

y4 + C2
y5)/4 + ε−1∥Py∥Cy1/ky,
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∥Z̃4∥ > Cy5/2 +
√
(C2

y4 + C2
y5)/4 + ε−1∥Py∥Cy1/ky.

This implies ςy, W3, V3, W4, V4, B ∈ L∞. Hence it can be concluded that when ∥ςx∥ < bx and

∥ςy∥ > by, one has ςx, ςy, Wi, Vi, i = 1, · · · , 4, A, B ∈ L∞.

Following similar analysis approach, it can be shown that ςx, ςy, Wi, Vi, i = 1, · · · , 4, A,

B ∈ L∞. are also valid when ∥ςx∥ > bx and ∥ςy∥ < by. Theorem 3.1 is thus proved.

Theorem 3.2. In (3.19) and (3.20), only the ith element of ith row in Ẇ2, and (n + j)th element of

j th row in Ẇ4 are needed to update W2 and W4. The stability property of the system will not be

affected when other elements in Ẇ2 and Ẇ4 are neglected.

Proof. Using the fact ˙̃W2 = −Ẇ2,
˙̃W4 = −Ẇ4, then the first terms of LW2, LW4 in (3.25) equal

2tr{ ˙̃W T
2 K

−1
2 W̃2} = −2tr{Ẇ T

2 K
−1
2 W̃2},

2tr{ ˙̃W T
4 K

−1
4 W̃4} = −2tr{Ẇ T

4 K
−1
4 W̃4}.

Because W̃2 = [diag(w̃21,··· ,w̃2n),0] ∈ ℜn×(n+m), W̃4 = [0, diag(w̃41,··· ,w̃4m)] ∈ ℜm×(n+m), and

K2, K4 are diagonal matrices, it can be obtained that

tr{ ˙̃W T
2 K

−1
2 W̃2} = −

n∑
i=1

Ẇ2ik
−1
2i w̃2i,

tr{ ˙̃W T
4 K

−1
4 W̃4} = −

m∑
j=1

Ẇ4jk
−1
4j w̃4j,

where Ẇ2i, w̃2i are the ith element of ith row in Ẇ2 and W̃2, respectively, Ẇ4j , w̃4j are the (n+ j)th

element of j th row in Ẇ4 and W̃4, respectively, k2i, k4j are the ith and j th diagonal elements in

K2 and K4, respectively. This means only Ẇ2i, Ẇ4j are involved in the Lyapunov analysis of the

system. Hence, the stability property will not be affected if only Ẇ2i and Ẇ4j are used to update

W2 and W4 in (3.19) and (3.20). Theorem 3.2 is thus proved.

Remark 3.3. Since the update gains in (3.21) can be chosen arbitrarily, the learning process of
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the recurrent neural network does not depend on the solution of Riccati equation (3.16). Hence bx,

by can be set as small as possible by choosing suitable Qx, Qy.

Remark 3.4. The first terms of Ẇi, V̇i, i = 1, · · · , 4 in the updating laws (3.21) are the back

propagation of multilayer perceptrons and the last terms correspond to the e-modification [99] in

standard use in adaptive control to guarantee bounded parameter estimates. The second terms of

Ẇi are used to provide some corrections to the weight tuning for Wi and to assure the convergence

properties of identification error.

Remark 3.5. When ε is very close to zero, W3, V3, W4, V4 present a high-gain behavior, causing

the instability of identification algorithm. The Riccati equation (3.16) can be multiplied by any

positive constant ϱ, i.e., B∗T (ϱPy) + (ϱPy)B
∗ = −ϱQy. It can be guaranteed that the learning

gains of W3, V3, W4, V4 will not become too big if the ϱ is chosen as a very small number.

A summary of the nonlinear identification via recurrent multilayer neural networks with two-

time scales are listed as follows:

1) Construct the dynamic multilayer neural networks with two-time scales as (3.6) and choose

suitable sigmoid functions ψi, i = 1, · · · , 4. There is no preliminary off-line learning phase, so it

is not necessary to provide the stable initial weights. A good choice is to select Vi, i = 1, · · · , 4

arbitrarily, W1, W3 equal zero. W2, W4 are chosen to satisfy the condition |w2i| ≥ ϖ, i = 1, · · · , n

and |w4j| ≥ ϖ, j = 1, · · · ,m.

2) Determine the constants in the update rules (3.21). bx, by can be set to arbitrarily small

by selecting suitable Qx, Qy. The learning gains K1, K3, Li, i = 1, · · · , 4 should be chosen as

positive definite matrices, and K2, K4 should be chosen as diagonal positive definite matrices. kx,

ky, kA, kB are positive constants.

3) On-line identification. The system states x, y can be obtained from the plant and the esti-

mation of x, y can be obtained from (3.6). Then the weights of neural networks can be adjusted

on-line using the identification errors.

31



3.4 Indirect Adaptive Control Based on Feedback Lineariza-

tion

In this Section, the trajectory tracking problem based on the identification result from Section

3.3 will be considered. From Section 3.3 it is clear that a nonlinear singularly perturbed system

can be modeled by the recurrent neural network as:

ẋ = Ax+W1Ψ1(V1[x; y]) +W2Ψ2(V2[x; y])u+ δ′x,

εẏ = By +W3Ψ3(V3[x; y]) +W4Ψ4(V4[x; y])u+ δ′y,

(3.26)

where δ′x and δ′y are the modeling errors.

The control goal is to force the system states to track the desired signals, which are generated

by a nonlinear reference model

ẋd = fr(xd, yd, t),

εẏd = gr(xd, yd, t).

(3.27)

Define the tracking errors as:

Ex = x− xd,

Ey = y − yd.

(3.28)

Then the error dynamic equations become:

Ėx = Ax+W1Ψ1(V1[x; y]) +W2Ψ2(V2[x; y])u+ δ′x − fr,

εĖy = By +W3Ψ3(V3[x; y]) +W4Ψ4(V4[x; y])u+ δ′y − gr.

(3.29)

The control signal u consists of two parts:

u = uL + uδ, (3.30)

where uL is a compensation for the known nonlinearity and uδ is dedicated to deal with the model
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errors, which can be left open if the model errors are zero or ignorable. Let uL be

uL =

⎡⎢⎣W2Ψ2(V2[x; y])

1
ε
W4Ψ4(V4[x; y])

⎤⎥⎦
−1

u′L,

u′L = −

⎡⎢⎣ Axd

1
ε
Byd

⎤⎥⎦−

⎡⎢⎣W1Ψ1(V1[x; y])

1
ε
W3Ψ3(V3[x; y])

⎤⎥⎦+

⎡⎢⎣ fr

1
ε
gr

⎤⎥⎦ .
(3.31)

and rewrite (3.29) as

⎡⎢⎣Ėx

Ėy

⎤⎥⎦=

⎡⎢⎣ Ax

1
ε
By

⎤⎥⎦−
⎡⎢⎣W1Ψ1(V1[x; y])

1
ε
W3Ψ3(V3[x; y])

⎤⎥⎦+
⎡⎢⎣W2Ψ2(V2[x; y])

1
ε
W4Ψ4(V4[x; y])

⎤⎥⎦u+
⎡⎢⎣ δ′x

1
ε
δ′y

⎤⎥⎦−
⎡⎢⎣ fr

1
ε
gr

⎤⎥⎦ . (3.32)

Then substituting (3.31) into (3.32) yields

⎡⎢⎣Ėx

Ėy

⎤⎥⎦=

⎡⎢⎣ AEx

1
ε
BEy

⎤⎥⎦+
⎡⎢⎣W2Ψ2(V2[x; y])

1
ε
W4Ψ4(V4[x; y])

⎤⎥⎦uδ+
⎡⎢⎣ δ′x

1
ε
δ′y

⎤⎥⎦ . (3.33)

The control signal uδ is designed to compensate the unknown dynamic modeling errors. The

sliding mode control method is applied to accomplish the task. Let uδ be

uδ =

⎡⎢⎣W2Ψ2(V2[x; y])

1
ε
W4Ψ4(V4[x; y])

⎤⎥⎦
−1 ⎡⎢⎣u′δx

u′δy

⎤⎥⎦ , (3.34)

u′δx = −AEx − ηx[sign(Ex1), · · · , sign(Exn)]
T , (3.35)

u′δy = −1

ε
BEy −

1

ε
ηy[sign(Ey1), · · · , sign(Eym)]

T , (3.36)

where Exi, i = 1, · · · , n, Eyj , j = 1, · · · ,m are the ith and j th elements of Ex and Ey, respectively.
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Then substituting (3.34) into (3.33) yields

Ėx = −ηx[sign(Ex1), · · · , sign(Exn)]
T + δ′x,

Ėy = −1

ε
ηy[sign(Ey1), · · · , sign(Eym)]

T +
1

ε
δ′y.

(3.37)

Theorem 3.3. Consider the identification model given in (3.26) with reference model given in

(3.27). It can be proved that by using control strategies given in (3.30), (3.31) and (3.34), the

following stability properties can be guaranteed:

lim
t→∞

Ex = 0, lim
t→∞

Ey = 0.

Proof. Consider the following Lyapunov function candidate:

Vc = ET
xEx + ET

y Ey. (3.38)

Using (3.37), one can obtain the derivation of Vc as

V̇c =2ET
x Ėx + 2ET

y Ėy

=2ET
x (−ηx[sign(Ex1), · · · , sign(Exn)]

T + δ′x) + 2ET
y (−

ηy
ε
[sign(Ey1), · · · , sign(Eym)]

T +
δ′y
ε
)

=− 2ηx∥Ex∥1 + 2ET
x δ

′
x −

2

ε
ηy∥Ey∥1 +

2

ε
ET

y δ
′
y

≤− 2ηx∥Ex∥1 + 2∥ET
x ∥1∥δ′x∥1 −

2

ε
ηy∥Ey∥1 +

2

ε
∥ET

y ∥1∥δ′y∥1

=− 2(ηx − ∥δ′x∥1)∥Ex∥1 −
2

ε
(ηy − ∥δ′y∥1)∥Ey∥1, (3.39)

where ∥ · ∥1 denotes the L1-norm. If ηx, ηy are chosen to be ηx > δ̄′x, ηy > δ̄′y, where δ̄′x, δ̄′y are

upper boundaries of δ′x and δ′x. Then V̇c < 0 is true, which implies lim
t→∞

Ex = 0, lim
t→∞

Ey = 0.

Theorem 3.3 is thus proved.

Remark 3.6. At the beginning of the identification process, the initial value of W2, W4 are chosen

to satisfy the condition |w2i| > ϖ, |w4j| > ϖ. Then according to (3.19) and (3.20), if |w2i| = ϖ,
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|w4j| = ϖ, and ẇ2isign(w2i) ≥ 0, ẇ4jsign(w4j) ≥ 0 are always true. Therefore, |w2i| ≥ ϖ,

|w4j| ≥ ϖ are always valid during the identification process [48]. Since Ψ2, Ψ4 are diagonal

matrices and the existence of Ψ−1
2 , Ψ−1

4 are guaranteed by selecting suitable αi,j in (3.7), det(M)

defined in (3.18) is guaranteed to be non-zero and the potential singularity problem in the con-

troller design is avoided, and the control signal in (3.30) is guaranteed bounded.

3.5 Application

To demonstrate the effectiveness of the proposed identification and control scheme, the follow-

ing nonlinear system is considered:

ẋ = −5x+ 3sign(y) + u1,

εẏ = −10y + 2sign(x) + u2,

(3.40)

where ε = 0.2 and the initial states of the system are x(0) = 1, y(0) = 0. The nonlinear system

given above, even simple, is interesting enough, since it has multiple isolated equilibriums. The

simulation results using the identification and control scheme proposed in [26] is also provided for

comparison purpose.

3.5.1 System Identification

To identify the nonlinear singularly perturbed system (3.40), the structure of the recurrent neu-

ral network is chosen as: A ∈ ℜ, B ∈ ℜ, W1, W2, W3, W4 ∈ ℜ2, V1, V2, V3, V4 ∈ ℜ2×2,

ψ1, ψ3 ∈ ℜ2, ψ2, ψ4 ∈ ℜ2. The input signals are chosen the same as in [26], which are

u1 = 8sin(0.05t) and u2 is a saw-tooth function with the amplitude of 8 and the frequency of

0.02 Hz. The neural network parameters are chosen as: kA = −1000, kB = −200, K1 = −200I,

K2 = −100I, K3 = K4 = −20I which are also the same as in [26]. The other parameters in

the updating law (3.21) are chosen as L1 = L2 = −0.05I, L3 = L4 = −0.5I, kx = ky = 0.05,

ϖ = 0.05. The sampling time in the simulation is 1 ms. The identification results are shown in the
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Figs. 3.2-3.5.

Remark 3.7. The learning gains of the identification algorithm (3.21) are determined by Ki,Li,

i = 1, · · · , 4, kx, ky, kA, kB. Generally speaking, larger learning gain will result in faster con-

vergence, smaller identification errors with more oscillations. Hence, in practice, one can choose

small learning gains at first, and increase them gradually until satisfactory identification results

are achieved.
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Figure 3.2: Identification results of x.
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Figure 3.3: Identification errors of x.

In Fig. 3.2(a), it can be seen that when the new identification algorithm proposed in Section

3.3 is used, the x̂ will converge to x within 1s. However, when the identification proposed in [26]

36



0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Time(s)

y
a
n
d
ŷ
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Figure 3.4: Identification results of y.
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Figure 3.5: Identification errors of y.

is used, large difference between x and x̂ can be observed, as shown in Fig. 3.2(b). In Fig.

3.3(a), it is obvious that when the new identification algorithm is used, the identification error ςx

is very small. While in Fig. 3.3(b), larger identification error is presented when the identification

algorithm proposed in [26] is used. Similar phenomena can be noted in Fig. 3.4 and Fig. 3.5. Thus,

it can be concluded that the state variables of the dynamic multi-time-scale NN follow those of the

nonlinear system more accurately and quickly when the multilayer NN proposed in Section 3.3 is

used compared to the results in [26]. The eigenvalues of the linear parameter matrix are shown in

Fig. 3.6. The eigenvalues for both A and B are universally smaller than zero, which means they
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Figure 3.6: Eigenvalues of A and B.

remain stable during the identification.

To show the performance of the proposed identification algorithm, the performance index-Root

Mean Square (RMS) for the identification errors has been adopted, which is defined as:

RMS =

√∑n
i=1 ς

2(i)

n
, (3.41)

where n is the number of the simulation steps, ς(i) is the identification error at ith step. The RMS

results are given in Table 3.1. From Table 3.1, it is clear that by adding the extra hidden layer, the

RMS values of the identification errors ςx and ςy are largely reduced, which means the identification

accuracy is greatly improved by using the multilayer neural network.

Table 3.1: RMS values of the identification errors

ςx ςy

RMS(proposed) 0.0175 0.0336

RMS( [26]) 0.1391 0.0944
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3.5.2 System Control

The control goal is to force the outputs of the nonlinear singularly perturbed system (3.40) to

follow the given reference model:

ẋd = yd,

εẏd = sin(xd).
(3.42)

The trajectory tracking results are shown in Figs. 3.7-3.10. In Fig. 3.7, it is clear that when

the identification and control algorithm proposed in this chapter is used, the state x can track the

reference signal xd more closely. However, when the identification and control algorithm proposed

in [26] is used, large spikes can be observed at the peaks and the lowest points of the sine wave.

Also, in Fig. 3.8, it is clear that after 10s, the tracking error Ex is very small when the new

identification and control algorithm is used. Nevertheless, larger fluctuation in Ex exists when the

adaptive controller proposed in [26] is used.

The control results of y are much better when the new identification and control algorithm is

used. In Fig. 3.9(a), the system state y can track the reference signal yd precisely since the very

beginning, but it takes about 15s for y to converge to yd when the adaptive controller proposed

in [26] is used, as shown in 3.9(b). When the new identification and control scheme is used, the

tracking error is always small as depicted in 3.10(a), whereas Ey in 3.10(b) is still much larger

after 20s.

Hence, it can be concluded that by using the identification and control scheme proposed in this

chapter, the closed-loop system can track the given reference signal more precisely. The tracking

errors are greatly reduced when compared with the control results using the method proposed

in [26]. Meanwhile, Fig. 3.8 and Fig. 3.10 show that it takes relatively more time for state

x to track the reference signal than state y, because the small parameter ε accelerates both the

identification and trajectory tracking process of state y.

To better illustrate the effectiveness of the proposed algorithms, the RMS values of the tracking

errors Ex and Ey are also calculated, as presented in Table 3.2. The RMS values of all tracking

errors demonstrate that the proposed identification and control algorithm has better performance
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Figure 3.7: Tracking results of x.
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Figure 3.8: Tracking errors of x.

than the method proposed [26], since smaller tracking errors can be achieved.

3.6 Conclusion

In this chapter, the adaptive nonlinear identification and trajectory tracking problem via recur-

rent multilayer neural network with different time-scales is discussed. The stability conditions for

the on-line identification is determined by means of a Lyapunov-like analysis. Then a feedback
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Figure 3.9: Tracking results of y.
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Figure 3.10: Tracking errors of y.

controller is designed for trajectory tracking with consideration of the modeling error and distur-

bance. Simulation results show that the proposed identification and control algorithms containing

both hidden layers and output layers have better performance than that in [26] which only includes

a single layer of neurons.
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Table 3.2: RMS values of the tracking errors

Ex Ey

RMS(proposed) 0.0187 0.0329

RMS( [26]) 0.2368 0.1596
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Chapter 4

System Identification Based on Optimal

Bounded Ellipsoid Algorithm

4.1 Introduction

So far, most training methods for NNs are gradient-like learning laws, such as backpropagation

(BP) method. The main drawback of these methods is that the convergence speed is relatively slow.

To accelerate the learning process, one solution is to use Extended Kalman Filter (EKE) in weights

updating of NNs [28, 65, 66, 106, 107]. Regardless of its wide application, a main drawback of

Kalman filter based training methods is that they require the modeling uncertainty of NNs to be

Gaussian process in the theoretical analysis, which may not be true in real application.

Ellipsoid method for linear programing was first proposed in 1979 and widely studied there-

after [67, 108, 109]. Recently, weights updating using bounded ellipsoid method seems to be very

effective in improving the learning speed for NNs. In [69], optimal bounded ellipsoid (OBE) al-

gorithm was utilized to update the weights of the feedforward NN. Recurrent NN using OBE for

weights updating was proposed in [68]. The stability property of NN based on OBE was discussed

in [29]. It should be pointed out that all previous research were focused on discrete time single

time scale NNs. The investigation on system identification based on OBE using continuous time
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multi-time scales neural network was rare.

In this chapter, the OBE based system identification scheme using discrete time multi-time-

scale neural network is studied first. Subsequently, the application of OBE to system identifica-

tion problem using continuous time multi-time-scale NN is investigated. Lastly, a modified OBE

based identification algorithm is proposed to further improve the performance of the identification

scheme.

4.2 Identification of Discrete Systems Using Optimal Bounded

Ellipsoid Algorithm

In this section, the optimal bounded ellipsoid algorithm based identification scheme for nonlin-

ear discrete time singularly perturbed systems using multi-time-scale recurrent high order neural

network is presented. The main difference between gradient descent (GD) based weight’s updating

laws and the OBE based weight’s updating laws is that, in GD based methods, the learning gain of

the weight’s updating laws is fixed, while in the OBE based weight’s updating laws, the learning

gain can be adjusted adaptively. Because of the adaptively adjusted learning gain, the identification

scheme proposed in this section can achieve faster convergence with higher accuracy. This will be

demonstrated by simulation results.

4.2.1 Identification Algorithm

In this Section, the following singularly perturbed discrete-time nonlinear system is considered:

x(k + 1) = f(x(k), y(k), u(k)),

εy(k + 1) = g(x(k), y(k), u(k), ε),

(4.1)

where x(k) ∈ ℜn, y(k) ∈ ℜm are the slow and fast state vectors, respectively, u(k) ∈ ℜp is the

control input vector, 0 < ε < 1 is a small parameter, f(·) and g(·) are unknown general nonlinear
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smooth functions.

In order to model the discrete-time nonlinear system (4.1), the recurrent high order neural

network (RHONN) with two time scales is used:

x̂(k + 1) = Ax̂(k) +W1Ψ1(x, y) +W2Ψ2(x, y)u(k),

εŷ(k + 1) = εBŷ(k) +W3Ψ3(x, y) +W4Ψ4(x, y)u(k),

(4.2)

where x̂(k) ∈ ℜn and ŷ(k) ∈ ℜm are the slow and fast state vectors of the NN, A ∈ ℜn×n,

B ∈ ℜm×m are diagonal stable matrices. W1 ∈ ℜn×q, W2 ∈ ℜn×q, W3 ∈ ℜm×q, W4 ∈ ℜm×q

are the weight matrices of the NN, q is the number of neuron, the activation function vectors

Ψ1(·), Ψ3(·) are defined as [58]:

Ψi(·) = [Ψi,1,Ψi,2, · · · ,Ψi,q]
T ∈ ℜq×1, i = 1, 3,

Ψi,c =
∏
j∈Jc

[ψi(·)]dc(j), c = 1, · · · , q,

where Jc are the collections of l not ordered subsets of 1, 2, · · · , n+m and dc(j) are non-negative

integers, the activation functions ψi(z) are chosen as:

ψi(z) =
αi,1

1 + e−αi,2z
+ αi,3, i = 1, 3. (4.3)

The activation function matrices Ψ2(·), Ψ4(·) are defined as:

Ψi(·) =

⎡⎢⎢⎢⎢⎣
Ψi,1,1 · · · Ψi,1,p

... . . . ...

Ψi,q,1 · · · Ψi,q,p

⎤⎥⎥⎥⎥⎦ ∈ ℜq×p,

Ψi,c,r =
∏

j∈Jc,r

[ψi(·)]dc,r(j), c = 1, · · · , q, r = 1, · · · , p,
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where Jc,r are the collections of l not ordered subsets of 1, 2, · · · , n+m and dc,r(j) are non-

negative integers. The activation functions ψ2(z), ψ4(z) are chosen as:

ψi(z) =
αi,1

1 + e−αi,2z
+ αi,3, i = 2, 4. (4.4)

The parameters αi,j, i = 1, · · · , 4, j = 1, · · · , 3 in (4.3) and (4.4) can be chosen a priori. The

structure of the identification scheme is shown in Fig. 4.1.

Nonlinear Dynamic 
System

Weights Tuning

Recurrent High-order 
Neural Network

(k), (k)x y

ˆ ˆ(k), (k)x y

(k)u





Figure 4.1: Structure of the identification scheme.

Assume that system (4.1) can be modeled by a nominal neural network with modeling error as:

x(k + 1) = Ax(k) +W ∗
1Ψ1(x, y) +W ∗

2Ψ2(x, y)u(k) + ζx(k),

εy(k + 1) = εBy(k) +W ∗
3Ψ3(x, y) +W ∗

4Ψ4(x, y)u(k) + ζy(k),

(4.5)

where W ∗
1 ∈ ℜn×q, W ∗

2 ∈ ℜn×q, W ∗
3 ∈ ℜm×q, W ∗

4 ∈ ℜm×q are unknown optimal weights that

minimize the modeling error ζx ∈ ℜn and ζy ∈ ℜm.

Let ζxi(k) denote the ith term of ζx(k), i = 1, · · · , n, and ζyj(k) denote the j th term of

ζy(k), j = 1, · · · ,m, then the following assumption can be made.

Assumption 4.1. The modeling error ζxi(k) and ζyj(k) are bounded by known bounds ζ̄xi and ζ̄yj
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as:

|ζxi(k)| ≤ ζ̄xi, |ζyj(k)| ≤ ζ̄yj.

Denote Θ∗
x,k = [W ∗

1 ,W
∗
2 ] = [θ∗x1,k; θ

∗
x2,k; · · · ; θ∗xn,k] ∈ ℜn×2q, θ∗xi,k ∈ ℜ1×2q, i = 1, · · · , n,

Θ∗
y,k = [W ∗

3 ,W
∗
4 ] = [θ∗y1,k; θ

∗
y2,k; · · · ; θ∗ym,k] ∈ ℜm×2q, θ∗yj,k ∈ ℜ1×2q, j = 1, · · · m. Hx,k =

[Ψ1(x, y); Ψ2(x, y)u(k)] ∈ ℜ2q×1, Hy,k = [Ψ3(x, y); Ψ4(x, y)u(k)] ∈ ℜ2q×1. Then model (4.5)

can be written as:
x(k + 1) = Ax(k) + Θ∗

x,kHx,k + ζx(k),

εy(k + 1) = εBy(k) + Θ∗
y,kHy,k + ζy(k).

(4.6)

Similarly, model (4.2) can be represented as:

x̂(k + 1) = Ax̂(k) + Θx,kHx,k,

εŷ(k + 1) = εBŷ(k) + Θy,kHy,k,

(4.7)

where Θx,k = [W1,W2] = [θx1,k; θx2,k; · · · ; θxn,k] ∈ ℜn×2q, Θy,k = [W3,W4] =

[θy1,k; θy2,k; · · · ; θym,k] ∈ ℜm×2q.

Define the identification errors as:

ςx(k) = x(k)− x̂(k),

ςy(k) = y(k)− ŷ(k).

(4.8)

Define the auxiliary system outputs as:

τx(k) = Θ∗
x,kHx,k + ζx(k) = x(k + 1)− Ax(k),

τy(k) = Θ∗
y,kHy,k + ζy(k) = εy(k + 1)− εBy(k).

(4.9)
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and the estimated auxiliary system output as:

τ̂x(k) = Θx,kHx,k,

τ̂y(k) = Θy,kHy,k.

(4.10)

Then the output errors are defined as:

ex(k) =τx(k)− τ̂x(k) = Θ̃x,kHx,k + ζx(k),

ey(k) =τy(k)− τ̂y(k) = Θ̃x,kHx,k + ζy(k),

(4.11)

where Θ̃x,k = Θ∗
x,k −Θx,k, Θ̃y,k = Θ∗

y,k −Θy,k. Subtracting (4.7) from (4.6), it follows that:

ςx(k + 1) = Aςx(k) + ex(k),

εςy(k + 1) = εBςy(k) + ey(k).

(4.12)

Remark 4.1. The main purpose of this section is to train the recurrent high order neural network

(4.2) such that the identification errors ςx(k), ςy(k) are bounded and minimized. This can be

achieved by minimizing the auxiliary system output errors ex(k) and ey(k).

From (4.12), it can be obtained that:

ςxi(k + 1) = aiςxi(k) + exi(k),

εςyj(k + 1) = εbjςyj(k) + eyj(k),

(4.13)

where ςxi(k), ai, exi(k), i = 1, · · · , n are the ith element in ςx(k), A, ex(k), respectively, and

ςyj(k), bj, eyj(k), j = 1, · · · ,m are the mth element in ςy(k), B, ey(k), respectively. Hence, it

follows that:

ςxi(2) = aiςxi(1) + exi(1),

ςxi(3) = aiςxi(2) + exi(2) = a2i ςxi(1) + aiexi(1) + exi(2),
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...

ςxi(k) = aiςxi(k − 1) + exi(k − 1) = aki ςxi(1) +
k−1∑
r=1

ak−1−r
i exi(r).

Similarly, it is easy to show that:

εςyj(k) = εbjςyj(k − 1) + eyj(k − 1) = εbkj ςyj(1) +
k−1∑
r=1

bk−1−r
j eyj(r).

Because |ai| < 1, |bj| < 1, 0 < ε < 1, it can be obtained that:

ςxi(k) < |ςxi(1)|+
k−1∑
r=1

|exi(r)|, εςyj(k) < ε|ςyj(1)|+
k−1∑
r=1

|eyj(r)|.

It is noticed that ςxi(1), ςyj(1) are constants. If the output errors exi(k), eyj(k) are minimized,

the upper bounds of the identification errors ςxi(k), ςyj(k) are minimized. Therefore, the analysis

and identification algorithm design in this paper are based on minimizing the output errors ex(k)

and ey(k).

Definition 4.1. Define a real n-dimensional ellipsoid set, centered on r∗ as:

S(r∗, P ) = {r ∈ ℜ1×n|(r − r∗)P−1(r − r∗)T ≤ 1}, (4.14)

where P ∈ ℜn×n is a positive definite symmetric matrix.

Based on (4.14), the discrete-time RHONN weight error ellipsoids Sx,k, Sy,k are defined as:

Sx,k = {θxi,k|θ̃xi,kP−1
x,k θ̃

T
xi,k ≤ 1},

Sy,k = {θyj,k|θ̃yj,kP−1
y,k θ̃

T
yj,k ≤ 1},

(4.15)

where θ̃xi,k = θ∗xi,k − θxi,k, i = 1, · · · , n, θ̃yj,k = θ∗yj,k − θyj,k, j = 1, · · · ,m. Px,k, Py,k are

symmetric positive definite matrices.

Let τxi(k) be the ith term of τx(k), and τyj(k) is the j th term of τy(k). According to (4.9),
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∥τxi(k) − θ∗xi,kHx,k∥2 = ∥ζxi(k)∥2 ≤ ζ̄xi, and ∥τyj(k) − θ∗yj,kHy,k∥2 = ∥ζyj(k)∥2 ≤ ζ̄yj , then it is

easy to know that [τxi(k)− θ∗xi,kHx,k] belongs to an ellipsoid Ex,k, and [τyj(k)− θ∗yj,kHy,k] belongs

to an ellipsoid Ey,k, which are defined as:

Ex,k(θ
∗
xi,kHx,k, ζ̄

2
xi) = {τxi(k)|

1

ζ̄2xi
∥τxi(k)− θ∗xi,kHx,k∥22 ≤ 1},

Ey,k(θ
∗
yj,kHy,k, ζ̄

2
yj) = {τyj(k)|

1

ζ̄2yj
∥τyj(k)− θ∗yj,kHy,k∥22 ≤ 1},

(4.16)

where ∥ · ∥2 denotes the L2-norm.

Assumption 4.2. The initial weights θxi,1 and θyj,1 are assumed to be in the ellipsoid Sx,1 and Sy,1:

Sx,1 = {θxi,1|θ̃xi,1P−1
x,1 θ̃

T
xi,1 ≤ 1},

Sy,1 = {θyj,1|θ̃yj,1P−1
y,1 θ̃

T
yj,1 ≤ 1}.

(4.17)

Assumption 4.2 can be satisfied by choosing the bounded initial weights θxi,1, θyj,1and suitable

Px,1, Py,1.

According to (4.15) and (4.16), one gets to know that:

(1− µxi,k)θ̃xi,kP
−1
x,k θ̃

T
xi,k ≤ 1− µxi,k,

µxi,k

ζ̄2xi
∥τxi(k)− θ∗xi,kHx,k∥22 ≤ µxi,k.

(4.18)

Adding up the two inequalities in (4.18) gives that

(1− µxi,k)θ̃xi,kP
−1
x,k θ̃

T
xi,k +

µxi,k

ζ̄2xi
∥τxi(k)− θ∗xi,kHx,k∥22 ≤ 1. (4.19)

Following the same analysis procedure, it can be obtained that:

(1− µyj,k)θ̃yj,kP
−1
y,k θ̃

T
yj,k +

µyj,k

ζ̄2yj
∥τyj(k)− θ∗yj,kHy,k∥22 ≤ 1, (4.20)

where 0 ≤ µxi,k < 1 and 0 ≤ µyj,k < 1, which will be defined later.
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The following weight’s updating laws are proposed to train the RHONN:

Px,k+1 =
1

1− µxi,k

[
Px,k −

µxi,kPx,kHx,kH
T
x,kPx,k

(1− µxi,k)ζ̄2xi + µxi,kHT
x,kPx,kHx,k

]
, (4.21)

θTxi,k+1 = θTxi,k +
µxi,k

ζ̄2xi
Px,kHx,kexi(k), (4.22)

µxi,k =

⎧⎪⎪⎨⎪⎪⎩
λxiζ̄

2
xi

1+HT
x,kPx,kHx,k

, if e2xi(k) ≥
ζ̄2xi

1−λxi
& HT

x,kPx,kHx,k ≥ ζ̄2xi

0, if e2xi(k) <
ζ̄2xi

1−λxi
or HT

x,kPx,kHx,k < ζ̄2xi

, (4.23)

Py,k+1 =
1

1− µyj,k

[
Py,k −

µyj,kPy,kHy,kH
T
y,kPy,k

(1− µyj,k)ζ̄2yj + µyj,kHT
y,kPy,kHy,k

]
, (4.24)

θTyj,k+1 = θTyj,k +
µyj,k

ζ̄2yj
Py,kHy,keyj(k), (4.25)

µyj,k =

⎧⎪⎪⎨⎪⎪⎩
λyj ζ̄

2
yj

1+HT
y,kPy,kHy,k

, if e2yj(k) ≥
ζ̄2yj

1−λyj
& HT

y,kPy,kHy,k ≥ ζ̄2yj

0, if e2yj(k) <
ζ̄2yj

1−λyj
or HT

y,kPy,kHy,k < ζ̄2yj

, (4.26)

where λxi, λyj are designed parameters such that 0 < λxi < 1, 0 < λxiζ̄
2
xi < 1, 0 < λyj < 1, 0 <

λyj ζ̄
2
yj < 1.

Theorem 4.1. Consider the model (4.2) for system (4.1). If Px,1, Py,1 are symmetric diagonal

positive definite matrices, Sx,k and Sy,k belongs to the ellipsoid sets defined in (4.15), then by using

the weight’s updating laws (4.21)-(4.26), it can be guaranteed that Px, Py and the identification

errors ςx, ςy will be bounded, and Sx,k+1 and Sy,k+1 will also be ellipsoids satisfying

Sx,k+1 = {θxi,k+1|θ̃xi,k+1P
−1
x,k+1θ̃

T
xi,k+1 ≤ 1},

Sy,k+1 = {θyj,k+1|θ̃yj,k+1P
−1
y,k+1θ̃

T
yj,k+1 ≤ 1}.

(4.27)

Proof. Case I: e2xi(k) ≥ ζ̄2xi
1−λxi

, HT
x,kPx,kHx,k ≥ ζ̄2xi and e2yj(k) ≥ ζ̄2yj

1−λyj
, HT

y,kPy,kHy,k ≥ ζ̄2yj .

Using matrix inversion lemma [29]:

(I1 − I2I
−1
4 I3)

−1 = I−1
1 + I−1

1 I2(I4 − I3I
−1
1 I2)

−1I3I
−1
1 ,
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where Ii, i = 1, · · · , 4 are matrices with proper dimensions, it can be obtained that:

P−1
x,k+1 = (1− µxi,k)

[
Px,k −

µxi,kPx,kHx,kH
T
x,kPx,k

(1− µxi,k)ζ̄2xi + µxi,kHT
x,kPx,kHx,k

]−1

= (1− µxi,k)P
−1
x,k +

µxi,k

ζ̄xi
Hx,kH

T
x,k. (4.28)

SinceHT
x,kPx,kHx,k > 0 is a scalar, it is easy to show that 0 ≤ µxi,k < 1. Also, it can be verified

that Hx,kH
T
x,k is semi-positive definite. Hence, according to (4.28), if Px,k > 0, then Px,k+1 > 0 is

valid. Since Px,1 > 0 is given, then it can be obtained that Px,k+1 > 0.

Following the same approach, it is easy to obtain that:

P−1
y,k+1 = (1− µyj,k)P

−1
y,k +

µyj,k

ζ̄yj
Hy,kH

T
y,k. (4.29)

Let z ∈ ℜn be an arbitrary vector, and Vx,k+1 be defined as:

Vx,k+1 = tr{zTPx,k+1z}. (4.30)

Hence, it follows that:

∆Vx = Vx,k+1 − Vx,k

= tr{zT
[ 1

1− µxi,k

[
Px,k −

µxi,kPx,kHx,kH
T
x,kPx,k

(1− µxi,k)ζ̄2xi + µxi,kHT
x,kPx,kHx,k

]]
z} − tr{zTPx,kz}

=
µxi,k(1− µxi,k)[ζ̄

2
xi −HT

x,kPx,kHx,k]tr{zTPx,kz}
(1− µxi,k)[(1− µxi,k)ζ̄2xi + µxi,kHT

x,kPx,kHx,k]
. (4.31)

Since 0 ≤ µxi,k < 1, HT
x,kPx,kHx,k ≥ ζ̄2xi, it is obvious that ∆Vx ≤ 0. This indicates that Px is

bounded. Following the same procedure, it is easy to show that Py is also bounded.

Using (4.21)-(4.23), θ̃xi,k+1P
−1
x,k+1θ̃

T
xi,k+1 can be calculated as:

θ̃xi,k+1P
−1
x,k+1θ̃

T
xi,k+1 =(1− µxi,k)θ̃xi,kP

−1
x,k+1θ̃

T
xi,k − 2

µxi,k

ζ̄2xi
θ̃xi,kHx,kexi(k)

52



+
µ2
xi,k

ζ̄4xi
HT

x,kPx,k+1Hx,ke
2
xi(k). (4.32)

Substituting (4.28) into (4.32) yields:

θ̃xi,k+1P
−1
x,k+1θ̃

T
xi,k+1 =(1− µxi,k)θ̃xi,kP

−1
x,k θ̃

T
xi,k +

µxi,k

ζ̄2xi
θ̃xi,kHx,kH

T
x,kθ̃

T
xi,k

− 2
µxi,k

ζ̄2xi
θ̃xi,kHx,kexi(k) +

µ2
xi,k

ζ̄4xi
HT

x,kPx,k+1Hx,ke
2
xi(k). (4.33)

From (4.19), it is known that

(1− µxi,k)θ̃xi,kP
−1
x,k θ̃

T
xi,k ≤ 1− µxi,k

ζ̄2xi
∥τxi(k)− θ∗xi,kHx,k∥22. (4.34)

Substituting (4.34) into (4.33), one obtains that

θ̃xi,k+1P
−1
x,k+1θ̃

T
xi,k+1 ≤1− µxi,k

ζ̄2xi
∥τxi(k)− θ∗xi,kHx,k∥22 +

µxi,k

ζ̄2xi
θ̃xi,kHx,kH

T
x,kθ̃

T
xi,k

− 2
µxi,k

ζ̄2xi
θ̃xi,kHx,kexi(k) +

µ2
xi,k

ζ̄4xi
HT

x,kPx,k+1Hx,ke
2
xi(k)

=1 +
µxi,k

ζ̄2xi
[−∥τxi(k)− θ∗xi,kHx,k∥22 + θ̃xi,kHx,kH

T
x,kθ̃

T
xi,k

− 2θ̃xi,kHx,kexi(k)] +
µ2
xi,k

ζ̄4xi
HT

x,kPx,k+1Hx,ke
2
xi(k). (4.35)

Since exi(k) = τxi(k)− θxi,kHx,k, and θ̃xi,k = θ∗xi,k − θxi,k, the equations in [·] in (4.35) can be

rewritten as:

− ∥τxi(k)− θ∗xi,kHx,k∥22 + θ̃xi,kHx,kH
T
x,kθ̃

T
xi,k − 2θ̃xi,kHx,kexi(k)

=− ∥τxi(k)− θ∗xi,kHx,k∥22 + (θ∗xi,k − θxi,k)Hx,kH
T
x,k(θ

∗
xi,k − θxi,k)

T

− 2(θ∗xi,k − θxi,k)Hx,k(τxi(k)− θxi,kHx,k)

=− [τ 2xi(k)− 2θxi,kHx,kτxi(k) + θxi,kHx,kH
T
x,kθ

T
xi,k] = −e2xi(k). (4.36)
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Hence, equation (4.35) becomes

θ̃xi,k+1P
−1
x,k+1θ̃

T
xi,k+1 ≤ 1− µxi,k

ζ̄2xi
e2xi(k) +

µ2
xi,k

ζ̄4xi
HT

x,kPx,k+1Hx,ke
2
xi(k). (4.37)

According to (4.23), µxi,k =
λxiζ̄

2
xi

1+HT
x,kPx,kHx,k

holds in current case. Hence, (4.37) can be written

as:

θ̃xi,k+1P
−1
x,k+1θ̃

T
xi,k+1 ≤ 1− µxi,k

ζ̄2xi
e2xi(k) +

µxi,k

ζ̄2xi

λxiH
T
x,kPx,k+1Hx,ke

2
xi(k)

1 +HT
x,kPx,kHx,k

. (4.38)

Because ∆Vx,k < 0, it is easy to know that HT
x,kPx,k+1Hx,k ≤ HT

x,kPx,kHx,k. Thus it can be

obtained that
HT

x,kPx,k+1Hx,k

1+HT
x,kPx,kHx,k

< 1. Also, it is noticed that 0 < λxi < 1, 0 < µxi,k < 1, then one has:

θ̃xi,k+1P
−1
x,k+1θ̃

T
xi,k+1 ≤ 1− µxi,k

ζ̄2xi
e2xi(k) +

µxi,kλxi
ζ̄2xi

e2xi(k) = 1− µxi,k

ζ̄2xi
(1− λxi)e

2
xi(k) ≤ 1 (4.39)

Following the same approach, one obtains that

θ̃yj,k+1P
−1
y,k+1θ̃

T
yj,k+1 ≤ 1− µyj,k

ζ̄2yj
(1− λyj)e

2
yj(k) ≤ 1. (4.40)

Case 2: e2xi(k) <
ζ̄2xi

1−λxi
, or HT

x,kPx,kHx,k < ζ̄2xi, or e2yj(k) <
ζ̄2yj

1−λyj
, or HT

y,kPy,kHy,k ≥ ζ̄2yj .

In this case, according to (4.23) or (4.26), µxi,k = 0 or µyj,k = 0. Then Px,k+1 = Px,k, θxi,k+1 =

θxi,k, or Pxy,k+1 = Py,k, θyj,k+1 = θyj,k. Therefore, it follows:

θ̃xi,k+1P
−1
x,k+1θ̃

T
xi,k+1 = θ̃xi,kP

−1
x,k θ̃

T
xi,k ≤ 1, (4.41)

or

θ̃yj,k+1P
−1
y,k+1θ̃

T
yj,k+1 = θ̃yj,kP

−1
y,k θ̃

T
yj,k ≤ 1. (4.42)

Since Px and Py are bounded, then (4.41) and (4.42) indicate that θxi and θyj are also bounded.
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Because ζxi(k) and ζyj(k) are bounded, then according to (4.11), exi and eyj are bounded. This

means the identification errors ςx and ςy are also bounded. Theorem 4.1 is thus proved.

4.2.2 Simulation

In order to illustrate the effectiveness of the identification scheme proposed for the discrete

time systems, the following system will be used:

x(k + 1) = 0.995x(k) + 0.003sign(y(k)) + 0.001u1(k) + r1,

εy(k + 1) = εy(k)− 0.01y(k) + 0.002sign(x(k)) + 0.001u2(k) + r2,

where ε = 0.2 is a known parameter. The input signals are chosen as u1(k) = 8sin(5×10−5k) and

u2(k) = 8−16(2×10−5k−x2×10−5ky) (x·y is the floor function). r1, r2 are pseudorandom noise

with mean of 0 and standard deviation of 0.001. The above nonlinear system is the discrete form of

the system used in [16]. The neural network given in (4.2) is used to identify this nonlinear multi-

time scale system. 8 neurons are used in the neural network, and W1 ∈ ℜ8, W2 ∈ ℜ8, W3 ∈ ℜ8,

W4 ∈ ℜ8. The activation functions are chosen as ψ1(z) =
10

1+e−0.2z − 0.5, ψ2(z) =
2

1+e−2z − 0.5,

ψ3(z) = 8
1+e−0.1z − 0.5, ψ4(z) = 4

1+e−0.1z − 0.5, A = 0.01, B = 0.01, λxi = λyj = 0.5, ζ̄xi =

ζ̄yj = 0.001, Px(1) = Py(1) = diag([100, · · · , 100]) ∈ ℜ16×16. The results of the identification

method proposed in Section 4.2 and the identification method proposed in [16] are presented in

Figs. 4.2-4.6.

In Figs. 4.2-4.5, the sub-figures on the left are the results of the method proposed in Section

4.2, and the sub-figures on the right are the results of the method proposed in [16]. In Fig. 4.2(a),

x and x̂ overlap each other since the very beginning. Meanwhile, in Fig. 4.3(a), the identification

error ςx is almost 0 since the beginning of the identification process, which means the identification

accuracy of the identification algorithm proposed in this section is very high, and the convergence

speed is very fast. However, when the identification algorithm proposed in [16] is used, lots of

oscillations on x̂ can be observed at the beginning of the identification process, as depicted in
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Figure 4.2: Identification results of x.
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Figure 4.3: Identification errors of x.

Fig. 4.2(b). Also, the identification error ςx has large spikes, as shown in Fig. 4.3(b). Similar

phenomena exist in Fig. 4.4 and Fig. 4.5. Hence, it can be concluded that the identification results

of x and y are much more accurate when using method proposed in Section 4.2. The identification

errors are greatly reduced compared with the results using the method proposed in [16]. Also,

when using the method proposed in Section 4.2, the NN converges much faster than using the

identification algorithm proposed in [16]. This is due to that fact that the learning gain of the

weight’s updating law in the method proposed in Section 4.2 can vary adaptively. However, in [16]

and in many other widely used learning algorithms, the learning gain is fixed. The convergence of
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Figure 4.4: Identification results of y.
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Figure 4.5: Identification errors of y.

the weight vectors W1, W2 are shown in Fig. 4.6. In Fig. 4.6, the w1i, w2i are the ith elements

in W1 and W2, respectively. Due to the space limitation, the convergence of W3 and W4 are not

presented here.
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Figure 4.6: Neural network weights.

4.3 Identification of Continuous Systems Using Optimal

Bounded Ellipsoid Algorithm

In this section, the optimal bounded ellipsoid algorithm, which was designed for the discrete

time systems, is extended to the continuous systems. The optimal bounded ellipsoid algorithm

based identification scheme for continuous nonlinear singularly perturbed systems is established.

In this novel identification scheme, the learning gain of the weight’s updating laws can also be

adaptively adjusted during the identification process. Thus this method can also achieve faster

convergence with smaller identification errors. The effectiveness is also demonstrated by simula-

tions.

4.3.1 Identification Algorithm

Considering the following nonlinear singularly perturbed system:

ẋ = f(x, y, u),

εẏ = g(x, y, u, ε),

(4.43)
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where x ∈ ℜn, g ∈ ℜm are slow and fast state variables, respectively. u ∈ ℜp is the control input

signal vector, 0 < ε < 1 is a small parameter. f ∈ C∞ and g ∈ C∞ are unknown general nonlinear

smooth functions.

In this paper, the following recurrent high-order NN with two time scales is used to identify

the nonlinear plant (4.43):

˙̂x = Ax̂+W1Ψ1(x, y) +W2Ψ2(x, y)u,

ε ˙̂y = εBŷ +W3Ψ3(x, y) +W4Ψ4(x, y)u,

(4.44)

where x̂ ∈ ℜn and ŷ ∈ ℜm are the slow and fast state variables of the NN, respectively. A ∈ ℜn×n,

B ∈ ℜm×m are diagonal stable matrices. W1 ∈ ℜn×q, W2 ∈ ℜn×q, W3 ∈ ℜm×q, W4 ∈ ℜm×q are

the weight matrices of the NN, q is the number of neuron. The activation function vectors Ψ1(·),

Ψ3(·) are defined as:

Ψi(·) = [Ψi,1,Ψi,2, · · · ,Ψi,q]
T ∈ ℜq×1, i = 1, 3,

Ψi,c(z) =
∏
j∈Jc

[ψi(·)]dc(j), c = 1, · · · , q,
(4.45)

where Jc are the collections of l not ordered subsets of 1, 2, · · · , n+m and dc(j) are non-negative

integers.

Ψ2(·), Ψ4(·) in (4.44) are defined as:

Ψi(·) =

⎡⎢⎢⎢⎢⎣
Ψi,1,1 · · · Ψi,1,p

... . . . ...

Ψi,q,1 · · · Ψi,q,p

⎤⎥⎥⎥⎥⎦ ∈ ℜq×p, i = 2, 4,

Ψi,c,r =
∏

j∈Jc,r

[ψi(·)]dc,r(j), c = 1, · · · , q, r = 1, · · · , p,
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where Jc,r are the collections of l not ordered subsets of 1, 2, · · · , n+m and dc,r(j) are non-

negative integers. The activation functions ψi(z) are chosen as

ψi(z) =
αi,1

1 + e−αi,2
+ αi,3, i = 1, · · · , 4. (4.46)

The parameters αi,1,αi,2,αi,3 in (4.46) can be chosen a priori. The structure of the identification

scheme is shown in Fig. 4.7.

Figure 4.7: Structure of the identification scheme for continuous system.

The main goal in this section is to develop an on-line identification scheme and a weight’s

updating algorithm for two-time scales recurrent high-order neural network identifier (4.44) of the

continuous time nonlinear system (4.43).

Assume a nominal NN with modeling errors can be used to approximate the nonlinear system

(4.43) as:

ẋ = Ax+W ∗
1Ψ1(x, y) +W ∗

2Ψ2(x, y)u+ ζx,

εẏ = εBy +W ∗
3Ψ2(x, y) +W ∗

4Ψ4(x, y)u+ ζy,

(4.47)

where W ∗
1 ∈ ℜn×q,W ∗

2 ∈ ℜn×q,W ∗
3 ∈ ℜm×q,W ∗

4 ∈ ℜn×q are the unknown optimal weights that

minimize the modeling errors ζx ∈ ℜn×1 and ζy ∈ ℜm×1. Let ζxi denote the ith term of ζx,

i = 1, · · · , n, and ζyj denote the j th term of ζy, j = 1, · · · ,m, the following assumption is made.
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Assumption 4.3. The modeling error ζxi and ζyj are bounded by known bounds ζ̄xi and ζ̄yj as:

|ζxi| ≤ ζ̄xi, |ζyj| ≤ ζ̄yj. (4.48)

Denote Θ∗
x = [W ∗

1 ,W
∗
2 ] = [θ∗x1; θ

∗
x2; · · · ; θ∗xn] ∈ ℜn×2q, θ∗xi ∈ ℜ1×2q, Θ∗

y = [W ∗
3 ,W

∗
4 ] =

[θ∗y1; θ
∗
y2; · · · ; θ∗ym] ∈ ℜm×2q, θ∗yj ∈ ℜ1×2q, i = 1, · · · , n, j = 1, · · · m. Hx =

[Ψ1(x, y); Ψ2(x, y)u], Hy = [Ψ3(x, y); Ψ4(x, y)u]. Then model (4.47) can be written as:

ẋ = Ax+Θ∗
xHx + ζx,

εẏ = εBy +Θ∗
yHy + ζy.

(4.49)

Similarly, model (4.44) can be reformulated as:

˙̂x = Ax̂+ΘxHx,

ε ˙̂y = εBŷ +ΘyHy,

(4.50)

where Θx = [W1,W2] = [θx1; θx2; · · · ; θxn] ∈ ℜn×2q, Θy = [W3,W4] = [θy1; θy2; · · · ; θym] ∈

ℜm×2q. Define the identification errors as:

ςx = x− x̂,

ςy = y − ŷ.

(4.51)

Define the auxiliary system outputs as:

τx = Θ∗
xHx + ζx = ẋ− Ax,

τy = Θ∗
yHy + ζy = εẏ − εBy.

(4.52)
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The estimated auxiliary system outputs are defined as:

τ̂x = ΘxHx,

τ̂y = ΘyHy.

(4.53)

Then the auxiliary output errors are defined as:

ex =τx − τ̂x = Θ̃xHx + ζx,

ey =τy − τ̂y = Θ̃yHy + ζy,

(4.54)

where Θ̃x = Θ∗
x−Θx, Θ̃y = Θ∗

y−Θy. Subtracting (4.50) from (4.49), and using (4.51) and (4.54),

it follows that:
ex = ς̇x − Aςx,

ey = ες̇y − εBςy,

(4.55)

Remark 4.2. The auxiliary output error (4.55) can be viewed as a “augmented error” or “filtered

error” [110]. The main purpose of this paper is to design a weight’s updating algorithm for the

recurrent high order nueral networks such that the identification errors ςx, ςy are bounded and

minimized. Equation (4.55) implies that this goal can be achieved if only the output errors ex, ey

are bounded and miminized.

According to (4.14) in Definition 4.1, the weight ellipsoids of the recurrent HONN can be

defined as:
Sxi(θ

∗
xi, Pxi) = {θxi|θ̃xiP−1

xi θ̃
T
xi ≤ 1},

Syj(θ
∗
yj, Pyj) = {θyj|θ̃yjP−1

yj θ̃
T
yj ≤ 1},

(4.56)

where θ̃xi = θ∗xi−θxi, θ̃yj = θ∗yj−θyj , i = 1, · · · , n, j = 1, · · · ,m. Pxi, Pyj are symmetric positive

definite matrices.

From (4.52), it is easy to know that ∥τxi − θ∗xiHx∥2 ≤ ζ̄xi, and ∥τyj − θ∗yjHy∥2 ≤ ζ̄yj . Hence,
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[τxi − θ∗xiHx] and [τyj − θ∗yjHy] belong to two ellipsoids Eyj and Eyj , which are defined as:

Exi(θ
∗
xiHx, ζ̄

2
xi) = {τxi|

1

ζ̄2xi
∥τxi − θ∗xiHx∥22 ≤ 1},

Eyj(θ
∗
yjHx, ζ̄

2
yj) = {τyj|

1

ζ̄2yj
∥τyj − θ∗yjHy∥22 ≤ 1},

(4.57)

where ∥ · ∥2 denotes the L2-norm, τxi is the ith term of τx, and τyj is the j th term of τy.

Assumption 4.4. It is assumed that the initial weights θxi(t0) and θyj(t0) are in the ellipsoids

Sxi(t0) and Syj(t0):

Sxi(t0) = {θxi(t0)|θ̃xi(t0)P−1
xi (t0)θ̃

T
xi(t0) ≤ 1},

Syj(t0) = {θyj(t0)|θ̃yj(t0)P−1
yj (t0)θ̃

T
yj(t0) ≤ 1}.

(4.58)

Assumption 4.4 can be easily satisfied by choosing the bounded initial weights θxi(t0), θyj(t0)

and suitable Pxi(t0) and Pyj(t0).

According to (4.57), it gives that:

µxi

ζ̄2xi
∥τxi − θ∗xiHx∥22 ≤ µxi,

µyj

ζ̄2yj
∥τyj − θ∗yjHy∥22 ≤ µyj,

(4.59)

where 0 ≤ µxi < 1 and 0 ≤ µyj < 1, which will be defined later.

Lemma 4.1. If P ∈ ℜn×n is a symmetric positive definite matrix, z ∈ ℜ1×n and h ∈ ℜ1×n are any

given row vectors, then the following inequality holds:

0 ≤ zPhThPzT ≤ zPzThPhT . (4.60)

Proof. Case 1: Consider the case P = diag(p1, p2, · · · , pn) ∈ ℜn×n is a diagonal matrix. It is

obvious that

zPhThPzT = zPhT (zPhT )T = (zPhT )2 ≥ 0.
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Assume that for a diagonal positive definite matrix P̄ = diag(p1, p2, · · · , pn−1) and any given

row vectors z̄ ∈ ℜ1×(n−1) and h̄ ∈ ℜ1×(n−1), the following inequality holds:

z̄P̄ h̄T h̄P̄ z̄T ≤ z̄P̄ z̄T h̄P̄ h̄T . (4.61)

Then for P =

⎡⎢⎣P̄ 0

0 pn

⎤⎥⎦ ∈ ℜn×n, z = [z̄, zn] ∈ ℜ1×n, and h = [h̄, hn] ∈ ℜ1×n, it is shown

that:

zPzThPhT − zPhThPzT

=(z̄P̄ z̄T + znpnzn)(h̄P̄ h̄
T + hnpnhn)− (z̄P̄ h̄T + znpnhn)

2

=z̄P̄ z̄T h̄P̄ h̄T − (z̄P̄ h̄T )2 + znpnznh̄P̄ h̄
T + hnpnhnz̄P̄ z̄

T − 2z̄P̄ h̄T znpnhn

+ znpnznhnpnhn − (znpnhn)
2. (4.62)

Using (4.61), it can be obtained that:

z̄P̄ z̄T h̄P̄ h̄T − (z̄P̄ h̄T )2 ≥ 0 (4.63)

znpnznh̄P̄ h̄
T + hnpnhnz̄P̄ z̄

T − 2z̄P̄ h̄T znpnhn

≥2znpnhn
√
h̄P̄ h̄T z̄P̄ z̄T − 2z̄P̄ h̄T znpnhn ≥ 0. (4.64)

Substituting (4.63) and (4.64) into (4.62) yields:

zPzThPhT − zPhThPzT ≥ 0. (4.65)

When P = p1 ∈ ℜ, p1 > 0, z = z1 ∈ ℜ and h = h1 ∈ ℜ are scalars, it is ob-

vious zPzThPhT = zPhThPzT ≥ 0 is valid. When P = diag(p1, p2), p1 > 0, p2 >

0, z = [z1 z2], h = [h1 h2], it is also easy to verify that zPzThPhT ≥ zPhThPzT ≥ 0 is
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true. Using the analysis result presented above, it can be concluded that, for all positive def-

inite P = diag(p1, p2, · · · , pn) ∈ ℜn×n, and any given vectors z ∈ ℜ1×n and h ∈ ℜ1×n,

zPzThPhT ≥ zPhThPzT ≥ 0 is always valid.

Case 2: Consider the case P ∈ ℜn×n is any given symmetric positive definite matrix. Using

matrix eigen decomposition method, P can be easily factorized as P = UΛUT , where U ∈ ℜn×n

is an orthonormal matrix, and Λ ∈ ℜn×n is a diagonal positive definite matrix whose entries

are the eigenvalues of P . For any given vectors z ∈ ℜ1×n and h ∈ ℜ1×n, zPhThPzT be-

comes zUΛUThThUΛUT zT = z′Λh′Th′Λz′T , and zPzThPhT becomes zUΛUT zThUΛUThT =

z′Λz′Th′Λh′T , where z′ = zU , h′ = hU . According to the results in case 1, it can be obtained that

z′Λz′Th′Λh′T ≥ z′Λh′Th′Λz′T ≥ 0, which means zPzThPhT ≥ zPhThPzT ≥ 0 is true for all

symmetric positive definite matrix P . Lemma 4.1 is thus proved.

The following updating laws are proposed to update the RHONN:

Ṗxi = − gxiµxiPxiHxH
T
x Pxi

(1− µxi)ζ̄2xi + µxiHT
x PxiHx

, (4.66)

θ̇Txi =
µxi

ζ̄2xi
gxiPxiHxexi, (4.67)

µxi =
λxiζ̄

2
xi

1 +HT
x PxiHx

, (4.68)

Ṗyj = −
gyjµyjPyjHyH

T
y Pyj

(1− µyj)ζ̄2yj + µyjHT
y PyjHy

, (4.69)

θ̇Tyj =
µyj

ζ̄2yj
gyjPyjHyeyj, (4.70)

µyj =
λyj ζ̄

2
yj

1 +HT
y PyjHy

, (4.71)

where exi is the ith element in ex, i = 1, · · · , n, eyj is the j th element in ey, j = 1, · · · ,m, λxi, λyj
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are designed parameters such that 0 < λxiζ̄
2
xi < 1, 0 < λyj ζ̄

2
yj < 1, gxi, gyj are defined as:

gxi =

⎧⎪⎪⎨⎪⎪⎩
1 if e2xi > ζ̄2xi & HT

x PxiHx > ζ̄2xi

0 if e2xi ≤ ζ̄2xi or HT
x PxiHx ≤ ζ̄2xi

,

gyj =

⎧⎪⎪⎨⎪⎪⎩
1 if e2yj > ζ̄2yj & HT

x PyjHy > ζ̄2yj

0 if e2yj ≤ ζ̄2yj or HT
y PyjHy ≤ ζ̄2yj

.

(4.72)

Theorem 4.2. Consider the NN identifier (4.44) for the system (4.43). If the initial weights are

bounded ellipsoid sets as in (4.58), by using the updating laws proposed in (4.66)-(4.71), it can

be guaranteed that Pxi, Pyj and the identification errors ςxi, ςyj are bounded and θxi, θyj remain

inside ellipsoids defined in (4.56).

Proof. Case 1: When e2xi > ζ̄2xi, H
T
x PxiHx > ζ̄2xi, e

2
yj > ζ̄2yj , and HT

x PyjHy > ζ̄2yj . In this case, it

can be known from (4.72) that gxi = 1 and gyj = 1. Let z ∈ ℜn be an arbitrary non-zero constant

row vector, and assume Pxi(t) is a symmetric positive definite matrix, it is shown that by using

Taylor series expansion and omitting the higher order terms, the following equation is obtained:

zPxi(t+∆t)zT = z(Pxi(t) + Ṗxi∆t)z
T , (4.73)

where ∆t→ 0 is a small time interval. Substituting (4.66) into (4.73) gives:

zPxi(t+∆t)zT

=z(Pxi −
µxi∆tPxiHxH

T
x Pxi

(1− µxi)ζ̄2xi + µxiHT
x PxiHx

)zT

=
µxi[H

T
x PxiHxzPxiz

T −∆tzPxiHxH
T
x Pxiz

T ]

(1− µxi)ζ̄2xi + µxiHT
x PxiHx

+
(1− µxi)ζ̄

2
xizPxiz

T

(1− µxi)ζ̄2xi + µxiHT
x PxiHx

.

Using lemma 4.1, one has HT
x PxiHxzPxiz

T ≥ zPxiHxH
T
x Pxiz

T ≥ 0. Because 0 < µxi < 1

and HT
x PxiHx > 0, it is obtained that zPxi(t + ∆t)zT > 0 since ∆t → 0 is a very small time

interval satisfying ∆t < 1. If the initial matrix Pxi(t0) is chosen to be symmetric positive definite
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matrix, it can be concluded that by using updating law (4.66), Pxi will remain symmetric positive

definite. Following the same analysis procedure, it is obvious that Pyj will also remain symmetric

positive definite during the identification process.

Define:

Vxz = tr{zPxiz
T}, (4.74)

Vyz = tr{zPyjz
T}. (4.75)

Using (4.66), the derivative of (4.74) is obtained as:

V̇xz = tr{zṖxiz
T}

= − tr{zPxiHxH
T
x Pxiz

T}
(1− µxi)ζ̄2xi + µxiHT

x PxiHx

= − (zPxiHx)
2

(1− µxi)ζ̄2xi + µxiHT
x PxiHx

.

(4.76)

Since µxi < 1 and HT
x PxiHx > 0, it is easy to show that V̇xz ≤ 0, which implies Pxi is

bounded. Using the same approach, it can be obtained that V̇yz ≤ 0, which indicates that Pyj is

also bounded.

Define

Lxi = θ̃xiP
−1
xi θ̃

T
xi, (4.77)

Lyj = θ̃yjP
−1
yj θ̃

T
yj. (4.78)

The derivative of Lxi is given as:

L̇xi = 2θ̃xiP
−1
xi

˙̃θTxi − θ̃xiP
−1
xi ṖxiP

−1
xi θ̃

T
xi = −2θ̃xiP

−1
xi θ̇

T
xi − θ̃xiP

−1
xi ṖxiP

−1
xi θ̃

T
xi. (4.79)
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Substituting (4.66), (4.67) into (4.79), it follows that:

L̇xi =− 2µxi

ζ̄2xi
θ̃xiHxexi +

µxiθ̃xiHxH
T
x θ̃

T
xi

(1− µxi)ζ̄2xi + µxiHT
x PxiHx

− µxi

ζ̄2xi
∥τxi − θ∗xiHx∥22

+
µxi

ζ̄2xi
θ̃xiHxH

T
x θ̃

T
xi +

µxi

ζ̄2xi
∥τxi − θ∗xiHx∥22 −

µxi

ζ̄2xi
θ̃xiHxH

T
x θ̃

T
xi

=

[
− µxi

ζ̄2xi
∥τxi − θ∗xiHx∥22 +

µxi

ζ̄2xi
θ̃xiHxH

T
x θ̃

T
xi −

2µxi

ζ̄2xi
θ̃xiHxexi

]
+

µxiθ̃xiHxH
T
x θ̃

T
xi

(1− µxi)ζ̄2xi + µxiHT
x PxiHx

− µxi

ζ̄2xi
θ̃xiHxH

T
x θ̃

T
xi +

µxi

ζ̄2xi
∥τxi − θ∗xiHx∥22. (4.80)

It is noticed that exi = τxi − θxiHx and θ̃xi = θ∗xi − θxi, then the equation in [·] in (4.80) can be

rewritten as:

− µxi

ζ̄2xi
∥τxi − θ∗xiHx∥22 +

µxi

ζ̄2xi
θ̃xiHxH

T
x θ̃

T
xi −

2µxi

ζ̄2xi
θ̃xiHxexi

=
µxi

ζ̄2xi

[
− ∥τxi − θ∗xiHx∥22 + (θ∗xi − θxi)HxH

T
x (θ

∗
xi − θxi)

T − 2(θ∗xi − θxi)Hx(τxi − θxiHx)
]

=− µxi

ζ̄2xi

[
τ 2xi − 2θxiHxτxi + θxiHxH

T
x θ

T
xi

]
=− µxi

ζ̄2xi
e2xi.

(4.81)

Substituting (4.81) into (4.80), and using (4.59), 0 < µxi < 1, HT
x PxiHx > ζ̄2xi, e

2
xi > ζ̄2xi, it

gives the following inequality:

L̇xi ≤
[ζ̄2xi − (1− µxi)ζ̄

2
xi − µxiH

T
x PxiHx]µxiθ̃xiHxH

T
x θ̃

T
xi

ζ̄2xi[(1− µxi)ζ̄2xi + µxiHT
x PxiHx]

+ µxi(1−
e2xi
ζ̄2xi

)

=
[ζ̄2xi −HT

x PxiHx]µ
2
xiθ̃xiHxH

T
x θ̃

T
xi

ζ̄2xi[(1− µxi)ζ̄2xi + µxiHT
x PxiHx]

+ µxi(1−
e2xi
ζ̄2xi

) < 0.

(4.82)

Since the initial NN weights are bounded as L(t0) = θ̃xi(t0)P
−1
xi (t0)θ̃

T
xi(t0) ≤ 1. From (4.82),

it is easy to know that the θxi will remain bounded and belong to the ellipsoid defined in (4.56).

Using (4.54), since θ̃xi is bounded, the auxiliary output errors exi is bounded, which implies ςxi is

also bounded according to (4.55). Using the same method, it can be proved that L̇yj < 0 is also

valid, and θyj will also remain bounded and belong to the ellipsoid defined in (4.56). Hence, eyj
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and ςyj are all bounded.

Case 2: e2xi ≤ ζ̄2xi, or HT
x PxiHx ≤ ζ̄2xi, or e2yj ≤ ζ̄2yj , or HT

y PyjHy ≤ ζ̄2yj . According to (4.72),

one has gxi = 0 or gyj = 0. In this case, it can be obtained that Ṗxi = 0, θ̇Txi = 0, or Ṗyj = 0,

θ̇Tyj = 0 based on the updating laws (4.66)-(4.71). This indicates that Pxi or Pyj will be constant

and bounded. This also implies that θxi or θyj will remain constant and inside the ellipsoids defined

in (4.56). Therefore, exi, ςxi, eyj and ςyi will also remain bounded. Theorem 4.2 is thus proved.

Remark 4.3. From (4.74) and (4.76), it is shown that Vxi = tr{zPxiz
T} will decrease during

the identification process, which means zP−1
xi z

T will increase during the identification process.

According to Theorem 2, θxi remains inside the ellipsoid defined in (4.56), i.e. θ̃xiP−1
xi θ̃

T
xi ≤ 1. This

implies θ̃xi will decrease during the identification process, and θxi will converge to its nominal

value θ∗xi. Following the same analysis procedure, it can be obtained that θyj will also converge to

its nominal value θ∗yj .

Remark 4.4. In (4.68) and (4.71), due to the existence of Pxi and Pyj , the “learning gain” of

the weight’s updating laws for θxi and θyj will be changed adaptively, whereas in many other

gradient descent like algorithms, the “learning gain” is fixed. The main advantage of the weight’s

updating laws proposed in this section is that by using adaptively adjusted “learning gain”, the

identification process can achieve faster convergence with less oscillation. This is demonstrated

by the simulations.

4.3.2 Simulation

In order to demonstrate the effectiveness of the new identification algorithm proposed in this

section, simulation is conducted based on the following system:

ẋ = −5x+ 3sign(y) + u1,

0.2ẏ = −10y + 2sign(x) + u2,

(4.83)
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with x(t0) = 1 and y(t0) = 0. The input signal u1 is chosen as sinusoidal function u1 =

8sin(0.05t), and u2 is chosen to be a saw-tooth function with a frequency of 0.02Hz and amplitude

of 8. System (4.83) is the same as the system considered in Section 3.5 for comparison purpose.

In order to identify this singularly perturbed nonlinear system, the NN defined in (4.44) with node

number q = 4 is utilized. In this case, W1 ∈ ℜ1×4, W2 ∈ ℜ1×4, W3 ∈ ℜ1×4, W4 ∈ ℜ1×4. The

activation functions in (4.46) are chosen as ψ1(z) = 10/(1 + e−2z) + 1, ψ2(z) = 1/(1 + e−z) + 1,

ψ3(z) = 1/(1 + e−z) + 1, φ4(z) = 1/(1 + e−z) + 1. A = B = −50, λx = 500, λy = 1000,

ζ̄x = ζ̄y = 0.0001, Pxi(t0) = Pyj(t0) = I ∈ ℜ8×8. The sampling time used in this simulation is

1 ms. The simulation results of identification algorithm proposed in this section (method 1), the

identification algorithm using multilayer NN proposed in Section 3.5 (method 2) and identification

algorithm using single layer NN proposed in [16] (method 3) are presented in Figs. 4.8-4.13.
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Figure 4.8: Identification results using the method 1.

In Fig. 4.8, the magnification plots of the beginning phases of the identification process are

presented in the top left corners. From these magnification plots, it is clear that both x̂ and ŷ

overlap real system states x and y since the very beginning the identification process when the

method 1 is used. In Fig. 4.9, the magnification plots shows that x̂ converges to x after 0.5s and ŷ

converges to y after 1s when method 2 is used. In Fig. 4.10, large difference between x̂ and x can

be observed, and much more oscillations on ŷ can be seen before it converges to y when method 3

is used. Meanwhile, Fig. 4.11 shows that when method 1 is used, the identification errors ςx and
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ŷ

0 1 2
0.8

1

(b) Identification result of y.

Figure 4.9: Identification results using the method 2.
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Figure 4.10: Identification results using the method 3.

ςy are much smaller, compared with the identification errors obtained when method 2 and 3 are

used, as presented in Fig. 4.12 and Fig. 4.13. Hence, it is clear that the identification results of

method 1 is much better than that of method 2 and 3. Unlike method 2, 3 and many other widely

used gradient-like learning algorithms which have fixed “learning gain”, the “learning gain” of the

updating laws in the identification algorithm proposed in this section can be changed adaptively.

So the identification results of method 1 can converge to the reference signals faster, with less

oscillation, compared to the results of method 2 and 3. Also, it is very clear from Fig. 4.11- 4.13

that the identification errors ςx and ςy of method 1 are greatly reduced compared to the errors of
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Figure 4.11: Identification errors using the method 1.
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Figure 4.12: Identification errors using the method 2.

method 2 and 3.

The performance index-Root Mean Square (RMS) can also be used to illustrate the effective-

ness of the identification algorithm proposed in this section. The RMS of the identification errors

ςx and ςy are calculated as:

RMSx =

√(
n∑

i=1

ς2x(i))/n,

RMSy =

√(
n∑

i=1

ς2y (i))/n,
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Figure 4.13: Identification errors using the method 3.

where n is the total number of simulation steps. The RMS values of ςx and ςy for method 1, method

2 and method 3 are given in Table 4.1. From Table 4.1, it is very clear that RMSx and RMSy of

method 1 is much smaller than that of the method 2 and 3, which means the identification algorithm

proposed in this section can achieve more accurate results.

Table 4.1: RMS values of ςx and ςy

Method 1 Method 2 Method 3

RMSx 0.0068 0.0175 0.0937

RMSy 0.0064 0.0336 0.0382

4.4 Identification of Continuous Systems Using Modified Opti-

mal Bounded Ellipsoid Algorithm

In Section 4.3, the OBE based identification scheme for singularly perturbed systems using

continuous multi-time-scale neural networks is established. The indirect adaptive control for a

regulation problem based on the identification scheme proposed in Section 4.3 is also investigated,

which will be presented in Chapter 6. However, it was found that when the OBE based identi-

fication method proposed in Section 4.3 is used in a indirect adaptive trajectory tracking control
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problem, the identification errors will be small at the beginning but will increase to a higher level at

the end of the identification process. This is due to the fact that the learning gain of the OBE algo-

rithm based identification scheme will keep decreasing during the identification process. When the

learning gain is too small, the identification method will lose its ability to adjust the NN weights.

Therefore, the NN cannot adapt to the changing dynamics of the system, and a larger identification

error will occur.

In this section, by adding two additional terms in the updating laws, a modified OBE algorithm

is designed to update the NN weights. By using this modified OBE algorithm, it can be guaranteed

that the NN weight errors will be uniformly ultimately bounded (UUB), and the weight errors will

converge to the boundary exponentially. Thus the convergence speed is much faster than that of

the GD based identification scheme, which can only achieve asymptotic convergence. Meanwhile,

unlike the original OBE algorithm based methods proposed in Section 4.3, the learning gain of the

modified OBE algorithm will not go to 0. Instead, it will converge to an equilibrium point which

can be chosen arbitrarily by the user. Hence, the modified OBE algorithm based training method

will remain effective during the whole identification process.

4.4.1 Identification Algorithm

Consider the following affine in control nonlinear SPS:

ẋ = f1(x) + f2(x)y,

εẏ = g1(x, y) + g2(x, y)u,

(4.84)

where x ∈ ℜn and y ∈ ℜm are the slow and fast states, respectively, u ∈ ℜp is the control signal

vector, 0 < ε < 1 is a small parameter, fi ∈ C∞, i = 1, 2 and gi ∈ C∞, i = 1, 2 are unknown

general nonlinear smooth functions.

To identify the nonlinear system (4.84), the following multi-time-scale RHONN is used:

˙̂x = Ax̂+W1Ψ1(x) +W2Ψ2(x)y + Lxςx, (4.85a)
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ε ˙̂y = Bŷ +W3Ψ3(x, y) +W4Ψ4(x, y)u+ Lyςy, (4.85b)

where x̂ ∈ ℜn and ŷ ∈ ℜm are the estimation of the slow and fast states x and y, respectively,

A = diag(a1, · · · , an) ∈ ℜn×n, B = diag(b1, · · · , bm) ∈ ℜm×m are diagonal stable matrices,

W1 ∈ ℜn×q,W2 = diag(w21, · · · , w2n) ∈ ℜn×n,W3 ∈ ℜm×q,W4 = diag(w41, · · · , w4m) ∈ ℜm×m

are the weight matrices of the RHONN, q is the number of neuron, Lx = diag(lx1, · · · , lxn),

Ly = diag(ly1, · · · , lym) are diagonal positive definite matrices, ςx, ςy are the identification errors

defined as:
ςx = x− x̂,

ςy = y − ŷ.

(4.86)

The activation function vectors Ψ1(·), Ψ3(·) are defined as:

Ψi(·) = [Ψi,1,Ψi,2, · · · ,Ψi,q]
T ∈ ℜq×1, i = 1, 3,

Ψi,c(·) =
∏
j∈Jc

[ψi(·)]dc(j), c = 1, · · · , q,

where Jc are the collections of l not ordered subsets of 1, 2, · · · , n+m and dc(j) are non-negative

integers.

The activation function matrix Ψ2(·) is defined as:

Ψ2(·) =

⎡⎢⎢⎢⎢⎣
Ψ2,1,1 · · · Ψ2,1,m

... . . . ...

Ψ2,n,1 · · · Ψ2,n,m

⎤⎥⎥⎥⎥⎦ ∈ ℜn×m,

Ψ2,c,r =
∏

j∈Jc,r

[ψ2(·)]dc,r(j), c = 1, · · · , n, r = 1, · · · ,m,
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where Jc,r are the collections of l not ordered subsets of 1, 2, · · · , n+m and dc,r(j) are non-

negative integers. The activation function matrix Ψ4(·) is defined as:

Ψ4(·) =

⎡⎢⎢⎢⎢⎣
Ψ4,1,1 · · · Ψ4,1,p

... . . . ...

Ψ4,m,1 · · · Ψ4,m,p

⎤⎥⎥⎥⎥⎦ ∈ ℜm×p,

Ψ4,c,r =
∏

j∈Jc,r

[ψ4(·)]dc,r(j), c = 1, · · · ,m, r = 1, · · · , p,

where Jc,r are the collections of l not ordered subsets of 1, 2, · · · , n+m and dc,r(j) are non-

negative integers.

The activation functions ψi(·) are chosen as:

ψi(z) =
αi,1

1 + e−αi,2z
+ αi,3, i = 1, · · · , 4. (4.87)

Remark 4.5. In this section, a multi-time-scale RHONN model (4.85) is used to identify the un-

known nonlinear SPS (4.84), such that the singular perturbation theory can be applied to the

identified system model to decompose the original system into the fast and slow subsystems. This

will reduce the system order, and simplify the structure of controller. System (4.84) can also be

identified using a regular (one-time-scale) NN [111] with similar structure as:

Ż = AzZ +Wz1Ψz1(Z) +Wz2Ψz2(Z)u, (4.88)

where Z = [x; y] ∈ ℜ(n+m)×1, Az ∈ ℜ(n+m)×(n+m) is a stable matrix, Wz1, Wz2 and Ψz1, Ψz2 are

weight matrices and activation function vectors (matrices) with appropriate dimensions, respec-

tively. However, it will be much more difficult to apply the singular perturbation theory to separate

the fast dynamic states from the slow dynamic states in the identified model (4.88). As a result, the

system order will not be reduced and the controller design can not be simplified.
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Assume the nonlinear system (4.84) can be approximated by the following nominal RHONN:

ẋ = Ax+W ∗
1Ψ1(x) +W ∗

2Ψ2(x)y + ζ ′x,

εẏ = By +W ∗
3Ψ3(x, y) +W ∗

4Ψ4(x, y)u+ ζy,

(4.89)

where ζ ′x ∈ ℜn×1, ζy ∈ ℜm×1 are the modeling errors, W ∗
1 ∈ ℜn×q,W ∗

2 = diag(w∗
21, · · · , w∗

2n) ∈

ℜn×n,W ∗
3 ∈ ℜm×q,W ∗

4 = diag(w∗
41, · · · , w∗

4m) ∈ ℜm×m are unknown optimal weights which

minimize ζ ′x and ζy.

Assumption 4.5. The modeling error ζ ′x and ζy are bounded by upper bounds ζ̄ ′x and ζ̄y as:

0 < ∥ζ ′x∥2 ≤ ζ̄ ′x, 0 < ∥ζy∥2 ≤ ζ̄y, (4.90)

where ∥ · ∥2 denotes the L2-norm.

Using (4.86) and (4.89), one can obtain that

ẋ =Ax+W ∗
1Ψ1(x) +W ∗

2Ψ2(x)ŷ + ζx,

εẏ =By +W ∗
3Ψ3(x, y) +W ∗

4Ψ4(x, y)u+ ζy,

(4.91)

where

ζx = W ∗
2Ψ2(x)ςy + ζ ′x. (4.92)

Remark 4.6. In (4.92), W ∗
2 , Ψ2, (x) ζ

′
x are all bounded. Also, it can be proved later that by

using the identification scheme proposed in this section, the identification error ςy will be bounded.

Hence, ζx will also be bounded.

Let ζxi denotes the ith term of ζx, i = 1, · · · , n, and ζyj denotes the j th term of ζy, j = 1, · · · ,m.

One can obtain that:

0 < |ζxi| ≤ ζ̄xi, 0 < |ζyj| ≤ ζ̄yj, (4.93)
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where ζ̄xi and ζ̄yj are the upper bounds of ζxi, ζyj .

Denote θ∗xi = [w∗
1i, w

∗
2i] ∈ ℜ1×(q+1), θ∗yj = [w∗

3j, w
∗
4j] ∈ ℜ1×(q+1), i = 1, · · · , n, j = 1, · · · m,

Hxi =
[
Ψ1(x); [Ψ2(x)ŷ]i

]
∈ ℜ(q+1)×1, Hyj =

[
Ψ3(x, y); [Ψ4(x, y)u]j

]
∈ ℜ(q+1)×1, where w∗

1i and

w∗
3j are the ith and j th row of W ∗

1 and W ∗
3 , respectively, [Ψ2(x)ŷ]i and [Ψ4(x, y)u]j are the ith and

j th element of Ψ2(x)ŷ and Ψ4(x, y)u, respectively. Then (4.91) can be written as:

ẋi = aixi + θ∗xiHxi + ζxi,

εẏj = bjyj + θ∗yjHyj + ζyj,

(4.94)

where xi and yj are the ith and j th element of x and y, respectively. Similarly, (4.85) can be

represented as:
˙̂xi = aix̂i + θxiHxi + lxiςxi,

ε ˙̂yj = bj ŷj + θyjHyj + lyjςyj,

(4.95)

where x̂i and ŷj are the ith and j th element of x̂ and ŷ, respectively, θxi = [w1i, w2i] ∈ ℜ1×(q+1),

θyj = [w3j, w4j] ∈ ℜm×(q+1) ∈ ℜ1×(q+1), w1i and w3j are the ith and j th row of W1 and W3,

respectively.

Define the auxiliary system outputs as:

τxi = θ∗xiHxi + ζxi = ẋi − aixi,

τyj = θ∗yjHyj + ζyj = εẏj − bjyj,

(4.96)

and define the estimated auxiliary system outputs as:

τ̂xi = θxiHxi,

τ̂yj = θyjHyj.

(4.97)
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Define the auxiliary output errors as:

exi =τxi − τ̂xi = θ̃xiHxi + ζxi,

eyj =τyj − τ̂yj = θ̃yjHyj + ζyj,

(4.98)

where θ̃xi = θ∗xi− θxi, θ̃yj = θ∗yj − θyj . Subtracting (4.95) from (4.94), and using (4.86) and (4.98),

it follows that:
exi = ς̇xi − (ai − lxi)ςxi,

eyj = ες̇yj − (bj − lyj)ςyj.

(4.99)

Remark 4.7. The objective of the NN identification scheme is to train the RHONN so that the

weights θxi, θyj will converge to their nominal values θ∗xi, θ
∗
yj , the outputs of the RHONN model

will trace the outputs of the nonlinear SPS, and the identification errors ςxi, ςyj will be bounded

and minimized. This goal can be achieved by minimizing the output errors exi, eyj as indicated by

(4.99).

According to (4.96), ∥τxi − θ∗xiHxi∥2 = ∥ζxi∥2 ≤ ζ̄xi, and ∥τyj − θ∗yjHyj∥2 = ∥ζyj∥2 ≤ ζ̄yj are

valid. Therefore, it is easy to obtain that:

1

ζ̄2xi
∥τxi − θ∗xiHxi∥22 ≤ 1,

1

ζ̄2yj
∥τyj − θ∗yjHyj∥22 ≤ 1.

(4.100)

The NN weight vectors θxi, θyj can be updated by the following updating laws:

Ṗxi = gxiPxi −
µxiPxidiag(Hxi)

2Pxi

(1− µxi)ζ̄2xi + µxiHT
xiPxiHxi

, (4.101)

θ̇Txi =
µxi

ζ̄2xi
PxiHxiexi, (4.102)

µxi =
λxiζ̄

2
xi

1 +HT
xiPxiHxi

, (4.103)

Ṗyj = gyjPyj −
µyjPyjdiag(Hyj)

2Pyj

(1− µyj)ζ̄2yj + µyjHT
yjPyjHyj

, (4.104)
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θ̇Tyj =
µyj

ζ̄2yj
PyjHyjeyj, (4.105)

µyj =
λyj ζ̄

2
yj

1 +HT
yjPyjHyj

, (4.106)

where λxi, λyj are the designed parameters such that 0 < λxiζ̄
2
xi < 1, 0 < λyj ζ̄

2
yj < 1. gxi > 0,

gyj > 0 are two designed parameters satisfying:

0 <gxi <
λxi

(q + 1)(1 + λxi)
,

0 <gyj <
λyj

(q + 1)(1 + λyj)
.

(4.107)

Lemma 4.2. By using the weight’s updating laws presented in (4.101)-(4.106), it can be guaran-

teed that Pxi and Pyj will remain diagonal positive definite and bounded during the identification

process as long as the initial values Pxi(t0) and Pyj(t0) are diagonal positive definite, and the gxi

and gyj satisfying the condition given in (4.107). Also, it is easy to show that Pxi, Pyj will converge

to their equilibrium points Pxie and Pyje, and HT
xiPxieHxi, HT

yjPyjeHyj will satisfy the following

equations:

HT
xiPxieHxi =

gxi(q + 1)(1− λxiζ̄
2
xi)

λxi − gxi(q + 1)(1 + λxi)
,

HT
yjPyjeHyj =

gyj(q + 1)(1− λyj ζ̄
2
yj)

λyj − gyj(q + 1)(1 + λyj)
.

(4.108)

Proof. Assuming that Pxie is the equilibrium of Pxi and is positive definite, it follows that:

Ṗxie = gxiPxie −
µxiPxiediag(Hxi)

2Pxie

(1− µxi)ζ̄2xi + µxiHT
xiPxieHxi

= 0

⇒gxiPxie =
µxiPxiediag(Hxi)

2Pxie

(1− µxi)ζ̄2xi + µxiHT
xiPxieHxi

. (4.109)

By right multiplying both sides of (4.109) with P−1
xie , one can obtain that:

gxiI =
µxiPxiediag(Hxi)

2

(1− µxi)ζ̄2xi + µxiHT
xiPxieHxi

⇒ tr(gxiI) = tr(
µxiPxiediag(Hxi)

2

(1− µxi)ζ̄2xi + µxiHT
xiPxieHxi

). (4.110)
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Substituting (4.103) into (4.110), and using the fact that tr(Pxiediag(Hxi)
2) = HT

xiPxieHxi, it

can be obtained that

HT
xiPxieHxi =

gxi(q + 1)(1− λxiζ̄
2
xi)

λxi − gxi(q + 1)(1 + λxi)
. (4.111)

Because 0 < λxiζ̄
2
xi < 1, in order to guarantee that HT

xiPxieHxi is positive, λxi− gxi(q+1)(1+

λxi) > 0 should be satisfied, i.e.,

0 < gxi <
λxi

(q + 1)(1 + λxi)
. (4.112)

Next, it can be proved that each single element in the Pxi will converge to its equilibrium point.

Let pxr denotes the rth diagonal element of Pxi, and hxr be rth element of Hxi. Using (4.101)

and (4.103), it can be obtained that

ṗxr = gxipxr −
λxip

2
xrh

2
xr

(1− λxiζ̄2xi) + (1 + λxi)HT
xiPxiHxi

.

Assuming that ṗxr > 0, and using the fact that pxr(t0) > 0, 1− λxiζ̄xi > 0, one has

gxipxr −
λxip

2
xrh

2
xr

(1− λxiζ̄2xi) + (1 + λxi)HT
xiPxiHxi

> 0

⇔gxi(1−λxiζ̄xi)+gxi(1+λxi)HT
xiPxiHxi>λxip

2
xrh

2
xr

⇔
(
λxi − gxi(1 + λxi)

)
pxrh

2
xr

< gxi(1− λxiζ̄xi) + gxi(1 + λxi)

q+1∑
k=1,k ̸=r

pxkh
2
xk. (4.113)

If (4.112) is satisfied, it is easy to show that λxi − gxi(1 + λxi) > 0. Thus, (4.113) can be

reformulated as:

pxr<
gxi(1−λxiζ̄xi)+gxi(1+λxi)

∑q+1
k=1,k ̸=r pxkh

2
xk(

λxi − gxi(1 + λxi)
)
h2xr

≡pxre. (4.114)
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Hence, if pxr < pxre, one has ṗxr > 0. If pxr > pxre, it can be obtained that ṗxr < 0.

If pxr = pxre, ṗxr = 0 will be obtained and the convergence of pxr is achieved. This implies

that if only pxr(t0) > 0, 1 − λxiζ̄xi > 0, and (4.107) are satisfied, pxr will always converge to

its equilibrium pxre which is a positive number. Hence, it can be concluded that Pxi will remain

diagonal positive definite. Following the same procedure, it is easy to show that if only Pyj(t0) > 0,

1− λxiζ̄xi > 0, and (4.107) are satisfied, Pyj will also remain diagonal positive definite. The proof

is thus completed.

Theorem 4.3. Consider the multi-time-scale RHONN model (4.85) for the nonlinear SPS (4.84).

By using the updating laws (4.101)-(4.106), it can be guaranteed that the NN weight errors θ̃xi, θ̃yj

will be uniformly ultimately bounded, and the identification errors ςx, ςy will also be bounded.

Proof. Consider the following Lyapunov function:

Vyj = θ̃yjP
−1
yj θ̃

T
yj. (4.115)

The derivative of Vyj is given as:

V̇yj = 2θ̃yjP
−1
yj

˙̃θTyj − θ̃yj
dP−1

yj

dt
θ̃Tyj. (4.116)

It is noticed that

d

dt

[
PyjP

−1
yj

]
= ṖyjP

−1
yj + Pyj

d

dt
P−1
yj =

dI

dt
= 0. (4.117)

Using (4.104), it can be obtained that:

d

dt
P−1
yj =−P−1

yj ṖyjP
−1
yj = −gyjP−1

yj +
µyjdiag(Hyj)

2

(1−µyj)ζ̄2yj+µyjHT
yjPyjHyj

. (4.118)
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Substituting (4.105) and (4.118) into (4.116), it follows that:

V̇yj =− 2µyj

ζ̄2yj
θ̃yjHyjeyj +

µyj θ̃yjdiag(Hyj)
2θ̃Tyj

(1− µyj)ζ̄2yj + µyjHT
yjPyjHyj

− µyj

ζ̄2yj
∥τyj − θ∗yjHyj∥22

+
µyj

ζ̄2yj
θ̃yjHyjH

T
yj θ̃

T
yj +

µyj

ζ̄2yj
∥τyj − θ∗yjHyj∥22 −

µyj

ζ̄2yj
θ̃yjHyjH

T
yj θ̃

T
yj − gyj θ̃yjP

−1
yj θ̃

T
yj

=

[
− µyj

ζ̄2yj
∥τyj − θ∗yjHyj∥22 +

µyj

ζ̄2yj
θ̃yjHyjH

T
yj θ̃

T
yj −

2µyj

ζ̄2yj
θ̃yjHyjeyj

]
− gyj θ̃yjP

−1
yj θ̃

T
yj

+
µyj θ̃yjdiag(Hyj)

2θ̃Tyj
(1− µyj)ζ̄2yj + µyjHT

yjPyjHyj

− µyj

ζ̄2yj
θ̃yjHyjH

T
yj θ̃

T
yj +

µyj

ζ̄2yj
∥τyj − θ∗yjHyj∥22. (4.119)

Using the fact that eyj = τyj − θyjHyj and θ̃yj = θ∗yj − θyj , the equation in [·] in (4.119) can be

rewritten as:

− µyj

ζ̄2yj
∥τyj−θ∗yjHyj∥22+

µyj

ζ̄2yj
θ̃yjHyjH

T
yj θ̃

T
yj−

2µyj

ζ̄2yj
θ̃yjHyjeyj

=
µyj

ζ̄2yj

[
−∥τyj−θ∗yjHyj∥22+(θ∗yj−θyj)HyjH

T
yj(θ

∗
yj−θyj)T − 2(θ∗yj − θyj)Hyj(τyj − θyjHyj)

]
=−µyj

ζ̄2yj

[
τ 2yj−2θyjHyjτyj+(θyjHyj)

2
]
=−µyj

ζ̄2yj
e2yj. (4.120)

Substituting (4.120) into (4.119), using (4.100), and noticing that 0 < µyj < 1,

θ̃yjdiag(Hyj)
2θ̃Tyj ≤ θ̃yjHyjH

T
yj θ̃

T
yj , the following inequality is obtained:

V̇yj ≤
µyj(θ̃yjHyj)

2

(1− µyj)ζ̄2yj + µyjHT
yjPyjHyj

− µyj

ζ̄2yj
(θ̃yjHyj)

2 + µyj − gyj θ̃yjP
−1
yj θ̃

T
yj −

µyj

ζ̄2yj
e2yj

=− k1(θ̃yjHyj)
2 − µyj

ζ̄2yj
(e2yj − ζ̄2yj)− gyjVyj, (4.121)

where

k1 =
[HT

yjPyjHyj − ζ̄2yj]µ
2
yj

ζ̄2yj[(1−µyj)ζ̄2yj+µyjHT
yjPyjHyj]

.

By choosing suitable gyj and activation functions ψi, i = 1, · · · , 4, it can be guaranteed that

HT
yjPyjHyj > ζ̄2yj is always valid. Thus, k1 > 0 is always true. Substituting (4.98) into (4.121), it
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can be obtained that

V̇yj ≤ −gyjVyj − (k1 +
µyj

ζ̄2
)(θ̃yjHyj)

2 − 2µyj

ζ̄2
θ̃yjHyjζ + µyj(1−

ζ2

ζ̄2
)

= −gyjVyj − (k2θ̃yjHyj + k3ζ)
2 + k4

≤ −gyjVyj + k̄4. (4.122)

where k2 =
√
k1 +

µyj

ζ̄2yj
, k3 =

µyj

ζ̄2k2
, k4 = µyj(1 − ζ2

ζ̄2
) +

µyjζ
2
yj

ζ̄4k22
, and k̄4 is the upper bound of k4.

From (4.122), it is clear that the θ̃yj is UUB. Using (4.98), it can be obtained that the auxiliary

output error eyj will also be bounded, which implies the identification error ςyj is also bounded

according to (4.99). Following the same procedure, it is easy to show that θ̃xi is also UUB, and

the auxiliary output error exi and identification error ςxi will also be bounded. Theorem 4.3 is thus

proved.

Remark 4.8. In (4.121), when |eyj| > ζ̄yj , one can obtain that V̇ < −gyjVyj . Thus, θ̃yj will

decrease exponentially. However, in [16, 27, 32, 112], because the identification algorithms were

based on GD, only the asymptotic stability can be guaranteed, and the NN weight errors proposed

in those papers would decrease asymptotically. Hence, the modified OBE based identification algo-

rithm proposed in this section can achieve faster convergence speed than the GD based algorithms

proposed in [16, 27, 32, 112]. This conclusion will be further validated later in the experiment.

Remark 4.9. The main difference between the modified OBE algorithm proposed in this section

and the OBE algorithm proposed in Section 4.3 and in [31, 36] is that in this section, two addi-

tional terms gxiPxi, gyjPyj are introduced into (4.101) and (4.104). Hence, the terms Pxi and Pyj

will converge to the equilibrium points Pxie and Pyje which are determined by gxi, Hxi, gyj , and

Hyj , as shown in (4.108). Thus, the NN weight’s updating laws will remain effective during the

identification process. In the OBE based learning laws proposed Section 4.3 and in [31, 36], the

two terms gxiPxi and gyjPyj are not considered. Hence, Ṗxi and Ṗyj will always be negative defi-

nite, and Pxi, Pyj will converge to 0. As a result, the weight’s updating laws will lose the ability to

adjust the NN weights according to (4.102) and (4.105).

84



4.4.2 Experiment

To verify the effectiveness of the proposed identification algorithms, the experiments on a

harmonic drive system are conducted. The experimental setup is shown in Fig. 4.14. As shown in

Fig. 4.14, a metal disc (the load) with unknown moment of inertia is mounted to axes of the DC

servo actuator. The actuator is driven by the PWM servo drive. A DC power supply (maximum

output 60 volts) is used as the power source of the servo drive. The identification algorithms are

running in the dSPACE. The dSPACE measures the angular velocity through an encoder (1000

PPR), and the current through an A/D converter (16 bits, ±10V), and sends the control signal

to the servo drive through an D/A converter (16 bits, ±10V). The whole process are monitored

and recorded using the ControlDesk running on a PC with Windows 7 operation system. In this

harmonic drive system, the angular velocity is the slow dynamic state and the current is the fast

dynamic state. The objective of the experiment is to on-line identify the unknown system model

of the harmonic drive.

Figure 4.14: Experimental setup of the harmonic drive system.
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A typical DC motor can be described by the following model:

J
dω

dt
= kti,

L
di

dt
= −kbω −Ri+ V,

(4.123)

where J is the moment of inertia, ω is the angular velocity, kt is the torque force constant, i is

the armature current, L is the armature inductance, kb is the back electromotive force constant, R,

V are the armature resistance and voltage, respectively. However, generally speaking, this model

is not faithful because the system parameters may vary from time to time. For example, in many

cases, the load is not fixed and will change during different working conditions. The condition

of the connecting points of the circuit changes due to aging and rust, thus increase the circuit

resistance. Also, the magnetic field strength will decrease gradually if the permanent magnet is

used. Besides, there will be some nonlinearity in the real systems, such as friction and backlash

[113]. Define x as the angular velocity, y as the current, and u as the control signal. Therefore, in

this experiment, the NN model (4.85) with modified OBE algorithm based updating laws (4.101)-

(4.106) will be used to identify the unknown DC motor system.

In this experiment, ε = 0.1 is obtained based on the prior knowledge of the setup, and the

following NN parameters are used: A = −20, B = −20, λx = 500, λy = 500, Lx = 20,

Ly = 10, gx = gy = 0.332, ζ̄x = 0.001, ζ̄y = 0.001, the number of neuron q = 2, W1 ∈ ℜ1×2,

W2 ∈ ℜ, W3 ∈ ℜ1×2, W4 ∈ ℜ, W1(t0) = W3(t0) = 0 ∈ ℜ1×2, W2(t0) = W4(t0) = 0.5,

Pxi(t0) = diag([50, 50, 50]), Pyj(t0) = diag([50, 50, 50]), the activation functions are chosen as

ψ1(z) = 2/(1 + e−0.5z) + 1, ψ2(z) = 1/(1 + e−0.2z) + 10, ψ3(z) = 2/(1 + e−0.1z) + 1, ψ4(z) =

1/(1 + e−0.1z) + 5. To demonstrate the superiority, the OBE based identification scheme proposed

in Section 4.3, the GD based identification scheme proposed in [112] are also tested for comparison

purpose. The sampling time for the experiment is 0.1 ms. The experimental results are presented

in Figs. 4.15-4.20.

From Figs. 4.15-4.20, it is clear that the modified OBE based identification algorithm can

achieve the best performance among all results. Fig. 4.15 shows that when the modified OBE
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1 2 3 4
−1

0

1

47 48 49 50
−1

0

1

(b) Identification result of y.

Figure 4.15: Identification results using the modified OBE.
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Figure 4.16: Identification results using the original OBE.

based identification scheme is used, there is a visible difference between the real current y, and the

estimation ŷ at beginning. However, after a short learning period (about 4s), the difference among

them became negligible. The difference between x and x̂ is small since the very beginning. When

the original OBE based algorithm proposed in Section 4.3 is used, the identification performances

are very good at the beginning. The ŷ can converge to y even faster than the case when the

modified OBE based method is used. The difference between x and x̂ is also very small since the

very beginning. Nevertheless, after 25 seconds, because Px and Py converge to 03×3, the weight’s

updating laws are no longer effective, and large gaps between the real signals and their estimations
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Figure 4.17: Identification results using the gradient descent.
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Figure 4.18: Identification errors using the modified OBE.

can be observed. When GD based algorithm is used, it takes a much longer time for the x̂ and ŷ

to converge to x and y, as shown in Fig. 4.17. Even at the end of the experiment, the differences

between the real signals and the their estimations are obvious.

From Figs. 4.18-4.20, it is also clear that the least identification errors of x and y can be

obtained when the modified OBE based identification scheme is used. In Fig. 4.19, when the orig-

inal OBE based identification scheme is used, the identification errors are small at the beginning,

but increased significantly after about 25 seconds. When the gradient descent based identification

scheme is used, larger identification errors can be observed during the whole identification process.
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Figure 4.19: Identification errors using the original OBE.
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Figure 4.20: Identification errors using the GD.

The figures of the weight’s updating process are presented in Figs. 4.21-4.23. From Fig. 4.22, it

can be noticed that after 40 seconds, the original OBE based weight’s updating laws stop working,

and the weights of the NN remain constant. This is because Pxi and Pyj are close to 0, and the

leaning gains of the original OBE based weight’s updating laws are too small to adjust the NN

weights. When the modified OBE is used, the weight vector Θy converges in less than 60 seconds,

and the weight vector Θx almost converges in 100 seconds, as shown in Fig. 4.21. However, when

GD based weight’s updating laws are used, it takes more than 100 seconds for the Θy to converge,

and there is no sign of convergence for Θx even after 200 seconds, as depicted in Fig. 4.23. Thus
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Figure 4.21: Weights updating process using modified OBE.
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Figure 4.22: Weights updating process using OBE.
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Figure 4.23: Weights updating process using GD.
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by using the modified OBE based weight’s updating laws, the faster convergence can be achieved,

and the updating laws will remain effective during the whole identification process.

To further compare the performance of different identification methods, the performance index-

ITAE is also calculated. The ITAE is defined as:

ITAE =

∫ T

0

t|e(t)|dt. (4.124)

The results of the ITAE calculation are presented in Table 4.2, where, ITAExi, ITAEyi are the

ITAE values of the identification error ςx and identification error ςy, respectively. From Table 4.2,

it is clear that the identification errors using the modified OBE proposed in this section are much

smaller compared with the errors using the other methods.

Table 4.2: ITAE values of ςx and ςy

Modified OBE OBE GD

ITAExi 13.8 534.9 94.2

ITAEyi 24.1 152.8 73.3

4.5 Conclusion

In this chapter, an OBE based identification scheme is firstly proposed for the discrete nonlinear

singularly perturbed systems using multi-time-scale neural networks. A faster convergence can be

achieved with higher accuracy when the OBE based weight’s updating laws are used, because

the learning gain will be adaptively adjusted. On the contrary, the convergence speed is slow

when the conventional GD based identification scheme is used because of the fixed learning gain.

Subsequently, the discrete identification scheme is extended to a continuous case. However, it

is found that the learning gain of the weight’s updating laws using the continuous OBE based

identification scheme will decrease during the identification process and thus lose the ability to
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adjust the neural network weights when the learning gain is too small. To solve this problem, a

modified OBE based identification algorithm is proposed where two extra terms are added to the

weight’s updating laws such that the Px and Py will converge to the equilibriums which can be set

arbitrarily by the user, rather than 0.
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Chapter 5

Robust Identification Scheme of Nonlinear

SPSs Using Filtered Variables

5.1 Introduction

In previous chapter, the discrete and continuous OBE based identification schemes using multi-

time-scale NNs are discussed. However, it should be pointed out that in these schemes, the deriva-

tives of the identification errors are needed in the weight’s updating laws, which are usually ob-

tained by differentiating the identification errors directly. If the measurement noises are involved

in the system states, the identification accuracy would be severely undermined.

In [114], a filter was adopted to generate the regressor matrix for a finite-time parameter esti-

mation problem. By using this filter, the measurement or computation of the velocity state vector

was not required. Afterwards, Na et al. proposed the robust adaptive parameter estimation algo-

rithms for a class of nonlinear robotic systems in [115, 116], in which a set of auxiliary filtered

variables was introduced to obtain an expression of the parameter estimation error. The parameter

estimation problem of nonlinear system with completely unknown dynamics or sinusoidal signals

were also discussed in [117, 118].

Inspired by their works, in this chapter, a new identification algorithm for a class of nonlinear
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SPSs using multi-time-scale recurrent neural network is proposed. A set of filtered variables are

firstly defined and incorporated into the NN. Then, the auxiliary output errors are derived, and

the augmented OBE algorithm is proposed to train the RNN with filtered variables. Thus, the

derivatives of the identification errors are no longer needed, and the proposed identification scheme

is more robust to measurement noises.

5.2 Identification Algorithm

Consider the following unknown affine in control nonlinear SPS:

ẋ = f1(x) + f2(x)y,

εẏ = g1(x, y) + g2(x, y)u,

(5.1)

where x ∈ ℜn and y ∈ ℜm are the slow and fast states, respectively, u ∈ ℜp is the control signal

vector, 0 < ε < 1 is a small parameter, f(·), f2(·), g1(·), g2(·) are unknown smooth functions.

The nonlinear system (5.1) can be represented by the following nominal multi-time-scale RNN:

ẋ = Ax+W ∗
1Ψ1(x) +W ∗

2Ψ2(x)y + ζx,

εẏ = By +W ∗
3Ψ3(x, y) +W ∗

4Ψ4(x, y)u+ ζy,

(5.2)

where A ∈ ℜn×n, B ∈ ℜm×m are stable matrices, ζx ∈ ℜn, ζy ∈ ℜm are the modeling errors,

W ∗
1 ∈ ℜn×q, W ∗

2 ∈ ℜn×q, W ∗
3 ∈ ℜm×q, W ∗

4 ∈ ℜm×q are unknown optimal weights which

minimize ζx and ζy, q is the number of neuron, the activation function vectors Ψi(·), i = 1, 3 are

defined as:

Ψi(·) = [Ψi,1,Ψi,2, · · · ,Ψi,q]
T ∈ ℜq,

Ψi,c(·) =
∏
j∈Jc

[ψi(·)]dc(j), c = 1, · · · , q,

the activation function matrix Ψ2(·) is defined as:
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Ψ2(·) =

⎡⎢⎢⎢⎢⎣
Ψ2,1,1 · · · Ψ2,1,m

... . . . ...

Ψ2,q,1 · · · Ψ2,q,m

⎤⎥⎥⎥⎥⎦ ∈ ℜq×m,

Ψ2,c,r =
∏

j∈Jc,r

[ψ2(·)]dc,r(j), c = 1, · · · , q, r = 1, · · · ,m,

where Jc,r are the collections of l not ordered subsets of 1, 2, · · · , n+m and dc,r(j) are non-

negative integers, and the activation function matrix Ψ4(·) is defined as:

Ψ4(·) =

⎡⎢⎢⎢⎢⎣
Ψ4,1,1 · · · Ψ4,1,p

... . . . ...

Ψ4,q,1 · · · Ψ4,q,p

⎤⎥⎥⎥⎥⎦ ∈ ℜq×p,

Ψ4,c,r =
∏

j∈Jc,r

[ψ4(·)]dc,r(j), c = 1, · · · , q, r = 1, · · · , p,

where Jc,r are the collections of l not ordered subsets of 1, 2, · · · , n+m and dc,r(j) are non-

negative integers. The activation functions ψi(·), i = 1, · · · , 4 are chosen as:

ψi(z) =
αi,1

1 + e−αi,2z
+ αi,3. (5.3)

Denote Θ∗
x = [W ∗

1 ,W
∗
2 ] = [θ∗x1; · · · ; θ∗xn] ∈ ℜn×2q, Θ∗

y = [W ∗
3 ,W

∗
4 ] = [θ∗y1; · · · ; θ∗ym] ∈

ℜm×2q, where θ∗xi ∈ ℜ2q, θ∗yj ∈ ℜ2q, i = 1, · · · , n, j = 1, · · · ,m are row vectors, Hx =

[Ψ1(x); Ψ2(x)y] ∈ ℜ2q, Hy = [Ψ3(x, y); Ψ4(x, y)u] ∈ ℜ2q. Then nominal model (5.2) can be

written as:
ẋ = Ax+Θ∗

xHx + ζx,

εẏ = By +Θ∗
yHy + ζy.

(5.4)
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Define the filtered variables of x, y, Hx, Hy, ζx, ζy as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
kxẋf + xf = x, xf (0) = 0

kxḢxf +Hxf = Hx, Hxf (0) = 0

kxζ̇xf + ζxf = ζx, ζxf (0) = 0

, (5.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
kyẏf + yf = y, yf (0) = 0

kyḢyf +Hyf = Hy, Hyf (0) = 0

ky ζ̇yf + ζyf = ζy, ζyf (0) = 0

, (5.6)

where kx > 0, ky > 0 are two filter parameters.

Remark 2: The filtered modeling errors ζxf and ζyf are introduced only for theoretical analysis.

They are not required in real application.

From (5.4), (5.5) and (5.6), it is easy to obtain that

ẋf = Axf +Θ∗
xHxf + ζxf ,

εẏf = Byf +Θ∗
yHyf + ζyf ,

(5.7)

At this point, the following RNN is proposed to identify the unknown nonlinear system (5.1):

˙̂x = Ax̂+ΘxHxf + Lxx̃,

ε ˙̂y = Bŷ +ΘyHyf + Lyỹ,

(5.8)

where x̂ and ŷ are the outputs of the RNN, Θx = [W1,W2] = [θx1; · · · ; θxn] ∈ ℜn×2q, Θy =

[W3,W4] = [θy1; θy2; · · · ; θym] ∈ ℜm×2q, with θxi ∈ ℜ2q, θyj ∈ ℜ2q, i = 1, · · · , n, j = 1, · · · m

are row vectors, Lx ∈ ℜn×n, Ly ∈ ℜm×m are positive definite matrices, the filtered identification

errors x̃, ỹ are defined as:

x̃ = xf − x̂,

ỹ = yf − ŷ.

(5.9)

The aim of this section is to develop the novel weight’s updating laws for the NN such that the
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NN weights Wi, i = 1, · · · , 4 will converge to their nominal values W ∗
i . It is obvious the filtered

identification errors x̃, ỹ will also be minimized when Wi converge to W ∗
i .

Subtracting (5.8) from (5.4) yields

˙̃x = (A− Lx)x̃+ Θ̃xHxf + ζxf ,

ε ˙̃y = (B − Ly)ỹ + Θ̃yHyf + ζyf ,

(5.10)

where Θ̃x = Θ∗
x −Θx, Θ̃y = Θ∗

y −Θy.

Define the filtered auxiliary system outputs as:

τxf = Θ∗
xHxf + ζxf ,

τyf = Θ∗
yHyf + ζyf ,

(5.11)

and the filtered estimation of the auxiliary system outputs as:

τ̂xf = ΘxHxf ,

τ̂yf = ΘyHyf ,

(5.12)

Besides, define the filtered auxiliary output errors as:

exf = ˙̃x− (A− Lx)x̃,

eyf = ε ˙̃y − (B − Ly)ỹ.

(5.13)

Thus, (5.10) can be rewritten as

exf = Θ̃xHxf + ζxf ,

eyf = Θ̃yHyf + ζyf .

(5.14)

Let ζxfi, ζyfj denote the ith and j th terms of ζxf and ζyf , respectively. The properties of these

two errors are assumed as follows.
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Assumption 5.1. The filtered modeling errors ζxfi and ζyfj are bounded by upper bounds ζ̄xfi and

ζ̄yfj as:

0 < |ζxfi| < ζ̄xfi, 0 < |ζyfj| < ζ̄yfj. (5.15)

According to (5.11), |τxfi − θ∗xiHxf | = |ζxfi| ≤ ζ̄xfi, and |τyfj − θ∗yjHyf | = |ζyfj| ≤ ζ̄yfj are

valid, where τxfi and τyfj are the ith and j th elements of τxf and τyf , respectively. Therefore, it is

easy to obtain that:
1

ζ̄2xfi
|τxfi − θ∗xiHxf |2 ≤ 1,

1

ζ̄2yfj
|τyfj − θ∗yjHyf |2 ≤ 1.

(5.16)

The following updating laws are proposed to train the RNN weight vectors θxi, θyj:

Ṗxi = gxiPxi −
µxiPxidiag(Hxf )

2Pxi

(1− µxi)ζ̄2xfi + µxiHT
xfPxiHxf

, (5.17)

θ̇Txi =
µxi

ζ̄2xfi
PxiHxfexi, (5.18)

µxi =
λxiζ̄

2
xfi

1 +HT
xfPxiHxf

, (5.19)

Ṗyj = gyjPyj −
µyjPyjdiag(Hyf )

2Pyj

(1− µyj)ζ̄2yfj + µyjHT
yfPyjHyf

, (5.20)

θ̇Tyj =
µyj

ζ̄2yfj
PyjHyfeyfj, (5.21)

µyj =
λyj ζ̄

2
yfj

1 +HT
yfPyjHyf

, (5.22)

where exfi, eyfj are the ith and j th elements of exf and eyf , respectively, λxi, λyj are designed

parameters such that 0 < λxiζ̄
2
xfi < 1, 0 < λyj ζ̄

2
yfj < 1, gxi, gyj are two designed parameters

satisfying

0<gxi<
λxi

2q(1+λxi)
, 0<gyj<

λyj
2q(1+λyj)

. (5.23)

Lemma 5.1. By using the weight’s updating laws presented in (5.17)-(5.22), it can be guaranteed
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that Pxi and Pyj will remain diagonal positive definite and bounded during the identification pro-

cess as long as the initial values Pxi(t0) and Pyj(t0) are diagonal positive definite, and gxi and

gyj satisfy the conditions given in (5.23). Also, it is easy to show that Pxi, Pyj will converge to

their equilibrium points Pxie and Pyje, and HT
xfPxieHxf , HT

yfPyjeHyf will satisfy the following

equations:

HT
xfPxieHxf =

2gxiq(1− λxiζ̄
2
xf )

λxi − 2gxiq(1 + λxi)
,

HT
yfPyjeHyf =

2gyjq(1− λyj ζ̄
2
yf )

λyj − 2gyjq(1 + λyj)
.

(5.24)

Proof. Let Pxie denotes the equilibrium of Pxi, it follows that:

Ṗxie = gxiPxie −
µxiPxiediag(Hxf )

2Pxie

(1− µxi)ζ̄2xfi + µxiHT
xfPxieHxf

= 0

⇔gxiPxie =
µxiPxiediag(Hxf )

2Pxie

(1− µxi)ζ̄2xfi + µxiHT
xfPxieHxf

⇔gxiI =
µxiPxiediag(Hxf )

2

(1− µxi)ζ̄2xfi + µxiHT
xfPxieHxf

⇒tr(gxiI) = tr
( µxiPxiediag(Hxf )

2

(1− µxi)ζ̄2xfi + µxiHT
xfPxieHxf

)
. (5.25)

Substituting (5.19) into (5.25), and using the fact that tr(Pxiediag(Hxf )
2) = HT

xfPxieHxf , it

can be obtained that

HT
xfPxieHxf =

2gxiq(1− λxiζ̄
2
xfi)

λxi − 2gxiq(1 + λxi)
. (5.26)

Because 0 < λxiζ̄
2
xfi < 1, in order to guarantee that HT

xfPxieHxf is positive, λxi − 2gxiq(1 +

λxi) > 0 should be satisfied, i.e.,

0 < gxi <
λxi

2q(1 + λxi)
. (5.27)

Let pxr denotes the rth diagonal element of Pxi, and hxr be rth element of Hxf . Using (5.17)
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and (5.19), it can be obtained that

ṗxr = gxipxr −
λxip

2
xrh

2
xr

(1− λxiζ̄2xfi) + (1 + λxi)HT
xfPxiHxf

.

Using the fact that pxr(t0) > 0, 1− λxiζ̄xfi > 0, one has

ṗxr > 0

⇔gxipxr −
λxip

2
xrh

2
xr

(1− λxiζ̄2xfi) + (1 + λxi)HT
xfPxiHxf

> 0

⇔gxi(1−λxiζ̄xfi)+gxi(1+λxi)HT
xfPxiHxf>λxip

2
xrh

2
xr

⇔
(
λxi − gxi(1 + λxi)

)
pxrh

2
xr

< gxi(1− λxiζ̄xfi) + gxi(1 + λxi)

2q∑
k=1,k ̸=r

pxkh
2
xk. (5.28)

If gxi satisfies (5.23), then (5.28) can be reformulated as:

pxr <
gxi(1− λxiζ̄xfi) + gxi(1 + λxi)

∑2q
k=1,k ̸=r pxkh

2
xk(

λxi − gxi(1 + λxi)
)
h2xr

≡ pxre. (5.29)

Hence, if pxr < pxre, one has ṗxr > 0. If pxr > pxre, it can be obtained that ṗxr < 0.

This implies that if only Pxi(t0) > 0, and (5.23) is satisfied, then pxr will always converge to

its equilibrium pxre which is a positive number. Hence, it can be concluded that Pxi will remain

diagonal positive definite. Following the same procedure, it is easy to show that Pyj will also

remain diagonal positive definite. The proof of Lemma 5.1 is thus completed.

Theorem 5.1. Consider the multi-time-scale RNN model (5.8) for nonlinear SPS (5.1) with the

updating laws (5.17)-(5.22), it can be guaranteed that the identification errors x̃, ỹ and NN weight

errors θ̃xi, θ̃yj can be minimized and remain bounded.
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Proof. Consider the following Lyapunov function:

Vxi = θ̃xiP
−1
xi θ̃

T
xi. (5.30)

The derivative of Vxi is given as:

V̇xi = 2θ̃xiP
−1
xi

˙̃θTxi − θ̃xi
dP−1

xi

dt
θ̃Txi. (5.31)

It should be noticed that

d

dt

[
PxiP

−1
xi

]
= ṖxiP

−1
xi + Pxi

d

dt
P−1
xi =

dI

dt
= 0. (5.32)

Using (5.17), the following equation can be obtained:

d

dt
P−1
xi = −P−1

xi ṖxiP
−1
xi = −gxiP−1

xi +
µxidiag(Hyf )

2

(1− µxi)ζ̄2xfi + µxiHT
yfPxiHyf

. (5.33)

Substituting (5.18), (5.33) into (5.31), it follows that:

V̇xi =− 2µxi

ζ̄2xfi
θ̃xiHxfexfi +

µxiθ̃xidiag(Hxf )
2θ̃Txi

(1−µxi)ζ̄2xfi+µxiHT
xfPxiHxf

− µxi

ζ̄2xfi
|τxfi − θ∗xiHxf |2

+
µxi

ζ̄2xfi
θ̃xiHxfH

T
xf θ̃

T
xi +

µxi

ζ̄2xfi
|τxfi − θ∗xiHxf |2 −

µxi

ζ̄2xfi
θ̃xiHxfH

T
xf θ̃

T
xi − gxiθ̃xiP

−1
xi θ̃

T
xi

=

[
− µxi

ζ̄2xfi
|τxfi − θ∗xiHxf |2 +

µxi

ζ̄2xfi
θ̃xiHxfH

T
xf θ̃

T
xi−

2µxi

ζ̄2xfi
θ̃xiHxfexfi

]
− gxiθ̃xiP

−1
xi θ̃

T
xi

+
µxiθ̃xidiag(Hxf )

2θ̃Txi
(1−µxi)ζ̄2xfi+µxiHT

xfPxiHxf

− µxi

ζ̄2xfi
θ̃xiHxfH

T
xf θ̃

T
xi+

µxi

ζ̄2xfi
∥τxfi−θ∗xiHxf∥22. (5.34)

Using the fact that exfi = τxfi − θxiHxf and θ̃xi = θ∗xi − θxi, the equation in [·] in (5.34) can be

reformulated as:

− µxi

ζ̄2xfi
|τxfi−θ∗xiHxf |2+

µxi

ζ̄2xfi
θ̃xiHxfH

T
xf θ̃

T
xi−

2µxi

ζ̄2xfi
θ̃xiHxfexfi

101



=
µxi

ζ̄2xfi

[
−|τxfi−θ∗xiHxf |2+(θ∗xi−θxi)HxfH

T
xf (θ

∗
xi−θxi)T − 2(θ∗xi − θxi)Hxf (τxfi − θxiHxf )

]
=− µxi

ζ̄2xfi

[
τ 2xfi−2θxiHxfτxfi+(θxiHxf )

2
]

=− µxi

ζ̄2xfi
e2xfi. (5.35)

Substituting (5.35) into (5.34), and using (5.16), along with the fact that 0 < µxi < 1,

θ̃xidiag(Hxf )
2θ̃Txi ≤ θ̃xiHxfH

T
xf θ̃

T
xi, the following inequality is obtained:

V̇xi≤
µxiθ̃xiHxfH

T
xf θ̃

T
xi

(1− µxi)ζ̄2xfi + µxiHT
xfPxiHxf

− µxi

ζ̄2xfi
θ̃xiHxfH

T
xf θ̃

T
xi + µxi − gxiθ̃xiP

−1
xi θ̃

T
xi −

µxi

ζ̄2xfi
e2xfi

=
[ζ̄2xfi−HT

xfPxiHxf ]µ
2
xiθ̃xiHxfH

T
xf θ̃

T
xi

ζ̄2xfi[(1−µxi)ζ̄2xfi+µxiHT
xfPxiHxf ]

+µxi(1−
e2xfi
ζ̄2xfi

)− gxiθ̃xiP
−1
xi θ̃

T
xi. (5.36)

It can be guaranteed that HT
xfPxiHxf > ζ̄2xfi is always true if only the gxi and activation func-

tions ψi are properly selected. Since P−1
xi is positive definite, V̇xi < 0 is valid whenever e2xfi > ζ̄2xfi.

Thus, the auxiliary output error exfi will be bounded by ζ̄xfi, and θxi will converge to its nominal

value θ∗xi, which implies the filtered identification error x̃ is also bounded according to (5.13). Fol-

lowing the same procedure, it is easy to show that the auxiliary output error ey and the identification

error ỹ will be bounded, and θyj will also converge to θ∗yj . Theorem 5.1 is thus proved.

Remark 5.1. In (4.55) of Section 4.3, and (4.99) of Section 4.4, the ς̇x, ς̇y are involved in ex and

ey. In these cases, one usually has to differentiate ςx and ςy in order to obtain ς̇x and ς̇y. However,

this may cause failure to the identification process when the signals (measurements of x and y)

contain noises, which will be demonstrated in the simulation later. In this section, by defining the

filtered variables as in (5.5) and (5.6), the derivatives of x and y are not needed. As a result, the

system identification process can achieve high precision even if the signals are very noisy.
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5.3 Simulation

In order to demonstrate the effectiveness of the robust system identification scheme proposed

in Chapter 5, the following nonlinear SPS is considered in simulation:

ẋ = −5x+ xy + 3y,

0.1ẏ = −10y + 2sin(x) + u,

(5.37)

with x(t0) = 1.4 and y(t0) = 0. The input signal u is chosen as u = 8sin(2t). In order to

identify this nonlinear SPS, the RNN defined in (5.8) with node number q = 2 is used. In this

case, W1 ∈ ℜ2, W2 ∈ ℜ2, W3 ∈ ℜ2, W4 ∈ ℜ2. The activation functions in (5.3) are selected

as ψ1(z) = 10/(1 + e−z) + 1, ψ2(z) = 1/(1 + e−z) + 1, ψ3(z) = 1/(1 + e−z) + 1, ψ4(z) =

1/(1 + e−z) + 1. The other RNN parameters are chosen as A = B = −1, λx = 100, λy = 100,

gx = 0.33, gy = 0.33, kx = ky = 0.01, Lx = 5, Ly = 5, ζ̄xf = ζ̄yf = 0.0001, Px(t0) =

diag(100, 100, 100, 100), Py(t0) = diag(1000, 1000, 1000, 1000). For comparison purpose, the

identification algorithm proposed in Section 4.4 is also tested. Hereinafter, the superscript 1 denotes

the results obtained using the robust identification algorithm proposed in Chapter 5, and 2 denotes

the results using the algorithm proposed in Section 4.4. The sampling time for the simulation is 1

ms. When there is no measurement noises, the simulation results are presented in Figs. 5.1-5.3.
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Figure 5.1: Identification results of x without noises.
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Figure 5.2: Identification results of y without noises.
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Figure 5.3: Identification errors without noises.

In Fig. 5.1 and Fig. 5.2, x and y represent the measured system outputs, xf and yf are the

filtered outputs as defined in (5.5) and (5.6), x̂ and ŷ are the outputs of the RNN. It is clear that

when there is no measurement noise, the RNN outputs x̂1, ŷ1 of identification scheme proposed

in Chapter 5 converge to xf and yf , respectively, and the RNN outputs x̂2, ŷ2 of the identification

scheme proposed in Section 4.4 will track x and y. Both identification methods can achieve sat-

isfactory performance. Also, it can be noticed that there are small gaps between x, xf and y, yf .

Because xf and yf are the filtered results of x and y, hence the “phase lag” will always exist. This

can be reduced by choosing smaller kx and ky.
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Figure 5.4: Identification results of x with noises.
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Figure 5.5: Identification results of y with noises.

In Fig. 5.3, ςx and ςy are the identification errors defined as ςx = x− x̂, ςy = y− ŷ. The x̃ and ỹ

are the filtered identification errors as defined in (5.9). Fig. 5.3 shows that the filtered identification

errors x̃, ỹ are almost the same as ς2x and ς2y , respectively, while ς1x and ς1y are larger. However, it

should be emphasized that the overall goal of the identification scheme is to train the NN weights

such that Θx, Θy will converge to there nominal value Θ∗
x and Θ∗

y. Thus the identification accuracy

using the robust identification scheme proposed in Chapter 5 is determined by x̃ and ỹ instead of

δ1x and δ1y . As long as x̃ and ỹ are minimized, it implies that Θx and Θy have converged to Θ∗
x and

Θ∗
y, respectively, and the goal of the identification algorithm has been achieved.
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Figure 5.6: Identification errors with noises.

The identification results with measurement noises are presented in Figs. 5.4-5.6. In Fig. 5.4

and Fig. 5.5, the x and y are the measured states with noises. The random noise dx with magnitude

of 0.2 and mean of 0 is added to x and the random noise dy with magnitude of 0.4 and and mean

of 0 is added to y. In Fig. 5.4(a) and Fig. 5.5(a), it is shown that when measurement noises are

involved, the outputs of the RNN (x̂1 and ŷ1) always track x and y closely. However, when the

identification algorithm proposed in Section 4.3 is used, large difference between x̂2 and x can

be observed, as depicted in Fig. 5.4(b), and the x̂2 is diverging. In Fig. 5.6, it is clear that both

ς1x and ς1y are small, which means the small identification errors can be achieved when the robust

identification algorithm proposed in Chapter 5 is used. However, when the identification algorithm

proposed in Section 4.3 is used, both ς2x and ς2y are very large, and the magnitude of ς2y is increasing.

The superiority of the identification scheme proposed in Chapter 5 is thus demonstrated.

The performance index-Root Mean Square (RMS) can also be used to illustrate the effective-

ness of the identification algorithm proposed in this Chapter. The RMS of an array z ∈ ℜn is

calculated as:

RMS =

√(
n∑

i=1

z2(i))/n. (5.38)

The RMS values of ς1x , ς1y , ς2x , ς2y , x̃, ỹ are given in Table 5.1. From Table 5.1, it is very clear
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that when there is no noise, x̃, ỹ are almost the same as ς2x and ς2y , while ς1x and ς1y are larger due

to the “phase lag”. When measurement noises are involved, the ς2x and ς2y increase dramatically,

while x̃, ỹ, ς1x , ς1y still remain at relative low levels.

Table 5.1: RMS values

ς1x ς1y x̃ ỹ ς2x ς2y

Without Noise 0.0533 0.0504 0.0198 0.0063 0.0200 0.0063

With Noise 0.1265 0.2486 0.0349 0.0365 3.6440 0.8917

5.4 Conclusion

In this chapter, a robust OBE based identification scheme is proposed. By using some filtered

variables in the identification scheme, the new algorithm no longer need the derivatives of the

system states, and thus is more robust to measurement noises.
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Chapter 6

Controller Design Based on Singular

Perturbation Theory

6.1 Introduction

In Chapter 4 and Chapter 5, the system identification using OBE and multi-time-scale neural

network is studied. In this chapter, the adaptive control based on singular perturbation theory and

the identified system model will be investigated.

The direct adaptive control using singular perturbation theory and single time scale NN was

discussed in [23–25]. Nevertheless, the indirect adaptive control using singular perturbation theory

and multi-time-scale neural networks is rarely studied. In Chapter 3 and [26,27], the indirect adap-

tive controllers were designed based on the multi-time-scale NN identification results. However,

the authors did not take advantage of the identified model to design two controllers for the slow

and fast subsystems respectively using singular perturbation theory. Instead, the authors treated

the system as a regular system (one-time-scale system), and designed a controller for the whole

system. Thus, the order of the matrices in the controller could be very high if the slow and fast

system states have high dimensions, and the matrices in the controller could be ill-conditioned

because the singular perturbation parameter ε is involved, and ε is usually very small.
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In this chapter, two indirect adaptive controllers will be designed based on the identified system

model and singular perturbation theory. Firstly, an indirect adaptive controller for a regulation

problem using the practically asymptotically stability (PAS) theory will be designed. Then, a

second indirect adaptive controller will be proposed to solve the trajectory tracking problem. By

using singular perturbation theory, the identified system model is decomposed into the reduced

slow subsystem and the reduced fast subsystem. The controller is then designed for the reduced

subsystems. Hence, the order of the system is reduced, which makes it easier to design a controller

for the reduced subsystems. Meanwhile, the order of the matrices in the controller is also reduced,

thus the required computational resource is reduced.

6.2 Controller Design for Regulation Problem

In this section, an indirect adaptive controller based on the PAS is proposed for a regulation

problem.

6.2.1 Practically Asymptotically Stability

For a singularly perturbed system

ẋ = f1(x, ε) + f2(x, ε)y,

εẏ = g1(x, y, ε) + g2(x, y, ε)u,

(6.1)

with fi(0, 0) = 0, i = 1, 2 and gi(0, 0, 0) = 0, i = 1, 2, where x ∈ ℜn and y ∈ ℜm are the slow

and fast states, respectively, u ∈ ℜp is the control signal vector, 0 < ε < 1 is a small parameter,

fi ∈ C∞, i = 1, 2 and gi ∈ C∞, i = 1, 2 are unknown general nonlinear smooth functions.

For simplicity, denote fs(t, x, y, ε) = f1(x, ε) + f2(x, ε)y, and gs(t, x, y, ε) = g1(x, y, ε) +
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g2(x, y, ε), then (6.1) can be represented as:

ẋ = fs(t, x, y, ε), x(t0) = ιx(ε),

εẏ = gs(t, x, y, ε), y(t0) = ιy(ε).

(6.2)

Define τ = (t− t0)/ε, and system (6.2) can be written as:

dx

dτ
= εfs(t0 + ετ, x, y, ε), x(0) = ιx(ε),

dy

dτ
= gs(t0 + ετ, x, y, ε), y(0) = ιy(ε)y.

(6.3)

By setting ε = 0 in (6.3), it is shown that this system is a regular system

dx

dτ
= 0, x(0) = ιx(0),

dy

dτ
= gs(t0, x, y, 0), y(0) = ιy(0).

(6.4)

Hence the state y of any solution of system (6.2) varies rapidly according to the equation

dy

dτ
= gs(t0, ιx(0), y, 0), y(0) = ιy(0). (6.5)

Equation (6.5) is called boundary layer equation. It consists in equation

dy

dτ
= gs(t, x, y, 0), y(0) = ιy(0), (6.6)

where t = t0 and x = ιx(0) are fixed at their initial values. Assume that the solutions of (6.6) tend

toward an equilibrium hs(t, x) where y = hs(t, x) is a root of equation

gs(t, x, y, 0) = 0. (6.7)

The manifold L defined by equation (6.7) is called slow manifold. The solutions of (6.2) have

a rapid transition from (ιx(0), ιy(0)) to a point of the slow manifold L (ιx(0), hs(t0, ιx(0))). Then
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a slow motion starts on the slow manifold according to the equation

ẋ = fs(t, x, hs(t, x), 0). (6.8)

Equation (6.8) is called the reduced problem.

The following theory is valid [14]:

Theorem 6.1. Consider the singularly perturbed system (6.2), Assume that fs(t, 0, 0, 0) = 0 and

gs(t, 0, 0, 0) = 0. Let y = hs(t, x) be an isolated root of (6.7) such that hs(t, 0) = 0. Assume

that the equilibrium y = hs(t, x) of the boundary layer equation (6.5) is asymptotically uniformly

stable in (t, x), and the origin of the corresponding reduced model (6.8) is asymptotically stable.

Then there exists a positive constant ε∗ such that for all 0 < ε < ε∗, the origin of system (6.2) is

practically asymptotically stable (PAS).

6.2.2 Controller Design

Consider the nonlinear singularly perturbed system given in (6.1). In order to identify the

nonlinear SPS (6.1), the following multi-time-scale NN will be used:

˙̂x = Ax̂+W1Ψ1(x) +W2Ψ2(x)y,

ε ˙̂y = Bŷ +W3Ψ3(x, y) +W4Ψ4(x, y)u.

(6.9)

where x̂ ∈ ℜn and ŷ ∈ ℜm are the estimation of the slow and fast states x and y, respectively,

A ∈ ℜn×n, B ∈ ℜm×m are diagonal stable matrices, W1 ∈ ℜn×q, W2 ∈ ℜn×q, W3 ∈ ℜm×q,

W4 ∈ ℜm×q are the weight matrices of the RHONN, q is the number of neuron. The activation

function vectors Ψi(·), i = 1, 3 are defined as:

Ψi(·) = [Ψi,1,Ψi,2, . . . ,Ψi,q]
T ∈ ℜq×1, i = 1, 3,

Ψi,c =
∏
j∈Jc

[ψi(·)]dc(j), c = 1, . . . , q,
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where Jc are the collections of q not ordered subsets of 1, 2, . . . , n+m and dc(j) are non-negative

integers. The activation function matrix Ψ2(·) is defined as:

Ψ2(·) =

⎡⎢⎢⎢⎢⎣
Ψ2,1,1 . . . Ψ2,1,m

... . . . ...

Ψ2,q,1 . . . Ψ2,q,m

⎤⎥⎥⎥⎥⎦ ∈ ℜq×m,

Ψ2,c,r =
∏

j∈Jc,r

[ψ2(·)]dc,r(j), c = 1, . . . , q, r = 1, . . . ,m,

where Jc,r are the collections of q × m not ordered subsets of 1, 2, . . . , n+m and dc,r(j) are

non-negative integers. The activation function matrix Ψ4(·) is defined as:

Ψ4(·) =

⎡⎢⎢⎢⎢⎣
Ψ4,1,1 . . . Ψ4,1,p

... . . . ...

Ψ4,q,1 . . . Ψ4,q,p

⎤⎥⎥⎥⎥⎦ ∈ ℜq×p,

Ψ4,k,r =
∏

j∈Jc,r

[ψ4(·)]dc,r(j), c = 1, . . . , q, r = 1, . . . , p,

where Jc,r are the collections of q × p not ordered subsets of 1, 2, . . . , n+m and dc,r(j) are non-

negative integers. The activation function ψi(z) is chosen as:

ψi(z) =
αi,1

1 + e−αi,2z
+ αi,3, i = 1, · · · , 4. (6.10)

Using the multi-time-scale NN (6.9) and the weight’s updating laws proposed in Section 4.3,

the identified system model can be represented as:

ẋ = Ax+W1Ψ1(x) +W2Ψ2(x)y + δ′x, (6.11)

εẏ = By +W3Ψ3(x, y) +W4Ψ4(x, y)u+ δ′y, (6.12)

where δ′x, δ
′
y are modeling errors.
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Let h(x) be the equilibrium of (6.12), and define a new system state Ey = y−h(x). Therefore,

the identified model given in (6.11) and (6.12) can be rewritten as:

ẋ =Ax+W1Ψ1(x) +W2Ψ2(x)(Ey + h(x)) + δ′x, (6.13a)

εĖy =BEy +W3Ψ3(x, y) +W4Ψ4(x, y)u+Bh(x) + δ′y − ε
dh(x)

dx
ẋ. (6.13b)

For a singularly perturbed system, because ε is usually very small, the changing rate of Ey is

very high, which means y will converge to its equilibrium h(x) rapidly. In fact, when ε is set to be

0, the transient response of y is instantaneous whenever the right hand side of (6.13b) is not equal

to 0. By setting ε = 0 in (6.13), and having Ey = 0 when ε = 0, the Reduced Slow Subsystem can

be obtained as:

ẋ =Ax+W1Ψ1(x) +W2Ψ2(x)h(x) + δ′x, (6.14)

0 =BEy +W3Ψ3(x, y) +W4Ψ4(x, y)u+Bh(x) + δ′y. (6.15)

Define a new “stretched” time variable as τ = (t − t0)/ε, where t0 is the initial time, and set

ε = 0 in (6.13). The Reduced Fast Subsystem can be written as:

dx

dτ
=0, (6.16)

dEy

dτ
=BEy +W3Ψ3(x, y) +W4Ψ4(x, y)u+Bh(x) + δ′y. (6.17)

Remark 6.1. It is challenging to design the control signal u if the order of system (6.13) is very

high. However, by using Tiknonov’s theorem [14], the singularly perturbed system (6.13) can be

decomposed into two subsystems: the Reduced Slow Subsystem and the Reduced Fast Subsystem.

According to Theorem 6.1, if the equilibrium of (6.17) is asymptotically uniformly stable, and

(6.14) is asymptotically stable, then there exists a positive constant ε∗ such that for all 0 < ε <

ε∗, the origin of system (6.13) is PAS. Hence, the control problem of the singularly perturbed

system (6.13) is changed to that of two lower order subsystems (6.14)-(6.17). The complexity of
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the controller design problem is thus reduced.

To ensure the asymptotic stability of (6.14), the control signal u should be designed such that

the equilibrium h(x) of (6.12) is:

h(x) =W2Ψ2(x)
†h′(x), (6.18)

h′(x) =− Ax−W1Ψ1(x)− kx1x− kx2[sign(x1), · · · , sign(xn)]T , (6.19)

where W2Ψ2(x)
† is the Moore-Penrose pseudo-inverse of W2Ψ2(x), xi, i = 1, · · · , n is the ith

element of x, kx1, kx2 are the designed parameters satisfying kx1 > 0, kx2 > δ̄x, where δ̄x is the

upper bound of ∥δx∥1, and ∥ · ∥1 denotes the L1-norm.

Remark 6.2. h(x) = W2Ψ2(x)
†h′(x) is the unique best approximate solution of equation [119]

W2Ψ2(x)h(x) = h′(x), (6.20)

i.e., if the approximate solution error is defined as

υx = h′(x)−W2Ψ2(x)h(x), (6.21)

then by using h(x) given in (6.18), ∥υx∥2 is minimized, where ∥ · ∥2 denotes the L2-norm. It should

be noticed that when W2Ψ2(x) is a square nonsingular matrix, the following equations hold:

W2Ψ2(x)
† = W2Ψ2(x)

−1 (6.22)

h(x) = W2Ψ2(x)
−1h′(x) (6.23)

υx = 0. (6.24)

Equation (6.21) can be rewritten as:

W2Ψ2(x)h(x) = h′(x)− υx, (6.25)
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Substituting (6.25) and (6.19) into (6.14), it gives that

ẋ =− kx1x− kx2[sign(x1), · · · , sign(xn)]T + δx, (6.26)

where δx = δ′x − υx. It can be proved that the dynamic system (6.26) is asymptotically stable. The

detailed proof will be given later.

In order to ensure the uniform asymptotic stability of (6.17), i.e., to ensure y will converge to

its equilibrium h(x) asymptotically and uniformly in x, the control signal u can be designed as:

u =W4Ψ4(x, y)
†u′, (6.27)

u′ =−BEy −W3Ψ3(x, y)−Bh(x)− ky1Ey − ky2[sign(Ey1), · · · , sign(Eym)]
T , (6.28)

where W4Ψ4(x, y)
† is the Moore-Penrose pseudo-inverse of W4Ψ4(x, y). Eyj, j = 1, · · · ,m is

the j th element of Ey. ky1, ky2 are the design parameters satisfying ky1 > 0, ky2 > δ̄y, where δ̄y is

the upper bound of ∥δy∥1.

Similarly, the approximate solution error υy is defined as:

υy = u′ −W4Ψ4(x, y)
†u. (6.29)

Equation (6.29) can be rewritten as:

W4Ψ4(x, y)
†u = u′ − υy. (6.30)

Substituting (6.30) and (6.28) into (6.17) gives that

dEy

dτ
= −ky1Ey − ky2[sign(Ey1), · · · , sign(Eym)]

T + δy, (6.31)

where δy = δ′y − υy. It can also be proved that the error dynamic system (6.31) will be asymp-

totically uniformly stable, which implies y will converge to h(x) asymptotically and uniformly in
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x.

Theorem 6.2. Consider the nonlinear system (6.1), with the identified system model (6.12), control

law (6.27) with h(x) defined in (6.18), there exists ε∗ > 0 such that for all 0 < ε < ε∗, the origin

of system (6.13) is PAS, and x will converge to 0.

Proof. Select Lyapunov function Vx as

Vx =
1

2
xTx. (6.32)

Using (6.26), the derivative of Vx can be obtained as:

V̇x=x
T ẋ

=−kx1xTx−kx2xT [sign(x1), · · · , sign(xn)]T+xT δx

≤−kx1xTx−kx2∥x∥1+∥x∥1∥δx∥1

=−kx1xTx−(kx2−∥δx∥1)∥x∥1. (6.33)

According to (6.33), since kx1 > 0, kx2 > δ̄x ≥ ∥δx∥1, it is obvious that V̇x < 0 is valid. Hence

subsystem (6.14) is asymptotically stable.

Similarly, select Lyapunov function VEy as

VEy =
1

2
ET

y Ey. (6.34)

Using (6.31), the derivative of VEy with respective to τ is given as

dVEy

dτ
=ET

y

dEy

dτ

=− ky1E
T
y Ey − ky2E

T
y [sign(Ey1), · · · , sign(Eym)]

T + ET
y δy

≤− ky1E
T
y Ey − ky2∥Ey∥1 + ∥Ey∥1∥δy∥1

=− ky1E
T
y Ey − (ky2 − ∥δy∥1)∥Ey∥1. (6.35)
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Since ky1 > 0, ky2 > δ̄y ≥ ∥δy∥1, it can be known from (6.35) that
dVEy

dτ
< 0 is also valid.

Hence the boundary layer equation (6.17) is asymptotically uniformly stable, and Ey will converge

to 0 asymptotically uniformly in x, which means that the states y will converge to the equilibrium

h(x) asymptotically uniformly in x. Since boundary layer equation (6.17) is asymptotically uni-

formly stable in x, and the origin of the corresponding reduced model (6.14) is asymptotically

stable. According to Theorem 6.1, there exists ε∗ > 0 such that for all 0 < ε < ε∗, (6.13) is PAS.

The proof of Theorem 6.2 is thus completed.

A summary of the identification and control of nonlinear singularly perturbed system using

two-time-scale neural networks is listed as follows:

1. Construct the two-time-scale RHONN as in (6.9). Select suitable sigmoid functions

ψi(z), i = 1, · · · , 4 and initial values of the weight matrices Wi, i = 1, · · · , 4. The most com-

monly used sigmoid functions are logistic function and hyperbolic tangent function. The initial

values of the weight matrices should be carefully selected such that the ill-conditioned problem

will not occur.

2. Use singular perturbation theorem to decompose the error dynamic equations (6.13) into the

reduced slow subsystem (6.14), (6.15) and the reduced fast subsystem (6.16) and (6.17).

3. Design the equilibrium h(x) in (6.18) such that the reduced slow subsystem is asymptotically

stable.

4. Design the control signal u in (6.27) such that the reduced fast subsystem will converge to

its equilibrium h(x) asymptotically and uniformly in x. Select kx1, ky1 to be small values at the

beginning and increase them gradually to achieve satisfactory control results. Generally speaking,

larger kx1, ky1 will result in faster convergence of x, y with more oscillation. kx2, ky2 should be

small enough to minimize the ripples when x, y are close to their equilibrium.

Remark 6.3. In this section, the indirect adaptive controller is designed based on the identified

model using multi-time-scale RHONN. In [23–25], NN was also adopted for adaptive control pur-

pose. The difference is that in these papers, only regular (one-time-scale) NN was used to design

direct adaptive controllers. Multi-time-scale NN was also used in Chapter 3 and [26,27] to design
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indirect adaptive controllers. Nevertheless, in these papers, the controllers were designed by treat-

ing the SPSs as regular systems, and singular perturbation theorem was not considered. Hence, the

order of the matrices in the controllers designed in [26,27] could be very large if the dimensions of

x, y were high. Also, ill-conditioned problem was more likely to occur because 1/ε was involved

in the controller matrices. In this section, by using the singular perturbation technique, the origi-

nal system is decomposed into two lower-order subsystems, and the indirect adaptive controller is

designed for the subsystems. As a result, the matrices of the controller designed in this section has

lower order, and the required computational resource is reduced. Besides, ε is not involved in the

controller matrices in this paper. Hence, the ill-conditioned problem is less likely to occur.

Remark 6.4. In general, there is no theoretical proof that the ill-conditioned problem will not

occur during the identification and control process due to the matrix inversion in controller de-

sign. Some methods such as projection operation can be included in the adaptive laws for the

NN weights to avoid the potential ill-conditioned problem [48, 96–98]. However, in practice, by

choosing proper initial weight matrices and selecting suitable learning and control parameters,

the ill-conditioned problem can be avoided.

6.2.3 Simulation

To demonstrate the potential application of the suggested identification and control schemes

for practical systems, an armature-controlled DC motor is considered:

J
dω

dt
= kti,

L
di

dt
= −kbω −Ri+ V,

(6.36)

whereR, L, i, V are the armature resistance, inductance, current, and voltage, J is the moment of

inertia, ω is the angular speed, kt, kb are the torque and back electromotive force constant. Define

x = ω, y = Ri/kb, u = v/kb, Tm = JR/(ktkb), Te = L/R, tr = t/Tm, the state equations
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(6.36) can be brought into a standard form of a singularly perturbed system [120]:

dx

dtr
= a1y,

ε
dy

dtr
= −b1x− b2y + u,

(6.37)

where ε = Te/Tm, a1 = b1 = b2 = 1. Since the electrical time constant Te is much smaller than

the mechanical time constant Tm, the ε is very small. In this simulation, ε is assumed to be 0.05.

To identify and control the singularly perturbed system (6.37), the multi-time-scale RHONN

defined in (6.9) is used and the following parameters for the RHONN are chosen: A = −10,

B = −2, λx = 200, λy = 50, the neural nodes number q = 4, and Wi ∈ ℜ1×4, i = 1, . . . , 4. The

activation functions in (4.46) are chosen as ψ1(z) = ψ2(z) = ψ3(z) = ψ4(z) = 1/(1 + e−z) + 1.

The initial values are set to be x(t0) = 1.4, y(t0) = 0, Px(t0) = 103I ∈ ℜ8×8, Py(t0) = I ∈ ℜ8×8,

W1(t0) = W2(t0) = [1, 1, 1, 1], W3(t0) = W4(t0) = [10−2, 10−2, 10−2, 10−2]. For the controller,

the following parameters are used: kx1 = 10, kx2 = 10−4, ky1 = 10, ky2 = 10−4. The sampling

time for the simulation is 0.001s and the numerical method is Euler method. The simulation results

of the control scheme proposed in Section 6.2 and the state feedback controller (SFC) developed

in [121] are presented in Figs. 6.1-6.6.

In Fig. 6.1, x represents the state controlled by the controller developed in this section. xsfc

denotes the state controlled by the SFC. x̂ is the identification result of x during the identification

process. In Fig. 6.2, yr denotes the equilibrium point h(x). y and ŷ are the system state and

identification result, respectively. State errors erx and ery in Fig. 6.3 are defined as erx = x − 0

and ery = y − yr. Fig. 6.1 shows that by using the control scheme developed in this paper, x

will converge to the origin faster compared to the result by using the SFC. Fig. 6.2 indicates y will

converge to its equilibrium point. This is also demonstrated in Fig. 6.3 as the state errors erx and

ery tend towards 0. Fig. 6.4 shows that during the control process, the identification errors ςx and

ςy converge to 0, i.e., the identification results x̂ and ŷ are very close to their true values x and y.

In order to illustrate the robustness of the adaptive identification and control scheme, system
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Figure 6.1: Identification and control results of x.
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Figure 6.2: Identification and control results of y.

parameter b2 is changed to 10 while the controller parameters remain the same. The control results

are depicted in Fig. 6.5, where it is clear that when the system parameter changes, the result of the

control scheme developed in this section remain almost the same. However, the performance of

the SFC is deteriorated. It takes a longer time for the system state to converge to the origin when
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Figure 6.3: State errors of x and y.
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Figure 6.4: Identification errors of x and y.

using the SFC. If the system parameters are further changed to a1 = 0.5, b2 = 10, Fig. 6.6 shows

that the performance of the controller developed in Section 6.2 remain almost the same, while the

SFC is worse.
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Figure 6.5: Control results of x when b2 = 10.
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Figure 6.6: Control results of x when a1 = 0.5 and b2 = 10.

6.3 Controller Design for Trajectory Tracking Problem

In Section 6.2, an indirect adaptive controller is designed for a regulation problem using the

PAS theory (Theorem 6.1). However, in Theorem 6.1, it is required that the system has to satisfy
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the conditions fs(t, 0, 0, 0) = 0 and gs(t, 0, 0, 0) = 0. Hence it is not straightforward to apply

this theory to a trajectory tracking problem. In this section, an indirect adaptive control scheme

for a trajectory tracking problem is proposed without using the PAS theory. Instead, the overall

stability of the closed-loop system is analyzed directly via Lyapunov approach. It is proved that

the uniformly ultimately boundedness can be achieved by using the indirect adaptive controller

proposed in this section.

6.3.1 Controller Design

The nonlinear singularly perturbed system (4.84) given in Section 4.4 is considered in this

section:
ẋ = f1(x) + f2(x)y,

εẏ = g1(x, y) + g2(x, y)u.

(4.84 revisited)

Also, the NN (4.85) defined in Section 4.4 is used to identify the nonlinear SPS (4.84). Assume

the system states x of (4.84) track a given bounded reference xd ∈ C2. Define the tracking error

as Ex = x − xd and denote the estimated tracking error as Êx = x̂ − xd. Then the tracking error

can be rewritten as Ex = x − x̂ + x̂ − xd = ςx + Êx. This implies that the tracking error Ex can

be minimized by designing a controller to control the identification result x̂ such that the estimated

tracking error Êx is minimized, since ςx is bounded according to the identification scheme proposed

in Section 4.4.

For a multi-time-scale RHONN model (4.85), because the parameter ε is very small, the chang-

ing rate of ŷ will be very high. If h(x̂) is the equilibrium point of (4.85b), ŷ will converge to h(x̂)

rapidly. Specially, when ε = 0, the transient response of ŷ will be instantaneous. Denote the

tracking error of y as Ey = y−h(x̂), and the estimated tracking error of y as Êy = ŷ−h(x̂). Then

the estimated tracking error dynamics can be represented as:

˙̂
Ex =AÊx +W1Ψ1(x) +W2Ψ2(x)(Êy + h(x̂)) + Axd + Lxςx − ẋd,

ε
˙̂
Ey =BÊy +W3Ψ3(x, y) +W4Ψ4(x, y)u+Bh(x̂) + Lyςy − ε

dh

dt
.

(6.38)
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By setting ε = 0 in (6.38), and using the fact that Êy = 0 when ε = 0, one can obtain the

Reduced Slow Subsystem as:

˙̂
Ex =AÊx +W1Ψ1(x) +W2Ψ2(x)h(x̂) + Axd + Lxςx − ẋd. (6.39)

Define a new “stretched” time variable as τ = (t − t0)/ε, where t0 is the initial time, and set

ε = 0, then the Reduced Fast Subsystem is obtained as:

dÊy

dτ
=BÊy +W3Ψ3(x, y) +W4Ψ4(x, y)u+Bh(x̂) + Lyςy. (6.40)

By decomposing the original error dynamics (6.38) into the Reduced Slow Subsystem (6.39)

and the Reduced Fast Subsystem (6.40), the stabilization problem of (6.38) can be solved by de-

signing two controllers to stabilize the slow and fast subsystems (6.39) and (6.40) separately. To

guarantee the stability of the Reduced Slow Subsystem (6.39), h(x̂) can be designed as:

h(x̂) = [W2Ψ2(x)]
†h′(x̂),

h′(x̂) = −Axd −W1Ψ1(x)− Lxςx + ẋd,

(6.41)

where † denotes the Moore-Penrose pseudo-inverse [119]. Substituting (6.41) into (6.39), one

obtains:

˙̂
Ex = AÊx + υx, (6.42)

where υx = W2Ψ2(x)h(x̂)−h′(x̂) is the bounded approximate solution error [31]. Specially, when

W2Ψ2(x) is a square nonsingular matrix, υx = 0. Since A is a stable diagonal matrix, it is easy to

show that Êx is UUB.

To ensure that the Reduced Fast Subsystem (6.40) is stable, one can design a control signal u
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as:
u =[W4Ψ4(x, y)]

†u′,

u′ =−W3Ψ3(x, y)−Bh(x̂)− Lyςy.

(6.43)

Substituting (6.43) into (6.40), one obtains:

dÊy

dτ
= BÊy + υy, (6.44)

where υy = W4Ψ4(x, y)u − u′ is the bounded approximate solution error. When W4Ψ4(x, y) is

a square nonsingular matrix, υx = 0. Since B is a negative definite diagonal matrix, it is easy to

show that Êy is also UUB.

Lemma 6.1. It can be proved that as long as the system states x, y are bounded, then the pertur-

bation term in (6.38) satisfies:

∥dh
dt

∥2 ≤ β. (6.45)

Proof. Denote W2Ψ2(x) as M . According to (6.41), one has:

dh

dt
=
dM †

dt
[−Axd −W1Ψ1(x)− Lxςx + ẋd] +M †[−Aẋd −

dW1Ψ1(x)

dt
− Lxς̇x + ẍd], (6.46)

where

dM †

dt
=M †dM

dt
M † +M †M †T dM

T

dt
(I −MM †) + (I −M †M)

dMT

dt
M †TM † (6.47)

d[WiΨi(x)]

dt
=ẆiΨi(x) +Wi

dΨi(x)

dt
, i = 1, 2 (6.48)

dΨi(x)

dt
=
dΨi(x)

dx
ẋ. (6.49)

It should be noticed that xd, W1, W2, Ψ1(x), Ψ2(x), ςx, ẋd, ẍd, [W2Ψ2(x)]
† are all bounded.

Since exi is also bounded, then according to (4.99), ς̇x is bounded. Moreover, from (4.84), it is
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obvious that when x and y are bounded, ẋ is also bounded. Meanwhile, it is easy to known that

dΨi(x)/dx is bounded, which means dΨi(x)/dt is bounded. From (4.102), since θ̇xi is bounded,

then Ẇi is also bounded. Thus, all the terms in (6.46) are bounded, i.e.,

∥dh
dt

∥2 ≤ β (6.50)

is true for a certain positive constant β. Lemma 6.1 is thus proved.

Theorem 6.3. Consider the nonlinear system (4.84) with the RHONN given in (4.85). If the control

signal u is designed as (6.43) with h(x̂) given in (6.41), there exists a upper bound ε∗ > 0, such

that for all 0 < ε < ε∗, the semi-global uniformly boundedness of the estimated tracking errors

∥Êx∥2 and ∥Êy∥2 can be guaranteed.

Proof. Select the Lyapunov function as:

V = ÊT
x Êx + ÊT

y Êy. (6.51)

The derivative of V is:

V̇ = 2ÊT
x
˙̂
Ex + 2ÊT

y
˙̂
Ey. (6.52)

Substituting (6.38) into (6.52), and using (6.41) and (6.43), it follows that:

V̇ =2ÊT
x (AÊx +W2Ψ2(x)Êy + υx) +

2

ε
ÊyBÊy − 2Êy(

dh

dt
+ υy). (6.53)

Using Lemma 6.1 and Young’s inequality, it can be obtained that:

2ÊT
x υx ≤ 2ῡx∥Êx∥2 ≤ ῡ2x + ∥Êx∥22,

−2Êy
dh

dt
≤ 2β∥Êy∥2 ≤ β2 + ∥Êy∥22,

−2Êyυy ≤ 2ῡy∥Êy∥2 ≤ ῡ2y + ∥Êy∥22,

(6.54)
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where ῡx and ῡy are the upper bounds of ∥υx∥2 and ∥υy∥2, respectively. According to Theorem

4.3, W2 is bounded. Also, it is obvious that Ψ2(x) is bounded. Substituting (6.54) into (6.53), it

can be obtained that:

V̇ ≤−α1∥Êx∥22 + α2∥Êx∥2∥Êy∥2 −
α3

ε
∥Êy∥22 + β2 + ῡ2x + ῡ2y

=−
[
∥Êx∥2 ∥Êy∥2

]
Λ

⎡⎢⎣∥Êx∥2

∥Êy∥2

⎤⎥⎦+ β2 + ῡ2x + ῡ2y, (6.55)

where αi, i = 1, 2, 3 are some positive constants, and Λ is given by

Λ =

⎡⎢⎣ α1 −α2

2

−α2

2
α3

ε

⎤⎥⎦ . (6.56)

It should be pointed out that α1, α3 are dependent on A and B, respectively. The value of α1,

α3 can be set arbitrarily large by increasing A, B. From (6.56), it is easy to show that Λ will be

positive definite if only

ε <
4α1α3

α2
2

≡ ε∗. (6.57)

Hence, there exist a ε∗ > 0, such that for all 0 < ε < ε∗, V̇ ≤ −γV + β2 + ῡ2x + ῡ2y for some

γ > 0. Therefore it can be concluded that the semi-global uniformly boundedness of the estimated

tracking errors is guaranteed, and Theorem 6.3 is thus proved.

Remark 6.5. According to (6.57), one can always guarantee that the error dynamics (6.38) is

semi-global uniformly stable by choosing suitable A and B such that ε∗ is large enough.

Remark 6.6. According to Theorem 6.3, the estimated tracking error ∥Êx∥2 is bounded. This

implies the tracking error Ex is bounded since Ex = ςx + Êx, and the identification error ςx is

bounded.

Remark 6.7. In Section 6.2, the controller is designed for the regulation problem only. In this

127



paper, an indirect adaptive controller is designed for the trajectory tracking problem based on the

identified system model and the UUB of the closed-loop system is proved.

6.3.2 Experiment

To verify the effectiveness of the proposed control algorithms, the experiments on a harmonic

drive system are conducted. The harmonic drive system used in this experiment is the same as the

one used in Section 4.4. As presented in Section 4.4, the system model of a typical DC motor is

given as:

J
dω

dt
= kti,

L
di

dt
= −kbω −Ri+ V,

(6.58)

where J is the moment of inertia, ω is the angular velocity, kt is the torque force constant, i

armature current, L is the armature inductance, kb is the back electromotive force constant, R, V

are the armature resistance and voltage, respectively. Define x as the angular velocity, y as the

current, and u as the control signal. The RNN model (4.85) with modified OBE algorithm based

updating laws (4.101)-(4.106) proposed in Section 4.4 will be used to identify the unknown DC

motor system, and based on the identification results, the controller designed in Section 6.3 is used

to control the harmonic drive system to track a given reference signal

xd = 2.1sin(5t).

In this experiment, ε = 0.1 is obtained based on the prior knowledge of the setup, and the

following NN parameters are used: A = −20, B = −20, λx = 500, λy = 500, Lx = 20,

Ly = 10, gx = gy = 0.332, ζ̄x = 0.001, ζ̄y = 0.001, the number of neuron q = 2, W1 ∈ ℜ1×2,

W2 ∈ ℜ, W3 ∈ ℜ1×2, W4 ∈ ℜ, W1(t0) = W3(t0) = 0 ∈ ℜ1×2, W2(t0) = W4(t0) = 0.5,

Pxi(t0) = diag([50, 50, 50]), Pyj(t0) = diag([50, 50, 50]), the activation functions are chosen as

ψ1(z) = 2/(1 + e−0.5z) + 1, ψ2(z) = 1/(1 + e−0.2z) + 10, ψ3(z) = 2/(1 + e−0.1z) + 1, ψ4(z) =

1/(1 + e−0.1z) + 5. For comparison purpose, the original OBE based weight’s updating laws
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proposed in Section 4.3, and the GD based weight’s updating laws proposed in [112] are also tested.

It should be pointed out that the OBE and GD based scheme are only used to train the NN weights.

The indirect adaptive controllers remain the same when using different identification algorithm.

Also, the traditional PID control method is used in order to compare the control performance.

The sampling time for the experiment is 0.1 ms. The experimental results are presented in Figs.

6.7-6.13.

Remark 6.8. According to (6.55), largerA andB will result in faster convergence of the estimated

tracking errors. However, if A and B are too large, severe oscillation will be observed. This

situation also happens to λxi, λyj , and Lx, Ly given in Section 4.4. In the experiment, one can

set these parameters as small values at beginning, and then increase them gradually until the

desired results are achieved. The terms gxi, gyj should satisfy (4.107), and also should be chosen

to be large enough such that HT
xiPxiHxi > ζ̄2yj , H

T
yjPyjHyj > ζ̄2yj can be always guaranteed,

and a higher convergence speed of the weights can be achieved, as indicated in (4.122). The

parameters ζ̄xi, ζ̄yj can be chosen as two small values, which do not affect the identification results

very much. The initial values of W1 and W3 are usually set to be 0, and the initial values of the

elements in W2 and W4 are usually set to be small non-zero values. The initial values of Pxi, Pyj

can be chosen as arbitrary positive definite matrices. For the activation functions, usually setting

αi,1 = αi,2 = αi,3=1 can result in an acceptable result. To improve the result, one can change

these values via trial and error method.

From Figs. 6.7-6.13, it is clear that the modified OBE based identification and control algorithm

can achieve the best performance among all results. Fig. 6.7 and Fig. 6.11 show that at beginning,

there are visible difference between the desired angular velocity xd, the real velocity x and the

estimation x̂, as well as the desired current h(x̂), the real current y and the estimation ŷ at peak and

the lowest point of the trajectory. However, after a short learning period (about 6s), the differences

among them became negligible. When the original OBE based algorithm proposed in Section 4.3 is

used, the identification and control performances are very good at the beginning. The x, x̂ and y, ŷ

converge to xd and h(x̂) even faster than the modified OBE and GD based methods. Nevertheless,
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Figure 6.7: Identification and control results of velocity using the modified OBE.
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Figure 6.8: Identification and control results of angular velocity using OBE.

after 25 seconds, because Px and Py converge to 03×3, the weight’s updating laws are no longer

effective, and large gaps between the references and the real signals can be observed, as shown in

Fig. 6.8 and Fig. 6.12. When GD based algorithm is used, it takes much longer time for x, x̂ and

y, ŷ to converge to their references xd and h(x̂), as shown in Fig. 6.9 and Fig. 6.13. Even at the
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Figure 6.9: Identification and control results of angular velocity using GD.
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Figure 6.10: Control result of angular velocity using PID.

end of the experiment, the differences between the references and real signals are obvious. When

the PID control is applied, the system state x can always track the reference signal xd, but a larger

gap between x and xd can be observed, as shown in Fig. 6.10, compared with the results shown in

Fig. 6.7.
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Figure 6.11: Identification and control results of current using modified OBE.
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Figure 6.12: Identification and control results of current using OBE.

In Fig. 6.14, it is shown that when PID controller is used, a consistent tracking error occurs

during the whole experiment, and the magnitude of the tracking error remains the same. When the

modified OBE based control algorithm is use, the tracking error is smaller than the error obtained

using the PID controller at the beginning, and decreases dramatically at the end of the experiment.
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Figure 6.13: Identification and control results of current using GD.
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Figure 6.14: Tracking errors of angular velocity.

When the GD based control algorithm is used, the tracking error is larger than the error achieved

using the PID controller at the beginning, but it becomes slightly smaller than the error obtained

using the PID controller at the end of the experiment. When the original OBE based control

algorithm is used, the tracking error is small at the beginning, but the magnitude increases to a
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Figure 6.15: Tracking errors of current.

very large scale at the end of the experiment. In Fig. 6.15, similar phenomena is observed. At

the beginning of the control process, the original OBE based controller can achieve the minimum

tracking error, and the GD based controller has the largest tracking error. However, at the end

of the experiment, the modified OBE based controller has the minimum tracking error, while the

original OBE based controller has the largest tracking error.

To further compare the performance of different identification and control methods, the perfor-

mance index-ITAE is also calculated. The ITAE is defined as:

ITAE =

∫ T

0

t|e(t)|dt. (6.59)

The results of the ITAE calculation are presented in Table 6.1, where ITAExt, ITAEyt, are the

ITAE values of the tracking errorEx andEy respectively. From Table 6.1, it is clear that the control

errors are much smaller when the modified OBE proposed in Section 4.4 and the indirect adaptive

controller proposed in Section 6.3 are used, compared with the errors using the other methods.
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Table 6.1: ITAE values of Ex and Ey

Modified OBE OBE GD PID

ITAExt 35.2 277.9 119.5 122.2

ITAEyt 24.5 208.2 71.0 N/A

6.4 Conclusion

In this chapter, two indirect adaptive controllers are proposed based on the system models ob-

tained by using the identification schemes proposed in Chapter 4. To design these two controllers,

the singular perturbation theory is used firstly to decompose the original high-order multi-time-

scale nonlinear system into two reduced order subsystems. Then the controllers are designed for

the reduced order subsystems instead of the original high order system. Thus the complexity of the

controller design problem is simplified, and the required computational resource is also reduced.

Meanwhile, because the term 1/ε is no longer involved in the controllers, it is less likely to have

the potential singularity problem. Specifically, the first indirect adaptive controller is designed for

a regulation problem based on the PAS theory. By using the Lyapunov analysis approach, the sec-

ond indirect adaptive controller is proposed without using the PAS theory and thus can be applied

to a trajectory tracking problem. The stability of the closed-loop systems is guaranteed, and the

validity of the proposed controllers is demonstrated via simulations and experiments.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this Ph.D research, the identification and control of the nonlinear singularly perturbed sys-

tems using multi-time-scale neural networks are investigated. Several new identification schemes

are proposed to identify the nonlinear singularly perturbed systems with unknown system models

or parameters. These novel identification schemes can achieve high identification accuracy with

fast convergence. Based on the identified system models, three indirect adaptive controllers are

proposed to control the nonlinear system adaptively. The main results of this research are listed as

follows:

• An identification scheme using the multilayer neural network is proposed in Section 3.3.

When this multilayer NN identification scheme is used, the outputs of the NN follow those

of the nonlinear system more accurately and quickly compared to the results in [26]. The

eigenvalues of the linear parameter matrices are universally smaller than zero during the

identification process, which means the identification scheme remains stable.

• To achieve faster convergence, the OBE algorithm based identification scheme is proposed

in Section 4.2 for a discrete time system. The identification results of the system states

are much more accurate when the identification algorithm proposed in Section 4.2 is used.
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The identification errors are greatly reduced compared with the results using the method

proposed in [16]. Also, when using the method proposed in Section 4.2, the NN converges

much faster than using the identification algorithm proposed in [16]. This is due to that fact

that the learning gain of the weight’s updating law in the method proposed in Section 4.2

can vary adaptively. However, in [16] and in many other widely used learning algorithms,

the learning gain is fixed.

• In Section 4.3, the discrete time OBE based identification scheme is extended to a continuous

case. In the continuous OBE based identification algorithm, the learning gain can also be

adjusted adaptive during the identification process. The simulation results show that when

the identification scheme proposed in Section 4.3 is used, the estimated system states can

converge to the real system states more precisely and quickly, compared with the results

achieved when the multilayer NN identification scheme proposed in Section 3.3, or the single

layer NN identification scheme proposed in [16] are used. Also, the identification errors can

be greatly reduced when the continuous OBE based identification algorithm is used.

• A modified OBE based identification scheme is proposed in Section 4.4, where two extra

terms are added into the weight’s updating laws. Although the OBE based identification

algorithm proposed in Section 3.3 and Section 4.2 can achieve high identification accuracy

with fast convergence, it is found that when the identification errors may increase at the end

of the identification process if the identified system model is used to design indirect adaptive

controller. This is due to the fact that the learning gain of the OBE algorithm based iden-

tification scheme will keep decreasing during the identification process. When the learning

gain is too small, the identification method will lose its ability to adjust the NN weights.

In the modified OBE based identification algorithm, two additional terms gxiPxi, gyjPyj are

introduced. Hence, the terms Pxi and Pyj will converge to the equilibrium points Pxie and

Pyje which are determined by gxi, Hxi, gyj , and Hyj . Thus, the NN weight’s updating laws

will remain effective during the identification process.
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• A robust identification scheme using filtered variables is proposed in Chapter 5 and the

derivatives of the identification errors are no longer needed. When there is no measure-

ment noise, both the modified identification scheme proposed in Section 4.4 and the robust

identification scheme proposed in Chapter 5 can achieve satisfactory performance. When the

measured system states contain noises, the identification errors remain small when the robust

identification scheme is used, however, large identification errors can be observed during the

identification process, and the magnitudes of the errors keep increasing, when the modified

OBE based identification algorithm is used. Because in the modified OBE based algorithm,

the noises will be amplified when the measured system stated are differentiated. However,

in the robust OBE based identification algorithm, the derivatives of the system states are not

needed, and the identification scheme will remain effective during the identification process.

• Based on the identified models, an indirect adaptive controller using feedback linearisation

and sliding mode technique is designed in Section 3.4, where the identified model is treated

as a regular system. By using the identification and control scheme proposed in Section

3.4, the closed-loop system can track the given reference signal more precisely. The tracking

errors are greatly reduced when compared with the control results using the method proposed

in [26]. Meanwhile, it can be observed that it takes relatively more time for the slow system

states to track the reference signals than the fast system states, because the small parameter

ε accelerates both the identification and trajectory tracking process of fast system states.

• To solve the regulation problem, an indirect adaptive controller is designed in Section 6.2

based on the PAS theory. In order to simplify the controller structure and reduce the required

computational resources, the singular perturbation theory is employed to decompose the

high order multi-time-scale system into two reduced order subsystems, and then the indirect

controllers are designed for the reduced order subsystems. It is shown that when the indirect

adaptive controller is used, the system state x can always converge to 0 fast. Even if the

system parameters changes, the system response remain almost the same. However, when
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the state feedback controller [121] is used, only slower convergence can be achieve. If the

system parameter changes, the control results deteriorate.

• In Section 6.3, an adaptive controller is designed to solve a trajectory tracking problem.

Through Lyapunov approach, the upper bound of ε is found, and the closed-loop stability

is guaranteed for any 0 < ε < ε∗. Meanwhile, it is shown in the experiment that when the

modified OBE based controller is used, the best tracking performance can be achieved. The

tracking errors are small at the beginning and will keep decreasing during the identification

process.

• A harmonic drive DC motor system is built up. The effectiveness of the identification and

control schemes proposed in this research are verified via practical experiments.

7.2 Future Works

Although this Ph.D research has achieved some remarkable results, there are still many prob-

lems that needs further investigation:

• So far, all system states are considered to be measurable. If some system states cannot be

measured, an observer could be utilized to observe those immeasurable system states, then

theorems and proofs in this thesis should be modified to consider the observer errors as well.

This topic could be considered in the future work.

• In Chapter 6, the controllers are designed for the affine-in-control cascade systems. How to

design a controller for a non-affine-in-control non-cascade system is still challenging.

• The controllers are only designed for the regulation or trajectory tracking problems. Also,

no constraint on the systems is considered. It is worth discussing other kinds of control

problems, such as the optimal control problem under system constraints.
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