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ABSTRACT

Code duplication, also known as software clones, is a persistent problem in soft-

ware systems that is usually associated with error-proneness and poor software main-

tainability. Despite the fact that clone detection is a mature research field, clone

refactoring has not been equally investigated. Clone refactoring requires the unifica-

tion and merging of duplicated code, which is a challenging problem because of the

changes that take place on the initial clones after their introduction.

In recent years, more research works attempted to address the challenges around

clone refactoring by applying different techniques; however, they suffer from poor

accuracy or performance issues, especially for large clone groups containing more than

two clone instances. We contribute to this field by proposing an automated approach

that a) finds refactorable subgroups (consisting of three clones or more) within the

original group of clones, b) finds the statements that to be merged and extracted in

a fast yet accurate way, and c) assesses the refactorability of clone subgroups.

We evaluated our approach in comparison to the state-of-the-art, and the results

show that we have a high accuracy in matching the clone statements, while maintain-

ing high performance. In a case study, where we carefully examined all clone groups

in project JFreeChart 1.0.10, we found that around 49% of the 98 clone subgroups

are actually refactorable. Finally, we conducted a large-scale study on over 44k clone

groups (13.6k groups containing 3 clones or more) detected by four clone detection

tools in nine open source projects to assess the refactorability for clone groups. The

outcome of this study revealed the presence of 2,833 refactorable clone subgroups

that contain in total 13,398 clone instances.
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Chapter 1

Introduction

System development life cycle (SDLC) represents the phases a software has to go

through until the user is able to interact with a running system. SDLC starts by col-

lecting requirements from users (Analysis phase), designing the system as a collection

of modules or subsystems (Design phase), implementing the design into source code

(Implementation phase), and ends by testing and delivering the software product

to the user (Testing phase). However, after the initial delivery of the product, the

Maintenance phase starts, during which bugs are getting fixed or new requirements

are being implemented.

Studies have shown that the Maintenance phase holds the largest percentage of

the total software development cost. Grubb et al. [GT03] estimated that 40%-70%

of the money spent on a system during its lifetime is spent on maintenance. Mobley

[Mob90] and Maggard et al. [MR92] reported that 15%-40% of production cost is

spent on maintenance. A study by Wireman [Wir89] estimated the maintenance cost

for a group of companies would increase from $200 billions in 1979 to $600 billions in

1989. Coleman et al. [Col+94] reported that, in 1992, 60%-80% of the research and

development staff at Hewlett-Packard were involved in maintenance tasks, and that
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40%-50% of production cost was spent on maintenance.

The quality of code written during the Implementation phase affects significantly

the effort require to complete future maintenance tasks. Dekleva [Dek92] reported in

a survey that one of the most severe problems in maintenance is the quality of source

code, while Chapin [Cha99] mentioned in a survey that 48% of maintenance problems

are related to source code quality, such as poor documentation, high complexity, and

poor code structure quality.

The improvement of source code quality can be achieved through restructuring.

Restructuring is defined by Chikofsky et al. [CC90] as "the transformation from one

representation form to another at the same relative abstraction level, while preserving

the subject system’s external behavior (functionality and semantics)". A special case

of restructuring in object-oriented software development is Refactoring, a term intro-

duced by Opdyke [Opd92]. The object-oriented programming paradigm is based on

the concept of “objects”, which may contain data, in the form of fields, often known

as attributes; and code, in the form of procedures, often known as methods.

Refactoring improves the quality of software by removing code smells found in the

code. Code smells according to Mens et al. [MT04] and Fowler et al. [Fow+99], are

"structures in the code that suggest (sometimes scream for) the possibility of refac-

toring" . There is a large variety of code smells, such as duplicated code (or referred

to as code clones), and Feature Envy (i.e., when a method uses more features from

another class than the one it exists in). The focus of this thesis will be on duplicated

code refactoring as a means to enhance software quality and maintainability.

Duplicated code (code clones) increase maintenance effort and cost [LW08], error-

proneness when clones are updated inconsistently [Jue+09], and code instability

[MRS12]. To address these problems, different techniques were proposed as part

of clone management [Kos08]. Clone management [Kos08] can be preventive (i.e.,

2



avoid the introduction of new clones), corrective (i.e., eliminate existing clones), and

compensative (i.e., limit the negative impact of clones through automatic clone syn-

chronization when a change occurs). This work focuses on the corrective aspect of

clone management. It proposes a new approach to handle clone groups containing

three or more clone instances, by finding the differences among their statements, map-

ping properly reordered statements, and finally assessing if the clones in the group

can be safely refactored.

1.1 Motivation

The motivation behind this thesis comes from the three main points discussed exten-

sively in the next sub-sections.

1.1.1 Duplicated Code is an extensive and persistent problem

Code clones can comprise a high percentage of systems code base. For instance, Wang

and Godfrey estimated 10%-20% of the code in large systems are clones (a copy of

other code with or without changes) [WG14], while Ducasse et al. reported the

duplicated code in COBOL (COmmon Business Oriented Language, a programming

language used to solve business problems [Mic]) systems was about 50% [DRD99]

of the written code. Baxter et al. [Bax+98] detected that 12% of the code being

duplicated; Baker [Bak95] identified 13%-20% of the code being cloned; Lague et

al. [Lag+97] found that clone code is between 6.4%-7.5%; Mayrand et al. [MLM96]

estimated the duplicated code in industrial systems ranges within 5% – 20%; and

Ducasse et al. [DRD99] reported that clones can comprise 10% –15% of the source

code of large systems. A survey done by Arcoverde et al. [AGF11] reported that the

most persistent code smell is duplicated code.
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To add further evidence, we used a publicly available clone dataset [TMK15] that

includes the clones detected by four clone detection tools in 9 open source projects.

According to Bellon et al. [Bel+07], the clone detectors that we selected have a

precision (P) and recall (R) of: CCFinder (P: 72%, R: 72%), CloneDR (P: 100%,

R:9%). Deckard is more scalable than CloneDR [Jia+07], and NiCad has a precision

and recall of (P: 96%, R: 100%) [RC09]. For NiCad we used two configurations: Blind,

all identifiers are replaced with a single pseudo-variable; while Consistent, the same

identifier is replaced with a single pseudo-variable Xindex . The number of detected

clone instances are shown in Table 1.1. The numbers in the table represent number

of clones detected by each tool, where the last row is the total of clones detected

by the tool in all examined projects. These clones are detected in groups, where

the minimum size for each group is two (i.e., it contains only 2 clone instances). In

the context of this thesis, we focus more on clone groups containing more than two

instances, before the majority of previous works has mostly focused on clone pairs

(i.e., groups of two clone instances).

Table 1.2 shows the percentage of clone groups containing more than two in-

stances for each examined project. The last row represents the average percentage of

groups that consist of three or more clone instances. The average percentage ranges

between 28%-35% , showing that there is a significant number of clone groups with

multiple instances (i.e., more than two instances). Moreover, these groups contain

over 60% of the detected clone instances with a total of 94,650 instances. Table 1.3

shows the percentage of groups detected by each clone detection tool, where groups

are categorized based on the number of clone instances they contain. The groups

containing 3, 4, and more than 9 clone instances have the highest percentage, while

the other categories range from 0.6% to 2.67%.
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Table 1.1: Number of clone instances detected by each tool

Project Clone Detection Tool
CCFinder CloneDR Deckard NiCad Blind NiCad Consistent

Apache Ant 2,798 4,071 1,812 2,853 2,282
Columba 2,046 3,987 1,925 2,260 1,627
EMF 5,479 5,973 955 4,690 3,851
Hibernate 3,733 6,191 3,581 3,041 2,314
JMeter 2,018 525 1,974 2,187 1,703
JEdit 939 1,630 864 1,209 863
JFreeChart 9,546 8,804 6,932 4,793 4,211
JRuby 3,257 4,212 1,628 3,293 2,373
SQuirreL SQL 7,299 8,646 2,204 4,765 3,800
Total 37,115 44,039 21,873 29,091 23,024

Table 1.2: Percentage of groups containing 3 or more clone instances

Project Clone Detection Tool
CCFinder CloneDR Deckard NiCad Blind NiCad Consistent

Apache Ant 28% 25% 20% 31% 37%
Columba 23% 28% 27% 35% 35%
EMF 34% 28% 40% 38% 36%
Hibernate 30% 25% 28% 33% 32%
JMeter 23% 44% 25% 31% 31%
JEdit 18% 22% 12% 31% 26%
JFreeChart 43% 28% 39% 40% 41%
JRuby 20% 25% 36% 35% 31%
SQuirreL SQL 32% 36% 31% 32% 43%
Average 28% 29% 29% 34% 35%

Table 1.3: Percentage of groups containing x clone instances (3 ≤ x ≤ 9) in the
dataset [TMK15]

Tool / Group Size 3 4 5 6 7 8 9 > 9
CCFinder 11.42% 7.69% 2.70% 2.23% 1.10% 1.04% 0.75% 3.47%
CloneDR 12.43% 5.95% 2.43% 1.95% 1.07% 0.88% 0.51% 3.24%
Deckard 15.49% 6.99% 2.08% 1.80% 0.85% 0.84% 0.40% 1.94%
NiCad Blind 15.22% 7.91% 3.09% 2.52% 1.11% 1.17% 0.68% 4.55%
NiCad Consistent 14.84% 7.77% 3.05% 2.65% 1.19% 1.23% 0.71% 4.26%
Average 13.88% 7.26% 2.67% 2.23% 1.06% 1.03% 0.61% 3.49%
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1.1.2 Lack of reliable and mature clone refactoring tools

As mentioned before, clone management encompasses three categories of actions;

however, researchers in the field mainly focused on two of them, namely preven-

tive and compensative. Many tools and techniques were developed and proposed

by researchers such as, CCFinder [KKI02], and NICAD [RC08b] to assist developers

in finding clones scattered through project files. Other tools such as CloneTracker

[DR08; Ngu+12] act as live recommendation systems to notify users of clones being

modified.

The corrective aspect of clone management covers the elimination of clones through

refactoring. The process of refactoring requires first to compare the code clones and

find differences between them, such as different method calls that need to be pa-

rameterized in the common code that will be extracted (i.e., a parameter should be

introduced in the extracted common code for each difference found in the clones).

Current clone refactoring tools support mostly trivial differences for parameteri-

zation. Eclipse allows only differences in local variable names, and it can be applied

on clones within the same Java file only. CeDAR is another Eclipse plug-in pro-

posed and developed by Tairas et al. [TG12], which extends the Eclipse refactoring

engine to allow more kinds of differences between the clones. CeDAR was able to

refactor 18% of the cases reported by Deckard in comparison to 10.6% that could be

refactored by Eclipse. However, CeDAR is limited to Type-1 (i.e., same code except

for differences in whitespace or comments) and Type-2 (i.e., clones containing differ-

ences in identifiers, literals, and types) clones. Meng et al. [Men+15] is the first work

that supports more advanced clone refactoring operations, by extracting the common

code, creating new types and methods (if necessary), and introducing return objects,

but despite these improvements Type-3 (i.e., clones with statements added, removed,
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or changed) clones are not supported.

Lastly, a work done by Tsantalis et al. [TMK15] can be seen as the state-of-the-art

tool in refactoring pairs of clones (i.e., groups containing two clone instances) that

addressed all previous limitations and supports automated refactoring. The only

limitation is that it does not support the refactoring of clone groups containing more

than two clone instances.

1.1.3 Developers care about clones

In a survey conducted by Yamashita et al. [YM13], about determining the knowledge

of developers and their interest in code smell, one of the questions asked to developers

was to rank code smells according to their perceived importance "Are there specific

code smells / anti-patterns that you are concerned about? Please list them

in order of their perceived importance". Duplicated Code was the most popular

smell and had the highest rank with 19.53 points (Table 4, Yamashita et al. [YM13])

followed by Long Method with 9.78 points, Accidental Complexity with 8.32 points,

and Large Class with 7.09 points.

In another survey by Silva et al. [STV16] it was observed that developers are

seriously concerned about avoiding code duplication, when working on a given main-

tenance task. Developers often apply refactorings, especially Extract Method refac-

torings, to reuse code and avoid duplicating the same functionality.

1.2 Contribution

This work deals with the problem of refactoring (or merging) clone groups containing

three or more clone instances. The main challenge is the scalability of the solution,

since as the size of a clone group increases, the number of pair-wise clone instance
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comparisons/combinations grows factorially
(
n
2

)
. The contribution of this work can

be summarized as:

1. We propose a multi-clone statement mapping approach that uses control and

data dependence information as well as date type information.

2. We propose an algorithm to find subgroups of clone instances that have a min-

imum number of differences, within a group of clones. In this way, we reduce

the number of combinations to be examined, because we avoid the comparison

of clones in different subgroups.

3. We show evidence that large clone groups can become refactorable by splitting

them into smaller subgroups.

The rest of the thesis is organized as follows: Chapter 2 covers background knowl-

edge that is needed throughout the thesis. Chapter 3 contains a review of the related

literature. Chapter 4 describes the proposed solution for multi-clone analysis and

refactoring. Chapter 5 presents a qualitative study on 847 clone groups containing

2307 clone instances in total. Chapter 6 contains statistical information from the

analysis of clone groups detected by 4 different clone detection tools in 9 open-source

projects. Finally, the conclusions of the thesis and future work are discussed in

Chapter 7.
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Chapter 2

Background

2.1 Software Maintenance

Software Maintenance is the last phase and an important part of System Develop-

ment Life Cycle (SDLC), because systems evolve and new requirements are needed

as time passes. Lientz et al. [LS81] reported in a survey that around half of the devel-

opment time is spent on maintenance, and over forty percent of the time is spent on

enhancements and adding new features to running systems. Software Maintenance is

classified into four types [Tsu+15] based on the goal it carries out:

• Adaptive: Ensure system compatibility with the changes in its environment.

For instance, sometimes there are improvements to the hardware the system is

running on; however, the software needs to be updated to ensure the system

will keep running normally and will not fail.

• Perfective: Improve the performance and maintainability of a working system.

• Corrective: Identify and correct problems in a system, after it has been pushed

to a working environment that the users can access and work on.
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• Preventive: Prevent potential faults occurring in the future. The system is

still running perfectly with no bugs, but the developers realize that they have

to do some changes to prevent faults in the future if certain conditions are met.

Our work in this thesis is associated with the following maintenance types:

Perfective because duplicated code degrades the quality of the system, which affects

future maintenance tasks.

Corrective because duplicated code increases the effort required to fix existing bugs

repeated in many different places of the source code.

Preventive because maintenance is a continuous process and duplicated code can

be a source of inconsistent changes and future bugs.

2.2 Code Clone Types

Copying existing functionality to create new one by making minor modifications

can lead to divergent clones (i.e., pieces of code that were originally the same, but

become syntactically more distant after they undergone some modifications ). Some

of these changes may include renaming variables, removing or adding statements,

changing method calls or instantiated objects. Based on the changes duplicate code

is categorized into four types [RCK09].

2.2.1 Type I

The duplicated code, excluding differences in white-spaces, comments, and layout is

exactly the same.
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Figure 2.1: An example of Clone Type I

2.2.2 Type II

Type II is a superset of Type I, additionally including differences in the identifiers,

literals, and types.

Figure 2.2: An example of Clone Type II

2.2.3 Type III

Type III is a superset of Type II with further modifications such as, added, re-

moved, or changed statements. Statements that appear in one clone fragment, but

not the others are called gapped/unmapped statements. Figure 2.3 below is an exam-

ple of a pair of matched clones were statements 21-22 are considered as gaps, because

they appear in the left fragment only and could not be mapped with any statement

in the second fragment on the right.
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Figure 2.3: Example of Gapped Statements highlighted in red

2.2.4 Type IV

This type is very difficult to be detected by clone detection tools, due to clones having

a completely different syntactic implementation, but similar functionality [RCK09;

RC09]. Also, it is not necessary that they were copies of each other, as they might

be coded by different developers [RC07]. Below is an example of a Type-4 clone were

one of the fragments is written using a while-loop, while the other uses a recursive-

function:

void loopOver(int var){

while(var > 0){

System.out.println(var);

var --;

}

}

void loopOver(int var){

if(var > 0){

System.out.println(var);

loopOver(--var);

}

}

2.3 Clone Detection tools

2.3.1 Clone Detection Techniques

There are many available tools for detecting clones in source code. These tools use

different techniques to detect duplicate code [RCK09], for which we will give a general

overview in this section along with some indicative tools.
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2.3.1.1 Textual technique

In this approach the raw source code is textually compared after some normalization

and formatting of the source code before the comparison is executed.

- Tools following this approach are NiCad [RC08a] and Simian [Har16].

2.3.1.2 Lexical technique

This technique is referred to as token-based approach. The source code is converted

into a sequence of tokens, which are scanned for duplicate sub-sequences.

- Tools following this approach are CCFinder [KKI02] and CP-Miner [Li+06].

2.3.1.3 Syntactic technique

In contrast to previous techniques, this technique requires the source code to be parsed

into an abstract syntax tree (AST), and then either a tree or structural matching

approach is used to detect clones.

• Tree matching approach detects clones by finding similar sub-trees.

- Tools following this approach are CloneDR [Bax+98] and ccdiml [Pro].

• Metrics-Based approach Metrics from code fragments are gathered in feature

vectors, and then the similarity of these feature vectors is computed.

- Tools following this approach are DECKARD [Jia+07] and SMC-Similar

Method Classifier [Bal+99].

2.3.1.4 Semantic technique

This technique uses static analysis to generate the Program Dependence Graph

(PDG) of functions, and then finds isomorphic sub-graphs.
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- A tool following this approach is the tool developed by Jens Krinke [Kri01]

There are many techniques and tools to detect clones; however, their performance

and results impose other challenges that need to be addressed before they can be

used for the purpose of clone refactoring.

2.3.2 Challenges imposed by clone detection tools

Quality of clones Figure 2.4 shows an example of poor quality clone fragments

reported by NiCad in JFreechart project, where only two statements have been

mapped while the other statements couldn’t be mapped because their abstract

syntax tree structure is different. Moreover, some of the groups reported by

clone detection tools can be very large, such as 200 clone instances or more

in the same group, which puts in question the quality of such a clone group.

Finally, the number of statements inside the clone fragments can be problematic,

as some tools might report a single statement as a clone.

Incomplete control structure Clone detection tools do not preserve the control

structure and report clones with partial control structure. For instance, if the

original source code contains If-Else, the clone detection tool might return only

the if clause, or the else clause. So, we refer to control statements that all of their

nested statements are included in the reported clone fragments as Complete

Control statements.

Non-Refactorable clones Some clones do not have the aforementioned limitations,

but they cannot be refactored, because the fragments belong to different files

and the extracted code cannot be pulled up into a common superclass.
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Figure 2.4: Example of poor quality clone fragments

2.4 Algorithms

2.4.1 String Similarity

2.4.1.1 Levenshtein Distance

This algorithm was named after Vladimir Levenshtein [Lev66]. Levenshtein Distance

(LD) is one of the widely known and used algorithms to measure the similarity be-

tween two strings. The distance is measured by computing the minimum number of

deletions, insertions, or substitutions required to transform one string into another.

The LD distance for two strings A and B is computed as:

LD(A,B) = min{a(i) + b(i) + c(i)} (2.1)

where a(i), b(i), and c(i) are number of replacement, insertion, and deletion op-

erations, respectively. To compute the similarity between strings A, and B we use

equation 2.2.

similarity(A,B) = 1− LD(A,B)

max{|A|, |B|} (2.2)
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2.4.2 Vector Similarity

Before we discuss vector similarity algorithms we need to mention that each vector
in the computation should have the:

• Same Dimension

• Same Length

• Same Features being compared. Feature X in one vector should be compared
to the same feature in the other vector.

2.4.2.1 Cosine Similarity

Cosine Similarity is one of the popular algorithms in text mining and information

retrieval [Deh+11], where the similarity between two vectors A and B is computed

as:

similarity(A,B) =

∑l
i=1(Ai.Bi)

(
∑l

i=1(Ai)
2).(
∑l

i=1(Bi)2)
(2.3)

where l is the length of vector, Ai and Bi correspond to the same feature i in vectors

A and B. Because the formula of this algorithm is a dot product, if Ai = Bi = 0 the

similarity will be 0 rather than 1.

2.4.2.2 Hamming Distance

This distance is used often to find the differences in two strings of bits equal in length.

The earliest use for it was in 1980, when it was used to measure errors in messages

sent over the network [BKR02]. The advantage of using this algorithm is that when

two vectors have the same feature equal to 0, it means that the similarity for this

feature is 1 rather than 0 as in Cosine similarity. For two feature vectors A and B

the distance is:
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distance(A,B) =
l∑

i=1


0 ifAi = Bi

1 ifAi 6= Bi

(2.4)

where l is the dimension of the vectors. While the similarity for A and B is computed

as:

similarity = 1− distance(A,B)

|vector| (2.5)

where |vector| is the length of A and B. Equation (2.4) and (2.5) can be re-written

as:

similarity(A,B) =

∑l
i=1


1 ifAi = Bi

0 ifAi 6= Bi

|vector| (2.6)

2.4.2.3 Euclidean distance

This metric is the distance or line that connects two points A and B in n-space.

Euclidean distance has been used in different fields such as, clustering [PJ09].

distance(A,B) =

√√√√ n∑
i=1

(Ai−Bi)2 (2.7)

2.4.3 Jaccard Index

In 1901 Paul Jaccard introduced Jaccard Index or what is known as Jaccard similarity

coefficient [BJD13]. It is used to measure the similarity between two sets. Assuming
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A and B are sets, then Jaccard similarity is computed as:

similarity(A,B) =
|A ∩B|
|A ∪B| (2.8)

2.5 Clustering

Clustering is an analysis done to data in a group with the goal to divide them into

smaller groups by putting together the similar data points (Equation 2.9) [RM05]. We

will discuss one of the commonly used clustering algorithms, namely Hierarchical

Clustering.

S =
n⋃
i=1

Ci and Ci ∩ Cj = ∅ for i 6= j (2.9)

where clusters C1...Cn are subsets of S.

2.5.1 Hierarchical Clustering

In this type of clustering you don’t need to specify or know the number of clusters

beforehand, in contrast to other algorithms, such as K-means, in which the number of

clusters should be given as input. However, you need to know what level of clustering

is the best. There are algorithms such as the Silhouette Coefficient [Rou87] that can

help to estimate what level of clustering is the best, which we will discuss later on.

There are two approaches in hierarchical clustering based on the starting point as

they appear in Figure 2.5, namely Divisive and Agglomerative.
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Figure 2.5: Example of Hierarchical Clustering (Dendrogram)

2.5.1.1 Approaches

Divisive (Top - Down) This approach starts by placing all data points in the same

cluster (Top), and then it starts splitting the clusters into smaller clusters until each

data point is placed in a separate cluster (Down). The partitioning function can

be based on for example, the size of the cluster (split largest clusters first), and the

average similarity between clusters [DH02]. Algorithm 1 presents the procedure to

cluster M points in a divisive manner.

Algorithm 1: Divisive clustering algorithm
Input: M points
Output: Dendrogram

1 clusters← ∅
2 clusters← clusters ∪M points
3 while |clusters| 6= |M | do
4 split clusters using an algorithm
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Agglomerative (Bottom - Up) This approach starts by putting each data point

in its own cluster (Bottom), then merge the data points one pair at a time based on

their similarity (or distance) until there is a single cluster that contains all data points

(Up). Algorithm 2 presents the procedure to cluster M points in an agglomerative

manner.

Algorithm 2: Agglomerative clustering algorithm
Input: M points
Output: Dendrogram

1 clusters← ∅
2 clusters← clusters ∪M clusters for M points
3 while |clusters| > 1 do
4 merge nearest clusters in clusters

2.5.1.2 How to merge two clusters?

There are different algorithms to combine clusters [ZKF05], and some of them are

mentioned below. Assuming pk is a point in cluster Ci, pr is a point in cluster Cj,

and similarity is the function used to compute the similarity or distance between

two points:

Single Linkage The similarity for (Ci, Cj) is the highest similarity between pairwise

points in Ci and Cj. After applying equation 2.10 on all pairs of clusters, the

clusters with the maximum similarity are merged.

simsingle(Ci, Cj) = maxpk∈Ci,pr∈Cj
(similarity(pk, pr)) (2.10)

Complete Linkage This approach is the opposite of Single-Linkage, as the simi-

larity between two clusters is the lowest similarity (highest distance) between

their pairwise points. After applying equation 2.11 on all pairs of clusters, the
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clusters with minimum similarity (maximum distance) are merged together.

simcomplete(Ci, Cj) = minpk∈Ci,pr∈Cj
(similarity(pk, pr)) (2.11)

Average Linkage This clustering is referred to as UPGMA scheme [JD88]. The

similarity between two clusters is computed by finding the average similarity

between all points in the two clusters.

simaverage(Ci, Cj) = (
1

|Ci||Cj|
)

∑
pk∈Ci,pr∈Cj

similarity(pk, pr) (2.12)

MinMax Linkage This algorithm was proposed by [Din+01]. The goal is to merge

clusters that are less self-similar.

simMinMax(Cp, Cq) =
sim(Cp, Cq)

sim(Cp, Cp)sim(Cq, Cq)
(2.13)

2.5.2 Silhouette Coefficient

Silhouette Coefficient was introduced by Rousseeuw [Rou87]. It is used to measure

and estimate the consistency and quality of clusters.

SilhouetteScore =

∑n
i=1

∑|Ci|
j=1 s(j)

|m| (2.14)

s(j) =
bX[j]− aX[j]

max(bX[j], aX[j])
, (−1 ≤ s(j) ≤ 1) (2.15)

where

n is the number of clusters
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Ci is the cluster at iteration i, and |Ci| the cardinality of it

bX is the average dissimilarity between point j in cluster Ci and points outside Ci

aX is the average dissimilarity between point j in cluster Ci and its points

m is the total number of points in all clusters, and |m| the cardinality of it

The closer s(j) to 1 the less the dissimilarity within the same cluster and greater

to the other clusters (aX < bX), so we can say j is well-clustered. However, when

j is misclassified the dissimilarity within the same cluster is greater than the other

clusters, and s(j) will be close to -1 (aX > bX). In the situation where aX ≈ bX,

the value of s(j) will be close to 0, which implies it is not clear if j is placed in the

appropriate cluster or not.

2.6 Program Dependence Graph

The Program Dependence Graph (PDG) represents the relation between program

elements, where elements are statements or predicates. The edges represent rela-

tions that connect these elements, which can be either data or control dependencies

[FOW84]. Data dependencies are further categorized into three types [WB87]. As-

suming S1 and S2 are statements, then:

1. Data-Flow Dependency S1
R−→
d
S2: Assuming that S2 uses a result R from

executing S1, then we say that S2 is data dependent on S1.

2. Output Dependency S1
R−→
o
S2: Assuming R is the result from executing S1.

If S2 modifies R then we say S2 is output dependent on S1.

3. Anti Dependency S1
R−→
a
S2: Assuming R is a variable used in S1 and modified

by S2 then we say that S2 is anti-dependent on S1.
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4. Control Dependency S1
TorF−−−→
c

S2: Assuming S1 is a control statement (If,

For,. . . ). If the execution of S2 depends on the result of S1 then we say that S2

is control dependent on S1. A control dependency is labeled as either True or

False. For example, the control dependencies to the statements inside the else

clause of an If/Else statement are labeled as False. All other control dependen-

cies are labeled as True.

1) int x = 2; 
2) if (x > 0) { 
3) int y = x; 
4) int z = y + 1; 
5) y = 10;; 

} 

1

2

3 4 5

Control	Dep

Data	Dep

Anti	Dep

Output	Dep

T
T T

x

x

y

yy

Figure 2.6: Program Dependency Graph (PDG)

In the figure above, x and y are the variables affected by each dependency, also

T stands for True control dependency.
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2.7 Abstract Syntax Tree

2.7.1 AST representation

The Abstract Syntax Tree (AST) represents the syntactic structure of the source

code inside a file, which is derived from the parse tree or more often referred to as

Concrete Syntax Tree (CST). CST contains all information about the source code,

including comments, white-spaces, and line-breaks. The AST representation is an

abstraction of the CST that keeps only the information necessary to the compiler.

Figure 2.7 shows the AST representation for the code below. The content of Figure

2.7 is generated using the Eclipse plug-in AST-View [Foua].

public class simpleAST{
private int x = 0;
public int getX(){
return x;

}
}

TypeDeclaration	
(class)

NAME

SimpleName

simpleAST

MODIFIERS(1)

Modifier

public

BODY_DECLARATIONS(2)

FIELDDECLARATION

MethodDeclaration

MODIFIERS(1)

Modifier

private

TYPE

PrimitiveType

int

FRAGMENTS(1)

VariableDeclarati
onFragment

NAME

MODIFIERS(1)

Modifier

public

RETURN_TYPE2

PrimitiveType

int

NAME

SimpleName

getX

SimpleName

x

BODY

Block

STATEMENTS(1)

ReturnStatement

Expression

SimpleNamex

Figure 2.7: Example of an AST
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2.7.2 AST Visitor

The ASTVisitor is an abstract class found in org.eclipse.jdt.core.dom [Foub] library

which is part of the Eclipse IDE. It provides a mechanism to explore or visit every

statement and expression in an AST, and to perform an operation on specific types

of AST nodes. A class is required to extend ASTVisitor and override the methods

visit, and endVisit to implement custom functionalities.

2.8 Clone Refactoring Preconditions

The goal of this section is to introduce the conditions that duplicate code at pair

or group level must comply with to be assessed as refactorable. These conditions

are proposed by Tsantalis et al. [TMK15] and we will use them in evaluating the

refactorability of clone groups. There are eight preconditions in total, which we will

discuss next.

Precondition 1

The parameterization of the differences between the mapped statements should not

break any existing control, data, anti, and output dependencies.

In the example shown in Figure 2.8, the behavior of code has changed after apply-

ing refactoring because it violated this precondition. In the original code (Before

refactoring) in class B, a.getX() is assigned to variable x in methods m1 and m2,

then a.foo() and a.bar() are called. Both a.foo() and a.bar() change the value of

field x that exists in class A. To refactor m1 and m2 the common code needs to

be extracted to a new method and parameterize the differences in the statements.

The differences are the calls for a.foo() and a.bar() in m1 and m2, respectively.
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However, passing these method calls as arguments will first update field x of class

A, and then assign it to variable x in the extracted method, thus changing the final

result that is printed and the behavior of the program.

 
 

Before Refactoring After Refactoring 

public class A { 
   private int x; 
   public int getX () { return x; } 
   public int foo () { x++; return x; } 
   public int bar () { x+=5; return x;} 
} 
public class B { 
   public void test () { 
      A a = new A(); 
      m1(a); 
      m2(a); 
   } 
   public void m1(A a) { 
      int x = a. getX (); 
      int y = a. foo (); 
      System.out.print (x); 
   } 
   public void m2(A a) { 
      int x = a. getX (); 
      int y = a.bar (); 
      System.out.print (x); 
   } 
} 

public class A { 
   private int x; 
   public int getX () { return x; } 
   public int foo () { x++; return x; } 
   public int bar () { x+=5; return x; } 
} 
public class B { 
   public void test () { 
      A a = new A(); 
      m1(a); 
      m2(a); 
   } 
   public void m1(A a) { 
      ext (a, a. foo ()); 
   } 
   public void m2(A a) { 
      ext (a, a. bar ()); 
   } 
   private void ext (A a, int arg ) { 
      int x = a. getX (); 
      int y = arg ; 
      System.out.print (x); 
   } 
} 

Figure 2.8: Change in execution behavior (Figure 5. in Tsantalis et al. [TMK15])

Precondition 2

Matched variables having different subclass types should call only methods that

are declared in the common superclass or are being overridden in the respective

subclasses.

Precondition 3

The parameterization of fields belonging to differences between the mapped state-

ments is possible only if they are not modified.

In this precondition, fields that are part of the differences are only parameterizable

if they are not modified in the extracted code. In other words if the field’s value
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is changed inside the extracted code then this difference cannot be parameterized,

because parameters are passed by value in Java, and thus the extracted code would

not update the values of the fields after the refactoring.

Precondition 4

The parameterization of method calls belonging to differences between the mapped

statements is possible only if they do not return a void type.

Precondition 5

The unmapped statements should be movable before or after the mapped statements

without breaking existing control, data, anti, and output dependencies.

Precondition 6

The mapped statements within the clone fragments should return at most one vari-

able of the same type to the original methods from which they are extracted.

This condition implies that after extracting the mapped statements into a new

method, the method should return at most one variable of the same type, since

in our case the programming language is Java and it does not support passing of

parameters by reference. On the contrary, languages supporting parameter passing

by reference, such as C and C++, can return multiple variables.

Precondition 7

The mapped statements within the clone fragments should not contain any condi-

tional return statements.

The following example shows a conditional return statement. These statements are

used to exit directly the method they exist in. However, if we extract statements

(1) and (2) to a new method, they will exit the execution of the extracted method,

27



while the original method foo() will continue to execute normally and will not exit.

This problem can be solved by returning boolean flag from the extracted method;

however, this solution will require to add new statements to the original code foo()

and to the extracted method.

public void  foo(){ 
   int  x = 0; 
   . . . 
    (1) if (x > 0) 
       (2) return ; 
   System.out.println(x); 
   . . . 
} 
 

Precondition 8

The mapped branching statements (break, continue) should be accompanied with

the corresponding mapped loop statements.

This precondition implies that if the common statements include a break or con-

tinue statement, then the corresponding loop (For, While, Do/While, Enhanced For)

statement should be extracted as well.
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Chapter 3

Literature Review

3.1 Statement Mapping

Lin et al. [Lin+14] work focused on how to find differences among multiple clones

in the same group using Progressive alignment, an algorithm used in genetics to

align DNA and proteins [HS88]. They developed an Eclipse plugin called MCIDiff

(Multi-Clone-Instances Differencing) that takes N clones as an input and returns the

token differences among them. Their approach starts by parsing each clone into a

sequence of tokens and each token is categorized into either Type, Method/Field/-

Variable/Literal, Label, Keyword, or Separator (e.g., (,{), and Operator. The six

token classifications are divided into three groups based on the attributes attached

to them: 1) Name: for Type, Method/Field/Variable/Literal and Label tokens; 2)

Symbol: for Keyword, Separator and Operator tokens; lastly, 3) Data type: for

Method/Field/Variable/Literal tokens.

After parsing is complete, in the first step, MCIDiff computes the Longest Com-

mon Subsequence (LCS, longest sequence of tokens common between all clones) using

Progressive alignment for all clone instances starting from the two longest sequences,
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and then proceeding with the next token sequence and so on. The resulting tokens

in the LCS have the same category and attribute. However, there might be tokens

that are not common in all sequences, thus they are returned as differential ranges

representing the start and end indices for a range of tokens that were not common in

all sequences.

Differential ranges are examined again to find common tokens within non-gapped

tokens. First, they try to match identical tokens by re-running MCIDiff on non-

gapped token sequences within the differential ranges and try to match them with

the same criteria as before (same category and attribute). Then, for non-identical

unmatched tokens a similarity heuristic is used (i.e., tokens should have the same cat-

egory, while for attributes a similarity value is calculated). The computed similarity

for Keyword/Separator/Operator/Label is equal to 1.0 if they are the same, other-

wise it is 0.0; and for Type/Method/Field/Variable/Literal, the Jaccard coefficient

[BJD13] is used to find if tokens have a super type in common.

To evaluate the accuracy of MCIDiff, they used 831 clone sets reported by CloneDe-

tective (i.e., a token-based clone detection tool) [Jue+09] in three projects (Ja-

vaNewIO, JHotDraw, JFreechart). They filtered the clone sets to keep only those

that contain gaps and parameterization (i.e., differences), which resulted in only 638

(77%) clone sets, that consist of 353 sets containing two clones, 235 sets containing

three-to-five clones, and 50 sets containing more than 5 clones. The (precision, recall)

of MCIDiff for the three projects is respectively (100%, 100%), (98.66%, 95.63%), and

(98.82%, 98.39%). While they have a good precision and recall, their work has several

limitations that are listed below.

• Refactoring is not supported.

• They detect differences through Progressive alignment, but having a unique

sequence might lead to incorrect alignment. For example, in Figure 3.1 we can
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see that clones (1), (2), (4), (5) look similar in terms of control statements and

the behavior or the operation they execute (i.e., removing an object from a

list). However, clones (3) and (6) have different behaviors (unique clones) (i.e.,

clone (3) is searching for an object, and clone (6) is adding elements to a list).

 
 
 
 
 
 
 
  
 

	

(1) 
for (int i = 0; i < this.domainAxes.size(); i++) { 
   CategoryAxis axis =  
                (CategoryAxis)this.domainAxes.get(i); 
   if (axis != null) { 
      axis.removeChangeListener(this); 
   } 
} 

(2) 
for (int i = 0; i < this.rangeAxes.size(); i++) { 
   ValueAxis axis =  
             (ValueAxis) this.rangeAxes.get(i); 
   if (axis != null) { 
      axis.removeChangeListener(this); 
   } 
} 

(3) 
for (int i = 0; i < this.datasets.size(); i++) { 
   if (this.datasets.get (i) == dataset) { 
      result =  
        (CategoryItemRenderer) this.renderers.get(i); 
      break; 
   } 
}	

(4) 
for (int i = 0; i < this.domainAxes.size(); i++) { 
   ValueAxis axis =  
             (ValueAxis) this.domainAxes.get(i); 
      if (axis != null) { 
         axis.removeChangeListener(this); 
   } 
}	

(5) 
for (int i = 0; i < this.rangeAxes.size(); i++) { 
   ValueAxis axis =  
             (ValueAxis) this.rangeAxes.get(i); 
   if (axis != null) { 
      axis.removeChangeListener(this); 
   } 
} 

(6) 
for (int c = 0; c < this.data.getColumnCount(); c++) { 
   Number value =  
           this.data.getValue(r,c); 
   if (value != null) { 
      unique.add(value); 
   } 
} 

Figure 3.1: Clone group containing unique clones

• Finding similar tokens is almost an exhaustive search. As a result, the compu-

tation time increases dramatically as the size of the clone group, the length of

token sequences, and the number of differences among the clones increases.

• Examining the token sequences (i.e., clones) in a different order during the

alignment process, might produce different results.

• Reordered statements are considered as gaps, because their approach treats

the entire clone fragments as sequences of tokens. The example in Figure 3.2

demonstrates the limitation of MCIDiff. As it can be observed from the output

of MCIDiff shown in Figure 3.2b the re-ordered statements String str = "";

and double d = 0.0; cannot be properly matched:
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(a) Original Code

[int, e*], [y, e*], [=, e*], [9, e*], [;, e*], [int, double], [y, d], [9, 0.0],

[double, e*], [d, e*], [=, e*], [0.0, e*]

(b) Output generated by MCIDiff

Figure 3.2: Example demonstrating the limitation of MCIDiff to match reordered
statements.

The results from MCIDiff 3.2b are interpreted as followa:

– Statements int y = 9; and double d = 0.0; in the first and second clone

fragments, respectively are considered as gaps.

– The pairs of tokens (int, double), (y,d), (9,0.0) are considered as differ-

ences between the two fragments.

A recent work by Tsantalis et al. [TMK15] assesses the refactorability of clone

pairs by examining if the differences between the clones can be parameterized without

causing any problems. Their approach consists of three major steps. The first step

finds a common nesting structure (isomorphic trees) shared by the pair of clones. The

second step maps the statements of the clones in a way that maximizes the number

of mapped statements, while minimizes the number of differences between them. The

last step examines a list of preconditions to check if the differences found between

the clones can be safely parameterized, which we discussed in section 2.8.

In the first step, they look for maximal isomorphic sub-trees in the nesting

32



structure trees (NST) of the clone fragments, and if there are more than one non-

overlapping sub-trees, then each one is treated as a separate refactoring opportunity.

They follow a combination of Bottom-Up and Top-Down matching approaches when

searching for isomorphic sub-trees. They start from the leaf nodes and for each pair

of matched leafs (Bottom-Up), they try to find a matching sibling. For each pair of

matching siblings, they perform Top-Down matching to check if the resulting common

sub-tree is complete (i.e., all child nodes in the sub-trees have been matched with one

node from the other sub-tree). If a leaf in the first tree has multiple matches in the

second tree, then only the first matching leaf with minimum differences is explored.

After finding the isomorphic trees (common structure) for a pair of fragments,

the process of statement mapping follows. Each statement in the first fragment is

mapped with a single statement at most in the second fragment. Figure 3.3 shows

an example that the isomorphic trees resulting from the first step, do not lead to the

best solution, as the number of differences in Figure 3.3a are 24, while if we switch

the If/Else-If as in Figure 3.3b the number of differences decreases to only 2. This is

solved by comparing the body of If in the first fragment with the bodies of If, and

Else-If in the second fragment, and testing whether the resulting mapping maximizes

the number of mapped statements and at the same time minimizes the number of

differences between the mapped statements. The second step of their approach is

essentially a greedy algorithm that makes locally optimal choices at each level of the

NST sub-trees with the hope of finding a globally optimal solution.
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(a) Non-Optimal Mapping
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(b) Optimal Mapping

Figure 3.3: Example showing a non-optimal and an optimal mapping for two clone
fragments taken from Tsantalis et al. [TMK15]
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The refactorability assessment takes place after the statement mapping step is

complete. A list of preconditions is examined to check if any of the eight defined

preconditions for clone refactoring (Section 2.8) is violated. In summary, the pre-

conditions check if the mapped statements can be extracted into a method, if the

differences found between the clones can be parameterized, and if the unmapped

statements can be safely moved before or after the extracted code. This work is con-

sidered as the state-of-art in clone refactoring, because it introduces refactorability

analysis, which is an important feature in clone management to assess if a pair of

clones can be safely refactored by preserving the program behavior.

3.2 Clone Refactoring

One of the earliest works on duplicate code refactoring was done by Tairas et al.

[TG12], who developed an Eclipse Plug-in named CeDAR (Clone Detection, Anal-

ysis, and Refactoring). Their contribution falls in the three steps of removing dupli-

cate code. The first step, Clone Detection is done by clone detection tools such

as CCFinder [KKI02], and NICAD [RC08a]. However, the results from these tools

require pre-processing to get correct start-end line numbers for the clone fragments

before they can be processed. For example, CCFinder reports clones as ranges of to-

kens, whereas other tools might report incomplete statements. Therefore, their first

contribution is parsing and integrating the output from clone detection tools into the

refactoring process.

The output from Clone Detection is used as an input for the Clone Analysis

step. Previous techniques help in finding opportunities for refactoring by examining

some properties automatically, such as if the clones belong to classes within the same

inheritance hierarchy [Kon01]. The limitation of these techniques are: 1) They will
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find refactorable and non-refactorable clones, and 2) The decision is left to developers

or maintainers to apply the refactoring manually. To overcome the first limitation in

finding only refactorable clone groups, CeDAR employs the Eclipse IDE refactoring

engine to check if the group of clones meets a set of preconditions for the Extract

Method refactoring, i.e., extracting the clone fragments into a common method.

The last step is Refactoring, which is also done by the Eclipse IDE refactor-

ing engine. However, the Eclipse refactoring engine was not able to parameterize

differences within the clone fragments, with the exception of differences in variable

identifiers. CeDAR overcomes this limitation by extending the Eclipse refactoring

engine to add support for method call and field access parameterization.

The evaluation of CeDAR was performed by comparing it to the Extract Method

refactoring provided by Eclipse. They did an experiment on nine projects (including

Apache Ant, JFreeChart, JEdit, and JRuby), and they used the clones reported

by Deckard [Jia+07]. However, some of the groups were removed using the clone

analysis results from ARIES [HKI08], and SUPREMO [Kon01], as they could not

be refactored through extract method. ARIES and SUPREMO are tools used to

evaluate and propose how clones can be refactored. The total number of groups they

examined in their experiment is 1206. Eclipse was able to refactor 128 (10.6%), and

CeDAR 226 (18.7%) of the total groups. The main limitation of their work is that it

supports the refactoring of Type-I and simple Type-II clones only. Furthermore, the

refactoring support is limited to clones located within the same Java file.

Meng et al. [Men+15] developed a fully automated refactoring tool, called RASE

that uses the abstract edit script generated by LASE [MKM13]. The edit script

is computed by comparing different versions of the same method and returning the

differences as AST node insert, delete, update and move operations. Figure 3.4 shows
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an example of edit scripts, where the lines in blue are added statements, in red are

deleted statements, and in black are unchanged statements across versions. RASE

finds next the common changes in all methods (clones) and creates a generalized

program transformation, called abstract edit script. RASE requires the clones to be

adjacent, so that it can generate a single AST node (and all its child sub-trees), or

multiple sub-trees under same parent after the Merge step is performed.

pairs and 67% method groups. Systematic edits thus are a good
clue for refactoring, rather than being obviated by method-
level refactoring. However, RASE cannot automate refactoring
in 46% of pairs and 33% of groups mainly because of language
limitations, semantic constraints, and lack of common code.
We manually checked software version histories after system-
atic edits and found that in many cases, systematically edited
methods are not refactored. They either co-evolve, diverge, or
stay unchanged. Our tool evaluation and software repository
observations indicate that both automated systematic editing
and refactoring are necessary to support software evolution.

This paper designs and implements an automated clone
removal refactoring algorithm and demonstrates refactoring
feasibility. Predicting refactoring desirability is a hard problem
because it depends on complex factors, such as code read-
ability, the frequency and types of changes, future changes
in requirements, and code size. Since RASE automates the
feasibility step and quantifies code size impact, it should help
developers determine refactoring desirability [4, 28, 33] and
help with cost and benefit analysis [22, 26, 34], but we leave
that investigation to future work.

In summary, this paper makes the following contributions.
• We design and implement RASE, an advanced automated

clone removal tool. It takes methods with systematic edits
as inputs and fully automates refactoring to extract com-
mon code with variations in types, methods, variables,
and expressions.

• Evaluation on real-world pairs and groups of methods
shows that RASE effectively automates clone removal in
many cases. This tool evaluation together with our manual
software repository examination reveals that refactoring
is not always applicable or actually applied to every sys-
tematically edited method. Thus, automated refactoring
is unlikely to obviate systematic editing.

• Previous studies find that clone refactoring is not neces-
sary or feasible, but they did not construct an automated
refactoring tool [1, 5, 8, 16, 17]. The lack of automa-
tion introduces potential subjectivity bias. By automating
refactoring, our study improves on the prior methodology
and shows that refactoring is often feasible.

II. MOTIVATING EXAMPLE

This section overviews our approach with an example based
on org.eclipse.compare.CompareEditorInput revisions v-
20061120 and v20061218. Figure 1 shows a systematic edit
on two methods. The unchanged code is in black, added
code is in blue with ‘+’, and deleted code is in red with
‘�’. The two methods perform very similar input processing
and experience similar edits: adding a variable declaration
and updating statements. However, the changes involve using
different type, method, and variable names: IActionBars

vs. ISLocator; getActionBars vs. getServiceLocator;
findActionBars vs. findSite; offset vs. offset2; and
actionBars vs. sLocator.

Given two changed methods, our refactoring tool (RASE)
first invokes LASE [23], which creates an abstract edit script.

1. public class CompareEditorInput {
2. private ICompareContainer fContainer;
3. private boolean fContainerProvided;
4. private Splitter fComposite;
5. public IActionBars getActionBars (int offset) {
6. if (offset == -1)
7. return null;
8. - if (fContainer == null) {
9. + IActionBars actionBars = fContainer.getActionBars();
10.+ if (actionBars==null&&offset!=0&&!fContainerProvided){
11. return Utilities.findActionBars(fComposite, offset);
12. }
13.- return fContainer.getActionBars();
14.+ return actionBars;
15. }
16. public ISLocator getServiceLocator (int offset2) {
17.- if (fContainer == null) {
18.+ ISLocator sLocator = fContainer.getServiceLocator();
19.+ if(sLocator == null&&offset2!=0&&!fContainerProvided){
20. return Utilities.findSite(fComposite, offset2);
21. }
22.- return fContainer.getServiceLocator();
23.+ return sLocator;
24. }
25.}

Fig. 1. An example of systematic changes based on org.eclipse.compare.-
CompareEditorInput from revisions v20061120 and v20061218

1. … …method_declaration(… …) {!
2.    … …!
3.    INSERT: T$0 v$0 = fContainer.m$0(); !
4.    UPDATE: if (fContainer == null) {!!
5.        TO: if (v$0==null && v$1!=0 && !fContainerProvided){!
6.      … …!
7.    }  !
8.    UPDATE: return fContainer.m$0();! !
9.        TO: return v$0;!
10.}

Fig. 2. Abstract edit script inferred by LASE

1. T$0 v$0 = fContainer.m$0();
2. if (v$0==null && v$1!=0 && !fContainerProvided) {
3. return Utilities.m$1(fComposite, v$1);
4. }
5. return v$0;

Fig. 3. Abstract refactoring template of common code created by RASE

The script describes abstractly the edit applied to both meth-
ods. It represents edit operations with AST node inserts,
updates, moves, and deletes. Figure 2 shows the inferred
abstract edit script for this example.

Given an edit script, RASE identifies edited statements
related to the systematic changes. It uses the ranges of edits to
scope its automated factorization and generalization, extracting
the maximum common contiguous clone which encompasses
all systematically edited statements. If similar edits are sur-
rounded by cloned statements, RASE expands the refactoring
scope to the entire method. For our example, in Figure 1,
RASE selects lines 9-12, 14, 18-21, and 23 to refactor. Note
that RASE includes the unchanged lines 11-12 and 20-21 in
order to extract syntactically valid if statements.
Next, RASE creates an abstract refactoring template for the

selected code snippets by matching expressions and identifiers
between them, as shown in Figure 3. It uses the original code
when identifiers or expressions are identical and otherwise
abstracts them (e.g., offset vs. offset2). It records a map
of abstract names to their original concrete identifiers and
expressions to use later.

Figure 3.4: Example of systematic edit (Figure 1, Page 2 Meng et al. [Men+15])

Their approach consists of three steps: In the Merge step, the code in the first

version is considered as the root, while each edit is a tree. It works on two trees at a

time, and starts with the ones that have the longest path from root, then it merges

them based on their lowest common ancestor. For instance, if we have two edits in

the same code, Edit1 (Root > Nest1 > Nest2 > tree1), Edit2 (Root > Nest1 > Nest3

> Nest4 > tree2), it merges them by selecting Nest1 as the lowest common ancestor

and adds Nest2 > tree1, and Nest3 > Nest4 > tree2 under Nest1.

In the second step called Abstract, RASE abstracts the differences by using

wildcards T$, m$, v$, and u$ for differences in type names, method calls, variables

names, and expressions, respectively. The goal is to create an abstract template that

will be used in the next step. In the last step called Expand, RASE tries to extract
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the maximum amount of common code by including parent and siblings where similar

changes were detected. It keeps applying Abstract and Expand until no common

code can be found. After these three steps are done (Phase I), Phase II starts by

trying to apply one or more of the six refactoring operations: extract method, add

parameter, parameterize type, form template method, introduce return object, and

introduce exit label.

To test RASE they selected 56 method pairs and 30 groups (3-9 methods in each

group) that similarly changed. They tried four different scenarios of refactoring in

terms of the amount of code to be extracted: (1) refactor as much code as possible

(default), (2) smallest amount of code, (3) entire method before edit, and (4) entire

method after edit. Out of the 56 method pairs, RASE was able to refactor 30 case

for scenarios (1) and (2), while for (3) and (4) only 19 cases. The same scenarios

were applied to the groups and 20 were refactorable for scenarios (1) and (2), while

for the last two scenarios only 9 cases were refactorable.

The main limitation with RASE comes from its dependence on LASE for the edit

script, since LASE does not support clones that have not been updated through-

out the history, or have been very recently introduced, and thus have no history of

changes. Lastly, RASE cannot handle clones with differences in their control struc-

ture, as it requires the presence of a single AST node (and all its child sub-trees), or

a set of contiguous sub-trees under the same parent node.

3.3 Program Dependence Graph Mapping

The Program Dependence Graph (PDG, section 2.6), has been used by many works

related to clones in order to find duplicate code, and find opportunities for refactoring.

Hotta et al. [HHK12] improved Juillerat et al. [JH07] work by employing PDG to
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detect reordered statements, and developed a tool called CREIOS (Clone Removal

Expediter by Identifying Opportunities with Scorpio). The limitation of Juillerat

et al. [JH07] is that they do not handle properly reordered statements.

Hotta et al. approach is divided into three steps: The first step is Identifying

clones. After the PDG is created, the Scorpio tool [HK11] is used to detect clones

allowing for differences in identifiers. In the next step, only the clone pairs that

satisfy two criteria are included: 1) Form Template Method refactoring [Bec+99] can

be applied, and 2) They have at least a single subgraph in common. In the next

step called Tailoring, the statements for the clones are separated into common and

unique processes. Common process are the statements that are shared between the

clones, and can be pulled up to the base class. Unique process are the statements

that will remain in the subclasses, because they are different.

The example in Figure 3.5 shows an application of the Form Template Method

refactoring. The method along with the common processes are pulled up to base

class, where the common processes (A, B, C) appear in red boxes and the method to

be pulled up is checkOption(cmd). The unique process appears in a white box, and

it is extracted into a new method checkOther(cmd). At the same time an abstract

method checkOther(cmd) is created in the base class and a call to the abstract method

is added to checkOption(cmd).

They experimented Form Template Method refactoring on 45 cases detected with

CREIOS in Apache-Synapse (Synapse is a system for service discovery) and 226 cases

in Apache-Ant, but a manual investigation was done only to the cases reported in

Apache-Synapse. Out of the 45 cases, 16 of them required some modifications for

CREIOS to apply Form Template Method refactoring such as changing the visibility

of a method. They compared the results from CREIOS and Juillerat et al. for the

same candidates in both projects and CREIOS was able to refactor 14 and 3 more
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cases in Apache-Ant, and Synapse respectively. The limitation of this work exists

in 1) the requirements for identifying refactorable candidates, as duplicated methods

have to be in different classes, and these classes have to extend the same base class,

2) It works for clone pairs only.
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Figure 9. An Example of Application of Form Template Method with Proposed Method
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Figure 10. The Box-plots of the Time to Apply Refactorings

“modify ENS” means the cases in which we had to modify
ENSs or their pairwise relationships between two methods
that Creios suggests, the term “move methods into base class
or change their visibility” means the cases in which some

Table II
THE RESULT OF THE COMPARISON EXPERIMENTS

Ant Synapse
# of candidates 226 45
Our method > Juillerat et al.’s method 14 3
-Differences of order of code 10 1
-Differences of variable names 4 2
-Differences of implementation styles 0 0
Same result 202 42

methods defined in derived classes are used in common
processes and we had to move those methods into the base
class and/or change their visibilities, and the term “replace
field references to calls of getter methods” indicates the
cases in which some fields are used in duplicate statements
and they are not visible from the base class and we had to
replace references of these fields to calls of getter methods
of them.
The proposed method does not consider the visibility

of methods and fields in the source code. Therefore, it
is possible that code fragments that should be pulled up
into template method call methods or reference fields that
are not accessible from the base class. In such cases, we
need additional modifications on the source code to apply
Form Template Method. We can apply the pattern to such
candidates by changing the visibility of methods and fields.
However, it is not desirable that code clone removal requires
increasing the visibility of methods or fields, because such

Table III
THE CANDIDATES THAT NEED SOME MODIFICATIONS FOR CREIOS’S

OUTPUTS

# of candidates that need no modifications 29
# of candidates that need some modifications 16
modify ENS 12
move methods into base class and/or change their visibilities 4
replace field references to calls of getter methods 2

555561

Figure 3.5: An Example of Form Template Method refactoring taken from Hotta
et al. [HHK12]

Bian et al. [Bia+13] is another work that employs PDG in their tool SPAPE to

refactor near-miss clones (Type-II and Type-III, section 2.2) in C projects. However,

their work focuses only on Type-III clones. Their approach starts by transforming

the PDG of the clone fragments in a way that ensures the preservation of structural

semantics, and identifying the different statements between the pair of fragments.

Then it tries to merge the two clones by introducing control statements and predicates

to the AST. Lastly, it replaces the duplicated code fragments with a procedure call.

The transformation of PDG requires to apply a set of rules. Rule 1 states that to

replicate a predicate statement for X, and Y statements, there should be no relation
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between the definition set of X and the reference set of Y (i.e., no data dependencies).

Rule 2 states that to split a single loop into N loops, there should be no dependencies

among the statements inside the loop (same as Rule 1). They compared their work

with Komondoor et al. [KH03] on 10 projects. The total number of Type-III groups

detected by CPBugdetector [Li+06] in the selected projects is 390 and only 283

(72.6%) groups are extractable. The approach by Komondoor and Horwitz was able

to detect 220 (≈ 78%), while Bian el al. (SPAPE) was able to detect 252 (≈ 89%)

of the extractable groups. A limitation of this work is that they only considered

groups containing two clone instances. Moreover, the introduction of new predicates

increases the complexity of the source code and might affect code readability.

Program slicing and PDG were used by Komondoor et al. [KH01] to detect clones,

which gave them the advantage of detecting reordered and intertwined clones (i.e.,

clones within the same function as shown in Figure 3.6, where xx and ++ represent

the two clones). Their work is divided into three steps, and it starts by finding pairs of

clones as the first step. Each node X in PDG A is matched with N nodes that have

the same syntactic structure in PDG B. For each pair (X,m) : m ∈ N they try to

find an isomorphic subgraph containing them. Finding isomorphic subgraphs starts

from the pair of nodes (X,m), and then it uses backward slicing to add matching

control predecessors. Whenever it finds a matched control predecessor (p1, p2) for a

pair matched nodes in the slices, it performs one step of forward slicing to add the

successor of (p1, p2) to the slices.
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reversed. This renaming and reordering does not affect the data or control de-
pendences; therefore, our approach finds the clones as shown in the figure, with
the first and second statements in Fragment 1 that are marked with “++” signs
matching the second and first statements in Fragment 2 that are marked with
“++” signs.

The use of program slicing is also effective in finding intertwined clones. An
example from the Unix utility sort is given in Figure 5. In this example, one
clone is indicated by “++” signs while the other clone is indicated by “xx”
signs. The clones take a character pointer (a/b) and advance the pointer past all
blank characters, also setting a temporary variable (tmpa/tmpb) to point to the
first non-blank character. The final component of each clone is an if predicate
that uses the temporary. The predicates were the starting points of the slices
used to find the two clones (the second one – the second-to-last line of code in
the figure – occurs 43 lines further down in the code).

++ tmpa = UCHAR(*a),

xx tmpb = UCHAR(*b);

++ while (blanks[tmpa])

++ tmpa = UCHAR(*++a);

xx while (blanks[tmpb])

xx tmpb = UCHAR(*++b);

++ if (tmpa == ’-’) {

tmpa = UCHAR(*++a);

...

}

xx else if (tmpb == ’-’) {

if (...UCHAR(*++b)...) ...

Fig. 5. An intertwined clone pair from sort.

Finding good candidates for extraction: As discussed in the Introduction,
the goal of our current research is to design a tool to help find clones to be
extracted into new procedures. In this context, a good clone is one that is mean-
ingful as a separate procedure (functionally) and that can be extracted out easily
without changing program semantics. The proposed approach to finding clones
is likely to satisfy both these criteria as discussed below.

Meaningful clones: In order for a code fragment to be meaningful as a sep-
arate procedure, it should perform a single conceptual operation (be highly co-
hesive [17]). That means it should compute a small number of outputs (outputs
include values assigned to global variables and through pointer parameters, the
value returned, and output streams written). Furthermore, all the code to be ex-
tracted should be relevant to the computation of the outputs (i.e., the backward

8

Figure 3.6: An Example of Intertwined Clones taken from Komondoor et al. [KH01]

The second step is to filter the subtrees from the first step by removing subtrees

that are contained in another subtrees. The last step of their approach, is to group

clone pairs in a kind of transitive closure (1-2, 1-3, 2-3,. . . , etc). They used CodeSurfer

[Gra] to process the code and build the PDGs. They conducted a study by running

their tool on three Unix utilities (busin, sort, and tail), and four files from the Graph-

Layout (an in-house program used at IBM). For the Unix utilities they conducted two

studies. The first study was on a single file where they did manual investigation and

found 4 groups (ideal clone groups), then they ran the tool and found 43 clone groups

which contained the four ideal groups. The second study was done on 25 clone groups

reported by the tool, and each of the clones contained 30-49 nodes (statements) as

an average clone size. Then they performed a manual verification and found that all

of the 25 groups are variants of 9 manually identified groups. The second experiment

was on the Graph-Layout application with the objective to collect quantitative data

that can be seen in Figure 3.7. Out of the 30 clone groups in Figure 3.7, 2 groups

involved reordered matched statements, 2 groups contained intertwined clones, and

17 groups contained non-contiguous clones, while most of the clones had renamed

variables.
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# of
lines of
source

# of
PDG
nodes

running
time
(elapsed)

# of
clone
groups
ex-
tracted

total
# of
clones
ex-
tracted

file size
reduc-
tion

av. fn
size
reduc-
tion

file 1 1677 2235 1:02 min 3 6 1.9% 5.0%
file 2 2621 4006 7:49 min 12 24 4.7% 12.4%
file 3 3343 6761 5:15 min 3 7 2.1% 4.4%
file 4 3419 4845 13:00

min
12 40 4.9% 10.3%

Figure 3.7: Quantitative data in IBM application, (Figure 9. Page 13 Komondoor
et al. [KH01])

Shepherd et al. [SGP04] is another work that used PDG for detecting refactorable

clones by incorporating Aspect Oriented Programming (AOP). They use advices in

AspectJ, that is part of a framework they developed called Ophir [SP03]. There are

different advices such as: after, before, and around.

Their work only focuses on finding clones that could be refactored using AspectJ

advices and that are scattered throughout the software system, and is divided into

four steps. The first step is to construct PDGs for all methods. The second step is

to identify an initial clone set by matching the PDGs of the candidate clones and by

incorporating AST information when matching statements to improve the accuracy.

Control dependencies are used in finding possible matches based on their syntactic

structure as in Komondoor et al. [KH01].

The detection of candidate clones starts by comparing all statements that are

directly nested (children) under the entry node (method signature), and each pair of

AST compatible nodes is added to a working list. After examining the entry node

children, a similar process is performed on the elements of the working list. The

third step is used to filter unwanted candidates by removing those that do not have

similar data-dependencies, and removing candidates that have data dependencies to
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or from nodes outside the clones. The last step is to merge similar pairs of clones

into the same group. The merging of similar pairs is done by comparing the nodes of

the first instances in both pairs and if the AST comparison is successful, then both

pairs are placed in the same group.

They evaluated their work that is integrated in Ophir on two projects, namely

JHotDraw and Tomcat. Their work achieved an accuracy in mining clones of (≈

90%). However, the complexity in identifying the initial candidates will increase

if after and around advices are used. Also comparing two subtrees to check for

isomorphism is NP-complete, so they had to sacrifice the accuracy for performance

by using a lightweight approach when comparing statements.

Software Plagiarism detection is another field that uses PDGs. Liu et al. [Liu+06]

developed GPLAG that uses program dependence graphs for detecting plagiarism in

software. Previous tools in that field were tricked by developers through five main

changes to the copied code: 1) Inserting/remove blanks/comments, 2) renaming iden-

tifiers, 3) reordering statements, 4) changing control predicates, such as for to while

loops, and by 5) adding new statements. They formulate their work by answering

two questions: How can you decide if two PDGs are similar? and How can you make

graph comparison efficient for a large set?

They answered the first question in two parts: In Part 1, they validate the orig-

inal subgraph g and plagiarized subgraph g’ against the five concealment operations

mentioned before. However, these changes do not affect the graph isomorphism in

contrast to some other changes such as, two iteration index variables for independent

loops in g, where one of them is removed and the other one is used for both loops.

In Part 2, to address changes affecting the graph isomorphism, they said if the cor-

respondence γ (γ is a relaxed value that represents the belief that a portion of the
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PDG will not be changed) between two subgraphs is (0 < γ ≤ 1), then they consider

them as a match, i.e., a plagiarism is detected.

The search space for plagiarism increases as more PDGs are examined, so some

filtration of the PDGs is needed to address the second question. They apply a two step

filtration process. With a Lossless filter, first they remove PDGs that are smaller

than K in both the original and suspected systems, and second if the |g′| < γ|g|

then those pairs are not tested. The lossless filter is required as a means to have

enough proof of plagiarism. The second filtration is a Lossy Filter. They use a

vertex histogram to represent each PDG, where each element holds the frequency

for each type of node, such as jump, label, return. After generating both vertex

histograms their similarity is evaluated. The drawback of this filtration is that some

false negative cases will be pruned.

They measured the performance of GPLAG in two parts: In the first part, the

effectiveness of GPLAG was evaluated against MOSS [SWA03] and JPLAG on the

join application, which took the authors two hours to manually plagiarize it. MOSS

and JPLAG failed to detect plagiarism in join, while GPLAG was able to find the

plagiarized procedures, which indicates that token-based approaches are not as strong

as PDG-based approaches in this problem. In the second part, the efficiency of

GPLAG is computed by running it on 3 subjects. They found that the Lossless filter

was able to remove 50% of the PDG pairs; however, some non-similar pairs survived,

but the lossy filter was able to remove them.
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Chapter 4

Approach

In this chapter we will present and discuss our work in clone group refactoring. The

workflow of our approach is depicted in Figure 4.1. Our approach requires two inputs.

The first input is the abstract syntax tree for each file in the project that is generated

in the Project Parsing step. The second input is the location of the clones found

in the project that is generated in the Clone Parsing step. An intermediate step

following the previous two steps is to generate a Program Dependence Graph (PDG)

for the methods that the clones reside in. Next, the Information Extraction step

uses the generated PDGs and clone locations to extract additional information that

will be used in the subsequent steps of our approach.

For each group of clones, we use Clustering to find smaller sub-groups (clus-

ters) within the original clone group that have less differences. We try first to group

fragments that share a Common Structure (isomorphic control structure trees),

then within each of the resulting clusters we try to find sub-groups of clone frag-

ments having less Differences. After Clustering is done and subgroups are cre-

ated, theClone Matching process starts. First, we do a Pairwise Matching of the

clones within the same subgroup in the following sequence of pairs {(Clone1, Clone2),
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(Clone2, Clone3),. . . , (CloneN−1, CloneN); where Clone1..N ∈ subgroupM}, then the

Statement Alignment step follows where we align the common statements be-

tween fragments within the same subgroup. Lastly, we apply a Refactorability

Assessment on the subgroups to evaluate if the fragments in each subgroup can be

refactored together or if there are any precondition violations (Section 2.8).

Before we move on to an in-depth discussion about our work we have to mention

that our work is built on top of JDeodorant, a code smell detection and refactoring

tool, and the first two steps (Project Parsing, Clone Parsing), including PDG

generation are done by JDeodorant.

Project
Parsing 4.1Clone Parsing Project

Information
Extraction 4.3

Clone
Groups

Common
Structure 4.4.1

Differences 4.4.2

Clustering

Sub
Groups

Pairwise
Matching 4.5

Statement
Alignment 4.6

Refactorability
Assessment 4.7

Figure 4.1: Workflow of the Approach

4.1 Project Parsing

Parsing projects is a required step in JDeodorant. The project to be examined needs

to be processed to generate an AST for each file inside the project. However, the

generated ASTs contain a lot of information that will occupy a huge amount of

the system memory, thus the generated ASTs are abstracted to remove some of the
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unnecessary information, while allowing the ability to recover the original AST when

it is needed.

This step is required to generate the program dependence graph for the methods

that contain the clone instances, but the other projects files are needed as well to

generate the data dependencies (Section 2.6) between the clone statements (i.e., data

dependence generation may require to analyze other methods being called within

the clone instances). Project parsing is executed only once and it is very fast. For

instance, the parsing time for Hibernate 3.3.2 that contains 209,000 lines of code is

around 70 seconds. The generated abstract syntax trees are then used to build the

PDGs, find the Common Structure, and perform Pair Matching.

4.2 Clone Parsing

Clone detection tools detect and report clones in different formats and file types.

Therefore, there is a need to parse these files that contain the reported clones and

unify them into a single format. JDeodorant unifies the output from clone detection

tools by parsing and creating a new file of type .xls (Excel file) that holds the clones

and information about them such as: group id, package name, class name, method

name, offsets, start-end lines, number of fragments in the group, and other details.

JDeodorant so far contains parsers for five clone detection tools, namely CCFinder,

CloneDR, NiCad, Deckard, and ConQAT [JDH09].

4.3 Information Extraction

In this step, we extract all required information for the subsequent steps of our

approach. Initially, we experimented with a Metric Approach (Section 4.3.1) by

extracting low-level numerical information for each statement in the PDG, such as the
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number of method calls, and the number of variable identifiers within the statement.

However, as we examined more cases, we observed that this approach would not lead

to a generalized solution that avoids the use of similarity thresholds. Therefore, we

decided to follow a different approach by extracting higher-level data type information

Data Type Approach (Section 4.3.2).

4.3.1 Metric Approach

Feature vector is an n-dimensional vector of numerical features that represents an

object. Feature vectors have been already used for detecting software clones. Deckard

[Jia+07] is a clone detection tool that uses AST to detect duplicate code. It trans-

forms the source code into a parse tree (AST tree), which is then transformed into a

set of vectors that are clustered based on their similarity, and the resulting clusters

represent the detected clone groups.

We follow the same approach as Deckard with the difference that a feature vector

is generated for every statement in the detected clones and it is used to map the

clone statements. Each entry in the vector represents either the frequency of feature

X within a statement (i.e., how many times feature X occurs in a statement) or a

boolean value (i.e., feature X exists or not in a statement). The details about the

features we extracted can be seen in Table 4.1, which contains all the features that can

be extracted from an AST for a given statement, assuming that there is no binding

information available from the compiler. Then, by computing the Hamming Distance

(Section 2.4.2.2) of the feature vectors corresponding to a pair of statements, we can

determine if the statements are similar enough to be matched.
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Table 4.1: AST Features in metric approach

# Feature

1 Statement is a control structure (For, If,...) or not

2 Statement creates an instance of a Class (i.e., new Class)

3 Statement creates an instance of an array object (i.e., new Class[n])

4 Number of fields accessed through this reference within statement

5 Number of fields modified through this reference within statement

6 Number of fields accessed within statement that are inherited from a super-

class

7 Statement is a super method invocation (i.e., super.method())

8 Number of static methods called within statement

9 Number of boolean literals used within statement

10 Number of char literals used within statement

11 Number of null literals used within statement

12 Number of number literals used within statement

13 Number of string literals used within statement

14 Number of type literals used within statement

15 Number of parameters passed as arguments in method invocations within

statement

16 Number of parameters passed as arguments in super method invocations

within statement

17 Number of declared variables within statement

18 Number of defined variables within statement

19 Statement is a return statement

20 Statement is a break statement

21 Statement is a continue statement
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4.3.1.1 Metric Approach Limitations

To assess the effectiveness of the metric approach, we compared it against the state-

ment matching approach developed by Tsantalis et al. [TMK15], discussed in the

Related Work Chapter. More specifically, we counted the percentage of clone pairs

for which the statement similarity computed using the metric approach leads to an

identical statement mapping as that produced by Tsantalis et al. approach. The met-

ric approach considers two statements mapped if either their feature vector similarity

or their textual similarity is equal to 1. The results can be found in Table 4.2. In par-

ticular, the quality of the statement mappings produced using the metric approach

deteriorates significantly for Type-III clones, since only 43.5% of the examined clone

pairs had an identical mapping to Tsantalis et al.

Table 4.2: Results of metric approach at pair level

Clone Type Identical mapping with Tsantalis et al.

Type I 98.1%

Type II 89%

Type III 43.5%

In the examples that follow, we demonstrate the main limitations of the metric

approach.

Example (1): Textually different statements may have perfect similarity

according to the metric approach: In the example below, taken from JFreechart,

the two statements are matched, because they have exactly the same feature vector

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0]. However, their

textual similarity is rather low, and they do not use common types.

51



(1) XYDataItem item=getDataItem(count / 2);

(2) ComparableObjectItem item=getDataItem(count / 2);

Example (2): Statements that are semantically identical may have differ-

ent feature vectors: In the example below, taken from Apache-Ant, the feature

vector for statement (1) is [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0], and for (2) is [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0]. As a result, the statements are not matched. However, both state-

ments call the same method addNodeRecursively passing different argument values.

More specifically, the use of a null literal as the last argument in statement (1), and

the use of field prefix as the second argument in statement (1), introduce significant

differences in the feature vectors of the statements.

(1) addNodeRecursively(topChildren.item(i), prefix , null);

(2) addNodeRecursively(nodeChildren.item(i), nodePrefix , nodeObject);

The problem with this approach is that it does not consider the data types when

mapping statements, and does not tolerate small differences. In the first example,

the two statements are considered as mapped because the vector similarity is equal

to 1.0, however the two statements use completely different data types and do not

share a common type. On the other hand, in the second example, the two statements

are exactly the same in terms of their method name, and parameter data types, but

due to the differences in the last parameter in both statements null and nodeObject

the similarity is less than 1.0 , and thus they are not mapped. Moreover, other cases

such as int x = getY(); and int x = this.y; (i.e., a direct field access is replaced with

the corresponding getter method invocation) will not have a vector of similarity of

1.0. However we can see that the right side of the assignment in both statements is
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of data type int, despite that the first statement is a method call while the second

statement is a field access. Therefore, the two statements should be mapped based

on the data types being used.

4.3.2 Data Type Approach

In this approach, the information we extract is more related to data types, and names

(identifiers, methods, . . . , etc). The kind of information we extract depends on the

type of the examined statement. For example, if the statement is a method call

then we extract different kind of information, compared to a variable declaration

statement. We generalized all types of statements into three forms. We have to

clarify first that Expression in this context refers to a method call, a mathematical

or logical operation, an object creation, etc.

Form 1: Type Identifier = Expression In this form we divide the statement

based on the location to the assignment operator into left and right. We extract from

Left side the 1) identifier name, and 2) its type including all its super types. From

the Right side, if the expression is not a method call, then we extract the type of

the expression and all its super types. Below, we provide some examples where the

right side is not a method call. If the right side is a method call then we extract

different kind of information, which we will explain in the next form.

(1) YIntervalSeries s1 = new YIntervalSeries("s1");

(2) result = 29 * result + this.maximumItemCount;

(3) result = 29 * result + (this.allowDuplicateXValues ? 1 : 0);

(4) String result = "@test1@ line testvalue";
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Form 2: Method call and arguments If the statement or expression is a

method/constructor/super-constructor call then we extract three sources of infor-

mation. First, the name of the invoked method. In this case, we extract its name

and if it is called through a Class name (i.e., Static method, or super keyword), or an

object reference, then we extract it as part of the method name. For instance, in the

example below (Case 2) super.hashCode is the method name and not just hashCode.

Second, the return type of the method and all its super types. Third, the arguments

types and all their super types. In other words, we extract the method’s return type

and arguments types found in the method signature. To explain this, the examples

that follow show three cases of method calls followed by an explanation for each case.

(1) assertTrue(s1.equals(s2));

(2) int result = super.hashCode ();

(3) ComparableObjectItem item = getDataItem(count / 2);

Case (1) Method name: assertTrue; Return type: void; Argument types: {Boolean},

i.e., the return type of s1.equals(s2).

Case (2) Method name: super.hashCode; Return Type: int; Argument types: {};

Case (3) Method name: getDataItem; Return Type: ComparableObjectItem; Ar-

gument types: {int};

Form 3: Return Expression In this form we extract the expression data type

and all its super types.

When extracting types and super types, we might encounter some very com-

mon types that need to be excluded. These types are Java library types, such as

java.lang.Object, or special interfaces that are inherited or implemented by a very
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large number of classes. Table 4.3 shows the excluded types and a brief explanation

about why we exclude them.

Table 4.3: Excluded types

Type Reason

Object Super class for every non-primitive type

Serializable An interface that allows the object to be represented a sequence of bits

Runnable An interface that contains a single method run, used for creating threads

Comparable An interface that enables sorting of objects

Cloneable An interface that allows objects to override clone method

EventListener An interfaces that allows the classes implementing it to handle events

4.3.3 Additional information extracted commonly from all state-

ments

There are some common information extracted from all statements regardless of their

form:

• Data and Control dependence information: We create a matrix containing the

source of each dependence (From/Parent) and the statements that have the

incoming dependence (To/Children).

• Fragment location: Class name, Package name, and method name that the

clone resides in.

4.4 Clustering

Clone detection tools report multiple clones in the same group, however these clones

might not be similar. For instance, token and text based clone detection tools, might
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even report clones using different control statements, as long as their textual or token

similarity is high. Therefore, the objective of the clustering step is to group clone

fragments that share a common control structure and have less differences, in order

to find subgroups that are actually refactorable. We first try to group fragments that

share a common control structure (Section 4.4.1), then for each of the resulting groups

we try to find new subgroups containing fragments with less differences (Section

4.4.2).

4.4.1 Common Control Structure

To avoid the cost of combinatorial explosion when trying to find common trees, we

follow a transitive approach when examining the clone fragment pairs

(Clone1, Clone2), (Clone2, Clone3), . . . , (CloneN−1, CloneN), where N is number of

fragments in the group. For instance, assuming that structure1 is the common

structure for pair (Clone1, Clone2), and structure2 is the common structure for pair

(Clone2, Clone3), if structure1 ≡ structure2, then clone instances (Clone1, Clone2, Clone3)

can be grouped together.

structure1 ≡ structure2 iff |structure1| = |structure2| and

∀x ∈ structure1,∃y ∈ structure2 ⇒ x = f(y) and

∀y ∈ structure2,∃x ∈ structure1 ⇒ y = f(x)

In other words, there should be a bijection between the nodes of the two common

tree structures. If there are more than one common structures in a pair of fragments,

then we treat each one of them as a separate opportunity.

Algorithm 3 is the approach we use to group fragments that share a common

structure. Clone detection tools, especially, text-based and token-based do not ex-

amine if the fragments have the same control structure, thus we need to find first

a pair of clone fragments having a common control structure (Lines 2-7). In (Lines
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10-17) we start a new group of fragments that share the common structure firstTree

for fragments Fj and Fk, and in (Lines 19-23), we examine if any of the trees in

secondPair is equivalent to the firstTree.

The algorithm handles two cases in which a common control structure could not

be found between the two pairs. In the first case (Lines 27-29), assuming we have

two pairs pair(Fi, Fj) and pair(Fj, Fj+1) and both of them do not have a common

control structure, we try next to find if pair(Fi, Fj) and pair(Fj, Fj+2) share a common

structure. In the second case (Lines 31-34), we try to find if pair(Fi, Fj+1) and

pair(Fj+1, Fj+2) have a common control structure, and if so then we add them to

CommonTreesqueue as a new starting point for a new subgroup, and then we exit

from the current search (secondPair = null).
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Algorithm 3: Clustering using Common Control Structure
Input: F contains n clone fragments
Output: List of subgroups of fragments

1 CommonTreesqueue ← ∅
2 for (i = 0→ (n− 1)) ∧ (CommonTreesqueue = ∅) do
3 tempTree← ∅
4 tempTree← findCommonTrees(Fi, Fi+1)
5 if tempTree 6= ∅ then
6 CommonTreesqueue ← CommonTreesqueue ∪ tempTree
7 i = i+ 1

8 j = 0, k = 0; j, k ∈ 1...n
9 while CommonTreesqueue 6= ∅ do

10 newGroup← ∅
11 firstTree = CommonTreesqueue[0]
12 CommonTreesqueue ← CommonTreesqueue − firstTree
13 Fj = firstFragment(firstTree)
14 Fk = secondFragment(firstTree)
15 newGroup← newGroup ∪ Fj ∪ Fk
16 secondPair = pair(Fk, Fk+1)
17 secondTrees← findCommonTrees(Fk, Fk+1)
18 while secondPair 6= null do
19 if firstTree ∈ secondTrees then
20 newGroup← newGroup ∪ secondFragment(secondTrees)
21 CommonTreesqueue ←

CommonTreesqueue ∪ (secondTrees− (firstTree∩ secondTrees))
22 firstTree = tree ∈ secondTrees | tree ≡ firstTree
23 secondPair = pair(Fk+1, Fk+2)
24 secondTrees← findCommonTrees(Fk+1, Fk+2)

25 else
26 secondTrees← findCommonTrees(Fk, Fk+2)
27 if secondTrees 6= ∅ then
28 secondPair = pair(Fk+1, Fk+2)
29 else
30 Fj = firstFragment(firstTree)
31 tempTree← findCommonTrees(Fj, Fk+1)
32 CommonTreesqueue ← CommonTreesqueue ∪ tempTree
33 secondPair = null

34 add newGroup to Groups
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4.4.2 Differences

The second step of clustering is to group the fragments that are less different. We use

the features we extracted and discussed in Section 4.3 to generate aDistance matrix

(Section 4.4.2.1) that is needed to apply the Hierarchical clustering algorithm

(Section 4.4.2.2).

4.4.2.1 Distance Matrix

The distance matrix is computed using the features we extracted in the Data type

approach (Section 4.3.2). We developed a heuristic (Algorithm 4) to compute the

differences between the fragments which takes two inputs:

For each fragment we create a single:

• Dimension vector (Info1) that holds the number of statements that satisfy each

feature in Table 4.4.

Table 4.4: Info1 Elements

Element

Number of variable declaration statements

Number of variable assignment statements

Number of method call statements

Number of control statements (e.g., if, for, while)

Number of branching statements (e.g., return, break)

Total number of statements in the fragment

• Info2 consists of the elements shown in Table 4.5, where each element is a set.
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Table 4.5: Info2 Elements

Element

All types and super types of variable identifiers

All AST statement types (e.g., if, while, throw)

All types and super types of expressions (Form 1, section 4.3.2)

All types of method call arguments (Form 2, section 4.3.2)

All method names (Form 2, section 4.3.2)

All variable identifier names

Algorithm 4 is the heuristic we apply to compute the differences matrix between all

fragments in the same subgroup. Score for vector Info1 is computed using equation

4.1 and is used in (Algorithm 4, Line 9), while the score for Info2 is calculated using

equation 4.2 and is used in (Algorithm 4, Line 10).

Algorithm 4: Distance Matrix
Input: F contains m fragments for a SubGroup
Output: m×m differences matrix

1 result ← create m×m empty matrix
2 for i = 0→ (m− 1) do
3 vectorα1 = extract Info1 for Fi
4 listβ1 = extract Info2 for Fi
5 for j = (i+ 1)→ m do
6 score1, score2, score = 0
7 vectorα2 = extract Info1 for Fj
8 listβ2 = extract Info2 for Fj
9 scoreα = score from calculating the differences between vectorα1 and

vectorα2 using equation 4.1
10 scoreβ = score from calculating the differences between listβ1 and listβ2

using equation 4.2
11 score = scoreα + scoreβ
12 add score to result
13 j = j + 1

14 i = i+ 1
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score =
n∑
i=1

(|Ai −Bi|) (4.1)

were A, B correspond to Info1 for the two fragments, respectively, and n is the

length of Info1.

score =
n∑
i=1

(|Union(Ai, Bi)− Intersection(Ai, Bi)|) (4.2)

were A, B correspond to Info2 for the two fragments, respectively, and n is the size

of Info2.

4.4.2.2 Hierarchical Clustering

We apply the Hierarchical clustering algorithm that we described in Section 2.5.1,

using the distance matrix that we computed earlier to find subgroups within the clus-

ters that we obtained in the previous clustering step based on the common control

structure of the clone fragments. We select the first and the highest Silhouette Co-

efficient (Section 2.5.2) value to determine the best quality clustering as can be seen

in Algorithm 5.

Algorithm 5: Clustering using Differences
Input: SubGroup S contains F fragments
Result: m clusters

1 distancematrix compute the distance matrix for S
2 clustering ← each fragment in F is assigned to a separate cluster
3 clusteringScoreMap ← < ∅, 0.0 > stores pairs of a clustering and its

Silhouette Coefficient score
4 clusteringnew ← clustering
5 while |clusteringnew| > 1 do
6 clusteringnew ← result of merging the two closest clusters in clusteringnew
7 score = compute Silhouette Coefficient for clusteringnew
8 clusteringScoreMap ← clusteringScoreMap ∪ < clusteringnew, score >

9 → return the first clustering in clusteringScoreMap with the highest score
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4.5 Pairwise Matching

The next step in our approach, after extracting the required information (Section

4.3), and clustering the clone fragments into subgroups (Section 4.4), is the pairwise

statement matching. Figure 4.2 represents the flow we follow in pairwise statement

matching.

4.5.1 Generating Similarity Matrices

Before we explain the algorithms behind statement mapping, we have to generate

first an m× n matrix, where m and n are the number of statements in the first and

second clone fragment, respectively.

4.5.1.1 Feature Vector Similarity

The first matrix is computed from the information we extract in section 4.3.2. For

each statement, we create a vector that consists of the elements shown in Table 4.6.

We encode the information we extract into a feature vector to avoid the overhead

from using conditional logic while looking for a match, and to have a more generalized

representation.
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Table 4.6: Features of the Feature Vector

Feature Description

Statement Type Single value from Table 4.7

AST Statement Type if, for, while . . .

Identifier Type hashCode of the identifier type

Identifier name hashCode of the identifier name

Expression Type hashCode of the expression type

Number of Arguments integer (Form 2, section 4.3.2)

Table 4.7: Statement Type

Value Feature Format

1 Declaration Type variableName = . . .

2 Assignment variableName = . . .

3 Method call method(. . . ) or expr.method(. . . )

4 Control if, for, while, do-while, switch

5 Branching return, break, continue, and throw

We developed a heuristic (Algorithm 6), where the Hamming Distance (Section

2.6) is used to compute the similarity for elements in Table 4.6, and the Jaccard Index

(Section 2.8) is used in (Line 19) to find the similarity between methods arguments.
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Algorithm 6: Vector Similarity Heuristic
Data: Fragment1 has m statements, Fragment2 has n statements
Output: m x n matrix

1 α← vector for statement x in the first fragment
2 β ← vector for statement y in the second fragment
3 score = 0
4 denominator = |α|
5 for i = 0 to |α| do
6 if αi ≡ βi then
7 if αi > 0 then
8 score = score+ 1
9 else

10 denominator = denominator − 1

11 i = i+ 1

12 if αiargs > 0 ∧ βiargs > 0 then
13 denominator = denominator + 1
14 argumentsα = αiargs
15 argumentsβ = βiargs
16 if |argumentsα| = |argumentsβ| then
17 validArgs = True
18 for j=0 to |argumentsα| do
19 if (argumentsαj

∩ argumentsβj) = ∅ then
20 validArgs = False
21 break

22 j = j + 1

23 if validArgs = True then
24 score = score+ 1

25 similarity = (score/denominator)

4.5.1.2 String Similarity

Levenshtein Similarity (Section 2.2) is used to generate the string similarity ma-

trix, however the text is preprocessed before applying the algorithm. The preprocess-

ing consists of two steps, which are:

Transformation : In this step, we transform operations +=, -=, /=, *= to the ex-

panded equivalent form, for example, x += 9 will become x = x + 9.
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Formatting : in this step we remove spaces, tabs, new line characters, and "this.".

4.5.1.3 Thresholds

In this work we decided to avoid the use of thresholds at any step when mapping

clone statements, in order to have a generic solution that does not rely on threshold

tuning. Therefore, instead of using thresholds, we apply multiple rounds of state-

ment mapping and in each round we relax the constraints used to determine if two

statements match, as long as the data and control dependencies are preserved (Figure

4.2).

4.5.2 Statement mapping algorithms

After the two similarity matrices are generated, we round all numbers that are equal

or greater than 0.99 (≥ 0.99) to 1.0, and any value less than 0.99 is set to 0.0. So,

the elements of the matrices become either 1.0 when the statements have identical

similarity, or 0.0 when the statements are not similar.

Clone Pair

Has control 
statement?

(1) Map statements based on 
control dependencies

(2) Map statements based on 
data dependencies

(3) Map statements based 
on dependencies from 

method signature

(4) Statements have no
incoming dependencies

(5) Statements not matchedMapping Result

Yes No

Children are mapped using (in order):
1. String similarity = 1.0 and Vector similarity = 1.0
2. Vector similarity = 1.0
3. String similarity = 1.0
4. Data types

Statements Mapping using (in order):
1. String similarity = 1.0
2. Vector similarity = 1.0

Data Types

Figure 4.2: Workflow of the Approach

65



Algorithm 7 is the starting point in the statement mapping process. If the clone

pair has a common control structure, then we apply Algorithm 7. This step is skipped

for the clone pairs that do not have a common structure.

Algorithm 7: Initial Step in Pair matching
Data: Fragment1, Fragment2
Output: Statement mapping

1 if commonStructure(Fragment1, Fragment2) then
2 Add the mapped control statements in the common structure to the set of

mapped statements;
3 Proceed to Algorithm 8;
4 else
5 Proceed to Algorithm 9;

Algorithms 8 and 9 try to find the best matches for control parent statements

and their nested children. In Algorithm 8, the parent statements are control state-

ments that have been mapped when the common control structure was found (Section

4.4.1). The next step is to match the statements directly nest under the parent state-

ments. On the other hand, in Algorithm 9 we have to look for the best match for

parent statements P (statements that have outgoing dependencies) and their children

C (statements that have incoming dependencies from their parents), and to solve this

problem we use a Scoring System.

To explain the Scoring System, let us assume P1 → C1 where P1 is a par-

ent statement and C1 is the set of its children in the first fragment. Also let us

assume that the candidate matches in the second fragment are {P21 → C21, P22 →

C22, . . . , P2n → C2n}. The candidate matches are selected based on the parent

statements (P1 , {P21, P22, . . . , P2n}) and the similarity metrics that were generated

earlier. For every combination (P1, P2 ∈ {P21, P22, . . . , P2n}) we first try to match

their children (C1, C2 ∈ {C21, C22, . . . , C2n}), then we compute the score for every

pair {(P1 → C1, P21 → C21), (P1 → C1, P22 → C22), (P1 → C1, P2n → C2n)}.
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The score for a pair (P1→ C1, P2n → C2n) is computed using equation 4.3.

score(P1, P2n) =

|C1|,|C2n|∑
i=1,j=1

(vectorSimilarty(C1i, C2nj) + stringSimilarty(C1i, C2nj)) (4.3)

where C2nj is the match found for C1i

When the child statements are mapped, they are added to the set of mapped

statements, and are not further considered. Thus, if a statement is matched by ap-

plying Algorithm 8, we do not attempt to match it again in the following algorithms.

In Algorithm 8: (Lines 8-11) are executed to match statements that are in-

side the else clause, when we have if-else control statements. In Steps 1-3, the

matched statements are required to have same AST structure, while in Step 4 the

marching is more relaxed, and we apply Algorithm 11. In Algorithm 11, state-

ments will be considered as matched if they satisfy one of the conditions below:

• The two statements have an assignment operator (Declaration or initialization

statement), and both variables share a common type or super type (Lines 3-5).

• The two statements are method calls and both have to have the same number

of arguments that share a data type or super type in respect to the order of

parameters in both statements, and the same name as we described in Section

4.3.2 (Lines 7-8).

• The two statements are return statements and the expressions they are return-

ing have the same type or super type (Lines 10-11).
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Algorithm 8: Pair matching using Control Dependencies
Data: Common structure of length k
Output: Mapped child statements (C1, C2)

1 for i from 0 to k do
2 C1T ← statements that have true incoming control dependence from P1i
3 C2T ← statements that have true incoming control dependence from P2i
4 Step 1: match(C1T , C2T ) iff string similarity = vector similarity = 1.0
5 Step 2: match(C1T , C2T ) iff vector similarity = 1.0
6 Step 3: match(C1T , C2T ) iff string similarity = 1.0
7 Step 4: match(C1T , C2T ) iff there is type matching
8 C1F ← statements that have false incoming control dependence from P1i
9 C2F ← statements that have false incoming control dependence from P2i

10 if (|C1F | > 0) ∧ (|C2F | > 0) then
11 repeat Step 1-4 for pair (C1F , C2F )

12 → Proceed to Algorithm 9

Algorithm 9: Pair matching based on Data Dependencies
Data: P1m → C1m in Fragment1, P2n → C2n in Fragment2
Output: Best match for P1→ C1 in Fragment2

1 for i = 0 to n do
2 Step 1: match(C1, C2i) iff string similarity = vector similarity = 1.0
3 Step 2: match(C1, C2i) iff vector similarity = 1.0
4 Step 3: match(C1, C2i) iff string similarity = 1.0
5 Step 4: match(C1, C2i) iff thre is type matching
6 score = use equation 4.3 to compute the score for (P1, P2i)

7 → return the first P2k → C2k with the highest score

So far, the algorithms we used in statement mapping rely on incoming dependen-

cies, but this does not apply always as some statements might not have any kind of

incoming dependencies, such as a method call where it does not take any arguments,

and it is not nested under control statement. Algorithm 10 is used to handle this

problem. In the first step (Lines 3-4), we look for a statement that has a string

similarity equal to 1.0, then in the second step (Lines 5-6), for any statement could

not be matched using string similarity we use vector similarity equal to 1.0.
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Algorithm 10: Pair matching for statements having no incoming dependencies
Data: S1 statements in Fragment1 and S2 statements in Fragment2
Output: Matched statements

1 noDeps1 ← find all statements in S1 having no incoming data or control
dependencies

2 noDeps2 ← find all statements in S2 having no incoming data or control
dependencies

3 foreach statement in noDeps1 do
4 look for statement in noDeps2 that has a string similarity equal to 1.0

5 foreach statement in noDeps1 do
6 look for statement in noDeps2 that has a vector similarity equal to 1.0

Finally, Algorithm 11, is more lenient than the previous algorithms we used.

• In case the statements are assignments, then we check the left hand side of

the assignment to see if both statements share a common data type or super

type (Lines 7-8).

• In case the statements are method calls, then we check if the method names

are the same and they have the same number of arguments (Lines 11-12) without

validating if the arguments share a data type or super type.

• In case the statements are return, then we check if the returned expressions

share a common data type or super type (Line 15-16).
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Algorithm 11: Matching of previously unmatched statements
Data: P1→ C1 in Fragment1 and P2→ C2 in Fragment2
Output: Matched statemens (C1, C2)

1 for i from 0 to |C1| do
2 for j from 0 to |C2| do
3 if C1i and C2j are assignment statements then
4 if variableTypes(C1i) ∩ variableTypes(C2j) 6= ∅ then
5 match is found (C1i, C2j)

6 else
7 if C1i and C2j are method calls ∧ same method name ∧ same

number of arguments then
8 match is found (C1i, C2j)
9 else

10 if C1i and C2j are return statements ∧ expressions returned
shares a type then

11 match is found (C1i, C2j)

There are few conditions we apply before adding the statements to the list of

mapped statements:

• For algorithms 8, 9, and 10 we are more strict as the statements need to have

same AST structure.

• For all algorithms we ensure that the statements have at least the same AST

statement type (if, for, while, etc.).

4.6 Statement Alignment

Since statement mapping is performed between pairs of clone fragments, we need an

additional step to align the statement mapping results obtained from the previous

step and find all statements that are common across all fragments in the same clone

subgroup. Algorithm 12 describes the approach we use to find common statements

across all fragments within the same subgroup.
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Algorithm 12: Statement alignment within a clone subgroup
Data: Fragments F in subGroupm
Output: Statements matched across all fragments in subGroupm

1 N = |F |
2 statementscommon ← pairMatching(F0, F1)
3 for i = 1 to (N − 1) do
4 statementscommon ← statementscommon ∩ pairMatching(Fi, Fi+1)
5 i = i+ 1

4.7 Refactorability Assessment

The refactorability assessment is performed based on Tsantalis et al. [TMK15] work

that is part of the JDeodorant tool. There are two sets of preconditions examined by

JDeodorant: The first set determines if the clones can be merged by parameterizing

the differences using regular parameters (Section 2.8). The second set determines if

the clones can be merges by parameterizing the differences using Lambda expressions

(introduced in Java 8).

We extended only the first set of preconditions to be examined for a group of

clone fragments (the original preconditions were examined only for a pair of clone

fragments). A pair or a group of clones is safe to be refactored, if none of the precon-

ditions listed in Section 2.8 is violated, otherwise it is considered as non-refactorable.

The examples below demonstrate two cases where in Example 4.3 the pair of frag-

ments can be refactored safely since there are no precondition violations. Also, in this

example we note that the control statements (highlighted in red) were excluded from

the mapping process, because they do not have the same AST structure. However, in

Example 4.4 the pair cannot be refactored, since there is a violation for Precondition

6 [TMK15], which states that "The mapped statements within the clone fragments

should return at most one variable of the same type to the original methods from

which they are extracted".
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12/21/16, 2'37 PM173-1-2

Page 1 of 1file:///Users/asif/Desktop/CaseStudy/Results/173_1_2.htm

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2
File path: org/jfree/chart/renderer/category/LineAndShapeRenderer File path: org/jfree/chart/renderer/xy/XYLineAndShapeRenderer
Method name: void drawItem(Graphics2D, CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis, CategoryDataset, int, int, int)

Method name: void drawSecondaryPass(Graphics2D, XYPlot, XYDataset, int, int, int,
ValueAxis, Rectangle2D, ValueAxis, CrosshairState, EntityCollection)

Number of AST nodes: 12 Number of AST nodes: 12

See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group
(ms) 166.3

Clones location Clones are in different classes having the same super
class

 if (shape.intersects(dataArea))
if (getItemShapeVisible(row, column))  

if (getItemShapeFilled(row, column)) if (getItemShapeFilled(series, item))
if (this.useFillPaint) if (this.useFillPaint)

g2.setPaint(getItemFillPaint(row, column)); g2.setPaint(getItemFillPaint(series, item));
else else

g2.setPaint(getItemPaint(row, column)); g2.setPaint(getItemPaint(series, item));
g2.fill(shape); g2.fill(shape);

if (this.drawOutlines) if (this.drawOutlines)
if (this.useOutlinePaint) if (getUseOutlinePaint())

g2.setPaint(getItemOutlinePaint(row, column)); g2.setPaint(getItemOutlinePaint(series, item));
else else

g2.setPaint(getItemPaint(row, column)); g2.setPaint(getItemPaint(series, item));
g2.setStroke(getItemOutlineStroke(row, column)); g2.setStroke(getItemOutlineStroke(series, item));
g2.draw(shape); g2.draw(shape);

1

Mapping Summary

Number of mapped statements 11
Number of unmapped statements in the fragment (1) 1
Number of unmapped statements in the fragment (2) 1
Clone type Type 2

Mapped Statements

ID Statement ID Statement

18
39
40 19
41 20
42 21

43 22
44 23
45 24
46 25
47 26

48 27
49 28
50 29

Precondition Violations (0)

Row Violation

{Refactorable}

Figure 4.3: Example of a refactorable clone pair

12/21/16, 2'37 PM387-1-2

Page 1 of 1file:///Users/asif/Desktop/CaseStudy/Results/387_1_2.htm

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2
File path: org/jfree/chart/renderer/category/GroupedStackedBarRenderer File path: org/jfree/chart/renderer/category/StackedBarRenderer
Method name: void drawItem(Graphics2D, CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis, CategoryDataset, int, int, int)

Method name: void drawItem(Graphics2D, CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis, CategoryDataset, int, int, int)

Number of AST nodes: 5 Number of AST nodes: 5

See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group
(ms) 356.3

Clones location Clones are in different classes having the same super
class

if (value > 0.0) if (value >= 0.0)
translatedBase = rangeAxis.valueToJava2D(positiveBase, dataArea, location
);

translatedBase = rangeAxis.valueToJava2D(positiveBase, dataArea, location
);

translatedValue = rangeAxis.valueToJava2D(positiveBase + value, dataArea
, location);

translatedValue = rangeAxis.valueToJava2D(positiveBase + value, dataArea
, location);

else else
translatedBase = rangeAxis.valueToJava2D(negativeBase, dataArea, 
location);

translatedBase = rangeAxis.valueToJava2D(negativeBase, dataArea, 
location);

translatedValue = rangeAxis.valueToJava2D(negativeBase + value, 
dataArea, location);

translatedValue = rangeAxis.valueToJava2D(negativeBase + value, 
dataArea, location);

1

Mapping Summary

Number of mapped statements 5
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (2) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement

21 25

22 26

23 27

24 28

25 29

Precondition Violations (1)

Row Violation

1 Clone fragment #1 returns variables translatedBase, translatedValue , while Clone fragment #2 returns variables translatedBase, translatedValue

{Non-refactorable}

Figure 4.4: Example of a non-refactorable clone pair
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Chapter 5

Qualitative Study

This chapter evaluates our statement mapping approach. The evaluation covers three

parts, a) the accuracy of our statement mapping process, b) the performance of our

algorithms in terms of execution time, and c) the refactorability for the resulting clone

groups. The accuracy and performance of our approach are measured in comparison

to Tsantalis et al. [TMK15]. This study includes the clone groups studied in [Tsaa],

which were detected by Deckard [Jia+07] in the JFreechart project [JFr].

JFreechart was selected for this study because : 1) It contains a large set of clone

pairs; 2) It has a test suite with high code coverage, increasing the probability of

having clone pairs covered by a test; 3) The test suite has no failing tests, allowing

us to examine if our clone refactoring implementation would cause tests failures by

changing the behavior of the program. As for the clone detection tool, we selected

Deckard because of the location diversity of the refactorable clone groups, which

requires to apply different refactoring strategies.
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5.1 Results

The clone dataset [Tsaa] contains 847 groups consisting of 2306 clone instances. Ta-

ble 5.1 gives more insight about the clone dataset by listing the number of clone

groups per group size. 92.2% of the groups contain less than 5 clone instances.

Table 5.1: Examined clone dataset

Group size Number of groups
2 591
3 92
4 98
5 21
>5 45

Table 5.2 provides an overview of the results we got by comparing the mapped

statements by our work and Tsantalis et al. [TMK15]. The results are categorized

by clone type. The third column shows the percentage of clone pairs whose state-

ments were mapped identically by the two approaches. The fourth column shows the

percentage of statements that were mapped identically by the two approaches.

Table 5.2: Overall results

Clone type Number of clone
pairs

Identical map-
pings at clone
pair level (%)

Identical map-
pings at state-
ment level (%)

Type I 337 97.6 99.2
Type II 858 82.3 86.0
Type III 27 55.5 85.2

To enable a more fair comparison of the two approaches, we filtered out some

clone pairs falling into two main categories: 1) clone pairs with symmetrical control

structures, since the approach developed by Tsantalis et al. uses a greedy search

74



algorithm allowing to obtain a better quality statement mapping in the case of sym-

metrical if/else and if-else-if structures (i.e., the code inside the if clause of

the first clone appears inside the else-if or else clause of the second clone), and 2)

clone pairs labeled with a different clone type by each approach (e.g., first approach

produces a statement mapping that can be characterized as Type-II clone, while the

second approach produces a statement mapping that can be characterized as Type-III

clone).

The results of this filtered clone dataset can be seen in Table 5.3. The second

column in Table 5.3 shows the total number of pairs we included in our experiment

categorized based on their clone type.

Table 5.3: Results included in the comparison

Clone type Number of clone
pairs

Identical map-
pings at clone
pair level (%)

Identical map-
pings at state-
ment level (%)

Type I 326 100 100
Type II 732 94.0 98.0
Type III 24 62.5 93.0

5.2 Discussion

To evaluate our statement mapping process (Section 4.5) we will investigate two

questions listed below, by comparing our work with Tsantalis et al. work.

RQ1: How accurate is our statement mapping algorithm? (Section 5.2.1)

RQ2: How fast is our statement mapping algorithm? (Section 5.2.2)

RQ3: How effective is our approach in terms of cluster-level refactorability? (Section

5.2.3)
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RQ4: How effective is our approach in terms of group-level refactorability and per-

formance? (Section 5.2.4)

5.2.1 Accuracy Evaluation

We measure the accuracy of our work by counting the number of cases that we have an

identical statement mapping to [TMK15]. As discussed in the Related Work Chapter,

the approach by [TMK15] is the current state-of-the-art in clone statement mapping

and refactorability analysis.

In Table 5.3, we can see that our approach has 100% identical statement mapping

with Tsantalis et al. at clone-pair and statement level forType-I clones. On the other

hand, we have the same statement mapping for 688 clone pairs out of 732 Type-II

pairs (94%), and 15 clone pairs out of 23 Type-III pairs (65.2%). Table 5.4 shows the

number of clone pairs with non-identical mapping categorized into Different map-

ping, More mapped statements, and Less mapped statements if our approach

has a different mapping for the same statements, more mapped statements, or less

mapped statements, respectively. The last two columns, show the number of clone

pairs with non-identical mapping and at the same time more mapped statements,

and less mapped statements, respectively.

Table 5.4: Cases with non-identical statement mapping

Clone
Type

Number
of clone
pairs

Different
map-
ping

More
mapped
state-
ments

Less
mapped
state-
ments

Different
map-
ping &
more
mapped
state-
ments

Different
map-
ping
& less
mapped
state-
ments

Type II 44 24 15 1 4 0
Type III 8 3 4 1 0 0
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To explain these differences in statement mapping, we will split the discussion into

three parts according to the columns in Table 5.4 (Different mapping, More mapped

statements, Less mapped statements) and present a representative example from the

clone dataset we used in the experiment.

Different statement mapping: Our approach maps the statements in the order

they appear within the same block or under the same matched control statement,

while the approach by Tsantalis et al. looks for a best match that has the minimum

number of differences between the mapped statements. Figure 5.1 shows an example

of a different mapping in Type-II clones. The difference appears in the mapping of

statements 13 and 14 in the first fragment (clone on the left), where in Figure 5.1a

they are mapped to statements 15 and 14, respectively, while in Figure 5.1b they

are mapped to statements 14 and 15, respectively (clone on the right). As we can

see, Tsantalis et al. approach reversed the order of two statements to minimize the

number of differences, while our approach preserved the order of statements in the

two clone fragments.

(a) Tsantalis et al. statement mapping

(b) Our statement Mapping

Figure 5.1: Example of different mapping

More mapped statements: Our approach is more lenient in statement map-
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ping, because we allow statements to be mapped if they share at least one data type

or super type, while Tsantalis et al. require statements to have the same data types

or super types in their entire AST structures. For instance, Tsantalis et al. (Figure

5.2a) does not allow the mapping of statements (11, 17) in the first clone (on the

left) to statements (11, 17) in the second clone (on the right), because the types

SerialDate and Week are not compatible. While in our work (Figure 5.2b) we allow

the statements to be mapped because the variables month and w, in the first and

second clones, have the same data type (i.e., int), and the return type of methods

stringToMonthCode and stringToWeek are the same (i.e., int).
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(a) Tsantalis et al. statement mapping

(b) Our statement mapping

Figure 5.2: Example of a statement mapping with more mapped statements

Less mapped statements: Our approach is more lenient by allowing some

statements to be mapped if they share at least one data type or super type. However,

this does not apply when we have, for instance a method call, or when the statement

does not follow any of the forms we discussed in section 4.3.2. In Figure 5.3, below,

our approach did not match the last statements (168 in first clone and 179 in the

second clone), because they do not follow any of the forms we discussed in section

4.3.2.
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Arc2D segment = (Arc2D)iterator.next(); Arc2D segment = (Arc2D)iterator.next();
if (segment != null) if (segment != null)

Comparable key = getSectionKey(cat); Comparable key = getSectionKey(cat);
paint = lookupSectionPaint(key, true); paint = lookupSectionPaint(key);
outlinePaint = lookupSectionOutlinePaint(key); outlinePaint = lookupSectionOutlinePaint(key);
outlineStroke = lookupSectionOutlineStroke(key); outlineStroke = lookupSectionOutlineStroke(key);
drawSide(g2, pieArea, segment, front, back, paint, outlinePaint, 
outlineStroke, false, true);

drawSide(g2, pieArea, segment, front, back, paint, outlinePaint, 
outlineStroke, true, false);

cat++; cat++;

1

Mapping Summary

Number of mapped statements 8
Number of unmapped statements in the first code fragment 0
Number of unmapped statements in the second code fragment 0
Time elapsed for statement mapping (ms) 79.1
Clone type Type 2

Mapped Statements

ID Statement ID Statement

161 172
162 173
163 174
164 175
165 176
166 177

167 178

168 179

Precondition Violations (2)

Row Violation

1 Expression lookupSectionPaint(key,true) cannot be parameterized, because it has dependencies to/from statements that will be extracted
2 Expression lookupSectionPaint(key) cannot be parameterized, because it has dependencies to/from statements that will be extracted

{Non-refactorable}

420-1-2 file:///Users/asif/Desktop/CaseStudy/html.reports/420-1-2.htm

2 of 2 1/17/17, 7:29 AM

(a) Tsantalis et al. statement mapping

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2
File path: org/jfree/chart/plot/PiePlot3D File path: org/jfree/chart/plot/PiePlot3D
Method name: void draw(Graphics2D, Rectangle2D, Point2D, PlotState,
PlotRenderingInfo)

Method name: void draw(Graphics2D, Rectangle2D, Point2D, PlotState,
PlotRenderingInfo)

Number of AST nodes: 8 Number of AST nodes: 8

See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 78.7
Clones location Clones are in the same method

Arc2D segment = (Arc2D)iterator.next(); Arc2D segment = (Arc2D)iterator.next();
if (segment != null) if (segment != null)

Comparable key = getSectionKey(cat); Comparable key = getSectionKey(cat);
paint = lookupSectionPaint(key, true); paint = lookupSectionPaint(key);
outlinePaint = lookupSectionOutlinePaint(key); outlinePaint = lookupSectionOutlinePaint(key);
outlineStroke = lookupSectionOutlineStroke(key); outlineStroke = lookupSectionOutlineStroke(key);
drawSide(g2, pieArea, segment, front, back, paint, outlinePaint, 
outlineStroke, false, true);

drawSide(g2, pieArea, segment, front, back, paint, outlinePaint, 
outlineStroke, true, false);

cat++;
cat++;

1

Mapping Summary

Number of mapped statements 7
Number of unmapped statements in the fragment (1) 1
Number of unmapped statements in the fragment (2) 1
Clone type Type 2

Mapped Statements

ID Statement ID Statement

161 172
162 173
163 174
164 175
165 176
166 177

167 178

179
168

Precondition Violations (2)

Row Violation

1 Expression lookupSectionPaint(key) cannot be parameterized, because it has dependencies to/from statements that will be extracted
2 Expression lookupSectionPaint(key,true) cannot be parameterized, because it has dependencies to/from statements that will be extracted

{Non-refactorable}

420-1-2 file:///Users/asif/Desktop/CaseStudy/Results2/420_1_2.htm

1 of 1 1/17/17, 7:29 AM

(b) Our statement mapping

Figure 5.3: Example of a statement mapping with less mapped statements

5.2.2 Performance Evaluation

After we evaluated the quality of our statement mapping approach, we need to evalu-

ate its performance in terms of execution time. The computed execution time in our

approach includes the time to a) extract the required information from the clones, b)

find common control structures among the clone fragments, and c) find a mapping

between the statements of the clone fragments. In this section, we will compare the

performance of our approach and Tsantalis et al. approach.

5.2.2.1 Mean or Median comparison?

First, we need to select the correct measure to compare the performance of the two

approaches. Median and Mean are two common measures used to compare groups

of data points. To select the correct measure we apply two tests, discussed below,

on the execution times reported by both approaches for the clone pairs in Table 5.3,

in order to identify whether the time points are normally distributed or not. If the

points are normally distributed then we will use the Mean, otherwise we will use the
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Median in the comparison.

Skewness [Whe95] This measure describes the symmetry of the data points around

the Mean. When the skewness is equal to 0, then the data points are normally

distributed and symmetrical; However, when the skewness is greater than 0, or

less than 0, it means that the data points are not normally distributed and are

skewed to the right or left, respectively.

Kurtosis [Wes14] This measure describes if the shape of the data is the same as

the Gaussian distribution (kurtosis = 0), or if it has a tail. Distributions that

have higher kurtosis (kurtosis > 0) will have thicker and peaked tails, while

distributions that have lower kurtosis will have thinner and flatter tails.

Wilcoxon Ranked Test [Wil45] This is a nonparametric test that does not as-

sume the normality in the distribution, and the two score sets to be tested are

from the same data set [Sta]. This test examines if there is a statistically sig-

nificant difference between the two score sets. If the p-value of the test is less

than 0.05 it implies that there is a statistically significant difference, i.e., the

results are not by chance and can be generalized on other data sets.

Cliff’s delta [GK05] This is a nonparametric test that is used to calculate the effect

size of the differences in the data. Effect size means how regular are the large

values in the first distribution in comparison to another distribution [WSG16].

The thresholds for Cliff’s delta d (regularity of large values) are: Negligible

|d| < 0.147; Small |d| < 0.33; Medium |d| < 0.474; and Large [Mar; Rom+06].

5.2.2.2 The Comparison

The skewness and kurtosis values for our work and Tsantalis et al. are (0.9, 6.3) and

(6.6, 82.5), respectively. These results indicate that the data points are not normally
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distributed as both skewness and kurtosis diverge from 0. Figure 5.4 (excluding

outliers) shows the plot for the execution time of both approaches, which shows that

the median for both works is almost the same with 69.1(ms) for our approach and

72.3(ms) for Tsantalis et al. approach. The difference in Figure 5.4 appears in the

distribution range where in our work the time ranges from 5.1(ms) to around 160(ms),

while for Tsantalis et al. it ranges from 6.2(ms) to around 210(ms).
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00
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Our Work Tsantalis et al.

Our Work Tsantalis et al.
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0

15
0
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Figure 5.4: Execution time distribution: Our approach vs. Tsantalis et al. in mil-
lisecond
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Table 5.5a shows the skewness and kurtosis per clone type. Table 5.5b shows the

median, minimum, and maximum execution time per-clone type.

Table 5.5: Execution time for each clone type

(a) Statistical tests

Clone Type
Our Work Tsantalis et al.

Skewness Kurtosis Skewness Kurtosis

Type I 0.57 3.62 0.92 7.1

Type II 1.04 6.83 6.53 72.43

Type III 0.013 2.1 0.56 2.37

(b) Execution time in (ms)

Clone Type
Our Work Tsantalis et al.

Median Min Max Median Min Max

Type I 72.3 10.2 234.3 95.7 9.6 371.1

Type II 67.31 5.1 412.7 60.0 6.2 1369.6

Type III 57.8 17.3 99.2 76.9 14.8 221.3

Figure 5.5 shows the box-plots (excluding outliers) for each clone type. For Clone

Type I, the median time for our work is faster by 23.4(ms) and the execution time

is distributed in a smaller range compared to Tsantalis et al. For Clone Type II,

the median time in our work is slower by 7.3(ms), but the overall execution time

distribution shows that our work is slightly faster than Tsantalis et al., since the

execution time for our work ranges from 5.1(ms) to 170(ms), while for Tsantalis et

al. it ranges from 5.7(ms) to 195(ms). Lastly, for Clone Type III, the median time

and the overall execution time distribution of our work is faster than Tsantalis et

al., since the median time for our work is lower by 19.1(ms) and the execution time
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ranges from 17.3(ms) to 100(ms), while for Tsantalis et al. the execution time ranges

from 14.8(ms) to 220(ms).

The Wilcoxon test p-values for Clone Type I, Clone Type II, and Clone Type III

are 7.42 ∗ 10−12, 1.48 ∗ 10−8, and 0.011, respectively. The p-values indicate that there

is a statistically significant difference in the performance of our work in comparison

to Tsantalis et al. Further more, we compute Cliff’s delta to find the effect size of

the differences, and they are: small for Clone Type I, negligible for Clone Type II,

and small for Clone Type III.
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(a) Clone Type I
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(c) Clone Type III

Figure 5.5: Execution time distribution for each clone type in (ms)
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5.2.3 Clustering Evaluation

The goal of clustering step (Section 4.4) is to improve the refactorability of the original

group of clones by grouping the clone fragments into smaller clusters that share a

common structure and have less differences. To evaluate this step, we examined

the clusters resulting from the two clustering steps based on Common Structure

(Section 4.4.1) and Differences (Section 4.4.2). We found 45 and 48 refactorable

clusters that contain more than two clone instances, respectively.

We performed a further examination on the refactorable clusters resulting from

both clustering methods, by comparing if the clustering based on Differences af-

fected the clusters resulting from the clustering based on Common Structure. The

outcome of the comparison can be seen in Table 5.6.

Table 5.6: The effect of clustering based on Differences on the initial clusters ob-
tained by clustering based on Common Structure

Change #Cases
No changes to the clusters resulting from clustering based on Com-
mon Structure

25

Removing clone fragments from the clusters resulting from cluster-
ing based on Common Structure increased the number of refac-
torable clusters

10

The clusters resulting from clustering based on Differences were
more and/or smaller from the clusters resulting from clustering
based on Common Structure

19

Removing a clone fragment from the clusters resulting from clus-
tering based on Common Structure increased the number of
mapped statements

1

Table 5.6 shows that in 25 cases the clustering based on Differences did not

affect the initial clusters obtained by clustering based on Common Structure. On

the other hand, in 30 cases there were changes, which we will discuss in detail next.

Before we explain these changes, we will refer to the clusters obtained by clustering
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based on Common Structure as original clusters, and to the clusters obtained

by clustering based on Differences as new clusters.

• There were 10 non-refactorable original clusters, which became refactorable by dis-

carding a single clone fragment or by splitting them into smaller clusters. For ex-

ample, removing a clone fragment from the non-refactorable original cluster (Figure

5.6a) made it refactorable (Figure 5.6b). The clone fragment that was preventing

the refactoring is the rightmost one in Figure 5.6a, which returns an object of type

Shape, while the rest of the fragments return an object of type Rectangle2D and

this difference causes a violation of Precondition 6 (Section 2.8).

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2 Fragment Id: 3 Fragment Id: 4 Fragment Id: 5

File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

File path: org/jfree/chart
/renderer
/xy/StackedXYAreaRenderer

Method name: Point2D
calculateDomainMarkerTextAnchorPoint(Graphics2D,
PlotOrientation, Rectangle2D, Rectangle2D,
RectangleInsets, LengthAdjustmentType,
RectangleAnchor)

Method name: Point2D
calculateRangeMarkerTextAnchorPoint(Graphics2D,
PlotOrientation, Rectangle2D, Rectangle2D,
RectangleInsets, LengthAdjustmentType,
RectangleAnchor)

Method name: Point2D
calculateDomainMarkerTextAnchorPoint(Graphics2D,
PlotOrientation, Rectangle2D, Rectangle2D,
RectangleInsets, LengthAdjustmentType,
RectangleAnchor)

Method name: Point2D
calculateRangeMarkerTextAnchorPoint(Graphics2D,
PlotOrientation, Rectangle2D, Rectangle2D,
RectangleInsets, LengthAdjustmentType,
RectangleAnchor)

Method name: void
drawItem(Graphics2D,
XYItemRendererState,
Rectangle2D,
PlotRenderingInfo, XYPlot,
ValueAxis, ValueAxis,
XYDataset, int, int,
CrosshairState, int)

Number of AST nodes: 4 Number of AST nodes: 4 Number of AST nodes: 4 Number of AST nodes: 4 Number of AST nodes: 4

See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 118.8
Clones location Clones are in different classes having the same super class

if (orientation == PlotOrientation.
HORIZONTAL)

if (orientation == PlotOrientation.
HORIZONTAL)

if (orientation == PlotOrientation.
HORIZONTAL)

if (orientation == PlotOrientation.
HORIZONTAL)

if (plot.getOrientation() ==
PlotOrientation.HORIZONTAL)

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, 
LengthAdjustmentType.
CONTRACT, labelOffsetType
);

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, labelOffsetType, 
LengthAdjustmentType.
CONTRACT);

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, 
LengthAdjustmentType.
CONTRACT, labelOffsetType
);

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, 
labelOffsetForRange, 
LengthAdjustmentType.
CONTRACT);

shape = ShapeUtilities.
createTranslatedShape(
shape, transY1, transX1);

if (orientation ==
PlotOrientation.VERTICAL)

if (orientation ==
PlotOrientation.VERTICAL)

if (orientation ==
PlotOrientation.VERTICAL)

if (orientation ==
PlotOrientation.VERTICAL)

if (plot.getOrientation()
== PlotOrientation.
VERTICAL)

anchorRect =
markerOffset.
createAdjustedRectangle
(markerArea, 
labelOffsetType, 
LengthAdjustmentType.
CONTRACT);

anchorRect =
markerOffset.
createAdjustedRectangle
(markerArea, 
LengthAdjustmentType.
CONTRACT, 
labelOffsetType);

anchorRect =
markerOffset.
createAdjustedRectangle
(markerArea, 
labelOffsetType, 
LengthAdjustmentType.
CONTRACT);

anchorRect =
markerOffset.
createAdjustedRectangle
(markerArea, 
LengthAdjustmentType.
CONTRACT, 
labelOffsetForRange);

shape = ShapeUtilities
.
createTranslatedShape
(shape, transX1, 
transY1);

1

Mapping Summary

Number of mapped statements 4
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (2) 0
Number of unmapped statements in the fragment (3) 0
Number of unmapped statements in the fragment (4) 0
Number of unmapped statements in the fragment (5) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement ID Statement ID Statement ID Statement

2 2 2 2 71

3 3 3 3 72

4 4 4 4 69

5 5 5 5 70

Precondition Violations (2)

Row Violation

1 Clone fragment #1 returns variable anchorRect with type java.awt.geom.Rectangle2D , while Clone fragment #2 returns variable shape with type java.awt.Shape
2 Expression plot.getOrientation() cannot be parameterized, because it has dependencies to/from statements that will be extracted

{Non-refactorable}

645-1 file:///Users/asif/Desktop/CaseStudy/ResultsNoClustering/645_1.htm

1 of 1 1/14/17, 1:12 AM

(a) A non-refactorable cluster created from clustering based on Common Structure

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2 Fragment Id: 3 Fragment Id: 4
File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

Method name: Point2D
calculateDomainMarkerTextAnchorPoint(Graphics2D,
PlotOrientation, Rectangle2D, Rectangle2D,
RectangleInsets, LengthAdjustmentType,
RectangleAnchor)

Method name: Point2D
calculateRangeMarkerTextAnchorPoint(Graphics2D,
PlotOrientation, Rectangle2D, Rectangle2D,
RectangleInsets, LengthAdjustmentType,
RectangleAnchor)

Method name: Point2D
calculateDomainMarkerTextAnchorPoint(Graphics2D,
PlotOrientation, Rectangle2D, Rectangle2D,
RectangleInsets, LengthAdjustmentType,
RectangleAnchor)

Method name: Point2D
calculateRangeMarkerTextAnchorPoint(Graphics2D,
PlotOrientation, Rectangle2D, Rectangle2D,
RectangleInsets, LengthAdjustmentType,
RectangleAnchor)

Number of AST nodes: 4 Number of AST nodes: 4 Number of AST nodes: 4 Number of AST nodes: 4

See real code fragment See real code fragment See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 44.9
Clones location Clones are in different classes having the same super class

if (orientation == PlotOrientation.
HORIZONTAL)

if (orientation == PlotOrientation.
HORIZONTAL)

if (orientation == PlotOrientation.
HORIZONTAL)

if (orientation == PlotOrientation.
HORIZONTAL)

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, 
LengthAdjustmentType.
CONTRACT, labelOffsetType);

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, labelOffsetType, 
LengthAdjustmentType.
CONTRACT);

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, 
LengthAdjustmentType.
CONTRACT, labelOffsetType);

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, labelOffsetForRange
, LengthAdjustmentType.
CONTRACT);

else if (orientation ==
PlotOrientation.VERTICAL)

else if (orientation ==
PlotOrientation.VERTICAL)

else if (orientation ==
PlotOrientation.VERTICAL)

else if (orientation ==
PlotOrientation.VERTICAL)

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, 
labelOffsetType, 
LengthAdjustmentType.
CONTRACT);

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, 
LengthAdjustmentType.
CONTRACT, 
labelOffsetType);

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, 
labelOffsetType, 
LengthAdjustmentType.
CONTRACT);

anchorRect = markerOffset.
createAdjustedRectangle(
markerArea, 
LengthAdjustmentType.
CONTRACT, 
labelOffsetForRange);

1

Mapping Summary

Number of mapped statements 4
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (2) 0
Number of unmapped statements in the fragment (3) 0
Number of unmapped statements in the fragment (4) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement ID Statement ID Statement

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

Precondition Violations (0)

Row Violation

{Refactorable}

645-1 file:///Users/asif/Desktop/CaseStudy/Results2/645_1.htm

1 of 1 1/14/17, 1:15 AM

(b) Cluster becomes refactorable after one clone fragment is discarded

Figure 5.6: Change in a cluster after performing clustering based on Differences.

• There were 19 refactorable original clusters, which were further divided into smaller

clusters, after applying clustering based on Differences. These changes affected the

clone type of the new clusters, and the number of differences appearing in the new

clusters.

(1) In 8 cases, further dividing the original clusters improved the quality of the
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new clusters in terms of clone types. For instance, the original cluster was

a Type II clone, and was splitted into two new clusters of Type I clones.

An example from our case study is shown in Figure 5.7a, where the original

cluster is a Type II clone, but after performing clustering based on differences

the new clusters are Type I clones (Figure 5.7b) and Type II clones with less

differences (Figure 5.7c), respectively.

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2 Fragment Id: 3 Fragment Id: 4
File path: org/jfree/chart/plot/CategoryPlot File path: org/jfree/chart/plot/CategoryPlot File path: org/jfree/chart/plot/XYPlot File path: org/jfree/chart/plot/XYPlot
Method name: void addDomainMarker(int,
CategoryMarker, Layer, boolean)

Method name: void addRangeMarker(int,
Marker, Layer, boolean)

Method name: void addDomainMarker(int,
Marker, Layer, boolean)

Method name: void addRangeMarker(int,
Marker, Layer, boolean)

Number of AST nodes: 12 Number of AST nodes: 12 Number of AST nodes: 12 Number of AST nodes: 12

See real code fragment See real code fragment See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 53.5
Clones location Clones are in different classes having the same super class

if (layer == Layer.FOREGROUND) if (layer == Layer.FOREGROUND) if (layer == Layer.FOREGROUND) if (layer == Layer.FOREGROUND)
markers = (Collection)this.
foregroundDomainMarkers.get(new
Integer(index));

markers = (Collection)this.
foregroundRangeMarkers.get(new
Integer(index));

markers = (Collection)this.
foregroundDomainMarkers.get(new
Integer(index));

markers = (Collection)this.
foregroundRangeMarkers.get(new
Integer(index));

if (markers == null) if (markers == null) if (markers == null) if (markers == null)
markers = new java.util.ArrayList
();

markers = new java.util.
ArrayList();

markers = new java.util.ArrayList
();

markers = new java.util.
ArrayList();

this.foregroundDomainMarkers.
put(new Integer(index), markers);

this.foregroundRangeMarkers.
put(new Integer(index), markers
);

this.foregroundDomainMarkers.
put(new Integer(index), markers);

this.foregroundRangeMarkers.
put(new Integer(index), markers
);

markers.add(marker); markers.add(marker); markers.add(marker); markers.add(marker);
else if (layer == Layer.

BACKGROUND)
else if (layer == Layer.

BACKGROUND)
else if (layer == Layer.

BACKGROUND)
else if (layer == Layer.

BACKGROUND)
markers = (Collection)this.
backgroundDomainMarkers.get(
new Integer(index));

markers = (Collection)this.
backgroundRangeMarkers.get(
new Integer(index));

markers = (Collection)this.
backgroundDomainMarkers.get(
new Integer(index));

markers = (Collection)this.
backgroundRangeMarkers.get(
new Integer(index));

if (markers == null) if (markers == null) if (markers == null) if (markers == null)
markers = new java.util.
ArrayList();

markers = new java.util.
ArrayList();

markers = new java.util.
ArrayList();

markers = new java.util.
ArrayList();

this.
backgroundDomainMarkers
.put(new Integer(index), 
markers);

this.
backgroundRangeMarkers
.put(new Integer(index), 
markers);

this.
backgroundDomainMarkers
.put(new Integer(index), 
markers);

this.
backgroundRangeMarkers
.put(new Integer(index), 
markers);

markers.add(marker); markers.add(marker); markers.add(marker); markers.add(marker);

1

Mapping Summary

Number of mapped statements 12
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (2) 0
Number of unmapped statements in the fragment (3) 0
Number of unmapped statements in the fragment (4) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement ID Statement ID Statement

6 2 6 2

7 3 7 3

8 4 8 4

9 5 9 5

10 6 10 6

11 7 11 7

12 8 12 8

13 9 13 9

14 10 14 10

15 11 15 11

16 12 16 12

17 13 17 13

Precondition Violations (0)

Row Violation

{Refactorable}

208-1 file:///Users/asif/Desktop/CaseStudy/ResultsNoClustering/208_1.htm

1 of 1 1/14/17, 3:57 PM

(a) Original cluster is a Type II clone

Clone fragments detected by clone detection tool

Fragment Id: 2 Fragment Id: 4
File path: org/jfree/chart/plot/CategoryPlot File path: org/jfree/chart/plot/XYPlot
Method name: void addRangeMarker(int, Marker, Layer, boolean) Method name: void addRangeMarker(int, Marker, Layer, boolean)
Number of AST nodes: 12 Number of AST nodes: 12

See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group
(ms)

26.9

Clones location
Clones are in different classes having the same super

class

if (layer == Layer.FOREGROUND) if (layer == Layer.FOREGROUND)
markers = (Collection)this.foregroundRangeMarkers.get(new Integer(
index));

markers = (Collection)this.foregroundRangeMarkers.get(new Integer(
index));

if (markers == null) if (markers == null)
markers = new java.util.ArrayList(); markers = new java.util.ArrayList();
this.foregroundRangeMarkers.put(new Integer(index), markers); this.foregroundRangeMarkers.put(new Integer(index), markers);

markers.add(marker); markers.add(marker);
else if (layer == Layer.BACKGROUND) else if (layer == Layer.BACKGROUND)

markers = (Collection)this.backgroundRangeMarkers.get(new
Integer(index));

markers = (Collection)this.backgroundRangeMarkers.get(new
Integer(index));

if (markers == null) if (markers == null)
markers = new java.util.ArrayList(); markers = new java.util.ArrayList();
this.backgroundRangeMarkers.put(new Integer(index), 
markers);

this.backgroundRangeMarkers.put(new Integer(index), 
markers);

markers.add(marker); markers.add(marker);

1

Mapping Summary

Number of mapped statements 12
Number of unmapped statements in the fragment (2) 0
Number of unmapped statements in the fragment (4) 0
Clone type Type 1

Mapped Statements

ID Statement ID Statement

2 2

3 3

4 4
5 5
6 6
7 7
8 8

9 9

10 10
11 11

12 12

13 13

Precondition Violations (0)

Row Violation

{Refactorable}

208-2-4 file:///Users/asif/Desktop/CaseStudy/Results2/208_2_4.htm

1 of 1 1/14/17, 3:58 PM

(b) First new cluster becomes Type I clone

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 3
File path: org/jfree/chart/plot/CategoryPlot File path: org/jfree/chart/plot/XYPlot
Method name: void addDomainMarker(int, CategoryMarker, Layer, boolean) Method name: void addDomainMarker(int, Marker, Layer, boolean)
Number of AST nodes: 12 Number of AST nodes: 12

See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group
(ms)

25.1

Clones location
Clones are in different classes having the same super

class

if (layer == Layer.FOREGROUND) if (layer == Layer.FOREGROUND)
markers = (Collection)this.foregroundDomainMarkers.get(new Integer(
index));

markers = (Collection)this.foregroundDomainMarkers.get(new Integer(
index));

if (markers == null) if (markers == null)
markers = new java.util.ArrayList(); markers = new java.util.ArrayList();
this.foregroundDomainMarkers.put(new Integer(index), markers); this.foregroundDomainMarkers.put(new Integer(index), markers);

markers.add(marker); markers.add(marker);
else if (layer == Layer.BACKGROUND) else if (layer == Layer.BACKGROUND)

markers = (Collection)this.backgroundDomainMarkers.get(new
Integer(index));

markers = (Collection)this.backgroundDomainMarkers.get(new
Integer(index));

if (markers == null) if (markers == null)
markers = new java.util.ArrayList(); markers = new java.util.ArrayList();
this.backgroundDomainMarkers.put(new Integer(index), 
markers);

this.backgroundDomainMarkers.put(new Integer(index), 
markers);

markers.add(marker); markers.add(marker);

1

Mapping Summary

Number of mapped statements 12
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (3) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement

6 6

7 7

8 8
9 9

10 10
11 11
12 12

13 13

14 14
15 15

16 16

17 17

Precondition Violations (0)

Row Violation

{Refactorable}

208-1-3 file:///Users/asif/Desktop/CaseStudy/Results2/208_1_3.htm

1 of 1 1/14/17, 3:58 PM

(c) Second new cluster remains Type II clone, but has less differences

Figure 5.7: The effect on clone types after performing clustering based on Differences.
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In another example, the original cluster is a Type III clone (Figure 5.8a), but

after splitting it, we obtained two Type II clone clusters (Figures 5.8b, 5.8c),

each one of the them containing two clone fragments. Moreover, the gapped

statements in the original cluster are mapped in the new cluster (Figure 5.8c).

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2 Fragment Id: 3 Fragment Id: 4
File path: org/jfree/chart/renderer
/xy/StackedXYAreaRenderer2

File path: org/jfree/chart/renderer
/xy/StackedXYAreaRenderer2

File path: org/jfree/chart/renderer
/xy/StackedXYAreaRenderer2

File path: org/jfree/chart/renderer
/xy/StackedXYAreaRenderer2

Method name: void
drawItem(Graphics2D,
XYItemRendererState, Rectangle2D,
PlotRenderingInfo, XYPlot, ValueAxis,
ValueAxis, XYDataset, int, int,
CrosshairState, int)

Method name: void
drawItem(Graphics2D,
XYItemRendererState, Rectangle2D,
PlotRenderingInfo, XYPlot, ValueAxis,
ValueAxis, XYDataset, int, int,
CrosshairState, int)

Method name: void
drawItem(Graphics2D,
XYItemRendererState, Rectangle2D,
PlotRenderingInfo, XYPlot, ValueAxis,
ValueAxis, XYDataset, int, int,
CrosshairState, int)

Method name: void
drawItem(Graphics2D,
XYItemRendererState, Rectangle2D,
PlotRenderingInfo, XYPlot, ValueAxis,
ValueAxis, XYDataset, int, int,
CrosshairState, int)

Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 8 Number of AST nodes: 8

See real code fragment See real code fragment See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 64.6
Clones location Clones are in the same method

if (orientation ==
PlotOrientation.VERTICAL)

if (orientation ==
PlotOrientation.VERTICAL)

if (orientation ==
PlotOrientation.VERTICAL)

if (orientation ==
PlotOrientation.VERTICAL)

left.moveTo(transX1, 
transStack1);

right.moveTo(transX1, 
transStack1);

left.moveTo(transX1, 
transStack1);

right.moveTo(transX1, 
transStack1);

left.lineTo(transX1, 
transY1);

right.lineTo(transX1, 
transY1);

left.lineTo(transX1, 
transY1);

right.lineTo(transX1, 
transY1);

left.lineTo(transXLeft, 
transStackLeft);

right.lineTo(transXRight, 
transStackRight);

left.lineTo(transXLeft, 
transStackLeft);

right.lineTo(transXRight, 
transStackRight);

else else else else
left.moveTo(
transStack1, 
transX1);

right.moveTo(
transStack1, transX1
);

left.moveTo(
transStack1, 
transX1);

right.moveTo(
transStack1, transX1
);

left.lineTo(transY1
, transX1);

right.lineTo(transY1
, transX1);

left.lineTo(transY1
, transX1);

right.lineTo(transY1
, transX1);

left.lineTo(
transStackLeft, 
transXLeft);

right.lineTo(
transStackRight, 
transXRight);

left.lineTo(
transStackLeft, 
transXLeft);

right.lineTo(
transStackRight, 
transXRight);

right.closePath();
left.closePath();

1

Mapping Summary

Number of mapped statements 7
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (2) 0
Number of unmapped statements in the fragment (3) 1
Number of unmapped statements in the fragment (4) 1
Clone type Type 3

Mapped Statements

ID Statement ID Statement ID Statement ID Statement

92 114 58 80

93 115 59 81

94 116 60 82

95 117 61 83

96 118 62 84

97 119 63 85

98 120 64 86

87
65

Precondition Violations (0)

Row Violation

{Refactorable}

381-1 file:///Users/asif/Desktop/CaseStudy/ResultsNoClustering/381_1.htm

1 of 2 1/14/17, 4:18 PM

(a) Original cluster is a Type III clone

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2
File path: org/jfree/chart/renderer/xy/StackedXYAreaRenderer2 File path: org/jfree/chart/renderer/xy/StackedXYAreaRenderer2
Method name: void drawItem(Graphics2D, XYItemRendererState, Rectangle2D,
PlotRenderingInfo, XYPlot, ValueAxis, ValueAxis, XYDataset, int, int, CrosshairState,
int)

Method name: void drawItem(Graphics2D, XYItemRendererState, Rectangle2D,
PlotRenderingInfo, XYPlot, ValueAxis, ValueAxis, XYDataset, int, int, CrosshairState,
int)

Number of AST nodes: 7 Number of AST nodes: 7

See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 45.6
Clones location Clones are in the same method

if (orientation == PlotOrientation.VERTICAL) if (orientation == PlotOrientation.VERTICAL)
left.moveTo(transX1, transStack1); right.moveTo(transX1, transStack1);
left.lineTo(transX1, transY1); right.lineTo(transX1, transY1);
left.lineTo(transXLeft, transStackLeft); right.lineTo(transXRight, transStackRight);

else else
left.moveTo(transStack1, transX1); right.moveTo(transStack1, transX1);
left.lineTo(transY1, transX1); right.lineTo(transY1, transX1);
left.lineTo(transStackLeft, transXLeft); right.lineTo(transStackRight, transXRight);

1

Mapping Summary

Number of mapped statements 7
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (2) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement

92 114
93 115
94 116
95 117

96 118
97 119
98 120

Precondition Violations (0)

Row Violation

{Refactorable}

381-1-2 file:///Users/asif/Desktop/CaseStudy/Results2/381_1_2.htm

1 of 1 1/14/17, 4:18 PM

(b) First new cluster becomes Type II clone

Clone fragments detected by clone detection tool

Fragment Id: 3 Fragment Id: 4
File path: org/jfree/chart/renderer/xy/StackedXYAreaRenderer2 File path: org/jfree/chart/renderer/xy/StackedXYAreaRenderer2
Method name: void drawItem(Graphics2D, XYItemRendererState, Rectangle2D,
PlotRenderingInfo, XYPlot, ValueAxis, ValueAxis, XYDataset, int, int, CrosshairState,
int)

Method name: void drawItem(Graphics2D, XYItemRendererState, Rectangle2D,
PlotRenderingInfo, XYPlot, ValueAxis, ValueAxis, XYDataset, int, int, CrosshairState,
int)

Number of AST nodes: 8 Number of AST nodes: 8

See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 47.2
Clones location Clones are in the same method

if (orientation == PlotOrientation.VERTICAL) if (orientation == PlotOrientation.VERTICAL)
left.moveTo(transX1, transStack1); right.moveTo(transX1, transStack1);
left.lineTo(transX1, transY1); right.lineTo(transX1, transY1);
left.lineTo(transXLeft, transStackLeft); right.lineTo(transXRight, transStackRight);

else else
left.moveTo(transStack1, transX1); right.moveTo(transStack1, transX1);
left.lineTo(transY1, transX1); right.lineTo(transY1, transX1);
left.lineTo(transStackLeft, transXLeft); right.lineTo(transStackRight, transXRight);

left.closePath(); right.closePath();

1

Mapping Summary

Number of mapped statements 8
Number of unmapped statements in the fragment (3) 0
Number of unmapped statements in the fragment (4) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement

58 80
59 81
60 82
61 83

62 84
63 85
64 86
65 87

Precondition Violations (0)

Row Violation

{Refactorable}

381-3-4 file:///Users/asif/Desktop/CaseStudy/Results2/381_3_4.htm

1 of 1 1/14/17, 4:18 PM

(c) Second new cluster becomes Type II clone

Figure 5.8: The effect on clone types after performing clustering based on Differences.

(2) In 6 cases, the original clusters were further divided into smaller clusters;

however, this did not affect the clone type, and refactorability of the new

clusters, but only reduced the number of differences in the new clusters. For

instance, the original cluster in Figure 5.9a has four differences, namely differ-

ent subclass types, renamed variables (e.g., line and path), different method

invocations (e.g., calculateRangeMarkerTextAnchorPoint() and
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calculateDomainMarkerTextAnchorPoint() have different method names, but

the same return type), and different expressions having the same data type

(e.g., bounds and line.getBounds2D()). After splitting the original cluster

into two new clusters (Figures 5.9b and 5.9c) most of the differences remain

except for the differences in the method invocations.

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2 Fragment Id: 3 Fragment Id: 4 Fragment Id: 5 Fragment Id: 6 Fragment Id: 7 Fragment Id: 8
File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer
/category/BarRenderer3D

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

Method name: void
drawDomainMarker(Graphics2D, CategoryPlot,
CategoryAxis, CategoryMarker, Rectangle2D)

Method name: void
drawRangeMarker(Graphics2D, CategoryPlot,
ValueAxis, Marker, Rectangle2D)

Method name: void
drawRangeMarker(Graphics2D, CategoryPlot,
ValueAxis, Marker, Rectangle2D)

Method name: void
drawRangeMarker(Graphics2D,
CategoryPlot, ValueAxis, Marker,
Rectangle2D)

Method name: void
drawDomainMarker(Graphics2D, XYPlot,
ValueAxis, Marker, Rectangle2D)

Method name: void
drawRangeMarker(Graphics2D, XYPlot,
ValueAxis, Marker, Rectangle2D)

Method name: void
drawDomainMarker(Graphics2D, XYPlot,
ValueAxis, Marker, Rectangle2D)

Method name: void
drawRangeMarker(Graphics2D, XYPlot,
ValueAxis, Marker, Rectangle2D)

Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5

See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 575.8
Clones location Clones are in different classes having the same super class

Font labelFont = marker.getLabelFont(); Font labelFont = marker.getLabelFont(
);

Font labelFont = marker.getLabelFont(
);

Font labelFont = marker.getLabelFont(
); Font labelFont = marker.getLabelFont(); Font labelFont = marker.getLabelFont(

); Font labelFont = marker.getLabelFont(); Font labelFont = marker.getLabelFont(
);

g2.setFont(labelFont); g2.setFont(labelFont); g2.setFont(labelFont); g2.setFont(labelFont); g2.setFont(labelFont); g2.setFont(labelFont); g2.setFont(labelFont); g2.setFont(labelFont);
g2.setPaint(marker.getLabelPaint()); g2.setPaint(marker.getLabelPaint()); g2.setPaint(marker.getLabelPaint()); g2.setPaint(marker.getLabelPaint()); g2.setPaint(marker.getLabelPaint()); g2.setPaint(marker.getLabelPaint()); g2.setPaint(marker.getLabelPaint()); g2.setPaint(marker.getLabelPaint());

Point2D coordinates = 
calculateDomainMarkerTextAnchorPoint
(g2, orientation, dataArea, bounds, 
marker.getLabelOffset(), marker.
getLabelOffsetType(), anchor);

Point2D coordinates = 
calculateRangeMarkerTextAnchorPoint
(g2, orientation, dataArea, rect, marker.
getLabelOffset(), marker.
getLabelOffsetType(), anchor);

Point2D coordinates = 
calculateRangeMarkerTextAnchorPoint
(g2, orientation, dataArea, line.
getBounds2D(), marker.getLabelOffset
(), LengthAdjustmentType.EXPAND, 
anchor);

Point2D coordinates = 
calculateRangeMarkerTextAnchorPoint
(g2, orientation, dataArea, path.
getBounds2D(), marker.getLabelOffset
(), LengthAdjustmentType.EXPAND, 
anchor);

Point2D coordinates = 
calculateDomainMarkerTextAnchorPoint
(g2, orientation, dataArea, rect, marker.
getLabelOffset(), marker.
getLabelOffsetType(), anchor);

Point2D coordinates = 
calculateRangeMarkerTextAnchorPoint
(g2, orientation, dataArea, rect, marker.
getLabelOffset(), marker.
getLabelOffsetType(), anchor);

Point2D coordinates = 
calculateDomainMarkerTextAnchorPoint
(g2, orientation, dataArea, line.
getBounds2D(), marker.getLabelOffset()
, LengthAdjustmentType.EXPAND, 
anchor);

Point2D coordinates = 
calculateRangeMarkerTextAnchorPoint
(g2, orientation, dataArea, line.
getBounds2D(), marker.getLabelOffset
(), LengthAdjustmentType.EXPAND, 
anchor);

TextUtilities.drawAlignedString(label, 
g2, (float)coordinates.getX(), (float)
coordinates.getY(), marker.
getLabelTextAnchor());

TextUtilities.drawAlignedString(label, 
g2, (float)coordinates.getX(), (float)
coordinates.getY(), marker.
getLabelTextAnchor());

TextUtilities.drawAlignedString(label, 
g2, (float)coordinates.getX(), (float)
coordinates.getY(), marker.
getLabelTextAnchor());

TextUtilities.drawAlignedString(label, 
g2, (float)coordinates.getX(), (float)
coordinates.getY(), marker.
getLabelTextAnchor());

TextUtilities.drawAlignedString(label, 
g2, (float)coordinates.getX(), (float)
coordinates.getY(), marker.
getLabelTextAnchor());

TextUtilities.drawAlignedString(label, 
g2, (float)coordinates.getX(), (float)
coordinates.getY(), marker.
getLabelTextAnchor());

TextUtilities.drawAlignedString(label, 
g2, (float)coordinates.getX(), (float)
coordinates.getY(), marker.
getLabelTextAnchor());

TextUtilities.drawAlignedString(label, 
g2, (float)coordinates.getX(), (float)
coordinates.getY(), marker.
getLabelTextAnchor());

1

Mapping Summary

Number of mapped statements 5
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (2) 0
Number of unmapped statements in the fragment (3) 0
Number of unmapped statements in the fragment (4) 0
Number of unmapped statements in the fragment (5) 0
Number of unmapped statements in the fragment (6) 0
Number of unmapped statements in the fragment (7) 0
Number of unmapped statements in the fragment (8) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement ID Statement ID Statement ID Statement ID Statement ID Statement ID Statement

34 87 22 35 87 87 22 22

35 88 23 36 88 88 23 23
36 89 24 37 89 89 24 24

37 90 25 38 90 90 25 25

38 91 26 39 91 91 26 26

Precondition Violations (0)

Row Violation

{Refactorable}

424-1 file:///Users/asif/Desktop/CaseStudy/ResultsNoClustering/424_1.htm

1 of 1 1/15/17, 4:20 PM

(a) Original cluster

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 5 Fragment Id: 7
File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

Method name: void drawDomainMarker(Graphics2D,
CategoryPlot, CategoryAxis, CategoryMarker, Rectangle2D)

Method name: void drawDomainMarker(Graphics2D,
XYPlot, ValueAxis, Marker, Rectangle2D)

Method name: void drawDomainMarker(Graphics2D,
XYPlot, ValueAxis, Marker, Rectangle2D)

Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5

See real code fragment See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group
(ms)

111.0

Clones location
Clones are in different classes having the same super

class

Font labelFont = marker.getLabelFont(); Font labelFont = marker.getLabelFont(); Font labelFont = marker.getLabelFont();
g2.setFont(labelFont); g2.setFont(labelFont); g2.setFont(labelFont);
g2.setPaint(marker.getLabelPaint()); g2.setPaint(marker.getLabelPaint()); g2.setPaint(marker.getLabelPaint());
Point2D coordinates = 
calculateDomainMarkerTextAnchorPoint(g2, 
orientation, dataArea, bounds, marker.
getLabelOffset(), marker.getLabelOffsetType(), 
anchor);

Point2D coordinates = 
calculateDomainMarkerTextAnchorPoint(g2, 
orientation, dataArea, rect, marker.
getLabelOffset(), marker.getLabelOffsetType(), 
anchor);

Point2D coordinates = 
calculateDomainMarkerTextAnchorPoint(g2, 
orientation, dataArea, line.getBounds2D(), 
marker.getLabelOffset(), LengthAdjustmentType.
EXPAND, anchor);

TextUtilities.drawAlignedString(label, g2, (float
)coordinates.getX(), (float)coordinates.getY(), 
marker.getLabelTextAnchor());

TextUtilities.drawAlignedString(label, g2, (float
)coordinates.getX(), (float)coordinates.getY(), 
marker.getLabelTextAnchor());

TextUtilities.drawAlignedString(label, g2, (float)
coordinates.getX(), (float)coordinates.getY(), 
marker.getLabelTextAnchor());

1

Mapping Summary

Number of mapped statements 5
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (5) 0
Number of unmapped statements in the fragment (7) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement ID Statement

34 87 22
35 88 23
36 89 24

37 90 25

38 91 26

Precondition Violations (0)

Row Violation

{Refactorable}

424-1 file:///Users/asif/Desktop/CaseStudy/Results2/424_1.htm

1 of 1 1/15/17, 4:22 PM

(b) First new cluster

Clone fragments detected by clone detection tool

Fragment Id: 2 Fragment Id: 3 Fragment Id: 4 Fragment Id: 6 Fragment Id: 8
File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer/category
/AbstractCategoryItemRenderer

File path: org/jfree/chart/renderer
/category/BarRenderer3D

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

File path: org/jfree/chart/renderer
/xy/AbstractXYItemRenderer

Method name: void
drawRangeMarker(Graphics2D, CategoryPlot,
ValueAxis, Marker, Rectangle2D)

Method name: void
drawRangeMarker(Graphics2D, CategoryPlot,
ValueAxis, Marker, Rectangle2D)

Method name: void
drawRangeMarker(Graphics2D,
CategoryPlot, ValueAxis, Marker,
Rectangle2D)

Method name: void
drawRangeMarker(Graphics2D, XYPlot,
ValueAxis, Marker, Rectangle2D)

Method name: void
drawRangeMarker(Graphics2D, XYPlot,
ValueAxis, Marker, Rectangle2D)

Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5 Number of AST nodes: 5

See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 237.9
Clones location Clones are in different classes having the same super class
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Mapping Summary

Number of mapped statements 5
Number of unmapped statements in the fragment (2) 0
Number of unmapped statements in the fragment (3) 0
Number of unmapped statements in the fragment (4) 0
Number of unmapped statements in the fragment (6) 0
Number of unmapped statements in the fragment (8) 0
Clone type Type 2

Mapped Statements

ID Statement ID Statement ID Statement ID Statement ID Statement

87 22 35 87 22

88 23 36 88 23
89 24 37 89 24

90 25 38 90 25

91 26 39 91 26

Precondition Violations (0)

Row Violation

{Refactorable}

424-2 file:///Users/asif/Desktop/CaseStudy/Results2/424_2.htm

1 of 1 1/15/17, 4:23 PM

(c) Second new cluster

Figure 5.9: The number of differences is reduced after performing clustering based
on Differences, but the clone type remains the same.

(3) In 5 cases, we have a combination of the improvements discussed in (1) and (2)

simply by discarding a single clone fragment from the original cluster. These

cases mostly have an odd number of clone fragments in the original cluster.

• The last row in Table 5.6 represents a case where the number of mapped state-

ments increased by removing a single clone fragment. In the original cluster, 3

statements are considered as gaps (Figure 5.10a), and the fragment causing these

gapped statements is the third one from the left. The problem is caused from the
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conditional expression inside the if statement (statement 45, third clone fragment),

where it has a different AST structure in comparison to the rest of the fragments.

For this reason, the if statement including the statements nested inside it, are

considered as a gap. By removing this fragment from the cluster, we can see that

all statements are now mapped (Figure 5.10b).

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2 Fragment Id: 3 Fragment Id: 4 Fragment Id: 6 Fragment Id: 7 Fragment Id: 8
File path: org/jfree/chart/renderer/category
/BarRenderer

File path: org/jfree/chart/renderer/category
/GanttRenderer

File path: org/jfree/chart/renderer/category
/IntervalBarRenderer

File path: org/jfree/chart/renderer/category
/LayeredBarRenderer

File path: org/jfree/chart/renderer/category
/StatisticalBarRenderer

File path: org/jfree/chart/renderer/category
/StatisticalBarRenderer

File path: org/jfree/chart/renderer/category
/WaterfallBarRenderer

Method name: void drawItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
CategoryDataset, int, int, int)

Method name: void drawTask(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
GanttCategoryDataset, int, int)

Method name: void
drawInterval(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
IntervalCategoryDataset, int, int)

Method name: void
drawHorizontalItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
CategoryDataset, int, int)

Method name: void
drawHorizontalItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
StatisticalCategoryDataset, int, int)

Method name: void
drawVerticalItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
StatisticalCategoryDataset, int, int)

Method name: void drawItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
CategoryDataset, int, int, int)

Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 7

See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 101.1
Clones location Clones are in different classes having the same super class
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Mapping Summary

Number of mapped statements 4
Number of unmapped statements in the fragment (1) 3
Number of unmapped statements in the fragment (2) 3
Number of unmapped statements in the fragment (3) 3
Number of unmapped statements in the fragment (4) 3
Number of unmapped statements in the fragment (6) 3
Number of unmapped statements in the fragment (7) 3
Number of unmapped statements in the fragment (8) 3
Clone type Type 3

Mapped Statements

ID Statement ID Statement ID Statement ID Statement ID Statement ID Statement ID Statement
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Row Violation
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(a) Original cluster with gapped statements

Clone fragments detected by clone detection tool

Fragment Id: 1 Fragment Id: 2 Fragment Id: 4 Fragment Id: 6 Fragment Id: 7 Fragment Id: 8
File path: org/jfree/chart/renderer/category
/BarRenderer

File path: org/jfree/chart/renderer/category
/GanttRenderer

File path: org/jfree/chart/renderer/category
/LayeredBarRenderer

File path: org/jfree/chart/renderer/category
/StatisticalBarRenderer

File path: org/jfree/chart/renderer/category
/StatisticalBarRenderer

File path: org/jfree/chart/renderer/category
/WaterfallBarRenderer

Method name: void drawItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
CategoryDataset, int, int, int)

Method name: void drawTask(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
GanttCategoryDataset, int, int)

Method name: void
drawHorizontalItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
CategoryDataset, int, int)

Method name: void
drawHorizontalItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
StatisticalCategoryDataset, int, int)

Method name: void
drawVerticalItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
StatisticalCategoryDataset, int, int)

Method name: void drawItem(Graphics2D,
CategoryItemRendererState, Rectangle2D,
CategoryPlot, CategoryAxis, ValueAxis,
CategoryDataset, int, int, int)

Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 7 Number of AST nodes: 7

See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment See real code fragment

Summary

Time elapsed for mapping fragments in the group (ms) 116.8
Clones location Clones are in different classes having the same super class
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Mapping Summary

Number of mapped statements 7
Number of unmapped statements in the fragment (1) 0
Number of unmapped statements in the fragment (2) 0
Number of unmapped statements in the fragment (4) 0
Number of unmapped statements in the fragment (6) 0
Number of unmapped statements in the fragment (7) 0
Number of unmapped statements in the fragment (8) 0
Clone type Type 1

Mapped Statements

ID Statement ID Statement ID Statement ID Statement ID Statement ID Statement

36 48 48 45 45 57

37 49 49 46 46 58

38 50 50 47 47 59

39 51 51 48 48 60

40 52 52 49 49 61
41 53 53 50 50 62
42 54 54 51 51 63

Precondition Violations (0)

Row Violation

{Refactorable}
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(b) New cluster after discarding a single clone fragment

Figure 5.10: The effect on the number of mapped statements after performing clus-
tering based on Differences.

In conclusion, the clustering based on Differences increased the number of refac-

torable clusters by 11. However, it is difficult to generalize the findings in terms of the

improvements obtained by clustering based on Differences (i.e., more suitable clone

types for refactoring, increase in the number of mapped statements, decrease in the

number of differences), since the number of examined cases is very small.
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5.2.4 Clone Group level Evaluation

In the previous sections, we evaluated the accuracy and performance of our work in

comparison to Tsantalis et al. at clone pair level. In this section, we will discuss the

refactorability and the total execution time for the clone groups containing 3 or more

clone instances.

5.2.4.1 Group Refactorability

The number of clusters that contain three fragments or more in this evaluation can be

seen in Table 5.7. The second column shows the number of clusters categorized based

on their size. The third column shows the number of refactorable clusters. Figure

5.11 is an example of a refactorable cluster that contains 3 Type II clone instances.

The clone type for a group is determined based on the clone types of all pairs:

Clone Type I All clones pairs are Type I clones, i.e., there is no differences between

the clone fragments in the cluster.

Clone Type II At least one clone pair is Type II clone, i.e., the cluster may contain

Type I clone pairs, but there is at least one Type II clone pair.

Clone Type III At least one clone pair is Type III clone, i.e., the cluster may

contain Type I and Type II clone pairs, but there is at least one Type III clone

pair.
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Table 5.7: Cluster refactorability results

Cluster Size #Clusters #Refactorable
Clusters

3 44 22
4 37 14
5 8 5
6 2 2
7 4 3
8 1 1
9 1 1
>9 1 0

Figure 5.11: Example of a refactorable cluster with three clone instances.

5.2.4.2 Group Execution Time

The total execution time for our approach shown in Figure 5.12 is computed start-

ing from extracting the required information (Section 4.3) from each clone in the

group, and ending to assessing the refactorability for all resulting clusters (Section

4.7). Also, for the sake of a fair comparison, we performed all pairwise combinations

when computing the mapping of statements between the clone fragments of the group.

For the approach by Tsantalis et al. the time is computed as the sum of the execu-

tion time for all pairwise combinations (Clone1, Clone2), . . . , (Clone1, Clonen), . . . ,

(Clonen−1, Clonen), where n is the group size.
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Table 5.8: Groups based on Group Size

Group Size Number of Groups
2 398
3 73
4 74
5 15
6 8
7 5
8 11
9 3
10 3
11 1
12 2

Figures 5.12 and 5.13 show that there is a correlation between the median ex-

ecution time and the number of clone fragments in a group. We can see that our

approach has a better overall performance as the number of fragments increases,

particularly for groups containing 6 or more fragments. However, this comparison

might be inaccurate, because our approach in practice applies the statement mapping

process for much less combinations of clone pairs than Tsantalis et al., due to the

decomposition of the initial clone group into smaller clusters in the clustering step.

Despite of the inaccuracy in the comparison, we examine if there are any statistically

significant differences for both Group-1 (groups containing 2-5 clone instances) and

Group-2 (groups containing 6-12 clone instances) in Figures 5.12 and 5.13, and the

p-values are 2.2 ∗ 10−16 and 1.53 ∗ 10−06, respectively. The p-value for Group-1 indi-

cate that there is a significant difference in-favor of Tsantalis et al., while the p-value

for Group-2 indicates that there is a significant difference in-favor of our work. As

for the effect size, for Group-1 is medium, while for Group-2 is large.
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Figure 5.12: Execution time for groups containing between 2-5 clones (Group-1)
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Figure 5.13: Execution time for groups containing between 6-12 clones (Group-2)
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Chapter 6

Empirical Study

The goal of this chapter is to present an extensive evaluation of our work through

a large-scale empirical study. This chapter is divided into two sections. In the first

section, we present the examined projects, the used clone detection tools, and setup

of our experiment. In the second section, we present the results of the empirical study

by comparing our approach with [TMK15].

6.1 Experiment Setup

We executed our and Tsantalis et al. implementation on the clones detected by four

clone detection tools in nine open-source projects.

6.1.1 Projects

The nine projects examined in our study are from different domains, and have differ-

ent age, and code size. Table 6.1 shows the projects used in our experiment, along

with their version.
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Figure 6.1: Examined Projects [Tsab]
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any refactorable clone pairs, and groups containing class-
level clone instances, or sub-clone instances. Second, these
document types are supported in all operating systems by
standard applications (e.g., spreadsheet processors and web
browsers), and thus there is no need to install additional
software in order to inspect the results.

5 EVALUATION
The evaluation section is organized into four parts. In the
first part (Section 5.1), we describe the process that we
followed for collecting our experimental data.

In the second part (Section 5.2), we evaluate the cor-
rectness of the proposed refactorability analysis approach.
To achieve this goal, we refactored 610 clone pairs that
have been assessed as refactorable and were completely
or partially covered by unit tests. We consider a positive
refactorability assessment as correct, if the corresponding
refactoring is applicable in practice without introducing
compile errors and there are no unit test failures after the
application of the refactoring.

In the third part (Section 5.3), we evaluate the perfor-
mance of our approach. For each examined clone pair we
collected the execution times corresponding to all three
phases of our technique (i.e., the detection of common
nesting structures within the clone fragments, the mapping
of the statements within the common nesting structures,
and the examination of preconditions). In addition, we
collected the total number of distinct statement comparisons
performed by our technique for each clone pair, and made a
comparison with a hypothetical exhaustive search approach
that does not take into account the nesting structure of the
clone fragments.

In the fourth part (Section 5.4), we perform a large-
scale empirical study on the clones detected by 4 different
state-of-the-art clone detection tools in 9 Java open-source
systems to investigate whether and how the refactorability
of software clones is affected from various clone properties,
such as the clone source code nature (production vs. test
code), the relative clone location, the clone type, and the
clone size.

5.1 Experiment Setup
In this section, we provide information about the selection
of the subject systems and clone detection tools used in the
study, as well as the process we followed for collecting the
experimental data2.

5.1.1 Subject Selection
In order to avoid bias in the selection of projects, we
adopted the systems used in the study conducted by Tairas
and Gray [34]. As shown in Table 3, the list includes 9 Java
open-source projects coming from different application do-
mains and having a different development history, ranging
from 2 to 8 years. These two variation points certainly affect
the characteristics of the detected clones with respect to their
domain-specificity and the maturity of the involved code,
thus allowing for more generalizable results. Additionally,
the projects vary in size ranging from 50 to 200 KLoC.

5.1.2 Clone Detector Selection
As it is evident from the qualitative study performed by Roy
et al. [1], there is a large number of available clone detection
tools (over 40), which makes more difficult the selection
of tools for the context of our study. Roy et al. [1] cate-
gorized the clone detection approaches into five categories,

2. http://tiny.cc/TSE15

TABLE 3
Examined Projects

Project Domain Age† Size*

Apache Ant 1.7.0 Java application build tool 61/2 67
Columba 1.4 email client 11/2 75
EMF 2.4.1 modeling framework 51/2 118
JMeter 2.3.2 server performance testing tool 71/4 54
JEdit 4.2 text editor 5 51
JFreeChart 1.0.10 chart library 71/2 76
JRuby 1.4.0 programming language 31/2 101
Hibernate 3.3.2 Java persistence framework 71/2 209
SQuirreL SQL 3.0.3 universal SQL client 8 141
† years of development from the initial release to the examined release of
the project

* in KLoC

namely text-based, token-based, tree-based, metrics-based,
and graph-based. According to this categorization the text-
based, token-based, and tree-based techniques are the most
dominant (i.e., these three categories have a comparatively
larger number of available tools).

Therefore, for our experiment we considered the three
most dominant categories of clone detection techniques (i.e.,
text-based, token-based, and tree-based approaches), and set
the following criteria for the selection of a representative
tool from each category of clone detection approaches:
1) Public availability for download.
2) Support for the detection of clones in Java programs.
3) Support for the detection of Type-2 and Type-3 clones.
4) Extensive use in past empirical studies.
After the examination of the aforementioned criteria, we

selected the following clone detection tools.
CCFinder [35] is a popular token-based clone detection

technique. According to the quantitative comparison of
6 clone detection tools performed by Bellon et al. [36],
CCFinder had the highest recall and a precision comparable
to the other techniques (72%), and was one of the most
efficient tools with respect to execution time and memory
requirements.

Deckard [37] is a tree-based clone detection technique,
which uses a characteristics vector to approximate the struc-
tural information from ASTs in the Euclidean space, and
then adapts the Locality Sensitive Hashing (LSH) scheme
to efficiently cluster similar vectors using the Euclidean
distance. Jiang et al. [37] compared Deckard with CloneDR
(a tree-based technique) and CP-Miner (a token-based tech-
nique). They concluded that Deckard is faster than CloneDR
when the similarity parameter is less than 0.999, and it has
a comparable performance to CP-Miner when the similarity
parameter is larger than 0.95.

CloneDR [38] is another tree-based clone detection tech-
nique, which partitions subtrees of the abstract syntax tree
of a program based on a hash function and then com-
pares subtrees in the same partition through tree matching
allowing for some divergences [36]. In the quantitative
comparison performed by Bellon et al. [36], CloneDR had
the highest precision (100%), but the lowest recall (9%). We
included CloneDR in our experiments, because it computes
the similarity of the clones based on the number of shared
and different AST nodes in their AST representation, and
thus can be considered as a “pure” AST-based approach.

NiCad [39] is a text-based clone detection technique,
but exploits the benefits of tree-based structural analysis
based on lightweight parsing to implement flexible pretty-
printing, code normalization, source transformation and
code filtering. Roy and Cordy [40] created an automatic
framework for evaluating code clone detection tools that
generates randomly mutated clone fragments from the
original code base, and injects them randomly into the

6.1.2 Clone Detection Tools

We used four clone detection tools in the experiment, and these tools can be found

at [Tsab] along with the clone detection tool configuration parameters, such as the

minimum number of tokens in the detected clones.

6.1.2.1 CCFinder

A well-known token-based clone detection technique proposed by Kamiya et al.

[KKI02]. According to a study done by Bellon et al. [Bel+07], CCFinder had the

highest precision and recall among eight clone detection techniques. Also the study

compared the eight techniques in terms of execution time and memory requirements,

and CCFinder was one of the most efficient techniques.

6.1.2.2 Deckard

A tree-based clone detection technique proposed by Jiang et al. [Jia+07]. Deckard,

transforms the abstract syntax trees of the code into a feature vector, and then uses

Locality Sensitive Hashing to cluster the clone fragments. The fragments within

the same cluster are considered similar. Jiang et al. [Jia+07] compared Deckard
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to CloneDR (a tree-based technique), and CP-Miner (a token-based technique) and

concluded that Deckard is faster than CloneDR when the similarity threshold is 0.999

and has similar performance to CP-Miner.

6.1.2.3 CloneDR

A tree-based clone detection technique proposed by Baxter et al. [Bax+98]. The

abstract syntax tree is partitioned into subtrees based on a hash function, and then

the subtrees are compared though tree matching. In a study done by Bellon et al.

[Bel+07], CloneDR had the highest precision (100%) and at the same time had the

lowest recall (9%).

6.1.2.4 NiCad

A text-based clone detection technique proposed by Roy et al. [RC08a]. NiCad applies

code normalization, source code transformation, and code filtering by incorporating a

lightweight tree-based structural analysis. Roy et al. [RC09] evaluated NiCad through

an automated framework that creates randomly mutated clones from the original code

and injects them into random places throughout the code base. The results show that

NiCad (Full version, where the former capabilities are all enabled) had 100% recall

and over 96% precision for Type-2 and Type-3 injected clones. We configured NiCad

with two different options, namely consistent renaming, where the same identifiers

are replaced with a single pseudo-variable (Xindex) using an order-sensitive indexing

scheme, and blind renaming, where all identifiers are replaced with a single pseudo-

variable (X).
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6.1.3 Experiment Machine

The specifications of the machine we used to run our experiments can be seen in

Table 6.1.

Table 6.1: Machine Specifications

Part Specification

Processor Quad-core Intel Core i5-2400, 3.10GHz

Hard disk Samsung EVO SSD

RAM 16GB DDR3

OS Windows 10 Professional

6.2 Results and Discussion

This section is a replication of the Qualitative study we did on a wider range of

projects and clone detection tools. Table 6.2 gives the percentage of groups containing

more than two clone instances as detected by each of the four clone detection tools

in the nine projects. The percentage of clone groups containing more than two clone

instances ranges from 12% to 44%, while the remaining clone groups contain a single

pair of clone fragments.
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Table 6.2: Percentage of groups containing more than 2 clone instances.

Project

Tool

CCFinder CloneDR Deckard NiCad Blind NiCad Con-

sistent

Groups >2 Groups >2 Groups >2 Groups >2 Groups > 2

Apache Ant 958 28% 1473 25% 767 20% 582 31% 558 37%

Columba 792 23% 1332 28% 742 27% 546 35% 511 35%

EMF 1470 34% 1892 28% 325 40% 941 38% 990 36%

Hibernate 1346 30% 2161 25% 1322 28% 734 33% 665 32%

Jakarta 760 23% 104 44% 789 25% 552 31% 541 31%

JEdit 358 18% 642 22% 400 12% 343 31% 312 26%

JFreechart 2113 43% 2507 28% 1820 39% 818 40% 823 41%

JRuby 1314 20% 1311 25% 591 36% 878 35% 793 31%

SQuirreL SQL 1627 32% 2236 36% 723 31% 827 32% 846 43%

6.2.1 Statement Mapping Comparison

This section compares our work with [TMK15] with respect to the statement mapping

solutions produced by each approach. Table 6.3 shows the total number of clone

pairs being compared. In the next subsections, we will discuss the results separately

for each clone type.
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Table 6.3: Total Clone Pairs being compared

Project CCFinder CloneDR Deckard NiCad Blind NiCad Consistent

Apache Ant 2,191 3,104 860 1,689 2,545

Columba 1,008 4,192 1,042 2,765 2,700

EMF 10,115 4,216 2,365 4,366 7,317

Hibernate 1,917 3,500 1,111 13,540 3,348

JEdit 234 698 271 325 302

JFreechart 79,109 42,181 62,974 81,298 48,215

JMeter 681 537 965 1,188 938

JRuby 1,646 2,505 807 5,540 1,887

SQuirreL SQL 3,314 7,185 2,113 7,061 8,874

Total 100,215 68,118 72,508 117,772 76,126

6.2.1.1 Clone Type I

Table 6.4 shows the total number of Type I clone pairs being compared per project.

Table 6.5, shows the percentage of clone pairs that have an identical statement map-

ping with Tsantalis et al., and as it can be observed in all cases both approaches

produce an identical statement mapping solution. Table 6.6 presents the median

time for our approach and Tsantalis et al. approach. It appears that the latter is

faster in pairwise statement mapping for the clones reported by CCFinder, Deckard,

and CloneDR and slower for the clones reported by NiCad (with Blind and Consistent

renaming option).
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Table 6.4: Number of Type I clones pairs per project

Project CCFinder CloneDR Deckard NiCad Blind NiCad Consistent
Apache Ant 290 1,888 124 286 364
Columba 310 2,134 210 182 258
EMF 332 2,291 88 312 458
Hibernate 732 1760 264 222 264
JEdit 58 332 77 64 77
JFreechart 1635 3,265 787 798 851
JMeter 175 248 152 149 160
JRuby 314 470 100 167 196
SQuirreL SQL 1,029 3,768 654 1,098 1,216
Total 4875 16156 2456 3278 3844

Table 6.5: Pairwise Statement Mapping comparison for Clone Type I

Project CCFinder CloneDR Deckard NiCad Blind NiCad
Consistent

P(%) S(%) P(%) S(%) P(%) S(%) P(%) S(%) P(%) S(%)
Apache Ant 100 100 100 100 100 100 100 100 100 100
Columba 100 100 100 100 100 100 100 100 100 100
EMF 100 100 100 100 100 100 100 100 100 100
Hibernate 100 100 100 100 100 100 100 100 100 100
JEdit 100 100 100 100 100 100 100 100 100 100
JFreechart 100 100 100 100 100 100 100 100 100 100
JMeter 100 100 100 100 100 100 100 100 100 100
JRuby 100 100 100 100 100 100 100 100 100 100
SQuirreL SQL 100 100 100 100 100 100 100 100 100 100
Average 100 100 100 100 100 100 100 100 100 100

P: Pairs that our work and Tsantalis et al. have the same mapping
S: Statements that our work and Tsantalis et al. have the same mapping

Table 6.6: Median Execution time for Pairwise Statement Mapping for Clone Type I

Project CCFinder CloneDR Deckard NiCad
Blind

NiCad
Consistent

O T O T O T O T O T
Apache Ant 32.21 34.47 43.62 39.37 34.64 38.26 31.37 30.31 32.86 31.41
Columba 24.92 23 22.62 21.97 21.34 22.75 19.8 19.74 25.48 23.44
EMF 126.41 75.72 121.89 75.91 176.71 102.9 135.02 129.74 75.42 73.21
Hibernate 54.37 51.51 62.67 54.31 37.42 31.21 31.23 30.82 39.06 37.54
JEdit 61.18 48.74 44.48 40.35 31.54 31.85 36.01 51.13 40.61 57.74
JFreechart 55.95 51.63 28.3 26.07 54.77 53.36 50.5 50.69 50.51 50.56
JMeter 34.93 27.38 29.42 28.33 34.12 33.42 27.76 31.59 31.6 32.18
JRuby 115.48 74.96 89.22 61.36 52.17 73.28 62.52 71.02 66.51 75
SQuirreL SQL 31.76 33.63 31.21 29.85 31.68 32.98 27.2 27.72 32.25 33.88
Average 59.69 46.78 52.60 41.95 52.71 46.67 46.82 49.20 43.81 46.11

O: Our execution time in milliseconds
T: Tsantalis et al. execution time in milliseconds
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6.2.1.2 Clone Type II

This clone type is the most dominant compared to Type I and Type III in terms

of the number of pairs examined in this empirical study. This is an indication that

developers mostly copy-paste code and perform changes to identifiers, literals, and

types. Table 6.7 presents the number of clone pairs being compared, and the results

of the comparison are shown in Table 6.8. As we can see from the last row in Table

6.8 (1) The lowest percentage of clone pairs with an identical statement mapping to

Tsantalis et al. is in NiCad (Blind) with 85.16% and the highest is in CloneDR with

96.97%; (2) The lowest percentage of identically mapped statements with Tsantalis

et al. is in CCFinder (94.84%), and the highest in CloneDR (98.39%).

Table 6.7: Number of Type II clones pairs per project

Project CCFinder CloneDR Deckard NiCad Blind NiCad Consistent
Apache Ant 1,891 1,210 645 1,238 2,067
Columba 686 2,044 796 2,348 2,333
EMF 9,778 1,923 2,264 3,867 5,642
Hibernate 1,129 1,736 718 6,508 1,927
JEdit 170 364 169 228 207
JFreechart 76,612 38,912 60,803 59,641 44,021
JMeter 504 288 754 845 731
JRuby 1,320 2,035 686 3,994 1,584
SQuirreL SQL 2,264 3,415 1,396 5,651 6,774
Total 94354 51927 68231 84320 65286
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Table 6.8: Pairwise Statement Mapping comparison for Clone Type II

Project CCFinder CloneDR Deckard NiCad
Blind

NiCad
Consistent

P(%) S(%) P(%) S(%) P(%) S(%) P(%) S(%) P(%) S(%)
Apache Ant 94.20 97.01 98.10 98.68 84.58 95.32 85.45 95.49 96.23 98.21
Columba 73.50 89.09 97.41 99.07 95.20 99.21 72.08 92.46 72.87 92.36
EMF 95.70 97.81 98.17 99.39 95.14 98.16 92.58 98.16 91.76 97.63
Hibernate 81.58 92.30 94.24 97.31 75.42 94.01 83.20 92.49 85.46 94.85
JEdit 77.06 93.87 96.70 98.46 94.61 98.33 85.09 95.85 87.92 96.66
JFreechart 96.09 98.09 99.69 98.80 96.84 98.76 93.13 97.77 96.14 97.10
JMeter 89.76 96.56 94.79 97.70 87.67 95.12 87.22 95.51 88.78 95.93
JRuby 93.20 95.70 95.48 97.05 86.01 96.41 74.74 93.10 87.97 96.68
SQuirreL SQL 86.58 93.12 98.18 99.02 93.33 96.13 92.97 95.78 93.83 97.69
Average 87.52 94.84 96.97 98.39 89.86 96.83 85.16 95.18 89.00 96.34

P: Pairs that our work and Tsantalis et al. have the same mapping
S: Statements that our work and Tsantalis et al. have the same mapping

The last table (Table 6.9) shows that Tsantalis et al. approach has a better per-

formance in pairwise statement mapping, especially for CloneDR where the execution

time is much faster by around 8ms.

Table 6.9: Median Execution time for Pairwise Statement Mapping for Clone Type II

Project CCFinder CloneDR Deckard NiCad
Blind

NiCad
Consistent

O T O T O T O T O T
Apache Ant 37.69 42.92 29.16 32.18 23.63 30.22 37.16 43.71 41.03 46.13
Columba 30.83 30.18 18.03 16.32 24.9 35.66 22.86 24.44 23.65 24.66
EMF 90.06 62.64 119.14 104.48 100.32 55.96 109.02 81.64 76.41 48.01
Hibernate 66.79 63.68 51.04 47.11 39.76 48.89 24.47 27.97 23.25 24.62
JEdit 49.82 41.9 49.68 40.52 54.17 35.81 47.48 39.62 45.56 34.48
JFreechart 24 25.55 27.05 24.2 28.78 27.64 26.52 26.86 23.98 24.39
JMeter 34.44 28.85 29.11 36.05 34.44 32.75 30.52 30.6 28.76 28.74
JRuby 98.72 120.64 112.82 68.69 56.99 57.6 92.01 124.75 88.95 97.86
SQuirreL SQL 33.79 36.55 36.87 33.38 32.28 37.38 32.64 29.44 36.88 35.41
Average 51.79 50.32 52.54 44.77 43.92 40.21 46.96 47.67 43.16 40.48

O: Our execution time in milliseconds
T: Tsantalis et al. execution time in milliseconds
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6.2.1.3 Clone Type III

This clone type has the least number of pairs examined in this empirical study com-

pared to Type I and Type II, as we can see in Table 6.10. Also the table shows that

the largest number of Type III clones pairs were detected in JFreechart. We can also

see that NiCad detected the largest number of Type III clone pairs among the tools,

while CloneDR detected the least number of Type III clone pairs.

Contrary to the other clone types, the similarity in pairwise statement mapping

to Tsantalis et al. is lower, as can be seen in Table 6.11, especially at pair level

ranging between 60%-85%, but at statement level it ranges between 87%-93%. Our

work has better performance in pairwise statement mapping for the clones detected

by Deckard and Nicad, while Tsantalis et al. has better performance in pairwise

statement mapping for the clones detected by CCFinder and CloneDR.

Table 6.10: Number of Type III clones pairs per project

Project CCFinder CloneDR Deckard NiCad Blind NiCad Consistent
Apache Ant 10 6 91 165 114
Columba 12 14 36 235 109
EMF 5 2 13 187 1,217
Hibernate 56 4 129 6,810 1,157
JEdit 6 2 25 33 18
JFreechart 862 4 1,384 20,859 3,343
JMeter 2 1 59 194 47
JRuby 12 0 21 1379 107
SQuirreL SQL 21 2 63 312 884
Total 986 35 1,821 30,174 6,996
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Table 6.11: Pairwise Statement Mapping comparison for Clone Type III

Project CCFinder CloneDR Deckard NiCad
Blind

NiCad
Consistent

P(%) S(%) P(%) S(%) P(%) S(%) P(%) S(%) P(%) S(%)
Apache Ant 90.00 89.39 83.33 96.88 67.42 90.60 67.28 86.32 58.04 86.32
Columba 81.82 96.81 100 100 63.89 91.01 87.01 96.38 85.32 95.10
EMF 100 100 50.00 95.83 58.33 95.06 68.65 94.81 84.80 94.93
Hibernate 83.93 91.30 100 100 47.20 80.83 80.36 85.69 79.43 90.54
JEdit 100 100 100 100 72.00 93.99 84.85 97.37 77.78 96.08
JFreechart 98.37 99.00 100 100 60.71 95.68 75.15 95.89 60.28 94.44
JMeter 50.00 77.78 0.00 94.74 46.55 82.01 75.77 91.38 82.98 94.37
JRuby 91.67 96.00 0.00 0.00 61.90 84.88 78.39 90.25 82.24 93.61
SQuirreL SQL 76.19 85.56 100 100 69.84 90.67 80.45 79.40 87.67 94.48
Average 85.78 92.87 70.37 87.49 60.87 89.41 77.55 90.83 77.62 93.32

P: Pairs that our work and Tsantalis et al. have the same mapping
S: Statements that our work and Tsantalis et al. have the same mapping

Table 6.12: Median Execution time for Pairwise Statement Mapping for Clone Type III

Project CCFinder CloneDR Deckard NiCad
Blind

NiCad
Consistent

O T O T O T O T O T
Apache Ant 29.89 30.69 29.1 28.43 46.35 54.1 33.65 44.92 30.37 36.62
Columba 30.04 26.66 27.5 21.2 30.89 39.35 24.67 31.96 28.26 27.14
EMF 61.53 57.95 123.3 68.02 98.82 58.77 132.9 133.89 53.11 63.73
Hibernate 54.69 50.14 144.72 101.74 53.42 78.47 21.42 22.29 12.49 14.89
JEdit 61.54 50 37.86 23.68 46.9 48.66 51.55 41.67 18.11 15.76
JFreechart 24.59 21.92 25.65 62.81 19.6 30.79 29.32 33.98 19.92 28.27
JMeter 27.56 23.66 50.11 59.48 45.3 69.88 29.06 36.36 32.36 32.73
JRuby 177.27 95.22 0 0 64.96 196.9 45.95 51.59 37.3 36.65
SQuirreL SQL 31.88 25.78 52.49 42.47 29.44 30.35 28.23 28.5 28.78 32.18
Average 55.44 42.45 54.53 45.31 48.41 67.47 44.08 47.24 28.97 32.00

O: Our execution time in milliseconds
T: Tsantalis et al. execution time in milliseconds

6.2.2 Clone Group Refactorability

Table 6.13 shows the percentage of the clone subgroups that contain three fragments

or more and are refactorable. As it can be observed, CloneDR has the highest per-

centage of refactorable subgroups among the other tools with an average of 59.5%,

while the rest of the clone detection tools have an average around 33.2%. The projects

with the highest percentage of refactorable groups are (1) Columba, and Apache Ant
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(> 50%); (2) Hibernate, JMeter, and SQuirreL SQL (between 40%-50%); (3) The

rest of the projects have a refactorability of less than 40%.

Table 6.13: Refactorable Subgroups

Project
CCFinder CloneDR Deckard NiCad

Blind

NiCad

Consistent

Average

(Project)

T R T R T R T R T R

Apache Ant 115 50.4% 195 72.3% 67 38.81% 96 35.42% 121 38.84% 51.52%

Columba 100 45% 185 55.7% 82 69.51% 114 48.25% 111 54.95% 54.22%

EMF 186 24.2% 232 59.9% 71 8.45% 185 27.57% 229 24.02% 32.78%

Hibernate 201 40.8% 220 61.8% 81 37.04% 137 24.09% 113 35.4% 42.69%

JEdit 26 26.9% 54 51.9% 16 25% 34 32.35% 24 29.17% 37.01%

JFreechart 596 18.8% 436 56% 346 24.28% 266 25.56% 293 27.65% 30.41%

JMeter 69 49.3% 21 38.1% 67 41.79% 79 37.97% 82 41.46% 42.14%

JRuby 151 29.1% 153 47.1% 96 29.17% 163 17.79% 143 23.78% 29.32%

SQuirreL SQL 205 37.1% 394 64.5% 96 45.83% 274 39.42% 292 41.1% 47.74%

Average(Tool) 34.4% 59.5% 33.3% 31.1% 34.0%

T: Total subgroups

R: Refactorable subgroups

6.2.3 Threats to Validity

One threat to the internal validity of our empirical study comes from the configuration

of the clone detection tools that were used. Each of the clone detection tools that we

used implements a different technique in detecting clone instances, and uses different

kinds of parameters, thus it was difficult to configure the tools with similar settings.

For instance, the minimum clone size is interpreted by NiCad as minimum lines of

code, by CCFinder and Deckard as minimum number of tokens, and by CloneDR as
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minimum number of AST nodes. Moreover, even slight changes in the configuration

of the parameters, would lead to different results. For example, in our study we used

two configurations for NiCad, where Blind renaming is the default option and replaces

all variable identifiers with the same pseudo-variable (X), while Consistent renaming

replaces consistently each variable identifier with a unique pseudo-variable (Xindex).

Both NiCad configurations yielded different results in terms of the number of detected

clone pairs, statement mapping similarity, execution time, and refactorability (Blind

31.1% vs. Consistent 34%). However, to address this issue we used the default or

recommended configurations of the tools, which have been used by many researchers

in different empirical studies.

Another internal threat is that we did not actually refactor the clones in the

refactorable subgroups, in order to assess that the refactoring does not introduce

compilation errors, and all tests are passing after refactoring. However, since the

refactorability assessment for subgroups is based on Tsantalis et al. [TMK15] work

(we extended their code to accept more than two clone fragments), where they refac-

tored 610 refactorable clone pairs and all of them passed the unit tests and none of

them caused any compilation error, we can assume that if there are no precondition

violations, then the subgroup is safe to be refactored.

The clustering step imposes another threat to internal validity. By breaking-

down the original clone groups to smaller subgroups, we might create some redundant

clusters or discard some refactorable fragments from the clusters. Therefore, we might

have ended up with smaller than the optimally sized subgroups in the refactorability

assessment. Finally, some other threats to internal validity come from the algorithms

and heuristics that we used in our work, which might not be optimal, and thus further

investigation and experiments need to be performed.

The external threats to our empirical study hinder the ability to generalize our
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findings beyond the nine open-source projects we examined and the four clone de-

tection tools we used. However, the diversity in the application domain, language

specifications, size, and age of the examined projects, as well as the diversity in the

techniques applied by the selected clone detection tools mitigate this threat to a large

extent.
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Chapter 7

Conclusion and Future Work

This work is the first step towards an effective and efficient clone group refactoring

approach. To this point we developed and implemented an approach that (1) Uses

data and control dependencies, as well data types to map the statements within

clone fragments; (2) Finds refactorable clusters within clone groups; (3) Assesses

the refactorability of clones at pair and group (cluster) level. During our work on

mapping clone statements we tried two approaches. In the Metric approach, for

each statement, we generate a feature vector representing the statement’s structure

in terms of AST without incorporating data type information. However, the results

show that this approach does not perform well, as we compared it to the state-of-the-

art-work [TMK15] regarding the similarity of the statement mappings they produce,

and the results at pair level were for: Clone Type I, 98.1%; Clone Type II, 89%; Clone

Type III, 43.5%. After that we tried another approach that relies on data types and

we were able to achieve a higher percentage of similarity in pair matching for the

same clone set, and the results are: Clone Type I, 100%; Clone Type II, 94%; Clone

Type III, 62.5% .

We compared our work to the state-of-the-art-work [TMK15] in pairwise state-
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ment mapping, using the later approach in mapping clones statements, for a large

number of clones detected by 4 different clone detection tools in 9 open-source

projects. For Clone Type I, we achieved an accuracy of (100%) in pairwise statement

mapping. For Clone Type II, we achieved an identical statement mapping between

85.2%-97% at clone pair level, and 94.9%-98.9% at statement level. Finally, for Clone

Type III, we achieved an identical statement mapping between 60.8%-85.8% at clone

pair level, and 87.5%-93.3% at statement level.

Clustering can improve the overall execution time by minimizing the number of

clones that need to be compared. It also serves as a filtration step by excluding

clone instances that have control structure and statement differences. Moreover, we

found that by removing a single clone instance from a group, the group becomes

refactorable, or it increases the number of statements to be extracted. We also

assessed the refactorability of the clusters that we found within the clone groups

detected by clone detection tools. We achieved a refactorability of 59.5% for the

clones detected by CloneDR, and a refactorability ranging between 31.1%-34.4% for

the clones detected by the rest of the tools.

As future work, we are planning to (1) Address some of the internal threats to

validity; (2) Extend our work to support clone refactoring with Lambda expressions

Tsantalis et al. [TMR17]; (3) Perform an in-depth evaluation for the clone pairs

examined in the Empirical study to further improve some steps of our approach; (4)

Create an Eclipse plug-in for clone group refactoring;
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