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Computational design of RNA sequences that fold into targeted secondary structures

has many applications in biomedicine, nanotechnology and synthetic biology. An RNA

molecule is made of different types of secondary structure elements and an important

RNA element named pseudoknot plays a key role in stabilizing the functional form

of the molecule. However, due to the computational complexities associated with

characterizing pseudoknotted RNA structures, most of the existing RNA sequence

designer algorithms generally ignore this important structural element and therefore limit

their applications. In this paper we present a new algorithm to design RNA sequences

for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to

compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new

adaptive defect weighted sampling algorithm named Enzymer to design low ensemble

defect RNA sequences for targeted secondary structures including pseudoknots. We

used a biological data set of 201 pseudoknotted structures from the Pseudobase library

to benchmark the performance of our algorithm. We compared the quality characteristics

of the RNA sequences we designed by Enzymerwith the results obtained from the state

of the art MODENA and antaRNA. Our results show ourmethod succeedsmore frequently

than MODENA and antaRNA do, and generates sequences that have lower ensemble

defect, lower probability defect and higher thermostability. Finally by using Enzymer and

by constraining the design to a naturally occurring and highly conserved Hammerhead

motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme.

Enzymer is available for download at https://bitbucket.org/casraz/enzymer.

Keywords: RNA secondary structure, sequence design algorithm, pseudoknot, hammerhead ribozyme,

Pseudobase

1. INTRODUCTION

Ribonucleic acid (RNA) molecules play critical roles in various key cellular processes. Other than
the messenger RNA (mRNA) (Singer and Leder, 1966) several other classes of RNAs have been
discovered to be functional and the pace of discovery has accelerated over the past decade (Stark
et al., 2007; Stefani and Slack, 2008; Fu et al., 2013; Roth et al., 2014). Functional RNAs are termed
non-coding RNAs (ncRNAs) because they perform their functionality directly and not via their
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protein products (Mattick and Makunin, 2006). NcRNAs are
involved in translation (tRNA) (Giegé et al., 1993), splicing
(snRNA) (Matera and Wang, 2014), processing of other RNAs
(snoRNA) (Bratkovič and Rogelj, 2014) and other key regulatory
processes (Hannon, 2002; Bartel, 2009; Smith et al., 2010;
Scarborough et al., 2014).

Due to their diverse range of functionalities, ncRNA are well
suited for applications in synthetic biology (Khalil and Collins,
2010; Liang et al., 2011; Rodrigo et al., 2013), therapeutics (Lainé
et al., 2011; Burnett and Rossi, 2012; Shum and Rossi, 2013), as
well as nanotechnology (Afonin et al., 2013; Geary et al., 2014).
The functional form of ncRNAs often requires a specific 3D
structure (Shapiro et al., 2007) that is primarily determined by
the secondary structure, as well as the sequence composition
of the molecule (Leontis and Westhof, 2003; Dieterich and
Stadler, 2013). Despite the difficulties of determining the 3D
structure of RNAs, secondary structure prediction and secondary
structure classification provide a major key in determining the
potential functions (Laing and Schlick, 2011) as well as family
signature (Griffiths-Jones et al., 2005) of the ncRNA molecules.
Hence, developing better methods to design RNA sequences with
specified secondary structures is a valuable pursuit as it opens
doors to multiple applications.

The problem of designing artificial RNA sequences that fold
into a targeted secondary structure is computationally difficult
(Schnall-Levin et al., 2008; Haleš et al., 2015) and most of the
existing methods resort to heuristics and stochastic local search
strategies. The widely used RNA design strategy consists of two
steps: first a random seed is generated; next, this seed is iteratively
mutated until it adopts the desired folding properties as predicted
by a folding algorithm such as RNAfold (Hofacker, 2003),
mfold (Zuker, 2003) or CentroidFold (Hamada et al., 2009).

RNAinverse (Hofacker, 2003) is one of the first and
most widely used RNA secondary structure design programs.
RNAinverse decomposes the given target structure into
smaller subunits and attempts to find an RNA sequence by
an adaptive local walk, or greedy algorithm. The initial seed
sequence is randomly chosen; then sequence positions are
iteratively and randomly mutated and mutations are accepted
if the objective function improves. In the case of RNAinverse,
the objective function reflects the Hamming distance between the
predicted minimum free energy (MFE) structure of the design
candidate and the target secondary structure. The optimization
procedure stops if and when the Hamming distance reaches
zero. We note that there is no guarantee for the optimization
procedure to find an optimal solution and therefore it is required
to specify a cap for the maximum number of iterations allowed.

Subsequent RNA designer methods have demonstrated
improved performance compared to RNAinverse. RNA-SSD
(Andronescu et al., 2004) and INFO-RNA (Busch and Backofen,
2006) introduced improved seed initialization techniques and
stochastic local search strategies to design RNAs with high
thermostability. NUPACK (Zadeh et al., 2011) introduced a
weighted local sampling strategy to design RNA sequences with
low ensemble defect. RNAexinv (Avihoo et al., 2011) used a
multi-objective optimization strategy to design RNAs with high
thermostability and high mutational robustness. RNAensign

(Levin et al., 2012) took a global sampling strategy to design
RNAs with high thermostability.Frnakenstein (Lyngsø et al.,
2012) utilized a genetic algorithm with local sampling strategy to
design RNAs for multiple target structures. RNAiFold (Garcia-
Martin et al., 2013) defines the sequence design as a constraint
satisfaction problem to design RNAs with targeted GC content
and high thermostability. IncaRNAtion (Reinharz et al., 2013)
introduces a glocal sampling strategy to design RNAs with
targeted GC content and high thermostability.

All above mentioned RNA designer methods ignore a
critical structural element called pseudoknot and therefore
have limited use. A pseudoknot is typically formed when
crossing basepairs occur between the unpaired bases from
a loop and other bases outside that loop. Several ncRNA
species with regulatory function such as glmS ribozymes (Klein
and Ferré-D’Amaré, 2006; Soukup, 2006), Delta ribozymes
(Nehdi et al., 2007), SAM II aptamer domain (Gilbert et al.,
2008), SAH riboswitch aptamer domain (Edwards et al.,
2010), Hammerhead riboyzmes (Perreault et al., 2011) and
Twister ribozymes (Roth et al., 2014) contain pseudoknots,
where the pseudoknots are known to stabilize the functional
form of the structure. Hence, it is of interest to develop
RNA designer methods that can handle pseudoknots as well.
Computational complexity of designing pseduoknotted RNA
secondary structures is characterized by Ponty and Saule (2011).

We identify three reasons why the above mentioned methods
can not handle the design of pseudoknotted RNAs. First, in all
of the above methods the folding algorithms used to predict the
folding properties of the designed sequences are often RNAfold
or mfold. Even though both RNAfold and mfold can predict
the MFE structure and the partition function (McCaskill, 1989)
of a given sequence and a given target structure of length n
in O(n3) time and O(n2) space, neither can be used to predict
presence of pseudoknots. Second, all above mentioned methods
utilize hierarchical structural decomposition methods to speed
up the design process. However, the hierarchical structural
decompositionmethods used by the previous methods can not be
generalized to cover pseudoknots and therefore are inapplicable.
Third, none of the above methods make any distinction between
the different types of base pairs (i.e., nested vs. non-nested) and
therefore are not well suited for the cases where the secondary
structure includes a pseudoknot motif. In order to include
pseudoknots in the design process, it is crucial to address the
above mentioned issues.

To our knowledge, there are three algorithmic reports in
the literature for the design of pseudoknotted RNAs. antaRNA
(Kleinkauf et al., 2015) utilizes an Ant Colony Optimization
technique (Dorigo et al., 2006) to design pseudoknotted RNAs
that are predicted to fold into the target structure with targeted
GC distribution. antaRNA (Kleinkauf et al., 2015) uses pKiss
(Janssen and Giegerich, 2015) to predict the MFE structure of
the RNA sequences including pseudoknots. MODENA (Taneda,
2012) is a multi-objective genetic algorithm (MOGA) for
pseudoknotted RNA sequence design. MODENA attempts to
maximize the structural similarity between the target structure
and the predicted fold while simultaneously minimizing the free
energy of the design candidate sequences. MODENA implements
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a novel crossover operator to handle pseudoknots and uses
IPknot (Sato et al., 2011) as its default folding algorithm. For
a given RNA sequence, IPknot can predict the pseudoknotted
secondary structure withmaximum expected accuracy (MEA) (Lu
et al., 2009); hence enabling MODENA to design pseudoknotted
RNAs. Note that neither IPknot nor pKiss can not compute
the partition function and therefore can not be used to measure
important qualitative characteristics such as the ensemble defect
and the probability defect of the sequences. The term ensemble
defect corresponds the ensemble average of the incorrectly
pair nucleotides and the term probability defect corresponds
to the sum of the probabilities of all non-target structures in
the structural ensemble at thermodynamic equilibrium (Zadeh
et al., 2011). INV (Gao et al., 2010) is another RNA designer
algorithm to design a restricted class of pseudoknots using
a graph decomposition method and a energy minimization
criteria. However, as reported by Taneda (2012), the current
implementation of INV, does not return any solution for
structures larger than 85 nucleotides. It is also worth noting that
the benchmark data set of the original article for INV, contains
only four structures that are all shorter than 85 nucleotides
in length.

In our work, we identify three key choices for the design
of pseudoknotted RNAs and devise a new sequence design
algorithm. First is the choice for the folding algorithm, which
must recognize pseudoknots. Ideally one requires the folding
algorithm to compute two key measures: (i) the free energy of the
folded molecule, and (ii) the partition function of a single RNA
sequence when folded into a target pseudoknotted secondary
structure. The free energy is a measure of thermostability, and
the partition function makes it possible to characterize the
equilibrium base pair qualities by computing the matrix of base
pair probabilities. Most of the widely used single sequence folding
algorithms such as RNAfold and mfold can not characterize
pseudoknots. On the other hand, other existing methods, which
can recognize the pseudoknots such as IPknot, Hotknot
(Ren et al., 2005), ProbKnot (Bellaousov and Mathews, 2010),
pKiss and NanoFolder (Bindewald et al., 2011), can only
compute the free energy of the pseudoknotted structures and
do not make it possible to compute the partition function. To
our knowledge, NUPACK is the only available method, which
can be utilized to compute the partition function of a limited
but biologically relevant class of pseudoknots (Dirks and Pierce,
2003) and therefore make it possible to compute the matrix
of base pair probabilities of a single sequence folding into
pseudoknotted target structures. Using the matrix of base pair
probabilities, one can compute two other important measures
namely ensemble defect and probability defect as well.

The second sequence design choice is the choice an objective
function for the optimization algorithm. antaRNA, MODENA
and INV utilize energy minimization approaches to design RNA
sequences that have the highest similarity to the target structure
by favoring design candidates that have lower free energy when
folded into the target. However, as described and demonstrated
by Dirks et al. (2004) and Zadeh et al. (2011), ensemble defect
optimization dominates both of the energy minimization and
probability defect minimization approaches. More precisely,

ensemble defect minimization leads to design of molecules with
folding energies that are as low as those of the molecules designed
by energy minimization approaches and also have probability
defect values that are as low as those of the molecules designed
through probability defect minimization methods. Hence, the
ideal choice for the objective function would be the ensemble
defect minimization and (Zadeh et al., 2011) provides sufficient
evidence to support this claim.

The third sequence design choice is an efficient search
strategy which may be realized via iterative sequence mutations.
It is desirable for the mutation operators to be able to
make distinction between different types of base pairs (i.e.,
nested base pairs and non-nested base pairs), while efficiently
exploring the mutational landscape of the design candidates.
To efficiently explore the mutational landscape of the design
candidates, the mutation operator must make effective use of
the folding attributes, such as the free energy as well as the two
different matrices of base pair probabilities, as predicted by the
folding algorithm.

In this paper, we follow an ensemble defect optimization
strategy to design RNA sequences that fold into a single targeted
secondary structure that include pseudoknots. Our method
extends the approach previously introduced by Zadeh et al.
(2011) to design pseudoknot-free RNA secondary structures such
that the pseudoknots can be handled as well. We introduce
a new adaptive defect weighted sampling algorithm named
Enzymer, and use it to progressively mutate design candidates
until the specified stop conditions are reached. We note
that the notion of adaptive weighted sampling technique was
previously used by Reinharz et al. (2013) in another context. To
benchmark our method, we used a biological dataset from the
PseudoBase library (Van Batenburg et al., 2000), containing
201 pseudoknotted ncRNAs of length 21–140 nucleotides. We
compared our results with the results generated by the state of
the art namely MODENA and antaRNA. The data shows that the
population of the sequences generated by Enzymer have lower
ensemble defect, lower probability defect, higher Boltzmann
frequency and higher success rate when compared to MODENA.
Our results also show that Enzymer generates sequence
populations that have lower ensemble defect, lower probability
defect, higher thermostability, higher Boltzmann frequency and
higher success rate when compared to the results generated
by antaRNA. Finally, we used Enzymer and constrained
the design process by using a naturally occurring and highly
conserved Hammerhead motif and designed 8 RNA sequences
for a pseudoknotted cis-acting Hammerhead ribozyme.

2. MATERIALS AND METHODS

2.1. RNA Folding Measures at Equilibrium
Let φ denote an RNA sequence with n nucleotides. Sequence
φ = φ1...φn, can be specified by positional base identities such
that φi ∈ {A,U,G,C} for i = 1, ..., n. Secondary structure τ can
be specified by a set of base pairs

(

φi, φj

)

where 1 ≤ i < j ≤ n,
such that positions i and j are paired, j ≥ i + 3, and (φi, φj) ∈
{

(A− U), (G− C), (G− U), (U − A), (C − G), (U − G)
}

. We
denote ensemble Ŵ, as the set of all possible secondary structures
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of φ including pseudoknots. For a sequence φ and secondary
structure τ ∈ Ŵ, the free energy 1G(φ, τ ) in kcal/mol, is
calculated using nearest-neighbor empirical parameters for RNA
in 1 M Na+ (Mathews et al., 1999). By calculating the partition
function (Dirks and Pierce, 2003) over Ŵ:

Q (φ) =
∑

τ∈Ŵ

e−1G(φ,τ )/kBT (1)

one can evaluate the equilibrium probability of φ folding into τ :

p (φ, τ ) =
1

Q (φ)
e−1G(φ,τ )/kBT (2)

where kB is the Boltzmann constant and T is the temperature
in Kelvin. The equilibrium structural features of ensemble Ŵ are
quantified by the base pairing probability matrix P(φ) with entries
Pi,j ∈ [0, 1] corresponding to the probability:

Pi,j (φ) =
∑

τ∈Ŵ

p (φ, τ ) Si,j (τ ) (3)

that the base pair i.j forms at equilibrium. Here S(τ ) is the
structure matrix with entries Si,j ∈ {0, 1}. If structure τ contains
pair i.j, then Si,j = 1, otherwise Si,j = 0. To describe unpaired
bases, the structure and probability matrices are augmented by
an extra column. The entry Si,n+1(τ ) is unity if base i is unpaired
in structure τ and zero otherwise. The entry Pi,n+1(φ) ∈ [0, 1]
denotes the equilibrium probability that base i is unpaired over
ensemble Ŵ. Hence, the row sums of the augmented S(τ ) and
P(φ) are unity. The term probability defect (Zadeh et al., 2011)
corresponding to the sum of the probabilities of all non-target
structures of ensemble Ŵ can be computed by term:

π(φ, τ ) = 1− p(φ, τ ) (4)

The term ensemble defect (Zadeh et al., 2011) is defined by:

n(φ, τ ) = n−
∑

1≤i≤n,1≤j≤n+1

Pi,j (φ) Si,j (τ ) (5)

where n(φ, τ ) corresponds to the ensemble average number of
incorrectly paired nucleotides at equilibrium over ensemble Ŵ.
Intuitively, the term normalized ensemble defect is given by:

N(φ, τ ) = n(φ, τ )/n (6)

We use NUPACK to compute Pi,j as well as two extra matrices:
the matrix of nested base-pair probabilities P′i,j, and the matrix

of non-nested base-pair probabilities P′′i,j, all in O(n5) time and

O(n4) space. The dynamic programmingmethods to compute P′i,j
and P′′i,j are described by Dirks and Pierce (2003). Enzymer uses

Pi,j to compute the normalized ensemble defect, and uses P′i,j and

P′′i,j to guide the mutation operator.

One can formulate theMFE defect by term:

µ(φ, τ ) = d(MFEφ, τ ) (7)

where d(MFEφ, τ ) quantifies the hamming distance between the
predicted MFE structure of φ and the target structure τ . We call
a design successful if d(MFEφ, τ ) = 0. Furthermore, to measure
how dominant a structure is in the Boltzmann ensemble, one can
compute the Boltzmann frequency by term:

Bf = e−1G(φ,τ )/kBT/Q(φ) (8)

Finally, for a set of aligned sequences S =
{

φ1...φl
}

generated for

a single target τ , the term sequence identity (Reinharz et al., 2013)
defined by:

Sid =
∑

φ1,φ2∈S×S







1

φ1

∑

φ1
i ≡φ2

i

1






(9)

quantifies the the degree of similarity of the sequences in the
corresponding set S. Intuitively, Sid quantifies the diversity of a
sequence population. Note that in our case all sequences designed
for a given structure have equal length and therefore there are no
gaps in the aligned set S.

2.2. Adaptive Defect Weighted Sampling
Algorithm
Enzymer follows an ensemble defect minimization approach
and implements a new adaptive defect weighted sampling
algorithm to design pseudoknotted RNAs with a single target
secondary structure. In our context, the term adaptive means
that the total number of positions to mutate at each iteration,
is dynamically chosen at the run-time. The term defect weighted
sampling means that at each iteration the probability of mutation
of a nucleotide at each position depends on the type of that
position (i.e., free, nested pair or non-nested pair), and is also
proportional to the positional contribution of that nucleotide to
the ensemble defect of the sequence. The positional defect of each
position is based on the type of the position and is quantified by
Pi,j for free nucleotides, by P

′
i,j for nested base pairs, and by P′′i,j

for non-nested base pairs.
For a given pseudoknotted target structure τ of size n, our

method starts with a randomly generated seed φ, and iteratively
samples from the low ensemble defect mutational landscape of
the seed until it reaches the stop condition. Let fstop denote the
maximum value that we accept for N(φ, τ ). The iterations stop
and return φ when N(φ, τ ) ≤ fstop. We note that during each
instance of the design trial, there is no guarantee of reaching
N(φ, τ ) ≤ fstop. Hence, we limit the maximum number of the
iterations and once the limit is reached, we report the fittest result
that was found during the sampling process. Let max_it denote
the maximum number of iterations. Then we define the stop
condition as the event where either N(φ, τ ) ≤ fstop or max_it
is reached.

Figure 1 presents the key steps of Enzymer. Algorithm
1 describes the complete design approach. Algorithms 2–
4, describe the three mutation operators that constitute the
adaptive defect weighted sampling process. An Enzymer

instance, starts with four input parameters: (i) τ , (ii) fstop,
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FIGURE 1 | The design pipeline of Enzymer. Step 1: we generate a random seed sequence, which is compatible with the target. Step 2: we evaluate the quality of

the sequence. If the of the stop condition is met, we return the sequence. Step 3: the adaptive defected weighted sampling process starts here. In 3.1 the mutation

operator is uniformly randomly selected. If the m-mutation schema is chosen. In step 3.2 we compute the value of m. In 3.3 we sample from low ensemble defect

mutational landscape of the current sequence by applying the mutation operator. Step 4: when the stop condition is reached, we return the designed sequence.

(iii) max_it, and (iv) design template t as defined by string
t = t1...tn, where ti ∈ {A,U,G,C, o} such that the
length of t is equal to n. We use t to specify design
constrains.

First, for target τ we initialize a random RNA seed sequence
φ that is compatible with the target structure by enforcing base
pairing rules (Algorithm 1, line 2). At the seed initialization
step, the design template t is used as a mean to specify a set of

positional nucleotide constrains on the seed sequence. Once the
seed is initialized, we update the seed to match the template such
that for i = 1...n, if ti 6= "o" then φi = ti. Furthermore, t is also
used during the sampling process to safeguard the constrained
positions against mutations. More precisely, for i = 1...n, the
nucleotide φi is subject to mutation, if and only if ti = "o". Our
algorithm allows the user to specify the percentage of the GC
content for unconstrained regions of the initial seed sequence and
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if the GC content is not specified, a random value between of 20
and 80% is used to generate the initial seed sequence.

Second, we use the prob program with -pseudo option
from NUPACK, to compute Pi,j, P

′
i,j and P′′i,j. We use Pi,j to

compute N(φ, τ ) and use P′i,j and P′′i,j to guide the sampling step

(Algorithm 1, lines 5 and 6).
Third, the algorithm executes the adaptive defect weighted

sampling process until it reaches the stop condition (Algorithm 1,
line 8). At each iteration the sampling process will uniformly and
randomly select from one of the mutation operator (Algorithm 1,
line 10) to sample mutants from the low ensemble defect
mutational landscape of φ. The first mutation operator targets
unpaired positions and mutates a single unpaired position. The
second mutation operator targets pair positions and mutates
a single base pair. Ideally, we would like to mutate multiple
positions at each iteration with the aim of reaching the stop
criteria with fewer iterations and therefore reducing the running
time of the sampling algorithm. Therefore we implemented a

Algorithm 1 Enzymer(τ, fstop,max_it, t, 3)

1: // input: target structure, target normalized ensemble defect,
maximum iterations and the design template

2: φ← initialize_seed(τ, t)
3: iteration_count← 1
4: Cdesign_begin ← current_time()
5: Pi,j, P

′
i,j, P

′′
i,j, π(φ, τ ) ← nupack_pairs(φ, τ ) //compute pair

probabilities using NUPACK-pairs
6: N(φ, τ )← compute_normalized_ensemble_defect(Pi,j, φ, τ )

7: // adaptive defect weighted sampling process starts here
8: while (N(φ, τ ) ≥ fstop) OR (iteration_count < max_it) do
9: iteration_count← iteration_count + 1
10: mutation_scheme← random_integer(1, 3)
11: if (mutation_scheme == 1) then
12: φ← mutate_single_nucleotide(φ, τ, Pi,j, t)
13: end if

14: if (mutation_scheme == 2) then
15: φ← mutate_basepair(φ, τ, P′i,j, P

′′
i,j, t)

16: end if

17: if (mutation_scheme == 3) then
18: m′ ← (length(τ ) ∗ N(φ, τ ))/5
19: m← floor(absolute_value(normal_distribution(m′,m′/5)))

20: ifm < 1 then
21: m = 1
22: end if

23: φ← m_mutants(m, φ, τ, Pi,j, P
′
i,j, P

′′
i,j, t)

24: end if

25: Pi,j, P
′
i,j, P

′′
i,j, π(φ, τ )← nupack_pairs(φ, τ )

26: N(φ, τ )← compute_normalized_ensemble_defect(Pi,j, φ, τ )
27: end while

28: Cdesign_end ← current_time()
29: Cdesign ← Cdesign_end − Cdesign_begin

30: Return φ,N(φ, τ ), π(φ, τ ),1G(φ, τ ),Cdesign

third mutation operator to dynamically decide for variable m,
which quantifies the total number of positions that have to
go under mutation at each iteration. Once the third mutation
operator computes m it will make random calls to the first
and second mutation operators until precisely m positions are
mutated. The details of each of the three mutation operators
follows:

1. single point mutation (algorithm 2): this operator samples
a mutant sequence from the mutational landscape of φ by
mutating a single free nucleotide. For an arbitrary unpaired φi,
the probability of mutation is computed by (1−Pi,n+1), which
is the measure of positional contribution of φi to N(φ, τ ). The
mutation operator scans through φ until it selects a single
unpaired nucleotide φi for mutation.

2. pair mutation (algorithm 3): this operator samples a mutant
sequence from the mutational landscape of φ by mutating a
single base pair. This operator makes distinction between the
two different types of base pairs. For an arbitrary nested base
pair (φi, φj), the probability of pair mutation is proportional
to its contribution to N(φ, τ ) and is computed by the term
(1 − P′i,j). For an arbitrary non-nested base pair (φi, φj), the

probability of pair mutation is proportional to its contribution
to N(φ, τ ) and is computed by (1 − P′′i,j). The operator

continuously scans through all base pairs to select exactly one
base pair for mutation.

3. m-mutation (algorithm 4): this operator samples a mutant
sequence from the mutational landscape of φ by mutating
exactlym positions. The value ofm will dynamically converge
to a value proportional to N(φ, τ ) and n. Let m′ represent the
value thatm converges to and be defined by:

m′ = (N(φ, τ ) ∗ n)/C (10)

Algorithm 2mutate_single_nucleotide(φ, τ, Pi,j, t)

1: // input: sequence, target structure, matrix of pair
probabilities and the design template

2: mutation← False
3: whilemutation == False do
4: i← randomly_select_unpaired_position(τ )
5: if t [i] is not “o” then
6: continue
7: end if

8: random_number← random_float(0, 1)
9: probability_of _mutation← 1− Pi,n+1
10: if random_number < probability_of _mutation then

11: φ′ ← mutate_at_position(position = i, φ) //replace φi

with A,G,U or C
12: if φ′ is not φ then

13: φ← φ′

14: mutation← True
15: end if

16: end if

17: end while

18: Return φ
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Algorithm 3mutate_basepair(φ, τ, P′i,j, P
′′
i,j, t)

1: //function inputs: sequences, target, nested pair probability,
non-nested pair probability, template

2: mutation← False

3: whilemutation == False do

4: i, j← randomly_select_a_pair(τ )
5: if t [i] is not “o” AND t

[

j
]

is not “o” then
6: continue // The entire pair is locked as specified by the

design template t

7: end if

8: if t [i] is not “o” AND t
[

j
]

is “o” then
9: φ′ ← only_mutate_j(j, φ) // respecting pair rules, only

mutate the unlocked part of the pair

10: if φ′ is not φ then

11: φ← φ′

12: mutation← True

13: end if

14: Return φ

15: end if

16: if t
[

j
]

is not “o” AND t [i] is “o” then

17: φ′ ← only_mutate_i(i, φ) // respecting pair rules, only
mutate the unlocked part of the pair

18: if φ′ is not φ then

19: φ← φ′

20: mutation← True
21: end if

22: Return φ

23: end if

24: if (i, j) is a nested base pair in τ then

25: random_number← random_float(0, 1)

26: probability_of _mutation← 1− P′i,j
27: if random_number < probability_of _mutation then

28: φ′ ← mutate_position_i_j(φ, i, j) //replace φi, φj with
A-U, G-C or G-U

29: if φ′ is not φ then

30: φ← φ′

31: mutation← True

32: end if

33: end if

34: end if

35: if (i, j) is a non-nested base pair in τ then

36: random_number← random_float(0, 1)

37: probability_of _mutation← 1− P′′i,j
38: if random_number < probability_of _mutation then

39: φ′ ← mutate_position_i_j(φ, i, j) //replace φi, φj with
A-U,G-C,G-U,U-A,C-G or U-G

40: if φ′ is not φ then

41: φ← φ′

42: mutation← True

43: end if

44: end if

45: end if

46: end while

47: Return φ

Algorithm 4m_mutation(m, φ, τ, Pi,j, P
′
i,j, P

′′
i,j, t)

1: // This function mutates exactly m positions. The inputs
are the number of positions to mutate, sequence, target
structure, pair probabilities, nested pair probabilities,
non-nested pair probabilities and the design template,
respectively.

2: mutation_count← 0
3: whilemutation_count < m do

4: i← random(1, length(τ ))
5: if φi is a free nucleotide OR mutation_count == (m − 1)

then

6: φ← mutate_single_nucleotide(φ, τ, Pi,j, t)
7: mutation_count← mutation_count + 1
8: end if

9: if φi is not a single nucleotide then
10: φ← mutate_basepair(φ, τ, P′i,j, P

′′
i,j, t)

11: mutation_count← mutation_count + 2
12: end if

13: end while

14: Return φ

where C is an arbitrary constant. In our simulations we set
C = 5. Then we computem using:

m =
⌊∣

∣normal_distribution(m′,m′/5)
∣

∣

⌋

(11)

Once the value of m is determined, the operator will
iteratively make uniformly random calls to the single
point and pair mutation operators until exactly m
positions are mutated. This technique causes the sampling
process to choose more positions for mutation when
N(φ, τ ) is large, and to choose fewer positions as N(φ, τ )
diminishes.

The last step of each iteration is to compute
N(φ, τ ), Pi,j, P

′
i,j, P

′′
i,j and to decide whether the stop condition

is reached or not. Finally, when the sampling process reaches
the stop condition, the iterations will stop and φ will be
returned.

2.3. Characterizing Performance of the
Optimization Algorithm
To measure the run-time performance of each Enzymer

instance, we count the number of iterations as well as the number
of seconds that were required to reach the stop criteria. We
emphasize that our algorithm utilizes NUPACK to compute the
partition function of each sequence in O(n5) time. Due to the
expensive computational costs associated with computation of
the partition function at each iteration, it would be ideal to utilize
an approach that enables the algorithm to reach the stop criteria
in fewer steps. We will discuss in the results section how our
third mutation operator (i.e., m − mutation operator) improves
the run-time requirement of our adaptive weighted sampling
algorithm.
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2.4. Dataset
To benchmark the performance of our method we use a
non-redundant and diverse biological dataset of pseudoknotted
secondary structures prepared by Taneda (2012). We note that
the original source of all the target structures in this dataset is the
Pseudobase library. The initial dataset was composed of 266
structures.We emphasize that the only existing folding algorithm
which enables one to compute P(φ, τ ), P′(φ, τ ) and P′′(φ, τ ),
is NUPACK and therefore we use it to filter the dataset. Since
NUPACK can only recognize a limited class of pseudoknots, our
filtering process yields a dataset of 201 pseudoknotted structures
of length 21–140 nucleotides. Figure 1 in the Supplementary
Material section presents the size distribution of the target
structures in the filtered dataset. We will refer to the filtered
dataset as Pseudo. Our algorithm accepts secondary structures
over the alphabet

{

[, ], (, ), .
}

presented in standard dot bracket
notation. The Pseudo dataset is available at https://bitbucket.
org/casraz/enzymer.

3. RESULTS

3.1. Setup
For each target structure in Pseudo, we ran Enzyner for
30 independent trials. We ran each trial on a dedicated
computational core with a CPU speed of 2.0 GHz and 2 GB of
RAM. This leads to 30∗201 (total of 6030) independent instances
of the method. In our setup, we set fstop = 0.01 and max_it =
400. Note max_it = 400 is an arbitrary choice; however as we
will discuss, it turned out the 400 is a sufficiently large number
of iterations to demonstrate the effectiveness of our approach.
Finally, Enzymer returns a single design candidate per trial.

We compare the performance of Enzymerwith MODENA and
antaRNA. We emphasize that for target structure τ , Enzymer
seeks to design sequence φ by minimizing the normalized
ensemble defect value, where MODENA and antaRNA aim to
design sequences with high thermostability. In order to establish
a fair basis for comparison with MODENA, we set the maximum
number of generations (i.e., max_it) of a MODENA instance to
400. Note that MODENA is a genetic algorithm and is initialized
by a population of P independently generated seed sequences
and once it reaches the maximum number of generations it
returns a population of P candidate solutions. In order to observe
a consistent behavior, the author of MODENA (Taneda, 2012)
recommends to set the initial population size to be equal to
10% of the total number of generations. Hence, for each target
structure we set the P = 40. In the end, for each target structure,
we sort the generated sequences based on the corresponding
normalized ensemble defect values and select a subset of 30
sequences with the lowest normalized ensemble defect. MODENA
generated sequences for all of the 201 target structures. For the
case of antaRNA, we ran 30 independent trials and generated 30
sequences for each target structure. Because there is no guarantee
that antaRNA reaches the stop condition, we limit the running
time to be equal median running time that was required by
Enzymer to reach the stop condition for each corresponding
target structure. We note that antaRNA failed to recognize 4 of
the target structures from the benchmark dataset.

Other than MODENA and antaRNA, the only other reported
pseudoknot designer algorithm is INV. As of the date of
submission of this article, INV has remained unavailable for
benchmarking purposes. However, as reported by Taneda (2012),
INV does not return any solution for structures that are larger
than 85 nucleotides in length. Furthermore, even for structures
that are shorter than 85 nucleotides, MODENA has demonstrated
superior performance compared to INV. Therefore comparing
Enzymer with MODENA and antaRNA is expected to provide
us with sufficient information about the performance of
Enzymer.

3.2. Benchmark Results
To characterize the quality of a designed sequence φ that
is predicted to fold into τ , we measure the normalized
ensemble defect N(φ, τ ) (Equation 6), probability defect π(φ, τ )
(Equation 4), normalized free energy 1G(φ, τ ), MFE defect
µ(φ, τ ) (Equation 7), Boltzmann frequency Bf (Equation 8) and
sequence identity Sid (Equation 9).

For each of the three methods and for each target structure
τ k ∈ Pseudo where k = 1, ..., 201, we generated 30
sequences φls where l = 1, ..., 30. For each τ k, let f k

denote the frequency of reaching N(φl, τ k) ≤ 0.01 . Figure 2
presents the f k values we obtained for each τ k from a pool
of 30 generated φl by each method. In this performance
evaluation, we observed f k ≥ 1 in 188, 144, and 24 cases
for Enzymer (Figure 2A), for MODENA (Figure 2B) and for
antaRNA (Figure 2C) respectively. Furthermore, we observed
that there is no single case where the f k of the results generated
by Enzymer was lower than that of MODENA or antaRNA.

The number of successful designs where µ(φl, τ k) = 0 are
presented in Figure 3. The results show Enzymer outperformed
MODENA and antaRNA in 191 and 194 cases respectively.
We also observe MODENA outperformed antaRNA in 127
cases. Respective binomial test statistics with p-values 1.55e−44

and 1.52e−48 suggest Enzymer delivers superior performance
compared to MODENA and antaRNA in generating sequences
that have their predicted MFE equal to the target structure.
Moreover, binomial test statistic with p-value 2.26e−4 also
suggests that MODENA delivers superior performance compared
to antaRNA.

Figure 4 presents the median normalized ensemble defect
values of the sequences generated by each method for each target
structure. We observe Enzymer generated sequences with lower
normalized ensemble defect and outperformed both MODENA

and MODENA in 200 and 201 cases respectively. Furthermore,
we also observe MODENA outperformed antaRNA in 155 cases.
Respective binomial test statistics with p-values 1.25e−58 and
6.22e−61 suggest that Enzymer delivers superior performance
compared to MODENA and antaRNA in generating sequences
with lower ensemble defect. Furthermore, binomial test statistic
with p-value 5.28e−15 suggests that MODENA delivers superior
performance compared to antaRNA as well.

Figure 5 shows median probability defect values of the
sequences generated by each method for each target structure.
We observe Enzymer outperformed MODENA and antaRNA

in 196 and 201 cases respectively. We also observe MODENA
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FIGURE 2 | Frequency of the solutions per structure where N(φl, τk ) ≤ 0.01. For each target τk ∈ Pseudo for k = 1...201, the corresponding vertical bar

represents the frequency (out of 30 trials) of the generated sequences φ l for l = 1...30, where N(φ l, τk ) ≤ 0.01. (A) Enzymer generated at least one sequence φ l such

that N(φ l, τk ) ≤ 0.01 for 188 of the structures. (B) MODENA generated at least one sequence φ l such that N(φ l, τk ) ≤ 0.01 for 144 of the structures. (C) antaRNA

generated at least one sequence φ l such that N(φ l, τk ) ≤ 0.01 for 24 of the structures. Binomial statistic test with 99% confidence, suggests Enzymer significantly

outperforms both MODENA and antaRNA in generating sequences such that N(φ l, τk ) ≤ 0.01. Notably, the binomial test also suggests superior performance of

MODENA compared with antaRNA. Structure IDs on the x-axis are sorted based on increasing size of the corresponding targets.

outperformed antaRNA in 153 cases. Respective binomial
test statistics with p-values 1.66e−51 and 6.22e−61 suggest that
Enzymer delivers superior performance compared to MODENA
and antaRNA in generating sequences with lower probability
defect. Furthermore, binomial test statistic with p-value 5.72e−14

suggests that MODENA delivers superior performance when
compared to antaRNA as well.

Figure 6 presents the normalized median free energy values
of the sequences generated by each method. We observed
Enzymer designed sequences with lower free energy compared
to MODENA and antaRNA in 102 and 198 cases respectively.
We also observe when compared with antaRNA, MODENA
generated sequences with lower free energy in 195 cases.
Respective binomial test statistics with with p-value 0.88 suggest
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FIGURE 3 | MFE defect. For each target τk ∈ Pseudo for k = 1...201, the corresponding vertical bar represents the frequency (out of 30 trials) where

MFE(φ l, τk ) = τk was reached. Comparison of performance of Enzymer (A) with the performance of MODENA (B) and antaRNA (C) shows Enzymer outperformed

the other two methods in 191 and 194 cases respectively. A binomial test statistic with 99% confidence suggests Enzymer outperforms both methods in generating

sequences with lower MFE defect. Furthermore, MODENA outperforms antaRNA in 127 cases and the binomial test statistic suggests superior performance of

MODENA compared with antaRNA. Structure IDs on the x-axis are sorted based on increasing size of the corresponding targets.

Enzymer and MODENA generate sequences with similar free
energy. However, respective binomial test statistics with p-
values 8.42e−55 and 5.45e−50 suggest that both Enzymer and
MODENA deliver superior performance compared to antaRNA
in generating sequences that have lower free energy and therefore
are thermodynamically more stable.

Figure 7 presents themedian Boltzmann frequencies achieved
by each of the methods. We observe Enzymer outperformed
MODENA and antaRNA in generating sequences with higher
Boltzmann frequency in 197 and 201 cases respectively. We

also observe MODENA outperformed antaRNA in 153 cases.
Respective binomial test statistics with p-values 4.19e−53 and
6.22e−61 suggest that Enzymer delivers superior performance
compared to both MODENA and antaRNA in generating
sequences that have higher Boltzmann frequency values.
Moreover, binomial test statistic with p-value 5.72e−14 suggests
that MODENA delivers superior performance compared to
antaRNA.

Figure 8 presents median sequence identity for sequence
populations generated by each method. We observe antaRNA
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FIGURE 4 | Comparing normalized ensemble defect. In each figure, each vertical bar represents the median N(φ l, τk ) obtained for each corresponding target.

The results show Enzymer (A) outperformed both MODENA (B) and antaRNA (C) in 200 and 201 cases respectively. A binomial test statistic with 99% confidence

suggests Enzymer delivers significantly better results compared to the other two methods. Furthermore, MODENA outperformed antaRNA in 155 cases and a

binomial test static suggests that MODENA delivers significantly superior performance compared to antaRNA.

generated sequences with lower sequence identity in all 201
cases. When we compare Enzymer with MODENA, we observe
Enzymer generated sequences with lower sequence identity in
193 cases. Binomial test statistics with p-value 6.22e−61 suggest
antaRNA generates solution sets that have lower sequence
identity than those sequences generated by Enzymer and
MODENA. On the other hand binomial test with p-value 3.72e−47

suggests that MODENA generates solution sets with the lower
degree of sequence diversity than the solution sets generated by
Enzymer.

Figure 9A compares the run-time performance of Enzymer
with MODENA. The y-axis quantifies the logarithm of the median
running time required by each of the two methods to reach the

corresponding stop criteria. The x-axis represents the size of the
target structures in increasing order. As the size of the target
structures grow, we observe a rapid rate of growth in the run-time
requirement of Enzymer as opposed to a slower growth of run-
time requirement for MODENA. The computationaly costly run-
time requirement of Enzymer can be related to the expensive
task of computing the partition function over the pseudoknotted
ensemble in O(n5) time. We have omitted antaRNA from this
figure because in our simulations we enforced antaRNA to
run for the exact same amount of time it was required by
Enzymer to reach the stop condition for each corresponding
target structure. We note that the stop criteria for antaRNA is
when the MFE defect becomes zero, however as Figure 3 shows
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FIGURE 5 | Comparing probability defect values. In each figure, each vertical bar represents the median π (φ l, τk ) obtained for each corresponding target. The

results show Enzymer (A) outperformed both MODENA (B) and antaRNA (C) in 196 and 201 cases respectively. A binomial test statistic with 99% confidence

suggests Enzymer delivers significantly better results compared to the other two methods. Furthermore, MODENA outperformed antaRNA in 153 cases and a

binomial test static suggests that MODENA delivers significantly superior performance compared to antaRNA.

there is no guarantee for antaRNA to reach the stop criteria
and therefore an artificial cap on the maximum running time
allowed must be applied. Figure 9B presents the median value
for the number of iterations required for Enzymer to reach
the stop criteria. We observe in 179 or 89% of the cases, the
stop condition was reached in less than 200 iterations. Both
MODENA and antaRNA have been omitted from Figure 9B.
MODENA is omitted because it does not stop the optimization
process unless it reaches the maximum number of iterations. We
also omitted antaRNA because it was not possible to measure
the total number iterations before antaRNA reached the stop
condition.

The effect of the adding the adaptive sampling technique on
normalized ensemble defect and probability defect values are

presented in Figure 10. In order to make visual comparison
possible, we also added the second degree curve to each
dataset. We observe when we enabled the adaptive sampling
schema (i.e., the third mutation operator) we reached lower
normalized ensemble defect values in 199 out of 201 cases
(Figure 10A). We also observe the adaptive sampling technique
lowered the probability defect values in 181 out of 201 cases
(Figure 10B). Respective binomial test statistics with p-values
1.26e−56 and 1.25e−33 strongly suggest that when the total
number of iterations are kept constant (i.e., max_it = 400),
the adaptive sampling strategy enables the algorithm to reach
lower normalized ensemble defect and lower probability defect
values and therefore improve on the run-time requirement of the
algorithm.

Frontiers in Genetics | www.frontiersin.org 12 July 2016 | Volume 7 | Article 129

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Zandi et al. Designing Pseudoknotted RNA Secondary Structures

FIGURE 6 | Comparing normalized median free energy. In each figure, each vertical bar represents the median 1G(φ l, τk ) obtained for each corresponding target.

The results show Enzymer (A) outperformed both MODENA (B) and antaRNA (C) in generating sequences with lower free energy in 102 and 198 cases respectively. A

binomial test statistic with 99% confidence suggests Enzymer delivers significantly better results to antaRNA, however similar performance to MODENA. Furthermore,

MODENA outperformed antaRNA in 195 cases and a binomial test static suggests that MODENA delivers significantly superior performance compared to antaRNA.
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FIGURE 7 | Comparing median Boltzmann frequency. In each figure, each vertical bar represents the median Boltzmann frequency obtained for each

corresponding target. The results show Enzymer (A) outperformed both MODENA (B) and antaRNA (C) in 197 and 201 cases respectively. A binomial test statistic

with 99% confidence suggests Enzymer delivers significantly better results compared to the other two methods. Furthermore, MODENA outperformed antaRNA in

153 cases and a binomial test static suggests that MODENA delivers significantly superior performance compared to antaRNA.

3.3. Using Naturally Occurring Motif
Sequences to Design a Hammerhead
Ribozyme
Hammerhead ribozymes are small self cleaving RNAs that
promote strand scission by internal phosphodiaster transfer. In
this section we describe a computational setup for the design
of a cis-acting pseudoknotted Hammerhead ribozyme by using
a set of naturally occurring and highly conserved nucleotides,
which constitute a highly conserved Hammerhead motif. An
RNA structural motif is defined as a collection of nucleotides that

fold into a stable three dimensional (3D) structure, which can be

found in naturally occurring RNAs in unexpected abundance.
Figure 11 shows the secondary structure of a Hammerhead

ribozyme from mouse gut metagenome as reported by Perreault

et al. (2011) and we will refer to it by HH. The reporting article

also identifies the set of highly conserved motif nucleotides with

≥ 90% rate of conservation throughout the entire phylogenetic

family of the ribozyme. Let the design template tHH specify

the highly conserved Hammerhead motif for the wild type HH.

We adopt the motif specification from Perreault et al. (2011),
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FIGURE 8 | Comparing sequence identity. In each figure, each vertical bar represents the median sequence identity obtained for each corresponding target. For all

197 out of 201 cases where antaRNA (C) returned solutions, the median sequence identity was lower than Enzymer (A) as well as MODENA (B). On the other hand

in 193 cases Enzymer generated sequences with lower sequence identity when compared with MODENA. Binomial test statistic with 99% confidence suggests

antaRNA outperforms the other methods in generating sequence populations that are more diverse while MODENA generates sequences with the lowest sequence

diversity.

and use it describe the RNA template sequence for HH by
tHH = ooooooooooooooooCCUGAUGAGoooooooooooooooGCG
AAAooooooooooooooooooUCGoooooooooooooo. We used tHH as
the design template for Enzymer and use HH as the target
structure and designed 8 sequences φl

HH where l = 1...8 for
the Hammerhead ribozyme. We also set max_it = 400 and
fstop ≤ 0.01.

Table 1 presents the quality of the sequences we generated for
HH. The last two rows show the mean and median values of the
corresponding columns. Notably fstop was satisfied in neither of
the design trials however, themedian normalized ensemble defect
achieved was as low as 0.04. Interestingly, we observed that the
median value for the free energy of the designed sequences is
equal to 2.48E + 01 which is equivalent to the free energy of the
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FIGURE 9 | Run-time performance of Enzymer. (A) Comparing run-time performance of Enzymer and MODENA. (B) Enzymer reached the stop condition in less

than 200 iterations for 179 out of 201 cases.

wild type sequence of the Hammerhead ribozyme. The sequences
we generated are presented in Table 1 of the Supplementary
Materials section.

4. DISCUSSION

4.1. Summary of Contributions
We presented Enzymer, a novel adaptive defect weighted
sampling algorithm for the design of pseudoknotted RNA
secondary structures. Enzymer (i) uses NUPACK to
compute the equilibrium characteristics of RNA sequences,
(ii) dynamically adapts the total number of positional
mutations at each iteration during the run-time, and (iii)

chooses target positions for mutation in respect to their
type (free nucleotide, nested base pair or non-nested pair)
as well as their positional contribution to ensemble defect
of the sequence. To benchmark Enzymer, we used a
biological dataset of naturally occurring pseudoknotted
secondary structures from the PseudoBase library and
compared our results with the state of the art MODENA and
antaRNA.

4.2. Summary of Results
Our benchmark dataset contains 201 naturally occurring
pseudoknotted secondary structures of size 21–140 nucleotides.
For each structure, we used Enzymer and generated 30 RNA
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FIGURE 10 | Effect of adaptive sampling on defect. The adaptive sampling strategy lowered the median normalized ensemble defect in 199 cases (A) and also

lowered the median probability defect of the sequences in 181 cases (B). Binomial test statistic with 99% confidence interval suggests for improving impact of the

adaptive sampling strategy on both normalized ensemble defect and probability defect of the sequences we generated by Enzymer. For both figures the data was

generated by setting max_it = 400.

sequences and compared our results with the results generated by
MODENA and antaRNA. We showed that Enzymer efficiently
explores the low ensemble defect mutational landscape of the
candidate RNAs to design sequences that have lower ensemble
defect, lower probability defect and higher Boltzmann frequency
than those generated by MODENA and antaRNA. We also

showed the sequences designed by our method have similar
thermostability when compared to the sequences generated by
MODENA but show better thermostability when compared the
sequences generated by antaRNA. Furthermore, we showed
our method succeeds more often than both MODENA and
antaRNA do.
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FIGURE 11 | Secondary structure of hammerhead ribozyme from

mouse gut metagenome. The stems are in blue and free nucleotides are in

red. The 5 nucleotide long pseudoknot, starts at position 3 on stem 1. The

shown sequence represents the HHB1 sequence designed by Enzymer. The

secondary structure in standard dot bracket notation is presented by

“..[[[[[.....(((((......(((..]]]]].......)))..(((((((......))))))).)))))..........” and is extracted from

Perreault et al. (2011). We generated this figure using PseudoViewer3 (Byun

and Han, 2009).

Furthermore, we observed that in 89% of the cases where
the size of the target structure is bellow 140 nucleotides,
our method can generate sequences with normalized ensemble
defect value bellow 0.01 in less than 200 iterations. We also
demonstrated that our adaptive sampling strategy causes the
algorithm to reach the stop criteria in fewer number of
iterations and therefore reduce the computational cost associated
with the sampling process. Given our simulation results in
respect to the run-time requirement of our approach, we
conclude that our method is an excellent choice for the
design of pseudoknotted RNA secondary structures of size up
to 150 nucleotides. To our knowledge, there exists no other
pseudoknotted RNA secondary structure designer algorithm
that generates sequences that match the quality characteristics
of sequences generated by Enzymer. Further experimentation
will allow one to obtain a more accurate estimate about
the applicability of Enzymer on larger and more diverse
structures.

We emphasize that Enzymer extends the NUPACK design
algorithm so that it include pseudoknots. However, if no
pseudoknot is present in the target structure, our method will
simply call the original NUPACK algorithm to generate sequences
for pseudoknot-free targets.

TABLE 1 | The data generated for the hammerhead ribozyme.

Annotation N(φl
HH

,HH) π (φl
HH

,HH) 1G(φl
HH

,HH) max_it

φ1
HH

4.01E − 02 5.41E − 01 −3.21E + 01 400

φ2
HH

4.97E − 02 6.33E − 01 −2.13E + 01 400

φ3
HH

5.02E − 02 6.66E − 01 −2.47E + 01 400

φ4
HH

4.34E − 02 5.85E − 01 −2.66E + 01 400

φ5
HH

4.43E − 02 5.76E − 01 −2.33E + 01 400

φ6
HH

4.99E − 02 6.44E − 01 −2.49E + 01 400

φ7
HH

4.29E − 02 5.73E − 01 −2.19E + 01 400

φ8
HH

5.38E − 02 7.05E − 01 −2.65E + 01 400

Mean 4.68E − 02 6.16E − 01 −2.52E + 01 400

Median 4.70E − 02 6.09E − 01 −2.48E + 01 400

4.3. Constrained Sequence Design to
Reengineer a Hammerhead Ribozyme
We used a naturally occurring Hammerhead motif and used
Enzymer to reengineer a cis-acting Hammerhead ribozyme
from the mouse gut metagenome. Our method achieved mean
and median normalized ensemble defect values of 0.046 and
0.047 respectively. Future in-vitro experimentations will allow
us to further analyze applicability of our algorithm as well as
the applicability of the particular energy model we used to re-
engineer functional cis-acting Hammerhead ribozymes.

4.4. Limitations
Wenote that the applicability ofEnzymer is bound by the ability
of NUPACK in recognizing different classes of pseudoknots.
NUPACK realizes pseudoknots for single RNA strands such that
the search space can be broken into all secondary structures
that can be decomposed into two pseudoknot-free structures.
Due to this limitation, when we used NUPACK to filter the
original dataset, which was provided by Taneda (2012), the
number of structures were reduced from 266 to 201. However,
to our knowledge NUPACK is the only available computational
framework, which can compute the partition function for a
limited but biologically relevant class of pseudoknots. Hence,
NUPACK is the best choice of the folding algorithm to design
pseudoknotted RNAs with low ensemble defect, low probability
defect and high thermostability.

4.5. Future Work
To our knowledge neither Enzymer nor any other existing
sequence designer algorithm exists, which can design RNA
sequences for multi-strand and multi-target models such as
the trans-acting glmS ribozyme described by Klein and Ferré-
D’Amaré (2006) or the oligonucleotide-sensing allosteric
ribozyme based logic gates such as the ones described
by Penchovsky and Breaker (2005) if pseudoknots are
present.

One can use NUPACK to compute the equilibrium
characteristics of pseudoknot-free complexes of interacting
RNA species (Wolfe and Pierce, 2014), or use NanoFolder
(Bindewald et al., 2011) to predict base pairings of pseudoknotted
complexes of interacting RNA species. As a future work, we
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intent to use NUPACK and NanoFolder as folding algorithms
to build on our adaptive defect weighted sampling algorithm in
order to include the ability to design RNA sequences for multi-
strand and multi-target secondary structures where pseudoknots
can be present in single stranded forms. Such improvement will
open door to design oligonucleotide sensing genetic networks
that implement more complex modular interactions such as
networks of interacting RNA species where each single stranded
RNA species can include pseudoknots.
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