
WARNINGSGURU- Analysing historical
commits, augmenting software bug

prediction models with warnings and a
user study

Louis-Philippe Quérel

A Thesis
in

The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements for the
Degree of Master of Applied Science (Software Engineering) at

Concordia University
Montréal, Québec, Canada

April 2017

c©Louis-Philippe Quérel, 2017

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair

______________________________________ Examiner

______________________________________ Examiner

______________________________________ Supervisor

Approved by __
Chair of Department or Graduate Program Director

__
Dean of Faculty

Date __

Louis-Philippe Querel

WarningsGuru - Analysing Historical Commits, Augmenting Software Bug Prediction Models with Warnings and a User Study

Master of Applied Science

Dr. M. Kersten-Oertel

Dr. E. Shihab

Dr. J. Paquet

Dr. P. Rigby

iii

Abstract

WARNINGSGURU- Analysing historical commits,
augmenting software bug prediction models with

warnings and a user study

Louis-Philippe Quérel

The detection of bugs in software is divided into two research fields. Static
analysis report warnings at the line level and are often false positives. Statistical
models use historical change measures to predict bugs in commits at a higher
level. We developed a tool which combines both of these approaches.
Our tool analyses each commit of a project and identifies which commit intro-
duced a warning. It processed over 45k commits, more then previous research.
We propose an augmented bug model which includes static analysis measures
which found that a twofold increase in the number of new warnings increases
the odds of introducing a bug 1.5 times. Overall, our model accounts for 22%
of the deviance which is an improvement over the 19.5% baseline. We demon-
strate that we can use simple measure to predict new security warnings with a
deviance explained of 30% and that recent development experience and more
co-developers reduces the number of security warnings by 8%.
We perform a user study of developers who introduced new warnings in 37
projects. We found that 53% and 21% of warnings in Findbugs and Jlint re-
spectively are useful. We analysed the time delta between the introduction and
response of the developer to the notification of the warning. We hypothise that
remembering the context of the change as an impact on the perceived useful-
ness given useful warnings had a median of 11.5 versus 23 days for non useful
warnings

iv

Acknowledgements

With the completion of a bachelor of software engineering in 2014 and now
a master of applied science in software engineering, this concludes almost a
decade of studies and research at Concordia University. Concordia has been a
home and it will certainly not be one that I will forget any time soon.

I would like to express my highest and most sincere gratitude to my su-
pervisor, Dr. Peter Rigby. I would not have undertaken a thesis if it were not for
you. Without your support and guidance this research would not have been
possible.

To my family, friends and colleagues. Without your moral support I
would probably not have had the determination to finish this undertaking.

v

Contents

1 Introduction 1
1.1 WARNINGSGURU . 1
1.2 Structure of Thesis . 2

2 WARNINGSGURU: Architecture & Data 3
2.1 Introduction . 3
2.2 WARNINGSGURU Features and Architecture 4

2.2.1 WARNINGSGURU Pipeline Architecture 4
2.2.2 WARNINGSGURU Interface 6
2.2.3 Identification of New Warnings 9

2.3 Data: Building & Analyzing Thousands of Commits 9
2.3.1 Building . 10

Evolution of Build Tools 10
Missing Dependencies . 11
Complex Build Configurations 11
Projects Build Results . 12

2.3.2 Static Analysis Integration - TOIF 14
2.3.3 Version Control System - Git 14
2.3.4 Warnings Recovery . 15
2.3.5 Statistical Models with COMMITGURU 16

2.4 Descriptive Statistics . 18
2.5 Threats to Validity . 19
2.6 Related Works . 20
2.7 Conclusion . 21

3 Statistical Models 23
3.1 Introduction . 23
3.2 Statistical Bug Models . 23

3.2.1 Measures . 24
COMMITGURU Change Measures 24
WARNINGSGURU Warnings Measures 24
COMMITGURU and WARNINGSGURU Measures 25

3.2.2 Statistical Bug Prediction Models 25
3.2.3 Change Measures Model Results 27
3.2.4 Warnings Bug Model Results 27
3.2.5 Combined Change and Warnings Measures Bug Model

Results . 28
3.3 Statistical Warning Prediction Models 28

3.3.1 Description of the Warnings Models 28
3.3.2 Warnings Model Results . 31

vi

3.3.3 New warnings Model Results 31
3.3.4 Security warnings Model Results 31
3.3.5 New Security Warnings Model Results 31

3.4 Threats to Validity . 32
3.5 Related Works . 32
3.6 Conclusion . 34

4 Usefulness of Warnings: Developer Study 35
4.1 Introduction . 35

4.1.1 RQ 1, Usefulness & Characteristics: How many new warn-
ings are useful and what are their characteristics? 35

4.1.2 RQ 2, Timeliness: Does sending timely messages to devel-
oper affect the perceived usefulness of the warning? . . . 36

4.2 Methodology . 36
4.2.1 Data . 36
4.2.2 Survey . 37

Survey Email . 37
Survey Page . 42

4.3 Results . 42
4.3.1 RQ 1, Usefulness & Characteristics: How many new warn-

ings are useful and what are their characteristics? 43
Warnings per Static Analysis Tool 43
Warnings per Security Classification 43

4.3.2 RQ 2, Timeliness: Does sending timely messages to devel-
oper affect the perceived usefulness of the warning? . . . 44

4.3.3 Responses From Developers 45
4.4 Threats to Validity . 47
4.5 Related Works . 47
4.6 Conclusion . 47

5 Conclusion 49

Bibliography 51

A Pipeline Architecture 55

vii

List of Figures

2.1 WARNINGSGURU pipeline architecture 4
2.2 Integration of WARNINGSGURU in modified COMMITGURU in-

terface . 7
2.3 Presenting line location of warning in GitHub 8
2.4 Historical and New Warnings . 8
2.5 Distribution of warnings and new warnings 17
2.6 Distribution of security-related warnings and new security-related

warnings . 18

4.1 Sample survey email . 40
4.2 Sample survey page . 41
4.3 Impact of the notification timeframe on the usefulness of warnings 46

ix

List of Tables

2.1 Selected Projects Time Frame . 12
2.2 Build Results of Commits in Selected Projects 13
2.3 Commits warnings including recovered warnings 13
2.4 Example of git blame results . 15

3.1 Bug prediction models and odds ratios 26
3.2 Warnings models and odds ratios 30

4.1 Number of commits and developers between the 1st of February
2017 and the 23rd of March 2017 37

4.2 Commits with new warnings in selected Apache projects during
user study period . 38

4.3 Developers by projects during the user study period 39
4.4 Number of commits for which an email was sent out and the

number of developers involved 43
4.5 Useful Warnings by Static Analysis tools 43
4.6 Useful Warnings by Security Classification 44

xi

List of Abbreviations

CWE Common Weakness Enumeration (MITRE Corporation, 2016)
JDK Java Development Kit
TOIF Tool Output Integration Framework (KDM Analytics, 2016)

1

Chapter 1

Introduction

1.1 WARNINGSGURU

When developers have to deal with warnings for static code analysis tools there
is often the recurring theme that it can be an overwhelming task. Static analysis
tools have been reported to present too many warnings, with the majority of
reported warnings being false positives (Ayewah et al., 2007). A perceived issue
with the tools could hinder their adoption and use by developers (Johnson et al.,
2013). Previous research has looked into augmenting static analysis tools by
either improving their filtering (Nanda et al., 2010; Kim and Ernst, 2007) or
their prioritisation (Kim and Ernst, 2007) of warnings which they report. These
processes serve to reduce the number of warnings which are presented to the
developer, but they did not consider the changes which introduced them. They
also do not highlight warnings that have been recently introduced as part of the
changes of the developers.

Static analysis tools for Java such as Findbugs and Jlint must be run on the
build artifacts (.class files) of a project to operate correctly. We propose WARN-
INGSGURU, a tool which integrates source version control of the project, build
tools and static analysis tools to build historical commits and identify which
warnings originate from a given commit. WARNINGSGURU automatically builds
and analyses all commits of a project. We prioritise warnings by highlighting
those that have been introduced within a commit to inform the developer which
warnings are caused by their changes. This reduces the number of warnings
that need to be investigated.

Running the static analysis tools can be an expensive endeavor when all the
files of a project need to be analysed. We limit the number of files that need to
be analysed by targeting the ones which were modified as part of a change. We
additionally devise a warnings recovery method for commits which fail to be
built successfully which identifies the warnings that should be present on the
modified files of failed commits. Using these methods we analyse over 50,000
commits on 37 software projects, with the oldest successfully built commit being
from June 2006. This allows us to provide granular and timely details regarding
the warnings of each commit of a project

Static analysis tools are used to reduce the occurrences of certain types of
bugs in a software project. Another field of study which identifies bugs in
software projects is statistical bug prediction. Statistical bug prediction uses
measures which are mined from the history of the project such as code churn and
developer experience from the project source version control or the results of test

2 Chapter 1. Introduction

suites to predict the occurrence of bugs based on the historical presence of bugs
in the project. We propose the use of measures extracted with WARNINGSGURU

to determine if warnings, which are also an historical component of the project,
can be used as a bug prediction measures. We also propose that statistical
models of warnings prediction could be used to reduce the number of commits
to analyse using static analysis tools by prioritizing those which have a higher
risk of introducing warnings.

In conclusion, with WARNINGSGURU’s capability to identify the warnings
as they are introduced, we assess the impact that these warnings have for de-
velopers. We undertake a user study to evaluate the developer’s perceived
usefulness of static analysis warnings by contacting the developers who intro-
duced warnings as part of their commits. We evaluate if the tool which the
warning originates from (Findbugs & Jlint) has an impact on the usefulness of
the warning. Finally, by targeting the recency of warnings, we determine if the
timeliness of the developer’s knowledge of the warning has an impact on its
perceived usefulness and propose a hypothesis for the result.

1.2 Structure of Thesis

This research thesis is broken down into three main chapters. These cover the
creation of WARNINGSGURU and our subsequent use of it.

In Chapter 2 we describe the architecture of WARNINGSGURU, a tool which
we developed which is capable of building and running static analysis on the
historical commits of projects. We discuss the issues which we faced in its
creation and the techniques that were employed to resolve them. We demon-
strate WARNINGSGURU by building 45 thousand commits of eight projects and
determine which commits introduce warnings into the project.

In Chapter 3 we use the data generated by WARNINGSGURU to improve
statistical bug prediction models. We then build warnings prediction models
which can predict the occurrence of warnings in the commits of a project using
common bug prediction measures.

In Chapter 4 we perform a user study of newly introduced warnings iden-
tified by WARNINGSGURU to assess their perceived usefulness by developers.
We evaluate and compare the results of our two static analysis tools to assess
their usefulness. We determine the impact that the delay of notification of a
warning as on its perceived usefulness by the developer.

Finally, in Chapter 5 we provide a final review of the findings of this thesis.

3

Chapter 2

WARNINGSGURU: Architecture
& Data

2.1 Introduction

Static code analysis tools find defects by examining the code, data-flow and
control-flow for problematic patterns of code. To make static code analysis
tractable in practice, tools such as FindBugs and JLint make simplifications and
abstractions that leads to a large number of warnings. Many of these can be
false positives, including trivial and unlikely warnings (Ayewah et al., 2007;
Beller et al., 2016). The advantage of static analysis is that the warnings are
specific, e.g. a null pointer on a specific source code line. The disadvantage is
the overwhelming number of reported warnings and a disconnect between field
defects and warnings (Couto et al., 2013).

We developed a tool called WARNINGSGURU which integrates source ver-
sion control, build tools and static analysis to build and run static analysis on
thousands of historical commits. Using WARNINGSGURU we identify from
which commit a warning originates from to identify which warnings are new to
a commit. We also develop a technique which traces the warning introducing
commit where the commit failed to build. This allows us to retroactively assign
warnings to failed builds using WARNINGSGURU.

We integrate the results of WARNINGSGURU into the interface of COM-
MITGURU (Rosen, Grawi, and Shihab, 2015) where we present the new and
historical warnings which WARNINGSGURU identified. COMMITGURU is a tool
which extracts commit attributes and creates statistical bug prediction models
on these projects. The warnings are associated to the file where the warning is
reported and it is linked to the code diff on GitHub where the developer can
observe the change which introduced the warning. A new warning is defined as
a warning that is on a line which was last modified by the same commit which
was analysed. We also indicate with each commit if WARNINGSGURU was able
to successfully build and analyse the commit.

This chapter is structured as follows. In Section 2.2 we provide the architec-
ture of our tool and provide screenshots showing how developers can view new
warnings on commits which COMMITGURU as determine is buggy. In Section
2.3, we describe how we successfully build over 33k commits and retroactively
assign warnings on the 12k commits that do not build. In Section 2.4 we evaluate
the results from WARNINGSGURU. Section 2.5 reviews the risks to validity and

4 Chapter 2. WARNINGSGURU: Architecture & Data

FIGURE 2.1: WARNINGSGURU pipeline architecture

WARNINGSGURU integrates COMMITGURU, Git, Maven and TOIF to build and
analyse historical commits. Refer to Appendix A for larger figure

Section 2.6 looks into the prior work that has been done in the field of static
analysis of software projects. Finally, Section 2.7 provides the concluding points
on the functions of WARNINGSGURU.

In addition, we make the tool available. The source code is publicly available
on GitHub: https://www.github.com/louisq/warningsguru

2.2 WARNINGSGURU Features and Architecture

We give an overview of the features of WARNINGSGURU as shown in the
pipeline in Figure 2.1. We then present the results from WARNINGSGURU

in a modified interface based on COMMITGURU.

2.2.1 WARNINGSGURU Pipeline Architecture

WARNINGSGURU builds on an existing statistical bug modeling tool, COM-
MITGURU (Rosen, Grawi, and Shihab, 2015); static analysis tools, including
FindBugs (University of Maryland, 2017) with a security bug detection plugin
(Philippe Arteau, 2017) and Jlint (Cyrille Artho, 2017); and a static analysis warn-
ings integration tool, TOIF (KDM Analytics, 2016). It targets projects written in
the Java programming language which are using Maven as their build tool.

The following sections below describes the steps of the pipeline as defined
in Figure 2.1.

COMMITGURU COMMITGURU is used to download the repositories of the
projects and to maintain their daily updates. We are also using CommitGuru to
obtain the list of commits and the measures attributable to the commits of the
project.

Get Commits WARNINGSGURU obtains the list of commits which COMMIT-
GURU as extracted that is as not analysed yet. This includes historical commits
and newer commits as COMMITGURU updates the repositories. WARNINGS-
GURU analyses commits incrementally from the newest commit which as not
been analysed yet.

https://www.github.com/louisq/warningsguru

2.2. WARNINGSGURU Features and Architecture 5

Checkout Commit By using Git, WARNINGSGURU checkouts the repository
of the project to the commit which is being analysed.

Build Commit WARNINGSGURU then analyses the file structure of the com-
mit to determine if the commit supports the compatible build system: Apache
Maven. This is achieved by confirming the presence of a Maven POM configu-
ration file (The Apache Software Foundation, 2016). If the commit is compatible
it attempts to build the commit.

Identify Modified Files Whether the Maven built of the commit succeeded or
failed, WARNINGSGURU determines which class files originate from modified
files of the targeted commit. This is done to reduce the number of files which
WARNINGSGURU analyses in subsequent steps. This reduces the number of
files which need to be analysed by WARNINGSGURU and doesn’t require each
commit of the project to be completely analysed each time.

Analyse Files The use of TOIF (KDM Analytics, 2016) by WARNINGSGURU

allows for the execution of different static code analysis tools without requiring
the integration of each individual tool into the pipeline. WARNINGSGURU

runs Findbugs and Jlint through TOIF on the modified class files which it has
identified.

Get Warnings WARNINGSGURU extract the list of warnings associated from
the files which were analysed by the static analysis tools. TOIF augment these
results with CWE (MITRE Corporation, 2016) and SFP (KDM Analytics, 2016)
which are respectively a warning type classification and security-related type
classification. These warnings do not indicate which commit they originate
from and whether the analysed commit introduced the warnings.

Analysis of Warnings Using Git blame, WARNINGSGURU identifies the origin
of each line to determine which commit last modified the line of the warning.
If the line was modified by the current commit then it is determined that the
warning is new. WARNINGSGURU is able to determine the origin of a warning
based on information of the last modification of the line it is assigned to.

Warnings Recovery Since we trace the introduction of each line in a file, we
can retroactively identify warnings to commits which did not build. WARN-
INGSGURU determines the warnings which should be present in the modified
files of a commit and can identify the historical and new warnings that would
be present even if the commit fails to build.

WARNINGSGURU Results The warnings are then presented as part of the
interface which is described by the next section.

We use the tool TOIF in WARNINGSGURU given that this research was
funded by a grant which was supported by the company that developed it. TOIF
currently primarily supports static code analysis tools for the Java and C/C++

6 Chapter 2. WARNINGSGURU: Architecture & Data

programming languages. Given that the author had negligible experience with
C/C++ languages it was decided to cover the Java programming language as
part of this study. By extension, TOIF supports the Findbugs and Jlint static
code analysis tools for Java which is why these tools were selected. While it
is possible to add additional static analysis tools to TOIF such as PMD, this
would have required the creation of the warnings classification mapping for
warnings of these new tools. It was decided that the results from Findbugs
and Jlint would be sufficient to evaluate the warnings extraction method of
WARNINGSGURU. We also use the security classification of the warnings as
were assessing the effectiveness of security warnings as part of the research
grant.

2.2.2 WARNINGSGURU Interface

A selected portion of the results extracted from WARNINGSGURU is presented
in our modified interface of COMMITGURU which integrates these results. The
features are illustrated by Figure 2.2 and are listed below.

1. WARNINGSGURU indicates for each commit the total number of warn-
ings and new warnings and COMMITGURU’s commits which have been
determined to be buggy. It also indicates the status of WARNINGSGURU

on a commit by the use of the left most coloured tag. For example green
means that the commit was built and red means that the build was not
successful.

2. WARNINGSGURU indicates the number of existing and new warnings
associated with each file for a commit and the measures that indicate the
risk in COMMITGURU’s model of a commit introducing a bug.

3. The warnings per line reported by FindBugs and JLint are displayed
when a file is selected. WARNINGSGURU reports the commit in which
the warning first appeared and the line which it is presently on. The star
(8) next to the warning indicates that this is a new warning that was
introduced as part of the commit. Warnings which do not have a star
originate from historical commits to the modified file.

4. Each warning is clickable, which directs the developer to the highlighted
problematic line on GitHub. By clicking the commit hash of the originating
commit, the developer will instead be taken to the original line of the
commit on GitHub which introduced the warning (Figure 2.3).

5. New projects can be added simply by submitting the Git URL of a Maven
project hosted on GitHub to WARNINGSGURU. Once a project is added
new commits will be continuously built and analysed by WARNINGSGURU

(not shown in the figure).

2.2. WARNINGSGURU Features and Architecture 7

FIGURE 2.2: Integration of WARNINGSGURU in modified COM-
MITGURU interface

Each commit lists the files which were modified as part of the selected commit
with the warnings associated to each individual files and the risk predictors for
the commit. The individual warnings are shown with links to their originating
line on GitHub. A star indicates a new warning, given that the line to which the

warning is associated was last modified as part of the commit which was
analysed.

8 Chapter 2. WARNINGSGURU: Architecture & Data

FIGURE 2.3: Presenting line location of warning in GitHub

For each warning presented, WARNINGSGURU provides a link for the line in
the commit which the warning is presented and the commit where the warning

was introduced as shown in Figure 2.2. The line which the warning is
associated to is highlighted in a snapshot of the file of the respective commits as
part GitHub. This provides context for the warning in relation to the code of the

project.

FIGURE 2.4: Historical and New Warnings

An example of the warnings as reported by WARNINGSGURU for a file of
commit bea9e03a. Warnings which are on a line which was last modified by

bea9e03a, the current commit, are identified as new warning by the use of the
inline star (8).

2.3. Data: Building & Analyzing Thousands of Commits 9

2.2.3 Identification of New Warnings

We defined new warnings to be warnings which are located on lines that were
last modified by the same commit to which the warnings were reported. Fig-
ure 2.4 shows and example of the warnings which WARNINGSGURU identified
on the file phoenix-core/src/main/java/org/apache/phoenix/query/- ConnectionQuery-
ServicesImpl.java of the Phoenix commit bea9e03a. In this example we have 5
warnings which are located on lines which were last modified by the com-
mits c5b80246, c5b80246, bea9e03a, bea9e03a and 8b470f6f respectively as defined
by the Origin column in Figure 2.4. These information is obtained using Git
blame for the warnings extracted in each commit . The Git blame process and
parameters used are covered as part of Section 2.3.3.

Given that lines of the 3rd and 4th warnings are determined to have been last
modified by the same commit, bea9e03a, these warnings are identified as new
warnings of the commit. New warnings are indicated with an inline star (8) as
presented in Figure 2.4. The lines of the 3 other warnings were last modified
by other commits which preceded the commit bea9e03a. These warnings are
therefore historical warnings of the project which already existed before the
analysis of the current commit.

2.3 Data: Building & Analyzing Thousands of Commits

Recent works that combine static analysis with statistical bug models include
only a small number of project snapshots and do not provide a developer
tool (Rahman et al., 2014; Tang et al., 2015). For example, Rahman et al. study
between 5 and 8 release for five open source projects for a total of 34 releases.
They state that the effort to build and run JLint and FindBugs on the 34 versions
took six person-months of effort. Tang et al., 2015 studied 3 and 5 releases
of 2 projects for a total of 8 releases. Nanda et al., 2010 created a private tool
which ran static analysis tools on commits, but did not build current or historical
commits.

In contrast, we process 45,949 commits an increase of 1,351 times as many
versions compared to Rahman et al.. By processing all the commits of a project,
WARNINGSGURU gives precise and timely information about when a static
analysis warning first appeared, simplifying future comparisons of statistical
and static bug predictions and giving developers up-to-date information.

To allow WARNINGSGURU to be able to build and run static analytic tools
on older commits, we targeted projects which had the following characteristics:

Contained Build management: Apache Maven provides a self-contained
build process. While there are other build tools which are available for Java such
as Ant, Gradle and SBT which perform the same operation, they are either not as
broadly used or are more recent then the forward compatible POM format used
by Maven which was introduced in 2005. The motivation behind this decision is
that it allows WARNINGSGURU to support projects with commits which are up
to 12 years old at the time of the research, allowing WARNINGSGURU to analyse
older projects without needing to support multiple build tools.

10 Chapter 2. WARNINGSGURU: Architecture & Data

Dependency management: Software projects use third party libraries to
allow for reuse of code and functionality. A build will fail if these libraries
are no longer available. Maven uses centralized repositories of libraries where
historical versions of these libraries are preserved and distributed. As long as
the libraries required for a commit are still distributed on these repositories it is
possible to obtain all of the dependencies required by the commit configuration.
We are therefore capable of building older commits in the majority of cases
without needing manual intervention.

Similarity to commercial software: The Apache Software Foundation which
as been founded in 1999 and as been managing over 350 open source projects
which follows processes of software engineering and management. The selection
of their project allow us to analyze large successful software projects.

2.3.1 Building

Java static analysis tools typically require compiled files of a project to run,
e.g. class files. To build each historical commit, WARNINGSGURU requires the
commit to contain a Maven POM file (The Apache Software Foundation, 2016).
A POM file stores the build configurations of the project including the required
versions of dependencies and version of Java allowing us to build historical
versions of the project.

Researchers and developers can add new projects to WARNINGSGURU pro-
vided that a Maven POM file exists. The processing time depends on the project
build time and the number of files that changed. Multiple instances of WARN-
INGSGURU can be run in parallel to increase the number of commits which can
be analysed concurrently.

Building historical commits is a complicated process which required a mul-
tifaceted approach to ensure a maximal number of successful commits are built.
The following subsections describe some of the issues which were identified in
the development of WARNINGSGURU and how we address them if a solution
was available.

Evolution of Build Tools

The build tools which the projects are using have also been changing as the
respective projects progress. We observed that some were not specifying in their
POM files the version of Java which they were targeting to be used as part of their
build. While newer versions of the Java Development Kit (JDK) should be able
to build code which was meant for older versions of Java, the lack of targeting
resulted in incompatibilities which caused builds to fail. WARNINGSGURU

implements a mechanism to override the version of the JDK used for building
based on the date of a commit to allow to build older commits which don’t
support the newer versions of Java. Maven releases also support specific major
releases of the JDK. Given that we override the JDK, WARNINGSGURU also
provides a mechanism to override the version of Maven which ensures that a
compatible version of the build tool is employed to perform the build.

The parameters used by the tools can also evolve with subsequent releases.
Some of the projects have their build configured to fail where a test on the

2.3. Data: Building & Analyzing Thousands of Commits 11

application is unsuccessful. As we are only building to obtain the build artifacts,
we are not interested in the results of the tests which would significantly reduce
the performance of WARNINGSGURU. We therefore disable their execution as
part of the build process. However the parameter which is used by Maven
e.g.-DskipTests was previously different which requires the support of multiple
test exclusion parameters to ensure that the tests are not executed.

Projects were also observed to have previously used different build tools
in their history such as Ant and the configuration format of Maven 1 which
is incompatible with the versions of Maven used in WARNINGSGURU. To be
capable to build even older commits would require the support of additional
build tools which have their own flows.

Missing Dependencies

While Maven provide mechanisms to manage the dependencies, it is still possi-
ble that a build fails due to a missing project configured dependency. In addition
to the default dependency repository (Maven Central), some of the projects
configure additional repositories that contain dependencies which might not
be available in Maven Central. These additional repositories might no longer
be operational which would result in a missing dependency that results in a
failing build. To mitigate this issue we have added additional repositories to
our Maven instance that include dependencies that are not present in Maven
Central.

Other projects have been observed to use ’SNAPSHOT’ dependencies which
have become no longer available. Snapshot dependencies are versions of a
library which are distributed before the formal release of a library version.
Snapshots are then deleted when the completed library is released. Snapshot
versions have a different identifier which distinguish them from the final release
of a version and when a build attempts to obtain one that has been deleted it
will cause it to fail. Since the final release is a close relative of the snapshot, the
final release should be a stabilized version of the snapshot version. A solution
is to substitute snapshot library with the final release one. We have completed
this step manually with some success, however it was only performed a limited
number of times and additional work would be required to determine how to
automate this process.

While the approaches above may resolve some of the issues, there were still
some dependencies which could not be resolved which resulted in failed builds

Complex Build Configurations

Maven is a build tool that permits the use of third party plugins to extend its
functionality. Some of these plugins integrate with other tools and services
which need to be available on the build environment. The availability of these
tools may cause issues to automate the build process where they are required.
We had to reject some projects from this study due to their additional external
tools that they required on the environment to be built. An example of this is
Apache Falcon which also required node.js to be configured on the environment.

12 Chapter 2. WARNINGSGURU: Architecture & Data

TABLE 2.1: Selected Projects Time Frame

Project First Commit Last Commit Commits
Commons-lang 2006-11-11 2017-02-04 3314
Hadoop 2011-08-02 2017-02-03 14458
Ignite 2015-05-29 2017-02-03 4368
Kylin 2014-10-02 2017-02-04 5749
Phoenix 2014-01-27 2017-02-03 1892
Ranger 2014-01-27 2017-01-06 1913
Tika 2007-03-31 2017-02-02 3345
Wicket 2006-06-29 2017-02-04 10910

Total: 45949

An earlier version of WARNINGSGURU integrated itself in the build process
through a Maven plugin. The change to the build process, while minimal,
would cause a certain number of builds to fail due to incompatibilities with
the plugin which we used and the ones that the projects had configured to use.
The current pipeline as presented in Figure 2.1 does not use this approach and
instead performs the analysis following the build. This reduces the risk that
WARNINGSGURU is the cause of the build failure by preventing the tool from
directly modifying the build process.

Additional parameters can also be provided to Maven as part of the execu-
tion command. Some of the projects require additional memory to be capable of
managing the complexity of the build process. This information is usually pro-
vided as part of the project’s readme. In order to allow these builds to succeed,
additional memory is allocated as part of the execution which WARNINGSGURU

performs by default. This reduces the risk that the build would fail due to
insufficient memory.

Projects Build Results

As part of this research study, we analysed each commit from the Apache
project: Commons-lang, Hadoop, Ignite, Kylin, Phoenix, Tika, Ranger and
Wicket. These projects contain between 1900 to 20000 commits over multiple
years (see Table 2.1). Each project is written primarily in Java and uses the
Apache Maven build tool to manage their build configuration and they are
available on GitHub. We briefly describe each project.

Commons-lang is a library which provides additional utilities to the core
Java classes. Hadoop is a distributed computing and storage platform. Ignite
is an in memory computing platform. Kylin is a distributed analytical engine
which interacts with solutions such as Hadoop. Phoenix is a library that pro-
vides SQL support for non-SQL databases. Tika is a tool which extracts metadata
from files which can be used for indexing. Ranger is a monitoring and security
utility for Hadoop. Wicket is a web framework to build Java server side based
services.

2.3. Data: Building & Analyzing Thousands of Commits 13

TABLE 2.2: Build Results of Commits in Selected Projects

Project Commits Success Failure Build Success
Commons-lang 3314 3123 191 94.2 %
Hadoop 14458 9360 5098 64.7 %
Ignite 4368 3606 762 82.6 %
Kylin 5749 5084 665 88.4 %
Phoenix 1892 1818 74 96.1 %
Ranger 1913 961 952 50.1 %
Tika 3345 3166 179 94.7 %
Wicket 10910 6164 4746 56.5 %
Total: 45949 33282 12667 72.4 %

TABLE 2.3: Commits warnings including recovered warnings

Commits Percentage
Total 45949 -
With warnings 26898 58.5%
With new warnings 5881 12.8%
Total successful build 33282 72.4%
Successful with warnings 19553 58.7%
Successful with new warnings 4387 13.2%
Total failed build 12667 27.6%
Failed with warnings 7345 58.0%
Failed with new warnings 1494 11.8%

14 Chapter 2. WARNINGSGURU: Architecture & Data

2.3.2 Static Analysis Integration - TOIF

Each static analysis tool has its own execution flow and method of reporting
warnings. We use TOIF (KDM Analytics, 2016), an open source framework
developed by KDM Analytics, to integrate static analytics tools into the pipeline
of WARNINGSGURU. TOIF provides a common execution API for the static
analysis tools and parses their results to convert them into a common format.
We currently run JLint and FindBugs, which are Java static analysis tools on the
commits which we build.

JLint and FindBugs provide more than just code linting functionality, they
also identify some types of weaknesses such as index out of bounds errors in ar-
rays and invalid comparisons. We are also using the find security bugs Philippe
Arteau, 2017 plugin for FindBugs which provides additional warnings for issues
such as an improper use of encryption and potential injection vectors which are
not identified by the standard tool.

TOIF enriches the warnings by mapping them to software security warn-
ings classifications including the common weakness enumeration (CWE) (MITRE
Corporation, 2016) and software fault pattern (SFP) (KDM Analytics, 2016) cat-
egories. This mapping is security-focused, allowing developers and future
researchers interested in security to ignore warnings that rarely lead to security
problems. Figure 2.2 shows the integrated and additional warning fields in a
GUI in WARNINGSGURU.

2.3.3 Version Control System - Git

Version control system are used to manage the source code of software projects
where incremental changes are stored with auditing of who and when a change
occurred. WARNINGSGURU uses Git to retrieve the state of the system at each
commit. The system state at each commit is then analysed for the following
three purposes.

First, we walk the Git DAG to checkout the state of the system at each
commit. WARNINGSGURU then builds and runs static analysis tools on each
commit.

Second, running static analysis tool is computationally expensive. We use
Git to identify and only perform the static analysis on the files which have been
modified as part of the commit. Following the build, we can use these files
to determine which of the compiled files need to be analysed using the static
analysis tools to extract the warnings.

Third, we use Git blame to determine the commit in which a line in a file
was last modified. This allows us to determine the historical commit in which
the warning was introduced. We use the following git command on the lines
which have warnings attributed to them in a file:

git blame -lnswfMMMCCC {line_numbers} {file_path}

This command allows WARNINGSGURU to differentiate between the lines
and determine which warnings are new in a commit. The -l parameter shows
the long commit hash. The -n determines the line number in the original commit

2.3. Data: Building & Analyzing Thousands of Commits 15

TABLE 2.4: Example of git blame results

Origin commit Origin file path Origin line # Current line #
ˆc5b8024 src/.../AlterTableTest.java 40 41
d3aba78a pho.../AlterTableIT.java 43 42
1510cd2d pho.../AlterTableIT.java 42 43
6cc17278 pho.../AlterTableIT.java 46 44
Example of results obtained through the use of the git blame command in

WARNINGSGURU. Some of these values have been truncated for presentation
purposes such as the line content which is not presented or the origin commit

and file path which have been truncated.

where the line was last modified. The -s suppresses the author name and
commit time stamp as WARNINGSGURU already obtains this information from
COMMITGURU. The -w parameter ignore white space changes and is made to
identify the origin of a line. The -f shows the file path when the line was last
modified. Finally the -MMMCCC allows for the tracking of movement of files
and lines and the copying of these within a project.

An example of the result is presented in Table 2.4. The origin commit is the
commit hash of the commit which last modified the line. Where a commit hash
starts with a ˆ, it implies that this line originates from the first git commit of the
project. The origin file path is the file path of the line when it was last modified
as part of the specified commit. The origin line number is the line number of
the modified line when it was modified. Finally the current line number is the
line number of the line at the commit snapshot where the command was ran.
This is used to determine which warnings have been introduced by the commit
and to differentiate between warnings in the process of the warning recovery.
Figure 2.2 shows how developers can click on the “Origin" commit of older
warnings or view the lines with new “Starred” warnings.

The measures obtained by COMMITGURU are also obtained from the source
version control repository in order to build its statistical risk model.

2.3.4 Warnings Recovery

Where a commit fails to build successfully, it might not be possible to obtain the
warnings from all modified files using the static analysis tools. A failure of a
commit to build does not imply that no build artifacts are generated. WARN-
INGSGURU runs the static analysis tool on the successfully built artifacts of
modified files and extracts the warnings from these files. However we cannot
run the static analysis tools on build artifacts which do not exists as they were
not compiled. The new warnings which are introduced as part of the commit
can be obtained from subsequent analysis of its modified files in subsequent
commits, but it would not specify which warnings are present on the com-
mit which failed to build. We developed a warnings recovery process which
identifies the warnings present in the modified files of a commit.

For each file which is modified in the commit, we identify all of the commits
which previously modified the specified file. This provides us with the history

16 Chapter 2. WARNINGSGURU: Architecture & Data

of the file, including rename and moves to allow us to uniquely identify files. We
can then determine that two files are the same and obtain the full list of warnings
which WARNINGSGURU as identified for this file throughout its history. If
newer commits have been previously analysed, we can also determine which
more recent updates of the modified files exist. This process however does
not distinguish between warnings and it is not possible to determine that the
warnings are unique.

We use the Git blame functionality to obtain the commit hash, file path and
line number origin information associated to the line of a warning to determine
the origin of the warning. This information is used to distinguish between
warnings and uniquely identify them. By using the combination of origin
commit hash, file path, line number and warning details as a unique identifier,
we can uniquely identify that two warnings between commits are the same. A
line can have more then one warning, but their details will be different which we
use to distinguish between them. Using this approach we are able to uniquely
identify which warnings are the same between commits.

When this approach is applied to the modified files of a commit, we can use
the same approach to determine which warnings will be present on these files.
For each modified file we obtain the origin information concerning each lines of
these files. We then compare the origins of the lines to the origins of warnings
which WARNINGSGURU as previously identified on the file. The list is filtered
and we obtain the list of warnings that would be present on the commit.

The warning recovery process is dependent on the analysis of the project
by WARNINGSGURU. We can only identify warnings which have previously
been observed by WARNINGSGURU on the specified file. We therefore run
the warning recovery following the completion of the analysis of a batch of
commits.

2.3.5 Statistical Models with COMMITGURU

Statistical models indicate when a change may introduce a bug by predicting
when a commit or file is prone to being buggy using historical measures such
as churn, entropy of change and the experience of the developer (Kamei et al.,
2013). By being able to identify bug fixing commits from either an issue tracker
or commit message it is possible to determine which commits might have intro-
duced the faulty change. The measures from these candidate buggy commits
are then used to identify other commits which may also be bug-introducing
based on historical patterns.

COMMITGURU implements the SZZ/ASZZ algorithm (Kamei et al., 2013).
Bug fixing commits are identified based on keywords in their commit mes-
sage. Using Git blame, the fixing commit is traced back to the commit that last
changed the fixed lines. The lines that have been changed are deemed to be
bug-introducing. Measures are extracted at each commit and used as predictors
in a logistic regression. This logistic regression model is used to predict whether
or not a commit is likely to introduce a bug, i.e. is risky.

In Figure 2.2 we see for each commit whether the it introduces a bug based
on the results of the SZZ algorithm. We also see which measures contribute

2.4. Descriptive Statistics 17

FIGURE 2.5: Distribution of warnings and new warnings

While a median number of commits contain warnings, few of these introduce
new warnings. This violin plot represents the distribution of the datasets per
project for the total number of warnings and new warnings per modified files
of a commit. The peak is the maximum number of a type of warnings which are

present in a commit. The horizontal line present in some of the plots is the
median of the dataset of a project for a type of warning as define by the side of
the plot it is on. Except for Ignite, all other projects have a median total number

of warnings per commit which is above 0. The thicker lines between the
median lines represent the second and third quartiles of the dataset where the

second is below and the third is above the median line. The first and fourth
quartile are presented on the plot as the portion before and after the second and
third quartiles which do not have a thicker line. This is observable in the total

number of warnings in the project Phoenix where all four quartiles are
presented. Where the median line is not visible, the third quartile may be

observed with the fourth quartile of the dataset on the violin plot.

additional risk. While this allows COMMITGURU to determine which commits
may be the more risky, it does not give additional details of where the issue
might be in the commit as the predictions are not at the line level. For example,
Figure 2.2 shows that the model predicts a change to be risky because many
new lines are being added in the commit. WARNINGSGURU supplements this
knowledge with specific static analysis warnings that have been introduced in
the change.

18 Chapter 2. WARNINGSGURU: Architecture & Data

FIGURE 2.6: Distribution of security-related warnings and new
security-related warnings

As opposed to warnings, fewer commits have security warnings and new
security warnings. This violin plot represents the distribution of the datasets
per project for total number of security warnings and new security warnings

per modified files of a commit. Only Hadoop, Phoenix and Ranger have a
median total number of security warnings per commit which is above 0.

2.4 Descriptive Statistics

We built and ran the static analysis on the commits of the eight Apache projects
using WARNINGSGURU. The results of this are presented in Table 2.1. We
were capable of successfully building over 33,000 commits with a success rate
with a range of 94% to 50% per project (Table 2.2). This represents over 685,000
warnings that were collected through the analysis of the commits by WARNINGS-
GURU. The historical and new warnings can then be viewed on each commit in
the interface of WARNINGSGURU as shown in Figure 2.2.

The warnings recovery process identified warnings on an additional 7345
commits which failed to build, of which 1494 had new warnings. By including
these warnings identified through the recovery we obtain 941,000 warnings.
We determine that the proportion of commits with warnings in failed builds
is proportional to the occurrence of warnings in successfully built commits.
In Table 2.3, we observe that 58.7% and 58.0% of commits have warnings in
successfully and failed builds respectively. The differences between commits
having new warnings for build versus failure is 13.2% and 11.8% respectively.
Due to the similarity, the recovery of warnings in failed builds is therefore
comparable to the occurrence which was obtained through the analysis.

The results showed that 58.5% percent of commits contain warnings in

2.5. Threats to Validity 19

the files which were modified and that 12.8% percent of commits introduced
new warnings. There is a high of 18.0% on Ranger and a low of 3.6% on
Wicket for percentage of commits with new warnings. We also observed that
7.3% of commits which had new warnings were deemed to be risky based
by COMMITGURU. Commits with security warnings accounted for a mean of
40.7% of commits having a security warning and 6.8% having a new security
warnings. Similar distributions were also observed with Ranger having a high
of 12.3% and Wicket a low of 0.7% for commits with new security warnings.
While a significant number of commits have warnings associated with them,
substantially fewer have new ones making investigations of these by developers
more manageable.

Analyzing the results for Tika, 53.9% of commits modified a file which
contained a warning. Given that warnings is the only measure which is present
in over 50% of commits it is the only one which has a median which is of 2.0
warnings per commit. We have a mean of 5.8 and a max of 286 warnings per
commit. Of these, 14.4% of commits introduced a new warning which represent
a mean of 0.6 and a max of 104 new warnings per commit. A subset of warnings
are security warnings which were identified in 37.8% of commits. These account
for a mean of 2.5 and a max of 147 security warnings per commit. Finally, new
security warnings were found in 9.0% of commits. There is a mean of 0.3 and a
max of 70 new security warnings per commit.

The observations associated to warnings also occurs in the other projects as
presented in Figure 2.5. We observed similar trends in with security warnings
which is presented in Figure 2.6.

2.5 Threats to Validity

All eight projects were written in the Java programming language, are part
of the Apache Software Foundation, and used Maven as their build tool. The
Apache Foundation includes a large number of representative projects and we
have selected a range of projects that represent good software development
practices.

Building historical commits is not a simple task. Missing dependencies,
environment miss-configuration and incorrect version of the build tools are
issues which might result in older builds bring more likely to fail. In Section 2.3.1
we developed techniques, such as trying older Java environments based on the
commit date to minimize these risks. There are limitations to these efforts, for
which our warnings recovery process compensates.

Static analysis tools cannot recover all of the warnings on failed builds.
There is a risk of lost warnings which we mitigate by retroactively identifying
the warnings that modified files in a failed build would introduce through the
recovery process.

For projects or individuals which are independently using static code analy-
sis tools it is a possibility that there are warnings which would have been in the
commit which the developer as already addressed. However, given that WARN-
INGSGURU uses a combination of tools with the additional security plugin for
Findbugs it is likely that it will identify other type of warnings. All projects

20 Chapter 2. WARNINGSGURU: Architecture & Data

which we analysed had warnings and we are therefore still able to extract some
from them. Also, the use of static analysis tools by these individuals would
demonstrate that these tools are useful to them and it does not preclude research
into the improvement of these tools.

While the warning recovery process is capable of obtaining warnings for
commits which failed to build, there is a possibility that it might be missing
some warnings and including others which would not have been on a file if
the static analysis tools had been capable of running. Given that the recovery
process is dependent on preceding and subsequent analysis of the modified
file it is possible that the warning might never be identified if the file is never
analysed again. More warnings might be present where the static analysis tool
attributes multiple warnings to one line which we cannot differentiate given
that they are all attributed to one line, but the warning might have originated
from another part of the code.

2.6 Related Works

Many previous studies have investigated the use of static analysis tools (Yi
et al., 2007; Kamei et al., 2013; Rahman et al., 2014; Tang et al., 2015; Wong et al.,
2016). Some of the studies investigated the incremental analysis of snapshots of
a project. Kim and Ernst, 2007 built and ran static analysis tools on over 4500
commits. They proposed a solution to improve the prioritization of warnings
based on historical fixes of warnings to determine which categories of warnings
are predominantly addressed by developers. Spacco, Hovemeyer, and Pugh,
2006 analysed 116 incremental releases of the JDK with Findbugs where they
tracked warnings between each releases. They mention that collisions in warn-
ings might cause issue in the tracking of warnings. This is attributable to them
not the line number of the warning or its offset which our warning recovery
process to track the warnings between releases. Bevan et al., 2005 developed
Kenyon, a tool that allows for incremental analysis of software projects through
its collection of change data between snapshots. It was however not capable
of building historical commits. Nanda et al., 2010 also created a private tool
which ran static analysis tools on commits, but did not build current or historical
commits. Tang et al., 2015 studied 3 and 5 releases of 2 projects for a total of 8
releases.

Another aspect that has been studied is the prioritisation and filtering of
warnings. Kim and Ernst, 2007 determined that between 6-9% of static analysis
warnings were subsequently fixed as part of subsequent commits. They pro-
posed a solution to improve the prioritization of warnings based on historical
fixes of warnings to determine which categories of warnings are predominantly
addressed by developers. Nanda et al., 2010 determine that the results from
different static analysis should be merged and filtered when presented to de-
velopers. They developed a tool that runs static analysis tools on snapshots of
a project and can report which warnings originate from the current change in
addition to filtering the results. WARNINGSGURU supports for the merging of
the results of static analysis tools and for the prioritisation of new warnings in a
commit.

2.7. Conclusion 21

The results of static analysis tools have been applied to the identification
of bugs in software projects. Zheng et al., 2006 determined that static analysis
tools are complementary to other fault detection techniques. They can be used
to determine the risk factor for testing purposes and the warnings that are asso-
ciated to some security vulnerabilities. The warnings which WARNINGSGURU

provide are associated to security categories. Wedyan, Alrmuny, and Bieman,
2009 identified that fewer than 3% of warnings are associated to bugs and that
the warnings are predominately associated to refactorings. They applied Find-
bugs, Jlint and the static analysis component of Intellij Idea to 20 releases of 2
projects. Through the static analysis tools, they determine that they could be
used to predict refactorings between releases.

2.7 Conclusion

We are able to build and run static analysis tools on over 45 thousand com-
mits, a substantial increase over the 4.5k, 116 and 34 releases processed by
previous works. Since we run static analysis on every change we are able to
track when and where a warning is introduced and retroactively assign warn-
ings to commits that did not build with our warnings recovery process. Our
tool, WARNINGSGURU, allows developers to see the origin of a warning and
whether the warning is new, reducing the effort involved in manually examining
warnings.

Of all commits that were analysed, 58.5% of commits have a warning in
one of the files which they modified. We determined that 12.8% of these com-
mits introduced new warnings and that 6.8% of all commits had new security
warnings. This reduces the effort required in the investigation of warnings that
static analysis tools report. Using WARNINGSGURU, a team could prevent the
introduction of new persistent warnings by proactively removing all newly
introduced ones.

Future work would involve the inclusion of additional build tools as part
of the WARNINGSGURU pipeline which would increase the number of project
which we can support. This would also increase the number of languages which
the tool can build and subsequently analyse. This would allow us to determine
if this solution is applicable to other project solutions then the ones we studied.
Further research would be required in the warning recovery process to improve
its performance.

In addition, the use of WARNINGSGURU allows for the creation of historical
build logs and artifacts which might not be preserved or available for the projects
which are being analysed. These rebuilt historical artifacts, while not used in
this study can be used for future work that needs historical information from
the project.

23

Chapter 3

Statistical Models

3.1 Introduction

Statistical bug models have been used to predict the occurrences of bugs in
projects. They use historically mined development information to indicate risky,
i.e. potentially defective, files or commits (Kamei et al., 2013; Hall et al., 2012).
We will call the predictors used in these models change measures. The two types
of change measures are churn measures, such as the number of lines changed
in a commit, and developer measures, such as the expertise of the developers
who have modified a file. The advantage of statistical bug models is that they
provide reasonable predictions of field defects in commits and files (Hall et al.,
2012). The disadvantage is that the prediction is not fine-grained, i.e. an entire
file or commit is flagged as potentially bug introducing.

We investigate the use of warnings as a change measure for statistical bug
prediction models. Warnings have previously been used by Rahman et al.,
2014 and Tang et al., 2015, but they were using a small number of snapshots
of projects. They were also following the granularity of the snapshots which
was a release that would include many changes without distinguishing when a
warning was introduced specifically as WARNINGSGURU performs. We then
investigate if statistical warnings models are a feasible option to identify the
risk of warnings occurring in a commit. Models are generated to predict the
occurrence of historical and new warnings in a commit. We apply the same
methodology to warnings which are classified to be security related.

In Section 3.2 we propose an augmented statistical bug prediction model
which uses the presence of warnings in a commit to determine its risk of being
risky. Subsequently, Section 3.3 proposes statistical models of warning detection
which identify if the commit is at risk of introducing the different types of
warnings from WARNINGSGURU. In Section 3.4 we evaluate the risks that the
projects have on the success of the prediction and Section 3.5 review the related
work in statistical models of bug prediction. Finally, Section 3.6 summaries the
conclusion of the statistical models which we propose.

3.2 Statistical Bug Models

We systematically built a series of models to assess the predictive power of
warnings in predicting bug-introducing changes and compare them with COM-
MITGURU’s change measures model. The models are logistic regressions with

24 Chapter 3. Statistical Models

the outcome measure being whether a commit introduced a bug. We determine
if a commit is bug-introducing by using SZZ algorithm identifies the bug in-
troducing commit by tracing the changes of bug fixing commits (Kim et al.,
2006; Bowes et al., 2016) (i.e. the lines that introduced the bug). We make three
models: a traditional bug model including the COMMITGURU change measures,
a static analysis warnings bug model, and the combined model: COMMITGURU

and warnings model. We use the percentage of deviance explained of the model
to determine the quality of the model (Cataldo et al., 2009). The deviance ex-
plain is a measure of the percentage of the dataset which a model explains. We
also report the odds ratio for each measures. The distribution of each measure
is skewed, so non-binary variables are log2 transformed. Table 3.1 report the
model results. We describe each of the measures used in the model in the next
section.

3.2.1 Measures

COMMITGURU Change Measures

The change measures in COMMITGURU have been successfully used in papers
on bug prediction (Kamei et al., 2013; Kim et al., 2006). The change measures
COMMITGURU model is our baseline and we compare and augment it with
our static analysis warning model. The measures are aggregated at the commit
level.

The change measures are divided into churn and developer measures. The
churn measures include the number of subsystems and the number of direc-
tories which have modified files. It also includes number of modified files,
number of lines added, lines deleted and the total line count of files before being
modified. The average time between changes to a file and the number of unique
changes to the file are tabulated. Entropy is a measure of the distribution of
the change between modified files. The developer measures are the number of
developers which modified a file, the developer’s experience calculated over the
entire project, the recency of experience on the modified files and a developer’s
experience on the modified subsystem. Additionally, the identification of a
commit as bug fixing is used as a measure.

We run a Spearman correlation among the measures and keep the most
parsimonious measure when the correlation is greater than 0.75. We excluded
the number of modified files and entropy as they correlates at 0.94 and 0.89
respectively with the number of modified directories. We also excluded the
number of changes to a file as it correlates at 0.78 with total line count before
the line was modified. Due to the removal of the numbers subsystems measure,
we also removed the developer’s subsystem experience due to correlation of
0.74 in relation to a developer’s experience.

WARNINGSGURU Warnings Measures

Unlike previous works that work with a limited number of releases (Couto et al.,
2013; Rahman et al., 2014; Tang et al., 2015), we analyze over 45k commits. This
allows us to trace the history of a warning. We introduce new measures, the

3.2. Statistical Bug Models 25

number of new warnings, and we are able to differentiate security warnings
allowing us to determine when security warnings are introduced.

When building our warnings model we first include the number of new
security warnings. We then include the number of new warnings, which is
effectively the addition interaction term between the number of new security
warnings + the number of new non-security warnings. We continue this process
adding the the total number of security warnings and then the number of total
warnings. In the model we also differentiate between the tool that found the
warning, either FindBugs or JLint.

A final new measure is whether the build failed. A failed build can demon-
strate problems in the code and environment and may indicate significant
problems with the commit.

COMMITGURU and WARNINGSGURU Measures

We combine all the measures from the COMMITGURU and WARNINGSGURU

models. We include the change measures first and the warning measures second.
We also want to determine the degree of redundancy of our warnings measures
compared with the COMMITGURU measures.

3.2.2 Statistical Bug Prediction Models

We used the measures in the following r models structures to generate each
statistical bug prediction model. For each one of these models the dependent
measure is whether the commit contains a bug, for which we are predicting. We
are using the as.factor method which builds the prediction models in relation to
one of the projects.

COMMITGURU statistical bug prediction model

glm(Commit contains bug ˜ log2(1+(Number of directories)) + log2(1+(Lines
added)) + log2(1+(Lines removed)) + log2(1+(Lines before change))
+ fix + log2(1+(Number of developers)) + log2(1+(Average time be-
tween changes)) + log2(1+(Developer experience)) + log2(1+(Recent
developer experience)) + as.factor(Project), family=binomial(), con-
trol = list(maxit = 50))

WARNINGSGURU statistical bug prediction model

glm(Commit contains bug ˜ log2(1+(New security warnings)) +
log2(1+ (Security warnings)) + log2(1+(New findbugs warnings))
+ log2(1+(New jlint warnings)) + log2(1+(Findbugs warnings)) +
log2(1+(Jlint warnings)) + Build failed + as.factor(Project), fam-
ily=binomial(), control = list(maxit = 50))

26 Chapter 3. Statistical Models

TABLE 3.1: Bug prediction models and odds ratios

COMMITGURU Warnings Combined
Num Directories 1.25 *** 1.05 *
Lines added 1.44 *** 1.39 ***
Lines removed 1.03 *** 1.02 **
Lines before change 1.15 *** 1.08 ***
FIX 1.52 *** 1.51 ***
Num of Devs on files 0.74 *** 0.82 ***
Avg time between changes 1.00 1.01
Developer Experience 1.05 *** 1.04 ***
Recent Dev. Experience 0.97 *** 0.99
new security warnings 1.02 1.08
security warnings 0.89 *** 0.93 ***
new FindBugs warnings 1.43 *** 1.10 *
new JLint warnings 1.58 *** 1.14 ***
FindBugs warnings 1.19 *** 1.07 ***
JLint warnings 1.35 *** 1.22 ***
build failed 2.00 *** 1.75 ***
Hadoop 0.56 *** 0.57 *** 0.42 ***
Ignite 0.55 *** 0.62 *** 0.48 ***
Kylin 0.84 ** 1.01 0.85 **
Phoenix 0.38 *** 0.28 *** 0.26 ***
Ranger 0.42 *** 0.46 *** 0.33 ***
Tika 0.57 *** 0.98 0.65 ***
Wicket 0.82 *** 0.89 * 0.69 ***

Deviance Explained 19.5% 13.4% 22.0%
Residual 41195 44323 39928

p <0.001: ***, p <0.01: **, p <0.05: *, p <0.1: .
For each one of these models the dependent measure is whether the commit is
bug introducing. Since all predictors are transformed with log2 (except binary
variables), interpretations are as follows, a twofold increase in the number of
lines added increases the odds of a bug being introduced by 1.44 times, for

example. The odds ratio is an evaluation of the increase or decrease in
probability for a change in the size of a measure. p is the representation of the

statistical significance of the measure where a smaller value implies that a
measure is more statistically significant.

With the use of as.factor on the projects, all projects are in relation to the
Commons-lang project. Depending on the model, the individual projects are

either more are less likely to introduce a warning in comparison to
Commons-lang and this is represented by an odds ratio.

3.2. Statistical Bug Models 27

Combined statistical bug prediction model

glm(contains bug ˜ log2(1+(Number of directories)) + log2(1+(Lines
added)) + log2(1+(Lines removed)) + log2(1+(Lines before change))
+ fix + log2(1+(Number of developers)) + log2(1+(Average time be-
tween changes)) + log2(1+(Developer experience)) + log2(1+(Recent
developer experience)) + log2(1+(New security warnings)) + log2(1+(Security
warnings)) + log2(1+(New findbugs warnings)) + log2(1+(New jlint
warnings)) + log2(1+(Findbugs warnings)) + log2(1+(Jlint warn-
ings)) + Build failed + as.factor(Project), family=binomial(), control
= list(maxit = 50))

The following section goes through the results of these models.

3.2.3 Change Measures Model Results

In the first column of Table 3.1 we see the results of the COMMITGURU change
measure logistical regression bug model. We can see that the model explains
a reasonable amount of the deviance, 19.5%. Since our predictors are skewed
any non-categorical variable is transformed using log2. We report the odds ratio
for each predictor. However, since they are log2 transformed they represent a
twofold increase in the predictor. For example, a twofold increase in the number
of directories touched, lines added, lines before a change makes it 1.25, 1.44,
1.15 times more likely for a bug to occur in a commit. Previous work has found
that files with more churn tend to have more bugs, our findings confirm this
suggesting that large changes introduce more bugs (Giger, Pinzger, and Gall,
2011).

Likewise, FIX which is the identification of a commit as being bug fixing, is
binary. As a result a commit that is fixing an existing bug is 1.52 times more
likely to introduce a bug. Our findings indicate that bug fixes likely touch fragile
or complex code and lead to further bugs. This agrees with the findings that the
number of past defects is a strong predictor of future defects (Nagappan and
Ball, 2005b).

The strongest negative predictor is the number of developers who touch a
file, with a twofold increase in this predictor leading to a 26% decrease in the
likelihood of the commit introducing a bug.

3.2.4 Warnings Bug Model Results

In the second column of Table 3.1 we see the results of our static analysis
warnings bug regression model. We can see that the model explains a smaller
proportion of the deviance, 13.4%. These results provide limited support for
previous smaller studies that suggesting that change measures (Rahman et al.,
2014), OOP measures (Tang et al., 2015), and static analysis warnings have
similar defect prediction potential. We discuss these studies in more detail in the
related work section as some involve complex accounting schemes to deal with
limitations in the unit of analysis and the small number of versions analysed.

The strongest predictor of bug introduction is whether the build succeeded.
A build failure doubles the likelihood of a bug being introduced. A twofold

28 Chapter 3. Statistical Models

increase in the number of new warnings for a commit increases the likelihood
of introducing a bug by 1.5 and 1.19 times for JLint and FindBugs respectively.
Having more existing warnings in the code that is changed in a commit also
increases the likelihood of introducing a bug. New security warnings were not
statistically significant while the total number of security warnings actually
reduced the likelihood of a bug. This final conclusion is likely related to the
difficulty and rarity of actual security bugs, which as (Camilo, Meneely, and
Nagappan, 2015) point out, make vulnerabilities difficult to predict statistically.

3.2.5 Combined Change and Warnings Measures Bug Model Results

In the third and final column of Table 3.1 we see the combination of the change
measures and static analysis warning measures. The deviance explained is
22.0% only 2.5 percentage points higher than the change measures model. As
a result, we conclude that the warnings model contributes an 11% increase in
the deviance explained by change measures model. The measures are for the
most part consistent in terms of direction and power with the largest drops in
predictive power seen by the new warnings predictors. Indicating that these
measures take into account changes in file size and complexity and the new
warnings likely explain a similar phenomenon.

3.3 Statistical Warning Prediction Models

In this section we perform an empirical study to predict whether a commit
introduces warnings and security warnings using the simple COMMITGURU

change measures, such as lines added and developer experience. Our goal is
to understand how these measures influence the introduction of warnings. For
example, do developers with more experience introduce fewer security warn-
ings? A practical outcome of this research will be to suggest which commits
and files deserve further analysis with the more computationally expensive
static analysis. For example, a commit that is statistically more likely to intro-
duce a security warning could be flagged for additional analysis. As a final
contribution, recent work by Camilo, Meneely, and Nagappan, 2015 showed
that security vulnerabilities cannot be predicted by statistical bug models using
change measures. We create models to predict security warnings that are able
to flag potential vulnerabilities.

3.3.1 Description of the Warnings Models

We create four logistical regression models with the following outcomes: does
the commit contain warnings, new warnings, security warnings, or new security
warnings. The predictors are the same change measures used in the previous
models: the number of directories, the number of lines added, the number of
lines deleted, the number of lines before the change, whether the the change a
fixes a bug, the number of developers that have touched the files in the commit,
the average time between changes for the files in the commit, the average

3.3. Statistical Warning Prediction Models 29

developer experience for the files in the commit, and the experience of the
developer who most recently changed the files under commit.

The following sections below illustrate the r models which are used. The
dependent measure changes between model where we build a model that
predict different type of warnings. We are using the as.factor method which
builds the prediction models in relation to one of the projects.

Statistical warnings prediction model

glm(warnings ˜ log2(1+(Number of directories)) + log2(1+(Lines
added)) + log2(1+(Lines removed)) + log2(1+(Lines before change))
+ fix + log2(1+(Number of developers)) + log2(1+(Average time be-
tween changes)) + log2(1+(Developer experience)) + log2(1+(Recent
developer experience)) + as.factor(Project), family=binomial(), con-
trol = list(maxit = 50))

Statistical new warnings prediction model

glm(New warnings ˜ log2(1+(Number of directories)) + log2(1+(Lines
added)) + log2(1+(Lines removed)) + log2(1+(Lines before change))
+ fix + log2(1+(Number of developers)) + log2(1+(Average time be-
tween changes)) + log2(1+(Developer experience)) + log2(1+(Recent
developer experience)) + as.factor(Project), family=binomial(), con-
trol = list(maxit = 50))

Statistical security warnings prediction model

glm(Security warnings ˜ log2(1+(Number of directories)) + log2(1+(Lines
added)) + log2(1+(Lines removed)) + log2(1+(Lines before change))
+ fix + log2(1+(Number of developers)) + log2(1+(Average time be-
tween changes)) + log2(1+(Developer experience)) + log2(1+(Recent
developer experience)) + as.factor(Project), family=binomial(), con-
trol = list(maxit = 50))

Statistical new security warnings prediction model

glm(New security warnings ˜ log2(1+(Number of directories)) +
log2(1+(Lines added)) + log2(1+(Lines removed)) + log2(1+(Lines be-
fore change)) + fix + log2(1+(Number of developers)) + log2(1+(Average
time between changes)) + log2(1+(Developer experience)) + log2(1+(Recent
developer experience)) + as.factor(Project), family=binomial(), con-
trol = list(maxit = 50))

The deviance explained by the warnings models is 19.1%, 29.9%, 21.5%, and
30.3% for total warnings, new warnings, security warnings, and new security
warnings respectively. The new warnings and new security warnings models
are better models.

The change measures are better at predicting new warnings and new se-
curity warnings than identifying commits which have historical warnings on

30 Chapter 3. Statistical Models

TABLE 3.2: Warnings models and odds ratios

Warnings New Warn Security New Sec
Num directories 1.65 *** 1.15 *** 1.87 *** 1.07 *
Lines added 1.21 *** 1.68 *** 1.17 *** 1.64 ***
Lines deleted 1.03 *** 0.97 *** 1.05 *** 0.97 ***
Lines before change 1.24 *** 1.03 ** 1.28 *** 1.04 **
FIX 1.21 *** 0.97 1.19 *** 1.09
Num Developers 0.99 1.01 0.92 *** 1.01
Time btwn changes 1.01 1.01 0.97 *** 1.00
Dev Experience 0.98 *** 1.02 ** 0.98 *** 1.00
Recent Experience 0.95 *** 0.92 *** 0.92 *** 0.92 ***
Hadoop 0.47 *** 0.94 0.84 *** 1.15
Ignite 0.56 *** 0.91 1.08 1.22
Kylin 0.83 *** 1.30 ** 1.08 1.62 ***
Phoenix 2.46 *** 6.27 *** 5.03 *** 14.1 ***
Ranger 0.57 *** 1.89 *** 1.32 *** 3.46 ***
Tika 0.88 * 2.02 *** 1.51 *** 3.36 ***
Wicket 0.76 *** 0.61 *** 0.65 *** 0.44 ***

Deviance Explained 19.1% 29.9% 21.5% 30.3%
Residual 50453 24628 48704 15875

p <0.001: ***, p <0.01: **, p <0.05: *, p <0.1: .
For each one of these models the dependent measures are the warnings, new

warnings, security warnings and new security warnings respectively. Since all
predictors are transformed with log2 (except binary variables), interpretations
are as follows: a twofold increase in the number of lines added increases the

odds of a new warning by 1.68 times, for example. The odds ratio is an
evaluation of the increase or decrease in probability for a change in the size of a

measure. p is the representation of the statistical significance of the measure
where a smaller value implies that a measure is more statistically significant.

With the use of as.factor on the projects, all projects are in relation to the
Commons-lang project. Depending on the model, the individual projects are

either more are less likely to introduce a warning in comparison to
Commons-lang and this is represented by an odds ratio.

3.3. Statistical Warning Prediction Models 31

their modified files. This suggests that these predictors provide more accurate
representations of recent events on the project than the overall project health.

3.3.2 Warnings Model Results

The first column shows the warnings model with 19.1% of the deviance ex-
plained. The strongest predictors are the simple measures of churn. A twofold
increase in the number of modified directories, the number of lines before the
change, and the number of lines added increases the odds of a commit having
at least one warning by 1.65, 1.24 and 1.21 times, respectively. A bug fix change
also increases the odds of a warning by 1.21 times. The developer measures and
time between changes have a very minor impact on the odds ratio for warnings.

3.3.3 New warnings Model Results

The second column shows the new warnings model with 29.9% of the deviance
explained by the model. The strongest predictor is the number of lines added.
A twofold increase in the number of lines added increases the odds of a new
warning by 1.68 times. Interestingly, the more recent experience the developer
has with the files in a commit the less likely he or she is to introduce a warning.
A twofold increase in recent experience leads to a decrease of 8% in the number
of new warnings introduced. Although statistically significant, the overall
developer experience with the files under change has a very minor impact on
the number of new warnings.

3.3.4 Security warnings Model Results

The third column shows the model for security warnings with 21.5% of the
deviance explained by the model. The model is similar to the warnings model
with the churn measures having a large impact on the number of security
warnings. The amount of recent experience decreases the number of security
warnings with a doubling in experience results in a reduction of 8% in the odds
of having a security warning.

A predictor that is unique to the security warnings is the number of de-
velopers who have touched the files in the commit. With a twofold increase
in the number of developers working on the files in a commit the number of
security warnings decreases by 8%. Future work is necessary to investigate this
in greater detail. A possible explanation is with more developers touching a set
of files comes more attention to possible vulnerabilities, eliminating security
problems before they are committed potentially through peer review.

3.3.5 New Security Warnings Model Results

The fourth column shows the model for new security warnings with the highest
deviance explained of the warnings models, 30.3%. The model shows more
similarity to the new warnings model than the security model. New security
warnings are best predicted by the lines added and recent experience.

32 Chapter 3. Statistical Models

Our models provide adequate predictions of security warnings. Recent work
by Camilo, Meneely, and Nagappan, 2015 that use similar change measures to
find past security vulnerabilities, reported that statistical bug models are unable
to reliably predict security vulnerabilities as reported in a common vulnerability
and exposure report (MITRE Corporation, 2017). We have shown that our
models have reasonable predictive power for new warnings and in particular
new security warnings. It is promising that new security warnings, which are
53% more rare than general new warnings show a similar predictive ability. Our
work suggests that assigning developers who have recently modified a file to
review it would likely be a simple way to reduce the number of new security
introduced into the system.

3.4 Threats to Validity

The techniques applied might not be effective for other types of projects. How-
ever, given that we successfully applied the benchmark to all of the projects
we expect that if the benchmark functions on a test project that the combined
statistical bug model would function on it as well. The same statement is also
applicable to the statistical warnings model which uses the benchmark measures
to build its statistical model.

3.5 Related Works

Kim et al., 2007 determines that fault are localised, whether that be there code
proximity, change set or time. The measures extracted from these are then
usable to predict the occurrences of bugs in a project. This is a precursor to the
churn and developer measures which we use for our prediction models. Kim,
Whitehead, and Zhang, 2008 uses measures obtained from the history of the
project obtained from the SVC and terms from the change to predict if it is risky.
Kim, Pan, and Whitehead, 2006 identifies the pattern of a bug fix in the history
of the project to generate patterns which are specific to to the project. These can
predict future occurrences of the same type of bug.

There is little work that examines both static analysis and statistical bug
models. Couto et al., 2013 studied the bug finding effectiveness of static analysis
on three projects and find that in the 280 bug fixing changes the static analysis
tool FindBugs would have suggested a warning for only 33 of the changes.
Furthermore, static analysis tools produce a large number of warnings with
Couto et al., 2013 finding between 4 and 10 warnings per KLOC depending on
the project. Factoring the multitude of warnings and the limited effectiveness of
identifying commits that contain bugs, the authors find a median precision and
recall for FindBugs of zero. The authors conclude that static analysis warnings
do not correspond to field defects. The authors then examine a single release
for 30 projects and find a moderate correlations of .56 between the number of
warnings that exist in the code when the release is made and the number of bugs
reported against the release. Our work tracks warnings as they are introduced
to the project. The new warnings predictor is superior in predicting bugs than

3.5. Related Works 33

the total number of warnings on a commit as used by Couto et al.. However, we
find that the warnings model only explains 13.4% of the deviance, indicating
that static analysis is a poorer predictor of bugs.

A preliminary work by Tang et al. Tang et al., 2015 on 2 projects and 8 revi-
sions showed that OOP measures such as LCOM “Lack of Coupling in Meth-
ods" and McCabe complexity provide less predictive power than static analysis
warnings. The predictive models were unstable across revisions suggesting that
future work is necessary to replicate these finding on a larger number of project
revisions.

Work by Rahman et al., 2014 concluded that “under some accounting princi-
ples, they [FindBugs, PMD, JLint] provide comparable benefits [to statistical bug
models].” Unfortunately, the methodology and accounting schemes in the paper
make replication and interpretation difficult as the statistical models provide
predictions at the file level and the static analysis tools provide warnings at
the line or code unit level requiring complex “budgeting” of warnings and
statistical risk. A further limitation is that the authors process only 34 versions
requiring complex git blame assignment of warnings to past revisions ignoring
static analysis warnings that may have been removed between releases. Our
study which aggregates at the commit level and examines over 45k commits
finds that static analysis can predict bugs, but that it does less well than simple
change measures.

Rahman et al., 2014 also conclude that the “performance of certain static
bug-finders can be enhanced using information provided by statistical defect
prediction.” We find that the static analysis measures add only a small 2.5
percentage point increase in deviance explained over the change measures indi-
cating that the computationally expensive static analysis has much redundancy
with simple churn measures and will only provide limited enhancement in
predictions.

Proponents of static analysis correctly argue that the warnings identified
are not designed to find many classes of bugs, such as those related to user
experience problems. A manual study of FindBugs by at Google Ayewah et al.,
2007 found that of the 1127 warnings examined, 17% of the warnings were
“impossible” meaning that they “could not be exhibited by the code”. An
additional 11% of the warnings were deemed to be trivial. While static analysis
warnings may not increase the number of bugs found, we have developed
a tool to help developers see the warnings that are present in risky commits
and those that are introduced in the current commit. Future user studies are
necessary to understand if limiting the number of warnings that a developer
sees reduces the effort in eliminating the impossible, trivial, and false positives
warnings suggested by static analysis. Nagappan and Ball, 2005a found that
static analysis tool can be used to distinguish low and high quality components.
They found a strong correlation between components with a high density of
warnings and those with a high defect density from testing for which they
created a prediction model.

Kim et al., 2011 assessed the impact of noise present in the data which is
mined from software repositories. They determined that noise should not have a
significant impact on the prediction models on the condition that false positives

34 Chapter 3. Statistical Models

and false negatives do no represent over 20% to 35% percent of the data set.
They propose a method of identifying noise through the proximity of bugs and
their similarity to identify noisy ones.

Ray et al., 2016 found that code is repeatable and predictable and that buggy
code is unnatural. They perform a comparison of their statistical language
model and determined that they their effectiveness was comparable to those of
static analysis tools Findbugs and PMD.

Shivaji et al., 2013 worked on improving the performance of bug prediction
techniques by reducing the number of measures which are computed to generate
the prediction model. Goyal, Chandra, and Singh, 2015 use of statistical models
to perform fault prediction models and determine that we need to find ways
of reducing the number of measures of prediction which are used to reduce
their complexity and understandability by their users. Canfora et al., 2013
propose a method to improve cross project defect prediction. Models trained for
one project have reduced performance when applied to another project. They
applied a genetic algorithm to a multi objective logistical regression model to
obtain a model with improved effectiveness over standard cross project models.

Herzig et al., 2013 predicts buggy changes through change genealogy that
identifies changes which have cascading issues which are not directly associated
to the subsequent changes which will be buggy. The effect of a change may
not be buggy, but its modifications can result in subsequent buggy commits.
Giger, Pinzger, and Gall, 2011 distinguish between different types of code
churns (statements, conditionals, etc...) to generate a prediction model which
outperform standard code churn measure and Jiang, Tan, and Kim, 2013 built
statistical prediction models personalised to target individual developers.

3.6 Conclusion

We present a tool and a series of statistical models that combine change measures
and static analysis warnings to predict whether a commit will introduce a bug.
We find that the model accounts for 22% of the deviance. However, there is
much redundancy between the simple change measures of churn and developer
experience and the computationally more expensive static analysis warnings.

We also create models of whether a change will have a warning or security
warning based on the simple change measures. We are able to explain 30% of
the deviance in the commits that will introduce new security warnings, which
helps in the known difficult task of finding security vulnerabilities. We find
that developers who have more recent experience with the files in a commit are
substantially less likely to introduce new security warnings.

Future work would require the integration of the combined statistical bug
model into the interface of WARNINGSGURU to provide warnings as a prediction
measure for the risk of a commit. In addition, the integration of the statistical
warnings prediction model into WARNINGSGURU would allow the tool to
either prioritise the analysis of commits which are at risk of being warnings or
excluding those that are not risky. This would reduce the required resource of
WARNINGSGURU to build and analyse the commits, reducing the period until
feedback can be provided for a risky commit.

35

Chapter 4

Usefulness of Warnings:
Developer Study

4.1 Introduction

One of the purposes of WARNINGSGURU is to provide timely, relevant feedback
to developers when they make commits to the software project. WARNINGS-
GURU can identify new warnings on commits, reducing the number of warnings
which need to be investigated by distinguishing them from historical warnings.
The motivations of this study is to assess whether new warnings obtained from
static analysis tools are useful to developer and whether by providing these
warnings in a timely matter there is an impact on their perceived usefulness of
the warnings. As opposed to previous studies which either targeted a developer
who was on the same team (Nanda et al., 2010) or one who was not involved in
the project’s development Ayewah and Pugh, 2008, we survey the developer
who author the commit which introduced the warning.

We explicitly leave the definition of “useful” up to the developers and allow
them to provide a comment to provide more details on utility. We find that
usefulness can range from identifying a new bug where an issue is opened 1

for a path traversal attack vector to unused variables and code style issues. We
provide exploratory results to the following research questions:

4.1.1 RQ 1, Usefulness & Characteristics: How many new warnings
are useful and what are their characteristics?

Studies of static analysis tools assume that the warnings produced are useful
to developers (Rahman et al., 2014). However, studies that examine individual
warnings have found that many of them are false positives (Ayewah:2007:ESA:1251535.1251536;
Ayewah and Pugh, 2008) which might result in developer not using static analy-
sis tools (Johnson et al., 2013). Our goal is to understand if the new warnings
identified by WARNINGSGURU are useful to developers.

We compare the utility of the warnings found by FindBugs and JLint. We
also distinguish between security and non-security warnings that these tools
can report.

1https://issues.apache.org/jira/browse/RANGER-1450

36 Chapter 4. Usefulness of Warnings: Developer Study

4.1.2 RQ 2, Timeliness: Does sending timely messages to developer
affect the perceived usefulness of the warning?

Static analysis tools report many warnings that have existed in the system for
extended time periods. To study the impact of timeliness, the messages we send
to developers cover a range of times between February 1st 2017 to the 23rd of
March 2017. We record the delay between the author date of the commit by the
developer and the announcement of the warning to the original developer. By
investigating the impact of the delay we assess if the perceived usefulness of a
warning is affected in a statistically significant manner.

We define the timeliness of warnings to be the time period in days between
author date of a commit and the time when we receive a response from the
developer as to whether a commit is useful to them.

This chapter is divided into the methodology (Section 4.2) which includes
the description of the new warnings and developers we target (Section 4.2.1)
and our data collection survey (Section 4.2.2). We answer the research questions
in Section 4.3 where we assess the usefulness of new warnings. Section 4.4
evaluates the risks to the study results and Section 4.5 review previous static
analysis tools user studies. We conclude with Section 4.6 which reviews the
results of the study.

4.2 Methodology

We performed a user study of developers who introduced new warnings as part
of a commit. Using WARNINGSGURU, we are able to identify commits which
had new warnings. The purpose of this study is to determine if the warnings
are useful to the developers who introduced the warning. The developers
were contacted by email and were provided with the opportunity to indicate
if the warning was deemed useful to them. We purposely did not provide the
developers with a definition of useful and allow them to leave a comment to
define how the warning was useful. The study includes commits that were
committed to the selected projects between the period of the 1st of February
2017 to 23rd of March 2017.

4.2.1 Data

As part of WARNINGSGURU, we have demonstrated that we are capable of
identifying the warnings which are attributable to the change that a developer
as performed. 14.4% of commits introduce new warnings which represents
173 commits that introduces warnings for 80 unique developers as part of our
previous dataset of projects in the WARNINGSGURU pipeline. We therefore
increase the number of projects that WARNINGSGURU analyses from 8 to 33.

For this study we analysed the following Apache projects: Accumulo, Apex
core, Apex malhar, Asterixdb, Beam, Brooklyn-server, Calcite, Canyenne, Cloud-
stack, Commons-lang, Commons-net, Commons-text, Crunch, Curator, Falcon,
Hadoop, HBase, Ignite, Tamaya-Extension, Knox, Kylin, ManifoldCF, Oozie,
OpenNLP, Phoenix, Ranger, Sentry, Storm, Tika, Tinkerpop, Twill, Wicket and

4.2. Methodology 37

TABLE 4.1: Number of commits and developers between the 1st
of February 2017 and the 23rd of March 2017

Commits with new Warnings Developers with new Warnings
3572 435 468 183

Number of commits and unique developers for the 37 analysed projects

Zeppelin. These are all projects which meet the requirements for WARNINGS-
GURU (See Section 2.3). These projects have a total of 435 commits which
introduce at least one new warning from a total of 183 unique developers based
on the email address used in the commit during the user study period (Table 4.1).

Overall the commits with new warnings are spread between the remaining
projects with a high of 53 in Beam and a low of 1 Cloudstack, Crunch, Falcon
and Sentry. When we consider that Beam has the most commits during the
time period (775 commits), it is expected that it would have the greatest number
of commits with new warnings. These values are reflected in the number of
developers who introduced new warnings in the commits of a project (Table 4.2).
The projects which have the most commits also have the most developers who
are active during the study period (Ignite, Hadoop, HBase and Beam).

The number of developers in Table 4.3 will not add up to the values in
Table 4.1 since some developers contribute to more than one of the projects
which we analysed. We consider each developer to be unique based on their
email address. However where two developers have the same name and their
email are similar, we consider them to be the same person for the survey portion
of the study.

4.2.2 Survey

The following criteria were followed for the survey. To be eligible, a commit
needs to introduce one or more new warnings as detected using WARNINGS-
GURU. The commit needs to have been committed between the 1st of February
2017 and the 23rd of March 2017. For developers who have previously received
a survey request, there is a minimum of 7 days between survey requests. This
prevents the developers from being overwhelmed by multiple survey requests.
Developers who have multiple email addresses, based on a manual verifica-
tion of name and email, are considered to be one developer and we follow the
standard delay between submission of survey requests.

The survey is composed of two parts: an introduction email and the survey
page which it links to. We dynamically generated the contents of both of these
components to reflect the commit and the new warnings which it included.
Each one of these parts are manually validated to ensure that the links and page
are functional before contacting the developer.

Survey Email

The solicitation is an email that is sent out to the developer who authored the
commit. This email is sent out to the email address that is associated with the
commit and its content is personalised with the name of the author. If the name

38 Chapter 4. Usefulness of Warnings: Developer Study

TABLE 4.2: Commits with new warnings in selected Apache
projects during user study period

Project Commits With warning With new warnings
accumulo 58 21 11
apex-core 28 12 4
apex-malhar 42 20 9
asterixdb 116 65 33
beam 775 202 53
brooklyn-server 155 84 18
calcite 68 48 14
cayenne 92 55 15
cloudstack 108 15 1
commons-lang 74 47 2
commons-net 50 36 4
commons-text 46 11 2
crunch 6 3 1
curator 19 4 2
falcon 14 11 1
hadoop 273 195 44
hbase 174 134 40
ignite 249 110 45
knox 47 24 5
kylin 176 117 23
manifoldcf 56 18 4
oozie 34 19 3
opennlp 43 18 8
phoenix 54 45 19
ranger 135 82 19
sentry 12 8 1
storm 96 24 6
tamaya-extensions 49 23 8
tika 67 46 13
tinkerpop 239 70 6
twill 16 10 2
wicket 95 45 10
zeppelin 95 47 9

There are a total of 3572 commits in the user study period, 435 of which have
one or more new warning as described in Table 4.1.

4.2. Methodology 39

TABLE 4.3: Developers by projects during the user study period

Project Developers Introduced New Warning
accumulo 7 4
apex-core 13 4
apex-malhar 18 4
asterixdb 13 8
beam 54 16
brooklyn-server 15 4
calcite 20 8
cayenne 4 1
cloudstack 18 1
commons-lang 12 2
commons-net 1 1
commons-text 4 2
crunch 4 1
curator 7 2
falcon 5 1
hadoop 53 22
hbase 39 20
ignite 41 23
knox 3 3
kylin 16 9
manifoldcf 3 1
oozie 9 3
opennlp 8 3
phoenix 16 11
ranger 16 10
sentry 2 1
storm 19 4
tamaya-extensions 3 2
tika 4 2
tinkerpop 13 2
twill 6 2
wicket 7 3
zeppelin 31 6

465 distinct developers authored a commit during the study period. 183 of
these developers authored a commit which introduced one or more new

warnings as described in Table 4.1. As some developers participated in more
then one project the sum of the table will not equal these values.

40 Chapter 4. Usefulness of Warnings: Developer Study

FIGURE 4.1: Sample survey email

Sample survey email that includes one warning and request to participate for
the survey. This email is personalised for each commit with the developer’s

name and one of the new warnings introduced in the commit.

4.2. Methodology 41

FIGURE 4.2: Sample survey page

Sample survey page which present commit and new warnings that have been
identified. The developer can specify if each warning is useful for them and

provide feedback. This page is personalised for each commit to include the new
warnings that were identified in the commit.

of the developer does not appear to be valid, we instead obtain the name from
the project’s list of contributors. The email informs the developer that we are
undertaking a study on static analysis warnings and that our analysis of the

42 Chapter 4. Usefulness of Warnings: Developer Study

commit has identified one or more new warnings associated to the commit.
One of the warnings is presented as a sample which includes the file name, line
number and warnings details. The developer is than encouraged to provide
their feedback on the warnings by either responding to the email or going to the
link of the unique survey page. Figure 4.1 illustrates an example of the email
which is sent out.

We provide a method for the developer to unsubscribe from the survey by
clicking on a link which is part of the email. When we receive a response from
a developer that requests to be unsubscribed we do not send them any future
survey requests.

Survey Page

The survey page is where the developer is presented with their commit and
the new warnings which we have identify with WARNINGSGURU. We provide
the developer with description of the study and details of the commit such as
the commit identifier hash, commit message and a link to the complete commit
hosted on GitHub. We then present each new warning individually with the
warning description, name of the tool which identified it, the line number and
file location in the project repository. To assist the developer, we provide the
context of the warning by presenting the lines of code and its surrounding code
as part of the warning. We ask if the developer finds the warnings useful. We
however do not provide the developers with a definition of what useful is and
leave it to their understanding. A text field is provided with each warning for
the developer to optionally provide comments. An example of a survey page is
presented in Figure 4.2.

4.3 Results

Applying the methodology we sent 214 survey requests to validate the useful-
ness of warnings to a total of 179 developers. We received responses through
the survey page which we provided to collect the data and through direct email
responses. Where a direct email response was submitted we would validate the
response with the developer to ensure that they either categorise the warning
as either useful or not useful. The results were then consolidated by manually
entering them on the survey page with the comments which the developer
provided in their email.

Of these survey requests, we have obtained responses for 15.9% of them.
Within the time frame of the study certain developers were sent more than one
request and we received multiple responses from them. A total of 17.9% percent
of developers who were contacted responded to one or more of the requests
which we sent to them. Table 4.4 provides the response rate.

4.3. Results 43

TABLE 4.4: Number of commits for which an email was sent out
and the number of developers involved

Commit Surveys Sent Response % Developers Response %
214 15.9% 179 17.9%

TABLE 4.5: Useful Warnings by Static Analysis tools

Tool Warnings % Useful % Not Useful
JLint 47 21.3 78.7
Findbugs 34 52.9 47.1
Total 81 34.6 65.4

4.3.1 RQ 1, Usefulness & Characteristics: How many new warnings
are useful and what are their characteristics?

The total from Table 4.5 shows that only 34.6% of warnings are useful. This
could be a sign of false positives which are contained in the new warnings
which we identified (Ayewah et al., 2007). By comparing by the different the
static analysis tools (FindBugs or JLint) and their state of warnings as security
warnings we can observe different outcomes to the results.

Warnings per Static Analysis Tool

By differentiating by the tool which generate the warning we observe that
warnings from Jlint represent a greater number of responses as opposed to
FindBugs warnings: 58% to 42% respectively based on 47 and 34 warning
responses. We observe that there is a difference between the number of warnings
which are deemed to be useful by the tool as well. 52.9% of Findbugs warnings
are useful as opposed to 21.3% for Jlint warnings (Table 4.5). We applied the
Fisher Exact test to this distribution and its p-value was less then 0.05 which
implies that the comparison of the two datasets are statistically significant. The
difference between the number of responses for Jlint is overwhelmingly skewed
to warnings not being useful which would explain the 34.6% in Table 4.5

Warnings per Security Classification

We investigated whether security warnings was a statistical significant charac-
teristic of the warnings. WARNINGSGURU categorises warnings as to whether
the warning is security-related. We use this distinction to determine if security
warnings are deemed more useful to developers compared to non-security warn-
ing in relation to the static analysis tool which identified it. Table 4.6 includes
both of these comparisons. We analysed the security warnings and non-security
warnings individually.

Security Warnings Warnings which are categorised as security-related rep-
resented 38% of the responses which we obtained. By distinguishing them
between their respective tools we observe that they are not perceived as useful

44 Chapter 4. Usefulness of Warnings: Developer Study

TABLE 4.6: Useful Warnings by Security Classification

Tool Security Warnings % Useful % Not Useful
True 10 20.0% 80.0%

Jlint False 37 21.6% 78.4%
True 21 42.9% 57.1%

Findbugs False 13 69.2% 30.8%

by the developers. Only 42.9% and 20.0% of Findbugs and Jlint security warning
respectively are considered to be useful. However, given that the difference
in usefulness between Findbugs and Jlint security warnings is not statistically
significant we cannot extract a conclusion from the comparison.

Non Security Warnings The comparison between non security warnings of
Jlint and Findbugs was determined to be statistically significant. By observing
the warnings which have been categories as being non-security-related, Jlint
warnings have a similar useful rate of 21.6% to all Jlint warnings. 69.2% of
Findbugs warnings which are not classified as security-related are perceived as
useful. This illustrates that non security warnings from Findbugs are perceived
as useful to developers.

Comparing between the security classification of warnings cannot be done
due to the security warnings being not statistically significant, but if the results
from the security warnings are validated to be true, that would imply that
non-security warnings are more useful in the case of Findbugs. This would
require the re-evaluation of the assumed pertinence of security warnings.

4.3.2 RQ 2, Timeliness: Does sending timely messages to developer
affect the perceived usefulness of the warning?

We have determined that certain categories of warnings are useful to develop-
ers, such as warnings from Findbugs in most cases. The responses which we
received were for warnings that were introduced throughout the study period.
Some of the survey requests were sent out for commits which had occurred over
6 weeks prior to the request and as a result contained warnings that were as
old as the commit. While the survey requests which were sent out all contained
different warnings, the selection is random in that we did not target specific
types of warnings in the surveys. We only presented the warnings which were
new to the commit.

We want to determine if the timeliness of the notification to the developer
has an impact on the perceived usefulness of the warning. We calculate the time
delta in days between the introduction of a new warning by a developer and
the time which we receive a response to our survey request. The time delta to
the response is then associated to the warning and the usefulness state which
the developer reported.

Based on the survey result, we determined that responses to useful warnings
occurred in a median delta of 11.5 days between their introduction in the commit

4.3. Results 45

and the developer response. For warnings which were indicated to be non-
useful by developers, there was a median delta of 23 days. We obtain a p-value
of 0.018 from performing a Wilcoxon test on the set of useful and not-useful
warnings. Given that this value is below the value of 0.05, we can say that
the two datasets are statistically significant. Figure 4.3 illustrates the skew that
warnings which have a smaller time delta are more useful. However, a longer
delta does not mean that a warning will not be useful. We observed useful
warnings at 43 days, which is also the greatest value for not useful warnings as
well.

These results would indicate that developers tend to find newer warnings
to be more useful. It is therefore important to provide developer with timely
feedback on the warnings that their commits introduce in the software project.
This would allow them to find the warnings more useful.

A preliminary hypothesis is that the developers forget the context of the
commit as more time passes, which results in the developers identifying the
warnings as not being useful. This would require additional research to assess
if this could be an analog in software projects for the forgetting curve which is
the study how people remember and recall information (Averell and Heathcote,
2011). Complex code changes and complex warnings would require additional
context to be able to understand them and possibly evaluate the usefulness of
warnings associated to it.

4.3.3 Responses From Developers

As part of the study we were also collecting comments from the developers. The
comments by the developers were split between the usefulness of the warnings.
On one survey, one warnings might be useful while another might not be for a
developer. Below, we review some of the main topics which we obtained from
the developers who participated.

There were multiple situations where the warnings were associated to the
test cases of a project. The developer in such case would inform that it was a test
case and would explain why it was not an issue. There was at least one instance
where the developer was impressed that the static analysis tool found a specific
type of valid warning in the tests of the project. Some other situations dealt with
defective code that had voluntarily been added in an improper way to validate
a test case. It was also perceived that there was a smaller importance overall by
the developers for these type of warnings. An improvement would be to filter
warnings contained in test files to present fewer of them to the developers.

Three developers responded that they would open an issue on the project
regarding the warning which we presented to them. An extension to this were
cases that the warnings identified parts for which the developer or project were
already aware that an issue was present. The specific warning had in one case
already been addressed by a subsequent commit. These statements indicate that
some of the warnings from static analysis tools are indeed useful at identifying
issues in a software project. Some projects were already using static analysis and
in a few cases WARNINGSGURU reported additional warnings which led them

46 Chapter 4. Usefulness of Warnings: Developer Study

FIGURE 4.3: Impact of the notification timeframe on the useful-
ness of warnings

These violin plot represent the distribution of warnings based on their plot. The
dot represents the median of the dataset and the box plot and below and above

the medians are the representations of the second and third quartiles
respectively.

The notification of warnings as an impact on the warning perceived usefulness
where developers perceive more warnings to be useful where the notification

delay between the commit time and survey response is smaller.

to inquire about the tools and configurations which we are using to perform our
static code analysis.

Developers also questioned the solutions which the warnings proposed. The
developers instead identified their current solution to be either more appropriate
or easier to understand. In this case it would be recommended that more
descriptive messages should be provided to provide the developer with the
context of why an approach might be better. Some of the responses also seem to
imply that some developers did not understand the concepts of synchronisation
in parallel computing or that the static analysis tools were wrong in its warnings.

There is also at least one case where the static analysis tools identified
impossible warnings by indicating that there was an issue on a line for which
there was no code. We could address this issue by adding a sanity verification
which would validate that the warning is indeed associated to a functional line
of code. However this raises the question of how frequently a static analysis
tool might fail to correctly identify a warning to the right line of code.

Finally, in the developers explanations and evaluations of different warnings
there were also many expressions of gratitude. While this might not be scientific,
it did give the impression that even if the warnings were deemed not to be
useful, the results that we were presented to them were being appreciated by

4.4. Threats to Validity 47

some of the developers.

4.4 Threats to Validity

It is possible that our responses are not representative of developers of open
source software. However we targeted 37 projects to allow us to have the
greatest number of possible developers to complete the survey. The responses
represented provided results for both tools as two distinct distributions.

Some projects have static analysis tools configured as part of their project
build, but as we have observed we still obtained warnings for the projects
where these were configured. Some of these warnings were also useful to the
developers which would indicate that they are either not running the same
tools or their configurations is filtering useful warnings. It is therefore still
possible to obtain useful warnings from these projects, but there might be
an over representation of non-useful warnings. However our evaluation of
timeliness of warnings imply that this would not be the only reason for a greater
number of non-useful warnings.

4.5 Related Works

Previous user studies of static analyser have been performed. Ayewah and
Pugh, 2008 performed a user study of Findbugs and another static analysis tool
to determine if the warnings should be fixed, had minimal impact or was not
a bug. They completed a questionnaire to assess the warnings. Lewis et al.,
2013 completed a bug prediction user study where they determined that there
was optimism to predictions of bugs, but that current tools lacked the required
maturity for day to day frequent use.

Johnson et al., 2013 interviewed 20 developers and evaluated that false
positives in the results were a recurring issue. They also reported that the
presentation of the results could have an impact on the use of the warnings,
whether this be the layout of the warnings or the messages and descriptions
attributed to them. There is also a need to ensure that these tools can work and
be shared within the workflow of a team so that an entire team may use them
as oppose to an individual member.

Nanda et al., 2010 determined that the results from different static analysis
should be merged and filtered when presented to developers. They developed
a tool that runs static analysis tools on snapshots of a project and which can
report which warnings originate from the current change in addition to filtering
the results. As part of their research they performed user studies which obtain
positive results from developers.

4.6 Conclusion

We completed a user study on the usefulness of new warnings identified by
WARNINGSGURU by surveying 179 developers who introduced new warnings
in 214 commits. We obtained a 15.9% response rate. By differentiating by the

48 Chapter 4. Usefulness of Warnings: Developer Study

static tools, we observed that 52.9% of new warnings identified by Findbugs are
useful and only 21.3% of Jlint warnings are useful. While static code analysis
tools might not be able to identify bugs such as the placement of a button in an
interface, the warnings which it identifies can be useful to developers

WARNINGSGURU also classifies the warnings based on their risk of being
security-related. A study of this classification was inconclusive for security
warnings, but for non security warnings, 69.2% of Findbugs warnings were
deemed to be useful by the developers who responded. Like warnings overall,
the usefulness of non security warning is partially attributable to the static
analysis tool which identifies the warnings

By investigating the time delta until a developer is advised of new warnings
in a commit, we conclude that warnings are deemed more useful if they are
reviewed within a median of 11.5 days after their introduction. If it takes a
median of 23 or more days the warning will be more likely be not to useful.
We propose that developer should receive the new warnings attributed to their
work promptly to ensure that they are perceived as useful. Future work should
look into the forgetting curve to evaluate if the context of the commit as an
impact on the warnings usefulness.

Based on the comments that we obtained from developers, the warnings
from static analysis tools can be useful to them, but additional filtering would
be required to exclude lower priority and impossible warnings from being pre-
sented to them. Furthermore, the warnings should have additional documenta-
tion associated to them so that the context of the warning can be understood
more easily.

49

Chapter 5

Conclusion

We built WARNINGSGURU which builds historical commits and run static anal-
ysis tools on their build artifacts. In Chapter 2 this is applied on the over 45,000
commits of 8 Apache projects. WARNINGSGURU extracts warnings in 58.5% of
commits and determines that 12.8% of all commits introduced new warnings
and that 6.8% of all commits had new security warnings. In subsequent runs of
the WARNINGSGURU, it is expanded to analyse 37 Apache projects for a total of
over 55,000 commits which are analysed by the pipeline by the conclusion of
the user study. WARNINGSGURU is capable of managing multiple concurrent
Maven based projects and identifies the new warnings which are introduced in
each commit.

We then demonstrate two approaches that uses the warnings data extracted
by WARNINGSGURU. We add the warnings measures to statistical models of
bug prediction and determine that the new measures are effective, but only at a
2.5% point increase over the standard benchmark. This implies that warning are
usable to predict the occurrence of bugs in software projects, but their impact is
minimal. We then apply the benchmark measures for statistical bug model to a
statistical warnings prediction which as a deviance explained of 30.3% for new
security warnings. It is therefore possible to predict if a commit might be at risk
of introducing a warning in the project.

The second approach is the user study which evaluates if new warnings
extracted by WARNINGSGURU are perceived to be useful by the developers
who introduced them. We sent 214 survey request and had a responses rate of
15.9%. From these responses we assessed that the usefulness of the warning
is partially dependent on the tool which generated it. 52.9% of new Findbugs
warnings were deemed useful as opposed to only 21.3% of new Jlint warnings
identified by WARNINGSGURU. We also evaluate the timeliness of informing the
developer of a new warning by evaluating the impact of time on the usefulness
of warnings. We concluded that developers who are informed of the warning in
a median of 10.5 are more likely to indicate it as useful as oppose to a median of
23 day for warnings that were not useful.

Future work would entail improvements to WARNINGSGURU which would
allow it to build and analyse a greater number of commits and projects. Filtering
the warnings of WARNINGSGURU based on criteria obtained through the user
study such as test and impossible cases can reduce the number of non-useful
warnings that are presented to the developer.

WARNINGSGURU can also be improved by the result of our statistical models

50 Chapter 5. Conclusion

and user study. By introducing statistical warnings models into WARNINGS-
GURU, it would prioritise the analysis of commits which have a greater chance
of introducing new warnings and new security warning. This would improve
the effectiveness by further reducing the number of execution of static analysis
tools which it needs to perform and providing a more timely response to identify
commits with new warnings. Also, by adding the addition of warnings mea-
sures to COMMITGURU’s prediction model would improve the risk assessment
of commits.

These improvements would in turn serve to improve the models and subse-
quent user studies. Finally, based on the user study we would need to study the
impact that forgetfulness curve has on the developers’ perceived usefulness of
warnings.

51

Bibliography

Averell, Lee and Andrew Heathcote (2011). “The form of the forgetting curve
and the fate of memories”. In: vol. 55. 1. Elsevier, pp. 25–35.

Ayewah, Nathaniel and William Pugh (2008). “A Report on a Survey and Study
of Static Analysis Users”. In: Proceedings of the 2008 Workshop on Defects in
Large Software Systems. DEFECTS ’08. Seattle, Washington: ACM, pp. 1–5.
ISBN: 978-1-60558-051-7. DOI: 10.1145/1390817.1390819. URL: http:
//doi.acm.org/10.1145/1390817.1390819.

Ayewah, Nathaniel et al. (2007). “Evaluating Static Analysis Defect Warnings
on Production Software”. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering. PASTE ’07.
San Diego, California, USA: ACM, pp. 1–8. ISBN: 978-1-59593-595-3. DOI:
10.1145/1251535.1251536. URL: http://doi.acm.org/10.1145/
1251535.1251536.

Beller, M. et al. (2016). “Analyzing the State of Static Analysis: A Large-Scale
Evaluation in Open Source Software”. In: 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER). Vol. 1,
pp. 470–481. DOI: 10.1109/SANER.2016.105.

Bevan, Jennifer et al. (2005). “Facilitating Software Evolution Research with
Kenyon”. In: vol. 30. 5. New York, NY, USA: ACM, pp. 177–186. DOI: 10.
1145/1095430.1081736. URL: http://doi.acm.org/10.1145/
1095430.1081736.

Bowes, David et al. (2016). “Mutation-aware Fault Prediction”. In: Proceedings of
the 25th International Symposium on Software Testing and Analysis. ISSTA 2016.
Saarbrücken, Germany: ACM, pp. 330–341. ISBN: 978-1-4503-4390-9.
DOI: 10.1145/2931037.2931039. URL: http://doi.acm.org/10.
1145/2931037.2931039.

Camilo, Felivel, Andrew Meneely, and Meiyappan Nagappan (2015). “Do bugs
foreshadow vulnerabilities? a study of the chromium project”. In: Mining
Software Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on. IEEE,
pp. 269–279.

Canfora, Gerardo et al. (2013). “Multi-objective Cross-Project Defect Prediction”.
In: Proceedings of the 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation. ICST ’13. Washington, DC, USA: IEEE
Computer Society, pp. 252–261. ISBN: 978-0-7695-4968-2. DOI: 10.1109/
ICST.2013.38. URL: http://dx.doi.org/10.1109/ICST.2013.38.

Cataldo, Marcelo et al. (2009). “Software dependencies, work dependencies, and
their impact on failures”. In: vol. 35. 6. IEEE, pp. 864–878.

Couto, Cesar et al. (2013). “Static correspondence and correlation between field
defects and warnings reported by a bug finding tool”. In: vol. 21. 2, pp. 241–

http://dx.doi.org/10.1145/1390817.1390819
http://doi.acm.org/10.1145/1390817.1390819
http://doi.acm.org/10.1145/1390817.1390819
http://dx.doi.org/10.1145/1251535.1251536
http://doi.acm.org/10.1145/1251535.1251536
http://doi.acm.org/10.1145/1251535.1251536
http://dx.doi.org/10.1109/SANER.2016.105
http://dx.doi.org/10.1145/1095430.1081736
http://dx.doi.org/10.1145/1095430.1081736
http://doi.acm.org/10.1145/1095430.1081736
http://doi.acm.org/10.1145/1095430.1081736
http://dx.doi.org/10.1145/2931037.2931039
http://doi.acm.org/10.1145/2931037.2931039
http://doi.acm.org/10.1145/2931037.2931039
http://dx.doi.org/10.1109/ICST.2013.38
http://dx.doi.org/10.1109/ICST.2013.38
http://dx.doi.org/10.1109/ICST.2013.38

52 BIBLIOGRAPHY

257. DOI: 10.1007/s11219-011-9172-5. URL: http://dx.doi.org/
10.1007/s11219-011-9172-5.

Cyrille Artho (2017). Jlint. http://jlint.sourceforge.net/.
Giger, Emanuel, Martin Pinzger, and Harald C. Gall (2011). “Comparing Fine-

grained Source Code Changes and Code Churn for Bug Prediction”. In:
Proceedings of the 8th Working Conference on Mining Software Repositories. MSR
’11. Honolulu, HI, USA: ACM, pp. 83–92. ISBN: 978-1-4503-0574-7. DOI: 10.
1145/1985441.1985456. URL: http://doi.acm.org/10.1145/
1985441.1985456.

Goyal, Rinkaj, Pravin Chandra, and Yogesh Singh (2015). “Comparison of
M5’Model Tree with MLR in the development of fault prediction mod-
els involving interaction between metrics”. In: New Trends in Networking,
Computing, E-learning, Systems Sciences, and Engineering. Springer, pp. 149–
155.

Hall, T. et al. (2012). “A Systematic Literature Review on Fault Prediction
Performance in Software Engineering”. In: vol. 38. 6, pp. 1276–1304. DOI:
10.1109/TSE.2011.103.

Herzig, Kim et al. (2013). “Predicting defects using change genealogies”. In: Soft-
ware Reliability Engineering (ISSRE), 2013 IEEE 24th International Symposium
on. IEEE, pp. 118–127.

Jiang, Tian, Lin Tan, and Sunghun Kim (2013). “Personalized defect prediction”.
In: Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on. IEEE, pp. 279–289.

Johnson, Brittany et al. (2013). “Why Don’t Software Developers Use Static Anal-
ysis Tools to Find Bugs?” In: Proceedings of the 2013 International Conference on
Software Engineering. ICSE ’13. San Francisco, CA, USA: IEEE Press, pp. 672–
681. ISBN: 978-1-4673-3076-3. URL: http://dl.acm.org/citation.
cfm?id=2486788.2486877.

Kamei, Yasutaka et al. (2013). “A Large-Scale Empirical Study of Just-in-Time
Quality Assurance”. In: vol. 39. 6. Piscataway, NJ, USA: IEEE Press, pp. 757–
773. DOI: 10.1109/TSE.2012.70. URL: http://dx.doi.org/10.
1109/TSE.2012.70.

KDM Analytics (2016). Blade Tool Output Integration Framework (TOIF). http:
//www.kdmanalytics.com/toif/.

Kim, Sunghun and Michael D. Ernst (2007). “Which Warnings Should I Fix
First?” In: Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering. ESEC-FSE ’07. Dubrovnik, Croatia: ACM, pp. 45–54.
ISBN: 978-1-59593-811-4. DOI: 10.1145/1287624.1287633. URL: http:
//doi.acm.org/10.1145/1287624.1287633.

Kim, Sunghun, Kai Pan, and E. E. James Whitehead Jr. (2006). “Memories of
Bug Fixes”. In: Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. SIGSOFT ’06/FSE-14. Portland, Ore-
gon, USA: ACM, pp. 35–45. ISBN: 1-59593-468-5. DOI: 10.1145/1181775.
1181781. URL: http://doi.acm.org/10.1145/1181775.1181781.

Kim, Sunghun, E. James Whitehead Jr., and Yi Zhang (2008). “Classifying Soft-
ware Changes: Clean or Buggy?” In: vol. 34. 2. Piscataway, NJ, USA: IEEE

http://dx.doi.org/10.1007/s11219-011-9172-5
http://dx.doi.org/10.1007/s11219-011-9172-5
http://dx.doi.org/10.1007/s11219-011-9172-5
http://jlint.sourceforge.net/
http://dx.doi.org/10.1145/1985441.1985456
http://dx.doi.org/10.1145/1985441.1985456
http://doi.acm.org/10.1145/1985441.1985456
http://doi.acm.org/10.1145/1985441.1985456
http://dx.doi.org/10.1109/TSE.2011.103
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dx.doi.org/10.1109/TSE.2012.70
http://dx.doi.org/10.1109/TSE.2012.70
http://dx.doi.org/10.1109/TSE.2012.70
http://www.kdmanalytics.com/toif/
http://www.kdmanalytics.com/toif/
http://dx.doi.org/10.1145/1287624.1287633
http://doi.acm.org/10.1145/1287624.1287633
http://doi.acm.org/10.1145/1287624.1287633
http://dx.doi.org/10.1145/1181775.1181781
http://dx.doi.org/10.1145/1181775.1181781
http://doi.acm.org/10.1145/1181775.1181781

BIBLIOGRAPHY 53

Press, pp. 181–196. DOI: 10.1109/TSE.2007.70773. URL: http://dx.
doi.org/10.1109/TSE.2007.70773.

Kim, Sunghun et al. (2006). “Automatic Identification of Bug-Introducing Changes”.
In: Proceedings of the 21st IEEE/ACM International Conference on Automated
Software Engineering. ASE ’06. Washington, DC, USA: IEEE Computer So-
ciety, pp. 81–90. ISBN: 0-7695-2579-2. DOI: 10.1109/ASE.2006.23. URL:
http://dx.doi.org/10.1109/ASE.2006.23.

Kim, Sunghun et al. (2007). “Predicting Faults from Cached History”. In: Pro-
ceedings of the 29th International Conference on Software Engineering. ICSE ’07.
Washington, DC, USA: IEEE Computer Society, pp. 489–498. ISBN: 0-7695-
2828-7. DOI: 10.1109/ICSE.2007.66. URL: http://dx.doi.org/10.
1109/ICSE.2007.66.

Kim, Sunghun et al. (2011). “Dealing with noise in defect prediction”. In: Software
Engineering (ICSE), 2011 33rd International Conference on. IEEE, pp. 481–490.

Lewis, Chris et al. (2013). “Does Bug Prediction Support Human Developers?
Findings from a Google Case Study”. In: Proceedings of the 2013 International
Conference on Software Engineering. ICSE ’13. San Francisco, CA, USA: IEEE
Press, pp. 372–381. ISBN: 978-1-4673-3076-3. URL: http://dl.acm.org/
citation.cfm?id=2486788.2486838.

MITRE Corporation (2016). Common Weakness Enumeration (CWE). https://
cwe.mitre.org/.

— (2017). Common Vulnerabilities and Exposures (CVE). https://cve.mitre.
org/.

Nagappan, Nachiappan and Thomas Ball (2005a). “Static Analysis Tools As
Early Indicators of Pre-release Defect Density”. In: Proceedings of the 27th
International Conference on Software Engineering. ICSE ’05. St. Louis, MO, USA:
ACM, pp. 580–586. ISBN: 1-58113-963-2. DOI: 10.1145/1062455.1062558.
URL: http://doi.acm.org/10.1145/1062455.1062558.

— (2005b). “Use of Relative Code Churn Measures to Predict System Defect
Density”. In: Proceedings of the 27th International Conference on Software Engi-
neering. ICSE ’05. St. Louis, MO, USA: ACM, pp. 284–292. ISBN: 1-58113-963-2.
DOI: 10.1145/1062455.1062514. URL: http://doi.acm.org/10.
1145/1062455.1062514.

Nanda, Mangala Gowri et al. (2010). “Making Defect-finding Tools Work for
You”. In: Proceedings of the 32Nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 2. ICSE ’10. Cape Town, South Africa: ACM, pp. 99–
108. ISBN: 978-1-60558-719-6. DOI: 10.1145/1810295.1810310. URL:
http://doi.acm.org/10.1145/1810295.1810310.

Philippe Arteau (2017). Find Security Bugs - FindBugs Plugin. https://find-
sec-bugs.github.io/.

Rahman, Foyzur et al. (2014). “Comparing Static Bug Finders and Statistical
Prediction”. In: Proceedings of the 36th International Conference on Software
Engineering. ICSE 2014. Hyderabad, India: ACM, pp. 424–434. ISBN: 978-1-
4503-2756-5. DOI: 10.1145/2568225.2568269. URL: http://doi.acm.
org/10.1145/2568225.2568269.

Ray, Baishakhi et al. (2016). “On the "Naturalness" of Buggy Code”. In: Pro-
ceedings of the 38th International Conference on Software Engineering. ICSE ’16.

http://dx.doi.org/10.1109/TSE.2007.70773
http://dx.doi.org/10.1109/TSE.2007.70773
http://dx.doi.org/10.1109/TSE.2007.70773
http://dx.doi.org/10.1109/ASE.2006.23
http://dx.doi.org/10.1109/ASE.2006.23
http://dx.doi.org/10.1109/ICSE.2007.66
http://dx.doi.org/10.1109/ICSE.2007.66
http://dx.doi.org/10.1109/ICSE.2007.66
http://dl.acm.org/citation.cfm?id=2486788.2486838
http://dl.acm.org/citation.cfm?id=2486788.2486838
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
http://dx.doi.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://dx.doi.org/10.1145/1062455.1062514
http://doi.acm.org/10.1145/1062455.1062514
http://doi.acm.org/10.1145/1062455.1062514
http://dx.doi.org/10.1145/1810295.1810310
http://doi.acm.org/10.1145/1810295.1810310
https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/
http://dx.doi.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269

54 BIBLIOGRAPHY

Austin, Texas: ACM, pp. 428–439. ISBN: 978-1-4503-3900-1. DOI: 10.1145/
2884781.2884848. URL: http://doi.acm.org/10.1145/2884781.
2884848.

Rosen, Christoffer, Ben Grawi, and Emad Shihab (2015). “Commit Guru: Ana-
lytics and Risk Prediction of Software Commits”. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015.
Bergamo, Italy: ACM, pp. 966–969. ISBN: 978-1-4503-3675-8. DOI: 10.1145/
2786805.2803183. URL: http://doi.acm.org/10.1145/2786805.
2803183.

Shivaji, Shivkumar et al. (2013). “Reducing features to improve code change-
based bug prediction”. In: vol. 39. 4. IEEE, pp. 552–569.

Spacco, Jaime, David Hovemeyer, and William Pugh (2006). “Tracking Defect
Warnings Across Versions”. In: Proceedings of the 2006 International Workshop
on Mining Software Repositories. MSR ’06. Shanghai, China: ACM, pp. 133–
136. ISBN: 1-59593-397-2. DOI: 10.1145/1137983.1138014. URL: http:
//doi.acm.org/10.1145/1137983.1138014.

Tang, Hao et al. (2015). “Enhancing Defect Prediction with Static Defect Anal-
ysis”. In: Proceedings of the 7th Asia-Pacific Symposium on Internetware. Inter-
netware ’15. Wuhan, China: ACM, pp. 43–51. ISBN: 978-1-4503-3641-3. DOI:
10.1145/2875913.2875922. URL: http://doi.acm.org/10.1145/
2875913.2875922.

The Apache Software Foundation (2016). Maven - POM Reference. https://
maven.apache.org/pom.html.

University of Maryland (2017). FindBugs. http://findbugs.sourceforge.
net/.

Wedyan, Fadi, Dalal Alrmuny, and James M. Bieman (2009). “The Effectiveness
of Automated Static Analysis Tools for Fault Detection and Refactoring
Prediction”. In: Proceedings of the 2009 International Conference on Software
Testing Verification and Validation. ICST ’09. Washington, DC, USA: IEEE
Computer Society, pp. 141–150. ISBN: 978-0-7695-3601-9. DOI: 10.1109/
ICST.2009.21. URL: http://dx.doi.org/10.1109/ICST.2009.21.

Wong, W. Eric et al. (2016). “A Survey on Software Fault Localization”. In: vol. 42.
8. Piscataway, NJ, USA: IEEE Press, pp. 707–740. DOI: 10.1109/TSE.2016.
2521368. URL: http://dx.doi.org/10.1109/TSE.2016.2521368.

Yi, Kwangkeun et al. (2007). “An Empirical Study on Classification Methods for
Alarms from a Bug-finding Static C Analyzer”. In: vol. 102. 2-3. Amsterdam,
The Netherlands, The Netherlands: Elsevier North-Holland, Inc., pp. 118–
123. DOI: 10.1016/j.ipl.2006.11.004. URL: http://dx.doi.org/
10.1016/j.ipl.2006.11.004.

Zheng, Jiang et al. (2006). “On the Value of Static Analysis for Fault Detection in
Software”. In: vol. 32. 4. Piscataway, NJ, USA: IEEE Press, pp. 240–253. DOI:
10.1109/TSE.2006.38. URL: http://dx.doi.org/10.1109/TSE.
2006.38.

http://dx.doi.org/10.1145/2884781.2884848
http://dx.doi.org/10.1145/2884781.2884848
http://doi.acm.org/10.1145/2884781.2884848
http://doi.acm.org/10.1145/2884781.2884848
http://dx.doi.org/10.1145/2786805.2803183
http://dx.doi.org/10.1145/2786805.2803183
http://doi.acm.org/10.1145/2786805.2803183
http://doi.acm.org/10.1145/2786805.2803183
http://dx.doi.org/10.1145/1137983.1138014
http://doi.acm.org/10.1145/1137983.1138014
http://doi.acm.org/10.1145/1137983.1138014
http://dx.doi.org/10.1145/2875913.2875922
http://doi.acm.org/10.1145/2875913.2875922
http://doi.acm.org/10.1145/2875913.2875922
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://dx.doi.org/10.1109/ICST.2009.21
http://dx.doi.org/10.1109/ICST.2009.21
http://dx.doi.org/10.1109/ICST.2009.21
http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1016/j.ipl.2006.11.004
http://dx.doi.org/10.1016/j.ipl.2006.11.004
http://dx.doi.org/10.1016/j.ipl.2006.11.004
http://dx.doi.org/10.1109/TSE.2006.38
http://dx.doi.org/10.1109/TSE.2006.38
http://dx.doi.org/10.1109/TSE.2006.38

55

Appendix A

Pipeline Architecture

	Introduction
	WarningsGuru
	Structure of Thesis

	WarningsGuru: Architecture & Data
	Introduction
	WarningsGuru Features and Architecture
	WarningsGuru Pipeline Architecture
	WarningsGuru Interface
	Identification of New Warnings

	Data: Building & Analyzing Thousands of Commits
	Building
	Evolution of Build Tools
	Missing Dependencies
	Complex Build Configurations
	Projects Build Results

	Static Analysis Integration - TOIF
	Version Control System - Git
	Warnings Recovery
	Statistical Models with CommitGuru

	Descriptive Statistics
	Threats to Validity
	Related Works
	Conclusion

	Statistical Models
	Introduction
	Statistical Bug Models
	Measures
	CommitGuru Change Measures
	WarningsGuru Warnings Measures
	CommitGuru and WarningsGuru Measures

	Statistical Bug Prediction Models
	Change Measures Model Results
	Warnings Bug Model Results
	Combined Change and Warnings Measures Bug Model Results

	Statistical Warning Prediction Models
	Description of the Warnings Models
	Warnings Model Results
	New warnings Model Results
	Security warnings Model Results
	New Security Warnings Model Results

	Threats to Validity
	Related Works
	Conclusion

	Usefulness of Warnings: Developer Study
	Introduction
	RQ 1, Usefulness & Characteristics: How many new warnings are useful and what are their characteristics?
	RQ 2, Timeliness: Does sending timely messages to developer affect the perceived usefulness of the warning?

	Methodology
	Data
	Survey
	Survey Email
	Survey Page

	Results
	RQ 1, Usefulness & Characteristics: How many new warnings are useful and what are their characteristics?
	Warnings per Static Analysis Tool
	Warnings per Security Classification

	RQ 2, Timeliness: Does sending timely messages to developer affect the perceived usefulness of the warning?
	Responses From Developers

	Threats to Validity
	Related Works
	Conclusion

	Conclusion
	Bibliography
	Pipeline Architecture

