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Abstract 

Numerical Study of Two-Phase Turbulent Flow in Hydraulic Jumps 

Seyedpouyan Ahmadpanah 

 

Hydraulic jump is a rapidly varied flow phenomenon that the flow changes suddenly from 

supercritical to subcritical. Hydraulic jumps are frequently observed to exist in natural river 

channels, streams, coastal water, and man-made water conveyance systems. Because of a sudden 

transition of flow regime, hydraulic jumps result in complex flow structures, strong turbulence, 

and air entrainment. Accordingly, they are two-phase flow, with air being the gas phase and water 

being the liquid phase. Consequences of the occurrence of hydraulic jumps include: unwanted 

fluctuations in the water surface with unstable waves and rollers, undesirable erosion of channel 

sidewalls and channel bottom, and reduced efficiency for water conveyance systems. Thus, it is 

important to study various aspects of the phenomenon. 

So far, knowledge of the phenomenon is incomplete. The main objective of this research is to 

improve our understanding of the complex flow structures and distributions of air entrainment in 

a hydraulic jump. Previously, both experimental and computational studies of the phenomenon 

have typically suffered a scale problem. The dimensions of the setup being used were 

unrealistically too small. 

In this research, we took the computational fluid dynamics (CFD) approach, and simulated 

hydraulic jumps at relatively large and practical dimensions. This would help reduce artificial scale 

effects on the results. On the basis of Reynolds averaged continuity and momentum equations, 

CFD simulations of hydraulic jumps were performed for four different cases in terms of the 

approach flow Froude number Fr1, ranging from 3.1 to 5.1. The Reynolds number is high (between 

577662 and 950347), which ensures turbulent flow conditions. The CFD model channel is 

discretized into 2,131,200 cells. The mesh has nearly uniform structures, with fine spatial 

resolutions of 2.5 mm. The volume of fluid method provides tracking of the free surface. The 

standard k-ε turbulence model provides turbulence closure. 

For each of the simulation cases, we carried out analyses of time-averaged air volume fraction, 

time-averaged velocity, time- and depth-averaged (or double averaged) air volume fraction at a 

series of locations along the length of the model channel (Note that the terms air volume fraction 
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and void fraction are used interchangeably in this thesis). We compared the CFD predictions of air 

volume fraction with available laboratory measurements. It is important to note that these 

measurements were made from laboratory experiments that corresponded to essentially the same 

values of Fr as this CFD study, but used a channel of smaller dimensions, in comparison to the 

CFD model channel. The CFD results of time-averaged air volume fraction are reasonable, when 

compared to the experimental data, except for the simulation case with Fr1 = 3.8. For all the four 

simulation cases, the predicted variations in air volume fraction show a trend in consistency with 

the experimental results. For the three simulation cases (with Fr1 = 3.1, 3.8 and 4.4), the time-

averaged air volume fraction in the hydraulic jumps is larger at higher Reynolds number. However, 

for the simulation case with Fr1 = 5.1, it is smaller at higher Reynolds number. This implies that 

the amount of air being entrained into a hydraulic jump depends on not only Fr1 but also the depth 

of the approach flow. In future studies of the hydraulic jump phenomenon, one should consider 

using approach flow of realistically large dimensions at various values of Fr1, for realistic 

predictions of air entrainment in hydraulic jump rollers.  
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Chapter 1 Introduction 

 

1.1 Background 

The hydraulic jump is a flow feature through which the flow of water transfers abruptly from the 

supercritical to the subcritical condition (Figure 1.1). The sudden change of flow regime is 

companied by considerable turbulence, loss of flow energy, and entrainment of air mass from 

above the water surface. Hydraulic jumps are frequently observed to occur in rivers (Figure 1.2), 

natural streams (Figure 1.3), lakes, coastal water, and man-made water conveyance systems 

(Figure 1.4). They even occur in kitchen sinks. Hydraulic jumps are classified as rapidly varied 

flow, as opposed to gradually varied flow. They can be free surface flow or submerged flow below 

the water surface. Along the length of a hydraulic jump, there is a continuous transition from high 

flow velocity to low flow velocity, with a corresponding increase in the depth of flow. 

The phenomenon of hydraulic jumps is very common in natural water streams and man-made 

water channels, as shown in Figures 1.1–1.4. Hydraulic jumps have been receiving extensive 

research attention because of their engineering relevance. However, most of the existing studies 

of hydraulic jumps have considered the flow as single phase liquid flow, and unrealistically 

ignored air bubbles [Figure 1.1(b)] as the gas phase. 

In Figure 1.2, hydraulic jumps are shown to occur after a dam chute on a natural stream in 

Australia. It is clear that the river flow was accompanied by river sediment suspension/re-

suspension, and channel erosion. The obstacles were built in the flow path to form hydraulic jumps 

right after the chute. The idea was to make hydraulic jumps in a desired location, and to dissipate 

the energy of the high speed flow through the jumps. This would prevent the channel downstream 

of the dam from erosion. In natural streams, hydraulic jumps can occur due to natural obstacles at 

the bottom of the stream (Figure 1.3), and cause changes to the stream geometry. Such changes 

may have important implications to the health of the habitats of aquatic species. 

The design and operation of water conveyance system must pay close attention to distributions 

and losses of flow energy. In Figure 1.4, a hydraulic jump is seen immediately downstream of a 

weir in a water conveyance system. Turbulent motions associated with hydraulic jumps (Figures 

1.1 and 1.4) cause considerable loss of flow energy. The losses of flow energy due to the 

occurrence of hydraulic jump in water conveyance systems affects the efficiency of the systems. 

Thus, the energy losses need to be taken into account in the design of the systems. 
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(a) 

 

(b) 

 

Figure 1.1 Photo of the experimental setup in Concordia University’s Water Resources 

Engineering Laboratory: (a) a rectangular recirculation flume; (b) hydraulic jump as bubbly flow. 

The direction of flow was from right to left. A control sluice gate allowed a small opening and 

produced supercritical flow downstream of itself. At the downstream end of the flume, a control 

tail gate was raised, producing subcritical flow upstream of itself. The two controls created the 

hydraulic jump. There is an exchange of air mass across the flow surface, with a net entrainment 

of air mass into the flow, forming air bubbles in the flow. 
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Figure 1.2 Burdekin dam on the Burdekin River in Queensland, Australia, showing 

hydraulic jumps induced by obstructions and a gradient change. 

(http://www.abc.net.au/news/2016-05-26/the-burdekin-falls-dam-spills-over-as-

cyclone/7446962, accessed on February 26, 2017) 

 

 

Figure1.3 Hydraulic jump on the Naramatagawa River's stream. 

(https://commons.wikimedia.org/wiki/File:Hydraulic_jump_on_Narama

tagawa_River's_stream.JPG, accessed on February 27, 2017) 

http://www.abc.net.au/news/2016-05-26/the-burdekin-falls-dam-spills-over-as-cyclone/7446962
http://www.abc.net.au/news/2016-05-26/the-burdekin-falls-dam-spills-over-as-cyclone/7446962
https://commons.wikimedia.org/wiki/File:Hydraulic_jump_on_Naramatagawa_River's_stream.JPG
https://commons.wikimedia.org/wiki/File:Hydraulic_jump_on_Naramatagawa_River's_stream.JPG
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Figure1.4 Hydraulic jump downstream of a weir in an open channel. 

(http://www.itrc.org/projects/flowmeas.htm, access on september 2, 2016) 

 

The transition of shallow, fast flow to deep, slow flow through a hydraulic jump features 

extreme chaos, large scale turbulence, surface waves, and spray. Because of the highly turbulent 

flow condition in hydraulic jumps, air mass immediately above the flow surface will enter the 

flow. Thus, the flow becomes two phase flow, with water as the liquid phase and air as the gas 

phase. The exchange of air mass between the atmosphere and water is known as air entrainment 

(or bubble entrainment or aeration). The presence of air in the flow makes it difficult to determine 

the exact location of the interface between the flowing fluids and the atmosphere above. Besides, 

there is a continuous exchange flux of liquid and air between the flow and the atmosphere. The 

resulting air-water mixture consists of both air pockets within water and water droplets surrounded 

by air. There are also spray, foam, and complex air water structures. In all situations, the flow is 

constituted of both air and water. 

On the basis of the Reynolds number (Reynolds 1883), fluid flows are distinguished into 

laminar (or smooth) flow and turbulent (or chaotic) flow. There are significant challenges in 

http://www.itrc.org/projects/flowmeas.htm
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realistically predicting turbulent flows because of their irregular chaotic motions, strong mixing 

properties, and a broad spectrum of length scales. Knowledge of hydraulic jumps with the above 

mentioned complexities is far from complete. 

In a hydraulic jump, at any point, the fluid velocity changes continuously in both magnitude 

and direction (Chanson 1996, p. 4). The air–water flow of a hydraulic jump includes three distinct 

regions: 

a) A recirculation layer at the top where recirculating flow and large eddies occur in this layer. 

This layer is characterised by the development of large-scale vortexes and bubble 

coalescence with a foam layer at the free surface with large air polyhedral structures; 

b) A turbulent shear layer or air diffusion layer with air bubbles of smaller sizes and high air 

content; 

c) An impingement jet region at the bottom of shear layer which has a velocity distribution 

similar to the upstream flow and less or no air bubble can be seen in this region. 

 The extremely turbulent flow is associated with large scale vortexes. These vortexes and the 

non-stable dynamic velocity produce significant pressure pulsation and develop a wavy flow. All 

these characteristics results in a wild and erosive flow, which can cause erosion on non-protected 

open channel beds and walls, and transport and can mix a large amount of sediments with the 

flowing water. The resultant high turbidity will deteriorate water quality. Also, the turbulent and 

wavy flow produces a clearly detectable sound and converts a relatively large amount of energy 

into heat. 

In water conveyance settings, the study of hydraulic jumps in open channels has many 

important applications. Examples include: 

a) Reduction of excessive energy of flowing water for the safety of hydraulic structures. In 

certain part of an open channel system with a steep bed slope, the flow gains velocity. At 

high velocity, the flow becomes erosive or destructive. The use of hydraulic jump in such 

situation will dissipate the extra amount of flow energy and hence avoid destructive effects; 

b) Efficient mixing of chemicals in water treatment plants. The use of hydraulic jump 

represents a very suitable method for mixing chemical substances required in the process 

of water treatment. The macro-scale vortexes in the hydraulic jump increase the efficiency 

of mixing procedures; 
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c) Discharge measurements. In Parshall flumes (Chow 1959), a hydraulic jump is produced 

for determining flow discharge by measuring the depth of water at certain locations. 

Clearly, there are beneficial applications of hydraulic jump as well as undesirable 

consequences of their occurrences such as erosion in erodible channels or turbulent disturbances 

in water conveyance systems. There is a need for improved understanding of various aspects of 

the hydraulic jump phenomenon. 

Classic studies solved the problem of hydraulic jumps as one-dimensional flow using the 

continuity and momentum principles. The solution approach is overly simplified, without dealing 

with turbulence. The present knowledge of the turbulent flow field is fairly limited, especially 

under environmental and geophysical flow conditions (Chanson 2009). After extensive research, 

the hydraulic jump phenomenon remains a fascinating flow motion, and the present knowledge is 

insufficient in several aspects, including air entrainment, turbulence, and undular flow. 

This present research work focuses on distributions of air entrainment in hydraulic jumps at 

high Reynolds numbers. The consideration of high Reynolds numbers will better reflect real-world 

conditions under which hydraulic jumps occur in open channels and water conveyance systems. 

This represents an extension of the previous studies, most of which used laboratory or numerical 

models of small length scales. The results from these studies have inevitably suffered from a scale 

problem. In the laboratory experiments reported in the literature, the Reynolds number was 

typically much smaller than real-world jumps in irrigation and water conveyance systems. The use 

of high Reynolds numbers in this study will improve the relevance to reality. 

 

1.2 Specific aims of this research work 

The specific objectives of this research work are as follows: 

▪ To produce the hydraulic jump as two-phase flow in a large-scale channel at high Reynolds 

numbers. This will minimise scale effects. 

▪ To quantify the distributions of air volume fraction in hydraulic jump rollers in a range of 

Froude numbers. Air volume distributions in the flow give rise to non-hydrostatic pressure. 

A good understanding of the distributions represents a significant improvement from the 

traditional simplification of hydrostatic pressure (no air bubbles) field in hydraulic jumps. 
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▪ To establish suitable computational procedures for predicting air entrainment in hydraulic 

jumps. The suitability is to be confirmed by comparing air entrainment between the 

computer model and existing laboratory experiments.   

▪ To quantify the average percentage of air in hydraulic jumps in a range of Froude numbers. 

▪ To reveal the vertical structures of flow velocity along hydraulic jump rollers in a range of 

Froude numbers. 

1.3 Scope of this research work 

 To achieve the above-mentioned objectives, the rest of this thesis is organized as follows: Chapter 

Two will introduce the classical theory and basic characteristics of hydraulic jumps. The chapter 

will discuss the similitude of models for hydraulic jumps, and will provide highlights of the 

previous experimental and numerical studies of air entrainment in hydraulic jumps. Outstanding 

issues will be outlined. 

Chapter Three will discuss on modelling methodologies. The chapter will give a description of 

the model domain and geometric setup. Discussions of the modelling methodologies will cover 

the volume of fluid method, and the standard 𝑘-ε model for turbulence closure. The chapter will 

provide details of computational mesh configuration for hydraulic jump simulations, treatment of 

open boundary conditions, and specification of initial conditions. 

Chapter Four will present the computational results, along with a comparison with available 

experimental data.  The results will the flow velocity field, distributions of air volume fraction, 

flow surface profile, and turbulence kinetic energy. The characteristics of the above-mentioned 

quantities at different Froude numbers will be discussed in details. The comparison will make use 

of the experimental data from Chachereau & Chanson (2010). Through the comparison, we will 

investigate the effects of Reynolds number on air entrainment. 

In Chapter Five, conclusions will be drawn, and suggestions for future studies of hydraulic 

jumps as two-phase flow will be outlined. 

1.4 Highlights of research contributions 

New contributions from this research work are highlighted below: 

(1) Reliable predictions of hydraulic jumps as two-phase bubbly flow at high Reynolds 

numbers, which has not been achieved in previous studies. 
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(2) Quantitative details of the flow field and air entrainment distributions that are difficult to 

measure from laboratory experiments. 

(3) An improved understanding of the effects of the Reynolds number on air entrainment in 

oscillating and steady hydraulic jumps. This is of practical importance to the design of 

appropriate laboratory setup for hydraulic jump experiments. 

(4) The establishment of suitable computational procedures for numerical simulations of 

hydraulic jumps and the determination of time averaged variables related to the jumps. 
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Chapter 2 Review of the Pertinent Literature 

 

2.1 The classical theory of hydraulic jumps 

Open-channel flow can change from a subcritical state to a supercritical state and vice versa, in 

response to certain changes in channel geometry or flow boundary conditions or both. Changes 

from a subcritical to supercritical state usually occur rather smoothly via critical depth. However, 

changes from a supercritical to subcritical state occurs abruptly through a hydraulic jump (Figure 

2.1). The depth of flow changes from y1 to y2, known as the initial depth of flow before the jump 

and the sequent depth of flow after the jump. 

 

 

Figure 2.1 Specific energy diagram, hydraulic jump and specific force diagram (adopted from 

Houghtalen et al. 2017). 

 

Hydraulic jumps are highly turbulent, with complex internal flow patterns, and dissipate 

considerable flow energy. Thus, we expect the flow energy to be much lower downstream of a 

jump than upstream, but have no prior knowledge about the actual amount of energy losses in the 

jump. Thus, it is difficult to solve the problem of hydraulic jumps by directly using the energy 

principle. The classical theory of hydraulic jump uses the momentum principle, expressed as 

(Henderson 1966, p. 74): 

  22
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                                                  (2.1) 

where the subscripts 1 and 2 refer to the flow sections before and after the jump, respectively; Q 

is the discharge; g is the acceleration of gravity; z is the vertical distance from the free surface level 
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to the centroid of the flow section; and A is the flow area. Gravity is an important parameter for 

the problem of hydraulic jumps because the flow has a free surface (Figure 2.1). 

Equation (2.1) has assumed: a) The frictional forces at the channel bed and on the channel 

sidewalls are negligible; b) there are no external forces other than pressure forces; c) the channel 

has a horizontal bed; and d) the flow is incompressible. The sum of the two terms on each side of 

Equation (2.1) is known as the specific momentum sF . Thus, the two flow sections before and after 

the hydraulic jump, respectively, have the same specific momentum: 

21 ss FF                                                               (2.2) 

For given hydraulic conditions and channel geometry, Equation (2.2) can be solved 

analytically to yield the relationship between y1 and y2 (Figure 2.1). Then, the energy equation can 

be used to determine the amount of flow energy losses in the hydraulic jump. 

 

2.2 Hydraulic jump in rectangular channels 

For hydraulic jumps in a horizontal, rectangular channel, Equation (2.1) is reduced to: 

                                     )
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where q is the discharge per unit width of channel. Solving Equation (2.3) yields (Henderson 1966, 

p. 69): 
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where Fr1 is the upstream Froude number; and Fr2 is the Froude number after the jump. Fr1 is given 

by: 

1

1
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where V1 is the depth of flow at upstream, which is related to q and y1 as V1 = q/y1. Similarly, Fr2 

is given by: 
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The Froude number is an important parameter for the hydraulic jump phenomenon, and 

therefor the gravity plays a significant role in studying the hydraulic jump phenomenon. 

This well-known dimensionless parameter in free surface flow represents the ratio of the 

inertial force in the flow to gravity force. 

For a given initial depth, y1, of flow before the jump (Figure 2.1), the sequent depth, y2, of 

flow after the jump can be determined from Equation (2.4), and vice versa from Equation (2.5). 

The amount of energy head losses, hl, in the hydraulic jump is given by: 
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2.3 Basic characteristics of hydraulic jumps in rectangular channels 

Akan (2011, p. 238) provided a description of a series of tests by U.S. Bureau of Reclamation 

(1987) to study the hydraulic jumps. The results of these tests show that the shape, form and 

characteristics of hydraulic jumps depend on Fr1 (Equation 2.6). In Figures 2.2(a)-2.2(d), hydraulic 

jumps are classified based on Fr1. 

 

 (a) Form A: 1.7 < Fr1 < 2.5 

 

(b) Form B: 2.5 < Fr1 < 4.5 

 

(c) Form C: 4.5 < Fr1 < 9.0 
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(d) Form D: Fr1 > 9.0 

 

Figure 2.2  Classifications of hydraulic jumps according to the 

upstream Froude number Fr1 (adopt from US Bureau of Reclamation 

1987). 

 

For 1 < Fr1 < 1.7, the approach flow depth is only slightly less than the critical depth. From 

this transition of a supercritical to subcritical stage, the flow changes gradually with a very slight 

turbulent water surface. Some small rollers begin to form on the surface as Fr1 approaches 1.7. The 

change becomes more intense with increasing upstream Froude number. Except the existence of 

surface rollers, relatively smooth flows predominate at Froude numbers up to about 2.5. Hydraulic 

jumps with Froude numbers between 1.7 and 2.5 are characterize as form A [Figure 2.2(a)]. 

For 2.5 < Fr1 < 4.5, the hydraulic jump has the characteristics of oscillating flow. This 

oscillating flow has undesirable and sometimes significant surface waves that carry far 

downstream. The hydraulic jumps for this range of upstream Froude numbers are classified as 

form B [Figure 2.2(b)]. 

For 4.5 < Fr1 < 9.0, the hydraulic jump is well-balanced and stable in place. Turbulence is 

limited to the main body of the hydraulic jump, and the water surface downstream is relatively 

smooth. The hydraulic jumps in this range of upstream Froude numbers are considered as form C 

and are called steady jumps [Figure 2.2(c)]. 

For Fr1 > 9.0, the turbulence through the hydraulic jump and the surface rollers become 

significantly active. This causes a jump with a rough water surface and with strong water waves 

carry downstream from the jump. This kind of hydraulic jump is called strong jump and is 

classified as form D [Figure 2.2(d)]. 
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2.4 Similitude of models for hydraulic jumps 

General discussions about hydraulic similitude can be found in Houghtalen et al. (2017). Hydraulic 

modelling of a prototype must ensure three types of similarities as listed below: geometric 

similarity, kinetic similarity, and dynamic similarity. The geometric similarity is the similarity of 

form. It means that when a prototype size is reduced, the homologous lengths must have a fixed 

ratio between the hydraulic model and prototype. In this connection, there are three physical factors 

involved in geometric similarity: length, area, and volume.  

The kinematic similarity is the similarity of motion. This similarity will be achieved when 

the homologous moving particles moving through geometrically similar paths have similar 

velocity ratios between the hydraulic model and prototype. This type of similarity involves two 

factors: length and time. 

The dynamic similarity is the similarity of forces active in the motion. This similarity will 

be achieved when homologous forces involved in the motion have a fixed ratio between the 

hydraulic model and prototype, or: 

                                  r

m

pr
f

f

f
                                                                (2.10) 

The study of air entrainment in the hydraulic jump phenomenon involves several kinds of 

forces in action. The dynamic similarity in hydraulic jump studies requires that the ratio of these 

forces be kept the same between the model and the prototype. These force ratios are discussed in 

following sections. 

 

2.4.1 Viscous force – Reynolds number law 

Inertial forces are known to always affect water in motion such as in hydraulic jumps (Figure 2.1). 

Consider that the inertial forces and viscous forces as two kinds of forces act on moving 

homologous particles in the hydraulic model of hydraulic jumps and prototype hydraulic jumps. 

The ratio of the two types of forces is defined by Reynolds number law. For applications to 

hydraulic jumps (Figure 2.1), the Reynolds number base on variables of the approach flow can be 

expressed as:  


11

1Re
yV

                                                              (2.11) 
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where  is the kinematic viscosity of water. If the inertial force and the viscous force are the main 

forces governing the fluid motion, one must keep the same Reynolds number between the model 

and the prototype (Houghtalen et al. 2017, p. 379). 

2.4.2 Gravity force – Froude number law 

Gravity is an important parameter for the free surface phenomenon of hydraulic jumps. The ratio 

of the inertial force to gravity force is defined by the Froude number. The Froude number based 

on the upstream flow is given in Equation (2.6). To ensure that the behaviour of the model 

hydraulic jumps reflects that of the prototype jumps, one must retain the same value for the Froude 

number between a hydraulic model of hydraulic jumps and prototype of hydraulic jumps. 

 

2.4.3 Surface tension – Weber number law 

In Houghtalen et al. (2017, p. 383), surface tension is described as a measure of energy level on 

the surface of a liquid body. Hydraulic jumps are turbulent flow, which entrains air from above 

the free surface. The entrainment process results in continuous mixing of air and water. This gives 

rise to surface tension force in hydraulic jumps. 

The Weber number defines the ratio of inertial force to surface tension force: 



VL
Nw                                                            (2.12) 

where ρ is the density of the fluid, V is a velocity scale, L is a length scale, and σ is surface tension 

per unit length. One ought to keep the same value for the Weber number between the hydraulic 

model and the prototype. 

In this research work, the theory for hydraulic jump predictions, to be presented in the next 

chapter, considers inertial forces, viscous forces, gravity force, and surface tension. All these 

forces are involved in the governing equations of fluid motions. Thus, to ensure the relevance of 

predicted hydraulic jump behaviour to a real-world hydraulic jump, it is desirable to use realistic 

values for the Reynolds number, the Froude number, and the Weber number in the computations. 

 

2.5 Experimental studies of air entrainment in hydraulic jump 

Rajaratnam (1962) is probably the first researcher making laboratory measurements of air volume 

fraction in hydraulic jumps. Resch and Leutheusser (1972) obtained measurements of air 

entrainment and air volume fraction in the bubbly flow region of a hydraulic jump, using a hot-
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film probe. For the first time, they reported the effects of upstream flow conditions on hydraulic 

jumps. They suggested that the air entrainment process, momentum transfer and energy dissipation 

are strongly affected by the inflow conditions. In an experimental study, Chanson and Qiao (1994) 

focused on air-water properties in partially developed hydraulic jumps. Chanson (1995b) reported 

new experimental data of air bubble diffusion in turbulent shear flows. The author investigated 

two flow scenarios: a vertical supported jet, and a horizontal hydraulic jump. As an extension of 

the previous experimental studies, Chanson and Brattberg (2000) investigated air-water flow 

properties in the shear regions (Figure 2.4) of hydraulic jumps, under the conditions that the 

upstream Froude number had values of Fr1 = 6.33 and 8.48. Almost all of the above-mentioned 

experimental studies used a horizontal, rectangular channel. A definition diagram of hydraulic 

jump in such a channel is shown in Figure 2.3. 

 

 

Figure 2.3 Definition diagram of hydraulic jump experiments in a rectangular channel 

(adopted from Chanson and Brattberg, 2000). Note that V represents the flow velocity in the x-

direction. 

 

Using a dual-tip optical fibre probe, Murzyn et al. (2005) obtained measurements of air 

volume fractions, bubble frequencies and bubble sizes in hydraulic jumps for four different cases 

of the upstream Froude number Fr1. The measurements were from a large number of points 

throughout the jump. The experimental conditions of Murzyn et al. (2005) are summarised in 
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Table 2.1. Note that y1 and y2 are the upstream and downstream depths of flow, respectively 

(Figures 2.1-2.3); V1 is the upstream flow velocity (Figure 2.1); x1 is the horizontal distance 

between the sluice and the toe of the hydraulic jump in question, and x is the horizontal distance 

measured from the sluice gate (Figure 2.3). Murzyn et al. (2005) selected four to five measurement 

locations along the length of the hydraulic jump, given in terms of (x – x1)/y1. 

 

Table 2.1 Experimental conditions and measurement locations of Murzyn et al. (2005).  

Experiment 
y1 y2 V1 Fr1 Re1 x1 (x - x1)/y1 

(m) (m) (m/s) - - (m) - 

1 0.059 0.138 1.50 2.0 88500 0.36 0.85, 1.70, 2.54, 4.24 

2 0.046 0.137 1.64 2.4 75440 0.28 2.17, 4.35, 6.52, 8.70, 10.90 

3 0.032 0.150 2.05 3.7 65600 0.34 4.69, 7.81, 15.60, 20.30, 25.00 

4 0.021 0.133 2.19 4.8 45990 0.36 7.14, 11.90, 23.80, 31.00, 38.10 

 

Several studies (Resch and Leutheusser 1972; Chanson 1995a,b) reported that distributions 

of air concentration C (or equivalently air volume fraction) exhibit a peak in the turbulent shear 

region, as illustrated in Figure 2.4. Chanson (1995a, 1996) related C to a solution of the diffusion 

equation, which is given by: 
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where Cmax is the maximum air content in the turbulent shear layer region measured at a distance 

YCmax from the bottom; V1 is the free-stream velocity of the inflow; Dt is a turbulent diffusivity; 

Yshear is the upper limit of the turbulent shear region. 
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Figure 2.4 Vertical distributions of air concentration (air volume 

fraction) and bubble frequency in hydraulic jump rollers (from 

Chanson and Brattberg 2000). 

Chanson (2006) experimentally investigated the entrainment of air bubbles in the developing 

region of a hydraulic jump under partially developed inflow conditions. The experiments were 

conducted in two flumes of similar geometry but different widths: One was narrow, and the other 

was wide. The idea was to assess the effects of channel width (scale) on air entrainment. The 

experimental conditions are given in Table 2.2. An example of results is shown in Figure 2.5, 

where F is air-bubble count rate (Hz) or bubble frequency (defined as the number of detected air 

bubbles per unit time). There is a good agreement between the theory (Equation 2.13; Figure 2.5, 

the solid curve) and experimental data (Figure 2.5, the solid squares) of Chanson (2006). 

 

Table 2.2 Conditions of Chanson’s (2006) experiments. 

Flume width B y1 V1 Fr1 Re1 x1 
Remark 

(m) (m) (m/s) - - (m) 

0.25 0.0133 1.86 5.1 24738 0.5 

Narrow channel 
0.25 0.0129 3.00 8.4 38700 0.5 

0.25 0.0290 2.67 5.0 77430 1.0 

0.25 0.0245 3.90 7.9 95550 1.0 

0.50 0.0265 2.60 5.1 68900 1.0 
Wide channel 

0.50 0.0238 4.14 8.6 98532 1.0 
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Figure 2.5 Distributions of air volume fraction and bubble count rate, measured at 0.3 m 

downstream of the jump toe by Chanson (2006). The upstream Froude number was Fr1 = 8.6. The 

channel was 0.5 m wide (adopted from Chanson 2006). 

 

Using Chanson’s (2006) narrow channel (Table 2.2), Gualtieri and Chanson (2007) carried out 

a further experimental study of the vertical distribution of air volume fraction and bubble count 

rate in hydraulic jumps. The experiments produced results for the upstream Froude number in the 

range of Fr1 = 5.2 to 14.3. In Figure 2.6, as an example, the vertical distribution of air volume 

fraction at (x - x1)/y1 = 11.63 is plotted. A comparison of the result with those reported in Chanson 

(1995 a) and in Chanson and Brattherg (2000) leads to the following observations: 

▪ There is a decrease in the maximum air content in the turbulent shear layer with increasing 

distance from the jump toe. The data points appear to follow closely both power law and 

exponential decay functions, as suggested by Chanson and Brattberg (2000) and Murzyn 

et al. (2005). 

▪ There is an exponential decay in the maximum bubble frequency (Figure 2.4) with 

increasing distance from the impingement point. 

▪ The decay of the maximum air content with increasing distance from the impingement 

point is lower at higher Fr1. 
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▪ The decay of the maximum number of bubble impacting the probe is lower at higher Fr1. 

 

 

Figure 2.6 Vertical profile of air volume fraction at (x - x1)/y1 = 11.63. The experimental 

conditions were Fr1 = 8.37, Re1 = 38410, and y1 = 0.0129 m (adopted from Gualtieri and Chanson 

2007). 

 

The measurements of air volume fraction in Chanson (2006) and in Chanson and Murzyn 

(2008) correspond to similar experimental conditions. The upstream Froude numbers were 

identical. The Reynolds numbers were between Re1 = 24738 and 98532 (Table 2.2). A comparison 

of measured air-volume-fraction and bubble-count-rate distributions between the two studies 

reveals drastic scale effects in relatively small hydraulic jumps. In their comparative analysis, 

Chanson and Murzyn (2008) demonstrated quantitatively that a dynamic similarity of two-phase 

flows in hydraulic jumps could not be achieved with a Froude similitude. At Reynolds numbers 

below 105, the experimental data show some viscous scale effects on the rate of air entrainment 

and air-water interfacial area. In Figure 2.7, a comparison of air volume fraction between Chanson 

(2006) and Chanson and Murzyn (2008) is shown for Fr1 = 5.1 and (x - x1)/y1= 8. 
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Figure 2.7 Comparison of air volume fraction in hydraulic jumps between Chanson 

(2006) (with Re1 = 24738 and 68900) and Chanson and Murzyn (2008) (with Re1 = 

38576). The upstream Froude number is Fr1 = 5.1. The distance is (x - x1)/y1 = 8 (adopted 

from Chanson and Murzyn 2008). 

 

Using Chanson’s (2006) wide channel (Table 2.2), Chachereau and Chanson (2010) performed 

experiments of hydraulic jumps with the inflow Froude number in the range of Fr1 = 2.4 to 5.1. 

They investigated fluctuations in the free surface and turbulence, and air-water flow properties. 

They concluded that vertical profiles of air volume fraction had two characteristic regions: a shear 

layer region in the lower part of the flow, and an upper free-surface region above. 

Chachereau and Chanson (2010) compared their results for Fr1 = 5.1 with Chanson’s (2006) 

results for the same value of Fr1 but smaller values of Re1. In this comparative analysis, the 

Reynolds number ranges from Re1 = 24738 (Table 2.2) to 125400. It was shown that the Froude 

similitude was not satisfied in a hydraulic jump for Fr1 = 5.1 within the range of Reynolds numbers. 

The data of air volume fraction obtained with Reynolds numbers below 40000 could not be scaled 

up to larger Reynolds numbers. The bubble count rate, turbulence properties, and bubble chord 

exhibited monotonic trends with increasing Reynolds numbers. The implication was that the 

results could not be extrapolated to large-size prototype structures without significant scale effects. 
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Using particle image velocimetry (PIV) and bubble image velocimetry (BIV) techniques, Lin 

et al. (2012) measured the flow structures and turbulence statistics of three steady hydraulic jumps. 

The upstream Froude number was in the range of Fr1 = 4.51–5.35. Measurements were made from 

both the non-aerated and aerated regions of the hydraulic jumps, and were validated using laser 

Doppler velocimetry (LDV) and tracking bubble trajectories. Lin et al. (2012) also obtained 

measurements from a weak jump, with a Froude number of Fr1 = 2.43, aiming to examine the 

differences between weak and steady hydraulic jumps. The experimental conditions of Lin et al. 

(2012) are listed in Table 2.3. 

 

Table 2.3 Experimental conditions of weak and steady hydraulic jumps in Lin et al. (2012). 

Experiment 
y1 y2 V1 Fr1 Re1  

Remark 
(m) (m) (m/s) - - 

1 0.0192 0.0570 1.063 2.43 20410 Weak jump 

2 0.0195 0.0115 1.973 4.51 38474 

Steady jump 3 0.0200 0.0132 2.216 5.00 44320 

4 0.0195 0.0138 2.337 5.35 45572 

 

To the best of our knowledge, Wang and Chanson (2015) is the most recent experimental study 

of air entrainment in a hydraulic jump. Their experiments covered a wide range of Froude numbers 

(3.8 < Fr1 <10.0) and Reynolds numbers (35800 < Re1 < 164000). The authors investigated non-

intrusively fluctuations in the free surface and roller position, using a series of acoustic 

displacement meters. They reported the characteristic frequencies of the fluctuating motions, some 

major roller surface deformation patterns, air-water flow properties, air volume fraction and bubble 

count rate in the rollers, and interfacial velocity distributions. Wang and Chanson (2015) used 

Chanson’s (2006) wide channel (Table 2.2). An example of vertical distributions of air volume 

fraction is shown in Figure 2.8. 
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Figure 2.8 Vertical distributions of air volume fraction at a 

series of positions along the length of the hydraulic jump. The 

flow conditions were: Q = 0.0347 m3/s, y1 = 0.0206 m, x1 = 0.8 

3m, Fr1 = 7.5, and Re1 = 68000 (adopted from Wang and Chanson 

2015). 

 

2.6 Numerical studies of air entrainment in hydraulic jumps 

A review of the literature shows a very limited number of numerical studies of hydraulic jumps as 

two-phase open-channel flow. This section discusses the previous numerical studies dealing with 

air entrainment and air volume fraction distributions in hydraulic jumps. 

Ma et al. (2011) simulated hydraulic jumps using a subgrid air entrainment model in 

conjunction with 3D two-fluid models of bubbly flow (Reynolds-averaged equation model and 

Detached Eddy Simulation model). The upstream Froude number was Fr1 = 1.98 and the Reynolds 

number was Re1 = 88500. They predicted air volume fraction distributions at a number of locations 

downstream of the jump toe and compared the results with the measurements of Murzyn et al. 

(2005). In Figure 2.9, simulated and measured air volume fraction profiles are plotted as a function 

of the normalised vertical coordinate, where y/y1=0 denotes the bottom of the channel. 
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Figure 2.9 Distributions of air volume fraction predicted with the Reynolds-averaged equation 

model (left) and Detached Eddy Simulation model (right) at Fr1 = 1.98 at 
11 /)( yxx  = 0.85, 1.7 

and 2.54 (from top to bottom), in comparison with the measurements of Murzyn et al. (2005). The 

middle column presents DES results accounting for contributions from bubbles, while excluding 

those from the wavy interface (adopted from Ma et al. 2011). 

 

Regarding the Reynolds-averaged equation model, Ma et al. (2011) noted that the lower half 

of the air volume fraction profiles, corresponding to the shear layer region, matched the 

experimental data quite well, but the upper half of the profiles, correspond to the roller region 

(Figure 2.1), did not. They suggested that the Detached Eddy Simulation results matched the 

measurements well both in the lower shear layer and in the upper roller region (Figure 2.9). 

Recently, Xiang et al. (2014) presented an Eulerian multi-fluid model for investigating flow 

structures of hydraulic jumps. They obtained explicit solutions to the phasic distribution of fluids 

through interfacial momentum transfer models. Air ingestion at the jump toe was handled by a 

sub-grid air entrainment model. The location of the free surface was captured using a compressive 
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VOF model. Xiang et al. (2014) considered mechanistic coalescence and breakage kernels in the 

calculations. Their idea was to better represent the evolution of air bubble size in the subcritical 

flow region. The control parameters of their model simulations are listed in Table 2.4. Xiang et al. 

(2014) compared their numerical results to experimental data in Chachereau and Chanson (2010) 

and Lin et al. (2012). 

 

Table 2.4 Physical parameters of three selected flow cases in Xiang et al. (2014). 

Case 
Fr1 y1 y2 Q Re1 

Remark 
- (m) (m) (m3/s) - 

1 3.1 0.0440 0.174 0.0446 89000 Chachereau and Chanson’s 

(2010) experiment 2 5.1 0.0395 0.254 0.0627 130000 

3 4.5 0.0195 0.115 0.0192 38400 Lin et al.’s (2012) experiment 

 

Xiang et al. (2014) assumed two-dimensional steady state flows in all simulations. Their 

computational domain consisted of 28,000 non-uniform cells (Figure 2.10). The simulations used 

ANSYS CFX12. Air entrainment and complete merging model were implemented using CFX 

Expression Language (CEL). The associated source term for the multiple-size-group model was 

incorporated into the simulations. CEL allows users to define inputs as variables, capture outputs 

as variables, and perform operations on those variables. 

 

 

Figure 2.10 Model domain, mesh and boundary conditions in Xiang et al. (2014). 

 

Xiang et al. (2014) predicted distributions of water superficial velocity vectors for Case 3 

(Figure 2.11), air volume fractions in hydraulic jump rollers for Cases 1 and 2 (Figure 2.12), and 

air volume fractions at 3 different locations downstream of the jump toe for Case 1 (Figure 2.13). 
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Figure 2.11 Predicted water velocity vectors for Case 3 (Table 2.4) in Xiang et al. (2014). 

 

 

Figure 2.12 Contours of water and air volume fraction for: (a) Case 1, and 

(b) Case 2 in Xiang et al. (2014). 

 



26 

 

 

 

 

Figure 2.13 Distributions of air volume fraction for Case 1 at axial sections 
11 /)( yxx  = 0.91 

m (panel a), 1.7 (panel b), and 3.41 (panel c). Note that y is the vertical position (adopted from 

Xiang et al. 2014). 

 

Witt et al. (2015) numerically simulated air–water flow characteristics in hydraulic jumps in 

an open channel, using setup corresponding to the laboratory experiments of Murzyn et al. (2005), 

which was discussed in the previous section. Witt et al.’s (2015) simulations used OpenFOAM 

(Jasak 2009), and produced unsteady flow field in two and three dimensions. They solved the 

evolving free surface using InterFoam (a VOF solver), and located the free surface using air 

volume fraction of 0.5 as a threshold. Witt et al. (2015) obtained time average results. In this 

connection, a comparison of relative errors between sampling times of 1, 5, 10, 15 and 20 seconds 

shows that a sampling time of 15 seconds gave the lowest relative error. Witt et al. (2015) reported 

distributions of time averaged volume fraction (Figure 2.14) and vertical profiles of average air 

volume fraction (Figure 2.15), with a comparison to the experimental data of Murzyn et al. (2005). 
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Figure 2.14 Distributions of predicted volume fraction for a 2-D 

simulation with the upstream Froude number Fr1 = 4.82. Panel (a) 

shows an instantaneous distribution. Panels (b), (c), (d), (e), and (f) 

show the time-averaged distributions over the durations of 1, 5, 10, 

15, and 20 s, respectively (adopted from Witt et al. 2015). 

 

(a)                (b)   (c) 

  (d) 

 

Figure 2.15 Vertical profiles of time-averaged air volume fraction for Fr1 = 4.82 at four 

positions along the length of the hydraulic jump: (a) x = 7.14 y1 1y ; (b) x = 11.9 y1; (c) x = 16.67 

y1; and x = 23.8 y1. The open circle symbols are Murzyn et al.’s (2005) measurements of average 

void fraction. The dotted and solid curves are Witt et al.’s (2015) 2- and 3-D predictions, 

respectively (adopted from Witt et al. 2015). 

. 
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2.7 Summary 

Ideally, laboratory and computer modelling of hydraulic jumps should keep the same values of the 

Reynolds number, the Froude number, and Weber number as the prototype. In most of cases, 

laboratory modelling studies satisfied geometrical similarity, but not simultaneously Froude 

number, Reynolds number and Weber number similarities. With the same fluids (air and water) in 

model and prototype, the process of air entrainment is adversely affected by significant scale 

effects in small size models (Chanson 2006). 

The use of small length scales is a common limitation of previous experimental and numerical 

studies of air entrainment in hydraulic jumps. There is a need for further studies using relatively 

large and more practical dimensions so as to satisfy the Froude number, Reynolds number and 

Weber number similarities at the same time. 

Previous studies have been limited to hydraulic jumps of small dimensions. The behaviour 

may not reflect truly the behaviour of hydraulic jumps in real-world open channels and water 

conveyance systems. The largest upstream Reynolds number (Equation 2.11) was perhaps 125400 

reported in Xiang et al. (2014) who simulated hydraulic jumps and 164000 reported in Wang and 

Chanson (2015) who made laboratory measurements. Xiang et al.’s (2014) simulations were 

limited to steady state flow conditions, as opposed to transient conditions. 

In summary, the previous studies of hydraulic jumps have rarely reached flow conditions with 

upstream Reynolds numbers exceeding 106. A knowledge gap exists with regard to distributions 

of air entrainment in hydraulic jumps of large and practical dimensions. This corresponds to large 

Reynolds numbers. The need for simulations of hydraulic jumps under conditions of transient 

motions and large Reynolds numbers have motivated this research work. 
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Chapter 3 Modelling Methodology 

 

The aim of this study is to simulate four different hydraulic jumps in an open channel with four 

different upstream Froude numbers under transient condition and to predict air entrainment in these 

hydraulic jumps. The results will be compared with those of Chachereau and Chanson (2010) who 

used a physical model to study air entrainment in four different hydraulic jumps at (smaller 

dimensions and smaller Reynolds numbers). These computational simulations use ANSYS 17.1 

(Fluent). In this chapter, a description of the simulation domain will be presented. The governing 

model equations used for the simulations, boundary conditions and initial conditions will be 

presented. 

 

3.1 Model domain and geometry  

In this section, the geometry and general shape of the model domain used in all the simulations in 

this study will be presented. The model domain consists of a channel with a length of 6 m and a 

height of 2.2 m. The channel is horizontal and has two inlets and one outlet: one water inlet, one 

air inlet at the top, and one outlet to allow water and air to leave the domain during the simulations. 

All the simulations are two dimensional (Figure 3.1). 

 

 

Figure 3.1 Dimensions of the computational model domain. 
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3.2 Volume of fluid (VOF) model theory 

The VOF model (Hirt and Nichols 1981) can model two or more fluids which are not mixable by 

solving momentum equation, energy equation and tracking the volume fraction of each fluid 

throughout the domain. Modelling of open channel flow is a typical application of this method. 

 

3.2.1 Steady – state and transient VOF calculations 

The model in ANSYS Fluent is generally used to compute a time-dependent or transient solution, 

but in some cases that involve steady state flow, it is possible to perform steady-state calculations.  

The VOF model relies on the fact that two or more fluids (or phases) are not interpenetrating. 

For each phase in the calculations, a variable is introduced to represent the volume fraction of the 

phase in each computational cell. The sum of all volume fractions of all phases is one in each 

computational cell. The fields for all variables and properties are shared by the phases. In other 

words, all the fluid properties are represented in form of volume-averaged values, as long as the 

volume fraction of each of the phases is known at each location. Thus, the variables and properties 

in any cell in computational domain are either completely representative of one of the phases, or 

representative of a mixture of the two phases (air and water in this study) or more, depending upon 

the volume fraction values. In other words, if the qth fluid’s volume fraction in the cell is denoted 

as αq, then the following three conditions are possible:  

(a) αq = 0: The cell is empty of the qth fluid 

(b) αq =1: The cell is full of the qth fluid 

(c) 0 < αq < 1: a certain fraction of cell (αq) is filled with qth fluid. 

Based on the local value of αq, the appropriate properties and variables will be assigned to each 

control volume within the domain (Hirt and Nichols 1981) (Fluent 2013). 

 

3.2.2 Volume fraction equation 

The tracking of the interface(s) between the phases is accomplished by solving the continuity 

equation for the volume fraction of one (or more) of the phases. For the qth phase (air in this study), 

this equation has the following form (Walters and Wolgemuth 2009) (Fluent 2013): 
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where qpm  is the mass transfer from phase q (air) to p (water) and pqm  is the mass transfer from 

phase p (water) to phase q (air). The 
q

s is the source term and is the mass of phase q which is 

added to the continuous phase (if there is any) from the dispersed other phases (for example, due 

to vaporization of liquid phase) and any user defined sources. This source term is zero by default. 

q  is the density of the qth phase. In this study, there are only two phases in all the simulations and 

it can be assumed that there will not be any mass transfer between the phases during the 

simulations. In other words, the right hand side of the equation (3.1) is equal to zero for the 

simulations of this study. 

The volume fraction equation will not be solved in the model for the primary phase (water 

in this study). The primary phase volume fraction will be computed based on the following 

equation: 

1 waterair                                                           (3.2) 

There are two methods to solve volume fraction equation (equation 3.1): the implicit method 

and the explicit method. These methods will be discussed in Sections 3.4.1 and 3.4.2. 

 

3.2.2.1 The implicit scheme  

When the implicit scheme is used for time discretization, ANSYS Fluent’s standard finite-

difference interpolation schemes are used to obtain the face fluxes for all cells, including those 

near the interface. More information about these interpolation schemes are in Fluent (2013). 
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Fluent (2013) states “Since this equation requires the volume fraction values at the current time 

step (rather than at the previous step, as for the explicit scheme), a standard scalar transport 

equation is solved iteratively for each of the secondary-phase volume fractions at each time step”. 

In the current study, the implicit scheme was used in the simulations. 

 

3.2.2.2 The explicit scheme 

“In the explicit approach, ANSYS Fluent’s standard finite-difference interpolation schemes are 

applied to the volume fraction values that were computed at the previous time step. 
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where 1n  is the index for new (current) time step; n  is  the index for previous time step; fq,  is 

face value of the qth phase volume fraction; Vol is volume of the cell; fU is  the volume flux 

through the face, based on normal velocity. 

This formulation does not require iterative solution of the transport equation during each 

time step, as is needed for the implicit scheme” (Fluent 2013). 

 

3.2.3 Material properties 

The properties appearing in the volume of fluid transport equations are determined by the presence 

of the component phases in each computational cell of the domain. For example, in a two-phase 

system, if subscripts a  and b  represent phase a (water) and phase b (air) respectively, and if the 

volume fraction of the second phase is being tracked, the density in each cell is given by: 

abbb  )1(                                                          (3.5)                                                                                   

In general, for an 𝑛 phase system, the volume-fraction-averaged density is: 
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All other fluid properties (for example, viscosity) are computed in the same manner. 

 

3.3 Reynolds averaged Continuity and Momentum equation 

Continuity and momentum equations will be solved throughout the domain, and the resulting 

velocity field is shared among the phases. The properties  and   in the momentum equation, is 

volume-fraction-averaged of all phases (Wilcox 2006): 
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In equations (3.8) 
ijuu  is the specific Reynolds stress tensor and is shown by  
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 jiij uu                                                                (3.9)  

also we have  

ijijTij kS 
3

2
2                                                        (3.10) 

3.4 Energy equation 

The energy equation shown below is also shared among the phases (Fluent 2013): 
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The volume of fluid model considers energy, e  and temperature,T , as mass-averaged variables: 
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The properties  and effk  (effective thermal conductivity) are also shared between the existing 

phases. 

In this study, the energy equation was not used in the computation. 

 

3.5 Surface tension 

Surface tension is the result of attractive forces between molecules in a fluid. For example, in an 

air bubble surrounding with water, inside the bubble, far from the surface, the net force on an air 

molecule due to its neighbouring molecules is zero. At the interface, however, the net force on the 

surface air molecules is radially inward. This radially inward force makes the entire spherical 

surface contract. As a result, the pressure on the concave side of the surface will increase. The 

surface tension is a force, acting only at the surface in order to maintain equilibrium in such 

instances. It acts to balance the radially inward intermolecular attractive force with the radially 

outward pressure gradient force across the surface (Chanson 1996). 

In this research work, the volume of fluid (VOF) model for tracking of the free surface, 

considers the effects of surface tension at the air-water interface on mixture motion, when air and 

water are present in a cell. The consideration involves a volume force, which is formulated based 

on a continuum method. Details about this method have been described in Brackbill et al. (1992). 

We set the surface tension coefficient at the interface of air and water phases in all the simulations 

to a constant value equal to  = 0.072 N/m [Equation (2.12)]. 
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3.6 Standard 𝒌-ε turbulent model  

In this study, the standard 𝑘-ε method was used for modelling the turbulent flow in all simulations. 

Standard 𝑘-ε method is one kind of the two-equation turbulence models. Two-equation 

turbulence models not only determines the transport equation for the turbulence kinetic energy (𝑘) 

but also determine turbulent length and time scale.  

In the standard 𝑘-ε method, the transport equation for kinetic energy has been derived from 

the exact mathematical equation. The transport equation for kinetic energy dissipation rate, ε, has 

however been derived using physical reasoning rather than the exact mathematical equation 

(Launder and Spalding 1974). 

 

3.6.1 Transport equations for the standard 𝒌-ε model 

The turbulence kinetic energy, 𝑘 and its dissipation rate, ε, are obtained from the following 

transport equations (Launder and Sharma 1974) (Wilcox 2006): Turbulence Kinetic Energy is 

governed by: 

    




































j

kT

jj

i

ij

j

j
x

k

xx

V

x

k
V

t

k
)/(                                  (3.13) 

Dissipation Rate is governed by: 

   

(3.14) 

 

 

jiuu   in this equation is the temporal average of the fluctuating velocities.
T  is the kinematic eddy 

viscosity and,  

  /2kCT                                                           (3.15)  

where k  is the kinetic energy of turbulent fluctuations per unit mass,   is the dissipation per unit 

mass, U is the mean velocity component and  the other constants are as follows (Wilcox 2006):

1C =1.44, 2C =1.92, C =0.09, k =0.72,  =1.3 
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3.7 Finite volume mesh 

The ANSYS fluent software needs a finite volume mesh throughout the computational domain for 

calculations. It is necessary to consider two important points about creating the mesh in 

computational domain. First, the created mesh should be fine enough to let the model calculate the 

rapid spatial variations of velocity or, depending on the case, other important flow characteristics 

like temperature. This is important especially near the walls or solid structures in flow path and 

where the flow condition is turbulent and the probability of having large changes of flow 

characteristics in small distances is high. This study focuses on simulating the hydraulic jump 

phenomenon, and due to the turbulent nature of hydraulic jump, the mesh must be chosen to be 

fine enough in order to have precise and reliable simulation results. 

Second, although a fine mesh is required to have reliable calculations and results, the number 

of cells should not be excessively large. A very large number of cells in a simulation will result in 

higher and sometimes unnecessary computational costs and time. Also, it must be noted that the 

larger the number of cells, the more difficult the post processing of the results. 

In this study, test simulations of hydraulic jumps were used to check the suitability of mesh 

sizes. It is important to achieve high computational accuracy. Accordingly, the iteration residuals 

were set to 10-6. The use of coarse mesh will result in divergence of the calculations and the model 

will not be able to continue stable computation. In this study, we started the simulations using a 

large mesh size (equal to 1 cm), which resulted in divergent calculations. Subsequently, we 

reduced the mesh size gradually, and finally determine the optimum cell size.  At the end the proper 

mesh size for this research was chosen through these test simulations and was used in all the 

simulations. Since the hydraulic jump phenomenon is associated with strong turbulence, a 

relatively fine mesh had to be chosen in order to have precise and stable calculations. Also, since 

the length and location of the jump change and the hydraulic jump have frequent fluctuations back 

and forth, a uniform mesh size was chosen for the entire domain. As a result, it was not necessary 

to refine the mesh size near the walls. 

The computational domain in all the simulations of this study, (Figure 3.2), consists of 

2131200 cells. The mesh structure is nearly uniform all over the domain and the cells have 

5.25.2   mm square shapes.  
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 Figure 3.2      The finite volume mesh of the computational domain. 
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3.8 Boundary conditions 

This section introduces the boundary condition types used in the simulations. Also, the key points 

for setting up the model in order to simulate the desired hydraulic jump are discussed.  

One of the challenging issues that was encountered during this research was choosing the 

best boundary condition to have a well-balanced hydraulic jump which stays in its place without 

moving gradually toward up stream or downstream of the domain. Even in physical simulations, 

balancing the forces at upstream and downstream of the hydraulic jump is a relatively delicate and 

time consuming procedure. Furthermore, in physical simulations, usually a tail gate is used to 

maintain subcritical condition downstream of the hydraulic jump and by adjusting the tailgate 

height in a trial and error manner, a balanced hydraulic jump can eventually be created. In 

mathematical simulation, adjusting a tail gate in real time while the simulation is running is not 

possible. As a result, choosing a proper setting for the downstream boundary condition was critical 

in order to maintain the desired subcritical downstream depth and create a stationary hydraulic 

jump. 

Also, in order to choose a suitable boundary condition for the upper boundary of the domain 

(which is actually the atmosphere), three different types of boundary conditions: wall, pressure 

outlet, and pressure inlet, were verified and the pressure inlet showed the best compatibility with 

the simulation condition and setting.  

 

3.8.1 Pressure inlet 

Pressure inlet boundary conditions are used when the pressure and other scalar properties of the 

flow where it enters the domain are known. In this type of boundary, the user should define the 

total gauge pressure: 

2

0
2

1
vpp s                                                           (3.16) 

where 0p  is the total gauge pressure, sp is the hydrostatic pressure with respect to the operating 

pressure, which is defined in the “Operating condition” part of the model, and v  is the fluid velocity 

at the inlet. 

In Figure 3.1, the upper boundary of the domain is pressure inlet. Since the upper boundary 

represents the atmosphere in an open channel, the pressure can be defined and it is equal to 

atmospheric pressure ( 0sp ). We can assume that the air velocity is zero at the upper boundary 
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of the domain ( 0v ). As a result, the total pressure or 0p at the upper boundary of the domain, 

which is pressure inlet, is zero in all the simulations. 

 

3.8.2 Wall 

The wall boundary condition is used for regions that we want to bound the fluid and the solid 

surfaces. When there is wall boundary condition in the simulation, the model will use a certain 

type of wall treatment in the computations for the neighbouring cells. A wall treatment is the set 

of near-wall modelling assumptions for each turbulence model. Three types of wall treatment are 

provided in Fluent, each of which follows certain wall functions to solve the flow condition inside 

the cells adjacent to the wall boundary. Wall functions are used to bridge the viscosity-affected 

region between the wall and the fully-turbulent region.  

This study used “Standard wall function” as the near wall treatment. In the standard wall 

function, the user has the possibility to set any desired value for the shear stress and to choose if 

the wall should have roughness. In all the simulations in this study, the “No slip” type of wall 

function has been used. The “Standard wall function” with “No slip” type of wall boundary 

condition is based on the work of Launder and Spalding (1974). The law-of-the-wall for mean 

velocity yields: 

                     )ln(
1 *** yEU
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                                                            (3.17) 

where *U is the dimensionless velocity and 
*y is the dimensionless distance from the wall: 
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*                                                      (3.19) 

where                                                         
ac

ac

w
y

U
                                                                      (3.20) 

 

and   is von Kármán constant equal to 0.4187, *E is an empirical constant equal to 9.793, acU is 

the mean velocity of fluid at the wall adjacent cell centroid, ack is the turbulent kinetic energy at 
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the wall adjacent cell centroid, acy  is the distance from the centroid of the wall, adjacent cell to 

the wall, acy is the mean of acy s of all the cells adjacent to the wall, and   is the dynamic 

viscosity of the fluid. 

The above law [Equation (3.15)] is employed when 
*y  is larger than 11.225. When the mesh 

is such that 
*y  is less than 11.225, the mean velocity profile is linear and follows the following 

equation: 

** yU                                                                  (3.21) 

In this study, as it is shown in Figure 3.1, we set the bottom boundary and the vertical boundary 

located at top of the water entrance (Section 3.10.3) as Wall boundary condition. Both of the Wall 

boundary conditions that we have in the domain were set as “no slip” with zero roughness.   

 

3.8.3 Velocity inlet 

The velocity inlet boundary condition is used to set the flow velocity at the inlet. The scalar 

properties of the flow are not fixed during a simulation and they change so as to provide the 

imposed velocity distribution. 

When we use Velocity inlet as the boundary condition, the model will use the velocity 

components and the value of other scalar properties that we used for the boundary condition to 

calculate the mass flow rate, momentum fluxes, and fluxes of energy. 

The mass flow rate entering a cell with velocity inlet boundary condition is computed as: 

 Advm


 .                                                                     (3.22) 

As shown in Figure 3.1, we used the Velocity inlet boundary condition for the inlet of the 

water through the domain. In hydraulic jump, the depth and velocity and the corresponding Froude 

number at upstream will define the type of the jump. This research’s main goal was to produce 

different types of the hydraulic jump by mathematical simulations, to analyse the air entrainment 

in the jump, and to compare the results with available laboratory experiments. We set the height 

of the water entrance equal to desired hydraulic jump upstream depth, and we chose the Velocity 

inlet for the entrance of the water to be able to set a fixed velocity for water to enter the domain. 

This imposes the desired velocity and depth at the same time.  
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An important point that we must consider in setting the velocity at the inlet is that, we must 

set the entrance velocity 5 to 10% larger than the desired upstream velocity because as the flow 

enters the domain and advances from the inlet, the average velocity will be decreased due to zero 

bed slope and the effects of zero velocity, at the bottom boundary. As a result, we must set a larger 

inlet velocity to compensate the reduction of the water velocity after entering the domain. 

 

3.8.4 Pressure outlet 

This kind of boundary condition is used when the static (gage) pressure at the outlet boundary is 

known. This kind of boundary condition is adjustable when we are dealing with open channel flow. 

We can specify the water free surface level at the outlet. The hydrostatic pressure distribution can 

be modelled at the outlet boundary. 

In a hydraulic jump simulation, due to a transition of supercritical to subcritical flow, if we 

run the simulation in a transient state and just impose the water free surface level at the outlet 

boundary, the simulation will change the outlet boundary condition gradually from subcritical to 

supercritical (because the inlet flow velocity is high and the condition at the inlet is supercritical). 

In other words, the hydraulic jump will be washed away from the domain before taking place. 

According to (Te Chow 1959) “a hydraulic jump will form in the channel if the Fr1 of the 

flow, the flow depth y1, and a downstream depth y2 satisfy the equation 2.4.  In order to form a 

balanced and static (in terms of location) hydraulic jump, we must impose a fixed hydrostatic 

pressure distribution at the outlet boundary during a simulation. To achieve a fixed pressure 

distribution at the outlet, firstly, we must set up the model such that it performs computations at 

the outlet boundary cells according to the imposed free surface level. It means that the model must 

perform calculations in a way that there is a certain depth of water at the outlet boundary. We 

should set the “Density interpolation method” at the pressure outlet boundary to “From free surface 

level”. By this way, the model will assume that the outlet is full of water up to a certain depth and 

the density of fluid for those corresponding cells is the density of the water. 

Secondly, since open channel boundary conditions in ANSYS fluent (by default) are 

controlled by the Froude number, in order to maintain stable calculations, it is better to change the 

solver setting in a way that the boundary conditions do not depend on the Froude number. This is 

possible by changing the setting in “Open channel controls”. In this study, we considered the above 
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mentioned points in all the simulations and used the desired free surface level at the outlet, 

depending on the type of hydraulic jump being set. 

 

3.9  Initial condition 

Before running any simulation in ANSYS fluent, the initial condition (the condition at time equal 

to zero) of the entire computational domain must be set. Setting the initial condition properly is 

extremely critical and important for the stability of calculations and the reduction of computing 

time. 

In Figure 3.3, the computational domain length was divided into two parts (each has a length 

of 3 m). The initial setting for the upstream part was supercritical. The depth and the velocity of 

water were equal to what we had at the pressure Inlet boundary condition. For the downstream 

section, the initial condition was subcritical and the velocity and depth were set equal to the desired 

hydraulic jump downstream. The velocity of air above the water surface was set at zero all over 

the domain. 

Figure 3.3 shows the initial condition for one of the simulations in this study. Figure 3.3(a) 

shows the initial water depth, and Figure 3.3(b) demonstrates the initial velocity all over the 

channel.  

Computations in this thesis make use of equations 3.1, 3.7, 3.8, 3.13 and 3.14. 

 

(a) 
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(b) 
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Figure 3.3 Initial conditions for computations: (a) the initial condition of the water surface for 

one of the simulation cases, and (b) the initial condition of the velocity for one of the simulation 

cases. 
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Chapter 4 Results and Discussions 

 

4.1  Introduction 

We predicted hydraulic jumps at four different values of the Froude number Fr1 [Equation (2.6)], 

matching the experimental conditions of Chachereau and Chanson (2010), and compared the 

predicted air entrainment with their experimental data. In this chapter, we will describe some basic 

patterns of air entrainment in hydraulic jumps, as observed in the experiments of Chachereau and 

Chanson (2010), and will discuss the corresponding setup of CFD simulation cases in this research 

in order to facilitate a comparison between CFD and experimental results. 

 

4.2 Air-water flow structure in hydraulic jumps 

The hydraulic jump is the result of a rapid transformation from supercritical flow with high 

velocity to subcritical flow with low velocity and hence large depth. The sudden transition gives 

rise to turbulence, wavy free surface, water spray, energy dissipation, and air entrainment. 

 

4.2.1 Inflow condition 

According to Chanson (1995a, b), the flow characteristics of hydraulic jump depend on not only 

the upstream Froude number but also the distribution of inflow velocity. In a horizontal rectangular 

channel, inflow conditions for the occurrences of hydraulic jumps can be classified into three 

different types: 

(1) A partially developed supercritical flow, meaning that the boundary layer is partially 

developed. 

(2) A fully developed supercritical flow, meaning that the boundary layer is fully developed 

and the thickness of boundary layer is nearly equal to the upstream flow depth. 

(3) A pre-entrained upstream flow, in which air entrainment has begun before the jump toe. 

The boundary layer upstream of the jump toe (Figure 4.1) is a thin layer of fluid in the 

neighbourhood of the bottom surface of the channel ( ), where friction plays a significant role in 

the shape of vertical distribution of flow velocity. Across the boundary layer, the flow velocity 

increases from zero at the boundary (or the channel bottom) to the free-stream velocity at the outer 

edge of the boundary layer (Resch and Leutheusser, 1972). 
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In the experimental study of Chachereau and Chanson (2010), the inflow condition was 

partially developed. In this CFD research, hydraulic jumps occurs in a relatively short horizontal 

distance from the inlet of the computational channel (Figure 4.4). We expect the inflow to be 

partially developed, as will be confirmed later in this chapter.  

 

 

Figure 4.1 Sketch of hydraulic jumps under various inflow conditions (adopted from Chanson 

1996, p. 76), where y1 and y2 are the upstream and downstream depths, respectively;  is the 

boundary layer thickness; and v is the flow velocity. 

 

4.2.2  Air entrainment and flow pattern 

The general patterns of two-dimensional air-water flow in hydraulic jump in a rectangular channel 

are illustrated in Figure 4.2.  
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Figure 4.2 Patterns of two-dimensional air-water flow in hydraulic jump in a rectangular open 

channel (adopted from Chanson and Brattberg 2000). 

 

Air mass is entrained into the rollers of the hydraulic jump by various mechanisms. If the 

upstream flow condition is pre-entrained, air bubbles that exist in the upstream flow will enter the 

jump rollers. Air mass near the free surface of the upstream flow is set into motion due to the 

friction force between water and air particles and the air mass in motion will enter the rollers at 

the impingement point (Chachereau and Chanson 2010). Another mechanism is the aspiration on 

the trumpet shape air streams formed at the jump toe at the intersection of the water jet with the 

rollers (Chanson and Brattberg 1998). 

In Figure 4.2, the jump rollers consist of three virtual layers. The recirculation layer at the 

top is a strong unsteady flow with large bubbles. A recirculating flow and large eddies occur in 

this layer. At the bottom of the recirculating region, there is a shear region that contains an 

oscillating type of flow and smaller bubbles. The small bubbles can attach together and form larger 

bubbles as they travel downstream from the jump toe. These larger bubbles move toward the free 

surface and eventually form a foam layer at the top of jump rollers. In this region, the flow may 

contain large eddies from the recirculating layer. At the bottom of the shear region, there is an 

impingement jet region which has velocity patterns similar to the upstream flow. There are less or 

no air bubbles in this region. 
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4.2.3  Air volume fraction profile  

Several studies (e.g. Resch and Leutheusser 1972; Chanson 1995a,b; Chanson 2006; Chachereau 

and Chanson 2010) showed that for hydraulic jumps with partially developed inflow condition the 

maximum air volume fraction in vertical air concentration distribution profile will happen in the 

shear region of the jump roller [Figure 4.3(a)]. Also these studies showed that this maximum will 

decreased as we go further from the jump toe toward downstream. Figure 4.3(b) show the general 

velocity distribution profile at the roller. 

 In Figures 4.3(a) and 4.3(b), C is the air volume fraction, Cmax the maximum air volume 

fraction measured at the distance of YCmax from the bottom, Yshear is the distance of shear region 

boundary from the bottom, V is the velocity in the flow direction, Vmax is the maximum velocity 

measured at the distance YVmax from the bottom, and Y0.5 is the vertical location where Vx = 

0.5Vmax. 

From the results of our CFD test cases, we determine double average air volume fraction 

Cmean or average over depth and over time. This double average air volume fraction describes the 

rate of air entrainment in the hydraulic jump along each virtual vertical line after the jump toe. 

Cmean is given by 

      
90

090

1
y

mean Cdy
y

C                                                       (4.1) 

where C is the time averaged air volume fraction at a given depth, and y90 is the distance from the 

bottom of the cell in which the time averaged air volume fraction is 90%. 

 

 

Figure 4.3 Vertical profiles in jump rollers of: (a) air concentration 

and (b) velocity (Adopted from Chanson and Brattberg 2000). 
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4.3  CFD simulation cases 

The conditions of four simulation cases investigated in this CFD research are given in Table 4.2. 

To allow a comparison of results between CFD simulations and the experiments of Chachereau 

and Chanson (2010), what is important is to ensure a match in terms of the Froude number. Indeed, 

this is the case, as shown in the table. Note that our CFD simulations use a larger flow depth than 

the experiments, and hence are less problematic with respect to scale effects. 

 

Table 4.1 Conditions of CFD simulations, in comparison with the experimental conditions of 

Chachereau and Chanson (2010). 

Simulation case Fr1 y1 (m) y2 (m) 

V1 

(m/s) 

V2 

(m/s) 

Q 

(m3/s) 
Re1 

Case 1 

 

CFD 
3.1 

0.1524 0.5963 3.7904 0.9688 0.0578 577662 

Experiment 0.0440 0.1721 2.0273 0.5182 0.0446 89000 

Case 2 

 

CFD 
3.8 

0.1524 0.7463 4.6463 0.9488 0.0708 708102 

Experiment 0.0405 0.1983 2.4198 0.4941 0.049 98000 

Case 3 

 

CFD 
4.4 

0.1524 0.8752 5.3800 0.9369 0.0820 819907 

Experiment 0.0395 0.2268 2.7595 0.4805 0.0545 110000 

Case 4 

 

CFD 
5.1 

0.1524 1.026 6.2359 0.9266 0.0950 950347 

Experiment 0.0395 0.2658 3.1747 0.4717 0.0627 130000 

 

Note that the hydraulic jump phenomenon is typically unsteady, and variables such as voice 

fraction and velocity fluctuate continuously. Thus, it is appropriate to analyse air entrainment and 

velocity distributions using time average. This entails sampling flow properties with a certain 

frequency and for a certain period of time, and processing CFD output data for final analysis. In 

Chachereau and Chanson (2010), the frequency of sampling at each point was 20 Hz and the 

sampling period was 45 s. Our CFD simulations commenced from initial conditions (see Section 

3.10.5), produced stable and balanced hydraulic jumps after 12 s of model time, and continued for 

another 12 s. The CFD outputs of dependent variables were sampled at a frequency of 20 Hz over 

the time period of 12 to 24 s for determining time averaged values. 

Each of the CFD simulations produced y1 and y2 (Figure 2.1) values. The amount of energy 

loss in the hydraulic jump can be calculated using Equation (2.9). 
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For each of the four simulation cases, we examined the vertical distributions of air volume 

fraction at up to four selected longitudinal locations (Table 4.2) downstream of the jump toe. Air 

volume fraction and velocity profiles are extracted from the CDF outputs for these locations after 

the impingement point. The selected locations correspond to those reported in Chachereau and 

Chanson (2010). In Table 4.2, x is the longitudinal distance of the locations from the inlet of the 

model channel, x1 is the longitudinal distance of the jump toe from the inlet, and y1 is the depth of 

flow upstream of the jump toe (Figure 4.1). For all the cases, the normal distance (x - x1)/y1 is the 

same between Chachereau and Chanson (2010) and this study. 

 

Table 4.2 Four selected longitudinal locations for examinations of air volume fraction and 

vertical velocity distributions. 

Simulation case Fr1 (x - x1)/y1 

1 3.1 0.91 1.7 3.41 6.82 

2 3.8 1.18 3.61 7.23 10.8 

3 4.4  3.8 7.59 11.4 

4 5.1 3.8 7.59 11.4 15.2 

 

4.4  Predicted flow field and air volume distribution 

This section presents predictions of time-averaged water surface profiles, the flow field, and air 

volume fraction distributions for each of the four simulation cases, and compare the predicted air 

volume fraction distributions with the experimental data of Chachereau and Chanson (2010). Note 

that locating the jump toe is critical. In the hydraulic jump phenomenon, the location of the jump 

toe fluctuates back and forth constantly. Laboratory experiments usually applies time averaging to 

determine the distance x1 of the jump toe from the inlet from the visual observations of 

instantaneous locations of the moving jump toe. In this study, we have the time averaged value of 

air volume fraction for each cell of the model channel. At the jump toe, the flow consists of a 

mixture of the two phases (air and water). In this study, it is assumed that the existence of this 

mixture would begin when a layer of fluid with a more than 50 percent as water volume fraction 

would start to rise from the water free surface. In Figure 4.4 and 4.5 this layer is coloured with 

light green according to water volume fraction legend on the left hand side of the Figure. In this 

study, the start of formation of this layer is considered as the jump toe location. 
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4.4.1  Simulation case 1 

For simulation case 1, the upstream Froude number is Fr1 = 3.1. The hydraulic jump is classified 

as form B, as discussed in Section 2.3. In Figure 4.4, contours of time averaged water volume 

fraction are shown. The location of the jump toe is x1 = 2.43 m downstream of the inlet. 

 

 

Figure 4.4 Time averaged distribution of water volume fraction for simulation case 1, in which 

the upstream Froude number is Fr1 = 3.1. 

 

In Figure 4.5, the distribution of flow velocity vectors, along with contours of time-averaged 

water volume fraction, at the last time step of the simulation, is plotted. The magnitudes of the 

vectors are shown by the lengths of the vectors. The colour scale for the vectors shows time-

averaged water volume fraction. The water surface profile after the jump toe clearly defines a 

hydraulic jump. 
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Figure 4.5 Distributions of flow velocity vectors and time-averaged water volume fraction in 

the hydraulic jump for simulation case 1. The upstream Froude number is Fr1 = 3.1 (Table 4.1 and 

Table 4.2) 

 

In Figures 4.6 to 4.9, we plotted vertical profiles of predicted time-averaged air volume 

fraction at four selected locations (Table 4.3) along the length of the model channel downstream 

of the jump toe. The experimental data of Chachereau and Chanson (2010) are shown as solid 

circles in the Figures for comparison purposes. Note that the predictions and experimental data 

match in location in terms of (x - x1)/y1. In Figure 4.6, the predicted maximum air volume fraction 

occurs in the shear region (Figure 4.5), whose upper boundary is located at y = 0.26 m above the 

channel bottom. The maximum air volume fraction is equal to 0.48, and occurs at y = 0.23 m. The 

predicted profile (Figure 4.7) gives a depth-averaged air volume fraction of Cmean = 0.36 at (x - 

x1)/y1 = 0.91. Cmean is defined in Equation (4.1). 
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Table 4.3 Selected longitudinal locations for the examination of air 

entrainment and flow velocity pattern sampling lines for simulation 

case 1 (Tables 4.1 and 4.2). The distance of the jump toe from the inlet 

is 2.43 m. 

Selected location 1 2 3 4 

Distance from the inlet (m) 2.569 2.689 2.950 3.469 

 

 

 

Figure 4.6 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 0.91 for 

simulation case 1 with Fr1 = 3.1. 
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Figure 4.7 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 1.7 for 

simulation case 1 with Fr1 = 3.1. 

 

In Figure 4.7, the predicted maximum air volume fraction is 0.36, occurring at y = 0.26 m in 

the shear region (Figure 4.5). The upper boundary of the shear region is located at 0.28 m above 

the channel bottom. Below the water surface, the predicted profile (Figure 4.7) gives a depth-

averaged air volume fraction of Cmean = 0.32 at (x - x1)/y1 = 1.7. 
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Figure 4.8 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 3.41 for 

simulation case 1 with Fr1 = 3.1. 

 

In Figure 4.8, the predicted maximum air volume fraction is 0.26, occurring at y = 0.24 m in 

the shear region (Figure 4.5). The upper boundary of the shear region is located at 0.30 m above 

the bottom.  Below the water surface, the predicted profile (Figure 4.8) gives a depth-averaged air 

volume fraction of Cmean = 0.27 at (x - x1)/y1 = 3.41. 
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Figure 4.9 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 6.82 for 

simulation case 1 with Fr1 = 3.1. 

 

In Figure 4.9, the predicted maximum air volume fraction is 0.17, occurring at y = 0.22 m in 

the shear region. The upper boundary of shear region from the channel bottom is located at 0.34 

m. Below the water surface, the predicted profile (Figure 4.9) gives a depth-averaged air volume 

fraction of Cmean = 0.21 at (x - x1)/y1 = 6.82. 

The predicted vertical profiles of air volume fraction (Figures 4.6 – 4.9) appear to plot 

through the experimental data points. There are discrepancies between the predictions and the 

measurements in some portion of the shear region, where the CFD model has over-predicted air 

volume fraction. The CFD predictions of air volume fraction being higher than the experimental 

values are possibly due to the scale effect. The experiments of Chachereau & Chanson (2010) were 

limited to the use of experimental setup of smaller dimensions, compared to the model channel 

(Figure 3.1) used in this CFD work. 
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The vertical profiles (Figures 4.6 – 4.9) show variations in air volume fraction with depth 

below the water surface. For the analysis of hydraulic jumps, depth-averaged air volume fraction, 

Cmean, given in Equation (4.1), between the water surface and the channel bottom is a useful 

parameter. In Figure 4.10, we compare the predicted distribution of Cmean along the length of the 

model channel with Chachereau and Chanson’s (2010) experimental data. The predictions appear 

to give overestimates of Cmean values. 

 

 

 

Figure 4.10 Distributions of predicted and measured depth-averaged air volume fraction for 

simulation case 1. The upstream Froude number is Fr1 = 3.1. 

 

The CFD model produced distributions of the longitudinal velocity component, Vx, at 

different depth between the channel bottom and the free surface, which are difficult to measure 

from laboratory experiments. In Figure 4.11(a)-4.11(d), we show the vertical distributions of Vx 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8

C
m

ea
n

(x-x1)/y1

present study

Chachereau and

Chanson, 2010



57 

 

 

 

between the channel bottom and the height, at which the air volume fraction is C   0.5, at four 

selected longitudinal locations. At each of the location, the maximum value of Vx and the vertical 

distance above the channel bottom where the maximum value occurs are indicated.  In Figure 

4.11(a)–4.11(c), Vx has negative values in the top portion of the profiles. These negative values 

mean reverse flow in the recirculation region immediately below the free water surface. 

 

 

(a) At (x - x1) / y1 = 0.91 
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(b) At (x - x1) / y1 = 1.71 

 

 

 

(c)  At (x - x1) / y1 = 3.41 
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(d)  At (x - x1) / y1 = 6.82 

 

Figure 4.11 Vertical profiles of the time - averaged longitudinal velocity component below the 

free surface for simulation case 1, with Fr1 = 3.1.  
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4.4.2  Simulation case 2 

For simulation case 2, the upstream Froude number is Fr1 = 3.8. The hydraulic jump is classified 

as form B, as discussed in Section 2.3. In Figure 4.12, contours of time averaged water volume 

fraction are shown. The location of the jump toe is x1 = 2.06 m downstream of the inlet. 

 

 

Figure 4.12 Time averaged distribution of water volume fraction for simulation case 2, in which 

the upstream Froude number is Fr1 = 3.8. 

  

In Figure 4.13, the distribution of flow velocity vectors, along with contours of time-

averaged water volume fraction, at the last time step of the simulation, is plotted. The magnitudes 

of the vectors are shown by the lengths of the vectors. The colour scale for the vectors shows time-

averaged water volume fraction. The water surface profile after the jump toe clearly defines a 

hydraulic jump. 
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Figure 4.13 Distributions of flow velocity vectors and time-averaged water volume fraction in 

the hydraulic jump for simulation case 2. The upstream Froude number is Fr1 = 3.8 (Table 4.1 and 

Table 4.2) 

 

In Figures 4.14 to 4.17, we plotted vertical profiles of predicted time-averaged air volume 

fraction at four selected locations (Table 4.4) along the length of the model channel downstream 

of the jump toe. The experimental data of Chachereau and Chanson (2010) are shown as solid 

circles in the Figures for comparison purposes. Note that the predictions and experimental data 

match in location in terms of (x - x1)/y1. In Figure 4.14, the predicted maximum air volume fraction 

occurs in the shear region (Figure 4.13), whose upper boundary is located at y = 0.32 m above the 

channel bottom. The maximum air volume fraction is equal to 0.46, and occurs at y = 0.26 m. The 

predicted profile (Figure 4.14) gives a depth-averaged air volume fraction of Cmean = 0.45 at (x - 

x1)/y1 = 1.81. Cmean is defined in Equation (4.1). 
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Table 4.4 Selected longitudinal locations for the examination of air 

entrainment and flow velocity pattern sampling lines for simulation case 2 

(Tables 4.1 and 4.2). The distance of the jump toe from the inlet is 2.06 m. 

Selected location 1 2 3 4 

Distance from the inlet (m) 2.369 2.489 2.75 3.269 

 

 

 

Figure 4.14 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 1.81 for 

simulation case 2 with Fr1 = 3.8. 
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Figure 4.15 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 3.81 for 

simulation case 2 with Fr1 = 3.8. 

 

In Figure 4.15, the predicted maximum air volume fraction is 0.44, occurring at y = 0.30 m 

in the shear region (Figure 4.13). The upper boundary of the shear region is located at 0.32 m 

above the channel bottom. The predicted profile (Figure 4.15) gives a depth-averaged air volume 

fraction of Cmean = 0.44 at (x - x1)/y1 = 3.81. 
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Figure 4.16 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 7.23 for 

simulation case 2 with Fr1 = 3.8. 

 

In Figure 4.16, the predicted maximum air volume fraction is 0.40, occurring at y = 0.31 m 

in the shear region (Figure 4.13). The upper boundary of the shear region is located at 0.37 m 

above the bottom. The predicted profile (Figure 4.16) gives a depth-averaged air volume fraction 

of Cmean = 0.41 at (x - x1)/y1 = 7.23. 
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Figure 4.17 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 10.8 for 

simulation case 2 with Fr1 = 3.8. 

 

In Figure 4.17, the predicted maximum air volume fraction is 0.22, occurring at y = 0.26 m 

in the shear region. The upper boundary of shear region from the channel bottom is located at 0.42 

m. The predicted profile (Figure 4.17) gives a depth-averaged air volume fraction of Cmean = 0.28 

at (x - x1)/y1 = 10.8. 

As shown in Figures 4.14–4.17, there are some discrepancies between the CFD results and 

Chachereau and Chanson’s (2010) measurements, especially in the shear region. The discrepancies 

may result from a number of factors: 

(1) The measurements were made using a double-tip conductivity probe that detected the 

instantaneous presence of air or water at discrete time steps with a sampling frequency of 

20 Hz. The detection was based on the difference in electrical resistance between air and 

water. At each sampling time, the probe recorded the presence of either water (C = 0) or 
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air (C = 1). These presence and absence records were used to obtain average values. Our 

CFD results give continuous values (between 0 and 100%) of air volume fraction in each 

cell of the model domain at every sampling step. These continuous records would produce 

more accurate time averages of air volume fraction air volume fraction. 

(2) In simulation case 2, at the upstream Froude number of Fr1 = 3.8, the hydraulic jump 

belongs to group B (see Section 2.3). Group B jumps have an oscillating nature. They are 

the most unsteady hydraulic jump, with their toes moving back and forth in the longitudinal 

direction. Because of such movement, there are uncertainties in the longitudinal 

coordinates (relative to the jump toe) of sampling cross sections, as determined both in the 

laboratory channel and in the CFD channel. It is difficult to match exactly the toe positon 

between experiments and simulations. This can cause discrepancies between the 

measurements and predictions at cross sections downstream of the jump toe. In fact, for 

highly oscillating types of jumps, it is problematic to locate the jump toe by visual 

observations in experiments. It is less problematic in CFD simulations, because we used 

time averaged air volume fraction in all the cells to location the jump toe. 

(3) Scale effect is another possible factor, as explained earlier. 

The vertical profiles (Figures 4.14 – 4.17) show variations in air volume fraction with depth 

below the water surface. For the analysis of hydraulic jumps, depth-averaged air volume fraction, 

Cmean, given in Equation (4.1), between the water surface and the channel bottom is a useful 

parameter. In Figure 4.18, we compare the predicted distribution of Cmean along the length of the 

model channel with Chachereau and Chanson’s (2010) experimental data. The predictions appear 

to give overestimates of Cmean values. 

 



67 

 

 

 

 

Figure 4.18 Distributions of predicted and measured depth-averaged air volume fraction for 

simulation case 2. The upstream Froude number is Fr1 = 3.8. 

 

From simulation case 2 with Fr1 = 3.8, the CFD model predicted a decrease in the depth- 

averaged, time-averaged air volume fraction, Cmean, monotonically with longitudinal distance from 

the jump toe (Figure 4.18), whereas the experimental data (Chachereau and Chanson, 2010) 

showed a decreases in Cmean with longitudinal distance up to (x – x1)y1  7, followed by a slight 

increase. The predicted values of Cmean are higher than the measured values. We interpret that a 

larger amount of air being entrained into the hydraulic jump in the simulation is due to the effect 

of the Reynolds number (Equation 2.10), which is larger in the simulation than in the experiments. 

The CFD model produced distributions of the longitudinal velocity component, Vx, at 

different depth between the channel bottom and the free surface, which are difficult to measure 

from laboratory experiments. In Figure 4.19(a)-4.19(d), we show the time- averaged vertical 

distributions of Vx between the channel bottom and the height, at which the air volume fraction is 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12

C
m

ea
n

(x-x1)/y1

present study

Chachereau

and Chanson,

2010



68 

 

 

 

C   0.5, at four selected longitudinal locations. At each of the location, the maximum value of 

time - averaged Vx and the vertical distance above the channel bottom where the maximum value 

occurs are indicated.  In Figure 4.19(b) and 4.19(c), Vx has negative values in the top portion of 

the profiles. These negative values mean reverse flow in the recirculation region immediately 

below the free water surface. 
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(c) At (x - x1) / y1 = 7.23 

 

 

 

(d) At (x - x1) / y1 = 10.8 

 

Figure 4.19 Vertical profiles of the time - averaged longitudinal velocity component below the 

free surface for simulation case 2, with Fr1 = 3.8.  
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4.4.3  Simulation case 3 

For simulation case 3, the upstream Froude number is Fr1 = 4.4. The hydraulic jump is classified 

as form B, as discussed in Section 2.3. In Figure 4.20, contours of time averaged water volume 

fraction are shown. The location of the jump toe is x1 = 1.16 m downstream of the inlet. 

 

Figure 4.20 Time averaged distribution of water volume fraction for simulation case 3, in which 

the upstream Froude number is Fr1 = 4.4. 

 

In Figure 4.21, the distribution of flow velocity vectors, along with contours of time-

averaged water volume fraction, at the last time step of the simulation, is plotted. The magnitudes 

of the vectors are shown by the lengths of the vectors. The colour scale for the vectors shows time-

averaged water volume fraction. The water surface profile after the jump toe clearly defines a 

hydraulic jump. 
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Figure 4.21 Distributions of flow velocity vectors and time-averaged water volume fraction in 

the hydraulic jump for simulation case 3. The upstream Froude number is Fr1 = 4.4 (Table 4.1 and 

Table 4.2) 

 

In Figures 4.22 to 4.24, we plotted vertical profiles of predicted time-averaged air volume 

fraction at three selected locations (Table 4.5) along the length of the model channel downstream 

of the jump toe. The experimental data of Chachereau and Chanson (2010) are shown as solid 

circles in the Figures for comparison purposes. Note that the predictions and experimental data 

match in location in terms of (x - x1)/y1. In Figure 4.22, the predicted maximum air volume fraction 

occurs in the shear region (Figure 4.21), whose upper boundary is located at y = 0.35 m above the 

channel bottom. The maximum air volume fraction is equal to 0.26, and occurs at y = 0.26 m. The 

predicted profile (Figure 4.22) gives a depth-averaged air volume fraction of Cmean = 0.29 at (x - 

x1)/y1 = 3.8. Cmean is defined in Equation (4.1). 
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Table 4.5 Selected longitudinal locations for the examination 

of air entrainment and flow velocity pattern sampling lines for 

simulation case 3 (Tables 4.1 and 4.2). The distance of the jump 

toe from the inlet is 1.16 m. 

Selected location 1 2 3 

Distance from the inlet (m) 1.739 2.317 2.897 

 

 

 

Figure 4.22 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 3.8 for 

simulation case 3 with Fr1 = 4.4. 
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region. Above the shear region, there are small discrepancies; at the same height (y/y1), the CFD 

results give lower air volume fraction. 

 

 

Figure 4.23 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 7.59 for 

simulation case 3 with Fr1 = 4.4. 

 

In Figure 4.23, the predicted maximum air volume fraction is 0.22, occurring at y = 0.24 m 

in the shear region (Figure 4.21). The upper boundary of the shear region is located at 0.45 m 

above the channel bottom. The predicted profile (Figure 4.23) gives a depth-averaged air volume 

fraction of Cmean = 0.25 at (x - x1)/y1 = 7.59. There is a good agreement between the CFD results 

and the measurements except for the lower part of the shear region. 
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Figure 4.24 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 11.4 for 

simulation case 3 with Fr1 = 4.4. 

 

In Figure 4.24, the predicted maximum air volume fraction is 0.21, occurring at y = 0.28 m 

in the shear region (Figure 4.21). The upper boundary of the shear region is located at 0.52 m 

above the bottom. The predicted profile (Figure 4.24) gives a depth-averaged air volume fraction 

of Cmean = 0.24 at (x - x1)/y1 = 11.4. There is a good agreement between the CFD results and the 

measurements above the shear region. In the shear region and below, the CFD simulation produced 

higher air volume fraction. 

The vertical profiles (Figures 4.22 – 4.24) show variations in air volume fraction with depth 
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model channel with Chachereau and Chanson’s (2010) experimental data. The predictions appear 

to give overestimates of Cmean values. 

 

Figure 4.25 Distributions of predicted and measured depth-averaged air volume fraction for 

simulation case 3. The upstream Froude number is Fr1 = 4.4 
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time - averaged Vx and the vertical distance above the channel bottom where the maximum value 

occurs are indicated.  In Figure 4.19(a) - 4.19(c), Vx has negative values in the top portion of the 

profiles. These negative values mean reverse flow in the recirculation region immediately below 

the free water surface. 
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(b) At (x - x1) / y1 = 7.59   

 

 

 

(c) At (x - x1) / y1 = 11.4   

 

Figure 4.26 Vertical profiles of the time - averaged longitudinal velocity component below the 

free surface for simulation case 1, with Fr1 = 3.1. 
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4.4.4  Simulation case 4 

For simulation case 4, the upstream Froude number is Fr1 = 5.1. The hydraulic jump is classified 

as form C, as discussed in Section 2.3. In Figure 4.27, contours of time averaged water volume 

fraction are shown. The location of the jump toe is x1 = 0.41 m downstream of the inlet. 

 

Figure 4.27 Time averaged distribution of water volume fraction for simulation case 4, in which 

the upstream Froude number is Fr1 = 5.1. 

 

In Figure 4.28, the distribution of flow velocity vectors, along with contours of time-

averaged water volume fraction, at the last time step of the simulation, is plotted. The magnitudes 

of the vectors are shown by the lengths of the vectors. The colour scale for the vectors shows time-

averaged water volume fraction. The water surface profile after the jump toe clearly defines a 

hydraulic jump. 
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Figure 4.28 Distributions of flow velocity vectors and time-averaged water volume fraction in 

the hydraulic jump for simulation case 4. The upstream Froude number is Fr1 = 5.1 (Table 4.1 and 

Table 4.2) 

 

In Figures 4.29 to 4.32, we plotted vertical profiles of predicted time-averaged air volume 

fraction at four selected locations (Table 4.6) along the length of the model channel downstream 

of the jump toe. The experimental data of Chachereau and Chanson (2010) are shown as solid 

circles in the Figures for comparison purposes. Note that the predictions and experimental data 

match in location in terms of (x - x1)/y1. In Figure 4.29, the predicted maximum air volume fraction 

occurs in the shear region (Figure 4.28), whose upper boundary is located at y = 0.32 m above the 

channel bottom. The maximum air volume fraction is equal to 0.19, and occurs at y = 0.19 m. The 

predicted profile (Figure 4.29) gives a depth-averaged air volume fraction of Cmean = 0.16 at (x - 

x1)/y1 = 3.8. Cmean is defined in Equation (4.1). 
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Table 4.6  Selected longitudinal locations for the examination of air entrainment and 

flow velocity pattern sampling lines for simulation case 4 (Tables 4.1 and 4.2). The 

distance of the jump toe from the inlet is 0.41 m. 

Selected location 1 2 3 4 

Distance from the inlet (m) 0.989 1.567 2.147 2.726 

 

 

 

 

Figure 4.29 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 3.8 for 

simulation case 4 with Fr1 = 5.1. 
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Figure 4.30 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 7.59 for 

simulation case 4 with Fr1 = 5.1. 

 

In Figure 4.30, the predicted maximum air volume fraction is 0.13, occurring at y = 0.18 m 

in the shear region (Figure 4.28). The upper boundary of the shear region is located at 0.49 m 

above the channel bottom. The predicted profile (Figure 4.30) gives a depth-averaged air volume 

fraction of Cmean = 0.12 at (x - x1)/y1 = 7.59. 

In Figures 4.29 and 4.30, the CFD predictions are in a good agreement with Chachereau and 

Chanson’s (2010) measurements except for the upper part of the shear region. The discrepancies 

for the upper part of shear region are possibly due to the scale effect. Chachereau and Chanson’s 

(2010) experiments used a setup of smaller dimensions, as explained in Section 4.4.2. 
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Figure 4.31 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 11.4 for 

simulation case 4 with Fr1 = 5.1. 

 

In Figure 4.31, the predicted maximum air volume fraction is 0.13, occurring at y = 0.23 m 

in the shear region (Figure 4.28). The upper boundary of the shear region is located at 0.51 m 

above the bottom. The predicted profile (Figure 4.31) gives a depth-averaged air volume fraction 

of Cmean = 0.11 at (x - x1)/y1 = 11.4. 
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Figure 4.32 Vertical profile of time-averaged air volume fraction at (x - x1)/y1 = 15.2 for 

simulation case 4 with Fr1 = 5.1. 

 

In Figure 4.32, the predicted maximum air volume fraction is 0.13, occurring at y = 0.22 m 

in the shear region. The upper boundary of shear region from the channel bottom is located at 0.40 

m. Below the water surface, the predicted profile (Figure 4.9) gives a depth-averaged air volume 

fraction of Cmean = 0.11 at (x - x1)/y1 = 15.2. In Figures 4.31 and 4.32, there is a very good agreement 

between the CFD predictions and laboratory measurements.  

The vertical profiles (Figures 4.29 – 4.32) show variations in air volume fraction with depth 

below the water surface. For the analysis of hydraulic jumps, depth-averaged air volume fraction, 

Cmean, given in Equation (4.1), between the water surface and the channel bottom is a useful 

parameter. In Figure 4.10, we compare the predicted distribution of Cmean along the length of the 

model channel with Chachereau and Chanson’s (2010) experimental data. The predictions appear 

to give lower values of Cmean. 
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Figure 4.33 Distributions of predicted and measured depth-averaged air volume fraction for 

simulation case 4. The upstream Froude number is Fr1 = 5.1. 

 

In Figure 4.33, for Fr1 = 5.1, the double averaged air volume fraction, Cmean, is shown to 

decrease with increasing longitudinal distance from the jump toe, both in the simulation and in the 

experiments. The simulation produced lower values of Cmean than the experiments. This is opposite 

to the previous comparisons for simulation cases 1, 2 and 3, where the hydraulic jumps are 

oscillating jumps, belonging to B group. With Fr1 = 5.1, the hydraulic jump is stable jump. For 

stable jumps, it is possible that a higher Reynolds number does not necessarily lead to an increase 

in entrainment of air into the flow. 

The CFD model produced distributions of the longitudinal velocity component, Vx, at 
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C   0.5, at four selected longitudinal locations. At each of the location, the maximum value of 

time - averaged Vx and the vertical distance above the channel bottom where the maximum value 

occurs are indicated.  In Figure 4.34(a)-4.34(d), Vx has negative values in the top portion of the 

profiles. These negative values mean reverse flow in the recirculation region immediately below 

the free water surface. 
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(b)At (x - x1) / y1 = 7.59 

 

 

 

 

(c)At (x - x1) / y1 = 11.4 
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(d)At (x - x1) / y1 = 15.2 

 

Figure 4.34 Vertical profiles of the time - averaged longitudinal velocity component below the 

free surface for simulation case 4, with Fr1 = 5.1. 

 

4.5 Summery 

For the four simulation cases, distributions of air entrainment and flow velocity are summarised 

below: The predicted distributions from this study are consistent with the general characteristics 

reported in earlier studies of hydraulic jumps [Figures 4.3(a) and 4.3(b)]. Except for simulation 

case 2, there is a good agreement between predictions of vertical distributions of air volume 

fraction and Chachereau and Chanson’s (2010) measurements. As for the discrepancies for 

simulation case 2, it is possible that the measurements in some regions of the jump contain 

significant errors. The measurement data points are seen to scatter to a large extent, which shows 

significant limitations of a laboratory model for hydraulic jump experiments. 

For all four simulation cases, the maximum air volume fraction, Cmax, occurs in the shear layer, 

and the maximum volume fraction decreases with increasing longitudinal distance from the jump 

toe. This decreasing trend is shown in Figure 4.35. The double averaged air volume fraction, Cmean, 

decreases with increasing distance from the jump toe. This can be interpreted by the buoyancy of 

air bubbles. As air bubbles move toward downstream, they rise upward toward the free surface 

and de-aeration is expected to occur. 
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Figure 4.35 The maximum air volume fraction in the shear region in different distances from 

the jump toe in all four test cases in the present study 

 

For the first three simulation cases with the approach flow Froude number Fr1 = 3.1 to 4.4, the 

predicted Cmean values are higher than the measured values from Chachereau and Chanson (2010). 

The differences are possibly due to the depth of approach flow is larger in our simulations than in 

their experiments. Note that a larger depth corresponds to a larger Reynolds number, which is a 

fundamental dimensionless parameter for turbulence. Thus, for Fr1 = 3.1 to 4.4, the amount of air 

that enters the hydraulic jump appears to be proportional the vertical dimension of the approach 

flow. 

This proportional relationship ceases to exist when the Froude number exceeds a certain 

threshold. For example, for simulation case 4 (with Fr1 = 5.1), predicted Cmean values are plotted 

below the corresponding measured values. This means a decrease in the amount of air entrainment 

with an increase in the vertical dimension of the approach flow (or equivalently the hydraulic 

jump) from the laboratory channel (Chachereau and Chanson, 2010) to the model channel (this 

study). This inverse relationship between average air entrainment and the vertical dimension of 
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the hydraulic jump can be true for jumps at Fr1 > 5.1. It must be noticed that this generalisation 

needs further verifications for a wide range of hydraulic jumps at various Froude numbers and 

dimensions. 

Note that the processes that are responsible for producing spray above the water free surface 

are not taken to account in the CFD simulations of this research. In fact, 2.5-mm mesh resolutions 

are inadequate to resolve spray. 
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Chapter 5 Conclusions 

 

5.1 Concluding remarks 

This thesis reports a successful computational fluid dynamics (CFD) investigation of hydraulic 

jumps as two-phase flow, with air as the gas phase and water as the liquid phase. The two-phase 

flow treatment much more closely reflects a real-world hydraulic jump than the traditional 

approach, which considers hydraulic jumps as pure water flow and ignores the presence of air 

bubbles in the flow. In this research work, the computational domain is a two-dimensional, flat-

bottom model channel of 6 m long and 2.2 m deep. These dimensions are large, in comparison to 

the typical channel dimensions in earlier studies of hydraulic jumps. 

The model channel is covered with rectangular finite volume mesh of high resolutions, being 

approximately 2.5 mm in both the longitudinal and vertical directions. The mesh consists of more 

than two million computing nodes. The use of such high resolutions has enabled us to capture the 

flow details of hydraulic jumps. This is important because hydraulic jumps are rapidly varied flow. 

The computations use the volume of fluid method for tracking the free surface, and the standard 

k- model for turbulence closure. For given hydraulic conditions, the computations produce finite 

volume solutions to the Reynolds-averaged continuity and momentum equations. 

The hydraulic conditions used in the computations are such that the approach flow Froude 

number Fr1 is in the range of 3.1 to 5.1, the depth of approach flow is 15.24 cm at the channel inlet, 

and the flow Reynolds number before the jump toe is in the range of 577662 to 950347. It is worth 

noting that the approach flow depth of 15.24 cm is an order of magnitude higher than that 

commonly used in earlier studies. The above-mentioned Reynolds numbers are high enough to 

reflect reality. This has proven to be difficult to achieve in laboratory experiments, which typically 

maintain Froude number similarity but scarify Reynolds number similarity with prototype models. 

From this perspective, this research work has produced computational results complementary to 

experimental data. 

 The computational results of air volume fraction are in a reasonable comparison 

with available experimental data. The computations are shown to produce distributions of time-

averaged air volume fraction and flow velocity [Figures 4.3(a) and 4.3(b)], consistent with features 

reported in the literature. At a given longitudinal location, the vertical distribution of air volume 

fraction shows a local maximum value in the shear region. In the longitudinal direction toward 
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downstream, the local maximum air volume fraction decreases with increasing distance from the 

jump toe, and so does the average air entrainment in the jump. 

 A comparison of the computational results to the experimental data reveals the 

significant effects of the Reynolds number on air entrainment into hydraulic jumps. Up to a certain 

threshold value of the Froude number, higher Reynolds numbers appear to correspond to higher 

average air entrainment. In general, the effects of the Reynolds number in applications to open 

channel flow problems have not been investigated thoroughly. 

 Because of the typically unsteady nature of the hydraulic jump phenomenon, it is 

practical and necessary to apply time average to computational or experimental results. This is 

particularly true for oscillating hydraulic jumps, which is the case for the simulation with Fr1 = 3.8 

(simulation case 2). It is critical to accurately locate the jump toe. The uncertainties in locating the 

jump toe are much lower in the CFD simulations that in the laboratory experiments, for the simple 

reason that   the simulations give continuous distributions of air-water volume fraction and flow 

velocity in each cell. We have successfully located the toes of highly dependent hydraulic jumps 

and obtained meaningful time averaged results. 

This research work has demonstrated the advantage that CFD computations have the 

capability to simulating hydraulic jumps at high and practical Reynolds numbers (with minimal 

scale effects) in an efficient and cost-effective manner. Reliable simulation results have been 

obtained. As for the key to success, we used a very fine mesh and very small time step that are 

essential for accurate and stable calculations, and more importantly, appropriate strategies for 

modelling the air entrainment process.  

5.2 Suggestions for future research 

It is worthy of further investigations of the problem of hydraulic jumps by considering the 

following: 

▪ Simulate two-dimensional hydraulic jumps for a wide range of Froude numbers, up to Fr1 

= 9.0 and at Reynolds numbers corresponding to laboratory experiments. This will 

facilitate direct comparisons between simulations and laboratory experiments. 

▪ Perform three-dimensional simulations of hydraulic jumps because of the irregular nature 

of turbulence in three dimensions, which is responsible for air entrainment. 
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▪ Obtain simultaneous measurements of flow velocity and air entrainment for hydraulic jump 

experiments for validation of CFD predictions. 

▪ To investigate air entrainment in hydraulic jump, in detail, for a wide range of upstream 

Reynolds numbers with values of upstream Froude numbers that matches available 

experiments. 
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