Collocation Methods for Nonlinear Parabolic Partial Differential Equations

Xu Chen

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Computer Science at
Concordia University
Montréal, Québec, Canada

April 2017

© Xu Chen, 2017
This is to certify that the thesis prepared

By: Xu Chen

Entitled: Collocation Methods for Nonlinear Parabolic Partial Differential Equations

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to originality and quality.

Signed by the Final Examining Committee:

__ Chair

Dr. Name of the Chair

__ Examiner

Dr. Tien D. Bui

__ Examiner

Dr. Adam Krzyzak

__ Supervisor

Dr. Eusebius Doedel

Approved by

Sudhir Mudur, Chair
Department of Computer Science

_________________________ 2017

Dr. Amir Asif, Dean
Faculty of Engineering and Computer Science
Abstract

Collocation Methods for Nonlinear Parabolic Partial Differential Equations

Xu Chen

In this thesis, we present an implementation of a novel collocation method for solving nonlinear parabolic partial differential equations (PDEs) based on triangle meshes. The temporal partial derivative is discretized using the implicit Euler-backward finite difference scheme. The spatial domain of the PDEs discussed in this thesis is two-dimensional. The domain is first triangulated and then refined into appropriately sized triangular elements by the Rivara algorithm. The solution is approximated by piecewise polynomials in the elements. The polynomial in each element is required to satisfy the PDE at collocation points of the element and keep a certain degree of continuity with the polynomials in the neighboring elements via matching points. Nested dissection is used recursively, from the elements up to the entire domain, to merge all pairs of sibling sub-regions for eliminating the variables at the matching points on the common sides shared by the merged sub-regions. Then by applying global boundary conditions, we solve for the solution values at the boundary points of the entire domain. The solutions at the boundary points of the domain are back-substituted to solve the variables at the matching points of the sub-regions. This back-substitution is repeated until every element is reached. The accuracy of the solution is affected by the time step, granularity of the subdivision, the number and location of matching points, and the number and location of collocation points. Increasing the number of matching points or collocation points does not always improve the accuracy. Instead, it may cause singularity. We have given several layouts of specific numbers of collocation and matching points which bring high accuracy. Our solution visualization algorithm directly renders mathematical surfaces instead of any approximation of them. Thus each pixel of the rendered surfaces exactly reflects the corresponding fragment on the mathematical surfaces.
Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. Eusebius J. Doedel, for his continuous support of my project and thesis, for his patience, motivation, and guidance.
Contents

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Partial differential equations 1

1.2 Linear and nonlinear second order partial differential equations 2

1.3 Nonlinear parabolic partial differential equations 2

1.4 Numerical methods 4

1.4.1 The finite difference method 5

1.4.2 The finite element method 5

1.4.3 The collocation method 6

1.5 Organization of the thesis 8

2 Mesh Generation 9

2.1 Local adaptive mesh refinement 9

2.2 Triangulation of polygonal domains 12

2.3 The Rivara algorithm 13

2.4 3D mesh refinement 16

2.5 Other mesh generation methods 18

3 A Collocation Method for Nonlinear Parabolic PDE BVP 19

3.1 Nonlinear parabolic PDE problems 19
6.3.5 A nonlinear parabolic PDE without stationary solution 96
6.4 Application .. 99
 6.4.1 The Gelfand-Bratu problem .. 99
 6.4.2 Numerical solution of the Gelfand-Bratu problem in $2D$ 100
6.5 Summary of numerical results .. 104

7 Visualization .. 106
 7.1 Pixel-correct mathematical surface rendering 107
 7.2 The principle of our rendering algorithm 109
 7.3 Technical details ... 112

8 Conclusions and Discussion .. 116

Bibliography .. 118

Appendix A Code of Visualization Program 125
List of Figures

Figure 1.1 A numerical solution of the Bratu problem in an irregularly shaped 2D domain by the finite element collocation method .. 7

Figure 2.1 A locally refined triangular mesh adapted to a 2D Gaussian function. 10
Figure 2.2 The profile of the 2D Gaussian function from [30] 10
Figure 2.3 A locally refined triangular mesh adapted to an ideal 2D low-pass filter 10
Figure 2.4 The ideal 2D low-pass filter ... 10
Figure 2.5 Measuring how much a piecewise polynomial surface is bent 11
Figure 2.6 Shapes with large aspect ratios: (a) angle too large; (b) angle too small. 14
Figure 2.7 (a) Generating a triangular mesh by triangulation. 14
Figure 2.8 (b) Refinement of the triangular mesh. .. 14
Figure 2.9 (a) Generating a triangular mesh by triangulation. 14
Figure 2.10 (b) Refinement of the triangular mesh. .. 14
Figure 2.11 A domain triangulated and refined at the first level. 16
Figure 2.12 The domain after 2 levels of refinement: level 1 and 2. 16
Figure 3.1 A triangular mesh for the 2D collocation method. 23
Figure 3.2 Collocation and matching points of an element. 23
Figure 3.3 4x3 matching points with 3 collocation points. 28
Figure 3.4 6x3 matching points with 10 collocation points. 28
Figure 3.5 6x3 matching points with 10 relocated collocation points. 32
Figure 4.1 A domain composed of 4 elements. ... 36
Figure 4.2 Region Ω_i, its pair of sibling sub-regions Ω_{i1} and Ω_{i2}, and the boundaries. 39
Figure 4.3 A region bisected into a pair of equal subregions by a single straight line. . . 43
Figure 4.4 A region subdivided into a pair of irregularly-shaped and -sized subregions by a polyline. 43
Figure 4.5 A region subdivided into a pair of nested subregions by a closed polyline. 43
Figure 4.6 A region subdivided into a pair of subregions by 2 separate polylines. 43
Figure 5.1 Software architect pattern of Model-View-Controller 48
Figure 5.2 View: 2D visualization of solutions 49
Figure 5.3 View: 3D visualization of solutions 49
Figure 5.4 Controller: parameters and selection of test PDEs 50
Figure 5.5 Work flow of the solver based on the collocation method 51
Figure 5.6 The subdivision tree 52
Figure 5.7 CSolver 54
Figure 5.8 Container CMesh contains all mesh information: vertices, edges, and elements. 55
Figure 5.9 CVertex and linked list of vertices. 56
Figure 5.10 CEdge and the linked list of edges. 56
Figure 5.11 CElement and the linked list of elements. 58
Figure 5.12 CMergedRegion 59
Figure 5.13 Merging of elements and merged regions 60
Figure 5.14 CSubMatrix and its data buffer. 61
Figure 5.15 CMergeInfo 62
Figure 5.16 Class Diagram 1 63
Figure 5.17 Class Diagram 2 64
Figure 6.1 4x3 matching points with 1 collocation point. 70
Figure 6.2 4x3 matching points with 2 collocation points. 70
Figure 6.3 6x3 matching points with 4 collocation points. 70
Figure 6.4 6x3 matching points with 7 collocation points. 70
Figure 6.5 Locations of Gauss points 72
Figure 6.6 Location of collocation points in a triangular element 72
Figure 6.7 A copy of the TABLE I from [22]. 74
Figure 6.37	$t = 0.4$	97
Figure 6.38	$t = 0.8$	97
Figure 6.39	$t = 1.2$	97
Figure 6.40	$t = 1.4$	98
Figure 6.41	$t = 1.8$	98
Figure 6.42	The stationary solution families of the Bratu problem.	100
Figure 6.43	$\lambda = -20.0$	101
Figure 6.44	$\lambda = -15.0$	101
Figure 6.45	$\lambda = -10.0$	101
Figure 6.46	$\lambda = -5.0$	101
Figure 6.47	$\lambda = 3.0$	101
Figure 6.48	$\lambda = 5.0$	101
Figure 6.49	$\lambda = 6.0$	101
Figure 6.50	$\lambda = 6.8$	101
Figure 6.51	The blow-up during time integration with $\lambda = 6.85$	102
Figure 6.52	Test the Bratu problem in another domain	103
Figure 7.1	2D visualization of a solution	106
Figure 7.2	2D visualization of another solution	106
Figure 7.3	A surface over a 64-element mesh. Each element has 1 collocation point and 2 matching points per edge.	107
Figure 7.4	A zoomed-in view of the surface for showing the shapes of the patches and the gaps between each pair of adjacent patches.	107
Figure 7.5	The principle of the algorithm	109
Figure 7.6	Cases where the correct intersections are not detected.	111
Figure 7.7	Surface of the Paraboloid rendered by our ray casting method.	114
Figure 7.8	Surface of the Gaussian distribution rendered by our ray casting method.	114
Figure A.1	Pseudo-code of the visualization program (Part 1)	125
Figure A.2	Pseudo-code of the visualization program (Part 2)	126
Figure A.3	Pseudo-code of the visualization program (Part 3)	127
List of Tables

Table 6.1 \tilde{e} and convergence rate of PDE (6.1) ... 79
Table 6.2 \tilde{e} and convergence rate of PDE (6.1) ... 80
Table 6.3 \tilde{e} and convergence rate of PDE (6.1). ... 80
Table 6.4 Comparison between the 7-collocation-point templates with different distributions of matching points for PDE (6.1). ... 81
Table 6.5 Comparison between the 6-collocation-point templates with different distributions of matching points for PDE (6.1). ... 81
Table 6.6 Comparison between the 4-collocation-point templates with different distributions of matching points for PDE (6.1). ... 82
Table 6.7 Comparing the maximum absolute error at the matching points, Part 1 82
Table 6.8 Comparing the maximum absolute error at the matching points, Part 2 82
Table 6.9 \tilde{e} and convergence rate of PDE (6.8) ... 84
Table 6.10 \tilde{e} and convergence rate of PDE (6.8) ... 84
Table 6.11 \tilde{e} and convergence rate of PDE (6.8) ... 84
Table 6.12 Comparison between the 7-collocation-point templates with different distributions of matching points for PDE (6.8). ... 85
Table 6.13 Comparison between the 6-collocation-point templates with different distributions of matching points for PDE (6.8). ... 85
Table 6.14 Comparison between the 4-collocation-point templates with different distributions of matching points for PDE (6.8). ... 85
Table 6.15 \tilde{e} and convergence rate of PDE (6.11) ... 88
Table 6.16 \tilde{e} and convergence rate of PDE (6.11) 89
Table 6.17 \tilde{e} and convergence rate of PDE (6.11) 89
Table 6.18 Comparison between the 7-collocation-point templates with matching points at Gauss points and evenly distributed for PDE (6.11).......................... 89
Table 6.19 Comparison between the 6-collocation-point templates with different distributions of matching points for PDE (6.11).......................... 90
Table 6.20 Comparison between the 4-collocation-point templates with different distributions of matching points for PDE (6.11).......................... 90
Table 6.21 Solution families found by our collocation method. 92
Table 6.22 \tilde{e} and convergence rate of PDE (6.17) 93
Table 6.23 \tilde{e} and convergence rate of PDE (6.17) 93
Table 6.24 Dependence of the errors on Δt 99
Table 6.25 Bratu solution family found by our collocation method. 103
Table 6.26 Accuracy levels and convergence rates of different configurations. 104
Chapter 1

Introduction

In this chapter we introduce partial differential equations (PDEs), especially nonlinear PDEs, and numerical methods for solving PDEs. The objectives of this thesis are also discussed.

1.1 Partial differential equations

A differential equation is a mathematical equation that relates a function and its derivatives [3]. A partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives. An ordinary differential equation (ODE) is a differential equation containing one or more functions of one independent variable and its derivatives. ODEs can be considered as a special case of PDEs, which deal with functions of a single variable and their derivatives [3]. The solution of PDEs are functions, which are written as \(u(x_1, x_2, \cdots, x_n) \). For time-dependent PDEs, the temporal variable is distinguished from the others because it has special significance. In this case, the solutions would be written as \(u(x_1, x_2, \cdots, x_{n-1}, t) \), where \(t \) denotes the time dimension and \(X = (x_1, x_2, \cdots, x_{n-1})^T \in \mathbb{R}^{n-1} \) represents the spatial variables. In engineering, often if not always, problems are in 2D or 3D space plus one temporal dimension. In 2D the spatial variable is usually written as \(X = (x, y) \in \mathbb{R}^2 \); in 3D, \(X = (x, y, z) \in \mathbb{R}^3 \). In this thesis we solve only PDEs in 2D spatial domains with one dimension of time. The order of a PDE is the order of the highest order derivative that appears in the PDE. Differential equations of order higher than two are rarely used to describe physical phenomena. This may be explained
by the Ostrogradsky instability [6], which states that PDEs with higher order derivatives tend to be unstable and their solutions blow up. If we solve a PDE with higher order terms, then we may get solutions that are unstable in the sense that any small change in input parameters may result in a wildly different solution. Since there is always uncertainty in the initial conditions, the solutions may not be meaningful [4]. On the other hand, there are methods for solving high order PDEs by splitting them into systems of lower order equations [7]. For this reason, much research has been done for second order PDEs.

1.2 Linear and nonlinear second order partial differential equations

Our discussion will be limited to PDEs in 2D space plus one temporal dimension. In this thesis, a 2D PDE means the spatial domain of the PDE is in 2D, not including its temporal dimension. PDEs are either linear or nonlinear.

A second order 2D PDE is linear if and only if it is of the form

\[A_1 \frac{\partial^2 u}{\partial x^2} + A_2 \frac{\partial^2 u}{\partial y^2} + A_3 \frac{\partial^2 u}{\partial t^2} + B_1 \frac{\partial u}{\partial x} + B_2 \frac{\partial u}{\partial y} + B_3 \frac{\partial u}{\partial t} + Cu = D, \]

(1.1)

where \(u = u(x, y, t) \), each of \(A_i, B_j, C, \) and \(D \) is a function of \((x, y, t) \) but not of \(u, u_x, u_y, \) or \(u_t \).

If a PDE is not linear, it must be nonlinear. Most real-world physical systems, including gas dynamics, fluid mechanics, elasticity, relativity, ecology, neurology, thermodynamics, and many more, are modeled by nonlinear partial differential equations [1]. Although linear approximations of some simplified real-world nonlinear phenomena can bring accurate solutions of limited scopes, solving nonlinear PDEs is still required in more general cases. In this thesis we will focus on nonlinear second order PDEs.

1.3 Nonlinear parabolic partial differential equations

Second order PDEs can be classified into hyperbolic, parabolic, and elliptic. Such classification is valid for both linear and nonlinear PDEs, but limited to PDEs of second order. Classification of PDEs is important because analytical theories and numerical methods usually apply only to a
specific class of equations. The collocation method discussed in this thesis is appropriate for solving nonlinear or linear parabolic PDEs.

The most important properties of PDEs depends only on the form of their highest order terms. The classification of PDEs relies on the highest order terms. As prescribed, we focus on second order PDEs in $2D$ space with one temporal dimension. Let all $A_i > 0$ in (1.2), (1.3), and (1.4).

\[
A_1 \frac{\partial^2 u}{\partial x^2} + A_2 \frac{\partial^2 u}{\partial y^2} + F(x, y, u, u_x, u_y) = 0 \quad (1.2)
\]

\[
\frac{\partial u}{\partial t} = A_1 \frac{\partial^2 u}{\partial x^2} + A_2 \frac{\partial^2 u}{\partial y^2} + F(x, y, t, u, u_x, u_y) \quad (1.3)
\]

\[
\frac{\partial^2 u}{\partial t^2} = A_1 \frac{\partial^2 u}{\partial x^2} + A_2 \frac{\partial^2 u}{\partial y^2} + F(x, y, t, u, u_x, u_y, u_t) \quad (1.4)
\]

PDEs in the form of (1.2) are elliptic PDEs, which are time-independent. PDEs in the form of (1.3) are parabolic PDEs. (1.4) represents the general form of hyperbolic PDEs. Suppose A_i are all positive constants. In this case, a PDE in any of the above forms has unique type in the entire domain. If any of $u, u_x, u_y,$ and u_t appears in nonlinear terms of $F(...)$, the PDE is nonlinear. In this thesis, we consider only the PDEs with constant A_i.

The representative examples of $2D$ elliptic PDEs include Poisson equation

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, u, u_x, u_y) \quad (1.5)
\]

and the $2D$ Laplace equation

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad . \quad (1.6)
\]

A typical example of hyperbolic PDE in $2D$ space is the wave equation

\[
\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \quad . \quad (1.7)
\]

Parabolic equations are typical for dissipative processes. Classical examples are heat conduction and diffusion. The incompressible Navier-Stokes equations, governing the dynamics of fluid flow,
is a system of parabolic PDEs, whose $2D$ case is defined as

\begin{align}
(a) \quad \frac{\partial \vec{u}}{\partial t} &= \nu \nabla^2 \vec{u} - (\vec{u} \cdot \nabla)\vec{u} + f \\
(b) \quad \frac{\partial \rho}{\partial t} &= k \nabla^2 \rho - (\vec{u} \cdot \nabla)\rho + S \\
(c) \quad \nabla \cdot \vec{u} &= 0
\end{align}
(1.8)

where equation (a) defines the change of velocity of the fluid flow, equation (b) defines the moving of density in the fluid flow, and equation (c) constrains the incompressibility of the fluid. There are terms of dissipation of velocity and density in (a) and (b), respectively. The ν and k are the coefficients of viscosity. The lower the values of viscosity efficient, the less viscous diffusion of the fluid; if the viscosity efficient are 0, the dissipation or diffusion will vanish. The Navier-Stokes equations can be generalized to $3D$ space. (1.8) is a system. We do not solve systems of PDEs in this thesis.

The heat and reaction equation is another example of a parabolic PDE.

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + f(x, y, t, u, u_x, u_y),
\]
(1.9)

where $f(\ldots)$ defines the reaction, i.e., the source of heat.

There is a wide range of scientific problems modeled by parabolic PDEs. Chapter 3 is dedicated to a more detailed discussion of parabolic PDEs. In this thesis we focus on nonlinear parabolic PDEs.

1.4 Numerical methods

The emphasis of this thesis is on the collocation method. To explain the principle of the collocation method, it is helpful to compare it to other numerical methods, such as the finite difference methods and finite element methods (FEM). For this purpose, such numerical methods are briefly introduced in this section. Our discussion in this section is still limited to the problem domain of $2D$ space, where $x = (x, y)^T$.
1.4.1 The finite difference method

The finite difference method is the most basic numerical method, and relatively easy to implement for regular domains. However, it is difficult to support irregularly shaped domains. Multi-step finite-difference methods can improve the accuracy. In our collocation method, the time derivative is discretized with a finite-difference method. For the simplicity of implementation, we use single-step difference method, which introduces a local truncation error of $O(h^2)$ and an accumulated error of $O(h)$ at a specific time t, where h is the size of a time step. The forward (or explicit) finite-difference method has the limitations on step size to ensure numerical stability. The limitations of step size make this method inefficient for stiff systems. The backward (or implicit) finite-difference method is A-stable\[?\], thus it is used in our collocation method for discretizing the time derivative.

1.4.2 The finite element method

The finite element method (FEM) is a numerical method widely used for finding numerical solutions of boundary value problems (ODE/PDEs) on complicated problem domains. Meshes are generated to discretize problem domains into elements, and the size of the elements depends on the expected accuracy. Each element connects to its neighboring elements only at some nodes. In each element Ω_j, the exact solution $u(x)$ is approximated by piecewise polynomial, which is defined as

$$ u(x) \approx p(x) = \sum_{i=1}^{n} u_i \phi_i(x) , \quad x = (x, y)^T \in \Omega_j \subset \mathbb{R}^2 $$

(1.10)

where u_1, u_2, \ldots, u_n are the unknown nodal values to solve for on the boundary $\delta\Omega_j$, and $\{\phi_i\}$ are shape functions, which must be appropriately chosen such that

$$ p(x_i) = \sum_{i=1}^{n} u_i \phi_i(x_i) = u_i = u(x_i) , $$

where $x_i = (x_i, y_i)$ is the nodal location. Then discretize the PDEs into weak forms. The most common method used for transforming the PDEs into weak formulations is the Galerkin method. However, choosing appropriate basis functions is usually a difficult issue for Galerkin methods. After the discretization, an integration by parts is performed on the initial weak form, and further
Green’s theorem is used to convert some items of the integral over Ω_j into line integrals over $\delta\Omega_j$. As the result, a local linear system of unknown nodal values u_i in element Ω_j is constructed. Such linear system is constructed for every element. Then all the local systems are appropriately merged to generate a global system, to which the boundary condition is applied to solve it.

1.4.3 The collocation method

Collocation methods are another way for finding numerical solutions of ODEs or PDEs. The principle of collocation method is to approximate the exact solutions $u(x)$ of an ODE or a PDE by determining an appropriate linear combination of a group of linearly independent basis functions $\{\phi_1, \phi_2, \ldots, \phi_K\}$

$$u(x) \approx p(x) = \sum_{i=1}^{K} c_i \phi_i(x)$$

such that $p(x)$ satisfies the given ODE or PDE at a number of appropriately located points (called collocation points), and at the same time, satisfies the boundary conditions. The dimension K of the polynomial space is determined by the number of the collocation points and the points on the boundary at which the boundary condition is satisfied.

A collocation method which solves the approximate polynomial $p(x)$ in the entire problem domain is called a global collocation method. Consider 1-dimensional or 2-dimensional domains. For the differential equations whose solutions are complex-shaped curves or surfaces, we have to use polynomials of higher degree to approximate the exact solutions. Theoretically, this can be achieved by increasing the number of collocation points and boundary points. However, once the numbers exceed a certain range, the collocation scheme will tend to cause singularities, divergence, or instabilities. Differential equations with irregularly shaped domains also require more collocation points and boundary points and therefore bring the same problem. In either of the cases we need to subdivide the entire domain into smaller regions, called elements. This leads us to the finite element collocation method (or discontinuous piecewise polynomial collocation method).

In the finite element collocation method, we discretize the domain Ω into elements Ω_i [17], each of which has its own collocation points (called local collocation points) and matching points on its borders shared with its adjacent elements. The process of subdividing a mesh is also called
mesh refinement. For each element Ω_i, we determine a polynomial $p_i(x)$ which satisfies the differential equation at the local collocation points, and at the same time achieves a certain degree of continuity with the polynomials of the adjacent elements at matching points. As the result, we get an approximation of the exact solution at the matching points in the entire domain Ω. Suitable interpolation will then be used to evaluate the approximated solution anywhere in the computational domain [11]. Mesh-based numerical techniques are not feasible, however, for solving mathematical problems defined in spaces of high dimensions (higher than $3D$). The reason is that their number of degrees of freedom grows exponentially with the dimensionality of the problem [11]. In this thesis we use a finite element collocation method to solve nonlinear parabolic PDEs in $2D$ space. Thus, by default, all “collocation method”s appearing in the remainder of this thesis refer to the finite element collocation method (or discontinuous piecewise polynomial collocation method) applied to $2D$ problems. An example solution is visualized as Figure 1.1, which shows that a generally shaped $2D$ domain is refined into a $2D$ triangular mesh, and each element has a piecewise-smooth local polynomial surface patch, which has a certain level of continuity with the surface patches of the adjacent elements. However, the connection between each pair of adjacent surface patches is not smooth. Gaps are visible between some pairs of adjacent surface patches, as continuity is guaranteed only at the matching points. In this thesis, “surface patch” is the synonym of the surface of a piecewise polynomial. The advantage of collocation methods over finite difference methods is their potentially higher accuracy and the fact that nonuniform meshes can be used. Applying collocation methods to nonlinear parabolic PDEs will be explained in detail in the following chapters.

Figure 1.1: A numerical solution of the Bratu problem in an irregularly shaped $2D$ domain by the discontinuous piecewise polynomial collocation method. (Visualized by our visualization module.)
1.5 Organization of the thesis

This thesis is organized as follows. Chapter 1 gives an overview of the classification of PDEs and the numerical methods, where the collocation method is also briefly introduced. Chapter 2 describes triangulation of irregularly shaped problem domains and generation of adaptive triangular meshes over the domains. The Rivara algorithm is also introduced. In Chapter 3, we explain in detail the principle of the collocation method. In Chapter 4, we extend the local system of the piece-wise collocation method from a single element to the subdivision hierarchy. We also estimate the complexity of the method. Chapter 5 describes the software architecture and data structure. Chapter 6 discusses five test PDEs and an application of the collocation method to the Bratu problem. From the large number of the test results we find the configurations of collocation points and matching points which bring high accuracy and best performance. Chapter 7 is dedicated to explaining the principle and algorithms of our 3D visualization program. In Chapter 8, we give a summary and conclusions of the research, and we point to several possible improvements.
Chapter 2

Mesh Generation

As shown in Figure 1.1 in Section 1.4, the collocation method for solving 2D PDEs relies on discretizing the problem domain with 2D meshes. In this chapter we discuss 2D mesh generation. The generation of 3D mesh, which is necessary for a 3D collocation method, is also mentioned briefly at the end of this chapter.

2.1 Local adaptive mesh refinement

The 2D mesh for our collocation method is a triangular mesh, composed of triangular elements only. In some other implementations of the collocation method, square-element meshes have been used [17], [27], [28]. However, square (or more generally, quadrilateral) elements have two main limitations. First, a quadrilateral-element mesh cannot easily support locally adaptive mesh refinement. Local refinement refers to recursively subdividing only the local regions where smaller elements are needed to reach the required accuracy. The recursive subdivisions must be limited to the local regions and not spread over the global domain. Based on locally refined meshes, collocation methods can achieve high accuracy with fewer elements, thereby at less computational cost, in comparison to using globally refined meshes. However, refinement in any square element must spread to all elements that are geometrically adjacent in horizontal and/or vertical directions in the span of the global domain. Therefore, square elements do not easily support local refinement. For
general quadrilateral-element meshes, local refinement usually cannot be achieved, either. Triangular meshes support local refinement; two locally adaptive triangle meshes generated by Rivara’s refinement algorithm ([42],[46]) are shown in Figure 2.1 and 2.3.

![Figure 2.1: A locally refined triangular mesh adapted to a 2D Gaussian function.](image)

![Figure 2.2: The profile of the 2D Gaussian function from [30].](image)

![Figure 2.3: A locally refined triangular mesh adapted to an ideal 2D low-pass filter.](image)

![Figure 2.4: The ideal 2D low-pass filter](image)

Evaluation methods are needed by locally adaptive mesh refinement schemes to determine whether a region needs to be further refined or not. The evaluation methods estimate local errors. If an estimated local error is larger than a given threshold, then continue to locally refine the related elements. “Mesh adaptation is based on a posteriori error estimator or error indicator that is evaluated in function of the current numerical solution at each discrete place of the mesh” [44]. For
finite element methods, a Posteriori Error Estimation techniques have been developed [34][35][36]. For the collocation method there is no existing theoretically proved local error estimator. Thus evaluation methods for collocation methods evaluate error indicators instead of directly estimating errors. An error indicator can approximately reflect how big the local error could be. One practically used error indicator is the absolute difference between the two \((n-1)\)th order outward directional derivatives of the two \(n\) degree polynomials over each pair of neighboring elements at each of their matching points. (The outward directional derivative will be explained in Section 3.2 by Figure 3.1 and equation (3.12)) If such error indicator is larger than a specified threshold, the elements need to be further refined. In this thesis we have tried another error indicator, which computes the quasi-curvature of the polynomial surface patch over each element. If the quasi-curvature of a polynomial surface patch is larger than a certain threshold, the corresponding element will be further refined. The quasi-curvature is calculated the way illustrated in Figure 2.5. Triangle \(ABC\) is an element.

Figure 2.5: Measuring how much a piecewise polynomial surface is bent. The picture on the right side simplifies the view of 3D into 2D, where the curve represents the surface, and \(L\) represents the plane of triangle \(A'B'C'\).

\(A'B'C'\) is the surface patch over element \(ABC\). \(\alpha\) is the plane defined by the vertices \(A', B',\) and \(C'\). To measure how much \(A'B'C'\) is bent, i.e., its quasi-curvature, we follow the steps below:

1. Choose one or multiple sample points inside element \(ABC\), such as the \(S\) in Figure 2.5.
2. Emit a line from \(S\), perpendicular to the plane of \(ABC\) and towards the surface patch \(A'B'C'\); as a result, the line intersects with the plane \(\alpha\) at the point \(S'\).
(3) From S', emit another line perpendicular to plane α, penetrating the surface patch $A'B'C'$ at the point S''. Denote the length of the line section between S' and S'' as h.

(4) Compute the ratio of h to the circumference of triangle $A'B'C'$. The ratio reflects the curvature of the surface patch $A'B'C'$.

Multiple sample points can be chosen. In that case, do the above computation for each sample point, and then calculate the mean value of the results. This evaluation method is based on the “ansatz” hypothesis that larger curvature implies more details, more complexity, and therefore bigger numerical errors. Reducing element size can result in surface patches with smaller curvatures, thereby obtaining solutions with smaller error. We have implemented this evaluation method and generated adaptive meshes as shown in Figure 2.1 and 2.3. However, we have not integrated dynamical mesh refinement and re-meshing into our current collocation solver at run time, because of the programming complexity. The adaptive process includes the steps of evaluating local errors of the current solution, refining the current mesh, evaluating the outward derivatives and the polynomials at the matching points and collocation points on/in the newly generated edges and elements, and re-doing Newton’s method for the current time step. This must be repeated at each time step until all the local error indicators are smaller than the given threshold. More difficulties arise when further local mesh refinement moves from region A to region B as time passes. This occurs when the solution is time-dependent. At time t_1, the error indicator is large in region A and therefore region A is further locally refined. At time t_2, the solution changes and, consequently, the error indicator becomes smaller than the threshold in region A but larger in region B. Thus region B is further locally refined and region A is derefined [33]. The derefinement, which is the inverse of refinement, removes any added elements by refinement where the numerical solution presents low variations [47]. For the possible derefinement, an extra data structure is needed to backup the original coarser mesh before the refinement. The emphasize of this thesis is on the collocation method. Integrating the dynamical mesh refinement into the solver is left for future work.

2.2 Triangulation of polygonal domains

Another limitation of square-element meshes is that they cannot precisely represent irregularly shaped domains, especially those with curved boundaries. A collocation method for practical use
must be applicable to domains of general shape. For simplicity, in this thesis we consider only polygonal domains with unique boundary. Triangular elements can cover such domains, as illustrated in Figure 2.3. Our solver can generate meshes for irregularly shaped polygonal domains by triangulation and by refining the resulting triangles into final elements. Some examples are shown in Figures 2.7 and 2.9. Triangulation should be optimized to result in well-shaped triangles; otherwise, as the result of refinement, some elements will also have poor shapes. The shapes of elements in a mesh have a pronounced effect on numerical methods [31][32]. The aspect Ratio, defined to be the ratio of the maximum and the minimum widths of an element [31][32], is introduced to measure how good (or poor) its shape is. “In general, elements of large aspect ratio are bad. Large aspect ratios can lead to poorly conditioned matrices, worsening the speed and accuracy of linear solver” [31]. Elements of poor aspect ratio however, can seriously degrade accuracy [32]. Two types of shapes with large aspect ratios are given in Figure 2.6. Our current triangulation algorithm does not optimize shapes. It simply recursively cuts off the first convex corner it detects in the remaining polygon without evaluating the shape of the new triangle. As a result, there may exist large aspect ratio elements in the result meshes of the triangulation. Even so, our tests indicate that, with local coordinates, our collocation method still converges and obtains accurate solutions with such meshes. Only in some extreme cases, we observe less local accuracy and / or poor convergence (i.e., more Newton iterations are needed for the convergence, or we have nonconvergence) caused by large aspect ratio elements. Tests also show that the collocation method becomes more sensitive to large aspect ratio shapes when not using local coordinates. The optimization of triangulation is not a focus of this thesis. It is expected that users of our collocation method solver have made a good triangulation and then, based on the result of the triangulation, our solver performs further refinement if necessary. In Section 2.5, we will talk about our collocation method using existing meshes.

2.3 The Rivara algorithm

Given a well shaped triangulation, the next step is to construct a locally refined triangulation, such that the smallest (or the largest) angle is bounded [45]. The refinement process is continued
Figure 2.6: Shapes with large aspect ratios: (a) angle too large; (b) angle too small.

Figure 2.7: (a) Generating a triangular mesh by triangulation.

Figure 2.8: (b) Refinement of the triangular mesh.

Figure 2.9: (a) Generating a triangular mesh by triangulation.

Figure 2.10: (b) Refinement of the triangular mesh.
recursively until the evaluation criterion is satisfied. Nesting is an expected feature of candidate refinement algorithms, "i.e., the triangles in the refined mesh are nested within the previous mesh level. Moreover, nesting means that a unique discrete place generates others without changing the edges and coordinates of its neighbors in a refinement process. This process may provide low computational cost because few nodes of the data structure should be traversed and updated in order to correctly represent the new mesh."[44] There are various triangulation refinement algorithms, as described in [44], among which we choose the Rivara algorithm. The Rivara algorithm can be described as follows:

(1) Scan all triangles one-by-one. When encountering an “un-refined” triangle Δ_1, evaluate whether it needs to be refined using the error estimate. If yes, insert a new edge, l_1, into it, which links the midpoint of its longest edge, L_1, to the opposite vertex. Δ_1 is thereby bisected into two new triangles, Δ_{11} and Δ_{12}. Δ_{11} and Δ_{12} are called sibling nodes, which is a critically important concept in the nested dissection explained in Section 4.2. A pair of geometrically adjacent nodes are neighboring, but not necessarily sibling. Only a pair of neighboring nodes which are generated by bisecting the parent node are sibling nodes.

(2) If the bisected edge, L_1, is shared by Δ_1 and its neighboring triangle Δ_2, L_1 is called pending edge until Δ_2 is accordingly subdivided in either one of the following ways:

(2.1) If L_1 is also the longest edge of Δ_2, insert a new edge, l_2, into Δ_2, connecting the midpoint of L_1 to the opposite vertex in Δ_2, thereby generating Δ_{21} and Δ_{22}. Then go to step (1) to detect next un-refined triangle.

(2.2) Otherwise, the longest edge of Δ_2 is L_2. Then bisect L_2, connect the midpoint of L_2 to the opposite vertex, thereby generating Δ_{21} and Δ_{22}. Then, link the midpoint of L_2 to the midpoint of L_1, thereby generating Δ_{211} and Δ_{212} (or Δ_{221} and Δ_{222}, depending on whether L_1 is in Δ_{21} or Δ_{22}). Finally, check whether L_2 is a pending edge. If yes, there exists a neighbor Δ_3, so, go to step (2) to work on Δ_3; if no, go to step (1) to work on next un-refined triangle.

Mark each new triangles as “already refined” as soon as it is generated in order to prevent them from being refined again in the current round of refinement.
(3) When all triangles have been processed then the current round of refinement is completed. Reset all the triangles to “un-refined”, and then start the next round of refinement. Repeat this loop until no more refinement is needed. The j^{th} round corresponds to the j^{th} level of refinement.

Rosenberg and Stenger have proved that the interior angles do not go to zero as the level of refinement tends to infinite (i.e., $j \to \infty$). Specifically, if α is the smallest interior angle of the originally given triangle, and θ is any interior angle of the new triangles generated at the j^{th} level of refinement, then $\theta \geq \alpha / 2$ [44]. The Rivara refinement maintains the feature that any interior angle of the resulting triangles is bounded away from 0 or π and the resulting triangles satisfy a shape regularity property [44]. In addition, the Rivara algorithm has been proven to terminate in a regular mesh in a finite number of steps [20]. The algorithm has also the advantage that since it is a local refinement operation it can be parallelized to deal with the refinement of very large meshes [44]. The steps of the refinement processes are illustrated in Figure 2.11 and 2.12.

![Image](image1.png)

Figure 2.11: A domain triangulated and refined at the first level.

![Image](image2.png)

Figure 2.12: The domain after 2 levels of refinement: level 1 and 2.

2.4 3D mesh refinement

The significance of generalizing the 2D adaptive mesh refinement algorithms discussed in the preceding sections, such as the Rivara algorithm, to 3D mesh generation is obvious. “Adaptivity of the mesh is particularly important in three-dimensional problems because the problem size and computational cost grow very rapidly as the mesh size is reduced” [49]. Much research has been done on this problem.
“Rivara and Levin suggested an extension of longest-edge Rivara refinement to three dimensions. ... Rivara and Levin provide experimental evidence suggesting that repeated rounds of longest-edge refinement cannot reduce the minimum solid angle below a fixed threshold, but this guarantee has not been mathematically proved.” [31, 115]

In [40], A. Selman, A. Merrouche, and C. Knopf-Lenoir have presented and implemented adaptive 3D refinement procedures for tetrahedral meshes using the bisection and Rivara algorithms based on an explicit mesh density function coupled with an automatic 3D mesh generator which subdivides 3D problem domains into assemblies of tetrahedral elements [40]. Furthermore, they have also given benchmark examples to measure the performance of their refinement methods in terms of the following criteria specified in [40]:
- produce meshes of a desired density,
- generate conforming elements of good quality, and
- avoid the generation of an excessive number of elements (nodes).

Their conclusion is that the Rivara 3D algorithm produces meshes of optimal quality.

In [49], Angel Plaza, Miguel A. Padrón, and Graham F. Carey have presented and discussed several practical 3D local refinement/derefinement algorithms for tetrahedron meshes. They state the following: “There are still several open questions related to a mathematical proof of the non-degeneracy of the meshes obtained, and the existence of a bounded number of similarity classes (that, perhaps, depend on the geometry of the initial 3D triangulation). Although theses properties have been proved in two dimensions, the generalization to three dimensions is not yet solved” [49]. And in [42], M.-C. Rivara points out that “even when the algorithms have been successfully used in practice in 3D, a theory on (longest edge) bisection in 3-dimensions such as that presented for 2-dimensions has not been yet developed”.

In conclusion, many 3D mesh refinement/derefinement algorithms have been presented, implemented, and practically applied to solving numerical problems. However, in theory it is still an open problem to mathematically prove whether (longest edge) bisection algorithms (such as the Rivara algorithm) can terminate in a finite number of steps with a regular mesh that has its smallest interior angle bounded. Meshes and problems in 3D are outside the scope of this thesis.
2.5 Other mesh generation methods

In Section 2.2, we have introduced a simple method of triangulation, which in some cases may result in regions with large aspect ratios and thereby lead to less accuracy, poorly conditioned matrices, or lower rate of convergence. Fortunately, there exist other mature triangulation methods, such as the Delaunay triangulation and refinement. From a mesh generated by the Delaunay algorithm, we must construct a hierarchy of recursive subdivisions, which is required by our nested dissection discussed in Section 4.2. The hierarchy of subdivisions is expressed as a binary tree, called subdivision tree, each internal node of which represents subdividing a region Ω into two subregions, Ω_1 and Ω_2, where $\Omega_1 \cup \Omega_2 = \Omega$ and $\Omega_1 \cap \Omega_2 = 0$. The border-line between Ω_1 and Ω_2 is an arbitrary polyline and not necessarily a straight line as required in the subdivision by the Rivara algorithm. In the context of parallel computing, the computational tasks in the two sub-trees under the subregions Ω_1 and Ω_2 are assigned respectively to two threads running in parallel. For balancing the workload of the two threads, the subregions Ω_1 and Ω_2 should be composed of a nearly equal number of elements. For minimizing interference between the two concurrent computational tasks, Ω should be appropriately bisected to minimize the length of the border-line between the subregions Ω_1 and Ω_2. There may be various ways to generate subdivision trees from existing meshes. As long as a subdivision tree is generated, we can then proceed the nested dissection on the subdivision tree.

Additionally, as mentioned in Section 2.4, the extension of the longest-edge Rivara refinement to 3D is not mathematically proved. Therefore, if we want to expand the application of our collocation method and nested dissection to 3D space, we will have to choose some other well proved 3D mesh generation algorithms, such as the Delaunay triangulation and refinement.
Chapter 3

A Collocation Method for Nonlinear Parabolic PDE BVP

In this chapter we will explain the principle of the piecewise collocation method and how it is applied to solving nonlinear parabolic PDEs. Throughout this thesis, we will follow the notation defined below:

- \(x = (x, y)^T \in \mathbb{R}^2 \) is the spatial variable.
- \(z_{Mi} \) represents a matching point, and \(z_{Cj} \) represents a collocation point.
- \(u \) represents the exact solution of PDEs.
- \(\vec{u} = (u_1, u_2, \ldots, u_k)^T \) where \(u_i \) is the value of \(u \) evaluated at a matching point \(z_{Mi} \), and \(k \) is the number of these matching points.
- \(\vec{v} = (v_1, v_2, \ldots, u_k)^T \) where \(v_i \) is the directional derivative of \(u \) evaluated at a matching point \(z_{Mi} \) in the outward direction, and \(k \) is the number of these matching points.
- \(p \) represents the polynomial values used for approximating the solution of PDEs.

These items will be explained in the following sections.

3.1 Nonlinear parabolic PDE problems

The piecewise polynomial collocation method is efficient for solving boundary value problems of ODEs and PDEs. In this thesis we apply the collocation method to solving 2D parabolic PDEs.
with scalar-valued solutions. This type of parabolic PDEs is in fact a generalized Heat equation, which can be written in the form

\[\frac{\partial u}{\partial t} = \left(\sum_{i=1}^{2} \frac{\partial}{\partial x_i} a_i(x, t) \left(\frac{\partial u}{\partial x_i} \right) \right) + f(x, u, \nabla u, t), \quad (3.1) \]

where \(x \in \Omega \subset \mathbb{R}^2 \) and \(i = 1, 2 \). The sum of second order derivatives represents the diffusion, or heat transfer, and \(f() \) is the source of heat. The following are some typical equations of this type.

The 2D Fisher equation [18][48]:

\[\frac{\partial u}{\partial t} = D \Delta u + ru(1 - u), \quad (3.2) \]

where \(D \) and \(r \) are parameters, also known as Kolmogorov–Petrovsky–Piscounov equation, KPP equation or Fisher–KPP equation, which is for modeling Reaction–diffusion systems [48]. The diffusion term is given by the Laplacian \(\Delta u \), and the reaction term is \(ru(1 - u) \).

The 2D Gelfand-Bratu equation:

\[\frac{\partial u}{\partial t} = \Delta u + \lambda e^u, \quad (3.3) \]

with given initial condition and boundary condition, where \(\lambda \) is a parameter. The 2D Gelfand-Bratu equation models the distribution of temperature in a sheet, which represents the problem domain in 2D. The 2D Gelfand-Bratu equation will be considered in detail in Section 6.4.1.

In addition to the scalar-solution PDEs introduced above, there are vector-solution PDEs; for example, the 2D Burgers equation:

\[\frac{\partial \vec{U}}{\partial t} = \frac{1}{Re} \Delta \vec{U} + \vec{U} \cdot \nabla \vec{U}, \quad (3.4) \]

where \(\vec{U} = (u_1, u_2)^T \subset \mathbb{R}^2 \).

A vector-solution PDE is a system of individual scalar-solution PDEs. With conceptionally minor modifications of implementation, the collocation method will be able to solve systems of parabolic PDEs.
3.2 Collocation with discontinuous piecewise polynomials

The collocation method presented in this thesis for solving nonlinear parabolic PDEs is derived from the idea used for elliptic PDEs by E. J. Doedel in [27][28] and for nonlinear elliptic PDE BVP by Sharifi in [17]. We give a quick review of collocation methods for ODEs and PDEs. A discontinuous piecewise polynomial collocation method has been used by Doedel for developing the AUTO package, which is one of the most widely used continuation and bifurcation analysis software packages for ODE problems [17]. Doedel has generalized this method for solving linear and nonlinear elliptic PDEs [27][28]. Sharifi generalized the method for solving linear and nonlinear elliptic PDE systems using an alternative nested dissection solution procedure [17]. In his Ph.D thesis, Sharifi introduced the use of this method for solving linear and nonlinear PDEs. He has developed an AUTO-like continuation prototype for solving linear and nonlinear elliptic PDEs in 2D space [17]. The method and the prototype implementation of Doedel and Sharifi are based on a square mesh. As explained in Chapter 2, a square mesh has its limitations. Zheng Qiang implemented a linear parabolic PDE solver based on the collocation method with adaptive triangular meshes [20].

Also based on the work of Doedel and Sharifi, are the results of He, Sun, Wu, and Zhang, who have derived error estimates for some specific collocation schemes for square or triangular meshes. In this thesis we further extend the use of the collocation method to nonlinear parabolic PDEs in irregular polygonal domains, using triangular meshes.

Our goal is to solve parabolic PDEs of the general form

$$\frac{\partial u}{\partial t} = \Delta u + f(x, u, \nabla u, t), \quad x = (x, y) \in \Omega \subset \mathbb{R}^2, \quad u, f \subset \mathcal{R},$$

(3.5)

where Δ is the Laplacian operator, ∇ is the operator of gradient; in \mathbb{R}^2, namely, $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y})^T$, and $f(x, u, \nabla u, t)$ is linear or nonlinear function of u and ∇u. We specify a function $D(x)$ as boundary condition

$$u(x) = D(x), \quad x \in \delta \Omega.$$

(3.6)
For the temporal dimension, we use the Backward Euler method to discretize the partial differential derivatives with respect to time.

$$\frac{u_k - u_{k-1}}{\delta t} = \Delta u_k + f(x, u_k, \nabla u_k, t_k), \quad k = 1, 2, 3, \ldots$$ \hspace{1cm} (3.7)

where δt represents time interval and k is the index of the time steps. Multistep finite difference methods can also be used to improve the numerical accuracy with respect to δt; however, they bring additional complexity to the implementation. For the purpose of testing the collocation method, the Euler method is sufficient.

Introducing the nonlinear operator N, we can rewrite equation (3.7) as

$$N u_k = \Delta u_k + f(x, u_k, \nabla u_k, t_k) - \frac{u_k}{\delta t} + \frac{u_{k-1}}{\delta t}$$

$$= \Delta u_k + h(x, u_k, \nabla u_k, t_k)$$

$$= 0, \quad k = 1, 2, 3, \ldots, n$$ \hspace{1cm} (3.8)

where

$$h(x, u_k, \nabla u_k, t_k) = f(x, u_k, \nabla u_k, t_k) - \frac{u_k}{\delta t} + \frac{u_{k-1}}{\delta t},$$

u_k is the unknown to solve for at t_k, and $\frac{u_{k-1}}{\delta t}$ is a constant.

For the spatial dimensions, we generate a mesh over the problem domain as discussed in Chapter 2. As shown in Figure 3.1 and 3.2, the z_i are local collocation points (where the 'c' stands for "collocation"), the M_j are local matching points (where the 'M' refers to "matching point"), and the η_j are unit outwards vectors at the M_j. For each element we need to construct a polynomial of the following form to approximate the exact solution $u(x)$:

$$u(x) \approx p(x) = \sum_{i=1}^{n+m} c_i \phi_i(x), \quad p() \in P_{n+m},$$ \hspace{1cm} (3.9)

where n and m are the number of local matching points and collocation points, respectively. The c_i are the unknown constant coefficients to be solved for. Such c_i are not related to the z_i which stand for "Collocation point". The set $\{\phi_1, \ldots, \phi_{m+n}\}$ is a specific basis, and $P_{n+m} =$
\[\text{Span}\{\phi_1, \ldots, \phi_{m+n}\} \text{ is the polynomial space of dimension } n + m. \]\n
The following two conditions must be satisfied by \(p \). First, \(p \) must satisfy the collocation equation; that is, \(p \) satisfy the PDE at each of the collocation points.

\[
\mathcal{N} p(z_{ci}) = 0, \quad i = 1, 2, 3, \ldots, m, \tag{3.10}
\]

where \(\mathcal{N} \) is the nonlinear operator defined in (3.8), and the \(z_{ci} \) are the local collocation points.

Secondly, \(p \) must have a certain degree of continuity with the polynomials of its adjacent elements; that is, each pair of adjacent polynomials must have the same value of \(u_i \) at each of the matching points \(z_{Mi} \) they share:

\[
p(z_{Mi}) = u(z_{Mi}) = u_i, \tag{3.11}
\]

and they must also have the same derivative in the direction of the outward normal at the matching point:

\[
\eta_i \cdot (\nabla p(z_{Mi}))^T = \eta_i \cdot (\nabla c_1 \phi_1(z_{Mi}))^T + \cdots + \nabla c_{n+m} \phi_{n+m}(z_{Mi})^T = v_i \tag{3.12}
\]

Since the two outward normal vectors of each pair of sibling elements point in opposite direction, the derivatives of the two polynomials projected onto these two outward normal vectors have different
signs. Let

\[
\vec{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \quad \delta \vec{u} = \begin{pmatrix} \delta u_1 \\ \vdots \\ \delta u_n \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}, \quad \delta \vec{v} = \begin{pmatrix} \delta v_1 \\ \vdots \\ \delta v_n \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_{n+m} \end{pmatrix}, \quad \delta \vec{c} = \begin{pmatrix} \delta c_1 \\ \vdots \\ \delta c_{n+m} \end{pmatrix},
\]

adhere \(\vec{u} \) and \(\delta \vec{u} \) are written in explicit vector form to distinguish them from the \(u \) in (3.5).

Let

\[
\Phi = \begin{pmatrix} \phi_1(z_{M1}) & \cdots & \phi_1(z_{Mn}) \\ \vdots & \ddots & \vdots \\ \phi_{n+m}(z_{M1}) & \cdots & \phi_{n+m}(z_{Mn}) \end{pmatrix}, \tag{3.13}
\]

and

\[
R_\Phi = \begin{pmatrix} \eta_1 \cdot \nabla \phi_1(z_{M1})^T & \cdots & \eta_n \cdot \nabla \phi_1(z_{Mn})^T \\ \vdots & \ddots & \vdots \\ \eta_1 \cdot \nabla \phi_{n+m}(z_{M1})^T & \cdots & \eta_n \cdot \nabla \phi_{n+m}(z_{Mn})^T \end{pmatrix}. \tag{3.14}
\]

Then the continuity equations can be written as

\[
(a) \quad \vec{u} - \Phi^T \vec{c} = 0, \quad (b) \quad \vec{v} - R_\Phi^T \vec{c} = 0. \tag{3.15}
\]

In summary, the principle of 2D collocation method is to solve the unknown \(\vec{c} \) of the collocation equation (3.10) and the continuity equation (3.15) for an element. We use Newton’s method to solve these equations.

3.3 Newton’s method

To solve for the unknown \(\vec{c} \in \mathcal{R}^{n+m} \) of (3.10) and (3.15) using Newton’s method, we need to construct the corresponding linearized formulation. First, set up the residual formulation. The residual formulation of (3.10) is

\[
\vec{r}_N = \begin{pmatrix} Np(z_{c1}) \\ \vdots \\ Np(z_{cm}) \end{pmatrix}. \tag{3.16}
\]
The linearization (i.e., Jacobian) of \(\vec{r}_N \) about \(\vec{c} \) is

\[
J^{r_N}_{c} = \frac{\partial \vec{r}_N}{\partial \vec{c}} = \begin{pmatrix}
\frac{\partial Np(z_{c1})}{\partial c_1} & \cdots & \frac{\partial Np(z_{c1})}{\partial c_{n+m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial Np(z_{cm})}{\partial c_1} & \cdots & \frac{\partial Np(z_{cm})}{\partial c_{n+m}}
\end{pmatrix}
\]
(3.17)

We use \(L_\Phi \) to denote \((J^{r_N}_{c})^T \) and \(L_i(z_j) \) to denote \(\frac{\partial Np(z_j)}{\partial c_i} \). By transposing, we make the elements of \(L_\Phi \) arranged as those of matrix \(\Phi \) in (3.13) and the matrix \(R_\Phi \) in (3.14).

\[
L_\Phi = \begin{pmatrix}
L_1(z_{c1}) & \cdots & L_1(z_{cm}) \\
\vdots & \ddots & \vdots \\
L_{n+m}(z_{c1}) & \cdots & L_{n+m}(z_{cm})
\end{pmatrix} = \begin{pmatrix}
\frac{\partial Np(z_{c1})}{\partial c_1} & \cdots & \frac{\partial Np(z_{cm})}{\partial c_1} \\
\vdots & \ddots & \vdots \\
\frac{\partial Np(z_{c1})}{\partial c_{n+m}} & \cdots & \frac{\partial Np(z_{cm})}{\partial c_{n+m}}
\end{pmatrix}
\]
(3.18)

From (3.8), we have

\[Np = \Delta p + h(x, p, \nabla p, t), \]

thus, the general form of the elements in matrix \(L_\Phi \) in (3.18) is

\[
\frac{\partial Np}{\partial c_i} = \frac{\partial (\Delta p + h(x, p, \nabla p, t))}{\partial c_i} = \frac{\partial (c_1 \Delta \phi_1 + \cdots + c_i \Delta \phi_i + \cdots + c_{n+m} \Delta \phi_{n+m})}{\partial c_i} + \frac{\partial h(x, p, \nabla p, t)}{\partial c_i}
\]

\[
= \Delta \phi_i + \frac{\partial h(x, p, \nabla p, t)}{\partial c_i} = \Delta \phi_i + \frac{\partial h}{\partial p} \frac{\partial p}{\partial c_i} + \frac{\partial h}{\partial \nabla p} \cdot \frac{\partial \nabla p}{\partial c_i}
= \Delta \phi_i + \frac{\partial h}{\partial p} \phi_i + \frac{\partial h}{\partial \nabla p} \cdot \nabla \phi_i
\]

Recall that, in order to simplify the form of nonlinear operator \(\mathcal{N} \) in (3.8), we have introduced \(h() \) defined as

\[h(x, u_k, \nabla u_k, t_k) = f(x, u_k, \nabla u_k, t_k) - \frac{u_k}{\delta t} + \frac{u_{k-1}}{\delta t}, \]
where u_k represents $u(x, t_k)$, which can be replaced by its numerical approximation $p(x, t_k)$, and similarly, u_{k-1} is replaced by $p(x, t_{k-1})$. Thus,

$$L_i = \frac{\partial N p}{\partial c_i}$$

$$= \Delta \phi_i + \frac{\partial h}{\partial p} \phi_i + \frac{\partial h}{\partial \nabla p} \cdot \nabla \phi_i$$

$$= \Delta \phi_i + (\frac{\partial f}{\partial p} - \frac{1}{\delta t}) \phi_i + \frac{\partial f}{\partial \nabla p} \cdot \nabla \phi_i$$

(3.19)

Also note that since $f()$ is a nonlinear function of p, $\frac{\partial f}{\partial p}$ may also be a function of p. Since p changes within each Newton iteration, the matrix $L \Phi$ in (3.18) must be re-computed in each Newton iteration. We can now formulate Newton’s method for the collocation equation (3.10) as

$$L \Phi^T \delta \vec{c} = -\vec{r}_N,$$

(3.20)

where $L \Phi$ is defined by (3.18), and \vec{r}_N is defined by (3.16).

Then we formulate Newton’s method for the continuity equations (3.15). The residual form of (3.15) is

$$(a) \quad \vec{r}_u = \vec{u} - \Phi^T \vec{c} \quad (b) \quad \vec{r}_v = \vec{v} - R^T \vec{c}.$$

(3.21)

Thus we need to solve for the unknown \vec{c} such that the residuals \vec{r}_u and \vec{r}_v approach 0 with high accuracy. Linearizing (3.21a) gives

$$J^{r_u}_c \delta \vec{c} = \delta \vec{u} - \Phi^T \delta \vec{c} = \left(\begin{array}{c} \frac{\partial u_1}{\partial c_1} & \cdots & \frac{\partial u_1}{\partial c_i} \\ \vdots & \ddots & \vdots \\ \frac{\partial u_m}{\partial c_1} & \cdots & \frac{\partial u_m}{\partial c_i} \end{array} \right) \delta \vec{c} - \Phi^T$$

(3.22)

Thus the formulation of Newton’s method for (3.21a) is

$$J^{r_u}_c \delta \vec{c} = \delta u - \Phi^T \delta \vec{c} = -\vec{r}_u;$$

(3.23 a)
Similarly, the formulation of Newton’s method for \((3.21b)\) is

\[
J^r_c \delta \vec{c} = \delta \vec{v} - R_T^c \delta \vec{e} = -\vec{r}_v. \tag{3.23 b}
\]

We now have a linear system composed of \((3.20)\), \((3.23a)\), and \((3.23b)\), the unknown of which is \(\delta \vec{c}\). Rewrite the equations \((3.23a)\) and \((3.20)\) in the form

\[
\begin{pmatrix}
\Phi^T \\
L^T_{\Phi}
\end{pmatrix} \delta \vec{c} = \begin{pmatrix}
\delta \vec{u} + \vec{r}_u \\
-\vec{r}_N
\end{pmatrix}. \tag{3.24}
\]

Using \((3.24)\) to substitute the \(\delta \vec{c}\) in \((3.23b)\), we have

\[
\delta \vec{v} = R^T_{\Phi} \begin{pmatrix}
\Phi^T \\
L^T_{\Phi}
\end{pmatrix}^{-1} \begin{pmatrix}
\delta \vec{u} + \vec{r}_u \\
-\vec{r}_N
\end{pmatrix} - \vec{r}_v.
\]

Let \(A\) be a \(n \times n\) matrix and let \(B\) be the \(n \times m\) matrix so that

\[
(A|B) = R^T_{\Phi} \begin{pmatrix}
\Phi^T \\
L^T_{\Phi}
\end{pmatrix}^{-1}. \tag{3.25}
\]

Then we have

\[
\delta \vec{v} = (A|B) \begin{pmatrix}
\delta \vec{u} + \vec{r}_u \\
-\vec{r}_N
\end{pmatrix} - \vec{r}_v,
\]

which is equivalent to

\[
\delta \vec{v} = A \delta \vec{u} - B \vec{r}_N - \vec{r}_v + A \vec{r}_u. \tag{3.26}
\]

Let

\[
\vec{g} = -B \vec{r}_N - \vec{r}_v + A \vec{r}_u. \tag{3.27}
\]

\(A\) and \(B\) can be solved from \((3.25)\). However \((3.25)\) is a conceptual formulation. In fact, we do not compute the inverse matrix. Instead, we solve \(A\) and \(B\) by LU-decomposition of the matrix:

\[
(\Phi|L_{\Phi}) \begin{pmatrix}
A^T \\
B^T
\end{pmatrix} = R_{\Phi} \tag{3.28}
\]

It is important to note that \((\Phi|L_{\Phi})\) may be non-invertible \((i.e.,\, singular)\) for certain choices of the basis functions, the number and location of matching points, or the number of collocation points.

We now present a brief discussion of the singularity of \((\Phi|L_{\Phi})\) based on our observations.
If $(\Phi | L_\Phi)$ is singular then there exists a nonzero vector $\vec{a} = (a_1, \ldots, a_{n+m})^T \in \mathbb{R}^{n+m}$ such that

$$
\begin{pmatrix}
\Phi^T \\
L_\Phi^T
\end{pmatrix}
\vec{a} = 0,
$$

(3.29)

which means

$$
S_1(x) = a_1 \phi_1(x) + \cdots + a_{n+m} \phi_{n+m}(x) = 0,
$$

(3.30)

at all the matching points $\{z_{M1}, z_{M2}, \ldots, z_{Mn}\}$ of an element, and simultaneously,

$$
S_2(x) = a_1 L_1(x) + \cdots + a_{n+m} L_{n+m}(x) = 0,
$$

(3.31)

where L_i is defined in (3.18) and (3.19), at all collocation points $\{z_{c1}, z_{c2}, \ldots, z_{cm}\}$ of the same element. The geometrical significance of Equation (3.30) and (3.31) is that the surface $S_1(x)$ passes through all the matching points, and at the same time, the surface $S_2(x)$ passes through all the collocation points. Furthermore, because the surfaces $S_1(x)$ and $S_2(x)$ are smooth enough, they must intersect with the plane of (x, y) at least near the matching points and collocation points. Thus, we have the curves shown in Figure 3.3 and 3.4. Our collocation method solver can plot such
curves when \((\Phi|L_\Phi)\) is singular. Rewrite Equation (3.29) in the form

\[
\begin{align*}
\begin{cases}
\phi_1(z,1) + \phi_2(z,2) + \cdots + \phi_{n+m}(z,1) = 0 \\
\phi_1(z,2) + \phi_2(z,2) + \cdots + \phi_{n+m}(z,2) = 0 \\
\vdots & \quad \ddots & \quad \vdots & \quad \vdots \\
\phi_1(z,m) + \phi_2(z,m) + \cdots + \phi_{n+m}(z,m) = 0 \\
\ell_1(z,1) + \ell_2(z,1) + \cdots + \ell_{n+m}(z,1) = 0 \\
\vdots & \quad \ddots & \quad \vdots & \quad \vdots \\
\ell_1(z,m) + \ell_2(z,m) + \cdots + \ell_{n+m}(z,m) = 0
\end{cases}
\end{align*}
\]

(3.32)

where the \(a_1, \ldots, a_{n+m}\) are the unknowns and \(L_i\) is defined in (3.19). It is easy to see that system (3.32) is composed of \(n + m\) equations for the \(n + m\) unknowns. Since the R.H.S of (3.32) is zero, and if there are really \(n + m\) equations for \(n + m\) unknowns, there would not be a nontrivial solution. However, \((\Phi|L_\Phi)\) being singular implies that there must be nontrivial solution for the \(n + m\) unknown \(a_i\). Thus, the only possible conclusion is that some of the equations are linearly dependent. This means that, for every \(\Phi_i\) or \(L_i\), its values at some matching points or collocation points are linearly dependent. For instance, assume equations (1), (2), and (\(n\)) in (3.32) are linearly dependent, thus

\[
b_1(1) + b_2(2) + b_3(n) = 0 ,
\]

the related matching points are \(z_{m1}, z_{m2}, \text{and } z_{mn}\). Then there must be the same linear dependence for every \(\Phi_i\), as shown below:

\[
\begin{align*}
b_1\phi_1(z_{m1}) + b_2\phi_1(z_{m2}) + b_3\phi_1(z_{mn}) &= 0 , \\
b_1\phi_2(z_{m1}) + b_2\phi_2(z_{m2}) + b_3\phi_2(z_{mn}) &= 0 , \\
\vdots & \quad \ddots & \quad \vdots & \quad \vdots \\
b_1\phi_n(z_{m1}) + b_2\phi_n(z_{m2}) + b_3\phi_n(z_{mn}) &= 0 , \\
b_1\phi_{n+1}(z_{m1}) + b_2\phi_{n+1}(z_{m2}) + b_3\phi_{n+1}(z_{mn}) &= 0 , \\
\vdots & \quad \ddots & \quad \vdots & \quad \vdots \\
b_1\phi_{n+m}(z_{m1}) + b_2\phi_{n+m}(z_{m2}) + b_3\phi_{n+m}(z_{mn}) &= 0 .
\end{align*}
\]
Our tests and observations show that this type of linear dependence does exist at matching points (not collocation points) if

- there are at least 3 matching points per edge of an element, and
- the matching points on the same edge are regularly (for example, evenly or symmetrically) distributed, and
- \(n + m \) is not large enough with respect to \(n \), where \(n \) and \(m \) are the numbers of matching points and collocation points per element, respectively; therefore, this linear dependence can easily take place to every \(\Phi_i \), as illustrated in the above example.

The existence of such linear dependence is a necessary condition for the singularity. In the case shown in Figure 3.3, the matrix \((\Phi | L_\Phi)\) has been shown to be singular by our tests. Further experiments indicate that we can make the \((\Phi | L_\Phi)\) non-singular by moving any one matching point either away from the edge, to reduce the number of collinear matching points, or along the edge to make the distribution of matching points less regular. However, neither of the moves is acceptable because matching points must be on the edges and regularly distributed. A correct way to avoid the singularity is to add more collocation points and thereby increase the ratio of \(n + m \) to \(n \).

This necessary condition can be equivalently expressed like the following: after Gaussian Elimination on \((\Phi | L_\Phi)\), the resulting \((n + m) \times (n + m)\) matrix \(M \) is of the form (3.33).

\[
M = \begin{bmatrix}
\times & \times & \times & \ldots & \times & \times & \times & \ldots & \times \\
0 & \times & \times & \ldots & \times & \times & \times & \ldots & \times \\
0 & 0 & \times & \ldots & \times & \times & \times & \ldots & \times \\
0 & 0 & 0 & \ldots & \times & \times & \times & \ldots & \times \\
\vdots & \vdots & \vdots & \ldots & \vdots & \times & \ldots & \times \\
0 & 0 & 0 & \ldots & 0 & 0 & \times & \ldots & \times \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & \times \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0
\end{bmatrix}
\]

The square block in the frame is a \(n \times n\) sub-matrix, which corresponds to the \(n\) matching points. The sub-matrix has an all-zero row, which means that the sub-matrix is singular and there exists a curve

\[
S_0(x) = a_1\phi_1(x) + \cdots + a_n\phi_n(x) = 0
\]

which passes through all the \(n\) matching points. Thus, the existence of such a curve is the necessary
condition of \((\Phi|L_\Phi)\) being singular. In the case of 1 matching point per edge, there are totally 3 matching points for an element. Because we use localized power polynomials as basis functions, \(\{\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6, \ldots\} = \{1, (x-x_0), (y-y_0), (x-x_0)(y-y_0), (x-x_0)^2, (y-y_0)^2, \ldots\}\). The reason for which we use local coordinates \((x-x_0)\) and \((y-y_0)\) will be explained in Section 3.4. The corresponding \(S_0(x)\) is

\[
S_0(x) = a_1\phi_1(x) + a_2\phi_2(x) + a_3\phi_3(x) \\
= b_1 + b_2x + b_3y \\
= 0, \quad x = (x, y),
\]

which is a straight line. It is impossible for a straight line to pass the 3 non-collinear matching points. Thus, the necessary condition does not hold and, therefore, the \((\Phi|L_\Phi)\) of this case is nonsingular.

In the case of 2 matching points per edge, there are totally \(2 \times 3 = 6\) matching points per element, and the curve

\[
S_0 = a_1\phi_1 + a_2\phi_2 + a_3\phi_3 + a_4\phi_4 + a_5\phi_5 + a_6\phi_6 \\
= b_1 + b_2x + b_3y + b_4x^2 + b_5xy + b_6y^2 \\
= 0,
\]

is a conic section. According to the Bézout’s theorem, two conic sections generally intersect in four points. This implies that 5 points, among which any 3 points are noncollinear, uniquely define a conic section. Thus, there exists not any single conic passing through the 6 matching points in this case. Thus, the necessary condition does not hold and, therefore, the \((\Phi|L_\Phi)\) of this case is nonsingular.

Collocation points influence the singularity by the number rather than their locations. Our tests show that, if \((\Phi|L_\Phi)\) is singular, then relocating the collocation points does not change the singularity. Figure 3.5 shows the same case as in Figure 3.4, with the collocation points rearranged. However, the \((\Phi|L_\Phi)\) is still singular because the singularity is not caused by the location of the collocation points. The function \(L_i(x)\), defined in (3.18) and (3.19), depends not only on the basis functions \(\Phi_i\), but also on the PDE. Thus, it is more difficult to analysis the linear dependence related to the \(L_i(x)\) at the collocation points. We only use the number of collocation points, \(m\), to control
the number of basis functions, \(n + m \), as mentioned in the preceding paragraph. If \(n + m \) is large enough with respect to a specific \(n \), the singularity can be avoided. This has been confirmed by our experiments.

3.4 The choice of basis polynomials

Because a numerical solution is a linear combination of basis polynomials, the accuracy of the numerical solution depends heavily on the choice of basis polynomials. In this thesis we use localized power basis polynomials, \(\{1, (x-x_0), (y-y_0), (x-x_0)(y-y_0), (x-x_0)^2, (y-y_0)^2, \ldots \} \), because it is easy to compute their first and second order derivatives. The coordinate must be localized and even normalized; otherwise, matrix \((\Phi|L_\Phi)\) may be ill-conditioned if some elements are very small or have high aspect ratio (defined in Section 2.2), or the collocation and matching points are not well located. We localize and normalize the coordinate by replacing \(x \) and \(y \) of the basis functions with \((x-x_0)/L \) and \((y-y_0)/L \), respectively, where \((x_0, y_0) \) may be the center of gravity or any vertex of the local element, and \(L \) is longest edge of the element.

Lagrange basis functions can also be used. An important feature of Lagrange basis functions is that each of them is equal to 1 at a certain collocation point or matching point and equal to 0 at any other collocation point, matching point, and anywhere else in the domain. This feature makes solving Equation (3.28) to obtain the matrices \(A \) and \(B \) much more efficient because the matrix \(\Phi = (I|0)^T \), where \(I \) represents the identity matrix. This is explained in [28] and [27].

Figure 3.5: 6x3 matching points with 10 relocated collocation points.
Lagrange basis is easy to use with square meshes. For using a Lagrange basis with triangular meshes in irregular domains, each arbitrary triangle must first be transformed to the Standard triangle by affine transformation.

Bernstein basis functions can also be used for the collocation method. However, any Bernstein polynomial can be written in terms of the power basis [37]. Thus, in substance, a Bernstein basis is equivalent to the power basis.

3.5 The collocation method with initial and boundary conditions

In this section we will show how the equations and matrices presented in Section 3.2 and 3.3 are involved in the Newton iteration and the time integration to solve PDEs. To focus on the most essential principles of our collocation method, in this section we will use a single-element triangle mesh; that is, the problem domain is triangular and not refined. This is the global collocation method mentioned in Section 1.4, which has more educational sense than practical use. It is a good preparation for discussing the case of multi-element mesh, i.e., piecewise polynomial collocation method, which will be explained in Chapter 4. The steps of the single-element mesh case are listed below:

- Apply the initial condition to \(\vec{u}, \vec{v}, \) and \(\vec{c} \);
- Compute \(\Phi (3.13) \) and \(R_\Phi (3.14) \) only once, i.e., do not re-compute them for all time steps;
- Loop of time integration; at each time step, do the following tasks:
 - Loop of Newton iteration for solving equation (3.24), until sufficiently converged.
 - Compute \(L_\Phi (3.19); \) —— (1)
 - Solve (3.28) to get matrix A and B; —— (2)
 - Compute \(\vec{r}_N (3.16), \vec{r}_u, \) and \(\vec{r}_v (3.21); \)
 - Construct system (3.26);
 - Compute the \(\delta \vec{u} \) and \(\delta \vec{v} \) on the boundary from B.C and (3.26); —— (3)
 - Solve equation (3.24) (with the current \(L_\Phi, \delta \vec{u}, \vec{r}_u, \) and \(\vec{r}_N \)) to get the current \(\delta \vec{c}; \)
 - \(\vec{c}^\dagger = \delta \vec{c}, \vec{u}^\dagger = \delta \vec{u}, \vec{v}^\dagger = \delta \vec{v}; \)
 - Save the current \(\vec{u}, \vec{v}, \) and \(\vec{c} \) for the use as initial values and \(u_{k-1} \) when computing \(\vec{r}_N (3.16), (3.8) \) at next time step;
- End.

Further discussion on the above steps marked with (1), (2), and (3):

For the sake of performance, and also for stability in some cases, (1) can be computed only in the
first one or two loops of Newton iteration, and then kept constant in all following loops. This is equivalent to Newton Chord Method.

(2) and $\delta \vec{v}$ are not always necessary for single-element cases; their necessity depends on the type of boundary condition (B.C.).

The B.C. are applied in (3) to compute $\delta \vec{u}$, which is indispensable for solving equation (3.24). If the B.C is Dirichlet boundary condition, which specifies the values that a solution takes on along the boundary of the domain [41], then we can directly compute $\delta \vec{u}$ at matching points on boundary from

$$\delta \vec{u} = b - \vec{u},$$

where $b = b(x, y, t)$ is the Dirichlet boundary condition. In this case, (2) and $\delta \vec{v}$ are not involved and, therefore, not necessary. If the B.C. is of Neumann type, which specifies the values that the derivative of a solution is to take on the boundary of the domain [39], (2) and $\delta \vec{v}$ are necessary. In this case, we will have to first compute $\delta \vec{v}$ from the B.C, and then compute $\delta \vec{u}$ from the $\delta \vec{v}$ using (3.26). $\delta \vec{v}$ is absolutely necessary in the case of the piecewise polynomial collocation method for enforcing the continuity between each pair of sibling regions.

The main characteristics of the methods are: 1. High order of accuracy can be attained for the space dimensions. 2. The piecewise polynomial solutions need not be globally continuous. We only require the continuity of first-order derivatives at matching points. The second-order derivative is not required to match. We can reduce the difference between each pair of second-order derivatives at the same matching point by choosing appropriate numbers and locations of matching points and collocation points, or subdividing the domain to into more elements.
Chapter 4

Numerical Linear Algebra

In Chapter 3 we have explained the essential principle of the collocation method. Based on this principle we have constructed the local linear system (3.26) of an element. In this chapter we discuss how to assemble all the local linear systems together to construct the global system and then apply boundary conditions to numerically solve a PDE in the entire problem domain. The nested dissection is introduced for solving the global system in parallel. This is a natural advantage of the collocation method. Chapters 3 and 4 together explain the entire principle of piecewise polynomial collocation method.

4.1 The global linear system

In Section 3.2, we mentioned that piecewise polynomial collocation method needs a mesh which decomposes the problem domain into elements. The local linear system (3.26) of each element can be re-written in the form

\[D\delta\vec{v} = A\delta\vec{u} + \vec{g}, \]

(4.1)

where \(D \) is initially an identity matrix for each element, and

\[\vec{g} = -Br_N - \vec{r}_u + A\vec{r}_u. \]

(4.2)

Then we construct the global linear system from the local linear systems (4.1) of all elements. First, we use an example to show how to do it. The problem domain of the example is illustrated in
Figure 4.1, which is discretized into 4 elements. Suppose there are k matching points per side of each element. We denote by $\delta \vec{u}_{ij}$ the $\delta \vec{u}$ of element Ω_i at the k matching points on its edge shared with a neighboring element Ω_j. The order of "ij" is not invertible because $\delta \vec{u}_{ij}$ and $\delta \vec{u}_{ji}$ refer to different quantities, which are evaluated respectively by the two different polynomials of Ω_i and Ω_j, although at the same matching point(s). The former is the local polynomial over Ω_i, whereas the latter is the local polynomial over Ω_j. Similarly, $\delta \vec{v}_{ij}$ and $\delta \vec{v}_{ji}$ are also denoted this way. If the edge is a part of the boundary of the entire domain, there is not any other element on the other side of the edge. Thus, the $\delta \vec{u}$ and $\delta \vec{v}$ on such kind of edges are denoted as $\delta \vec{u}_i$ and $\delta \vec{v}_i$, respectively. For example, at (2), $\delta \vec{u}_{12}$ and $\delta \vec{v}_{12}$ are evaluated by the local polynomial over Ω_1, whereas $\delta \vec{u}_{21}$ and $\delta \vec{v}_{21}$ by the local polynomial over Ω_2. At (1), there is only $\delta \vec{u}_1$ and $\delta \vec{v}_1$. The local linear systems of the elements, $\Omega_1, \Omega_2, \Omega_3, \text{and } \Omega_4$, are established in:

\[
\begin{pmatrix}
D_{11}^1 & 0 & 0 \\
0 & D_{22}^1 & 0 \\
0 & 0 & D_{33}^1
\end{pmatrix}
\begin{pmatrix}
\delta \vec{v}_1 \\
\delta \vec{v}_{12} \\
\delta \vec{v}_{14}
\end{pmatrix}
= \begin{pmatrix}
A_{11}^1 & A_{12}^1 & A_{13}^1 \\
A_{21}^1 & A_{22}^1 & A_{23}^1 \\
A_{31}^1 & A_{32}^1 & A_{33}^1
\end{pmatrix}
\begin{pmatrix}
\delta \vec{u}_1 \\
\delta \vec{u}_{12} \\
\delta \vec{u}_{14}
\end{pmatrix}
+ \begin{pmatrix}
\vec{g}_1^1 \\
\vec{g}_{12}^1 \\
\vec{g}_{14}^1
\end{pmatrix}
\]

(4.3)
\[
\begin{pmatrix}
D_{11}^2 & 0 & 0 \\
0 & D_{22}^2 & 0 \\
0 & 0 & D_{33}^2
\end{pmatrix}
\begin{pmatrix}
\delta \vec{v}_4 \\
\delta \vec{v}_{21} \\
\delta \vec{v}_{23}
\end{pmatrix}
=
\begin{pmatrix}
A_{11}^2 & A_{12}^2 & A_{13}^2 \\
A_{21}^2 & A_{22}^2 & A_{23}^2 \\
A_{31}^2 & A_{32}^2 & A_{33}^2
\end{pmatrix}
\begin{pmatrix}
\delta \vec{u}_4 \\
\delta \vec{u}_{21} \\
\delta \vec{u}_{23}
\end{pmatrix}
+
\begin{pmatrix}
\vec{g}_4^2 \\
\vec{g}_{21}^2 \\
\vec{g}_{23}^2
\end{pmatrix}
\tag{4.4}
\]

\[
\begin{pmatrix}
D_{11}^3 & 0 & 0 \\
0 & D_{22}^3 & 0 \\
0 & 0 & D_{33}^3
\end{pmatrix}
\begin{pmatrix}
\delta \vec{v}_6 \\
\delta \vec{v}_{32} \\
\delta \vec{v}_{34}
\end{pmatrix}
=
\begin{pmatrix}
A_{11}^3 & A_{12}^3 & A_{13}^3 \\
A_{21}^3 & A_{22}^3 & A_{23}^3 \\
A_{31}^3 & A_{32}^3 & A_{33}^3
\end{pmatrix}
\begin{pmatrix}
\delta \vec{u}_6 \\
\delta \vec{u}_{32} \\
\delta \vec{u}_{34}
\end{pmatrix}
+
\begin{pmatrix}
\vec{g}_6^3 \\
\vec{g}_{32}^3 \\
\vec{g}_{34}^3
\end{pmatrix}
\tag{4.5}
\]

\[
\begin{pmatrix}
D_{11}^4 & 0 & 0 \\
0 & D_{22}^4 & 0 \\
0 & 0 & D_{33}^4
\end{pmatrix}
\begin{pmatrix}
\delta \vec{v}_8 \\
\delta \vec{v}_{43} \\
\delta \vec{v}_{41}
\end{pmatrix}
=
\begin{pmatrix}
A_{11}^4 & A_{12}^4 & A_{13}^4 \\
A_{21}^4 & A_{22}^4 & A_{23}^4 \\
A_{31}^4 & A_{32}^4 & A_{33}^4
\end{pmatrix}
\begin{pmatrix}
\delta \vec{u}_8 \\
\delta \vec{u}_{43} \\
\delta \vec{u}_{41}
\end{pmatrix}
+
\begin{pmatrix}
\vec{g}_8^4 \\
\vec{g}_{43}^4 \\
\vec{g}_{41}^4
\end{pmatrix}
\tag{4.6}
\]

From the continuity equation \((3.11)\) and \((3.12)\), we have

\[
\delta \vec{u}_{12} = \delta \vec{u}_{21} , \delta \vec{v}_{12} = -\delta \vec{v}_{21}
\]

\[
\delta \vec{u}_{14} = \delta \vec{u}_{41} , \delta \vec{v}_{14} = -\delta \vec{v}_{41}
\]

\[
\delta \vec{u}_{23} = \delta \vec{u}_{32} , \delta \vec{v}_{23} = -\delta \vec{v}_{32}
\]

\[
\delta \vec{u}_{34} = \delta \vec{u}_{43} , \delta \vec{v}_{34} = -\delta \vec{v}_{43}
\]

Now we merge all the local systems together to establish the global system as the following.
In system (4.7), there are totally $16k$ unknowns and $12k$ equations, where k is the number of matching points on each side of an element. However, from the boundary condition, $(δ\vec{u}_1, δ\vec{u}_4, δ\vec{u}_6, δ\vec{u}_8)$ (in the case of Dirichlet boundary condition) or $(δ\vec{v}_1, δ\vec{v}_4, δ\vec{v}_6, δ\vec{v}_8)$ (in the case of Neumann boundary condition) has already been known. Thus, there remain only $12k$ unknowns, as many as the equations. Thus, there exists a unique solution of system (4.7) if the matrix is nonsingular. Theoretically, we can obtain the numerical solution by solving this global system. Some software (such as Trilinos) can be used for solving such large scale systems. In the next section, we will present another method, our nested dissection method, which solves large systems in an effective way.

4.2 Nested dissection

In this section we introduce how to partition a single large system like (4.7) into smaller sub-systems which can then be solved in parallel. In Chapter 2 we have discussed how to generate a mesh by recursively subdividing a region into two subregions. In the course of generating the mesh this way, a subdivision tree is constructed to record the hierarchical subdivision, in which any region (except the elements) Ω_i is composed of two adjacent sub-regions, Ω_{i1} and Ω_{i2}, which are called sibling regions for distinguishing them from other geometrically adjacent regions, explained in Section 2.3. The common boundary shared by Ω_{i1} and Ω_{i2} is not a part of the outer boundary of Ω_i.

\[
\begin{pmatrix}
D_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -A_{11} & 0 & 0 & 0 & -A_{12} & -A_{13} & 0 & 0 \\
0 & D_{22} & 0 & 0 & 0 & -A_{21} & 0 & 0 & 0 & -A_{22} & -A_{23} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & D_{33} & 0 & 0 & -A_{31} & 0 & 0 & -A_{32} & -A_{33} & 0 & 0 \\
0 & D_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -A_{11} & 0 & 0 & 0 & -A_{12} & -A_{13} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -A_{21} & 0 & 0 & -A_{22} & -A_{23} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -A_{31} & 0 & 0 & -A_{32} & -A_{33} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -A_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -A_{21} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -A_{31} & 0 \\
\end{pmatrix}
\begin{pmatrix}
δ\vec{v}_1 \\
δ\vec{v}_2 \\
δ\vec{v}_3 \\
δ\vec{v}_4 \\
δ\vec{v}_5 \\
δ\vec{v}_6 \\
δ\vec{v}_7 \\
δ\vec{v}_8 \\
\end{pmatrix}
=
\begin{pmatrix}
8_1 \\
8_2 \\
8_3 \\
8_4 \\
8_5 \\
8_6 \\
8_7 \\
8_8 \\
\end{pmatrix}
\]
Accordingly, the unknowns, δu’s and δv’s, at the matching points on the common boundary (denoted as “internal unknowns”) are “hidden” inside Ω_i and not exposed to any other regions outside of Ω_i. Therefore, when we assemble the linear systems of Ω_{i1} and Ω_{i2} to set up the merged linear system of Ω_i, we exclude the parts corresponding to the internal unknowns and only assemble the remaining parts together. In the course of such assembling, the internal unknowns are eliminated. This is the substance of the nested dissection algorithm. The nested dissection algorithm does four tasks. First, starting from the level of elements, recursively merging the local systems of sibling regions until reaching the root region, i.e., the global domain, with the global system. (It is important to note that this global system is only a small subset of system (4.7), and can be solved effectively.) Second, applying the boundary condition to compute the $\delta \vec{u}$ and $\delta \vec{v}$ at the matching points on the global boundary. Then recursively back-substituting the $\delta \vec{u}$ and $\delta \vec{v}$ on boundaries of regions to solve the internal unknowns. Such back-substituting is recursively repeated from regions to their child-regions until reaching the level of elements. Finally, solve equation (3.24) in each element. The advantage of the nested dissection is that the merging and back-substituting in different branches of the subdivision tree as well as solving (3.24) can be done in parallel.

Different from the merge in Section 4.1, in the process of the nested dissection, the merge is made only between each pair of sibling sub-regions or elements. For a pair of sibling elements, Ω_{i1} and Ω_{i2}, as illustrated in Figure 4.2, equation (4.1) can be re-written in the form of matrix as (4.8)

\[
\begin{pmatrix}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{pmatrix}
\begin{pmatrix}
\delta v_1 \\
\delta v_{12}
\end{pmatrix}
=
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
\delta u_1 \\
\delta u_{12}
\end{pmatrix}
+
\begin{pmatrix}
\vec{g}_{11} \\
\vec{g}_{12}
\end{pmatrix}
\]

Figure 4.2: Region Ω_i, its pair of sibling sub-regions Ω_{i1} and Ω_{i2}, and the boundaries.

and (4.9), respectively:

\[
\begin{pmatrix}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{pmatrix}
\begin{pmatrix}
\delta v_1 \\
\delta v_{12}
\end{pmatrix}
=
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
\delta u_1 \\
\delta u_{12}
\end{pmatrix}
+
\begin{pmatrix}
\vec{g}_{11} \\
\vec{g}_{12}
\end{pmatrix}
\]
\[
\begin{pmatrix}
D_{11}^2 & D_{12}^2 \\
D_{21}^2 & D_{22}^2
\end{pmatrix}
\begin{pmatrix}
\delta \vec{v}_2 \\
\delta \vec{v}_2
\end{pmatrix}
=
\begin{pmatrix}
A_{11}^2 & A_{12}^2 \\
A_{21}^2 & A_{22}^2
\end{pmatrix}
\begin{pmatrix}
\delta \vec{u}_2 \\
\delta \vec{u}_2
\end{pmatrix}
+
\begin{pmatrix}
\vec{g}_2^2 \\
\vec{g}_2^2
\end{pmatrix}
\tag{4.9}
\]

where $\delta \vec{v}_{12}, \delta \vec{u}_{12}, \delta \vec{v}_{21}$, and $\delta \vec{u}_{21}$ are on the common edge, $\delta \Omega_{i12}$, shared by Ω_{i1} and Ω_{i2}. The other $\delta \vec{v}$’s and $\delta \vec{u}$’s are on $\delta \Omega_{i1}$ and $\delta \Omega_{i2}$, respectively. From continuity equation (3.11) and (3.12), we must have

\begin{align}
(a) \quad & \delta \vec{u}_{12} = \delta \vec{u}_{21} \\
(b) \quad & \delta \vec{v}_{12} = -\delta \vec{v}_{21}
\end{align}

(4.10)

Merging system (4.8) and (4.9) together, and taking equation (4.10) into consideration, we obtain the following equation:

\[
\begin{pmatrix}
D_{22}^1 & -A_{22}^1 & D_{21}^1 & -A_{21}^1 & 0 & 0 \\
-D_{22}^2 & -A_{22}^2 & 0 & 0 & D_{21}^2 & -A_{21}^2 \\
D_{12}^1 & -A_{12}^1 & D_{11}^1 & -A_{11}^1 & 0 & 0 \\
-D_{12}^2 & -A_{12}^2 & 0 & 0 & D_{11}^2 & -A_{11}^2
\end{pmatrix}
\begin{pmatrix}
\delta \vec{v}_{12} \\
\delta \vec{u}_{12} \\
\delta \vec{v}_1 \\
\delta \vec{u}_1 \\
\delta \vec{v}_2 \\
\delta \vec{u}_2
\end{pmatrix}
=
\begin{pmatrix}
\vec{g}_1^2 \\
\vec{g}_2^2
\end{pmatrix}
\tag{4.11}
\]

We use scaled row pivoting. Scaled pivoting is a variation of the partial pivoting strategy. In this approach, the algorithm selects as the pivot element the entry that is largest relative to the entries in its row. This strategy is desirable when entries’ large differences in magnitude lead to the propagation of round-off error. Scaled pivoting should be used in a system where a row’s entries vary greatly in magnitude [38]. The system in our collocation method is of this case. Using scaled
row pivoting, apply incomplete Gaussian Elimination to system (4.11) to get the following system:

\[
\begin{pmatrix}
* & * & \# & \# & \# \\
0 & * & \# & \# & \# \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
\end{pmatrix}
\begin{pmatrix}
\delta \vec{v}_{12} \\
\delta \vec{u}_{12} \\
\delta \vec{v}_{1} \\
\delta \vec{u}_{1} \\
\delta \vec{v}_{2} \\
\delta \vec{u}_{2} \\
\end{pmatrix}
=
\begin{pmatrix}
\hat{h}_{12} \\
\hat{h}_{21} \\
\hat{h}_{1} \\
\hat{h}_{2} \\
\end{pmatrix}
\]

(4.12)

System (4.12) indicates that, for any region, if the \((\vec{v}_1, \vec{u}_1, \vec{v}_2, \vec{u}_2)^T\) on its boundary has been known, then the value of \((\vec{v}_{12}, \vec{u}_{12})^T\) on the border shared by its two child-regions can then be solved. Furthermore, from system (4.12), we can extract

\[
\begin{pmatrix}
\times & \times & \times \\
\times & \times & \times \\
\end{pmatrix}
\begin{pmatrix}
\delta \vec{v}_{1} \\
\delta \vec{u}_{1} \\
\delta \vec{v}_{2} \\
\delta \vec{u}_{2} \\
\end{pmatrix}
=
\begin{pmatrix}
\hat{h}_{1} \\
\hat{h}_{2} \\
\end{pmatrix}
\]

(4.13)

which has the same form of system (4.8) or (4.9). Thus, when merging this region with its sibling region, we can repeat the above process. We repeat such merging recursively until we reach the entire domain \(\Omega\). For the system (4.11) at the level of the entire domain \(\Omega\), we will be able to compute the \((\delta \vec{v}_1, \delta \vec{v}_2)^T\) or \((\delta \vec{u}_1, \delta \vec{u}_2)^T\) from the given Neumann boundary condition or Dirichlet boundary condition, respectively. Then we back-substitute it into the subsystem (4.12) to solve \((\delta \vec{u}_1, \delta \vec{u}_2)^T\) or \((\delta \vec{v}_1, \delta \vec{v}_2)^T\). We have now \((\delta \vec{v}_1, \delta \vec{u}_1, \delta \vec{v}_2, \delta \vec{u}_2)^T\) which we can back-substitute into system (4.11) to obtain \((\delta \vec{v}_1, \delta \vec{v}_2)^T\). Repeat such back-substitution recursively until the level immediately above the individual elements. Then in each element, we solve equation (3.24) to obtain the \(\delta \vec{c}\) of the element. The steps of the piecewise case are listed below:

- Apply the initial condition to the \(\vec{u}, \vec{v},\) and \(\vec{c}\) of all elements.
- Loop over all elements. For each element, compute \(\Phi (3.13)\) and \(R_\Phi (3.14)\).
- Loop of time integration. At each time step, do the following tasks:
 - The Newton iteration for solving equation (3.24), until sufficiently converged.
 In each round of the Newton iteration:
* Loop over all elements. For each element:
 · Compute L_Φ (3.19). — (1)
 · Solve (3.28) to get matrices A and B. — (2)
 · Compute \vec{r}_N (3.16), \vec{r}_u, and \vec{r}_v (3.21).
 · Construct the local system (3.26) of the element.
 (These computations can be done simultaneously in multiple elements.)
* Loop of recursively merging elements/child-regions, as shown from (4.8) to (4.13), until the entire domain is reached; (This can be done in parallel.)
* Apply boundary conditions to the $\delta \vec{u}$ or $\delta \vec{v}$ on the boundary, then solve the global system (4.12) for the internal unknown $\delta \vec{u}$ and $\delta \vec{v}$. — (3)
* Loop of recursively solving the local system (4.12) of sub-regions for the internal unknown $\delta \vec{u}$ and $\delta \vec{v}$ until reaching the individual elements. (This can be done in parallel.)
* Loop over all elements; for each element:
 · Solve equation (3.24) (with current L_Φ, $\delta \vec{u}$, \vec{r}_u, \vec{r}_N) to get current $\delta \vec{c}$;
 · $\vec{c}^+ = \delta \vec{c}$, $\vec{u}^+ = \delta \vec{u}$, $\vec{v}^+ = \delta \vec{v}$;
 (This can be done in parallel.)
 ◦ Save the current \vec{u}, \vec{v}, and \vec{c} for the use as initial values and u_{k-1} when computing \vec{r}_N (3.16), (3.8) at next time step.
• End.

The steps marked with (1), (2), and (3) in the above sequence have the same comments as given in Section 3.5.

4.3 Generalization of the nested dissection

In Section 2.2 and 2.3, we have introduced generating meshes by recursively subdividing regions into pairs of sub-regions with single straight lines. Then we proceed the nested dissection; that is, recursively merging the pairs of sub-regions until finally reaching the entire domain. However, the nested dissection algorithm is not limited to being used with the meshes generated by subdivision. In fact, the nested dissection algorithm can be used with any meshes as long as we can find a way to construct a hierarchy of recursive subdivisions on the top of its elements, no matter how the elements have been generated or whether the border-line between each pair of sibling sub-regions is a straight line or polyline. In Section 2.5, we have described how to establish such subdivision hierarchy (i.e., subdivision tree) from existing elements which have been generated by no matter which triangulation and refinement algorithms. Figure 4.3 ~ 4.6 illustrate some examples of subdivision constructed from the existing elements. Except for the bisection in Figure 4.3, the regions in all the other figures are subdivided by generally shaped polylines. We can recursively
construct such subdivisions in sub-regions until the level of elements. In the subdivisions shown in
the figures, each border-line, no matter split into how many segments, can be stored and manipu-
lated as a single chain of the edges of the elements. Our current data structure does support such
edge chains; therefore, it potentially supports this generalized application of the nested dissection
procedure.

4.4 Complexity analysis

To estimate the complexity, we count the number of arithmetic operations and memory transfers
involved in Newton iteration and time integration. We do not count one-time computations.

For each element, we need to compute matrix L_{Φ} (3.18), which is of dimension $(m + n) \times m$.
Thus, there are $(m + n) \times m$ items to compute, each of which involves arithmetic operations
and/or complex mathematical functions, such as $\sin()$, $\log()$, $\exp()$, etc., depending on the PDEs in
question. For the complexity brought by arithmetic operations, we count only the multiplications and divisions, as done in [20]. For the complexity caused by the mathematical function \(f() \), which is a “black box” to us, we can only denote it as \(C(f) \), where the “\(C() \)” stands for complexity. Also taking the number of elements, \(k \), into consideration, the total complexity of the step is

\[
O(k(m + n)^2C(f))
\]

(4.14)

arithmetic operations.

For each element, computing \(\vec{r}_N \) (3.16), \(\vec{r}_u \), and \(\vec{r}_v \) (3.21) causes \(O((m + n)C(f)) \) operations. In comparison to the complexity of (4.14), this step can be ignored.

For each element, to perform a LU-decomposition on the system (3.28) to solve matrix \(A \) and \(B \), we need \(\frac{1}{3}((m + n)^2 - 1)(m + n) \) arithmetic operations [20], where \(m, n \) represent the number of collocation and matching points, respectively. Thus, for all the \(k \) elements, we need

\[
O(k(m + n)^3)
\]

(4.15)

arithmetic operations.

Now we estimate the work load in the merged regions at all levels in the bisection tree. The work load includes copying matrix blocks of the child regions to the matrices of the merged regions, the Gaussian Elimination and back-substitution for solving its internal \((\delta \vec{v}, \delta \vec{u})^T \), and the Gaussian Elimination and back-substitution for solving the outer \((\delta \vec{v}, \delta \vec{u})^T \) on its boundary. The complexity of Gaussian Elimination is \(O(N^3) \), where the \(N \) is the size of the matrix. Thus, we need to determine the values of \(N \). From Equation (4.8) and (4.9), we know that the size of the merged matrix in (4.11) depends only on the sizes of matrices \(A_1 \) and \(A_2 \). According to Equation (3.25), the size of matrix \(A_j \) depends only on the number of the matching points on its boundary. Thus, the size of the merged matrix has nothing to do with the number of collocation points. We roughly estimate that any merged region at level \((i + 1) \) has on average \(\frac{4}{3}n_i \) matching points on its boundary, where \(n_i \) is the number of matching points on the boundary of either its child-region at level \(i \). Elements are at level 0. We also estimate the merged matrix of any merged region at level \((i + 1) \) is of the size of \(\frac{4}{3}n_i \times \frac{4}{3}n_i \), i.e., \(N = \frac{4}{3}n_i \). Thus, for a square domain with a mesh
of k elements, each of which has n matching points, the Gaussian Eliminations in all merged regions at level 1 (i.e., the level directly above individual elements) take $O\left(\frac{k}{2} \left(\frac{4}{3}n\right)^3\right) = O\left(\frac{k^3}{2}n^3\right)$ arithmetic operations. At level 2, where the $N = n_2 = \frac{4}{3}n_1 = \frac{4}{3}(\frac{4}{3}n_0) = (\frac{4}{3})^2n$, the Gaussian Eliminations in all merged regions take $O\left(\frac{k}{2^2}N^3\right) = O\left(\frac{k}{2^2}((\frac{4}{3})^2n)^3\right) = O\left(\frac{k}{2^2}(\frac{4^3}{3^2})^2n^3\right)$ arithmetic operations. At level 3, they take $O\left(\frac{k}{2^3}((\frac{4}{3})^3n^3)\right)$. At level i, they take $O\left(\frac{k}{2^i}(\frac{4^i}{3^i}n^3)\right)$. Summing up the work load of Gaussian Elimination at all the $\ln(k)$ levels, we have

$$O(k(\frac{1.185L+1}{1.185-1})n^3)$$ \hspace{1cm} (4.16)

arithmetic operations, where the $1.185 = (\frac{4}{3})^3$, $L = \ln(k)$ is the number of levels of subdivision, k is the number of elements, and n is the number of matching points per element. Further, because $k = 2^L$, we rewrite (4.16) as

$$O\left((2^L)(\frac{1.185^{L+1} - 1}{1.185 - 1})n^3\right)$$ \hspace{1cm} (4.17)

The other part of work load on all the merged regions is data block copying. We assume that a constant ratio of the items of any merged matrix are copied from the matrices of its two child regions. Thus, for a merged matrix at level i, the work load of data copying is

$$O\left(\frac{k}{2^i}(\frac{4^2}{3^2})n^2D\right) ,$$ \hspace{1cm} (4.18)

where D is the complexity of unit data copying. Sum up this work load in all regions at all levels, we have

$$O\left((2^L)(\frac{0.89^{L+1} - 1}{0.89 - 1})n^2D\right)$$ \hspace{1cm} (4.19)

operations, where the $0.89 = (\frac{4}{3})^2$, and L is the number of levels of subdivision.

All complex estimates defined by (4.14), (4.15), (4.17), and (4.19) should be considered together.
Chapter 5

Implementation

The collocation method is an effective algorithm, which brings high accuracy solutions with fewer elements. The basic simplicity of the collocation procedure, also makes programming of the method reasonably straightforward [51]. On the other hand, in our collocation method, manipulation of matrices leads to complexity of programming and adds overhead to the performance of our collocation solver. Stability, accuracy, and performance rely on robust and efficient implementation of the software prototype. There have already been some collocation method software packages in practical use for BVP, such as the widely used AUTO[56] for continuation and bifurcation problems in ODEs, ColSys for Boundary-Value ODEs [51], CONTENT[52], MatCont[53][54], and DDE-Biftool[55] for ODEs, PDEs, and Bifurcation analysis. Additionally, Sharifi has implemented his software prototype for linear / nonlinear elliptic PDEs, which relied on square meshes[17]. Qiang Zheng has developed a prototype based on triangular meshes for linear (parabolic) PDEs. In this thesis, we went one step further to implement a prototype which works in generally shaped domains, discretized with triangular meshes, and for nonlinear parabolic PDEs. In this chapter we will describe in detail the architecture of the software, its data structures, algorithms, and performance consideration.
5.1 Overview of the prototype implementation

Our implementation of the collocation method in this thesis is a prototype, used for demonstrating a generalization of this method to nonlinear BVPs in irregularly shaped domains with triangular adaptive meshes. The prototype is expected to achieve the following design goals:

(1) Most importantly, getting solutions with high accuracy, as shown in Chapter 6.

(2) Supporting multi-threading for parallel computation, which could improve performance. We have actually implemented the multi-threading in the current prototype and seen a significant acceleration of the computations.

(3) As the "icing on the cake", supporting dynamical adaptive mesh generation (see Section 2.1) at runtime (i.e., in the course of time integration of the solver), which requires

(3.1) Any element can be further subdivided at runtime for sufficient accuracy in it.

(3.2) Any pair of sibling elements can be merged into one element at runtime if enough accuracy can be achieved with fewer elements. This functionality is necessary for keeping the number of elements minimized when solving some time-dependent problems where the solution surfaces change with time and, as a result, subdivision in some regions would become no longer necessary as time passes by.

(3.3) For (3.1) or (3.2), vertices, edges, and elements must be created or deleted at runtime, the values of $u, v,$ and p at the related matching points and collocation points must be re-evaluated, and the matrices Φ and $R_\Phi,$ defined by (3.13) and (3.14), respectively, must be re-computed.

We have already implemented the adaptive mesh refinement as a separate functionality for examining our error estimator, refinement algorithm (i.e., Rivara algorithm), and the underlying data structure supporting dynamically adding or removing vertices, edges, and elements. We have succeeded in this aspect. However, integrating the mesh refinement into the solver at runtime involves many elaborate programming details, which are less significant for the main purpose of this thesis, i.e., for showing that the collocation method is feasible for nonlinear
BVPs based on triangular meshes in irregular domains. Thus, runtime refinement remains as future work.

The current prototype is composed of two main component: a graphical user interface (GUI) and the solver, following a Model–view–controller (MVC) software architectural pattern.

![Software architect pattern of Model-View-Controller](image)

In the above architecture, the model is the component in which the kernel algorithm is implemented. The output of the model goes to the view, where the output is visualized in ways users can understand. The user gives an input to the controller, which will interpret the user input and tell the model what to do. The purpose of this structure is separating the functionality modules so that changes in any module can be encapsulated in its own without influencing other modules. This makes software systems maintainable and extensible. Correspondingly, in our prototype the model represents the solver based on the collocation method, which accepts as input the parameters defining the PDEs, the boundary and/or initial conditions, and the geometry of problem domains from the controller, and outputs the solutions to the view. The view gives 2D and 3D visualization of the solutions and displays some related information. The controller is the module which receives and interprets user commands about how the problems (i.e., PDEs) and their domains are defined.

The 2D visualization view is shown in Figure (5.2). Currently, it is implemented on Windows.
platforms with GDI (Microsoft Windows graphics device interface) and MFC (Microsoft Fundamental C++); however, if needed, it can be adapted to any other GUI frameworks on any OS. This view is not only used for visualization, but also a user interface (UI) through which users can define the vertices of problem domains simply by clicking mouse.

The view also includes 3D visualization of the solutions, as shown in Figure (5.3). It is an standalone web-based cross-platform application, implemented by ourselves. It imports the solution description files yielded by the model (i.e., the collocation solver), interprets the content of the files, and renders the solution surfaces in real time. The details of our implementation of 3D visualization and the related technologies is explained in Chapter 7.

The controller of the current prototype is a simple dialog box, in Figure (5.4), through which users can select any one of the predefined test PDEs together with the necessary parameters. For simplicity, we predefine the test PDEs and hard-code them in the controller. For practical use, we need to design and implement a mechanism which expresses various PDEs in general forms and a parser which interprets the forms and thereby constructs the context for solving the specific PDEs.
5.2 Work flow for solving a PDE

Here we explain the work flow (as shown in Figure 5.5) of our collocation method (i.e., the model in Figure 5.1). The first step is triangulation, as described in Section 2.2. The result of triangulation is a group of triangle sub-regions, each of which can already be used as an element because it is triangle. However, for getting certain levels of accuracy, some elements need to be refined (see Section 2.1). The refinement step is repeated; in each loop, all the elements are scanned one-by-one to check whether any of them should be further refined; if yes, refine it; if there is no element to further refine, exit the repetition and go to next step. The next step is the iteration of time integration marked with \(1 \) in Figure 5.5. At each time step \(t \), first, the numerical solution (i.e., the values of piecewise polynomials) at time \((t - 1) \) must be set as the initial guess for Newton iteration at time \(t \). The Newton iteration is marked with \(3 \) in Figure 5.5. The nested dissection discussed in Chapter 4 is executed in each loop of \(3 \). In the simplest case where we solve PDEs in the whole domain as a single element without subdividing it, and therefore no subdivision tree or nested dissection would be involved, the \(1 \) and \(2 \) as a whole would be the procedure described in Section 3.5. Constructing and traversing the subdivision tree will be discussed in detail a little after in this section.

Note also the extended time integration iteration \(2 \), which includes the step of mesh refinement. This is the unimplemented dynamical adaptive mesh refinement into the solver, mentioned at point (3) in Section 5.1. For the dynamical adaptive mesh refinement, the dashed parts in the figure should also be included for merging any pairs of elements in which the accuracy is more than enough. In addition, after the dynamical refinement or merging, numerical solutions (i.e., the values of piecewise polynomials) at time \((t - 1) \) must be re-evaluated at the new collocation and matching points; this would be done at the step of ”set/save the solution at time step (t-1)”.
user input: selected PDE, params, region vertices, ...

triangulation of domain

mesh refinement (Rivara algorithm)

any element to be refined?

no

Apply Initial Condition

set/save the solution at time step (t-1)

go bottom-up subdivision tree; merge the matrices;

apply the boundary condition at root node;

go top-down subdivision tree; back-substitute;

not enough converged in any elements?

no

continue time integration?

no

output solution

yes

merge the over-refined sibling elements

any element over-refined?

no

Figure 5.5: Work flow of the solver based on the collocation method
Figure 5.6: The subdivision tree

Now, we consider the subdivision tree shown in Figure 5.6. The triangle leaves of the tree are elements. For our collocation method, the elements are triangular, so it is intuitive to represent the elements with triangles. The red directional curves represent the pointers linking preceding elements to their following elements, constructing a linked list, which is the result of mesh refinement. The other nodes in the tree are merged nodes. Both elements and merged nodes are nodes, derived from the same base class CNode. The two nodes generated by subdividing a node are child or sibling nodes; the subdivided node is the parent node. As explained in Chapter 4, the matrix of a parent node is generated by merging the matrices of its child nodes. By illustrating the merged nodes with dashed instead of solid circles, we indicate that those nodes and the tree did not exist before the first time step; the nodes must be dynamically created and the tree must be built up on-the-fly from the current list of elements. Furthermore, if π_2 is implemented, the elements would change at each time step, so the merged nodes and the tree would have to be changed accordingly at each time step.

The process of constructing the subdivision tree is described below:

1. The recursive subdivision operations (including domain triangulation, mesh generation, and mesh refinement) finally generates a linked list of elements, as illustrated by the red curves in 5.6. In the course of the subdivision, we always follow an essential rule to keep the order in which the elements are linked one after another; that is, in the current linked list, we replace the subdivided element with the two new sibling elements, with the left brother pointing to
the right brother.

(2) Each node (an element or a merged node) had a subdivision ID, as shown the numbers in Figure 5.6, generated by

\[parentId \times 2 + 0 \mid 1, \]

where \(parentId \) is the subdivision ID of its parent node. If the current node is the left child, +0; for right child, +1. Thus, from the subdivision IDs, it is easy to recognize whether two nodes are sibling or not.

(3) Prepare an empty stack;

(4) Set the first element in the linked list as the current node, go through all the elements in the list and repeat the following operations:

(4.1) Check whether the current node is the brother of the top-most node (merged or element) in the stack; if no, push the current element into the stack; if yes, do (4.2);

(4.2) Pop the top-most node out of the stack, merge it with the current node; as the result, create a new merged node and parent-child relation; set this merged node as the current node; then, do (4.1);

(4.3) Push the current node into the stack; move to the next element in the linked list, set it as the current node, and do (4.1). If there is no more element in the list, it means the whole subdivision tree has been built up, and the top-most and unique node in the stack is the root node of the tree.

The subdivision tree can be built up one time and not rebuilt or changed any more if we do not implement the solver as (2); however, the operations of merging the matrices have to be done in each loop of (3) because the matrices change. More than 60% of the time is cost for the merge. The algorithm itself, our data structure, and our implementation described above support multi-threading for the operations of the merge. As shown in 5.6, we mark the elements with two colors to indicate two threads used to do the merging in parallel. In general, more than two threads can be used. There should also be synchronization for the threads. We have implemented multi-threading in this
5.3 Data structure

In this section we describe in more detail the data structure supporting the work flow in Section 5.2. The core process of solving PDEs is done by an instance of CSolver (Figure 5.7),

<table>
<thead>
<tr>
<th>CSolver</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMesh* m_pMesh</td>
</tr>
<tr>
<td>stack< CNode* > m_nodeStack</td>
</tr>
<tr>
<td>CNode* m_pRoot</td>
</tr>
</tbody>
</table>

Figure 5.7: CSolver

where

1. \(m_pMesh \) is a pointer pointing to an instance of \(CMesh \), which represents a mesh and, therefore, contains all the necessary ingredients of a mesh, including vertices, edges, and elements. The \(CMesh \) instance defines the domain of the problems.

2. \(m_nodeStack \) is a stack, which is used for constructing the subdivision binary tree from the elements; see (3) and (4) in Section 5.2.

3. \(m_pRoot \) points to the root node of the subdivision tree after the tree has been built up; the step of applying boundary conditions in (3) in Figure 5.5 is done on the root node; then the step of backward substitute in (3) starts from the root node and goes downward the tree until the level immediately above elements.

\(CSolver \) provides the following methods to fulfill its functionality:

1. \(InitialCondition() \): apply initial conditions to all the matching points;

2. \(GoUp_BuildTree() \): construct the subdivision binary tree;

3. \(SetBoundaryValues() \): apply boundary conditions to all the matching points on the boundary of the entire domain;

4. \(GoDown_BackSubstitute() \): backward substitution;
(5) \textit{SaveSolutionOnBoundary()}: save numerical solution (i.e., \(\vec{u} \) in 3.21) at matching points on boundary for applying Boundary Conditions (B.C) to compute \(\delta \vec{u} \) in 3.26;

(6) \textit{SaveLastPolynomialValAtColloPoints()}: save current polynomial values (equivalent to the \(u_{k-1} \) in 3.7) at collocation points for use in next time step;

\textit{CMesh} represents a mesh, so it contains all the necessary ingredients of a mesh, including vertices, edges, and elements, but not including the merged regions. We will call \textit{CMesh} or instance of \textit{CMesh} simply as mesh in any context where there is no ambiguity.

![Figure 5.8: Container CMesh contains all mesh information: vertices, edges, and elements.](image)

In the mesh, we need containers to accommodate the vertices, edges, and elements. We choose a linked list (as shown in Figure 5.8) rather than an array for the consideration of supporting dynamical mesh at runtime (see Section 2.1 and (3) in Section 5.1). When further subdivision is done in an element for runtime mesh adaptation (Section 2.1), new elements together with new edges and vertices will be created and added into the corresponding containers. Furthermore, the new elements which, as a whole, take the place of the original subdivided element, must inherit its neighborhood with the preceding and following elements in the element container. For an array, keeping such neighborhood means physically inserting the new elements onto the position of the original element, which requires physically moving all the following elements to make room for the new elements. This is not acceptable in our situation. When adding new edges, similar conditions...
must be satisfied. On the other hand, when existing elements in a region are no longer necessary and therefore merged together, these elements together with some related edges and vertices will be removed from the corresponding containers, and the memory these object have been allocated must be released. Arrays cannot support this change without physically moving the remaining elements.

In summary, arrays always keep its memory space physically contiguous; this nature makes it not suitable for our algorithms. On the other hand, this feature makes it better for caching; however, this advantage replies on how the elements in it would be accessed. In our algorithm, in the course of (1) and (4) in Figure 5.5, the elements, edges, vertices, matching points, and collocation points are accessed in the orders completely different from the orders in which they have been initially arranged in memory space when created. This is due to the difference between 2D and 1D spatial locality; that is, locality (or neighborhood) in 2D space cannot be kept in 1D linear containers, no matter array or linked list. Additionally, a linked list supports multi-threading better than an array does.

Figure 5.9: CVertex and linked list of vertices.

CVertex represents one end of an edge (CEdge). If two or more edges share a common vertex, there is only one instance of CVertex created for representing the shared vertex. m_vertexID is the index used for 3D visualization. as explained in Chapter 7.

Figure 5.10: CEdge and the linked list of edges.
CEdge represents a side of an element. For a merged region (CMergedRegion), which is at least composed of two elements, some of its sides may be composed of a sequence of collinear edges linked in series. Each of such multi-edged sides is represented by a chain of CEdge objects (i.e., edge chain), linked by m_pOtherHalf, and identified by header and tail. We will describe in more detail how to build up this type of chains when discussing CMergedRegion. For now, it is enough to know that an edge chain is a multi-edged side of a merged region. pV1 and pV2 point to the two vertices; m_pElmt1 and m_pElmt2 points to the two elements sharing this edge; m_pMechPtLst points to a list of CPoint2D objects, representing the matching points on this edge; m_vNormal is a unit vector perpendicular the edge; specified positive direction, this vector will be the outwards unit vector, \(\eta \), in (3.12); m_pOtherHalf has the following two uses. First, marking pending edges in the course of mesh generation. When an edge is still pending (defined in Section 2.3), m_pOtherHalf points the new edge separated from it; when it is no longer pending, its m_pOtherHalf is set to null. Secondly, as mentioned previously, constructing edge chains of merged regions.

CElement represents elements. An element is a special type of node, so CElement derives from base class CNode, as shown in Figure 5.11. In the figure, the gray part represents CNode, which defines the essential geometrical features and parent-child relationship of a region; the light part is the extra attributes of CElement, which correspond to the matrices and vectors mentioned in Section 3.2 and 3.3; in addition, CElement also defines operations on these attributes, among which the following:

1. GenerateMat_CopyToMerged(...) : locate collocation points, generate the matrices, compute matrix \(A \) and vector \(\vec{g} \) in (3.26), and copy them into the sub-matrices, m_pMat_Triangles, m_pMat_2, m_pMat_All_0, and m_pMat_DA of CMergedRegion. We will explain it in more detail when discussing CMergedRegion;

2. LocateColloPoints() : called by GenerateMat_CopyToMerged(...) to place collocation points;

3. InitMatrices(...) : called by GenerateMat_CopyToMerged(...) to create and compute the matrices in Section 3.2 and 3.3;

A pair of sibling elements have the same parent merged region, as shown in 5.11.
<table>
<thead>
<tr>
<th>CElement : CNode</th>
<th>CElement : CNode</th>
</tr>
</thead>
<tbody>
<tr>
<td>int m_subTree_ID == 2*n + 0</td>
<td>int m_subTree_ID == 2*n + 1</td>
</tr>
<tr>
<td>int m_Edge_num == 3</td>
<td>int m_Edge_num == 3</td>
</tr>
<tr>
<td>CEdge** m_ppEdge</td>
<td>CEdge** m_ppEdge</td>
</tr>
<tr>
<td>CNode* m_pChild[0] == null</td>
<td>CNode* m_pChild[0] == null</td>
</tr>
<tr>
<td>CNode* m_pChild[1]</td>
<td>CNode* m_pChild[1]</td>
</tr>
<tr>
<td>CNode* m_pMother</td>
<td>CNode* m_pMother</td>
</tr>
<tr>
<td>int m_dSignOfDeltaV</td>
<td>int m_dSignOfDeltaV</td>
</tr>
<tr>
<td>byte m_Status</td>
<td>byte m_Status</td>
</tr>
<tr>
<td>CPolynomial m_objPolynomial</td>
<td>CPolynomial m_objPolynomial</td>
</tr>
<tr>
<td>CPoint2D* m_pColloPtLst</td>
<td>CPoint2D* m_pColloPtLst</td>
</tr>
<tr>
<td>VectorXd* m_pVectC</td>
<td>VectorXd* m_pVectC</td>
</tr>
<tr>
<td>double* m_prU</td>
<td>double* m_prU</td>
</tr>
<tr>
<td>double* m_prN</td>
<td>double* m_prN</td>
</tr>
<tr>
<td>MatrixXd* m_pMatRF</td>
<td>MatrixXd* m_pMatRF</td>
</tr>
<tr>
<td>MatrixXd* m_pMat_negA_B_Transposed</td>
<td>MatrixXd* m_pMat_negA_B_Transposed</td>
</tr>
<tr>
<td>double* m_pMat_negFai_Data</td>
<td>double* m_pMat_negFai_Data</td>
</tr>
<tr>
<td>double* m_pMat_RF_Data</td>
<td>double* m_pMat_RF_Data</td>
</tr>
<tr>
<td>double* m_pMat_L_Data</td>
<td>double* m_pMat_L_Data</td>
</tr>
<tr>
<td>double* m_pVect_P_collo_LastT</td>
<td>double* m_pVect_P_collo_LastT</td>
</tr>
<tr>
<td>VectorXd* m_pU</td>
<td>VectorXd* m_pU</td>
</tr>
<tr>
<td>VectorXd* m_pV</td>
<td>VectorXd* m_pV</td>
</tr>
<tr>
<td>bool m_bIsConverged</td>
<td>bool m_bIsConverged</td>
</tr>
</tbody>
</table>

Figure 5.11: CElement and the linked list of elements.
CMergedRegion represents a merged region which has been subdivided into two parts, either of which may be an element or still a **CMergedRegion**-type region, as shown in Figure 5.12. A merged region is a **CNode**-type region in essential, plus a merged matrix defined by class **CEq411**. **CEq411** defines data structure of the merged matrix and implements operations on it, including triangulization, pivoting, copying its blocks into the merged matrix of parent merged region when building up the subdivision tree, and solving the $\delta\vec{u}$'s and $\delta\vec{v}$'s on its internal shared edge chain in the course backward substitution. In Figure 5.12, the light gray part represents **CNode**; the dark gray part corresponds to class **CEq411**; the other attributes are dedicated for class **CMergedRegion**, describing the geometrical features of the merge.

![Diagram](image)

Figure 5.12: CMergedRegion
The merging of elements and merged regions is illustrated in Figure 5.13:

![Figure 5.13: Merging of elements and merged regions](image)

The layout in Figure 5.13 is the result of 3 levels of subdivision. The i is the index of the edges; the numbers inside the elements are m_subTree_ID’s, which are used for recognizing sibling nodes. The red circles and blue triangles visualize the pairs of sibling nodes. Now, look at the blue triangle marked as No.2. It is a merged region, so it is an instance of class CMergedRegion; we name it as `region2`. It has 3 sides, each of which is an edge chain. One side is composed of edge `edge13` and `edge4`; this edge chain is defined the following way:

1. `region2.m_ppEdge[0] \rightarrow edge(4)`;
2. `region2.m_ppEnd[0] \rightarrow edge(13)`;
3. `edge4.m_pOtherHalf \rightarrow edge(13)`;
4. in this simple subdivision scenario, there is no more edge in the chain following `edge13`, so `edge13.m_pOtherHalf == null`;

The other two sides of `region2` have also such structure; that is:

\{ `region2.m_ppEdge[1] \rightarrow edge(3)`;
Some geometrically collinear edges are not in the same edge chain because they are never in a same merged region at any level of subdivision; for example, \textit{edge}(7) and \textit{edge}(8). Finally, it should be mentioned that, in more complicated subdivision scenarios, edge chains are usually composed of more than 2 edges; furthermore, an edge chain may be a subset of a longer edge chain.

\textit{CSubMatrix} represents the blocks of the merged matrix illustrated in Figure 5.12. All the manipulations on the merged matrix are implemented in \textit{CSubMatrix}.

\textit{CMergeInfo} defines how two \textit{CNode}-type objects, either of which may be an element or a merged regions, are merged together.

Some of the attributes are described below:

(1) \textit{m_nodeID1} : ID of child node #1;

(2) \textit{m_nodeID2} : ID of child node #2;

(3) \textit{m_nNumOfSides_1} : number of sides of child node #1;
(4) \(m_{nNumOfSides.2}\) : number of sides of child node #2;

(5) \(m_{nNumOfSides.Merged}\) : number of sides merged region;

(6) \(m_{nLength.SharedEdge}\) : number of edges in the edge chain shared by child node #1 and #2;

(7) \(m_{nLength.Merged.Head}\) : in the merged edge chain, how many edges are from child node #1;

(8) \(m_{nLength.Merged.Tail}\) : in the merged edge chain, how many edges are from child node #2;

(9) \(m_{nRowsFirstChild}\) : in the merged matrix, how many rows correspond to child node #1;

(10) \(m_{p.Child.Merged}\) : among all the sides of child #1 and #2, which are shared, which are merged;

These attributes tell how many rows and columns the merged matrix and its sub-matrices contain and how to arrange the blocks copied from child #1 and #2.

Finally, relationship of the classes are shown in Diagram 5.16. …

5.4 Optimization

In the course of the nested dissection, many operations can be done in parallel as shown in Section 4.2. The most substantial optimization of performance is to implement the parallelism.
Figure 5.16: Class Diagram 1
Figure 5.17: Class Diagram 2
There exist various frameworks and application programming interfaces (APIs) supporting parallel computing, for example: OpenMP, Message Passing Interface (MPI), OpenCL, CUDA, and multithreading. Multi-threading would be easiest way for harnessing the power of multi-core CPUs. We have implemented the multi-threading at the steps of computing the matrices of all the elements and merging the local systems. Our tests indicate that these steps are the bottleneck of performance; therefore, we only make these steps executed in parallel. Additionally, integrating the mesh refinement with the time evolution would bring excellent effect of mesh-moving when solving time-dependent PDEs. For these improvements, the data structure will still be based on linked list because it supports effectively adding or removing nodes. On the other hand, a linked list takes more time for accessing individual nodes and it breaks locality of reference, which is critically important for CPU cache. Thus, customized memory management system is needed for solving these problems. We leave the optimization for future work.

5.5 The Eigen library

When implementing our collocation method, we make use of Eigen library for solving and checking singularity of the essential and basic linear systems, like the following:

\[M \vec{x} = \vec{b}, \]

where \(M \) is matrix. We need not implement this kinds of computation; reinventing a wheel is meaningless. Eigen is an existing wheel ready for use.

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.[57] It is fast, easy to integrate into C++ projects, and cross platform. It is well supported and documented, and has plenty of learning resources and a large user group. Its official website is eigen.tuxfamily.org.

Additionally, although we base the very basic algebraic computations on the Eigen library, we have made our implementation of the algorithms independent with this library. The benefit of doing so is that we would easily migrate to any other more advanced 3rd party libraries if necessary. Suppose we find a library which can make use of the enormous computation power of GPU’s, we
would easily replace the current library with that one simply by modifying some source code to follow the interface specification of that library.
Chapter 6

Numerical Results

In this chapter we use sample parabolic PDEs to test the accuracy and convergence of our collocation method. The sample PDEs include nonlinear and linear parabolic problems with or without stationary solutions. By means of these tests, we determine the key factors influencing the accuracy of the numerical solutions. For our collocation method, there are no well-established analytical error estimates.

6.1 Factors determining accuracy and convergence

Accuracy and convergence of the collocation method are affected by mesh size, the number of collocation points and matching points, and the locations of the collocation points and matching points. If the mesh size is very small, local and relative coordinate must be used; otherwise, the collocation method may not converge. The accuracy of time-dependent PDEs is also affected by the size of time step.

6.1.1 Mesh size

We need to provide error estimates for our algorithm with respect to different mesh sizes. This will make it possible to evaluate our numerical results. However, based on our knowledge, there is no well-established analytical theory which formulates general relations between the size of meshes with triangular elements and the order of accuracy. Even so, there exist some theoretical analysis
given for some special cases. In [21], Yinnian He and Weiwei Sun have given optimal error estimate for a low-order nonconforming spline collocation method on triangular mesh. Their theoretical analysis is limited to a low-order collocation method based on triangular elements with \((n_c, n_m) = (1, 3)\), which means 1 collocation point at center and a total of 3 matching points on the 3 edges.

We include this case into our tests and we will evaluate the errors according to the error estimate given by the theorems in section 3 of [21]. A high-order case using a triangular elements with \((n_c, n_m) = (6, 9)\) is tested in [22] without mathematical analysis. It is implied in [21] that an error analysis for high-order collocation methods remains under investigation.

An error analysis for higher order cases is given by Theorem 3.5 in [22]. However, it is based on rectangular meshes and cannot be extended to triangular meshes [21]. This theorem states that

\[
\|u - u_h\|_1 \leq Ch^3,
\]

where the \(u\) and \(u_h\) are the exact and numerical solution, respectively, \(h\) is the mesh size, and \(\| \cdot \|_1\) is the energy norm, defined as

\[
\|u - u_h\|_1 = \left(\int_{\Omega} |\nabla u - \nabla u_h|^2 dx dy \right)^{1/2}.
\]

The above error analysis in Section III of [22] is based on the equivalence between the nonconforming spline collocation method and a special high-order finite difference method in the case of a rectangular mesh on a rectangular domain [21][22]. After the collocation system is reduced to an equivalent finite difference system, the truncation error and energy error are derived based on the finite difference system.

A less precise but more general error estimate is given by Lemma 3.9.1 on Page 43 in Section 3.4 of Sharifi’s thesis [17]. The principle is identical to the one mentioned above [22]; that is, converting the collocation system into an equivalent finite difference system, which is formulated by (3.5) in the case of an ODE with 1D mesh, or (5.3) in the case of PDE with 2D mesh in [17], and then apply Taylor expansions to the finite difference system to prove the truncation error is of order \(O(h^2)\), where \(h\) is the mesh size. The conversion from a collocation system to an equivalent finite difference system is not limited to a rectangular mesh. It is also applicable to a triangular
mesh, as proved in Theorem 1 in [20]. Thus, for a collocation system with triangular mesh, the truncation error given in Section 3.4 of Hamid’s thesis [17] still holds.

All the above analytical error estimates are derived from linear collocation systems. They will also be valid for our nonlinear collocation system because, by the collocation method, we have linearized the nonlinear PDE (and constructed a Newton iteration system) and then, by local elimination, reduced the original collocation system into a finite difference system, as formulated by (6.14) in [17]:

\[D\delta v = A\delta u + g, \]

which is in the same form of the (3.5) in [22] and (5.3) in [21] as discussed above. Therefore, the error analysis for nonlinear collocation systems follows the same principle.

6.1.2 The number of collocation points and matching points

Within some limits, increasing the number of collocation points in each element can make PDEs better satisfied by local polynomials; increasing the number of matching points can bring better continuity between neighboring elements. Therefore, more accurate solutions can be obtained by appropriately increasing the numbers of collocation points and matching points. This will be shown by the test results in Section 6.3. However, if the numbers exceed the limits, the collocation method tends to become singular and fail to converge.

Furthermore, in some schemes of matching points and collocation points, neither the number of matching points nor that of collocation points is large, but the difference between the two numbers is large. For example, 3 matching points (i.e., 1 per edge) with 7 collocation points per element, or 12 matching points with less than 3 collocation points. In these cases, matrix \((\Phi \mid L_\phi)\) will easily become non-invertible. This type of singularity was explained at the end of Section 3.3 by Equation (3.29), (3.30), and (3.31), with geometrical significance. Here, we enumerate more examples of this type of singularity in Figure 6.1 – 6.4.
Figure 6.1: 4x3 matching points with 1 collocation point.

Figure 6.2: 4x3 matching points with 2 collocation points.

Figure 6.3: 6x3 matching points with 4 collocation points.

Figure 6.4: 6x3 matching points with 7 collocation points.
6.1.3 Location of collocation points and matching points

The location of collocation and matching points strongly influence accuracy. This means that, without computational overhead, which is an inevitable consequence of increasing the number of collocation and matching points or granularity of mesh, we can get higher accuracy. Our test results show that, in some cases, higher order of accuracy can be obtained from fewer but well located matching points and collocation points. Furthermore, because slightly adjusting the locations usually result in small change of accuracy, this method is stable. In most cases, the highest accuracy and order of convergence can be obtained when we take the Gauss points on each side of elements as the location of matching points and, at the same time, certain special collocation points inside the elements as collocation points. The Gauss points will be described in more detail in 6.1.4. Our test results clearly show that this rule of thumb holds for all tested PDEs and for all mesh sizes. On the other hand, badly located collocation and matching points may cause singularity or divergence.

6.1.4 Templates of collocation and matching points

We refer to the layout of collocation and matching points as templates. A template describes the numbers of collocation and matching points per element and how they are located. We need to determine templates of matching and collocation points which bring stable numerical results with high order of accuracy and convergence rate. For the matching points, their number can be selected from 1 to 4 per edge, and they may be evenly distributed or at Gauss points on each element edge. The definition of Gauss points is shown in Figure 6.5. For collocation points, their number can be selected from 1 to 7 per element, and their locations are controlled by parameters. The scheme for positioning collocation points is illustrated in Figure 6.6. We categorize the collocation points of each element into 3 groups. Group 1 has only one collocation points which is at the center of gravity of the element. Group 2 has 3 collocation points, located on the sections between p_i’s and the center of gravity in Figure 6.6. Their locations on the sections are controlled by parameter P defined as below

$$P = \frac{2L_{z_i}}{L_{p_i}},$$
Figure 6.5: Locations of Gauss points. Column \(n \) is the number of Gauss points. Column \(i \) is the index of the Gauss points. Column \(t_i \) is the location of the Gauss points. Column \(c_i \) is the weight, which is unrelated to our collocation method. (This is TABLE-12.2 of [26])

<table>
<thead>
<tr>
<th>(n)</th>
<th>(i)</th>
<th>(t_i)</th>
<th>(c_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-0.577350</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.577350</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-0.774597</td>
<td>0.555556</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0.888889</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.774597</td>
<td>0.555556</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-0.861136</td>
<td>0.347855</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-0.339981</td>
<td>0.652146</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.339981</td>
<td>0.652146</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.861136</td>
<td>0.347855</td>
</tr>
</tbody>
</table>

Figure 6.6: Location of collocation points in a triangular element
where L_{zi} represents the distance by which collocation point zi is away from the center of gravity, and L_{pi} is the distance between pi and the center of gravity. For example, $P = 1.0$ means that all of the Group-2 collocation points are located at the mid-points of their sections. The bigger the value of P is, the further the Group-2 collocation points are located away from the center of gravity.

Group 3 has also 3 collocation points, located on the sections between qi's and the center of gravity in Figure 6.6, and controlled by parameter Q defined as

$$Q = \frac{2Sz_i}{Lq_i},$$

where S_{zi} represents how far Group-3 collocation point zi is away from the center of gravity, and L_{q_i} is the distance between q_i and the center of gravity.

The notation for templates is as follows:

$$(nc, nm[G]; (P, Q)),$$

where nc and nm represent the number of collocation and matching points of each element, respectively; the presence of G means the matching points are located at Gauss point, and the absence of G implies the matching points are evenly arranged on each edge of elements; P and Q are the parameters controlling locations of the collocation points, as defined above. For templates with $nc = 1$, P or Q is unnecessary. For templates with $nc = 2, 3, or 4$, only P is needed, and if P is not given explicitly, it takes its default value 1.0. For templates with $nc = 5, 6, or 7$, P and Q are both necessary, and their default values are 1.0.

Some examples are given below:

1. $$(1, 3): 1 \text{ collocation point and 3 (i.e., 1 per edge) matching points for each element.}$$

2. $$(6, 9G; (1.45, 1.35)): 6 \text{ collocation points at the specified locations, with 3 matching points per edge at Gauss points.}$$

3. $$(7, 12; (1.5, 1.25)): 7 \text{ collocation points at the specified locations, with 4 matching points evenly distributed on each edge.}$$

The templates of collocation points tested in our research include (but not limited to) the following:
(1) \((7, n_m; (P = 1.5, Q = 1.25))\).

(2) \((4, n_m; 1.25)\).

(3) \((3, n_m; 1.0)\), which corresponds to the 3-quadrature-point Area coordinate given in TABLE I on Page 6 of [22]. (See Figure 6.7)

(4) \((4, n_m; 0.8)\), which corresponds to the 4-quadrature-point Area coordinate given in TABLE I on Page 6 of [22]. (See Figure 6.7)

(5) \((6, n_m; (P = 1.45, Q = 1.35))\), which corresponds to the 6-quadrature-point Area coordinate given in TABLE I on Page 6 of [22]. (See Figure 6.7)

<table>
<thead>
<tr>
<th>Number of points</th>
<th>Weight</th>
<th>Area coordinates ((\xi, \eta, \zeta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>((1/3, 1/3, 1/3))</td>
</tr>
<tr>
<td>3</td>
<td>[1/3]</td>
<td>((2/3, 1/6, 1/6))</td>
</tr>
<tr>
<td></td>
<td>[1/3]</td>
<td>((2/3, 2/3, 2/3))</td>
</tr>
<tr>
<td></td>
<td>[1/3]</td>
<td>((1/3, 2/3, 1/3))</td>
</tr>
<tr>
<td>4</td>
<td>(-27/48)</td>
<td>((1/3, 2/3, 2/3))</td>
</tr>
<tr>
<td></td>
<td>[29/48]</td>
<td>((6/3, 2/3, 2/3))</td>
</tr>
<tr>
<td></td>
<td>[25/48]</td>
<td>((0/3, 2/3, 2/3))</td>
</tr>
<tr>
<td></td>
<td>[25/48]</td>
<td>((2/3, 2/3, 2/3))</td>
</tr>
<tr>
<td>6</td>
<td>(\omega_1, \omega_1)</td>
<td>((\alpha_1, \alpha_2, \alpha_1), (\alpha_1, \alpha_2, \alpha_1))</td>
</tr>
<tr>
<td></td>
<td>(\omega_1, \omega_2)</td>
<td>((\alpha_2, \alpha_2, \alpha_1), (\alpha_2, \alpha_1, \alpha_1))</td>
</tr>
<tr>
<td></td>
<td>(\omega_2, \omega_2)</td>
<td>((\alpha_3, \alpha_3, \alpha_1), (\alpha_1, \alpha_1, \alpha_1))</td>
</tr>
</tbody>
</table>

Figure 6.7: A copy of the TABLE I from [22].

6.2 Initial condition and time integration

For solving a parabolic PDE using our collocation method, we need to specify an initial condition, written as \(u(x, y, 0)\) or \(u|_{t_0}\), from which to start time integration. At each time step \(t_i\) of the time integration, the Newton iteration is executed to find the solution at \(t_i\). (For details, see the steps listed at the end of Section 4.2.) We first compute \(\vec{u}, \vec{v},\) and \(\vec{c}\) of every element from the initial condition \(u(x, y, 0)\), and take them as the initial guess for the Newton iteration at \(t_1\). We always take the result \(\vec{u}, \vec{v},\) and \(\vec{c}\) at \(t_{i-1}\) as the initial guess for the Newton iteration at \(t_i\). The Newton iteration may be globally convergent, which means that it always converges to a solution for any
initial guess, or locally convergent if it only converges to a solution from an initial guess sufficiently close to the solution. Having global or local convergence depends on the PDE, the time interval δt, and/or the $u(x, y, 0)$. There are several strategies to define the initial condition and make the initial guess of \vec{c}, as described below:

1. If the initial condition $u(x, y, 0)$ has been given together with the parabolic PDE, we apply $u(x, y, 0)$ to all the collocation points and matching points in the entire domain, and choose either of the following methods to make the initial guess of \vec{c}:

 1.1 Simply set the c_i’s of all the \vec{c}’s to 0. This arbitrary initial guess is usually not close to the solution. We can only hope the Newton iteration has global convergence.

 1.2 For each element, construct a linear system of \vec{c} based on the values of $u(x, y, 0)$ evaluated at the collocation points and matching points of the element. Then solve this system and take the solution of \vec{c} as the initial guess, which is better than an arbitrary initial guess.

2. If we need to try various $u(x, y, 0)$ (for detecting different stationary solution families, for example), and the boundary condition has been given as $B(x, y, t)$, where $(x, y) \in \delta \Omega$, we can choose either of the following options to define the $u(x, y, 0)$:

 2.1 Specify $u(x, y, 0) = a$, where a is constant. Then follow either the above 1.1 or 1.2 for the initial guess of \vec{c}. The $u(x, y, 0)$ is not necessarily equal to $B(x, y, 0)$ at the matching points on the boundary. If the difference between the two is large, and δt is very small, then at the first several time steps, there would be sudden changes over the elements close to the boundary.

 2.2 Let $u(x, y, 0) = B(x, y, 0) + bF(x, y)$, where $(x, y) \in \Omega$, b is a coefficient for scaling, and $F(x, y)$ is defined as any one below:

 \[
 F(x, y) = x^{1/16}(1-x)^{1/16}y^{1/16}(1-y)^{1/16}, \text{ shown in Figure 6.8(a)}
 \]

 \[
 F(x, y) = x^{1/8}(1-x)^{1/8}y^{1/8}(1-y)^{1/8}, \text{ shown in Figure 6.8(b)}
 \]

 \[
 F(x, y) = x^{1/4}(1-x)^{1/4}y^{1/4}(1-y)^{1/4}, \text{ shown in Figure 6.8(c)}
 \]

 \[
 F(x, y) = 4x(1-x)y(1-y), \text{ shown in Figure 6.8(d)}
 \]

 Thus, $u(x, y, 0) = B(x, y, 0)$ on the boundary because $F(x, y) = 0$ there, and $u(x, y, 0)$ is still smooth and continuous near the boundary. This feature eliminates the sudden change near the boundary and leads to more smooth solution surfaces near the boundary. Then choose either the above 1.1 or 1.2 for initial guess of \vec{c}.

Figure 6.8: Profile of $F(x, y)$.

75
6.3 Example PDEs for numerical experiments

6.3.1 A linear parabolic PDE with a stationary solution

Linear PDEs can be considered as special cases of nonlinear PDEs. It is well known that the application of Newton iteration to a linear problem converges in one iteration step. However, for ill-conditioned linear problems, more than one iteration steps correspond to residual correction.

This test PDE is from [20] with modified initial condition and an extra parameter a, which is used for scaling the height of the solution surface. If $a = 1.0$, this test PDE is identical to the PDE given in [20], so we can use the results provided in [20] as a reference for evaluating the accuracy of our method. At the end of this test, we will compare the accuracy of the numerical solutions of PDE 6.1 obtained by our collocation method to the results in [20].

The PDE is defined as the following:

$$
\frac{\partial u}{\partial t} = \Delta u - 2ae^{(x+y)}, \quad (x, y) \in \Omega \subset \mathbb{R}^2
$$

$$
u(x, y, 0) = 0, \quad \text{for} \quad (x, y) \in \Omega
$$

$$
u(x, y, t) = ae^{(x+y)}, \quad \text{for} \quad (x, y) \in \partial \Omega .
$$

(6.1)

We start the time integration of the PDE from the initial condition, $\nu(x, y, 0) = 0$. A stable stationary state is reached by the time integration in about 3 time units, as shown in Figure 6.14. At the stationary state, $\frac{\partial u}{\partial t} = 0$, thus the parabolic PDE is equivalent to the elliptic PDE below:

$$
0 = \Delta u - 2ae^{(x+y)} ,
$$

(6.2)

the exact solution of which is

$$
u(x, y, t) = ae^{(x+y)} .
$$

(6.3)

Therefore the stationary solution of PDE (6.1) must be (6.3). For evaluating the accuracy of our collocation method, we first start the time integration of PDE (6.1) with $a = 1.0$ until reaching the stationary state. Then we evaluate the polynomial values at matching points and compare them to the corresponding values of (6.3). Because the initial condition is different from the stationary
Figure 6.9: The solution at $t = 0.004$, observed from below

Figure 6.10: The solution at $t = 0.008$

Figure 6.11: The solution at $t = 0.02$

Figure 6.12: The solution at $t = 0.05$

Figure 6.13: Solution at $t = 0.1$

Figure 6.14: A near stationary solution when $t \geq 3.0$.
solution, we see the transient solutions evolving during the time integration. The transient solutions of PDE (6.1) with \(a = 1/8 \) are visualized in Figure 6.9 ~ 6.13. We then test other initial conditions such as

\[
u(x, y, 0) = a e^{(x+y)} + 10x(1-x)y(1-y), \quad \text{for} \quad (x, y) \in \Omega.
\] (6.4)

This initial condition is consistent with the boundary condition. As the result, at each time step, the transient solutions are smooth surfaces. Starting from the initial condition (6.4), we go through a different time evolution, as shown in Figure 6.15 ~ 6.18, but finally reach the same stationary solution in Figure 6.14.
After reaching the steady state, we measure the average of the maximum errors, E_j, of all elements, which is defined as

$$
\bar{e} = \frac{\sum_{j=1}^{K} E_j}{K}, \quad \text{and} \quad E_j = \max_{z_{Mi} \in \partial \Omega_j} \{ |u(z_{Mi}) - p(z_{Mi})| \},
$$

(6.5)

where K is the number of elements, Ω_j is an element, $\partial \Omega_j$ is the boundary of Ω_j, z_{Mi} are the matching points of Ω_j, $u()$ is the exact solution, and $p()$ is the local polynomial of Ω_j. This error measure is similar to that defined for the numerical experiments in [21] and [22].

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>1, 3 center</th>
<th>4, 9G</th>
<th>6, 9G</th>
<th>7, 9G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2(16)</td>
<td>2.39e^{-3}</td>
<td>6.04e^{-6}</td>
<td>2.53e^{-6}</td>
<td>1.35e^{-6}</td>
</tr>
<tr>
<td></td>
<td>1/4(64)</td>
<td>6.13e^{-4} (3.90)</td>
<td>2.31e^{-7} (26.15)</td>
<td>7.85e^{-8} (32.20)</td>
<td>4.30e^{-8} (31.42)</td>
</tr>
<tr>
<td></td>
<td>1/8(256)</td>
<td>1.54e^{-4} (3.99)</td>
<td>1.23e^{-8} (18.78)</td>
<td>2.45e^{-9} (32.07)</td>
<td>1.57e^{-9} (27.26)</td>
</tr>
<tr>
<td></td>
<td>1/16(1024)</td>
<td>3.84e^{-5} (3.99)</td>
<td>7.25e^{-10} (17.01)</td>
<td>7.73e^{-11} (31.67)</td>
<td>6.34e^{-11} (24.85)</td>
</tr>
<tr>
<td></td>
<td>1/32(4096)</td>
<td>9.61e^{-6} (3.99)</td>
<td>4.41e^{-11} (16.42)</td>
<td>2.50e^{-12} (30.96)</td>
<td>2.87e^{-12} (22.12)</td>
</tr>
<tr>
<td></td>
<td>1/64(16384)</td>
<td>2.40e^{-6} (3.99)</td>
<td>2.74e^{-12} (16.14)</td>
<td>8.33e^{-14} (30.02)</td>
<td>1.44e^{-13} (20.00)</td>
</tr>
</tbody>
</table>

Table 6.1: \bar{e} and convergence rate of PDE (6.1)

In Table 6.1, the convergence rate of template (1, 3) is around $3.9 \cdots \approx 2^2$ when the mesh sizes are scaled by 2. For example, the mesh size 1/4 is 2 time as large as mesh size 1/8; correspondingly, the \bar{e} of the former (i.e., 6.13e^{-4}) is 3.999 \approx 2^2 times as large as the \bar{e} of the latter (i.e., 1.54e^{-4}). This implies the order of accuracy is $O(h^2)$, where $h = 1/N$ is the mesh size [21]. This result is consistent with Theorem 3.3 in [22],

$$
\|u - u_h\|_{0,h} \leq C h^2 (\|u\|_{2,\Omega} + \|f\|_{2,\Omega})
$$

where the u and u_h are the exact and numerical solution, respectively; $\|u - u_h\|_{0,h}$ can be considered equivalent with \bar{e} , and ($\|u\|_{2,\Omega} + \|f\|_{2,\Omega}$) is constant for the given u, f, and Ω. The theoretical analysis in [21] and [22] is based on linear PDEs; however, the conclusions hold also for nonlinear PDEs if the nonlinear PDEs can be linearized, and the Jacobian matrices are nonsingular. Template ((6, 9G); (1.45, 1.35)), with its collocation points located at the 6-quadrature-point given in [22], brings a nearly uniform convergence rate as high as 2^6 for all the mesh sizes, exhibiting the accuracy.
$O(h^5)$, which is also identical to the test results in [21][22], but not theoretically proved. In addition, the accuracy of $((6, 9G); (1.45, 1.35))$ is almost as high as or even higher than $((7, 9G); (1.5, 1.25))$, so we may take $((6, 9G); (1.45, 1.35))$ as the best 9-matching-point template. In the remainder of this chapter, we will present more tested results that support this hypothesis.

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>4,12G</th>
<th>4,12G</th>
<th>6,12G</th>
<th>7,12G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>1.25</td>
<td>1.45, 1.35</td>
<td>1.5, 1.25</td>
</tr>
<tr>
<td>1/2(16)</td>
<td></td>
<td>5.71e-5</td>
<td>1.80e-5</td>
<td>2.62e-7</td>
<td>9.01e-9 (29.08)</td>
</tr>
<tr>
<td>1/4(64)</td>
<td></td>
<td>2.02e-6 (28.33)</td>
<td>7.55e-7 (23.84)</td>
<td>2.88e-7 (25.69)</td>
<td>4.30e-10 (20.96)</td>
</tr>
<tr>
<td>1/8(256)</td>
<td></td>
<td>8.18e-8 (24.62)</td>
<td>3.55e-8 (21.26)</td>
<td>1.01e-7 (2.8)</td>
<td>2.42e-11 (17.78)</td>
</tr>
<tr>
<td>1/16(1024)</td>
<td></td>
<td>3.13e-9 (26.12)</td>
<td>2.02e-9 (17.57)</td>
<td>1.40e-9 (71.89)</td>
<td>1.56e-12 (15.53)</td>
</tr>
<tr>
<td>1/32(4096)</td>
<td></td>
<td>1.51e-10 (20.73)</td>
<td>1.24e-10 (16.29)</td>
<td>1.12e-10 (12.50)</td>
<td>8.95e-14 (17.40)</td>
</tr>
<tr>
<td>1/64(16384)</td>
<td></td>
<td>9.01e-12 (16.76)</td>
<td>7.62e-12 (16.27)</td>
<td>3.12e-12 (35.90)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2: \tilde{E} and convergence rate of PDE (6.1)

All templates in Table 6.2 have 4 matching points per edge. Template $((4, 12G); 0.8)$ gives a good convergence rate for all mesh sizes, except the smallest size (i.e., 1/64). Template of $(6, 12G); (1.45, 1.35)$ is not preferable because of not giving a consistent convergence rate. Template $((4, 12G); 1.25)$ and $((7, 12G); (1.5, 1.25)$ are preferable for 4-matching-point cases in general. Template $((4, 12G); 0.8)$ is preferable for all the mesh sizes except 1/64. The results in 6.3 indicates that, the templates $(n_c, 6)$ with $n_c \geq 4$ do not give a numerical solution. The template of $(3, 6)$ is the best among the templates of $(M, 6)$.

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>1.6G Center</th>
<th>3.6G 1.0</th>
<th>4.6G 0.8</th>
<th>6.6G 1.45, 1.35</th>
<th>7.6G 1.5, 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2(16)</td>
<td></td>
<td>5.34e-3</td>
<td>1.50e-4</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/4(64)</td>
<td></td>
<td>1.08e-3 (4.94)</td>
<td>1.05e-5 (14.3)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/8(256)</td>
<td></td>
<td>2.17e-4 (4.97)</td>
<td>8.14e-7 (12.9)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/16(1024)</td>
<td></td>
<td>4.85e-5 (4.47)</td>
<td>7.77e-8 (10.48)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/32(4096)</td>
<td></td>
<td>1.13e-5 (4.29)</td>
<td>9.74e-9 (7.98)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/64(16384)</td>
<td></td>
<td>2.81e-6 (4.02)</td>
<td>1.22e-9 (7.98)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
</tbody>
</table>

Table 6.3: \tilde{E} and convergence rate of PDE (6.1). NS means we cannot reach the stationary solution.

Finally, we compare the templates with and without Gauss points with the results in Table 6.4, Table 6.5, and Table 6.6. Template $((7, 12G); (1.5, 1.25))$ brings orders of accuracy that are much higher than $((7, 12); (1.5, 1.25))$ for all the mesh sizes. However, template $((7, 9G); (1.5, 1.25))$
does not show any advantage in comparison to \{(7, 9); (1.5, 1.25)\}. Furthermore, with mesh sizes of 1/32 and 1/64, the non-Gauss point template, \{(7, 9); (1.5, 1.25)\}, behaves better.

From the above test results (Table 6.1 – 6.6), we conclude that, for this test PDE,

(1) Our nonlinear collocation method can solve linear PDEs. The number of Newton iteration is 1.

(2) Smaller mesh size always brings higher accuracy.

(3) More collocation and/or matching points does not necessarily bring higher accuracy. The combination of these numbers, the locations, and the mesh sizes is more important.

(4) In most of the cases, using Gauss points as matching points brings higher accuracy than uniformly arranging the matching points. However, for some templates, with small mesh size (e.g., 1/64), the latter gives higher accuracy.

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>7, 9G</th>
<th>7, 9</th>
<th>7, 12G</th>
<th>7, 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh size</td>
<td>1.5, 1.25</td>
<td>1.5, 1.25</td>
<td>1.5, 1.25</td>
<td>1.5, 1.25</td>
<td></td>
</tr>
<tr>
<td>1/2(16)</td>
<td>1.35e-6</td>
<td>2.64e-6</td>
<td>2.62e-7</td>
<td>5.21e-7</td>
<td></td>
</tr>
<tr>
<td>1/4(64)</td>
<td>4.30e-8 (31.42)</td>
<td>7.97e-8 (33.08)</td>
<td>9.01e-9 (29.08)</td>
<td>2.79e-8 (18.67)</td>
<td></td>
</tr>
<tr>
<td>1/8(256)</td>
<td>1.58e-9 (27.26)</td>
<td>2.46e-9 (32.36)</td>
<td>4.30e-10 (20.96)</td>
<td>1.58e-9 (17.68)</td>
<td></td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>6.34e-11 (24.85)</td>
<td>7.76e-11 (31.75)</td>
<td>2.42e-11 (17.78)</td>
<td>9.22e-11 (17.11)</td>
<td></td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>2.87e-12 (22.12)</td>
<td>2.57e-12 (30.17)</td>
<td>1.56e-12 (15.53)</td>
<td>5.53e-12 (16.67)</td>
<td></td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>1.44e-13 (20.00)</td>
<td>1.02e-13 (25.7)</td>
<td>8.95e-14 (17.40)</td>
<td>3.39e-13 (16.33)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.4: Comparison between the 7-collocation-point templates with different matching point distributions (e.g., distributed evenly or on the Gauss points, marked with 'G') for PDE (6.1).

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>6, 9G</th>
<th>6, 9</th>
<th>6, 12G</th>
<th>6, 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh size</td>
<td>1.45, 1.35</td>
<td>1.45, 1.35</td>
<td>1.45, 1.35</td>
<td>1.45, 1.35</td>
<td></td>
</tr>
<tr>
<td>1/2(16)</td>
<td>2.53e-6</td>
<td>6.95e-6</td>
<td>7.40e-6</td>
<td>2.48e-6</td>
<td></td>
</tr>
<tr>
<td>1/4(64)</td>
<td>7.85e-8 (32 : 20)</td>
<td>2.60e-7 (26.71)</td>
<td>2.88e-7 (25.69)</td>
<td>3.63e-7 (6.83)</td>
<td></td>
</tr>
<tr>
<td>1/8(256)</td>
<td>2.45e-9 (32 : 07)</td>
<td>1.00e-8 (25.88)</td>
<td>1.01e-7 (2.8)</td>
<td>2.77e-7 (1.31)</td>
<td></td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>7.73e-11 (31 : 67)</td>
<td>4.08e-10 (24.60)</td>
<td>1.40e-9 (71.89)</td>
<td>4.40 ~ 4.60e-9 (37.66)</td>
<td></td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>2.50e-12 (30 : 96)</td>
<td>1.82e-11 (22.44)</td>
<td>1.12e-10 (12.50)</td>
<td>N.S</td>
<td></td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>8.33e-14 (30 : 02)</td>
<td>9.01e-13 (20.19)</td>
<td>3.12e-12 (35.90)</td>
<td>N.S</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.5: Comparison between the 6-collocation-point templates with different matching point distributions (e.g., distributed evenly or on the Gauss points, marked with 'G') for PDE (6.1). 'N.S' means No Solution; 4.40 ~ 4.60e-9 means the value keeps changing between 4.40e-9 and 4.60e-9.
Table 6.6: Comparison between the 4-collocation-point templates with different matching point distributions (e.g., distributed evenly or on the Gauss points, marked with 'G') for PDE (6.1).

At the end of this test, we compare the errors of our collocation method to the counterparts in Table 6.4 of [20]. The compared cases have the same number of collocation points, matching points, and the same mesh size. Note: in Table 6.7 and 6.8, our errors, which are in column 2 and 4, are the maximum absolute values instead of the \tilde{e} defined by (6.5). It shows that our method gives higher accuracy. One possible reason is that we use Newton iteration, which has the effect of residual-
correction. Another possible reason may be that we have chosen better location of collocation points in our tests.

6.3.2 Another linear parabolic PDE with a stationary solution

We test multiple sample PDEs to support our observation in Section 6.3.1. In this section, we give the results of another test linear PDE, taken from 11.1 of [17]. The original PDE is an elliptic PDE, defined as follows:

$$\Delta u = (2x^2y^2 + 2x^2y + 2xy^2 - 6xy)e^{(x+y)} ,$$

where $$u = u(x, y, t)$$ and $$(x, y) \in \Omega \subset \mathbb{R}^2$$,

$$u(x, y) = 0, \text{ for } (x, y) \in \delta \Omega.$$ \hspace{1cm} (6.6)

The analytical solution is given by

$$u(x, y) = x(x - 1)y(y - 1)e^{(x+y)} \text{ for } (x, y) \in \Omega \subset \mathbb{R}^2$$ \hspace{1cm} (6.7)

From the elliptic PDE (6.6), we construct this parabolic PDE:

$$\frac{\partial u}{\partial t} = \Delta u - (2x^2y^2 + 2x^2y + 2xy^2 - 6xy)e^{(x+y)} ,$$

$$u(x, y, t) = 0 \text{ for } (x, y) \in \delta \Omega,$$

$$u(x, y, 0) = 0 \text{ for } (x, y) \in \Omega$$ \hspace{1cm} (6.8)

After time integration of PDE (6.8), u can reach the steady equilibrium state defined by the elliptic PDE (6.6). We compute \tilde{e}, which is defined by (6.5), between the numerical stationary solution and the exact solution given by (6.7). The stationary solution is visualized in Figure 6.19 and 6.20.

The errors of the numerical solutions of PDE (6.8) for different templates having Gauss points are listed in table 6.9, 6.10, and 6.11. From these tables, we find the same features as those of the results in section 6.3.1.

We compare the results for the templates with Gauss and uniform matching points. The results are
Figure 6.19: The stationary solution of PDE (6.8); center value ≈ 0.1699.

Figure 6.20: The stationary solution of PDE (6.8).

<table>
<thead>
<tr>
<th>Templates: Mesh size</th>
<th>1, 3 center</th>
<th>4, 9G 1.25</th>
<th>6, 9G 1.45, 1.35</th>
<th>7, 9G 1.5, 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>2.93e-2</td>
<td>6.96e-4</td>
<td>3.27e-5</td>
<td>4.40e-5</td>
</tr>
<tr>
<td>1/4(64)</td>
<td>7.32e-3 (4.00)</td>
<td>4.45e-5 (15.65)</td>
<td>9.51e-7 (34.38)</td>
<td>1.35e-6 (32.52)</td>
</tr>
<tr>
<td>1/8(256)</td>
<td>1.82e-3 (4.02)</td>
<td>2.79e-6 (15.95)</td>
<td>2.96e-8 (32.13)</td>
<td>5.01e-8 (27.02)</td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>4.56e-4 (3.99)</td>
<td>1.75e-7 (15.94)</td>
<td>9.33e-10 (31.73)</td>
<td>2.03e-9 (24.68)</td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>1.14e-4 (4.00)</td>
<td>1.09e-8 (16.06)</td>
<td>3.00e-11 (31.10)</td>
<td>9.17e-11 (22.14)</td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>2.84e-5 (4.01)</td>
<td>6.84e-10 (15.94)</td>
<td>9.91e-13 (30.27)</td>
<td>4.61e-12 (19.89)</td>
</tr>
</tbody>
</table>

Table 6.9: \tilde{e} and convergence rate of PDE (6.8)

<table>
<thead>
<tr>
<th>Templates: Mesh size</th>
<th>4, 12G 0.8</th>
<th>4, 12G 1.25</th>
<th>6, 12G 1.45, 1.35</th>
<th>7, 12G 1.5, 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>2.48e-3</td>
<td>8.40e-4</td>
<td>3.50e-3</td>
<td>4.37e-5</td>
</tr>
<tr>
<td>1/4(64)</td>
<td>7.91e-5 (31.35)</td>
<td>2.71e-5 (30.99)</td>
<td>1.51e-4 (23.18)</td>
<td>1.42e-6 (30.77)</td>
</tr>
<tr>
<td>1/8(256)</td>
<td>2.66e-6 (29.73)</td>
<td>2.16e-6 (12.55)</td>
<td>4.31e-5 (3.5)</td>
<td>4.60e-8 (30.87)</td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>1.35e-7 (19.70)</td>
<td>7.96e-8 (27.14)</td>
<td>4.97e-7 (86.72)</td>
<td>1.50e-9 (30.67)</td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>7.69e-9 (17.55)</td>
<td>4.79e-9 (16.63)</td>
<td>1.23e-8 (40.41)</td>
<td>5.13e-11 (29.24)</td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>4.54e-10 (16.95)</td>
<td>2.98e-10 (16.03)*</td>
<td>5.70e-9 (2.15)*</td>
<td>1.89e-12 (27.08)</td>
</tr>
</tbody>
</table>

Table 6.10: \tilde{e} and convergence rate of PDE (6.8)

<table>
<thead>
<tr>
<th>Templates: Mesh size</th>
<th>1, 6G Center</th>
<th>3, 6G 1.0</th>
<th>4, 6G 0.8</th>
<th>6, 6G 1.45, 1.35</th>
<th>7, 6G 1.5, 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>7.41e-2</td>
<td>5.52e-3</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/4(64)</td>
<td>1.10e-2 (6.75)</td>
<td>7.78e-4 (7.09)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/8(256)</td>
<td>2.10e-3 (5.23)</td>
<td>1.02e-4 (7.63)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>4.63e-4 (4.5)</td>
<td>1.32e-5 (7.73)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>1.09e-4 (4.23)</td>
<td>1.67e-6 (7.9)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>2.68e-5 (4.07)</td>
<td>2.11e-7 (7.91)</td>
<td>N.S</td>
<td>N.S</td>
<td>N.S</td>
</tr>
</tbody>
</table>

Table 6.11: \tilde{e} and convergence rate of PDE (6.8)
in Table 6.12, 6.13, and 6.14:

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>7, 9G</th>
<th>7, 9</th>
<th>7, 12G</th>
<th>7, 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>1.5, 1.25</td>
<td>4.40e^3</td>
<td>1.30e^-4</td>
<td>4.37e^-9</td>
<td>5.02e^-3</td>
</tr>
<tr>
<td>1/4(64)</td>
<td>3.25e^-3</td>
<td>5.72e^-6</td>
<td>1.42e^-6</td>
<td>2.02e^-6</td>
<td>2.52e^-6</td>
</tr>
<tr>
<td>1/8(256)</td>
<td>1.02e^-8</td>
<td>2.06e^-7</td>
<td>4.60e^-8</td>
<td>9.26e^-8</td>
<td>1.97e^-7</td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>2.03e^-9</td>
<td>1.54e^-8</td>
<td>1.50e^-9</td>
<td>4.78e^-9</td>
<td>1.97e^-8</td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>9.17e^-11</td>
<td>8.83e^-10</td>
<td>5.13e^-11</td>
<td>2.67e^-10</td>
<td>1.57e^-11</td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>4.61e^-12</td>
<td>5.26e^-11</td>
<td>1.89e^-12</td>
<td>9.58e^-12</td>
<td>1.57e^-11</td>
</tr>
</tbody>
</table>

Table 6.12: Comparison between the 7-collocation-point templates with different matching point distributions (e.g., distributed evenly or on the Gauss points, marked with 'G') for PDE (6.8).

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>6, 9G</th>
<th>6, 9</th>
<th>6, 12G</th>
<th>6, 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>1.45, 1.35</td>
<td>3.27e^-5</td>
<td>1.57e^-4</td>
<td>3.50e^-3</td>
<td>8.03e^-4</td>
</tr>
<tr>
<td>1/4(64)</td>
<td>9.51e^-7</td>
<td>7.69e^-6</td>
<td>1.51e^-4</td>
<td>1.61e^-4</td>
<td>1.78e^-4</td>
</tr>
<tr>
<td>1/8(256)</td>
<td>9.30e^-8</td>
<td>3.93e^-7</td>
<td>1.06e^-5</td>
<td>7.85e^-6</td>
<td>2.78e^-6</td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>9.33e^-10</td>
<td>2.10e^-8</td>
<td>4.97e^-7</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>3.00e^-11</td>
<td>1.19e^-9</td>
<td>1.23e^-8</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>3.85e^-12</td>
<td>7.03e^-11</td>
<td>5.70e^-9</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Table 6.13: Comparison between the 6-collocation-point templates with different matching point distributions (e.g., distributed evenly or on the Gauss points, marked with 'G') for PDE (6.8). 'NS' means we cannot reach the stationary solution.

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>4, 9G</th>
<th>4, 9</th>
<th>4, 12G</th>
<th>4, 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>1.25</td>
<td>6.96e^-5</td>
<td>7.40e^-4</td>
<td>8.40e^-4</td>
<td>7.02e^-4</td>
</tr>
<tr>
<td>1/4(64)</td>
<td>4.45e^-5</td>
<td>4.73e^-5</td>
<td>2.71e^-5</td>
<td>4.58e^-5</td>
<td>4.55e^-5</td>
</tr>
<tr>
<td>1/8(256)</td>
<td>2.79e^-6</td>
<td>2.97e^-6</td>
<td>2.16e^-6</td>
<td>1.42e^-6</td>
<td>1.42e^-6</td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>1.75e^-7</td>
<td>1.96e^-7</td>
<td>7.96e^-8</td>
<td>9.22e^-8</td>
<td>9.22e^-8</td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>1.09e^-8</td>
<td>1.24e^-8</td>
<td>4.79e^-9</td>
<td>5.57e^-9</td>
<td>5.57e^-9</td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>6.84e^-10</td>
<td>7.78e^-10</td>
<td>2.98e^-10</td>
<td>3.39e^-10</td>
<td>3.39e^-10</td>
</tr>
</tbody>
</table>

Table 6.14: Comparison between the 4-collocation-point templates with different matching point distributions (e.g., distributed evenly or on the Gauss points, marked with 'G') for PDE (6.8).
6.3.3 A nonlinear parabolic PDE with a stationary solution

In this section, we choose an example nonlinear parabolic PDE with known analytical stationary solution to measure the accuracy of our collocation method. Furthermore, because the example PDE has been appropriately constructed to simulate the Bratu problem, it has parameters, solution families, and bifurcation point as in the Bratu problem. Thus, our experiment on this PDE is a good warm-up for solving the real Bratu problem in the following section. The example PDE is given by S. A. Odejide and Y. A. S. Aregbesola in [23]. They consider the solution of the Bratu problem in 2D

$$\Delta u + \lambda e^u = 0, \quad \text{for } (x, y) \in \Omega \subset \mathbb{R}^2 \quad (6.9)$$

in a way they called near exact solution, explained as the following. First, they carefully construct a function of the form

$$u(x, y) = 2 \ln \left(\frac{\cosh(\frac{\theta}{4})}{\cosh((x - \frac{1}{2})\frac{\theta}{2})\cosh((y - \frac{1}{2})\frac{\theta}{2})} \right) \quad (6.10)$$

From this function, they construct the following Bratu-alike PDE:

$$0 = \Delta u + \lambda e^u + f(x, y) \quad \text{for } (x, y) \in \Omega = [0, 1] \times [0, 1] \subset \mathbb{R}^2 \quad , \quad (6.11)$$

where

$$f(x, y) = -2\theta^2[((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2)[1 - \tanh^2((x - \frac{1}{2})(y - \frac{1}{2})\theta)]$$

$$+ \frac{\theta^2}{2}[1 - \tanh^2((x - \frac{1}{2})\frac{\theta}{2})] + \frac{\theta^2}{2}[1 - \tanh^2((y - \frac{1}{2})\frac{\theta}{2})]$$

$$- \lambda \left(\frac{\cosh(\frac{\theta}{4})}{\cosh((x - \frac{1}{2})\frac{\theta}{2})\cosh((y - \frac{1}{2})\frac{\theta}{2})} \right)^2 , \quad (6.12)$$

in which θ and λ are two related parameters.

Then they force PDE (6.11) to be equivalent to the PDE of the Bratu problem (6.9) at the center of Ω, i.e., (0.5, 0.5). This requires the following equality:

$$f(0.5, 0.5) = \theta^2 - \lambda \cosh^2(\frac{\theta}{4}) \equiv 0,$$
Figure 6.21: The values of θ for various values of λ from [23]

Figure 6.22: The values of $u(0.5, 0.5)$ for various values of λ from [23]

which leads to

$$\lambda = \left(\frac{\theta}{\cosh(\frac{\theta}{4})} \right)^2$$

(6.13)

Thus the parameter λ is a function of parameter θ, as shown in Figure 6.21. Figure 6.21 and 6.22 from [23]. The authors of [23] find a fold of λ at $\theta_c \approx \pm 4.7987$ and $\lambda_c \approx 7.02766$ by solving

$$\frac{d\lambda}{d\theta} = 0$$

Thus by making λ and θ satisfy equation (6.13), they make the function (6.10) satisfy the PDE of the Bratu problem at (and only at) the center of domain Ω. Function (6.10) also has the fold with respect to parameter λ, as show in Figure 6.22 [23], which is similar to that of the real Bratu problem.

For measuring the accuracy, we still need to do time integration from an initial condition (for this example, the initial condition is identically 0) until reaching a stationary solution. For this purpose, we construct the corresponding parabolic PDE from (6.11):

$$\frac{\partial u}{\partial t} = \Delta u + \lambda e^u + f(x,y) ,$$

B.C : $u(x, y, t) = 0$ for $(x, y) \in \delta \Omega ,

I.C : u(x, y, 0) = 0$ for $(x, y) \in \Omega

(6.14)$

The stationary solution must be stable; otherwise, we cannot detect it or stay on it. Thus, we need to choose a good value of the parameter λ (in fact θ) such that the PDE has a reachable stationary
solution. For this purpose, we assume that we are currently just on a stationary solution, \(u_1 \), and the corresponding parameters are \(\lambda_1 \) and \(\theta_1 \), which satisfy equation (6.13). For simplicity, only consider \(u_1(0.5, 0.5) \) because, at this point, PDE (6.14) reduces to a simpler PDE:

\[
\frac{\partial u}{\partial t} = \Delta u + \lambda e^u.
\]

(6.15)

Thus, we have

\[
0 = \Delta u_1 + \lambda_1 e^{u_1}.
\]

Then, choose \(\lambda_2 \), which is close to \(\lambda_1 \), and \(\lambda_2 > \lambda_1 \), at the same time, keep \(u = u_1 \), so

\[
\frac{\partial u}{\partial t} = \Delta u_1 + \lambda_2 e^{u_1} > \Delta u_1 + \lambda_1 e^{u_1} = 0.
\]

Let the value of \(u \) for \(\lambda_2 \) be \(u_2 \). From Figure 6.21 and 6.22, we know that \(u_1 < u_2 \) if and only if \(\theta < \theta_c \). In this case, \(\frac{\partial u}{\partial t} > 0 \) means we are moving towards the solution \(u_2 \) from our current state \(u_1 \). This implies that any deviation from the solution will get a negative feedback and be pulled back to the solution. Thus, the stationary solution is stable. On the contrary, if \(\theta > \theta_c \), the solution is unstable. Our accuracy test for PDE (6.11) is done with \(\theta = 2.0 \) (Thus, \(\lambda \approx 3.1458 \)). The errors of the numerical solutions of PDE (6.11) with the templates having Gauss matching points are listed in Table 6.15, 6.16, and 6.17. From these tables, we find the same features as those of the preceding test PDEs.

<p>| Templates: |</p>
<table>
<thead>
<tr>
<th>Mesh size</th>
<th>1, 3 center</th>
<th>4, 9G</th>
<th>6, 9G</th>
<th>7, 9G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>3.5870e^{-2}</td>
<td>3.54e^{-4}</td>
<td>1.72e^{-5}</td>
<td>1.89e^{-5}</td>
</tr>
<tr>
<td>1/4(64)</td>
<td>8.92e^{-3} (4.02)</td>
<td>2.31e^{-5} (15.32)</td>
<td>3.45e^{-7} (49.87)</td>
<td>4.51e^{-7} (41.83)</td>
</tr>
<tr>
<td>1/8(256)</td>
<td>2.23e^{-3} (3.99)</td>
<td>1.47e^{-6} (15.71)</td>
<td>1.02e^{-8} (33.86)</td>
<td>1.83e^{-8} (24.62)</td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>5.57e^{-4} (4.00)</td>
<td>9.19e^{-8} (15.99)</td>
<td>3.25e^{-10} (31.35)</td>
<td>8.22e^{-10} (22.27)</td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>1.39e^{-4} (4.00)</td>
<td>5.75e^{-9} (15.997)</td>
<td>1.10e^{-11} (29.68)</td>
<td>4.08e^{-11} (20.17)</td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>3.48e^{-5} (4.01)</td>
<td>3.59e^{-10} (15.999)</td>
<td>4.04e^{-13} (27.12)</td>
<td>2.21e^{-12} (18.44)</td>
</tr>
</tbody>
</table>

Table 6.15: \(\tilde{e} \) and convergence rate of PDE (6.11)

We compare the results for the templates with and without Gauss matching points. The results are
Table 6.16: ε and convergence rate of PDE (6.11)

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>4, 12G $\sqrt{2}$</th>
<th>4, 12G $\sqrt{1.5}$</th>
<th>6, 12G $\sqrt{1.5}$</th>
<th>7, 12G $\sqrt{1.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2(16)$</td>
<td>1.36e-3</td>
<td>3.54e-4</td>
<td>3.14e-4</td>
<td>1.88e-5</td>
<td></td>
</tr>
<tr>
<td>$1/4(64)$</td>
<td>2.22e-3</td>
<td>6.39e-6</td>
<td>3.86e-5</td>
<td>8.32e-7</td>
<td></td>
</tr>
<tr>
<td>$1/8(256)$</td>
<td>8.54e-7</td>
<td>2.78e-7</td>
<td>2.01e-6</td>
<td>3.44e-8</td>
<td></td>
</tr>
<tr>
<td>$1/16(1024)$</td>
<td>6.94e-8</td>
<td>1.33e-8</td>
<td>4.70e-8</td>
<td>1.48e-9</td>
<td></td>
</tr>
<tr>
<td>$1/32(4096)$</td>
<td>2.50e-9</td>
<td>7.82e-10</td>
<td>4.64e-7</td>
<td>6.88e-11</td>
<td></td>
</tr>
<tr>
<td>$1/64(16384)$</td>
<td>1.27e-10</td>
<td>4.78e-11</td>
<td>2.85e-9</td>
<td>3.50e-12</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.17: ε and convergence rate of PDE (6.11)

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>1, 6G $\sqrt{2}$</th>
<th>3, 6G $\sqrt{1.5}$</th>
<th>4, 6G $\sqrt{1.5}$</th>
<th>6, 6G $\sqrt{1.5}$</th>
<th>7, 6G $\sqrt{1.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2(16)$</td>
<td>6.21e-2</td>
<td>7.70e-3</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>$1/4(64)$</td>
<td>9.12e-3</td>
<td>1.06e-3</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>$1/8(256)$</td>
<td>1.90e-3</td>
<td>1.38e-4</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>$1/16(1024)$</td>
<td>4.39e-4</td>
<td>1.77e-5</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>$1/32(4096)$</td>
<td>1.06e-4</td>
<td>2.24e-6</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>$1/64(16384)$</td>
<td>3.11e-5</td>
<td>2.81e-7</td>
<td>N.S.</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
</tr>
</tbody>
</table>

in Table 6.18, 6.19, and 6.20. A solution of PDE (6.11) with parameters $\lambda = 5.37$ ($\theta = 3.0$)

Table 6.18: Comparison of the accuracy between the 7-collocation-point templates with matching points at Gauss points (marked with ’G’) and those with evenly distributed matching points (without ’G’) for PDE (6.11); the ’\sim’ means the following numbers keep vibrating; for example, ’6.207\sim’ means this value constantly vibrates in the range of 6.2070 \sim 6.2080.

<table>
<thead>
<tr>
<th>Templates:</th>
<th>Mesh size</th>
<th>7, 9G $\sqrt{2}$</th>
<th>7, 9 $\sqrt{1.5}$</th>
<th>7, 12G $\sqrt{1.5}$</th>
<th>7, 12 $\sqrt{1.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2(16)$</td>
<td>1.89e-2</td>
<td>6.32e-9</td>
<td>1.88e-5</td>
<td>1.66e-5</td>
<td></td>
</tr>
<tr>
<td>$1/4(64)$</td>
<td>4.1e-3</td>
<td>1.48e-6</td>
<td>8.32e-7</td>
<td>1.23e-6</td>
<td></td>
</tr>
<tr>
<td>$1/8(256)$</td>
<td>1.84e-8</td>
<td>9.11e-8</td>
<td>3.44e-8</td>
<td>5.54e-8</td>
<td></td>
</tr>
<tr>
<td>$1/16(1024)$</td>
<td>8.22e-10</td>
<td>5.08e-9</td>
<td>1.48e-9</td>
<td>2.48e-9</td>
<td></td>
</tr>
<tr>
<td>$1/32(4096)$</td>
<td>4.08e-11</td>
<td>2.89e-10</td>
<td>6.88e-11</td>
<td>1.19e-10</td>
<td></td>
</tr>
<tr>
<td>$1/64(16384)$</td>
<td>2.21e-12</td>
<td>1.70e-11</td>
<td>3.50e-12</td>
<td>6.207\sime-12</td>
<td></td>
</tr>
</tbody>
</table>

is visualized in Figure 6.23 \sim 6.26. By comparing the results of the visualization with different configurations of collocation points and matching points, we see how the configurations make a difference. Figure 6.23 shows that the configuration with 3 matching points per edge results in better continuity between each pair of adjacent elements with a coarse mesh (i.e., meshes with very
Table 6.19: Comparison between the 6-collocation-point templates with different matching point distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.11). N.S means we cannot reach the stationary solution.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>Templates:</th>
<th>6, 9G</th>
<th>6, 9</th>
<th>6, 12G</th>
<th>6, 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>1.72e-9</td>
<td>6.79e-9</td>
<td>3.14e-4</td>
<td>3.02e-4</td>
<td></td>
</tr>
<tr>
<td>1/4(64)</td>
<td>3.45e-7 (49.87)</td>
<td>1.53e-6 (44.32)</td>
<td>3.86e-5 (8.15)</td>
<td>1.49e-5 (20.28)</td>
<td></td>
</tr>
<tr>
<td>1/8(256)</td>
<td>1.02e-8 (33.86)</td>
<td>9.91e-8 (15.46)</td>
<td>2.01e-6 * (19.19)</td>
<td>1.79e-5 (0.83)</td>
<td></td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>3.25e-10 (31.35)</td>
<td>5.57e-9 (17.80)</td>
<td>4.70e-8 (42.82)</td>
<td>7.22e-7 (24.88)</td>
<td></td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>1.10e-11 (29.68)</td>
<td>3.16e-10 (17.60)</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>4.04e-13 (27.12)</td>
<td>1.86e-11 (17.02)</td>
<td>2.85e-9 ()</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.20: Comparison between the 4-collocation-point templates with different matching point distributions (e.g., distributed evenly or on the Gauss points, marked with ’G’) for PDE (6.11).

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>Templates:</th>
<th>4, 9G</th>
<th>4, 9</th>
<th>4, 12G</th>
<th>4, 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>6.09e-4</td>
<td>7.46e-4</td>
<td>3.54e-4</td>
<td>2.63e-4</td>
<td></td>
</tr>
<tr>
<td>1/4(64)</td>
<td>3.79e-5 (16.06)</td>
<td>4.73e-5 (15.77)</td>
<td>6.39e-6 (55.33)</td>
<td>7.15e-6 (36.72)</td>
<td></td>
</tr>
<tr>
<td>1/8(256)</td>
<td>2.38e-6 (15.91)</td>
<td>2.97e-6 (15.92)</td>
<td>2.78e-7 (22.95)</td>
<td>2.54e-7 (28.21)</td>
<td></td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>1.49e-7 (16.02)</td>
<td>1.86e-7 (15.97)</td>
<td>1.33e-8 (20.87)</td>
<td>1.42e-8 (17.83)</td>
<td></td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>9.30e-9 (16.01)</td>
<td>1.16e-8 (15.98)</td>
<td>7.82e-10 (17.06)</td>
<td>8.68e-10 (16.37)</td>
<td></td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>5.81e-10 (16.00)</td>
<td>7.28e-10 (15.99)</td>
<td>4.78e-11 * (16.35)</td>
<td>5.46e-11 (15.9)</td>
<td></td>
</tr>
</tbody>
</table>
large elements). The 64-element mesh results in a surface as smooth as that generated from the 256-element mesh in Figure 6.25. On the contrary, applying the configuration with 2 matching points per edge to the same mesh, we obtain poor continuity, as shown in Figure 6.24. For achieving better continuity with this configuration, we need a further refined mesh with at least 1024 elements, as shown in Figure 6.26.

Figure 6.24 and 6.26 indicate that fewer matching points per edge lead to less continuity; however, more levels of subdivision (i.e., smaller mesh size) improves.

In the remaining part of this section, we show the solution families of PDE (6.11) found by our collocation method. This is an experiment before solving the real Gelfand-Bratu problem in Section 6.4.
Figure 6.27: Solution families found by our collocation method.

Family 1: A stable stationary solution family defined by function (6.10), the numerical solutions of which can also be detected by our collocation method and therefore we can measure the error.

Family 2: An unstable stationary solution family defined by function (6.10), which cannot be detected by our method because it is unstable.

Family 3: The stable stationary solution family found by our collocation method; however, its analytical form is unknown.

Table 6.21: Solution families found by our collocation method.

<table>
<thead>
<tr>
<th>λ</th>
<th>θ1</th>
<th>family#1</th>
<th>θ2</th>
<th>family#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.3173</td>
<td>0.00628</td>
<td>19.196</td>
<td>3.723</td>
</tr>
<tr>
<td>0.5</td>
<td>0.71854</td>
<td>0.03210</td>
<td>14.985</td>
<td>2.40</td>
</tr>
<tr>
<td>1.0</td>
<td>1.03355</td>
<td>0.06605</td>
<td>13.0383</td>
<td>1.87</td>
</tr>
<tr>
<td>2.0</td>
<td>1.51715</td>
<td>0.14057</td>
<td>10.9387</td>
<td>1.40</td>
</tr>
<tr>
<td>3.0</td>
<td>1.93974</td>
<td>0.27036</td>
<td>9.5817</td>
<td>1.18</td>
</tr>
<tr>
<td>4.0</td>
<td>2.35755</td>
<td>0.32904</td>
<td>8.507</td>
<td>1.08</td>
</tr>
<tr>
<td>5.0</td>
<td>2.81155</td>
<td>0.45817</td>
<td>7.548</td>
<td>1.05</td>
</tr>
<tr>
<td>6.0</td>
<td>3.37355</td>
<td>0.64039</td>
<td>6.5766</td>
<td>1.11</td>
</tr>
<tr>
<td>7.0</td>
<td>4.55207</td>
<td>1.08594</td>
<td>5.0545</td>
<td>1.2965</td>
</tr>
<tr>
<td>7.02</td>
<td>4.66823</td>
<td>1.13360</td>
<td>4.932</td>
<td>1.2439</td>
</tr>
<tr>
<td>7.0277</td>
<td>4.8</td>
<td>1.18837</td>
<td>4.8</td>
<td>1.18837</td>
</tr>
</tbody>
</table>
6.3.4 Another nonlinear parabolic PDE with a stationary solution

Based on the time-independent function below

\[u(x, y) = \frac{1}{\cos(y) + e^x} \], where \((x, y) \in \Omega, \tag{6.16} \]

we construct the following nonlinear parabolic PDE:

\[\frac{\partial u}{\partial t} = \Delta u - (2 - \cos^2(y) + e^{2x})u^3. \tag{6.17} \]

\[\text{for } (x, y) \in \Omega \]

\[\text{B.C: function (6.16) for } (x, y) \in \delta \Omega . \]

The initial condition can be defined as discussed in Section 6.2. Besides measuring the accuracy with one more PDE, another purpose of this test is to prepare for the next test PDE in section 6.3.5.

Accuracy data are listed in the following tables.

<table>
<thead>
<tr>
<th>Templates</th>
<th>Mesh size</th>
<th>1, 3 center</th>
<th>4, 9G 0.8</th>
<th>6, 9G 1.15</th>
<th>7, 9G 1.5, 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>4.19e^{-3}</td>
<td>2.41e^{-5}</td>
<td>6.32e^{-7}</td>
<td>8.24e^{-7}</td>
<td></td>
</tr>
<tr>
<td>1/4(64)</td>
<td>1.03e^{-3} (4.08)</td>
<td>1.03e^{-6} (23.35)</td>
<td>1.92e^{-8} (32.97)</td>
<td>2.72e^{-8} (30.28)</td>
<td></td>
</tr>
<tr>
<td>1/8(256)</td>
<td>2.55e^{-4} (4.028)</td>
<td>6.45e^{-8} (16.03)</td>
<td>5.92e^{-10} (32.39)</td>
<td>1.06e^{-9} (25.76)</td>
<td></td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>6.36e^{-5} (4.008)</td>
<td>4.04e^{-9} (15.97)</td>
<td>1.86e^{-11} (32.91)</td>
<td>4.68e^{-11} (22.53)</td>
<td></td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>1.59e^{-5} (4.002)</td>
<td>2.52e^{-10} (15.987)</td>
<td>5.94e^{-13} (31.24)</td>
<td>2.33e^{-12} (20.11)</td>
<td></td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>3.97e^{-6} (4.0007)</td>
<td>1.58e^{-11} (15.998)</td>
<td>1.98e^{-14} (29.95)</td>
<td>1.27e^{-13} (18.38)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.22: \(\varepsilon \) and convergence rate of PDE (6.17)

<table>
<thead>
<tr>
<th>Templates</th>
<th>Mesh size</th>
<th>4, 12G 0.8</th>
<th>4, 12G 1.25</th>
<th>6, 12G 1.45, 1.35</th>
<th>7, 12G 1.5, 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(16)</td>
<td>2.52e^{-5}</td>
<td>8.87e^{-6}</td>
<td>1.28e^{-4}</td>
<td>2.58e^{-6}</td>
<td></td>
</tr>
<tr>
<td>1/4(64)</td>
<td>1.15e^{-6} (21.88)</td>
<td>3.03e^{-7} (29.3)</td>
<td>1.36e^{-5} (9.4)</td>
<td>8.56e^{-8} (30.16)</td>
<td></td>
</tr>
<tr>
<td>1/8(256)</td>
<td>6.23e^{-8} (18.48)</td>
<td>1.32e^{-8} (22.95)</td>
<td>4.12e^{-6} (3.29)</td>
<td>3.05e^{-9} (28.06)</td>
<td></td>
</tr>
<tr>
<td>1/16(1024)</td>
<td>4.04e^{-9} (15.44)</td>
<td>7.39e^{-10} (17.86)</td>
<td>5.07e^{-8} (81.37)</td>
<td>1.16e^{-10} (26.42)</td>
<td></td>
</tr>
<tr>
<td>1/32(4096)</td>
<td>10.0e^{-11} (40.37)</td>
<td>4.73e^{-11} (15.62)</td>
<td>2.91e^{-8} (1.74)</td>
<td>4.74e^{-12} (24.35)</td>
<td></td>
</tr>
<tr>
<td>1/64(16384)</td>
<td>3.3~e^{-12} (29)</td>
<td>3.0~e^{-12} (15.77)</td>
<td>N.S</td>
<td>2.16~e^{-13} (21.9)</td>
<td></td>
</tr>
</tbody>
</table>
The process of time integration starting from \(u(x, y, 0) = 0 \) in the entire domain is visualized in Figure 6.28 ~ 6.35:

- Figure 6.28: \(t = 0.01 \)
- Figure 6.29: \(t = 0.02 \)
- Figure 6.30: \(t = 0.03 \)
- Figure 6.31: \(t = 0.04 \)
Figure 6.32: $t = 0.06$

Figure 6.33: $t = 0.07$

Figure 6.34: $t = 0.08$

Figure 6.35: The steady state ($t > 2.5$)
6.3.5 A nonlinear parabolic PDE without stationary solution

All parabolic PDEs used in the preceding tests have stationary solutions that can be reached by time integration. The steady states are the solutions of the corresponding elliptic PDEs, which are time-independent. Because we know the analytical solutions of the elliptic PDEs, we can measure the accuracy of the numerical stationary solutions of the PDEs. The accuracy of the steady state depends on the layout of matching points and collocation points, mesh size, and the collocation method. In this section we want to see how accuracy is related to the time dimension. For this purpose, we need to know the analytical solution of the parabolic PDE itself (instead of the corresponding elliptic PDE). Therefore such an analytical solution must be a function of time. Making reference to the general analytical solution of the Fisher Equation given by Christophe Picard in [18], we construct a nonlinear parabolic PDE of this type. The analytical solution is defined as following:

\[u(x, y, t) = A \cos(By) + e^{(Cx+Dt)} \],

(6.18)

where \((x, y) \in \Omega\)

By choosing appropriate values for the coefficients of the above general closed-form solution, we get the following function:

\[u(x, y, t) = \frac{1}{\cos(y) + e^{(x-2t)}} \],

(6.19)

where \((x, y) \in \Omega\)

and construct the corresponding nonlinear parabolic PDE:

\[\frac{\partial u}{\partial t} = \Delta u + u(1 - 2u^2), \]

for \((x, y) \in \Omega\)

(6.20)

B.C : \[u(x, y, t) = \frac{1}{\cos(y) + e^{(x-2t)}} \] for \((x, y) \in \delta\Omega\)

Note that function (6.19) at \(t = 0\) is identical to function (6.16). We first do time integration for PDE (6.17) until the solution has reached its steady state. Then we take this steady state as the initial condition from which to start the time evolution for PDE (6.20). We need to reset \(t = 0\). Another
method to set an initial condition is to explicitly apply function (6.19) with $t = 0$ to the entire domain Ω. The state evolution shown in Figures 6.36 \sim 6.41 start from the function (6.19) with $t = 0$.

![Figure 6.36: $t = 0$](image)

![Figure 6.37: $t = 0.4$](image)

![Figure 6.38: $t = 0.8$](image)

![Figure 6.39: $t = 1.2$](image)
Table 6.24 shows the relation among the total error, Δt, and mesh size. The column with “1/4(64)” represents the case where the mesh is composed of 64 elements, each of which is of size 1/2. The column with “1/2(16)” represents the case with fewer elements (only 16 elements) and larger element size ($size = 1/2$).

\[
Err_{total} = Err_s + Err_t ,
\]

where Err_{total} represents the total error, Err_s is the error caused by the spatial discretization, and Err_t refers to the error caused by the temporal discretization. Err_s is influenced by the mesh size, the number of collocation points and matching points, and the location of the collocation points and the matching points. Because we are using the one-step Euler-backward finite difference method, from the Taylor Expansion we know that the local truncation error (defined as the error made in one step) is $O(\Delta t^2)$. “If the local truncation error is $O(h^{p+1})$, then the global truncation error is $O(h^p)$”[65]. Thus Err_t is determined by Δt. In the case of $\Delta t = 0.0125$, $Err_{total} \approx Err_s$ because Err_t is very small and can be ignored. That is why, even though the Δt is narrowed down by 2 from 0.025 to 0.0125, Err_{total} in the column with “1/2(16)” in Table 6.24 is nearly unchanged. However in the column with “1/4(1024)”, Err_s is small and negligible, therefore the Err_t is the main part of Err_{total}. In this case we can clearly see that Err_{total} is of the order $O(\Delta t)$.

98
$$\frac{\partial u}{\partial t} = \Delta u + \lambda e^u,$$

$$x \in \Omega \subset \mathbb{R}^2$$

B.C : \(u(x, y, t) = 0 \) for \((x, y) \in \delta \Omega \),

I.C : \(u(x, y, 0) = 0 \) for \((x, y) \in \Omega \),

where \(u \) is the temperature in the problem domain and \(\lambda \) is the parameter. The general Bratu problem is defined in \(\mathbb{R}^n \), but we focus on its 2D case. The heat is generated by the combustion, diffused in the problem domain, and lost through the boundary of the domain. The temperature is kept at 0 on the boundary. The combustion is defined by \(\lambda e^u \), and the speed of the heat generation is controlled by parameter \(\lambda \). For certain values of \(\lambda \), starting from a specified initial condition and after a certain period of reaction, the temperature distribution will be stabilized at a stationary state. With the same values of \(\lambda \), starting from some other initial condition, the temperature distribution may approach an equilibrium in a certain period of reaction, but cannot stay at it. Such equilibrium is an unstable solution of the PDE. For other values of \(\lambda \), in some or all regions of the domain, the

6.4 Application

6.4.1 The Gelfand-Bratu problem

The Bratu problem, also called as Liouville–Bratu–Gelfand problem, is an parabolic PDE which defines a solid fuel ignition model, and is derived as a model for the thermal reaction process in a combustible, nondeformable material of constant density during the ignition period [63]. This problem is also often used as a benchmarking tool for numerical methods [62].

<table>
<thead>
<tr>
<th>(\Delta t)</th>
<th>(\Delta t = 2.0)</th>
<th>(\Delta t = 2.0)</th>
<th>(\Delta t = 2.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16(1024), 4 collo</td>
<td>5.3339e-4</td>
<td>6.6908e-4</td>
<td>1.1555e-3</td>
</tr>
<tr>
<td>1/4(64), 4 collo</td>
<td>2.5153e-1(2.12)</td>
<td>3.6255e-4(1.99)</td>
<td>8.0404e-4(1.44)</td>
</tr>
<tr>
<td>1/2(16), 4 collo</td>
<td>6.0163e-5(2.03)</td>
<td>1.8720e-4(1.79)</td>
<td>6.6274e-4(1.21)</td>
</tr>
</tbody>
</table>

Table 6.24: Dependence of the errors on \(\Delta t \)
heat is generated always faster than it is transferred away; as the result, the temperature in those regions keeps increasing until blow-up.

We want to determine the stable stationary solutions of (6.21).

6.4.2 Numerical solution of the Gelfand-Bratu problem in $2D$

Starting from $\lambda = 1.0$, we do time integration from the initial condition in (6.21). Afterward, we increase λ by 1 and for each such increased value of λ we start the time integration from the current stationary solution and, as a result, reach a new stationary solution. This situation continues until we encounter the critical value of λ at $\lambda \approx 6.85$, where we can no longer reach any steady state, as shown in Figure 6.42 and Table 6.25.

Figures 6.43 – 6.46 show the stable stationary solutions for cases with $\lambda < 0$, which can be considered as some kind of chemical reaction absorbing heat.

![Figure 6.42: The stationary solution families of the Bratu problem. The stationary solution family 1 is stable. The stationary solution family 2 is unstable. We can only determine the stable stationary solution by time integration.](image)
Figure 6.43: $\lambda = -20.0$

Figure 6.44: $\lambda = -15.0$

Figure 6.45: $\lambda = -10.0$

Figure 6.46: $\lambda = -5.0$

Figure 6.47: $\lambda = 3.0$

Figure 6.48: $\lambda = 5.0$

Figure 6.49: $\lambda = 6.0$

Figure 6.50: $\lambda = 6.8$
Figure 6.51: The blow-up during time integration with $\lambda = 6.85$
Table 6.25: Bratu solution family found by our collocation method.

<table>
<thead>
<tr>
<th>λ</th>
<th>$CenterValue$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.077</td>
</tr>
<tr>
<td>2.0</td>
<td>0.165</td>
</tr>
<tr>
<td>3.0</td>
<td>0.268</td>
</tr>
<tr>
<td>4.0</td>
<td>0.393</td>
</tr>
<tr>
<td>5.0</td>
<td>0.554</td>
</tr>
<tr>
<td>6.0</td>
<td>0.797</td>
</tr>
<tr>
<td>6.5</td>
<td>1.014</td>
</tr>
<tr>
<td>6.6</td>
<td>1.086</td>
</tr>
<tr>
<td>6.7</td>
<td>1.191</td>
</tr>
<tr>
<td>6.8</td>
<td>1.322</td>
</tr>
</tbody>
</table>

Figure 6.52: Test the Bratu problem in another domain, which is smaller than the unit square. The blow-up takes place when $\lambda = 21.0$
6.5 Summary of numerical results

In this chapter we have established a scheme, including different configurations of the numbers and locations of matching points and collocation points, various mesh sizes, etc., to test the accuracy of numerical solutions found by the piecewise collocation method. Based on the large number of test results in the preceding section, we have been able to extract some common features about the relation between accuracy and the schema, as shown in Table 6.26. From the table, we can practically predict which configurations usually bring more accurate solutions than others, but without supporting mathematical theory. More research on this topic is needed.

<table>
<thead>
<tr>
<th>mch</th>
<th>collo</th>
<th>1</th>
<th>4</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{\textbackslash points}$</td>
<td>$\text{\textcolon\textbackslash points}$</td>
<td>at center</td>
<td>at 0.8 or 1.25</td>
<td>at (1.45, 1.35)</td>
<td>at (1.5, 1.25)</td>
</tr>
<tr>
<td>$1G \times 3$</td>
<td>(22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2G \times 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3G \times 3$</td>
<td></td>
<td>2, (24)</td>
<td>1, (25)</td>
<td>1, (215)</td>
<td></td>
</tr>
<tr>
<td>$4G \times 3$</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.26: Accuracy levels and convergence rates of different configurations.

In Table 6.26, 'G' means the matching points are Gauss points. The values 0.8, 1.25, (1.45, 1.35), and (1.5, 1.25) indicate collocation point locations, as illustrated by Figure 6.6 in Section 6.1.3. The colors of cells indicate different performance, including mainly the accuracy, together with convergence rate i.e., the values in () and/or singularity, of the corresponding configurations:

- The white cells represent the preferred configurations with high accuracy and high convergence rates. The accuracy level 1 is even higher than level 2. Some convergence rates, which are shown in the parenthesis, are uniform for all mesh sizes. Non-uniform convergence rates are not shown in the table although some of them are quite high.

- The light gray cells represent workable but un-preferable configurations which bring lower accuracy, usually with irregularly varying convergence rates.

- The dark gray cells represent the configurations to be avoided, which cause a non-invertible matrix $(\Phi|L_\Phi)$, or give divergent results.
In all cases, the configurations with the Gauss matching points give higher accuracy than those with equally-spaced matching points.

We have also visualized the process of time integration (i.e., state evolution) of the parabolic PDEs, which is a distinctive feature in comparison to elliptic PDEs. We have shown that, for finding any stationary solutions of a PDE, different Initial conditions can be chosen and thereby causing different processes of state evolution, which may (but not necessarily) reach different steady states (i.e., stationary solutions). Thus, by choosing different initial conditions, it is possible to find multiple solution families, as shown in test example 6.3.3.

Finally, we applied our method to solving the Bratu problem, where we have found out a family of stable stationary solutions. We have also located the position of the fold of this family.
Chapter 7

Visualization

We have implemented functionality of visualization, which realistically illustrates problem domains, solutions, and any other related info. We have briefly mentioned 2D and 3D visualization in Section 5.1, when describing the Model-View-Controller architecture. Visualization of data makes the info “hidden” behind the raw data visible and intuitive for human understanding. Moreover, visualization makes inter-person communication about the data more effective. However, visualization is not for reporting precise values, which should be done by data tables.

The 2D visualization visualizes solutions as height-field, which reflects roughly the shape of the solution surfaces. Two example solutions are visualized as shown Figure 7.1 and 7.2:

![Figure 7.1: 2D visualization of a solution](image1)

![Figure 7.2: 2D visualization of another solution](image2)
The gray level reflects values within the range of 0.0 – 0.1. Once the values exceed this range, the gray level wraps back; therefore, we can see the “growth rings” or contour bars, which can be used for imagining the shape of surface and estimating values. We can also get the height value at the center point of the square domain from a message box, then by counting the number of contour bars and observing the gray level, we can roughly estimate the value at any specific point. Of course, we can show the values wherever there is a mouse-click or mouse-over; however, this is not necessary for this research project. In this chapter we will emphasize the visualization in 3D.

7.1 Pixel-correct mathematical surface rendering

Our visualization guarantees mathematical correctness at each screen space pixel by using the Ray casting rendering. Pixel-correctness is emphasized in our visualization to make sure the polynomial patches are honestly visualized without any artifact. Figure 7.3 shows the surface of a solution of the Bratu problem with $\lambda = 4.0$ obtained by our discontinuous piece-wise smooth collocation method. Figure 7.4 shows the same surface after zooming in. It is important to note that, in order to exaggerate the piecewise, we have chosen a less smooth (or less accurate) configuration for our collocation method (i.e., 2 matching points per edge, 1 collocation point per element, and less sub-division, i.e., bigger mesh size) to solve for the solution shown in the figures. Thus, the solution surface have higher curvature. It is easy to achieve enough smooth and accurate results like those shown in figure 6.23 and 6.25 with a configuration of more matching or smaller mesh size.

Figure 7.3: A surface over a 64-element mesh. Each element has 1 collocation point and 2 matching points per edge.

Figure 7.4: A zoomed-in view of the surface for showing the shapes of the patches and the gaps between each pair of adjacent patches.
No matter how largely zoomed in, the surface patches, their silhouettes, and patch edges are always smooth, as show in the above figures. For our discontinuous piece-wise smooth collocation method, the visualization must show the conceptual features of the solution surfaces; that is, discontinuity between two adjacent surface patches, C^1 continuity at the matching points, and the local smooth-ness of patches. If we had used polygon-based rendering, when zooming into the surfaces, we would have seen polylines (instead of curves) on the silhouettes and edges, and faceted (instead of smooth) patch surfaces. This kind of artifact or distortion would hide some essential natures of our collocation method. In general, this problem exists in visualization of many mathematical surfaces (parametric, explicit, and implicit). Much research has been done for pixel-accurate visualization of mathematical surfaces; for example, [58], [59], [60], and [61], in which the researchers make use of geometry shader or tessellation shader of GPUs to dynamically subdivide the original facets. The researchers of [58] point out that "no fixed set of levels (of tessellation) can avoid faceted display or overtessellation". Thus, tessellation levels should be changed dynamically; in [59], the author use the screen space distance between the tessellated surface and the corresponding surface point as an error metric", and then adjust tessellation level accordingly to make "the sampling distance to meet any given tolerance". A reasonable threshold of tolerance is that the projection of the dis-tance to screen space is less than a pixel. This principle is similar to that of our error estimator for adaptive mesh discussed in Section 2.1. These tessellation-based methods can smooth surfaces; however, tessellation cannot smooth the edges of patches in our problem, and "Coarse tessella-tions near silhouette edges are easily detected" [59], according to the author. Thus, we use the Ray casting method for rendering, which is absolutely mathematically pixel-correct (not only visually pixel-accurate), and straightforward to implement. Although this brutal-force method is computationally expensive, fast technical progress in hardware will compensate the computational cost. Furthermore, our visualization emphasizes mathematical correctness rather than frame rate (FPS). Thus, the speed of rendering is not our top consideration as long as the interactivity is acceptable.
7.2 The principle of our rendering algorithm

Our visualization is based on the Ray casting rendering algorithm. In this section, we explain how to use this algorithm for Pixel-correct surface rendering. Visualization is rendering data onto graphical devices. In our project, the graphical device is a computer screen. 3D rendering is projecting surfaces (or polygons) in 3D space onto 2D screen space. For simply understanding the Ray casting rendering algorithm, consider a computer screen as a sieve and pixels on the screen as the holes on the sieve. Thus, through each hole, the viewer can see a fragment of the surface in 3D or nothing. To clarify two concepts: a pixel is a tiny square piece of the screen; a fragment is a piece of 3D surface which is projected to a corresponding pixel. The Ray casting algorithm does two tasks: first, detecting the first intersection between the ray and the surface, and second, compute the color of the fragment at the intersection point and set the color to the pixel. All the colored pixels as a whole makes up the rendered image. Figure 7.5 illustrates the principle of the algorithm. The line representing the casted ray is defined by the following equation:

\[
\vec{v}_{xyz} = s \ast \vec{v}_{ray}, \quad \text{where} \quad \vec{v}_{xyz}, \vec{v}_{ray} \in \mathbb{R}^3, \quad s \in \mathbb{R}, s > 0. \tag{7.1}
\]
The \(\vec{v}_{ray} \) should be unit vector. We will explain in detail how to compute the \(\vec{v}_{ray} \). For now, simply suppose that there is an existing \(\vec{v}_{ray} \) for each pixel on screen so that we can directly make use of it to probe a fragment. The 3D surface can be any arbitrary mathematical surface. However, because we are here talking about visualizing the results of our collocation method, we are only concerned with the surfaces defined in the form of (3.9). Here, we re-write the expression with some necessary changes to make it conform to the naming convention of the coordinate system in 3D Computer Graphics, which is illustrated in figure 7.5.

\[
y = p(x, z) = \sum_{i=1}^{n+m} c_i \phi_i(x, z) \quad \in P_{n+m}. \tag{7.2}
\]

In 3D Graphics, \(y \) represents height, which is significantly different from the \(y \) in all the preceding chapters of this thesis. We need to find the intersection between (7.1) and (7.2); that is, finding a value of \(s \) such that point \(\vec{v}_{xyz} \) is on the surface.

\[
R(s) = \vec{v}_{xyz}.y - p(\vec{v}_{xyz}.x, \vec{v}_{xyz}.z) = 0, \tag{7.3}
\]

where \(R(s) \) is the residual. The unknown \(s \) can be solved by using Newton’s method, with the intersection between the ray and the near clip plane as the initial guess. However, in order to guarantee Newton iteration converge, the initial guess should be close to the solution. Thus, we need to find on the ray a point as close as possible to the surface, and then start the Newton iteration from that point. We use a straightforward method to find such a point; that is, starting from the near clip plane and tracing the ray, we specify a series of uniformly distributed sampling points. We denote by \(s_1, s_2, \ldots, s_k \) these sampling points ordered by their distances away from the viewer. Then we substitute the values of \(s_i \) into (7.3) to evaluate \(R(s_i) \). If there exist \(R(s_j) \) and \(R(s_{j+1}) \) having different signs, it indicates that point \(s_j \) and point \(s_{j+1} \) are located on different sides of the surface, so the ray must have penetrated the surface and the intersection must be somewhere between point \(s_j \) and point \(s_{j+1} \). Thus, \(s_j \) can be taken as the initial guess of \(s \). If all the values of \(R(s_i) \) have the same sign, then there are two possibilities: first, the ray does not intersect with the surface, or second, the ray has penetrated the surface for even times in between certain pair(s) of \(s_j \) and \(s_{j+1} \). In the latter case, the interval of probing is not small enough so that the intersection points
are skipped and missed. This problem can be solved by redoing the probing from a shifted starting point, as shown in figure 7.6. Shortening sampling point interval may also be a solution, but it would increase the number of sampling points and therefore require more computational cost, so it is not preferable. In figure 7.6(A), all the intersections are missed, but this is not the worst case because at least the algorithm knows that it must try again with shifted sampling points. The worst case is figure 7.6(B), in which the algorithm has missed the correct intersection but instead detected a wrong one (between S'_2 and S'_3) and took it as the correct intersection. Additionally, correct intersections might also be missed in some other possible cases with complicated surfaces. Fortunately in practice, the prerequisite of using this method to determine the initial guess is that the surface patch over each element has already been sufficiently "flattened" by adaptive mesh generation. In consequence, the case in 7.6(B) is very rare. In this algorithm, we stop probing once hitting the first intersection. (For rendering semi-transparent surfaces, we would have to detect all intersections along the ray and compute weighted average color of them.)

Up to this point, we have explained the essential principle of our ray casting rendering method. It seems to be perfect except for one problem; that is, time consuming because we have to do the above computation one-by-one for all the pixels on screen. In fact this is not true because the
rendering and the related computation of all the pixels will be done in parallel at the same time by GPU, which will be discussed in next section.

7.3 Technical details

We will begin this section with briefly explaining OpenGL’s rendering pipeline because it is the base on top of which our visualization method has been designed and implemented. Then we will explain how our ray casting algorithm is involved into the rendering pipeline. Our algorithms and methods are generally feasible on any graphics libraries which supports directly GPU programming, including OpenGL/GLSL, WebGL, and DirectX/HLSL, with C++, Java, C#, or JavaScript.

A visualization application is conceptually composed of two sides: the CPU side and GPU side. On the CPU side, we construct the 3D objects to render. A 3D object is a group of triangular facets. The geometric data (vertices, normal vectors, vertex indices, etc.) of each facet is generated on the CPU side by computing it on-the-fly or loading it from 3D model files. Then the data is transferred to the GPU side and stored into the appropriate buffers through OpenGL functions (or DirectX functions, depending on which 3D library we are using). Then OpenGL begins to process the data. OpenGL implements what’s commonly called a rendering pipeline, which is a sequence of processing stages for converting the data your application provides to OpenGL into a final rendered image [64]. OpenGL then processes the data through a sequence of shader stages: vertex shading, tessellation shading (which itself uses two shaders), and finally geometry shading, before it’s passed to the rasterizer. The rasterizer will generate fragments for any primitive that’s inside of the clipping region, and execute a fragment shader for each of the generated fragments [64]. Tessellation and geometry shading are two optional stages, which are not involved in our rendering algorithm; our algorithm replies on only two stages: vertex shading and fragment shading (also called pixel shading). We use an example to explain how our algorithm is implemented in the vertex shader and fragment shader in OpenGL’s rendering pipeline. In the example, we will render a single mathematical surface, \(y = f(x, z) \), where \((x, z) \in [0, 1]\). For simplicity, we assume the range of \(f(x, z)\) is also \([0, 1]\). Thus, in the application on the CPU side, we construct a unit cube, which means 8 vertices, \(2 \times 6\) triangle facets, and the corresponding vertex indices. Also
on the CPU side, we prepare matrices which defines the transformation (i.e., translation, rotation, and scaling) of the cube. Then we start OpenGL’s rendering pipeline to render this set of geometry data. First, vertex shading, which is a programmable stage. For our visualization, we write a simple vertex shader which does nothing more than computing the vertex transformation and declaring a few in-GPU variables which will be accessed from within fragment shader. The vertex shader can see only each individual vertex. It does not have any knowledge about facets (or primitives, in the term of OpenGL). Facets are constructed at next stage: Primitive Assembly, which organizes the vertices into their associated geometric primitives in preparation for clipping and rasterization [64]. After rasterization, a facet will be decomposed into a group of fragments, each of which will be computed and assigned appropriate color at the stage of fragment shading (also called pixel shading). Fragment shading is also a programmable stage, and the program is called fragment shader. Instead of computing the color and light for the fragments composing the planar facets of the cube, our fragment shader computes the color and light for the corresponding fragments on the mathematical surface, $y = f(x, z)$, the 3D location of which is determined by using our ray casting algorithm explained in Section 7.2. In Section 7.2, we have omitted the explanation of how to compute the ray vector \vec{v}_{ray} to this section. Now, it can be easily explained. We can get the 3D location of each individual fragment via the in-GPU variable declared and set in the vertex shading stage. Thus, \vec{v}_{ray} can be calculated the following way:

$$
\vec{v}_{ray} = \text{normalize}(\vec{v}_{frag} - \vec{v}_{viewer}),
$$

(7.4)

where \vec{v}_{frag} is the location of fragment and \vec{v}_{viewer} is the location of viewer. \vec{v}_{ray} is normalized and therefore unit vector.

After determining the 3D location of a fragment on the mathematical surface, we can compute the normal vector at that point on the surface, and thereby compute the light at that point. The result of this example is shown in figure 7.7 and 7.8.

The main idea of our ray casting method is, first, constructing a container object (in this example, the unit cube), then make OpenGL’s rendering pipeline draw the container object, and thereby
trigger our vertex shader and fragment shader to draw the mathematical surface instead. For rendering the solutions of our piece-wise collocation method, for each polynomial patch, we need one such container object (box), which means as many boxes as the number of elements. Each box is prism-shaped because the corresponding elements are triangular. in Section 7.2, we have explained that, if probing along the casted ray does not find any intersection, we have to re-do such probing with sifted starting point. Such probing has to be repeated several time until an intersection is detected or the specified maximum number of probing is reached. This implies that, in each box, the space in which there is no intersection between the ray and surface costs more computation in the course of intersection probing. Thus, in order to improve performance, we need to make the boxes as thin as narrowly accommodating the surface patch it it. Such kind of thin boxes can be constructed in geometry shader. However, for the current prototype of visualization, we simply use the prism-shaped boxes with constant and uniform height.

Our visualization module is a standalone application, separated from our solver program. The solver solves PDEs, then saves the mesh geometry data and the coefficients (i.e., the \vec{C} in (3.12)) of each element into files. The visualization application loads such files and visualizes the data the way explained above. The current prototype of visualization application is implemented with WebGL, the big advantages of which are high compatibility with OpenGL 4.3 and OpenGL ES (with only
some minor differences) and platform-independent. It can run on all web browsers (IE11, FireFox, etc.) on all OSs (Window, Mac/Os, Linux, ...).

Also because our visualization prototype is a standalone application and web-based, it is easy to be further developed as a formal on-line mathematical surface visualization tool. Any users can make use of this on-line tool to visualize their numerical solutions as long as they follow our data file structure and use the same set of basis.
Chapter 8

Conclusions and Discussion

In this thesis we have presented the implementation of a novel collocation method for solving nonlinear parabolic partial differential equations (PDEs). The temporal partial derivative is discretized using the implicit Euler backward finite difference scheme. The 2D spatial domain of the PDEs is discretized with triangular adaptive meshes. We have designed and implemented our algorithm of error estimate and the mesh refinement based on it. The refinement method is based on the Rivara algorithm. For simplicity, our current mesh refinement works separately from time integration, i.e., mesh refinement is not executed in the course of time integration. Furthermore, we can generate meshes for irregular polygonal domains. The goal of triangular mesh refinement, supporting domains of complex shapes, and solving nonlinear PDEs has been achieved by our collocation method prototype.

We have used a large number of test cases to measure the accuracy of our collocation method in Chapter 6. The test results have shown high accuracy. The accuracy of collocation methods depends on mesh size, mesh shape, the number of collocation points, the location of collocation points, the number of matching points, and the location of matching points. There is no completely established mathematical theory for error estimate based on these factors. Some researchers have mathematically proved the error estimates for some special cases, but not for general cases. However from the results of our tests we have extracted patterns (i.e., the layouts of various number of collocation points and matching points) which bring high accuracy and good performance of convergence properties, as summarized in Section 6.5 and Table 6.26. We have also found some bad patterns which
lead to singularity or non-convergence. We have analyzed the singularity caused by some patterns at the end of Section 3.3. Furthermore, we have used our collocation method solver to find a family of stable stationary solutions of the Bratu problem.

We have also designed and implemented our own visualization algorithm to display the numerical solutions. Our visualization algorithm is pixel-correct, which means that each pixel of the rendered 2D image of the mathematical surface in 3D space accurately reflects the position, curvature, and orientation of the corresponding fragment on the surface. For the pixel-correctness, we directly render the original surfaces instead of polygonal facets generated to approximate the mathematical surfaces. We have made use of GPU programming techniques and WebGL to implement this algorithm. Our visualization program is Web-based and therefore fully platform independent. It can be further developed as a more general on-line visualization tool.

From the view point of software engineering, it would be interesting optimize our current solver. In this prototype, we have implemented multi-threading for taking advantage of the parallelism of the nested dissection algorithm and multi-core CPUs. The acceleration brought by the multi-threading is obvious in our tests. Integrating the mesh refinement with the time evolution would bring excellent effect of mesh-moving when solving time-dependent PDEs. For these improvements, the data structure will still be based on linked list because it supports effectively adding or removing nodes. On the other hand, linked list costs more time for accessing individual nodes and it breaks locality of reference, which is critically important for CPU cache. Thus, customized memory management system will be needed for solving these problems.
Bibliography

[22] Y. He and W. Sun. “Nonconforming Spline Collocation Methods in Irregular Domains II: Error Analysis” Faculty of Science, Xi’an Jiaotong University and Department of Mathematics, City University of Hong Kong, 2007.

[57] B. Jacob and G. Guennebaud, written and maintained by volunteers. “Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms”, eigen.tuxfamily.org, 2010

[65] H. Wang. “AMS 147 Computational Methods and Applications, Lecture 09” Available at users.soe.ucsc.edu/ hongwang/AMS147/Notes/Lecture09.pdf, UCSC
Appendix A

Code of Visualization Program

Our visualization program is based on WebGL. The core of this program are the fragment shader, written in a C-like language, GLSL. Here we give a part of the pseudo-code of the most important functions.

```c
float Fai ( int index )
{
    //define the basis function Fai(),
    //evaluate and return the result.
}

float dFai_dt ( int index )
{
    //define the d(Fai)/dt,
    //evaluate and return the result.
}

vec3 dFai_dxz ( int index )
{
    //define the d(Fai)/d(xz),
    //evaluate and return the result.
}

float Jacobian_t ( float t )
{
    //compute the Jacobian, which is used in NewtonIterator
}

float NewtonIterator( float t )
{
    //Newton iteration
    return t;
}
```

Figure A.1: Pseudo-code of the visualization program (Part 1)
void main(void)
{
 glTry = 0;
 if (false)
 {
 gl_FragColor = vec4(1.0, 0.0, 1.0, 1.0);
 }
 else
 {
 vPosCamera_inModelCoord = (mvInv * vec4(vPosCamera_inWorldCoord.xyz, 1.0)).xyz;
 vRayUnit_model = normalize(vPosXYZ_inModelCoord - vPosCamera_inModelCoord);
 vRayX = vRayUnit_model.x;
 vRayY = vRayUnit_model.y;
 vRayZ = vRayUnit_model.z;

 vec3 vNormal;
 int iiii = -1;
 for (int i = 0; i < FACE_NUM; i++)
 {
 float ffff = arrayCellFaceEquations[i].x * vPosXYZ_inModelCoord.x
 + arrayCellFaceEquations[i].y * vPosXYZ_inModelCoord.y
 + arrayCellFaceEquations[i].z * vPosXYZ_inModelCoord.z
 + arrayCellFaceEquations[i].w;

 if (fabs(fff) < 0.00000001) // ---0.0
 {
 vNormal = arrayCellFaceEquations[i].xyz;
 float ff = dot(vRayUnit_model, vNormal);
 if (ff < 0.0)
 {
 iiii = i;
 break;
 }
 }
 }

 if (iiii < 0)
 {
 discard;
 } else
 {
 float t;
 float tMin = 1000.0;
 for (int i = 0; i < FACE_NUM; i++)
 {
 if (i == iiii)
 continue;

 vec3 vNormal2 = arrayCellFaceEquations[i].xyz;
 float fDot = dot(vRayUnit_model, vNormal2);

 // Further calculations...
 }
 }
 }
}

Figure A.2: Pseudo-code of the visualization program (Part 2)
Figure A.3: Pseudo-code of the visualization program (Part 3)