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Abstract

Chemotherapy Outpatient Scheduling at the Segal Cancer Center Using Mixed Integer Programming

Models

Nathalie Wong Kee Yan

Appointment scheduling in an outpatient oncology clinic is a daunting task due to the stochastic

and dynamic nature of the appointment requests. Each patient has a different trajectory and varying

requirements of appointment length time that differ from one another. It is not possible to predict the

amount of time required nor the amount of patients that will be treated in a day. Due to the oncologist’s

prescribed regimen, there is almost no flexibility to choose an appointment date because of the strict resting

period required between treatments to achieve the best curative outcome.

The purpose of this thesis is to demonstrate the benefit of using integer programming to model and

to solve some of the challenges faced by the Segal Cancer Center of the Jewish General Hospital in Montreal,

Quebec, when designing appointment schedules. We study two scheduling problems.

The chemotherapy outpatient scheduling problem determines the allocation of patient appointment

to days and the determination of appointment start time on those days for a planning horizon of four weeks.

The objectives are to maximize the adherence to protocol, maximize the proper assignment of primary

nurses to patients and minimize the completion date of treatments. With this model, the clinic can schedule

appointment requests as they arise.

When taking an integrated approach to solve the oncology clinic multi-stage scheduling problem, it

is possible to coordinate the clinic’s departments and determine the start time of each activity required by

patients no matter their trajectory through the system. Due to the minimization of patient wait time and

the completion time of their visit, there will be a better coordination within the clinic, reduction of staff idle

time and a balance of resource utilization. Most importantly, it will ensure the completion of tasks within a

single day, eliminating the current two-days scheduling policy of the Segal Cancer Center.

The findings of this thesis will facilitate decision making in healthcare scheduling, improve the service

level of oncology clinics and serve as a workforce management tool.
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Chapter 1

Introduction

1.1 Problem Motivation

Cancer affects the lives of many Canadians, being the leading cause of death, at 30% per year [1].

Fortunately, there are three common methods that can have a curative impact or control this disease. There

is radiotherapy, surgery and chemotherapy, also known as drug therapy. Chemotherapy is a cancer treat-

ment that requires recurrent infusions of powerful drugs, based on established and recognized chemotherapy

regimens. Even though two people can be diagnosed with the same illness, there are distinctions such as the

type of cancer, the stage of the cancer, the patient’s overall health, the age of the patient and the patient’s

preference that can influence the regimen and treatment. Considering these factors, an oncologist will de-

termine the drug or combination of drugs, the dosage, the cycle and the frequency of the infusions for each

patient based on standardized regimen monographs [2], [3] .

It is important to note the significance of respecting the prescribed regimen as it has a considerable

impact on the effectiveness and curative nature of the chemotherapy. It is serious when a patient cannot

receive an appointment on their prescribed day. This issue is regrettably common in busy oncology outpatient

clinics. The healthcare system in Canada is well established, but is unfortunately accompanied by important

flaws that affect the growing and aging population, causing additional stress and wasting the time of patients.

Because of this, there is a sense of urgency to improve the quality of service provided to the population.

There is a tight relationship between planning and scheduling, as well as the performance and the

cost effectiveness of a system. Operations research is very present in the domains of production scheduling,

transportation and logistics as well as the service industries [4]. In recent years, solutions that are developed

by using mathematical optimization methods have been introduced in the healthcare industry.

1.2 Objectives

The focus of this thesis is to develop two different mixed-integer linear programming models to

solve appointment scheduling issues experienced by the Segal Cancer Center of the Jewish General hospital
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in Montreal, Quebec, Canada. The task of chemotherapy scheduling is complex due to its uncommon

characteristics and differs from other outpatient scheduling problems. The operational challenges found in

oncology outpatient clinics are generally present in other parts of the healthcare system as well. Patients are

required to visit multiple departments and specialists on the same day and use a large variety of resources

specific to their needs. There are multiple patient trajectories and appointments of varying duration that

convey sources of uncertainty and unique resource constraints to these two scheduling problems.

1.2.1 Chemotherapy Outpatient Scheduling

The chemotherapy outpatient scheduling problem is defined as the allocation of patient appointment

to days and the determination of appointment start time on those days. The objectives are to maximize

the adherence to protocol, maximize the proper assignment of primary nurses to patients and minimize the

completion date of appointments.

To simplify the chemotherapy scheduling process, which is currently done manually by a full-time

employee, a multi-objective mixed-integer linear programming model will be used to set appointments over

a four-week period. The model will determine the earliest day on which the first appointment can be

scheduled, such that the series of additional appointments can follow the sequence of treatment days and

rest days prescribed by the oncologist as it is imperative to respect the regimen to obtain the best curative

outcome. To the eyes of the clinic, it is very important to respect the assignment of nurses and patients.

Unlike a functional care delivery model, the primary care delivery model requires the constant pairing of the

patient with its primary care nurse [5]. While keeping these targets in mind, the model also sets the start

time of appointments per staff and resource availability. This allows to eliminate scheduling errors such as

overbooking and violating hard constraints.

This model can be used every time a new appointment request arises and before the entire demand of

the next four weeks is known. This tool can be used such that the appointments that are already confirmed in

the schedule do not change of date, but can change of start time on that day. When a patient needs to book

an appointment, they are given a date, which is determined by the model. The time of their appointment will

not be confirmed until a day or two prior, which is per the preference of the decision maker, the management

team of the Segal Cancer Center. Because of the flexibility of the model, any last-minute modifications such

as appointment cancelations, postponements or an adjustment to the length of the appointment can easily

be done with this optimization model.

1.2.2 Oncology Clinic Multi-Stage Scheduling

The oncology clinic multi-stage scheduling problem is defined as the determination of arrival time

of each patient to the clinic’s registration office, the start time of the oncology consultation (if required),

the start time of the drug preparation by the pharmacy (if required) and the start time of chemotherapy

appointment (if required). The objectives are to minimize patient wait time and minimize the completion

2



time of their visit at the clinic, no matter their trajectory. There will be a better coordination between

departments, reduction of staff idle time and a balance of resource utilization. Most importantly, it will also

ensure the completion of tasks within a single day, eliminating the current two-days scheduling policy of the

Segal Cancer Center.

Completing chemotherapy procedures in a single visit has been replaced in April of 2014 by a two-

day system as it had become infeasible to coordinate in a timely manner all the activities required by their

patients. To eliminate exaggerated on-site wait time, the patients are currently requested to complete their

blood test and oncologist consultation on the first day, followed by the chemotherapy procedure scheduled

on the following day. This solution was considered to eliminate on-site wait time, although it has caused

unnecessary off-site wait time and additional stress for patients as they need to organize travel plan for

two days instead of one. The proposed scheduling tool, based on a multi-objective mixed-integer linear

programming model, will demonstrate that by properly coordinating the clinic’s activities, it is possible to

accommodate every patient and complete every activity in a single day. No matter the trajectory of the

patient and the number of departments they must visit in one day, they are scheduled in a manner that

minimizes wait time throughout the system and ensures that they spend the least amount of time possible

at the clinic.

1.3 Plan of Thesis

The remainder of this thesis is structured as follows:

Chapter 2 presents the literature review. It showcases recent papers that focus on different aspects

of oncology outpatient clinic planning and scheduling. Typical topics include the single-stage scheduling of

the oncology department, the pharmacy department or the chemotherapy treatments. Additional papers

reflect the necessity to consider the oncology clinic as an integrated system, thus combining two or more

departments of the clinic to obtain scheduling solutions.

Chapter 3 elaborates on the background of the chemotherapy outpatient scheduling problem ex-

perienced at the Segal Cancer Center of the Jewish General Hospital in Montreal, Quebec. It proposes a

multi-objective mixed-integer linear programming model to optimize the adherence to the prescribed regi-

men, maximize the primary nurse assignment and begin treatments as early as possible. A numerical example

and analysis follows to demonstrate the positive impacts in planning and scheduling.

Chapter 4 describes the current two-day scheduling policy of the Segal Cancer Center. It showcases

the challenges of scheduling in an integrated manner this oncology outpatient clinic. With the suggested

mixed-integer linear programming model, it is possible to eliminate off-site wait time and reduce on-site wait

time of patients. A numerical example demonstrates the capacity of the clinic to schedule patient’s activities

in a single day.

Chapter 5 describes the deficiencies and difficulties experienced by the pharmacy. Through an
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analysis and compilation of data found on Endovault, the software used by the Jewish General Hospital to

manage health records [6], it was possible to conclude what caused most of the delays and suggest a solution

to be implemented between the oncologists and pharmacists.

Chapter 6 is the conclusion, it elaborates on some of the highlights, possible directions for future

work and summarizes the main contributions in the field of healthcare scheduling.
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Chapter 2

Literature Review

The goal of this chapter is to outline the work that has been done in the field of outpatient scheduling,

more precisely chemotherapy outpatient scheduling. Eliminating the option of overnight care can greatly cut

costs in term of staff remuneration and management. The concept of outpatient scheduling is very common

healthcare: dentists, optometrists, dermatologists and many other specialists schedule appointments such

that they can be completed before the closing time of the clinic. In these areas of expertise, time is not

a critical issue as it does not deal with emergencies. This mindset is completely different in the fields

of radiotherapy scheduling, operation room scheduling, emergency care scheduling and even chemotherapy

scheduling as the health of people in need for these services can often worsen in very little time.

In an outpatient setting such as an oncology clinic, it is essential to create schedules that are efficient

as the life of many patients rely on its services. Depending on the objective of the clinic’s management,

different performance measures can be targeted. These may include and are not only limited to the reduction

of the makespan of the clinic, the reduction of patient wait time, the reduction of staff and resource idle time

and the reduction of staff overtime. It is also possible that a clinic might want to find a way to properly

distribute and balance the workload of its nurses, or even optimize the patient’s adherence to a treatment

plan. The following papers expand on subjects relevant to the chemotherapy outpatient scheduling problem.

2.1 Single Stage Scheduling

For a large portion of the literature, the main objective is the optimization of a single-stage pro-

cess leading to the completion of chemotherapy. Either to determine the optimal scheduling of oncologists

to consult patients, the scheduling of drug preparation in the pharmacy, the scheduling of nurses to su-

pervise patients during their treatment or the scheduling of chairs to accommodate patients during their

chemotherapy infusions.

5



2.1.1 Oncology Appointment Scheduling

The oncologist is the healthcare specialist that will diagnose and monitor a patient with cancer.

They will evaluate which treatment and protocol to administer according to the specific needs of this person.

The knowledge and recommendation of these specialists is necessary in an oncology outpatient clinic and

they play an integral role in chemotherapy.

Santibanez et al. [7] used simulation to model a chemotherapy outpatient clinic in British Columbia.

The objective was to reduce patient wait time and improve the utilization of the clinic’s resources such as

examination rooms for the single-stage of oncology consultation. Through the analysis of many factors, it

was determined that multiple aspects of the clinic had to be modified before having a significant impact on

patient wait time.

Mazier et al. [8] develop an integer linear program to address physician planning in an oncology

clinic. They integrate an interesting concept that allows a patient to be consulted by an intern if the primary

oncologist of the patient is not present or already busy. When testing this idea, they could better balance

the workload of the staff and increase the performance of the clinic by seeing more patients.

2.1.2 Pharmacy Production Scheduling

Pharmacists and pharmacy technicians in an oncology outpatient clinic play an important role in

chemotherapy treatment. The pharmacist validates the prescription suggested by the oncologist in terms of

dosage and proportion with the blood test result and passes the instruction to the pharmacy technician for

the preparation of it.

With the concern of reducing patient wait time, an optimized pharmaceutical laboratory will be able

to work more efficiently and increase production of chemotherapy drugs. Mazier et al. [9] paid attention

to both the offline scheduling method and the online scheduling method. The use of a linear programming

model allowed to minimize the maximum tardiness of prescription preparation in a day in the offline setting.

To apply this concept to an online scenario, the output of this linear programming model is used in a greedy

algorithm. This has the consequence of increasing productivity and overall service to the patient by reducing

their wait time.

2.1.3 Nurse Assignment Scheduling

The nurse assignment problem is frequently assessed in research. Oncology clinics may respect

two different nursing care models when scheduling chemotherapy appointments. If patients are scheduled

without considering the nurse that will be assigned to them during their next treatment, then it is based off

the functional care delivery model. On the contrary, if it is necessary to assign a patient for their current and

any subsequent appointments with the same nurse, this clinic operates by the primary care delivery model.

Liang and Turkan [5] compare these two care delivery models. With the use of multi-objective

optimization techniques, they facilitate patient scheduling and nurse assignment. With their method, it is
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possible to obtain the optimal schedule of a single day in the clinic. Every patient is evaluated and given

an acuity level. With this information, is it possible to determine the start time of each treatment while

respecting the nurse’s skills and workload.

In Turckan et al. [10], the objectives of maximizing treatment adherence and minimizing patient

wait time while taking into account the resources of the clinic, are met with a two-stage integer programming

model. Their first mathematical model determines the treatment day to complete the prescribed protocol

in full, which extends the planning horizon to 81 weeks. This information then serves as an input to the

second model, which confirms the appointment time while once again respecting acuity level of patients in a

functional delivery care setting. Patient appointment scheduling is very intricate. For example, some patient

may only have transportation at specific times of the day. Start time constraint linked to same day oncology

appointment is also something to consider. An extension of the daily appointment scheduling shown by

Turckan et al. [10] is done by [11] and considers patient’s preference and the coordination with oncologist

appointment.

The use of a discrete-event simulation is a method frequently used to determine a system’s bot-

tleneck. Woodall et al. [12] observed that the Duke Cancer Institute suffered from poor nurse scheduling

during chemotherapy treatments. To optimize the weekly and monthly scheduling of nurses, a mixed-integer

program was developed. This contributed to an improved flow of patients within the oncology clinic. Yok-

ouchi et al. [13] also employed simulation to observe the impact of changing patient arrival rates and adding

or removing nurses at different parts of the day to minimize patient wait time and maximize the number of

patients treated in a day.

Template scheduling is a method that can be used to schedule a single day [14], or multiple days, as

done by Condotta et al. [15]. A set of artificial patients with common treatment regimen is generated and

used to obtain a template that specifies the date, the time, and the nurse assignment for a given planning

horizon. As patients arrive, they are given a series of appointments that coordinate with their regimen.

With the objective of minimizing patient wait time and balancing nurse workload, the filled template is

re-optimized with an integer linear program.

With the objective of maximizing adherence to protocol, Alvarado et al. [16] used mean-risk stochas-

tic integer programming model to schedule the chemotherapy appointment of patients. They consider the

acuity level of patients, the availability of nurses and the length of infusions.

2.1.4 Chair Assignment Scheduling

Due to the layout and dimension of an oncology outpatient clinic, the amount of chairs and beds

available are considered a limiting resource as they can only serve one patient at a time. Because of this,

the idle time of this valuable equipment must be minimized.

Limitations set by the nursing or oncology staff should not be the only thing to consider when

scheduling appointments. Sevinc et al. [17] propose a negative-feedback scheduling algorithm to limit the
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chair load and even it out through the day. The second stage of their method is to implement two heuristics

based on the multiple knapsack problem to determine the proper assignment of patients to chairs.

The following paper also focused on balancing the chair load of an oncology outpatient clinic. Sadki

et al. [18] consider the working period of the oncologists and the day of chemotherapy prescribed to patients.

A mixed-integer program is used to even out the chair capacity required each week instead of a single day.

It proved to reduce patient wait time and provide managerial insights for the organization and utilization of

chairs and beds.

2.2 Multi-Stage Scheduling

In multi-stage scheduling, some attention is paid to obligations that can affect the start time of

chemotherapy infusions. The hematology clinic, the oncologists, the pharmacy and the treatment station

depend on one another and have their own resource limitations. If delays occur within any of these areas, it

affects the performance of the rest of the clinic. It is then relevant to consider upstream events to coordinate

the start time of chemotherapy treatments. The scheduling problem of an outpatient healthcare clinic is

rarely studied in an integrated approach.

Instead of considering a single aspect of chemotherapy outpatient scheduling, Hahn-Goldberg [14]

integrated the pharmacy to determine the start time for drug preparation and treatment administration.

With historical data from the clinic and the use of constraint programming techniques, they generate tem-

plates to schedule appointments. For each day, a template with availabilities of different lengths is created

and gets filled as requests arrive. Whenever an appointment does not fit the template, using their method of

dynamic template scheduling, a new template is regenerated such that it can be accommodated. A shifting

algorithm is also presented to make room for medical emergencies and walk-ins.

Both optimization and simulation techniques are used by Liang et al. [19] to enhance the flow of

chemotherapy patients. With the help of a mathematical program, different types of patients are distributed

through time slots to evenly distribute the workload of healthcare specialists such as the oncologists and the

nurses. After multiple runs, these optimal schedules served to establish a probability matrix that predicts the

possibility of scheduling different patient types to different time slots. With this information, it is possible to

book appointments in an online setting, as the appointment requests arrive and before they are all known.

In Sadki et al. [20], the chemotherapy outpatient scheduling problem is proven to be NP-hard.

Through this article, they mention the importance of scheduling the oncology and the chemotherapy ap-

pointments simultaneously, in an integrated manner. By solving this multi-stage problem, which is done

with a mixed-integer program that minimizes patient wait time and makespan of the clinic, they are able to

establish the start time of the consultation, the drug preparation and the infusion while respecting limita-

tions set by the number of oncologists and chairs in the system. It is assumed that a pharmacist and a nurse

is always available to prepare a drug or set up a patient. There are no limitations set for these two stages.
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Ahmed et al. [21] were able to generate a template with the use of simulation to determine the

proper arrival rate of patients and improve the performance of the oncology clinic. They focused on the

objectives of increasing patient throughput and reducing patient wait time.

Similarly to the Segal Cancer Center, Dobish et al. [22] suggested a two-day treatment scheduling

process. This signifies a visit to the oncologist on the first day and the chemotherapy treatment on the

following day. This method serves to reduce the wait time of patients in oncology clinics and furthermore

allow flexibility in the organization and planning of each patient’s next day appointment. This proposition

converts the online problem into its offline counterpart by creating a one-day leeway. Although they faced a

lot of resistance from patients when implementing this change, the results were satisfactory. Achieving the

objective of reducing on site wait time was successful. It also had a beneficial impact on the efficiency of the

pharmacy department and nurse’s coordination for treatment.

2.3 Summary

This chapter gave an overview of the literature relevant to the chemotherapy outpatient scheduling

problem. Through these papers, some similarities stand out and are summarized as follows:

The proper assignment of nurses and patients is a recurring topic. The patient’s acuity level is

considered in [5], [10] and [16]. By recognizing there is a level of difficulty associated with each patient and

treatment, it is understandable that these papers aim to balance the workload of every nurse. The concept of

primary care delivery model is not explored very often and is only done in [5]. Otherwise, the functional care

delivery model is commonly used in, [5], [15], [16] and [20], to model the chemotherapy treatment process.

Simulation is an exceptional and versatile tool that can be used to model different types of scenarios.

This practical method was useful in many papers, [7], [12],[13], [19] and [21], allowing them to recreate

an oncology clinic and analyze it. It allowed to find bottlenecks, evaluate the impact of modifying certain

characteristics, generate templates for scheduling or evaluate the performance of a mathematical program.

In most oncology outpatient clinics, patients perform a blood test, consult with their oncologist

and complete their chemotherapy treatment in a single day. This scheduling ideology reduces unnecessary

travelling and reduces transportation costs for the patient. To improve this process and prevent the extension

of scheduling appointments over two days, [19], [20] find ways to improve the efficiency of the clinic and reduce

patient wait time.

In the event that exaggerated wait time and overly crowded waiting area becomes unmanageable,

some clinics must stretch a patient’s single visit over two days, inducing off-site wait time. It is often met with

a lot of resistance [23], but proves to be advantageous to coordinate the drug preparation and chemotherapy

treatment [22].

The oncologist prescribes a regimen of multiple treatments that must be completed in accordance

to the protocol. The papers [10] and [16] consider this important aspect that impacts the curative nature of
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a regimen. Therefore, chemotherapy scheduling does not only consist of optimizing a single day, [5] , [11],

[13], [14], [16], [19], [20], [21], but could be extended to optimizing a longer planning horizon [10], [12], [15],

to fit multiple appointments of a single patient.

Another important characteristic of chemotherapy outpatient scheduling is the ability to work in an

online setting [14], [15], [19], [9] which is more realistic as appointment requests arrive randomly and need

to be scheduled before the entire set of demand is known. In some cases, observations made by solving an

offline problem [5], [10], [11], [12], [16], [20], [22], [9] can provide insightful information to formulate heuristics

or rules to help manage new appointment requests.
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Chapter 3

Chemotherapy Outpatient Scheduling

Problem

The first part of this thesis pays attention to a single-stage environment, the scheduling of patients for

their multiple chemotherapy treatment, without considering the possible implications of previous activities

required on that same day. On a daily basis, new patients must be added to a schedule that is already filled

with existing appointments. Since the amount of chair time required for infusion is not the same for everyone,

it is normally very difficult to determine when to schedule a treatment without affecting the current and

future demand.

This chapter develops a scheduling tool that will facilitate the task of scheduling staff and patients

such that both parties are satisfied. This mixed-integer linear programming model will help the Segal Cancer

Center determine appointment dates and treatment start time while respecting resource’s requirements. As

an extension to the idea of [15], the model will set the treatment date, the start time of infusion and

additionally consider the assignment of patients to their primary nurse. As a result, this model can be used

to confirm the date of the appointment immediately, whereas the time will be validated a day or two prior

to their visit.

3.1 Problem Definition

The chemotherapy outpatient scheduling problem aims to optimize three objectives. The first one

is to maximize the adherence to treatment protocol. The second objective is to maximize the assignment of

patients to their primary nurse and the last one is to minimize the completion time. With these targets in

mind, the model will determine the appointment start time and date by respecting resource’s restrictions.

The determination of the proper chemotherapy treatment is crucial and varies widely among patients.

Every regimen is very different from one another. As an example, the FCM, eriBUlin and BEVA regimens

are compared and summarized in Table 3.1. The comprehensive list and complete monograph for these
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drugs are established by Cancer Care Ontario and can be found on their website [3].

Table 3.1: Example of Regimen with Protocol

FCM Regimen Protocol

Drug Regimen fludarabine Days 1 to 3

cyclophosphamide Days 1 to 3

mitoXANTRONE Day 1 only

Cycle Frequency Repeat every 28 days, for usually a of total 6 cycles unless disease

progression or unacceptable toxicity occurs

eriBUlin Regimen Protocol

Drug Regimen Day 1 and Day 8

Cycle Frequency Every 3 weeks

BEVA Regimen Protocol

Drug Regimen bevacizumab, can be given every 2 weeks or every 3 weeks accord-

ing to oncology recommendation

Cycle Frequency First infusion 1.5 hours, 2nd infusion 1 hour, subsequent infusions

30 minutes

As it can be observed, some treatments require consecutive appointments such as the FCM regimen

with infusions on day one, day two and day three, followed by 25 days of rest. Some treatments such

as the eriBUlin drug require a single infusion on day one and day eight, followed by a resting period.

Other treatments like the BEVA regimen can be bi-weekly infusions or after three weeks, depending on the

oncologist’s recommendation. Furthermore, the length of the drug infusion may differ from a session to

another as it can be seen with the BEVA regimen that requires a first infusion of 1.5 hours, a second infusion

of one hour and any subsequent infusions only last 30 minutes. As if these variants were not plentiful, frequent

follow ups with the oncologist may engender modifications since side-effects or poor health improvements

need to be dealt with.

Considering these observations, the head nurse of the Segal Cancer Center recommends to schedule

no more than three appointments per patient as they often get cancelled, modified or postponed. This is

unlike, [10] who extend their planning horizon to fit every single appointment listed in the protocol which

can extend the planning horizon up to 81 weeks unnecessarily. For example, even though the FCM regimen

must be repeated every 28 days for a total of six cycles, there is a very high chance of receiving treatment

modifications after the third appointment. Therefore immediately scheduling all 18 appointments would be

unproductive as oncologist consultations will commonly cause treatment amendments. Because of this, the

set of appointments K only represents three appointments.

The parameters used in this model are summarized in Table 3.2. After a diagnosis is made by

the oncologist, each patient i ∈ I is prescribed a set of appointments k ∈ K. It is a personalized regimen

which specifies the treatment days and resting period Rik required between each infusion. They also decide

the drug or combination of drugs to be administered and the chair time Lik of a series of chemotherapy
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treatments. With this information on hand, each patient is required to book their appointments with

the chemotherapy clinic. A subset of appointments K ′ ⊆ K is distinguished and includes the series of

recommended appointments except the last appointment.

Table 3.2: Parameters and Decision Variables of the Chemotherapy Outpatient Scheduling Model

PARAMETERS

I Set of patients who need to receive chemotherapy.

D Set of days, planning horizon of the problem.

K Set of appointments.

K ′ Subset of appointments that does not include the last appointment of the set K, K ′ ⊆ K

T Set of time slots.

N Set of nurses.

In Set of patients that belong to primary nurse n ∈ N .

W Set of days the clinic is closed.

S Subset of patients that may only start treatment as of 10:00 a.m., S ⊆ I.

Rik Amount of resting days patient i ∈ I needs before appointment k ∈ K.

Lik Amount of time slots needed for the chemotherapy appointment k ∈ K of patient i ∈ I.

Bid Boolean data: 1, the nurse of patient i ∈ I is available on day d ∈ D. 0, otherwise.

Mt Maximum of newly admitted patients per time slot t ∈ T .

At Amount of nurses available per time slot t ∈ T .

mn Maximum of patients per nurse n ∈ N in a day.

md Maximum of patients in a day d ∈ D.

mi Maximum of days patient i ∈ I is delayed.

c Amount of chairs available in a day.

DECISION VARIABLES

Xikd 1, if patient i ∈ I is scheduled for appointment k ∈ K on day d ∈ D,

0 otherwise.

Zikdt 1, if patient i ∈ I is scheduled for appointment k ∈ K on day d ∈ D at time t ∈ T ,

0 otherwise.

Qi The total amount of days the set of appointment K of patient i ∈ I is delayed.

Yi Amount of appointments for which patient i ∈ I is not scheduled with his/her primary care

nurse.

Ci Amount of days required to complete all appointments of patient i ∈ I.

The Segal Cancer Center is open from 7:30 a.m. to 6:00 p.m. although chemotherapy treatments

only begin at 8:00 a.m. and are scheduled such that they can be completed by 5:00 p.m. This allows patients

to register and complete necessary blood tests before their 8:00 a.m. appointment. The last hour of operation

from 5:00 p.m. to 6:00 p.m. is left vacant on purpose, such that any delays that may have accumulated

during the day may be caught up. Time is represented by time slots t ∈ T of 30 minutes, where t = 1

represents the time slot 8:00 a.m. to 8:30 a.m., and t = 20 represents the time slot 5:30 p.m. to 6:00 p.m.

The treatment area is divided into two stations. The first station is composed of sixteen chairs and
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two rooms with beds. Whereas the second station contains fourteen chairs and three rooms with beds. This

represents the possibility of accommodating up to 35 patients simultaneously, represented by the parameter

c. It is assumed that chairs and beds represent the same resource although it would be interesting to view

them separately as suggested by Hahn-Goldberg [14]. Considering that the layout of the two stations differ

by the number of chairs and beds. This would add some complications to the model due to the assignment

of nurses to these stations as they may not be in two places at once. Thus, it is assumed as though all

the chairs, beds, and staff are all in a single and same location. The concept of having two stations is not

considered.

Table 3.3: Amount of Nurses Available per Time slot t ∈ T , per Station and in Total: At

Time Time slot t Station 1 Station 2 Total: At

8:00 a.m. to 8:30 a.m. 1 2 2 4

8:30 a.m. to 9:00 a.m. 2 2 2 4

9:00 a.m. to 9:30 a.m. 3 3 3 6

9:30 a.m. to 10:00 a.m. 4 3 3 6

10:00 a.m. to 10:30 a.m. 5 4 4 8

10:30 a.m. to 11:00 a.m. 6 4 4 8

11:00 a.m. to 11:30 a.m. 7 4 4 8

11:30 a.m. to 12:00 p.m. 8 3 3 6

12:00 p.m. to 12:30 p.m. 9 3 3 6

12:30 p.m. to 1:00 p.m. 10 2 2 4

1:00 p.m. to 1:30 p.m. 11 3 3 6

1:30 p.m. to 2:00 p.m. 12 3 3 6

2:00 p.m. to 2:30 p.m. 13 4 4 8

2:30 p.m. to 3:00 p.m. 14 4 4 8

3:00 p.m. to 3:30 p.m. 15 4 4 8

3:30 p.m. to 4:00 p.m. 16 4 4 8

4:00 p.m. to 4:30 p.m. 17 4 4 8

4:30 p.m. to 5:00 p.m. 18 4 4 8

5:00 p.m. to 5:30 p.m. 19 4 4 8

5:30 p.m. to 6:00 p.m. 20 4 4 8

The clinic has N nurses that are full-time or part-time employees. On a daily basis, there are five

nurses scheduled per station. Four of them are assigned with patients whereas the fifth extra nurse is there

to accommodate any drop-ins and unscheduled patients which accounts for medical emergencies. This makes

a total of ten nurses when considering both locations. In our case, it is assumed all 10 nurses are working

in a single station. Understandably, these nurses begin their shifts at different times of the day and have

lunches that overlap wisely. Table 3.3. shows how many nurses are available throughout the day, At. A

first nurse begins at 7:00 a.m., the second and third nurse begin at 8:00 a.m., the fourth nurse begins at

9:00 a.m. and the fifth nurse begins at 10:00 a.m. According to the request of the clinic, the extra nurse
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who begins to work at 7:00 a.m. is not considered when making the schedule as he or she may be used to

perform different tasks, or serve as a back-up to cover for a sick nurse. This is why Table 3.3 only considers

the nurses available and on the floor. There is a weekly rotation of nurses between stations such that their

expertise and knowledge can be shared among one another. This serves as a balance for the social well-being

of the staff. Since a previous assumption was made concerning the elimination of two distinct stations, this

concept of staff rotation is not considered.

Table 3.4: Maximum of Patients Admitted per Time slot t ∈ T , per Station and in Total: Mt

Time Time slot t Station 1 Station 2 Total: Mt

8:00 a.m. to 8:30 a.m. 1 2 2 4

8:30 a.m. to 9:00 a.m. 2 2 2 4

9:00 a.m. to 9:30 a.m. 3 3 3 6

9:30 a.m. to 10:00 a.m. 4 3 3 6

10:00 a.m. to 10:30 a.m. 5 4 4 8

10:30 a.m. to 11:00 a.m. 6 4 4 8

11:00 a.m. to 11:30 a.m. 7 4 4 8

11:30 a.m. to 12:00 p.m. 8 2 2 4

12:00 p.m. to 12:30 p.m. 9 0 0 0

12:30 p.m. to 1:00 p.m. 10 0 0 0

1:00 p.m. to 1:30 p.m. 11 3 3 6

1:30 p.m. to 2:00 p.m. 12 3 3 6

2:00 p.m. to 2:30 p.m. 13 4 4 8

2:30 p.m. to 3:00 p.m. 14 4 4 8

3:00 p.m. to 3:30 p.m. 15 2 2 4

3:30 p.m. to 4:00 p.m. 16 0 0 0

4:00 p.m. to 4:30 p.m. 17 0 0 0

4:30 p.m. to 5:00 p.m. 18 0 0 0

5:00 p.m. to 5:30 p.m. 19 0 0 0

5:30 p.m. to 6:00 p.m. 20 0 0 0

80

It is necessary to have nurses readily available to set up arriving patients, as well as to monitor the

stability of the ones already there. A patient arriving for treatment will require the full attention of a nurse

as they need to be installed for infusion whereas a nurse can overview up to four patients already receiving

treatment. The maximum amount of patients admitted per time slot, Mt is a limit established by the head

nurse of the oncology clinic and shown on Table 3.4. Due to the scheduling of lunch breaks, additional

patients may not enter the system between 12:00 p.m. and 1:00 p.m. as the rest of the nurses working will

be occupied by monitoring patients. This same idea applies between 3:30 p.m. and 6:00 p.m. The clinic

can no longer admit additional patients for chemotherapy as some nurses are completing their shifts and

the remaining nurses will be busy monitoring the patients already receiving chemotherapy. This information
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leads to conclude that only a maximum of md = 80 patients may be admitted per day for treatment and to

be fair, each nurse will have a maximum of mn = 10 patients to supervise per day. As previously mentioned,

there are always four scheduled nurse plus an extra for emergencies. This additional nurse can also help

supervise patients when needed.

The Segal Cancer Center’s operations are defined as a primary care delivery model. Meaning that

every patient is assigned a primary nurse with whom every subsequent appointment must be scheduled. This

is unlike a functional care delivery model where patients may be paired up with a different nurse during

their appointments [5]. At this clinic, every nurse n ∈ N possesses a group of patients In specific to them.

Understandably, a patient i ∈ I is ideally scheduled if their primary nurse works on day d ∈ D, which is

determined by the Boolean parameter Bid. To the best of their abilities, the schedules are made such that

each patient is assigned to the primary nurse that will assist them throughout the rest of their appointments.

On an exceptional basis, it is possible and acceptable if this cannot be done as it should not be a reason

to delay a patient’s infusion as this would lead to the detriment of the treatment. The decision variable Yi

monitors how often patient i ∈ I is not scheduled with its primary nurse.

Table 3.5: List of Drugs that can Only be Ready as of 10:00 a.m.

Drug name

1. Abraxane

2. Alimta (Pemetrexed)

3. Caelyx (liposomal Doxo)

4. Gemcitabine

5. FOLFOX

6. Rituximab

7. Trastuzumab

8. Vadaza

9. Compassionate MK3475

10. MCG 1229

11. MCG 1307

12. NCIC LY16

13. MCG 1308

14. MCG 1323

15. MCG 1118

16. LUG GO28753

Since the pharmacy is operational only from 8:00 a.m. to 4:00 p.m., a few prescription drugs must be

prepared on the previous day to fulfill the need of patients expecting to begin treatment at 8:00 a.m. There

are although some restrictions set at the clinic pertaining 16 specific drugs listed in Table 3.5 as they do

not remain stable long enough to be prepared in advance and be stored overnight. They must be produced

only a few hours before injection. Due to these restrictions, the oncology pharmacy has established booking

restrictions based on the stability of these drugs. These special case patients s ∈ S requiring any of these 16
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prescriptions may only begin treatment as of 10:00 a.m.

When a patient approaches the clinic to book their chemotherapy appointments, they are given

dates for the first three treatments only. When looking for an availability, it is preferable unless specified by

the oncologist, to give them the earliest start day such that their three appointments can be completed as

early as possible. The decision variable Ci records on which day the third appointment of patient i ∈ I is

completed.

To make a distinction between selecting the date of the appointment, which cannot be changed once

it is set and the start time of the treatment that can be re-optimized, a first binary decision variable Xikd is

used to define the day d ∈ D of the appointment k ∈ K for patient i ∈ I. A second binary decision variable

Zikdt is used to define the start time t ∈ T on the day d ∈ D of appointment k ∈ K of patient i ∈ I.

There are three objectives simultaneously being optimized. Firstly, the model minimizes Qi, the

total amount of days by which the set of appointments of patient i ∈ I is scheduled ahead or after the day

prescribed by the oncologist. The Figure 3.1 is used to explain this example. If a patient requires an

appointment on day three and gets scheduled on day two or day four, this patient is delayed from the target

day by one day. If that same patient is scheduled on day one or day five instead of the desired day three,

this patient is delayed by two days. The best outcome would be to receive an appointment on the desired

day as this would eliminate any delays. In order to be in control of this significant objective, the parameter

mi is introduced to place a limit to the amount of delay each patient can tolerate throughout the set of their

three appointments.

Figure 3.1: Example of Calculation of Qi for a Target Day of Day 3

Secondly, the model minimizes the occurrence of not being scheduled with the correct nurse. There-

fore, it minimizes the value of Yi. For example:

-If Yi = 0, it is an optimal case, patient i ∈ I was assigned with his/her primary nurse for all appointments.

-If Yi = 1 this means that patient i ∈ I was not scheduled with hi/her primary nurse on one occasion out of

three appointments.

-The same goes for Yi = 2 and Yi = 3, meaning that patient i ∈ I was not scheduled with its primary nurse

two times and three times respectively.

Finally, the third objective of this model minimizes the completion time of all three appointments.

For example, a patient who requires six days of rest between each appointment would ideally be scheduled

according to Figure 3.2. Therefore, beginning on the first available day and completing all three treatments

by the 17th of October is the minimal and optimal completion date for this patient. This means that patient

i ∈ I completed all three treatments by day 17.
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Figure 3.2: Optimal Completion Day of Treatments, Ci = 17

Unfortunately, due to the limitations of the system in terms of chemotherapy clinic operating hours,

the amount of nurses available throughout the day to treat and supervise patients, as well as chair capacity,

it is frequent that a patient must be treated on a different day than the one prescribed by the oncologist.

3.2 Mathematical Model

Using the above mentioned set of decision variables, the chemotherapy outpatient scheduling problem

can be stated as follows:

Minimize:
∑
i∈I

(
w1Qi + w2Yi + w3Ci

)
(3.1)

Subject to:
∑
d∈D

dXikd =
∑
d∈D

∑
t∈T

dZikdt i ∈ I, k ∈ K (3.2)

∑
d∈D

Xikd = 1 i ∈ I, k ∈ K (3.3)

∑
d∈D

∑
t∈T

Zikdt = 1 i ∈ I, k ∈ K (3.4)

∑
k∈K

Xikd ≤ 1 i ∈ I, d ∈ D (3.5)

∑
i∈In

∑
k∈K

Zikdt ≤ 1 d ∈ D, t ∈ T, n ∈ N (3.6)

tZikdt + Lik ≤ 19 i ∈ I, k ∈ K, d ∈ D, t ∈ T (3.7)
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∑
k∈K′

(∑
d∈D

dXikd ≤
∑
d∈D

dXi(k+1)d

)
i ∈ I (3.8)

∑
i∈I

∑
k∈K

Xikd ≤ md d ∈ D (3.9)

∑
k∈K

(∑
i∈I

Zikdt +
∑
i∈I

t−1∑
t′=max{1,t−Lik+1}

Zikdt′

)
≤ c d ∈ D, t ∈ T (3.10)

∑
i∈I

∑
k∈K

Zikdt ≤Mt d ∈ D, t ∈ T (3.11)

∑
i∈In

∑
k∈K

∑
t∈T

Zikdt ≤ mn d ∈ D,n ∈ N (3.12)

∑
k∈K

(∑
i∈I

Zikdt +
1

4

∑
i∈I

t−1∑
t′=max{1,t−Lik+1}

Zikdt′

)
≤ At d ∈ D, t ∈ T (3.13)

∑
k∈K′

(∑
d∈D

dXi(k+1)d −
(∑

d∈D

dXikd −Ri(k+1)

))
≤ mi i ∈ I (3.14)

−
∑
k∈K′

(∑
d∈D

dXi(k+1)d −
(∑

d∈D

dXikd −Ri(k+1)

))
≤ mi i ∈ I (3.15)

∑
k∈K

∑
d∈D

(
Xikd −

(
BidXikd

))
= Yi i ∈ I (3.16)

∑
d∈D

∑
t∈T

dXi3d = Ci i ∈ I (3.17)

∑
k∈K′

(∑
d∈D

∑
t∈T

dZi(k+1)dt −
∑
d∈D

∑
t∈T

dZikdt −Ri(k+1)

)
≤ Qi i ∈ I (3.18)

−
( ∑

k∈K′

(∑
d∈D

∑
t∈T

dZi(k+1)dt −
∑
d∈D

∑
t∈T

dZikdt −Ri(k+1)

))
≤ Qi i ∈ I (3.19)

Xikd = 0 i ∈ I, k ∈ K, d ∈W (3.20)

Zikdt = 0 i ∈ S, k ∈ K, d ∈ D, t = 1, 2, 3, 4 (3.21)

The objective function (3.1) minimizes the sum of delays, the possibility of not being assigned to

the primary nurse and the sum of completion time. It is affected by the weights w1, w2 and w3 such that

the objectives can be balanced and prioritized according to the preference of the decision maker.

This model allows to confirm the appointment date Xidk separately from the appointment time

Zidkt. It is then important that the two decision variables are linked through the set of constraints (3.2) to

reflect the same day of appointment d ∈ D for the same appointment k ∈ K of the same patient i ∈ I. The

following set of constraints (3.3) certifies that every patient is given an appointment date for each of their

treatments, whereas (3.4) certifies that all the appointments are given a start time. The set of constraints

(3.5) ensures that a patient cannot be scheduled to perform more than one chemotherapy treatment per

day.

With (3.6), the arrival of patients for their treatment must coordinate with the availability of their

primary nurse since each one of them can only focus on one newly arriving patient per time slot. As specified

by the head nurse, the set of constraints (3.7), ensures that all the infusions are completed by 5:00 p.m.,
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even though the clinic is open until 6:00 p.m. This allows the staff to catch up on any delays that may have

accumulated during the day. The set of constraints (3.8) serves a logical purpose, the appointments must

follow the same sequence as it is prescribed by the oncologist.

According to the preference of the decision maker, it is only possible to accommodate md patients

per day with to the set of constraints (3.9). Also, since the clinic deals with chair/bed resources, (3.10)

verifies that the total amount of patients being set up and already receiving treatments does not exceed the

total capacity of the system.

The clinic has established a maximum amount of arriving patients per time slot as seen on Table

3.4 and the set of constraints (3.11), implements this. To be fair to all the nurses, (3.12) controls the daily

workload such that each nurse does not receive more than a certain amount of patients per day. Although

(3.11) limits the amount of new patients admitted per time slot in the system, the set of constraints (3.13)

confirms there is enough staff remaining to monitor the patients already installed for chair time.

The set of constraints (3.14) and (3.15), provide a limit to the total amount of days by which the

appointments of the set K of each patient may be delayed. The set of constraints (3.16) verifies how often a

patient is scheduled for an appointment when his/her primary nurse is not working on that day. Furthermore,

(3.17) records the day on which the third appointment of every patient is completed. Finally, to verify the

amount of delays experienced by a patient throughout the scheduling of their set of appointments K, the

set of constraints (3.18) and (3.19) are necessary.

With the set of constraints (3.20), it is certain that there will be no appointments mistakenly

scheduled on the weekend, when the clinic is closed. Also, due to the short shelf life of 16 specific drugs, the

restrictions applied by the pharmacy and represented by (3.21) and affects the scheduling possibilities of

these special cases. They can only begin treatment as of 10:00 a.m.

3.3 Computational Experiments and Analyses

This section analyzes and presents the computational results to demonstrate the capabilities and

benefits of this mathematical model. The data used as input in this model is generated such that it reflects

the reality of the Segal Cancer Center of the Jewish General Hospital. To model a potential schedule, the

month of October 2016 is used as a template. For this example, the schedule is made over four weeks. Thus,

Monday October 31st is considered as a day off and no one can be scheduled.

To verify the efficiency of the model, two tests as mentioned in Table 3.6 are performed and analyzed.

The first test does not allow any delays. Meaning that the adherence to protocol is perfectly respected for

every patient. The second test will on the other hand allow patients to be affected at most by one delay over

the course of their set of appointments K.

The values taken by the input parameters are shown in Table 3.7. The mathematical model will

determine the appointment date and start time of three appointments per patient. A smaller scaled problem is
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Table 3.6: Type of tests

Test mi

Test 1 0

Test 2 1

tested and analyzed, with 50 patients for a total of 150 appointments to be scheduled such that the adherence

to protocol, the assignment of patients to their primary nurse and the completion time is optimized. Since

the day is divided into 30-minute time slots, the model deals with 20 time slots representing the operating

hours of 8:00 a.m. to 6:00 p.m.

Table 3.7: Values Taken by Parameters for Test 1. and Test 2.

Parameters Values

I 50 patients who need to receive chemotherapy.

D 31 days in the month of October 2016.

K 3 appointments to be scheduled per patient.

T 20 time slots of 30 minutes.

N 8 nurses.

In Every nurse is assigned a personal set of 6 to 8 patients, see Table 3.8.

W On the dates: 1, 2, 8, 9, 15, 16, 22, 23, 29, 30 and 31 the clinic is closed.

S 16 patients out of 50 are considered to require special drugs and can only begin treatment

as of 10:00 a.m., see Table 3.8.

Rik Rest period ranges between 1 day to 7 days, see Table 3.9.

Lik Appointment length ranges between 1 time slot to 14 time slot, see Table 3.10.

Bid 1, the nurse of patient i ∈ I is available on day d ∈ D. 0, otherwise,, see Table 3.11.

Mt See Table 3.4.

At See Table 3.3.

mn 8 patients per nurse per day.

md 50 patients per day at the clinic.

mi Has value 0 for Test 1 and has value 1 for Test 2.

c 30 chairs available in a day.

A total of eight nurses, some full-time and some part-time are modelled in this example. Every

patient is randomly assigned to a primary nurse such that all the nurses are responsible for six to eight

patients as it can be seen in Table 3.8. With the short shelf life of 16 specific drugs in mind, a distinction

is made for 16 patients as they require special treatments that can only begin as of 10:00 a.m. This set of

patients is also specified in this table. The ratio of having 16 special patients out of 50 patients may or may

not be representative of the demand at the Segal Cancer Center, it was simply chosen for the sake of this

example.

The resting period seen in Table 3.9 shows the amount of days required between the first and

second appointment as well as the resting period between the second and third appointment. It is randomly
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generated with the use of Microsoft Excel such that the values remain between one and seven. Rik = 1

signifies that an appointment is required the next day and if Rik = 7, an appointment is needed in a week.

Table 3.8: Patients with Special Drug Needs, S and Nurse Assignment to Patients, In
Special patients, S 3, 5, 7, 8, 9, 13, 15, 17, 18, 24, 25, 26, 30, 33, 34, 41

Patients of Nurse 1, I1 16, 27, 34, 40, 41, 45

Patients of Nurse 2, I2 3, 6, 15, 25, 37, 42

Patients of Nurse 3, I3 2, 5, 13, 21, 28, 32

Patients of Nurse 4, I4 9, 10, 11, 20, 33, 44

Patients of Nurse 5, I5 8, 12, 31, 36, 48, 49

Patients of Nurse 6, I6 1, 17, 19, 22, 43, 46

Patients of Nurse 7, I7 4, 23, 24, 26, 39, 50

Patients of Nurse 8, I8 7, 14, 18, 29, 30, 35, 38, 47

Table 3.9: Amount of Nights of Rest Required Before the Appointment k ∈ K of Patient i ∈ I, Rik

Patient i ∈ I Ri2 Ri3 Patient i ∈ I Ri2 Ri3

1 3 6 26 3 4

2 7 7 27 1 1

3 3 4 28 2 1

4 1 7 29 1 3

5 2 6 30 1 5

6 5 2 31 7 1

7 6 1 32 1 3

8 2 4 33 6 7

9 5 1 34 4 4

10 6 2 35 6 3

11 6 5 36 6 3

12 3 2 37 5 1

13 4 1 38 1 1

14 6 1 39 4 4

15 3 3 40 1 5

16 3 7 41 1 4

17 4 2 42 3 3

18 6 7 43 4 5

19 3 7 44 5 4

20 4 6 45 2 1

21 6 6 46 3 1

22 1 1 47 4 6

23 7 6 48 3 7

24 2 6 49 6 2

25 5 1 50 4 1

Every patient has a personalized regimen. The oncologists carefully diagnoses them and suggests

infusions of different lengths as shown in Table 3.10. This data is also randomly generated with the use of

Microsoft Excel to last between one time slot and up to 14 time slots which represents chair time ranging
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from 30 minutes to seven hours. To perform these chemotherapy treatments, the clinic is equipped with 30

chairs in this exercise.

Table 3.10: Amount of Time Slots Required for the Appointment k ∈ K of Patient i ∈ I, Lik

Patient i ∈ I Li1 Li2 Li3 Patient i ∈ I Li1 Li2 Li3

1 14 9 4 26 3 8 6

2 5 13 10 27 8 4 6

3 9 6 7 28 2 4 4

4 10 13 13 29 8 9 3

5 1 5 12 30 6 4 12

6 7 6 6 31 5 1 3

7 1 5 13 32 11 8 12

8 7 1 6 33 14 8 13

9 1 7 10 34 4 8 3

10 2 9 11 35 11 14 8

11 13 11 14 36 8 13 9

12 6 8 1 37 7 1 5

13 11 8 9 38 4 3 2

14 8 14 12 39 7 4 3

15 5 2 13 40 3 7 7

16 13 1 7 41 7 13 3

17 10 10 7 42 8 12 13

18 12 6 2 43 8 9 9

19 10 9 4 44 14 8 14

20 10 2 5 45 13 10 7

21 5 5 1 46 4 1 4

22 5 14 10 47 3 7 9

23 6 3 6 48 7 9 13

24 5 13 10 49 8 1 10

25 10 8 13 50 6 3 8

The individual capacity of each nurse is set to eight patients per day to control their workload,

whereas the clinic is also limited to receive a maximum of 50 chemotherapy treatments per day. Since the

primary care delivery model is implemented by the clinic, it is necessary to know when a nurse is working.

The Table 3.11 shows the nurse’s schedule on which the Boolean parameter Bid is based on. Thus,

is it possible to know if the nurse of patient i ∈ I is available on day d ∈ D or not. This information is well

known is advance and obtained from the head nurse who normally prepares the nurse’s schedule six weeks

ahead. The shift of the nurse is not distinguished in this table. It is simply known that they are working on

that day.

To evaluate the performance of the optimization model, different convex combinations of the coef-

ficients w1, w2, and w3 are assigned to the three objectives. Each of the weights vary at the first decimal,
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Table 3.11: Daily Nurse Availability for the Month of October 2016

Date: 3 4 5 6 7 10 11 12 13 14 17 18 19 20 21 24 25 26 27 28

Nurse 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Nurse 2 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Nurse 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Nurse 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

Nurse 5 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Nurse 6 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

Nurse 7 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0

Nurse 8 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0

from 0 to 0.1 until 1 for a total of 11 possible weights per coefficient. Due to the structure of the problem, it

is possible to deduce the minimum and maximum values of delays,
I∑

i=1

Yi and
I∑

i=1

Ci.- In Test 1, the minimal

and maximal amount of delay possible is inevitably zero because of mi = 0, meaning that every patient has

perfect adherence to the prescribed protocol.

- In Test 2, the minimal amount of delay is also zero signifying perfect protocol adherence.

- In Test 2, the maximal amount of delay is 50. Meaning that every patient experienced 1 day of delay

because of mi = 1 during their three treatment.

- In both tests, the minimal value that Yi can take is zero, meaning that every patient is assigned to their

primary nurse for every appointment.

- In both tests, the maximal value that Yi can take is 150, meaning that every appointment was scheduled

with the wrong nurse.

- In both tests, the minimal value that Ci can take is 17 since at least one patient requires weekly treatments.

- In both tests, the maximal value that Ci can take is 28 since it is the extent of the planning horizon.

3.3.1 Test 1, mi = 0

In this first test, since the impact of having no delays, mi = 0 is being observed, the coefficient w1 is set

to zero while w2, and w3 vary. This represents a total of 11 scenarios. The results are shown in Figure 3.3

and in further details in Table 3.12. This figure illustrates the trade-off between two conflicting objectives,

maximizing the primary nurse assignment and minimizing the sum of completion time of the system while

maintaining maximum protocol adherence. The negative correlation of these two variables is quite noticeable

and are highly correlated with a coefficient of -0.7571. These calculations can be found in the Appendix,

Figure A.1 and Figure A.2. In the Figure 3.3, the emphasis is made on the makespan when in reality,

the model calculates the completion time of the system shown in the black boxes beneath the yellow trend

line. This is why the results obtained with the instances 4 and 5 have the same makespan, yet differ in the

amount of wrong nurse assignment because of the small difference in
∑
i∈I

Ci shown in the box.
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Figure 3.3: Test 1. Trend on Delay of Data B and mi = 0

Table 3.12: Results from Test 1. with Different Combinations of Weights w1, w2 and w3

Instance w1 w2 w3 Solving time

(hh:mm:ss)

∑
i∈I

Qi

∑
i∈I

Yi

∑
i∈I

Ci Makespan Objective

function

1 0 1 0 00:00:17 0 1 786 28 1

2 0 0.9 0.1 00:00:07 0 4 613 19 64.9

3 0 0.8 0.2 00:00:07 0 9 577 19 122.6

4 0 0.7 0.3 00:00:07 0 9 577 19 179.4

5 0 0.6 0.4 00:00:06 0 11 574 19 236.2

6 0 0.5 0.5 00:00:06 0 22 563 18 292.5

7 0 0.4 0.6 00:00:04 0 23 562 17 346.4

8 0 0.3 0.7 00:00:04 0 23 562 17 400.3

9 0 0.2 0.8 00:00:00 0 23 562 17 454.2

10 0 0.1 0.9 00:00:04 0 23 562 17 508.1

11 0 0 1 00:00:04 0 23 562 17 562

A lot of information can be extracted from this model. For example, it is interesting to see the

results of instance 1 and instance 11 as they act like single objective optimization problems. When the

decision making process emphasizes the need of being assigned to the primary nurse, w2 = 1 and w3 = 0,

the optimal solution of instance 1 reveals that one patient will not be assigned with its primary nurse, as

seen in Figure 3.4. When looking deeper at the results obtained from the model, it is possible to pin point

the affected patient and for which of the three appointments.

In this case, it is patient i = 38 who requires three appointments in a row as specified on Table 3.9.
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Figure 3.4: Test 1. Instance 1, Amount of Patients Assigned to Each Nurse During the Month of October

2016

In terms of workforce management, this information can serve as an indicator to reassign this patient who

needs three treatments over the span of three days to a different primary nurse since the part-time nurse 8

to whom this person is assigned in Table 3.11 never works three days in a row. This simple modification

could then lead to an optimal schedule which maximizes the assignment of patients to their primary nurse.

In the case where the minimization of the sum of completion time is emphasized in instance 11 on

Figure 3.5, the trade-off is clear. It is possible to complete all 150 treatments while maintaining perfect

protocol adherence within 17 days, although 23 patients will be affected and not assigned to their primary

nurse. That is a clear difference with instance 1 that requires 28 days to complete all treatments such that

only one patient is affected by a wrong nurse pairing.

The optimal weight distribution among the coefficients w2, and w3 is entirely subjective to the

preference of the decision maker, which in this case is the head nurse of the Segal Cancer Center. It would

although be suggested to follow the schedule obtained with the instance 2. Having a makespan of 19 days

and wrong nurse assignment affecting only four patients is rather appealing. It would not be worth reducing

the makespan by a single day and consequently affect the nurse assignment of 22 patients as seen in instance

6. When considering the result of the instance 1, having the amount of wrong nurse assignment reduced to
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one while significantly increasing the makespan to 28 days seems exaggerated as it only improves
∑
i∈I

Yi by

three.

Figure 3.5: Test 1. Instance 11, Amount of Patients Assigned to Each Nurse During the Month of October

2016
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3.3.2 Test 2, mi = 1

The second test involves the possibility of experiencing one delay per patient, mi = 1. Thus, all three

weight coefficients w1, w2, and w3 vary from 0 to 1. The results of 66 possible convex combination of weights

are found in Tables 3.13 and 3.14.

Table 3.13: Part 1. Test 2. Result of Analysis with Data B, and Maximum Delay per Person =1

Instance w1 w2 w3 Solving time

(hh:mm:ss)

∑
i∈I

Qi

∑
i∈I

Yi

∑
i∈I

Ci Makespan Objective

function

1 1 0 0 00:03:35 0 16 845 28 0

2 0.9 0.1 0 03:04:23 0 1 1006 28 0.1

3 0.9 0 0.1 00:00:15 0 23 562 17 56.2

4 0.8 0.2 0 09:20:38 0 1 900 28 0.2

5 0.8 0.1 0.1 00:00:21 0 19 566 18 58.5

6 0.8 0 0.2 00:00:12 3 22 549 17 112.2

7 0.7 0.3 0 01:45:36 0 1 922 28 0.3

8 0.7 0.2 0.1 00:00:35 0 9 577 19 59.5

9 0.7 0.1 0.2 00:00:12 4 21 546 17 114.1

10 0.7 0 0.3 00:00:10 6 21 540 17 166.2

11 0.6 0.4 0 01:26:07 0 1 931 28 0.4

12 0.6 0.3 0.1 00:00:47 1 8 572 19 60.2

13 0.6 0.2 0.2 00:00:16 8 15 540 18 115.8

14 0.6 0.1 0.3 00:00:12 7 20 538 17 167.6

15 0.6 0 0.4 00:00:08 7 20 538 17 219.4

16 0.5 0.5 0 02:22:02 1 0 938 28 0.5

17 0.5 0.4 0.1 00:00:49 1 8 572 19 60.9

18 0.5 0.3 0.2 00:00:12 8 8 547 19 115.8

19 0.5 0.2 0.3 00:00:07 10 16 535 17 168.7

20 0.5 0.1 0.4 00:00:07 10 16 535 17 220.6

21 0.5 0 0.5 00:00:07 29 18 516 17 272.5

22 0.4 0.6 0 00:41:53 1 0 1023 28 0.4

23 0.4 0.5 0.1 00:00:36 9 3 560 19 61.1

24 0.4 0.4 0.2 00:00:13 14 5 540 19 115.6

25 0.4 0.3 0.3 00:00:10 12 12 535 18 168.9

26 0.4 0.2 0.4 00:00:07 22 14 523 17 220.8

27 0.4 0.1 0.5 00:00:12 29 17 516 17 271.3

28 0.4 0 0.6 00:00:07 29 18 516 17 321.2

29 0.3 0.7 0 03:53:55 1 0 939 28 0.3

30 0.3 0.6 0.1 00:00:20 13 1 556 19 60.1

31 0.3 0.5 0.2 00:00:24 16 3 541 19 114.5

32 0.3 0.4 0.3 00:00:12 23 4 532 19 168.1

33 0.3 0.3 0.4 00:00:11 29 11 519 17 219.6
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Table 3.14: Part 2. Test 2. Result of Analysis with Data B, and Maximum Delay per Person =1

Instance w1 w2 w3 Solving time

(hh:mm:ss)

∑
i∈I

Qi

∑
i∈I

Yi

∑
i∈I

Ci Makespan Objective

function

34 0.3 0.2 0.5 00:00:07 28 16 517 17 270.1

35 0.3 0.1 0.6 00:00:07 29 17 516 17 320

36 0.3 0 0.7 00:00:07 29 18 516 17 369.9

37 0.2 0.8 0 04:39:01 1 0 895 28 0.2

38 0.2 0.7 0.1 00:00:13 17 1 547 19 58.8

39 0.2 0.6 0.2 00:00:09 31 2 528 19 113

40 0.2 0.5 0.3 00:00:09 30 3 527 19 165.6

41 0.2 0.4 0.4 00:00:09 30 7 522 17 217.6

42 0.2 0.3 0.5 00:00:08 33 13 516 17 268.5

43 0.2 0.2 0.6 00:00:09 30 16 516 17 318.8

44 0.2 0.1 0.7 00:00:11 29 17 516 17 368.7

45 0.2 0 0.8 00:00:08 29 18 516 17 418.6

46 0.1 0.9 0 00:38:19 1 0 986 28 0.1

47 0.1 0.8 0.1 00:00:10 29 1 535 19 57.2

48 0.1 0.7 0.2 00:00:08 31 2 528 19 110.1

49 0.1 0.6 0.3 00:00:05 31 2 528 19 162.7

50 0.1 0.5 0.4 00:00:07 31 4 525 17 215.1

51 0.1 0.4 0.5 00:00:10 32 12 517 17 266.5

52 0.1 0.3 0.6 00:00:07 33 13 516 17 316.8

53 0.1 0.2 0.7 00:00:06 33 13 516 17 367.1

54 0.1 0.1 0.8 00:00:07 33 13 516 17 417.4

55 0.1 0 0.9 00:00:08 29 18 516 17 467.3

56 0 1 0 00:00:54 43 0 706 28 0

57 0 0.9 0.1 00:00:06 42 2 528 19 54.6

58 0 0.8 0.2 00:00:06 42 2 528 19 107.2

59 0 0.7 0.3 00:00:08 40 2 528 19 159.8

60 0 0.6 0.4 00:00:06 39 3 526 17 212.2

61 0 0.5 0.5 00:00:16 43 13 516 17 264.5

62 0 0.4 0.6 00:00:14 43 13 516 17 314.8

63 0 0.3 0.7 00:00:10 41 13 516 17 365.1

64 0 0.2 0.8 00:00:09 43 13 516 17 415.4

65 0 0.1 0.9 00:00:09 43 13 516 17 465.7

66 0 0 1 00:00:05 45 20 516 17 516
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Figure 3.6: Test 2. Trend on Delay: 0 to 28
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Figure 3.7: Test 2. Trend on Delay: 29 to 45
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Through Figures 3.6 and 3.7, the negative relationship between primary nurse assignment and the

makespan can further be examined. The output on this graph was ordered such that the tendency on delays

could be observed in an increasing manner. The instances are graphed in an order different from the Tables

3.13 and 3.14. In this test, the correlation coefficient is calculated to stand at -0.61952 and demonstrates a

moderate negative linear correlation, see Appendix Figure B.1 and B.2 for the calculations. The negative

linear correlation between these two different objectives indicates that there is some predictability. When

one variable increases, the second variable decreases. It is then difficult to reallocate such that one criterion

remains optimal without making the second criterion worse.

Throughout this test, instance 1, instance 56 and instance 66 outlined in blue act like single-objective

optimization problems.

- Instance 1 confirms that it is possible to experience zero delay.

- Instance 56 confirms that it is possible to assign each appointment with the correct nurse.

- Instance 66 confirms that it is possible to schedule all appointments within 17 days.

Of course, in each of these scenarios, trade-offs are made that do not advantage all three objectives

simultaneously. It is although possible to see through instance 3 outlined in red, two objectives being

optimized at the same time. There are no delays and all the appointments are completed within the shortest

makespan possible, 17 days. Consequently, the assignment of primary nurse is at its worse score with 23

appointments completed with the wrong nurse.

In the latter case of simultaneously optimizing the nurse assignment and the amount of delays, it

is not possible through this scenario, but a few instances do come close. As it can be seen outlined in

green, four instances attain zero delay with one wrong assignment, whereas five instances outlined in yellow,

suffer of one delay with all nurse assignments done correctly. Through deeper analysis, it is possible to

distinguish the best scenarios from these multiple solutions. The makespan may indicate 28 days for all of

these instances, although when taking a closer look to the sum of completion time indicated in the box, it

is possible to determine that instance 4 and instance 37 indicated by a green and yellow star have a better

patient scheduling outcome. This indicates that most treatments began and were completed sooner.

Taking a closer look at the three weight coefficient of these outlined solutions, it is noticeable that

w3 often carries a null value. Signifying that the best output does not depend on the sum of completion

time of the system. An optimized nurse assignment and adherence to protocol prime over minimizing the

sum of completion time.

As it was mentioned previously, the optimal trade-off is subjective to the preference of the decision

maker although the best recommendation would be to use the schedule obtained with instance 8 indicated

by the black arrows. Every single patient is scheduled according to the oncologist’s prescribed regimen, thus

attaining the best curative outcome. There are only nine wrong nurse assignments and the makespan is

reasonably short with 19 days.
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3.4 Contributions to Workforce Management

This section elaborates on the impact of using this tool on a daily basis. It demonstrates the quick

decision making benefits and the possibility to guide nurse scheduling by first meeting the patient’s needs.

The purpose of this optimization tool is to alleviate the workload and struggle of manually optimizing

a schedule when so many variants are involved. This test was done on a blank canvas, meaning that all

150 appointments could be scheduled anywhere as availabilities abound everywhere. In a real-life scenario,

this template would already be filled with existing appointments. This is why this model was created such

that two distinct, yet similar decision variables are used to distinguish the date: Xikd and the time : Zikdt.

Any booked appointments would keep the same date as Xikd would be set and the start time could be

re-optimized through Zikdt, when new appointments are added.

Some attention should be paid to the solving time. The instances indicated with an asterisk required

between 38 minutes and up to 9 hours and 20 minutes to reach optimality with an average solving time of

3 hours and 5 minutes. The current test was done with a blank canvas; the solving time is understandably

longer than a real-life scenario since the model needs to find the values of Xikd for 150 appointments. This

information would otherwise be known for all existing patients and would greatly simplify the problem as

the model would mainly focus on finding appointment dates for the new request only, thus fitting three new

appointments at a time and reschedule the start time of the appointments of the system.

This hypothesis was tested by observing the outcome of the longest instance, instance 4 with weights:

w1 = 0.8, w2 = 0.2, and w3 = 0. Patients i = 1 to i = 49 were given their respective appointment dates

according to the output of solving the blank canvas scenario. This allows the model to determine the

treatment dates of only one new patient, patient i = 50 and the appointment start time of all other booked

appointments including patient i = 50. Solving this test only required 1.02 seconds to reach optimality. This

demonstrates that solving time will not be an issue in a real-life scenario. There is an added advantage to

this separation method. In the case that a patient must absolutely be fit in the schedule on a given day, it

is possible to set Xikd for the first appointment and see the model resolve the rest.

In terms of efficiency, this tool greatly saves time by obtaining an optimal schedule within a few

seconds. It brings a solution to the daunting task of scheduling patients, but it also has a benefit for nurse

scheduling. Instead of firstly determining the schedule of the nurse and secondly determining the schedule

of the patients, it is now possible to work in reverse such that the need of the patient is met by the schedule

of the nurses. Taking a look back at Figure 3.5, it is now possible to determine the flaws. In instance 11,

the scheduling tool prioritizes the wellbeing of the patient by having no delays and completing treatments as

quickly as possible even if it affects the assignment of the primary nurse. If maximizing protocol adherence

and minimizing makespan are the main objectives of the decision maker, it is possible to improve the nurse

assignment objective by creating the nurse schedule after knowing the patient’s appointment requirements.

For example, the value of
I∑

i=1

Yi is greatly affected by the day off of nurse 5. Keeping in mind that patients

come first, if this nurse was given a day off on the 5th or the 14th instead of the 10th, five additional patients
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would be properly scheduled with their primary nurse. The same goes for nurse 6. If this person was given

a day off on the 11th instead of the 12th, three additional patients would be scheduled with their primary

nurse and therefore improving the overall nurse assignment of the system.

The concept of establishing the nurse’s days off after knowing the demand can further be applied

to their hourly schedule. The Figure 3.8 represents one of the busiest days of the month of instance 11,

with 24 patients. The start time of treatment is specified for each patient and it is clear who is assigned to

which nurse and on which chair. For example, patient i = 16 is required to begin treatment at 10:00 a.m.

on chair 1 with nurse 1. It is also clear that patients who require special drugs are scheduled to begin after

10:00 a.m. and are distinguished by a black outline: patients 34, 5, 24 and 26.

Figure 3.8: Patient Scheduling on October 3rd 2016, as per Instance 11

Considering the start time of all the treatments on that day, it would be unnecessary to have nurses

come in to work before 10:00 a.m. This information could serve to schedule early administrative tasks

or meetings since patients would only arrive later. In order to accommodate every patient, each nurse is

required to be present for the hours described in Table 3.15.

Table 3.15: Nurse Start Time and End Time Requirement for October 3rd 2016, as per Instance 11

Start time End time

Nurse 1 10:00 .a.m. 5:00 p.m

Nurse 2 11:00 a.m. 3:30 p.m.

Nurse 3 10:30 a.m. 4:00 p.m.

Nurse 4 10:30 a.m. 3:30 p.m.

Nurse 5 10:00 .a.m. 5:00 p.m

Nurse 6 10:00 .a.m. 5:00 p.m

Nurse 7 10:00 .a.m. 4:30 p.m.

Nurse 8 10:00 .a.m. 4:00 p.m.

On October the 10th, shown in Figure 3.9, nurse 1 and nurse 5 are absent and yet have patients

34



assigned to them as outlined in red. By clearly seeing the workload of every other nurse, it is easy to evaluate

who can accommodate these patients. A balanced although not unique schedule can be seen in Figure 3.10,

where the grey chairs indicate patients who are not with their primary nurse. On this day, nurses are required

to work according to the hours mentioned on Table 3.16. This mixed-integer linear programming model is

able to create a schedule for the chemotherapy outpatient clinic while considering three objectives that are

important to the Segal Cancer Center.

Figure 3.9: Patient Scheduling on October the 10th 2016, as per Instance 1

Figure 3.10: Patient Scheduling on October the 10th 2016, as per Instance 1, Manually Reassigned
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Table 3.16: Nurse Start Time and End Time Requirement for October the 10th 2016, as per Instance 1

Start time End time

Nurse 2 10:00 a.m. 5:00 p.m.

Nurse 3 10:00 a.m. 5:00 p.m.

Nurse 4 8:00 a.m. 5:00 p.m.

Nurse 6 8:00 a.m. 5:00 p.m.

Nurse 7 8:00 a.m. 5:00 p.m.

Nurse 8 8:00 a.m. 5:00 p.m.

3.5 Possible Improvements and Extensions

This section goes over the weaknesses of the model and suggests possible improvements to solve a

more realistic chemotherapy outpatient scheduling problem.

The appointment start time obtained with this model is not a unique configuration. This mathe-

matical model does not minimize nor maximize any aspect of treatment start time. With the current set of

constraints, a schedule is simply obtained such that the resource limitations are respected. There are two

additional plausible objectives that could add more value to this tool and further improve this model. For

example, it could be interesting to include either of these:

-Minimization of the amount of chairs used per day to accommodate any walk ins or emergencies.

-Minimization of the daily completion time of treatment such that patients will arrive earlier and leave

earlier.

Also, the concept of differentiating chairs from beds could be included as some patient are dependent

on these beds while others can be accommodated by either of these two options. There is a major difficulty

with this idea since the clinic unfortunately cannot always know in advance whether a patient will require a

bed or not until their arrival.

The layout of the clinic was assumed to be undivided as it currently has two different work stations

with an uneven amount of chairs and beds. Furthermore, a rotation of nurse between the two stations

happens every two weeks. This may become a complication in a larger and busier scenario as it is not

possible for a single nurse to attend patients located in two different places at once. An additional constraint

would be required to monitor the station and amount of chairs required per nurse to take care of this issue.

The treatment length Lik is assumed to be deterministic considering accurate protocols and estab-

lished monographs that specify infusion procedures. It is nonetheless possible that an infusion lasts longer

due to side-effects or a difficult set up.

Since this mixed-integer linear problem aims to optimize the single-stage of chemotherapy scheduling,

earlier appointments happening on the same day with a different healthcare specialist such as an oncologist

or any other specialist is not taken into consideration. Because of this, it is assumed that every patient

will be arriving on time for their appointment, despite the fact that delays caused by traffic or previous
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appointment often occur in real life. A potential solution to this weakness is presented in the next chapter.

3.6 Conclusion

The focal point of this chapter was to set patient appointments in the single-stage environment of

chemotherapy outpatient scheduling. A solution was proposed by developing a multi-objective mixed-integer

linear program. The three targets of this scheduling tool were to:

-1. Maximize protocol adherence.

-2. Maximize primary nurse assignment.

-3. Minimize the sum of completion time which also affects the makespan of the system.

The results of computational experiments demonstrated the efficiency and speed of the suggested

model. It was explained how the output can benefit in taking managerial decisions. Arrangements such as

when to give a day off to a nurse and when to schedule their shifts start time can easily be determined. In

conclusion, this multi-objective mixed-integer linear program has many advantages that can serve to schedule

patients and nurses such that both parties can be satisfied.

This model allows to solve the chemotherapy outpatient scheduling problem. When it is used, the

date and time of each appointment is known. The clinic will then immediately confirm the date that is

obtained and disregard the appointment start time as it is only confirmed a few days before their treatment.
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Chapter 4

Oncology Clinic Multi-Stage

Scheduling Problem

The second focus of this thesis is the scheduling of the interdependent events that conclude to

chemotherapy treatment. The Segal Cancer Center is divided in four main branches: the hematology clinic,

the oncology department, the pharmacy and the chemotherapy unit. These four divisions greatly depend on

one another. If any delay or interruption occur within the earlier stages, it will cause unnecessary patient

wait time and affect the efficiency of the clinic. The proper coordination of these subsystems will reduce

patient wait time, reduce staff idle time, positively impact efficiency and service level which will ultimately

lead to an optimized oncology clinic. A mixed-integer linear program will demonstrate the possibility of

abolishing the current two-day scheduling policy and easily complete all necessary tasks in a single day. The

planning horizon of this scheduling problem is over the span of a single day and coordinates the activities of

every patient.

It is also an extension to a weakness mentioned in Chapter 3 as it is important to consider previous

appointments that may affect the start time of chemotherapy treatments. Solving this real-world problem

experienced at the Segal Cancer Center of the Jewish General Hospital in Montreal Quebec is the intention

of this chapter.

4.1 Problem Definition

In April of 2014, due to complaints and extended patient wait time, the Segal Cancer Center had

to modify its scheduling policy. A single day visit has been stretched out, on to two days. This represents

the necessity of being at the clinic a first time to perform blood tests and complete a consultation with

the oncologist if necessary. This is inconveniently followed by a second visit to the clinic to complete the

chemotherapy treatment on the next day. In this manner, prolonged on-site wait time was converted to

off-site wait time. This does not truly solve the issue. As it was surveyed by Lau [23], it would certainly be
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preferable to coordinate activities throughout the clinic such that everything can be completed in a single

visit. This would increase patient satisfaction, overall convenience and eliminate the hassle of travelling twice

to the clinic.

Chemotherapy is characterized by a regimen that consists of multiple infusions and frequent oncology

examinations. Patients perform these follow ups at different intervals, which is decided by the oncologist.

Three groups of patients are distinguished and seen in Figure 4.1. Group G1 are the ones that come for an

oncology appointment. Group G2 are patients who need to complete an oncology consultation and receive

chemotherapy treatment. Finally, group G3 are patients who come to receive chemotherapy treatment only.

The entire set of patient treated by the clinic is defined as G = G1 ∪G2 ∪G3.

Figure 4.1: Patient Groups

With the use of a mixed-integer linear programming model, the sum of completion time of each

patient is minimized. With this approach, scheduling patients in a single day is easily done. On a daily

basis, the clinic may receive between 100 to 250 patients scheduled to meet with an oncologist and 60 to 80

patients that require chemotherapy, thus either belonging to groups G1, G2 or G3.

As described in Table 4.1, this model must respect the capacity of the registration office, the

fluctuating availability of oncologists, the production capacity of the pharmacy and the amount of nurses

and chairs available to complete drug infusions.

Table 4.1: Material and Human Resources Required to Perform Daily Activities Through the Clinic

Activities Material resources Human resources

Activity 1 Registration Front desk Secretary

Blood Test Examination room Phlebotomist

Await for blood test results Waiting area -

Activity 2 Oncology consultation Examination room Oncologist

Activity 3 Prescription preparation Waiting area Pharmacist / Pharmacy

technician

Activity 4 Chemotherapy treatment Chair / Bed Nurse

- Upon arrival at the oncology outpatient clinic, the first activity applies to all three patient groups

G1, G2 and G3. It is a sequence of three tasks, registering at the reception, performing a blood test and

waiting for the results to be available as it is mandatory for the oncology consultation or prescription
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preparation by the pharmacy. With the current two-day system established by the clinic, it is common for a

few patients of G3 to complete their blood tests on the previous day, at a CLSC as it may be more convenient

than travelling to the Segal Cancer Center. Thus these patients upon arrival at the clinic must register at

the reception and still wait for the blood test results as they must be retrieved from the Québec Health

Record, a tool that allows healthcare professionals to have quick and easy access to health information of

patients.

- The second activity, which is the consultation with an oncologist, applies to the patients of the sets

G1 and G2. It is customary that an oncologist is assigned an examination room for the duration of their

shift. Thus, it is unnecessary to validate the vacancy of an exam room as when an oncologist is available,

the same goes for their assigned space.

- The third activity is the prescription preparation which is necessary to perform the chemotherapy

treatment of patients G2 and G3. In the current two-day system, these patients do not stay and wait at

the clinic for it as it is prepared during their off-site wait time. They simply head back home and arrive

on the next day with their prescriptions ready for infusion. This will no longer be the case in the single

day processing system as patients will be directed to the waiting area while the pharmacist validates the

prescription and the pharmacy technician prepares it in a timely and orderly fashion.

- The fourth activity is the chemotherapy treatment which is required for patients of the groups G2

and G3. To perform this step, a nurse must be available for setup and supervision for the duration of the

infusion. Furthermore, a chair or a bed is essential for a comfortable treatment during this lengthy process.

As summarized in Table 4.2 , the patients of G1 require the set of jobs A1: activity 1 and 2. The

patients of G2 require the set of jobs A2: activity 1, 2, 3 and 4. Finally, the patients of G3 require the set of

jobs A3: activities 1, 3 and 4. When a constraint must refer to all the activities, the set A = A1 ∪A2 ∪A3

will be used.

Table 4.2: Activities Required per Patient Groups

Activities Patients i ∈ G1, A1 Patients i ∈ G2, A2 Patients i ∈ G3, A3

Activity 1 X X X

Activity 2 X X

Activity 3 X X

Activity 4 X X

The clinic continuously receives new appointment requests for which the trajectory and chemotherapy

specifications are diverse. The tool developed in this model can only be used if the ensemble of the requests

is known from the start. Realistically, this signifies that when a patient is asking to schedule an appointment,

they will only know the date right away, but not the time. The clinic will collect all the requests and employ

this tool once it has accumulated enough data to finalize the hourly schedule one day or two in advance,

giving them the opportunity to contact each patient to confirm the time of their appointment.

The Table. 4.3 describes the additional parameters and the decision variables of the mathematical
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model. Since the operating hours of the Segal Cancer Center are from 7:30 a.m. until 6:00 p.m., the timeline

of this problem has been subdivided into smaller time slots of 15 minutes, for a total of 42 time slots t ∈ T .

Where t = 1 represents 7:30 a.m. to 7:45 p.m. and t = 42 represents 5:45 p.m. to 6:00 p.m. This differs

from chapter 3 due to the inclusion of oncology consultations. They are assumed to last one time slot. Thus

having longer time slots would not be reasonable to model this situation.

Table 4.3: Parameters and Decision Variables of the Oncology Clinic Multi-Stage Scheduling Problem

PARAMETERS

T Set of time slots

G1 Set of patients who need to see the oncologist

G2 Set of patients who need to see the oncologist and receive chemotherapy

G3 Set of patients who need to receive chemotherapy

G Set of patient G1 ∪G2 ∪G3

A1 Set of activities = 1,2

A2 Set of activities = 1,2,3,4

A3 Set of activities = 1,3,4

A Set of activities A1 ∪A2 ∪A3

rt Amount of patients that can be attended to per time slot t at the reception

t1 Amount of time slots for registration, blood test and result posting

t2 Amount of time slots required for an oncologist consultation

p2g Amount of time slots needed for drug preparation for the patient g ∈ G2

p3g Amount of time slots needed for drug preparation for the patient g ∈ G3

c2g Amount of time slots needed for chemotherapy treatment for the patient g ∈ G2

c3g Amount of time slots needed for chemotherapy treatment for the patient g ∈ G3

nt Amount of nurses available during time slot t ∈ T

ot Amount of oncologists available at time slot t ∈ T

pt Amount of pharmacy technicians available at time slot t ∈ T

c Amount of chairs available

m Maximum wait time between activities

DECISION VARIABLES

Cg The completion time for patient g ∈ G

Yg The total amount of time spent by patient g ∈ G at the clinic

Xtag A binary decision variable, 1 if at time slot t ∈ T , the activity a ∈ A of patient g ∈ G

is scheduled to begin, 0 otherwise

There must always be someone present at the reception to greet, register and guide the patients

arriving to the clinic. The capacity, amount of people that can be attended to per time slot t ∈ T is

described by rt and is correlated to the amount of staff present at the reception.

Activity 1 of Table 4.2 is expected to last t1 time slot and is assumed to be constant and identical

for everyone. There are not many sources of variation at this point. After registering at the reception on the

7th floor of the Segal Cancer Center, the patient is directed to the hematology area next door. From there,
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a blood sample is taken and transferred to the core laboratory through a tube via, a pneumatic system. The

results are then available through the hospital’s information system within 30 minutes. Depending on their

individual trajectory, a patient will either be seated in the waiting area of the 7th floor until meeting with

an oncologist, or on the 8th floor to wait for their prescription to be ready for chemotherapy.

Activity 2 of Table 4.2 applies to the people present for a consultation with an oncologist. The

availability of these specialists varies widely since they are present for a specific amount of time that may vary

from day to day or even from week to week. Due to additional commitments, such as teaching, completing

research, giving conferences or the need of their expertise to complete surgery or consultation in different

clinics, they do not have a constant schedule. The parameter ot, specifies the amount of oncologists available

per time slot t ∈ T and can be deduced from the example of schedule shown on Table 4.4. In this problem,

it is assumed that a patient may be assigned to any oncologist, when they are treated and followed up by

the same person when possible. The duration of the consultation is assumed to be constant for everyone

and require at most t2 time slots. During this time, the physician consults the patient and their file. The

diagnostic and prescription are then recorded in the information system. From there, a patient may leave

the clinic or head to the waiting area on the 8th floor for the prescription that will be required during

chemotherapy.

Table 4.4: Amount of Oncologists Available per Hour, ot
Time Monday Tuesday Wednesday Thursday Friday

8:00 a.m. 0 3 1 0 1

9:00 a.m. 6 8 7 8 3

10:00 a.m. 6 9 8 8 4

11:00 a.m. 6 8 7 8 3

12:00 a.m. 4 5 5 4 2

1:00 p.m. 4 6 7 4 1

2:00 p.m. 3 6 7 4 1

3:00 p.m. 3 6 7 4 1

4:00 p.m. 0 2 3 2 0

The oncology clinic has its own pharmaceutical department. Upon receiving the prescription, the

pharmacist validates it and transmits the instructions to the pharmacy technicians. Unlike the way it

was modeled in [20], the pharmacy is affected by resource limitations. The parameter pt accounts for the

number of technicians available per time slot t ∈ T . While the drug is being processed, the patients are

in the waiting area. The amount of time necessary to perform Activity 3, which is the drug preparation

p2g for patients g ∈ G2 and drug preparation p3g for patients g ∈ G3 is different for each individual and

depends on the prescribed regimen. With the knowledge of the industry, the amount of time required is

accurately rounded up to the nearest 15-minute interval as it may vary between two minutes to 45 minutes

to prepare a prescription, depending on the request. The possibility of delays due to misplaced files, phone
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call interruptions, additional prescription validation and other issues that may affect the preparation time

are ignored in the parameters p2g and p3g.

Additional limitations are considered in the infusion stage, something that was not done in [20].

A person who needs chemotherapy can only be scheduled per nt, the amount of nurse available per time

slot t ∈ T . It is conventional that a nurse must pay full attention to the patient they are setting up for

infusion. Otherwise, they may simultaneously monitor the stability of four patients at their proximity. The

infusion time required for Activity 4 is predetermined by the oncologist and differs for every patient as it is

a personalized treatment. The duration of each infusion is defined by c2g for patients g ∈ G2 and c3g for

patients g ∈ G3. Once again, it is assumed to be deterministic as it is prescribed by the oncologist and based

off reputable drug formularies. In reality, complications during setup or infusion such as side-effects or late

patient arrival may prolong the infusion and delay any patient who was scheduled on that chair afterwards.

Once the prescription is ready, the nurse will direct the patient to a treatment chair in one of the

two stations of the clinic. The number of chairs and beds c available to complete chemotherapy is a limiting

resource as it can only accommodate one patient at a time. This is why their use must be optimized such

that patients are not negatively affected.

The concept of wait time is introduced with the parameter m. Having some wait time may be

necessary due to a lack of coordination between resources. Because of this, a patient may be affected by a

maximum of m time slots between some activities. Having the ability to control this parameter guarantees

a certain service level.

There is are two objectives to be optimized. First, the model aims to minimize the completion time

Cg of every patient g ∈ G. In this manner, patients must enter and leave the system as soon as possible. By

doing so, the probability of staff performing overtime will be reduced. For example:

-If Cg of g ∈ G1 = 27, this patient arrived to the clinic and was done meeting with the oncologist at t = 27.

-If Cg of g ∈ G2 = 27, this patient arrived to the clinic and completed their chemotherapy at t = 27.

-If Cg of g ∈ G3 = 27, this patient also arrived to the clinic and completed their chemotherapy at t = 27.

The second objective is to manage on site wait time as it will directly impact service levels. The

decision variable Yg will be minimized and represents the amount of time spent at the clinic by patient g ∈ G;

the end time minus the time of arrival at the clinic. For example, if patient g ∈ G1 arrives to the clinic at

t = 4 and requires the activities mentioned in Table 4.5 to be completed, in an optimal setting this patient

would be completing activity one during t = 4, 5 and 6, followed by activity two at t = 7 and leave the clinic

at t = 8, such that Yg = 4. In the case that Yg = 5, it signifies the presence of idle time m throughout the

process. This patient was in the waiting area longer than necessary before performing activity two as seen

in Figure 4.2.

To keep track of the start time of each activity, the Boolean decision variable Xtag will indicate:

- 1, the activity a ∈ A of patient g ∈ G starts at time slot t ∈ T .

- 0, otherwise.
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Table 4.5: Example of Time Required for Patient g ∈ G to Complete Activity 1 and Activity 2

Activity 1 Activity 2 Total

3 time slots 1 time slot 4 time slots

(45 minutes) (15 minutes) (60 minutes)

Figure 4.2: Example of Yg Calculation

4.2 Mathematical Model

Using the above-mentioned set of decision variables, the oncology clinic multi-stage scheduling

problem can be stated as follows:

Minimize:
∑
g∈G

Cg +
∑
g∈G

Yg (4.1)

Subject to:
∑
t∈T

Xtag = 1 a ∈ A, g ∈ G (4.2)

∑
t∈T

tXt1g + t1 ≤
∑
t∈T

tXt2g ≤
∑
t∈T

tXt1g + t1 +m g ∈ G1 ∪G2 (4.3)

∑
t∈T

tXt2g + t2 ≤
∑
t∈T

tXt3g ≤
∑
t∈T

tXt2g + t2 +m g ∈ G2 (4.4)

∑
t∈T

tXt3g + p2g ≤
∑
t∈T

tXt4g ≤
∑
t∈T

tXt3g + p2g +m g ∈ G2 (4.5)

∑
t∈T

tXt1g + t1 ≤
∑
t∈T

tXt3g ≤
∑
t∈T

tXt1g + t1 +m g ∈ G3 (4.6)

∑
t∈T

tXt3g + p3g ≤
∑
t∈T

tXt4g ≤
∑
t∈T

tXt3g + p3g +m g ∈ G3 (4.7)

∑
g∈G

tXt1g ≤ rt t ∈ T (4.8)
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∑
g∈G2

Xt3g +
∑
g∈G2

t−1∑
t′=max{1,t−dp2g+1}

Xt′3g +
∑
g∈G3

Xt3g +
∑
g∈G3

t−1∑
t′=max{1,t−dp3g+1}

Xt′3g ≤ pt t ∈ T

(4.9)∑
g∈G2

Xt4g +
1

4

∑
g∈G2

t−1∑
t′=max{1,t−dc2g+1}

Xt′4g +
∑
g∈G3

Xt4g +
1

4

∑
g∈G3

t−1∑
t′=max{1,t−dc3g+1}

Xt′4g ≤ nt t ∈ T

(4.10)∑
g∈G2

Xt4g +
∑
g∈G2

t−1∑
t′=max{1,t−dc2g+1}

Xt′4g +
∑
g∈G3

X3t4g +
∑
g∈G3

t−1∑
t′=max{1,t−dc3g+1}

Xt′4g ≤ c t ∈ T

(4.11)

∑
g∈G1

Xt2g +
∑
g∈G2

Xt2g ≤ ot t ∈ T (4.12)

tXt2g + t2 ≤ 42 g ∈ G1 ∪G2, t ∈ T (4.13)

tXt4g + c2g ≤ 42 g ∈ G2, t ∈ T (4.14)

tXt4g + c3g ≤ 42 g ∈ G3, t ∈ T (4.15)

Cg =
∑
t∈T

tXt2g + do g ∈ G1 (4.16)

Cg =
∑
t∈T

tXt4g + dc2g g ∈ G2 (4.17)

Cg =
∑
t∈T

tXt4g + dc3g g ∈ G3 (4.18)

Yg = Cg −
∑
t∈T

tXt1r g ∈ G (4.19)

The objective function is to minimize the total completion time and minimize the time spent in the

clinic for every patient (4.1). The set of constraints (4.2) ensures that all the activities A = A1 ∪A2 ∪A3

required by the patients G = G1 ∪G2 ∪G3 are scheduled.

Each patient group has a different trajectory and they must be scheduled accordingly. The set of

constraints (4.3) verifies that the oncology consultation of patients G1 and G2 is scheduled chronologically

either immediately after the registration or after being delayed by no more than m wait time.

Thus this same idea continues in (4.4). A patient g ∈ G2 can only go to the 8th floor and wait for

their prescription after seeing the oncologist. Only after the drug is prepare, patient g ∈ G2 can be set up

for chemotherapy, (4.5).

Patients G3 have a different trajectory, beginning with the set of constraints (4.6). Their prescription

can only be prepared after completing a blood test and the chemotherapy can only be performed after the

prescription is ready, (4.7).

The arrival rate of patients to the clinic is determined by the capacity of the registration office with

the set of constraints (4.8). Logically, a pharmacist must complete one prescription before preparing the
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next, (4.9). The capacity and workload of the nurses is also monitored with (4.10), making sure there

are enough nurses working to accommodate newly arriving patients as well as to monitor existing patients.

Finally, (4.11) ensures there are enough chairs to accommodate newly arriving patients and patients already

being treated.

The amount of patients admitted for oncology consultations is also limited with the set of constraints

(4.12). In order to have all the patients out of the clinic by 6:00 p.m. such that overtime does not

occur,(4.13) confirms that no oncology consultation will last past t = 42. This logic also applies with the

set of constraints (4.14) and (4.15), chemotherapy treatments may not be scheduled to last past 6:00 p.m.

Every patient is ensured to complete their activities by the end of the day.

In order to calculate how much time each patient has spent in the clinic, the three set of constraints

(4.16), (4.17) and (4.18) verify the completion time of the last activity of each patient. Finally, the set of

constraints (4.19) calculate the difference between the time of departure and time of arrival at the clinic.

4.3 Computational Experiments and Analyses

This section presents the computational results of three tests and analyzes the solutions. To use

this mixed-integer linear programming model, all the patient requests must to be known in advance. The

input of preparation time p2g, p3g and chemotherapy treatment time c2g, c3g differ through these tests and

are generated with the use of Microsoft Excel. The Table 4.6 summarizes these differences.

Table 4.6: Type of Tests

Test Chemotherapy treatment length, c2g and c3g

Test 1 Generated data with mean ≈ 7 and standard deviation ≈ 4

Test 2 Generated data with mean ≈ 10 and standard deviation ≈ 7

Test 3 Generated data with mean ≈ 13 and standard deviation ≈ 8

The experiment was performed with the input seen in Table 4.7. This mathematical model can

optimize and create a schedule to accommodate 280 appointments or more per day depending on the resource

limitations. It determines the start time of every activity in the clinic, no matter the trajectory of the patient.

It is tested with 200 patients of type G1, 40 patients of type G2 and finally 40 patients of type G3 such that

the completion time and on site wait time is minimized. Since the clinic is open from 7:30 a.m. to 6:00 p.m.,

the timeline is divided in 42 time slots of 15 minutes.

The amount of resource available for the registration and chemotherapy treatments are slightly

increased to solve this test. This allows to optimally schedule patient appointments and consequently coor-

dinate the staff to match the demand.

At the reception, it is assumed that one employee may register and serve four patients per time slot.

Since there are 280 patients that will arrive to the clinic over the course of the day, an inflated approximation

would be to have three receptionists with the capacity of serving up to 12 patients per time slot as seen in
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Table 4.7: Values Taken by Parameters for Test 1, Test 2 and Test 3

PARAMETERS

G1 200 patients who need to see the oncologist

G2 40 patients who need to see the oncologist and receive chemotherapy

G3 40 patients who need to receive chemotherapy

G A total of 280 patients from the set of patient G1 ∪G2 ∪G3

T 42 time slots of 15 minutes

rt 3 receptionists are assumed to be able to process 4 patients per 15 minutes, for a total

of 12 patients per time slot

t1 2 time slots to register, perform blood test, and obtain results

t2 1 time slot to consult with the oncologist

p2g Preparation time ranges from 1 to 3 time slots, see Table 4.9

p3g Preparation time ranges from 1 to 3 time slots, see Table 4.10

c2g Chemotherapy treatment length ranges from 1 to 28 time slots, see Table 4.9

c3g Chemotherapy treatment length ranges from 1 to 28 time slots, see Table 4.10

ot Refer to table Table 4.8

pt Refer to Table 4.8

nt Refer to table Table 4.8

c 35 chairs available

m Maximum wait time between activities is set to 0

Table 4.8. Of course, it is not feasible to have the same three employees working from 7:30 a.m. to 6:00

p.m. Their schedules will be made per the output and requirement of the model.

The purpose of this model is to prioritize the proper scheduling of patients such that the limiting

resources can be adapted to the demand. Therefore, the capacity at the reception was slightly increased.

This same idea is applied to the number of nurses available at each time slot nt as their schedule can easily

be modified to accommodate the need of patients. The head nurse always has eight nurses on the floor

with an additional two for emergencies or administrative tasks. It is assumed that ten nurses are available

throughout the day as seen in Table 4.8, even though they do not begin to work at the same time, nor end

at the same time. The output of the model will determine the schedule of each nurse.

Contrarily to the reception and chemotherapy, the oncology department has a strict schedule to

follow. Each physician supplies their availabilities to the oncology clinic and it is fixed. The staffing level

used in this model is seen in Table 4.8. The pharmacy also has a strict schedule, but it is at least constant.

At all time, there are pt = 5 pharmacy technicians readily available to prepare patient prescriptions. This

does not directly imply that five new prescriptions can be prepared at every time slot as some pharmacy

technicians may still be busy with previous prescription.

The first activity, which is the registration and blood test is assumed to require two time slots t1 = 2

and remain constant for everyone. The second activity, which is the oncologist consultation is also assumed

to be constant and require only one time slot t2 = 1 per patient. The amount of time required for the
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Table 4.8: Staff Availability

Time slot rt ot pt nt Time slot rt ot pt nt

1 12 0 0 10 22 12 9 5 10

2 12 0 0 10 23 12 6 5 10

3 12 3 5 10 24 12 6 5 10

4 12 3 5 10 25 12 6 5 10

5 12 5 5 10 26 12 6 5 10

6 12 5 5 10 27 12 6 5 10

7 12 8 5 10 28 12 6 5 10

8 12 8 5 10 29 12 6 5 10

9 12 8 5 10 30 12 6 5 10

10 12 8 5 10 31 12 6 5 10

11 12 9 5 10 32 12 6 5 10

12 12 9 5 10 33 12 6 5 10

13 12 9 5 10 34 12 6 5 10

14 12 9 5 10 35 12 6 0 10

15 12 8 5 10 36 12 6 0 10

16 12 8 5 10 37 12 6 0 10

17 12 8 5 10 38 12 4 0 10

18 12 8 5 10 39 12 4 0 10

19 12 8 5 10 40 12 0 0 10

20 12 8 5 10 41 12 0 0 10

21 12 9 5 10 42 12 0 0 10

prescription preparation p2g and p3g as well as the time needed for chemotherapy treatment c2g and c3g

differs per patient according to their prescribed regimen. The data used for the tests can be seen in Table

4.9 and 4.10

For the chemotherapy process, all 30 chairs and five beds are included in this problem such that

c = 35. Because of the processing time to complete prior activities, the earliest chemotherapy treatments

may only begin is at t = 3. Since there are 35 chemotherapy chairs, the clinic has a total capacity of 39 time

slots * 35 chairs for a total of 1365 time slots to accommodate patients in need of chemotherapy.

The concept of wait time introduced by the parameter m is set to zero to eliminate idle time. The

exercise of setting m = 1 was not explored in this thesis, but could serve as an extension to this research.

Realistically, adding the second term of minimizing
G∑

g=1
Yg in the three tests that were given as examples

could have been omitted. Exploring this route was attempted, but did not turn out to be successful. Even

though CPLEX is a strong and top of the line optimization tool, the solver was never able to find a feasible

solution within 12 hours, even though an optimal schedule with m = 0 existed.
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Table 4.9: Drug Preparation and Infusion Time for Patients G2

Patient Test 1 p2g Test 1 c2g Test 2 p2g Test 2 c2g Test 3 p2g Test 3 c2g

1 1 14 2 26 3 29

2 1 5 1 27 3 28

3 1 9 1 24 3 27

4 3 10 2 1 1 28

5 3 1 3 10 2 26

6 2 7 1 18 3 24

7 3 1 1 7 1 25

8 2 7 1 3 2 23

9 3 1 3 9 1 23

10 1 2 1 3 1 21

11 1 13 2 12 1 19

12 2 6 1 1 3 15

13 2 11 2 3 2 17

14 1 8 2 13 2 17

15 2 5 1 8 3 16

16 3 12 3 10 1 15

17 1 10 1 5 3 14

18 1 12 3 14 2 9

19 2 10 1 14 2 5

20 1 10 3 16 2 6

21 1 5 1 6 2 13

22 3 5 2 16 3 11

23 1 6 3 13 1 7

24 2 5 3 1 1 9

25 3 10 3 13 1 1

26 3 3 3 9 3 9

27 1 8 3 13 1 10

28 1 2 1 1 3 9

29 3 8 1 8 1 2

30 3 6 2 9 2 9

31 3 5 1 10 3 6

32 1 11 3 9 1 8

33 1 14 1 11 3 3

34 1 4 1 10 3 1

35 1 11 1 1 3 4

36 1 8 2 7 1 4

37 2 7 1 8 1 5

38 1 4 2 3 1 2

39 1 7 1 6 2 3

40 2 3 1 5 1 2
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Table 4.10: Drug Preparation and Infusion Time for Patients G3

Patient Test 1 p3g Test 1 c3g Test 2 p3g Test 2 c3g Test 3 p3g Test 3 c3g

1 2 9 1 24 1 12

2 1 13 3 1 1 16

3 1 6 3 7 1 11

4 2 13 2 18 2 12

5 3 5 3 3 1 5

6 1 6 2 6 3 12

7 3 5 3 22 1 28

8 1 1 1 17 1 1

9 3 7 1 15 3 17

10 3 9 1 5 3 24

11 2 11 3 9 2 20

12 1 8 1 8 1 5

13 2 8 1 27 2 13

14 2 14 1 9 1 10

15 2 2 2 19 2 24

16 1 1 1 18 2 15

17 1 10 1 14 2 21

18 1 6 3 26 1 26

19 2 9 2 1 3 20

20 2 2 1 3 1 7

21 3 5 2 3 2 19

22 1 14 3 17 2 24

23 1 3 1 16 1 24

24 3 13 2 2 1 10

25 1 10 2 3 2 3

26 3 11 1 17 2 11

27 1 6 2 7 3 4

28 1 4 2 1 1 22

29 2 12 1 1 3 28

30 1 4 3 13 3 2

31 1 1 1 8 3 21

32 1 8 1 4 3 4

33 2 8 2 6 3 6

34 3 8 1 6 1 6

35 3 15 3 3 2 4

36 2 21 2 10 3 13

37 2 4 1 9 2 16

38 1 5 2 2 3 30

39 1 7 3 3 3 8

40 3 17 1 9 2 13
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4.3.1 Test 1, Treatment Length with Mean ≈ 7 and Standard Deviation ≈ 4

Figure 4.3: Test 1. Optimal Appointment Scheduling
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The first test is performed with chemotherapy treatments of shorter length, ranging from one to 21

time slots with a mean of seven time slots and standard deviation of four time slots. This comes up to a

total demand of 619 time slots to complete chemotherapy, thus filling the chairs at 45.35% of their capacity.

The optimal scheduling of the clinic’s activities is seen in Figure 4.3 and was solved within 172.14 seconds.

Every patient in the system has been numbered from one to 280 and is scheduled so no unnecessary

wait time is incurred. With this figure, it is possible to see at what time each patient begins and completes

every activity. Looking at patient 214, he or she must be at the reception at t = 21 which is 12:30 p.m. After

registering and completing the blood test, an oncologist is available to meet this patient at t = 23 which

represents 1:00 p.m. Upon the end of the consultation, this patient is directed to the waiting area while

their prescription is being validated and made. Since it is known that this medication requires 45 minutes

to prepare, the chemotherapy only begins at t = 27, 2:00 p.m. This patient is then properly installed by a

nurse onto a chair and will receive their infusion over the course of the next 10 time slots to finally exit the

clinic at t = 37 which is at 4:30 p.m. This patient entered the system at t = 21 to finally exit at t = 37 for

a total of Y214 = 16 time slots and a completion time of C214 = 37 time slots.

This scheduling tool may be impractical in a real-life scenario as it requires a list of appointment

requests known in advance. It does not consider scheduling appointments as they arrive. The schedule that

is obtained by using this mathematical formulation can although serve as a source of inspiration to formulate

heuristics or rules to follow and achieve a feasible yet improved schedule in an online context. The following

are observations that can be acknowledged and used.

-Firstly, it is noticeable that patients of group G3 arrive to the clinic before patients of group G2. In

fact, the reception does not serve any patient of G2 until every single patient of G3 has been admitted.

-Secondly, the patients of G3 seem to be ordered in a manner that prioritize patients with shorter

pharmacy preparation time ahead of the ones who require longer preparation time.
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4.3.2 Test 2, Treatment Length with Mean ≈ 10 and Standard Deviation ≈ 7

Figure 4.4: Test 2. Optimal Appointment Scheduling
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The second test is performed with chemotherapy treatments of average length, ranging from one to

27 time slot with a mean of 10 time slots and standard deviation of seven time slots. This comes up to a

total demand of 775 time slots to complete chemotherapy, thus filling the chairs at 56.78% of their capacity.

The optimal scheduling of the clinic’s activities is seen in Figure 4.4 and was solved within 280.71 seconds.

The two observations made in the first test are reinforced in this second evaluation. Most of the

patients of group G3 are arriving to the clinic before patients of G2.

The prioritization of shorter pharmacy preparation time within G3 is quite apparent in this schedule.

Since the amount of chair time available decreases as the day goes by, it is only normal that the model will

encourage to use this resource as early as possible during the day. By completing prescriptions quickly,

chemotherapy can begin sooner and chair idle time can be reduced.

The patients of G2 seem to be ordered in a way that prioritizes longest chair time first, but it is not

entirely respected as it can be seen with patient 204. This person has a short infusion of 15 minutes, yet

arrives at the clinic before other patients who require longer treatments.
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4.3.3 Test 3, Treatment Length with Mean ≈ 13 and Standard Deviation ≈ 8

Figure 4.5: Test 3. Optimal Appointment Scheduling
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The final test is performed with chemotherapy treatments that last much longer, ranging from one

to 30 time slot with a mean of 13 time slots and standard deviation of eight time slots. This comes up to a

total demand of 1072 time slots to complete chemotherapy, thus filling the chairs at 78.53% of their capacity.

Since the parameter m is set to zero and eliminates patient wait time, solving this instance was infeasible.

For this reason, the operating hours of the pharmaceutical department is extended until the end of the day.

The optimal scheduling of the clinic’s activities is seen in Figure 4.5 and was solved within 806.41 seconds.

In this schedule, a pattern with G2 is clear. Patients who have longest treatments are admitted first

and can be scheduled ahead of G3 patients. This is understandable as chair time has become a limiting

resource in this scenario with higher demand.

Throughout all three tests, patients of G1 are simply fitted in whenever additional oncologists who

are not busy with patients of G2 are free. There is no definite pattern observed.

4.4 Contributions to Workforce Management

This section illustrates the impact of using this tool to balance and guide staffing levels throughout

the clinic. Although this model can only be applied in an offline setting, it can still be accommodated and

benefit the clinic. When a patient is requesting an appointment, they would be given the date right away

and the time would be confirmed later, a day or two before their appointment date. By doing so, the clinic

has the time to accumulate requests and the oncology clinic scheduling model could be efficient.

The nurses, schedulers and receptionists spend so much time creating and restructuring patient

schedules every day. This model supplies an optimization tool to significantly reduce the time spent on

scheduling tasks, but also contributes to simplify decision making efforts of determining the best staffing

level.

With the scheduling template obtained by using this model, the figures Figure 4.6, Figure 4.7

and Figure 4.8 display the amount of available resource per time slot and the actual use of them.
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Figure 4.6: Test 1. Resources Available v.s. Resources Needed

Figure 4.7: Test 2. Resources Available v.s. Resources Needed
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Figure 4.8: Test 3. Resources Available v.s. Resources Needed

The proposed scheduling tool allows clinic executives to assess the trade-off between the cost of

additional staff and the impact on customer service level and serving additional patients. They can also

easily determine the adequate staffing requirement needed at the reception throughout the day and the

number of nurses needed by first assessing the expected workload for the day.

As shown in Test 3, it became infeasible to schedule patients appropriately with chemotherapy chairs

being filled at 78.53% of their capacity, the pharmacy was forced to remain open during a longer period of

time. Paying attention to the usage level of the chairs may help set a threshold to be used to determine

the necessity to postpone a patient to the next day, even though the chairs are not used at full capacity.

However, it would be necessary to evaluate the clinics overtime cost to adjust and achieve a good threshold

to see if it is worth delaying a patient’s treatment.

Throughout the three tests, it is possible to see a correlation between the registration use and the

amount of specialists available. The sum of oncologists and pharmacy technicians define the maximum

number of patients that will arrive at the registration two time slots prior. This conclusion makes sense since

these two resources act as the system’s bottleneck. This information can be used to determine a suitable

schedule for the receptionists of the clinic without even running the model.

It is visible that the oncology and pharmacy department are often used to the extent of their capacity.

With this model, it is possible to test the impact of adding extra oncologists or pharmacy technicians and

justify the benefit of doing so. Also, the impact of extending the operating hours of the pharmacy can be

evaluated to possibly accommodate more patients in need of chemotherapy.
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This model was purposely tested with more nurses than what is available. By doing so, it prioritized

the need and scheduling of the patients. With the information that can be extracted from this tool and the

knowledge that each patient being set up requires the full attention of a nurse while a nurse can monitor

up to four patients already receiving treatment, it is possible to know exactly how much staff is needed

per time slot. Because of this, proper lunch breaks can be scheduled and planned for moments when the

chemotherapy department is less busy. An example of shifts and lunch break scheduling for the results of

Test 1 is shown in Figure 4.9.

Figure 4.9: Test 1. Suggested Nurse Schedule to Match the Demand
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To match the optimal patient schedule obtained in Test 1, the clinic needs seven nurses to do full

shifts and can use the help of two part time nurses to cover the shifts indicated in blue. Everyone gets a

lunch and two breaks except the nurses with shorter shifts, without affecting the efficiency or service level

of the system as they are planned accordingly. This also allows to notice when there are idle nurses. This

information can be used by the head nurse to plan different tasks for these nurses if necessary. This same

idea applies to scheduling the staff needed at the registration office. By knowing the demand, it is easier to

schedule breaks and lunches.

By looking at the Figure 4.6, Figure 4.7 and Figure 4.8 it is possible to know how many chairs

are needed to treat everyone. Test 1 shows that only 23 chairs out of 35 are being used, Test 2 only used 26

chairs and Test 3 used all 35 chairs. This could give some insights as per having too many or not enough

chairs in the long run.

This tool saves time scheduling patients, but also has a benefit for staff scheduling. Instead of firstly

determining the schedule of the staff and secondly fitting the schedule of the patients, it is done in reverse

such that the need of the patient is met first and foremost.

4.5 Possible Improvements and Extensions

This section points out the weaknesses and possible improvements to make this oncology clinic

scheduling model more resourceful.

As it was previously explained, testing with model with m = 1 was not done through this thesis due

to the difficulty of obtaining a feasible solution within 12 hours. This can be explained by the innumerable

amount of additional possibilities this parameter adds. If m = 1, patients of G1 may experience one time

slot of delay between activity 1 and activity 2. A patient of G2 may be scheduled per eight additional

configurations. For example, a patient may be delayed between activities 1 and 2 only, or between 2 and 3

only, furthermore between 3 and 4 only, or a subset of them, or even between all the activities. The Table

4.11 shows the extent of these possibilities. Considering these additional configurations, it is comprehensible

that CPLEX struggles to determine a feasible schedule. Nonetheless, it would be interesting to see if a

modified mathematical formulation that includes delays may positively impact the sum of completion time

of the system.

In this model, any oncologist can be assigned to examine or follow up a patient. This does not

reflect the true operations of the clinic as it would be important to pay attention to the concept of primary

oncologists in the same manner a primary nurse is assigned to its respective patient.

To simplify this problem, the concept of time slot was introduced. It is quite efficient, but exaggerates

the amount of time truly required to perform different activities throughout the clinic. For example, an

experienced oncologist will not require 15 minutes to perform a follow-up, but on the contrary, may need

more time for the first visit of a new patient that needs to be diagnosed and explained their treatment. A
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Table 4.11: Possible Delay for Patients of G2

Between activities 1 and 2 Between activities 2 and 3 Between activities 3 and 4 Total

no delay

x 1 delay

x 1 delay

x 1 delay

x x 2 delays

x x 2 delays

x x 2 delays

x x x 3 delays

possible solution would be to shorten each time slot to ten minutes or even five minutes. Of course, this will

affect the solving time, but will give a more realistic feel to this scheduling tool.

The reality of the pharmacy department will also be enriched as prescription preparation time vary

between two to 45 minutes. Additionally, since the shelf life of certain drugs allow for long period of storage,

it is possible to prepare multiple batches at the same time. Any additional dose will be stored until a patient

in need of the same drug arrives later in the day, thus eliminating the need of waiting for it to be prepared

as it is already available.

Another interesting direction and extension of this work would be to combine the two models de-

scribed through this thesis into one model. This would allow to determine optimal treatment dates according

to the oncologist’s recommendation and primary nurse availability as well as coordinate the clinic as a whole

to schedule all additional activities and accommodate patients no matter their trajectory.

4.6 Conclusion

This model provided an extension to Chapter 3. It is important to consider previous obligations in

the clinic that may affect the start time of chemotherapy treatments on that day.

This optimization method involving the use of a multi-objective mixed-integer linear programming

model clearly shows that coordinating the four main branches of the Segal Cancer Center will lead to the

abolishment of the current two-day scheduling policy and easily schedule all necessary tasks in a single day.

This chapter took an integrated approach to solve the oncology clinic multi-stage scheduling problem.

With the help of three numerical examples, it was shown that using this scheduling tool will have

a positive impact in the field of healthcare scheduling. There will be a better coordination between depart-

ments, reduce the amount of on site wait time for patients, establish a better balancing of resource utilization

and minimize the sum of completion time and idle time of staff.
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Chapter 5

Pharmacy Interruptions

This chapter goes over an important observation made in at the Segal Cancer Center. If the clinic

were to implement either of the scheduling models expressed in this thesis, they would have to begin by

working on the bottleneck of the system, the pharmaceutical department.

The team of oncologists of the Segal Cancer Center must consult up to 250 patients per day. These

may be cancer survivors returning for regular check ups, newly diagnosed patients, and patients that are

being monitored as they are going through chemotherapy. On a daily basis, there are 80 patients scheduled

to receive drug therapy that may or may not have seen their oncologist on the same day.

These 80 patients that require chemotherapy are the ones affected by the two-day scheduling policy.

Before this change, they were arriving early at the clinic, perform their blood tests and meet with their

oncologist if necessary. After these two steps, patients were waiting for their prescription to be ready for

chemotherapy and were quickly accumulating in crowded waiting areas.

The blood test results and oncologist recommendation would reach the pharmacy, which would

then trigger the drug validation by the pharmacists. Although it was known that these patients required

chemotherapy, preparing a drug ahead of time is not recommended as they do not remain stable for a long

time and are very costly to produce. It is important for the pharmacy to reduce as much as possible the waste

of drugs, as well as their time as it would result in them having to re-create another drug to replace it if the

blood test results are different from expected or in case that the oncologist makes treatment adjustments.

With the intention of reducing delays and shortening patient wait time, it was established that the

pharmacy of the clinic, which is the bottleneck of the system needed some inspection. Since it was not

possible to accelerate the process of drug preparation, the only way to mitigate long wait time and crowded

waiting area was to send these 80 chemotherapy patients back home such that they would arrive the next

morning and their prescription would be ready for infusion. Although it has proven to reduce the crowd at

the clinic, these patients must inconveniently travel twice for something that was normally completed in a

single day. Paying close attention to the bottleneck was necessary.

To understand the cause of delays experienced by the pharmacy, during the period of November
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13th 2015 until December 18th 2015, the pharmacists were requested to complete the ”Follow up Outpatient

Clinic Workflow Interruptions” paper form seen in Figure 5.1.

Figure 5.1: Follow up Outpatient Clinic Workflow Interruptions Form

The purpose of this experiment was to pinpoint the major causes of interruptions such that they could

eventually be minimized and eliminated. This form only required a few seconds to fill out as the pharmacists

upon experiencing a delay would stick a copy of the patient’s prescription and select the appropriate cause

of delay among:

-Receiving lab values out of range such that the current prescription is not appropriate to be administered,

-CLSC lab results to be verified in the Québec Health Record as some patients who do not require a

consultation with their oncologist could visit the closest clinic to perform blood tests

-Requiring clarifications on the treatment plan or prescription from the oncologist,

-Noticing a mistake on the prescription that needed further clarifications,

-Not receiving any prescription to prepare,

-Booking related issues.

After tabulating the paper forms, collecting and analyzing follow up notes, pharmacy notes and

verbal orders found on Endovault, it was possible to define the three main causes of interruptions for the 219

cases reported during that period. It was clear that interruptions experienced in the pharmacy were made

by obtaining lab values out of range in 40.10 % of the time, additional clarification on the treatment plan

or prescription was required in 30.59% of cases and mistake on prescriptions were made in 11.42% of the

time. With this analysis, it was also possible to determine which oncologists were more troublesome such

that they could refine their working practices and receive some coaching. In June 2016, upon discussing and

presenting the results with the director of the Segal Cancer Center and the oncology pharmacy coordinator,

it was determined that the oncologists and pharmacists would work together to establish guidelines that

would diminish these three issues.
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Chapter 6

Conclusion

Two serious issues in healthcare scheduling are tackled in this thesis. It is shown that optimization

methods such as mixed-integer linear programming models can have a positive impact in the field of oncology

clinic multi-stage scheduling and chemotherapy outpatient scheduling. With the seriousness of a disease like

cancer, it is crucial to ease the pain and keep chemotherapy treatments stress free for these patients. By

eliminating exaggerated on-site and off-site wait time and scheduling patient appointment with familiar

nurses, we know that we could somewhat contribute to the well being of these people.

6.1 Future Directions and Extensions

An interesting extension to this thesis would be the combination of both models such that the entire

clinic can be optimized at once. Assigning patients to their oncologists and primary nurse correctly, while

respecting the chemotherapy protocol and considering the multiple possible trajectories.

Another extension would be to consider the wait time parameter m of the oncology clinic multi-stage

scheduling model. It would be interesting to see if allowing patient wait time would have a positive impact

on the system. Unfortunately, with the current formulation, obtaining a feasible solution in a reasonable

amount of time was not possible.

Additional weaknesses addressed in the previous sections may be sources of inspiration for extending

this research. The timeline of this problem was divided in 30-minute time slots and 15-minute time slots.

Possibly a smaller and more precise time line may help to assess the real processing capacity of the oncologists

and pharmacy drug preparation. The pharmacy has the ability of completing more than a single batch of

a drug at a time and the knowledge of shelf life of these drugs can be used as an advantage to make this

subsystem more efficient. The division of the chemotherapy unit in two stations was ignored and will be a

challenge to consider due to the rotation of nurses and uneven number of chairs and beds.
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6.2 Summary of Contributions

The contributions of this research are specific to scheduling applications in oncology outpatient

clinics. It is a field that has seen a significant increase in demand due to the aging population and needs

improvements. In recent years, healthcare providers realized the importance of having efficient systems to

accommodate more patients while minimizing costs and maximizing the quality of their services.

To the best of our knowledge there is limited research in the literature in term of chemotherapy

appointment scheduling while maintaining the assignment of primary nurses to their patients and simulta-

neously respecting the target day of chemotherapy treatment prescribed by the oncologist.

There are also only a few studies focused on optimizing the flow of the interdependent events that

ultimately lead to chemotherapy treatments. This includes the coordination of the clinic’s reception, the

hematology clinic, the oncology department, the pharmacy and the chemotherapy unit. Each of these

departments deal with specific resources limitations and constraints that must be considered to obtain an

efficient system. Unfortunately, the scientific community has mainly focused on optimizing single-stages of

this scenario. These two gaps in the literature are filled with the topics of this thesis.

The solutions found with both of these mixed-integer linear programming models can provide input

for the clinic’s workforce management. It will be possible to properly coordinate the schedule of the staff

by establishing breaks and lunches when the demand is lower. Additionally, it will be easy to analyze and

justify the impact of adding or eliminating a staff member.
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Appendix A

Figure A.1: Test 1. Coefficient of Correlation Data Compilation

Figure A.2: Test 1. Coefficient of Correlation Calculations
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Appendix B

Figure B.1: Test 2. Coefficient of Correlation Data Compilation
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Figure B.2: Test 2. Coefficient of Correlation Calculations
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